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Habitat Preferences 
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Supervisors:  Daniel Bolnick and Mark Kirkpatrick 

 
The speciation process is often viewed to start from panmictic populations. 

Understanding the evolutionary mechanisms that cause populations to deviate from 
panmixia is essential to understanding the initial stage of population divergence that may 
lead to speciation.  My dissertation focuses on the evolution of two mechanisms that 
cause deviation from panmixia: assortative mating and divergent habitat preferences. The 
first chapter is a meta-analysis on published measures of the strength of assortative 
mating within natural animal populations. Results showed that deviation from panmixia 
via weak positive assortative mating was typical within natural animal populations, while 
disassortative mating was rare or absent. Results also suggested that assortative mating 
did not typically evolve adaptively, but instead as an incidental consequence of other 
mechanisms, such as spatial segregation. Divergent habitat uses are important drivers of 
spatial segregation. The second chapter revealed a behavioral mechanism of divergent 
habitat uses between parapatric lake and stream threespine stickleback populations. The 
results showed strong divergent rheotaxis between lake and stream fish during their 
breeding season. The divergence is likely to contribute to the sorting of lake and stream 
fish into their natal habitats and promote habitat-based assortative mating. The third 
chapter focused on the neuroanatomical and morphological mechanisms of rheotaxis. 
Results showed significant correlations between the numbers of neuromasts (functional 
units of the lateral line) and rheotaxis in both lab-reared and wild-caught threespine 
stickleback. Results also showed heritable divergence in lateral line structure between 
parapatric lake and stream stickleback, suggesting that divergent rheotaxis and the 
resulting divergent habitat uses are likely to have a heritable component. In summary, my 
dissertation revealed ultimate evolutionary mechanisms of assortative mating and 
proximate evolutionary mechanisms of divergent habitat uses. These results shed light on 
the understanding of the beginning of population divergence and ultimately speciation. 

 



 vii 

Table of Contents 

List of Tables ......................................................................................................... ix	
  

List of Figures ....................................................................................................... xii	
  

Chapter 1:  Assortative Mating In Animals .............................................................1	
  
Abstract ...........................................................................................................1	
  
Introduction .....................................................................................................1	
  
Methods...........................................................................................................5	
  
Results ...........................................................................................................11	
  
Discussion .....................................................................................................21	
  

Chapter 2:  Divergent Rheotaxis Contributes to Divergent Habitat Uses Between 
Parapatric Lake and Stream Threespine Stickleback ....................................32	
  
Abstract .........................................................................................................32	
  
Introduction ...................................................................................................33	
  
Methods.........................................................................................................36	
  
Results ...........................................................................................................46	
  
Discussion .....................................................................................................55	
  

Chapter 3:  Phenotype-dependent Rheotactic Behavior in Lake and Stream 
Threespine Stickleback .................................................................................60	
  
Abstract .........................................................................................................60	
  
Introduction ...................................................................................................61	
  
Methods.........................................................................................................66	
  
Results ...........................................................................................................76	
  
Discussion .....................................................................................................89	
  

Appendices .............................................................................................................96	
  
Appendix A ...................................................................................................96	
  
Appendix B ...................................................................................................99	
  
Appendix C .................................................................................................103	
  
Appendix D .................................................................................................109	
  



 viii 

Appendix E .................................................................................................112	
  

Bibliography ........................................................................................................123	
  



 ix 

List of Tables 

Table 1.1: 	
   Summary of database by taxon and trait category ............................12	
  

Table 1.2: 	
   Strengths of assortment by different subsets and classifications of the 

data. ...................................................................................................16	
  

Table 2.1:	
    Wilcoxon rank-sum test statistics and P values of pairwise comparisons 

between populations for four measures of rheotaxis ........................52	
  

Table 2.2:	
   Within each population, test statistics and P values for comparing each of 

the four measures of rheotaxis between currents versus still water or a 

random expectation ...........................................................................53	
  

Table 3.1:	
   A summary of major contributing variables of each of the significant 

CCA results with interpretations .......................................................82	
  

Table 3.2:	
   Number of Neuromasts in all 12 lateral lines for both wild-caught and 

lab-reared common-garden lake and stream stickleback and the two-

tailed p values of Wilcoxon rank-sum tests for lake-stream comparisons

...........................................................................................................85	
  

Table A1:	
   Keyword combinations used in literature search and the number of 

relevant publications identified .........................................................97	
  

Table A2: 	
   Trait categories used in the meta-analysis, giving the specific traits 

included in each category ..................................................................98	
  

Table B1: 	
   The strength of assortative mating by taxon .....................................99	
  

Table B2:	
   The strength of assortment by trait category ....................................100	
  

Table B3:	
   Strengths of assortment for size and structural characters by taxon 101	
  

Table B4:	
   The strength of assortative mating by trait category within the two major 

taxa ..................................................................................................102	
  



 x 
 

Table E1:	
    Canonical solution for lateral lines predicting rheotactic behavior for 

each of the three canonical functions separately in control group wild-

caught lake and stream fish prior to the breeding season ...............113	
  

Table E2:	
   Canonical solution for lateral lines predicting rheotactic behavior for each 

of the three canonical functions separately in lab-reared lake and stream 

fish prior to the breeding season .....................................................114	
  

Table E3:	
    Canonical solution for body size predicting rheotactic behavior for each 

of the four canonical functions in non-breeding wild-caught lake and 

stream fish .......................................................................................115	
  

Table E4:	
   Canonical solution for pectoral fin size predicting rheotactic behavior for 

both canonical functions in non-breeding wild-caught lake and stream 

fish ..................................................................................................115	
  

Table E5: 	
   Canonical solution for body shape predicting rheotactic behavior for the 

two canonical functions in non-breeding wild-caught lake and stream 

fish ..................................................................................................116	
  

Table E6:	
    Canonical solution for body shape predicting rheotactic behavior for 

each of the four canonical functions in lateral-line-ablated lake and 

stream fish prior to the breeding season .........................................117	
  

Table E7: 	
   Canonical solution for body size predicting rheotactic behavior for each 

of the four canonical functions in lateral-line-ablated lake and stream 

fish ..................................................................................................118	
  

Table E8: 	
   Canonical solution for pectoral fin size predicting rheotactic behavior for 

the two canonical functions in lateral-line-ablated lake and stream fish.

.........................................................................................................119	
  



 xi 

Table E9:	
    Canonical solution for pectoral fin size predicting rheotactic behavior for 

both canonical functions in non-breeding lab-reared lake and stream fish

.........................................................................................................119	
  

Table E10:	
    Canonical solution for body size predicting rheotactic behavior for each 

of the four canonical functions in non-breeding lab-reared lake and 

stream fish .......................................................................................120	
  

Table E11:	
    Canonical solution for body shape predicting rheotactic behavior for 

each of the four canonical functions in non-breeding lab-reared lake and 

stream fish .......................................................................................121	
  

Table E12: 	
   Canonical solution for pectoral fin size predicting rheotactic behavior for 

both canonical functions in wild-caught breeding lake and stream fish

 121	
  

Table E13:	
   Canonical solution for body size predicting rheotactic behavior for each 

of the four canonical functions in wild-caught breeding lake and stream 

fish ..................................................................................................122	
  

Table E14: 	
   Canonical solution for body shape predicting rheotactic behavior for 

each of the four canonical functions in wild-caught breeding lake and 

stream fish .......................................................................................122	
  



 xii 

List of Figures 

Figure 1.1: 	
   Histogram of the strengths of assortment for 1116 published empirical 

estimates ............................................................................................13	
  

Figure 1.2:	
   Estimate of the underlying distribution for the true strength of 

assortment for species-trait combinations. ........................................14	
  

Figure 1.3:	
    Comparison among taxa of the strengths of assortment, r ..............18	
  

Figure 1.4:	
   Comparison among trait categories of the strengths of assortment, r. 

“S.C.” refers to structural characters .................................................19	
  

Figure 1.5: Funnel plot of species-trait mean, 𝑟, versus sample size .....................21	
  

Figure 2.1:	
   An overhead schematic of the circular flow tank illustrated with counter-

clockwise currents .............................................................................38	
  

Figure 2.2:	
   An isometric schematic of the dispersal tunnel ................................44	
  

Figure 2.3:	
   A side-by-side comparison of the net displacement (in meter) of all 

study populations in current trials and still-water trials ....................47	
  

Figure 2.4:	
   A side-by-side comparison of the cumulative upstream movement (in 

meter) of all study populations in current trials and still-water trials48	
  

Figure 2.5:	
   A side-by-side comparison of the upstream orientation of all study 

populations in current trials and still-water trials .............................49	
  

Figure 2.6:	
   A side-by-side comparison of the flow regime of all study populations in 

current trials and still-water trials .....................................................50	
  

Figure 3.1:	
   The lateral lines of threespine stickleback. .......................................64	
  

Figure 3.2:	
   An overhead schematic of the circular flow tank .............................68	
  



 xiii 

Figure 3.3:	
    A side-by-side comparison of the rheotactic behavior of wild-caught 

non-breeding lake and stream stickleback and their counterparts with 

lateral-line ablated .............................................................................78	
  

Figure 3.4:	
   Helio plots of structural coefficients .................................................80	
  

Figure 3.5:	
    Helio plot of structural coefficients of the first canonical function 

predicting rheotactic behavior using pectoral fin size in A) non-breeding 

lab-reared fish and B) wild-caught breeding fish .............................87	
  

Figure C1: 	
   Spline contour plots of the deviation (measured by K) between the 

simulated and empirical distributions of  estimates ........................107	
  

 



 1 

Chapter 1:  Assortative Mating In Animals1 

ABSTRACT 

Assortative mating occurs when there is a correlation (positive or negative) 

between male and female phenotypes or genotypes across mated pairs. To determine the 

typical strength and direction of assortative mating in animals, we carried out a meta-

analysis of published measures of assortative mating for a variety of phenotypic and 

genotypic traits in a diverse set of animal taxa. We focused on the strength of assortment 

within populations, excluding reproductively isolated populations and species. We 

collected 1116 published correlations between mated pairs from 254 species (360 unique 

species-trait combinations) in five phyla. The mean correlation between mates was 0.28, 

showing an overall tendency towards positive assortative mating within populations. 

Although 19% of the correlations were negative, simulations suggest that these could 

represent type I error and that negative assortative mating may be rare. We also find 

significant differences in the strength of assortment among major taxonomic groups and 

among trait categories. We discuss various possible reasons for the evolution of 

assortative mating and its implications for speciation. 

INTRODUCTION 

Assortative mating is used to describe a variety of patterns of non-random mating. 

In the speciation literature, assortative mating is treated as a mechanism of premating 

reproductive isolation between distinct species or divergent populations (Johannesson et 

al. 1995; Seehausen et al. 1997; Coyne and Orr 2004). In the behavioral literature, 

assortative mating has been used to describe a particular form of mate choice in which 
                                                
1Published as: Jiang, Y., Bolnick, D. I., & Kirkpatrick, M. (2013). Assortative mating in animals. American 
Naturalist, 181(6), E125–38. Author Contributions: Kirkpatrick, Bolnick and Jiang developed the 
conceptual aspects of this study. Jiang conducted the research and wrote the manuscript. Bolnick and 
Kirkpatrick edited the manuscript. 
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individuals select mates on the basis of phenotypic similarity to themselves (Crespi 1989; 

Harari et al. 1999; Shine et al. 2001). More generally, assortative mating can be defined 

as a pattern of non-random mating, without making specific assumptions regarding its 

behavioral mechanism or evolutionary role (Lewontin et al. 1968; Kondrashov and Shpak 

1998). Adopting this general view, assortative mating can be measured as a correlation 

between the values of a homologous phenotypic or genotypic trait across members of 

mated pairs (Wright 1921; Lipsey and Wilson 2001; Redden and Allison 2006). 

Assortative mating may be either positive, implying a tendency to mate with 

phenotypically similar individuals, or negative (also called disassortative) implying the 

converse (Partridge 1983; Hooper and Miller 2008). There are many empirical examples 

of both positive and negative assortative mating (Johnston and Johnson 1989; Follett et 

al. 2007; Pryke and Griffth 2007; Lu et al. 2009), but it remains unclear what the 

distribution of the strength of assortative mating is in nature, especially whether there is a 

systematic tendency towards assortment, random mating, or disassortment.  

Assortative mating has several important evolutionary consequences. Positive 

assortment increases homozygosity within loci, promotes linkage disequilibrium between 

loci, and consequently inflates the variance of quantitative traits (Lynch and Walsh 

1998). The resulting deviations from Hardy-Weinberg equilibrium can cause statistical 

biases in association mapping studies (Redden and Allison 2006) and estimates of 

quantitative genetic parameters (Gimelfarb 1986). Assortative mating also plays a key 

role in speciation, contributing to premating isolation between phenotypically divergent 

populations (Felsenstein 1981; Kondrashov and Shpak 1998; Coyne and Orr 2004; 

Bolnick and Kirkpatrick 2012). In models of adaptive speciation, reproductive isolation 

via positive assortative mating evolves in response to disruptive selection (Kirkpatrick 

2000; Dieckmann et al. 2004; Gavrilets 2004; Bank et al. 2011). Assortment is 



 3 

hypothesized to reduce the production of less fit phenotypically intermediate offspring. 

Conversely, stabilizing selection favors the evolution of disassortative mating, which 

reduces the production of less fit phenotypic extremes (Kondrashov and Shpak 1998; 

Kirkpatrick and Ravigné 2002). Disassortative mating also increases heterozygosity, 

decreases inbreeding depression (Waser 1993; Pusey and Wolf 1996), and can facilitate 

the maintenance of sexually antagonistic variation (Arnqvist 2011). Given these 

multifarious evolutionary effects of assortative mating, it would be valuable to know the 

distribution of its strength in natural populations, as well as its evolutionary origins. 

Two general hypotheses could explain the occurrence of assortative mating. The 

first asserts that the strength of assortative mating evolves adaptively in response to direct 

or indirect selection on mating preferences. Selection can act directly on mate choice if 

fitness depends on the similarity of mated pairs. For example, conjugation in the marine 

nudibranch Chromodoris zebra is facilitated when the partners are of similar size (Crozier 

1917; Crozier 1918). Alternatively, assortative mating can affect the fitness of a pair’s 

offspring, resulting in indirect selection on the parents’ mating behavior. For example, 

Heliconius butterflies that mate assortatively based on mimetic color patterns avoid 

producing offspring with maladaptive patterns (Chamberlain et al. 2009). More generally, 

disruptive selection will indirectly favor the evolution of positive assortative mating to 

avoid producing less fit offspring; conversely, stabilizing selection will favor negative 

assortment (Dieckmann and Doebeli 1999; Kirkpatrick and Ravigné 2002; Gavrilets 

2004; De Cara et al. 2008; Otto et al. 2008). For similar reasons, assortative mating can 

evolve in response to inbreeding or outbreeding depression (Epinat and Lenormand 

2009). Regardless of the type of selection involved, assortment can result from mutual 

mate choice or by the behavior of only males or females (McNamara and Collins 1990).  
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Under the second general hypothesis, assortative mating is an incidental 

consequence of temporal, mechanical, and physiological constraints. In this case, 

assortment may be neutral, selectively favored, or even deleterious. Several kinds of 

mechanisms may contribute to these constraints, such as temporal segregation, spatial 

segregation, intrasexual competition and intersexual conflict (see Discussion for details; 

Crespi 1989; Arnqvist et al. 1996; Cézilly 2004). Quantifying the direction and strength 

of assortative mating may shed light on the prevalence of adaptive and incidental 

assortative mating, a point to which we return in the Discussion. 

Knowledge about patterns of assortment in nature could also be useful in 

developing more realistic models of speciation. Models have shown how assortative 

mating can lead to sympatric speciation (Udovic 1980; Felsenstein 1981; Doebeli 1996) 

and influence the outcome of secondary contact (Kondrashov and Shpak 1998; 

Kirkpatrick 2000; Bolnick and Kirkpatrick 2012). Unfortunately, such models have 

generally not been parameterized with empirical data, with a few exceptions (Gavrilets 

and Vose 2007; Gavrilets et al. 2007; Duenez-Guzman et al. 2009; Sadedin et al. 2009). 

The typical assumption is that populations initially exhibit random mating, but this may 

not be empirically justified. Meta-analysis can determine the distribution of assortment 

within populations, which can be treated as a range of biologically realistic initial 

conditions in future models. 

Despite these needs for an overview of the strength and direction of assortative 

mating, no comprehensive review currently exists. Many studies focus on a single species 

or clade, and are typically based on a single phenotypic trait (Olson et al. 1986; Arnqvist 

et al. 1996; Bernstein and Bernstein 2003; Cézilly 2004; Roulin 2004; Wogel et al. 2005). 

It is therefore unclear what general patterns might exist regarding the strength of 

assortative mating in animal populations. Outstanding questions include: What is the 
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distribution of the strength of assortative mating, how frequent is negative versus positive 

assortative mating, are there differences in the strengths of assortment among taxa and 

among different kinds of phenotypic traits, and are the data consistent with the hypothesis 

that assortment evolves adaptively in response to indirect effects of stabilizing and 

disruptive selection? Here we address these questions using a meta-analysis of the 

strength of assortative mating across diverse taxa of animals based on a variety of 

assortment traits.  

METHODS 

We conducted a mixed-model meta-analysis of assortative mating based on 

phenotypic traits within natural animal populations. As our measure for the strength of 

assortative mating, we used the correlation coefficient for the values of a homologous 

trait in mated pairs. This statistic is appropriate for a meta-analysis because it is a natural 

measure of effect size that quantifies the magnitude and direction of assortative mating, 

in a manner comparable across diverse published studies (Lipsey and Wilson 2001). For 

studies that report other effect size metrics (F statistics, χ2 statistics, t statistics, or 

appropriate descriptive data), we converted these into correlation coefficients using 

standard methods (Hedges et al. 1985; Cook 1994). 

Literature search 

We searched for publications reporting suitable measures of assortative mating, 

using keywords searches in multiple databases, including Google Scholar, JSTOR and 

Web of Science. We also examined the reference sections of relevant publications to find 

additional studies. To minimize the risk of bias in effect direction, for each keyword 

search term we also searched for its antonym when possible, for instance searching for 

both "assortative" and "disassortative". Appendix A gives details of our search methods, 
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including keywords and criteria for including studies in our database. Online 

Supplementary Material gives a full list of studies included in our final database.   

We excluded studies of assortative mating between incipient species, populations 

undergoing secondary contact or other forms of hybridization, host races, as well as 

populations whose conspecific status is ambiguous. Our focus is on the strength of 

assortment within single populations, rather than reproductive isolation between 

divergent populations or incipient species. By focusing on within-population assortment, 

we are documenting the strength of a potentially important population genetic process, 

and the range of reasonable initial conditions preceding any steps towards speciation. 

There is an important pragmatic reason to exclude assortment between highly diverged 

populations: those situations arguably encompass cases of perfect assortment, which then 

includes all pairs of species on the planet that do not interbreed. In judging whether to 

exclude case studies from our dataset, we relied on the taxonomic status of taxa described 

by the publication providing relevant assortment data. In cases where no information was 

provided, we used a Google Scholar search to check the taxonomic status in recent 

published descriptions. Plants are not included in our study simply because too few 

studies reported appropriate effect size statistics. We did not include humans because 

strong cultural influences and substantial recent admixture make human assortative 

mating hard to compare with other species (Spuhler 1968; Merikangas 1982; Wolański 

1994; Courtiol et al. 2010).  

We reviewed more than 13,000 publications. While the search was thorough, it is 

certain that there are publications that our search did not find. However, an exhaustive 

search is not necessary for meta-analysis, which is fundamentally a sampling activity 

intended to retrieve studies that are representative of the question of interest. Thus, a 

meta-analysis can yield accurate results if it is an unbiased sample from a large and 
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representative literature. Conversely, exhaustive samples of the relevant publications are 

not guaranteed to be representative, due to publication or reporting bias (Cooper et al. 

2009).  

Data collection 

For each study, we recorded the scientific name of the focal species, the trait that 

is subject to assortative mating, the correlation coefficient or other metric of effect size 

that could be converted into a correlation coefficient, the statistical significance of 

reported metric, and the sample size (number of mated pairs). We divided the species into 

eleven commonly represented taxonomic groups (amphibians, annelids, birds, 

chelicerates, crustaceans, fishes, gastropods, insects, mammals, protists, and reptiles) and 

into five phyla (annelids, arthropods, chordates, ciliophores, and mollusks). Assortment 

traits were divided into ten general trait categories (defined in Table A2). We also 

recorded whether the focal trait is reported as a categorical trait or a continuous trait. 

Note that a trait may be listed as categorical either because it takes discrete values, or 

because the researchers divided a continuous trait into discrete categories (e.g. size or age 

class). The database used for meta-analysis is available on Dryad. 

For some combinations of species and trait categories, we found more than one 

estimate for the correlation of mated pairs, for instance if the correlation was measured in 

multiple years or within each of multiple populations. To avoid pseudoreplication, we 

calculated a weighted mean correlation coefficient for each combination of species and 

trait category, where the weight is the square root of the sample size. We refer to these 

values as “species-trait means”, and denote them as 𝑟. The sample size associated with 

each species-trait mean, which we denote as N, is the sum of sample sizes of the 

amalgamated studies for a given species-trait combination (Borenstein et al. 2009). (We 

found that using the average sample size of amalgamated studies produces very similar 
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results.) Note that some pseudoreplication remains because traits within a species are 

phenotypically correlated, and related species can have similar breeding systems because 

of shared phylogenetic history. Unfortunately, the data are not adequate to eliminate these 

associations, and we return to this issue in the Discussion. We did not calculate means 

using Fisher’s z-transform because that can lead to positive bias (Hunter and Schmidt 

2004; Cooper et al. 2009). The meta-analysis was performed based on the species-trait 

means, and so each combination of species and trait category therefore appears only once 

in our analyses. We did not average the assortment strengths for different trait categories 

within a given species, because the strength of assortment is likely to vary across trait 

categories. 

Meta analysis 

To summarize the strengths of assortment across taxa and trait categories, we 

used the weighted average of the species-trait means, where the weight assigned to each 

species-trait mean effect is the reciprocal of its sampling variance v (Borenstein et. al 

2009; Viechtbauer 2010): 

v =
1− r 2( )

2

N −1 . 

We used restricted maximum-likelihood with a mixed model (Viechtbauer 2010) 

to test if the average of the species-trait means differs from zero, and to test for 

significant variation among factors (taxon, trait category). Each species-trait mean is 

modeled as the sum of a fixed factor that represents the effect of a category (for example, 

taxon or trait category) and a random effect. We report the statistics QM and QE 

(sometimes called Qbet and QW respectively). QM indicates the amount of heterogeneity 

in 𝑟 that is explained by the model (Cooper et al. 2009). A significant QM indicates that 

the strength of assortment differs significantly between the levels of the factor included in 
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the model (e.g., taxon or trait type). QE indicates the amount of residual error 

heterogeneity. A significant QE indicates heterogeneity among observations within 

groups (i.e. taxa and trait categories) not explained by the model (Cooper et al. 2009). All 

analyses were performed in R (R Development Core Team 2009) using the package 

“metafor” (Viechtbauer 2010).   

Meta Estimating the underlying distribution of the strength of assortment 

The estimates for the correlations between mated pairs in our dataset inevitably 

include sampling variance and measurement error. These errors will cause the observed 

distribution of r to have different distribution than the actual underlying distribution of 

correlations in nature. To illustrate this point, imagine a world without negative 

assortative mating. Due to sampling error, some studies of species with positive 

assortative mating will estimate negative values for the correlation between mated pairs, 

and some of these will even be statistically significant (type I error). The frequency of 

negative assortative mating thus is inflated. Similarly, if negative assortative mating were 

the general rule, error would instead inflate the observed frequency of positive assortative 

mating.  

It does not seem possible to correct for this effect precisely. That is because there 

are unknowable sources of measurement error in meta-analyses of diverse studies, and 

because the data are not independent (as the result of phylogenetic relations between 

species and phenotypic correlations between different traits in the same species; see 

Discussion for details). Nevertheless, we used a heuristic approach to estimate the 

underlying distribution of the strength of assortment while accounting for sampling error. 

We began by assuming that the true values of assortment for a given species and 

trait combination, which we denote by r, are drawn from a beta distribution that is 

modified to range from a lower bound of b to an upper bound of 1 (rather than from 0 to 
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1). We fixed the upper bound because as populations progress towards speciation they 

must inevitably approach very strong assortative mating. We let the lower bound vary 

because we have no prior notion about what the smallest value of r in nature might be. 

This distribution is very flexible: for example, it can take a form similar to a normal 

distribution, an exponential distribution, or even a bimodal U-shaped distribution. The 

modified beta distribution is characterized by three parameters: its lower bound b, its 

mean m, and its variance s2. We used simulations to determine what values of these three 

parameters would yield an observed distribution of species-trait means 𝑟 that most 

closely matches our data, given the sample sizes and pseudoreplication in our dataset. 

The result is an estimate for the true underlying distribution of assortment in nature. 

An outline of the algorithm we used follows (further details are given in 

Appendix C). Given values for the three parameters for the modified beta , we randomly 

sampled 360 values of r to represent the species-trait means. Each value of r was then 

paired at random with one of the species-trait combinations in our database. For each of 

these pairings, we determined the number of studies n for that species-trait combination, 

and the sample size 𝑁! for the 𝑖!" study in that combination. We then simulated n 

estimates of the correlation; each estimate was obtained by drawing 𝑁! mated pairs of 

values from a bivariate normal distribution with the given value of r . These simulated 

correlations (corresponding to the individual studies in the data base) were then averaged 

to give a simulated value for a species-trait mean 𝑟 in the same way that we did for the 

real data. This process is repeated for each of the 360 values of r to give a simulated 

distribution of observed species trait means, with realistic sampling error. We calculated 

a measure of how well the simulated distribution matches the observed distribution of 𝑟 

(see Appendix C for details). This was repeated five times for each combination the three 
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parameters for the distribution of r, to identify the combination that gave the best fit to 

the data. 

RESULTS 

Our database contains 1116 measurements of the strength of assortative mating 

from 254 species in five phyla collected from 269 publications (Table 1.1, Online 

Supplementary Material). Our final data set consists of 360 species-trait means. Of those 

values, 89% are positive and 11% negative (80% and 19% respectively in the 1116 raw 

estimates). Birds, insects, crustaceans, and amphibians are better represented than other 

taxonomic groups (Table 1.1 and Online Supplementary Material). At the level of 

phylum, arthropods and chordates (46% and 52% of the raw estimates respectively) 

together represent almost all of the dataset. These studies measured assortment on a wide 

variety of traits (102 different traits; Table A2). A majority of these fall into three trait 

categories: size (47% of the raw estimates), structural characters that are not a direct 

measure of overall body size (30% of the raw estimates), and visual signals that are 

mostly measures of color, pattern, and sexually selected traits such as crest size (47%, 

30%, and 14% of raw estimates respectively). The complete list of categories and specific 

traits is given in Table 1.1. Note that the measures of individual morphological traits 

frequently covary with body size. Nearly all (95%) of the traits in our databases are 

continuous. 
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Phylum N Taxon N  Trait category N 

Annelida 1 (1) Annelid 1 (1)  Age 35 (25) 

Arthropoda 516 (124) Crustacean 170 (53)  Behavior 1 (1) 

  Chelicerate 10 (3)  Chemical 6 (2) 

  Insect 336 (68)  Condition 49 (24) 

Chordata 584 (226) Amphibian 151(44)  Ecotype 5 (4) 

  Bird 377 (148)  Genotype 10 (4) 

  Fish 45 (27)  Phenology 1 (1) 

  Mammal 2 (2)  Size 521 (191) 

  Reptile 9 (5)  Structural 322 (76) 

Ciliophora 5 (1) Protist 5 (1)  Visual 156 (32) 

Mollusca 10 (8) Gastropod 10 (8)   
Note: N gives the number of raw values from the original studies and (in parentheses) the 
number of species-trait means. Detailed definitions of the trait categories are given in 
Table A2. 

Table 1.1:  Summary of database by taxon and trait category 

Distribution of the strength of assortative mating  

The distributions of assortative mating strength based on raw estimates and 

species-trait means are shown in Figure 1.1. The mean value of r is 0.28 with a 95% 

confidence interval of [0.25, 0.31], based on a random-effect model with no fixed effects 

and species-trait means as the unit of replication. The mean correlation between mated 

pairs in the raw dataset is 0.24. The test for heterogeneity is significant (QE = 91275, d.f. 

= 359, P < .0001), rejecting the hypothesis that all species exhibit a single shared strength 

of assortative mating. Rather, our random effects model estimates the variance of r is 

0.0698 (standard deviation = 0.264).  
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Figure 1.1:  Histogram of the strengths of assortment for 1116 published empirical 
estimates  

The dark grey and light grey areas indicate the number of significant and nonsignificant 
values, respectively, based on the raw correlation coefficients collected from the 
literature. The heavy black line shows the distribution of the strengths of assortment 
based on the species-trait means. The black arrow indicates the weighted mean strengths 
of those values (= 0.28).   

Surprisingly, our simulations of sampling error indicate that the best-fit estimate 

for the underlying distribution of the strength of assortment has no negative assortative 

mating (Figure 1.2). This distribution of r has a minimum value and a mode at b = 0.02, 

and a long positive tail. The mean and variance of this distribution (m = 0.27, s2 = 0.047) 

are close to the values estimated from a random-effects model (mean = 0.28, variance = 

0.0698). The moderate difference in the variance estimates may be due to different 

assumptions about the underlying distribution: the random-effects model assumes a 

normal distribution, while our simulations assumes the modified beta. Simulated datasets 

using the best-fit distribution of r are not significantly different from the observed 
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distribution of r (Kolmogorov-Smirnov test, P ≥ 0.40 for all replicate simulations of the 

optimal parameter combinations).  

 

Figure 1.2: Estimate of the underlying distribution for the true strength of assortment for 
species-trait combinations. 

In Panel A, the best-fit distribution for ρ is shown by the curve, and a realization of 360 
samples from this distribution is shown by the histogram. In Panel B, the simulated 
values for 𝑟 (the species-trait means) that result are shown in dark grey, the observed 
distribution from our dataset are show in light grey, and overlapping regions in middle-
grey. In this realization, the difference between the two distributions is not significant (P 
= 0.673, Kolmogorov-Smirnov test)  

An important conclusion is that it is plausible that most or all published cases of 

negative assortment are a result of type I error, suggesting that negative assortment is 

absent or rare in the species included in our database. Two other observations highlight 

the remarkable goodness of fit between our optimal parameter values (no negative 

assortment) and our data. First, given a fixed mean = 0.28 as estimated in random-effects 
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model, best-fit parameter combination (b = 0, s2 = 0.05) generates 19.2% negative 

estimates, a value that is close to the 19% seen in the observed distribution of r. Second, 

if type I error is indeed responsible for negative estimates, then studies reporting negative 

assortment should tend to have a smaller sample size (and so larger sampling error) than 

those reporting positive assortment. This is true in both the observed and simulated 

databases. In our database, studies reporting negative assortment averaged a sample size 

of 40, compared with 107 for studies reporting positive assortment (Wilcoxon rank sum 

test: P < 0.0001). In simulated datasets using the best-fit distribution of r,  simulated 

negative and positive estimates of r  averaged sample sizes of 49 and 112 respectively (P 

< 0.0001).  

We are not, however, able to reject the hypothesis that the underlying distribution 

r includes negative values. Some distributions of r that include substantial frequencies of 

negative assortment (b > -0.3) yield estimate distributions that are not significantly 

different from the observed distribution (KS tests P > 0.05). However, distributions with 

negative b do not fit the data as well as our optimum. As discussed in the Appendix, 

limits to our method prevent us from putting confidence limits on b, and so it is difficult 

to be make a more quantitative conclusion. The best we can say at present is that there is 

no strong evidence for negative assortment, but that it may well occur. 

Sources of heterogeneity in assortative mating strength 

The average value for species-trait means based on categorical traits (= 0.11) is 

significantly smaller than that based on continuous traits (= 0.29) (Table 1.2). Since 

categorizing continuous data tends to decrease a correlation (Lipsey and Wilson 2001; 

Cooper et al. 2009), it is not clear whether there is an intrinsic difference between 

categorical vs. continuous traits, or whether this effect size difference is an artifact. To 

prevent this uncertainty from biasing our results, only continuous traits are included in 
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the following analysis. We also excluded annelids and protists in the following analysis 

because there is only one example of each.  

 

Data subset or classification r CI QM QE 

Positive assortmenta 0.33 (0.31, 0.36) 626 78047 

Negative assortment -0.18 (-0.26, -
0.10) 

Categorical traitsb 0.11 (0.03, 0.21) 360 78650 

Continuous traits 0.29 (0.26, 0.32) 

Among-Phyla variationc   401 31386 

Among-taxa variationd   539 29367 

Among-trait category variatione   395 36642 

Note: All values for QM and QE are significant at P < 0.0001. CI stands for 95% 
confidence interval. 
a. The Q statistics pertain to the difference between the absolute strength of positive and 
negative assortment. 
b. The Q statistics pertain to the difference between categorical and continuous traits. 
c. Excluding annelids and protists (due to small numbers of species-trait means). 
d. Excluding annelids, protists, chelicerates, mammals, and reptiles (due to small 
numbers of species-trait means). 
e. Excluding trait categories with insufficient data: behavior, ecotype and phenology. 
Also excluding annelids and protists. 

Table 1.2:  Strengths of assortment by different subsets and classifications of the data. 

Mixed-model meta-analyses reveal that the strength of assortative mating differs 

significantly among phyla and lower taxa (Table 1.2). The difference among taxa remains 

robust after excluding underrepresented taxa (chelicerates, mammals, and reptiles). We 

arbitrarily consider an under-represented group to be any group with six or fewer species-

trait means. Increasing the exclusion threshold to eight, and thus excluding gastropods, 
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has minimal impact on our results. The mean value of r is largest in fish (0.55), 

crustaceans (0.46), and chelicerates (0.40), and is smaller in amphibians (0.21) and 

insects (0.21) (Table B1). On average, assortative mating is significantly positive within 

all taxonomic groups (P < 0.01; Figure 1.3) except reptiles and mammals, which have 

small sample sizes. 
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Figure 1.3:  Comparison among taxa of the strengths of assortment, r  

Points show weighted means and horizontal bars show 95% confidence intervals (based 
on species-trait means). Sample sizes are the number of species-trait means. 

The strength of assortative mating also differs significantly among trait 

categories. This result remains robust after excluding underrepresented categories, i.e. 

behavior, ecotype and phenology (Table 1.2). Assortative mating tends to be strongest on 

phenology and ecotype (mean 𝑟 = 0.79 and 0.50 respectively). The species-trait means 

for visual signals, age, and size (mean 𝑟  = 0.34, 0.34, and 0.31 respectively) tend to be 

larger than those for condition and structural characters (mean 𝑟  = 0.26 and 0.21 

respectively) (Table B2). The strength of assortment is significantly positive for all trait 

categories except behavior, chemical traits, and genotype (P < 0.05; Figure 1.4). 
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Figure 1.4: Comparison among trait categories of the strengths of assortment, r. “S.C.” 
refers to structural characters  

Points show weighted means and horizontal bars show 95% confidence intervals (based 
on species-trait means). Sample sizes are the number of species-trait means. 

The tests of between-taxon and between-trait heterogeneity were conducted in 

separate models. It is possible that biologists are more likely to measure assortment based 

on certain traits in certain taxa (e.g., chemical cues in insects). Such biases could 

confound the effects of trait category and taxon. Unfortunately, we are unable to separate 

the effects for these factors using a single multifactorial model, because of the uneven 

sample size across combinations of taxon and trait category. Only two taxa (birds and 

insects) contain sufficient (> 6) species-trait means within each of two or more trait 
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categories. Only two trait categories (size and structural characters) contain sufficient 

sample sizes for more than one taxon. Focusing on these subsets of our data, we found no 

evidence that trait and taxon have confounded effects. We continue to observe significant 

among-taxon heterogeneity within each of two widely measured traits, size and structural 

characters (Table B3). We also observe heterogeneity among trait categories within each 

of two taxa (birds, and insects) that have sufficient sample sizes to let us analyze multiple 

trait categories (Table B4). 

Tests of publication bias 

We detected no evidence of publication bias, towards either positive or negative 

assortative mating, in the complete set of 1116 correlation coefficients. The funnel plot is 

symmetric around mean effect size (linear regression test for asymmetry: P = 0.16, 

corrected for pseudoreplication) and there is no gap in the mouth of the funnel plot 

(Figure 5), suggesting that there is no appreciable publication bias against small effect or 

nonsignificant results. Furthermore, the fail-safe numbers calculated from original data 

and species-trait means are 15,639,977 and 8,171,541 respectively. Thus an implausibly 

large number of missing or unpublished studies with zero effect would be needed to 

reduce the mean strength of assortative mating to zero. We conclude that our dataset, 

while not necessarily an exhaustive compilation of case studies, is likely to yield an 

unbiased estimate of the typical strength and direction of assortative mating.  
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Figure 1.5: Funnel plot of species-trait mean, 𝑟, versus sample size  

The horizontal line indicates the grand mean (0.28). The two dashed curves show critical 
values for the correlation coefficient needed to achieve significance at P < 0.05 at a given 
sample size.  

DISCUSSION 

Our results provide three core insights. First, weak positive assortative mating is 

typical in animals: the mean strength of assortment is 0.28. Second, we found that 

positive assortative mating is observed far more frequently than negative assortative 

mating. Indeed, the rare cases of negative assortative mating are best explained as type I 

error arising from small sample size studies of species with random or weakly positive 

assortative mating. Third, the strength and frequency of assortment differs significantly 

among combinations of species and traits, among taxonomic groups, and among different 

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

5 50 500 5000−1
.0

−0
.5

0.
0

0.
5

1.
0

Sample Size

St
re

ng
th

 o
f A

ss
or

tm
en

t



 22 

types of traits. These conclusions may have implications for adaptation, population 

genetic structure, and speciation. 

Is negative assortative mating real? 

Although assortative mating is predominantly positive, in roughly one tenth of 

species-trait combinations studies estimated negative assortment. Some reports of 

negative assortative mating are statistically significant. However, our simulations, which 

account for the sampling error in the database, suggest that negative assortative mating 

could be rare or absent. A beta distribution in which the true strength of assortment lies 

between 0 and 1 produces a distribution of simulated values for r ̅ that that closely 

matches our dataset (Figure 1.2). Furthermore, the simulations recapitulate, with 

remarkable quantitative accuracy, the proportion of negative values of r ̅ and the tendency 

for those values to come from studies with small sample sizes. Therefore, we conclude 

that the minority of case studies reporting negative assortative mating may be spurious, 

resulting from type I error occurring across many studies.  

However, we emphasize that the analysis we employed does not prove that there 

is no negative assortment. Most importantly, distributions of r that have lower bounds as 

small as b = -0.3 give reasonable fits to the data, albeit not as good a fit as b = 0. As we 

discuss in Appendix C, it does not seem possible to obtain confidence intervals to 

quantify that statement further.  

A number of studies have reported negative assortative mating based on the Major 

Histocompatibility Complex, or MHC (Mays and Hill 2004). These are not included in 

our meta-analysis because the strength of assortment cannot naturally be expressed as a 

correlation. It seems difficult to draw strong and general conclusions about assortment 

based on MHC at this time. While many existing studies give persuasive evidence of 

nonrandom mating, they often do not distinguish between mating based on genetic 



 23 

similarity, which is a form of assortment, from that based on heterozygosity, which is not. 

Among the few studies that do distinguish between these two mechanisms, mixed 

conclusions were drawn (Bonneaud et al. 2006; Beltran et al. 2008). A further limitation 

to our current understanding of assortment based on MHC is that most studies are of just 

two species, mice and humans (Roberts and Petrie 2006). 

How does assortative mating evolve? 

Theory suggests that the strength of assortative mating can evolve adaptively in 

response to stabilizing or disruptive selection (Kondrashov and Shpak 1998; Kirkpatrick 

and Nuismer 2004), though empirical evidence for this claim remains scarce (Rice and 

Hostert 1993; Coyne and Orr 2004). Stabilizing selection is expected to favor negative 

assortment, while disruptive selection favors positive assortment. Many evolutionary 

biologists assume that stabilizing selection is more frequent than disruptive selection 

(Endler 1986). If that is true and if the strength of assortative mating evolves as an 

adaptation to indirect selection, we would then expect negative assortment to dominate. 

This expectation is not supported by our results, which suggest that negative assortment 

is rare or possibly absent. But is the common intuition about the prevalence of stabilizing 

selection correct? Kingsolver et al. (2001) reviewed over 2,500 estimates of the strength 

of phenotypic selection in natural populations, and concluded that disruptive selection 

and stabilizing selection occur at similar frequency and are of similar strength, though 

both are fairly weak. That result implies that positive and negative assortment should 

occur at about the same frequency and strength. Our results convincingly reject this 

expectation as well.  

The results therefore suggest that indirect disruptive or stabilizing selection is not 

the primary force determining the evolution of assortative mating within populations. 

While indirect selection seems likely to drive the evolution of assortative mating in some 
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cases, our results suggest that it is not a general explanation. An adaptationist explanation 

of assortative mating would instead have to invoke direct selection favoring trait-matched 

mate pairs. Examples of such direct selection do exist (Dekkers 1994), but are less widely 

documented. 

An alternative possibility is that assortative mating is typically not adaptive, but 

rather arises as an incidental consequence of other aspects of the mating system. There 

are at least three proximate mechanisms that could drive the evolution of the strength of 

assortative mating under the non-adaptive hypothesis (Crespi 1989; Arnqvist et al. 1996; 

Cézilly 2004). The first mechanism is allochronic isolation (Waser 1993; Helfenstein et 

al. 2004; Weis 2005; Weis et al. 2005). For example, temporal segregation caused by 

different arrival dates causes two populations of European blackcaps (Sylvia atricapilla) 

to mate assortatively at a sympatric breeding site (Bearhop et al. 2005). Two analogous 

processes can also generate assortment. In monogamous species with indeterminate 

growth, such as seahorses, if young and small individuals form pair bonds, and they grow 

larger together, there will tend to be a correlation in body size between mates (Jones et al. 

2003). Similarly, a combination of age-specific access to reproduction and strong mate 

fidelity can generate age-assortative mating in socially monogamous bird species (but see 

Cézilly and Johnson 1995). 

A second mechanism of incidental assortment arises from spatial segregation, 

when there is covariance between a phenotype and the habitat in which individuals mate, 

which increases the probability of encountering phenotypically similar candidate mates 

(Snowberg and Bolnick 2008). This results when individuals have matching habitat 

preferences (Edelaar et al. 2008), such as in insect host races that mate on their host 

plants (Drès and Mallet 2002; Malausa et al. 2005), or when there are phenotypic clines 

(Edelaar et al. 2008). Roulin (2004) pointed out that birds with similar plumage color 
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tend to occur in the same habitat, and this co-occurrence can cause assortative mating. 

Similarly, in insects and crustaceans that exhibit spatial variation in body size, assortment 

can simply arise as a side effect of spatial segregation of individuals with different 

phenotypes, even when mating within a patch is random (Birkhead and Clarkson 1980; 

Crespi 1989; Dick and Elwood 1996; Bollache et al. 2000; Bernstein and Bernstein 

2003). Assortative mating arising from these causes, while not an adaptation in and of 

itself, may still be a key factor facilitating ecological speciation. 

Third, assortment can arise as a by-product of intrasexual competition and 

intersexual conflict (Crespi 1989; Cézilly 2004; Henry 2008). For example, when larger 

females are more fecund, selection favors male preferences for larger partners (Salthe and 

Duellman 1973; Kuramoto 1978; Bastos and Haddad 1996). If large males are more 

successful in courting or defending these females, competitively inferior males end up 

mating with the remaining less favored females, resulting in positive size assortative 

mating (Arak 1983; Hume et al. 2002; Wogel et al. 2005). In other cases, large females 

are more able to resist aggressive male courtship attempts, and only the largest males are 

able to mate them (Arak 1983), resulting in positive assortment. When one sex exhibits 

mate choice, as when larger females prefer larger males, a positive correlation between 

mates can result even if smaller females mate randomly, a phenomenon some call 

“apparent assortative mating” (Arnqvist et al. 1996). Assortment resulting from 

intrasexual selection is commonly documented in anurans (Arak 1983; Wogel et al. 2005) 

and crustaceans (McLain and Boromisa 1987; Crespi 1989; Bollache and Cézilly 2004). 

Various intensities of intersexual competition and/or intersexual conflict among 

populations of the same species or in one population at different times may incidentally 

lead to substantial variation in the strength of assortment (McLain 1982; McLain and 

Boromisa 1987; Bernstein and Bernstein 1999; Harari et al. 1999). For example, 
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assortative mating is stronger under high population density in milkweed longhorn beetle 

Tetraopes tetraophthalmus because at high density large males are more likely to interfere 

with small males’ copulation with large females (McLain and Boromisa 1987).  

Clearly, assortative mating evolves adaptively in some cases. Examples include 

positive assortative mating based on heterozygosity in the lesser kestrel (Falco naumanni) 

and on MHC diversity in house sparrows (Passer domesticus, Bonneaud et al. 2006; 

Ortego et al. 2009), and disassortative mating in human and mice (Mus musculus) based 

on MHC alleles (Yamazaki et al. 1976; Wedekind et al. 1995). We do not suggest that 

disruptive or stabilizing selection never drives the evolution of assortative mating. 

Rather, our results suggest that this indirect selection for adaptive assortative mating may 

be the exception rather than the rule.  

Assortative mating and speciation 

 Theory shows that assortative mating could be important to speciation in two 

contexts. It can cause a single population to split into two, resulting in sympatric 

speciation (Maynard Smith 1966; Udovic 1980; Felsenstein 1981, Doebeli 1996). 

Second, assortative mating can contribute to the genetic isolation of two populations that 

come into secondary contact and so prevent them from merging back into a single 

population (Kondrashov and Shpak 1998; Bolnick and Kirkpatrick 2012). 

How do our results relate to the outcomes for speciation predicted by theory? 

Unfortunately, it is not easy to make a direct connection. Our data pertain to the strength 

assortment, but give no direct information about parameters that appear in models 

regarding mate choice behaviors. For example, models of sympatric speciation use 

mating preference functions that determine the probability a female accepts a potential 

mate. The width of the preference function is allowed to evolve in response to indirect 

selection, which then leads to assortative mating. In contrast, the phenotypic correlation 
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between mates (which we analyze here) depends both on mate preferences and the 

phenotype distribution of the population. The phenotypic variance is itself a dynamic 

variable, and how it evolves depends on the underlying genetics of the trait. Thus there is 

no simple and general set of predictions that can be made about the outcome of speciation 

based only on the correlation between mated pairs.  

It is, however, possible to make inferences in the reverse direction. Given detailed 

assumptions about genetics and behavior, we can calculate the correlation that is 

expected from a particular model, then ask where that result falls in the empirical 

distribution shown in Figure 1.1. Consequently, speciation models making assumptions 

about mate choice parameters can in the future test whether their assumptions generate 

empirically reasonable levels of assortative mating (Bolnick and Kirkpatrick 2012). This 

may be particularly valuable in choosing starting conditions for theoretical models. There 

is ongoing debate over exactly what initial conditions are required for a given case of 

divergence to qualify as sympatric speciation (Fitzpatrick et al. 2008). Many sympatric 

speciation models assume random mating as a starting point. Our results imply that 

complete panmixia is not necessarily empirically appropriate initial condition for a 

speciation model, as many populations exhibit some weak positive assortative mating.  

Yet one more factor clouds the relationship between the inter-mate correlation 

and the potential for sympatric speciation. If a population currently has a weak 

correlation, we might be tempted to conclude there is little opportunity for sympatric 

speciation. A population subject to disruptive selection, however, may evolve increased 

choosiness leading to stronger assortative mating and ultimately speciation (Dieckmann 

and Doebeli 1999; Gavrilets 2004; Bürger et al. 2006). Consequently, initially weak 

assortative mating is not necessarily a barrier to future speciation. Furthermore, 

immediately following sympatric speciation each nascent daughter species exhibits little 
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within-population phenotypic variance and thus little assortative mating, even though 

assortment was strong just before the single ancestral population split into two. This 

returns us to the definitional problem, discussed in the Introduction, of how to delineate 

populations when estimating the strength of assortment.  

Differences between taxa and trait categories 

The strength of assortative mating varies among closely related species (Arak 

1983; Crespi 1989; Arnqvist et al. 1996; Bernstein and Bernstein 2003). Our analysis 

reveals heterogeneity at other levels as well: the strength of assortative mating differs 

significantly among higher taxa and among trait categories. For example, assortative 

mating is particularly strong in fish (which are well represented among putative cases of 

sympatric speciation) but weak in birds (which do not appear to undergo sympatric 

speciation; Coyne and Price 2000). Assortment on phenology is strong, but weak for 

structural characters.  

It is not clear why higher taxa and trait categories should on average exhibit 

stronger or weaker assortative mating. We speculate that this variation may reflect 

differences in mean levels of allochrony, microhabitat segregation, sensory modality, 

sexual selection, or in life history or mating system. The intensities of intrasexual 

competition and intersexual conflict are known to play a role in explaining the different 

strength of size-assortative mating among some arthropods and anuran amphibians (Arak 

1983; Crespi 1989). We endeavored to test whether assortative mating differed by life 

history or mating system features, but were unable to find sufficiently clear-cut 

categorizations for species in our dataset. 

A confounding factor in any meta-analysis of assortative mating is 

nonindependence (or “pseudoreplication”) in the data. There are several possible sources. 

The most obvious comes from multiple studies of the same trait in the same species. We 
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controlled for this source of nonindependence by analyzing the mean values across 

studies for species-trait combinations. A second source of pseudoreplication can arise 

from using separate estimates of assortment for multiple traits in the same species. These 

estimates will not be independent when the traits are phenotypically correlated. We were 

unable to correct for this effect because we lack data on correlations between traits tested 

for assortment. Further, most studies in our database include results for only a single trait. 

A third source of pseudoreplication comes from phylogenetic relationships. Clearly two 

sibling species that have recently diverged are likely to share similar patterns of 

assortative mating for purely historical reasons. The same effect occurs to different 

degrees at all levels of phylogenetic relationship. In principle, it is possible to correct for 

phylogenetic dependencies using a phylogeny for all species in the database and a 

plausible null model for how assortative mating evolves (Adams 2008). Since we lack 

both of those ingredients, we treated species as independent observations. In any event, 

we know of no reason why these possible causes of nonindependence in our data might 

bias our general conclusions. 

Future directions 

Our results raise many further questions. These include the need to identify the 

proximate mechanisms that generate assortment, the underlying evolutionary forces that 

lead to weak positive assortment, its population genetic consequences, and the potential 

effects of such non-random mating on evolutionary and genetic inferences (e.g., Redden 

and Allison 2006). A key question is if assortment is adaptive, how often does it result 

from selection directly favoring trait-matched mate pairs, versus selection act indirectly 

on the parents' mating behavior in response to the fitness of their offspring? Our results 

favor direct selection or by-products as explanations for positive assortment, but the 

mechanisms and frequency of direct selection remain unclear. Alternatively, if assortment 
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is often incidental and non-adaptive, what ecological and evolutionary conditions can 

explain variation in the strength and direction of the trait correlations? Uncovering the 

evolutionary cause of positive assortative mating will require a combination of new 

theory, laboratory evolution experiments, detailed behavioural studies of mate choice and 

mating competition (Rowe and Arnqvist 1996) and comparative analyses of the strength 

of assortment across populations subject to different selective pressures or genetic 

architectures. 

The population genetic consequences of assortment in natural populations are not 

widely considered. To what extent does positive assortative mating inflate the phenotypic 

variance of quantitative traits, linkage disequilibrium among loci, and drive deviations 

from Hardy-Weinberg equilibrium? Can assortative mating within populations be 

extrapolated to explain levels of reproductive isolation among phenotypically divergent 

populations or closely related species in sympatry (Bernstein and Bernstein 1999; 

Bolnick and Kirkpatrick 2012)? Answers to such evolutionary questions can be provided 

by some existing theory, but merit more extensive empirical investigation as well. The 

results in any given case will doubtless depend on the heritability and genetic architecture 

of the traits subject to assortment. The correlation between mates that we study here is 

mostly phenotypic, and gives minimal direct information about the correlation between 

the underlying genotypes. Thus, an important early step in future research on this topic is 

to distinguish between phenotypic and genotypic assortment. If indeed there is a 

substantial genetic component to this assortative mating, then random mating is not a 

default feature of animal populations, at least with respect to genes linked to traits subject 

to assortative mating. Moreover, there is an increasing amount of literature on genotypic 

assortment that was not included in our database due to the lack of suitable statistical 

metrics. Future studies on genotypic assortment are highly recommended to provide 
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suitable metrics to facilitate the comparison between genotypic and phenotypic 

assortment. 

In conclusion, we have shown that natural populations vary dramatically in the 

strength of assortative mating. Positive assortative mating appears to be dominant (and 

perhaps even exclusive), although the strength of this assortment varies between taxa and 

among traits for unclear reasons. We believe that these results can be valuable in 

designing more empirically informed models of adaptive speciation, and to explain 

standing levels of phenotypic and genetic variation in natural populations.  

 



 32 

Chapter 2:  Divergent Rheotaxis Contributes to Divergent Habitat Uses 
Between Parapatric Lake and Stream Threespine Stickleback 

ABSTRACT 

Adaptive divergence among populations is a major driver of evolutionary change. 

Adaptive divergence is often explained as a balance between the diversifying effect of 

divergent selection and the homogenizing effect of migration. However, adaptive 

divergence can also be explained by divergent habitat uses. Divergent habitat uses can 

reduce the actual rate of migration among contrasting habitats, promoting adaptive 

divergence. Increased adaptive divergence can in turn promote stronger divergent habitat 

uses. For example, divergent habitat uses documented between parapatric lake and stream 

stickleback can bring about a several-fold increase in the extent of adaptive divergence 

between the two populations. Here, we evaluate a behavioral mechanism that might 

underlie the divergent habitat uses. We found that inlet stream stickleback exhibited 

significantly more positive rheotaxis than lake fish did during the breeding season. Inlet 

stream fish were better at holding their positions in currents, spent a larger percentage of 

time facing towards currents and spent more time in low-current boundary areas. As a 

result, we infer that lake fish expended significantly more energy in flowing water. 

Divergent rheotaxis likely explains the divergent habitat uses between the two 

populations and promotes parapatric diversification between lake and stream stickleback. 

We did not find divergent rheotaxis between lab-reared common garden inlet lake and 

stream stickleback that were lab-reared in a common garden experiment and never 

exposed to currents. Therefore, rheotaxis may not be heritable.  
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INTRODUCTION  

Dispersal is one of the most fundamental components of ecology and evolutionary 

biology (Clobert 2001; Coyne and Orr 2004; Ronce 2007; Scheiner and Willig 2011; 

Clobert et al. 2012). There is increasing evidence that dispersal is often non-random with 

respect to individuals’ phenotype or genotype (Edelaar et al. 2008; Edelaar and Bolnick 

2012). Habitat preference can lead to biased movement of individuals within a 

heterogeneous environment (Jaenike and Holt 1991; Armsworth and Roughgarden 2005; 

Odling-Smee et al. 2013). Habitat use determines the regime of natural selection that 

individuals experience, thus can have profound evolutionary consequences (Thorpe 1945; 

Jones and Probert 1980; Rice and Salt 1988). When habitat use differ between or within 

populations (divergent habitat uses), it can facilitate the maintenance of polymorphism 

(Jones and Probert 1980; Garcia-Dorado 1986; De Meeus et al. 1993; Ravigné et al. 

2004) and impact the degree and rate of local adaptation (Holt and Barfield 2008; 

Ravigne et al. 2009; Bolnick and Otto 2013). Divergent habitat uses also reduce the 

actual rate of dispersal among contrasting habitats compared to what would be expected 

based on individual’s dispersal capacity. Thus, divergent habitat uses can promote 

habitat-based assortative mating both in sympatry and in parapatry, if mating takes place 

preferentially within habitats (Smith 1966; Rice 1987; Beltman and Metz 2005; Taborsky 

et al. 2014). 

Most empirical studies on divergent habitat uses come from host preference 

studies in phytophagous insects (reviewed by Thompson and Pellmyr 1991, Gripenberg 

et al. 2010 and Dres and Mallet 2002; examples see Singer and Thomas 1996 and Via 

1999). The proximate behavioral mechanisms of host uses in phytophagous insects can 

be quite different from habitat uses in vertebrates (Jiggins et al. 2005). Thus, knowledge 
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of the proximate behavioral mechanisms in vertebrates is needed to understand the 

evolution of divergent habitat uses beyond phytophagous insect systems (Nosil 2012).  

Parapatric lake and stream populations of threespine stickleback (Gasterosteus 

aculeatus) are an excellent system to study the behavioral mechanisms of divergent 

habitat uses. Multiple pairs of lake/stream stickleback populations have independently 

evolved morphological, ecological and genetic divergence (Hendry and Taylor 2004; 

Moore et al. 2007; Berner et al. 2008; 2009). Fish in inlet streams (where water flows 

into a lake) tend to show far more abrupt morphological clines from lake to stream 

phenotypes compared to fish in outlet streams (water flowing from the lake) (Hendry and 

Taylor 2004; Moore et al. 2007; Berner et al. 2008; 2009). This divergence is driven by 

divergent natural selection in the lake and stream environment and constrained by the 

homogenizing effect of gene flow, which is mainly from the relatively large lake 

population into the outlet stream (Hendry et al. 2002; Hendry and Taylor 2004; Moore 

and Hendry 2005; Garant et al. 2007). However, phenotypic and genetic divergence 

between inlet stream and lake stickleback is often too abrupt (over a few meters) to be 

plausibly explained by migration-selection balance alone, but are instead best explained 

by divergent habitat uses (Bolnick et al. 2009).  

A recent transplant experiment demonstrated strong divergent habitat uses 

between parapatric lake and stream stickleback from Blackwater Lake and its inlet stream 

on Vancouver Island, B.C., Canada (Bolnick et al. 2009). Lake and stream fish were 

caught, marked and released at the intersection of the lake and stream where they 

experienced equal opportunities to disperse into lake and stream habitats. At recapture 

four days later, a majority (90%) of displaced fish had returned to their original habitat. 

Notably, those individuals that switched habitats were morphologically predisposed to do 

so, as they more closely resembled residents of their non-native habitat. A simple model 
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showed that such divergent habitat uses could increase phenotypic and genetic 

divergence several fold relative to the expectations with random movement (Bolnick et 

al. 2009; Bolnick and Otto 2013). The behavioral mechanism of the divergent habitat 

uses was unknown (Bolnick et al. 2009). 

The presence of currents in stream environments is one of the major 

characteristics that distinguish streams from lake environments. Thus rheotaxis can be a 

promising candidate mechanism to explain the divergent habitat uses documented in lake 

and stream stickleback. Rheotaxis is the behavioral orientation to water currents (Lyon 

1904; Arnold 1974; Montgomery et al. 1997). Individuals with positive rheotaxis orient 

or move upstream, while those with negative rheotaxis orient or move downstream 

(Montgomery et al. 1997; Pavlov et al. 2010).  

Rheotaxis is known to be important in spawning fish, guiding fry from separate 

incubation areas to a mixed rearing area (Hartman et al. 1962; Raleigh 1967; Brannon 

and Commission 1972; Kaya 1989; Kaya and Jeanes 1995; Hensleigh and Hendry 1998; 

Caiger et al. 2012). For example in sockeye salmon (Oncorhynchus nerka), juveniles 

usually live in lakes, but adults may spawn in inlet streams, outlet streams or within 

lakes, depending on the population (Hartman et al. 1962; Hensleigh and Hendry 1998; 

Lohmann et al. 2008). Newly emerged fry in the stream must migrate back to the lake, 

and this migration is known to be partly guided by rheotaxis (Hensleigh and Hendry 

1998). Fry from inlet stream populations typically swim downstream while their 

counterparts from outlet stream populations swim upstream, both towards the direction of 

their rearing lake (Hartman et al. 1962; Raleigh 1967). These rheotactic responses are 

known to be genetically based (Raleigh 1967; Brannon and Commission 1972). Similar 

differences in rheotaxis were found between inlet and outlet spawning Arctic grayling fry 

(Thymallus arcticus) (Kaya 1989; Kaya and Jeanes 1995). 
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The primary aim of this study is to test if rheotaxis could contribute to the habitat 

uses of lake and stream stickleback populations. We tested rheotaxis of wild-caught lake 

and stream stickleback during their breeding season. Having found divergent rheotaxis, 

we then conducted the same behavioral assays on lab-reared common-garden stickleback 

to test whether divergent rheotaxis is heritable. To test whether wild-caught lake and 

stream stickleback exhibit corresponding differences in movement in the field, we 

examining the dispersal of the two ecotypes in Blackwater inlet stream and evaluated the 

rheotaxis of recaptured individuals in laboratory.  

 

METHODS 

Study Site 

Blackwater Lake is a medium-sized (37.2 hectare) long and narrow mesotrophic 

lake on Northern Vancouver Island, B.C., Canada. Water drains from the upstream Amor 

Lake, through a 1.2km-long stream (inlet stream), into the southern end of Blackwater 

Lake. The outlet stream drains the northern end of Blackwater Lake, for 1.2 km into 

Farewell Lake. The inlet stream has in general more rapid flow rates almost throughout 

all its length (0.135 to 0.513 m/s) compared to the outlet stream (mostly <0.1m/s). 

We sampled threespine stickleback from the following four sites using unbaited 

minnow traps: 1) the inlet stream of Blackwater Lake (UTM: between 10N 556079mN, 

314904mE and 5560088mN, 314910mE); 2) the south end of Blackwater Lake near the 

inlet (‘inlet lake fish’ UTM: 5560392mN, 315048mE); 3) Blackwater Lake near the 

outlet (‘outlet lake fish’ UTM: 5562436mN, 315323mE); 4) the outlet stream of 

Blackwater Lake ('UTM: 5562436mN, 315323mE). All fish were collected with 

permission from the British Columbia Ministry of Forests, Lands and Natural Resources 
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Operations (NA11-7031 and NA13-85103). All the collection, transportation and 

experimental procedures were approved by the University of Texas Institutional Animal 

Care and Use Committee (#AUP-2010-00059 and #AUP-2013-00027). 

Circular Flow Tank Design 

We used a circular flow tank to quantify individuals’ rheotaxis [Figure 2.1]. This 

tank was designed to allow each test individual to swim freely upstream or downstream 

indefinitely. The flow tank was made of white smooth FRP plastic sheeting (outside 

diameter: 80cm; inside diameter: 50cm; tank height: 25cm, water depth: 16cm), equipped 

with two aquarium pumps that generated uni-directional circular flow (clockwise or 

counter-clockwise, alternated across different test individuals) with minimal turbulence. 

The flow rate was set to be within the natural range of Blackwater inlet stream. Flow was 

the highest at the outermost part of the tank (0.24 m/s), and steadily decreased to 0.10 m/s 

at the innermost part of the tank. We estimated the flow rate at the innermost part of the 

tank by recording the speed of food coloring diffusing in water, because the flow rate was 

below the minimal accuracy of our water velocity instrument. We measured the flow 

rates of the other three parts via a flow probe (FP111, Global Water, College Station, 

U.S.). Flow rates of each part of the tank were measured at four equidistant spots within 

the part and then averaged. 
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Figure 2.1: An overhead schematic of the circular flow tank illustrated with counter-
clockwise currents  

Shaded area indicated the test area, which was divided into four parts during the video 
quantification, as indicated by dashed concentric circles and labeled respectively. The 
innermost part was defined as a two-centimeter-wide ring against the inner wall of the 
flow tank where flow rate was minimal (0.01m/s). The rest of the test area was equally 
divided into three concentric rings with equal widths (9.3 cm), including the low-flow-
rate inner part (0.12 m/s), medium-flow-rate intermediate part (0.16 m/s) and the high-
flow-rate outer part (0.20 m/s).  

Each individual was tested separately in the flow tank to measure rheotaxis 

without schooling effects that might arise in groups. Each test individual was first given 

fifteen minutes to acclimate in the tank in still water, then videotaped by an overhead 

webcam, in two consecutive five-minute trials with still water or current. The test order 

of lake- or stream-origin fish was randomized. The order of still-water and current trials 

was randomized for each test individual, as was the direction of flow (clockwise /counter-

clockwise).  
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Prior to video analysis, one researcher named all the videos after a random 

number, then a second researcher (blind to fish identity) tracked all fish movements using 

the same computer and same zoom level (150%). This blind scoring design avoided 

subjective biases during the tracking process. Frames were extracted from each trial 

video at a rate of 3.4 frames/second, and in each frame the test individual’s anterior end 

and posterior end (caudal peduncle) were manually tracked using ImageJ analysis 

software (http://rsb.info.nih.gov/ij/) with MtrackJ plugin.  

In each frame, the x and y coordinates of the focal fish’s anterior end and 

posterior end were determined and then averaged to obtain the mid-point of the 

individual. We quantified four measures of rheotactic behavior:  

Net displacement: the difference between the individuals’ ending versus starting 

locations, accounting for any full circuits of the tank upstream or downstream. The net 

displacement value is positive when the ending location is upstream to the starting 

location, indicating positive rheotaxis. Larger values of net displacement indicate more 

positive rheotaxis.  

Cumulative upstream movement: total upstream path length that each test 

individual swam during each five-minute trial. This differs from net displacement 

because the cumulative movement includes the length of multiple upstream swimming 

bursts that, because of intervening downstream movement, could result in little or no net 

displacement. Energy expenditure increases with cumulative movement, so fish with high 

cumulative movement are exerting substantial swimming effort. If this high effort results 

in little net displacement, fish exhibit poor energetic efficiency in the current.  

 Upstream orientation: the proportion of time each test individual faced upstream 

into currents (±45º relative to the tangent of circular flow at the midpoint of the fish). A 

higher proportion of upstream orientation is indicative of more positive rheotaxis. In still 



 40 

water, upstream orientation was calculated relative to the same tangents as in the current 

trial for that individual. A randomly oriented fish is expected to face upstream and 

downstream (±45º relative to opposite direction of the tangent of circular flow at the 

midpoint of the fish) for equal proportions of time. 

Flow regime: In each frame video frame, the test individual was scored as being 

in the innermost, inner, middle, and outermost part of the tank channel (scored as 0, 1, 2, 

3), corresponding to increasing flow rates (Fig. 1). These scores were averaged across all 

frames to obtain a single mean flow regime score per individual. Higher flow scores 

indicate use of higher velocity locations in the tank; lower scores reflect a preference for 

boundary areas where flow is slower. Because of the relative of surface areas of each of 

the four regions, a fish distributed randomly across flow regimes is expected to have a 

flow score of 1.98. 

Experiment I: Rheotaxis of wild-caught stickleback  

We evaluated the rheotaxis of wild-caught stickleback from lake and stream sites, 

at both the inlet and outlet of Blackwater Lake. Our field study was during the peak 

breeding season (June), as was that of Bolnick et al. (2009). Using unbaited minnow traps 

set overnight, we captured 18 inlet lake fish, 18 inlet stream fish, 12 outlet lake fish and 

14 outlet stream fish.  All individuals were temporarily housed in large coolers (66 liters) 

in a shaded area, with aeration and regular water changes, and tested between 2-10 hours 

after capture, using the flow tank experiment described above. 

We tested for significant pairwise differences among all four groups of 

stickleback, for each of the four measures described above, both in still water and in 

currents. We used Wilcoxon rank-sum tests to compare pairwise differences among four 

groups of fish in currents, and pairwise differences among four groups of fish in still 

water.  We used Wilcoxon signed-rank tests to compare the swimming behavior of each 
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group of test individuals in currents versus still water. We also tested the upstream 

orientation and flow regime of each group of test individuals against the null hypotheses 

of random orientation and random distribution across flow regimes using Wilcoxon 

signed-rank tests and one-sample Wilcoxon signed-rank tests respectively. 

We applied a heuristic method to approximate the energetic expenditure of inlet 

lake and stream fish in currents. Boisclair and Tang 1993 measured the energetic costs of 

swimming and fish weight, swimming speed under different swimming patterns 

(Boisclair and Tang 1993). Our experiment mostly resembled their “forced swimming” 

pattern where fish were forced to swim against a unidirectional current of constant 

velocity at any given time. We calculated the upstream swimming speed against currents 

(relative to the average current speed of the zone where the individuals were at in that 

moment) at each tracked frame using cumulative upstream movement. We then used the 

upstream swimming speed at each tracked frame and the body weight of the test 

individual to calculate the transient energetic expenditure of the focal individual at each 

tracked frame following Boisclair and Tang 1993. Note that there are no significant 

correlations between body weight and cumulative upstream movement in either inlet lake 

or inlet stream stickleback [details see Chapter 3]. Then we calculated the average 

energetic expenditure of each test individual during the five-minute flow water trial.  

Experiment II: Rheotaxis of common-garden stickleback 

To test whether divergent rheotaxis of lake and stream stickleback is heritable, we 

reared offspring of inlet lake stickleback, and offspring of inlet stream stickleback, in 

laboratory aquaria. Fish were reared from eggs to adulthood (~1 year old). We then 

evaluated individuals’ rheotaxis using the circular flow tank assay described above. 

We performed in vitro crosses between 14 pairs of wild-caught Blackwater inlet 

stream stickleback and between 34 pairs of inlet lake stickleback in early June 2010 (11 
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and 30 clutches, respectively, developed to maturity). Fertilized eggs were shipped back 

to the University of Texas at Austin within six days after fertilization. Families were kept 

in separate aquarium tanks and reared in standardized conditions (more details on 

transportation and rearing see Appendix D). Due to aquarium space limitations, as the 

fish grew we pooled families to generate one outbred population of lake fish (2 fish from 

each of 11 surviving families) and one population of stream fish (2 fish from each of 30 

surviving families). In November 2011, we sampled adult stickleback from each pooled 

population (N=15 each) for rheotaxis assays, as described above. All test individuals 

were naïve (never exposed to currents) prior to the behavioral assay. 

We tested for significant heritable differences between lab-reared inlet lake and 

stream fish, for each of the four behavior measures described above, both in still water 

and in currents. We used Wilcoxon rank-sum tests to compare lake versus stream fish in 

currents, and lake versus stream fish in still water. We used Wilcoxon signed-rank tests to 

compare the swimming behavior of fish in currents versus still water. We also tested the 

upstream orientation and flow regime of lake and stream fish against the null hypothesis 

of random orientation and random distribution across flow regimes using Wilcoxon 

signed-rank tests and one-sample Wilcoxon signed-rank tests respectively. 

Experiment III: Rheotaxis and dispersal in a semi-natural setting 

This experiment was designed to test whether wild-caught lake and stream 

stickleback exhibit differences in movement in a semi-natural setting in Blackwater inlet 

stream. We transferred wild-caught inlet lake and stream stickleback to an enclosed mesh 

dispersal tunnel [Figure 2.2] at the lake-inlet stream intersection, then recorded their 

choices as going up against or going down with currents. We subsequently measured 

rheotaxis of some of these same fish using the circular flow tank.  
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The enclosed tunnel was composed of three chambers connected to each other, 

submerged in the inlet stream ten meters above the lake stream intersection and parallel 

to the direction of current. Fish were placed into a release chamber (3m long and 1m in 

diameter), whose upstream and downstream ends formed uni-directional funnels into 

collection chambers (1.25m long and 1m in diameter each) [Figure 2.2]. This dispersal 

tunnel allowed us to count how many fish chose to disperse up- versus downstream once 

they were released. 
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Figure 2.2: An isometric schematic of the dispersal tunnel 

We captured 191 inlet stream stickleback at the inlet stream sample site and 206 

inlet lake stickleback at the inlet lake sample site using unbaited minnow traps on April 

17 2013. This was before the breeding season began. We marked stream individuals and 
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lake individuals by clipping the first and second dorsal spine respectively All stickleback 

were released individually with random sequence of lake and stream fish, to avoid 

confounding effects of schooling behavior [Figure 2.2]. Twenty hours after all fish were 

released, we retrieved the tunnel and recorded the number of lake and stream individuals 

in the upstream, downstream, and central chambers (positive, negative, and no rheotaxis, 

respectively). We used Fisher’s exact tests to test for differences between inlet lake and 

stream stickleback with respect to the number of individuals in each group that exhibited 

up-/downstream movements. 

Experiment IV: Rheotaxis of wild-caught non-breeding stickleback 

All individuals from the tunnel experiment were brought to the Fred Hutchinson 

Cancer Research Center in Seattle for further rheotactic behavioral assays (see Appendix 

D for transportation and animal care details). These tests were intended to replicate 

Experiment I, albeit using fish collected prior to the breeding season, which began in 

June. Fish were transported rather than measured on Vancouver Island, because we also 

measured lateral line morphology on these individuals (which required a fluorescent 

dissecting scope that was not available in the field), the results of which are reported in a 

separate paper. Using the circular flow tank described above, we tested randomly selected 

inlet stream and inlet lake stickleback for divergent rheotaxis, with equal sample sizes of 

22 in both groups. We omitted the still water trial, because prior assays had found 

divergent rheotaxis and swimming behavior only in current. We used Wilcoxon rank-sum 

tests to check for differences between lake and stream fish in each of the four measures of 

rheotactic behavior. We also tested the upstream orientation and flow regime of lake fish 

and stream fish against the null hypotheses of random orientation and random distribution 

across flow regimes. We used Wilcoxon signed-rank tests and one-sample Wilcoxon 

signed-rank tests, respectively. 
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All analyses were done using the R statistical language (Venables and Ripley 

2002; R Core Team 2013; Legendre et al. n.d.). 

RESULTS 

Experiment I: Rheotaxis of wild-caught stickleback 

In currents, pairwise comparisons showed that wild-caught inlet stream fish and 

inlet lake fish differed in all four measures of rheotaxis [Figures 3-6, Table 2.1]. First, 

stream fish exhibited more positive rheotaxis than lake fish. Neither ecotype exhibited 

strongly positive rheotaxis, but stream fish were displaced less far downstream (-6 

meters) than their lake counterparts (-18 meters) [Figure 2.3, Table 2.1]. Second, despite 

maintaining their position better, stream fish actually swam significantly shorter 

cumulative upstream movements compared to their lake counterparts (4.6 meters versus 

7.4 meters on average) [Figure 2.4, Table 2.1]. Lake fish repeatedly swam downstream 

(or were displaced downstream) and then swam up against currents to compensate. Third, 

stream fish faced into the current more often (84% of the time) than lake fish (65%) 

[Figure 2.5, Table 2.1]. Both ecotypes spent significantly more time facing upstream, 

compared with null expectations of random orientation [Figure 2.5, Table 2.2]. Fourth, 

stream fish spent significantly more time in the slower-current part of the tank, compared 

to their lake counterparts [Figure 2.6, Table 2.1]. Both ecotypes disproportionately stayed 

within lower-flow inner parts of the tank compared with null expectations predicted 

[Figure 2.6, Table 2.2]. No other pairwise behavioral differences in currents were found 

among inlet and outlet lake and stream stickleback [Table 2.1], except that inlet stream 

fish also showed significantly shorter cumulative upstream movement than outlet lake 

fish [Figure 2.4, Table 2.1].  
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Figure 2.3: A side-by-side comparison of the net displacement (in meter) of all study 
populations in current trials and still-water trials  

The height of each bar indicates the group mean and the error bars are the standard errors. 
Note that since the Experiment IV did not contain still-water trials, light grey bar is not 
applicable in panel C and the spaces are only for place-holding. At the end of the five-
minute current trials, given all groups of individuals exhibited negative values in net 
displacement, more positive rheotaxis is visualized as better position holding with less 
net downstream displacement (shorter dark grey bars). Populations in breeding status are 
indicated by asterisks.  
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Figure 2.4: A side-by-side comparison of the cumulative upstream movement (in meter) 
of all study populations in current trials and still-water trials 

The height of each bar indicates the group mean and the error bars are the standard errors. 
Again still-water trials (light grey bars) are not applicable for Experiment IV (panel C). 
Populations in breeding status are indicated by asterisks. 
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Figure 2.5: A side-by-side comparison of the upstream orientation of all study 
populations in current trials and still-water trials  

The height of each bar indicates the group mean and the error bars are the standard errors. 
Again still-water trials (light grey bars) are not applicable for Experiment IV (panel C). 
The Y-axis indicates the percentage of time individual spend facing upstream during the 
five-minute trial period. Populations in breeding status are indicated by asterisks.  
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Figure 2.6: A side-by-side comparison of the flow regime of all study populations in 
current trials and still-water trials 

 
The height of each bar indicates the group mean and the error bars are the standard errors. 
Again still-water trials (light grey bars) are not applicable for Experiment IV (panel C). 
The higher the scores, the higher velocity locations in the tank individuals used. Random 
distribution across flow regimes is indicated by Y = 1.98. Populations in breeding status 
are indicated by asterisks.  

The average energy expenditure of wild-caught inlet lake fish was 0.14 mg O! per 

hour, twice as much as that of wild-caught inlet stream fish 0.074 mg O! per hour 

(Wilcoxon rank sum test p<0.05). Again, the qualitative aspect of this result is more 

meaningful than the precise quantitative values, because the exact amount of energy 

consumption of lake and stream fish depends many other factors aside from fish weight 
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and swimming speed. Taking all possible factors into account would require specific 

experimental design (Boisclair and Tang 1993), which is beyond the scope of this study. 

In still water, we found no differences in any measures of swimming behavior 

between any groups of wild-caught stickleback [Figure 2.3-2.6, Table 2.1]. Thus, the 

significant behavioral differences between lake and stream stickleback in currents did not 

result from flow-independent differences in swimming behavior. In addition, we found 

that in still water all four groups of fish exhibited random orientation (except for inlet 

stream fish) with no location preferences, in contrast with their behavior in currents 

described above [Table 2.2]. 
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 Net displacement 

Cumulative 
upstream 
movement 

Upstream 
orientation Flow regime 

                        Trials 
Populations Flow Still Flow Still Flow Still Flow Still 

Exp. 
I 
 

Wild 
Inlet 
Lake 

Wild 
Inlet 
Stream 

79 
[0.008] 

178 
[0.63] 

249 
[0.005] 

181 
[0.56] 

78 
[0.007] 

137.5 
[0.44] 

236.5 
[0.019] 

177 
[0.65] 

Wild 
Inlet 
Lake 

Wild 
Outlet 
Lake 

93 
[0.55] 

127 0.44] 119 
[0.66] 

147 
[0.10] 

99 
[0.72] 

81.5 
[0.27] 

122 
[0.57] 

98 
[0.69] 

Wild 
Inlet 
Lake 

Wild 
Outlet 
Stream 

96 
[0.27] 

141[0.59] 169 
[0.11] 

130 
[0.89] 

102 
[0.37] 

129 
[0.92] 

177 
[0.054] 

134.5 
[0.76] 

Wild 
Inlet 
Stream 

Wild 
Outlet 
Lake 

153 
[0.06] 

119[0.66] 52 
[0.02] 

136 
[0.24] 

154 
[0.053] 

100 
[0.75] 

62 
[0.053] 

91 
[0.48] 

Wild 
Inlet 
Stream 

Wild 
Outlet 
Stream 

149 
[0.40] 

127 
[0.99] 

100 
[0.33] 

123 
[0.92] 

148 
[0.42] 

164.5 
[0.15] 

109 
[0.54] 

126.5 
[1] 

Wild 
Outlet 
Lake 

Wild 
Outlet 
Stream 

73 
[0.60] 

73 [0.60] 107 
[0.25] 

57 
[0.18] 

72 
[0.56] 

112.5 
[0.15] 

112 
[0.16] 

95 
[0.60] 

Exp. 
II 

Lab 
Inlet 
Lake 

Lab Inlet 
Stream 

134 
[0.39] 

104 
[0.74] 

82 
[0.22] 

147 
[0.16] 

146 
[0.17] 

98 
[0.56] 

88 
[0.32] 

119.5 
[0.79] 

Exp. 
III 

Wild 
Inlet 
Lake 

Wild 
Inlet 
Stream 

230 
[0.79] 

- 231 
[0.81] 

- 280 
[0.38] 

- 283 
[0.34] 

- 

Significant results in bold.  

Table 2.1:  Wilcoxon rank-sum test statistics and P values of pairwise comparisons 
between populations for four measures of rheotaxis 
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 Net 
displacement 

Cumulative 
upstream 
movement 

Upstream orientation Flow regime 

Flow vs. Still Flow vs. 
Still 

Flow 
vs. 
Still 

Flow 
vs. 
Random 

Still vs. 
Random 

Flow 
vs. 
Still 

Flow 
vs. 
Random 

Still vs. 
Random 

Exp. 
I 
 

Wild 
Inlet 
Lake 

168 [<0.001] 3 [<0.001] 29[0.0
12] 

300 
[<0.001
] 

203 
[0.20] 

149 
[0.0
04] 

20 
[0.003] 

78 
[0.77] 

Wild 
Inlet 
Stream 

164 [<0.001] 1[<0.001] 18[<0.
002] 

323 
[<0.001
] 

225 
[0.048] 

159 
[<0.
001] 

4 
[<0.001
] 

59 
[0.26] 

Wild 
Outlet 
Lake 

76 [0.0014] 0 [<0.001] 29[0.4
7] 

144 
[<0.001
] 

94.5 
[0.20] 

67 
[0.0
27] 

1 
[<0.001
] 

42 
[0.85] 

Wild 
Outlet 
Stream 

100 [0.0012] 1 [<0.001] 20[0.0
41] 

181 
[<0.001
] 

107 
[0.25] 

100 
[0.0
012] 

0 
[<0.001
] 

38 
[0.39] 

Exp. 
II 

Lab 
Inlet 
Lake 

86 [0.15] 35 [0.17] 7 
[0.004] 

223 
[<0.001
] 

125.5 
[0.60] 

99 
[0.0
26] 

8 
[0.0034] 

30 
[0.094] 

Lab 
Inlet 
Stream 

99 [0.026] 16 [0.01] 30 
[0.17] 

189.5 
[0.0014] 

149 
[0.13] 

79 
[0.3
0] 

2 
[<0.001
] 

20 
[0.043] 

Exp. 
III 

Wild 
Inlet 
Lake 

- - - 484 
[<0.001
] 

- - 129 
[0.95] 

- 

Wild 
Inlet 
Stream 

- - - 483 
[<0.001
] 

- - 100 
[0.41] 

- 

Table 2.2: Within each population, test statistics and P values for comparing each of 
the four measures of rheotaxis between currents versus still water or a 
random expectation  

Wilcoxon signed-rank test statistics are shown for currents versus still water 
comparisons, and for current/still water versus random comparisons for upstream 
orientation. One-sample Wilcoxon signed-rank test statistics are shown for current/still 
water versus random comparisons for flow regime.  

Comparing the swimming behavior of each group of test individuals in currents 

versus still water, we found that in currents, all fish exhibited significantly more 

cumulative movement than in still water [Table 2.2]. Second, in currents, all but outlet 

lake fish spent more time facing upstream than in still water [Table 2.2]. Third, in 
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currents, all four groups of fish disproportionately stayed within lower-flow inner parts of 

the tank than in still water [Table 2.2].  

Experiment II: Rheotaxis of common-garden stickleback 

We did not find significant differences between lab-reared common garden inlet 

lake and stream fish, for any behavioral measure, in current or still water [Figure 2.3-2.6, 

Table 2.1]. Statistical results of comparing the behavioral measures of both groups in 

currents versus still water are shown in Table 2.2. 

Experiment III: Rheotaxis and dispersal in a semi-natural setting 

In the dispersal tunnel experiment, 96% of the lake fish and 94% of the stream 

fish exhibited positive initial rheotactic responses and swam against the current, ending 

up in the upstream collection chamber. Only 6 lake fish and 7 stream fish exhibited 

negative initial rheotactic response, ending up in the downstream collection chamber. 

Another 5 individuals (1 lake fish and 4 stream fish) did not make any choice and stayed 

in the release chamber. Thus, we found that, prior to the breeding season, wild-caught 

inlet lake and stream stickleback did not differ in rheotaxis (P = 0.78). Both 

predominantly show positive rheotactic responses compared to random choices (P<10-15, 

with no choice individuals excluded). 

Experiment IV: Rheotaxis of wild-caught non-breeding stickleback 

The results of a follow-up circular flow tank behavioral essay were consistent 

with the dispersal tunnel experiment results. In currents, no significant difference was 

found in any measure of rheotaxis between inlet lake and stream fish prior to the breeding 

season [Table 2.1]. In fact, both groups’ rheotaxis was comparable to that of inlet stream 

fish during the breeding season in Experiment I. After five minutes in currents, net 

displacement of inlet stream fish and inlet lake fish was only -2.2 and -2.3 meters 
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downstream on average [Figure 2.3]. In currents, stream fish and lake fish faced upstream 

for 86% and 88% percentage of time (84%) respectively [Figure 2.5].  

DISCUSSION 

This study tested for divergent rheotaxis between wild-caught and lab-reared 

parapatric lake and stream stickleback. We found strong divergent rheotaxis in multiple 

aspects between wild-caught inlet lake and stream stickleback during their breeding 

season. These behavioral differences should facilitate the upstream movements of stream 

fish and downstream movements of lake fish, returning them to their respective habitats. 

These results are consistent with the habitat uses between the same parapatric populations 

studied by Bolnick et al. (2009). Divergent rheotaxis may not be heritable, as no 

differences were found in naïve lab-reared common garden inlet lake and stream 

stickleback with no prior experience with currents. A replicate experiment between the 

same parapatric populations prior to the breeding season found no difference in rheotaxis, 

suggesting possible seasonal variations in the strength of divergent rheotaxis. The results 

of the dispersal tunnel experiment supported the assumption that the measures of 

rheotaxis in the circular flow tank can be extrapolated to infer fish’s movements between 

natural lake and stream habitats.  

During the breeding season, wild-caught inlet stream fish exhibited more positive 

rheotaxis, three-fold less net downstream displacement, and shorter cumulative upstream 

movement compared to their lake counterparts. Inlet stream fish were also more often 

found in slower current compared to their lake counterparts. This pattern may suggest 

differences in preferred flow regime between the two ecotypes, and may also be an 

incidental consequence of stream fish, especially inlet stream fish, being better at 

maneuvering to facilitate their position-holding in currents, perhaps through having more 
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prior experience. Divergence in rheotaxis, regardless of its cause, might cause reduced 

energy expenditure for stream fish in the stream environment than that for lake fish, 

which can serve as a target for natural selection (McCormick et al. 1998; Mohammed et 

al. 2012).   

 We emphasize that the behavioral divergence between wild-caught inlet lake and 

stream fish did not result from flow-independent differences in swimming behavior 

between them, because no differences were detected in any behavioral measures between 

the two ecotypes in still water. The fact that the presence of current triggered significant 

behavioral differences in all aspects in both inlet lake and stream stickleback further 

confirmed that the divergent rheotaxis we detected arose in response to the currents. 

During the breeding season, outlet lake and stream fish did not differ in any 

measures of rheotaxis, though the presence of current triggered significant rheotactic 

responses in all four measures in both ecotypes. Although outlet lake fish showed no 

significant differences in upstream orientation in currents versus still water, in currents 

they faced upstream for significantly longer periods of time compared with null 

expectations of random orientation, contrasting with their random orientation in still 

water. Given that in still water the “upstream” orientation is artificially defined to be 

consistent with the upstream orientation in the current trial for each test individuals, 

deviation from random orientation is a more appropriate way to evaluate the effect of 

current on individuals’ orientation. The lack of divergent rheotaxis is consistent with 

smaller differences in flow rates between the lake the outlet stream than between the lake 

and the inlet stream, as well as less morphological and genetic divergence between lake 

fish and outlet stream fish (Hendry et al. 2002; Moore et al. 2007). 

Naïve common-garden inlet lake and stream fish that were never exposed to 

current did not differ in any measures of rheotaxis in current or still water. There are 
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three possible explanations for the lack of divergence. First, divergent rheotaxis may not 

be heritable. Second, all lab-reared test individuals were raised in still water with no prior 

exposure to currents, and the full development of rheotactic behavior may require prior 

exposure to currents, especially in inlet stream fish. For example, there could be a 

genotype by environment interaction that we did not measure because we could not 

recreate biologically realistic flow rates in the lab. Third, all lab-reared test individuals 

were non-breeding individuals. If divergent rheotaxis is specific to breeding individuals, 

no differences in would be observed between non-breeding lab-reared inlet lake and 

stream stickleback even if rheotaxis is heritable.  

The dispersal tunnel experiment was a semi-natural setting similar to that study by 

Bolnick et al. (2009). Bolnick et al. 2009 found 90% of the lake and stream stickleback 

went back to their original habitat four days after being released at the intersection of the 

lake and the inlet stream. Our results showed that almost all wild-caught inlet lake and 

stream stickleback swam upstream against the currents after being released into the 

dispersal tunnel (positive rheotactic responses). Nevertheless, the dispersal tunnel results 

were consistent with the results of the flow tank behavioral assay on recaptured 

individuals of the dispersal tunnel experiment. Prior to the breeding season, wild-caught 

inlet lake and stream stickleback did not differ in any of the four measures of rheotaxis in 

currents measured by the same flow tank behavioral assay as in Experiment I. Moreover, 

wild-caught inlet lake and stream stickleback prior to the breeding season both exhibited 

comparable level of positive rheotaxis to the wild-caught inlet stream stickleback during 

the breeding season in the circular flow tank. These results supported that measures of 

rheotaxis in the circular flow tank can be extrapolated to natural habitats.  

Contrasting the flow tank behavioral assay results of Experiment I and III (which 

differ regarding breeding status), we speculate that divergent rheotaxis may be breeding-
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season specific. Seasonal variations of rheotaxis have been documented. Schmitz (1992) 

examined the annual variations in rheotaxis in a population of Arctic char (Salvelinus 

alpinus) that has been landlocked for about 6000 years and discovered seasonal changes 

in rheotaxis (including rheotaxis reversal) which were directionally consistent with 

smolting, and even coupled with physiological changes in seawater adaptability (Schmitz 

1992). This can be relevant to our study given that the freshwater threespine stickleback 

populations are derived from marine ancestors, including fresh-water breeding 

anadromous populations (McPhail 1994; Taylor and McPhail 2000; McKinnon and 

Rundle 2002; Hendry et al. 2009). Moreover, the sexual maturation of threespine 

stickleback during the breeding season is known to be initiated by changes in thyroid 

hormone pathway in response to photoperiod (O'Brien et al. 2012). Thyroid hormone 

pathway mediates many important physiological and behavioral functions including 

rheotaxis (Edeline et al. 2005; Kitano and Lema 2013). 

Habitat choice is a complex process that involves sequential stages from 

departure, through transience, to settlement (Clobert 2001; Clobert et al. 2012). In our 

study system, divergent rheotaxis directly affects all three stages of the habitat choice 

process. Compared to stream fish, lake fishes’ greater downstream orientation, farther 

downstream displacement and higher energetic cost in currents may directly result in 

higher departure rate from stream to lake habitat (upon their entering of stream 

environment). Lake fish may also be selected against when they do enter a stream, due to 

their higher energetic costs when swimming in flowing water. The pattern of divergent 

habitat choice between lake and stream fish could be generated by divergent rheotaxis 

alone. Thus, the divergent rheotaxis between wild-caught inlet lake and stream 

stickleback we revealed in can nevertheless be an important component of divergent 
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habitat uses, and play an important role in driving the diversification between these two 

parapatric populations. 
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Chapter 3:  Phenotype-dependent Rheotactic Behavior in Lake and 
Stream Threespine Stickleback 

ABSTRACT 

Gene flow is widely thought to homogenize spatially separate populations, 

eroding the effects of divergent selection. This belief rests on the assumption that all 

genotypes are equally likely to disperse. However, there is growing realization that gene 

flow may not be random: certain phenotypes may be disproportionately likely to migrate. 

When these phenotypes are heritable, phenotype-dependent dispersal generates non-

random gene flow between populations. This biased migration can promote rather than 

hinder local adaption and population divergence. Here, we present an example of 

phenotype-dependent dispersal in parapatric lake and stream stickleback. In each of many 

watersheds, lake and stream stickleback exhibit extensive morphological and genetic 

divergence. Such divergence often occurs over a scale of a few meters, too abrupt to be 

plausibly explained by migration-selection balance alone. A previous study showed that 

non-random dispersal maintains these microgeographic clines. Another study identified a 

possible mechanism for non-random dispersal: divergent rheotaxis. Here, we examine a 

possible phenotypic basis for divergent rheotaxis. We first confirmed that the lateral line 

system is necessary for lake and stream stickleback to exhibit typical rheotactic behavior. 

We then showed that lateral line size (the number of neuromasts) and pectoral fin 

morphology are correlated with rheotactic behavior, in both wild-caught and lab-reared 

individuals. Lab-reared lake stickleback have more superficial neuromasts than stream 

individuals, suggesting that neuromast number is heritable. In summary, we established a 

case of phenotype-dependent rheotactic behavior based on a peripheral sensory trait that 

has a genetic basis.  
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INTRODUCTION 

Gene flow plays a crucial role in population divergence (Endler 1973; Slatkin 

1985; 1987; Garcia-Ramos and Kirkpatrick 1997; Lenormand 2002). Gene flow typically 

acts against divergent selection and homogenizes the populations, hindering adaptive 

divergence (Ehrlich and Raven 1969; Endler 1973; Slatkin 1987; Bolnick and Nosil 

2007; Räsänen and Hendry 2008). Occasionally, random gene flow may facilitate 

divergence by bringing in novel foreign mutations that are adaptive to the local 

population (Rieseberg and Burke 2001; Morjan and Rieseberg 2004). However, the 

generally constraining effect of gene flow rests on an assumption, that gene flow is 

random with respect to migrants’ phenotypes or genotypes (Endler 1973; Slatkin 1987; 

Garcia-Ramos and Kirkpatrick 1997; Lenormand 2002). There is growing realization that 

gene flow might often be non-random, meaning that certain genotypes are 

disproportionately likely to disperse (Gilbert and Singer 1973; Haag et al. 2005; Phillips 

et al. 2010; Shine et al. 2011), or to settle in particular habitats (Thomas and Singer 1987; 

Edelaar et al. 2008). Thus, gene flow may play a far more complex role in evolution than 

has been previously assumed (Edelaar et al. 2008; Edelaar and Bolnick 2012). Non-

random gene flow can promote adaptive divergence and increase the likelihood of 

speciation with gene flow (Armsworth and Roughgarden 2005; Garant et al. 2005; 

Postma and van Noordwijk 2005; Edelaar et al. 2008; Shine et al. 2011; Edelaar and 

Bolnick 2012; Bolnick and Otto 2013). 

Non-random gene flow results when a component of individual’s dispersal 

behavior depends on a phenotypic trait. Phenotype-dependent dispersal can cause 

migration rates between habitats to deviate from expectations based on individuals’ 

movement abilities (Thomas and Singer 1987; Bolnick et al. 2009). Phenotype-dependent 

dispersal can also alter the genetic composition of migrants, determine the natural 
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selection regime migrants experience, and affect the genetic variation of populations that 

natural selection acts on (Thomas and Singer 1987; Garant et al. 2005; Postma and van 

Noordwijk 2005). Phenotype-dependent dispersal may promote population divergence 

and exaggerate genetic clines over small spatial scales via improving the matching 

between individuals to their environment (Postma and van Noordwijk 2005; Armsworth 

and Roughgarden 2005; Bolnick et al. 2009). The behavioral, physiological, or genetic 

causes of phenotype-dependent dispersal are well understood in a few systems (examples 

see Thomas and Singer 1987; Duckworth and Badyaev 2007; Hanski 2011; reviewed in 

Jaenike and Holt 1991; Clobert 2001; Edelaar et al. 2008; Clobert et al. 2012), while they 

remain largely unknown for most organisms (Clobert et al. 2012). Here, we use three-

spine stickleback (Gasterosteus aculeatus) as a model system to examine the phenotypic 

basis for variation in locomotion ability, which may give rise to phenotype- and 

genotype-dependent dispersal. 

Study system 

Parapatric lake and stream stickleback populations exhibit extensive ecological, 

morphological and genetic divergence on Vancouver Island, B.C., Canada (Reimchen et 

al. 1985; Lavin and McPhail 1993; Hendry and Taylor 2004; Moore et al. 2007; Berner et 

al. 2008; Hendry et al. 2009; Berner et al. 2009). Divergence often occurs over a much 

finer scale (a few meters) relative to individuals’ dispersal ability (up to 150 meters in 

four days). This divergence is too abrupt to be plausibly explained by migration-selection 

balance alone, suggesting a possible contribution by habitat use and non-random 

dispersal (Bolnick et al. 2009; Bolnick and Otto 2013). Indeed, a mark-recapture study in 

Blackwater Lake and its inlet stream (where water flows into a lake) confirmed that most 

displaced individuals returned to their native habitat (Bolnick et al. 2009). The exceptions 

were fish that were already morphologically pre-adapted to the adjoining foreign habitat. 
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Such non-random dispersal can maintain steep morphological clines between lake and 

stream habitats across a few meters (Bolnick et al. 2009). 

This divergent habitat use may arise from any of several mechanisms, but one 

obvious possibility is rheotaxis. Rheotaxis is the behavioral orientation towards currents 

(Lyon 1904; Arnold 1974; Montgomery et al. 1997; Pavlov et al. 2010). In many fish 

species, rheotaxis plays an important role in guiding fish to spawning locations, and in 

the subsequent dispersal of fry into nursery habitats (Hartman et al. 1962; Raleigh 1967; 

Brannon and Commission 1972; Kaya 1989; Kaya and Jeanes 1995; Hensleigh and 

Hendry 1998; Caiger et al. 2012). Many aspects of rheotactic behavior are important. 

These include 1) position-holding in currents, 2) reducing the energetic expenditure in 

currents, 3) orienting towards currents, and 4) finding low-flow-rate refuge from currents 

(Mohammed et al. 2012; Coombs et al. 2013). Each of these can have strong influences 

on individuals’ fitness (Mohammed et al. 2012).  

We recently tested whether parapatric lake and stream stickleback differed in 

rheotaxis. During the breeding season, wild-caught inlet stream fish exhibited more 

positive rheotaxis than lake fish. This rheotactic difference would tend to promote 

dispersal of lake and stream fish back into their respective native habitats (Chapter II). 

Stickleback that more frequently orient towards currents, that hold their position better in 

currents with less energetic expenditure, and that utilize low-flow-rate refuge from 

currents are more likely to enter and/or remain in a stream habitat, while individuals that 

do the opposite are more likely to end up in the lake habitat. Although this result is 

consistent with the hypothesized role of rheotaxis in explaining divergent dispersal 

behavior and reduced gene flow between lake and stream stickleback, the mechanistic 

basis of rheotactic differences remained unclear. Here, we examine the role of stickleback 

morphology, including sensory and locomotor traits, in generating variation in rheotaxis. 
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Candidate phenotypes 

The lateral line system is a major sensory modality unique to aquatic vertebrates 

(Bleckmann 1986; Münz 1989; Bleckmann and Bullock 1989). The lateral line mediates 

rheotactic behavior in a variety of fish (Montgomery et al. 1997; Baker and Montgomery 

1999a; Suli et al. 2012; Coombs et al. 2013). Each lateral line is composed of 

neuromasts, clusters of hair cells that detect local water displacement over the body 

surface (Dijkgraaf 1963; Coombs et al. 2013). There are two types of neuromasts, 

superficial neuromasts that reside on the surface of the skin and canal neuromasts that 

reside in fluid-filled enclosed canals below the skin surface (Coombs and Montgomery 

1994; Coombs et al. 2013). Superficial neuromasts are known to detect water velocity 

along the body surface (Coombs and Montgomery 1994; Braun and Grande 2008; 

Coombs et al. 2013), while canal neuromasts detect the acceleration and deceleration of 

water flow by responding to pressure differences in canal pores that reflect fluid 

movements (Münz 1989; Braun and Grande 2008; Coombs et al. 2013). Threespine 

stickleback have a total of twelve lateral lines, which are composed solely of superficial 

neuromasts [Figure 3.1] (Wark and Peichel 2010). 

 

Figure 3.1: The lateral lines of threespine stickleback.  

A) A schematic of the twelve lateral lines of threespine stickleback, reproduced from 
Wark and Peichel 2010 with modifications. These lateral lines include the infraorbital 
(IO), oral (OR), mandibular (MD), preopercular (PO), otic (OT), supratemporal (ST), 
main trunk line anterior (Ma), main trunk line posterior (Mp), caudal fin (CF), ethmoid 
(ET), supraorbital (SO) and anterior pit (AP) lateral lines. Lateral lines with known QTLs 



 65 

affecting the numbers of lateral line neuromasts are indicated by underscore. B) An 
image of DASPEI-labeled neuromasts. 

Superficial neuromasts are the only type of neuromasts which mediate rheotaxis 

(Montgomery et al. 1997; Baker and Montgomery 1999a). Pharmacological blocking of 

lateral lines is shown to drastically increase the flow rate threshold needed to induce 

rheotactic response in many fish species (Montgomery et al. 1997; Baker and 

Montgomery 1999a,b; Suli et al. 2012; for a counter-example see Van Trump and 

McHenry 2013). Proliferation of superficial neuromasts increases fishes’ sensitivity to 

water disturbance (Engelmann et al. 2000; 2002; Coombs et al. 2013), thus is 

hypothesized to be associated with fish species that are less active swimmers or live in 

slower moving water (Montgomery et al. 1995; Coombs et al. 2013).  

Extensive variation in the lateral line system, especially the number (Vischer 

1990; Wark and Peichel 2010; Beckmann et al. 2010; Vanderpham et al. 2012) and the 

type (Dijkgraaf 1963; Wark and Peichel 2010; Coombs et al. 2013) of neuromasts have 

been found among fishes and has been hypothesized to play a role in adaption to different 

environments (Dijkgraaf 1963; Wark and Peichel 2010; Trokovic et al. 2011; Coombs et 

al. 2013). Variation in neuromast number has been shown to be heritable. At least in 

stickleback, different lateral lines are controlled independently by different regions of the 

genome (Wark et al. 2012). However, little is known on intraspecific variation in lateral 

lines, as most of the existing knowledge on the lateral line system has come from 

interspecific comparisons, with few exceptions (Wark and Peichel 2010; Trokovic et al. 

2011; Vanderpham et al. 2012). Specifically, to our knowledge no studies have examined 

the covariation, within a species, between the number of neuromasts and individual’s 

rheotactic behavior. 
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In contrast, many studies have examined intraspecific variation in fish body 

shape, in relation to flow regime (Blake 1983; Videler 1993; Vogel 1996; Langerhans 

2008). Morphological traits that are associated with swimming performance can play a 

role in rheotactic behavior. For example, shallower body (i.e. more streamlining) and 

longer pectoral fins relative to body size often favor prolonged swimming in open water, 

while deeper body and shorter pectoral fin relative to body size often favor 

maneuverability in currents (Webb 1982; Walker 1997; Hendry et al. 2011). Lake 

stickleback typically have shallower body and similar pectoral fin sizes compared to inlet 

stream stickleback. 

In this study we 1) carried out a lateral line ablation experiment and showed that 

the lateral lines were necessary for typical rheotactic behavior of stickleback; 2) tested for 

correlations between neuromast number and individuals’ rheotactic behavior using both 

wild-caught and lab-reared common garden lake and stream stickleback; 3) tested for 

heritable differences in lateral line structure between the two ecotypes; and 4) examined 

the correlations between rheotaxis and three other sets of morphological traits (body 

sizes, body shapes, and pectoral fin morphology) for phenotype-dependent rheotactic 

behavior. 

METHODS 

Study System 

Blackwater Lake is a medium-sized mesotrophic lake on Northern Vancouver 

Island, B.C., Canada. We chose Blackwater lake because its lake and stream stickleback 

populatons have previously been shown to exhibit nonrandom dispersal behavior 

(Bolnick 2009), and divergent rheotaxis (Chapter 2). All wild-caught parapatric stream 

and lake stickleback used in this study were sampled from the inlet stream of Blackwater 
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Lake (between 50º9’50’’N, 125º35’30’’W and 50º9’51’’N, 125º35’30’’W) and from 

Blackwater Lake near the inlet (50º10’1’’N, 125º35’23’’W; see Bolnick 2009 for a map 

of the study site). Fish were captured using unbaited minnow traps. All collection, 

transportation and experimental procedures were approved [Appendix E].  

Circular Flow Tank Design 

We used a circular flow tank (Figure 3.2) to quantify individuals’ rheotactic 

behavior, as described in Chapter II. Each test individual can swim freely 

upstream/downstream indefinitely in the flow tank, without encountering upstream or 

downstream barriers typical of linear flow tank designs. The flow tank was made of white 

smooth FRP plastic sheeting and equipped with two aquarium pumps (Maxi-jet 1200, 

Marineland, Blacksburg, VA) that generated uni-directional circular flow (clockwise or 

counter-clockwise, alternated across different test individuals). The flow rates were 

within the natural range of Blackwater inlet stream. The outermost part of the tank has 

the highest flow rate and the inner most part of the tank has the slowest flow rate (Figure 

3.2). The concentric variation in flow rate gave test individuals a choice of flow regimes. 

The direction of flow (clockwise or counterclockwise) was randomly alternated across 

trials. 
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Figure 3.2: An overhead schematic of the circular flow tank  

The innermost part of the tank (a two-centimeter-wide ring against the inner wall of the 
flow tank) has minimal flow rate (0.01m/s). The rest of the test area was equally divided 
into three concentric rings with equal widths (9.3 cm), including the low-flow-rate inner 
part (0.12 m/s), medium-flow-rate intermediate part (0.16 m/s) and the high-flow-rate 
outer part (0.20 m/s).  

We tested each individual separately in the flow tank to avoid schooling effects. 

We gave each test individual fifteen minutes to acclimate in the tank in still water, then 

an overhead webcam videotaped the rheotactic behavior of each test individual in a five-

minute trial with current. We randomized the test order of lake- or stream-origin fish. 

We followed the video analysis protocol as in Chapter II. A researcher who was 

blind to fish identity tracked all fish movements using a constant zoom level (150%). The 

researcher extracted frames from each trial video at a rate of 3.4 frames/second, and 

manually tracked the test individual’s anterior end and posterior end (caudal peduncle) 

using ImageJ analysis software (http://rsb.info.nih.gov/ij/) with MtrackJ plugin. In each 

frame, we averaged the coordinates of the focal fish’s anterior end and posterior end to 

obtain the mid-point of the individual as an indicator of the focal individual’s location in 
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the flow tank. All distance-related measures were converted from pixels into physical 

distances. We quantified the following four measures of rheotaxis: 

1) Net displacement: the distance between the test individual’s location at the 

beginning and the end of the current trial, including any full circuits of the tank upstream 

or downstream. The net displacement is positive when the ending location is upstream to 

the starting location, and negative when the fish ended downstream of its start. Positive 

net displacement would tend to cause dispersal farther upstream (away from the lake). 

Negative net displacement would tend to move fish downstream (into the lake).  

2) Cumulative upstream movement: the total upstream path length that each test 

individual swam during the five-minute current trial. This differs from net displacement 

because the cumulative movement includes the length of multiple upstream swimming 

bursts that could be interspersed with downstream movements that result in little or no 

net displacement. Energy expenditure increases with cumulative movement depending on 

swimming speed and body mass (Boisclair and Tang 1993), so fish with high cumulative 

movement are exerting substantial swimming effort. If this high effort results in little net 

displacement, fish exhibit poor energetic efficiency in the current.  

3) Upstream orientation: the fraction of time each test individual faced upstream 

into currents (±45º relative to the tangent of circular flow at the midpoint of the fish). A 

higher frequency of upstream orientation is indicative of more positive rheotaxis (facing 

into currents). A randomly oriented fish is expected to face upstream and downstream 

(±45º relative to opposite direction of the tangent of circular flow at the midpoint of the 

fish) with equal frequency. A prior study showed wild-caught stickleback during the 

breeding season both faced upstream more often than random expectations, but lake fish 

faced upstream less than inlet fish (Chapter II). 
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4) Flow regime: we scored the location of the test individual in each frame 

(innermost = 0, inner = 1, middle = 2, and outermost = 3), corresponding to increasing 

flow rates. We averaged the scores of all frames to obtain a single average flow regime 

score for each individual. The higher the average flow score is, the more often individuals 

use the high velocity locations in the tank. A fish distributed randomly across flow 

regimes is expected to have a flow score of 1.98, taking into account the relative surface 

areas of each of the four regions. 

Question I: Does the lateral line system mediate rheotactic behavior in lake and 

stream stickleback? 

If the lateral line system is necessary for the normal rheotactic, the ablation should 

result in altered behavior in both populations. We pharmacologically ablated the lateral 

line system of 15 wild-caught lake fish and 15 wild-caught stream fish, and tested their 

rheotactic behavior. We then compared the rheotactic behavior of the manipulated 

individuals with the measured rheotactic behavior of their wild-caught non-manipulated 

counterparts (22 lake fish and 22 stream fish) (Chapter II).  

Both the control and the manipulated lake and stream fish were sampled in April 

2013, two months prior to the breeding season of these two parapatric populations 

(Bolnick, pers. obs.). We clipped the first or second dorsal spine to mark stream or lake 

individuals respectively. Upon capture, all individuals were immediately transported to 

the Peichel lab at Fred Hutchingson Cancer Research Center, kept in 125 gallon fish 

tanks under standardized conditions with 16 hours light at a temperature of 16-18 C. Fish 

were fed twice per day on frozen Mysis shrimp. The rheotaxis of individuals was tested 

prior to daily feedings.  

We used neomycin (Sigma) to ablate the lateral line system of wild-caught 

stickleback. Mechanoreceptive lateral line hair cells are sensitive to neomycin exposure. 
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Neomycin exposure of sufficient dosage induces lateral line hair cell death and 

temporarily inhibits lateral line function removing sensitivity to water vibration. 

However, lateral line hair cells regenerate quickly once neomycin is removed. Hair cell 

proliferation starts (accompanied with lateral line sensitivity recovery) within 12 hours 

after neomycin exposure (Harris et. al 2003, Kaus 1987). In stickleback, the recovery of 

lateral line hair cells and the lateral line function after pharmacological ablation happens 

within 3-4 days (Catherine Peichel, pers. comm.).  

We held individual fish overnight (10 hours) in an aquarium with 5mM 

neomycin. This treatment ensured full ablation. We rinsed fish with fresh water for one 

minute, then returned them to their original aquarium for at least one hour, to acclimate. 

All behavior assays were carried out within six hours after neomycin exposure to ensure 

neuromasts had not yet regrown. In a random sample of 20% of the test, we confirmed 

via DASPEI staining that no neuromasts regrew within this time-frame.  

We used Wilcoxon rank-sum tests to evaluate differences between manipulated 

and control lake fish, and between manipulated and control stream fish, for each of the 

four measures of rheotaxis. We also tested whether individuals’ use of flow regimes 

deviated from random distribution (in proportion to the relative areas of the define flow 

regimes). We tested for divergence in rheotactic behavior between lake fish and their 

stream counterparts for both manipulated and control groups using Wilcoxon rank-sum 

tests. 

Question II: Is there a quantitative relationship between the number of neuromasts 

and rheotaxis in lake and stream stickleback?  

To test for the quantitative relationship between the number of neuromasts and 

rheotaxis, we visualized the functioning neuromasts of the wild-caught control fish (22 

lake and 22 stream individuals) described in Question I. Since the rheotactic behavior of 
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these individuals appears in a previous study (Chapter II), we used these data again here. 

All lateral line data were collected within 12 hours after each individual’s rheotactic 

behavioral assay. We stained live individuals with a fluorescent live dye 2-[4-

(dimethylamino) styryl]-N-ethylpyridinium iodide (DASPEI; VWR International, 

Radnor, PA, USA) using a protocol adapted from Wark and Peichel (2010). We first 

transferred each individual fish from its temporary aquarium to a same-size aquarium 

filled with 0.025% DASPEI staining solution. We allowed each individual to swim freely 

in the staining aquarium for twenty minutes and kept the water oxygenized all the time 

via portable aerators. Then each individual was euthanized via a two-minute immersion 

bath in MS-222 (500mg/L) after two brief rinses with fresh aquarium water. Immediately 

after euthanasia, we counted the number of neuromasts in each of the 12 lateral lines on 

the left side of the fish, using a Leica fluorescent dissecting scope with a FITC filter set 

(Leica Microsystems Inc., Bannockburn, IL, USA). All euthanized fish were fixed in 

10% formalin, then rinsed and preserved in 70% isopropanol for morphometric analysis. 

We conducted a canonical correlation analysis (CCA) to test whether there is a 

multivariate correlation between neuromast numbers and rheotactic behaviors. This CCA 

contained both lake and stream fish. The neuromsat matrix contains the number of 

neuromasts at each of the twelve lateral lines. The criterion variable matrix contained 

three measures of rheotaxis (net displacement, cumulative upstream movement, upstream 

orientation). We did not include flow regime as one of the criterion variables, because 

lateral line ablation had no significant effect on the flow regime choice (see Results). 

CCA reduced lateral line variables and rheotactic behavior variables to three sets of 

paired canonical variates (CVs). Each pair of CVs are the linear combinations of the 

criterion variable set and the predictor variable set that have maximized correlations to 

each other. Each canonical function comes with a canonical correlation coefficient R! , 
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the square of which represents the proportion of variance shared by the CV pair, i.e. 

squared canonical correlation R!! . Each subsequent R!!represents the amount of 

remaining variation explained by a CV pair, after accounting for the effects of the 

previous CV pair(s). We used permutation tests (10000 runs) to test the statistical 

significance of each pair of CVs using Wilks’ λ as the test statistic. For each significantly 

correlated CV pair, variables are commonly regarded to be important when the absolute 

values of their corresponding structure coefficients r!  are larger than 0.3. We used r! to 

identify important dependent and predictor variables, and used the standardized canonical 

function coefficients (coef) to infer the direction of correlation between each of the 

important criterion variables and predictor variables in each pair of CV. For each pair of 

significantly correlated CVs, we used ANCOVA to verify the effect of neuromasts (a 

covariate) on rheotaxis, while controlling for origin (lake vs. stream, a fixed effect), and 

to test for significant origin effect and significant interaction effect between lateral line 

and origin. 

We also tested for lateral-line mediated rheotaxis using lab-reared common-

garden lake and stickleback with no prior experience to currents. We performed in vitro 

crosses between wild-caught inlet stream stickleback and between wild-caught inlet lake 

stickleback from Blackwater Lake. We obtained 11 stream fish clutches and 30 lake fish 

clutches that developed to maturity (see Chapter II for details of shipping and rearing). 

We pooled families to generate one outbred population of lake fish (2 fish from each of 

11 surviving families) and one population of stream fish (2 fish from each of 30 surviving 

families). 

We sampled 15 lake and 15 stream stickleback from each pooled lab-reared 

population and evaluated their rheotactic behavior. We test whether rheotaxis covaries 

with individuals’ neuromast numbers. After the rheotaxis and lateral line assays, all 
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individuals were euthanized and all specimens were fixed in 10% formalin, then rinsed 

and preserved in 70% isopropanol for morphometric analysis. As described above for the 

wild-caught fish, we used (CCA) to test whether the number of neuromasts covaries with 

rheotactic behavior in lab-reared fish. For each pair of significantly correlated CVs, we 

used ANCOVA to verify the effect of neuromasts on rheotaxis controlling for origin 

(lake vs. stream), and to test for significant origin effect and significant interaction effect 

between lateral line and origin. 

Question III: Does lateral line structure diverge between lake and stream 

stickleback?  

We tested whether lake and stream stickleback differ in the number of neuromasts 

in each of the twelve lateral lines. We used Wilcoxon rank-sum tests to test for 

differences in neuromast numbers, separately for each lateral line, between wild-caught 

and lab-reared fish. We used the same wild-caught lake and stream stickleback (22 for 

each group). Lab-reared fish were randomly sampled 22 stream fish and 27 lake fish, 

including the individuals in Question II. Because of violations of MANOVA 

assumptions, we used a weighted Z test (Whitlock 2005) to combine the independent 

tests from each of the twelve lateral lines into a single test.  

 For each lateral line, we also combined all samples (wild and lab-reared) and 

then used two-way ANOVAs to test whether neuromast numbers exhibit significant 

effects of ecotype (lake vs. stream), origin (wild-caught vs. lab-reared) and their 

interactions (Legendre and Anderson 1999; Anderson and Legendre 1999). We used 

permutation tests to calculate p-values when the two-way ANOVA residual normality 

assumption was violated. We also tested for significant correlations between total 

neuromasts numbers and standard length in both lab-reared and wild-caught individuals 
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using Spearman's rank correlation. Because we found no correlation, we did not use body 

size as a covariate in the preceding analyses. 

Question IV: Is rheotaxis morphology-dependent in lake and stream stickleback?  

To test for morphological traits that are correlated with rheotaxis, we measured 

body shapes, body sizes and pectoral fin sizes on preserved specimens from individuals 

used for Questions I-III. We also examined wild-caught lake and stream stickleback 

captured during the breeding season in a previous year (Chapter II), lacking neuromast 

data. To obtain metrics representing the body shape of each individual, we took 

photographs of the right side of all individuals and digitized 20 homologous landmarks 

using the software tpsDIG2 (Rohlf 2007). We adopted the homologous landmark 

configuration Berner et. al. 2009, and added the caudal tip of the posterior process of the 

pelvic girdle, the posterior tip of the ectocoracoid, the anterior edge of the eye, the base 

of the last pectoral fin ray, and the tip of the pelvic spine. We used tpsUtil to remove the 

effects of specimen bending owing to preservation, and calculated relative warps (RWs, 

principal components of shape variables) of all specimens using tpsRelw (Rohlf 2007). 

We generated RWs separately for non-breeding wild-caught, breeding wild-caught, and 

non-breeding lab-reared animals. We retained RWs that contributed more than 5% of the 

total shape variation (five RWs for each group) for further analysis.  

We obtained body sizes by measuring five variables, including body mass, 

standard length, pelvic width, body width at the pectoral fin and body width at 

preoperculum. We obtained pectoral fin sizes by taking photographs of the pectoral fin on 

the left side of each specimen and measuring the length and area using Image J. 

We conducted CCAs to test whether each of the three sets of morphological traits 

is a significant predictor of rheotactic behavior, in each of the four groups of stickleback 

separately. In each group, we used the morphological traits of both lake and stream fish 
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as predictor variables, and used all four measures of rheotaxis of both lab-reared lake and 

stream fish as criterion variables. For each pair of significantly correlated CVs in each 

CCA, we used ANCOVA to verify the effect of morphological trait on rheotaxis 

controlling for origin (lake vs. stream), and to test for significant origin effect and 

significant interaction effect between morphological trait and origin. We also used 

Wilcoxon rank-sum tests to test for differences in each morphological trait between wild-

caught and lab-reared fish. 

All analyses were done using the R statistical language (Venables and Ripley 

2002; R Core Team 2013; Legendre et al. 2014). 

RESULTS 

I: The lateral line system mediates rheotactic behavior in stickleback 

We found that lateral line ablation altered the rheotactic behavior of both lake and 

stream stickleback in three out of four behavior measures. First, lateral line ablation 

significantly increased the net displacement in inlet lake fish (W=95, p=0.03) and showed 

similar but not significant effects in stream fish (W =148, p=0.86) [Figure 3.3A]. Control 

fish typically exhibited significant negative rheotaxis (net displacement down-current), 

whereas ablated fish remained essentially stationary in the current. Second, lateral line 

ablation significantly reduced cumulative distance upstream in both lake and stream fish 

(W=295, p<0.0001 and W=263, p=0.0002 respectively) [Figure 3.3B]. The negative net 

displacement of control fish was the result of a mixture of extensive up- and down-stream 

movements, which was not observed as much in ablated fish. Third, lateral line ablation 

significantly increased the frequency of upstream orientation in lake fish (W=69.5, 

p=0.003) and showed similar but not significant effect in stream fish (W=111, p=0.16) 

[Figure 3.3C]. Lateral line ablation had no significant effect on which flow regime(s) fish 
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used (W=175 and 121, P = 0.77 and 0.29 respectively) [Figure 3.3D]. All pre-breeding 

wild-caught lake and stream fish distributed randomly in currents. This was true for 

control fish with lateral lines (V= 62 and 56, P = 0.93 and 0.85 for lake and stream fish 

respectively) or ablated fish without functional lateral lines (V= 129 and 100, P = 0.94 

and 0.41 for lake and stream fish respectively).  
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Figure 3.3:  A side-by-side comparison of the rheotactic behavior of wild-caught non-
breeding lake and stream stickleback and their counterparts with lateral-line 
ablated  

A) net displacement (in meter), B) cumulative upstream movement (in meter), C) 
upstream orientation and D) flow regime. The height of each bar is the group mean and 
the error bars are the standard errors. 
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We found no difference in any of the four measures of rheotaxis between lake and 

stream stickleback in the control group (see Chapter II for details), or in the manipulated 

group (net displacement: W = 230 and 145, P = 0.79 and 0.08 for lake and stream fish 

respectively, the same below; cumulative upstream movement: W = 231 and 69, P =0.81 

and 0.12; upstream orientation: W = 280 and 135, P = 0.80 and 0.20; flow regime: W= 

283 and 99.5, P = 0.35 and 0.83). 

II: The number of neuromasts correlates with rheotactic behavior 

In wild-caught non-breeding lake and stream stickleback, we found significant 

correlations between rheotaxis and neuromast number for the first canonical variate 

(CV1) (full model) (R! = 0.83, Wilks’s λ = 0.18, P= 0.018) [Figure 3.4A, Table E1]. A 

substantial amount (69.1%) of the variation in rheotaxis in CV1 can be explained by 

variation in neuromast number, though CV1 explained a small (10.7%) but yet significant 

amount of the total variation in rheotaxis. CV1 showed that the numbers of neuromasts 

(especially more neuromasts along MP and CF) are significantly correlated with more 

cumulative upstream movement and more upstream orientation [Table 3.1]. CV1 has 

minimal effect on up or downstream dispersal, since net displacement only explain 2% 

variation in CV1. The CV1 of neuromasts number remains a significant predictor of the 

CV1 of rheotaxis after controlling for fish origin (P < 0.001). Lake and stream fish do not 

differ for the CV1 of neuromast number (P = 0.53). No interaction effect between the 

CV1 of neuromast number and fish origin and were found (P = 0.45). 
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Figure 3.4: Helio plots of structural coefficients  
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Figure 3.4. Helio plots of structural coefficients of A) the first canonical function 
predicting rheotactic behavior using neuromast numbers in non-breeding wild-caught 
fish; B) the first canonical function and C) the second canonical function predicting 
rheotactic behavior using neuromast numbers in non-breeding lab-reared fish. Data are 
displayed in radial bars, with larger positive values orienting outward and smaller 
negative values pointing inward. The length of the bar reflects the importance of the 
variable. Important variates (structural coefficient >0.3) are indicated by asterisks.  
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Population Predictor 

Trait 
Net 
Displacement 

Cumulative 
Upstream 
Movement 

Upstream 
Orientation 

Flow 
Regime 

Behavioral 
Implication 

Wild; 
breeding 

Fin length 
(+), fin Area 
(-) 

- n.s. - - Net downstream 
displacement in 
areas with slow 
currents 

Wild; non-
breeding 

MP (+), CF 
(+) 

n.s. + + n.s. High energy 
expenditure in 
currents 

Lab-reared; 
non-
breeding 

AP (-), OR 
(+), ST (+) 

+ - + NA Net upstream 
displacement 
with low energy 
expenditure 

PO (+), ET 
(+), ST (+) 

- - - NA Net downstream 
displacement 
with low energy 
expenditure 

Fin length 
(+), fin Area 
(-) 

n.s. + - - High energy 
expenditure in 
currents, more 
downstream 
facing, often in 
areas with slow 
currents 

Table 3.1: A summary of major contributing variables of each of the significant CCA 
results with interpretations 

In lab-reared non-breeding lake and stream stickleback, neuromasts could not be 

counted for a few lateral lines on a few individuals, because of insufficient DASPEI 

staining intensity or high background fluorescence. These individuals were excluded 

from our analyses, leaving 13 lake and 12 stream fish. We found significant correlations 

between rheotaxis and neuromast number for both CV1 (full model) (R! = 0.94, Wilks’s 

λ = 0.021, P = 0.04) [Figure 3.4B, Table E2] and the second canonical variates (CV2) 

(reduced model) (R! = 0.83, Wilks’s λ = 0.18, P = 0.043) [Figure 3.4C, Table E2]. 

Neuromast number has a substantial contribution to rheotaxis. CV1 explained 48.2% of 

the total variation in rheotaxis, and a majority of the explained variation (88.2%) can be 
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explained by variation in neuromast number. CV1 showed that the neuromast number is 

significantly correlated with more net displacement, less cumulative upstream movement, 

more frequent upstream orientation [Table 3.1 and A2]. There were strong effects with 

decreasing neuromast number along AP and increasing neuromast number along OR and 

ST, ranked by degrees of contribution to CV1. There were weak effects on decreasing 

neuromast number along CF. CV2 explained 27.1% of the residual variation in rheotaxis 

that were not explained by CV1, and a majority of the explained residual variation 

(68.8%) could be explained variation in neuromast number [Table E2]. CV2 showed that 

the neuromast number is significantly correlated with more net displacement 

downstream, less cumulative upstream movement and more frequent upstream 

orientation [Table 3.1 and A2]. Both CV1 and CV2 of neuromasts number remain 

significant predictors of the corresponding CVs of rheotaxis after controlling for fish 

origin (both P < 0.001). Lake and stream fish do not differ for both CV1 and CV2 of 

neuromast number (P = 0.22 and 0.74 respectively). No interaction effects were found 

between CV1 or CV2 of neuromast number and fish origin (P = 0.32 and 0.81 

respectively). The structure coefficients for lateral lines do not differ significantly 

between wild-caught and lab-reared individuals (P = 0.668). This p-value was obtained 

by calculating CCAs between lateral lines and rheotaxis, separately for lab- and wild-fish. 

For a test statistic, we calculated the correlation between CCA coefficients of wild- and 

lab fish. We then generated 10,000 null correlations by shuffling wild/lab identity and 

recalculating this correlation. 

III: Heritable difference in the lateral line structure between lake and stream 

stickleback 

We found heritable differences in lateral line structure between lake and stream 

stickleback. The means and standard deviations of the number of neuromasts along each 
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of the 12 lateral lines for both wild-caught and lab reared lake and stickleback are given 

in Table 3. Neuromasts numbers are size-independent, as there is no correlation between 

the number of total neuromasts and standard length in both wild-caught (Spearman’s rho 

= 0.005, 0.13 and -0.057, p= 0.98, 0.57 and 0.71 for lake fish, stream fish and pooled lake 

and stream fish respectively) and lab-reared individuals (Spearman’s rho = -0.16, 0.11 

and -0.011, p= 0.43, 0.61 and 0.94 for lake fish, stream fish and pooled lake and stream 

fish respectively). 

Lab-reared lake stickleback tended to have more neuromasts than their lab-reared 

stream counterparts along all twelve lateral lines. This difference was significant for the 

IO, MD and OT lines [Table 3.2]. Wild-caught non-breeding lake stickleback also tended 

to have more neuromasts than their stream counterparts along ten out of the total of 

twelve lateral lines, among which the differences along only the MP line was significant 

[Table 3.2]. We combine the probability tests from individual lateral lines using 

weighted-Z method and found that lake stickleback has significantly more neuromasts 

than stream stickleback, both in wild-caught individuals (combined two-sided P = 0.025) 

and in lab-reared common-garden individuals (combined two-sided P < 0.001). 
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 Wild Lake 

(N=29) 
Wild 
Stream 
(N=29) 

P Lab Lake 
(N=27) 

Lab Stream 
(N=22) 

P 

IO 20.8(6.3) 23.7(8.5) 0.2 37(6) 33.8(4.9) 0.0082* 
OR 5.6(4.1) 4.7(3.6) 0.45 7.3(1.7) 6.6(1.5) 0.26 
MD 16.5(7.4) 18.5(9.3) 0.50 43(4.7) 39.7(4.7) 0.021* 
PO 9.4(4.8) 8.6(4.2) 0.51 21.4(6) 20.4(3.6) 0.78 
OT 6.4(3.6) 5.8(3.6) 0.58 12.2(2.1) 10.7(1.8) 0.022* 
ST 9.5(3.7) 8.0(3.4) 0.14 18.6(4.1) 16.8(3.1) 0.11 
Ma 18.7(8.7) 17(4.8) 0.35 25.7(6.8) 23.2(5.8) 0.20 
Mp 60.2(23.3) 45(25.9) 0.036* 91.9(26.8) 81.8(29.6) 0.14 
CF 3.3(2.3) 2.5(2.2) 0.29 6.4(3.3) 5.6 (2.5) 0.47 
ET 5.9(2.6) 5.5(3.1) 0.56 7(1.2) 6.7(1.4) 0.27 
SO 18.6(7.3) 17.5(6.8) 0.63 32.3(4.8) 30.5(5.7) 0.22 
AP 8.5(4.4) 6.8(2.6) 0.13 10.9(2.1) 10.7(2.8) 0.224 

Table 3.2: Number of Neuromasts in all 12 lateral lines for both wild-caught and lab-
reared common-garden lake and stream stickleback and the two-tailed p 
values of Wilcoxon rank-sum tests for lake-stream comparisons  

Mean (standard deviation) number of neuromasts is shown for each of the lateral line for 
each population. Neuromasts numbers that significant differ between lake and stream 
stickleback are indicated by asterisks.  

Two-way ANOVAs on Mp, MD, OT and IO lines showed significant ecotype 

effect on the number of neuromasts along Mp line but not the others (ecotype effect: P = 

0.025, 0.33, 0.077 for Mp, MD, OT lines respectively; P = 0.55 for IO lines, based on 

999 permutations). Lab-reared individuals consistently had more neuromasts along Mp, 

MD, OT and IO lines compared to their wild-caught counterparts (origin effect: all P < 

0.001; the p value for IO line was based on 999 permutations). There was no significant 

interaction effect between ecotype (lake versus stream) and origin (lab-reared and wild-

caught) in any of the lines, except for the IO line (ecotype*origin: P = 0.64, 0.066 and 

0.45 for MP, MD and OT lines respectively; P = 0.015 for IO line, based on 999 
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permutations), suggesting that the effect sizes did not differ between wild-caught and lab-

reared fish along MP, MD and OT lines. Mp accounts for 32.8% and 27.5% of the total 

number of neuromasts in wild-caught lake and stream fish respectively. IO, MD and OT 

together accounts for 29.4% and 29.6% of the total number of neuromasts in lab-reared 

lake and stream stickleback respectively. 

IV: Rheotactic behavior is morphology-dependent 

In wild-caught non-breeding lake and stream stickleback with intact lateral lines, 

we found no significant canonical correlations between rheotaxis and body size (full 

model: R! = 0.42, Wilks’s λ = 0.60, P = 0.63) [Table E3], pectoral fin morphology (full 

model: R! = 0.40, Wilks’s λ = 0.82, P = 0.48) [Table E4] or body shape (full model: R! = 

0.59, Wilks’s λ = 0.52, P = 0.21) [Table E5]. 

In lateral-line-ablated wild-caught lake and stream stickleback (caught alongside 

the wild-caught non-breeding fish with intact lateral lines), body shape is significantly 

correlated with rheotaxis for both CV1 (full model) (R! = 0.72, Wilks’s λ = 0.21, P= 

0.045) and CV2 (reduced model) (R! = 0.70, Wilks’s λ = 0.45, P= 0. 015) [Table E6]. 

However, both of the significant results were driven by one individual. Removing the 

individual removed the significant relationship between body shape and rheotaxis along 

both CV1 (R! = 0.73, Wilks’s λ = 0.35, P= 0.30) and CV2 (R! = 0.45, Wilks’s λ = 0.76, 

P= 0.72). We found no significant canonical correlations between rheotaxis and body size 

(full model: R! = 0.63, Wilks’s λ = 0.35, P = 0.27) [Table E7], pectoral fin size (full 

model: R! = 0.50, Wilks’s λ = 0.69, P = 0.34) [Table E8]. 

In lab-reared lake and stream stickleback, we found significant correlations 

between rheotaxis and pectoral fin size for CV1 (full model) (R! = 0.72, Wilks’s λ = 

0.46, P = 0.044) [Figure 3.5A, Table E9]. Pectoral fin size and neuromasts numbers are 

not correlated (R! = 0.81, Wilks’s λ = 0.22, P = 0.47). CV1 explains 19.8% of the total 
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variation in rheotaxis, and a substantial part (51.1%) of the explained variation in 

rheotaxis can be explained by variation in pectoral fin size. CV1 showed that higher 

aspect ratio of pectoral fin (longer fin, less fin area) is a significant predictor of longer 

cumulative distance upstream, less frequent upstream orientation, and tendency to stay in 

areas with slower flow regimes [Table 3.1]. We found no significant correlations between 

rheotaxis and body size (full model: R! = 0.73, Wilks’s λ = 0.40, P = 0.62) [Table E10] 

or body shape (full model: R! = 0.61, Wilks’s λ = 0.46, P = 0.78) [Table E11] in lab-

reared lake and stream fish. The CV1 of pectoral fin morphology remains a significant 

predictor of the CV1 of rheotaxis after controlling for fish origin (P = 0.002). Lake and 

stream fish do not differ for the CV1 of neuromasts numbers (P = 0.37). No interaction 

effect between the CV1 of neuromasts and fish origin and were found (P = 0.95). No 

divergence in pectoral fin length (W = 76, P = 0.94) or area (W = 78.5, p= 1) was found 

between lake and stream fish. 

 

Figure 3.5:  Helio plot of structural coefficients of the first canonical function predicting 
rheotactic behavior using pectoral fin size in A) non-breeding lab-reared fish 
and B) wild-caught breeding fish  
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Data are displayed in radial bars, with larger positive values orienting outward and 
smaller negative values pointing inward. The length of the bar reflects the importance of 
the variable. Important variates (structural coefficient >0.3) are indicated by asterisks.  

In wild-caught breeding lake and stream stickleback, we found significant 

canonical correlations between rheotaxis and pectoral fin morphology for both CV1 (full 

model) (R! = 0.56, Wilks’s λ = 0.59, P= 0.041) and CV2 (reduced model) (R! = 0.36, 

Wilks’s λ = 0.60, P= 0. 041) [Figure 3.5B, Table E12]. CV1 explained 17.4 % of the total 

variation in rheotaxis, and a third (31.6%) of the explained could be explained by 

variation in pectoral fin size. CV2 explained 61.8 % of the remaining variation in 

rheotaxis that were not explained by CV1, though only a small percentage (12.6%) of the 

explained variation could be explained by variation in pectoral fin size. Thus we focus on 

the interpretation of CV1, in which pectoral fin size has a substantial contribution to 

rheotaxis. CV1 showed that higher aspect ratios of pectoral fins (longer fin and smaller 

fin area) were correlated with less net displacement, less frequent upstream orientation 

and slower flow regime, consistent with what we found in lab-reared fish [Table 3.1 and 

A12]. The CV1 of pectoral fin morphology remains a significant predictor of the CV1 of 

rheotaxis after controlling for fish origin (P = 0.01). Lake and stream fish do not differ 

for the CV1 of pectoral fin measures (P = 0.91). No interaction effect between the CV1 

of neuromasts and fish origin and were found (P = 0.82). We did not find divergence in 

pectoral fin length (W = 138, P = 0.46) or area (W = 133, p= 0.37) between lake and 

stream fish. Moreover, neither body size (full model: R! = 0.52, Wilks’s λ = 0.57, P = 

0.67) [Table E13] nor body shape (full model: R! = 0.26, Wilks’s λ = 0.59, P = 0.72) 

[Table E14] were significant correlated with rheotaxis in wild-caught breeding lake and 

stream stickleback. 
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DISCUSSION 

This study identified a case of phenotype-dependent dispersal propensity. We 

showed that both superficial neuromast number and pectoral fin morphology are 

correlated with both rheotactic behavior in lab-reared and wild-caught individuals. We 

showed that the lateral line was necessary for stickleback to exhibit typical rheotactic 

behavior. We also showed that lake stickleback have more neuromasts than stream 

stickleback in the wild. This difference is heritable as it persists in common-garden lab-

reared fish, consistent with prior evidence for heritable neuromast numbers (Wark et al. 

2012). Collectively, these results suggest that heritable variation in neuromast numbers 

may lead to heritable variation in rheotaxis within and among lake and stream 

stickleback. To the extent that rheotaxis affects dispersal behavior in the wild, this would 

tend to generate genotype-dependent dispersal that could accentuate adaptive divergence.  

The lateral line system, vision and tactile senses are the three major sensory 

modalities fish employ to orient and respond to currents (Montgomery et al. 1997; 

Coombs et al. 2013). We showed that the lateral line is essential for the typical rheotactic 

behavior of stickleback. Previous studies on rheotactic behavior following lateral line 

ablation mainly measured the minimal flow rate inducing upstream orientation in linear 

flow tanks with constant current speed (Montgomery et al. 1997; Baker and Montgomery 

1999a; Suli et al. 2012). Superficial neuromasts have repeatedly been shown to alter 

rheotactic behavior (for counter examples, see (Brown et al. 2011; Coombs et al. 2013; 

Van Trump and McHenry 2013). Ablating neuromasts reduces sensitivity to currents and 

drastically increases the minimal threshold current speed to induce rheotaxis 

(Montgomery et al. 1997; Baker and Montgomery 1999a; Suli et al. 2012). In this study, 

we measured multiple facets of rheotactic behavior, using a circular flow tank, to provide 
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a more multivariate view of rheotaxis in a heterogeneous fluid environment than has been 

done to date.  

Lateral line ablation removes an important sensory modality for fish to make 

movement decisions in a heterogeneous flow regime (Liao 2007; Bleckmann et al. 

2012).We showed that lateral-line ablated stickleback exhibited stronger position-holding 

behavior in currents. Ablated fish remained essentially stationary on average, whereas 

control fish tended to move down-current. Compared to control fish, ablated individuals 

covered smaller cumulative distances and faced upstream more frequently. This behavior 

pattern is similar to the behaviors that breeding stream fish use to remain in place in the 

current (Chapter II). In contrast, non-breeding and lab-reared stickleback all exhibited 

negative rheotaxis as seen in the control fish. To explain this result, we hypothesize that 

in lake and non-breeding stream stickleback, lateral lines generate information about 

current that fish use to orient downstream. Ablating the neuromasts removes this source 

of information, eliminating fish’s ability to detect (and thereby follow) a current. In the 

absence of neuromast-derived information about the current, fish can use vision to 

generate an external reference frame of the surroundings, and hold their position as a 

response to stabilize the images of the surroundings (Coombs et al. 2013). Thus, ablation 

may have forced fish to rely on visual cues, inducing place-holding behavior rather than 

the typical negative rheotaxis. This explanation could be tested by repeating these 

experiments in the dark, with the expectation that place-holding is eliminated in ablated 

fish who also lack visual cues. It is not clear, at present, why breeding-season stream 

stickleback exhibit the slight positive rheotaxis seen in ablated fish. It may be that their 

neuromasts are either damaged, lost, or no longer used for sensory information. 

Previous studies, which mostly focused on among species comparisons, have 

associated the reduction of superficial neuromast number with high flow environments 
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and more active swimmers (Dijkgraaf 1963; Vischer 1990; Guarnieri et al. 1993; Coombs 

et al. 2013); for a counter-example, see (Beckmann et al. 2010). This association is 

supported by studies showing that superficial neuromasts are always stimulated in 

running water or when fish are swimming (Engelmann et al. 2000; 2002), thus the 

reduction in superficial neuromast number reduces the sensitivity of fish to 

hydrodynamic noise (Engelmann et al. 2000; 2002; Coombs et al. 2013). As superficial 

neuromasts mediate rheotactic behavior (Montgomery et al. 1997; Baker and 

Montgomery 1999a; Suli et al. 2012), the association among superficial neuromasts, 

hydrodynamic environments and rheotactic behavior was implied, though never explicitly 

tested. 

This is the first study to have examined a quantitative relationship between 

superficial neuromast number and rheotactic behavior. We found significant correlations 

between the number of superficial neuromasts and rheotactic behavior in both lab-reared 

and wild-caught fish. Superficial neuromast number better explained rheotactic behavior 

in lab-reared individuals than wild-caught individuals. CCAs identified different lateral 

lines as having major contributions to rheotactic behavior between wild-caught and lab-

reared fish, although simulation tests showed that the differences in the relative 

contribution of each lateral line to rheotactic behavior was not significant between wild-

caught and lab-reared individuals. In wild-caught individuals, having more posterior 

neuromasts (MP and CF) was consistently associated with high energy expenditure in 

currents (high cumulative distance traveled for a given net displacement) and facing 

upstream more often. In lab-reared individuals, we found that having more anterior 

neuromasts (e.g. along PO, ET, AP lines) was often associated with more net downstream 

displacement and more downstream orientation (though this was not the case for the OR 

line). Prior experience with currents, developmental plasticity and environmental effects 
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may all play a role in explaining the differences between lab and wild fish. The 

relationship between neuromast number and rheotactic behavior also appears to be 

complex within each group, as various lateral line regions jointly contributed to various 

measures of rheotactic behavior. It is clear that further studies are needed to determine 

the behavioral effects of individual lateral lines, and combinatorial interactions among 

lateral lines. 

We also found significant divergence in superficial neuromast number between 

lake and stream stickleback. In both samples, lake fish typically had more neuromasts 

than stream fish. These results are consistent with the general pattern of superficial 

neuromast number and hydrodynamic environment association among species described 

in other studies (Dijkgraaf 1963; Vischer 1990; Guarnieri et al. 1993; Coombs et al. 

2013)). However, univariate tests showed inconsistent differences in lateral line structure 

between lake and stream fish. Lab-reared lake fish had more neuromasts along three 

anterior lateral lines (IO, MD and OT) than their stream counterparts, while wild-caught 

lake fish had more neuromasts along the major posterior (MP) lateral line than their 

stream counterparts. Compared to lab-reared individuals, which typically have fully 

developed superficial neuromasts along the entire length of all lateral lines, wild caught 

individuals showed a significant reduction in superficial neuromast number along all 

lateral lines. Thus, developmental and environmental plasticity in superficial neuromast 

number as well as our limited statistical power may all contribute to the inconsistency. 

Despite the significant neuromast differences between wild- and lab-fish, the consistently 

higher neuromast counts in lake fish in the lab and wild is consistent with heritable 

differences in neuromast numbers, between lake and stream populations. The heritable 

basis in neuromast number is consistent with genetic mapping studies from other 

stickleback populations, which found QTLs for multiple lateral lines (Wark et al. 2012). 
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Given that neuromast numbers are heritable, and are correlated with rheotactic 

behavior in both lab-reared naïve individuals and wild-caught individuals, we posit that 

rheotaxis variation is heritable as well. However, we cannot.definitively infer heritability 

of rheotaxis from our data, because the heritability data relies on a lake/stream contrast, 

whereas the neuromast-rheotaxis correlation is based on all individuals regardless of their 

ancestry. A full quantitative genetic study would be necessary to establish the genetic 

correlation between neuromast and rheotaxis traits. 

The few studies that have examined the among population variation in lateral line 

structures all found associations between habitat types and the number of superficial 

neuromasts (Wark and Peichel 2010; Trokovic et al. 2011) and/or canal neuromasts 

(Trokovic et al. 2011; Vanderpham et al. 2012). However, the directions of these 

associations were inconsistent. For example, Walk and Peichel 2010 examined the lateral 

line structure of 16 threespine stickleback populations, including a lake population and 

parapatric populations in the lake’s inlet and outlet streams. They did not find lateral line 

divergence between parapatric lake and stream populations, but they did find that those 

stream stickleback had more neuromasts than marine stickleback. They also found that 

benthic species of stickleback had more neuromasts than sympatric limnetic species 

(Wark and Peichel 2010). Both among- and within-species comparisons suggested that 

the lateral line sensory system may experience different selection regimes in alternative 

habitats (Dijkgraaf 1963; Vischer 1990; Guarnieri et al. 1993; Wark and Peichel 2010; 

Trokovic et al. 2011; Vanderpham et al. 2012; Coombs et al. 2013). The hydrodynamic 

environment and other factors, such as behavioral adaptation or sociality, may jointly 

shape the variation in the lateral line system (Wark and Peichel 2010; Greenwood et al. 

2013; Coombs et al. 2013). In our study, divergence in the lateral line system occurred 

between the lake and stream sampling sites that are only 350 meters away from each 
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other with no physical barrier to dispersal. We speculate that lateral line mediated non-

random dispersal, as well as adaptation to lake and stream hydrodynamic environments 

may both play a role in shaping the divergent lateral line structure between parapatric 

lake and stream stickleback. 

Rheotactic behavior is also correlated with pectoral fin morphology, but not with 

body size or body shape. Longer pectoral fins with small areas were associated with 

rheotactic behaviors that mostly facilitate downstream dispersal (i.e. less net 

displacement, more cumulative upstream, more upstream facing). The association 

between pectoral fin morphology and rheotactic behavior is consistent with the prior 

knowledge that longer pectoral fins with small areas favor prolonged swimming (Walker 

and Westneat 2002), and is important in lake habitat (Hendry et al. 2011). Shorter 

pectoral fins with small areas have been suggested to favor maneuvering (Walker and 

Westneat 2002), which is important in stream habitat (Hendry et al. 2011). However, the 

correlation between pectoral morphology and rheotactic behavior only exists when the 

lateral line is functional. The correlation is removed in lateral-line ablated fish. Thus, 

variance in rheotactic behavior was not merely a result of sensory system variation, but 

also reflected variation in swimming ability influenced by locomotor traits. 

In summary, we have shown that lake and stream stickleback differ in sensory 

morphology, locomotor traits, and swimming behavior in flowing water. Variation in the 

sensory and fin traits is at least partly heritable, and is correlated with swimming 

behavior. Consequently, our data provide evidence for phenotype-dependent dispersal. 

To the extent that rheotaxis traits influence individuals’ dispersal into lake versus stream 

habitats (as yet unproven), we speculate that this phenotype-dependent dispersal behavior 

may also give rise to non-random gene flow. Such non-random gene flow may facilitate 
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the special sorting of individuals to the matching environment and explain the fine-scale 

cline, promoting instead of hindering adaptive divergence. 
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Appendices 

APPENDIX A 

Search methods and trait categories 

Assortative mating has been studied throughout the history of evolutionary 

biology. Consequently, a very large body of literature has accumulated on the subject. As 

of November 10th, 2011, a Google Scholar search returned 327,000 and 174,000 

publications containing the phrase “non random mating” and “non random pairing”, 

respectively, in their main text or references; 29,700 and 14,800 publications contained 

“assortative mating” and “assortative pairing”, respectively. However, only a small 

number of these matches are relevant to our study, in the sense of providing quantitative 

measures of assortative mating within a single conspecific population.  

We employed a three-step search strategy to generate a representative and 

sufficient dataset for the meta-analysis: 

Step 1: We first went through a complete list of all literature containing the words 

“assortative mating” or “disassortative mating” in their title, as identified by title searches 

in “Google Scholar”, “JSTOR” and “Web of Science”.  

Step 2: We conducted keyword searches for papers whose full text contains at 

least one of the listed combinations of keywords using “Google Scholar” in subject area 

of “Biology, Life Sciences, and Environmental Science”. The full list of key words is 

given in Table A1. Whenever possible, we also search for antonyms of search terms in 

order to reduce the possibility of bias either towards positive or negative results. Note 

that although some authors may distinguish “assortative pairing” from “assortative 

mating” in a way that the previous does not necessarily result in procreation, most 

authors use these two terms as semantics. Thus we did not attempt to distinguish these 

two terms in our database due to insufficient information. 
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Keyword combination Number of publications 
"assortative pairing" and "correlation"  282 
"assortative pairing" and "coefficient of correlation 4 
"assortative pairing" and "correlation coefficient"  51 
“disassortative pairing”  562 
"disassortative pairing" and "correlation" 15 
"disassortative pairing" and "coefficient of correlation"  4 
"disassortative pairing" and "correlation coefficient” 51 
"disassortative mating" and "correlation"  370 
"disassortative mating" and "correlation coefficient"  44 
"disassortative mating" and "coefficient of correlation"  2 
“assortative mating” and “correlation”  5070 
“assortative mating” and “coefficient of correlation”  56 
"assortative mating" and "correlation coefficient"  687 
amplexus size assortative  223 
amplexus size disassortative  6 

Table A1: Keyword combinations used in literature search and the number of relevant 
publications identified  

Step 3: We noted potentially relevant citations from the text of papers we read 

based on the descriptions in text and titles in the citation section. To reduce publication 

bias arising from the possibility that prominent journals may favor significant results, we 

were careful to survey journals regardless of their stature. We were also careful not to 

restrict the year of publication: some publications in our database date back as far as 

1906, although most of the references in our database were published after 1970.  

Our most recent search was conducted on November 10, 2011. Table A1 reports 

the number of relevant publications returned by search engines for different search terms. 

Table A2 shows how traits were classified into trait categories. 
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Category Traits included 
Age Age 
Behavior Feeding rate 
Chemical Pheromone, pheromone response, triiodothyronine (an avian thyroid 

hormone also called T3), testosterone 
Condition Condition, ectoparasite loads, hematocrit (volume percentage of blood 

composed of red blood cells), cloacal microbial abundance, molt score, 
parasite incidence, parasite load, time left to molt, wing wear 

Ecotype Hatching site, ecotype, diet 
Genotype MHC alleles, heterozygosity 
Phenology Arrival date 
Size Body length, body weight 
Structural Ninth primary length, asymmetric wings incidence, bill depth, bill length, 

bill size, bill width, chela size, cheliped length, claw size, culmen length, 
degree of asymmetry between two tail streamers, elytron length, femur 
length, first primary length, flag area, flipper length, foretibial length, 
forewing length, gape length, gonys length, head length, head width, head-
bill length, longest tail streamer length, lower mandible length, lower 
mandible width, mouth-opening direction, outer tarsus length, pectoral 
band, pectoral spots, pronotal width, prosoma width, prothorax width, 
racket area, rectrix length, second tail streamer length, sternopleural chaeta 
numbers, tail height, tail length, tarsometatarsus length, tarsus length, 
thorax length, tibia length, toe length, upper mandible depth, upper 
mandible length, upper mandible width, wing length 

Visual Bill color, body color, breast stripe width, color morph, color phase, crest 
size, crown plumage brightness, crown plumage chroma, elytral spot 
length, head color, immaculateness, long-wave brightness, mid-wave 
brightness, ornament, plumage brightness, plumage color, plumage hue, 
prothorax spot length, prothorax spot width, UV angular breadth (a 
measure of UV reflectance), UV brightness, UV chroma, UV hue, yellow 
chroma, yellow hue 

Table A2:  Trait categories used in the meta-analysis, giving the specific traits included 
in each category  
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APPENDIX B 

Additional analyses 

 
Taxon r N CI 

Amphibians 0.21*** 44 (0.13, 0.28) 

Birds 0.25*** 132 (0.20, 0.29) 

Chelicerates 0.40** 3 (0.12, 0.68) 

Crustaceans 0.46*** 52 (0.40, 0.52) 

Fish 0.55*** 23 (0.44, 0.65) 

Gastropods 0.33*** 8 (0.15, 0.51) 

Insects 0.21*** 66 (0.16, 0.27) 

Mammals 0.16 2 (-0.23, 0.55) 

Reptiles 0.14 5 (-0.07, 0.36) 

Arthropods 0.32*** 121 (0.28, 0.37) 

Chordates 0.27*** 206 (0.23, 0.30) 

Molluscs 0.33*** 8 (0.14, 0.52) 
** P < 0.01 when testing whether the mean correlation is different from a null hypothesis 
of zero correlation. 
*** P < 0.001 

Table B1:  The strength of assortative mating by taxon 
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Trait category r N CI 

Age 0.34*** 20 (0.23, 0.45) 

Behavior 0.35 1 (-0.25, 0.95) 

Chemical 0.22 2 (-0.14, 0.59) 

Condition 0.26*** 23 (0.16, 0.37) 

Ecotype 0.50* 2 (0.11, 0.89) 

Genotype 0.23 4 (-0.03, 0.48) 

Phenology 0.79** 1 (0.29, 1.29) 

Size 0.31*** 191 (0.28, 0.35) 

Structural  0.21*** 75 (0.15, 0.26) 

Visual  0.34*** 18 (0.22, 0.46) 
*** P < 0.001  
** P < 0.01 
* P < 0.05 

Table B2: The strength of assortment by trait category  

The sample sizes (N) are the numbers of species-trait mean effects. 
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Trait category Taxon r N CI 

Size     

 Amphibians 0.20*** 40 (0.12, 0.29) 

 Birds 0.16*** 34 (0.07, 0.25) 

 Crustaceans 0.47*** 45 (0.40, 0.54) 

 Fish 0.55*** 21 (0.44, 0.66) 

 Gastropods 0.33*** 8 (0.15, 0.51) 

 Insects 0.22*** 34 (0.14, 0.30) 

Structure     

 Birds 0.18*** 44 (0.12, 0.23) 

 Insects 0.19*** 23 (0.11, 0.27) 
*** P < 0.001  

Table B3: Strengths of assortment for size and structural characters by taxon  

Differences between taxa for both size (QM = 351, QE = 12411) and structure (QM = 59, 
QE = 485) are statistically significant at P < 0.0001. 
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Taxon Trait category r N CI 

 
Birds    

 

 Age 0.38*** 18 (0.28, 0.48) 

 Condition 0.28*** 14 (0.17, 0.40) 

 Size 0.16*** 34 (0.09, 0.24) 

 Structural  0.18*** 44 (0.11, 0.24) 

 Visual  0.37*** 14 (0.26, 0.48) 

Insects     

 Size 0.22*** 34 (0.14, 0.30) 

 Structural  0.18*** 23 (0.08, 0.28) 
*** P < 0.001 

Table B4: The strength of assortative mating by trait category within the two major 
taxa 

Variation in r across trait categories within birds (QM = 171, QE = 1796) and insects 
(QM = 44, QE = 5336) is significant at P < 0.0001. 
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APPENDIX C 

Estimating the distribution of ρ 

This appendix describes the simulation procedure that we used to estimate the 

underlying distribution of r, the strength of assortment. The basic strategy is to sample 

values of r from an underlying distribution, then add sampling error comparable to that in 

the original studies, and then to average the data in same way that we did in meta-

analyses. The result is a simulated distribution of r, the species-trait means that we 

calculate from our dataset. We compare this simulated distribution with the observed data 

and find the parameter values for the underlying distribution that generate the best fit. 

This approach is similar in spirit to Approximate Bayesian Computation (ABC) 

(Beaumont 2011). A full ABC analysis offers the possibility of estimating confidence 

regions for the parameters. Of particular interest here is the lower bound b of the 

distribution of r, specifically whether it admits negative values. We chose not to 

undertake a full ABC analysis for three reasons. First, we make an assumption about the 

form of the underlying distribution (a modified beta distribution) for reasons of 

convenience. While that seems a reasonable choice, we have no strong theoretical 

justification for it. Second, the data include not only the sampling error that we model, 

but also other unknown sources of error (e.g. due to measurement). Third, the estimated 

values for assortment that make up our data are not independent: correlations between the 

values result from phylogenetic relations between species and from phenotypic 

correlations between traits in the same species. We are not able to determine how 

violations of our assumptions, additional sources of error, or nonindependence in the data 

would affect the ABC analysis. 

In short, we view the following as a heuristic exercise. It seems to be the limit of 

what is possible with meta-analyses that are based on a highly heterogeneous set of data. 
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Modified beta distribution 

Correlation coefficients are constrained to lie between -1 and 1, and therefore are 

described by a bounded probability density function. We chose to work with the beta 

distribution both because it is bounded and because it is quite flexible. However, the beta 

distribution is bounded between 0 and 1. We therefore generalized the beta distribution to 

have the range [b, 1]. Parameterizing this distribution in terms of the lower bound b, the 

mean m, and the variance s2, the density function is 
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A Mathematica Notebook with the derivation of this result is available from the 

authors upon request.  

Using this distribution for r, we will seek the parameter combinations (b, m, s2) 

that best explain the observed data. 

Fitting the distribution of r  to the data  

We searched for the combination of b, m, and s2 values that gave the best fit. We 

iterated through combinations of of m (0.2 to 0.4 in increments of 0.02), b (-0.3 to 0.1 in 

increments of 0.02) and s2 (0.03 to 0.075 in increments of 0.005). Given a set of 

parameter values, we sampled 360 values of r and generated 1116 estimates of assortative 



 105 

mating using study sample sizes from actual studies in our dataset. These were then 

averaged to generate 360 species-trait mean correlations, and this simulated distribution 

was compared with the empirical distribution. Five replicate distributions were simulated 

for each parameter set.  

To evaluate the fit of the simulated and observed distributions, we used a 

modified c2 statistic that we denote as K. (We emphasize that we are using K as a simple 

descriptive statistic, and not to test significance. K plays a role here analogous to that of a 

summary statistic in an ABC analysis). We divided the values of r into 20 equal-width 

bins between -1 and 1 and determined the number of observed (Oi) and simulated (Si) 

values in each bin i. We then calculated 

       (Eq. C3) 

Larger values of K imply a worse fit between the simulated and empirical 

distributions.  

Figure C1 shows how K varies as a function of the parameters of the beta 

distribution. The best-fit parameters were m = 0.27, b = 0.02, and s2 = 0.047. This result 

suggests that assortative mating may be rare or absent in animals (Figure 2B). That 

conclusion must be accompanied by a several caveats. Most importantly, distributions for 

r that have lower bounds as small as b = -0.3 can yield simulated distributions of r  that 

are not significantly different from the dataset (Kolmogorov-Smirnov test, P > 0.05), 

albeit with larger K than our best-fit model. Thus we cannot reject the hypothesis that 

weak negative assortment occurs at moderately low frequency. Second, our simulations 

assume that r follows our modified beta distribution. The true distribution may violate 

that assumption, which would have unknown consequences for our estimation procedure. 

K = 2
Oi − Si( )2

Oi + Si( )i=1

20

∑
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The modified beta distribution is, however, quite flexible and so we suspect that this 

concern is less important than the first caveat. 
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Figure C1:  Spline contour plots of the deviation (measured by K) between the simulated 
and empirical distributions of  estimates 

  

r̂
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Figure C1: Spline contour plots of the deviation (measured by K) between the simulated 
and empirical distributions of estimates, as a function of the lower boundary of the beta 
distribution (b) and the variance of the beta distribution (s2) for three different m values. 
Hotter colors (red) indicate worse fit, bluer colors represent a better fit. A white star 
marks the combination of parameters that generate the best fit to the empirical data. 
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APPENDIX D 

Live Fish transportation to the Peichel Lab and Animal Care 

On April 17th 2013, we captured 191 inlet stream fish at site one and 206 lake 

fish at site one and two using unbaited minnow traps, and mark-release-recapture 

experiment were performed immediately afterwords. On April 18th, all recaptured 

individuals were placed in six sturdy 70 qt coolers filled with lake water (which these fish 

were accustomed to) and immediately travel to the Peichel lab at Fred Hutchingson 

Cancer Research Center in a pickup truck with sealed cargo area. Fish health was 

checked once every two hours during transportation. Portable aerators and air stones were 

used to keep the water oxygenized all the time during the transportation. Ice bags were 

wrapped in clean towels and then sealed in a Ziploc bag (so neither the ice nor the towel 

are in direct contact with fish) and placed along the bottom of each cooler to keep the 

water cool during transportation. Upon arrival, fish were placed into lab aquarium tanks 

using an aquarium net.  

The Peichel Lab was within seven-hour driving distance from our field collection 

site on Vancouver Island in comparison to the five-day driving distance to the Bolnick 

Lab; has a quarantine room to host wild-caught sticklebacks, plus the cost of overnight 

internationally shipping of live fish is prohibitive (not to mention our terrible experiences 

with trying to get UPS customs to clear live fish in acceptably quick time), and have the 

facility of maintaining a health colony of wild-caught stickleback throughout the testing 

period (in field experiment, stickleback were trapped the night before, retrieved early in 

the morning and behavioral tests were performed during the same day before dawn), and 

thus a more suitable place to carry out behavioral test of wild-caught stickleback.  

All stickleback were kept in four large fish tanks (125 gallons) measuring 72" 

long under summer condition with 16 hours light at a temperature of 16-18 C. Fish were 
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fed twice per day on frozen Mysis shrimp regularly. On behavioral test day individuals 

were fed after all behavioral test were finished to maintain the same standard as the 

Bolnick lab behavioral test and the field behavioral test. 

 

Fertilized Eggs Transportation to the Bolnick Lab and Animal Care 

Fertilized eggs were shipped back to the Bolnick Lab aquarium room at the 

University of Texas at Austin within six days after fertilization in coolers with chilled ice 

packs inside falcon tubes. On arrival, fertilized eggs were kept in petri dishes with 0.5 cm 

of water and daily water changes until hatching, at which point they were transferred into 

100 ml beakers. After swim-up, fry were fed twice daily on freshly hatched brine shrimp 

nauplii until they reach 1.0 cm standard length, at which point they were transitioned onto 

a combination of pelleted trout chow and freeze-dried blood worms and transferred into 6 

L tanks in the aquarium room (water temperature 16-17°C with 16 hours of light). These 

tanks were all connected to a recirculating temperature-controlled water supply system, 

with recirculated water sterilized by a manifold of ultraviolet lights. Individuals from 

different families were always kept in separate tanks during the rearing process in order 

to keep track of their family identities. Once individuals reached adulthood a year old, 

individuals were briefly transitioned into artificial winter conditions, held at 13 degrees C 

and 8 hours of light per day. Adults were fed twice daily on freeze-dried bloodworms. 

Also, to maintain a health density of individuals in the aquarium room, some randomly 

selected F1 lake and F1 stream families were transferred to a second aquarium room of 

the Bolnick Lab in 40-L tanks with a flow-through system. All other rearing conditions 

were kept exactly the same between the two aquarium rooms.  

Dispersal Tunnel Design 
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The enclosed tunnel was composed of four metal mesh cylinders (1.25m length 

*1m diameter) connected to each other via three 50mm wide seine net sections, 

submerged in the inlet stream ten meters above the lake stream intersection and parallel 

to the direction of current. The two central metal cylinders formed a release chamber (3m 

length * 1m diameter). The two cylinders on each end were the collection chambers: one 

upstream to the release chamber and the other downstream to the release chamber. The 

two collection chambers were separated from the release chamber by a seine net barrier. 

At the center of each seine net barrier there was a metal mesh cone (half of a minnow 

trap) with its base opening towards the release chamber and its pointed opening (2.54 cm 

in diameter) facing towards the collection chamber [Figure 2.2]. With this arrangement, 

stickleback can easily swim from the central release chamber into either of the side 

collection chambers (depending on its rheotactic response). Once in the traps at the end 

of the release chamber, fish are unlikely to find the small opening that would allow them 

to return to the release area.  
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APPENDIX E 

All animals used in this study were collected with permission from the British 

Columbia Ministry of Forests, Lands and Natural Resources Operations (NA11-7031 and 

NA13-85103). Wild-caught fish used for behavioral assays at the laboratory were 

transferred to the Peichel Lab at Fred Hutchinson Cancer Research Center with the 

permission from the British Columbia Ministry of Forests, Lands and Natural Resources 

Operations (VI13-86478). All collection, transportation and experimental procedures 

were approved by the University of Texas Institutional Animal Care and Use Committee 

(#AUP-2010-00059 and #AUP-2013-00027). 
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 Function 1 Function 2 Function 3 
Variable Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 
PO 0.33 0.27 0.07 -0.82 -0.63 0.39 -0.16 -0.32 0.1 
IO 0.08 -0.15 0.02 0.64 0.00 0 0.12 -0.19 0.03 
OR -0.36 -0.02 0 -0.08 -0.03 0 -0.73 -0.23 0.05 
MD 0.12 0.07 0.01 -0.19 -0.14 0.02 0.03 -0.20 0.04 
ET 0.10 -0.05 0 -0.13 -0.21 0.04 0.68 0.21 0.04 
SO -0.61 -0.31 0.1 0.25 0.01 0 -0.23 -0.10 0.01 
OT -0.32 -0.08 0.01 0.21 -0.30 0.09 -0.74 -0.49 0.24 
AP -0.44 -0.27 0.08 -0.27 -0.22 0.05 0.22 -0.05 0 
ST 0.11 -0.12 0.01 -0.50 -0.54 0.29 -0.32 -0.14 0.02 
MA -0.16 -0.18 0.03 -0.33 -0.40 0.16 0.74 -0.09 0.01 
MP 0.71 0.39 0.16 0.43 0.06 0 -0.47 -0.43 0.18 
CF 0.58 0.49 0.24 0.11 0.00 0 0.60 0.19 0.04 
Net Displacement -0.07 0.15 0.02 -1.86 -0.69 0.48 -0.38 0.71 0.5 
Cumulative 
Upstream Distance 1.26 0.36 0.13 -0.41 0.18 0.03 -0.68 -0.92 0.84 
Upstream 
Orientation 1.35 0.41 0.17 1.05 -0.2 0.04 0.73 0.89 0.79 
CV1 (full model): R! = 0.83, Wilks’s λ = 0.18, P= 0.018; CV2: R! = 0.56, Wilks’s λ = 
0.60, P= 0. 33; CV3: R! = 0.36, Wilks’s λ = 0. 87, P= 0.56 

Table E1:  Canonical solution for lateral lines predicting rheotactic behavior for each 
of the three canonical functions separately in control group wild-caught lake 
and stream fish prior to the breeding season  

Standardized canonical function coefficients (𝒄𝒐𝒆𝒇), structure coefficients 𝒓𝒔 , squared 
structure coefficients  (𝒓𝒔𝟐) are given for each of the canonical functions. Important 
variates (structural coefficient >0.3) are indicated in bold for significant CVs. 
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 Function 1 Function 2 Function 3 
Variable Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 
PO 0.15 0.17 0.03 0.11 0.34 0.12 0.17 0.2 0.04 
IO 0.08 -0.11 0.01 0.45 0.06 0 -0.23 0.13 0.02 
OR 0.47 0.47 0.22 -0.16 -0.03 0 0.06 0.07 0 
MD 0.55 -0.01 0 -0.53 0.19 0.04 0.71 0.42 0.18 
ET -0.90 -0.04 0 0.11 0.39 0.15 0.43 0.44 0.2 
SO -0.50 -0.18 0.03 0.41 0.5 0.25 -0.32 -0.19 0.04 
OT 0.21 0.19 0.04 -0.90 -0.19 0.04 -0.09 -0.09 0.01 
AP -0.49 -0.48 0.23 0.14 0.22 0.05 -0.13 0.09 0.01 
ST 0.88 0.46 0.21 0.83 0.67 0.44 -0.30 -0.05 0 
MA -0.17 0.19 0.04 -0.18 -0.1 0.01 -0.62 -0.6 0.35 
MP -0.07 -0.04 0 0.09 0.11 0.01 -0.40 -0.08 0.01 
CF -0.02 0.25 0.06 0.27 0.02 0 0.31 0.11 0.01 
Net 
displacement 

0.16 0.37 0.14 -0.18 0.40 0.16 1.21 0.84 0.7 

Cumulative 
upstream 
distance 

-0.5 -0.80 0.65 -0.98 -0.59 0.35 0.69 0.02 0 

Upstream 
Orientation 

0.66 0.81 0.66 -0.89 -0.55 0.3 0.13 -0.19 0.04 

CV1 (full model): R! = 0.94, Wilks’s λ = 0.021, P = 0.04; CV2: R! = 0.83, Wilks’s λ = 
0.18, P = 0.043; CV3: R! = 0.65, Wilks’s λ = 0.58, P= 0.08 

Table E2: Canonical solution for lateral lines predicting rheotactic behavior for each of 
the three canonical functions separately in lab-reared lake and stream fish 
prior to the breeding season  

Standardized canonical function coefficients (𝒄𝒐𝒆𝒇), structure coefficients 𝒓𝒔 , squared 
structure coefficients  (𝒓𝒔𝟐) are given for each of the canonical functions. Important 
variates (structural coefficient >0.3) are indicated in bold for significant CVs. 
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 Function 1 Function 2 Function 3 Function 4 
Variable Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 
Body mass 0.06 -0.47 0.22 -3.03 -0.1 0.01 -2.95 -0.46 0.21 -2.81 0.33 0.11 
Standard 
length -0.77 -0.31 0.09 -0.53 -0.22 0.05 2.44 -0.13 0.02 1.42 0.5 0.25 
Pelvic width  0.91 -0.4 0.16 1.81 0.22 0.05 0.19 -0.31 0.1 -0.88 0.21 0.04 
Width at 
pectoral fin -1.89 -0.57 0.32 1.56 0.12 0.02 0.9 -0.47 0.22 2.27 0.43 0.18 
Width at 
preoperculum 1.44 0.06 0 0.34 -0.09 0.01 -0.96 -0.47 0.23 0.64 0.69 0.47 
Net 
displacement -1.75 -0.28 0.08 -0.12 -0.52 0.27 0.46 -0.04 0 0.57 0.8 0.65 
Cumulative 
distance 
upstream -0.72 -0.23 0.05 -1.05 0.04 0 0.04 0.28 0.08 -0.93 -0.93 0.87 
Upstream 
orientation 1.16 0.23 0.05 -1.38 -0.73 0.53 -0.53 -0.09 0.01 -0.51 0.64 0.41 
Flow regime 0.25 0.26 0.07 0.17 -0.15 0.02 1.01 0.95 0.91 0.25 0.01 0 

Table E3:  Canonical solution for body size predicting rheotactic behavior for each of 
the four canonical functions in non-breeding wild-caught lake and stream 
fish  

Standardized canonical function coefficients (𝒄𝒐𝒆𝒇), structure coefficients 𝒓𝒔 , squared 
structure coefficients  (𝒓𝒔𝟐) are given for each of the canonical functions.  
 
 Function 1 Function 2 
Variable Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 
Fin Length 1.52 0.63 0.39 0.06 0.78 0.61 
Fin Area -1.18 -0.04 0 0.95 1 1 
Net displacement 0.442 0.77 0.59 1.183 0.421 0.18 
Cumulative distance upstream -0.977 -0.967 0.94 0.55 0.144 0.02 
Upstream orientation -0.44 0.619 0.38 -0.422 0.236 0.06 
Flow regime 0.078 -0.169 0.03 0.705 0.742 0.55 

Table E4: Canonical solution for pectoral fin size predicting rheotactic behavior for 
both canonical functions in non-breeding wild-caught lake and stream fish  

Standardized canonical function coefficients (𝒄𝒐𝒆𝒇), structure coefficients 𝒓𝒔 , squared 
structure coefficients  (𝒓𝒔𝟐) are given for each of the canonical functions  
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 Function 1 Function 2 Function 3 Function 4 
Variable Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 
RW1 0.12 0.05 0 -0.21 -0.21 0.04 -0.43 -0.46 0.21 -0.53 -0.72 0.52 
RW2 0.71 0.72 0.52 -0.04 0.14 0.02 0.65 0.59 0.34 -0.31 -0.34 0.12 
RW3  0.69 0.66 0.43 -0.54 -0.29 0.08 -0.44 -0.56 0.31 0.49 0.30 0.09 
RW4 -0.18 0.20 0.04 0.13 0.04 0 -0.13 -0.43 0.18 -0.60 -0.59 0.35 
RW5 0.16 0.39 0.15 0.94 0.85 0.72 -0.35 -0.34 0.12 0.116 0.08 0.01 
Net 
displacement -0.28 -0.04 0 0.37 0.92 0.84 0.67 0.3 0.09 1.72 0.26 0.07 
Cumulative 
distance 
upstream 1.36 0.49 0.24 -0.16 -0.83 0.7 -0.01 0 0 0.77 0.26 0.07 
Upstream 
orientation 1.47 0.25 0.06 0.51 0.91 0.83 -0.43 0.22 0.05 -1.1 -0.24 0.06 
Flow regime -0.27 0.14 0.02 -0.24 -0.24 0.06 0.97 0.92 0.84 -0.29 -0.29 0.08 

Table E5:  Canonical solution for body shape predicting rheotactic behavior for the two 
canonical functions in non-breeding wild-caught lake and stream fish 

Standardized canonical function coefficients (𝒄𝒐𝒆𝒇), structure coefficients 𝒓𝒔 , squared 
structure coefficients  (𝒓𝒔𝟐) are given for each of the canonical functions.  
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 Function 1 Function 2 Function 3 Function 4 
Variable Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 
RW1 0.79 0.63 0.39 -0.46 -0.24 0.06 0.39 0.48 0.23 -0.37 -0.56 0.31 
RW2 -0.51 -0.33 0.11 -0.55 -0.19 0.04 -0.38 -0.30 0.09 -0.60 -0.78 0.62 
RW3  -0.57 -0.35 0.12 -0.22 -0.12 0.01 0.51 0.33 0.11 -0.23 -0.31 0.09 
RW4 -0.51 -0.25 0.06 0.19 0.03 0.00 0.78 0.67 0.45 0.11 0.18 0.03 
RW5 -0.06 -0.07 0.00 -1.09 -0.69 0.48 -0.09 0.00 0.00 0.33 0.72 0.52 
Net displacement 0.37 0.11 0.01 0.76 0.94 0.89 0.35 0.30 0.09 -1.21 -0.11 0.01 
Cumulative 
distance upstream 0.73 0.32 0.10 -0.33 -0.83 0.69 0.32 -0.07 0.01 -1.16 -0.45 0.20 
Upstream 
orientation 0.68 0.57 0.33 -0.15 0.19 0.04 0.49 0.64 0.40 0.68 0.48 0.23 
Flow regime 0.61 0.56 0.31 0.19 0.21 0.04 -0.76 -0.80 0.64 0.20 0.07 0.01 

Table E6:  Canonical solution for body shape predicting rheotactic behavior for each 
of the four canonical functions in lateral-line-ablated lake and stream fish 
prior to the breeding season  

Standardized canonical function coefficients (𝒄𝒐𝒆𝒇), structure coefficients 𝒓𝒔 , squared 
structure coefficients  (𝒓𝒔𝟐) are given for each of the canonical functions. 
  



 118 

 Function 1 Function 2 Function 3 Function 4 
Variable Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 
Body mass 0.75 -0.33 0.11 1.46 0.12 0.01 3.75 0.54 0.29 -1.15 -0.21 0.04 
Standard 
length 1.05 -0.44 0.19 -0.64 -0.11 0.01 -2.61 0.31 0.1 -1.90 -0.42 0.18 
Pelvic width  0.73 0.02 0 -1.45 -0.22 0.05 0.53 0.50 0.25 0.58 0.23 0.05 
Width at 
pectoral fin -0.47 -0.26 0.07 1.31 0.26 0.07 -2.00 0.359 0.13 0.96 0.145 0.02 
Width at 
preoperculum -2.43 -0.65 0.42 -0.88 -0.13 0.02 0.65 0.38 0.14 1.52 -0.21 0.04 
Net 
displacement -0.59 0.06 0 0.55 0 0 0.39 -0.32 0.1 -1.23 -0.94 0.89 
Cumulative 
distance 
upstream -0.79 -0.39 0.15 1.06 0.54 0.3 0.53 0.47 0.22 -0.23 0.58 0.33 
Upstream 
orientation 0.17 0.04 0 0.55 0.46 0.21 -0.87 -0.88 0.78 0.31 -0.09 0.01 
Flow regime 0.88 0.83 0.68 0.43 0.4 0.16 0.26 0.38 0.15 -0.03 -0.09 0.01 

Table E7:  Canonical solution for body size predicting rheotactic behavior for each of 
the four canonical functions in lateral-line-ablated lake and stream fish  

Standardized canonical function coefficients (𝒄𝒐𝒆𝒇), structure coefficients 𝒓𝒔 , squared 
structure coefficients  (𝒓𝒔𝟐) are given for each of the canonical functions.  
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 Function 1 Function 2 
Variable Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 
Fin Length 1.75 0.68 0.47 -0.26 0.73 0.53 
Fin Area -1.29 0.15 0.02 1.21 0.99 0.98 
Net displacement -0.594 -0.656 0.43 1.388 0.461 0.21 
Cumulative distance upstream 0.083 0.485 0.23 1.048 0.142 0.02 
Upstream orientation 0.025 -0.133 0.02 -0.443 -0.117 0.01 
Flow regime -0.752 -0.762 0.58 -0.451 -0.352 0.12 

Table E8:  Canonical solution for pectoral fin size predicting rheotactic behavior for the 
two canonical functions in lateral-line-ablated lake and stream fish.  

Standardized canonical function coefficients (𝒄𝒐𝒆𝒇), structure coefficients 𝒓𝒔 , squared 
structure coefficients  (𝒓𝒔𝟐) are given for each of the canonical functions 
 
 Function 1 Function 2 
Variable Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 
Fin Length 1.26 0.48 0.23 0.45 0.88 0.77 
Fin Area -1.17 -0.34 0.11 0.64 0.94 0.89 
Net displacement 0.68 0.03 0 0.33 0.21 0.05 
Cumulative distance upstream 1.07 0.73 0.54 -0.13 -0.46 0.21 
Upstream orientation -0.06 -0.37 0.14 0.47 0.63 0.4 
Flow regime -0.5 -0.35 0.12 -0.75 -0.77 0.59 
CV1 (full model): R! = 0.72, Wilks’s λ = 0.46, P = 0.044; CV2: R! = 0.22, Wilks’s λ = 
0.92, P = 0.62 

Table E9:  Canonical solution for pectoral fin size predicting rheotactic behavior for 
both canonical functions in non-breeding lab-reared lake and stream fish  

Standardized canonical function coefficients (𝒄𝒐𝒆𝒇), structure coefficients 𝒓𝒔 , squared 
structure coefficients  (𝒓𝒔𝟐) are given for each of the canonical functions. Important 
variates (structural coefficient >0.3) are indicated in bold for significant CVs. 
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 Function 1 Function 2 Function 3 Function 4 
Variable Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 
Body mass 2.10 0.12 0.01 2.6 0.41 0.17 -0.42 0.67 0.45 0.27 0.61 0.37 
Standard length -1.74 -0.32 0.1 -1.12 0.32 0.1 1.14 0.81 0.66 -0.27 0.37 0.14 
Pelvic width  -0.52 0.15 0.02 0.75 0.53 0.28 -0.39 0.42 0.17 -0.13 0.40 0.16 
Width at pectoral 
fin 

0.73 0.454 0.21 -1.62 0.041 0 1.123 0.614 0.38 -0.38 0.545 0.3 

Width at 
preoperculum 

-0.85 0.06 0 -0.61 0.05 0 -0.66 0.26 0.07 1.26 0.96 0.91 

Net displacement -0.54 -0.19 0.04 -0.26 0.1 0.01 1.09 0.88 0.78 0.1 -0.42 0.18 
Cumulative 
distance upstream 

-0.89 -0.61 0.37 -0.44 -0.47 0.22 0.24 -0.45 0.21 0.81 0.45 0.2 

Upstream 
orientation 

-0.01 0.44 0.19 0.52 0.52 0.27 0.38 0.28 0.08 0.92 0.68 0.46 

Flow regime -0.55 -0.66 0.43 0.82 0.67 0.44 -0.29 -0.14 0.02 -0.16 -0.32 0.1 

Table E10:  Canonical solution for body size predicting rheotactic behavior for each of 
the four canonical functions in non-breeding lab-reared lake and stream fish  

Standardized canonical function coefficients (𝒄𝒐𝒆𝒇), structure coefficients 𝒓𝒔 , squared 
structure coefficients  (𝒓𝒔𝟐) are given for each of the canonical functions.  
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 Function 1 Function 2 Function 3 Function 4 
Variable Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 
RW1 0.84 0.38 0.14 0.68 0.57 0.32 0.11 0.40 0.16 0.00 -0.05 0 
RW2 0.07 0.39 0.15 -0.47 -0.49 0.24 0.92 0.75 0.57 -0.14 -0.03 0 
RW3  0.98 0.60 0.36 0.00 -0.62 0.37 -0.60 -0.42 0.18 -0.48 -0.30 0.09 
RW4 -0.26 -0.34 0.12 0.14 0.36 0.13 0.16 0.10 0.01 -1.00 -0.86 0.74 
RW5 0.48 -0.04 0 0.64 0.52 0.27 -0.05 0.11 0.01 -0.01 0.23 0.05 
Net 
displacement 

0.63 0.08 0.01 0.57 0.07 0.01 -0.22 -0.11 0.01 -0.9 -0.99 0.98 

Cumulative 
distance 
upstream 

0.94 0.72 0.52 0.87 0.22 0.05 0.19 0.35 0.12 0.12 0.56 0.31 

Upstream 
orientation 

-0.31 -0.59 0.35 1.07 0.7 0.5 -0.15 -0.38 0.14 0.07 0.12 0.02 

Flow regime -0.41 -0.22 0.05 0.18 0.08 0.01 0.93 0.92 0.84 -0.13 -0.32 0.1 

Table E11:  Canonical solution for body shape predicting rheotactic behavior for each 
of the four canonical functions in non-breeding lab-reared lake and stream 
fish  

Standardized canonical function coefficients (𝒄𝒐𝒆𝒇), structure coefficients 𝒓𝒔 , squared 
structure coefficients  (𝒓𝒔𝟐) are given for each of the canonical functions.  
 
 Function 1 Function 2 
Variable Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 
Fin Length 1.93 0.78 0.61 -0.81 0.62 0.39 
Fin Area -1.31 0.39 0.15 1.64 0.92 0.85 
Net displacement -0.571 -0.302 0.09 -1.014 -0.944 0.89 
Cumulative distance upstream 0.382 -0.052 0 -0.369 0.69 0.48 
Upstream orientation -0.051 -0.39 0.15 0.029 -0.8 0.64 
Flow regime -1.235 -0.67 0.45 0.468 0.683 0.47 

Table E12:  Canonical solution for pectoral fin size predicting rheotactic behavior for 
both canonical functions in wild-caught breeding lake and stream fish  

Standardized canonical function coefficients (𝒄𝒐𝒆𝒇), structure coefficients 𝒓𝒔 , squared 
structure coefficients  (𝒓𝒔𝟐) are given for each of the canonical functions. Important 
variates (structural coefficient >0.3) are indicated in bold for significant CVs. 
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 Function 1 Function 2 Function 3 Function 4 
Variable Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 
Body mass -1.25 0.69 0.48 -3.70 0.07 0.01 -1.56 0.00 0.00 4.81 0.46 0.22 
Standard 
length 

1.57 0.74 0.55 2.97 0.26 0.07 -3.56 -0.05 0.00 -2.01 0.39 0.16 

Pelvic width  -1.30 0.57 0.33 1.64 0.33 0.11 2.60 0.16 0.02 1.38 0.48 0.23 
Width at 
pectoral fin 

-0.10 0.65 0.42 -0.04 0.08 0.01 0.07 0.06 0.00 -3.01 0.27 0.07 

Width at 
preoperculum 

1.82 0.83 0.69 -0.66 0.07 0.00 2.61 0.16 0.02 -0.82 0.33 0.11 

Net 
displacement 

-0.93 -0.93 0.87 1.01 0.34 0.12 -1.69 0.10 0.01 1.33 -0.03 0.00 

Cumulative 
distance 
upstream 

0.43 0.69 0.48 1.07 -0.21 0.04 0.68 0.04 0.00 1.29 0.69 0.48 

Upstream 
orientation 

0.06 -0.86 0.75 -0.53 0.10 0.01 2.22 0.49 0.24 -0.35 -0.06 0.00 

Flow regime -0.52 0.21 0.04 -1.22 -0.76 0.58 -0.64 -0.09 0.01 0.20 0.61 0.37 

Table E13: Canonical solution for body size predicting rheotactic behavior for each of 
the four canonical functions in wild-caught breeding lake and stream fish  

Standardized canonical function coefficients (𝒄𝒐𝒆𝒇), structure coefficients 𝒓𝒔 , squared 
structure coefficients  (𝒓𝒔𝟐) are given for each of the canonical functions.  
 
 Function 1 Function 2 Function 3 Function 4 
Variable Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 Coef 𝒓𝒔 𝒓𝒔𝟐 
RW1 0.35 0.37 0.14 -0.69 -0.56 0.31 0.10 0.35 0.12 -0.63 -0.38 0.15 
RW2 0.44 0.65 0.42 0.19 -0.03 0.00 0.63 0.61 0.37 0.73 0.46 0.21 
RW3  0.65 0.61 0.37 0.02 0.06 0.00 -0.76 -0.73 0.54 0.10 0.25 0.06 
RW4 -0.37 -0.34 0.12 0.19 0.05 0.00 0.06 -0.10 0.01 0.54 0.29 0.08 
RW5 0.25 0.24 0.06 0.80 0.76 0.58 0.15 0.20 0.04 -0.48 -0.51 0.26 
Net displacement 2.01 0.36 0.13 0.53 -0.62 0.39 0.22 0.62 0.38 1.47 0.32 0.10 
Cumulative 
distance upstream 0.83 0.29 0.09 -0.82 0.35 0.12 -1.43 -0.79 0.63 0.23 -0.40 0.16 
Upstream 
orientation -0.90 0.20 0.04 -1.52 -0.80 0.64 -0.24 0.56 0.32 -1.47 -0.07 0.00 
Flow regime 0.50 0.43 0.19 0.82 0.49 0.24 0.90 -0.15 0.02 -0.70 -0.74 0.55 

Table E14:  Canonical solution for body shape predicting rheotactic behavior for each of 
the four canonical functions in wild-caught breeding lake and stream fish  

Standardized canonical function coefficients (𝒄𝒐𝒆𝒇), structure coefficients 𝒓𝒔 , squared 
structure coefficients  (𝒓𝒔𝟐) are given for each of the canonical functions. 
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