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Natural gas production from US shale and tight oil plays has increased

over the past 10 years, currently constitutes more than half of the total US

dry natural gas production, and is projected to provide the US with a major

energy source in the next several decades. The increase in shale gas production

is driven by advances in hydraulic fracturing.

Recent studies have shown that gas production from hydraulically frac-

tured shales has to come from a network of connected hydraulic and natural

fractures, and that if one takes the shale permeability to be 10 nD, then the

characteristic spacing of the fracture network will be about 1.5 − 3m. The

precise nature of the characteristic spacing, as well as other production and

formation properties of the fracture network, are questions which motivated

the present dissertation.

This dissertation studies (1) the topology of the fracture network, (2)
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the mechanics of how the fracture network evolves in time during injection

and (3) how fracture network geometry affects production.

We use percolation theory to study fracture network topology. Fracture

are placed on the bonds of a two–dimensional square lattice and follow a power

law length distribution. We analytically obtain the scaling of connectivity

for power law fracture networks, and numerically compute the percolation

threshold as a function of the exponent.

We develop a hydrofracture model which makes it possible to simulate

initiation and propagation of hydraulic fractures, as well as the interaction

between hydraulic and natural fractures. The model uses the Reynolds lubri-

cation approximation to describe fluid flow through the fractures and relies on

analytical estimates to predict the stress response.

We develop a diffusion model to compute gas production from hydrauli-

cally fractured shales. The model uses a random walk algorithm and takes the

fracture network as the absorbing boundary to the gas transport equation.

We show that scaling the cumulative production versus time data from the

diffusion model with respect to characteristic scales of production maps the

production versus time plots onto a single scaling curve. Using the model, we

identify, or define, characteristic spacing for fracture networks.
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Chapter 1

Introduction

1.1 Introduction and Significance

The recent success in producing oil and gas from US mudrocks, com-

monly known as “shales”, and other low permeability reservoirs is primarily

due to advances in hydraulic fracturing. Hydraulic fracturing is a well stimu-

lation technique that enhances hydrocarbon production by creating fractures

in the formation. It involves pumping a fracturing fluid into the well at pres-

sures large enough to overcome the mechanical resistance of the reservoir rock

and propagate fluid–driven fractures into the pay zone. The fractures in-

crease reservoir exposure and provide hydraulically conductive pathways for

the transport of formation hydrocarbons to the well, thereby increasing the

effective permeability of the formation and the production rate.

A propping agent (“proppant”) is commonly used to keep the created

hydraulic fractures open during the production phase, since they would other-

wise shut down under formation stress. Using a high viscosity fracturing fluid

improves proppant transport to the hydraulic fractures, and reduces the loss

of fracturing fluid to the formation (“leak–off”).

Shales, coal beds (also known as coal seams) and tight sandstones are
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collectively referred to as “unconventional” reservoirs in the oil and gas liter-

ature. The title “unconventional” refers to how prior to the 1970s, economic

production from unconventionals was generally believed to be impossible: the

extremely low permeability of unconventionals, typically in the nano–Darcy

range, prevents practically any hydrocarbon flow through the matrix. In the

1970s, concerns about imminent depletion of domestic natural gas supplies

prompted the US Department of Energy to form, in cooperation with private

industry operators and the Gas Research Institute, a research venture aimed at

assessing the feasibility of production from unconventional natural gas reser-

voirs and developing/advancing the technologies needed to make production

of unconventional natural gas commercially viable (DOE NETL, 2011). Pro-

duction from deep, extremely low permeability shale plays happened for the

first time in the early 1990s, when Mitchell Energy managed to profitably pro-

duce gas from the Barnett Shale. Production from unconventionals started to

receive attention only after hydraulic fracturing made profitable production of

tight formations possible.

Before we present estimates of technically recoverable shale oil and gas,

we first note that at present, because of poor economics, actual hydrocarbon

recovery from shales may be 20− 50% of the technically recoverable reserves,

and it is therefore of utmost importance to improve the current efficiency of

hydrocarbon drainage.

Shales are estimated to contain 10% and 32% of the world’s technically

recoverable crude oil and wet natural gas respectively (EIA 2013). Shale/tight
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oil resources are estimated at 345 billion barrels; shale gas at 7299 trillion

cubic feet (wet) (EIA 2013). Figure 1.1 shows a map of the world shale plays.

Figure 1.1: Map of shale plays in the world (EIA 2013).

In the US, 58 billion barrels of technically recoverable crude oil are

estimated to be present in shale/tight formations, representing 26% of total

US crude oil reserves (EIA 2013). US shales are estimated to hold 665 trillion

cubic feet of technically recoverable wet natural gas, representing 27% of the

total US wet natural gas reserves (EIA 2013). Figure 1.2 shows a map of the

major US shale plays.
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Figure 1.2: Map of the US shale plays in the lower 48 states (EIA, 2015).
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Natural gas production from shale and tight oil plays constituted 5%

of the total US dry natural gas production in 2004; 10% in 2007; 48% in 2014

and 56% in 2015, Figure 1.3.

Figure 1.3: Share of shale gas (including natural gas from tight oil plays) in
the total US dry natural gas production (EIA, 2015).

The total US dry natural gas production has grown by 35% from 2005

to 2013 and is projected to grow from about 27 Tcf in 2015 to about 42 Tcf

in 2040 (EIA Annual Energy Outlook, 2016). Production from shale gas and

tight oil plays is the primary contributor to the growth and is projected to

grow from about 14 Tcf in 2015 to 29 Tcf in 2040; tight gas production is the

second major contributor (EIA Annual Energy Outlook, 2016). Production

from all other sources of natural gas (coalbed methane, Alaska and Lower 48

states offshore) is projected to remain relatively steady or decline, Figure 1.4.

5



Figure 1.4: US natural gas production by source (EIA, 2016).

The increase in shale gas production is driven by advances in hydraulic

fracturing technology. The next section introduces these advances.

1.2 Hydraulic Fracture

The success of present day hydraulic fracturing in shale gas production

is primarily due to the following three technologies: horizontal drilling; mul-

tiple stimulation intervals, otherwise known as “fracture stages”, completed

sequentially along the horizontal section of the well, and injection of large vol-

umes of low friction, water-based fracturing fluids (“slickwater”) (DOE NETL,

2011). Sections 1.2.1 through 1.2.3 introduce these technologies.
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1.2.1 Horizontal Drilling

Horizontal drilling is (EIA, 1993) “the process of drilling and complet-

ing, for production, a well that begins as a vertical or inclined linear bore which

extends from the surface to a subsurface location just above the target oil or

gas reservoir called the ‘kickoff point,’ then bears off on an arc to intersect the

reservoir at the ‘entry point,’ and, thereafter, continues at a near-horizontal

attitude tangent to the arc, to substantially or entirely remain within the

reservoir until the desired bottom hole location is reached”. The characteristic

advantage of horizontal wells over vertical wells is the significantly improved

reservoir exposure: hydrocarbon bearing reservoirs are sedimentary rocks and

therefore extend in the horizontal direction significantly more than they do

vertically. Although the first horizontal well in the US was completed as early

as 1929, application of horizontal drilling to hydrocarbon production started

to expand in the early 1980s, by which time the drilling/completion technology

had progressed enough to make the technique commercially viable. Figure 1.5

shows a schematic of a typical horizontal well in the Barnett Shale.
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Figure 1.5: Schematic of a typical horizontal well in the Barnett Shale (sketch:
modified from Chen, 2014; numbers: DOE NETL, 2009). Horizontal wells in
shales can have as many as 25 fracture stages (DOE NETL, 2011); 10-20 stages
are typical.

1.2.2 Slickwater Fracturing

In hydraulic fracturing literature, “slickwater” refers to a water-based

solution of friction reducing agents and other additives (DOE NETL, 2009).

Slickwater is, at present, the most commonly used fracturing fluid. While the

type and concentration of the additive depends on the particular treatment,

typically 98-99.5% of slickwater consists of water and a propping agent (“prop-

pant”; usually silica sand). Figure 1.6 shows the volume composition of the

slickwater used in a horizontal well in the Fayetteville Shale.

Slickwater fracturing of a typical horizontal shale gas well requires 2-4
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Figure 1.6: Volume composition of the slickwater used in a 9-stage hydraulic
fracture treatment in the Fayetteville Shale (modified from DOE NETL, 2009).
Slickwater is predominantly water and proppant.

million gallons of water (DOE NETL, 2009). The water is usually supplied

from surface waters; underground, produced and municipal waters may also

be used as sources. Field experience indicates that once the hydraulic fracture

treatment is complete and the pumps are stopped, typically as little as 20–25%

of the injected water will be produced back (DOE NETL, 2013). The exact

nature of the mechanisms which retain the injected water in the subsurface,

as well as how a larger fraction of the injected water can be produced, are as

of yet unknown and of significant economic importance to the operators.
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1.2.3 Multiple Fracture Stages

A “stage” refers to any sub-interval of the lateral section of a given

horizontal well, stimulated through hydraulic fracturing generally while iso-

lated from the rest of the well. Multi–stage fracturing today is done in several

ways. Schlumberger’s “plug–and–perf” procedure (Schlumberger, 2016), for

instance, consists of the following sequence: first, a perforation gun is moved

through the well to the location of the stage and fired to perforate casing in

several clusters and form local “seed” cracks in the reservoir rock. The per-

foration gun is then moved up hole to the location of the next planned stage

and a plug is used to hydraulically isolate the stage just created from the

rest of the well. The plug stops flow up hole, but allows flow down hole into

the stage. Finally, fracturing fluid is injected into the seed cracks at pressures

large enough to overcome the mechanical resistance of the formation and prop-

agate fluid-driven fractures into the formation. The process is then repeated

to create more stages.

In present day hydraulic fracture treatments, the first stage is placed

close to the end of the horizontal well (“toe”) and each additional stage is

completed up–hole of the previous stage, such that the last stage is close to

the beginning of the lateral section of the horizontal well (“heel”). Stages

are stimulated sequentially and from the first to the last: because the stages

are arranged in series, simultaneous stimulation of all stages would require

fracturing fluid pressures usually well above practical operational limits (DOE

NETL, 2009).
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About 10-20 stages are typical for horizontal shale gas wells. Reservoir

characterization information from well logs (for instance, presence of faults

along a specific interval of the lateral, indicated by an image log), informs

the operator’s decision on the location of the most productive intervals and,

consequently, the location of the stages.

1.2.4 Time Line of Hydraulic Fracturing

The first application of hydraulic fracturing dates back to 1947, when

the Pan American Petroleum Corporation used the technique to stimulate the

Hugoton field in Kansas (Adachi et al., 2007). In a 1949 paper, the Stanolind

Oil and Gas Company introduced the technique to the oil and gas literature

under the commercial name “Hydrafrac”, reporting a significant, sustained

increase in the production rate of 11 out of a total of 23 wells stimulated

using the technique (J. B. Clark, 1949). The fracturing fluid in Hydrafrac

was an oil-based gel, consisting of crude oil/gasoline; a bodying agent, which

was, because of availability and price at the time, war surplus Napalm; a “gel

breaker” solution to reduce the viscosity of the gel, and sand as a propping

agent (J. B. Clark, 1949). At the time, unconventional reservoirs were not yet

considered production targets and the technique was applied to conventional

reservoirs only.

Application of hydraulic fracturing to US oil and gas wells expanded

rapidly after 1949, such that by the end of 1955, more than 100,000 treatments

were completed in the US (Hubbert and Willis, 1972). By late 1970s, shale
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gas production was limited to relatively shallow shale plays such as the Ap-

palachian Ohio shale and Antrim shale in Michigan. Production from deeper,

extremely low permeability shales such as the Barnett or the Marcellus Shale

was generally believed to be uneconomical at the time.

Gas production from the Barnett Shale was pioneered by Mitchell En-

ergy. In the 1980s, Mitchell Energy combined horizontal drilling with large vol-

ume hydraulic fracture stimulation and persistently improved their hydraulic

fracturing field procedure through learning from extensive trial and error, even-

tually completing the first profitable Barnett Shale gas well in the early 1990s.

Success of Mitchell Energy in the Barnett Shale attracted significant attention

to the Barnett Shale as well as other major US shale plays, including Hayn-

seville, Woodford, Fayetteville, Eagle Ford and Marcellus Shale, and led to the

“shale boom”, or rapid increase, in the US production of shale/tight gas and

shale/tight oil, Figure 1.7.
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Figure 1.7: US shale gas and tight oil production (EIA 2014).

An estimate of US shale gas production for the current development

cycle is presented in Figure 1.8. The predictions were shown to be in good

agreement with historical well–by–well field data for 73, 000 wells, with 10 −

20% well attrition (T. Patzek, private communication, November 6, 2016).

The estimate indicates that the total rate of gas production from US shales has

reached a peak in 2016, and therefore improving the efficiency of hydrocarbon

recovery from shales is of utmost importance.
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Figure 1.8: Estimate of annual US shale gas production (top) and cumulative
production (bottom) by play (T. Patzek, private communication, November
6, 2016). At present (2016), the total production rate has already peaked
(black curve, top plot) and the cumulative production will stagnate at about
2022 (black curve, bottom plot). The plots demonstrate the importance of
improving the efficiency of hydrocarbon production from shales.
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1.2.5 Motivation

There appears to be a gap in our understanding of the nature of hy-

draulically induced fracture networks. Discharge from the shale matrix alone

can not possibly account for field production data, and Patzek et al. (2014)

have shown that if hydrofractures are taken to be parallel planes, perpendicu-

lar to the wellbore and of generally accepted dimensions, and if gas is taken to

flow from the shale to the hydrofractures linearly and in a transient fashion,

then to account for Barnett Shale cumulative production history data requires

either

1. For a hydrofracture spacing of 75−100m, effective permeability values of

the Barnett Shale/hydrofracture system which are 10− 100 times larger

than lab–measured values of shale matrix permeability, or

2. A spacing of 1.5 − 3m between the hydrofractures, for a 10 nD shale

matrix.

Patzek et al.’s model matches the production history of more than 8000 wells in

the Barnett Shale with reasonable accuracy. If one adopts the view expressed

in result 1, Patzek et al. suggest that the enhanced permeability is due to a

ramified, well–connected system of hydrofractures and natural/induced frac-

tures created by the hydraulic fracture treatment (“fracture network” from

here on, for convenience). If one instead adopts the view that shale perme-

ability is about 10 nD (result 2 above), Patzek et al. suggest that the 1.5−3m
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spacing between hydrofracture stages should be interpreted not as the ac-

tual distance between stages in the field but as a characteristic spacing of the

fracture network, resulting from the topology and transport properties of the

network, and that the viability of profitable shale gas wells flows from that

portion of the reservoir which has a spacing of 1.5− 3m or tighter. We adopt

this view in the present dissertation.

The relevance of topology and transport becomes more pronounced

when we consider that hydraulic fracturing in the Barnett Shale seems to have

produced only 10− 15% of the (geometric) original gas in place (Patzek et al.,

2014): there is ideally potential for as much as a factor of about 2 increase of

shale gas production using hydraulic fracturing. Providing insights into how

this potential can be exploited is the primary motivation for the present PhD

research.

The focus of this PhD is on topology and transport properties of com-

plex hydraulic fracture networks, and the end goal of this research is devis-

ing practical strategies to optimize fracture treatments, i.e. creating better-

connected, more productive fracture networks that can drain the reservoir

more quickly.

1.2.6 Outline

The present dissertation is structured in the following way: first, the

nature and topology of hydraulically induced fracture networks is discussed

in Chapter 2. A tool used in the present research to model the topology is
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percolation theory. Chapter 2 concludes by suggesting that hydraulic fractures

primarily propagate along a connected network of relative mechanical weak-

nesses which either exist as natural fractures or are incipient at the beginning

of the treatment and may break in mode I later as the injection continues.

Chapter 3 presents a pseudo–3D numerical model of how the fracture

network develops over time during the treatment. The model restricts the

fracturing fluid to flow only inside the system of natural fractures/incipient

cracks suggested by Chapter 2, and simulates hydraulic fracture propagation,

diversion and arrest. The model couples fluid flow through the hydraulic frac-

tures with the elastic response of the rock which hosts the fractures. Fluid flow

is modeled directly using the Reynold’s lubrication approximation; the elastic

response is approximated using analytical expressions which describe a single

fracture of a relatively simple geometry, namely PKN or penny–shaped. The

model was created to simulate a great number of fractures in a computationally

efficient, robust fashion.

The outcome of Chapter 2 and Chapter 3 is a complex network of

connected fractures. This network drains gas from the rock and provides hy-

draulically conductive pathways to the flow of gas from the formation to the

wellbore. Gas transport therefore occurs first through the shale to the hy-

drofracture network, and then through the fractures to the wellbore. Chapter

4 introduces a diffusion model based on random walk that treats gas transport

through the shale and the fracture network uniformly and predicts the decline

associated with gas production from any complex hydrofracture network. The
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hydrofracture network that will be input to the random walk model is the one

predicted by Chapter 2 and Chapter 3.

Review of the relevant literature is presented not as a separate chapter

but rather as a section at the beginning of each chapter. Finally, Chapter 5

reviews the main conclusions of this dissertation and proposes future courses

of research in extension of the present work.
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Chapter 2

Topology of Hydraulically Induced Fracture
Networks

2.1 Introduction

So far in this dissertation, it has been established that gas is produced

from hydrofractured shales through a ramified network of connected fractures:

the network drains the gas from the rock and provides hydraulically conductive

pathways to the flow of gas from the formation to the wellbore (see 1.2.5).

This chapter studies the topology of the hydraulically induced fracture

network. The relevance and significance of fracture network topology can be

established by considering how the topology qualitatively controls the ulti-

mate production and the production rate. A more ramified network offers

increased reservoir exposure and therefore increased access to the gas in place.

In addition, increased ramification reduces the average distance over which the

gas diffuses through shale to reach the network. Therefore, topology of the

network controls how quickly this network can drain its neighboring reservoir

rock.

Once gas has reached the fracture network, the effective hydraulic con-

ductivity of the network controls how quickly the gas flows through the frac-
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tures and gets to the well. The effective hydraulic conductivity of the fracture

network is controlled by the configuration of the fractures which make up the

network, in a manner similar to how effective electrical resistance of networks

of resistors is controlled by how the resistors are arranged. Network topology

controls the gas travel time both when the gas is diffusing through the shale

towards the network and when the gas is flowing inside the fractures towards

the well. Consequently, network topology controls the production rate.

This chapter starts by reviewing experimental and theoretical evidence

from literature in support of the idea that the topology of hydraulically induced

fracture networks is due primarily to the interaction of hydraulic fractures with

pre–existing natural fractures/incipient cracks (section §2.2). Characterization

of the natural fracture/incipient crack system is discussed next (section §2.3).

We use percolation theory to analyze the connectivity of fracture net-

works characterized with a power law fracture length distribution. A review of

relevant percolation literature is presented in section §2.4. The assumptions,

definitions and properties of the model used in this dissertation can be found

in section §2.5. The percolation problem solved in this chapter is a variation of

the ordinary bond percolation problem on a two–dimensional square lattice, in

which the length of the elements (fractures) follows a power law distribution

and each element can span multiple lattice bonds at once. Unlike ordinary

bond percolation, in which all bonds are identical in size, the fractures which

make up the fracture network in the present research exist across multiple

scales.
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Scaling of fracture network connectivity has been studied theoretically

in the present research; see section §2.6. Percolation threshold has been com-

puted numerically; see section §2.7.

2.2 Natural–Hydraulic Fracture Interaction

The idea that geologic discontinuities can significantly affect the overall

geometry of hydraulic fractures is not new. In mine back experiments at the

US DOE Nevada Test Site, Warpinski and Teufel (1987) observed that “even

in the most homogenous of the ash–fall tuff formations, the hydraulic frac-

tures diverge considerably from the usual picture of a planar feature; multiple

stranding, fracture meandering, and large–scale surface roughness are com-

mon occurrences.” They also observed that multiple strands originated from

natural fractures that were opened and filled by fracturing fluid.

Interaction between hydraulic and shale–hosted natural fractures, as

well as the subsequent formation of a “complex” fracture network, has been

suggested by microseismic monitoring of hydraulic fracture growth in shale.

Fisher et al. (2004) report the formation of a multi–planar fracture network

in vertical Barnett Shale wells. The network showed major fracture growth

in two orthogonal directions: that of present–day maximum horizontal stress

(SHmax), and the predominant trend of natural fractures.

Hydraulic fractures have been observed to interact with natural frac-

tures according to one of the following scenarios: arrest, diversion, and cross-

ing. Blanton (1982) systematically varied the angle of approach of the hy-
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draulic fracture to pre–existing fractures in blocks of hydrostone under triaxial

stress, and observed that a hydraulic fracture will cross a natural fracture only

if the angle of approach is high and the stress normal to the natural fracture

is much larger than the stress along the natural fracture. Blanton reports

that in most of his experiments hydraulic fractures were either diverted or

arrested by the pre–existing fractures. Arrest is defined as the termination of

hydraulic fracture against the natural fracture. Diversion or deflection corre-

sponds to when the hydraulic fracture hits the natural fracture and continues

to propagate along one or both wings of the natural fracture.

Gale and Holder (2008) conducted bending tests on samples of the Bar-

nett Shale and concluded that samples with calcite–filled natural fractures had

approximately half the tensile strength of the fracture–free host rock. If one

couples this experimental result with the fracture mechanics result which states

that fracture energy scales with the square of yield strength, it follows that

for the fracturing fluid to break open a typical calcite–filled natural fracture

takes about a quarter of the energy needed to fracture the shale matrix. Such

natural fractures therefore can act as “planes” of relative mechanical weakness

and are prone to re–activation during hydraulic fracture treatments. The set

of relative mechanical weaknesses inside the shale is not, however, limited to

natural fractures: the heterogeneity in rock strength can manifest itself also

in cracks which are incipient at the beginning of the treatment and may later

break in mode I as the injection continues. Characterization of both natu-

ral fractures and incipient cracks is therefore essential to the optimum design
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of hydraulic fracture treatments. The following section presents a review of

relevant results from the literature on characterization of the natural fracture

system in shales.

2.3 Characterization of the Natural Fracture System in
Shales

Shale gas reservoirs show diversity in characteristics of host rock and

natural fractures. The most comprehensive studies of natural fractures in US

shales to date are presented in Gale and Holder (2010) and Gale et al. (2014).

The studies examined cores and outcrops of several US shales, including Bar-

nett Shale, Marcellus Shale, Eagle Ford Shale, Haynseville Shale, Woodford

Shale, New Albany Shale, Niobrara formation, Austin Chalk, Monterey for-

mation, and Smithwick formation. Despite the diversity, the studies report

several common features among the investigated shale gas reservoirs, includ-

ing:

1. There are three common types of opening mode fractures in shales: those

at a high angle to bedding, which are mostly subvertical; bedding parallel

fractures, and compacted fractures. The most important type is the high

angle group. Compacted fractures are expected to have a negligible effect

on production from shales.

2. The most common type of natural fracture is planar and filled with

calcite. This is also the case in the Antrim shale of the Michigan basin
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(Ryder 1996).

3. Quartz–filled natural fractures are mechanically strong and could arrest

the propagation of hydraulic fractures. Quartz bridges in East Texas

tight sands have been shown to prop natural fractures at a depth of

5000 ft to an aperture of 2mm, maintaining open fractures in the sub-

surface.

4. Drilling and thin section preparation procedure are known to fracture

shales parallel to bedding planes, but there has been no evidence of

naturally occurring, bedding–parallel, open microfracture networks in

mudrocks.

Characterization of natural fractures is still an active area of research. Cores,

outcrops, image logs and their combinations are the primary sources of data on

subsurface fractures. As far as characterization of the natural fracture system,

the data are too sparse to be conclusive.

Interpretation of the data, for instance to determine the origin of the

natural fracture system, is also often non–unique. In its report of natural

fracture patterns and their origin in the Antrim Shale, USGS recognizes con-

tinental scale compressional stress fields as the most probable origin of the

fracture system, and proposes two plausible candidates for the origin of the

stress field (Ryder 1996). Gale’s (2008) list of possible origins of the fractures

in the Barnett Shale includes regional burial plus hydrocarbon generation; re-

gional, tectonic stress; differential compaction; local effects of major faults and
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folds; sag features associated with underlying karst, and stress release during

uplift.

Marrett et al. (1999) studied data collected from natural faults and

extension fractures and found that cumulative frequency versus fracture aper-

ture showed power law scaling across about 3−5 orders of magnitude. Hooker

et al. (2014) also observed universal power law scaling for cumulative fre-

quency versus fracture aperture in sandstones, with the exponent being equal

to 0.8. Power law size scaling of natural fractures has been observed in studies

of natural fractures and fault patterns in different geologic formations around

the world (for a review of several such studies, see Sahimi, 1994). Consis-

tent with the idea that rock fractures form self–similar patterns, several of

the studies mentioned by Sahimi (1994) independently obtained similar values

for the exponent of the power law. In these studies, the power law described

frequency versus fracture length and the exponent was reported to be either

1.9 or 1.6−1.7 in 2D and 2.5 in 3D. These power law exponents are consistent

with the mass dimensions of percolating clusters at percolation threshold in

2D and 3D (1.9 and 2.5).

2.4 Percolation Models of Fracture Networks

Since its inception by Broadbent and Hammersley (1957), percolation

theory has been used extensively to model a wide range of problems in dif-

ferent fields. These problems include fluid flow and transport in porous me-

dia/fractured media, conductivity of semi–conductors, mechanical properties
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of polymers, etc. Generally, percolation theory describes how random con-

nectivity of a large number of elements leads to properties for the connected

system as a whole.

Historically, bond percolation precedes the other variants of percolation

theory. In the classical bond percolation problem on a lattice, lattice bonds

are selected with probability p, known as the percolation parameter or the

concentration (Stauffer and Aharony, 1992). Selected bonds are considered

open; otherwise, they are closed. Because all bonds are identical, p is the ratio

of the number of open bonds to the total number of lattice bonds. Nearest

neighbor bonds are considered connected, and a group of connected open bonds

is known as a cluster. Size of each cluster is the number of bonds in the cluster

(Stauffer and Aharony, 1992).

If p is gradually increased from 0, initially small clusters form, then

each cluster becomes larger and some clusters may connect and form larger

clusters. Percolation is said to have happened when for the first time a cluster

gets large enough to connect the opposite sides of the lattice. This cluster is

known as the spanning cluster. The value of p at percolation for an infinitely

large system is known as the percolation threshold and is typically denoted pc

(“p critical”). In an infinite system, there is no connected path between the

opposite sides of the lattice for p < pc and there is always a connected path

for p ≥ pc. In ordinary lattice percolation, percolation threshold depends on

the type of lattice and the type of percolation problem (site or bond) (Stauffer

and Aharony, 1992).
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Application of percolation theory to study the connectivity of fracture

systems dates back to 1983 (Robinson, 1983). The technical problem which

motivated the percolation studies at the time was to ensure that radioactive

waste stored in low permeability rock will not leak from its storage site through

fractures.

From the early 1980s to 1994, connectivity and transport properties of

various two and three–dimensional fracture systems were determined numeri-

cally and a theoretical understanding of the governing parameters was estab-

lished. A detailed review of the relevant literature may be found in Berkowitz

and Balberg (1993) and Sahimi (1994).

Bour and Davy (1997) studied the connectivity of a two–dimensional

system of fractures characterized by a power law length distribution and uni-

formly distributed fracture location and orientation. Citing studies of natural

fault networks, they used the following length distribution:

n(l) ∼ l−a, (2.1)

in which n(l) is the number of fractures of a length in [l, l+dl]. The exponent a

was found to control the structure of the spanning cluster, such that for a > 3,

the cluster was exclusively made of fractures shorter than the system size

(“short” fractures); for 1 < a < 3, a mix of short fractures and fractures longer

than the system size formed the spanning cluster, and for a < 1, the cluster

was made of the longest fracture in the system. The percolation threshold

reported by Bour and Davy (1997) was found to be almost independent of the
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exponent and the system size.

Despite differences in definition and setup, our percolation model yields

the same connectivity regimes as those first obtained by Bour and Davy (1997).

We will discuss the differences of the two models in more detail in the next

section.

2.5 The Model

Based on section §2.2 and section §2.3, while it is true that certain

cements like quartz require more energy to break than does the shale matrix,

such cements are rare compared to calcite, the fracture energy of which is equal

to about a quarter of that of shale. All cement–filled natural fractures and

incipient cracks in the present model are assumed to have a fracture energy

much lower than the shale. For the purpose of the model, natural fractures

and incipient cracks are essentially identical: hydraulic fracture propagation

along all natural fractures/incipient cracks in the model is assumed to be ener-

getically more favorable than propagation through the shale which surrounds

the natural fractures/incipient cracks (we note that energy release rate in gen-

eral depends upon the loading, and energy release rate minus fracture energy

might be greatest along directions other than those of the natural fractures;

we refer to these directions as incipient cracks). Consequently, if a hydraulic

fracture intersects and opens any natural fracture/incipient crack that be-

longs to a cluster of connected natural fractures/incipient cracks, any further

propagation of the hydraulic fracture will be along the fractures/cracks of the
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cluster, and the fracturing fluid will remain restricted to the cluster. In this

model, the fracture network ultimately responsible for production is that sub-

set of the natural fracture/incipient crack system which has been opened by

the fracturing fluid.

In this work, we model the natural fractures/incipient crack system as

a stochastic population of lines on a two–dimensional square lattice. Lattice

spacing a and lattice size L characterize the lattice.

In Bour and Davy (1997), fracture orientation is assumed to be uniform

in all directions. Fractures in our model are placed on a square lattice and are

therefore either horizontal or vertical: one direction may be interpreted as the

dominant trend of natural fractures/incipient cracks; the other, a cross-cutting

direction.

In Bour and Davy (1997), fractures are uniformly distributed on the

plane and are not bound to any lattice. In the present research, fractures

are randomly placed on a square lattice. To place a given horizontal fracture

on the lattice, we first point with equal probability to a point on the two–

dimensional domain bounded by the lattice, then round the y–coordinate of

the point to the nearest multiple of the lattice spacing to obtain a randomly

chosen point on the lattice grid lines. A random point along the fracture is

then placed on the point on the grid line. Vertical fractures are placed on the

lattice in a similar fashion.

Lines that cross the lattice boundaries are cropped and only the seg-
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ment inside the lattice is kept. Lines that overlap are merged together and

counted as one. Two fractures are said to be “connected” if they intersect, and

any connected set of natural fractures/incipient cracks will be referred to as a

“cluster” from here on.

We take the fracture length distribution to be a cut–off power law,

bound between a minimum fracture length lmin and a maximum length lmax,

and characterized by an exponent e. If a fracture is randomly drawn from the

fracture population, the probability that the fracture is of length l or less is

taken to be

F (l) = l−e − l−emin
l−emax − l−emin

, (2.2)

where F (l) is the cumulative density function of the length distribution.

The length of each fracture is rounded to the nearest multiple of the

lattice spacing, so each line in the model will start and end at a lattice node.

Each fracture can span multiple lattice bonds. Simulations in this work have

shown that rounding the fracture length, cropping the fractures which cross

lattice boundaries and merging the ones that overlap changes the length dis-

tribution only slightly.

The reported values of the exponent for geological systems are between

0.8 and 2.2 with a mode at e = 1.2, Figure 2.1.
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Figure 2.1: Reported values of the exponent from 28 papers, each studying
> 200 fractures. (Reproduction of figure 12-b from Bonnet et al., 2001)

The asymptote of the length distribution in the limit of small exponents

is the logarithm function:

lim
e→0

F (l) = lim
e→0

l−e − l−emin
l−emax − l−emin

= − ln (l) + ln (lmin)
− ln (lmax) + ln (lmin) ; (2.3)

in the limit of large exponents, length of every fracture becomes equal to

lmin = a, i.e., the problem is reduced to the classical bond percolation problem:

lim
e→∞

F (l) = lim
e→0

l−e − l−emin
l−emax − l−emin

= lim
e→∞

(l/lmin)−e − 1
(lmax/lmin)−e − 1

→ 1. (2.4)

The asymptotes can be seen in Figure 2.2.

Increasing the exponent from 0 to large values makes the occurrence

of long fractures less likely. For small e, fractures longer than the system size

(“long” fractures) are probable and the spanning cluster may be made of only
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Figure 2.2: The two asymptotes of the power law length distribution are the
unit step function at e→∞, and the log distribution at e→ 0.

one such fracture, while for large e long fractures are improbable and therefore

the spanning cluster is expected to be made of connected short fractures only.

We are interested in finding the percolation threshold as a function of the

fracture length exponent e.

2.6 Connectivity Scaling

This section presents a theoretical analysis of how lattice size and the

exponent e control the connectivity of the model described in section §2.5. In

particular, we first derive an expression for the total number of fractures in

a lattice of size L, N(L), as a function of e and a network density term (sec-
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tion 2.6.1). We then use N(L) to derive a scaling relationship which describes

the number of fractures longer than the lattice as a function of lattice size and

the exponent e (section 2.6.2). We predict that depending on e, connectivity

of the model will have one of two possible characters: for e > 2, connectivity

emerges from clustering of fractures shorter than the system size into a span-

ning cluster; for 1 < e < 2, connectivity is made possible not by clustering

of short fractures but rather by a few fractures or even a single fracture of a

size comparable to or longer than the system size, which can directly connect

the opposite sides of the lattice. In this regime, connectivity no longer has the

character of percolation.

The connectivity regimes predicted in this dissertation are derived for

a lattice model. They turn out, however, to be identical to the connectivity

regimes obtained by Bour and Davy (1997) for off–lattice fracture systems

with random fracture orientation and location. We should note here that the

results of this chapter were obtained independently, and we found the main

result in the Bour and Davy (1997) paper after the present work was done.

In any case, the two models are different in that our model is set up on a

lattice, uses a different definition for the percolation parameter, and predicts

the percolation threshold to depend upon the exponent e. We will present a

detailed comparison of the percolation thresholds from the two models at the

end of section 2.7.2.

The probability for the occurrence of fractures longer than the lattice

size has been analytically determined in this work. The derivation is presented
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in section 2.6.3.

2.6.1 Total Number of Fractures in a Lattice of Size L

The fracture length probability density function, f(l), is given by

f(l) = dF
dl = −el−e−1

l−emax − l−emin
, (2.5)

where F is the fracture length cumulative density function and has been pre-

viously defined by equation (2.2).

We take lmax � L, let lmax →∞ and set lmin = lattice spacing = a = 1.

All fractures lie completely inside a lattice of size lmax. If we randomly point

to an L × L subdomain of the lmax × lmax lattice, in the subdomain and on

average, the total number of fractures is N (L); the total number of occupied

bonds is M(L). If the total number of fractures in the lmax × lmax lattice is

N (lmax), then

M(L) = L2

l2max

ˆ lmax

lmin

N (lmax) f(l)l dl

=
ˆ lmax

lmin

N(L)f(l)l dl. (2.6)

ˆ lmax

lmin

N(L)f(l)l dl = N(L)
ˆ lmax

lmin

−el−e

l−emax − l−emin
dl

= N(L) 1
l−emax − l−emin

−e
1− e

(
l1−emax − l1−emin

)
. (2.7)
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Defining the density parameter p as

p = M(L)
L2 , (2.8)

we have

M(L) = pL2 = N(L) 1
l−emax − l−emin

−e
1− e

(
l1−emax − l1−emin

)
,

⇒ N(L) = e− 1
e

l−emax − l−emin
l1−emax − l1−emin

pL2. (2.9)

2.6.2 Number of Fractures Longer than the System Size

The number of fractures longer than the system size L, N>, is given by

N> = N(L) [F (lmax)− F (L)] = N(L) l
−e
max − L−e

l−emax − l−emin
. (2.10)

Substituting for N(L) from equation (2.9), we get

N(L) l
−e
max − L−e

l−emax − l−emin
= e− 1

e

l−emax − l−emin
l1−emax − l1−emin

pL2 l
−e
max − L−e

l−emax − l−emin
, (2.11)

⇒ N> = e− 1
e

l−emax − L−e

l1−emax − l1−emin

pL2. (2.12)

For e > 1,

lim
lmax→∞

N> = e− 1
e

L−e

l1−emin

pL2 ∝ L2−e. (2.13)

If e > 2, the spanning cluster will be made exclusively of fractures

shorter than the lattice size and gas transport to the well will take place

through a cluster of numerous short fractures; if 1 < e < 2, there is a non zero
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probability for the occurrence of fractures longer than the lattice size, and

transport pathways will be made of, for the most part, a few long fractures.

Figure 2.3 shows the topology of the gas transport pathways for e = 1.5, 2

and 100.
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Figure 2.3: For 1 < e < 2, connectivity between the opposite sides of the
lattice is made possible by a few fractures or even a single fracture longer
than the lattice size. At e = 2, the spanning cluster is made of a mix of long
and short fractures. For large e, spanning cluster is made of numerous short
fractures.

Based on the histogram of the values of e for various formations, Fig-

ure 2.1, which suggests that 1.2 is the most frequently observed value, this dis-

sertation suggests that prior to hydrofracturing and at the percolation thresh-

old, the connected portion of the natural fracture/induced crack network in

shales resembles the cluster in the left plot in Figure 2.3.

It should be noted that the presence of a fracture longer than the lattice

size in the lattice does not necessarily mean the entire fracture length will exist

inside the lattice, but rather that a random point along the fracture has to
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exist inside the lattice. The probability of fractures longer than the lattice size

is the subject of the next section.

2.6.3 Probability of a Fracture Longer than the System Size

This section answers the following question: if we populate an L × L

square lattice with n = N(L) fractures the lengths of which are randomly

drawn from the power law distribution given by equation (2.2), what is the

probability p> that at least one of the fractures will be longer than the system

size L?

The probability p> is the sum of the probabilities associated with draw-

ing exactly 1, 2, ..., orn fractures longer than L. Suppose we randomly draw

one fracture length from the power law distribution. Let p0 denote the proba-

bility that the length will be shorter than L; p1, the probability that the length

is at least L. Then

p> =
(
n

1

)
p1p

n−1
0 +

(
n

2

)
p2

1p
n−2
0 + ...+

(
n

n− 1

)
pn−1

1 p0 + pn1 , (2.14)

p> =
n∑
k=1

(
n

k

)
pk1p

n−k
0 , (2.15)

where

p0 = F (L) = L−e − l−emin
l−emax − l−emin

, (2.16)

p1 = 1− F (L) = l−emax − L−e

l−emax − l−emin
, (2.17)
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Using the binomial theorem,

(1 + x)n =
n∑
k=0

(
n

k

)
xk, (2.18)

we simplify equation (2.15) to obtain

p> = 1− pn0 = 1− F (L)N(L), (2.19)

where F (L) is given by equation (2.2),

F (L) = L−e − l−emin
l−emax − l−emin

,

and N(L) is given by equation (2.9),

N(L) = e− 1
e

l−emax − L−e

l1−emax − l1−emin

pL2.
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Figure 2.4: p> plotted for lmax = 1014, L = 107, lmin = a = 1, p = 10−3.
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2.7 Numerical Computation of the Percolation Thresh-
old

Percolation threshold pc is the concentration p at which an infinite

cluster appears for the time in an infinite lattice (Stauffer and Aharony, 1992).

In the case of finite lattices, however, the spanning cluster may appear for

the first time at a value of p that is lower or greater than pc. Numerical

computation of the percolation threshold involves computing an “effective”

threshold at multiple lattice sizes and extrapolating to infinite size (Stauffer

and Aharony, 1992).

For the classical bond percolation problem, Stauffer and Aharony (1992)

have presented an efficient algorithm to compute the concentration p at which

a lattice of size L percolates for the first time (“apparent” threshold from

now on). Unlike the classical bond percolation problem where all bonds are

identical, length of fractures in the present research are variable. We modify

the algorithm to extend its application to the case of lattices populated with

fractures of different size.

2.7.1 The Algorithm to Determine the Apparent Threshold for a
Lattice of Size L

Because the configuration of the lattice is symmetric about the thresh-

old, the concentration at which the lattice percolates for the first time can be

viewed as either of the following:

1. If one gradually removes fractures from a lattice above the threshold
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until the lattice transitions from percolation to no percolation, the con-

centration at which the transition happens is the apparent threshold.

2. If one gradually adds fractures to a lattice below the threshold until the

lattice transitions from no percolation to percolation, the concentration

at which the transition happens is the apparent threshold.

Although the two views are mathematically identical, there is significant com-

putational advantage in adopting the first view, because adding fractures to an

already populated lattice requires merging the fractures that overlap with pre–

existing fractures and takes considerably longer than only removing fractures

from the lattice.

The algorithm due to Stauffer and Aharony (1992) first checks p = 1
2 for

percolation. If the lattice percolates, p is decreased by 1
4 ; if not, p is increased

by 1
4 , then the percolation status is checked. If the lattice percolates, p is

decreased by 1
8 ; if not, p is increased by 1

8 , then the percolation status is

checked. This process is repeated until the apparent threshold is determined

with sufficient accuracy.

Whether a given populated lattice percolates or not is determined in

this work by a cluster counting algorithm based on the algorithm introduced

by Hoshen and Kopelman (1976) and the extension due to Al–Futaisi and

Patzek (2003). The algorithm can label all clusters after one sweep through

the lattice.
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Similar to the algorithm due to Stauffer and Aharony (1992), the main

idea of the algorithm used in the present research is to identify an interval

[plb, pub] which includes the apparent threshold, and then shrink the interval

until the apparent threshold is known with sufficient accuracy. The upper

bound, pub, corresponds to a concentration at which the lattice has already

percolated; the lower bound, plb, corresponds to a concentration at which the

lattice does not percolate.

Unlike the algorithm due to Stauffer and Aharony, the algorithm used

in this work computes the apparent threshold by only removing fractures from

a lattice which has already percolated. For a given lattice size L and exponent

e, we first determine through trial and error a concentration at which the

lattice has already percolated and record the value in pub. This concentration is

usually close to p = 0.5, but it can be larger or smaller. The apparent threshold

is now known to belong to [plb = 0, pub]. We now remove enough fractures

from the lattice at pub to obtain a concentration close to pmean = plb + pub
2 . If

at pmean the lattice percolates, then apparent threshold has to be in [plb, pmean]

and pub will be updated to pmean; if not, the threshold is in [pmean, pub] and plb

will be updated to pmean. This process is repeated until pub and plb are closer

than an allowable tolerance, ∆ptol.

The change in concentration p when a randomly chosen fracture is

removed from the populated lattice, ∆p, depends on the length of the fracture.
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If the total number of bonds in the lattice is Nb, then

∆pmin = a

Nb

, (2.20)

where a, the lattice spacing, is the minimum fracture length. ∆pmin is the

precision of the algorithm presented here.

The allowable tolerance is the change in concentration associated with

removing the longest fracture which can fit in the lattice:

∆ptol = ∆pmax = L

Nb

. (2.21)

The algorithm converges to the apparent threshold in fewer than 10 steps.

2.7.2 Extrapolating the Apparent Threshold to Infinite Size

We consider the following exponents: e = 1, 1.4, 1.6, 1.8, 2.2, 2.6, 3, 5,

10, 100. For each value of e, we compute the apparent threshold for each of

the following lattice sizes, scaled with the lattice spacing, a = 1: L = 25, 50,

100, 125, 150, 175, 200.

We use the algorithm described in section 2.7.1 and determine the ap-

parent threshold 100 times for each value of e and L, in general getting a

different value for the apparent threshold every time. The apparent threshold

at L and e is taken to be the average of the 100 runs and is denoted pav.

For each value of the exponent, Figure 2.5 shows the cumulative density

functions (CDFs) of the apparent thresholds computed for each of the lattice

sizes.
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Figure 2.5: Cumulative density function of the apparent threshold, obtained
for lattices of different size L and at the power law exponents e = 1 and
e = 1.2.
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Figure 2.5 (cont.): Cumulative density function of the apparent threshold,
obtained for lattices of different size L and at the power law exponents e = 1.4
and e = 1.6.
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Figure 2.5 (cont.): Cumulative density function of the apparent threshold,
obtained for lattices of different size L and at the power law exponents e = 1.8
and e = 2.
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Figure 2.5 (cont.): Cumulative density function of the apparent threshold,
obtained for lattices of different size L and at the power law exponents e = 2.2
and e = 2.4.
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Figure 2.5 (cont.): Cumulative density function of the apparent threshold,
obtained for lattices of different size L and at the power law exponents e = 2.6
and e = 2.8.
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Figure 2.5 (cont.): Cumulative density function of the apparent threshold,
obtained for lattices of different size L and at the power law exponents e = 3
and e = 4.
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Figure 2.5 (cont.): Cumulative density function of the apparent threshold,
obtained for lattices of different size L and at the power law exponents e = 5
and e = 10.

49



0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100
CDF of Apparent Threshold, e=100

% of the system occupied by fractures

%
 o
f 
si
m
u
la
ti
o
n
s 
th
a
t 
fi
rs
t

 a
cq
u
ir
ed
 a
 t
ra
n
sp
o
rt
 p
a
th

 

 

L = 25
L = 50

L = 100

L = 125

L = 150

L = 175
L = 200

Figure 2.5 (cont.): Cumulative density function of the apparent threshold,
obtained for lattices of different size L and at the power law exponent e =
100. At each e, the width of the transition zone from 0 to 100% gets smaller
with increasing L; in the limit of L → ∞, the cumulative density function
becomes a step function at the percolation threshold. Increasing e narrows the
fracture length distribution; in the limit of e→∞, the length of all fractures
becomes equal to lmin and the problem is reduced to bond percolation, for
which the percolation threshold is 50%. Therefore, increasing e and L moves
the cumulative density plots towards a step function at 50%.

At a given e, the transition from not getting a transport path in any

of the simulations (0 on the vertical axis) to always getting one (100% on

the vertical axis) gets sharper with increasing system size, in agreement with

percolation theory. Another observation is that increasing the exponent causes

a gradual movement of all the plots towards 50% on the horizontal axis, which

is the classical bond percolation threshold. This observation is consistent with

the analysis at the end of section §2.5: in the limit of e → ∞, length of all

fractures becomes equal to the minimum fracture length and the problem is
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reduced to the classical bond percolation problem.

Scaling of pav for each value of e is shown in Figure 2.6, where pav is

plotted against 1
L
. The error bars show the standard error associated with

averaging the 100 runs at each system size. The intercept of the plot is the

percolation threshold pc.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
2

3

4

5

6

7

8

9

1

L

p
a
v
(%

)

pc, e =1

 

 

R2 = 88.75%

p
c
= 2.02%

Fit
Data

Figure 2.6: The numerical procedure to compute the percolation threshold
pc at the power law exponent e = 1. The numerically obtained apparent
thresholds (pav) for different sizes are extrapolated to infinite size ( 1

L
→ 0); pc

is the intercept. The blue bar on each data point indicates the standard error.
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Figure 2.6 (cont.): The numerical procedure to compute the percolation
threshold pc at the power law exponents e = 1.2 and e = 1.4. The numeri-
cally obtained apparent thresholds (pav) for different sizes are extrapolated to
infinite size ( 1

L
→ 0); pc is the intercept. The blue bar on each data point

indicates the standard error.
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Figure 2.6 (cont.): The numerical procedure to compute the percolation
threshold pc at the power law exponents e = 1.6 and e = 1.8. The numeri-
cally obtained apparent thresholds (pav) for different sizes are extrapolated to
infinite size ( 1

L
→ 0); pc is the intercept. The blue bar on each data point

indicates the standard error.
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Figure 2.6 (cont.): The numerical procedure to compute the percolation
threshold pc at the power law exponents e = 2 and e = 2.2. The numeri-
cally obtained apparent thresholds (pav) for different sizes are extrapolated to
infinite size ( 1

L
→ 0); pc is the intercept. The blue bar on each data point

indicates the standard error.
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Figure 2.6 (cont.): The numerical procedure to compute the percolation
threshold pc at the power law exponents e = 2.4 and e = 2.6. The numeri-
cally obtained apparent thresholds (pav) for different sizes are extrapolated to
infinite size ( 1

L
→ 0); pc is the intercept. The blue bar on each data point

indicates the standard error.
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Figure 2.6 (cont.): The numerical procedure to compute the percolation
threshold pc at the power law exponents e = 2.8 and e = 3. The numeri-
cally obtained apparent thresholds (pav) for different sizes are extrapolated to
infinite size ( 1

L
→ 0); pc is the intercept. The blue bar on each data point

indicates the standard error.
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Figure 2.6 (cont.): The numerical procedure to compute the percolation
threshold pc at the power law exponents e = 4 and e = 5. The numeri-
cally obtained apparent thresholds (pav) for different sizes are extrapolated to
infinite size ( 1

L
→ 0); pc is the intercept. The blue bar on each data point

indicates the standard error.
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Figure 2.6 (cont.): The numerical procedure to compute the percolation
threshold pc at the power law exponents e = 10 and e = 100. The numeri-
cally obtained apparent thresholds (pav) for different sizes are extrapolated to
infinite size ( 1

L
→ 0); pc is the intercept. The blue bar on each data point

indicates the standard error.
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Percolation threshold as a function of exponent can be viewed in Fig-

ure 2.7. The sharp change in the threshold at around e = 2 agrees with the

scaling relationship given by equation (2.13).
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Figure 2.7: Percolation threshold pc as a function of the exponent e.

In the present research, percolation threshold is expressed as a critical

bond concentration, identical to the original definition of pc in the classical

bond percolation problem. Using this definition, our model predicts the per-

colation threshold to depend upon the exponent e in the manner shown in

Figure 2.7. Bour and Davy (1997) use a different definition of the percolation

parameter p, namely

p =
∑N
i l

2
i

L2 , (2.22)

where L is the domain size, N is the number of fractures in the domain and

li is the length of the i–th fracture. Consequently, the percolation threshold
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due to Bour and Davy (1997) turns out to be independent of the exponent or

system size, and always equal to around 5.6.

2.8 Conclusions

The natural fracture/incipient crack system of shales has been modeled

in this chapter as a random population of lines on a two–dimensional square

lattice (section §2.5). Based on geological observations, fracture length has

been taken to follow a power law distribution characterized by an exponent e.

A scaling relationship describing the number of fractures longer than the lattice

size as a function of e and the lattice size has been derived in section 2.6.2.

The relationship shows that depending on e, connectivity happens due to

either clustering of fractures shorter than lattice size (e > 2), or presence of a

few fractures or even a single fracture of a size comparable to or longer than

the lattice size, which can directly connect the opposite sides of the lattice

(1 < e < 2). The probability of at least one fracture longer than the lattice

size has been derived in section 2.6.3.

Percolation threshold as a function of e has been computed numerically

and the result agrees with the theoretical scaling predicted in this work: for

1 < e < 2, the threshold is close to 0; for e > 2, the threshold rapidly increases

and asymptotically converges to 50% as e→∞.

This chapter presented a model of the topology of the natural frac-

ture/incipient crack system of shales. Production from hydraulically fractured

shales comes from that subset of the natural fracture/incipient crack system
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which gets opened by the fracturing fluid. A geomechanical model of hydraulic

fracture is required to determine the interaction between hydraulic fractures

and the natural fracture/incipient crack system. Such a model is the subject

of the next chapter.
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Chapter 3

Numerical Modeling of Hydraulic Fractures

3.1 Introduction

So far in this dissertation, we have established that gas production from

hydraulically fractured shales has to come from a network of connected natural

fractures/incipient cracks and/or hydraulic fractures (Chapter 1), and we have

described the topology of the connected portion (“spanning cluster”) of the

natural fracture/incipient crack system in shales (Chapter 2).

The work presented in the previous chapters suggests that the fracture

network responsible for shale gas production is made of those natural frac-

tures/incipient cracks which belong to the spanning cluster and are opened by

the fracturing fluid during the treatment (section §2.5). We suggested that

hydraulic fractures will be contained inside the spanning cluster, which means

that the spanning cluster contains every possible path the hydraulic fractures

may take.

With the topology of the spanning cluster known, we now move on

to the mechanics of hydraulic fracture and present in this chapter a numer-

ical model of how network geometry is created during a hydraulic fracture

treatment. The model can simulate initiation and propagation of hydraulic
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fractures and makes it possible to establish which natural fractures/incipient

cracks of the spanning cluster will be opened by the fracturing fluid.

For a given hydraulic fracture treatment in a given shale, the ultimate

outcome of the model is the fracture network responsible for gas production.

The model also captures the time evolution of the network from the start

of injection to the end of treatment. We are particularly interested in iden-

tifying the characteristics of the network and ultimately describing how they

affect production. The model in this chapter provides the network; production

computations will be presented later and in Chapter 4.

The model employs the Reynolds lubrication approximation to simu-

late fluid flow through fractures. Flow is then coupled with an estimate of

the elastic response, provided by the analytical expressions which describe

fractures of the Perkins-Kern-Nordgren setup. The choice to approximate the

elastic response and not implement a highly detailed numerical scheme (for

instance some version of the finite element method or the boundary element

method) has been made in favor of computational efficiency: the capability to

simulate the interaction of hydraulic fractures with a large number of natural

fractures/incipient cracks in an efficient fashion has been the primary design

objective here.

3.2 Outline

We start this chapter with a review of the relevant literature. For-

mal statement of the fluid–driven fracture problem, the standard approach to
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hydrofracture modeling, and classic models from the literature are reviewed.

We then present the setup of our hydrofracture model, followed by valida-

tion against theory. We conclude the chapter by discussing the qualitative

phenomena observed during simulations.

3.3 Background & Literature Review

Before discussing the equations which govern hydraulic fractures, we

introduce fluid–driven fractures with a qualitative description. In fluid–driven

fractures, fluid pressure acts normal to the fracture walls from inside the frac-

ture, compresses the fracture medium and causes deformation. (In this dis-

sertation, the fracture medium is the shale reservoir.) The magnitude of the

resulting deformation depends on the mechanical properties of the medium,

and in turn determines the fluid pressure inside the fracture. Any descrip-

tion of fluid–driven fractures, numerical or analytical, has to couple the elastic

response of the fracture medium with the fluid flow through the fracture.

While coupling the fluid flow with the elastic response enables a hy-

drofracture model to describe the current state of a hydraulic fracture, simu-

lating fracture propagation requires the addition of a fracture mechanics prop-

agation criterion to the model. A few such criteria are commonly used in

present day hydrofracture models, and will be reviewed in detail later.

Most of the hydraulic fracturing research today relies on a variety of

numerical schemes to solve the fluid flow and stress equilibrium equations, as

the available analytical solutions have been derived only for simple geometrical
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setups. In the following sections, we present the equations governing fluid flow

(section 3.3.1) and stress equilibrium (section 3.3.2) and review relevant studies

from the literature. Popular fracture propagation criteria are then reviewed

in 3.3.3. The model constructed in this study will then be introduced in

section §3.4.

3.3.1 Fluid Flow through the Hydraulic Fracture

It is customary in the hydrofracture literature to use the Reynolds lu-

brication approximation (Reynolds, 1886) to describe fluid flow through the

hydraulic fracture. Figure 3.1 shows the fluid setup in the lubrication approx-

imation.

~v } w(x, y)

z

y

x

Figure 3.1: Fluid setup in the Reynolds lubrication approximation (from
Marder et al., 2015). The figure shows a short segment along fracture length.
It is customary in numerical models to discretize fracture length into a number
of relatively short, discrete segments. According to the lubrication approxima-
tion, the walls in each segment can be taken as parallel planes which are one
fracture width w (x, y) apart. Fluid velocity profile is taken to be parabolic
and fluid flow is assumed to be laminar and incompressible. Fluid pressure in
each fracture segment is taken to be uniform.

If a pressure gradient ~∇P (x, y) is applied across the segment, fluid
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velocity v is given by (Marder et al., 2015)

~v ≈ ~uf (z) + ẑvz = ~u
z

w

(
1− z

w

)
+ ẑvz, (3.1)

where

~u (x, y) = −w
2

2µ
~∇P. (3.2)

Because the fluid is assumed to be incompressible,

∂w

∂t
= vz. (3.3)

Solving for vz then gives the standard lubrication approximation (presented

as it appears in Marder et al., 2015):

∂w

∂t
= ~∇. w

3

12µ
~∇P. (3.4)

Present day numerical hydrofracture models solve equation (3.4) using a nu-

merical scheme.

This dissertation employs the lubrication approximation to model fluid

flow through hydraulic fractures. The fracture geometry used in the present

research is, however, different from the setup of Figure 3.1 and the associated

lubrication equation turns out to be slightly different from equation (3.4).

Details of the fracture geometry used in the present research, as well as the

derivation of the corresponding lubrication equation, will be presented in sec-

tion §3.4.

The lubrication approximation does not contain any information about

the relationship between fracture width w (x, y) and fluid pressure P (x, y):
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if the pressure gradient ~∇P is known, the lubrication approximation then

provides the means to predict how the fracture width will change in time. The

functional dependence of fracture width w (x, y) on fluid pressure P (x, y) is

established by stress equilibrium in the fracture medium, and is the subject of

the following section.

3.3.2 Stress Equilibrium

Consider a body Ω bounded by a curve Γ, and let a subset Γu of the

boundary be subject to a prescribed constant displacement u0; another sub-

set, Γt, to constant prescribed traction, t0. The resulting stress distribution

inside the body is the solution to an initial boundary value problem known as

the static equilibrium problem, the strong form of which is described by the

following equations:

σij,j + bij = 0, inΩ, (3.5)

u = u0, onΓu, (3.6)

σ.n = t0, onΓt, (3.7)

where σ is the Cauchy stress tensor, b is the body force per unit volume and

n is the outward unit normal vector. In the case of fluid–driven fracture, the

fracture walls are traction free, and the component of traction normal to the

fracture walls is the fluid pressure.

Most hydrofracture models assume shale to be linear elastic, in which
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case the constitutive equation relating the stress and strain is the Hooke’s law,

σij = Cijklεkl, (3.8)

where C is the elasticity tensor. It is also customary in the hydrofracture

modeling literature to take shale to be isotropic.

3.3.3 Fracture Propagation

A variety of fracture propagation models exist in the hydrofracture lit-

erature. Every numerical model of fracture propagation is constructed of three

essential components: a crack propagation criterion; prediction of the propa-

gation direction, and computation of the propagation velocity (to determine

how far the fracture should extend in the next time–step).

The objective in this section is to introduce fracture propagation mod-

els by presenting a review of two such models from the literature. Each model

consists of a propagation criterion and a method to determine the propagation

direction. The maximum circumferential stress and the maximum energy re-

lease rate are the models which appear in this review. The propagation model

employed in this dissertation will be discussed separately and in more detail

in section 3.4.3.3.

3.3.3.1 Maximum Circumferential Stress

A popular fracture propagation criterion in the hydrofracture litera-

ture is the maximum circumferential stress criterion (Olson, 1990, 2007; Wu

and Olson, 2015). First proposed by Erdogan and Sih (1963), this criterion is
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based on the assumption that the fracture will grow from its tip in a direction

perpendicular to the maximum circumferential stress: propagation is assumed

to be always in opening mode, i.e, along the direction in which the circumfer-

ential stress is zero. This assumption leads to the following prediction for the

direction of propagation, θ:

tan θ2 = 1
4
KI

KII

± 1
4

√√√√( KI

KII

)2
+ 8. (3.9)

The propagation direction θ is measured from the crack alignment, and KI

and KII are respectively mode I (opening) and II (shearing) stress intensity

factors. According to this criterion, the crack propagates only when

KI = KIC , (3.10)

where KIC is a material constant known as the fracture toughness. Hydrofrac-

ture models which employ this criterion employ a numerical scheme such as

the displacement discontinuity method to determine KI and KII (Olson, 1990,

2007).

3.3.3.2 Maximum Energy Release Rate

The maximum energy release rate criterion (Nuismer, 1975) is another

fracture propagation criterion used in hydrofracture models (Dahi-Taleghani

and Olson, 2011). According to this criterion, a given fracture will propagate

critically only if the strain energy release rate G, defined by Irwin (1957) as

G = KI +KII

E

1− ν2

, (3.11)
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exceeds a material property known as the critical strain energy release rate,

Gc. As G combines the mode I and II stress intensity factors, the maximum

energy release rate criterion can model mixed mode I and II propagation.

Propagation direction in the criterion is determined in the following

way: consider a hypothetical kink at the tip of a given fracture, at an angle

θ to the current fracture alignment. If the fracture abruptly changed its path

and propagated in the direction of the kink, then the stress intensity factorsKI

and KII and consequently the strain energy release rate G would be different

from their current value, and will be in general a function of the kink angle

θ. The propagation direction in the criterion is taken to be the direction in

which the strain energy release rate is maximum.

For quasi–static cracks, the criteria presented here are nearly identical,

but this is not the case for dynamic cracks. We note that fracture mechanics

has not yet settled which of these criteria is correct, or preferable.

3.3.4 Analytical Models

The literature on fluid–driven fracture started in the 1950s. Early pa-

pers on the subject employed geometrical setups that were simple enough to

lend themselves to analytical progress: all early papers describe a single frac-

ture in an infinite medium. Nevertheless, besides the remarkable amount of

insights gained from such simple models, prior to the development of numerical

hydrofracture models in the 1960-1970s, hydraulic fracture design and anal-

ysis relied significantly on the analytical results of early papers, for instance
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to estimate the injected volume needed to widen the fracture enough to allow

the proppant to enter the fracture (Adachi et al., 2007).

This section presents a review of relevant analytical models from the

literature. In historical order, the penny–shaped fracture and the KGD model

are reviewed first. The model presented afterward is the PKN model with

the addition of new results due to Marder et al. (2015). This final model

is the theoretical framework for the numerical hydrofracture model of this

dissertation and is accordingly discussed in more detail.

3.3.4.1 Penny–Shaped Fracture

Historically, the penny–shaped fracture precedes all other geometrical

setups. Also known as the radial fracture, the penny–shaped fracture occupies

a circle in the plane z = const, Figure 3.2.

c
w

Q

Crack Tipz

r

θ

Figure 3.2: The penny–shaped (radial) geometry. Fluid is injected into the
wellbore at the center.
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The penny–shaped fracture was first studied by Sneddon in 1946. Build-

ing on the works of Griffith (1921) and Westergaard (1939), Sneddon (1946)

analytically obtained, among other results, the stress distribution around a

penny–shaped fracture in an infinite linear elastic medium. The particular

result we review here is one which later proved essential in the development of

the classical analytical models of hydrofracture, namely the KGD model and

the PKN model.

The result is the following: for a penny–shaped fracture in an infinite

medium, Sneddon has shown that if the walls of the fracture are subjected to

constant internal pressure P and far–field stress σ⊥, then the fracture will be

elliptical and the displacement w in the center of the crack (r = 0) will be

given by

w = 4c (1− ν2)
πY

(P − σ⊥) = βPnet, (3.12)

where c is the fracture radius, ν is Poisson’s ratio, Y is Young’s modulus, P

is assumed to be constant over r ≤ c and the net pressure Pnet is defined as

P − σ⊥.

In the PKN or KGD model, the coefficient β is defined using the short

dimension of the crack. The models are discussed in more detail in the follow-

ing subsections.
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3.3.4.2 The KGD Model

The Khristianovic-Geertsma-DeKlerk (KGD) model is due to Khris-

tianovic and Zheltov (1955) and Geertsma and de Klerk (1969). As shown in

Figure 3.3, the KGD model assumes fracture height H to be uniform along

the fracture length L; fracture width w is taken to be uniform along H. Fluid

is injected through the rectangular cross section of the KGD crack (the y − z

plane) and propagation happens in the x direction. In the KGD model, only

the fracture length L and width w are allowed to change during injection;

fracture height H is taken to be constant in time.

z

x
y

Crack Tip

H

L

w

Fluid

Figure 3.3: Geometry of the KGD fracture. Water flows into the rectangular
cross section of the fracture, causing growth in the x direction. Fracture
height H is uniform along the crack length L; the fracture is uniform in the y
direction.

At any given time t and location x along the crack length, crack width
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and net fluid pressure are related through Sneddon’s result, equation (3.12):

w (x, t) = βPnet (x, t) ,

where for the KGD geometry

β = 2L (t) (1− ν2)
Y

. (3.13)

The KGD results we now review here are the scaling laws for net fluid

pressure and crack length. For the reader’s convenience, the results are pre-

sented in the simplified form in which they appear in Chen (2014).

For a constant injection rate Q, when the length of the KGD crack

reaches L(t), net pressure profile along the crack length is given by

Pnet(x, t) =
{

48Qµ [L (t)− x]
Hβ3

}1
4
. (3.14)

Time evolution of crack length is given by

L(t) = C1

(
Q

H

)1
2
t

2
3 , (3.15)

where

C1 =
(5

8

)2
3
[

Y

6 (1− ν2)µ

]1
6
.

3.3.4.3 The PKN Model

Perhaps the most famous of the early hydrofracture studies is the article

due to Perkins and Kern (1961). In this work, hydraulic fracture is taken to
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be of elliptical cross section and uniform height, Figure 3.4. The fracture is

imagined to extend as a result of fluid flowing into the cross section.

Perkins and Kern derived analytical estimates of the width of hydraulic

fractures in rock formations in the following cases: horizontal/vertical frac-

tures, Newtonian/non–Newtonian fracturing fluid, and laminar or turbulent

regimes for an elliptical cross section. In recent numerical studies, the assump-

tion of an elliptical cross section or uniform height can be relaxed in favor of

more realistic fracture geometries and the fluid flow through the fracture is

typically taken to be laminar.

wc(x)

z

x

y

L

H Fluid

Crack tip

Figure 3.4: The geometry of the Perkins and Kern fracture (figure from Marder
et al., 2015).

Nordgren (1972) later extended the work of Perkins and Kern to include

the possibility of fluid loss to the formation or leak–off, so the model is presently
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known as the Perkins–Kern–Nordgren or the PKN model. We have adopted

in this chapter Marder et al.’s (2015) simplified presentation of the original

Perkins and Kern expressions. The PKN results reviewed here are used later

in this dissertation to validate our numerical model.

To employ the lubrication approximation of equation (3.4) in the con-

text of the PKN geometry, Marder et al. (2015) employ four assumptions:

1. At any given location x along the crack length, fluid pressure is assumed

to have reached equilibrium over the elliptical cross section, i.e., P =

P (x);

2. The lubrication approximation of equation (3.4) is applied to the minor

axis of the elliptical cross section of the crack: w = wc (see Figure 3.4);

3. The cross section is assumed to remain elliptical as the crack grows, and

4. The injection rate of water Q into the fracture is assumed to be constant.

For the PKN crack, Sneddon’s result (equation (3.12)) takes on the following

form:

wc (x) = β(P − σ⊥) = βPnet,

where σ⊥ is the far–field stress perpendicular to the crack and

β = 2H (1− ν2)
Y

, (3.16)

where H � L is the short dimension of the crack.
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Inserting equation (3.16) into equation (3.4) and integrating for pres-

sure yields the scaling law for net pressure along the crack length:

Pnet (x, t) = 4
{
Qµ [L (t)− x]

πHβ3

}1
4
. (3.17)

Crack length L (t) is given by

L (t) =
[

54Q4Y

83π3µ (1− ν2)H4Q

]1
5
t

4
5 . (3.18)

Net pressure at the base of crack is given by

Pnet (x = 0) =
(
µQ2Y 4

H6

)1
5
t

1
5 . (3.19)

As first described by Griffith (1921), a given crack inside a medium

starts to propagate in an unstable fashion only if the energy supplied to the

crack tip exceeds the energy required to create new surface area in the medium.

In the case of hydraulic fracture, adopting the Griffith’s energy balance ap-

proach results in the following propagation criterion: a given hydraulic fracture

will propagate if the mechanical work done by the fracturing fluid on the frac-

ture walls exceeds the sum of the energy required to create new surfaces in

the medium and overcome the viscous frictional loss associated with the fluid

flow through the fracture and to the tip.

Marder et al. (2015) analytically determined the terms in the energy

balance approach and obtained the condition under which a given dynamic

PKN crack will continue to propagate:

β

3P
2
net (x = 0) > Γ, (3.20)
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where Γ is the specific fracture energy of the rock in J
m2 .

3.3.5 Numerical Models

The analytical models reviewed in the previous section provide insight

into hydraulic fracture modeling and are appropriate for a single fracture of a

simple geometry. Simulation of more realistic or complex geometrical setups,

however, requires the use of numerical models. The importance of numeri-

cal hydrofracture models which can simulate many fractures becomes more

pronounced when one considers that the interaction between two or more hy-

draulic fractures can have a significant effect on production, an effect which is

typically absent from simple analytical models.

At present, solution of the stress equilibrium equation is typically at-

tempted using either a version of the finite element method (Dahi-Taleghani

and Olson, 2011; Haddad and Sepehrnoori, 2014 and 2016) or the displacement

discontinuity method (Wu & Olson, 2015; Olson, 2004). The finite element ap-

proach was pioneered by Clifton (1978); the displacement discontinuity method

is due to Crouch (1976).

In 2015, Wu and Olson proposed the simplified three–dimensional dis-

placement discontinuity method and reported a 1000 fold increase in computa-

tional efficiency compared to the standard displacement discontinuity method.

The method was used to construct a three–dimensional model of hydrofracture

propagation in naturally fractured reservoirs.
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Chen (2014) and Marder et al. (2015) constructed a pseudo–three–

dimensional lattice model of hydraulic fracture. In this model, the rock is

viewed as a three–dimensional array of cubic mass blocks connected with

Hookean springs, and fracture corresponds to the breaking of the spring be-

tween two adjacent mass blocks. Lubrication approximation was used to model

the fluid flow through the fractures.

The fracture propagation criterion in this model is based on the exten-

sion of the springs: a given spring breaks when the extension of the spring

exceeds a critical value δ, the extension at failure, derived analytically so as to

reproduce the Young’s modulus and the specific fracture energy of the rock.

For a lattice made up of blocks of side a, the extension at failure was shown

to be

δ =
√

2Γa
Y

, (3.21)

where Γ is the specific fracture energy and Y is the Young’s modulus of the

rock.

The model was shown to reproduce the PKN equations for a single

crack. Fluid motion, elastic deformation and crack propagation all came out

of the lattice model based on the underlying physics.

Despite the tremendous progress of the hydrofracture modeling litera-

ture, computational efficiency still remains a major issue. This problem be-

comes more pronounced if one chooses to consider the interaction between

hydraulic fractures and pre–existing natural fractures in the reservoir.
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The numerical hydrofracture model developed in this dissertation is

presented in the next section. We note here that the ability to efficiently ex-

plore geometric and temporal complexities of fracture networks comes at the

cost of accuracy at the level of fracture mechanics. Given that the primary

design objective of our model is to simulate the interaction of hydraulic frac-

tures with a large number of natural fractures in a computationally efficient

manner, we are forced to treat the mechanics of fracture in less detail than

typical numerical hydrofracture models. Details of fracture mechanics in the

model will be presented in section 3.4.3.

3.4 The Model

We showed in Chapter 2 that the natural fracture/incipient crack sys-

tem in shales can form a connected network, which we referred to as the

spanning cluster, and suggested that gas production from hydraulically frac-

tured shales comes from that subset of the spanning cluster which is opened

during the treatment by the fracturing fluid inside the hydraulic fractures.

This section presents our numerical hydrofracture model. Before we

present the numerical framework, we first introduce the setup of the model

and a qualitative description of the scenarios the model can simulate.

3.4.1 Setup

The initial configuration of the model consists of the spanning cluster

and a perforation crack which intersects the spanning cluster, and corresponds
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to the beginning of the injection. Figure 3.5 shows the initial configuration.
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Figure 3.5: Map view of the initial configuration of an example hydrofrac-
ture simulation (left) and close–up of the perforation crack (right). The gray
lines represent the spanning cluster, determined from the percolation model
of Chapter 2. The blue line corresponds to the perforation crack. Water is in-
jected inside the perforation crack at the segment marked by the red diamond.
Depending on the injection rate and duration, eventually at some point after
the beginning of injection new fractures may start from the intersections of
the perforation crack with the spanning cluster (the gold diamonds). In our
model, water is allowed to propagate only along the spanning cluster cracks
and not through the shale, so the gray lines specify the potential paths of
hydraulic fractures in advance of the simulation.

The setup of the model is identical to that of the model in Chapter 2:

fractures are restricted to the bonds of a square lattice of spacing a and size L,

and each a× a square tile inside the lattice represents a block of mass. Each

fracture consists of a number of channel segments of length a.
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The perforation crack includes an injection segment, which allows the

model to add water to the system from the outside. Besides the injector, water

has no other way of getting in or out of the fracture assembly; the extremely

low permeability of shales makes it reasonable to assume that water leak–off

to the formation is negligible.

Since PKN geometry is assumed for the fractures, the width profile in

the y − z plane is elliptical (Figure 3.4). Our hydrofracture model employs

fluid flow and stress response expressions which account for the variation in

fracture width in the z direction (direction of fracture height), and as such the

model is pseudo–three–dimensional.

Once injection has started, as time goes by fluid pressure inside the

perforation crack builds up. Depending on the injection rate and duration, the

pressure may eventually rise enough to start a new fracture, which will either

propagate along one of the natural fractures which intersect the perforation

crack, or break new rock in what we refer to as incipient cracks: streaks of

relative mechanical weakness which were not open prior to the treatment,

but which opened up later during the injection and as a result of the change

in the state of stress. The union of natural fractures and incipient cracks

characterizes all possible propagation pathways for the hydraulic fractures. In

the hydrofracture model, the set of natural fractures and incipient cracks is

taken to be the spanning cluster of the percolation model of Chapter 2 and as

such fracture propagation paths are specified in advance of the simulation.

Once a new crack has initiated, the crack might propagate until it has
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reached the end of the natural fracture/incipient crack along which it has been

propagating, at which point the model stops the crack. Another possibility is

that the crack may reach an intersection with a natural fracture/incipient crack

of the spanning cluster, at which point water may turn into the intersection

and/or continue propagation.

The fluid path inside the spanning cluster and at the end of the injec-

tion is the fracture network responsible for shale gas production. Our objective

here is to model the path. Going back to the motivations for this dissertation,

the primary purpose of our hydrofracture model has to be to allow a robust

investigation of how the fracture network geometry affects production. In par-

ticular, we are interested in identifying the characteristic length scales involved

in production from the network, as well as the scaling of gas production, both

of which were first suggested by Patzek et al. (2013, 2014). We note that our

hydrofracture model therefore has to be able to simulate the development of

a large fracture network, i.e. a large number of hydraulic fractures, natural

fracture/incipient cracks and their interactions. From this design philosophy it

immediately follows that any computationally expensive hydrofracture model

will not fit the purpose of this research.

Here we adopt an approach to hydrofracture modeling which can be

described as being at an “intermediate” level of including details, in that we

model the fluid flow numerically and rely on analytical estimates, instead

of numerical methods, to simulate the stress response. Before introducing

the details of the model in the following sections, to help the reader make a
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judgment as to the cost/benefit of the approach, we now address the accuracy

of the hydrofracture model and present a comparison of the model to more

detailed hydrofracture simulations.

As far as accuracy, we show in section §3.5 that the hydrofracture

model reproduces established analytical results for a single fracture (the PKN

solution) with reasonable accuracy. We suggest that the difference between

simulation and theory for a single fracture, presented in Figure 3.10 and Fig-

ure 3.11, is indicative of the magnitude of error associated with simulations of

fracture networks done with the hydrofracture model.

Two features of more elaborate hydrofracture simulations are absent

from our hydrofracture model. First, the interaction between nearby hydraulic

fractures, the stress shadow effect (Wu and Olson, 2013; Geilikman and Wong,

2013), does not emerge naturally from the underlying assumptions of the hy-

drofracture model: we assume hydraulic fractures to be isolated. It is, however,

possible to extend the model to allow the possibility of the stress shadow effect,

and more details are provided in section 3.4.3.1 and section §3.6. Second, prop-

agation in the hydrofracture model is restricted to paths which are specified in

advance of simulation. To relax this restriction requires stress computations

which can be used in a fracture propagation criterion to decide fracture path.

However, addition of such computations to the hydrofracture model will intro-

duce a significant computational load which will strip the model of its ability

to simulate the time evolution of a large fracture network in a computationally

efficient manner.
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We now move on to the details of the hydrofracture model and discuss

in the next two sections fluid flow through the fractures (section 3.4.2) and

fracture mechanics (section 3.4.3).

3.4.2 The Lubrication Approximation

We use the lubrication approximation in this work to model fluid flow

through hydraulic fractures. In particular, the lubrication approximation pro-

vides us with the means to update the width of channel segments in time.

As mentioned earlier, the lubrication approximation of equation (3.4)

describes fluid flow between two parallel plates. The fractures in our model,

however, are PKN fractures: not of a rectangular cross section, as is the case

for parallel plates, but of an elliptical cross section, for which the lubrica-

tion approximation takes on a form which is slightly different from that of

equation (3.4) (Perkins and Kern, 1961):

∂w

∂t
= ~∇. w

3

16µ
~∇P, (3.22)

in which the factor of 16 has replaced the 12 in equation (3.4).

We now present the derivation of the lubrication equation for PKN

fractures. The derivation is presented as it appears in Marder et al. (2015).

Consider a fluid flowing through a channel of an elliptical cross section.

Then the total volumetric flow rate through the crack at any point x along

the crack length is given by

Q =
ˆ
ux (x, y)w (x, y) dy, (3.23)
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where ux is the x component of the fluid velocity vector ~u, given by equa-

tion (3.2). For an elliptical cross section of minor axis wc (crack width) and

major axis H (crack height), Q comes out to

Q = −
π
(
wc
2

)(
H

2

)
4µ

∂P

∂x
. (3.24)

We now discretize fractures along the length and into channel segments of

length a. Each segment is represented in the model by a bond on the square

lattice and can have up to 6 neighbors. The cross section of each segment

is elliptical and of major axis H, but the minor axis is smaller for segments

which are closer to the tip. Taking wi to represent the minor axis of segment

i, the total volume of fluid V contained in the fracture assembly is

V =
∑
i

π
(
H

2

)(
wi
2

)
a. (3.25)

Let index j denote the neighbors of segment i. Discretizing equation (3.24)

then gives

Q = π
(
w>
2

)3 H

2
1

4µ
pj − pi
a

, (3.26)

where

w> = wi, if pi > pj; elsewj. (3.27)

The rate of change of width due to the volumetric flow rate Q entering the

segment can be found from the rate of change of volume:

π
(
H

2

) 1
2

dw
dt a = Q. (3.28)
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Setting equal equations 3.26 and 3.28 gives the following relationship between

the change in segment width and the net flux of water through:

π
(
H

2

) 1
2

dw
dt a = π

(
w>
2

)3 H

2
1

4µ
pj − pi
a

; (3.29)

dw
dt = 1

a

∑
j

vijw>, (3.30)

where

vij = w2
>

16µ
pj − pi
a

(3.31)

is the volumetric flux of water entering segment i from neighboring segment

j. Depending on the relative magnitude of pi and pj, vij can be negative or

positive. The antisymmetry of equation (3.31), however, guarantees that if no

water enters or leaves the fracture assembly, then the volume of water inside

the system will remain constant in time.

In this dissertation, we employ the forward Euler finite difference for-

mulation of equation (3.30):

wn+1
i − wni

∆t = 1
a

w3
>

16µ
∑
j

pnj − pni
a

, (3.32)

where the superscripts n and n+ 1 mark respectively the value at the present

time step tn and the next time step tn+1; ∆t is constant and given by

∆t = tn+1 − tn, (3.33)

and

w> = wni , if pni > pnj ; elsewnj . (3.34)
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Equation 3.32 describes the change in segment width due to water transfer

between the segment and its neighbors.

As mentioned earlier, water is added to the fracture assembly at a

constant injection rate Q. Injection takes place at one of the segments of the

perforation crack, one which we refer to as the injection segment or the injector.

It should be noted that equation (3.32) describes non–injector segments only:

besides water transfer between the injector and its neighbors, the change in

the width of the injector also includes the contribution of the injected water,

given by equation (3.28). Superposing equation (3.32) and equation (3.28)

then gives the following expression for the change in the width of the injector:
wn+1
i − wni

∆t = 4Q
πaH

+ 1
a

w3
>

16µ
∑
j

pnj − pni
a

. (3.35)

3.4.3 Fracture Mechanics

So far we have described the initial configuration of the model and

presented the lubrication approximation as a means to update the width of

the segments in time. We now proceed to present the fracture mechanics rules

of the model. These rules govern initiation and propagation of the hydraulic

fractures, as well as their interaction with natural fracture/induced cracks of

the spanning cluster.

3.4.3.1 Pressure

Given pressure and width of the segments at time tn, the lubrication

approximation of equation (3.32) makes it possible to predict the widths at
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time tn + ∆t. To use equation (3.32), one needs to also compute pressure.

We use Sneddon’s expression, modified for the PKN geometry, to compute the

pressure at segment i:

pi = wi
β

+ σ⊥, (3.36)

where σ⊥ is the far–field stress perpendicular to segment i and

β = 2d (1− ν2)
Y

, (3.37)

in which d is the short dimension of the crack and is given by

d = 1
1
H

+ 1
L

. (3.38)

We mentioned earlier that the coefficient β for the PKN geometry is defined

using the short dimension of the crack. As a given PKN crack grows, the short

dimension of the crack changes from crack length L at L� H to crack height

H at L� H. Using equation (3.38) to compute the short dimension d makes

it possible to account for the change in crack geometry in a continuous fashion

as the crack gets longer: if L� H, then d ≈ L, and if H � L, then d ≈ H.

The far–field stress σ⊥ depends on the orientation of the segment, Fig-

ure 3.6.
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Figure 3.6: Map view of the (horizontal) far–field principal stresses in an
example hydrofracture simulation. The far–field stress perpendicular to each
segment, σ⊥, depends on the orientation of the segment; σ⊥ = σy for segments
in the x direction and σ⊥ = σx for segments in the y direction.

Using Sneddon’s expression to estimate pressure allows us to skip a

direct solution of the stress equilibrium equation, which is one of the ma-

jor sources of run–time in hydraulic fracture models. We also note that this

treatment of the stress response can not model how propagation of one hy-

draulic fracture affects other nearby hydraulic fractures (also known as the

stress shadow effect). A more detailed review of this feature and the stress

shadow effect will be given in section §3.6, where the qualitative features of
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the model are discussed.

3.4.3.2 Hydrofracture Initiation

The initial configuration of the model (Figure 3.5) was described earlier

in this chapter to consist of the spanning cluster, and a perforation crack which

intersects the cluster. Once injection has started, pressure inside the perfo-

ration crack will gradually increase and eventually start a hydraulic fracture

from the perforation crack. It was suggested earlier that the new hydraulic

fracture will be restricted to propagate from one of the intersections of the per-

foration crack with the spanning cluster; the natural fracture/induced crack

along which the new hydraulic fracture propagates will be the propagation

path.

We now consider one of the intersections of the perforation crack with

the spanning cluster. To decide whether a new hydraulic fracture will start

from the intersection, the model considers a seed crack in the direction of each

wing of the natural fracture/induced crack which intersects the perforation

crack, Figure 3.7.
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Figure 3.7: The purple arrows show the seed cracks considered at the intersec-
tions of the perforation crack with the spanning cluster (the gold diamonds).
Seed length is chosen from a Gaussian distribution. Hydrofracture initiation
in the model is treated as the extension of a static seed crack located at an
intersection.

The seed cracks in the model should be understood as approximations

of material flaws: in reality, flaws of irregular shape and random size are

present in all materials. The seed cracks in our model are, for simplicity, PKN

edge cracks of height H and length L� H. Seed length in the model is taken

to be given by a Gaussian distribution.

Because seed cracks are static, fluid pressure inside is constant. For

PKN edge cracks, the critical pressure at which the crack begins to propagate
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is given by

pstatic
c =

√
Y Γ

2L (1− ν2) + σ⊥, (3.39)

where Y and Γ represent respectively the Young’s modulus and specific frac-

ture energy of the cement/weak shale which hosts the seed crack, and σ⊥ is

the far–field stress perpendicular to the crack.

The model employs equation (3.39) to determine the critical exten-

sion pressure for static seed cracks. The Poisson’s ratio ν is assumed to be

the same for all fractures and equal to 0.25. Y and Γ of different natural

fractures/induced cracks are assumed in the model to be given by Gaussian

distributions. This choice is an attempt at capturing at least part of the

heterogeneity in mechanical properties of shales. (It should be noted that

a canonical model of reservoir heterogeneity has not been established in the

literature yet.)

The model treats hydrofracture extension in a discrete fashion, that is,

fractures grow one new segment at a time. This means that the minimum

incremental growth, from one time step to the next, is one lattice spacing (1

m in our model). Width of newly formed segments in the model is taken to

be given by Marder et al.’s (2015) extension at failure:

δ =
√

2Γa
Y

,

where a is the lattice spacing. The water which fills the new segment comes

from exactly one parent segment, located immediately upstream of the new
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segment. To ensure conservation of mass, in the time step when the new seg-

ment forms, the model reduces the width of the parent segment by δ. Assuming

typical shale values (Gale and Holder, 2008; Marder et al., 2015), Y = 30GPa,

Γ = 100 J
m2 and δ comes out to 80µm for a lattice of spacing a = 1m.

If one decides initiation solely based on equation (3.39), then as soon as

pressure at a given seed exceeds pstatic
c , a segment of a length equal to one lattice

spacing (1 m in our model) and a width equal to δ will form. Suppose that this

is the case, and assume the new segment forms at time tn+1. Let σparent and

σnew represent the far–field stress perpendicular to the parent segment and the

new segment, respectively. Then to ensure that pressure in the new segment

(downstream) is less than that in the parent segment (upstream), one should

make sure that

pn+1
parent ≥ pn+1

new , (3.40)

⇒
wnparent − δ
βparent

+ σparent ≥
δ

βnew
+ σnew,

⇒ pnparent ≥
δ

βnew
+ δ

βparent
+ σnew = pδ, (3.41)

or equivalently, expressed in terms of width,

wnparent − δ ≥
βparent

βnew
δ + βparent(σnew − σparent),

⇒ wnparent ≥
(
βparent

βnew
+ 1

)
δ + βparent(σnew − σparent). (3.42)

Note that equation (3.41) imposes a new condition, besides equation (3.39),

on initiation: no new segment should form unless pressure in the (future)

parent segment is large enough that when a new segment of length a and
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width δ forms, pressure in the new segment, which is always downstream of

the parent segment, will necessarily be less than or equal to the pressure inside

the parent segment. This condition represents the physics of flow, and also has

important implications for the stability of the numerical solution. If pressure

downstream gets larger than pressure upstream, fluid starts to oscillate back

and forth between the upstream and the downstream, typically resulting in

the instability of the numerical scheme.

Taking into account both equation (3.39) and equation (3.41), the ini-

tiation criterion in the model is then taken to be the following: a new segment

will grow from a seed crack at a given intersection only if pressure p at the

seed crack satisfies

p ≥ max
(
pstatic
c , pδ

)
, (3.43)

where pstatic
c is given by equation (3.39); pδ, by equation (3.41).

In the time step when a new hydraulic fracture initiates, the model

considers exactly one new channel segment at the location of the seed and

removes the seed from the system. The new segment is one of the bonds

which make up the spanning cluster.

As shown in Figure 3.7, the path of a new hydraulic fracture may inter-

sect multiple other natural fractures/induced cracks of the spanning cluster.

As long as fluid pressure is large enough to overcome viscous frictional losses

along the length of the hydraulic fracture and overcome surface energy of the

cement/weak shale, the fracturing fluid will continue to open up the natural
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fracture/induced crack and the hydraulic fracture will continue to propagate

along the path until an intersection with another natural fracture/induced

crack is reached. At this point the model considers a seed crack in each wing

of the intersecting natural fracture/induced crack. When the intersecting frac-

ture ends at the path, the number of seeds is 1; when it crosses the path, 2

seeds are considered. Then equation (3.43) is used to decide whether the frac-

turing fluid will divert into any of the seeds at the intersecting fracture and

start to open it.

The use of seed cracks allows the model to treat both initiation and

diversion of hydraulic fractures as the extension of a static crack. It is however

incorrect to assume that straight propagation of dynamic cracks may also be

modeled in the same way. As the next subsection will elaborate, dynamic fluid–

driven fractures are unstable and as such one may not model propagation as

a sequence of extension of static seed cracks at the tip.

3.4.3.3 Hydrofracture Propagation

Having discussed hydrofracture initiation and diversion, we now focus

on straight propagation of hydraulic fractures. We use in the model Marder

et al.’s condition for crack propagation (2015), given by equation (3.20):

β

3P
2
net (x = 0) > Γ.

This expression was obtained by setting the work done on crack faces by

the injection of the fluid to be greater than the energy cost of creating extra
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surface area. The contribution of viscous dissipation here is taken into account

through the pressure profile used in the work calculation. For a given dynamic

PKN crack, propagation will continue only if equation (3.20) is satisfied.

Note that net pressure at crack base Pnet (x = 0) only grows as time

goes by, so one can conclude from equation (3.20) that dynamic fluid–driven

cracks will always have enough energy to propagate once they start. In fact,

the net energy available for propagation increases as the crack grows longer

and as such one might expect the crack to grow infinitely. There are, however,

certain physical mechanisms which prevent infinite crack growth both along

the lateral extent of the shale layer (horizontal) and across the layer height

(vertical), and here we present two such mechanisms.

Initiation of a new crack at the base of a dynamic crack is one mecha-

nism which limits the propagation of the dynamic crack. Marder et al. (2015)

showed that the total viscous dissipation associated with flow through a crack

of length L scales with L
1
4 . This means that pushing the fluid through the

crack and to the crack tip becomes harder as the crack grows longer. It is

therefore reasonable to propose that at some point during propagation viscous

dissipation through the crack becomes so large that it becomes energetically

more favorable to start a new crack. Since pressure is at its largest at the base

and drops towards the tip, the new crack is expected to start typically from

around the base of the old crack.

The most important mechanism for containment of hydraulic fractures

in the height (vertical) direction is the contrast in the in–situ stress between
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the shale and the layers immediately above and below (Fisher and Warpinski,

2011). A theoretical analysis of this mechanism was provided by Simonson

et al. (1978); a data–based discussion of this mechanism and other fracture

height containment mechanisms can be found in Fisher and Warpinski (2011).

We note that hydraulic fractures in shales are expected to grow vertically

because the vertical stress (overburden) in shale reservoirs is generally the

largest principal stress: shale wells are typically deeper than about 2, 000 ft,

at which point the overburden gets larger than the horizontal stresses and

becomes the largest principal stress (Fisher and Warpinski, 2011).

As mentioned earlier, fractures in the model grow one new segment at

a time and width of newly formed segments is taken to be given by Marder

et al.’s (2015) extension at failure, δ (equation (3.21)). In the time step when

a dynamic hydraulic fracture extends, the model considers exactly one new

channel segment in front of the crack tip, which is the parent segment in this

case. The new segment is taken to be one of the bonds which make up the

spanning cluster; in the model, dynamic cracks stop when they reach the end

of the natural fracture/induced crack on which they were propagating.

To ensure that pressure in the new segment is always smaller than or

equal to the old crack tip (the parent segment), we go back to equation (3.41),

which for a dynamic crack gives

pntip ≥
δ

βnew
+ δ

βtip
+ σnew = pδ.

98



For straight propagation

βnew = βtip = β, (3.44)

and therefore

pntip ≥
2δ
β

+ σnew. (3.45)

We note that it is the discrete nature of the numerical model which necessi-

tates the use of equation (3.45) beside equation (3.20). Because the model is

constructed on a lattice, numerical propagation takes place in increments of

one lattice spacing and the width of newly created segments is pre–specified.

Propagation in the continuum theory, however, can take place in any positive

increment of length and therefore equation (3.20) alone is enough to describe

propagation.

The analysis presented in this section ultimately leads to the following

propagation criterion: the model allows a given dynamic crack to continue

to propagate only if there is enough energy available for propagation, equa-

tion (3.20), and pressure downstream remains smaller than pressure upstream,

equation (3.45).

3.4.3.4 Formation of Loops

The diversion mechanism described earlier allows the fluid to turn cor-

ners as it advances through the spanning cluster. Diversion can lead to for-

mation of loops in the hydraulic fracture network, Figure 3.8.
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Figure 3.8: In the model, fluid can turn corners at intersections and may form
loops. The red circles show two loops in the network, marked by blue lines.
Loops can form due to a head–on collision of two dynamic cracks, or because a
dynamic crack has reached an intersection which the fluid had visited earlier.

Regardless of how loops form, the model stops the propagation of the

dynamic crack(s) which complete the loop, and ensures that new seeds are

considered only at those bonds of the spanning cluster which have not been

opened yet.

3.5 Validation

We now present a comparison of theory and numerical simulation to

validate the model. The PKN theory is used in this dissertation to benchmark
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the numerics. Since the theory can describe only a single fracture and not a

complex network of fractures, the geometry of the test case considered here is

one in which a single crack initiates and propagates, Figure 3.9.
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Figure 3.9: Geometry of the test case used to validate the hydrofracture model.
Water is injected at the blue segment. Pressure buildup at the injector even-
tually starts a dynamic crack which will propagate along the natural frac-
ture/induced crack marked by the gray line. The resulting propagation is
then compared to the PKN theory.

We compare theory and simulation first for the time evolution of pres-

sure at crack base. As presented in Figure 3.10, the numerics agree well with

the analytical expression, which is given by equation (3.19):

P (x = 0) =
(
µQ2Y 4

H6

)1
5
t

1
5 + σ⊥.
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The far–field stress σ⊥ is taken to be 0 here. Time t is measured from initiation,

which happens at about 0.5 s here and is marked by the pressure spike. The

parameter β in the simulation was taken to be equal to 2H(1− ν2)
Y

.
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Figure 3.10: Simulation and theory for pressure at crack base. The pressure
spike at about 0.5 s corresponds to fracture initiation: pressure in the injection
segment initially builds up until the critical extension pressure of the seed crack
is exceeded. Once the crack starts to propagate, water flows from the injection
segment to newly formed segments and consequently pressure at the injection
segment drops. In the simulation plotted here, the crack grew to about 100m
by the end of injection.

Prior to initiation, pressure in the injection segment builds up over time

until eventually the local critical extension pressure is reached. At this point

a new crack will initiate; that is, a new segment will form. Immediately after

initiation, the model takes some water away from the injection segment to fill

the new segment, creating a rapid pressure decline at the injection segment.
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The pressure buildup and rapid decline therefore mark crack initiation.

Next, we look at the net pressure profile along crack length at the end

of injection. As presented in Figure 3.11, the simulation and theory agree

reasonably well. The analytical expression plotted in Figure 3.11 is given by

equation (3.17),

P (x, t) = 4
{
Qµ [L (t)− x]

πHβ3

}1
4

+ σ⊥,

where the far–field stress σ⊥ is taken to be 0. As was the case for Figure 3.10,

the parameter β for Figure 3.11 was taken to be equal to 2H(1− ν2)
Y

.
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Figure 3.11: Simulation and theory for pressure along crack length. Water
was injected into the initial configuration shown in Figure 3.9 for about 30 s.
At the end of injection, the analytical crack had reached about 88m while the
numerical crack is about 100m long. Using a smaller lattice spacing a results
in a smaller difference between the two lengths.

The difference between numerical and analytical crack length at the
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end of injection can be explained as follows: while analytical propagation

is controlled only by the PKN energy criterion, equation (3.20), numerical

propagation is controlled not only by the PKN energy criterion but also by

the condition which ensures that pressure in the new segment is smaller than

or equal to the parent segment, equation (3.45). As discussed earlier, this

condition is critical to the stability of the numerical scheme and is required

because of the discrete nature of the model: a smaller lattice spacing a reduces

the difference between the numerical and analytical crack lengths at the end

of injection.

As mentioned earlier, the model takes fluid leak–off to the formation to

be negligible. Then conservation of mass requires the total crack volume V (t)

to be equal to the total injected water volume at all times. Injection rate is

taken to be constant and equal to Q, so we should have

V (t) = Qt. (3.46)

As presented in Figure 3.12, the numerics match the analytics exactly.

Mass is therefore shown to be conserved in the model.
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Figure 3.12: Mass is conserved in the model. Since fluid leak–off to the for-
mation is taken to be negligible, the total injected water volume at any time
is equal to the total crack volume at that time.

3.6 Qualitative Observations

Having explained the mechanics of the model, we now use the model

to investigate how network geometry is created during a treatment. The de-

scription presented here is qualitative; we note that the design objective for

the model has been to help answer how network geometry affects production,

and to answer this question one needs in addition to the model presented in

this chapter another model that allows computation of gas production from a

given fracture network. The production model developed in this work will be

presented in detail in the next chapter.

The first observation is that hydraulic fractures in the model primarily
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grow one at a time. We note that this observation is what one should expect

from the criterion for crack propagation, equation (3.20), given by

β

3P
2
net (x = 0) > Γ.

Becuase seed cracks in the model have different critical static extension pres-

sures (pstatic
c ), in cases where two seed cracks exist at the same location, the

seed with the lower critical extension pressure always grows first. Once the

seed crack starts to grow, the mechanical energy available for propagation will

get increasingly larger than the minimum energy required to create new crack

surfaces, as shown by equation (3.20), and the crack will be unstable.

As mentioned earlier, one physical mechanism which ultimately puts a

limit on propagation is the competition between the energy needed to start

a new crack and the energy dissipated through the fluid: the dynamic crack

stops propagating when the dissipation becomes so large that starting a new

crack becomes energetically more favorable than continued propagation. It

should be noted that hydraulic fractures in the model also stop when they

reach the end of the natural fracture/induced crack (the path crack) on which

propagation was taking place.

Another observation is that the longer a crack gets, the slower its prop-

agation will be. This observation is consistent with the analysis of Marder et

al. (2015) for two cracks propagating from a shared base: if the lengths are

L1 and L2 and the propagation velocities are L̇1 and L̇2, then

L̇2

L̇1
= L1

L2
. (3.47)
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It was observed that branches emerge from a given dynamic crack

mostly after the crack had reached the end of its path. The location of the

branch is controlled by first the pressure profile along the crack length, which

favors branching closer to the base, and second the critical extension pressure

of the incipient branches. For a more homogeneous cement, variability in frac-

ture energy and Young’s modulus of the incipient branches is low and branches

tend to form closer to the base; otherwise, branches can form anywhere on the

dynamic crack and even close to the tip.

Snapshots of the time evolution of the hydrofracture network can be

viewed in Figure 3.13. The far–field stress in this simulation was assumed to

be isotropic, and the parameter β was set equal to 2H(1− ν2)
Y

.
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Figure 3.13: Time evolution of the hydrofracture network for relatively het-
erogeneous cement. Water (blue) is injected at a constant rate at the center,
throughout the simulation, and into the natural fracture/induced crack cluster
(gray). Top: the initial condition, L = 4m; bottom: the network at about
5min into injection (physical pumping time in the field), L = 547m. The sim-
ulation was carried out with H = 30m, Q = 50 bpm, Y = 50GPa, ν = 0.25,
and µ = 10−3 Pa s under isotropic far–field stress.
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Figure 3.13 (cont.): Time evolution of the hydrofracture network for relatively
heterogeneous cement. Water (blue) is injected at a constant rate at the center,
throughout the simulation, and into the natural fracture/induced crack cluster
(gray). Top: the network at about 10min into injection (physical pumping
time in the field), L = 952m; bottom: the network at about 15min into
the injection, L = 1316m. The simulation was carried out with H = 30m,
Q = 50 bpm, Y = 50GPa, ν = 0.25, µ = 10−3 Pa s under isotropic far–field
stress.
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Figure 3.13 (cont.): Time evolution of the hydrofracture network for relatively
heterogeneous cement. Water (blue) is injected at a constant rate at the center,
throughout the simulation, and into the natural fracture/induced crack cluster
(gray). The plot shows the network at about 21min into the injection (physical
pumping time in the field), when L = 1700m. The simulation was carried out
with H = 30m, Q = 50 bpm, Y = 50GPa, ν = 0.25, µ = 10−3 Pa s under
isotropic far–field stress.

To obtain an estimate for the time it takes an operator in the field

to reach each snapshot, we first scale each simulation parameter with a cor-

responding canonical (reference) value. We take the canonical values to be

H0 = 30m, Y0 = 50GPa, ν0 = 0.25, L0 = 100m, Q0 = 50 bpm and

µ0 = 10−3 m. The dimensionless quantities are then given by H̃ = H

H0
,

Ỹ = Y

Y0
, and so on. We then use the expression for the time it takes a

dynamic PKN crack to reach a given length L,

t = 35.9
(
µ̃L̃5H̃4

Q̃3Ỹ

)1
4
s, (3.48)
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where in the simulations L̃ = number of channel segments× lattice spacing
L0

.

In reality, a dynamic hydraulic fracture exerts compressive stress on

the surrounding shale, opposing the growth of new fractures nearby. This

phenomenon is known as the stress shadow effect.

In this model, propagation of a fracture does not affect other fractures.

In other words the stress shadow effect does not come out of the model based

on the underlying assumptions and has to be explicitly added to the model.

This addition is left for future work. We note that an analytical estimate of

the stress shadow effect has been obtained recently by Geilikman and Wong

(2013).

3.7 Conclusions

Prior to this chapter, we used the percolation analysis of Chapter 2 to

obtain the spanning cluster for a given natural fracture/induced crack network.

We suggested that it is energetically more favorable for hydraulic fractures to

be restricted to the spanning cluster, and concluded that the spanning cluster

contains the potential paths of hydraulic fractures.

We presented in this chapter a numerical framework to simulate ini-

tiation and propagation of hydraulic fractures, as well as the interaction of

hydraulic fractures with natural fractures/induced cracks. The model allows

an investigation of how the geometry of hydrofracture networks is created.

Given the desire to include the interaction of hydraulic fractures with a large
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number of natural fracture/induced cracks, and having made computational

efficiency a priority, we adopted in this chapter an “intermediate” level of in-

cluding details; we use the Reynolds lubrication approximation to model fluid

flow through hydraulic fractures and rely on analytical estimates to model the

stress response. The model is constructed on a square lattice and is pseudo–

three–dimensional.

The model was validated against the Perkins-Kern-Nordgren theory.

The numerics are in reasonable agreement with theory and as originally in-

tended, the model is computationally efficient.

We concluded the chapter with an analysis of the qualitative observa-

tions made during simulations. Hydraulic fractures mostly seemed to propa-

gate one at a time and got slower as they grew longer. Branching was observed

to happen primarily after hydraulic fractures had reached the end of their nat-

ural fracture/induced crack path. A more mechanically homogeneous cement

tends to lead to branches which form close to the base of dynamic cracks,

while more heterogeneity allows branches to form farther from the base and

even close to the tip of a dynamic crack.

The model was designed to ultimately help describe how network ge-

ometry affects gas production. The work presented so far in this dissertation

predicts the fracture network responsible for gas production, and an additional

model is needed to compute gas production from the predicted network. The

next chapter presents such a model.
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Chapter 4

Production from Complex Fracture Networks

So far in this dissertation, we have established that hydraulic fracturing

of shale reservoirs results ultimately in a network of connected fractures, which

we refer to as the fracture network, and that the observed field production of

shale gas is due to this network. We discussed that the network drains gas from

the rock and provides hydraulically conductive pathways to the flow of gas from

the formation to the wellbore. Natural gas was described to travel through

two distinct transport paths during production: gas is first transported from

the organic matter inside the shale through the shale to the hydrofracture

network, and then through the network fractures to the wellbore.

The work presented so far allows one to describe the geometry of the

fracture network at any time during injection. The question we raise and

address in this chapter is how the geometry affects production. In particular,

we focus in this chapter on the scaling of gas production from hydraulically

fractured shales and identify the characteristic length scale of the fracture

network.

We present in this chapter a diffusion model which makes it possible to

predict the time evolution of gas production in fractured shales. The model is
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based on the random walk algorithm and operates on the network geometry

which results from the percolation model of Chapter 2 and/or the hydrofrac-

ture model of Chapter 3.

For fracture networks of different size and geometry, the diffusion model

reproduces Patzek et al.’s (2013) universal scaling curve. The two models are

different in how they treat the effect of fracture network on production: the

diffusion model explicitly considers the fracture network and solves the trans-

port problem with the fractures as the boundary, while Patzek et al.’s model

treats hydrofractured shale as a homogeneous medium of a permeability equal

to the lab measured value for unfractured shale, bounded between parallel

planar hydrofracture stages which are spaced very closely (on the order of a

meter). In the Patzek et al. model, hydrofractures are constant pressure sinks

of infinite hydraulic conductivity. We show that the two models neverthe-

less lead to exactly the same universal scaling. The consistency between the

two works confirms that the setup of the models is indeed the correct mental

picture for gas production from hydraulically fractured horizontal shale wells.

4.1 Outline

We start this chapter with the formal statement of the initial boundary

value problem which governs gas production from hydrofractured shales. We

discuss the underlying assumptions first and then present the derivation. The

governing equation here is the gas pseudo–pressure diffusivity equation.

We then present a diffusion model based on random walk on a square
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lattice to numerically solve the gas diffusivity equation. We establish how

the model may be used to compute the characteristic scales which control gas

production. We then run the diffusion model for a number of fracture networks

of different size and geometry and scale the numerically obtained cumulative

production versus time data with respect to the characteristic scales. We show

that the scaled plots reproduce the universal scaling curve first proposed by

Patzek et al. (2013), a solution which was shown to match the production

history of more than 8,000 horizontal gas wells in the Barnett Shale.

Finally, we use the model to define the characteristic spacing of fracture

networks. We find that the characteristic distance of a given fracture network

is the average distance from a random point in the area drained by the fracture

network to the nearest fracture of the network.

4.2 Background and Literature Review

We present in this section a review of relevant results from the literature

on modeling the production decline in unconventional reservoirs. As discussed

earlier, the natural gas present in shale reservoirs is adsorbed in nano–scale

pores and due to the extremely low permeability of the shale matrix the gas

does not naturally flow through the reservoir rock. Hydraulic fracturing cre-

ates a multi–scale network of connected fractures which drains the gas from

shale and provides hydraulically conductive pathways to the flow of gas to the

wellbore. For a detailed discussion of the nature of the fractures which make

up the network, as well as the network geometry and scaling of connectiv-
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ity, the reader is referred to Chapter 2; the mechanics of hydraulic fracture

propagation were discussed in detail in Chapter 3.

In the first 3 months after a well is hydraulically fractured, back–

production of the injected water along with the gas, as well as the spontaneous

imbibition of the injected water into the shale, make it difficult to predict the

gas production. Due to this difficulty, in the present research, as well as in for

instance Patzek et al. (2013), production is investigated only after the initial

production transients and the associated transient phenomena have passed.

An additional effect present during shale gas production is desorption.

Desorption refers to the escape of adsorbed shale gas due to pressure falling

during production and is described by the Langmuir isotherm. Patzek et al.

(2013) note that in the particular case of the Barnett Shale the contribution

of desorption to gas production is negligible, yet warn that this may or may

not be the case for other fields.

The analysis by Patzek et al. shows that gas production is dominated

by the effective properties of a fracture network and that “the net effect is

pressure diffusion at an enhanced rate in a homogeneous medium”. As such,

their analysis establishes that one can safely skip the nonlinear behavior of

desorption and gas flow in the unfractured shale at the microscopic scale and

still arrive at a reasonable prediction for production.

The geometrical setup employed by the Patzek et al. (2013) model can

be seen in Figure 4.1. This geometry was suggested earlier by Al–Ahmadi et
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al. (2010) as the right starting point for modeling the application of linear

flow analysis to shale gas wells.

In the setup, hydrofractures are taken to be parallel planes of height

H ∼ 30m and tip–to–tip length 2L ∼ 200m, uniformly spaced at 2d ∼ 100m.

Gas is taken to come entirely from inside the cuboid region bounded between

consecutive stages, and is taken to flow linearly into each stage from both

sides. Permeability of hydrofractures is taken to be infinite compared to the

effective permeability of the surrounding shale.
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Figure 4.1: Geometrical setup of the Patzek et al. (2013) model. Each hy-
drofracture stage is taken to be a plane perpendicular to the horizontal well,
spaced a distance 2d apart from the nearest stage. In practice, it is typical to
have 10-20 stages over the entire length of the horizontal well. All hydrofrac-
tures are assumed to be of the same height H and the same length 2L. Natural
gas is taken to flow linearly into each stage from both sides. Permeability of
the hydrofractures is taken to be infinite compared to that of the surrounding
shale. As a result, natural gas in the model is instantly produced when it
reaches any hydrofracture stage. (Taken with permission from Patzek et al.,
2013)

The model treats hydrofractured shale (i.e., inside the cuboid) as a

homogenous region of uniform permeability, bounded between parallel planar

hydrofracture stages the spacing between which is small (if shale permeability

is taken to be 10 nD, the spacing comes out to 1.5− 3m). This choice makes

it possible to skip the geometrical details of the hydrofracture network and

greatly simplifies the boundary conditions of the transport equation.
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The transport problem solved in this dissertation is a variation of the

transport problem solved by Patzek et al. (2013). Before we present the details

of our problem later in section §4.3, in the following section we re–trace the

derivation and the formal statement of Patzek et al.’s transport problem- an

initial boundary value problem which describes gas pressure diffusion from

inside a cuboid region to parallel planar absorbing boundaries on the sides

of the cuboid (see Figure 4.1). The diffusion problem in this setup has been

studied also by Silin and Kneafsy (2012) and Nobakht et al. (2012).

4.2.1 Derivation of the Transport Problem

We now present the transport problem that corresponds to production

from the geometrical setup described in the previous section. We note that

the following derivation describes production after the initial transients have

ended, during which gas flow from the cuboid region to the hydrofractures

resembles flow from inside a semi–infinite body to an absorbing boundary.

Starting with the mass balance equation, we have

∂ (φSgρg + (1− φ) ρa)
∂t

+∇. (ρgug) = 0, (4.1)

where the subscript g denotes free gas; a, adsorbed gas. S is saturation, φ is

porosity, ρ is density and u is velocity. We now substitute for ug using Darcy’s

equation,

ug = − k

µg
∇P, (4.2)
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and obtain the diffusivity equation:

∂ (φSgρg + (1− φ) ρa)
∂t

= ∇.
(
kρg
µg
∇P

)
. (4.3)

As shown by Al–Hussainy et al. (1966), employing the real gas pseudo–

pressure (the Kirchhoff integral transform of gas pressure),

m(p) = 2
pˆ

p∗

pdp

µgzg
, (4.4)

simplifies the nonlinear equation (4.3) into

∂m (p)
∂t

= α (p)∇2m (p) , (4.5)

where

α (p) = k

[φSg + (1− φ)Ka]µgcg
, (4.6)

and

Ka =
(
∂ρa
∂ρg

)
T=const.

. (4.7)

The reference pressure p∗ is set equal to the wellbore flowing pressure, pf .

Note that pf is also the hydrofracture pressure. The coefficient α is known

as the hydraulic diffusivity of gas and depends on pressure; Ka = Ka (T, p)

is defined as the differential equilibrium partitioning coefficient of gas at a

constant temperature.

The initial condition for equation (4.5) is

m [p (x, t = 0)] = m (pi) = mi, (4.8)
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where mi is constant in a virgin reservoir. In the case of a hydrofractured

reservoir, mi will depend on the distance to the hydrofractures.

The boundary condition for equation (4.5) is specified pseudopressure

on the hydrofractures:

m [p (x = xhydrofractures, t)] = m (pf ) = mf , (4.9)

where mf can be kept constant or gradually reduced over time.

The current form of equation (4.5) is dimensional: physical quantities

such as time, length and mass are measured in units which are defined indepen-

dent of the time, length and mass scales present in the system. If one chooses

to use the SI system, for instance, then regardless of the system under consid-

eration, time will be given in seconds, length will be measured in meters and

mass will be in units of Kilogram. Instead, one can define scaling parameters

which are based on the scales present in the system and scale equation (4.5)

with respect to those parameters to obtain a dimensionless form.

We note that the choice of the scaling parameters is not mathemat-

ically unique. However, those scaling parameters which represent physically

characteristic scales of the system scale the dimensional solution into a univer-

sal dimensionless form, where universality means the solution is identical for

every system size. Universal solutions are simpler, more general (the solution

is scale–independent) and more useful than their corresponding dimensional

forms.
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Once discovered, characteristic scales can be used to describe the gov-

erning physics in a scale–independent fashion. We note, however, that there

is no well–established, step–by–step procedure to discover the characteristic

scales of a given physical system. In the case of the transport problem consid-

ered here, the governing physics is that of pseudopressure diffusion to parallel

planar absorbing boundaries and the characteristic scales as first obtained by

Patzek et al. (2013) are a time–scale τ , referred to as the time to interfer-

ence, and a characteristic mass M , which represents the original mass of gas

contained in the reservoir volume drained by the well.

The characteristic time unit τ is defined in terms of the initial reservoir

properties as

τ = d2

αi
, (4.10)

where d is half the distance between two consecutive hydrofracture planes, see

Figure 4.1, and αi is the hydraulic diffusivity at initial reservoir temperature

and pressure:

αi = k

φµCgSg

∣∣∣∣∣
initial reservoir T, p

. (4.11)

The characteristic time τ represents the time it takes for the pressure

wave to travel from one hydrofracture stage to the plane located mid–way to

the nearest hydrofracture, at which point the wave will interfere with the wave

from the nearest hydrofracture and pressure at the mid–plane drops to below

the initial reservoir pressure.

The choice to evaluate α at the initial reservoir condition does not
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mean that the solution will depend on a specific value of α, but rather that

the solution will be given in terms of a time unit, τ , which is defined based on

αi. Besides, as will be presented next, the procedure to compute τ does not

require knowledge of the magnitude of αi.

Having defined the characteristic time, the dimensionless time t̃ can

now be defined as

t̃ = t

τ
. (4.12)

The dimensionless cumulative production is called the recovery factor RF and

is defined as

RF = m (t)
M

, (4.13)

where m (t) is the cumulative production at a given time t.

For the geometry shown in Figure 4.1 and a constant hydraulic diffu-

sivity, the diffusion problem given by equation (4.5) was solved analytically by

Patzek et al. (2013), giving the following expression for the gas flow rate into

the hydrofracture plane:

ṁ = M

τ

∞∑
n=0

exp
(
−(2n+ 1)2 π2t̃

4

)
. (4.14)

Scaling the production rate ṁ with τ and M yields the (dimensionless) recov-

ery rate ∂RF
∂t̃

, which can be approximated as the sum of a square root of time

decline and an exponential decline:

ṁ
M

τ

= ∂RF
∂t̃
≈

√
πerfc

3
√
π2t̃

4


4
√
π2t̃

4

+ exp
(
−
π2t̃

4

)
+ 1

2 exp
(
−

9π2t̃

4

)
. (4.15)

123



The square root of time decline describes early time production and emerges

from the diffusion of gas pressure from high in the reservoir to low on the

hydrofractures. As time goes by, reservoir pressure gradually decreases until

at t = τ the pressure halfway between the hydrofractures drops to below the

initial reservoir pressure and production slows relative to the square root of

time decline. As for the exponential decline, with continued production there

comes a point at late time (i.e., t� τ) when the rate of gas production becomes

proportional to the amount of unproduced gas still inside the reservoir, giving

rise to the exponential decline regime.

Patzek et al. (2013) note that ignoring the variations in properties

of natural gas with pressure leads to errors on the order of 50%, and solve

equation (4.5) using a numerical ODE solver which treats the thermodynamic

properties of natural gas properly. The numerical solution consists of a square

root of time decline trend followed by an exponential decline, and agrees well

with the observed field recovery rate for typical Barnett wells, Figure 4.2.
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Figure 4.2: Dimensionless production rate versus dimensionless time, theory
(black) and field data (burnt orange) for 5 typical wells in the Barnett Shale.
Time (the horizontal axis) has been scaled with the time to interference, τ ;
production rate (the vertical axis), with the mass of original gas in place, M .
The decline trend at early time is square root of time and emerges from the
diffusion of gas pressure from the reservoir to the hydrofractures. At t̃ = 1 (the
time to interference), gas pressure halfway between the two hydrofractures
drops below the initial reservoir pressure and decline slows relative to the
square root of time trend, followed at late time by an exponential decline.
The exponential trend arises because eventually gas production rate becomes
proportional to the amount of unproduced gas still inside the reservoir. (Taken
with permission from Patzek et al., 2013)

For a given horizontal shale gas well,M and τ are obtained from fitting

the solution of equation (4.5) to the field production data. Patzek et al. (2013)

use the numerical solution, which accounts for thermodynamics of real gas; we
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use the integral of equation (4.15), which describes cumulative production

in the case of constant hydraulic diffusivity. The analytical expression for the

cumulative production has been derived analytically in the present dissertation

and will be presented later in section §4.3.

With M and τ known, one can now scale the cumulative production

versus time data for any given (horizontal shale gas) well. This process was

done by Patzek et al. (2013) for 2057 Barnett wells and the scaled curves can

be seen in Figure 4.3. Note that all of the scaled curves fall more or less on a

single scaling function. This means that the scaling function is universal, and

further confirms that the proposed scaling parametersM and τ are indeed the

characteristic physical scales which control shale gas production.
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Figure 4.3: Scaled cumulative production history, theory (black) and field data
(burnt orange) for 2057 wells in the Barnett Shale. The orange curves have
been obtained by scaling the cumulative production versus time data of each
well with the corresponding M and τ for the well. Each well in general has
a different set of M and τ , which are computed from fitting the cumulative
production versus time data to the numerical solution of equation (4.5). The
black curve here is the universal solution. Universality here refers to how the
scaled curves for different wells all fall on a single scaling curve (the universal
solution) and highlights that the scaling parametersM and τ indeed represent
the characteristic scales of shale gas production from hydrofractured horizontal
wells. Pressure on the hydrofractures (wellbore flowing pressure) was taken
to be 500 psi; reservoir pressure, 3500 psi. Because wellbore flowing pressure
has been non zero, the wells could not have produced all of the original gas in
place, and the ultimate recovery factor is around 0.8. (Taken with permission
from Patzek et al., 2013)
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4.3 The Model

Having established the context for this chapter, we now move on to

original work and start by introducing our model in this section.

As mentioned earlier, the transport problem solved in the present dis-

sertation is a variant of the problem introduced in section 4.2.1, given by

equation (4.5):
∂m (p)
∂t

= α (p)∇2m (p) .

In particular, two features distinguish our model from that of Patzek et al.’s.

First, we relax the assumption that the boundary of equation (4.5) is two par-

allel planar hydrofractures and instead consider a network of fractures as the

boundary. Patzek et al.’s model treats the diffusion of gas pressure from the

reservoir to the production network as being effectively equivalent to diffusion

of gas pressure to two parallel planar hydrofracture stages from a homogenous,

fracture–free reservoir of uniform permeability; here we consider the produc-

tion network explicitly and model gas pressure diffusion to it.

Second, we consider natural gas to be ideal. This choice is made specif-

ically to allow us to ignore the pressure dependence of α and instead replace it

with a constant, at which point the solution to equation (4.5) can be obtained

efficiently using the basic random walk algorithm. The desire to take the ran-

dom walk approach is motivated by the complex geometry of the boundary and

the diffusive nature of equation (4.5). We note that in principle it is possible to

extend the basic random walk to allow the possibility of a pressure dependent
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diffusivity; we also note that natural gas is not ideal and its compressibility

and viscosity vary strongly with temperature and pressure. In any case, as the

results will show later, taking natural gas to be ideal still results in exactly

the same universal scaling of cumulative production as the one introduced by

Patzek et al. (2013).

The numerical framework used in this dissertation to solve equation (4.5)

and compute production is based on a Monte Carlo implementation of the ba-

sic random walk. Before presenting the framework in details, we first introduce

random walk, establish how it leads to the diffusion equation, and demonstrate

how random walk may be used to solve any linear diffusion equation.

As the name suggests, random walk describes how a random walker

moves by taking random steps. In general, direction and length of each step

is random. The classic example of random walk is the Brownian motion; for

instance, in the case of gas molecules, a given gas molecule will continue to

travel along a straight line until it collides with another molecule, at which

point the molecule will be deflected into a random orientation. Because all gas

molecules move randomly, the distance the molecule travels before the next

collision, i.e. the step length, is also random.

To demonstrate how random walk leads to the diffusion equation, we

now discuss the limiting case of a random walk with infinitesimally small and

constant step length l and constant time step τ . Take t to represent the time

elapsed from the start of the walk and ~r (t) to mark the location of the walker

at time t and with respect to the initial position of the walker. Then it can
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be shown that the probability density of finding the walker at location ~r (t) at

time t is the solution to the linear diffusion equation

∂p (~r (t) , t)
∂t

= D∇2p (~r (t) , t) , (4.16)

where D is called the diffusion coefficient and depends on the step length,

time step of the walk and the dimensions of the system. In two dimensions,

for instance, D is given by

D = l2

4τ , (4.17)

where l is the step length and τ is the time step of the walk. The diffusion

coefficient D will be a constant only if l and τ are both constant.

Going back to Brownian motion in gases, we note that gases contain

more than only one molecule and that gas molecules interact. Generally, the

interaction between a large number of random walkers leads to a variable D,

one which will be a function of the local concentration of walkers. In the

case of natural gas, for instance, D, i.e., α in equation (4.5), is a function

of gas pressure and temperature. Taking α to be constant means taking the

interaction between the walkers to be negligible, which physically corresponds

to ideal gas and mathematically manifests as a linear diffusion equation.

Having laid out the general idea of random walk, we now present the

details of our numerical framework. The geometrical setup of the model is

presented in Figure 4.4. The fracture network here is one which spans the

lattice and is generated by the percolation model of Chapter 2: fracture length

follows a power law distribution and fractures are uniformly placed on the

130



bonds of a square lattice, such that a single fracture may span several bonds.

The lattice is a square of side length L, tiled by squares of side length a (the

lattice spacing). For the lattice shown in Figure 4.4, L = 200 and a = 1.

Conductivity of fractures is taken to be infinite compared to the shale

matrix, therefore the width of fractures does not play any role here: fractures

are treated as features extruded uniformly in the height direction (into the page

in Figure 4.4) and the model is pseudo–three–dimensional. The thickness of

the blue lines in Figure 4.4 is only a visual representation and does not signify

any physics. We note that the diffusion model may be extended to allow

the possibility of finite conductivity fractures: because hydraulic conductivity

depends on fracture aperture, the diffusion model has to be modified such that

fractures of different widths can exist, and the value of α inside each fracture

will be a function of the width. The case of finite conductivity fractures will

be discussed in detail in section 5.3.6.
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Figure 4.4: Geometrical setup of the diffusion model. The lattice on the right
is a close up of a 10 × 10 subdomain of the lattice on the left. The fracture
network (blue) is generated by the percolation model of Chapter 2 and is
constructed on the bonds of a square lattice. The lattice is a square of side
length L and is tiled by squares of side length a (the lattice spacing). Each
fracture may span several bonds. Fractures are infinitely conductive compared
to the shale matrix, so as soon as natural gas hits any fracture, it is produced.
The fracture network is therefore an absorbing boundary to the gas transport
equation.

Regardless of what the fracture network geometry is or how it was

obtained, we expect the characteristic time and mass scales of production from

the fracture network to scale the time evolution of cumulative production from

the network onto the universal solution. Therefore the fracture networks in the

diffusion model may be at or above the percolation threshold and it does not

matter whether or not the networks were processed through the hydrofracture

model of Chapter 3.
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We use a random walk scheme in this dissertation to solve equation (4.5).

Mathematically, the domain on which we solve equation (4.5) is the area inside

the lattice; the boundary is the union of the lattice boundary and the fracture

network. The random walker in our algorithm represents a finite mass of gas.

As we will show later in this section, the procedure by which we scale the

random walk simulation does not require us to specify the mass of the walker.

We place a walker at the center of each a × a tile inside the lattice

and one by one, let each walker take random steps. Each walk is treated as

if the walker is alone in the lattice, because the gas in our model is ideal and

therefore the walkers do no interact. Also because of the ideal gas assumption,

the hydraulic diffusivity α has to be a constant, so step length in the algorithm

is a constant and taken to be equal to the lattice spacing a, the walkers jump

to one of the four neighboring a × a squares with equal probability, and the

time step of the walk is also a constant.

The lattice boundary in the model is reflective: if a given walker jumps

outside the lattice, the walker will be brought back to its position right before

the jump. We note that the diffusive nature of transport in the present problem

allows flexibility for the choice of condition on the lattice boundary, and the

boundary may as well have been taken to be absorbing. Mathematically, a

reflective boundary corresponds to the no flow (Neumann) boundary condition.

Each walker is allowed to walk until it crosses any fracture. At this

point the walker is removed from the lattice, and the number of steps from the

initial location of the walker to the fracture, also known as the arrival time, is
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recorded. Once all of the walkers have completed their walks, the distribution

of arrival time for all walks is constructed next. For a given value of arrival

time, the distribution gives the number of walkers which have arrived at any

fracture at the given arrival time.

The functional form of the arrival time distribution is the same as

that of production rate versus time. For the arrival time to correspond to

physical time and the number of walkers to correspond to production, the

distribution has to be scaled properly first. To scale the numerics, we fit the

cumulative distribution of arrival time using the analytical solution for the

cumulative mass of gas flowing into a planar hydrofracture. It is from this

fitting procedure that we obtain the characteristic time to interference, τ , and

the original gas in place, M .

The analytical solution for the production rate in the case of constant

α was given earlier by equation (4.15). Integrating the production rate to get

cumulative production, we obtain
ˆ t̃

0

∂RF
∂t̃0

dt̃0 = RF
(
t̃
)

=

2

3π
3
2

3π
2
√
t̃ erfc

(3π
2
√
t̃
)
−

exp
(
−9π2

4

)
− 1

√
π


− 4
π2 exp

(
−π

2t̃

4

)
− 2

9π2 exp
(
−9π2

4 t̃

)
+ 38

9π2 . (4.18)

We now consider two fitting parameters, τ ∗ and M∗, and replace RF
(
t̃
)
in
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equation (4.18) with

scaled cumulative number of walkers = cumulative number of walkers
M∗ ,

replace t̃ with

scaled arrival time = arrival time
τ ∗

,

and compute those values of M∗ and τ ∗ which provide the least–squares fit to

equation (4.18). The computed values for τ ∗ and M∗ give, respectively, the

characteristic time to interference τ and the original gas in place, M .

For the example system shown in Figure 4.5, the fits to cumulative

production and the production rate are presented in Figure 4.6 and Figure 4.7,

respectively.
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Figure 4.5: A 200× 200 lattice system containing a spanning fracture network
(blue). The system is discussed as an example in the text to demonstrate the
procedure to compute M and τ .
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Figure 4.6: The procedure to compute the characteristic time to interference
and the original gas in place is based on computing the least squares fit of
equation (4.18) to the cumulative distribution of arrival time. The arrival
time data in the plot is obtained from running the random walk algorithm on
the example system of Figure 4.5. To obtain a smooth enough distribution, we
have swept through all the walkers 10 times and pooled the recorded arrival
time data. The fitting parameters τ andM are the original gas in place and the
characteristic time to interference, respectively; τ ([=] steps) scales the arrival
time data onto physical time andM ([=] walkers) scales the cumulative number
of walkers onto cumulative production. The dashed black line represents a
power law fit to early time simulation data. The exponent of the power law
fit is given by e.
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Figure 4.7: Least squares fit of equation (4.15) to the distribution of arrival
time, obtained from running the random walk algorithm on the example sys-
tem of Figure 4.5. The statistical fluctuation is most pronounced at large
arrival times and gets smaller with increasing the number of realizations. To
obtain a smooth enough distribution, we have swept through all the walkers
10 times and pooled the recorded arrival time data. Taking the cumulative
of the number of walkers smooths the fluctuations and leads to a value for τ
which is slightly different from the one in Figure 4.6.

We note that the value of τ computed from fitting the cumulative pro-

duction is close to the one obtained from fitting the production rate, but the

two values are not identical (671 for the cumulative fit and 741 for the rate fit).
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The difference is not unexpected: there is statistical fluctuation in the (nu-

merical) production rate data, most pronounced at large arrival times, which

is inherent to the Monte Carlo scheme and gets smaller as the number of re-

alizations increases. To obtain a smooth enough distribution, we have swept

through all the walkers 10 times and pooled the recorded arrival time data.

Taking the cumulative of the rate data acts as a low pass filter and smooths

out the fluctuations, as can be seen from comparing Figure 4.7 to Figure 4.6,

and therefore we expect the values of τ from the two fits to be close, but not

identical.

As shown in Figure 4.6, early time production data from the diffusion

model follow a power law of the exponent e ≈ 0.8. This trend is systematically

not captured by equation (4.18), which predicts an exponent of 0.5 (square

root of time) for early time production. We suspect that the early time 0.8

power law might be a signature of the fracture network geometry, since the

derivation of equation (4.18) is based on parallel planar hydrofractures and

does not include any network geometry. In addition, emergence of the power

law implies the relevance of fractal analysis and suggests scale–independence

during initial production transients. Further investigation of these ideas is left

for future work.

We now use equation (4.10) to estimate the time it takes natural gas in

the field to diffuse over a distance equal to the lattice spacing, a. We note that

diffusion over the distance a in the field is mimicked in the diffusion model

with a single random step on the lattice. Taking a = 1m and α = 10−8 m2

s ,
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we get

∆t = d2

α
= 1

10−8 = 108 sec ≈ 3.17 year, (4.19)

so it takes natural gas about 3 years to diffuse over a distance of 1m in the

field.

4.4 Validation & Results

For any given fracture network, the diffusion model described in sec-

tion §2.5 allows us to compute the cumulative production versus time, as well

as the characteristic time and mass scales τ and M . We show in this sec-

tion that the model exactly reproduces Patzek et al.’s universal scaling curve

for cumulative production versus time, a solution which was shown to match

the production history of more than 8,000 horizontal gas wells in the Barnett

Shale. The success of the diffusion model in reproducing the universal scaling

curve broadens the set of geometrical setups from which the universal scaling

may emerge: the diffusion model relaxes Patzek et al.’s assumption of paral-

lel planar hydrofracture stages, the setup for which the scaling was originally

derived, and shows that the same scaling emerges from a complex fracture

network.

The objective in this section is to verify whether or not τ andM for any

given fracture network scale the numerically obtained cumulative production

versus time data for the network onto the universal solution. To answer this

question, the diffusion model was run on 5 fracture networks of different size

and geometry and for each network the cumulative production versus time,

140



the characteristic time τ and the original gas in place M were computed. The

fracture networks were generated using the percolation model of Chapter 2,

were all at or above the threshold and were not processed by the hydrofracture

model of Chapter 3. For each network, cumulative production and time were

then scaled with the correspondingM and τ , respectively, to give the recovery

factor RF and scaled time t̃. All scaled curves were then plotted on one graph,

given by Figure 4.8.
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Figure 4.8: The diffusion model exactly reproduces the universal scaling curve
due to Patzek et al. (2013). For 5 fracture networks of different size and
geometry, we have computed the cumulative production versus time, τ and M
using the diffusion model, then scaled cumulative production with M to get
the recovery factor RF and scaled time with τ to obtain scaled time t̃. This
plot confirms that the computed τ and M are indeed characteristic scales, as
the scaled production plots all fall on a single curve, referred to as the universal
scaling curve.

The lattice sizes considered here are L = 25, 50, 100, 150, and 200.

As Figure 4.8 shows, the plots for different lattice sizes fall quite closely on

top of each other and trace a single universal scaling curve. Moreover, after

a relatively short period of initial transients (the early time power law of

Figure 4.6), the scaling curve becomes linear in
√
t̃ and remains so until

√
t̃ ≈

0.6, at which point the curve starts to roll over and then becomes flat after
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t̃ = 1. This trend, which was obtained from scaling the data computed by the

diffusion model, exactly describes the orange curve in Figure 4.3, which was

obtained from scaling real production data.

The question which arises now is what τ for a fracture network phys-

ically corresponds to. Recall that Patzek et al.’s model treats hydraulically

fractured shale as a homogenous, fracture–free region of uniform permeability,

bounded between two parallel planar absorbing hydrofractures. In this setup,

τ is the characteristic time to interference and gives the travel time of the dif-

fusive pressure wave to get from one hydrofracture plane to the plane half–way

to the nearest hydrofracture stage. The model presented in this chapter, how-

ever, considers the fracture network responsible for production explicitly and

yet scaling the numerical cumulative production versus time data for any frac-

ture network with τ (and M) yields the universal scaling curve first obtained

by Patzek et al.

As shown by equation (4.10),

τ = d2

αi
,

τ is in a one–to–one correspondence with a characteristic distance d, so defining

d will uniquely define τ . Patzek et al. (2013) has shown that if the permeability

of the shale matrix is taken to be 10 nD, then the characteristic distance has

to be 1.5− 3m.

We use the diffusion model here to identify the characteristic distance

of fracture networks; τ is then the time it takes for the pressure wave to
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travel the characteristic distance. The definition uses only the geometry of the

fracture network and the drainage area. For a given fracture network draining

a given region, we find that the characteristic distance d is the average distance

between a randomly chosen point inside the region to the nearest fracture of

the network. Because our diffusion model is set up on a lattice, the gas can

only travel up/down and left/right and therefore the characteristic distance is

a “city block” distance and not a Euclidean distance. We employ this definition

of d in a Monte Carlo scheme and use it to compute d for 5 fracture networks

of different size and geometry. The results are presented in Figure 4.9.

Figure 4.9 confirms that our definition for d indeed captures the char-

acteristic distance of fracture networks. Similar to Figure 4.8, Figure 4.9

shows scaled cumulative production versus time plots obtained from the dif-

fusion model for 5 fracture networks of different size and geometry. Unlike

Figure 4.8 where the plots are scaled with τ and M , the plots here are scaled

with the characteristic distance d and M . (In this procedure, scaled time

t̃ = arrival time
d

, since d in the diffusion model is measured in steps.) As Fig-

ure 4.9 shows, the curves for L = 50, 100 and 200 fall on top of each other and

the curves for L = 25 and 150 are close to the rest of the curves, confirming

that our definition of characteristic distance is correct.
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Figure 4.9: The scaled cumulative production versus square root of time plots
for 5 fracture networks of different size and geometry. The maximum standard
error in RF for all sizes does not exceed 0.14% (not shown on the plot). For
each network, we have computed the cumulative production versus time and
M using the diffusion model of section §4.3. The characteristic distance d was
computed next; d and M were then used to scale the cumulative production
versus time data. Recovery factor RF is cumulative production

M
, and scaled

time t̃ is arrival time
d

. The scaled plots fall on top of one another, which
means that our definition of d indeed captures the characteristic distance of
the fracture networks.

The scaled plot for each realization of the diffusion model falls close

to the plots of other realizations and the standard error is very small: for

all system sizes considered in Figure 4.9, the standard error does not exceed

0.14%. The scaled plot for each realization of the diffusion model for L = 25
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is presented in Figure 4.10.
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Figure 4.10: 10 different realizations of the diffusion model for L = 25. The
scaled plots are very close. This is also the case for all the other system sizes
considered in Figure 4.9. The maximum standard error in RF (including all
system sizes) does not exceed 0.14%.

4.5 Conclusions

We presented in this chapter a diffusion model which makes it possible

to compute cumulative production versus time for production from hydrauli-

cally fractured shale. Previous chapters had established that the hydrofracture

process ultimately creates a connected network of hydraulic fractures and nat-

ural/induced fractures, which we referred to as the fracture network. Previous
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chapters allowed us to predict the time evolution of the geometry of the frac-

ture network during injection. This chapter considers production due to the

fracture network.

It was established in earlier chapters that during gas production from

hydraulically fractured shale, natural gas travels from the organic matter inside

the shale through the shale matrix to get to the fracture network, and then

flows through the network fractures to the wellbore. The diffusion model

presented in this chapter treats the fracture network predicted by previous

chapters as the absorbing boundary to the transport equation which describes

gas production from shales, and uses the random walk algorithm to solve the

transport equation.

This chapter answers the questions which originally motivated the dis-

sertation. These questions are about first the scaling of gas production from

hydraulically fractured horizontal shale wells, and second the exact nature of

the characteristic distance of fracture networks, which was discovered from the

analysis due to Patzek et al. (2013).

Patzek et al.’s model solves the same transport equation, with the dif-

ference that their model treats hydrofractured shale as a homogenous medium

of uniform permeability and takes this medium to be bounded between two

parallel planar hydrofractures. The diffusion model presented in this chapter

considers fractures explicitly. Patzek et al. showed, for more than 8,000 hori-

zontal gas wells in the Barnett Shale, that scaling the cumulative production

versus time data with respect to two characteristic scales, the time to inter-

147



ference τ and the original gas in place M , maps the cumulative production

versus time plots for different wells onto a single scaling curve, which they re-

ferred to as the universal scaling curve. We showed in this chapter that scaling

the output of the diffusion model with respect to M and τ reproduces Patzek

et al.’s universal scaling curve, confirming that the setup of the two models

is the correct mental picture for gas production from hydraulically fractured

horizontal shale wells.

We concluded the chapter by using the diffusion model to identify, or

define, the characteristic distance for fracture networks. The characteristic

distance for a given fracture network was shown to be the average distance to

the nearest fracture of the network, measured from a random point in the area

drained by the network.
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Chapter 5

Conclusions and Future Work

This chapter concludes the present dissertation. The original research

of this dissertation was presented in Chapters 2 − 4. Our objective in this

chapter is to review the contributions of this dissertation and propose new

courses of research for future work.

We start by reviewing the questions which motivated this dissertation

in the first place. We then move on to the models we developed to answer these

questions. A total of three different models were developed in this dissertation

and each was discussed in one of Chapters 2−4. While each model is designed

to address a certain question, the three models fit together and form a coherent

lattice model of gas production from hydraulically fractured shale reservoirs.

We present in this chapter a map of how the models interact, and review

specifically what questions each model answers. We then highlight the main

findings of this dissertation.

We conclude this final chapter by identifying potential future courses

of research which can build on the present work. Some of our suggestions for

future work concern the underlying assumptions of our models and are aimed

primarily at making the models more realistic. Others have to do with how
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the work presented in this dissertation may be used to either predict certain

production–related physical quantities of interest, or identify characteristics of

gas production from hydrofractured shales.

5.1 Motivation

The present dissertation was motivated by two works due to Patzek

et al., published in 2013 and 2014. These papers put forward a model for

gas production from hydraulically fractured, horizontal wells in shales. The

model assumes the hydrofracture stages to be parallel planes perpendicular to

the horizontal well, takes natural gas to flow in a linear and transient fashion

towards the hydrofractures, which act as absorbing boundaries, and treats

hydrofractured shale as a homogenous medium of uniform permeability. Gas

transport in this setup is given by the gas diffusivity equation, which describes

the diffusion of gas pressure.

The model introduces two characteristic dimensions: a time scale τ ,

referred to as the time to interference, and a mass scale M, known as the

original gas in place. The time to interference represents the time it takes

the pressure wave from one hydrofracture to reach the plane mid–way to the

nearest hydrofracture, at which point pressure in the mid–plane falls below

the original reservoir pressure and pressure decline slows down. The original

gas in place M is the amount of gas available in the reservoir volume drained

by the well.

This dissertation was conceived as the immediate follow up to the
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Patzek et al. papers. Two particular results of the Patzek et al. papers

point to a gap in our understanding of the hydrofracture process. The first

result is that scaling the cumulative production history of real wells with re-

spect to τ and M maps the decline plots onto a single curve, referred to as the

universal scaling curve, and that the universal scaling curve fits the production

history of more than 8,000 wells in the Barnett Shale with reasonable accu-

racy. The emergence of the universal scaling curve proves that M and τ are

indeed characteristic scales of gas production from hydrofractured horizontal

shale wells.

The second result is that if one assumes the permeability of hydrofrac-

tured shale to be equal to the lab measured value of 10 nD, then to account

for the observed field production data with the model the spacing between the

hydrofracture stages has to be 1.5 − 3m. This conclusion of course does not

suggest that the hydrofracture stages in the field are spaced 1.5 − 3m apart,

but that the hydrofracture process creates a network of hydraulically induced

and natural fractures which has a characteristic spacing of 1.5−3m. We have

adopted this mental picture in this dissertation. (There is, however another

equally valid take on this result, which we mention here only for the sake

of completeness and do not pursue further: if one takes the spacing between

hydrofracture stages in the model to be equal to a typical value used in the

field, then to account for the observed field production data with the model

requires shale permeability values which are 10−100 times larger than the lab

measured values of permeability for unfractured shale.)
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Patzek et al.’s model treats the effect of the fracture network on gas

production as a small spacing between hydrofracture stages which bound a ho-

mogenous reservoir of uniform permeability equal to the lab measured value;

the model does not include the hydraulically induced fracture network explic-

itly. Details of how fracture networks evolve geometrically and temporally are

therefore beyond the reach of the model. In particular, to identify the exact

nature of characteristic spacing for fracture networks requires a model of gas

production from fracture networks.

The objective of this dissertation was to study the production and for-

mation properties of the hydraulically induced fracture networks which make

gas production from shales possible. Connectivity of fracture networks, the

mechanics of network growth, and production from hydraulically fractured

shales are the topics explored in this dissertation, each discussed in detail in

one of Chapters 2− 4.

5.2 The Models

We now present a review of the models developed in this dissertation

and start with an overview of what each model does and how the models fit

together. We then review the main results from each model in more detail.

The framework in which we study the connectivity of fracture networks

is percolation theory. The percolation model is the subject of Chapter 2, and

describes the topology of the natural fracture/incipient crack system of shales.
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We suggest that production from hydraulically fractured shales comes

from that subset of the natural fracture/incipient crack system which gets

opened by the fracturing fluid during the injection, and develop in Chap-

ter 3 a geomechanical model of hydraulic fracture which allows us to predict

which natural fracture/incipient crack will open during injection, and when.

The model of Chapter 3 can simulate initiation and propagation of hydraulic

fractures and can account for the interaction between hydraulic and natural

fractures/incipient cracks. Ultimately, our hydrofracture model makes it pos-

sible to describe the time evolution of the fracture network geometry during

injection.

The output of the percolation model and the hydrofracture model com-

bined is the geometry of the fracture network responsible for production. Next,

we presented in Chapter 4 a diffusion model to compute production from the

predicted fracture network. The diffusion model makes it possible to investi-

gate how the geometry of the fracture network affects production.

All models of this dissertation are constructed on a two–dimensional

square lattice and include fractures which are represented by lattice bonds.

The models are all pseudo–three–dimensional.

5.2.1 Chapter 2: The Percolation Model

We focused in Chapter 2 on the topology and connectivity of the natural

fracture/incipient crack system. The percolation model of Chapter 2 treats the

natural fracture/incipient crack system of shales as a random population of
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lines on the bonds of a two–dimensional square lattice. Based on geological

observations, fracture length was assumed to follow a power law distribution

characterized by an exponent e.

We showed that based on the value of the exponent e, fracture network

connectivity emerges from either the clustering of fractures shorter than lattice

size (e > 2), or the presence of a few fractures or even a single fracture of a

size comparable to or longer than the lattice size, which can directly connect

the opposite sides of the lattice (1 < e < 2). We note that despite differences

in definition and setup, this result for lattice systems and horizontal/vertical

fractures is identical to the result due to Bour and Davy (1997) for continuum

systems and random fracture orientations.

In the limiting case where connectivity is achieved by a single fracture

longer than the system size, we analytically derived the closed form expression

for the probability of connectivity.

Finally, we numerically computed the percolation threshold as a func-

tion of e and showed that it agrees with the theoretical scaling predicted in

this work: for 1 < e < 2, the threshold is close to 0; for e > 2, the threshold

rapidly increases and asymptotically converges to 50% as e→∞.

5.2.2 Chapter 3: The Hydrofracture Model

We focused in Chapter 3 on the mechanics of how the fracture network

is created. We presented a numerical framework to simulate initiation and

propagation of hydraulic fractures, as well as the interaction of hydraulic frac-
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tures with natural fractures/induced cracks. The model makes it possible to

explore the geometric and temporal complexities associated with the growth

of hydraulically induced fracture networks.

We chose to include an “intermediate” level of details in the model:

fluid flow through hydraulic fractures was modeled with the Reynolds lubrica-

tion approximation, and the stress response was modeled using analytical esti-

mates. This choice was made to ensure that the model could include the inter-

action of hydraulic fractures with a large number of natural fractures/induced

cracks, while maintaining computational efficiency.

The model was validated against the Perkins-Kern-Nordgren theory.

The numerics are in reasonable agreement with theory and as originally in-

tended, the model is computationally efficient.

Our results in this chapter come in the form of qualitative observations.

The first observation is that hydraulic fractures tend to propagate straight

and branching was observed to happen primarily after hydraulic fractures had

reached the end of their natural fracture/induced crack path. Second, hy-

draulic fractures appear to propagate one at a time for the most part, and

third, hydraulic fractures get slower as they grew longer. Fourth, less hetero-

geneity in the mechanical properties of the cement tend to lead to branches

which form close to the base of dynamic cracks, while more heterogeneity al-

lows branches to form farther from the base and even close to the tip of a

dynamic crack.
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5.2.3 Chapter 4: The Diffusion Model

We focused in Chapter 4 on how the geometry of the fracture network

affects production. We presented in Chapter 4 a diffusion model which makes

it possible to compute cumulative production versus time for production from

hydraulically fractured shale. The model uses the random walk algorithm to

solve the transport equation which describes gas production from shales. The

fracture network predicted by Chapter 2 and Chapter 3 is used in the diffusion

model as the absorbing boundary to the transport equation.

Our first contribution in this chapter was to show that the universal

solution of Patzek et al. for production history emerges as a result of gas

pressure diffusion to an absorbing, complex network of fractures. This result

broadens the geometrical setup which leads to the universal solution, as frac-

ture network geometry is less restrictive than parallel planar hydrofractures.

We ran the diffusion model for several fracture networks of different size

and geometry and showed that scaling the numerically obtained cumulative

production versus time data with respect to the characteristic scales of pro-

duction maps the scaled plots for all network sizes onto a single curve which

is Patzek et al.’s universal scaling curve. The success of our diffusion model

in reproducing Patzek et al.’s universal solution confirms that the setup of the

two models is the correct mental picture for gas production from hydraulically

fractured horizontal shale wells.

Finally, we used the diffusion model to identify, or define, the character-
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istic spacing of fracture networks. We showed that the characteristic distance

for a given fracture network is the average distance to the nearest fracture

of the network, measured from a random point in the area drained by the

network.

5.3 Future Work

Having discussed the work done in this dissertation, we present in this

section several possible extensions or new applications of the present work.

Each suggestion is discussed in one the following subsections.

5.3.1 Early–Time Production

Re–visiting Figure 4.6 (re–plotted here in Figure 5.1), we now focus on

the early time power law fit to simulation data. We suspect that the power

law here may be a signature of the fracture network geometry and suggest

that future research investigates this suspicion. We note that the early time

production behavior is systematically not captured by the analytical solution

of equation (4.18) (the dashed blue curve in Figure 5.1); also, emergence of

the power law implies scale–independence and makes a fractal analysis seem

relevant here.
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Figure 5.1: Figure 4.6, revisited. The procedure to compute the characteristic
time to interference and the original gas in place is based on computing the
least squares fit of equation (4.18) to the cumulative distribution of arrival
time. The arrival time data in the plot is obtained from running the random
walk algorithm on the example system of Figure 4.5. To obtain a smooth
enough distribution, we have swept through all the walkers 10 times and pooled
the recorded arrival time data. The fitting parameters τ andM are the original
gas in place and the characteristic time to interference, respectively; τ scales
the arrival time data onto physical time and M scales the cumulative number
of walkers onto cumulative production. The dashed black line represents a
power law fit to early time simulation data. The exponent of the power law
fit is given by e.

158



5.3.2 Characteristic Distance as a Function of Fracture Network
Geometry

Going back to Figure 4.9 (re–plotted here in Figure 5.2), we note that

the scaled plots all fall quite closely on the universal scaling curve, except for

L = 25 and L = 150. The question which now arises is what distinguishes

these two fracture networks from the rest. More specifically, we suggest that

future research attempts to establish how the characteristic distance changes

as a function of the percolation probability p and injection time. We note that

the hydrofracture code of Chapter 3 may be used to obtain the time evolution

of characteristic distance.
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Figure 5.2: Figure 4.9, revisited. The scaled cumulative production versus
square root of time plots for 5 fracture networks of different size and geome-
try. The maximum standard error in RF for all sizes does not exceed 0.14%
(not shown on the plot). For each network, we have computed the cumula-
tive production versus time and M using the diffusion model of section §4.3.
The characteristic distance d was computed next; d and M were then used
to scale the cumulative production versus time data. Recovery factor RF is
cumulative production

M
, and scaled time t̃ is arrival time

d
. The scaled plots fall

on top of one another, which means that our definition of d indeed captures
the characteristic distance of the fracture networks.

5.3.3 Scaling of Original Gas in Place with Reservoir Size

Scaling of the original gas in place with the size of the reservoir is an

interesting topic which may be explored using the diffusion model. In the

diffusion model, original gas in place is given by M , obtained from fitting
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equation (4.18) to numerically obtained cumulative production versus time

data, and reservoir size is lattice size L. We note that the current setup of

the diffusion model drains all of the walkers inside the system and therefore

always leads to M ∼ L2, Figure 5.3. Field data indicate, however, that the

scaling exponent is not 2 but close to 0.8.
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Figure 5.3: The diffusion model was run for 5 fracture networks of different
size and geometry. The sizes considered for this plot are L = 25, 50, 100, 150
and 200. For each network, the numerically obtained cumulative production
versus time data was then fit with equation (4.18) and the original gas in
place M was determined. The original gas in place scales with L2, reflecting
the current setup of the diffusion model in which all walkers inside the lattice
will be eventually produced.

A possible future course of research is to run the diffusion model on a
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drainage area which represents how far away from the fracture network the

diffusive pressure wave will travel during the life of the well. An estimate of

the size of the drainage area may be obtained based on an average hydraulic

diffusivity, perhaps the value which corresponds to average reservoir pressure

during production, and a typical well life between 15− 25 years. Here,

α = (travel distance of pressure wave)2

well life .

5.3.4 The Stress Shadow Effect

As discussed earlier in Chapter 3, the stress shadow effect does not

emerge naturally from the underlying assumptions of our hydrofracture model

and therefore has to be manually added. Given that the model already relies

on analytical estimates to predict the stress response, it seems plausible that

an analytical estimate of the stress shadow effect, perhaps the one obtained

by Geilikman and Wong (2013), can be added to the model.

5.3.5 Thermodynamic Properties of Natural Gas

In the diffusion model of Chapter 4, we assumed the natural gas to

be ideal, for which the hydraulic diffusivity α is a constant and the transport

equation becomes linear. Because the gas was ideal and the interaction be-

tween gas particles was negligible, a random walk of fixed step size and fixed

time step could solve the transport equation. In the diffusion model, we took

α = 1, and took the step size to be equal to the lattice spacing.

Natural gas is not an ideal gas, and the hydraulic diffusivity α varies
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strongly with temperature and pressure. A future course of research here is

to treat the thermodynamic properties of natural gas properly, and extend

the basic random walk algorithm in a way that can model variable α. The

random walk algorithm should keep track of pressure at every point inside the

lattice and have the random walkers take steps of variable size (or time step)

according to the local value of pressure.

5.3.6 Finite Fracture Conductivity

In the diffusion model, fractures of the hydrofracture network were

taken to be infinitely conductive. This assumption is justified by considering

that shales are almost impermeable, and fractures are highly conductive. It

follows from this assumption that as soon as a walker hits a fracture, it is

immediately produced and the aperture of the fracture does not enter the

picture in any way. Real fractures, however, have different finite conductivities

because they have different apertures and surface properties and may or may

not be propped. A possible course of future research here is to extend the

diffusion model to account for networks of finite–conductivity fractures.

The extension can be done as follows: fractures should no longer be

treated as line sinks but as regions of space, with areas specified by the aperture

and length. Fractures that are less conductive should have a smaller diffusion

coefficient (hydraulic diffusivity in the diffusion model). For a two–dimensional

block of shale, this scheme partitions the lattice into regions with different

diffusion coefficient values. As far as coding of the walk algorithm, there are
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two ways to implement a spatially variable diffusion coefficient. Since in two

dimensions

D = l2

4τ ,

one could either specify the random walker to take longer/shorter steps or

change the time–step.

5.3.7 Extension to Three Dimensions

As mentioned earlier in this chapter, all models of this dissertation are

constructed on a two–dimensional square lattice and include fractures which

are represented by lines (the models are all pseudo–three–dimensional). A

possible course of future research here is to extend the models to three dimen-

sions, where (among numerous other new details) fractures will be represented

by planes which are not necessarily vertical.
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