
Copyright

by

Zachary Shane Tschirhart

2020

The Report Committee for Zachary Shane Tschirhart
Certifies that this is the approved version of the following Report:

Evaluation of Clustering Techniques for GPS

Phenotyping Using Mobile Sensor Data

APPROVED BY

SUPERVISING COMMITTEE:

Clinton N. Dawson, Supervisor

Karl W. Schulz, Co-Supervisor

Evaluation of Clustering Techniques for GPS

Phenotyping Using Mobile Sensor Data

by

Zachary Shane Tschirhart

REPORT

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Computational Science,

Engineering, and Mathematics

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2020

Dedicated to my dog Busco.

Acknowledgments

To everyone who enabled me to achieve my dreams. . .

v

Evaluation of Clustering Techniques for GPS

Phenotyping Using Mobile Sensor Data

Zachary Shane Tschirhart, MSCSEM

The University of Texas at Austin, 2020

Supervisor: Clinton N. Dawson
Co-Supervisor: Karl W. Schulz

With the ubiquitousness of mobile smart phones, health researchers

are increasingly interested in leveraging these commonplace devices as data

collection instruments for near real-time data to aid in remote monitoring,

and to support analysis and detection of patterns associated with a variety of

health-related outcomes. As such, this work focuses on the analysis of GPS

data collected through an open-source mobile platform over two months in

support of a larger study being undertaken to develop a digital phenotype for

pregnancy using smart phone data.

An exploration of a variety of off-the-shelf clustering methods was com-

pleted to assess accuracy and runtime performance for a modest time-series of

292K non-uniform samples on the Stampede2 system at TACC. Motivated by

phenotyping needs to not-only assess the physical coordinates of GPS clusters,

but also the accumulated time spent at high-interest locations, two additional

approaches were implemented to facilitate cluster time accumulation using a

vi

pre-processing step that was also crucial in improving clustering accuracy and

scalability.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables ix

List of Figures x

Chapter 1. Introduction 1

Chapter 2. Challenges 3

Chapter 3. Exploration 5

3.1 Theoretical Complexity of Standard Clustering Methods 9

3.2 Normalization of Location Data 9

Chapter 4. Use of Time Localization 11

4.1 Hierarchical Segmentation . 12

4.2 Intertwined Time and Space Pre-processing 13

Chapter 5. Results 15

5.1 Experimental Setup . 15

5.2 Clustering Methods Runtime 16

5.3 Clustering Methods Accuracy 17

5.4 Rank by Number of Samples or Estimated Time Accumulated 17

5.5 Parallelization . 18

Chapter 6. Conclusion 19

Chapter 7. Tables and Figures 20

viii

Bibliography 26

ix

List of Tables

7.1 Clustering Methods Complexity 21

7.2 Clustering Methods Execution Time 23

7.3 Clustering Methods Precision and Accuracy 24

7.4 Total Parallel Pre-processing with Final Cluster Runtimes . . 25

x

List of Figures

7.1 Location data points aggregated by day over the course of the
experiment. The number of samples collected per day varies
greatly. 20

7.2 A theoretical continuous line representing the true location of
a user, split into segments that are within an arbitrary radius R. 22

7.3 A representation of a discontinuous sampled set of the estimated
position of a user, again split into segments within a radius. . 22

7.4 Strong scaling of off-the-shelf algorithms that were trivial to add
parallel functionality. Due to the extreme runtimes/memory
constraints, the small dataset was used to show speedup. . . . 22

7.5 Strong scaling speedup of the total runtime, including sorting
and post-clustering steps, for Hierarchical Segmented and ITS
using the full dataset. 25

xi

Chapter 1

Introduction

The significantly sharp increase in healthcare costs over the past decades

has pushed the technological development of more efficient and effective ways

of decreasing these costs through innovation. While the United States has

higher health care costs than any other developed country in the world, the

quality of service received is classified as marginal by almost any metric [19].

The process of using digital phenotyping to aid in individualizing heathcare

offers the potential to lower costs by catering to specific trends and to avoid

lumping people into generalized classes of care that risk providing the wrong

support.

Digital phenotyping is the collection and processing of data with the

purpose of building an individual picture of a participant to help study pat-

terns and trends. Today, data generated passively by a single modern smart-

phone includes time-stamped location coordinates, accelerometer data, atti-

tude/pressure measurements, and phone usage activity to name a few. While

the larger scope of digital phenotyping is to apply the method onto any num-

This chapter contains material that has been accepted for publication in PEARC ’20

1

ber of health trends, the purpose of this work is in support of phenotyping

observations sampled throughout a woman’s pregnancy. While many sensors

are available for use, a significant data stream of interest to characterize a users

mobility effectively is their location as a function of time, typically inferred

through a combination of GPS and cell phone signal triangulation. The loca-

tion of a person over time can be used to calculate data such as user mobility,

time spent traveling, and general location relative to points of interest. The

location data passively generated by mobile phones is also one of the most

context aware, densely packed data streams provided. Accurately processing

and classifying location data in a scalable fashion is deemed a necessary step to

support an ongoing research project targeting a mobile-health study of preg-

nancy for 1,000 women in the central Texas area [4]. Consequently, the work

detailed in this paper is focused on the evaluation and development of analysis

techniques for discerning spatial clusters derived from mobile sensor location

data from a two month period using the Beiwe Research Platform [1][29].

Since the focus is specifically on user location data, an exploration of

clustering methods provided several challenges that were ultimately overcome

using a more context-sensitive approach. In order to ascertain time spent at

statistically generated high-frequency locations, which the use of off-the shelf

clustering methods did not provide directly, a need to relate time and space

through some method manifested. General clustering methods motivated the

use of pre-processing which increased the quality and scalability of the clus-

tering of user generated location data.

2

Chapter 2

Challenges

Location data collected passively from smart phones, from a variety

of hardware and operating systems, has a large variance in quality and time-

to-log consistency. Determining high-frequency locations and time spent at

those locations will vary based on the inaccuracy of the data and whether

it is processed or filtered in the final results. Location data in general, and

the specific data that was collected for this study, had sources of noises and

challenges that can be categorized as follows:

• The collected sample dataset includes international and domestic GPS

points, resulting in large errors in most clustering algorithms, especially

when using standard normalizing methods.

• The application would stop collecting GPS data if there was not a geo-

location refresh event, causing periodic gaps in data collection.

• The number of samples in a time interval varied widely, which made

using the number of samples collected as a density function a challenge.

This chapter contains material that has been accepted for publication in PEARC ’20

3

The daily variation of sample frequency may be seen in Figure 7.1.

• The location accuracy and precision varies between mobile devices, which

was characterized and captured for each sample, but the estimate of

accuracy still varied and had to be taken into account.

• When calculating the distance between two location coordinates, a sim-

ple Euclidean distance metric can be used to approximate a flat earth

model. Normalizing the raw coordinate data, as is typically done with

clustering algorithms, is a possible source of cluster accuracy error, es-

pecially when the distance between points are large.

4

Chapter 3

Exploration

Over the course of the full study more than a thousand participants

will be evaluated, and each user’s 10 months worth of data will be collected

with the goal of building a digital signature. The sample dataset used in this

paper is a fraction of what will be processed for the full study, roughly 5000

times smaller. Therefore, choosing a scalable clustering method that used a

resource-constrained model and kept accuracy errors to a minimum was a ba-

sic requirement. Accuracy evaluation, described in more detail later, must

take into account properly ranked frequented locations based on how long is

spent at the position. Performance and scalability were key, but the time to

develop, continued maintenance, and portability were all equally evaluated

and weighted. A decision was made to use containers and develop software

using Jupyter notebooks for these reasons, which pushed for the use of high

performance libraries developed in Python. Several off-the-shelf clustering

algorithms exist in the scikit-learn package for python[24], and makes for effi-

cient exploration and benchmarking on chosen datasets, while meeting many

This chapter contains material that has been accepted for publication in PEARC ’20

5

of the requirements listed above. In order to test performance and scalability

on the relevant data patterns, a basic approach of simply feeding the location

data into the clustering methods provided by scikit-learn produces cluster in-

formation immediately and provides guidance on which is likely to meet the

rest of the requirements for the study. A brief description of the clustering

methods used in this exploration, including their frequently cited benefits and

drawbacks, are found in the following list.

Mini Batch K-Means - A variant of K-Means, with the addition of

using batches of sub-sampled data to decrease the computation time and mem-

ory overhead by reducing distance between points. Using the batch scheme

typically converges faster than K-Means, but at a cost of the cluster quality.

Another downside to this algorithm, for our purposes, is that it requires a

number of clusters to be provided beforehand. The implementation of Mini

Batch K-Means in the scikit-learn package also restricts the process to a single

process/thread, which may not scale.

Affinity Propagation - A method that clusters by placing points into

categories and then updating the central cluster point (and the relationship

others) as the algorithm progresses. The time and memory complexity of

this algorithm proves to be a challenge for larger data sets, along with the

restriction to a sequential process.

Mean-Shift - An iterative sliding-window centroid finding algorithm,

where a calculated center point is evaluated and updated. Also, guaranteed

to converge to a solution, in addition the number of iterations are typically re-

6

duced using a tolerance threshold. Although, the Mean-Shift implementation

in scikit-learn also allows for multiple processes to be created which, in theory,

will be scalable, but the time complexity is a significant issue to overcome.

Spectral Clustering - The method applies a K-Means clustering

method to a projected normalized Laplacian after finding the restricted do-

main eigenvectors. Since this algorithm uses K-Means, it requires the number

of clusters to be provided as input, which is a challenge. Unlike Mini Batch

K-Means, the method has a large time and memory complexity, but does allow

for parallel tasks be initiated.

Ward Hierarchical Clustering - Is part of a general family of al-

gorithms that build trees of clusters by merging or splitting based on the

function criteria. Specifically, Ward minimizes the sum of squares between

points within the cluster. The method also does not allow for parallel tasking,

which reduces an easy implementation of a scalable function.

Average Agglomerative Clustering - Like the Ward Hierarchical

method, it is part of a hierarchical class of algorithms. The Average linkage

minimizes the average distance between points within the cluster. Unfortu-

nately, this method also requires that the number of clusters as input. As with

Ward, the Average Agglomerative Clustering method also does not allow for

parallel tasking.

DBSCAN (Density-Based Spatial Clustering of Applications

with Noise) - Similar to Mean-Shift in the way that it picks a point in the data

7

and finds the nearest neighbors, and if there are enough points to be considered

a cluster, it will start to accumulate densely packed points nearby. While some

DBSCAN implementations claim to have a linear memory complexity, the

version contained in the version of scikit-learn used in this experiment shows

strong quadratic scaling in most cases. Fortunately, the scikit-learn version of

DBSCAN does have the ability to parallelize tasks.

OPTICS (Ordering Points To Identify the Clustering Struc-

ture) - A generalization of DBSCAN and instead of a full distance matrix, a

reachability graph is used to order points. OPTICS is commonly recommended

to be used instead of DBSCAN if the sample size is large, as the worst case

memory usage is linear since the method only loads in a fraction of the data

set at a time. As an aside, HDBSCAN is another alternative to OPTICS

and DBSCAN, but displays similar memory complexity as DBSCAN, which

is unscalable.

BIRCH (Balanced Iterative Reducing and Clustering using

Hierarchies) - A Clustering Feature Tree is built by capturing characteristics

of the data distribution of the clusters such as number of points in the cluster,

linear sum of data points, and the square sum of all points within the cluster.

A commonly sited downside to BIRCH is the computational complexity scaling

with the number of clusters. BIRCH also requires an input of the number of

clusters.

Gaussian Mixture Model - The scikit-learn implementation uses the

expectation-maximization algorithm to fit the Gaussian Mixture Model input

8

data set. A known issue with this method is that it diverges in some situations

and requires a certain level of heuristics to properly converge. Since GMM

models generalize K-means, the number of clusters are a priori knowledge. As

well, GMM does not allow for easy parallelism.

3.1 Theoretical Complexity of Standard Clustering Meth-
ods

Since clustering arbitrary points is inherently NP-hard, the methods

used to solve this problem are complex and performance will be based on

many variables found in the context of the input data. Certain datasets will

cause memory or time complexity variation, which is outside of the scope of

this experiment as we focus on a single salient dataset related to future exper-

iments. As such, a simple study and rough characterization of the theoretical

complexities for these common algorithms can be found in Table 7.1. Note,

that the average evaluation for memory and time complexity in the table is

more closely related to an average over general datasets, not an average eval-

uated on location coordinates.

3.2 Normalization of Location Data

In many clustering algorithms, and machine learning methods in gen-

eral, a normalization of the input data takes place beforehand. By using a

standard scaling function, such as z = (x−u)/s, where u is the mean and s is

the standard deviation, the data can be transformed to use standard clustering

9

techniques applied to many general sets of data. A comparison of using raw

versus normalized coordinates was performed, but a normalization method to

significantly improve either accuracy or runtimes for the location data pro-

vided could not be found. All reported results are specifically created using

raw coordinates and a geodesic distance measurement when available, since

this provided the best results.

10

Chapter 4

Use of Time Localization

All of the methods described so far had issues producing accurate re-

sults in a timely and scalable manner, although each method was restricted

to only two dimensions. An attempt to build a custom distance metric, which

included time as a weighted input to replace the standard metric for each

off-the-shelf clustering algorithm, never improved accuracy or computational

performance. Since there was no theory found in literature review to build this

monotonically increasing metric based on time and space, while also account-

ing for challenges listed in section ??, a heuristic pre-processing approach was

pursued. Two methods were developed to associate time and space in the con-

text of discrete location data collection. Both methods improved scalability,

but section 4.2 covers the algorithm that also increased accuracy on general

location datasets drastically. The Intertwined Time and Space pre-Processing

method also provided an excellent estimate of accumulated time, without ad-

ditional computation. The estimate on time spent at a particular location

provides an extra level of stability for the proper ranking of frequently visited

This chapter contains material that has been accepted for publication in PEARC ’20

11

location.

4.1 Hierarchical Segmentation

Using the assumption that people will follow a daily cycle of movement,

one could group samples together by day or week and cluster on that time pe-

riod. Then using weighted centroids based on number of samples per day or

week, an end level clustering algorithm would be used to find clusters on the

pre-processed data while accumulating the number of samples and centroids

of centroids into the final results.

procedure HierarchicalSegmentation
main:

grouped locations← SplitByTime(locations)
goto loop.
labels← Cluster(accumulated centroids)
a← accumulated centroids
b← accumulated samples
x, y← CalcCentroids(label, a, b)
close;

loop:
labels← Cluster(grouped locations(i))
x, y← CalcCentroids(labels, grouped locations(i))
accumulated centroids← append(x)
accumulated samples← append(y)
i← i + 1
if i != EOF then return
else goto loop.

12

4.2 Intertwined Time and Space Pre-processing

Intertwined Time and Space (ITS) pre-processing was approached from

the idea of perfect data. If location data collection over time was continuous

and without error, a simple difference over any portion of the time param-

eterized line function would provide the total time for that segment. Since

the function provides a surjective map from time onto location, one could also

integrate over a restricted space domain to find how much time was spent

within that region. Using this theoretical concept, with the addition of real-

istic heuristics to reduce incorrect data accumulation from imperfect sources,

the ITS pre-process procedure achieves scalable and sophisticated clustering

accuracy. Since the pre-processing method also calculates the time difference

for each segment, an additional metric is available besides sample accumula-

tion, which proves to be a useful and robust method to accurately rank high-

frequency locations. An illustration of the theory can be seen in Figure 7.2

and a discretization view in Figure 7.3.

13

procedure ITSPreProcess
main:

sorted locations← SortByTime(locations)
current← 0
begin← 0
prev ← 0
goto loop.
labels← Cluster(relevant locations)
a← relevant locations
b← number of samples
c← total time
x, y← CalcCentroids(label, a, b, cn)
close;

loop:
x← sorted locations(current)
y ← sorted locations(begin)
z ← sorted locations(prev)
pxy ← Distance(y, x) < MaxPrecision(x, y)
md← Distance(y, x) < max allowable distance gap
mt← TimeDiff(x, z) < max allowable time gap
mtd← TimeDiff(z, y) > min time difference
mns← prev - begin > min number of samples
if pxy or md or mt then

if mtd or mns then
start time← GetTime(y)
total time← TimeDiff(y, z)
number of samples← prev - begin
relevant locations← sorted locations (prev, begin)
centroid← CalcCentroid(relevantlocations)

begin← current

prev ← current
current← current + 1
if current == EOF then return
else goto loop.

14

Chapter 5

Results

Overall, the results vary in execution times and accuracy, with a limited

number of off-the-shelf algorithms performing well enough to be considered for

future use. One major weakness found in most evaluated algorithms was seen

in the severe drop in accuracy across the board when clustering international

data points as opposed to just domestic in the small dataset. Based on the

results, Mini Batch K-Means performed substantially better than any off-the-

shelf algorithm, but still suffered from the lack of a time aggregate when iden-

tifying high-frequency locations. The largest advantage the ITS pre-process

method provided was the estimated time spent at each location, instead of

using the number of samples as a weighting factor.

5.1 Experimental Setup

Hardware to run experiments consisted of a single TACC Stampede2

node, using dual 24-core Intel Xeon Platinum 8160 processors and 192 GB

of main memory. The operating system environment consisted of Centos 7,

This chapter contains material that has been accepted for publication in PEARC ’20

15

running Singularity v2.1 and Jupyter v1.0. The original container file was

created for Docker v2.2 and later converted to use Singularity. The software

used to run the experiments are Python v3.6.4, Scikit-learn v0.22.1, Pandas

v1.0.1, NumPy v1.18.1, and Matplotlib v3.1.3.

5.2 Clustering Methods Runtime

DBSCAN was unable to load the full dataset into memory to begin pro-

cessing, while Affinity Propagation and Spectral Clustering algorithms failed

to produce results due to an execution of over eight hours. There is a large

range of variability in the execution time in Table 7.2. For instance, many

of the methods took over an hour to run on a relatively small dataset when

compared to what the overall study will be using, while some are under five

seconds. The Mini Batch K-Means method also displayed significant variabil-

ity when presented the two datasets, one of which is a subset of the full dataset

and processed for much longer than the full set. The likely explanation of the

significant non-linear performance is related to the iterative nature of K-Means

and the subsampling of the batch process. The execution times showing signif-

icant changes based on input data also encourage the use of a pre-processing

method to reduce the number and distance between points. As a note, in the

case of the two pre-processor methods, the final ranked locations could not

be realized without the use of a clustering algorithms being run on the pre-

processed data. Therefore, the full execution time of both pre-processor and

clustering method were combined in the case of Hierarchical Segmentation and

16

ITS algorithms.

5.3 Clustering Methods Accuracy

In order to judge accuracy for the particular dataset used in the exper-

iment, a priori knowledge of three ranked high-frequency coordinate locations

are used to measure against all centroids produced by the cluster algorithms.

For the purposes of this experiment the rank of the locations, based on time

spent, is as important as identifying the correct locations. Location differences

used a standard GeoPy geodesic conversion from coordinates to meters, and

the predicted location must be within a 650 meter radius from the center of the

golden samples to be counted as a valid point. The ITS pre-process method

is split into two rows to highlight the advantages of using an estimate of time

as a metric instead of the number of samples. As an aside, the ITS method

provided points within a 300 meter radius.

5.4 Rank by Number of Samples or Estimated Time
Accumulated

In Figure 7.3, the only methodology that achieved perfect accuracy on

the full dataset was ITS, but only after the results had been sorted based on

the estimated time accumulated in that region. For reasons unknown, the

number of samples captured during international travel accounted for 4% of

the total number of samples in the dataset, while the real time spent at this

particular location is estimated to be close to 2%. Compared with the third

17

ranked location used to measure accuracy, the number of samples came in at

4% with a real time of closer to 4%. The number of samples in this situation

caused a false prediction of a high-frequency location due to the variation

of samples. The ITS pre-processing method provides an accurate method

in estimating the time spent at a location as a trivial operation, leading to

accumulation of time calculation for clustering methods post-processing and

ranking.

5.5 Parallelization

A small subset of clustering algorithms had the ability to easily par-

allelize the function using a parameter to enable multi-processes, which only

included Mean-Shift, Ward Hierarchical Clustering, Agglomerative Clustering,

DBSCAN, and OPTICS. As the data in the figure 7.4 show, none of these al-

gorithms had any noticeable speed-up, and in fact a few displayed a slowdown.

Reasonable efforts were made to properly scale the out-of-box solutions, but

any attempt never resulted in a significant speedup. Thus, the motivation

for the proposed pre-processing ITS function as this scales while maintain-

ing accuracy. As mentioned in section 5.2, the execution times and speedup

recorded for Hierarchical Segmented and ITS methods in Figure 7.5 and Table

7.4 include the final clustering step time as well as pre-processing.

18

Chapter 6

Conclusion

Testing several off-the-shelf clustering software solutions motivated the

search for an alternative method for consistent accuracy and scalability. By

exploiting the temporal locality that is inherently structured within the cap-

tured location data, the quality of the classification of high-frequency locations

of particular users show increased performance by using the ITS pre-processing

method. A more accurate and robust algorithm for calculating ranked high-

frequency locations can be had by relying on the estimated time spent within a

cluster, which is easily achieved using the ITS pre-processing method, instead

of the number of samples normally provided by all other clustering methods.

The new functionality does this while keeping a relatively small time complex-

ity and at most O(N) memory consumption. Since the pre-processing method

lends itself well to parallelization, the application of using this on several thou-

sand users is possible by scaling the hardware. Future research will focus on

adding more digital phenotyping data characterization, with a requirement for

scalable solutions.

This chapter contains material that has been accepted for publication in PEARC ’20

19

Chapter 7

Tables and Figures

Figure 7.1: Location data points aggregated by day over the course of the
experiment. The number of samples collected per day varies greatly.

This chapter contains material that has been accepted for publication in PEARC ’20

20

Table 7.1: Clustering Methods Complexity

Clustering Method Memory
(Worst)

Memory
(Average)

Compute
(Worst)

Compute
(Average)

Mini Batch O(const) O(const) O(K ∗N ∗ I) O(K ∗N ∗ I)
K-Means[9]

Affinity O(N2) O(N2) O(N2 ∗ I) O(N2 ∗ I)
Propagation[13]

Mean-Shift [33] O(const) O(const) O(N2 ∗ I) O(N2 ∗ I)
Spectral O(N2) O(N ∗M) O(N3) O(N3)
Clustering[32][15]

Ward Hierarchical O(N2) O(N2) O(N3) O(N2)
Clustering[36]

Agglomerative

Clustering[36]
O(N2) O(N2) O(N3) O(N2)

DBSCAN [7] [27] O(N2) O(N ∗D) O(N2) O(N∗log(N))
OPTICS [23] O(N) O(N) O(N2) O(N∗log(N))
BIRCH[36][35] O(const) O(const) O(N ∗K) O(N ∗K)
Gaussian O(N2) O(N ∗G) O(N ∗G ∗ I) O(N ∗G)
Mixtures[16][18]

1. D represents the average number of neighbors, K represents the number of
clusters, I represents the number of iterations, M represents the subset of sampled
columns, G represents the number of Gaussian bases.
2. The Mini batch version of K-Means will load a constant subset of data for each
batch.
3. The BIRCH algorithm can work with an arbitrary size of memory (within limit),
although run time may be affected for smaller memory.

21

Figure 7.2: A theoretical continuous line representing the true location of a
user, split into segments that are within an arbitrary radius R.

Figure 7.3: A representation of a discontinuous sampled set of the estimated
position of a user, again split into segments within a radius.

Figure 7.4: Strong scaling of off-the-shelf algorithms that were trivial to add
parallel functionality. Due to the extreme runtimes/memory constraints, the
small dataset was used to show speedup.

22

Table 7.2: Clustering Methods Execution Time

Clustering
Method

Small Dataset Full Dataset

(seconds) (seconds)

Mini Batch

K-Means

10.13 0.79

Affinity

Propagation

96.43 DNF

Mean-Shift 10.27 5134.53
Spectral 61.77 DNF
Ward

Hierarchical

4.57 720.09

Agglomerative 2.42 437.78
DBSCAN 3.66 OOM
OPTICS 18.03 4181.17
BIRCH 0.27 4.77
Gaussian

Mixtures

0.12 4.60

Hierarchical

Seg

298.53 7564.12

ITS 35.25 692.87

1. Results are the reported Python runtimes.
2. Affinity Propagation and Spectral Clustering had runtimes over several hours
when run on the full dataset.
3. DBSCAN was unable to load the full dataset into memory. 4. Bandwidth
estimation for Mean-Shift was added into final time.
5. Connectivity matrix generation time for Ward Hierarchical Clustering method
was added into final time.
6. 16000 records processed for the small dataset case and 292903 for the full
dataset.

23

Table 7.3: Clustering Methods Precision and Accuracy

Clustering Method Small Dataset Full Dataset

Mini Batch K-Means 2/2 2/2
Affinity Propagation 2/1 DNF
Mean-Shift 2/2 0/0
Spectral 0/0 DNF
Ward Hierarchical 2/2 0/0
Agglomerative 2/2 0/0
DBSCAN 2/2 OOM
OPTICS 2/2 1/0
BIRCH 2/2 0/0
Gaussian Mixtures 2/2 1/1
Hierarchical Seg 3/3 0/0
ITS 3/3 2/2
ITS Time Sorted 3/3 3/3

1. The small dataset only includes domestic location records, while the full data
set contains international coordinates.
2. P/Q results may be interpreted as P representing the number of returning
centroid coordinates within a 650 meter radius regardless of ordering, while Q is
the number of centroid coordinates within a 650 meter radius and predicting the
correct time-spent priority order.
3. Affinity Propagation and Spectral Clustering had runtimes over several hours
when run on the full dataset.
4. DBSCAN was unable to load the full data set into memory.
5. 16000 records processed for the small dataset case and 292903 for the full
dataset.
6. ITS Time Sorted ranks the results by the total time estimates instead of the
number of samples.

24

Figure 7.5: Strong scaling speedup of the total runtime, including sorting
and post-clustering steps, for Hierarchical Segmented and ITS using the full
dataset.

Table 7.4: Total Parallel Pre-processing with Final Cluster Runtimes

Processes Hierarchical Segmented ITS
(seconds) (seconds)

1 7564.12 692.87
2 4482.26 419.15
4 2621.23 257.05
6 1950.88 191.32
12 1320.54 133.26
24 903.37 108.85
48 652.79 69.71

1. Results are the reported Python runtimes.

25

Bibliography

[1] Beiwe research platform, https://www.beiwe.org/.

[2] The cost of diabetes, https://www.diabetes.org/resources/statistics/cost-

diabetes.

[3] Hcupnet, https://hcupnet.ahrq.gov.

[4] Healthy pregnancy, https://healthy-pregnancy.org/.

[5] Laura Alessandretti, Piotr Sapiezynski, Vedran Sekara, Sune Lehmann,

and Andrea Baronchelli. Evidence for a conserved quantity in human

mobility. Nature Human Behaviour, 2(7):485–491, 2018.

[6] Lauren P Alexander and Marta C González. Assessing the impact of

real-time ridesharing on urban traffic using mobile phone data. Proc.

UrbComp, pages 1–9, 2015.

[7] Domenica Arlia and Massimo Coppola. Experiments in parallel cluster-

ing with dbscan. In European Conference on Parallel Processing, pages

326–331. Springer, 2001.

[8] Hugo Barbosa, Marc Barthelemy, Gourab Ghoshal, Charlotte R James,

Maxime Lenormand, Thomas Louail, Ronaldo Menezes, José J Ramasco,

26

Filippo Simini, and Marcello Tomasini. Human mobility: Models and

applications. Physics Reports, 734:1–74, 2018.

[9] Marco Capó, Aritz Pérez, and Jose A Lozano. An efficient approximation

to the k-means clustering for massive data. Knowledge-Based Systems,

117:56–69, 2017.

[10] Serdar Çolak, Lauren P Alexander, Bernardo G Alvim, Shomik R Mehndi-

ratta, and Marta C González. Analyzing cell phone location data for

urban travel: current methods, limitations, and opportunities. Trans-

portation Research Record, 2526(1):126–135, 2015.

[11] Merkebe Getachew Demissie, Francisco Antunes, Carlos Bento, Santi

Phithakkitnukoon, and Titipat Sukhvibul. Inferring origin-destination

flows using mobile phone data: A case study of senegal. In 2016 13th

International conference on electrical engineering/electronics, computer,

telecommunications and information technology (ECTI-CON), pages 1–6.

IEEE, 2016.

[12] Riccardo Gallotti, Rémi Louf, Jean-Marc Luck, and Marc Barthelemy.

Tracking random walks. Journal of The Royal Society Interface, 15(139):20170776,

2018.

[13] Yangqing Jia, Jingdong Wang, Changshui Zhang, and Xian-Sheng Hua.

Finding image exemplars using fast sparse affinity propagation. In Pro-

ceedings of the 16th ACM international conference on Multimedia, pages

639–642, 2008.

27

[14] Shan Jiang, Joseph Ferreira, and Marta C Gonzalez. Activity-based

human mobility patterns inferred from mobile phone data: A case study

of singapore. IEEE Transactions on Big Data, 3(2):208–219, 2017.

[15] Mu Li, Xiao-Chen Lian, James T Kwok, and Bao-Liang Lu. Time and

space efficient spectral clustering via column sampling. In CVPR 2011,

pages 2297–2304. IEEE, 2011.

[16] Xia Li, Zhisheng Zhong, Jianlong Wu, Yibo Yang, Zhouchen Lin, and

Hong Liu. Expectation-maximization attention networks for semantic

segmentation. In Proceedings of the IEEE International Conference on

Computer Vision, pages 9167–9176, 2019.

[17] Hai-Ying Liu, Erik Skjetne, and Mike Kobernus. Mobile phone tracking:

in support of modelling traffic-related air pollution contribution to indi-

vidual exposure and its implications for public health impact assessment.

Environmental Health, 12(1):93, 2013.

[18] Ryan Maas, Jeremy Hyrkas, Olivia Grace Telford, Magdalena Balazinska,

Andrew Connolly, and Bill Howe. Gaussian mixture models use-case: in-

memory analysis with myria. In Proceedings of the 3rd VLDB Workshop

on In-Memory Data Mangement and Analytics, pages 1–8, 2015.

[19] John E. McDonough. The united states health system in transition.

Health Systems & Reform, 1(1):39–51, 2015.

28

[20] Dave Milne and David Watling. Big data and understanding change in

the context of planning transport systems. Journal of Transport Geogra-

phy, 76:235–244, 2019.

[21] Amanda Montañez. The cost of giving birth in the u.s., Jan 2019.

[22] NVS.

[23] Mostofa Ali Patwary, Diana Palsetia, Ankit Agrawal, Wei-keng Liao,

Fredrik Manne, and Alok Choudhary. Scalable parallel optics data clus-

tering using graph algorithmic techniques. In Proceedings of the Interna-

tional Conference on High Performance Computing, Networking, Storage

and Analysis, pages 1–12, 2013.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-

learn: Machine learning in Python. Journal of Machine Learning Re-

search, 12:2825–2830, 2011.

[25] Mario B Rojas IV, Eazaz Sadeghvaziri, and Xia Jin. Comprehensive

review of travel behavior and mobility pattern studies that used mobile

phone data. Transportation Research Record, 2563(1):71–79, 2016.

[26] Meead Saberi, Hani S Mahmassani, Dirk Brockmann, and Amir Hosseini.

A complex network perspective for characterizing urban travel demand

29

patterns: graph theoretical analysis of large-scale origin–destination de-

mand networks. Transportation, 44(6):1383–1402, 2017.

[27] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xi-

aowei Xu. Dbscan revisited, revisited: why and how you should (still) use

dbscan. ACM Transactions on Database Systems (TODS), 42(3):1–21,

2017.

[28] Jameson Lawrence Toole. Putting big data in its place: understanding

cities and human mobility with new data sources. PhD thesis, Mas-

sachusetts Institute of Technology, 2015.

[29] J. Torous, M. V. Kiang, J. Lorme, and J.-P. Onnela. New tools for new

research in psychiatry: A scalable and customizable platform to empower

data driven smartphone research. JMIR Mental Health, 2016.

[30] Zhenzhen Wang, Sylvia Y He, and Yee Leung. Applying mobile phone

data to travel behaviour research: A literature review. Travel Behaviour

and Society, 11:141–155, 2018.

[31] Luc Johannes Josephus Wismans, K Friso, J Rijsdijk, SW de Graaf, and

J Keij. Improving a priori demand estimates transport models using mo-

bile phone data: A rotterdam-region case. Journal of Urban Technology,

25(2):63–83, 2018.

[32] Donghui Yan, Ling Huang, and Michael I Jordan. Fast approximate spec-

tral clustering. In Proceedings of the 15th ACM SIGKDD international

30

conference on Knowledge discovery and data mining, pages 907–916, 2009.

[33] Changjiang Yang, Ramani Duraiswami, Daniel DeMenthon, and Larry

Davis. Mean-shift analysis using quasinewton methods. In Proceedings

2003 International Conference on Image Processing (Cat. No. 03CH37429),

volume 2, pages II–447. IEEE, 2003.

[34] Changjiang Yang, Ramani Duraiswami, Daniel DeMenthon, and Larry

Davis. Mean-shift analysis using quasinewton methods. In Proceedings

2003 International Conference on Image Processing (Cat. No. 03CH37429),

volume 2, pages II–447. IEEE, 2003.

[35] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient

data clustering method for very large databases. ACM Sigmod Record,

25(2):103–114, 1996.

[36] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: A new data

clustering algorithm and its applications. Data Mining and Knowledge

Discovery, 1(2):141–182, 1997.

31

