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A formal limit of the Hermitian Yang-Mills Equations on a SU(2) bundle over

a product of two Riemann surfaces yields the Adiabatic Equations when the

metric of the first surface is stretched ad infinitum. This thesis identifies the

solutions of this new set of equations with holomorphic maps from the first

surface into the moduli space of flat connections of the second one. Moreover,

some advance is made in the study of the sort of bubbling phenomena that may

occur when taking this limit. This dissertation is a step towards a rigorous

proof of the relationship suggested by Bershadky, Johansen, Sadov and Vafa

between Donaldson invariants and quantum cohomology, and relates to the

program of Dostoglou and Salamon to prove the Atiyah-Floer conjecture.
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Chapter 1

Introduction

1.1 History

In Physics a time dependent process is called adiabatic if the rate of

change is so slow that the solution can be approximately described by a time

parameterized family of static solutions. This slow rate of change corresponds

mathematically to stretching the time direction in the equations that govern

the process, and the limit as time is infinitely stretched is referred to as the

adiabatic limit.

Witten in [Wit85] introduced the idea of stretching the metric in some

space directions instead of time, and this notion was subsequently employed in

the study of η-invariants [Che87, BF86a, BF86b, BC89, Dai91]. This geometric

adiabatic limit was used by Mazzeo and Melrose [MM90] to relate the spectrum

of the Laplacian on forms to the Leray spectral sequence, and their results were

generalized by Forman in [For95].

Atiyah [Ati88] used the idea of stretching the neck for the Heegaard

splitting to study the Casson invariants and Floer homology. This was further

explored by Dostoglou and Salamon [DS94] to prove a version of the Atiyah-

Floer conjecture, relating the symplectic and instanton Floer homologies. In
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their proof they relate the adiabatic limit of anti-self-dual connections on the

product of a cylinder and a Riemann surface to pseudo-holomorphic curves in

the moduli space of flat connections on the surface.

When the base manifold is a product of two Riemann surfaces, physi-

cists Bershadsky, Johansen, Sadov and Vafa [BJSV95] used the adiabatic limit

to obtain a topological reduction of 4-dimensional supersymmetric Yang-Mills

theory to 2-dimensional supersymmetric σ-models. Although their methods

were not mathematically rigorous, an important consequence of such result

would be a relation between the Donaldson invariants on the product mani-

fold and the quantum cohomology of the flat connections on the fixed (non-

stretched) surface. This is the BJSV conjecture.

Donaldson invariants are defined in terms of the topology of the mod-

uli space of ASD equations, and quantum cohomology in terms of pseudo-

holomorphic curves in the moduli space of flat connections. Such curves can

be identified with solutions of the adiabatic equations, that are obtained as

the formal adiabatic limit of the ASD equation. The problem then is how

to relate the moduli space Mλ of ASD connections as one of the surfaces is

stretched by a factor λ−1 and the moduli space Mad of adiabatic connections.

One expects Mλ should converge in some sense to Mad as λ → 0.

In his thesis [HI98], Handfield developed the first steps towards a rig-

orous proof the BJSV conjecture by showing how it is possible to construct a

family of connections [Dλ] ∈ Mλ near an adiabatic connection [Dad] ∈ Mad.

There is however no guarantee that this construction will give a bijective cor-
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respondence between Mad and Mλ, even for small values of λ.

1.2 The Product Structure

Let E be a SU(2) bundle over a product Σ × K of compact oriented

Riemann surfaces.

If ρΣ and ρK are the Riemannian metrics of Σ and K, and ωΣ and ωK

the corresponding Kähler forms, the product manifold Σ ×K has a product

metric and a product Kähler structure given by

ρ = ρΣ⊕ ρK , (1.1)

ω = ωΣ⊕ ωK . (1.2)

The orthogonal splitting T (Σ×K) = TΣ⊕TK induces in the obvious

way similar splittings of forms:

Ω1(Σ ×K) = ΩΣ ⊕ ΩK ,

Ω2(Σ ×K) = ΩΣΣ ⊕ ΩΣK ⊕ ΩKK .

Here for example ΩKK represents the 2-forms on Σ × K which are nonzero

only when computed at a pair of vectors tangent to K.

Notation. If an object (vector, form, connection, etc.) has components along Σ

or K, we use a single superscript to indicate the corresponding component (e.g.

ωΣ for the Σ component of the 2-form ω). For forms with mixed components

we use multiple superscripts (e.g. ηΣΣΣ or ηΣKK for components of a 3-form).
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Hence a connection D on a bundle over Σ ×K can be split according

to its directional components

D = DΣ + DK ,

its holomorphic type

D = ∂D + ∂̄D,

or both

D = ∂Σ
D + ∂̄Σ

D + ∂K
D + ∂̄K

D .

Its curvature splits as

F = FΣΣ + FΣK + FKK ,

or, according to holomorphic type, as

F = F 2,0 + F 1,1 + F 0,2.

Definition. Let D, ∂̄ and H be respectively a connection, a holomorphic

structure and a Hermitian metric on E . For any z ∈ Σ denote by

• Ez the restriction of E over the slice z ×K,

• Dz, ∂̄z, Hz the restrictions of DK , ∂̄K , H to Ez.

As Σ is path-connected, all Ez’s are isomorphic to some bundle F −→ K.

Fix some Hermitian metric HF on F . As all Hermitian metrics in a bundle

are related by bundle automorphisms, the isomorphism Ez
∼= F can be chosen

such that Hz = HF under this identification. Subject to this condition, the

isomorphism is unique up to unitary gauge transformations of (F , HF).
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Remark. As F is a SU(2) bundle over a Riemann surface, it is topologically

trivial, even though E might be non-trivial.

Definition. A trivialization of E over a contractible open set U ⊂ Σ is an

isomorphism E|U ∼= U ×F .

1.3 The Adiabatic Rescaling

We define a parameterized family of metrics {ρλ ; λ > 0} on Σ ×K by

ρλ ≡ ρΣ

λ2
⊕ ρK .

So as the parameter λ → 0, the surface Σ is being indefinitely stretched,

and we call this limiting process the adiabatic limit. The Kähler form ωλ

corresponding to the metric ρλ is

ωλ =
ωΣ

λ2
⊕ ωK ,

and the rescaled pointwise inner product (refer to Appendix E for notation)

relates to the original one by

(· , ·)
ρλ

= λ2
(· , ·)Σ

ρ1
+

(· , ·)K

ρ1
on 1-forms,

(· , ·)
ρλ

= λ4
(· , ·)ΣΣ

ρ1
+ λ2

(· , ·)ΣK

ρ1
+

(· , ·)KK

ρ1
on 2-forms.

In particular, the pointwise norm for a 2-form η = ηΣΣ + ηΣK + ηKK satisfies

|η|2ρλ
= λ4 |ηΣΣ|2ρ1

+ λ2 |ηΣK |2ρ1
+ |ηKK |2ρ1

. (1.3)

Define a ‘trace’ operator Λλ : Ωp,q(Σ×K) → Ωp−1,q−1(Σ×K), as in Appendix

A, by
(
Λλη , η′

)
ρλ

=
(
η , η′∧ωλ

)
ρλ

for all η ∈ Ωp,q , η′ ∈ Ωp−1,q−1. For a 2-form
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η ∈ Ω2(Σ ×K) this means

Λλη =
(
ηΣΣ , ωΣ

λ

)
ρλ

+
(
ηKK , ωK

λ

)
ρλ

= λ4
(
ηΣΣ ,

ωΣ

λ2

)
ρ1

+
(
ηKK , ωK

)
ρ1

= λ2ΛΣηΣΣ + ΛKηKK ,

where ΛΣ and ΛK are the trace operators on Σ and K corresponding to their

original Kähler metrics.

We define the rescaled Hermitian-Yang-Mills Equations, or HYMλ equa-

tions, as being the Hermitian-Yang-Mills equations for the metric ρλ, i.e.
{

∂̄2
λ = 0

λ2ΛΣFΣΣ
λ + ΛKFKK

λ = 0,
(1.4)

where the subscript λ refers to any unitary connection Dλ satisfying these

equations.

Lemma 1.1. If Dλ satisfies the HYMλ equations then

|FKK
λ |ρ1 = |FKK

λ |ρλ
= |FΣΣ

λ |ρλ
= λ2|FΣΣ

λ |ρ1 .

Proof. The first equation in (1.4) implies Fλ ∈ Ω1,1(Σ×K, ad E) and therefore

FΣΣ
λ = ξωΣ and FKK

λ = ξ′ωK for some ξ, ξ′ ∈ Ω0(Σ ×K, ad E). The second

equation then means λ2ξ + ξ′ = 0 and the result follows from

|FKK
λ |ρ1 = |ξ′| |ωK |ρ1 = |λ2ξ| = λ2|ξ| |ωΣ|ρ1 = λ2|FΣΣ

λ |ρ1 ,

and from Equation (1.3).
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The formal limit of the HYMλ equations as λ → 0 yields the Adiabatic

Limit Equations {
∂̄2

ad = 0

FKK
ad = 0.

(1.5)

A solution Dad of these equations is an adiabatic connection.

1.4 Statement of the Problem and Results

In this work, we attempt to improve the results obtained by Handfield

in [HI98] in a program to establish a relation between moduli spaces of Yang-

Mills connections and holomorphic curves in moduli spaces of flat connections

via adiabatic connections.

On Chapter 2 we define some maps between connections on E and

functions from Σ into B∗F (refer to Appendix F for notation). These are

then used to prove a bijective correspondence between M×
ad and HolE(Σ,M∗

F)

(Theorem 2.4). Our approach differs from the one in [HI98] in that we work

with SU(2) instead of SO(3) bundles, so we can not construct a connection

on E from a function Σ →M∗
F by simply pulling back a universal connection

defined over M∗
F .

On Chapter 3 we construct a family [Dλ] corresponding to some [Dad].

But instead of doing so by using the Implicity Function Theorem as in [HI98],

we impose a stability condition that allows us to obtain the family [Dλ] in a

very natural way. The idea is to look for this family along the orbit of GC

passing through [Dad], and use stability to guarantee the existence of a unique
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[Dλ] in such orbit for each small λ.

We however ran into problems in proving [Dλ] → [Dad], due to the

possible occurrence of bubbling. Our approach was based in the techniques

used by Dostoglou and Salamon in their proof of the Atiyah-Floer conjecture

[DS94]. But after several attempts at adapting their methods to our case, we

realized there is a serious gap in their argument about the formation of slow

bubbles (which they call holomorphic spheres). A correction is attempted in

[GS01], although the convergence is still not good enough to bridge this gap.

So far we have been unable to obtain a better argument, but we conjecture

that if the argument in [DS94] can somehow be corrected then the same should

probably be true in our case.
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Chapter 2

The Adiabatic Limit Equations

2.1 Connections and Maps Into the Moduli Space

2.1.1 Maps Induced by Connections

Given D ∈ A× and z ∈ Σ, the restriction Dz is an irreducible unitary

connection on (Ez, Hz). The isomorphism between (Ez, Hz) and (F , HF), which

is defined up to unitary gauge transformations, determines a gauge equivalence

class [Dz] ∈ B∗F . This gives a map

Definition. φD : Σ → B∗F
z 7→ [Dz].

Clearly φD depends only on the gauge equivalence class of D. Hence

we obtain a well defined map:

Definition. Φ : B× → C∞(Σ,B∗F)

[D] 7→ φD.

Note that Φ is not injective, as we can have two connections on E
whose restrictions along the slices {z} ×K are gauge equivalent but not their

restrictions along the Σ direction. Nor is it surjective. As B× is connected, all

maps φD ∈ Im Φ are in the same homotopy class.
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Definition. C∞
E (Σ,B∗F) ≡ {maps in the homotopy class of Im Φ}

= {φ ∈ C∞(Σ,B∗F) : φ ∼ φD for some D ∈ A×}.

2.1.2 Connections Induced by Maps

Let φ ∈ C∞
E (Σ,B∗F). We would like to construct a gauge equivalence

class [Dφ] on E such that Φ([Dφ]) = φ.

Given a cover {Uj} of Σ by contractible open sets, φ can be lifted over

Uj to a (non-unique) map aj : Uj → A∗
F . Depending on the context we write

either aj(z) or Daj(z) to represent the connection obtained from this map at

z. For z ∈ Uj

⋂
Uk there is a gjk(z) ∈ GF such that

Daj(z) = gjk(z) ·Dak(z). (2.1)

As these connections are irreducible and the center of SU(2) is {±I}, gjk(z)

is unique up to a ± sign. Also,

gjk(z)gkj(z) ·Daj(z) = Daj(z) ⇒ gjk(z)gkj(z) = ±I,

gjk(z)gkl(z)glj(z) ·Daj(z) = Daj(z) ⇒ gjk(z)gkl(z)glj(z) = ±I.

If the signs of the gjk’s could be chosen in such a way to always have +I

above, they could be used as transition functions for “trivializations” Uj × F
of a bundle E ′ −→ Σ ×K. It is not possible in general to make such a choice 1.

However, as in this case φ ∼ φD for some D ∈ A×, instead of lifting just φ we

1The gjk’s modulo±I define a SO(3) bundle, and the choice of signs corresponds to lifting
it to a SU(2) bundle, what is only possible if the second Stiefel-Whitney class vanishes.
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can lift the whole homotopy map, starting with “trivializations” Uj × F of E
and the obvious lifts (Dz)j of φD. In this way, not only we get a natural way of

choosing the gjk’s but they will also be homotopic to the transition functions

of E , so that E ′ ∼= E . Note that choosing a different D, homotopy or lifts

amounts only to obtaining another bundle isomorphic to E ′, or equivalently to

a gauge transformation of E ′.

The partial connections Daj
can be completed along the Σ directions

in a natural gauge invariant way. Let z = x + iy be local coordinates on Uj.

For each z as D∗
aj(z)Daj(z) : Ω0(End0F) → Ω1(End0F) is elliptic there are

ηxj(z), ηyj(z) ∈ Ω0(End0F) such that

D∗
aj

(
Daj

ηxj −
∂aj

∂x

)
= 0, D∗

aj

(
Daj

ηyj −
∂aj

∂y

)
= 0, (2.2)

and as aj(z) is stable Corollary J.3 implies these solutions are unique. Define

a connection Dj on Uj ×F by

Dj = d + ηxj dx + ηyj dy + Daj
, (2.3)

where d is the trivial connection along Uj. On Uj

⋂
Uk an easy calculation

using (2.1) shows that

g−1
jk ·Dj = d +

(
g−1

jk ηxjgjk + g−1
jk

∂gjk

∂x

)
dx +

(
g−1

jk ηyjgjk + g−1
jk

∂gjk

∂y

)
dy + Dak

,

and also

D∗
ak

(
Dak

(
g−1

jk ηxjgjk + g−1
jk

∂gjk

∂x

)
− ∂ak

∂x

)
= 0,

with a similar equation for y. Hence Dj = gjk ·Dk and these connections glue

together to form a global connection Dφ on E ′. The isomorphism E ∼= E ′ now

determines a gauge equivalence class [Dφ] ∈ B×, giving a well defined map
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Definition. Θ : C∞
E (Σ,B∗F) → B×

φ 7→ [Dφ].

By construction, Φ ◦Θ = id and therefore Im Φ = C∞
E (Σ,B∗F).

Proposition 2.1. Im Θ = {[D] ∈ B× : (DK)∗FΣK
D = 0}.

Proof. Any D ∈ A× can be expressed locally as Dj = d+ηxj dx+ηyj dy+(Dz)j

for some ηxj, ηyj ∈ Ω0(End0F), and writing aj ≡ (Dz)j we have

FΣK
Dj

=
(
Daj

ηxj −
∂aj

∂x

)
∧ dx +

(
Daj

ηyj −
∂aj

∂y

)
∧ dy.

If [D] ∈ Im Θ then ηxj and ηyj can be chosen to satisfy (2.2), and in such

case (DK)∗FΣK
D = 0. Conversely, if (DK)∗FΣK

D = 0 then ηxj, ηyj are the

unique elements of Ω0(End0F) satisfying (2.2) and by construction [D] =

Θ(Φ(D)).

2.2 Adiabatic Connections and Holomorphic Maps

The moduli space M∗
F of irreducible flat connections on F has a com-

plex structure given by the Hodge start operator ∗K acting on its tangent

space TAM∗
F = {a ∈ Ω1(End0F) : DAa = D∗

Aa = 0}. In this section we show

that the maps defined above establish a correspondence between the adiabatic

connections on E and holomorphic maps from Σ into M∗
F .

Definition. HolE(Σ,M∗
F) = {φ ∈ C∞

E (Σ,B∗F) : φ is holomorphic, Im φ ⊂
M∗

F}.

12



Proposition 2.2. M×
ad ⊂ Im Θ.

Proof. Given D = ∂Σ + ∂̄Σ + ∂K + ∂̄K we have2

FΣK
D = [∂Σ, ∂K + ∂̄K ] + [∂̄Σ, ∂K + ∂̄K ], (2.4)

(DK)∗FΣK
D = iΛK(∂̄K − ∂K)FΣK

D

= iΛK
[
∂̄K − ∂K , [∂Σ, ∂K + ∂̄K ] + [∂̄Σ, ∂K + ∂̄K ]

]

= 2iΛK
[
∂̄K , [∂Σ, ∂K ]

]
+ iΛK

[
∂Σ , [∂K , ∂̄K ]

]

− 2iΛK
[
∂K , [∂̄Σ, ∂̄K ]

]− iΛK
[
∂̄Σ , [∂K , ∂̄K ]

]
.

(2.5)

If D ∈M×
ad the adiabatic equations ∂̄2

D = ∂2
D = 0 and FKK

D = 0 imply

[∂̄Σ, ∂̄K ] = 0, [∂Σ, ∂K ] = 0, [∂K , ∂̄K ] = 0,

and therefore (DK)∗FΣK
D = 0. The result follows from Proposition 2.1.

Proposition 2.3. Φ(M×
ad) = HolE(Σ,M∗

F).

Proof. Let [D] ∈ M×
ad. By the previous Proposition [D] = Θ(φ) for some

φ ∈ C∞
E (Σ,B∗F), and φ = Φ([D]) as Φ ◦ Θ = id. From the definition of Φ it

is clear that Im φ ⊂ M∗
F if and only if FKK

D = 0. So all that remains to be

shown is that ∂̄2
D = 0 is equivalent to φ being holomorphic. As [D] ∈ Im Θ, D

can be written locally as in (2.2) and (2.3) with aj ≡ (Dz)j, and so

∂̄Dj
= ∂̄ +

ηxj + i ηyj

2
dz̄ + ∂̄aj

,

∂̄2
Dj

= −
(

∂a0,1
j

∂z̄
− ∂̄aj

(ηxj + iηyj

2

))
∧ dz̄. (2.6)

2We use the notation [∂1, ∂2] = ∂1∂2 + ∂2∂1, and [∂1, ∂2∂3] = ∂1∂2∂3 − ∂2∂3∂1.
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The holomorphic condition for φ is

∂φ

∂x
+ ∗K

∂φ

∂y
= 0.

The derivatives of φ at z can be computed by projecting the derivatives of

its lift aj onto (Im Daj(z))
⊥. As Daj(z) is flat it can be used to define an

elliptic complex which on the other hand gives a Hodge-like decomposition

Taj(z)AF = Im Daj(z)⊕ Im D∗
aj(z)⊕H1

aj(z) = Im Daj(z)⊕ ker D∗
aj(z). Hence ∂φ

∂x
is

given by

∂φ

∂x
=

∂aj

∂x
−Daj(z)η,

for some η such that

D∗
aj

(∂aj

∂x
−Daj(z)η

)
= 0.

By the uniqueness of solutions of (2.2), η = ηxj. For ∂φ
∂y

there is a similar

formula, and so

∂φ

∂x
+ ∗K

∂φ

∂y
=

(∂aj

∂x
−Daj

ηxj

)
+ ∗K

(∂aj

∂y
−Daj

ηyj

)

=
∂a0,1

j

∂x
+ i

∂a0,1
j

∂y
− ∂̄aj

ηxj − i ∂̄aj
ηyj

+
∂a1,0

j

∂x
− i

∂a1,0
j

∂y
− ∂aj

ηxj + i ∂aj
ηyj

= 2

(
∂a0,1

j

∂z̄
− ∂̄aj

(ηxj + iηyj

2

))
+ 2

(
∂a1,0

j

∂z̄
− ∂aj

(ηxj − iηyj

2

))

By (2.6) the vanishing of the (0, 1) component is equivalent to ∂̄2
Dj

= 0, and

similarly the vanishing of the (1, 0) component is equivalent to ∂2
Dj

= 0. For

unitary connections ∂̄2
Dj

= 0 if and only if ∂2
Dj

= 0, so φ is holomorphic if and

only if ∂̄2
D = 0.
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Theorem 2.4. The maps Φ and Θ give a 1-1 correspondence between M×
ad

and HolE(Σ,M∗
F).

Proof. Follows from the two previous results and the fact that Φ ◦Θ = id.

Theorem 2.5. For each slicewise stable class s ∈ S there is a unique [Ds] ∈
M×

ad with ∂̄s ∈ s.

Proof. For each z ∈ Σ, as sz ∈ SF is stable by Corollary J.8 there is a unique

[Ds,z] ∈M∗
F such that ∂̄s,z ∈ sz. So s determines a map

φs : Σ →M∗
F

z 7→ [Ds,z]

and a gauge equivalence class [Ds] = Θ(φs). By construction FKK
s = 0 (and

therefore [∂K
s , ∂̄K

s ] = 0) and (∂̄K
s )z ∈ sz is stable for any z ∈ Σ. Proposition

2.1 implies (DK
s )∗FΣK

s = 0, and so by equation (2.5),

[
∂̄K

s , [∂Σ
s , ∂K

s ]
]

= 0,
[
∂K

s , [∂̄Σ
s , ∂̄K

s ]
]

= 0.

As over any slice ∂̄K
s is stable, Lemma J.3 implies [∂Σ

s , ∂K
s ] = 0 and [∂̄Σ

s , ∂̄K
s ] =

0. Therefore ∂̄2
s = 0 and [Ds] ∈M×

ad. Moreover, ∂̄s ∈ s by Corollary J.6.

Now suppose D′ is another adiabatic connection with ∂̄′ ∈ s. Then

D′ = g(Ds) for some g ∈ GC. As D′ is adiabatic each D′
z is flat, so as

D′
z = g(z)((Ds)z) Corollary J.8 implies g(z) ∈ GF for all z. Hence g ∈ G.
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Chapter 3

The Adiabatic Limit

3.1 The sequence of HYMλ solutions

Fix a slicewise stable class s ∈ S.

By Theorems J.7 and 2.5 there are a unique [Dλ] ∈M×
λ for each λ > 0

and a unique [Dad] ∈ M×
ad satisfying ∂̄λ, ∂̄ad ∈ s. As ∂̄λ and ∂̄ad are in the

same class there is some gλ ∈ GC such that ∂̄λ = gλ · ∂̄ad, and as Dλ and Dad

are both unitary,

Dλ = gλ(Dad).

The first step in proving convergence for a family of connections is to

obtain some bounds on the curvature. Let {λn}n∈N be any decreasing sequence

with λ1 = 1 and λn → 0.

Notation. Dn ≡ Dλn , Fn ≡ Fλn , ρn ≡ ρλn , gn ≡ gλn ,

Partition Σ as Σ = Σ1 ∪ . . . ∪Σ4, where

Σ1 = C1, Σ2 = C2 − C1, Σ3 = C3 − C2, Σ4 = Σ − C3,

C1 = {z ∈ Σ : there are some c > 0 and a neighborhood of z ×K in which

sup |Fn|ρn < cλn for all n large enough},

16



C2 = {z ∈ Σ : for any δ > 0 there is a neighborhood of z ×K in which

sup |Fn|ρn < δ for all n large enough},

C3 = {z ∈ Σ : |Fn|ρn is uniformly bounded on a neighborhood of z ×K }.

In the next sections we will deal with the Σi’s one at a time, but first

we give an idea of what should be expected from each case.

Σ1 corresponds to the ideal situation for our purposes. Our aim is to

prove that the other sets are empty and so Σ = Σ1.

For z ∈ Σ2 we will have a sequence of points converging to z ×K with

|Fn|ρ1 → ∞. Expanding the metric appropriately about these points we can

keep Fn bounded without decaying to 0. As we are in C2, expanding at the

same rate as ρn would make Fn → 0, so the appropriate expansion must be

slower. The ρn-ASD equations then imply FKK
n → 0, and we end up with a

non-flat adiabatic connection on R2 ×K.

In the case of Σ3 we obtain a sequence zn → z for which |Fn|ρn remains

bounded about zn×K. Expanding the metric about these slices according to ρn

we obtain a sequence of ASD connections with uniformly bounded curvature.

As z /∈ C2 these will converge to a non-flat ASD connection on R2 ×K.

We prove Σ2 and Σ3 are empty by comparing what we obtained from Dn

to what we get from Dad by the same construction, and showing the existence

of both objects contradicts our stability assumptions.

Finally, Σ4 corresponds to points (or sequences) where even in the

expanded metric ρn the curvature remains unbounded. As the connections

17



are ASD with respect to ρn, there is a minimum amount of energy that must

become concentrated at the point for the curvature to diverge. As the total

energy is finite, there can be only a finite number of such points. Each of them

will therefore be surrounded by Σ1. This will provide a contradiction, as the

energy of Dn inside a region can be controlled by the energy of Dad (that is

bounded) in the same region plus some contributions from the boundary.

3.2 Fiber Bubbles.

We now deal with Σ3 as this case is simpler and allows us to introduce

some techniques that will be used again in the next section, when dealing with

Σ2. Given z ∈ Σ3 there is a δ > 0 such that, after passing to a subsequence,

it is possible to find a k ∈ K and a sequence (zn, kn) → (z, k) such that

|Fn(zn, kn)|ρn > δ for all n.

In order to avoid the problem of having the metrics ρn diverge as λn → 0

we pull shrinking neighborhoods of zn back to R2.

Definition 3.1. Choosing orthonormal (with respect to ρ1) basis {e1
n, e2

n} for

TznΣ, define a sequence of maps ϕn : R2 ×K → Σ ×K by

ϕn(x,w) = (expzn
(λnx1e

1
n + λnx2e

2
n), w).

Define also sequences of metrics ρ̃n on R2 ×K, connections D̃n on Ẽ = ϕ∗nE ,

and gauge transformations g̃n ∈ GC(Ẽ) by

ρ̃n = ϕ∗nρn, D̃n = ϕ∗nDn, g̃n = ϕ∗ngn.
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Denote the curvature of D̃n by F̃n.

Remark. Note that as R2 is contractible Ẽ = ϕ∗nE does not depend on n, and

is isomorphic to R2 ×F .

Lemma 3.2. ρ̃n → ρ ≡ ε× ρK in C∞ over compact sets, where ε denotes the

Euclidean metric on R2.

Lemma 3.3. {|F̃n|ρ̃n} is uniformly bounded over compact sets of R2 ×K.

Proof. As z ∈ C3 there is a c > 0 and a neighborhood U of z such that

|Fn|ρn < c in U ×K for all n. Given any compact set Ω ⊂ R2, ϕn(Ω) ⊂ U for

all n large enough. Hence |F̃n|ρ̃n = ϕ∗n|Fn|ρn < c in Ω×K for n large.

As D̃n is ASD with respect to ρ̃n, by Theorem I.6 we can assume, after

passing to a subsequence and taking gauge transformations,

Lemma 3.4. D̃n → D in C∞ over compact sets, where D is an ASD connec-

tion with respect to ρ.

Lemma 3.5. 0 < ‖F‖L2(ρ,R2×K) ≤ 8π2c2(E), where F is the curvature of D.

Proof. As |F (0, k)|ρ = limn |F̃n(0, kn)|ρ̃n = limn |Fn(zn, kn)|ρn > δ and F is

smooth (in an appropriate gauge), its L2 norm is nonzero. Also, for any

compact set Ω ∈ R2, F satisfies∫

Ω×K

|F |2ρ d volρ = lim
n→∞

∫

Ω×K

|F̃n|2ρ̃n
d volρ̃n

= lim
n→∞

∫

ϕn(Ω×K)

|Fn|2ρn
d volρn

≤ lim
n→∞

∫

Σ×K

|Fn|2ρn
d volρn ≤ 8π2c2(E),
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what gives the upper bound.

Corollary 3.6. supz×K |FKK |ρK → 0 as |z| → ∞.

Proof. As D is ASD the previous Lemma and Proposition I.2 imply that

supz×K |F |ρ → 0 as |z| → ∞. The result then follows from |FKK |ρK =

|FKK |ρ ≤ |F |ρ.

Definition 3.7. Define a connection D0 on R2 ×K by

D0 ≡ lim
n→∞

ϕ∗nDad = dR
2

+ (Dad)z0 .

Here dR
2

represents the trivial connection along R2 and (Dad)z0 is the K com-

ponent of Dad along z0 × K. The limit is uniform on compact sets for all

derivatives.

Lemma 3.8. D0 is flat.

Proof. As DR2

0 is trivial and DK
0 is constant along R2, the result will be true if

(Dad)z0 is flat. But this is part of the definition of an adiabatic connection.

Lemma 3.9. D = g(D0) for some g ∈ GC(Ẽ).

Proof. As Dn = gn(Dad),

D̃n = ϕ∗n(Dn) = (ϕ∗ngn)(ϕ∗nDad) = g̃n(ϕ∗nDad),

and by Proposition J.12 D = g(D0) for some g ∈ GC(Ẽ).
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The curvatures of D and D0 are related by

F = g
(
F0 + ∂̄0(h

−1∂0h)
)
g−1,

where h = g∗g. As D is ASD and D0 is flat, this gives

Λρ∂̄0(h
−1∂0h) = 0.

Setting u ≡ log h then 4|u|2 ≤ 0 by Lemma B.5, and therefore

4R2

∫

z×K

|u|2 d vol =

∫

z×K

(4R2

+4K) |u|2 d vol ≤ 0. (3.1)

Lemma 3.10. For any δ > 0 there is R > 0 such that if |z| > R then

‖Dz − g · (D0)z‖C1 < δ for some g ∈ GF .

Proof. Using Corollaries 3.6 and J.10 we obtain a flat connection Dflat over

z ×K such that ‖Dz −Dflat‖C0 < δ and [∂̄flat] = [∂̄Dz ] = [(∂̄0)z]. As both Dflat

and (D0)z are flat and in the same stable GC-orbit, they differ by a unitary

gauge transformation.

Corollary 3.11.
∫

z×K
|u|2 d vol → 0 as |z| → ∞.

Proof. Follows from the previous Lemma, Corollary J.15 and Lemma J.14.

Equation (3.1) then implies u = 0 by the maximum principle, and

therefore D = g · D0 with g ∈ G(Ẽ). This contradicts the fact that D is

non-flat, proving

Proposition 3.12. Σ3 = ∅.
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3.3 Slow Bubbles.

Let z0 ∈ Σ2. As z0 ∈ C2 and |FKK
n |ρ1 = |FKK

n |ρn , for any δ > 0 there

is a neighborhood U of z0 such that

sup
U×K

|FKK
n |ρ1 < δ. (3.2)

for all n large enough. This means if we applied directly the techniques from

the previous section we would end up with a flat connection D, which would

not provide the desired contradiction. On the other hand, as z0 /∈ C1 we can,

after passing to a subsequence of the connections, find a sequence z′n → z0

such that

sup
z′n×K

λ−1
n |Fn|ρn →∞.

By Lemma K.1 we can, after possibly changing to a different sequence z′n → z0,

assume

λ−1
n ‖Fn‖L2(ρn,z′n×K) →∞. (3.3)

By expanding the metric on Σ at an appropriate rate we can get just enough

control over the curvature to be able to use the Compactness Theorem K.3.

The rate of expansion will be determined from the following function.

Definition. For any z ∈ Σ and any n ∈ N let

en(z) = λ−1
n ‖Fn‖L2(ρn,z×K)

=
√

λ2
n‖FΣΣ

n ‖2
L2(ρ1,z×K) + ‖FΣK

n ‖2
L2(ρ1,z×K) + λ−2

n ‖FKK
n ‖2

L2(ρ1,z×K) .

In order to obtain control over the curvature not only at z′n but on a

neighborhood we use the following Lemma due to Hofer (see [DS94, p. 631]).
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Lemma 3.13. Let M be a complete metric space and f : M → R be continuous

and nonnegative. Given z′ ∈ M and r′ > 0 there exist z ∈ M and 0 < r < r′

such that

d(z, z′) ≤ r′, sup
Br(z)

f ≤ 2f(z), rf(z) ≥ r′f(z′)/2.

Here Br(z) is the geodesic ball of radius r centered at z.

Equation (3.3) implies en(z′n) → ∞, so applying this Lemma with the

metric ρ1, f = en, z′ = z′n and r′ = 1/
√

en(z′n) we obtain new sequences

zn → z0 and rn → 0 satisfying

sup
Bn

en ≤ 2en(zn),

rnen(zn) →∞,

where Bn is the geodesic ball centered at zn of radius rn with respect to ρΣ
1 .

Let λ′n = en(zn)−1 and αn = λn/λ
′
n and define a new sequence of metrics

on Σ ×K by

ρ′n ≡
ρΣ

λ′n
2 ⊕ ρK = (α2

n ρΣ
n )⊕ ρK

n .

With respect to these metrics,

α2
n‖FΣΣ

n ‖2
L2(ρ′n,zn×K) + ‖FΣK

n ‖2
L2(ρ′n,zn×K)

+ α−2
n ‖FKK

n ‖2
L2(ρ′n,zn×K) = λ′n

2
en(zn)2 = 1,

and

αn|FΣΣ
n |ρ′n = α−1

n |FΣΣ
n |ρn = α−1

n |FKK
n |ρn = α−1

n |FKK
n |ρ′n .
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Also, by construction, for any z ∈ Bn,

α−1
n ‖Fn‖L2(ρn,z×K) =

en(z)

en(zn)
≤ 2.

Let ϕn, ρ̃n, D̃n, F̃n and g̃n be as in Definition 3.1 with λ′n instead of λn,

and let ρ̃′n = ϕ∗nρ
′
n. Then ρ̃′n → ε⊕ ρK , D̃n is ASD with respect to ρ̃n,

α2
n‖F̃RRn ‖2

L2(ρ̃′n,0×K) + ‖F̃RK
n ‖2

L2(ρ̃′n,0×K) + α−2
n ‖F̃KK

n ‖2
L2(ρ̃′n,0×K) = 1, (3.4)

αn|F̃RRn |ρ̃′n = α−1
n |F̃KK

n |ρ̃′n , (3.5)

and

sup
z∈B̃n

‖F̃n‖L2(ρ̃n,z×K) ≤ 2αn,

where B̃n is the ball in R2 of radius rnen(zn) with respect to the metric ρ̃n, so

that B̃n ×K = ϕ∗n(Bn ×K). Also, by Lemma K.1, for any bounded open set

U ⊂ R2 there is a constant c > 0 such that

‖F̃n‖L∞(ρ̃n,U×K) ≤ c αn.

Hence the conditions of Theorem K.3 are satisfied and there exists an adiabatic

connection D̃0 on U ×K such that, after passing to a subsequence and taking

gauge transformations,

‖D̃n − D̃0‖L∞(Ω×K) → 0, sup
z∈Ω

‖F̃RK
n − F̃RK

0 ‖L2(z×K) → 0,

for every compact set Ω ⊂ U . Moreover, by Lemma K.2, for any p ≥ 2 there

is a constant c > 0 such that

‖F̃KK
n ‖L2(0×K) ≤ c α2−2/p

n .
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Hence equations (3.4) and (3.5) imply

‖F̃RK
n ‖L2(ρ̃′n,0×K) > 1/2, (3.6)

for all n large enough, and therefore D̃0 has nonzero curvature.

Defining D0 as in Definition 3.7 we have

Lemma 3.14. D̃0 = g ·D0 for some g ∈ G(Ẽ).

Proof. By the same argument as in the proof of Lemma 3.9, D̃0 = g(D0) for

some g ∈ GC(Ẽ). Along each slice these two connections are both flat and in

the same GCF -orbit, so by Corollary J.8 we get g ∈ G.

This provides a contradiction, as D0 is flat but D̃0 is not, and therefore

Proposition 3.15. Σ2 = ∅.

3.4 Fast Decay.

From the definition we have that for any open set U ⊂⊂ Σ1 there is a

constant c > 0 such that |Fn|ρn < cλn over U×K for all n. Therefore

|FΣΣ
n |ρ1 < cλ−1

n ,

|FΣK
n |ρ1 < c,

|FKK
n |ρ1 < cλn,

on U × K. These estimates will be useful in the next section when we deal

with Σ4.
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3.5 Point Bubbles.

If z ∈ Σ4 it is possible, after passing to a subsequence, to find a k ∈ K

and a sequence (zn, kn) → (z, k) such that |Fn(zn, kn)|ρn →∞.

Pulling back to R2 × K as before we obtain a sequence of ASD con-

nections with |F̃n(0, kn)|ρ̃n → ∞. For any neighborhood V of z Corollary I.5

implies ∫

V×K

|Fn|2ρn
d volρn =

∫

ϕ∗n(V×K)

|F̃n|2ρ̃n
d volρ̃n >

ε2

2
,

for all n large enough. Redefine C3 and Σ4 using this subsequence instead

of the original sequence. If there is still another z′ ∈ Σ3, repeating the same

argument (and therefore passing to a further subsequence) we obtain the same

for any neighborhood V ′ of z′. Choosing V and V ′ to be disjoint we obtain

∫

(V ∪V ′)×K

|Fn|2ρn
d volρn > 2 · ε2

2
,

for all n large enough. This process can be repeated inductively for as long

as we can find new points in (the inductively redefined) Σ4. But as these

integrals are bounded by 8π2c2(E), after a number of steps we should reach a

subsequence for which Σ4 is a finite set.

So without loss of generality we can assume z ∈ Σ4 has a neighborhood

V containing no other points of Σ4. Any disc D ⊂⊂ V centered at z satisfies

∫

D×K

|Fn|2ρn
d volρn >

ε2

2
, (3.7)
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for all n large enough. As Dn = gn(Dad), Proposition D.7 gives
∫

D×K

|Fn|2ρn
d volρn =−

∫

D×K

(
Fn , Fn

)

=−
∫

D×K

(
Fad , Fad

)

+

∫

∂D×K

tr
((

Fad + g−1
n Fngn

) ∧ h−1
n ∂adhn

)
,

where hn = g∗ngn. The first integral on the right hand side of the equation

can be made as small as we want by choosing D small enough. The second

integral decomposes into three pieces:

∫

∂D×K

tr
(
FΣK

ad ∧ h−1
n ∂K

adhn

)
,

∫

∂D×K

tr
(
g−1

n FΣK
n gn ∧ h−1

n ∂K
adhn

)
,

∫

∂D×K

tr
(
g−1

n FKK
n gn ∧ h−1

n ∂Σ
adhn

)
.

As Σ2 = Σ3 = ∅ and we assumed V ∩ Σ4 = ∅, then ∂D ⊂ V ⊂ Σ1 and from

the previous section we have

|FΣK
n |ρ1 < c,

|FKK
n |ρ1 < cλn.

The results of Appendix J then imply that h−1
n ∂K

adhn → 0 and h−1
n ∂Σ

adhn remains

bounded. All these estimates are with respect to the fixed metric ρ1, so the

volume of ∂D ×K does not change and therefore these three integrals decay

to 0 as n →∞. This contradicts (3.7), what proves

Proposition 3.16. Σ4 = ∅.
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3.6 Conclusion

As the sequence {λn} is arbitrary, showing Σ = Σ1 proves

Theorem 3.17. There is a constant c > 0 such that |Fλ|ρλ
< cλ, and therefore

|FΣΣ
λ |ρλ

< cλ−1,

|FΣK
λ |ρλ

< c,

|FKK
λ |ρλ

< cλ,

on Σ ×K for all λ > 0.

Due to time constraints, we will not pursue here the natural develop-

ment of this work, that would be to use these results to obtain some sort of

convergence of [Dλ] to [Dad]. However, on a subsequent work it should not be

difficult to obtain from these estimates a result like the one in [HI98]:

Theorem 3.18. For any ε > 0 there is a λ0 > 0 such that for any 0 < λ < λ0

there is a gλ ∈ G such that

‖ gλ(Dλ) −Dad ‖Lp
1(ρλ,Σ×K) < ε.

Remark. Note that here the distance between [Dλ] and [Dad] in measured with

respect to ρλ instead of a fixed metric.
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Appendix A

Kähler Manifolds and Riemann Surfaces

A Kähler manifold M is a complex manifold with a compatible sym-

plectic form ω, called its Kähler form. By compatible we mean ω(Jv, Jv′) =

ω(v, v′) and ω(v, Jv) ≥ 0 for all v, v′ ∈ TpM , where J : TpM → TpM , J2 = −1,

is the almost complex structure.

The condition ω(Jv, Jv′) = ω(v, v′) implies that ω has holomorphic

type (1, 1), and ω(v, Jv) ≥ 0 allows us to define a Riemannian metric on M

by
(
v , v′

)
ω
≡ ω(v, Jv′).

This extends to a hermitian inner product on TCM by linearity in the first

argument and anti-linearity in the second one.

Remark. Some authors use
(
v , v′

)
ω
≡ 2ω(v, Jv′) because they adopt the

convention that dx ∧ dy( ∂
∂x

, ∂
∂y

) = dx⊗dy−dy⊗dx
2!

( ∂
∂x

, ∂
∂y

) = 1
2
. We instead use

dx ∧ dy = dx⊗ dy − dy ⊗ dx.

The relation between the Riemannian and complex structures on a

Kähler manifold provides us with many useful properties, some of which we

include here.

Lemma A.1. Let n = dimCM . Then ωn

n!
= d vol.
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Definition. Define a ‘trace’ operator Λ : Ωp,q(M) → Ωp−1,q−1(M) by

(
Λη , η′

)
ω

=
(
η , η′ ∧ ω

)
ω

,

for all η ∈ Ωp,q , η′ ∈ Ωp−1,q−1.

Lemma A.2. If η is a 2-form then

Λη =
(
η , ω

)
ω

=
(
η1,1 , ω

)
ω

,

where η1,1 is the (1, 1) component of η. In particular,

Λω = |ω|2ω = dimCM

Lemma A.3. For any η, η′ ∈ Ω1,0,

Λ(η ∧ η̄′) = −i
(
η , η′

)
ω
.

Proof. This follows from the fact that ω can be expressed as

ω = i
∑

j

θj ∧ θ̄j,

with {θj} being an orthonormal basis for (T ∗
CM)1,0.

Proposition A.4. Let D be an integrable connection on a bundle over a com-

pact Kähler manifold. Then

Λ∂̄D − ∂̄DΛ = −i ∂∗D, (A.1)

Λ∂D − ∂DΛ = +i ∂̄∗D. (A.2)

Proof. See [Kob87, p. 65] for proof.
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On an oriented Riemann surface S the Hodge star operator takes 1-

forms into 1-forms, i.e. ? : Ω1 → Ω1, and ?2 = −1 on 1-forms. So the

complex valued 1-forms split orthogonally as Ω1
C = Ω1,0 ⊕ Ω0,1 into the −i

and +i (respect.) eigenspaces of ?. This gives the surface a complex manifold

structure (which depends only on the conformal class of the metric and won’t

change under rescaling). Moreover, a Riemann surface is naturally a Kähler

manifold, with its volume form being the Kähler form.
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Appendix B

Hermitian Vector Bundles

Let E −→ M be a complex vector bundle. A hermitian structure or

hermitian metric H on E is a hermitian inner product on each fiber Ep, varying

smoothly with p ∈ M . We call (E , H) a hermitian vector bundle.

Definition. G = {bundle automorphisms of E preserving H}.

Definition. GC = {bundle automorphisms of E}.

The elements of G are referred to as the (unitary) gauge transformations

of (E , H), while the elements of GC are the complex gauge transformations of

E . The reason for this terminology is that GC is the complexification of the

group G.

Definition. A connection D on (E , H) is unitary or H-compatible if it satisfies

d
(
ξ , η

)
=

(
Dξ , η

)
+

(
ξ , Dη

)
,

for all ξ, η ∈ Γ(E). Here
(· , ·) is the hermitian inner product on the fibers

given by H.

Definition. A frame for E over U ⊂ M is a collection of local sections

{ξj}j=1,...,rk E defined over U and forming a basis {ξj(p)} for each fiber Ep,

p ∈ U .
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Definition. A unitary frame is a frame {ξj} with
(
ξj , ξk

)
= δij.

Definition. The connection matrix of a connection D with respect to a frame

{ξj} is the matrix of 1-forms Ak
j defined by D ξj = Ak

j ξk. Its curvature matrix

is the matrix of 2-forms F k
j given by F ξj = F k

j ξk.

Lemma B.1. If D is a unitary connection then its connection and curvature

matrices with respect to a unitary frame satisfy Ak
j = −Āj

k, F k
j = −F̄ j

k .

Proof. If D and the frame are unitary we have

0 = d
(
ξj , ξk

)
=

(
Al

j ξl , ξk

)
+

(
ξj , Am

k ξm

)
= Ak

j + Āj
k. (B.1)

The curvature matrix is given by F k
j ξk = D2 ξj = (dAk

j − Al
j ∧ Ak

l ) ξk. Thus

F̄ j
k = dĀj

k − Āl
k ∧ Āj

l = −dAk
j − Ak

l ∧ Al
j = −F k

j . (B.2)

Lemma B.2. Let D be a unitary connection over a complex manifold and Ak
j

be its connection matrix with respect to a unitary frame {ξj}. Let {ξ∗j } denote

the dual frame and ak
j ≡ (A1,0)k

j . Then

∂D ξj = ak
j ξk, ∂̄D ξj = −āj

k ξk, (B.3)

∂D ξ∗j = −aj
k ξ∗k, ∂̄D ξ∗j = āk

j ξ∗k. (B.4)

Its curvature matrix satisfies

(F 2,0)k
j = −(F 0,2)j

k, (F 1,1)k
j = −(F 1,1)j

k. (B.5)
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Proof. Equations (B.3) and (B.5) are obtained by splitting equations (B.1) and

(B.2) according to holomorphic type. By definition (D ξ∗j )(ξk) ≡ d
(
ξ∗j (ξk)

)−
ξ∗j (D ξk). As ξ∗j (ξk) = δij, splitting (D ξ∗j )(ξk) = −ξ∗j (D ξk) according to holo-

morphic type gives the remaining equations.

Lemma B.3. Let D be a unitary connection on a hermitian bundle E over a

complex manifold. Then (∂̄Du)∗ = ∂Du∗ for any u ∈ Ω0(End E).

Proof. Write u locally with respect to a unitary frame as u = uj
k ξj ⊗ ξ∗k. If ak

j

is as in Lemma B.2 then

∂Du = (∂uj
k + ul

ka
j
l − uj

l a
l
k) ξj ⊗ ξ∗k, (B.6)

∂̄Du = (∂̄uk
j − ul

j ā
l
k + uk

l ā
j
l ) ξk ⊗ ξ∗j . (B.7)

Therefore

(∂̄Du)∗ = (∂ūk
j − ūl

ja
l
k + ūk

l a
j
l ) ξj ⊗ ξ∗k = ∂Du∗.

Lemma B.4. Let D be a unitary connection on a hermitian bundle E over a

complex manifold. If u ∈ Ω0(End E) is hermitian or skew-hermitian then

|∂Du| = |∂̄Du| =
1√
2
|Du|.

Proof. By Lemma B.3, (∂̄Du)∗ = ∂Du∗. If u∗= ±u this implies |∂̄Du| = |∂Du|,
and as |Du|2 = |∂Du|2 + |∂̄Du|2 this proves the lemma.
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Lemma B.5. Let D be a unitary connection on a hermitian bundle E over

a Kähler manifold. If h ∈ Ω0(Aut E) is positive definite self-adjoint and u =

log h then

1

4
4|u|2 ≤ −i

(
u , Λ∂̄D(h−1∂Dh)

)
.

Proof. It is enough to prove it locally and for a dense subset of C∞(Aut E).

Hence as h is positive definite self-adjoint we can assume it has distinct eigen-

values locally and can be diagonalized as h =
∑

j eλj ξj ⊗ ξ∗j , with λj ∈ R and

{ξj} forming an unitary frame. Then u =
∑

j λj ξj ⊗ ξ∗j . Defining ak
j as in

Lemma B.2 we have

∂Du =
∑

j

∂λj ξj ⊗ ξ∗j +
∑

j,k

(λj − λk) ak
j ξk ⊗ ξ∗j , (B.8)

h−1∂Dh =
∑

j

∂λj ξj ⊗ ξ∗j +
∑

j,k

(eλj−λk − 1) ak
j ξk ⊗ ξ∗j , (B.9)

(
u , h−1∂Dh

)
=

∑
j

λj ∂̄λj =
1

2
∂̄

∑
j

λ2
j =

1

2
∂̄ |u|2, (B.10)

(
∂Du , h−1∂Dh

)
ρ

=
∑

j

|∂λj|2 +
∑

j,k

(λj − λk)(e
λj−λk − 1) |ak

j |2. (B.11)

Using Lemma A.3 and Proposition A.4 we obtain

(
u , Λ∂̄D(h−1∂Dh)

)
= Λ∂

(
u , h−1∂Dh

)− Λ
(
∂Du , h−1∂Dh

)

=
i

2
∂̄∗∂̄ |u|2 + i

(
∂Du , h−1∂Dh

)
ρ

=
i

4
4|u|2 + i

(
∂Du , h−1∂Dh

)
ρ
.

The result then follows from the fact that as x(ex − 1) ≥ 0 for any x ∈ R,
(
∂Du , h−1∂Dh

)
ρ
≥ 0.
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Appendix C

Holomorphic Vector Bundles

Let E −→ M be a complex vector bundle over a complex manifold. A

holomorphic structure on E is any of the following equivalent structures:

Proposition C.1. Let E −→ M be a complex vector bundle over a complex

manifold. The following structures are equivalent (i.e., the existence of one

induces in a unique way the other):

1. A maximal family of local trivializations ϕU : E|U → U × Ck covering E
such that the transition functions are holomorphic functions.

2. Operators ∂̄ : Ωp,q(M ; E) → Ωp,q+1(M ; E) which satisfy the integrability

condition ∂̄ ◦ ∂̄ = 0 and the Leibnitz rule

∂̄(σθ) = (∂̄σ) ∧ θ + σ∂̄θ

for all σ ∈ Γ(E), θ ∈ Ωp,q(M).

Proof. The Leibnitz condition implies ∂̄ is a local operator, so it’s enough

to define it for local sections. Let σ1, . . . , σk ∈ Γ(E|U) be local sections corre-

sponding under the trivialization ϕU to a given frame of holomorphic functions

s1, . . . , sk : U → Ck. We set ∂̄σi ≡ 0 and extend it to E-valued forms over U
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using the Leibnitz rule. As ∂̄2 = 0 on forms, this definition implies the same

property for ∂̄ on E-valued forms.

Any other choice of frame would differ from {si} by a holomorphic

function U → GL(k,C) and would therefore define the same ∂̄. In the same

way, as the transition functions are holomorphic, the ∂̄ operators defined on

different trivializations agree at the intersections, giving a global operator.

Conversely, the condition ∂̄2 = 0 is a sufficient condition for the lo-

cal existence of a basis of sections {σ1, . . . σk} satisfying ∂̄σi = 0 (see [DK90,

p. 50] for a proof). Each such basis induces a local trivialization. The Leib-

nitz rule implies that the transition functions between any two trivializations

constructed in this way will be holomorphic.

Definition. (E , ∂̄) is a holomorphic vector bundle.

Definition. Two holomorphic structures ∂̄1, ∂̄2 on E are equivalent if they

differ by a complex gauge transformation, i.e. if ∂̄2 = g ◦ ∂̄1 ◦ g−1 for some

g ∈ GC.

Notation. g · ∂̄ ≡ g ◦ ∂̄ ◦ g−1 = ∂̄ + g∂̄g−1.

Notation. [∂̄] ≡ {g · ∂̄ : g ∈ GC}

Definition. A holomorphic class h is a set of the form h = [∂̄] for some

holomorphic structure ∂̄.

Definition. A holomorphic section of a holomorphic vector bundle (E , ∂̄) is

a section σ satisfying ∂̄σ = 0. A holomorphic frame is a frame consisting of

holomorphic sections σ1, . . . σrk E .
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Definition. A connection D on a complex vector bundle over a complex man-

ifold is integrable if F 0,2
D = ∂̄2

D = 0.

Definition. A connection D on a holomorphic vector bundle (E , ∂̄) is com-

patible with the holomorphic structure (or simply ∂̄-compatible) if ∂̄D = ∂̄.

Proposition C.2. Let D be a connection on E −→ M . It is compatible with

some holomorphic structure if and only if it is integrable.

Proof. If D is compatible with a holomorphic structure ∂̄ then F 0,2
D = ∂̄2

D =

∂̄2 = 0. On the other hand, if F 0,2
D = 0 then ∂̄ ≡ ∂̄D defines a holomorphic

structure.
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Appendix D

Hermitian Holomorphic Bundles

Lemma D.1. An unitary connection D is integrable iff FD ∈ Ω1,1(End E).

Proof. If D is integrable then by Lemma B.1 we have F 2,0
D = (−F ∗

D)2,0 =

−(F 0,2
D )∗ = 0, hence FD = F 1,1

D . The converse is imediate from the definition.

Proposition D.2. Let (E , H, ∂̄) be a holomorphic hermitian vector bundle. It

has a unique ∂̄-compatible unitary connection D = DH,∂̄.

Proof. If D is ∂̄-compatible then by definition ∂̄D = ∂̄. If it is also compatible

with the hermitian metric, then its (1,0) component ∂D is uniquely determined

(at least locally) with respect to some holomorphic frame {σj} by the relation

(
∂D σj , σk

)
= ∂

(
σj , σk

)− (
σj , ∂̄ σk

)
= ∂

(
σj , σk

)

and the Leibnitz rule.

Given another holomorphic frame {σ′j}, the transition functions defined
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by σ′j = gjl σl satisfy ∂̄gjl = 0 (hence ∂ḡjl = 0). Therefore

(
∂D σ′j , σ′k

)
=

(
(∂gjl) σl + gjl ∂D σl , gkm σm

)

= (∂gjl) ḡkm

(
σl , σm

)
+ gjl ḡkm ∂

(
σl , σm

)

= ∂(gjl ḡkm

(
σl , σm

)
)

= ∂
(
σ′j , σ′k

)
.

Thus the relation defining ∂D is not dependent on the choice of holomorphic

trivialization, and gives a globally well defined operator.

Notation. FH,∂̄ ≡ FDH,∂̄

Corollary D.3. FH,∂̄ ∈ Ω1,1(End E)

Corollary D.4. Let (E , H) be a hermitian vector bundle. The maps ∂̄ 7→ DH,∂̄

and D 7→ ∂̄D establish a 1-1 correspondence between holomorphic structures

and integrable unitary connections on E.

Definition. g ∈ GC has three actions on connections on (E , H):

g ·D ≡ g ◦D ◦ g−1 = D + g(Dg−1), (D.1)

g(D)H ≡ (g∗H )−1 ◦ ∂D ◦ g∗H + g ◦ ∂̄D ◦ g−1 (D.2)

= D + (g∗H )−1(∂Dg∗H ) + g(∂̄Dg−1),

g〈D〉H ≡ g−1 · (g(D)H) (D.3)

= h−1 ◦ ∂D ◦ h + ∂̄D = D + h−1(∂Dh).

Here g∗H means the dual of g with respect to H and h ≡ g∗Hg. The H

subscripts will be omitted if no confusion is possible.
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Remark. If g ∈ G then g(D)H = g ·D and g〈D〉H = D.

Proposition D.5. On a Kähler manifold the following diagram is commuta-

tive:

D∂̄,H◦g
g·

$$IIIIIIIII

D∂̄,H

g〈 〉H
::vvvvvvvvv

g( )H

// Dg·∂̄,H

Here H ◦ g means of course (H ◦ g)(u, v) ≡ H(g(u), g(v)).

Proof. See [Bra90] for proof.

Definition. The gauge equivalence class of D is the set

[D] = {D′ : D′ = g ·D for some g ∈ G}.

Definition. Given an integrable unitary connection D or a holomorphic class

h on (E , H), their (GC-)orbits are defined as

O(D) = {D′ : D′ = g(D)H for some g ∈ GC},

O(h) = {D′ integrable unitary : ∂̄D′ ∈ h}.

Clearly O(D) = O([∂̄D]).

Proposition D.6. Fg(D) = g
(
FD + ∂̄D(h−1∂Dh)

)
g−1.

Proposition D.7. Let D1, D2 be unitary integrable connections on a hermi-

tian bundle over a manifold of dimension 4. If D2 = g(D1) for some g ∈ GC

then
(
F2 , F2

)
=

(
F1 , F1

) − d tr
((

2F1 + ∂̄1(h
−1∂1h)

) ∧ h−1∂1h
)
,
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where h = g∗g.

Proof. By the previous Proposition F2 = g
(
F1 + ∂̄1(h

−1∂1h)
)
g−1, so

(
F2 , F2

)
= − tr

((
F1 + ∂̄1(h

−1∂1h)
) ∧ (

F1 + ∂̄1(h
−1∂1h)

))

= − tr(F1 ∧ F1)− 2 tr
(
F1 ∧ ∂̄1(h

−1∂1h)
)−

− tr
(
∂̄1(h

−1∂1h) ∧ ∂̄1(h
−1∂1h)

)
.

Using the hypothesis that F 2,0
1 = F 0,2

1 = 0 the Bianchi identity becomes ∂̄1F1 =

∂1F1 = 0, and as the dimension is 4 we have

tr
(
F1 ∧ ∂̄1(h

−1∂1h)
)

= ∂̄ tr(F1 ∧ h−1∂1h) = ∂̄ tr(F1 ∧ h−1∂1h)

= d tr(F1 ∧ h−1∂1h),

tr
(
∂̄1(h

−1∂1h) ∧ ∂̄1(h
−1∂1h)

)
= ∂̄ tr

(
∂̄1(h

−1∂1h) ∧ h−1∂1h
)−

− tr
(
∂̄1∂̄1(h

−1∂1h) ∧ h−1∂1h
)

= d tr
(
∂̄1(h

−1∂1h) ∧ h−1∂1h
)
.

Proposition D.8. Let D, D′ be integrable SU(2) connections on a SU(2)

bundle E over a compact complex manifold. If D′ = g(D) for some g ∈
Ω0(End E) then, after a normalization, we can assume det g = 1 and g ∈ GC.

Proof. As D and D′ are SU(2) connections they both induce the trivial con-

nection on the associated bundle det E , and g induces the transformation det g.

The relation ∂̄D′ = ∂̄D − (∂̄Dg)g−1 becomes ∂̄ = ∂̄ − (∂̄ det g)(det g)−1 and so

∂̄ det g = 0. As the base manifold is compact det g is a constant. The rela-

tion D′ = g(D) remains valid if g is replaced by a constant multiple of itself,

therefore can normalize g in order to have det g = 1.
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Appendix E

Notation for Inner Products and Norms

On a Riemannian manifold M , denote by
(· , ·)

ρ
the pointwise inner

product of forms induced by the metric ρ, and by
〈· , ·〉

ρ
the global inner

product given by
〈· , ·〉

ρ
≡

∫

M

(· , ·)
ρ

d volρ .

An inner product on the fibers of a vector bundle E over M will be represented

as
(· , ·). This product applied to a pair of forms with values on E denotes the

wedge of the forms and the inner product of their fiber values. On the other

hand, to take the products of both the fiber values and the forms, employ again

the notation
(· , ·)

ρ
. This same notation will also be used for an E-valued form

and a scalar valued one, in which case we take the inner product of the forms

leaving the E values multiplied by the scalars.

The convention is that a hermitian inner product is C-linear in the first

argument and C-antilinear in the second one.
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In short, we can have:

(· , ·)
ρ

: Ωp,q × Ωp,q → Maps(M,C),

(· , ·)
ρ

: Ωp,q × Ωp,q(E) → Γ(E),

(· , ·)
ρ

: Ωp,q(E)× Ωp,q(E) → Maps(M,C),

(· , ·) : Ωp,q(E)× Ωp′,q′(E) → Ωp+p′,q+q′ ,

〈· , ·〉
ρ

: Ωp,q × Ωp,q → C,

〈· , ·〉
ρ

: Ωp,q(E)× Ωp,q(E) → C.

Denote by | · |ρ the pointwise norm and by ‖ · ‖ρ the integrated norm

given by

| · |ρ =
√(· , ·)

ρ

‖ · ‖ρ =
√〈· , ·〉

ρ

For example, for F ∈ Ω2(M, Ω0(End E)) we have
(
F , F

)
= tr(F ∧ F ∗)

and

‖F‖2
ρ =

〈
F , F

〉
ρ

=

∫

M

(
F , ∗gF

)
=

∫

M

(
F , F

)
ρ

d volρ =

∫

M

|F |2ρ d volρ .

Remark. When there is no need to be explicit about which metric is being used

we may omit the subscript ρ from
〈· , ·〉, | · | and ‖ · ‖, but not from

(· , ·)
ρ

.

Lp
k norms in the metric ρ (or simply Lp

k(ρ) norms) over a subset U ⊂
Σ ×K will be denoted by

‖ · ‖Lp
k(ρ,U) =

(∑

|j|≤k

∫

U

|∇j
D · |pρ d volρ

)1/p
,
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and similarly for L∞, Ck, etc. We omit k if it is 0, ρ when it is clear from the

context, and U if it is Σ ×K.
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Appendix F

Notation

We fix some notation here for easy reference:

Σ, K = compact Riemann surfaces,

(E , H) = SU(2) bundle over Σ ×K with metric H,

(F , HF) = restriction of (E , H) to any slice z ×K,

End E = endomorphism bundle of E ,

End0 E= {g ∈ End E : tr g = 0},

Aut E = {g ∈ End E : g is invertible},

GC = group of complex gauge transformations of E

= {g ∈ Ω0(Aut E) : det g = 1},

G = group of unitary gauge transformations of (E , H)

= {g ∈ Ω0(Aut E) : g∗H = g−1, det g = 1},

GCF = group of complex gauge transformations of F ,

GF = group of unitary gauge transformations of (F , HF),
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H = {holomorphic structures on E}/GC,

HF = {holomorphic structures on F}/GCF .

Given a holomorphic class h = [∂̄] ∈ H and z ∈ Σ, denote by hz the

class hz = [∂̄z] ∈ HF .

SF = {stable holomorphic classes on F}

= {s ∈ HF : s is stable},

S = {slicewise stable holomorphic classes on E}

= {s ∈ H : sz ∈ SF ∀ z ∈ Σ},

A = {unitary connections on (E , H)},

A× = {D ∈ A : Dz is irreducible ∀ z ∈ Σ},

A∗
F = {irreducible unitary connections on F},

B× = A×/G,

B∗F = A∗
F/GF ,

M×
λ = moduli space of slicewise stable HYMλ connections of E

= {[D] ∈ B× : D is a solution of (1.4)},

M×
ad = moduli space of slicewise stable adiabatic connections of E

= {[D] ∈ B× : D is a solution of (1.5)}.
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M∗
F = moduli space of irreducible flat connections of F

= {[D] ∈ B∗F : FD = 0},
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Appendix G

Yang-Mills on Kähler Manifolds

The Yang-Mills functional for unitary connections on a hermitian vector

bundle E −→ M over a 4-dimensional1 Kähler manifold can be rewritten as

YM(D) = ‖FD‖2 =
〈
FD , FD

〉
= 2

〈
FD+∗FD

2
, FD+∗FD

2

〉 − 〈
FD , ∗FD

〉
.

The term FD+∗FD

2
is simply the self-dual component of FD, which de-

composes orthogonally as F 2,0
D + F 0,2

D +
(
FD , ω√

2

)
ω√
2
. For unitary connections

‖F 2,0
D ‖ = ‖F 0,2

D ‖. And as |ω| =
√

2 we have ‖(FD , ω√
2

)
ω√
2
‖2 = 1

2
‖(FD , ω

)‖2 =

1
2
‖ΛFD‖2. Hence

YM(D) = 4‖F 0,2
D ‖2 + ‖ΛFD‖2 +

∫

M

tr(FD ∧ FD).

This integral is the topological invariant −8π2ch2(E). For an arbitrary

constant µ, ‖ΛFD‖2 can be rewritten as

‖ΛFD‖2 = ‖iΛFD − µI‖2 + 2iµ
〈
FD , Iω

〉 − µ2‖I‖2

= ‖iΛFD − µI‖2 + 2iµ

∫

M

tr(FD) ∧ ω − µ2

∫

M

tr(I) d vol

= ‖iΛFD − µI‖2 + 4πµ

∫

M

c1(E) ∧ ω − µ2 rk(E) vol(M).

1With slight modifications, this works in any dimension.
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The last two terms will attain a maximum when

µ =
2π

rk(E) vol(M)

∫

M

c1(E) ∧ ω. (G.1)

The Yang-Mills functional can finally be expressed as

YM(D) = 4‖F 0,2
D ‖2 + ‖iΛFD − µI‖2 + µ2 rk(E) vol(M)− 8π2ch2(E),

where µ is defined as in G.1. The last two terms depend only on the geometries

of the bundle and the manifold, and the absolute minima of YM are attained

by unitary connections satisfying
{

F 0,2
D = 0

iΛFD = µI.

The first equation means D is integrable. The second equation is the Hermitian-

Einstein condition on D.

If the structure group is SU(n) then c1(E) = i
2π

tr FD = 0, therefore

µ = 0 and ch2(E) = 1
2
(c2

1 − 2c2) = −c2(E). In this case

YM(D) = 4‖F 0,2
D ‖2 + ‖ΛFD‖2 + 8π2c2(E),

with its minimum value 8π2c2(E) attained when

{
∂̄2

D = 0

ΛFD = 0.
(G.2)

Equations (G.2) are the Hermitian-Yang-Mills (HYM) Equations, and their

solutions are HYM-connections. We note that in dimension 4 these equations

are equivalent to the well known Anti-Self-Dual Equation ∗F = −F .
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Appendix H

Sobolev Theorems.

We state here the Sobolev Theorems for Lp
k spaces of sections of a

hermitian bundle E over a compact Riemannian manifold Mn (with or without

boundary), and refer to [Pal68], [Sch95], [Heb99], [Mor98] and [FU84] for a

more complete discussion.

Lemma H.1. All Riemannian metrics on M and all unitary connections on

E yield equivalent Lp
k norms.

Let 0 ≤ l ≤ k, k′ and 1 ≤ p, p′, q < ∞.

Theorem H.2 (Sobolev Embedding I). If k − n
p
≥ l − n

q
the embedding

Lp
k ↪→ Lq

l is continuous and dense. If this inequality is strict and k > l the

embedding is actually compact.

Theorem H.3 (Sobolev Embedding II). If k − n
p

> l there is a dense

compact embedding Lp
k ↪→ C l.

Theorem H.4 (Sobolev Multiplication). There is a continuous embedding

Lp
k(E)⊗ Lp′

k′(E) ↪→ Lq
l (E ⊗ E) under either of these conditions:

a)
(
k − n

p

)
+

(
k′ − n

p′
)

>
(
l − n

q

)
,

b)
(
k − n

p

)
+

(
k′ − n

p′
)

=
(
l − n

q

)
, k − n

p
< 0 and k′ − n

p′ < 0.
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These theorems are specially useful when used in connection with some

basic facts from functional analysis:

(i) If xn
w
⇀ x then {‖xn‖} is uniformly bounded and ‖x‖ ≤ lim inf ‖xn‖;

(ii) In a reflexive Banach space (for example, Lp
k spaces on a compact

manifold for 1 < p < ∞) any bounded sequence has a weakly convergent

subsequence;

(iii) A compact mapping sends weakly convergent sequences into strongly

convergent ones (after passing to a subsequence).
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Appendix I

Compactness Theorems

In this section we state a number of results concerning the convergence

of sequences of connections having certain bounds on their curvatures. As

their proofs are somewhat long, we give only references to where they can be

found. For completeness, we first give a couple of results that are central to

these proofs.

Lemma I.1. There exist constants c , ε > 0 such that if D is any connection on

a SU(2) bundle over the 4-dimensional Euclidean unit ball B1 with ‖FD‖L2 < ε

then there exists an L2
2 gauge (unique up to constant gauge transformations)

in which D = d + A with

(i) d∗A = 0,

(ii) ∗A|∂B1 = 0,

( iii) ‖A‖L2
1

< c‖FD‖L2.

Proof. See [Uhl82a] for proof.

Remark. The constant ε that appears in the following propositions is the same

as here.
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Proposition I.2. Let D be as in the previous Lemma, with the extra hypothesis

that D be ASD with respect to a metric ρ on B1. Then A is C∞ in the half-sized

ball B1/2 and satisfies

‖A‖Ck(B1/2) ≤ c(k) ‖FD‖L2(B1),

for constants c(k) independent of D. In particular,

max
B1/2

|FD| ≤ c(1) ‖FD‖L2(B1).

These estimates are uniform over all metrics in a small Ck neighborhood of ρ.

Proof. Refer to [FU84, p. 119] for the proof.

Proposition I.3. Any ASD connection on a compact manifold is gauge equiv-

alent to a smooth connection.

Proof. See [FU84, p. 97].

These results are useful in proving the following compactness theorems.

Theorem I.4. Let Dn be a sequence of connections on a 4-dimensional com-

pact set Ω, ASD with respect to metrics ρn. Suppose ρn → ρ in Ck+1(Ω) and

either

(i) ‖FDn‖L2(Ω) < ε
2

for all n,

or

(ii) {|FDn|} is uniformly bounded over Ω.

For any Ω′ b Ω we then have, after passing to a subsequence and taking gauge
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transformations, Dn → D in Ck(Ω′), where D is an ASD connection with re-

spect to ρ.

Remark. As ρn → ρ and Ω is compact, the above norms can be taken with

respect to either ρn or ρ.

Proof. See [FU84, p. 122] for proof.

Corollary I.5. Let Dn be a sequence of connections on a 4-dimensional com-

pact set Ω, ASD with respect to metrics ρn. Suppose ρn → ρ in C2(Ω) and

‖FDn‖L2(Ω) < ε
2

for all n. Then {|FDn |} is uniformly bounded over any Ω′ b Ω.

Proof. Suppose the conclusion is false. Then passing to a subsequence one can

assume supΩ′ |FDn | → ∞. This would contradict the previous result, according

to which there is a sub-subsequence for which supΩ′ |FDn | → supΩ′ |FD|.

We still have compactness even if the curvature bounds are only local,

as in the next Theorem.

Theorem I.6. Let Dn be a sequence of unitary connections on a (possibly

non-compact) manifold M4, ASD with respect to metrics ρn. Suppose ρn → ρ

in C∞ over compact sets and each x ∈ M has a neighborhood Ω such that

either

(i) ‖FDn‖L2(Ω) < ε
2

for all n,

or

(ii) {|FDn|} is uniformly bounded over Ω.
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Then, after passing to a subsequence and taking global gauge transformations,

Dn → D in C∞ over compact sets, and D is ASD with respect to ρ.

Proof. The proof is an easy adaptation of the proof in [DK90, p. 161] using

Theorem I.4.

The next Theorem provides a similar, although weaker, result for other

dimensions and when the connections are not ASD but have a common Lp

bound on their curvatures.

Theorem I.7. Let Dn be a sequence of Lp
1 connections on a SU(2) bundle

over a compact manifold M , with 2p > dim M . If ‖FDn‖Lp ≤ C for all n then,

after passing to a subsequence and taking Lp
2 gauge transformations, Dn

w
⇀ D

in Lp
1 and ‖FD‖Lp ≤ C.

Proof. See [Uhl82a] for proof.

The proof of this Theorem applies readily to the following variation for

non-compact manifolds.

Proposition I.8. Let Dn be a sequence of Lp
1 connections on a SU(2) bun-

dle over an open set U , with 2p > dim U , and let Ω ⊂ U be compact. If

‖FDn‖Lp(U) ≤ C for all n then, after passing to a subsequence and taking Lp
2

gauge transformations, Dn
w
⇀ D in Lp

1(Ω) and ‖FD‖Lp(Ω) ≤ C.

Corollary I.9. Let Dn be a sequence of smooth connections on a SU(2) bundle

over an open set U , and let Ω ⊂ U be compact. If {|FDn|} is uniformly bounded
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over U then, after passing to a subsequence and taking Lp
2 gauge transforma-

tions, Dn
w
⇀ D in Lp

1(Ω) for 1 ≤ p < ∞ and Dn → D in Lp(Ω) for 1 ≤ p ≤ ∞.

Proof. Immediate from the previous proposition and the Sobolev Embedding

Theorems.

Remark. These propositions are still true if instead of a fixed metric one has

a converging sequence ρn → ρ.

From these results we can obtain some useful facts concerning the mod-

uli space of flat connections. The next propositions refer to a flat SU(2) bundle

over a compact manifold M .

Proposition I.10. Let 2p > dim M . For any δ > 0 there is some ε > 0 such

that if ‖FD‖Lp < ε there exists a flat connection D0 with ‖D −D0‖Lp < δ.

Proof. If there is no such ε, we can find a sequence {Dn} of connections such

that ‖FDn‖Lp → 0 and each Dn is at a Lp distance of at least δ from any

flat connection. But by Theorem I.7 Dn → D0 in Lp with FD0 = 0, giving a

contradiction.

Proposition I.11. For any δ > 0 there is ε > 0 such that if sup |FD| < ε

there exists a flat connection D0 with ‖D −D0‖C1 < δ.

Proof. As before, assume it is not true and obtain a sequence {Dn} away from

any flat connection by at least a distance δ in C1, with sup |FDn | → 0. Use

Corollary I.9 and the compact embedding Lp
1 ↪→ C0 (p > dim M) to obtain
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Dn → D0 in C0 with FD0 = 0. Now as both Dn → D0 and Fn → FD0 in C0,

the convergence can be improved to C1, providing a contradiction.
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Appendix J

Stability

In what follows Q denotes any SU(2) bundle over a compact Kähler

manifold (M, ω), E an arbitrary SU(2) bundle over a product (Σ×K,ωΣ⊕ωK)

of Riemann surfaces with volume forms ωΣ and ωK , and F a SU(2) bundle

over K. For each z ∈ Σ denote by Ez the restriction of E to the slice z ×K.

For simplicity, we define stability for a holomorphic bundle (Q, ∂̄) only

when dimCM = 1 or 2. For the general case see [Kob87] or [UY86].

Definition. The degree of a line bundle L over (M,ω) is defined by

deg(L) = degω(L) =

∫

M

c1(L) ∧ ωn−1.

Definition. (Q, ∂̄) is stable (resp. semi-stable) if any holomorphic line bundle

L ⊂ Q has deg(L) < 0 (resp. deg(L) ≤ 0). If we need to explicitly identify

the Kähler form, we write ω-stable and ω-semi-stable.

Definition. A holomorphic structure ∂̄ on E is slicewise stable if for all z ∈ Σ

its restriction ∂̄z to Ez is stable.

Definition. An integrable connection D is stable (resp. slicewise stable) if ∂̄D

is stable (resp. slicewise stable). A GC-orbit O is stable (resp. slicewise stable)

if O = O(D) for some stable (resp. slicewise stable) connection D.
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Proposition J.1. Let ωλ = ωΣ

λ2 ⊕ωK. Any slicewise stable holomorphic struc-

ture on E is ωλ-stable for λ small enough.

Proof. With respect to ωλ the degree of a holomorphic line bundle L ⊂ E
becomes

degωλ
(L) =

∫

Σ×K

c1(L)ΣΣ ∧ ωK +
1

λ2

∫

Σ×K

c1(L)KK ∧ ωΣ. (J.1)

Over any slice z × K we have c1(L)KK = c1(Lz). As E is slicewise stable

deg(Lz) ≤ −1 and
∫

Σ×K

c1(L)KK ∧ ωΣ =

∫

Σ

( ∫

z×K

c1(Lz)

)
ωΣ =

∫

Σ

deg(Lz) ωΣ ≤ − vol(Σ).

Also, the first integral in (J.1) has an upper bound independent of L. This is

a consequence of the principle that “the curvature decreases in holomorphic

subbundles” (see [GH78, pp. 78–79] for details). Therefore there is an λ0 > 0

such that degωλ
(L) < 0 for any λ < λ0 and any holomorphic line bundle

L ⊂ E .

Proposition J.2. Let ∂̄, ∂̄′ be semi-stable holomorphic structures on Q, one

of them being stable. If g ∈ Ω0(EndQ) satisfies ∂̄ ◦g = g ◦ ∂̄′ then either g = 0

or g is invertible everywhere. Any other g′ satisfying the same condition is a

multiple of g.

Proof. See [Kob87, pp. 172-173] for proof.

Corollary J.3. If u ∈ Ω0(EndQ) is holomorphic with respect to a stable

holomorphic structure then u = cI for some c ∈ C. If u ∈ Ω0(End0Q) then

u = 0.
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Lemma J.4. For any stable holomorphic structure ∂̄ on Q there is a constant

c > 0 such that

‖u‖ ≤ c‖∂̄u‖,

for any u ∈ Ω0(End0Q).

Proof. If v ∈ Ω0(End0Q) is such that ∂̄∗∂̄v = 0 then ∂̄v = 0 and by Corollary

J.3 v = 0 . Hence ∂̄∗∂̄ has no 0 eigenvalue on Ω0(End0Q). If α > 0 is its

smallest eigenvalue then

〈
∂̄u , ∂̄u

〉
=

〈
u , ∂̄∗∂̄u

〉 ≥ α
〈
u , u

〉
,

for any u ∈ Ω0(End0Q).

Lemma J.5. Let ∂̄1, ∂̄2 be slicewise stable holomorphic structures on E. If

∂̄K
1 = ∂̄K

2 then ∂̄1 = ∂̄2.

Proof. Let aΣ = ∂̄Σ
2 − ∂̄Σ

1 . As ∂̄Σ
2 ∂̄K

2 + ∂̄K
2 ∂̄Σ

2 = 0 and ∂̄K
1 = ∂̄K

2 we get

(∂̄Σ
1 + aΣ) ◦ ∂̄K

1 + ∂̄K
1 ◦ (∂̄Σ

1 + aΣ) = 0,

and as ∂̄Σ
1 ∂̄K

1 + ∂̄K
1 ∂̄Σ

1 = 0 this reduces to ∂̄K
1 aΣ = 0. Writing locally aΣ =

a dz̄Σ, this means ∂̄K
1 a = 0, and so aΣ = 0 by Corollary J.3.

Proposition J.6. Let ∂̄1, ∂̄2 be slicewise stable holomorphic structures on E.

Suppose for each z ∈ Σ there is a g(z) ∈ GCEz
such that ∂̄K

1 = g(z) · ∂̄K
2 . Then

g ∈ GC and ∂̄1 = g · ∂̄2.
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Proof. If we show that the g(z)’s fit together nicely along Σ so that g ∈ GC

then the previous Lemma can be applied to ∂̄2 and g−1 · ∂̄1. The structures ∂̄1

and ∂̄2 are related by

∂̄K
1 = g ◦ ∂̄K

2 ◦ g−1,

∂̄1 = ∂̄2 + a,

for some a = aΣ + aK ∈ Ω0,1(Σ ×K, End0 E). Clearly

∂̄K
2 g + aKg = 0.

As ∂̄2
1 = ∂̄2

2 = 0 we have

0 = [∂̄Σ
1 , ∂̄K

1 ] = [∂̄Σ
2 , g ◦ ∂̄K

2 ◦ g−1] + ∂̄K
1 aΣ

= (∂̄Σ
2 g) ◦ ∂̄K

2 ◦ g−1 + g ◦ ∂̄Σ
2 ◦ ∂̄K

2 ◦ g−1 + g ◦ ∂̄K
2 ◦ g−1 ◦ ∂̄Σ

2 + ∂̄K
1 aΣ

= (∂̄Σ
2 g) ◦ g−1 ◦ ∂̄K

1 − g ◦ ∂̄K
2 ◦ ∂̄Σ

2 ◦ g−1 + g ◦ ∂̄K
2 ◦ g−1 ◦ ∂̄Σ

2 + ∂̄K
1 aΣ

= (∂̄Σ
2 g) ◦ g−1 ◦ ∂̄K

1 − ∂̄K
1 ◦ g ◦ ∂̄Σ

2 ◦ g−1 + ∂̄K
1 ◦ ∂̄Σ

2 + ∂̄K
1 aΣ

= (∂̄Σ
2 g) ◦ g−1 ◦ ∂̄K

1 + ∂̄K
1 ◦ (∂̄Σ

2 g) ◦ g−1 + ∂̄K
1 aΣ

= ∂̄K
1

(
(∂̄Σ

2 g)g−1 + aΣ
)
,

and the stability of ∂̄K
1 and Lemma J.4 now imply

∂̄Σ
2 g + aΣg = 0.

Hence ∂̄2g+ag = 0, and as ∂̄2 is overdetermined elliptic the result follows from

the regularity theorem for elliptic operators.

Theorem J.7. For each GC-orbit O of Q there are three possibilities:
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1. if O is stable it has a unique (up to unitary gauge transformation) HYM-

connection, which is irreducible;

2. if O is semi-stable but not stable it can have at most one (up to unitary

gauge transformation) HYM-connection. If it exists it is reducible;

3. otherwise it has no HYM-connections.

Proof. See [Don85] for proof.

Corollary J.8. Suppose Q is a flat bundle. Any flat connection on Q is semi-

stable, and if it is irreducible then it is stable. Any two flat connections in the

same GC-orbit are gauge equivalent, and each stable GC-orbit has a unique (up

to gauge equivalence) flat connection.

Proposition J.9. Let O be a stable GC-orbit on Q, {Dn} a sequence of con-

nections in O and D0 a flat connection. If Dn → D0 in C0 then D0 ∈ O.

Proof. The connections in the sequence are related to D = D1 by Dn = gn(D)

for some gn ∈ GC. This relation is invariant if gn is multiplied by a constant, so

choosing some p > dim M we can assume ‖gn‖Lp = 1 for all n. If an = ∂̄n− ∂̄D

and a = ∂̄0 − ∂̄D then an → a in C0 and

∂̄Dgn = −angn.

As on a Riemann surface ∂̄D is elliptic this implies gn is uniformly bounded in

Lp
1. Passing to a subsequence we can assume gn

w
⇀ g in Lp

1, where g satisfies
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‖g‖Lp = 1 and

∂̄Dg = −ag.

This equation means ∂̄0 ◦ g = g ◦ ∂̄D, so by Corollary J.8 and Proposition

J.2 g is invertible and therefore ∂̄0 = g · ∂̄D. As both connections are unitary

D0 = g(D). By Proposition D.8 g can be normalized so that det g = 1 and

g ∈ GC.

Corollary J.10. For each stable GC-orbit O on Q and any δ > 0 there is

a ε > 0 such that if D ∈ O and sup |FD| < ε there exists a flat connection

D0 ∈ O with ‖D −D0‖C1 < δ.

Proof. Adapt Proposition I.11 by choosing the sequence of connections to be

in O, and use the previous Proposition to guarantee D0 ∈ O.

Proposition J.11. Let Dn, D′
n be integrable unitary connections on F such

that D′
n = gn(Dn) for some gn ∈ GC. Suppose Dn → D and D′

n → D′ in C0,

where D is semistable and D′ stable. Then, after passing to a subsequence,

gn
w
⇀ g in Lp

1 (p > 2) for some g ∈ GC and D′ = g(D).

Proof. The relation

D′
n = gn(Dn) = Dn + (g∗n)−1(∂ng∗n)− (∂̄ngn)g−1

n (J.2)

does not change if gn is multiplied by cn = ‖gn‖−1
C0 , hence gn can be normalized

so that ‖gn‖C0 = 1 for all n. Originally det gn = 1, so after this normalization

det gn = c2
n. Writing

an = ∂̄n − ∂̄D, a′n = ∂̄′n − ∂̄D, a = ∂̄D′ − ∂̄D,
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we have an → 0, a′n → a in C0, and equation (J.2) gives

∂̄Dgn = gnan − a′ngn. (J.3)

The right side of this equation is bounded in Lp, so as on a Riemann surface

∂̄D is elliptic we find that gn is uniformly bounded in Lp
1. After passing to a

subsequence we can assume gn
w
⇀ g in Lp

1 for some g ∈ Ω0(EndF). Equation

(J.3) gives in the limit

∂̄Dg = −ag,

which is equivalent to

∂̄D′ ◦ g = g ◦ ∂̄D. (J.4)

As the embedding Lp
1 ↪→ C0 is compact, ‖g‖C0 = lim ‖gn‖C0 = 1. Hence by

Proposition J.2 g is invertible. Equation (J.4) then becomes ∂̄′D = g · ∂̄D, and

as both connections are unitary this means

D′ = g(D).

Note that as det gn = c2
n converges to a finite nonzero value the original gn’s

were already uniformly bounded and did not converge to 0 in C0, and so the

normalization is actually not necessary.

Let E be a SU(2) bundle over U × K, where U is an open set of a

Riemann surface or R2, and K is a compact Riemann surface. We then have:

Proposition J.12. Let Dn, D′
n be integrable unitary connections on E such

that D′
n = gn(Dn) for some gn ∈ GC. Suppose Dn → D and D′

n → D′
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uniformly on compact sets and D, D′ are slicewise stable. Then D′ = g(D)

for some g ∈ GC.

Proof. For each z ∈ U the previous proposition gives D′
z = g(z)(Dz) for some

g(z) ∈ GCEz
. Proposition J.6 then implies ∂̄D′ = g · ∂̄D and the result follows

from the fact that both connections are unitary.

Proposition J.13. Let D0 be a stable flat connection on F . For any δ > 0

there is a ε > 0 such that if ‖D −D0‖L2
1

< ε there are another flat connection

D′
0 and u ∈ Ω0(End0F) such that u∗ = u, D = eu(D′

0), ‖u‖L2
2

< δ and

‖D′
0 −D0‖L2

1
< δ.

Proof. For simplicity, we write Herm0F = {u ∈ Ω0(End0F) : u∗ = u} and use

a subscript “k, p”, as for example in (A)k,p , Ω1(ad E)k,p, etc., to represent the

completion of these spaces in the Lp
k norm. The space (A∗

flat)1,2 of stable flat

L2
1 connections is an open Banach manifold, with tangent space TD(A∗

flat)1,2 =

{a ∈ Ω1(adF)1,2 : Da = 0}. The map f : (A∗
flat)1,2 × (Herm0F)2,2 → (A)1,2

defined as

f(D , u) = eu(D) = D + e−u∂Deu + eu∂̄De−u,

has derivative at (D0, 0) given by

df(D0,0)(a, v) = a + ∂0v − ∂̄0v,

for any a ∈ TD0(A∗
flat)1,2 and v ∈ (Herm0F)2,2. By the Surjective Mapping

Theorem the Proposition will be proven if df(D0,0) has a continuous right in-

verse. As D0 + D∗
0 is elliptic any b ∈ Tf(D0,0)(A)1,2 = Ω1(adF)1,2 can be
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orthogonally decomposed as

b = D0α + D∗
0β + γ,

for some α ∈ Ω0(adF)2,2, β ∈ Ω2(adF)2,2 and γ ∈ Ω1(adF)1,2 such that

D0γ = D∗
0γ = 0. In general such decompositions do not yield a unique α and

β, but for D0 stable Lemma J.4 provides uniqueness. As D0 is flat we have

D0α + γ ∈ TD0(A∗
flat)1,2. Moreover (iβ)∗ = iβ and

D∗
0β = (∂̄∗0 + ∂∗0)β = − ∗ (∂0 + ∂̄0) ∗ β = ∂0(i ∗ β)− ∂̄0(i ∗ β),

so b = df(D0,0)(D0α+γ, i∗β). Note that the ellipticity of D0 +D∗
0 and Lemma

J.4 give

‖β‖L2
2
≤ C

(‖(D0 + D∗
0)β‖L2

1
+ ‖β‖L2

) ≤ C ′‖D∗
0β‖L2

1
,

and therefore

‖D0α + γ‖L2
1
+ ‖i ∗ β‖L2

2
≤ C ′′(‖D0α + γ‖L2

1
+ ‖D∗

0β‖L2
1

)
= C ′′‖b‖L2

1
.

Hence the linear map L(b) = (D0α + γ, i ∗ β) is a bounded right inverse of

df(D0,0).

Lemma J.14. If g1 ∈ GCF , g ∈ GF , and g2 = g1g then | log(g∗2g2)| = | log(g∗1g1)|.

Proof. | log(g∗2g2)| = | log(g−1g∗1g1g)| = |g−1 log(g∗1g1)g| = | log(g∗1g1)|.

Corollary J.15. Let D0 be a stable flat connection on F , D = g(D0) for

some g ∈ GCF , and u = log g∗g. For any δ > 0 there is a ε > 0 such that if

‖D −D0‖L2
1

< ε then ‖u‖L2 < δ.
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Proof. By Proposition J.13 there is a ε > 0 such that if ‖D − D0‖L2
1

< ε

then D = eu′/2(D′
0) with D′

0 flat, u′∗ = u′ and ‖u′‖L2 < δ. As D0 and D′
0

are both flat and in the same stable GCF -orbit, they differ by a unitary gauge

transformation. The previous Lemma then implies ‖u‖L2 = ‖u′‖L2 .
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Appendix K

Extra Tools

Here we state without proof some results from [DS03]. Although they

are proven for a different setting in that article, the proofs should adapt with-

out difficulty to our case.

Lemma K.1. Let U ⊂ Σ be open and Ω ⊂ U a compact subset. Then for

every constant c0 > 0 there are constants c, λ0 > 0 such that any HYMλ

(0 < λ < λ0) connection D satisfying

sup
z∈U

‖FD‖L2(ρλ,z×K) ≤ c0 λ,

also satisfies

‖FD‖L∞(ρλ,Ω×K) ≤ c ‖FD‖L2(ρλ,U×K).

Lemma K.2. There is a constant δ > 0 for which the following is true. Let

U ⊂ R2 be open and Ω ⊂ U a compact subset. For every c0 > 0 and p ≥ 2

there are constants c, λ0 > 0 such that any HYMλ (0 < λ < λ0) connection

D satisfying

‖FUK
D ‖L∞(U×K) ≤ c0, ‖FKK

D ‖L∞(U×K) ≤ δ,
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also satisfies

∫

Ω

(
‖FKK

D ‖p
L2(K) + λp‖∇xF

KK
D ‖p

L2(K) + λp‖∇yF
KK
D ‖p

L2(K)

)
≤ c λ2p,

sup
Ω

(‖FKK
D ‖L2(K) + λ‖∇xF

KK
D ‖L2(K) + λ‖∇yF

KK
D ‖L2(K)

) ≤ c λ2−2/p.

Theorem K.3. Let εn be a sequence of metrics on an open set U ⊂ R2, con-

verging in C∞ to the Euclidean metric ε. Let Dn be a sequence of connections

on U × F , ASD with respect to metrics ρn = (α−2
n εn) ⊕ ρK, where αn → 0.

Suppose there is some c > 0 such that for all n,

‖Fn‖L2(ρn,U×K) + ‖Fn‖L∞(ρn,U×K) < c αn.

Then there exists an adiabatic connection D0 on U×K such that, after passing

to a subsequence and taking gauge transformations,

‖Dn −D0‖L∞(Ω×K) → 0, sup
z∈Ω

‖FUK
n − FUK

0 ‖L2(z×K) → 0,

for every compact set Ω ⊂ U (here the norms are taken with respect to either

εn ⊕ ρK or ε⊕ ρK).
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