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Abstract 

 

Quantifying Individual Differences in Patterns of Functional Brain 

Network Organization in Youths 

 

Damion V. Demeter, Ph.D. 

The University of Texas at Austin, 2021 

 

Supervisor:  Jessica A. Church-Lang 

 

During childhood, the brain undergoes rapid periods of development that are vital 

for the cognitive processes supporting goal directed behavior. Some of these processes are 

termed ‘executive functions’, and the development of these skills not only impacts 

academic achievement, but also lifelong success. Successful navigation of executive 

function relies on the specialized integration of brain regions, thus requiring a network-

level view of brain organization to better understand associations with behavioral 

outcomes. This dissertation examines multiple methods of quantifying patterns of brain 

activity at rest and tests the association of these measures with individual differences in 

youth executive function task performance. Study 1 identified patterns of brain activity 

unique to an individual (termed resting state neural fingerprints) in both youths and adults, 

using support vector machine classifiers. We found that the classifiers successfully 

identified an individual’s scan from their own previous scan and one twin’s scan from their 

co-twin’s scan. Our results suggest that resting state functional fingerprints are stable over 

time and vary by genetic relatedness. Study 2 quantified patterns of resting state functional 

network organization in youths, using graph metrics chosen from previous work in the 
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literature. We then tested methodological factors that impact the ability of these graph 

metrics to predict measures of executive function task performance. Sample size had the 

largest impact on our models and even successful models accounted for very little sample 

variance. These results suggest that graph metrics do capture functional network 

organization associated with executive functions, but that graph metrics alone are too 

reductionist to capture complex patterns of brain activation associated with executive 

function behaviors. Study 3 identified and categorized cortical hubs in youths – regions 

supporting communication between brain networks – and tested their ability to predict 

executive function task outcomes. We found that cortical hub parcels in youths 

qualitatively resemble those found in adults, but form unique, youth-specific categories. 

Additionally, hubs integrating sensorimotor information and executive function networks 

related to behavioral outcomes. These studies demonstrate how measures of brain network 

organization and integration can improve our understanding of the developing brain, and 

their role in supporting goal directed behavior and individual differences.   
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General Introduction 

Childhood and adolescence are the periods of life most filled with the accelerated 

development of novel skills and behaviors. As youth begin to explore the world, their experiences 

are supported by periods of rapid brain development and growth (Barnea-Goraly et al., 2005; 

Giedd et al., 1999; Houston, Herting, & Sowell, 2014; Mills et al., 2016; Stiles & Jernigan, 2010). 

Critically, navigating these ages and the associated development of higher-order cognitive function 

is not a homogenous process across individuals. Many successes and delays may, at least partially, 

be associated with individual variations of the normative trajectory of growth and refinement of 

neural systems throughout the brain.  A better understanding of how these systems are organized 

during development can provide a resource to help mitigate delays and support successes across 

different youths.  

Functional neuroimaging studies have revealed much about how topographically distant 

cortical regions of the brain coordinate patterns of activation to accomplish biological and 

behavioral goals. Even while the brain is a rest – not actively engaged in the completion of a 

specific task – areas across the cortex show synchronization of neural activity over time, in regions 

responsible for similar biological functions. Evidence for this temporally synchronized 

coactivation while the brain is in a “resting state” was first identified in functional MRI (fMRI) 

data within the bilateral motor cortex (Biswal, Zerrin Yetkin, Haughton, & Hyde, 1995). Similar 

results of resting state coactivation, which resembled activation patterns of these systems during 

task, were later reported for the other primary sensory systems: the auditory and visual cortex 

(Cordes et al., 2001; Lowe, Mock, & Sorenson, 1998). However, the same methods used to identify 

pairwise coactivation between cortical regions of interest in the early sensory systems, has since 

revealed that coactivation of the “resting” brain is organized into a large network that is further 

sub-divided into in integrated set of smaller, more specialized networks. 
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Remarkably, a similar set of these resting state functional networks have been identified in 

adults, across multiple studies, using different methods, and appear stable across individuals 

(Gordon et al., 2016; Power et al., 2011; Thomas Yeo et al., 2011). Region of interest (ROI) sets 

created from these identified networks provide researchers with a method of generalizable 

comparison of functional coactivation across the cortex, between individuals. One benefit of these 

generalizable ROI sets, is that they provide a stable, whole-brain representation of the network of 

coactivation that occurs across the cortex. By analyzing the organizational properties of functional 

networks that span the entire cortex, resting state fMRI research can identify individual differences 

in organizational patterns of cortical co-activation that are directly associated with a task, mental 

health diagnosis, or specific behavioral outcome. Indeed, an increasing body of research has 

focused on multivariate analyses of fMRI data to identify individual differences associated with 

human cognition and behavior.  

One potential aspect of individual differences that are of specific interest, especially in 

regard to human development, regards the brain processes supporting executive function. 

Executive function (EF) is linked to goal achievement, and is related to academic and life success 

(Best, Miller, & Naglieri, 2011; Jacob & Parkinson, 2015). Identifying how the brain develops and 

organizes functional networks to complete tasks that rely on the successful use of EFs, can offer 

valuable insight to how individual differences in functional brain organization may support or 

hinder the successful navigation of academic and societal situations in childhood. 

EF engages higher-level cognitive processes, such as updating of working memory, 

inhibition, and cognitive flexibility, that are not found to be isolated to any single brain region. 

Instead, EFs appear to recruit and integrate multiple brain regions (Nowrangi, Lyketsos, Rao, & 

Munro, 2014). Across three EF task domains of working memory, inhibitory control, and cognitive 

flexibility, cortical regions in the cingulo-opercular, dorsal attention, fronto-parietal, and ventral 

attention networks, such as the dorsolateral prefrontal cortex (DL-PFC) and the superior parietal 
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cortex, have been identified as key neural substrates of task performance (Fiske & Holmboe, 2019; 

Gao et al., 2013; Nowrangi et al., 2014). The developing brain refines and specializes connections 

between fronto-parietal cortical regions; this refinement may be a key element to increasing “adult-

like” performance on EF tasks (Buss & Spencer, 2018; Mehnert et al., 2013). Previous work has 

also shown that EF task performance is highly heritable (Engelhardt, Briley, Mann, Harden, & 

Tucker-Drob, 2015) and that the core neural architecture engaged during those EF tasks is 

established by mid-childhood (Engelhardt, Harden, Tucker-Drob, & Church, 2019). However, 

specific individual differences in childhood brain network organization that can explain variations 

in EF performance are not fully understood. Thus, the examination of brain function associated 

with EF task performance would benefit from an approach that examines the brain as a large, 

spatially integrated network of localized activation that is further clustered into highly specialized 

sub-networks.  

The integrated network view of brain activation has provided a richer understanding of 

how the brain organizes during development (Grayson & Fair, 2017). Even during infancy, 

functional networks beyond those only associated with sensory stimuli begin to emerge, and 

representations of higher-order networks found in adults can be identified (Eggebrecht et al., 

2017). Further, this network view brain coactivation has also improved our understanding of how 

the infant brain begins to integrate cortically distributed sub-networks as it begins to establish 

cortical hub regions (De Asis-Cruz, Bouyssi-Kobar, Evangelou, Vezina, & Limperopoulos, 2016; 

Fransson, Åden, Blennow, & Lagercrantz, 2011; Gao et al., 2011).  

Current research leveraging the integrated network view of brain activity has also begun to 

identify specific patterns of functional brain network organization that are stable across 

development (Gordon et al., 2016; Gratton et al., 2018a; Power, Fair, Schlaggar, & Petersen, 

2010), unique to an individual (Demeter et al., 2020; Finn et al., 2015; Miranda-Dominguez et al., 

2014), or indicative of a mental state or psychological diagnosis (Cordova et al., 2020; Craddock, 
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Holtzheimer, Hu, & Mayberg, 2009). Much of this network-based fMRI work leverages resting 

state functional connectivity (RSFC) - resting state brain activation occurring in the absence of a 

specific externally directed task and fluctuates over time - due to its independence from a specific 

task state. Although RSFC can be used to reliably map stable patterns of brain activation that are 

common across different groups and multiple stages of the lifespan, individual differences in 

functional network organization must also be examined (Gordon, Laumann, Adeyemo, & Petersen, 

2017a). By quantifying specific patterns of RSFC organization at the individual level, researchers 

can identify underlying patterns that may facilitate or impair performance during complex 

cognitive processes.  

This dissertation quantified individual differences in patterns of RSFC network 

organization, with the aim of improving our understanding of the underlying functional network 

organization that is associated with successful EF task performance in youths. Specifically, this 

work 1) tested one method for identifying patterns of RSFC that were unique to an individual in 

childhood and adulthood, 2) tested whether patterns of information flow in RSFC networks were 

associated with EF task performance in youths, and 3) measured the association of RSFC brain 

network integration (using hub development as a measure) with individual differences in EF task 

performance.  

The first study in this dissertation identified a resting state neural fingerprint (a unique 

characterization of brain function that can distinguish one individual from another) in both youth 

and adult samples (Demeter et al., 2020). Subjects in this study were included from three locally 

collected youth neuroimaging datasets and two publicly available adult datasets to create a large 

cross-sectional sample. The dataset included repeat-scan individuals, monozygotic (MZ) twin 

pairs, and dizygotic (DZ) twin pairs. This project predicted individuals and co-twin pairs from 

independent data by applying support vector machine classifiers to RSFC data. In doing so, we 

were able to identify functional connections that are most vital to a resting state neural fingerprint. 
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The classifiers successfully identified individuals with 100% accuracy in both age groups, even 

when repeat-scan collection was separated by months. This result suggests that the neural 

fingerprint identified with this method is stable over time. Classifier accuracy also decreased as 

genetic similarity of individuals decreased, suggesting a genetic influence on the organization of 

RSFC brain networks. Finally, we isolated critical functional connections within each age group 

to create one common fingerprint for the youth group and one common fingerprint for the adult 

group. We then retrained the classifiers using the connections identified in the opposite age group 

(i.e., group-common pediatric connections to identify adults) to assess the similarity of neural 

fingerprints across age. All classifier accuracies using the opposite-age connections decreased by 

an average of 31% but remained significantly above chance in all groups except the adult DZ 

twins. These results suggest that resting state functional fingerprints are stable within individuals 

and families, are similar over a few decades of life, and vary by genetic relatedness.  

The second study applied a literature-informed approach to quantify specific patterns of 

network organization in RSFC data that are associated with EF task performance in youths. This 

study also probed common methodological factors that can impact our ability to test for relations 

between patterns of RSFC network organization and EF task performance. Previous work has 

theorized that graph metrics (GMs) - measurements that quantify specific organizational patterns 

within a network - can help identify how brain connectivity at rest is related to behavioral 

outcomes. Thus, identifying GMs that are associated with EF task performance is of great interest 

to the neuroimaging community. However, previous results are mixed, primarily focus on adults, 

and may not replicate after accounting for key RSFC methodological considerations such as 

sample size and scan length (Farahani, Karwowski, & Lighthall, 2019; Kruschwitz, Waller, 

Daedelow, Walter, & Veer, 2018). This current work leveraged a combined fMRI dataset of 567 

youths, ages 8-17 years old collected either locally at UT Austin (n=67) or for the publicly 

available Adolescent Brain Cognitive Development (ABCD) Study (n=500). We used resting state 
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data to calculate four GMs of interest (characteristic path length, efficiency, rich-club coefficient, 

centrality) previously associated with EF task performance or general intelligence in adults 

(Farahani et al., 2019; Sinclair et al., 2015). We assessed the impact of 1) length of resting state 

fMRI scan, 2) sample size, and 3) fMRI processing decisions on the ability of GMs to predict EF 

task performance scores. We found that sample size, more so than resting state scan length, 

functional network makeup, or fMRI preprocessing decisions, impacted our models’ ability to 

predict task performance using GMs. Additionally, the chosen GMs accounted for very little of 

the variance in our models. Our results suggest that GMs are a valid and moderately useful tool 

for explaining a portion of the variance in EF performance in youths. However, these results also 

indicate that GMs alone may be too reductionist for the rich and complex nature of neuroimaging 

data. This reduction of neuroimaging data to a single metric may be the source of differences in 

extant results and replication difficulty in studies using GMs with RSFC data, as well as the low 

explanatory power of our results. Our results suggest the need for future work to combine GMs 

with other measures of neuroimaging data for improved generalization and replication of findings.  

The third study expanded upon previous work on adult brain organization and aimed to 1) 

identify specific categories of hub regions in the brain that integrate RSFC networks in youths, 

and 2) quantify the association between cortical hub types found in our youth sample and 

individual differences of EF task performance. Functional networks in the brain are integrated by 

hub regions that provide strong links between functional networks during task performance and at 

rest (Cohen & D’Esposito, 2016; Gratton, Sun, & Petersen, 2018b; Wig, 2017). Recently, three 

specific connector hub categories (“control-default”, “cross-control”, and “control-processing” 

hubs) were identified in adults (Gordon et al., 2018) and provide a greater level of specificity in 

understanding functional network integration across the brain. Further, this work in adults provides 

evidence that cross-control hubs may play a vital role during EF task performance. However, the 

extent to which RSFC network hubs can be classified into distinct categories in youths is currently 
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unknown. Study Three adapted the hub identification methods developed for adult data by Gordon 

et al. (2018) to our youth data (using the same neuroimaging sample as Study Two, n=567). We 

identified cortical hubs using the participation coefficient graph metric, categorized youth-specific 

clusters of hubs based on their RSFC profile, and tested whether greater connectivity in each hub 

type could predict EF task performance in youths. We found that resting state cortical hubs 

identified in youths resemble those found in adults. However, youths display stable and 

developmentally-unique variations of these adult-derived hub categories. Most interestingly, only 

the two hub categories integrating sensorimotor and classic cognitive control network parcels 

related to EF task performance. This suggests that, in youths, greater resting state coactivation of 

hubs that support the coordination of sensorimotor information to and from primary cognitive 

control networks may facilitate better cognitive performance when engaged in working memory 

and cognitive flexibility tasks. This study provides a greater understanding of the development of 

resting state connector hubs during childhood, and how these hubs are categorized into stable, 

youth-specific groups that qualitatively resemble those found in adults.  

As a whole, this dissertation quantifies individual differences in patterns of RSFC network 

organization and tested the relationship of specific patterns of brain organization to EF task 

performance. With an improved understanding of how different methods of quantifying functional 

brain network organization can highlight individual differences in brain activation at rest, this work 

contributes to a better understanding of unique organizational aspects of the developing brain, and 

the relationship between brain organization and behaviors that relate to life and academic success. 
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Study 1: Functional Connectivity Fingerprints at Rest Are Similar Across 
Youths and Adults and Vary with Genetic Similarity1 

INTRODUCTION 

One anticipated use of functional magnetic resonance imaging (fMRI) data is to identify 

reliable and clinically viable biomarkers for disease states. However, a more precise understanding 

of healthy functional brain network organization is necessary to achieve this goal. Resting state 

functional connectivity (rs-fcMRI) holds promise as a noninvasive method of reaching this goal, 

due to its low behavioral demand, consistency within individuals, and stability over time (Poldrack 

et al., 2015). Further, rs-fcMRI reveals inherent functional brain networks absent of a specific task 

state. These averaged networks are reliably observed across adult samples (Cohen et al., 2008; 

Power et al., 2011), and early functional network organization is readily identified early in life. By 

six months of age, early organizational patterns of common adult resting state networks such as 

the default mode (DMN), somatosensory motor (SSM), and visual (VIS) networks are identified 

(Mitra et al., 2017) and appear to become more adult-like in their organization and interaction 

during development (Gao et al., 2013; Lin et al., 2008).  

Given the goal of identifying distinct biomarkers of disease, combined with the stability of 

rs-fcMRI brain networks, it is not surprising that a growing body of neuroimaging research has 

focused on defining functional “connectomes” or “fingerprints” of individuals based on their fMRI 

data (Byrge & Kennedy, 2019; Finn et al., 2015; Horien, Shen, Scheinost, & Constable, 2019; 

Miranda-Dominguez et al., 2018, 2014; Xu et al., 2016). A greater understanding of how 

functional connections become organized into reliable, functional fingerprints of an individual 

could give researchers and clinicians alike a quantifiable measure of individual change over time. 

Additionally, a more precise understanding of the genetic influence on normative network 

                                                
1Adapted from: Demeter, D. V., Engelhardt, L. E., Mallett, R., Gordon, E. M., Nugiel, T., Harden, K. P., … Church, 
J. A. (2020). Functional Connectivity Fingerprints at Rest Are Similar across Youths and Adults and Vary with 
Genetic Similarity. IScience, 23(1), 100801. https://doi.org/10.1016/j.isci.2019.100801 
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organization throughout development may help pave the way for a more precise measure of the 

impact of environmental and disease variables on brain network organization. While extant 

research consistently reveals the presence of a functional fingerprint in rs-fcMRI data across 

multiple methodologies (Balsters, Mantini, & Wenderoth, 2018; Finn et al., 2015; Haak, 

Marquand, & Beckmann, 2018; Kaufmann et al., 2017; Miranda-Dominguez et al., 2014), far less 

is known about the specific pattern of discrete functional connections that distinguish individuals 

from one another; specifically, whether these patterns differ at different ages or stages of 

development.  

Studies using rs-fcMRI to identify individuals via functional fingerprint implicate the 

DMN and its connectivity to putative control networks -- such as the cingulo-opercular (CO), 

dorsal attention (DA), fronto-parietal (FP), and ventral attention (VA) networks -- as the most 

highly distinctive between individuals (Finn et al., 2015; Horien et al., 2019; Miranda-Dominguez 

et al., 2018). Given previous evidence that the FP network coordinates other networks for task 

performance (Cole et al., 2013; Dixon et al., 2018; Marek & Dosenbach, 2018; Marek, Hwang, 

Foran, Hallquist, & Luna, 2015; Power, Schlaggar, Lessov-Schlaggar, & Petersen, 2013; Zanto & 

Gazzaley, 2013), specific patterns of connectivity between the FP and other networks could be 

highly individualized during rest (Gordon et al., 2018), and that degree of network integration may 

be reflected in functional fingerprints. The network integrating role of the FP network and the 

DMN’s role in internal, self-focused mentation and mind-wandering (Buckner, Andrews-Hanna, 

& Schacter, 2008; Mason et al., 2007; Raichle, 2015) are presumably highly individualized and 

may explain their importance in the functional fingerprint, but this connection has not yet been 

explored directly. Despite the growing understanding of the functional networks involved in the 

make-up of a functional fingerprint, a consensus of specific functional connections that yield the 

most accurate identification of individuals has not yet been established. 
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Crucial to establishing a functional fingerprint, is a better examination of the impact of 

individual variance in relation to expected functional network organization, and the influence of 

heritable factors on rs-fcMRI. Gratton and colleagues (2018) recently revealed that averaged group 

differences in functional network organization are driven more by individual variability and 

common participant features, with only a modest influence of cognitive or task demands. This 

suggests that group-level results that do not explicitly account for individual differences in 

functional network organization may misattribute person-specific effects to group-level task 

performance. Similarly, evidence of distinct organizational variations from the expected group-

level resting state functional network topography was found in a subset of the adult population 

(Gordon et al., 2017a). Given that individual differences in functional network organization can 

be buried in group-averaged analyses, an individual variance framework is vital for accurately 

characterizing functional network organization across multiple samples. 

Another factor to consider in characterizing a functional fingerprint is the genetic impact 

on rs-fcMRI network organization. Fu and colleagues (2015) observed a significant genetic 

influence on resting state organization across sensory – but not cognition-related -- networks in a 

pediatric sample of twins (ages 12-19 years). The authors posited that the age of their sample and 

the protracted development of cognitive functions that require coordination across many networks 

might be why cognition-related networks showed a weaker genetic influence. Indeed, in genetic 

studies of adult twins, within-network connectivity of the DMN is found to be the most heritable 

(Glahn et al., 2010; Xu et al., 2017). Recent work has found evidence that an individual’s 

functional fingerprint, calculated via a model-based approach to identifying a functional 

fingerprint called “connectotyping”, also shows a pattern of genetic influence in adults (Miranda-

Dominguez et al., 2018). In this study, identification accuracy was highest in identical 

(monozygotic, or MZ) twins, followed by fraternal (dizygotic, or DZ) twins, with non-twin siblings 

showing the lowest accuracy. However, analyses that include larger and more age-diverse twin 
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samples are necessary to identify specific patterns and developmental trajectories of highly 

heritable and individually unique functional connections within resting state data. The inclusion 

of genetically informative, age-varying neuroimaging datasets is important to gain a complete 

understanding of the genetic influence on individually unique rs-fcMRI connections. 

Based on mounting evidence from functional fingerprint research, we hypothesized that 

adapting resting state timecourses to use ANOVA feature selection would benefit our analyses. 

Current resting state approaches often use all available features from a chosen ROI set -- thus 

providing too many features that can overpower the signal with noise -- or apply feature reduction 

methods that may be more appropriate for group membership classification (Dosenbach et al., 

2010; Greene et al., 2016). This shift in resting state feature selection could provide a clean and 

straightforward method of isolating a core-set of unique functional connections for each individual, 

which then contributes to the group feature set. Additionally, tracking these specific sets of 

connections across developmentally diverse samples and testing the degree of similarity within 

MZ and DZ twin pairs, may advance our understanding of the influence of genetic similarity on 

the functional fingerprint and its stability into adulthood. The current work uses three in-house 

pediatric datasets and two publicly available adult datasets (see Study 1, Table 1 for detailed 

subgroup demographics) to identify individuals and twin pairs via support vector machine (SVM) 

classifiers (De Martino et al., 2008; LaConte, Strother, Cherkassky, Anderson, & Hu, 2005) 

applied to rs-fcMRI data. 
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Study 1, Table 1: Participant Demographics  

Group Characteristics 

 UT Repeat MSC Repeat UT MZ HCP MZ UT DZ HCP DZ UT SS 

Scan Count 30 20 30 50 38 50 34 

"Pairs" (# Female) 15 (9) 10 (5) 15 (24) 25 (26) 19 (16) 25 (26) 17 (12) 

Age Range 9.8 - 18.3 24 - 34 8.9 - 13.2 26 - 34 9.1 - 13.9 22 - 35 8.8 - 18.6 

Age (M ± SD) 12.9 ± 2.6 29.1 ± 3.3 10.8 ± 1.3 29.8 ± 2.2 11.3 ± 1.3 29.2 ± 3.5 12.2 ± 2.7 

IQ/PMAT (M ± SD) 102.3 ± 14.1 128.8 ± 6.6 106.3 ± 17.2 17.2 ± 4.3 105.2 ± 11.7 18.3 ± 4.0 108.3 ± 13.0 

Mean FD (M ± SD) 0.10 ± 0.02 0.13 ± 0.02 0.10 ± 0.03 0.12 ± 0.02 0.10 ± 0.02 0.12 ± 
0.02 0.10 ± 0.02 

Note: We included two scans for each participant in the repeat scan groups. All other groups consist of one scan per individual. 
HCP participants’ intelligence score was calculated from the Raven’s Progressive Matrices; all other groups are IQ scores. 
Framewise displacement (FD) means and standard deviations are post-motion scrubbing. 
 
UT = Developmental participants collected at The University of Texas at Austin 
MSC = Midnight Scan Club adult participants 
MZ = Monozygotic Twin Pairs, DZ = Dizygotic Twin Pairs 
      
HCP = Human Connectome Project adult participants 
SS = Developmental same-sex pairs (Includes DZ twins and non-twin sibling pairs of the same sex) 
 

Starting from a common pre-defined region of interest (ROI) set (Power et al., 2011), we 

isolated subsets of functional connections via ANOVA feature selection that best discriminated 

between individuals within each group. Next, we identified individuals and twin pairs by training 

and testing fMRI pattern classifiers using those connections identified during feature selection. 

Groups of repeat scan individuals had one scan from that individual in the training set and a 

different scan of the same individual in the testing set. For twin groups, one twin’s scan was in the 

training set and their co-twin’s scan was in the testing set (see Transparent Methods in the 

supplemental information for detailed information on feature selection and classification). We then 

mapped those functional connections consistently chosen as features to identify a functional 

fingerprint for each group. Finally, we tested the generalizability of commonly selected 

connections across our two age groups, by first defining an age-specific feature set for each age 

group, then applying pediatric features on adult groups during classification and vice versa. The 
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aim of this work was to extend the current body of emerging research by providing a better 

understanding of the impact of development and genetic similarity on the resting state functional 

fingerprint. Our research suggests: (1) Individually unique patterns of functional connectivity are 

similar among family members and vary with genetic similarity; (2) The general pattern of resting 

state functional connections that are highly predictive of an individual translates across different 

ages and groups, and appears stable within individuals during development and into adulthood. 

RESULTS 

SVM classifiers predict individuals and co-twin pairs: 

We applied ANOVA feature selection on segmented resting state timecourses to identify 

features that best discriminated between individuals (see methods for detailed description). We 

then applied the resulting feature mask on all full 5-minute resting state timecourses used for SVM 

classification (Study 1, Figure 1). For all groups, the SVM classifier accurately predicted matched 

scans (individual repeat scans, co-twins, or same-sex siblings) at levels significantly above chance 

(Study 1, Figure 2a). This set of accurate classifications was observed when the classifier was run 

with a single leave-one-group-out cross-validation (2-fold) scheme, as well as with our 

permutation average accuracy, but only the permutation accuracies are reported (Study 1, Table 

2). The classifier accuracies for all groups: (1), UT Repeats: accuracy=1.0, chance= 0.06, p<.001; 

(2), MSC Repeats: accuracy=1.0, chance= 0.1, p<.001; (3), UT MZ Twins: accuracy=0.52, 

chance=0.06, p<.001; (4), HCP MZ Twins: accuracy=0.56, chance=0.04, p<.001; (5), UT DZ 

Twins: accuracy=0.24, chance=0.05, p<.001; (6), HCP DZ Twins: accuracy=0.22, chance=0.04, 

p<.001; (7), UT Same-sex Sibling Pairs: accuracy=0.35, chance=0.06, p<.001. 
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Study 1, Figure 1: ANOVA feature selection and SVM classification 

 
Note: (A.) Individuals within the training set (twin A for twin groups or scan 1 for repeat-scan individuals) provided 5-minutes of 
resting state timecourses, extracted from each of the 255 ROIs. (B.) Timecourses were then split into 20-second segments and a 
correlation matrix was created for each segment. All correlation matrices were then converted into vectors of unique, off-
diagonal correlation values. (C.) These vectors were then used for ANOVA feature selection to create the feature mask used by 
the classifier. (D.) The resulting feature mask is then applied to each full 5-minute resting state timecourse and the SVM classifier 
is trained on the same training set used for feature selection, and tested on the held-out testing set (either the individual’s second 
scan or co-twin data). 

Functional fingerprints are similar across age groups: 

The summed fold-rank matrices for the pediatric (Study 1, Figure S2) and adult (Study 1, 

Figure S3) groups were examined to explore which functional connections were repeatedly chosen 

as features across subgroups. The data indicated that connections carrying the most consistently 

useful identifiers of an individual belonged to the fronto-parietal network (FP) and the default-

mode network (DMN) (Study 1, Figure 3a). Out of the total 32,385 possible unique functional 

connections, our fold-rank matrix thresholding revealed 87 connections in the pediatric group and 

110 in the adult group that were the most consistently representative of an individual in the SVM 

classifier. Both the pediatric and adult groups revealed a functional fingerprint mask dominated by 
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longer, ipsilateral connections in the front-parietal (FP) and default-mode network (DMN) and 

short-range contralateral connections in the posterior DMN and visual (VIS) networks. Of the total 

197 post-threshold features within both age groups, 13 features (6.59%) were identical across the 

pediatric and adult groups. 

Study 1, Figure 2: SVM classifiers predict individuals and co-twin pairs 

 
Note: (A.) Mean SVM classifier accuracies, per group. Error bars are 95% confidence intervals. Both repeat visit subgroup 
accuracy scores were 1.0. Monozygotic (MZ) twins in both subgroups outperformed dizygotic (DZ) twins. Hatched box plots 
indicate when the opposite age-group’s feature mask was used for classification. All group accuracies are reduced when using the 
opposite mask, except for the Adult MZ twins, but all groups prediction scores were significantly better than chance, except the 
Adult DZ group.  
(B.) Distributions of accuracy scores in the twin groups, across age sets, show a similar distribution and mean accuracy score. 
The spread of distributions reinforces the decision to shuffle twin labels to ensure accidental group assignment bias does not 
influence group accuracy. The pediatric same-sex sibling pair group outperformed pediatric DZ twins, suggesting an influence of 
sex on functional network organization.  
(C.) AUC values, which represent classifier sensitivity for each related scan pair. Repeat visit individuals are not plotted, as AUC 
values were 1.0 for all. A lower group average and larger distribution of AUC values in both DZ groups suggests differences in 
DZ twin pairs’ functional fingerprint resulted in more false positives when classifying DZ twins than MZ twins. This is amplified 
in the adult DZ twins, compared to their pediatric counterparts. 
 

We then examined the functional network affiliation of the ROIs chosen as features in the 

pediatric and adult group. Post-threshold features were labeled by their functional network 
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affiliation and ordered by frequency. This revealed a similar pattern of network representation 

between the two age groups (Study 1, Figure 3b): The largest percentage of network representation 

was 1) within the DMN network (DMN to DMN) (Adults = 29 (26.3%); Pediatric = 21 (24.1%)), 

followed by 2) between the DMN and FP network (Adults = 18 (16.3%); Pediatric = 12 (13.7%)), 

and 3) within the FP network (FP to FP; Adults = 16 (14.5%); Pediatric = 12 (13.7%)). After the 

top ~50% of connections, chosen features did not show any discernable pattern between the two 

groups and involved networks that often consisted of only a few connections.  

To test the impact of the number of ROIs within each network on the observed patterns of 

network representation for each group, we simulated 10,000 feature sets for each group. Each 

simulated feature set consisted of the same number of features as our group fold-rank matrices 

(Adult = 110; Pediatric = 87), with all connections chosen at random (without replacement) from 

the list of all possible connection types. We then averaged how often the main connection types 

found in our group matrices were included in the 10,000 simulations and calculated the proportion 

of the feature set each accounted for. The average network representation in our simulated feature 

sets were 1) within DMN network (Adults = 5.4 (4.95%); Pediatric = 4.3 (4.92%)), 2) between the 

DMN and FP network (Adults = 4.8 (4.40%); Pediatric = 3.8 (4.38%)), and 3) within FP network 

(Adults = 1.0 (0.90 %); Pediatric = 0.8 (0.91%)).   
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Study 1, Figure 3: Chosen Features of the Functional Fingerprint 

 
Note: (A.) Pediatric and adult functional fingerprint mask connections are displayed. Out of a possible 32,385 unique functional 
connections, 87 pediatric and 110 connections survived at this threshold. A common set mask was created that represented 
connections that were chosen at least once within all six subgroups in the pediatric and adult groups. 90 functional connections 
survived this threshold in the common mask. (See also Study 1, Figures S2, S3, and S4.) 
 
(B.) Ranking connections in each mask based on their network representation revealed the largest percentage of connections were 
within the DMN network, followed by between the DMN and FP network, and within FP network. The common set mask 
revealed connections representing between FP and DMN, within DMN, within FP, and between the DMN and salience (SAL) 
network connections. 

Next, we examined the common set rank matrix (all connections chosen for at least one 

fold across all pediatric and adult subgroups) using the same steps outlined above. The data 

revealed a nearly identical representation of network assignment across the functional connections 

(Study 1, Figure 3b). Out of a total 90 connections in the common set rank matrix, 19 (21%) 

represented between FP and DMN network connections, 18 (20%) represented within DMN 
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connections, 9 (10%) represented within FP connections, and 8 (9%) represented connections 

between the DMN and salience (SAL) networks. The same 10,000 simulated feature sets were 

created with 90 connections to compare to this common set rank matrix. The simulated sets showed 

an average of 3.9 (4.36%) between FP and DMN, 4.4 (4.92%) within DMN, 0.8 (0.09%) within 

FP, and 2.8 (3.16%) between DMN and SAL connections. 

Common feature sets have classification utility for opposite age group: 

In an effort to quantify the similarity of pediatric- vs adult-specific connections chosen as 

features, we used the summed fold-rank matrices as feature masks on the original timeseries and 

re-ran the SVM classifier permutation analysis. All connections with a value of five or six, after 

thresholding, were used as features. The pediatric groups were run with the adult feature mask 

(110 features) and the adult groups were run with the pediatric feature mask (87 features). There 

were 13 identical features that overlapped the pediatric and adult feature sets. Using the opposite 

age group’s top-ranking features mask resulted in significant, although reduced, classifier accuracy 

for all groups except the MSC Repeats and resulted in non-significant accuracy for the HCP DZ 

twin subgroup (Study 1, Figure 2a).  

When the adult subgroups were trained using the pediatric-specific feature mask (Study 1, 

Table 2), classifier accuracies were: MSC Repeats (accuracy=1.0, chance= 0.1, p<.001); HCP MZ 

Twins (accuracy=0.35, chance=0.04, p<.001); HCP DZ Twins (accuracy=0.11, chance=0.04, 

p=.065). When the pediatric subgroups were trained using the adult-specific feature mask, 

classifier accuracies were: UT Repeats (accuracy=0.92, chance= 0.06, p<.001); UT MZ Twins 

(accuracy=0.32, chance=0.06, p<.001); UT DZ Twins (accuracy=0.24, chance=0.05, p<.001); UT 

Same-sex Sibling Pairs: (accuracy=0.23, chance=0.06, p=.015). 
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Study 1, Table 2: Mean Classifier Accuracies per Group 

 Group 
Chance 

Mean 
Accuracy 

Lower 
95% CI 

Upper 
95% CI 

Mean Accuracy 
(Opposite Age Mask) 

Lower 95% 
CI 

Upper 
95% CI 

UT Repeat 0.063 1.00** - - 0.92** 0.919 0.922 

MSC Repeat 0.100 1.00** - - 1.00** - - 

UT MZ Twins 0.066 0.52** 0.518 0.525 0.32** 0.322 0.327 

HCP MZ Twins 0.041 0.57** 0.565 0.571 0.35** 0.353 0.359 

UT DZ Twins 0.053 0.24** 0.242 0.247 0.24** 0.243 0.248 

HCP DZ Twins 0.039 0.22** 0.218 0.222 0.11 0.108 0.112 

UT SS Siblings 0.057 0.35** 0.349 0.354 0.23* 0.232 0.236 
Note: Group chance values are empirical chance and are calculated by running the classifier after randomly shuffling scan pair 
labels (scan pairs were no longer correctly labeled with their matching scan). The left side of the table is running the classifiers 
normally and the right side is running the classifier with the opposite age-group’s feature mask. 
 
* = p<.05, ** = p<.001 - Classifier Performance vs. Chance 

DISCUSSION 

In the current work, we address the stability and similarity of the functional fingerprint 

within pediatric and adult samples. Further, we directly tested the ability of a functional fingerprint 

identified in our developmental sample to successfully identify adults, and vice-versa. These 

results provide initial evidence that the functional fingerprint found in pediatric samples is 

remarkably similar to the functional fingerprint found in adulthood and contributes to a better 

understanding of the stability of the brain’s functional fingerprints over age. 

First, we identified the specific functional connections that were most consistently 

representative of an individual across multiple subgroup comparisons and tested their utility to 

predict individuals in the opposite-age datasets with substantial success. We then used SVM 

classifiers to identify an individual based on a previous scan or the scan of a genetic relative, across 

multiple pediatric and adult neuroimaging datasets. We also provided evidence that segmentation 

of resting state timecourses is a viable means to provide multiple samples for ANOVA feature 

selection. We believe this type of feature selection can identify highly individualized functional 

connections within a “functional fingerprint” of an individual. This process results in a more 

accurate characterization of functional connectivity within an individuals’ resting state signal and 
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can identify a more discriminating set of functional connections than averaging the full timecourse 

during feature selection.  

Our results also replicate and extend the generalizability of previous work that assessed 

fMRI-based functional fingerprints in adults, by highlighting the role of genetic similarity on 

functional fingerprinting. MZ twins in both the pediatric and adult subgroups exhibited similar and 

higher classifier accuracy of rs-fcMRI data than DZ twins. Including only same-sex siblings in our 

pediatric subgroup significantly improved classifier accuracy of ~50% genetically similar 

individuals, but the classifier still did not reach the level of MZ classification accuracy. This 

suggests an influence of biological sex on functional fingerprint similarity. 

SVM Classifier Accuracy Reveals a Genetic Impact on Functional Fingerprint 

We observed higher classification accuracy for MZ co-twins than DZ co-twins in both the 

pediatric (MZ=0.52; DZ=0.24) and adult (MZ=0.57; DZ=0.22) subgroups. These results provide 

evidence of a genetic influence on the organization of highly individualized resting state functional 

connections. SVM classifier accuracy scores supported our prediction that classifier performance 

would be highest in subgroups with greater genetic similarity. It is notable that classifier accuracy 

was greater for repeat scans than for MZ twin subgroups, given that both groups include scans that 

share 100% genetic similarity. One possible explanation for reduced classifier accuracy (compared 

to repeat scan individuals) in both MZ twin subgroups is an increase of individual differences in 

network organization emerging with age (Freund et al., 2013). However, neither environmental 

influence nor age could be directly and accurately tested in the current dataset. The observed 

decrease in classifier accuracy from MZ to DZ twins also aligns with previous work that used the 

model-based connectotyping method (Miranda-Dominguez et al., 2018). Although the 

connectotyping method differs from our approach, our results provide corroborating evidence from 

a different methodology that a functional fingerprint in resting state network organization is, in 

fact, impacted by genetic similarity. Further, the current work emphasizes that this genetic impact 
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is found in direct measures of resting state functional connectivity in both pediatric and adult 

participants. This similarity across age groups provides initial evidence that the pattern of 

organization within a functional fingerprint may be established early in life and is similar to that 

found in adulthood. 

We expected the pediatric groups to exhibit overall lower classifier prediction accuracy 

due to ongoing organization of resting state functional networks throughout adolescence (Cai, 

Dong, & Niu, 2018; Fair et al., 2007; Grayson & Fair, 2017; Power et al., 2010; Satterthwaite et 

al., 2013). Somewhat surprisingly, adult and pediatric twin groups showed similar prediction 

accuracy on the basis of zygosity. During development, individuals may share a level of common 

developmental change as a result of age-related stages of network organization, regardless of 

genetic similarity. One possible reflection of this common change can be seen in distribution of 

classifier sensitivity scores (Study 1, Figure 2c).  

Sensitivity scores were derived using area under the receiver operating characteristic curve 

(AUC) which were calculated from each scan pair’s true positive and false positive classifications. 

While both adult twin groups showed higher average group accuracy scores than the pediatric twin 

groups, the adult MZ twins showed significantly higher AUC scores than the adult DZ twins 

(p<0.0001). However, the pediatric MZ twins did not show significantly different AUC scores 

than the pediatric DZ twins. Qualitatively, the larger spread of AUC scores within both DZ groups 

is more pronounced in the adult DZ group and highlights a higher rate of classifier confusion for 

adult DZ twin pairs. This increase in classifier confusion between adult scan pairs may be due to 

a reduction of shared developmental changes in functional network organization and increased 

environmental discrepancy between co-twins that is amplified as they age.  

Top Predictive Features Reveal Similar Key Network Representation 

Mapping the top features repeatedly chosen across subgroups revealed that connections in 

the DMN and FP networks most consistently differentiated individuals, facilitating correct SVM 
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classifier identification. It is important to note that the DMN is the most highly represented in our 

ROI set (57 out of a total 255). However, we find the high similarity in percentage and type of 

connection between the pediatric and adult groups (Study 1, Figure 3b) is informative in regard to 

the stability of individually unique connections. Indeed, using the features from one age group 

(e.g. top features from the adult sample) to predict the other age group (e.g. the pediatric 

subgroups) was significantly greater than chance in all but the adult DZ group, though less optimal 

than features derived from one’s same age group (Study 1, Figure 2a). Further, feature set 

simulations choosing the same number of connection types at random highlighted the unique 

nature of the network representation and type of connections within both age groups’ feature sets. 

The similarity of network representation of chosen functional connections across pediatric and 

adult groups contradicted our hypothesis that children and adolescents would have a different 

pattern of chosen connections relative to adults. Higher-order cognitive functions such as problem 

solving (Fedorenko, Duncan, & Kanwisher, 2013; Hearne, Mattingley, & Cocchi, 2016; Price, 

Yeo, Wilkey, & Cutting, 2018), task switching (Church, Bunge, Petersen, & Schlaggar, 2017; Cole 

et al., 2013; Loose, Wisniewski, Rusconi, Goschke, & Haynes, 2017), and sustained attention 

(Crittenden, Mitchell, & Duncan, 2016; Lawrence, Ross, Hoffmann, Garavan, & Stein, 2003; 

Marek & Dosenbach, 2018) rely on putative control networks such as the FP and CO networks, 

and behaviorally show substantial differences between children and adults. The essential nature of 

these networks for human functioning is likely highly individualized in their specific instantiation 

and therefore likely to be included in the functional fingerprint. This study demonstrates potential 

age invariance in these networks’ contributions.  

Previous work exploring functional fingerprints also implicate the FP and DMN networks 

as highly predictive of an individual (Finn et al., 2015; Horien et al., 2019; Miranda-Dominguez 

et al., 2018), though consistency of specific connections across age groups was not fully explored. 

Our results expand and clarify these previous findings, suggesting that although these systems are 
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still maturing and integrating throughout adolescence, the individualized aspects of these core 

connections may be established early on. However, some age-unique connectivity effects are likely 

embedded within these connections, as swapping the feature sets between age groups produced 

lower, though still significant, accuracy across nearly all groups. Based on the successful 

classification performance after swapping feature sets, one critical interpretation is that the 

inclusion of specific types of connections, at a specific ratio or count, may hold a high level of 

importance in identifying individuals from their functional fingerprint. More work exploring the 

developmental trajectory of functional connections that form a generalizable functional fingerprint 

is necessary, but our initial findings suggest a unique pattern is established, stable, and useful for 

identifying individuals even before whole-brain functional network organization is fully solidified 

in early adulthood. 

Motion Artifacts Unlikely Contributor to Classifier Accuracy 

It is well established that motion contributes substantially to noise and rs-fcMRI results 

(Laumann et al., 2016; Power, Barnes, Snyder, Schlaggar, & Petersen, 2012; Power et al., 2014; 

Van Dijk, Sabuncu, & Buckner, 2012). In-scanner motion is linked to distance-dependent artifacts 

that especially impact measurement of long-range connections (Satterthwaite et al., 2012; Van 

Dijk et al., 2012). Our fold-rank matrices (Study 1, Figure S2 & Figure S3) revealed that the 

majority of chosen features for both age groups came from longer, ipsilateral connections between 

anterior and posterior ROIs, as well as short-range, contralateral connections within posterior 

parietal DMN and VIS network ROIs. Critically, these results were consistent across age groups, 

suggesting that age-related differences in scanner motion did not drive the contribution of long-

range connections to classifier accuracy. In an effort to directly test the ability of motion to drive 

our classifier accuracies, the classifiers were trained on FD values in place of functional 

connectivity values. However, FD motion calculations provide only one value per TR, in contrast 

to the 32,385 possible unique functional connections, and therefore the feature selection step could 
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not be realistically performed. The reduced amount of data is under-powered for this type of 

analysis. Although testing classifier accuracies with the single vector of FD values is not an 

accurate comparison to our main methods, classifier accuracies using FD values did not approach 

significance for any group.  

Moreover, our current work rigorously followed current best practices in neuroimaging 

data preprocessing and motion correction, in an effort to mitigate the influence of motion on 

classifier accuracy. The mean FD for all individuals and groups were well within the normative 

range for both pediatric and adult resting state analyses, no major motion outliers were included 

in our groups, and the chosen FD of .25mm is at or below commonly accepted motion censoring 

thresholds. Taking each of these motion considerations into account, we believe the influence of 

motion on our classifier results is minimal. However, future approaches can possibly put this 

presumption to the test. 

Limitations of the Study 

Although this study expands upon recent findings in functional fingerprinting and genetic 

influences on rs-fcMRI organization, the following limitations must be considered. One limitation 

is the size of the pediatric twin sample. It is difficult to recruit and successfully retain pediatric 

neuroimaging participants. At the time of analysis, the neuroimaging branch of the Texas Twin 

Project was one of the largest pediatric twin resting state datasets, but did not provide a sufficient 

number of scans to fully explore analyses such as the effect of same-sex DZ pairs. Soon after 

completion of the current study’s analyses, raw imaging data and genetic information necessary to 

calculate zygosity has been released from The Adolescent Brain Cognitive Development Study 

dataset (Casey et al., 2018; Volkow et al., 2018). This multi-site dataset includes a large number 

of MZ and DZ pediatric pairs, and inclusion of these data should be included in future analyses to 

better explore group differences. Additionally, many unknowns are introduced in the realm of 

functional organization during development. Currently, the exact developmental trajectory of 
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functional network organization is unknown. Incorporating future methods that quantify and 

account for age-related changes in network organization would further clarify the accuracy of the 

SVM classifier results in our pediatric subgroups.  

Future analyses should explore other potential influences on classifier accuracy, such as 

same-sex vs opposite-sex sibling pairs. We indirectly investigated the impact of sex on 

identification accuracy within families by including a same-sex sibling group and comparing that 

to the MZ and DZ twin groups. However, siblings in this group necessarily differed by age, thus 

introducing a separate confound. Matching declared sex for sibling pairs did, in fact, result in 

higher SVM classifier accuracy of the same-sex sibling pairs than the pediatric DZ twin pairs 

(which was not sex-matched), suggesting a notable impact of sex variance on identification of 

individuals through this approach. There are limited rs-fcMRI studies that directly address sex 

differences in healthy twin populations and the precise source of sex differences on functional 

network organization is still not fully understood (Hjelmervik, Hausmann, Osnes, Westerhausen, 

& Specht, 2014; Satterthwaite et al., 2015). Future analyses on larger twin datasets can better parse 

out and control for sex differences between genetically related individuals. 

CONCLUSIONS 

The ability of rs-fcMRI pattern classifiers to identify matched pairs of participants in 

pediatric and adult samples decreased as genetic similarity decreased. This suggests a genetic 

influence on the pattern of highly individualized functional connections within a functional 

fingerprint. Connections within the identified functional fingerprint were dominated by regions in 

the DMN and FP networks, suggesting that integration of higher order functional networks plays 

a key role in establishing the organization of individualized functional fingerprints. This pattern of 

connections appears to be established early in life and, importantly, is similar enough in children 

and adults to often allow for significant classification of individuals using the opposite age group’s 

selected features.  
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Study 2: Quantifying Patterns of Resting State fMRI Associated with EF Task 
Performance in Youths 

INTRODUCTION 

Executive functions (EFs) are a set of complex cognitive processes that guide goal-directed 

behaviors, and are related to both academic and life success (Best et al., 2011; Jacob & Parkinson, 

2015). Behaviors that rely on EFs engage higher-level cognitive processes, such as the ability to 

switch between a set of rules or tasks (cognitive flexibility), to control or stop actions or thoughts 

(inhibition), or to maintain and update a number of items in memory (working memory/updating). 

During childhood and adolescence, the development of EF skills is especially important, as this 

period of life is a time of both social and skill-based growth. Difficulty with control over one's 

behavior can impact everything from interacting with peers or learning a new hobby, to recruiting 

and maintaining the attention and cognitive abilities required to succeed at academic goals. While 

outcomes of EF skills exhibit great improvement during childhood, previous work has found that 

not only is EF task performance highly heritable (Engelhardt et al., 2015), but that the neural 

architecture that is essential for successful EF task performance is already established by mid-

childhood (Engelhardt et al., 2019). This work suggests that brain network dynamics that are 

essential for EF task performance can be identified early in life, even though significant maturation 

of EF task performance is observed to continue through childhood, adolescence, and into young 

adulthood (Best & Miller, 2010; Ferguson, Brunsdon, & Bradford, 2021).  

The neural activity responsible for EF is not isolated to one distinct area of the cortex; EFs 

demand the successful integration and recruitment of multiple brain regions (Church et al., 2017; 

Dosenbach et al., 2006; Engelhardt et al., 2019; Nowrangi et al., 2014). Further, previous work 

has shown that the cortical representation of brain activity associated with individual tasks within 

three domains of EF (cognitive flexibility, inhibition, and working memory/updating) is 

overlapping in children (Engelhardt et al., 2019; Nugiel et al., 2020) and similar overlap in control-
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demanding tasks is observed in adults (Crittenden et al., 2016; Dosenbach, Fair, Cohen, Schlaggar, 

& Petersen, 2013; Nowrangi et al., 2014). Not surprisingly, the majority of overlap across EF task 

brain activity is predominantly in cortical areas associated with resting state functional networks 

attributed to attention-based or control-based behaviors, such as the fronto-parietal and cingulo-

opercular networks (Fiske & Holmboe, 2019; McKenna, Rushe, & Woodcock, 2017). 

These prior findings suggest that EF task performance is dependent on the successful and 

efficient integration of cortical activation in regions classically assigned to “higher level” or 

“cognitive control” functional brain networks. Previous work expands this idea of integration 

further, and states that successful attention and cognitive control is dependent on the efficient 

integration of sensory systems, which guide the input and output of task behavior, to cognitive 

control systems necessary for successful task performance (Petersen & Posner, 2012). Deficits that 

young children experience in the successful navigation of EF-related behaviors may therefore be 

as strongly associated with individual differences in brain network integration, as they are with the 

anatomical development of these regions. Given the need for cross-network integration in 

successful EF task performance, a deeper understanding of the patterns of organization that may 

impact information flow within these networks, and the relationship of that organization to EF task 

performance, is important for understanding cognitive development in youths.  

One set of tools for quantifying functional brain network organization is termed graph 

metrics (GMs). GMs provide a deeper understanding of the organizational structure of a network 

(or graph) by quantifying specific traits of that network, such as ease of information flow from one 

region in the network to all others (Sporns, 2018; Wang, 2010). When calculating GMs, we define 

a network as a series of nodes (regions of interest) that are connected by edges (a value quantifying 

the strength of the relationship between two nodes). For resting state functional connectivity 

(RSFC), we define these edge values as the pairwise correlation of the average brain activity of a 

pair of nodes over time. By calculating GMs from RSFC data, we are able to quantify specific 
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traits of functional network organization, absent of a specific task, that may be associated with a 

behavior. This type of multivariate and integrated viewpoint on brain activation and 

communication can provide an alternate viewpoint of how an individual's functional brain network 

organization may support or hinder behavioral outcomes, such as EF task performance. 

Previous work has shown that graph metrics can help identify some brain network 

organizational properties that are related to either intelligence, or EF tasks (such as the n-back 

working memory task) that are often used to calculate IQ or fluid intelligence. One set of findings 

associated shorter path lengths between cortical regions to better intellectual performance in 

individuals (Hilger, Ekman, Fiebach, & Basten, 2017b; Langer et al., 2012; van den Heuvel, Stam, 

Kahn, & Hulshoff Pol, 2009). More specifically, stronger integration between cortical areas 

represented in the fronto-parietal, cingulo-opercular, and salience networks (commonly labeled as 

“control” networks) were associated with measures of intelligence. Global efficiency, which is 

directly related to characteristic path length (a measure of the shortest paths across a network) has 

been shown to be directly related to the n-back working memory task. Previous work found that 

higher global efficiency (stronger levels of full-network integration) is related to greater 

performance on the n-back task (Stanley et al., 2015). However, previous results in the literature 

are somewhat inconsistent. While measures of shortest paths have been related to measures of 

intelligence in adults, other work did not find significant relationships between tested global 

network parameters (which included characteristic path length and global efficiency) and IQ (Wu 

et al., 2013).    

Previous research also provides evidence that methodological neuroimaging decisions, 

such as scan length (Birn et al., 2013; Whitlow, Casanova, & Maldjian, 2011) or sample size 

(Kruschwitz et al., 2018; Marek et al., 2020), may be a significant impacting factor when 

associating whole-brain GMs to behavior. In fact, recent work that used a large sample (n=1,096) 

from the human connectome project (HCP) public release, were unable to replicate previous results 
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relating global efficiency to measures of intelligence (Kruschwitz et al., 2018). Another important 

aspect to consider is that the majority of extant literature focusing on the brain-behavior 

associations of RSFC-derived GMs and EF task performance used adult samples. Thus, the extent 

that these relationships between graph metrics and EF can be accurately identified during 

development is not wholly explored.  

The current study tested the ability of GMs to quantify specific traits of resting state 

functional network organization in youths, and successfully predict EF task performance. We 

tested the impact of scan length and network components on our GM-focused results, using a large 

dataset combined across locally collected and publicly released neuroimaging datasets. 

Additionally, we addressed concerns over the minimum sample size needed to accurately identify 

brain-wide associations of behavioral outcomes (Dick et al., 2021; Marek et al., 2020), and the 

potential impact of resting state preprocessing decisions (Gargouri et al., 2018; Liang et al., 2012) 

with the inclusion of a unique set of 2,000 preprocessed scans from the curated Collection 3165 - 

DCAN Labs ABCD-BIDS release (https://collection3165.readthedocs.io/). Combined, these 

analyses provide a greater understanding of not only the association of patterns of functional 

network connectivity to EF task performance in youths, but the extent to which methodological 

decisions with resting state functional connectivity may impact the ability to identify valid 

associations of GMs to EF task performance. 

METHODS AND MATERIALS 

Participant Demographics  

Participants in this combined dataset (Study 2, Table 1) of 567 (284 F) youths were 

recruited either at the University of Texas at Austin (UT) (n=67) or as part of the publicly available 

Adolescent Brain Cognitive Development (ABCD) study (n=500). All participants included in this 

study were required to have at least 5-minutes of post-processed resting state scan data, after 
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motion censoring using a .25 framewise displacement (FD) threshold (see post-motion censored 

time distribution in supplement (Study 2, Figure S1A)). Participants from the UT dataset were 

recruited for either a longitudinal, multidimensional study of executive function (e.g., (Nugiel et 

al., 2020); JAC start-up funds), or as part of the Texas Twin Project (Engelhardt et al., 2019) 

(NICHD R21HD081437; MPI J.A. Church, E.M. Tucker-Drob). This combined dataset is 

comprised of youths ages 8.5-17.2 (M=10.3) years-old at the time of scan, and only one twin 

sibling (pseudo-randomly selected) was included from any family pair to minimize the influence 

of genetic similarity on our results. The UT sample included 3 participants that had ever received 

an ADHD diagnosis and the ABCD sample included 77 participants that had ever been diagnosed 

with ADHD, depression, bipolar disorder, anxiety, or a phobia, per parent report. Exclusion criteria 

for these datasets included a reported history of epilepsy, head trauma, or any non-removable metal 

implant that would prevent participation in the MRI portion of the study. Participants in the 

preprocessed Collection 3165 - DCAN Labs ABCD-BIDS release (DCAN) comparison set 

(n=2,000) were also collected for the ABCD study under the same inclusion criteria (see Study 2, 

Table 1 for demographic information). Participants from the DCAN release used within this 

current study did not overlap with participants in our locally processed ABCD set. 
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Study 2, Table 1: Participant Demographics 

Group Demographics 

 UT ABCD COMBINED DCAN 

Participants 67 (30 F) 500 (254 F) 567 (284 F) 2,000 (963 F) 

Age Range (years) 8.5 - 17.2 9.0 - 11 8.5 - 17.2 9 – 10.9 

Age (M ± SD) 11.8 ± 2.1 10.1 ± 0.63 10.3 ± 1.1 9.9 ± 0.63 

Mean Scan Length 9:07 14:30 13:52 15:05 

Race/Ethnicity 

Asian 2 7 9 14 

Black 5 48 53 284 

Hispanic 4 63 67 202 

Multiracial or Other 15 38 53 228 

White 41 344 385 1272 
Note: Mean scan length is minutes and seconds of fully pre-processed resting state scan time, concatenated across all available 
runs, and post-motion censoring at .25 framewise displacement (FD). 

Executive Function Tasks 

The current study focused on tasks designed to target cognitive flexibility and working 

memory/updating EF abilities. Tasks were matched as closely as possible between the University 

of Texas at Austin (UT) and the ABCD dataset, although slight differences in the presented tasks 

are noted in the task details section. Further, in an effort to mitigate the influence of setting (tasks 

completed inside or outside of MRI scanner) on task performance, task setting was matched 

between the two datasets. Therefore, the cognitive flexibility task scores were collected from tasks 

performed outside of the scanner, while the working memory/updating task was performed within 

the scanner. Similarly, we either normalized or matched the task scoring method reported for the 

ABCD dataset to mitigate differences between reported scores within the two datasets (see Study 

2, Figure 1E & F for distribution of task scores across collections).  

Cued Task Switching/Cognitive Flexibility Task 

Participants in the UT dataset completed 46 trials of a cued rule matching task aimed to 

assess cognitive flexibility (Church et al., 2017; Engelhardt et al., 2019) while outside of the 
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scanner (Study 2, Figure 1A). For each trial, participants were cued to match a target stimulus 

based on one of two possible rules (match the shape or color). Response choices were displayed 

for the duration of the trial. For the first 1.5 seconds of each trial a red box would indicate the rule 

to follow. The target stimulus then appeared .5 seconds after the red box indicating the rule had 

disappeared and the stimulus remained on screen for 2 seconds. During this time, the participant 

would indicate which response choice matched the target, according to the rule. After each 

response period, a fixation cross was displayed for 1-4 seconds. All participants completed a brief 

practice example set to confirm they understood the task. Z-scores calculated from task accuracy 

scores (correct/total trials) were used for our analyses.  

Participants in the ABCD dataset completed a similar switching task from the NIH Toolbox 

Cognition Battery; the Dimensional Change Card Sort (DCCS) test (Luciana et al., 2018; Zelazo, 

2006; Zelazo et al., 2013) while outside of the scanner (Study 2, Figure 1C). During the DCCS, 

participants are presented with two objects at the bottom of the screen. A third object is then 

presented in the middle of the screen and the participant is asked to match it to one of the two 

objects on the bottom of the screen, either by shape or color. All participants are first given a 

practice set, followed by a block of trials where they match based on one rule, a block where they 

match on the other rule, and then a block where the rule is pseudo-randomly alternated between 

the shape and color rules. The DCCS provides a standard score metric (normative mean=100, 

SD=15) that is not age corrected, and is provided to gauge a participant’s overall level of 

functioning on the task. This score was then converted to z-scores for appropriate use with the UT 

dataset. This non-age-corrected score was used as age correction is done later in our analyses.  

Working Memory/Updating Task 

Participants in the UT dataset completed up to two versions of a block design, n-back task 

(Engelhardt et al., 2019) while inside the scanner (Study 2, Figure 1B). At the start of each scan, 

the participants were verbally reminded of the rules of the task by the scan operator. The n-back 
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task was adapted from (Jaeggi et al., 2010) and is used to assess an individual’s working memory 

or updating ability. Each task run consisted of 64 shape stimuli in a fixed block design that were 

evenly divided into a 1-back and 2-back block. At the start of each block, participants were shown 

instructions for 4 seconds that indicated if they should look for shapes shown one shape prior (1-

back) or two shapes prior (2-back). Each stimulus was shown for 1.5 seconds with a 1 second 

inter-stimulus interval. Participants were instructed to push a button when they believed the shape 

they were currently viewing matched a shape either one or two shapes previous, based on the 

instructions. Each block was followed by a 20 second fixation cross, and a total of 7 matches were 

shown in each block (21.0% of trials). The correct rate was calculated (total correct / total stimuli 

shown) for only the 2-back trials, and this measure of task performance was used in our analyses. 

Participants in the ABCD dataset completed up to two runs of an emotional n-back (EN-

back) (Study 2, Figure 1D) task while in the scanner (Barch et al., 2013; Casey et al., 2018; Cohen 

et al., 2016). The EN-back task is a variant of the Human Connectome Project n-back task (Barch 

et al., 2013) and measures working memory processes. The task includes two runs of eight blocks 

where participants are asked to indicate if an image matches or does not match based on a 0-back 

or a 2-back rule. In the EN-back, trials consist of both emotional faces (such as happy or fearful) 

and neutral faces or places. During the 2-back section participants are asked to indicate “match” 

when the current stimulus matches a target presented two trials back. Each block consists of 10 

trials displayed for 2.5 seconds each and 4 fixation blocks displayed for 15 seconds each. Each 

stimulus was presented for two seconds followed by a 500ms fixation cross. During each block, 

two of the trials are targets, 2-3 are non-target lures, and the remaining trials are non-lures. To 

match the UT dataset, our analyses only included task performance on the 2-back, non-emotional 

segments of the task, which was 4 blocks. We then calculated the correct rate (matching the UT 

dataset task performance measure) and this measure was used for our analyses. 
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Study 2, Figure 1: Executive Function Tasks 

 
Note: Examples of the cognitive flexibility tasks administered at the UT site (A. CogFlex) and the ABCD sites (C. Dimensional 
Change Card Sort (image: NIH Toolbox)). Examples of the working memory tasks administered at the UT site (B. n-back) and 
the ABCD sites (D. Emotional n-back, (image: Casey et al., 2018)). To match between sites, only trials containing neutral faces 
and places were used from the EN-back (D.) task. Task score distributions are also shown, separated by participants group, for 
the cognitive flexibility (E.) and working memory (F.) tasks.  
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Neuroimaging Acquisition 

The University of Texas at Austin 

All participants scanned at the University of Texas at Austin (UT) were scanned in the 

Biomedical Imaging Center on a Siemens Skyra 3 Tesla scanner, with a 32-channel head coil. 

Foam padding was used around the head for comfort and to reduce head motion, and verbal 

feedback on body motion and to ensure participant comfort was provided between scans. One T1-

weighted structural MPRAGE sequence (TR=2530ms, TE=3.37ms, FOV=256x256, voxel 

resolution=1x1x1mm) scan and one T2-weighted structural image using a turbo spin echo 

sequence (TR=3200ms, TE=412ms, FOV=256x256, voxel resolution=1x1x1mm) were collected 

and included in the preprocessing steps for this study. 

Up to two, 6-minute echo-planar sequence functional resting state scans (TR=2000ms, 

TE=30ms, flip angle=60°, MB factor=2, 48 axial slices, voxel resolution=2x2x2mm) were 

collected. All resting state scans were acquired with the participant instructed to view a white 

fixation cross on a black background. Participants were instructed to simply stay awake and lie 

still. Up to two working memory task functional scans were collected (see n-back description 

above) using the same acquisition settings reported for the resting state scans. All tasks were run 

using PsychoPy version 1.8 (Peirce, 2007) with stimuli projected behind the scanner that 

participants viewed using a mirror attached to the head coil. Participants recorded their responses 

during this task using a two-button response pad.  

Adolescent Brain Cognitive Development (ABCD) Study 

In an effort to avoid any unknown scanner manufacturer confounds (Noble et al., 2017; 

Zhao et al., 2018), only participant scans collected on a 3T Siemens Prisma scanner were included 

in this dataset. All ABCD participant scans were downloaded in their unprocessed form from the 

NIH Data archive (https://nda.nih.gov/abcd) and preprocessed using our in-house preprocessing 

pipeline. One T1-weighted structural scan (TR=2500ms, TE=2.88ms, FOV=256x256, voxel 
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resolution=1x1x1mm) and one T2-weighted structural scan (TR=3200ms, TE=565ms, 

FOV=256x256, voxel resolution=1x1x1mm) were used for our pre-processing. Up to four, 5-

minute resting state scans (TR=800ms, TE=30ms, flip angle=52°, MB factor=6, 60 axial slices, 

voxel resolution=2.4x2.4x2.4mm) and up to two working memory functional scans (see EN-back 

description above) were collected and used in this study. For complete information on the ABCD 

scan protocol, see Casey et al., 2018. 

Collection 3165 – DCAN Labs ABCD-BIDS Release 

 The DCAN dataset - used for the preprocessing and sample size comparisons – was 

collected as part of the ABCD release and followed the fMRI acquisition protocol described above. 

fMRI preprocessing steps (DCAN-Labs, 2019) for this set are outlined briefly below.  

Resting State Preprocessing 

In-house Preprocessing Pipeline 

To mitigate confounds to analyses that stem from preprocessing decisions, all participants’ 

scans (other than those in the DCAN Labs ABCD-BIDS release) were preprocessed using our in-

house pipeline comprised of FMRIB Software Library (Smith et al., 2004), Freesurfer (Dale, 

Fischl, & Sereno, 1999), and Connectome Workbench (Marcus et al., 2011) commands, along with 

custom Matlab (www.mathworks.com) computational scripts. The pipeline follows the first three 

steps of the Human Connectome minimal preprocessing pipeline (Glasser et al., 2013), followed 

by volume and surface preprocessing steps developed in-house, informed by current best practices 

for resting state analyses (Caballero-Gaudes & Reynolds, 2017; Dipasquale et al., 2017; Hallquist, 

Hwang, & Luna, 2013; Lindquist, Geuter, Wager, & Caffo, 2019; Power et al., 2012, 2014).  

Volume resting state preprocessing steps included: (1) motion correction and registration 

to 2mm MNI atlas space; (2) mode 1k normalization; (3) temporal band-pass filtering (0.009 Hz 

< f < 0.08 Hz); (4) demeaning and detrending of fMRI data; and (5) regression of band-pass filtered 
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nuisance signals including six directions of motion plus their derivatives, cerebral spinal fluid, 

white matter, and whole brain signal. To reduce the reintroduction of noise that occurs with 

multiple transformations, all registration steps were done in one single transform. Similarly, all 

nuisance signal regression and temporal filtering was performed simultaneously (Lindquist et al., 

2019). 

Surface resting state preprocessing steps work on the unsmoothed, but fully preprocessed 

volume scans from the volume preprocessing stage and maps those outputs to 32k fs_LR surface 

space using the following steps: (1) creation of grey matter ribbon using the white and pial 

boundaries previously created during the HCP steps; (2) downsampling of grey matter ribbon to 

functional scan dimensions; (3) exclusion of voxels with high coefficient of variation to improve 

SNR (following the HCP pipeline’s “fMRISurface” procedure); (4) mapping of volume functional 

data to 32k fs_LR surface mesh; (5) spatial smoothing (2mm FWHM); (6) and creation of CIFTI 

dense timeseries file.   

DCAN Labs Preprocessing Pipeline 

The DCAN comparison set was downloaded in its fully preprocessed form as a curated 

release of the ABCD study. This set was preprocessed using the ABCD-HCP pipeline created by 

DCAN-Labs (DCAN-Labs, 2019). The DCAN-Labs pipeline generally follows the steps outlined 

in the Human Connectome minimal preprocessing pipeline (Glasser et al., 2013). However, the 

following BOLD signal processing steps are applied: (1) Standard pre-processing; (2) Respiratory 

motion filter application; (3) Motion censoring; (4) Parcellated time series creation. (See 

https://collection3165.readthedocs.io/en/stable/pipeline/ for detailed explanations of each pipeline 

step.) The current study used the framewise displacement (FD) values and dense timeseries files 

provided in the DCAN set, and parcellated timeseries were extracted and motion censored locally.  
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Graph Metrics 

Four main graph metrics (GMs) of interest were chosen to test the relationship of patterns 

of functional network organization and EF task performance. The chosen GMs have previously 

been associated with EF task performance or measures of general intelligence that incorporate 

working memory tasks (Cole, Yarkoni, Repovs, Anticevic, & Braver, 2012; Hilger, Ekman, 

Fiebach, & Basten, 2017a; Stanley et al., 2015; van den Heuvel et al., 2009) and provide a 

literature-informed starting point.  

Characteristic Path Length (CPL) (Study 2, Figure 2A) is an average of all shortest path 

lengths within a network. An individual path length is defined as the minimum number of edges 

that must be traveled to connect two nodes. CPL is the average number of edges contained within 

the shortest path lengths between all possible connection pairs in a network. CPL can quantify 

overall network integration, thus highlighting the ability of a network to quickly and efficiently 

integrate information across subnetworks. A system with a shorter characteristic path length 

suggests faster propagation of information across the global system or network. Previous work has 

found a shorter characteristic path length is associated with better intellectual performance (Hilger 

et al., 2017b; Langer et al., 2012; van den Heuvel et al., 2009). 
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Global Efficiency (GE) (Study 2, Figure 2B) is the average inverse shortest path length in 

a network and quantifies the average efficiency of all nodes within a network. GE is regarded as a 

measure of “information flow” and quantifies how efficiently a network may exchange 

information. Previous work has indicated that higher global efficiency is better for working 

memory tasks, such as the n-back (Stanley et al., 2015). 
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Betweenness Centrality (BC) (Study 2, Figure 2D) is quantified as the fraction of shortest 

paths within a network that pass through the node of interest. BC quantifies how much a node acts 
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as a connection between other nodes. Nodes with a high BC, that are also connected to multiple 

subnetworks, are typically labeled as “connector hubs”. Connector hubs are thought to allow 

subnetworks to easily integrate and pass information back and forth. Previous work suggests that 

greater levels of integration between areas of the front-parietal, cingulo-opercular, and salience 

networks are associated with intellectual performance (Hilger et al., 2017a, 2017b; Jung & Haier, 

2007). BC is one metric that allows us to quantify levels of integration between functional 

networks.  	
𝐵(𝑢) =+ 𝜎:,<(𝑢)/𝜎:,<
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Rich-Club Coefficient (RCC) (Study 2, Figure 2C) is a GM that quantifies the extent that 

highly connected nodes within a network are also connected to one another. RCC identifies 

densely, interconnected hubs and can indicate how easily information can flow between 

subnetworks in a larger system. Networks that have a higher RCC are expected to have many 

connections between nodes with a high degree (or number of connected edges).  Previous work 

has indicated that improved network integration, especially between frontal and parietal areas, may 

lead to better intellectual performance (Hilger et al., 2017b; Jung & Haier, 2007; Langer et al., 

2012) and RCC can quantify network integration through interconnected hubs. Below, N(G,k) are 

the set of nodes with a degree of k or greater and E(G,k) are the set of edges that connect two nodes 

in the N(G,k) set. 	
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Study 2, Figure 2: Graph Metrics 

 
Note: (A.) Characteristic Path Length is the average shortest paths between all possible nodes of a network and represents 
information flow within a network. An example of the shortest path length between two nodes is displayed here. (B.) Global 
Efficiency is the average inverse shortest path length in a network and quantifies the average efficiency of information flow 
across nodes in a network (C.) The Rich-Club Coefficient identifies densely interconnected hubs and quantifies the extent that 
highly connected nodes are connected to other highly connected nodes. The Rich-Club Coefficient is a measure of how easily 
information can flow between subnetworks of a system. (D.) Betweenness Centrality is a measure of “hubness” and identifies 
how much one node acts as a connector between other nodes. Betweenness Centrality is quantified as the fraction of a network’s 
shortest paths that pass through the node of interest.  
Figures adapted from (A & D) (Farahani et al., 2019), (B) (Conti et al., 2019), and (C) (Cao et al., 2014) 

Graph Metrics Calculations 

All graph metrics (GMs) were calculated by: (1) extracting resting state timeseries using a 

333 cortical surface parcellation set (Gordon et al., 2016); (2) motion censoring timeseries data 

using a .25mm framewise displacement (FD) threshold (Power et al., 2012, 2014); (3) creation of 

a 333x333 connectivity matrix using pairwise correlations of parcellated timeseries; (4) calculating 

GMs from connectivity matrices using NetworkX (Hagberg, Schult, & Swart, 2008) and Brain 

Connectivity Toolbox (BCT) (Rubinov & Sporns, 2010) functions.  
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Previous work with GMs suggests that metrics should be calculated with a range of 

connection densities applied to the connectivity matrix. Thresholding is suggested due to the fact 

that a network with a large number of connections with low weights may overly influence graph 

metric calculations and network features will vary as the number of connections in a network 

changes (Duda, Cook, & Gee, 2014; van Wijk, Stam, & Daffertshofer, 2010). The current study’s 

GMs were calculated after applying a range of connection densities from 5-30% to our connectivity 

matrices.  

Normalization of GMs is also suggested (Paldino, Golriz, Zhang, & Chu, 2019; Rubinov 

& Sporns, 2011). Normalization of GMs is thought to remove the influence of low-level 

connectivity attributes, such as degree distribution on the calculated metrics.  GM scores were 

normalized by dividing the raw GM score by an average score for each metric. Average scores 

were obtained by calculating the metric of interest on a set of 20 randomized graphs. Randomized 

graphs were created by taking the individual’s original connectivity matrix and shuffling the edge 

values. This practice ensures that the randomized graph has the same degree distribution, number 

of nodes, and connection density as the original, but provides a null hypothesis reference (Sinclair 

et al., 2015) that is devoid of the original graph’s potentially unique topological features. 

Normalized GM values were used for all regression analyses. 

Statistical Analyses 

Ordinary Least Squares regression analyses were conducted to test the relationship between 

our four chosen GMs and performance scores in the cognitive flexibility and working memory 

tasks. Since performance on EF tasks improves as individuals get older, task performance 

measures were controlled for age. Models predicting either correct rate (working memory task) or 

Z-scores (cognitive flexibility task) tested characteristic path length, global efficiency, rich-club 

coefficient, and betweenness centrality (all metrics normalized).  
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One significant methodological decision that may impact replication in resting state 

analysis is the amount of time included per participant. Historically, due to the cost of fMRI data 

collection, relatively short amounts of resting state data were often used in analyses. However, as 

these costs have come down and the field has focused on the importance of collecting longer scans 

in order to achieve a more precise representation of an individual’s RSFC and to improve reliability 

(Anderson, Ferguson, Lopez-Larson, & Yurgelun-Todd, 2011; Birn et al., 2013; Laumann et al., 

2015; Murphy, Bodurka, & Bandettini, 2007). To test the influence of scan time on our results, 

models were run using GMs calculated from connectivity matrices derived from: (1) the full 

available resting state scan time for all individuals, (2) a 5-minute pseudo-random crop of resting 

state data for all individuals, (3) a subset of resting state scans from individuals with 10-minutes 

or greater scan data.  

Another significant methodological decision is the choice of brain networks. Previous 

results have highlighted cortical activation related to EF task performance in brain regions 

belonging to parcels in classic resting state “control” networks (Fiske & Holmboe, 2019; Ullman, 

Almeida, & Klingberg, 2014). We thus tested the influence of functional network makeup by 

running the same models on connectivity matrices that only included nodes from commonly-

labeled “control” networks; The cingulo-opercular, dorsal attention, fronto-parietal, salience, and 

ventral attention networks, and comparing results to nodes across the whole brain (333 surface 

parcel set from (Gordon et al., 2016)).  

Finally, in order to test the possible impact of both sample size and fMRI preprocessing 

pipeline decisions on our results, we re-ran our models using the already pre-processed DCAN 

comparison set, including full available resting state scan time and full network for all individuals 

(n=2000).  
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RESULTS 

Graph metrics related to EF task performance measures 

We tested the ability of our GMs of choice to successfully predict EF task performance, 

while focusing on the influence of three different methodological factors: (1) length of resting state 

data, (2) functional brain network makeup, (3) sample size, and (4) fMRI preprocessing pipeline. 

Of note, Characteristic Path Length (CPL) and Betweenness Centrality (BC) values (both metrics 

calculated off the shortest paths between nodes in the graph) were highly correlated in our sample 

(R=0.98) for whole brain nodes, and results with these two GMs were highly similar across all 

tests. Therefore, only CPL was tested. (See Study 2, Figure S1B for correlation of GM values). All 

significance statistics were Bonferroni corrected for multiple comparisons (correction for three 

tests). See Study 2, Table 2 for complete Cognitive Flexibility task results and Study 2, Table 3 

for complete Working Memory task results.  

Metrics calculated across scan time thresholds in main sample 

In our main sample of 567 youths, varying the amount of resting state data that was used 

to calculate our GMs of interest impacted our results. When CPL was calculated on all available 

resting state data per individual, CPL significantly predicted cognitive flexibility task performance 

(p<0.01) after Bonferroni correction for three tests. Similarly, CPL calculated only for individuals 

with 10-minutes or greater resting state data (n=461) significantly predicted cognitive flexibility 

task performance (p=0.01) after Bonferroni correction (Study 2, Table 2). CPL did not successfully 

predict cognitive flexibility task performance when all resting state data was limited to 5-minutes 

for all participants. Additionally, both Global Efficiency (GE) and Rich-club Coefficient (RCC) 

did not successfully predict cognitive flexibility task performance in any time sub-group. 

In the models predicting working memory task performance from GMs calculated from 

our different time sub-groups (Study 2, Table 3), none of the chosen GMs were able to successfully 
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predict task performance after Bonferroni correction, regardless of the amount of resting state data 

used to calculate GMs.  

Metrics calculated using control network parcels in main sample 

Next, we tested if GMs calculated using only parcels commonly assigned to putative 

resting state EF networks would act as a form of feature selection that improved prediction to task 

performance on EF tasks. We calculated GMs on networks reduced to include only parcels 

belonging to the cingulo-opercular, dorsal attention, fronto-parietal, salience, and ventral attention 

networks. All models using these GMs could not successfully predict task performance outcomes 

for either the cognitive flexibility or working memory tasks in our main analysis group (Study 2, 

Table 2 & Table 3).  

Metrics calculated using the full DCAN comparison set (n=2,000) 

The publicly available DCAN dataset was used as a comparison set to help identify the 

influence of sample size and fMRI preprocessing decisions on our results. To assess sample size, 

all previous tests were also run on this larger sample of 2,000 youths. All reported results were 

Bonferroni correction for three tests. 

All GMs calculated using all available resting state data significantly predicted cognitive 

flexibility task performance (CPL and GE p<0.001; RCC p=0.01). In models using these same 

GMs to predict working memory task performance, CPL (p=0.02) and GE (p<0.001) successfully 

predicted task outcomes, while RCC did not. (Study 2, Table 4 & Table 5) 

GMs calculated for individuals with 10-minutes or more resting state data (n=1,752) 

significantly predicted cognitive flexibility task performance (p<0.01) in all models (Study 2, 

Table 4). Alternatively, only GE calculated on 10-minutes or greater resting state data significantly 

(p<0.001) predicted working memory task performance in the DCAN comparison set (Study 2, 

Table 5). 
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Next, we tested the impact of shorter scan times on our results in the DCAN group by 

calculating all GMs on a pseudo-randomly selected crop of resting state data for each participant. 

For models predicting the cognitive flexibility task outcomes (Study2, Table 4), CPL (p=0.003) 

and GE (p<0.001) successfully predicted task performance, while RCC did not. Alternatively, for 

the working memory task (Study 2, Table 5), CPL did not predict task performance, but GE 

(p=0.03) and RCC (p=0.002) did successfully predict working memory scores.  

In tests using GMs calculated from a reduced network consisting of just control network 

parcels, only CPL (p=0.001) and GE (p=0.003) predicted cognitive flexibility task performance. 

This same pattern of results was seen for the working memory task, with CPL (p=0.037) and GE 

(p=0.002) predicting task performance, while RCC did not predict either task performance in this 

control network limited sub-group (Study 2, Table 4 & Table 5).  

DCAN 500 (n=500) and Main Analysis ABCD-only (n=500) comparisons 

In order to address fMRI preprocessing decisions, a subset of 500 participants from the 

DCAN sample was pseudo-randomly selected and compared to results calculated from only the 

500 ABCD subjects in our main sample. The main analysis group was reduced to only ABCD 

participants as the age range of our locally collected data extended further than the age range 

collected in the first wave of the ABCD collection. Further, using only the ABCD participants 

matched MRI exact scanner model for both groups. (These comparison groups hereafter referred 

to as “Main 500” and “DCAN 500”.) Task performance measures did not significantly differ 

between the Main 500 and DCAN 500 sub-sets (cognitive flexibility: p=0.273; working memory: 

p=0.857).  

Results using GMs calculated from all available resting state data in these n=500 

comparison groups, differed across groups on CPL and GE for cognitive flexibility tasks, and in 

GE for the working memory task (see Study 2, Table 6).   
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Study 2, Table 2: OLS Regression table for predicting cognitive flexibility task performance 
from graph metrics. (Main Analysis Group) 

Cognitive Flexibility Task 
Main Analysis Group (n=567) 

Full Network – Full Time 
Graph Metric B SE B R2 F p 

CPL 2.49 0.84 0.02 8.79 0.003** 
GE -2.89 1.33 0.01 4.71 0.030 

RCC 0.25 1.67 < 0.01 0.02 0.881 
      

5-min Crop 
Graph Metric B SE B R2 F p 

CPL 1.33 0.85 < 0.01 2.47 0.117 
GE -3.05 1.41 0.01 4.67 0.031 

RCC 0.81 1.76 < 0.01 0.21 0.644 
      

10-min or More 
Graph Metric B SE B R2 F p 

CPL 2.76 0.95 0.02 8.55 0.004* 
GE -1.30 1.68 < 0.01 0.60 0.439 

RCC -1.04 1.77 < 0.01 0.34 0.558 
      

Control Networks Only (n=461) 
Graph Metric B SE B R2 F p 

CPL 2.04 0.89 0.01 5.23 0.023 
GE -1.43 1.34 < 0.01 1.13 0.289 

RCC 1.81 1.94 < 0.01 0.87 0.350 
      

Note: Main Analysis Group. Results for all models predicting cognitive flexibility task outcomes from graph metric values. 
Results that remained significant after Bonferroni correction for multiple comparisons for three tests are denoted as  
* = p < .05, ** p < .01, and *** = p < .001.   
CPL = Characteristic Path Length, GE = Global Efficiency, RCC = Rich-club Coefficient. All outcomes reported for normalized 
graph metrics calculated at 10% density threshold.  
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Study 2, Table 3: OLS Regression table for predicting working memory task performance from 
graph metrics. (Main Analysis Group) 

Working Memory (N-Back) Task 
Main Analysis Group (n=567) 

Full Network – Full Time 
Graph Metric B SE B R2 F p 

CPL -0.10 0.07 < 0.01 2.18 0.140 
GE -0.01 0.11 < 0.01 0.004 0.953 

RCC -0.26 0.14 0.01 3.60 0.058 
      

5-min Crop 
Graph Metric B SE B R2 F p 

CPL -0.01 0.07 < 0.01 0.001 0.971 
GE -0.09 0.12 < 0.01 0.60 0.438 

RCC -0.17 0.15 < 0.01 1.28 0.258 
      

10-min or More 
Graph Metric B SE B R2 F p 

CPL -0.09 0.08 < 0.01 1.17 0.281 
GE 0.02 0.15 < 0.01 0.02 0.879 

RCC -0.34 0.15 0.01 4.98 0.026 
      

Control Networks Only (n=461) 
Graph Metric B SE B R2 F p 

CPL -0.16 0.07 0.01 4.40 0.036 
GE 0.11 0.11 < 0.01 0.95 0.330 

RCC -0.15 0.16 < 0.01 0.81 0.369 
      

Note: Main Analysis Group. Results for all models predicting working memory (N-Back) task outcomes from graph metric 
values. Results that remained significant after Bonferroni correction for multiple comparisons for three tests are denoted as  
* = p < .05, ** p < .01, and *** = p < .001.   
CPL = Characteristic Path Length, GE = Global Efficiency, RCC = Rich-club Coefficient. All outcomes reported for normalized 
graph metrics calculated at 10% density threshold.  
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Study 2, Table 4: OLS Regression table for predicting cognitive flexibility task performance 
from graph metrics. (DCAN Comparison Groups) 

Cognitive Flexibility Task 
DCAN Comparison Group (n=2,000) 

Full Network – Full Time 
Graph Metric B SE B R2 F p 

CPL 2.19 0.59 < 0.01 13.59 < 0.001*** 
GE -5.53 0.90 0.02 37.62 < 0.001*** 

RCC 2.57 0.88 < 0.01 8.52  0.004* 
      

5-min Crop 
Graph Metric B SE B R2 F p 

CPL 1.53 0.47 < 0.01 10.65 0.001** 
GE -3.70 0.91 < 0.01 16.66 <0.001*** 

RCC -1.47 0.96 < 0.01 2.335 0.127 
      

10-min or More 
Graph Metric B SE B R2 F p 

CPL 1.71 0.61 <0.01 7.90 0.005* 
GE -4.44 1.00 0.01 19.74 <0.001*** 

RCC 2.21 0.92 <0.01 5.81 0.016* 
      

Control Networks Only (n=1,752) 
Graph Metric B SE B R2 F p 

CPL 2.53 0.72 <0.01 12.23 <0.001** 
GE -2.77 0.84 <0.01 10.82 0.001** 

RCC 0.03 0.90 <0.01 0.001 0.970 
      

Note: DCAN Comparison Groups. Results for all models predicting cognitive flexibility task outcomes from graph metric values. 
Results that remained significant after Bonferroni correction for multiple comparisons for three tests are denoted as  
* = p < .05, ** p < .01, and *** = p < .001.   
CPL = Characteristic Path Length, GE = Global Efficiency, RCC = Rich-club Coefficient. All outcomes reported for normalized 
graph metrics calculated at 10% density threshold.  
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Study 2, Table 5: OLS Regression table for predicting working memory task performance from 
graph metrics. (DCAN Comparison Group) 

Working Memory (N-Back) Task 
DCAN Comparison Group (n=2,000) 

Full Network – Full Time 
Graph Metric B SE B R2 F p 

CPL 0.24 0.09 < 0.01 7.19 0.007* 
GE -0.81 0.13 0.02 36.22 < 0.001*** 

RCC -0.04 0.13 < 0.001 0.10 0.753 
      

5-min Crop 
Graph Metric B SE B R2 F p 

CPL 0.10 0.07 < 0.01 1.85 0.174 
GE -0.36 0.14 < 0.01 6.96 0.008* 

RCC -0.49 0.14 < 0.01 11.78 <0.001** 
      

10-min or More 
Graph Metric B SE B R2 F p 

CPL 0.18 0.09 <0.01 3.91 0.048 
GE -0.80 0.15 0.02 27.98 <0.001*** 

RCC -0.05 0.14 <0.01 0.10 0.747 
      

Control Networks Only (n=1,752) 
Graph Metric B SE B R2 F p 

CPL 0.27 0.11 <0.01 6.25 0.012* 
GE -0.35 0.13 <0.01 7.68 <0.001*** 

RCC -0.01 0.13 <0.01 0.005 0.946 
      

Note: DCAN Comparison Groups. Results for all models predicting working memory (N-Back) task outcomes from graph metric 
values. Results that remained significant after Bonferroni correction for multiple comparisons for three tests are denoted as  
* = p < .05, ** p < .01, and *** = p < .001.   
CPL = Characteristic Path Length, GE = Global Efficiency, RCC = Rich-club Coefficient. All outcomes reported for normalized 
graph metrics calculated at 10% density threshold.  
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Study 2, Table 6: OLS Regression table for predicting cognitive flexibility and working memory 
task performance from graph metrics. (“Main 500” and “DCAN 500” Comparison Groups) 

Cognitive Flexibility Task (Full Network – Full Time) 
“Main 500” Comparison Group 

Graph Metric B SE B R2 F p 
CPL 2.65 0.94 0.02 7.90 0.005* 
GE -1.50 1.47 <0.01 1.05 0.307 

RCC -0.20 1.79 <0.01 0.01 0.909 
      

“DCAN 500” Comparison Group 
Graph Metric B SE B R2 F p 

CPL 0.75 1.18 <0.01 0.40 0.525 
GE -5.70 1.83 <0.01 9.71 0.002** 

RCC -0.31 1.71 0.02 0.03 0.857 
      

Working Memory (N-Back) Task (Full Network – Full Time) 
“Main 500” Comparison Group 

Graph Metric B SE B R2 F p 
CPL -0.06 0.08 <0.01 0.56 0.454 
GE -0.04 0.12 <0.01 0.11 0.740 

RCC -0.32 0.15 <0.01 4.73 0.030 
      

“DCAN 500” Comparison Group 
Graph Metric B SE B R2 F p 

CPL 0.14 0.11 <0.01 1.70 0.193 
GE -0.60 0.17 <0.01 13.32 <0.001*** 

RCC -0.21 0.15 0.03 1.79 0.181 
      

Note: “Main 500” and “DCAN 500” comparison group results. These groups were used to test fMRI preprocessing decisions on 
regression results. Both groups included only ABCD participants from either the main or DCAN comparison groups and groups 
did not significantly differ on task performance measures (cognitive flexibility: p = 0.273; working memory: p = 0.857). 
 
Results that remained significant after Bonferroni correction for multiple comparisons for three tests are denoted as  
* = p < .05, ** p < .01, and *** = p < .001.   
CPL = Characteristic Path Length, GE = Global Efficiency, RCC = Rich-club Coefficient. All outcomes reported for normalized 
graph metrics calculated at 10% density threshold.  
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Study 2, Figure 3: Graph metrics regression plots  

 
Note: (A.) Main analysis group and DCAN comparison group regression plots for the cognitive flexibility task. Only CPL was 
significant in the main analysis group. All three GMs were significant in the DCAN comparison group. (B.) Regression plots for 
the “Main 500” and “DCAN 500” fMRI processing comparison groups. CPL and GE showed differences between the two groups 
for the cognitive flexibility task. Only GE showed differences between the two groups for the working memory task. (CPL = 
characteristic path length, GE = global efficiency, NS = not significant. All GM values are for normalized graph metrics 
calculated at 10% density threshold. All p-values are Bonferonni corrected for 3 tests.) 
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DISCUSSION 

The current work sought out to test the ability of four graph metrics chosen from previous 

literature (characteristic path length, global efficiency, betweenness centrality, and rich-club 

coefficient) to successfully predict executive function (EF) task performance in a large, youth 

neuroimaging sample. Two EF tasks were chosen; one cognitive flexibility and one working 

memory task. In order to address variables that may contribute to the inconsistency of extant work 

using graph metrics (GMs) to predict behavioral outcomes, we tested GMs calculated from resting 

state data that was grouped in four different sub-groups: (1) all resting state data that included all 

cortical parcels, (2) a pseudo-randomly selected sample of 5-min of resting state data that included 

all cortical parcels, (3) only subjects that had 10-min or more resting state data that included all 

cortical parcels, and (4) all resting state data, but limiting the network to parcels within commonly 

deemed “control” networks (cingulo-opercular, dorsal attention, fronto-parietal, salience, and 

ventral attention). Additionally, we tested the influence of sample size and fMRI preprocessing 

pipeline by using a large sample of 2,000 youths that were preprocessed and made publicly 

available as part of the Collection 3165 - DCAN Labs ABCD-BIDS release. Although we 

hypothesized that differences in amount of resting state data used to calculate graph metrics would 

have the largest impact on results, sample size was the greatest impacting factor across all GMs 

and both tasks. Additionally, this work provides evidence that measures of network organization 

alone account for very little variance in behavioral measures. These results suggest that GMs be 

paired with other measures to more accurately identify brain-wide associations of EF task 

performance and functional network organization.   

Amount of resting state data does not linearly influence results 

The amount of resting state data required for precise and replicable outcomes is a topic of 

much debate in the field of neuroimaging research. While general guidelines for the minimum 

amount of fMRI data required for analyses has been examined (Anderson et al., 2011; Birn et al., 
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2013; Whitlow et al., 2011; Xu et al., 2016), a broadly accepted minimum has not been established. 

While previous work suggests that calculating GMs using as little as 2-minutes of resting state 

data may be accurate (Whitlow et al., 2011), using longer scans is considered a better option 

(Anderson et al., 2011; Birn et al., 2013; Laumann et al., 2015; Murphy et al., 2007). A few limiting 

factors are that fMRI data collection is still expensive, and resting state data is challenging for 

participants. As researchers push to collect larger datasets or include more scan types in their 

collections, a compromise is often forced between affordability and the amount of data collected. 

Additionally, research that focuses on populations that historically are less tolerant of long 

scanning sessions (e.g., younger children, individuals diagnosed with ADHD, or older participants 

who may experience discomfort while lying in the scanner for long periods of time), often aim to 

reduce the amount of time a participant is in the scanner. Given these considerations on fMRI data 

collection, we assessed the impact of scan length on GM calculations. 

We hypothesized that longer scan times would provide a clearer representation of an 

individual’s functional network, and therefore a stronger pattern would emerge in the relationship 

between the GMs and task outcomes when applying these time cutoffs. Surprisingly, we did not 

see a clear linear difference from the main analysis group and the 10-minutes or greater group. 

Models only including participants with 10-minutes or more resting state data, while statistically 

significant, did a slightly worse job at predicting cognitive flexibility EF task performance from 

CPL in our main analysis group. This same pattern in the cognitive flexibility task was found in 

the DCAN comparison group for all GMs. However, for the working memory task, in the DCAN 

comparison group, the models including CPL no longer significantly predicted task outcomes in 

the 10-minute plus group, when they had in the main group that included scans at our minimum 

inclusion cutoff of 5-minutes. This difference also can’t be explained simply from differences in 

sample size or a significant loss of power, as both 10-minutes or more sub-groups were 

approximately 80% of their full group (Main analysis group: n=461; DCAN group: n=1,752). 
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While limiting inclusion to only participants with 10-minutes or greater did not reveal a 

clear benefit of longer scans, our tests reducing all 2,000 DCAN scans to 5-minutes suggest that 

datasets only including scans at this minimum threshold may not provide accurate results. 

Assuming that the large sample size of this DCAN comparison set is accurately revealing small 

brain-behavior effects that our main sample missed due to number of participants, when scan time 

was reduced, the ability of our models to predict task scores was also reduced. In the DCAN 5-

minute crop tests, RCC no longer successfully predicted cognitive flexibility outcomes and CPL 

no longer successfully predicted working memory outcomes. However, RCC did predict working 

memory task scores in the 5-minute cut off group, where it had not previously in the main DCAN 

group tests. These results suggest that inclusion of shorter scans in analysis groups may not have 

an obvious impact on results (assuming your sample size large enough to identify small effects), 

but that only including subjects with a minimum of acceptable scan time may provide results that 

are inconsistent at best, and incorrect at worst.  

Although a clear pattern of the influence of scan time across did not emerge for all GMs in 

all tests, these data suggest that the impact of scan time on the calculation of GMs is not linear. 

Importantly, we provide evidence that scan time is one of a number of factors impacting our results, 

and that longer scan collections are not a singular “fix-all” for improving the accuracy of brain-

behavior tests using GMs. Although early studies relating GMs to behavioral outcomes suffered 

from shorter scan times (per current attitudes toward minimal collection cut-offs), shorter resting 

state scan times are only one factor contributing to the inconsistency of previous results.  

Reduction of functional network representation for graph metrics negatively impacts 
prediction strength 

Previous work has highlighted the role of the dorsolateral prefrontal cortex (DL-PFC) and 

the superior parietal cortex as key neural substrates of task performance in the three main domains 

of executive functions: working memory, inhibitory control, and cognitive flexibility performance 
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(Fiske & Holmboe, 2019; Gao et al., 2013; Nowrangi et al., 2014). Cortical parcels within these 

cortical regions are often labeled as belonging to the fronto-parietal, dorsal attention, and ventral 

attention networks. Additionally, there is evidence that as the brain matures toward young 

adulthood, connections between regions in attention networks (such as the fronto-parietal network) 

are refined and specialized, and may be one key element to performance on EF tasks that improves 

and becomes more “adult-like” (Buss & Spencer, 2018; Mehnert et al., 2013). Based on this 

evidence, we questioned whether brain-wide GMs would provide a less focused representation of 

functional network organization that is associated with EF task performance, than GMs calculated 

from only parcels assigned to functional “control” networks. This idea was tested by reducing the 

graphs used to calculate our GMs of interest to include only parcels assigned to the fronto-parietal, 

cingulo-opercular, dorsal attention, ventral attention, and salience networks.  

To the contrary, across both tasks, all GMs calculated on this reduced network 

representation were worse at predicting EF task performance than those calculated using the whole 

brain data. In our main analysis group, none of the GMs of interest could successfully predict task 

performance for either task. In the DCAN comparison group CPL and GE still predicted both tasks 

(though to a lesser significance), but RCC no longer predicted either the cognitive flexibility or 

working memory task.  

These results suggest that connections between parcels within control networks may be 

equally as important as connections between those networks and parcels across the entire cortex, 

when predicting EF task outcomes. It is interesting to note that peak neural activity during EF task 

performance is located in putative control network parcels. However, individual differences in 

resting state functional network organization that is associated with EF task performance may not 

only reflect connectivity within control networks. Rather, successful task performance may be 

equally dependent on how efficiently parcels in control networks integrate information from other 

functional networks. These results support theories stating that the systems of cognitive control 
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that support higher-order processes necessary for EF task performance may rely equally on the 

efficient communication between sensory regions for task input and output, as well as the flexible 

integration classic “control” networks (Petersen & Posner, 2012).  

fMRI preprocessing choices show smaller than expected impact   

Previous work investigated the role of fMRI preprocessing choices on the stability of GMs 

calculated from functional connectivity (Gargouri et al., 2018). The authors found that fMRI 

preprocessing decisions, most notably the order of preprocessing steps, impact the reliability of 

GM calculations. The current work provides support for these extant findings. We hypothesized 

that the differences between choices of our in-house preprocessing pipeline and those of the 

publicly released Collection 3165 - DCAN Labs ABCD-BIDS dataset would result in different 

subgroup results across all GM measures. However, the associations of our GMs of interest and 

our EF task performance measures were similar for half of the tests (one cognitive flexibility and 

two working memory), when the DCAN dataset was matched in sample size (Study 2, Table 6).  

Although the two collections were preprocessed using different fMRI preprocessing 

pipelines, our results suggest a more nuanced effect of preprocessing on our outcomes than initially 

expected. We hypothesize that this is because the our in-house and the DCAN Labs preprocessing 

pipelines, while different, run similar key resting state preprocessing steps (such as regression of 

“nuisance” signals, surface smoothing), both are expanded from the same HCP pipeline, and both 

run all major steps in the same order and using the same software functions. Indeed, preprocessing 

step order is the main highlight in the previous work (Gargouri et al., 2018). These results provide 

evidence that differences in preprocessing pipelines may have an apparent impact on replicability 

of GM calculations, but this effect may be mitigated if the order of the major steps are similar, and 

the sample size is substantial.  



 57 

Larger sample sizes are needed to identify small brain-behavior association effects 

In the current study, we created a main analysis group that consisted of 567 individuals 

from both internally-collected and publicly available data. This combined dataset is significantly 

larger than the average sample size for modern neuroimaging studies. Even in the last few years, 

the average sample for fMRI studies was less than 100 participants (Szucs & Ioannidis, 2020). 

However, there is evidence that much larger datasets ( N ⪆ 2,000) are needed for reproducible and 

accurate associations of brain-wide activation and behavioral outcomes (Marek et al., 2020). To 

test this issue in our analyses, we ran all of our models using 2,000 individuals from the publicly 

available preprocessed DCAN Labs dataset.  

By increasing the sample size to 2,000 with the DCAN dataset, all GMs, except for RCC, 

significantly predicted both cognitive flexibility and working memory task performance after 

Bonferroni correction. However, the validity of these results cannot focus solely on statistical 

significance and must be carefully interpreted. For any statistical test using OLS regression, 

statistical significance values will become more significant as the sample size increases. Although 

we feel that this larger sample was able to identify much smaller effects than our main sample of 

567 youths – a result that follows and supports recent findings (Marek et al., 2020) -  the relative 

amount of variance explained by our models is less than approximately 2% in all tests (see r2 

column in table). 

A more complete picture of individual variance associated with EF task performance is 
needed 

While GMs alone do not uniquely account for much variance in EF task performance, the 

statistical significance found for all tests, except RCC predicting working memory, in the larger 

DCAN sample, indicates that our GMs of interest account for a piece of the EF performance 

puzzle. Even though our main analysis group (n=567) would be considered a large sample in the 

field of fMRI research, the majority of GM associations with the working memory task were 
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missed. This is due to their small effects not being statistically identified without a much larger 

sample. We interpret these results as an indication that to best understand the association of 

functional network organization and EF task performance in our samples, GMs should be paired 

with other measures for a more complete picture of the variables that describe individual 

differences in task performance. Previous work has shown that genetics, sleep habits, 

socioeconomic status, and exercise all impact EF task performance (Holanda Júnior & Almondes, 

2016; Last, Lawson, Breiner, Steinberg, & Farah, 2018; Micalizzi, Brick, Flom, Ganiban, & 

Saudino, 2019; Salas-Gomez et al., 2020). Inclusion of such variables may reveal interactions with 

GMs that increase the amount of explained variance within a dataset. Additionally, these results 

also highlight the need to carefully separate statistical significance from clinical significance when 

modelling brain-behavior associations in large fMRI samples.  

LIMITATIONS AND FUTURE DIRECTIONS 

This current work focused on a set of chosen graph metrics (GMs) that was informed by 

previous literature. While this method of GM selection was chosen to mitigate over-testing (using 

all possible GMs) or “result fishing”, issues with previous samples highlighted in this current study 

indicate that this may not have been the best method of choosing the most relevant GMs. The work 

that informed our GM choice not only suffered from shorter scan lengths and smaller sample sizes 

(seen here to have a significant impact on the consistency of our results) but was also primarily 

conducted with adult samples. Future work that aims to test the brain-behavior association of GMs 

to executive function task performance in youths would benefit from a purely data-driven approach 

to GM selection.  

Additionally, future work associating GMs to EF task performance should take into 

account the low amount of variance explained by GMs alone and either: (1) pair GMs with other 

variables shown to impact EF performance such as genetics, sleep habits, socioeconomic status, 
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or exercise, or (2) pair GMs up with other neuroimaging methods such as task contrast maps to 

focus or reduce the functional network used to calculate GMs.  

CONCLUSIONS 

The ability of graph metrics - calculated from resting state functional connectivity - to 

predict EF task performance is impacted by multiple factors, such as scan time, network size, fMRI 

preprocessing decisions, and sample size. Across all of our tests associating our graph metrics of 

interest to both cognitive flexibility and working memory task outcomes in youth, sample size was 

the largest impacting factor, followed by the length post-motion censored scan time. Longer scan 

time did not consistently alter our results over both tasks, and the impact of differences in scan 

time was not linear. However, reducing all participants’ scan time to the minimum study threshold 

resulted in inconsistent results and reduced statistical significance. Reducing the network makeup 

to only include parcels in “control” networks resulted in all models unsuccessfully predicting task 

outcomes in our main sample. fMRI preprocessing decisions (comparing the main analysis set to 

an externally preprocessed DCAN set) appeared to have an impact on our results; however, we 

hypothesize the impact was mitigated by the fact that both preprocessing pipelines used the same 

main steps that follow the HCP pipeline’s suggested order. Finally, sample size was the largest 

impacting factor on our results, with our 2,000-participant DCAN comparison set revealing 

significant associations of all GMs with performance measures on both tasks, except for RCC 

predicting working memory task performance. These results support the need for larger datasets 

in tests of brain-wide associations to behavioral measures. Additionally, we highlight that graph 

metrics alone account for very little of the variance observed in EF task performance in youths, 

but are a piece of the brain-behavior association puzzle. This emphasizes the need for GMs to be 

paired with other measures to better capture the variance in task outcomes, and is a reminder of 

the careful consideration of statistical vs. clinical significance.  
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Study 3: Resting State Hub Node Identification in Youths and their 
Association with EF Task Performance 

INTRODUCTION 

Childhood and adolescence marks a period of rapid growth and brain development 

(Barnea-Goraly et al., 2005; Giedd et al., 1999; Houston et al., 2014; Mills et al., 2016; Stiles & 

Jernigan, 2010). During this time, many neural systems within the brain are being refined and 

integrated, as children learn and perfect complex behaviors. Specifically, the refinement of neural 

systems that support behaviors related to executive functions (EFs) such as memory, attention, and 

cognitive flexibility are increasingly important, as children begin to perfect the skills that are 

essential to academic and general life success (Best et al., 2011; Jacob & Parkinson, 2015). 

Although the behaviors linked to EF are established early in life, EF abilities show significant 

refinement through young adulthood (Best & Miller, 2010; Ferguson et al., 2021). A similarly 

accelerated period of anatomical brain growth is seen during childhood and adolescence (Brown 

& Jernigan, 2012; Lenroot & Giedd, 2006). However, cortical development that supports high-

level cognitive processes is not confined to any one specific brain region (Fiske & Holmboe, 2019). 

Rather, the link between brain and behavioral development is better understood using a network 

view (Byrge, Sporns, & Smith, 2014; Mišić & Sporns, 2016; Pessoa, 2014) that interprets brain 

function as neural activation that’s interconnected across many cortical regions. This viewpoint 

raises two questions: (1) How does the complex integration of cortical regions emerge during 

development? and (2) Does a higher level of brain network integration result in a greater ability in 

high-level cognitive processes? 

Neuroimaging analysis methods, such as resting state functional coactivation or 

“connectivity” (RSFC), allow us to view brain function as a large network of integrated activity 

between cortical brain regions, absent of a specific task state. RSFC networks are defined as a 

group of nodes (cortical areas of the brain) that are connected by edges (the correlation of brain 
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activity, over time, between any two nodes). This larger, whole-brain network of RSFC is further 

organized into a set of sub-networks (Doucet et al., 2011; Gordon et al., 2016; Power et al., 2011; 

Thomas Yeo et al., 2011), that are reliably observed in adult populations. One method for 

quantifying between-region integration and the capacity for efficient exchange of information 

across sub-networks is the identification of nodes that are highly connected to multiple sub-

networks. This type of highly connected brain region that connects and integrates sub-networks 

are referred to as ‘hub’ regions (Power et al., 2013; van den Heuvel & Sporns, 2013).  

Previous work identifying cortical hubs in adults has not only identified specific cortical 

surface sections (parcels) as connector hubs, but has also identified three distinct categories of 

connector hubs based on functional connectivity profiles of parcels (Gordon et al., 2018). These 

categories were named “control-default”, “cross-control”, and “control-processing” connector 

hubs due to the cortical areas they primarily connected. “Control-default” hubs are localized 

primarily in the dorsal angular gyrus, superior and inferior frontal gyrus, retrosplenial cortex, 

precuneus, and ventromedial prefrontal cortex, and display a majority of their connections to 

parcels within the fronto-parietal (FPN) and default mode (DMN) networks. “Cross-control” hubs 

are located in the inferior parietal lobule, supramarginal gyrus, middle and superior frontal gyrus, 

and posterior precuneus, and primarily functionally relate to correlations between the cingulo-

opercular (CON), dorsal attention (DAN), and FPN networks. “Control-processing” hubs are 

located in the pre and postcentral gyrus, lateral occipital cortex, dorsomedial prefrontal cortex, and 

posterior insula, and are primarily connected to the lateral visual (lVis), auditory (AUD), premotor 

(PMot), hand somatomotor (hSM), CON, and DAN networks. Further, network simulations that 

removed edges of these hubs from adult whole-brain functional networks resulted in significantly 

altered brain-wide functional network organization (Gordon et al., 2018). These results suggest 

that not only are distinct hub types present in the adult functional brain network, but that these 
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specific hub regions play a potentially crucial role in the integration and flow of information 

between sub-networks.  

Gordon and colleagues further explored the role of these hub regions in adults by 

quantifying the activation within these hub regions across three task vs baseline contrasts (Gordon 

et al., 2018). The analysis included one motor task, a mixed block event-related task that included 

spatial coherence discrimination and verbal discrimination conditions, and an implicit memory 

task. They found that cortical regions identified as “control-default” hubs deactivated during all 

tasks, but that “control-processing” hubs activated during all tasks. Most interesting, “cross-

control” hubs deactivated during the motor task but activated during the implicit memory and the 

mixed block event-related task, suggesting that “cross-control” hub regions may play a larger role 

in tasks that specifically engage higher-order processes.  

Given the fact that RSFC networks appear relatively adult-like in childhood (Grayson & 

Fair, 2017; Thornburgh et al., 2017), the current study tested whether the three distinct sets of hubs 

found in adults can be replicated in a large-scale youth sample, using a predefined cortical 

parcellation set. Further, given that the different hub types showed task-specific dynamics in adults 

(Gordon et al., 2018), this study also tested whether any hub types found in youths related to EF 

task performance outcomes. To this end, the current study aimed to answer two main questions: 

(1) Are the same three distinct hub categories found in youths, or are one or more of these hub 

types not developed until young adulthood? and (2) Does a higher nodal strength (the average 

value of all edges connected to that node) of cortical hubs identified in youths relate to better EF 

task performance? Specifically, the current study tested the hypothesis that, if resting state cortical 

hubs can be identified in a youth sample, stronger hubs will reflect better integration of the brain’s 

sub-networks, which will relate to better outcomes on measures of EF task performance.   
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METHODS AND MATERIALS 

The dataset used for the current study is the same main 567 participant dataset used in 

Study Two of this dissertation. Details on demographic information, fMRI preprocessing, and 

executive function tasks are copied below for ease of reference. 

Participant Demographics  

Participants in this combined dataset (Study 3, Table 1) of 567 (284 F) youths were 

recruited either at the University of Texas at Austin (UT) (n=67) or as part of the publicly available 

Adolescent Brain Cognitive Development (ABCD) study (n=500). All participants included in this 

study were required to have at least 5-minutes of post-processed resting state scan data, after 

motion censoring using a .25 framewise displacement (FD) threshold (see post-motion censored 

time distribution in supplement (Study 3, Figure S1A)). Participants from the UT dataset were 

recruited for either a longitudinal, multidimensional study of executive function (e.g., (Nugiel et 

al., 2020); JAC start-up funds), or as part of the Texas Twin Project (Engelhardt et al., 2019) 

(NICHD R21HD081437; MPI J.A. Church, E.M. Tucker-Drob). This combined dataset is 

comprised of youths ages 8.5-17.2 (M=10.3) years-old at the time of scan, and only one twin 

sibling (pseudo-randomly selected) was included from any family pair to minimize the influence 

of genetic similarity on our results. The UT sample included 3 participants that had ever received 

an ADHD diagnosis and the ABCD sample included 77 participants that had ever been diagnosed 

with ADHD, depression, bipolar disorder, anxiety, or a phobia, per parent report. Exclusion criteria 

for these datasets included a reported history of epilepsy, head trauma, or any non-removable metal 

implant that would prevent participation in the MRI portion of the study.  
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Study 3, Table 1: Participant Demographics 

Group Demographics 
 UT ABCD COMBINED 

Participants 67 (30 F) 500 (254 F) 567 (284 F) 

Age Range (years) 8.5 - 17.2 9.0 - 11 8.5 - 17.2 

Age (M ± SD) 11.8 ± 2.1 10.1 ± 0.63 10.3 ± 1.1 

Mean Scan Length 9:07 14:30 13:52 

Race/Ethnicity 

Asian 2 7 9 

Black 5 48 53 

Hispanic 4 63 67 

Multiracial or Other 15 38 53 

White 41 344 385 
Note: Mean scan length is minutes and seconds of fully pre-processed resting state scan time, concatenated across all available 
runs, and post-motion censoring at .25 framewise displacement (FD). 

Executive Function Tasks 

The current study focused on tasks designed to target cognitive flexibility and working 

memory/updating EF abilities. Tasks were matched as closely as possible between the University 

of Texas at Austin (UT) and the ABCD dataset, although slight differences in the presented tasks 

are noted in the task details section. Further, in an effort to mitigate the influence of setting (tasks 

completed inside or outside of MRI scanner) on task performance, task setting was matched 

between the two datasets. Therefore, the cognitive flexibility task scores were collected from tasks 

performed outside of the scanner, while the working memory/updating task was performed within 

the scanner. Similarly, we either normalized or matched the task scoring method reported for the 

ABCD dataset to mitigate differences between reported scores within the two datasets (see Study 

3, Figure 1E & F for distribution of task scores across collections).  

Cued Task Switching/Cognitive Flexibility Task 

Participants in the UT dataset completed 46 trials of a cued rule matching task aimed to 

assess cognitive flexibility (Church et al., 2017; Engelhardt et al., 2019) while outside of the 
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scanner (Study 3, Figure 1A). For each trial, participants were cued to match a target stimulus 

based on one of two possible rules (match the shape or color). Response choices were displayed 

for the duration of the trial. For the first 1.5 seconds of each trial a red box would indicate the rule 

to follow. The target stimulus then appeared .5 seconds after the red box indicating the rule had 

disappeared and the stimulus remained on screen for 2 seconds. During this time, the participant 

would indicate which response choice matched the target, according to the rule. After each 

response period, a fixation cross was displayed for 1-4 seconds. All participants completed a brief 

practice example set to confirm they understood the task. Z-scores calculated from task accuracy 

scores (correct/total trials) were used for our analyses.  

Participants in the ABCD dataset completed a similar switching task from the NIH Toolbox 

Cognition Battery; the Dimensional Change Card Sort (DCCS) test (Luciana et al., 2018; Zelazo, 

2006; Zelazo et al., 2013) while outside of the scanner (Study 3, Figure 1C). During the DCCS, 

participants are presented with two objects at the bottom of the screen. A third object is then 

presented in the middle of the screen and the participant is asked to match it to one of the two 

objects on the bottom of the screen, either by shape or color. All participants are first given a 

practice set, followed by a block of trials where they match based on one rule, a block where they 

match on the other rule, and then a block where the rule is pseudo-randomly alternated between 

the shape and color rules. The DCCS provides a standard score metric (normative mean=100, 

SD=15) that is not age corrected, and is provided to gauge a participant’s overall level of 

functioning on the task. This score was then converted to z-scores for appropriate use with the UT 

dataset. This non-age-corrected score was used as age correction is done later in our analyses.  

Working Memory/Updating Task 

Participants in the UT dataset completed up to two versions of a block design, n-back task 

(Engelhardt et al., 2019) while inside the scanner (Study 3, Figure 1B). At the start of each scan, 

the participants were verbally reminded of the rules of the task by the scan operator. The n-back 
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task was adapted from (Jaeggi et al., 2010) and is used to assess an individual’s working memory 

or updating ability. Each task run consisted of 64 shape stimuli in a fixed block design that were 

evenly divided into a 1-back and 2-back block. At the start of each block, participants were shown 

instructions for 4 seconds that indicated if they should look for shapes shown one shape prior (1-

back) or two shapes prior (2-back). Each stimulus was shown for 1.5 seconds with a 1 second 

inter-stimulus interval. Participants were instructed to push a button when they believed the shape 

they were currently viewing matched a shape either one or two shapes previous, based on the 

instructions. Each block was followed by a 20 second fixation cross, and a total of 7 matches were 

shown in each block (21.0% of trials). The correct rate was calculated (total correct / total stimuli 

shown) for only the 2-back trials, and this measure of task performance was used in our analyses. 

Participants in the ABCD dataset completed up to two runs of an emotional n-back (EN-

back) (Study 3, Figure 1D) task while in the scanner (Barch et al., 2013; Casey et al., 2018; Cohen 

et al., 2016). The EN-back task is a variant of the Human Connectome Project n-back task (Barch 

et al., 2013) and measures working memory processes. The task includes two runs of eight blocks 

where participants are asked to indicate if an image matches or does not match based on a 0-back 

or a 2-back rule. In the EN-back, trials consist of both emotional faces (such as happy or fearful) 

and neutral faces or places. During the 2-back section participants are asked to indicate “match” 

when the current stimulus matches a target presented two trials back. Each block consists of 10 

trials displayed for 2.5 seconds each and 4 fixation blocks displayed for 15 seconds each. Each 

stimulus was presented for two seconds followed by a 500ms fixation cross. During each block, 

two of the trials are targets, 2-3 are non-target lures, and the remaining trials are non-lures. To 

match the UT dataset, our analyses only included task performance on the 2-back, non-emotional 

segments of the task, which was 4 blocks. We then calculated the correct rate (matching the UT 

dataset task performance measure) and this measure was used for our analyses.  
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Study 3, Figure 1: Executive Function Tasks 

 
Note: Examples of the cognitive flexibility tasks administered at the UT site (A. CogFlex) and the ABCD sites (C. Dimensional 
Change Card Sort (image: NIH Toolbox)). Examples of the working memory tasks administered at the UT site (B. n-back) and 
the ABCD sites (D. Emotional n-back, (image: Casey et al., 2018)). To match between sites, only trials containing neutral faces 
and places were used from the EN-back (D.) task. Task score distributions are also shown, separated by participants group, for 
the cognitive flexibility (E.) and working memory (F.) tasks. 
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Neuroimaging Acquisition 

The University of Texas at Austin 

All participants scanned at the University of Texas at Austin (UT) were scanned in the 

Biomedical Imaging Center on a Siemens Skyra 3 Tesla scanner, with a 32-channel head coil. 

Foam padding was used around the head for comfort and to reduce head motion, and verbal 

feedback on body motion and to ensure participant comfort was provided between scans. One T1-

weighted structural MPRAGE sequence (TR=2530ms, TE=3.37ms, FOV=256x256, voxel 

resolution=1x1x1mm) scan and one T2-weighted structural image using a turbo spin echo 

sequence (TR=3200ms, TE=412ms, FOV=256x256, voxel resolution=1x1x1mm) were collected 

and included in the preprocessing steps for this study. 

Up to two, 6-minute echo-planar sequence functional resting state scans (TR=2000ms, 

TE=30ms, flip angle=60°, MB factor=2, 48 axial slices, voxel resolution=2x2x2mm) were 

collected. All resting state scans were acquired with the participant instructed to view a white 

fixation cross on a black background. Participants were instructed to simply stay awake and lie 

still. Up to two working memory task functional scans were collected (see n-back description 

above) using the same acquisition settings reported for the resting state scans. All tasks were run 

using PsychoPy version 1.8 (Peirce, 2007) with stimuli projected behind the scanner that 

participants viewed using a mirror attached to the head coil. Participants recorded their responses 

during this task using a two-button response pad.  

Adolescent Brain Cognitive Development (ABCD) Study 

In an effort to avoid any unknown scanner manufacturer confounds (Noble et al., 2017; 

Zhao et al., 2018), only participant scans collected on a 3T Siemens Prisma scanner were included 

in this dataset. All ABCD participant scans were downloaded in their unprocessed form from the 

NIH Data archive (https://nda.nih.gov/abcd) and preprocessed using our in-house preprocessing 

pipeline. One T1-weighted structural scan (TR=2500ms, TE=2.88ms, FOV=256x256, voxel 
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resolution=1x1x1mm) and one T2-weighted structural scan (TR=3200ms, TE=565ms, 

FOV=256x256, voxel resolution=1x1x1mm) were used for our pre-processing. Up to four, 5-

minute resting state scans (TR=800ms, TE=30ms, flip angle=52°, MB factor=6, 60 axial slices, 

voxel resolution=2.4x2.4x2.4mm) and up to two working memory functional scans (see EN-back 

description above) were collected and used in this study. For complete information on the ABCD 

scan protocol, see Casey et al., 2018. 

Resting State Preprocessing 

In-house Preprocessing Pipeline 

To mitigate confounds to analyses that stem from preprocessing decisions, all participants’ 

scans were preprocessed using our in-house pipeline comprised of FMRIB Software Library 

(Smith et al., 2004), Freesurfer (Dale et al., 1999), and Connectome Workbench (Marcus et al., 

2011) commands, along with custom Matlab (www.mathworks.com) computational scripts. The 

pipeline follows the first three steps of the Human Connectome minimal preprocessing pipeline 

(Glasser et al., 2013), followed by volume and surface preprocessing steps developed in-house, 

informed by current best practices for resting state analyses (Caballero-Gaudes & Reynolds, 2017; 

Dipasquale et al., 2017; Hallquist et al., 2013; Lindquist et al., 2019; Power et al., 2012, 2014).  

Volume resting state preprocessing steps included: (1) motion correction and registration 

to 2mm MNI atlas space; (2) mode 1k normalization; (3) temporal band-pass filtering (0.009 Hz 

< f < 0.08 Hz); (4) demeaning and detrending of fMRI data; and (5) regression of band-pass filtered 

nuisance signals including six directions of motion plus their derivatives, cerebral spinal fluid, 

white matter, and whole brain signal. To reduce the reintroduction of noise that occurs with 

multiple transformations, all registration steps were done in one single transform. Similarly, all 

nuisance signal regression and temporal filtering was performed simultaneously (Lindquist et al., 

2019). 
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Surface resting state preprocessing steps work on the unsmoothed, but fully preprocessed 

volume scans from the volume preprocessing stage and maps those outputs to 32k fs_LR surface 

space using the following steps: (1) creation of grey matter ribbon using the white and pial 

boundaries previously created during the HCP steps; (2) downsampling of grey matter ribbon to 

functional scan dimensions; (3) exclusion of voxels with high coefficient of variation to improve 

SNR (following the HCP pipeline’s “fMRISurface” procedure); (4) mapping of volume functional 

data to 32k fs_LR surface mesh; (5) spatial smoothing (2mm FWHM); (6) and creation of CIFTI 

dense timeseries file.   

Resting state cortical hub parcels in youths 

Identification of hub parcels 

Identification and categorical labeling of cortical hub nodes largely followed the methods 

outlined by Gordon and colleagues using an adult sample (Gordon et al., 2018). We identified hub 

nodes by first extracting resting state timeseries for each individual, using a predefined cortical 

surface parcellation set (Gordon et al., 2016) consisting of 333 unique parcels. Values for all 

vertices within each parcel were averaged and then cross-correlated to create a 333x333 

connectivity matrix, which was then Fisher-transformed. The spatial relationship of parcels was 

taken into consideration by setting correlations of parcels that are within 30mm geodesic distance 

of one another to zero (Study 3, Figure 2A). Next, community detection was applied to each 

individual’s matrix using the Infomap algorithm (Rosvall & Bergstrom, 2008) across a set of edge 

density thresholds ranging from 0.3% to 5%. At each density threshold, the Infomap algorithm 

was run using a random seed and 1k iterations. This method provided individually-specific 

community labels, for all parcels, at each matrix density threshold.  

The participation coefficient (PC) metric was then calculated for each parcel, across all 

density thresholds, using the previously defined individually-specific community labels provided 
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by Infomap. PC for any parcel with a degree (the number of connections to other parcels in the 

network) in the bottom 25th percentile of all parcels was set to zero. This degree censoring step is 

performed due to parcels with a low degree providing unstable or inflated PC values (Gordon et 

al., 2018). Finally, PC values were then converted to percentiles. This percentile value, averaged 

across all thresholds, was used for hub identification. For our analyses, the top 20% of parcels for 

a given individual (calculated from the percentile values of the previous step) was labeled as a 

hub; following the threshold suggested by Gordon and colleagues. While there is no established 

cutoff for labeling a parcel a hub vs a non-hub, nearly identical results were found previously using 

cutoffs from the 75th to 95th percentile (Gordon et al., 2018) and the 80th percentile cutoff is also 

reported in the previous adult work. Using the 80th percentile cutoff resulted in 67 hubs for each 

participant.  
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Study 3, Figure 2: Distance Masks and Cortical Hub Profiles 

 
Note: Correlations between cortical parcels less than 30mm geodesic distance of one another were set to zero. This mitigates the 
impact of spatially-close parcels exhibiting higher functional connectivity due to BOLD signal overlap, rather than parcel 
coactivation. One parcel centroid is highlighted (A) and neighboring parcels within and beyond the 30mm geodesic distance are 
shown. An example of a hub connectivity profile is illustrated here (B). Profiles are calculated by averaging the connectivity 
between an identified hub parcel, and its connectivity to all parcels within each functional network. This created a profile of 13 
values; one average correlation value for each of the predefined functional networks.  
(Network abbreviations: AUD: auditory, CO = cingulo-opercular, CP = cingulo-parietal, DMN = default mode, DA = dorsal 
attention, FP = fronto-parietal, NA = unassigned, RT = restrosplenial-temporal, SMh = somatomotor hand, SMm = somatomotor 
mouth, VA = ventral attention, VIS = visual) 

Hub parcel categorization 

Following hub identification, a connectivity profile was calculated for each hub. Hub 

connectivity profiles are created by calculating the functional connectivity strength between each 

hub and all other parcels (excluding the hub’s self-correlation). Connectivity strengths are then 

averaged across all within-network parcels to create a connectivity profile consisting of 13 

averaged connectivity strengths (one for each of the 13 independent networks in the Gordon 

parcellation) for each hub (Study 3, Figure 2B).  



 73 

Once hub connectivity profiles were created for all identified hubs, hub category types 

were assigned by clustering together hubs that displayed a similar connectivity profile. We pseudo-

randomly split our main sample into three groups of 189 participants (with equal representation 

from the UT and ABCD datasets) to assess the stability of clusters found within our dataset. For 

each of these three groups of 189 participants, the following steps were completed: (1) First, we 

cross-correlated all identified hubs for all 189 group participants to create a correlation matrix of 

hub profiles (12,663 x 12,663 matrix). (2) This correlation matrix was then used to identify clusters 

within the set of hub profiles using the Louvain algorithm function (Rubinov & Sporns, 2010) 

from the brain connectivity toolbox. The Louvain algorithm was applied to this signed matrix 

1,000 times, using the asymmetric negative weight argument which preserves, but down-weights 

negative connections as suggested for functional brain networks (Rubinov & Sporns, 2011). (3) 

An “association-recluster” strategy was used to address the concern that modularity-based 

clustering is often non-deterministic, and each iteration can result in different community 

assignments, despite the same input matrix. A consensus clustering assignment was created by 

calculating the frequency, across the 1,000 Louvain iterations, that nodes co-occurred in the same 

community (Lancichinetti & Fortunato, 2012). (4) This final consensus community assignment 

vector was used to group together hubs with similar connectivity profiles, and categorize each 

group based on the average connectivity profile of all cortical hubs clustered into that group. (5) 

Each of these cluster groups were then qualitatively compared to the three cortical hub categories 

described in the adult literature (Gordon et al., 2018). Hub category names were then assigned to 

each cluster group based on the average connectivity profile for all hubs in that group.  

Cortical hub brain-behavior analyses 

After hub categories were assigned for all cortical hubs, we then assessed the relationship 

of resting state functional connectivity (RSFC) of cortical hub types with EF task performance. 

First, the brain-wide average value of all connected edges (across the whole-brain network) was 
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calculated for all cortical hubs within each hub category, for all participants. This provided one 

average connectivity value, for each hub category, for each participant. The average connectivity 

values were then correlated with both the cognitive flexibility and working memory task 

performance measures. Second, we tested the association of “within hub-category” connectivity 

to our chosen task performance measures. For this step, average connectivity values were again 

calculated for all hubs within each category, for each participant. However, the average 

connectivity for this analysis was calculated using only connectivity from each hub to parcels 

within the functional networks assigned to hub category. This provided one average connectivity 

value for each participant that represented the of parcels within the functional networks of a given 

hub category, to all participants hubs belonging to that hub category. For all tests, the cognitive 

flexibility and working memory task scores were corrected for participant age, and significance 

values were false discovery rate (FDR) corrected for two tests.  

RESULTS 

Cortical hub parcels identified in youths 

Across our full 567 participant dataset, parcels that were identified as hubs spanned across 

the majority of the cortex. However, consistent hub locations were observed when hub parcels 

were aggregated across all participants (Study 3, Figure 3A). Peak hub locations were observed in 

the bi-lateral supramarginal gyrus, precuneus, superior parietal lobule, and posterior cingulate, the 

right superior medial frontal gyrus, and the left inferior temporal gyrus, inferior frontal gyrus, 

superior frontal gyrus, prefrontal gyrus, and superior parietal lobule. These peak parcels are 

assigned to the cingulo-opercular, cingulo-parietal, fronto-parietal, default mode, dorsal attention, 

and somatomotor hand resting state networks. 
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Categories of youth cortical hub parcels 

Across the three sub-groups created for hub categorization (n=189 participants and 12,633 

hub profiles in each group), either six or seven clusters were identified from the hub profiles within 

each group (Study 3, Figure 3B). Out of these results, the first four clusters in each group contained 

enough hub profiles to be considered a hub category and was assigned a qualitative label. A fifth 

common and stable cluster was found (cluster 5 in group 1 & 2 and cluster 6 in group 3), however 

the number of hub profiles in this cluster represented less than 1% of the total. As a result, this 

cluster was not considered for the main hub categories. The remaining clusters contained only one 

or two hub profiles, and were thus not considered stable clusters and removed from further 

analyses.  

Additionally, we checked for any possible influence of participant dataset on each group’s 

identified clusters (i.e., if clusters represented dataset rather than unique hub connectivity profiles). 

Hub connectivity profile correlation matrices were ordered according to their Louvain cluster 

assignment and then each participant hub was color labeled according to the dataset of origin. 

Across all three groups, the identified Louvain clusters showed a relatively equal representation of 

participants from each fMRI collection (Study 3, Figure S1B).   

The four main clusters were similar in all three of our sub-groups (Study 3, Figure 3B), 

and were merged across all 567 participants. Hub connectivity profiles for each of these clusters 

were then averaged across all participants and four final hub categories were created (Study 3, 

Figure 4). Hub categories were named based on their connectivity profiles and their resemblance 

to hub categories found in adults (Gordon et al., 2018).  

The first category (12,983 profiles, 34% of total) contained connections primarily to 

parcels within the cingulo-parietal, default mode, fronto-parietal, unassigned, salience, and ventral 

attention networks, and was named “youth control-default” hubs (Study 3, Figure 4A). The second 

category of hubs (10,406 profiles, 27.4% of total) contained connections primarily in the cingulo-

opercular, cingulo-parietal, dorsal attention, retrosplenial-temporal, somatomotor hand, and visual 
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networks. This second category was named “youth control-processing (VIS)” hubs (Study 3, 

Figure 4B). The third category, named “youth control-processing (AUD + SM)” hubs (10,464 

profiles, 27.5% of total) contained parcels with connections primarily in the auditory, cingulo-

opercular, somatomotor hand, and somatomotor mouth functional networks (Study 3, Figure 4C). 

The fourth hub category (4,069 profiles, 10.7% of total) contained parcels with connections 

primarily in the auditory, cingulo-opercular, dorsal attention, fronto-parietal, salience, and ventral 

attention networks, and was named “youth cross-control” hubs (Study 3, Figure 4D).  
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Study 3, Figure 3: Cortical Hub Identification & Categorization 

Note: (A.) Left: Density map of cortical parcels that were labeled as hubs across the full group of 567 participants. This density 
map illustrates the distribution of hub parcels across the cortex. Right: Parcels above a 70% threshold on the full group density 
map are highlighted. (B.) Raw radar plots for three sub-groups of participants used for hub profile clustering. The Louvain 
algorithm does not assign cluster numbers in any stable order. Therefore, clusters have been assigned colors based on their final 
full-group categorization for easier comparison at the group level.  
(Network abbreviations: AUD: auditory, CO = cingulo-opercular, CP = cingulo-parietal, DMN = default mode, DA = dorsal 
attention, FP = fronto-parietal, NA = unassigned, RT = restrosplenial-temporal, SMh = somatomotor hand, SMm = somatomotor 
mouth, VA = ventral attention, VIS = visual) 
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Study 3, Figure 4: Youth Cortical Hub Categories 
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Note: Four primary cortical hub categories were identified in youths: (1) youth control-default (A) with connectivity primarily in 
the cingulo-parietal, default mode, fronto-parietal, unassigned, salience, and ventral attention functional networks; (2) youth 
control-processing (VIS) (B) with connectivity primarily in the cingulo-opercular, cingulo-parietal, dorsal attention, retrosplenial-
temporal, somatomotor hand, and visual functional networks; (3) youth control-processing (AUD + SM) (C) with connectivity 
primarily in the auditory, cingulo-opercular, somatomotor hand, and somatomotor mouth functional networks; (4) youth cross-
control (D) with connectivity primarily in the auditory, cingulo-opercular, dorsal attention, fronto-parietal, salience, and ventral 
attention functional networks.  
(Network abbreviations: AUD: auditory, CO = cingulo-opercular, CP = cingulo-parietal, DMN = default mode, DA = dorsal 
attention, FP = fronto-parietal, NA = unassigned, RT = restrosplenial-temporal, SMh = somatomotor hand, SMm = somatomotor 
mouth, VA = ventral attention, VIS = visual) 

Executive function task performance associated with cortical hub connectivity 

We tested the role of cortical hubs identified in youths on EF task performance by 

associating the connectivity of hub parcels, within each of the four identified categories, with EF 

task outcomes. For each participant, we calculated the correlation of both the brain-wide average 

and the within hub category average connectivity of all hubs within each of the four hub categories. 

We then correlated these average hub connectivity values with age-corrected scores on the 

cognitive flexibility and working memory tasks.  

Across all hub categories using the brain-wide average connectivity values, connectivity 

of hubs did not significantly correlate with either EF task performance measures (r < 0.07 and p > 

0.1 in all tests). However, when using the within hub category average connectivity, both youth 

control-processing (AUD + SM) and youth control-processing (VIS) were significantly correlated 

with the cognitive flexibility task scores (r = 0.13, p = 0.004 and r = 0.09, p = 0.03, respectively) 

after FDR correction for two tests (Study 3, Figure 5). Working memory performance was not 

significant with any within-hub category. 
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Study 3, Figure 5: Hub Connectivity Associated with EF Task Performance 

 
Note: Average within hub category connectivity correlated with cognitive flexibility task scores. Significant associations were 
observed for the average (A) Youth Control-Process (VIS) hub connectivity and the average (B) youth control-processing (AUD 
+ SM) hub connectivity. Cognitive flexibility scores were age corrected and then Z-scored. Significance values were false 
detection rate (FDR) corrected for two groups.  

DISCUSSION 

During childhood and adolescence, neural systems within the brain are undergoing rapid 

growth and refinement (Barnea-Goraly et al., 2005; Lenroot & Giedd, 2006; Mills et al., 2016; 

Stiles & Jernigan, 2010). As the brain structure becomes more refined during development, the 

interaction between specialized cortical regions becomes increasingly important (Fair et al., 2009; 

Grayson & Fair, 2017) and cognitive control and decision-making abilities are supported by the 

successful coordination of cortical activity in multiple brain regions (Dwyer et al., 2014; Petersen 

& Sporns, 2015). One type of cortical node vital for successful integration of brain regions, the 

connector hub, provides a means for the efficient and flexible integration of information between 

functionally segregated neural systems (Bertolero, Yeo, & D’Esposito, 2017; Gratton et al., 

2018b). The current work sought to identify and categorize resting state cortical hub parcels in a 

large neuroimaging dataset of youths. By replicating the general methods of hub identification and 
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categorization previously applied to adults, we aimed to qualitatively compare the similarity of 

hubs identified in youths, with those found in adults (Gordon et al., 2018). Additionally, we tested 

the role of cortical hub connectivity, across the four hub categories identified in youths, on 

outcomes for two EF tasks; one cognitive flexibility and one working memory task.  

We found that cortical hub parcels identified using resting state functional 

coactivation/connectivity (RSFC) from youths, generally resembled those identified in adults, 

though similar ‘control-default’ and ‘cross-control’ categories show additional functional network 

inclusion relative to what was observed in adults. Additionally, we saw a split in control-

processing hubs (visual and auditory/somatomotor), such that one adult hub cluster was found to 

be similar to two hub clusters in our youth sample (Study 3, Figure 4).  Further, the average within 

hub category RSFC strength of these split control-processing hubs was correlated to the cognitive 

flexibility EF task in our sample, while the other two hub categories were not. The results from 

this work suggest that adult-like hub parcels can be clearly identified by mid-childhood, but that 

hub category profiles may still be developing, especially in how control networks interface with 

input and output processors; this developmental configuration may also be influencing 

performance of some cognitive-control demanding tasks.  

Youth control-default and cross-control hubs show more diverse connectivity than in 
adults 

In the current work, we provide evidence that cortical hub categories resembling those 

found in adults are established in mid-childhood. However, we see the impact of ongoing 

functional network refinement and segregation in our “youth control-default” and “youth cross-

control” categories as well (Study 3, Figure 4A & D) in these categories’ connectivity profiles. In 

these two categories, we observe an inclusion of connections to functional networks, not found in 

their analogous adult hub category.  In our youth control-default hubs (Study 3, Figure 4A), we 

see strong connectivity in the default mode and fronto-parietal networks as was found in adults. 
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The youth hub category, however, also includes strong cingulo-parietal, salience, and ventral 

attention connections, as well as connections to parcels that were not assigned to a functional 

network in the predefined parcellation set. Similarly, the youth cross-control hubs (Study 3, Figure 

4D) exhibit strong connectivity to the cingulo-opercular, dorsal attention, and fronto-parietal 

networks (as seen in the adult categories), but also include ties to the salience and auditory 

networks.  

These two hub categories were observed across all three of the participant subgroups 

(n=189 each) used for the hub categorization step (Study 3, Figure 3B), suggesting that around 10 

years of age, these youth-specific hub categories are stable across individuals. However, their 

inclusion of functional networks not found in the adult categories may be due to non-linear 

developmental trajectories of functional network integration and specialization. While the current 

work used participation coefficient (PC) to identify individual parcels exhibiting hub-like 

connectivity across functional networks, PC has also been used to quantify the overall average 

integration of resting state functional networks. Previous work tracked fluctuations in PC within 

common resting state functional networks from early adolescence to young adulthood (Marek et 

al., 2015). From ages 12 to 22, PC values in the default mode network showed a U trajectory that 

decreased until around 18 years old and then increased through 22 years old. Alternatively, PC 

values in the fronto-parietal network increased from 12 to 14 years old, decreased until around 20 

years old, and then increased again through 22 years old. These previous results suggest that, 

during development, parcels in functional networks fluctuate between connections dominantly 

within their “home” network to connections dominantly outside of their “home” network.  

Although the majority of participants in our sample are younger than the age-range this 

previous work tested, these previous results offer a possible explanation for the increased 

connectivity profile diversity of youth control-default and cross-control hub categories, compared 

to adults.  Indeed, the cortical hub categories found in adults begin organizing in middle-childhood, 
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but developmental influences on functional network organizational trajectories may cause a pattern 

of inclusion of additional network representation in the makeup of these hub categories in youths.  

Two distinct types of youth control-processing hubs 

Contrary to the single adult “control-processing” hub category that integrates sensory 

networks with the cingulo-opercular and dorsal attention networks (Gordon et al., 2018), we found 

that youth control-processing hubs were split into two distinct categories. The two hub categories 

that we identified and labeled as “youth control-processing (VIS)” and “youth control-processing 

(AUD + SM)” hubs (Study 3, Figure 4B & C), present strong connectivity between sensory 

networks, such as the somatomotor hand and mouth, visual, and auditory networks, with control 

networks such as the cingulo-opercular and dorsal attention control networks. The cingulo-

opercular (and to a lesser extent dorsal attention) network is represented in both categories. This 

evidence of two distinct control-processing hub types in youth may highlight the developmental 

need for differentiated integration of sensory inputs and outputs to cognitive-control focused 

networks.  

Cortical activation related to cognitive control during task engagement is anatomically 

separate from those directly involved in sensory processing and motor actions, but must coordinate 

these incoming perceptions and outgoing responses for successful task performance (Petersen & 

Posner, 2012). One theory of cognitive control processes outlines a function where control-

processing parcels may act as intermediaries that route sensory information to and from cognitive-

control specialized networks (Petersen & Posner, 2012; Power & Petersen, 2013). This processing 

system is responsible for processing incoming stimuli, routing this information to networks that 

make decisions based on that incoming information, and then routing those decisions back to the 

appropriate outputs for the specific task.  

We posit that the control-processing hubs found in youths are differentiated based on 

sensory input, where the control-processing (VIS) hubs primarily route visual stimuli to the dorsal 



 84 

attention network, and the control-processing (AUD + SM) primarily routes auditory and 

somatomotor stimuli to the cingulo-opercular network. The cingulo-opercular and dorsal attention 

networks, which are also primary networks within the youth cross-control hubs, then process the 

information and make decisions based on the task, before passing information back to one or both 

of the control-processing hubs for output. This observed split in control-processing hub categories 

provides evidence that the functional networks that support this type of cognitive-control 

demanding task completion are not yet integrated to the degree seen in an adult sample (Gordon 

et al., 2018).  

Youth control-processing hubs are related to cognitive flexibility 

Based on previous work highlighting the role of connector hubs in EF processes (Dwyer et 

al., 2014; Gratton et al., 2018b), we tested the relationship between youth cortical hub categories 

and EF task performance in youths. We found that, for the two separate youth control-processing 

categories, greater average connectivity of hubs within that category to all parcels within that 

category’s assigned networks, correlates with better performance on the cognitive flexibility task 

(Study 3, Figure 5). These results support the theory outlined above that both types of control-

processing hubs in youths may act as intermediaries; routing sensory information to and from 

specialized cognitive-control networks. However, given that the network organization tested in 

this current work is derived from resting state data, we posit that the increased average connectivity 

of youth control-processing hubs at rest may reflect the necessary connectivity of these hubs while 

youths are engaged in a task state. Further, the association we see in the current study may, in fact, 

be highlighting cortical areas previously found to exhibit significant age-related differences in 

cognitive flexibility tasks (Church et al., 2017).  

In this previous work, cortical regions within the fronto-parietal, default mode, dorsal 

attention, and cingulo-opercular functional networks showed significant age effects between adults 

and youths, during the preparatory control period of a similar cognitive flexibility (switching) task 
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(Church et al., 2017). The regions with the greatest difference between youths and adults during 

the cue period of the task, line up with our youth control-processing (VIS) and control-processing 

(AUD + SM) categories. In fact, cortical areas in the superior and inferior parietal, inferior 

temporal, and lateral visual cortex show a large amount of overlap between the peak age 

differences in that work and our youth control-processing hub peak hub counts. We hypothesize 

that the similarity of results in these cortical regions may be evidence that youth control-processing 

hubs are heavily involved in the preparatory control phase of the cognitive flexibility task, and are 

undergoing substantial developmental change in this age range. 

Together, these results suggest that individual differences in youth control-processing hubs 

connectivity may impact the successful relay of sensory input to more cognitive-control 

specialized networks, like those in the cross-control hub category. During development, this 

routing of information may be especially important as these control-processing hubs are not yet 

consolidated as has been observed in adults.  

LIMITATIONS AND FUTURE DIRECTIONS 

In the current work, we used an establish, predefined cortical parcel set (Gordon et al., 

2016) to identify cortical hubs in youths. While the use of a predefined parcel set demonstrates the 

generalizability of hub identification in youths and provides a less computationally intensive 

method for this work, our future work should quantitatively test the difference of hubs defined 

with pre-established parcels vs. individual-specific parcels (as used in the adult work (Gordon et 

al., 2018)). Additionally, recent work has established probabilistic maps of functional brain 

networks (Dworetsky et al., 2021) and, although these maps were defined using adult data, the use 

of these high consensus regions would provide a computationally reasonable alternative to 

defining hubs using individual-specific maps.  

To fully understand the development of cortical hub parcels in youths, the developmental 

trajectory of cortical hubs defined by PC should be carefully considered. It is important that future 
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work incorporate a longitudinal fMRI dataset that follows individuals from youth to adulthood 

(e.g., the ABCD study) and tracks how the non-linear change of average PC of functional networks 

impacts cortical hubs as children age. Of note, many hub regions defined in our youth set belong 

to resting state functional networks, such as the default mode and fronto-parietal networks, that 

have been shown to exhibit vast changes in coactivation of both within and between network 

parcels during this period of life (DeSerisy et al., 2021; Rubia, 2013; Sherman et al., 2014). Such 

work would add valuable knowledge of how hubs organize, longitudinally, from youth into 

adulthood.  

Lastly, the brain-behavior associations of cortical hubs to EF task performance that we 

have highlighted in our youth dataset are specific to functional network organization during resting 

state. The connectivity profiles of cortical hubs may significantly change while youths are actively 

engaged in a task state. Our future work plans to quantify the shift in hub connectivity profiles 

from resting state to task state, by replicating these hub identification methods on fMRI data 

collected while youths were actively engaged in the two EF tasks. We can then test the influence 

of hub connectivity on task outcomes to begin to separate the influence of cortical hubs during rest 

vs while engaged in EF tasks.  

CONCLUSIONS 

Four main categories of cortical hub parcels can be identified in youths using a pre-

established cortical parcellation set. These four hub categories – “youth control-default”, “youth 

control-processing (VIS)”, “youth control-processing (AUD + SM)”, and “youth cross-control” – 

strongly resemble the three hub categories found in previous adult work and provide evidence that 

hub categories found in adults are established in their “developmental form” by middle-childhood. 

However, the adult “Control-Processing” category is split into two distinct hub categories in 

youths, and youth “Control-Default” and “Cross-Control” hubs exhibit connectivity profiles that 

include more “control” network connections than similar hubs identified in adults. We propose 
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this is evidence of ongoing or “incomplete” developmental refinement and segregation of resting 

state functional networks during middle childhood and adolescence. Lastly, whole-brain resting 

state connectivity of cortical hub parcels in youths, was not associated with our cognitive flexibility 

or working memory task performance scores. However, stronger within hub category connectivity 

in the two “Control-Processing” categories was associated with cognitive flexibility task 

performance. We posit that Control-Processing hubs act as input/output controllers of sensory 

information in youths, and thus may relate to coordinating complex behaviors in development.  
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General Discussion 

The development of higher-order cognitive processes in youth is not a homogenous 

process. Identifying unique differences in brain activation, and their association with behavior, can 

offer valuable insights to brain development during this period of life. This dissertation reports a 

body of work that investigated three methods for quantifying individual differences in the 

organization of networks derived from resting state functional connectivity/coactivation (RSFC). 

This work then proceeds to relate these measures of network organization to two cognitive tasks 

related to executive functions (EFs) in youths. Quantified individual differences in RSFC network 

organization can offer many insights into the development and specialization of cortical 

coactivation from birth to adulthood (De Asis-Cruz et al., 2016; Fair et al., 2009; Fransson et al., 

2011; Gao et al., 2011; Power et al., 2010). Many higher-order cortical processes depend on this 

refinement of functional networks, and disruptions in the normative organizational trajectory of 

these networks may result in clinically diagnosed mental states or physiological disease (Cordova 

et al., 2020; Craddock et al., 2009; Fair et al., 2010; Liu et al., 2020; Ma et al., 2019). Further, even 

individual differences in functional network organization that don’t result in clinical diagnoses 

may impact the normative development of behavioral skills such as those of EFs (Reineberg, 

Gustavson, Benca, Banich, & Friedman, 2018). Such disruptions in the development of EFs may 

result in substantial negative academic outcomes and general life success (Best et al., 2011; Jacob 

& Parkinson, 2015). This dissertation sought out to investigate three methods for quantifying 

RSFC functional network organization - the functional fingerprint, graph metrics, and cortical hubs 

- and then test the relationship of two of those methods with working memory and cognitive 

flexibility task performance. As a whole, this work improves our understanding of the organization 

of individually unique functional coactivation, and of how differences in that organization may 

impact the higher-order processes related to EF in youths.  
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In Study 1, we identified a neural fingerprint in RSFC (a unique pattern of functional 

coactivation that distinguishes one individual from another) using support vector machine (SVM) 

classifiers (Demeter et al., 2020). Functional fingerprints were identified in both youths and adults, 

and our large, cross-sectional sample consisted of repeat-scan individuals, monozygotic (MZ) twin 

pairs, and dizygotic (DZ) twin pairs. The results of this study indicated that functional fingerprints 

in both youths and adults are dominated by functional coactivation between cortical areas within 

the default mode and fronto-parietal networks, and result in successful identification of an 

individual’s current scan when SVM classifiers were trained on their pervious scan. Our results 

also indicated that the RSFC used to calculate functional fingerprints are influenced by genetics, 

resulting in the successful identification of one twin based on their co-twin’s scan. Further, we also 

showed that classifier accuracies decrease as the genetic similarity of the scans decrease, with 

repeat scan individuals showing the highest accuracy, followed by MZ twin pairs, and then DZ 

twin pairs. As a whole, Study 1 found that although common RSFC networks across individuals 

can be found early in development, a stable pattern of unique functional coactivation, influenced 

by genetics, exists and can be used to identify individuals. 

In Study 2, we took a closer look at the role of specific patterns of RSFC network 

organization in youths - defined by graph metrics (GMs) - on behavioral performance of cognitive 

tasks linked to EFs. We tested the ability of two GMs based on the shortest paths within the 

functional network (characteristic path length (CPL) and global efficiency (GE)) and one GM 

based on highly interconnected cortical parcels (rich-club coefficient (RCC)), to predict 

performance on one working memory and one cognitive flexibility task. Further, we included a 

comparison set of publicly available, preprocessed fMRI data (n=2,000) to investigate the 

influence of sample size, resting state scan time, functional network makeup, and fMRI 

preprocessing decisions on our results. Our results indicated that sample size and fMRI 

preprocessing decisions have the most significant impact on using GMs to predict task 
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performance in youths. Specifically, we found that even our main sample (n=567), which would 

be considered relatively large in fMRI research, was not sufficient to consistently identify the small 

brain-behavior effects that the larger comparison group identified. Further, all successful models 

accounted for very little variance (R2 < 0.02) across all tests. These results add to the growing 

literature highlighting the need for very large samples ( N ⪆ 2,000) to accurately identify brain-

behavior effects using fMRI data. Further, this work emphasizes that GMs are only a piece of the 

puzzle associating brain-wide RSFC network organization to behavior, and should be combined 

with other measures to more robustly account for the observed variance in working memory and 

cognitive flexibility task performance in youths. 

 Study 3 expanded on the themes of studies 1 and 2, by using the participation coefficient 

(PC) to identify cortical hubs in youths, categorize stable hub types across individuals using a 

clustering algorithm, and then associate whole-brain coactivation of hubs with working memory 

and cognitive flexibility task performance. We found four main hub categories in youths that 

closely resemble those found in adults, but that are developmentally unique: (1) youth control-

default hubs, (2) youth control-processing (VIS) hubs, (3) youth control-processing (AUD + SM) 

hubs, and (4) youth cross-control hubs. Contrary to the cortical hubs identified in adults, youth 

hubs exhibited more diverse connectivity to functional networks, and control-processing hubs 

were split into two distinct categories, as opposed to the single category found in adults. Further, 

we found that only these two youth control-processing hub categories were significantly associated 

with cognitive flexibility task performance, while none of the hub categories identified in youths 

were associated with working memory task performance. These results indicate that the cortical 

hubs categories found in adults are established in a developmentally-unique form during middle 

childhood, and the relationship of youth cortical hubs to EF task performance supports previous 

work highlighting the need for cognitive control processes to flexibly integrate sensory stimuli to 

and motor outputs from classic cognitive control functional networks (Petersen & Posner, 2012).  
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Insights on the sources of individualized functional fingerprints  

While the main goal of this dissertation was to evaluate multiple methodologies for 

quantifying unique patterns of RSFC in youths, I believe results across the three studies highlight 

the importance of a specific element in the organization of RSFC: cortical hub nodes. In Study 1, 

we found that functional fingerprints in both youths and adults were primarily composed of within- 

and between-network connections in the default mode (DMN) and fronto-parietal (FP) networks. 

Previous neuroimaging work has highlighted that cortical regions assigned to the FP and DMN 

networks are distinctly responsible for conscious processes (Demertzi, Soddu, & Laureys, 2013; 

Heine et al., 2012). Specifically, the posterior cingulate and medial prefrontal cortex, both regions 

in the DMN, are found to be important for autobiographical thought and self-reference, 

respectively (Whitfield-Gabrieli et al., 2011). However, while many of the cortical regions of the 

DMN and FP exhibit protracted development (Giedd & Rapoport, 2010; Stiles & Jernigan, 2010) 

compared to rapidly-matured sensory regions, the developmental trajectory of cortical regions that 

support higher-level processes are most likely not the core of what’s driving these functional 

fingerprints.  

This claim is supported by our results using the opposite age-group’s features while 

running the SVM classifiers in Study 1. Had the functional fingerprint been primarily driven by 

maturation patterns of the DMN and FP networks, we would have seen a larger age effect at best, 

or a complete failure of the SVM classifiers to classify different ages at worst. In contrast, we saw 

prediction accuracy go down, but stay significantly better than chance across the all groups except 

the adult dizygotic twins. This suggests that something besides solely developmental maturation 

trajectories account for the individually-specific patterns of RSFC network organization identified 

with functional fingerprints.  

In work investigating cortical hubs in adults (Gordon et al., 2018), it was found that the 

removal of each hub type resulted in dissociable disruption to the whole-brain network, dependent 

on which type of hub was removed. These results provide some evidence that FP cortical hubs 
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(included in the control-default hub category in adults, and in the control-default and cross-control 

categories in youths) have a significant impact on the organizational structure of the whole-brain 

network. I propose that the essential elements of the functional fingerprints we identified in youths 

and adults in Study 1, may have been comprised of many cortical hub nodes. The hubs’ unique 

influence on whole-brain functional network integration may have been at least partially driving 

the individualized connectivity of the functional fingerprints. Further, we found both functional 

fingerprints (Study 1) and cortical hubs (Study 3) are found to be generally similar over age, which 

might explain the similarity in functional fingerprint network representation and utility of features 

in opposite age groups SVM classifiers.  
 
Insights into the neural systems supporting EF development in youths 

In Studies 2 and 3, our results provide evidence that the neural systems supporting higher-

order processes associated with EF task performance in youths rely on the efficient and flexible 

integration of sensory networks with cognitive control networks (Petersen & Posner, 2012). 

Previous work has revealed the role of different cortical regions in the cingulo-opercular, fronto-

parietal, dorsal attention, and ventral attention networks – for example, the dorsolateral prefrontal 

cortex (DL-PFC) and the superior parietal cortex - as neural substrates of task performance in EF 

domains (Fiske & Holmboe, 2019; Gao et al., 2013; Nowrangi et al., 2014). These prior results 

prompted us to test the ability of our chosen GMs, calculated from a reduced network only 

including parcels in these putative functional control networks, to predict working memory and 

cognitive flexibility task performance (Study 2). While we expected these results to match or 

exceed results using whole-brain networks to calculate GMs, across both tasks, the GMs calculated 

form this “control-network focused” set of parcels failed to predict task performance on both tasks 

in our main analysis group. Similarly, even in the larger DCAN comparison group, characteristic 

path length (CPL) and global efficiency (GE) predicted both tasks, but to a reduced degree, and 

rich-club coefficient (RCC) no longer successfully predicted outcomes in either task, relative to 
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the whole brain set. These results suggested that within cognitive-control network RSFC alone did 

not best predict EF task performance and, unbeknownst to us at the time, foreshadowed our results 

in Study 3.  

Indeed, in Study 3, one of our main findings was a split between control-processing hub 

categories in youths; a split not found in adults (Gordon et al., 2018). We identified one youth 

control-processing hub category (VIS) to exhibit connectivity profiles primarily in the cingulo-

opercular, cingulo-parietal, dorsal attention, restrosplenial-temporal, somatomotor hand, and 

visual networks. The other, youth control-processing (AUD + SM), exhibits connectivity profiles 

primarily in the auditory, cingulo-opercular, dorsal attention, somatomotor hand, and somatomotor 

mouth networks. It is important to note that of the four main hub categories identified in youths, 

connectivity measures of only hubs within these two control-processing categories were associated 

with either working memory or cognitive control task performance.  

These results support the theory of EFs relying on flexible integration of sensory and 

cognitive control networks, but also provide evidence of ongoing maturation of these hubs during 

middle-childhood. We posit that these two distinct types of youth control-processing hubs are 

specialized in the type of sensory stimuli they route to and from primary cognitive control hubs 

(cross-control hubs), and that this specialization becomes integrated into one control-processing 

hub in adulthood. Further, the individual differences in how efficiently these stimuli are routed to 

and from cross-control hubs accounts for some of the individual differences in EF task 

performance. The importance of control-processing hubs over cross-control hubs in predicting EF 

task performance may change once control-processing hubs are refined into a single system in 

adulthood, thus longitudinal studies will be of particular utility into expanding upon our 

observations.  
 
  



 94 

Benefits of public datasets and combined methodology 

Two of the main strengths of this dissertation are the inclusion of both locally collected 

and publicly available datasets, and the combination of neuroimaging with behavioral data. 

Throughout all three studies of this dissertation, I sought to include publically available 

neuroimaging and behavioral data, such as that provided by the Midnight Scan Club (MSC), the 

Human Connectome Project (HCP), and the Adolescent Brain Cognitive Development Study Club 

(ABCD) (Casey et al., 2018; Gordon et al., 2017b; Van Essen et al., 2013). This intention was 

twofold: (1) to create well-powered samples that are extremely difficult and expensive to collect 

at a single site, and (2) to provide a means of better assessing the generalizability of our findings. 

With the inclusion of these outside datasets, we were able to investigate the generalizability of our 

findings across age groups and across fMRI preprocessing methodologies, and also create a 

combined sample that is more inclusive and representative of the population. For example, in 

Study 1, while we had a locally collected sample of pediatric twin pairs, without the adult twins 

included from the HCP dataset and the repeat-scan individuals from the MSC dataset, we would 

not have been able to perform our age comparisons. The resulting insight into the similarity and 

stability of the resting state functional fingerprint in both youths and adults is one of the most 

interesting elements of that study, and would not have been easily accessible to me without the 

inclusion of open datasets.  

Similarly, in Study 3, the combined 567 participant sample of youths that included both 

resting state fMRI data, as well as both working memory and cognitive flexibility task data may 

have been key to finding the association between the split control-processing hub group and 

cognitive flexibility task performance in youths. While 67 participants from the combined sample 

were collected locally and had both neuroimaging and behavioral task data available, our results 

on the impact of sample size on brain-behavior associations from Study 2, brings into question if 

this result would have been found using only those locally collected data. Further, while our lab is 

very mindful in our attempt to collect data that are well-balanced in regard to race and ethnicity, 
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we are ultimately limited by the demographics of our geographical location. Inclusion of the 500 

ABCD study participants allowed us to create a sample that was closer to representing the larger 

population of the US, and thus improving the generalizability of our results. 

While the current work being done by neuroimaging consortiums to large and diverse 

datasets publically available is still in its relative infancy, I believe that the availability of these 

open datasets will have a substantial impact on the neuroimaging research being conducted over 

the next decade. Not only will the precision and generalizability of brain-behavior associations 

identified using neuroimaging methods improve, but as longitudinal data (such as that being 

collected by the ABCD study) become available, many questions will be answered about the 

stability of our results and the trajectory of brain organization during development. I feel extremely 

lucky to have completed by graduate studies at a time when these open datasets are being made 

available to researchers, and look forward to being in a position to contribute to the open data 

landscape in the years ahead.  
 
Summary 

The three studies presented in this dissertation quantified individual differences in resting 

state functional network organization that are associated with either the functional fingerprint or 

executive function task performance in youths. Across all three studies, we leveraged large, cross-

sectional samples consisting of both locally collected and publicly available neuroimaging data to 

increase the generalizability of our results. We demonstrated that a functional fingerprint based on 

resting state functional connectivity/coactivation (RSFC) is stable in both youths and adults, and 

that the predictive quality of functional fingerprints using support vector machine classifiers is 

reduced as the genetic similarity of individuals is reduced. We also presented evidence that graph 

metrics (GMs) calculated from RSFC can predict outcomes on working memory and cognitive 

flexibility tasks. However, available scan time, network makeup, and preprocessing decisions all 

impact the stability of results. Most importantly, the brain-behaviors effects are very small, thus 
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leading to inconsistent results in samples under approximately 2,000 individuals. Lastly, we found 

that resting state cortical hubs identified in youths closely resemble those found in adults. 

However, youth cortical hubs show a more diverse range of functional network inclusion, and 

control-processing hubs are split into two distinct categories; in contrast to the one category found 

in adults. As a whole, this dissertation provides a nuanced overview of how a small sample of 

multivariate methods used to quantify resting state functional network organization can provide 

valuable insight to individual differences in the developing brain.  
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Appendix 

STUDY 1 SUPPLEMENT 

Transparent Methods & Supplemental Materials 

Supplemental Figures 
Study 1, Figure S1: Accuracies Over ANOVA Feature Selection Thresholds, Related to Figure 2 

 
Note: Scikit-learn’s default 5% setting for ANOVA feature selection was used for all final analyses. A post-hoc examination of 
feature selection thresholds was conducted to ensure the main classifier results were not dependent on the a priori 5% feature 
selection threshold default setting. All ANOVA thresholds from 1-100% were re-run on all subgroups using the SVM classifier 
method in our main analyses. Prediction accuracy generally peaked around 5-10% and then declined as percentages increased to 
100%. These post-hoc accuracy scores suggest our a priori setting is within the optimal range for classification in all groups, that 
the main results were not driven by the 5% ANOVA threshold, and that using a different threshold would not provide a clear 
alteration to classifier performance.  
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Study 1, Figure S2: Pediatric “Fold-Rank” Matrix Features, Related to Figure 3 

 
Note: All connections (87) chosen as features for at least 5 (yellow lines in circle graph) or 6 (white lines in circle graph) folds of 
the pediatric “fold-rank” matrix (total of 3 subgroups) are displayed. On-brain edges that are grey represent a between-network 
connection. Edges with a color represent a within network connection in the network of that color. 
 
Study 1, Figure S3: Adult “Fold-Rank” Matrix Features, Related to Figure 3 

 
Note: All connections (110) chosen as features for at least 5 (yellow lines in circle graph) or 6 (white lines in circle graph) folds 
of the adult “fold-rank” matrix (total of 3 subgroups) are displayed. On-brain edges that are grey represent a between-network 
connection. Edges with a color represent a within network connection in the network of that color. 
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Study 1, Figure S4: “Common Set” Rank Matrix Features, Related to Figure 3 

 
Note: All connections (90 total) chosen for at least one fold across all pediatric and adult subgroups (total of 6 subgroups) are 
displayed. On-brain edges that are grey represent a between-network connection. Edges with a color represent a within network 
connection in the network of that color. 

Transparent Methods 
Participant Demographics 

Data from 209 total participants were organized into four pediatric (ages 8-18 years) and 

three adult (ages 22-35 years) subgroups for analysis. The pediatric groups were collected at The 

University of Texas at Austin (UT) as part of the Texas Center for Learning Disabilities project 

(www.texasldcenter.org), the Texas Twin Project (Harden, Tucker-Drob, & Tackett, 2013), or as 

part of ongoing UT Developmental Cognitive Neuroscience Lab (Church) collections. All UT 

collections were approved by the Institutional Review Board at either the University of Texas 

Health Science Center at Houston, or the University of Texas at Austin. Parents provided informed 

consent and pediatric participants provided informed assent to participate in the study. The adult 

subgroups were created from two publicly available neuroimaging datasets: the Midnight Scan 

Club (MSC; (Gordon et al., 2017b) and the Human Connectome Project (HCP; (Van Essen et al., 

2013).  
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The pediatric subgroups included repeat-scanned individuals (spanning 5 to 18 months 

between scans); monozygotic (MZ) and dizygotic (DZ) twin pairs; and a group of same-sex sibling 

pairs that, like the DZ twin groups, share ~50% genetic information. The adult subgroups included 

repeat-scanned individuals (MSC scans were collected on two consecutive days), as well as MZ 

and DZ twin pairs. Detailed group information, including zygosity for twin pairs, is in Table 2. 

The similar subgrouping in our two age groups allowed us to test for familial similarities in 

network organization during both childhood and adulthood, determine whether those results were 

moderated by sex, and to address possible confounds imposed by MRI acquisition settings and 

scanner type by using both locally and externally collected datasets. 

Pediatric subgroups did not significantly differ from one another in mean IQ (p>0.32). 

Adult twin subgroups did not significantly differ from one another in fluid intelligence (p=0.19), 

as measured by Raven’s Progressive Matrices (Raven, 1941). The MSC group exhibited above-

average mean IQ but could not be statistically compared to the HCP adult sets due to difference in 

intelligence measures. Groups did not significantly differ in scanner movement that was quantified 

by post-motion censoring mean framewise displacement (FD) values (see resting state 

preprocessing). See Table 2 for detailed subgroup demographics, IQ, and motion information. 

Method Details 
Neuroimaging Acquisition: 

All pediatric participants were scanned at The University of Texas at Austin’s Biomedical 

Imaging Center on a Siemens Skyra 3 Tesla scanner with a 32-channel head coil. Participants were 

fitted with foam pads around the head to reduce motion and verbal feedback was provided between 

scans. All resting state scans were acquired after participants were instructed to lie still, stay awake, 

and keep their eyes open while looking at a white fixation cross on a black background. Resting 

state scans where participants reported falling asleep were not included in analysis. For each 

participant, one T1-weighted structural MPRAGE sequence scan (TR=2530ms, TE=3.36ms, 
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FOV=256x256, voxel resolution=1x1x1 mm) and up to two, six-minute functional resting state 

scans using a multi-band echo-planar sequence (TR=2000ms, TE=30ms, flip angle=60°, MB 

factor=2, 48 axial slices, voxel resolution=2x2x2mm) were collected.  

All HCP data used in the current analyses were collected on a custom 3 Tesla Siemens 

Skyra “Connectome scanner” with a Nova Medical 32-channel head coil (Van Essen et al., 2013). 

At each scanning session, participants underwent at least one T1-weighted structural 

MEMPRAGE sequence scan (TR=2400ms, TE=2.14ms, FOV=224x224, voxel 

resolution=0.7x0.7x0.7mm) and one, 14.5 minute functional resting state scan using a multi-band 

echo-planar sequence (TR=720ms, TE=33.1ms, flip angle=52°, MB factor=8, 72 axial slices, 

voxel resolution=2x2x2mm). 

Data in the MSC dataset was collected on a 3 Tesla Siemens TRIO scanner with a 16-

channel head coil (Gordon et al., 2017b). The current analyses include one T1-weighted structural 

MPRAGE sequence scan (TR=2400ms, TE=3.47ms, voxel resolution=0.8x0.8x0.8mm) and two 

30-minute functional resting state scans (TR=2200ms, TE=27ms, flip angle=90°, 36 axial slices, 

voxel resolution=4x4x4mm) collected over two consecutive visits. Resting state scans for all HCP 

and MSC sessions were acquired with each participant looking at a white fixation cross on a black 

background.  
 
Resting State Preprocessing: 

 In an effort to accurately compare the datasets used in these analyses, all scans were 

preprocessed identically with an in-house resting state preprocessing pipeline comprised of 

FMRIB Software Library (Smith et al., 2004) and Freesurfer (Dale et al., 1999) commands, as well 

as custom Matlab (www.mathworks.com) computational scripts. Adult scans were downloaded 

from their public database in unprocessed Neuroimaging Informatics Technology Initiative 

(NIfTI) format. Preprocessing steps followed best practices outlined in the current resting state 

literature (Hallquist et al., 2013; Power et al., 2012, 2014). The preprocessing steps included: (1) 
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motion correction and registration to 2mm MNI atlas space; (2) mode 1k normalization; (3) 

temporal band-pass filtering (0.009 Hz < f < 0.08 Hz); (4) demeaning and detrending of fMRI 

data; (5) regression of band-pass filtered nuisance signals including six directions of motion plus 

their derivatives, cerebral spinal fluid, white matter, and whole brain signal; (6) and spatial 

smoothing (4mm full width at half maximum). To reduce the reintroduction of noise that occurs 

with multiple transformations, all registration steps were done in one single transform. Similarly, 

all nuisance signal regression and temporal filtering was performed simultaneously (Lindquist et 

al., 2019). 

 Due to the significant negative impact of motion on rs-fcMRI analyses (Power et 

al., 2012, 2014), all functional scans were analyzed for excess motion and only participants that 

passed motion criteria were included in analyses. A framewise displacement (FD) threshold of 

.25mm was used for all datasets, and frames above this threshold were removed. Sections of 

timecourses without at least 5 contiguous frames post-censoring were also removed. At least 5 

minutes of data surviving motion censoring was required for inclusion in all analyses. In an effort 

to mitigate the influence of varied scan lengths across datasets, fully processed scans included for 

all analyses were cropped to the first 5 minutes of post-motion censored data. Resting state scans 

of 5 minutes with a .25mm FD motion censoring threshold allowed us to include the largest number 

of participants across all datasets, while adhering to suggestions of minimum acceptable scan time 

(Birn et al., 2013; Whitlow et al., 2011) and an acceptable threshold of head motion (Power et al., 

2012, 2014). All scans underwent quality assurance and visual inspection. Any scans that did not 

successfully align to the MNI atlas, included motion or acquisition artifacts, or did not pass 

minimum scan length and motion criteria were not included in analyses. 
 
rs-fcMRI Feature Selection: 

Features used for SVM classification were chosen from functional connections derived 

from a pre-defined set of 264 ROIs (Power et al., 2011). Due to inconsistent scan coverage of the 
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cerebellum across participants, a reduced set of 255 non-cerebellar ROIs was used. Resting state 

timecourses for each participant were extracted from each ROI (Study 1, Figure 1a). To create the 

feature mask used by the SVM classifier, each 5-minute timecourse from the training set was 

divided into 20-second segments (15 total segments) and one pairwise correlation matrix between 

all 255 ROIs was created for each segment of resting state timecourse (Study 1, Figure 1b). The 

correlation matrix was then masked to retain only off-diagonal correlation values and was 

converted into a vector comprised of 32,385 unique correlations for each segment. The segment 

vectors were then used for ANOVA feature selection (Study 1, Figure 1c) in which the top 5% 

most variable correlations (1,619) -- representing functional connections -- were retained. The 

resulting feature mask was then applied to the full 5-minute resting state timecourse for each 

individual during the SVM classifier steps (Study 1, Figure 1d). The classifier was trained on the 

same training set used for feature selection, and the held-out datasets (repeat scans for individuals 

or co-twin scans) were used to test the classifier’s accuracy using leave-one-group out cross-

validation (see details below).  

ANOVA feature selection was set at 5% (the default setting for scikit-learn’s (Pedregosa 

et al., 2011) ANOVA feature selection function) as this default is derived from the traditional 

minimal p-value threshold for significance tests. Additionally, we conducted a post-hoc 

examination of the influence of ANOVA thresholds from 1% to 100% to ensure that the a priori 

5% threshold was not uniquely driving our results. We used the same classifier methods as used 

in the main analyses, but tested all feature selection thresholds from 1% to 100%. All ANOVA 

feature selection thresholds provided accuracies above chance for all of our sub-groups. However, 

accuracies did peak around the 5-10% range for each group and flattened out before eventually 

declining (Study 1, Figure S1). Lower scores at percentages below 5% suggest that too few features 

did not provide the classifier ample information for identification. Alternatively, percentages 
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nearing 100% may include “noise” which reduces classifier accuracy. We thus found that our 5% 

feature selection setting choice did not uniquely drive our results.  

Similarly, segmenting the full resting state timecourse during feature selection provided a 

more accurate characterization of functional connectivity that is washed out using the full 5-minute 

timecourse. We tested feature selection segment lengths ranging from a single TR to one-half of 

the entire 5-minute timecourse. A reduction of accuracy scores was observed as segment lengths 

increased, with feature selection including the full 5-minute timecourse producing the lowest 

classifier performance in all groups. A segment length of 20-seconds was chosen as it identifies a 

set of connections that are highly discriminating between scan-pairs, provides sufficient samples 

for ANOVA feature selection, and still adheres to the findings of previous literature addressing 

the minimal segment length that is needed to capture the resting state functional network structure 

(Birn et al., 2013; Whitlow et al., 2011).  

Quantification and Statistical Analyses 
Support Vector Machine Classification: 

We used scikit-learn (Pedregosa et al., 2011) to train and test a multi-label classifier for 

each group, using the rs-fcMRI features chosen during the training step. Prediction accuracy was 

measured using a SVM classifier and a leave-one-group-out cross-validation scheme. Scan pair 

classification was achieved with the following steps: (1) Participant scans were organized into two 

sets: The first set contained one 5-minute scan from each participant and the second set contained 

either a 5-minute scan of that same participant collected at a different time, or a sibling’s scan. 

Thus, for classifying individuals with repeated scans, this included one set of first-visit scans and 

one set of second-visit scans. For twin pairs, one set was twin A’s scan and the other set was twin 

B’s scan. (2) The first set of scans was then used for feature selection and classifier training, and 

the second set of scans (held-out data) was used for classifier testing. (3) A prediction accuracy 

score was calculated for each participant or sibling pair and represented the ratio of correct 
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predictions that were made to the total number of predictions, thus quantifying how accurately the 

classifier could label each scan in the testing set, based off the data in the training set. (4) This 

procedure was then repeated for a cross-validation “fold”, where the training/testing scans within 

sets were swapped. During cross-validation, the second set of scans was used for the feature 

selection and training steps, and the first set was used for the testing step. (5) In order to address 

influences on classifier accuracy due to arbitrary grouping of training and testing scan sets, we 

applied a form of scan-set shuffling to the classification procedure. The feature selection and 

classification steps (steps 1-4) were run one-thousand times per group while altering which 

individual’s scan was placed in the training set vs the testing set, without shuffling the classifier 

labels (keeping all participant pair labels correct and intact). In this design, the order of scans did 

not matter, only that each individual (or twin pair) provides one unique scan in the training set and 

the other in the testing set. For example, the training set could include all A scans [1A, 2A, 3A…] 

and the testing set all B scans [1B, 2B, 3B…]. In the next iteration, one or more scan pair’s 

assignment may swap between training [1A, 2B, 3A…] and testing [1B, 2A, 3B…], but all scan 

pairs are represented only once in each set and the pair labels remain correct. Additionally, no 

combination of scan pairs was used more than once. Prediction accuracy scores across all scan-set 

shuffles and folds were then averaged to provide a mean group prediction accuracy score. (6) To 

quantify whether group classifier performance was above chance, one thousand randomized 

permutations were conducted for each of the one thousand tests in step 5. In this step the labels in 

the training and testing sets were shuffled (labels were no longer assigned to the correct scan pairs) 

and classification accuracy was re-calculated. This resulted in a distribution of one million chance 

accuracy scores. To assess the significance of the group prediction accuracy score, we calculated 

p-values as the proportion of chance distribution accuracies that were above the mean group 

accuracy score. This was achieved by dividing the number of randomized accuracy scores that 

were greater than our group accuracy score by the number of permutations. (7) Lastly, we assessed 
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classifier sensitivity by calculating area under the receiver operating characteristic curve (AUC) 

values for each scan pair within all subgroups.  
 
Functional Fingerprint Mapping: 

We examined the specific functional connections that were most different between 

individuals by identifying connections repeatedly chosen during feature selection across folds and 

subgroups. Each subgroup’s main SVM classifier provided us with two folds, each containing a 

list of functional connections chosen as features. A matrix was created that tallied the number of 

times a functional connection was chosen as a feature across folds, which we refer to as a “fold-

rank” matrix. Each of these subgroup fold-rank matrices were summed into one pediatric and one 

adult group matrix that were calculated from the three main subgroups in each age range 

(excluding the same-sex sibling UT comparison group, as some overlap in sibling pairs existed 

with the pediatric DZ twin group). The final pediatric (Study 1, Figure S2) and adult (Study 1, 

Figure S3) fold-rank matrices each contained values ranging from zero to six, and a threshold of 

five was applied for our final selection of features for each group. Additionally, one “common set” 

rank matrix was created that combined chosen features across all six pediatric and adult subgroups 

(Study 1, Figure S4). The common set matrix differs from the fold matrix, in that it is binary, and 

a connection chosen as a feature for either fold of a subgroup is given a value of one. The resulting 

matrix included values ranging from zero to six, after summing across all subgroups. We applied 

a threshold of six to the common set matrix, representing connections chosen as features for at 

least one fold in all six main subgroups. 
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STUDY 2 SUPPLEMENT 

Supplemental Figures 
Study 2, Figure S1: Post Motion Scan Time and Graph Metrics Correlations 

 
Note: (A) Distribution of resting state scan time, per collection group, after motion censoring at .25 framewise displacement 
(FD). (B) Correlation of graph metric values calculated from all available resting state data, for all participants in the main 
analysis group (n = 567). Characteristic Path Length (CPL) and Betweenness Centrality (BC) were highly correlated (r = 0.98) 
and BC was not reported in our main findings. (GE = Global Efficiency, RCC = Rich-Club Coefficient) 
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STUDY 3 SUPPLEMENT 

Supplemental Figures 
Study 3, Figure S1: Post Motion Scan Time and Hub Cluster Participant Distribution  

 
Note: (A) Distribution of resting state scan time, per collection group, after motion censoring at .25 framewise displacement 
(FD). (B) Correlation matrix of hub connectivity profiles, ordered by Louvain cluster assignment. Participant hubs are color-
coded according to their fMRI collection of origin. Group 1 displayed here, but groups 2 and 3 had similar distributions across 
clusters. (Cyan = UT Austin One; Yellow = UT Austin Two; Red = ABCD) 
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