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Abstract 

 

The Environmental Influences on the Growth and Grazing of  

Marine Protists 

 

Chi Hung Tang, Ph.D. 

The University of Texas at Austin, 2020 

 

Supervisor:  Edward J. Buskey 

 

Marine protists are important components at the base of the marine food web. The 

growth and grazing of protistan organisms in response to the toxicity of petroleum 

hydrocarbons and elevated seawater temperature at the community and species levels 

were investigated. In exposure to 10 µL L-1 of chemically dispersed crude oil in the 

mesocosms, the grazing impacts of microzooplankton (20-200 µm) on phytoplankton 

were reduced. While the microzooplankton grazing accounted for ~50% of the 

phytoplankton’ population growth in the control treatment, there was a de-coupling 

between these two parameters in the oil-loaded treatment. The de-coupling could 

potentially lead to algal blooms in the natural environment under certain conditions. In 

contrast, in exposure to chemically dispersed crude oil in the microcosms, the grazing 

impacts of nanoplankton (2-20 µm) on bacteria did not differ among the treatments of 

control and low (2 µL L-1) and high (8 µL L-1) concentrations. The tight couplings 

between the nanoplankton grazing and bacterial population growth in the control and oil-

loaded treatments could have kept the abundance of bacterial cells steady. The 

community compositions of bacteria in the low and high dose crude oil treatments 
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became increasing similar and different from those in the control treatment. It is believed 

to be related to the availability of carbon and inorganic nutrients. The relatively high 

abundance of hydrocarbon-degrading bacteria Cycloclasticus and Alcanivorax in the oil-

loaded treatments indicated the presence of biodegradation. Exposure experiments were 

conducted to investigate the responses of marine protistan species to the toxicity of 

soluble petroleum hydrocarbon and elevated seawater temperature. In exposure to 

increasing concentrations of the water accommodated fraction (WAF) of crude oil, the 

heterotrophic dinoflagellates Oxyrrhis marina and Protoperidinium sp. and ciliates 

Euplotes sp. and Metacylis sp. showed species- specific vulnerabilities to oil toxicity, as 

reflected by their specific growth rates. When compared to the control treatment, their 

population grazing impacts and per capita ingestion rates were reduced with exposure to 

the WAF of crude oil alone and the mixture of crude oil and dispersant at the same 

concentration. In exposure to elevated seawater temperature, the Florida strain of 

mixotrophic dinoflagellate Fragilidium subglobosum obtained a specific growth rate of 

~0.3 d-1 at both 19°C and 23°C in mono-specific culture but zero or negative growth rates 

in cultures with added prey dinoflagellate Tripos tripos. F. subglobosum grown at 19°C 

showed higher maximum photosynthetic efficiency than at 23°C but did not differ in 

cellular chlorophyll-a content or cell size. This strain of F. subglobosum is believed to be 

non-mixotrophic and therefore the hypothesis that this dinoflagellate species becomes 

more heterotrophic at elevated temperature was not proved or disapproved.  
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Chapter 1: General Introduction 

MARINE PROTISTS AND THEIR TROPHIC ROLES IN MARINE ECOSYSTEMS 

Marine protists, the unicellular eukaryotes 

Marine protists are unicellular eukaryotes that include ciliates, flagellates, 

diatoms, amoeba, foraminifera, and fungi. They can be categorized based on their modes 

of nutrition. Photoautotrophic protists are generally referred to as phytoplankton as they 

are capable of photosynthesis. Chemoorganotrophic protists (i.e. protozoa) are essentially 

heterotrophs that consume bacteria, algae, smaller zooplankton or particulate organic 

matters. Mixotrophic protists are believed to be capable of exploiting both the nutrition 

modes. Marine protists can also be categorized by size ranges: Pico- and nano-sized 

protists fall within the size ranges of 0.2-2 µm and 2-20 µm, respectively. Micro-sized 

protists range from 20-200 µm while some protists can be larger than 200 µm (Sieburth 

et al., 1978).  

Predators and prey in marine protists 

The interactions of organisms in the planktonic food web is complex. The simple 

Nutrient-Phytoplankton-Zooplankton (N-P-Z) food chain depicts that nutrient supplies 

control the abundance of phytoplankton from the bottom-up, while zooplankton 

consumption keeps phytoplankton population in check from the top-down. Pomeroy 

(1974) and Azam et al. (1983) introduced the importance of microbes and protists in the 

food chains. They described the consumption of dissolved organic matter from 

phytoplankton by bacterial cells within the microbial loop of the Bacteria-Flagellates-

Microzooplankton food chain. Sherr & Sherr (1988) further incorporated the pivotal role 

of nanoflagellates and ciliates as grazers of both bacteria and small algae in the microbial 

loop, and as prey for larger zooplankton. 
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Calbet (2008) pointed out that the percentage of primary production consumed 

daily by microzooplankton, composed of mainly heterotrophic dinoflagellates and 

ciliates, is usually > 60% in habitats including open oceans, coastal regions and estuaries. 

Comparatively, the relative importance of mesozooplankton (200-2000 µm) herbivory 

declines with increasing primary production. Microzooplankton are thought to be capable 

of coupling with the changes in phytoplankton abundance since they have similar growth 

rate to that of phytoplankton (Strom, 2002; Stoecker et al., 2008; Chen et al., 2009). 

Meanwhile, micro-sized grazers such as ciliates and dinoflagellates constitute a large 

component of copepod diets, particularly in less productive systems (Saiz & Calbet, 

2011). Calbet & Saiz (2005) showed that the percentage of ciliates in copepods’ diet in 

terms of carbon could be approximately 50% in non-productive systems.      

Smaller protists, typically < 20 µm, are known to substantially consume 

bacterioplankton. Boenigk & Arndt (2002) estimated that heterotrophic nanoflagellates 

(HNF) generally have a specific clearance rate of 5-10 bacteria protist-1 h-1 at a food 

concentration of 106 bacteria mL-1. It is argued that HNF could consume 25-100% of the 

daily production of bacterioplankton (reviewed in Sherr & Sherr, 1994), while ciliates 

can contribute substantially to the total bacterivory (Sherr & Sherr, 1987). Mixotrophic 

phytoflagellates are important bacteria grazers as well (Stibor & Sommer, 2003; Unrein 

et al., 2007; Zubkov & Tarran, 2008). Bacterivory is thought to cause changes in the 

bacterial abundance and shape their community composition (Jurgens & Matz, 2002). 

Hahn & Hofle (2001) pointed out that bacterial cells of 0.4-1.6 µm belong to the most 

grazing-vulnerable group while smaller or larger cells get refuge from predation. Apart 

from cell size, selective grazing by bacterivorous protists based on prey motility, shape 

and cell surface characteristics can also structure the bacterial population (Jurgens & 

Massana, 2008).     

Mixotrophy in marine protists 

Mixotrophy, the capability of being photosynthetic and phagotrophic within a 

single organism, can be found in many marine dinoflagellates and ciliates. The ubiquity 
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of mixotrophs is thought to be because of an evolutionary pressure towards mixotrophy 

that allows the organisms to adapt to various environmental gradients (Selosse et al., 

2017). Given the common occurrence of mixotrophic plankton, suggestions to revise the 

misused phytoplankton-zooplankton dichotomy were proposed (Flynn et al., 2013). The 

functional group classification of mixotrophic protists by Mitra et al. (2016) defines that 

phagotrophic protozoan constitutively capable of carbon fixation belong to constitutive 

mixotrophs (CM) while those can acquire C-fixation capability from phototrophic prey 

are non-constitutive mixotrophs (NCM). Within the NCM category, C-fixation could be 

mediated either by symbionts (i.e. endosymbiotic NCM such as green Noctiluca sp.) or 

by the sequestered chloroplasts from prey (i.e. plastidic NCM such as Dinophysis sp. and 

Mesodinium sp.). 

Many phytoplankton species previously thought to be obligately photosynthetic 

are now considered heterotrophic or mixotrophic. Gaines & Elbrachter (1987) argued that 

~50% of the known 2000 living dinoflagellates species do not contain chloroplasts and 

thus depend on feeding on particulate food for nutrients. Jeong et al. (2005) demonstrated 

that many bloom-forming dinoflagellates are mixotrophic species. Consumption of prey 

and intraguild predation on competitors or potential grazers could have contributed to the 

abundance of heterotrophic or mixotrophic dinoflagellates (Stoecker et al., 2006), 

particularly in coastal and estuarine waters that experience chronic eutrophication 

(Burkholder et al., 2008). Flynn et al. (2018) argued that, within the annual cycle of 

marine ecosystems, the plankton community is likely be dominated by mixotrophs when 

the system becomes mature, even though the traditional phytoplankton-zooplankton 

structure is still the predominating condition before the transition to the more mature 

state.  
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MARINE PROTISTS’ RESPONSES TO ENVIRONMENTAL FACTORS 

Marine protists in a warmer environment 

It is well documented that protists are influenced by various abiotic variables 

including temperature, irradiance, nutrients, pH, pCO2, and salinity of the aquatic 

environments (e.g. Lomas & Glibert, 1999; Dickman et al., 2006; Matsubara et al., 2007; 

Smith & Hansen, 2007; Beaufort et al., 2011; Edwards et al., 2016). Among these 

variables, the projected rising sea surface temperature has been one of the major concerns 

(Alexander et al., 2018; IPCC, 2018). Temperature has been shown to cause changes to 

protists at both the individual and the community levels. These changes affect the cell 

size (Atkinson et al., 2003), growth (Raven & Geider, 1988), feeding (Heinze et al., 

2013), food digestion (Sherr et al., 1988), community grazing (Franze & Lavrentyve, 

2014), community structure (Marinov et al., 2010; Hinder et al., 2012), and functions of 

the pelagic food webs (Muren et al., 2005).  

By extending the metabolic theory of ecology (Brown et al., 2004), which states 

that there are universal linear relationships between metabolic rates and body size or 

temperature, Allen et al. (2005) extrapolate that, over the temperature range of 0-30°C, 

there will be a 16-fold increase in rates controlled by respiration due to the temperature 

dependence of respiratory protein complexes and a 4-fold increase in rates controlled by 

photosynthesis due to the temperature dependence of chemical reactions in chloroplasts. 

These predictions imply that heterotrophs must increase their food consumption to meet 

for the elevated respiratory needs in a warmer environment. Supporting evidence is 

mounting from studies on heterotrophic ciliate Tetrahymena pyriformes feeding on 

bacterial prey (Fussmann et al., 2017), ciliate Condylostoma spatiosum feeding on 

dinoflagellate (Li et al., 2011), and at the community level of microzooplankton that 

graze on phytoplankton under the warming conditions (Liu et al., 2019). In the context of 

plankton mixotrophy, protistan mixotrophs have been shown to become more 

heterotrophic and ingested more prey items at increased temperatures (Heinze et al., 

2013; Wilken et al., 2013; Jeong et al., 2018).  
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Oil pollution and its effects on marine protists 

It is estimated there are > 1.2 million metric tons (~360 million gallons) of crude 

oil enter the marine environment annually (NRC, 2003). Natural seepage accounts for 

47% of the amount and the remaining 53% results from leaks and spills (Kvenvolden & 

Cooper, 2003). Crude oil contains different proportions of petroleum hydrocarbons, 

including saturated and unsaturated aliphatic hydrocarbons, aromatic hydrocarbons 

(monocyclic and polycyclic aromatic hydrocarbons (PAHs)), resins, and asphaltenes. 

These components can get into marine systems through processes such as dissolution, 

dispersion, emulsification, and sedimentation (NRC, 2005). Components of low 

molecular weight are readily evaporated and removed due to their high volatility and fast 

degradation in water. Compounds with higher molecular weight are more persistent and 

some of them are soluble in water (NRC, 2005). Dispersants, substances usually used in 

the remediation of oil spills, help enhance the process of natural dispersion through 

formation of oil droplets and increase the solubility of crude oil in seawater (Fiocco & 

Lewis, 1999).  

Components of crude oil are toxic to aquatic life. Among the aromatic 

components of crude oil, benzene hydrocarbons and low-ring PAHs are highly soluble in 

water and are assumed to be the most toxic fractions that causes mortality or adverse 

physiological effects to marine protists. These effects include inhibition of growth, and 

changes in cell size, cellular contents of chlorophyll, protein, and nucleic acid (Karydis & 

Fogg, 1980; El-Sheekh et al., 2000; Bonnet et al., 2005). Chemically dispersed crude oil 

is thought to be more toxic than crude oil alone to marine protists (Hook & Osborn, 2012; 

Jung et al., 2012; Ozhan et al., 2014), and dispersants alone are toxic to aquatic 

organisms as well (Rogerson & Berger, 1981; George-Ares & Clark, 2000; Cohen et al., 

2014). Consequentially, the water accommodated fraction (WAF) of crude oil, a 

laboratory-prepared medium essentially free of particles of the bulk material (Singer et 

al., 2000), has been used for toxicity tests of aquatic organisms (Singer et al., 2001; Saco-

Alvarez et al., 2008; Forth et al., 2017a) due to its standardized method in preparation of 

the medium and high comparability of toxicity across studies. On the other hand, 
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insoluble components of crude oil form particulate droplets when mixed with seawater 

and dispersants and remain suspended in the water column. Ingestion of oil droplets has 

been shown in marine protists (Andrews & Floodgate, 1974; Almeda et al., 2014a), 

which could potentially lead to lethal or sub-lethal effects on aquatic organisms.  

Biodegradation of crude oil by prokaryotic microbes 

Apart from abiotic weathering, most of the crude oil remaining in the marine 

environment is removed eventually by microbial degradation. The biodegradation process 

of crude oil involves chemical transformation of hydrocarbon molecules into simpler 

products by microorganisms, especially prokaryotic microbes. There are more than 320 

genera of Eubacteria and 12 genera of Archaea capable of hydrocarbon metabolism 

(Prince et al., 2018). Some typical examples of hydrocarbon-degrading bacteria genera 

include Alcanivorax, Cycloclasticus, Pseudomons and Marinobacter. Hydrocarbon-

degrading bacteria are thought to exist in most aquatic environments, even in pristine 

waters that have not been polluted (Margesin et al., 2003). Influxes of hydrocarbons from 

crude oil spills, leaks or seepages likely increase the relative abundance of these types of 

bacteria in the environment due to stimulated proliferation. Nutrients (nitrogen, 

phosphorus, and iron) and oxygen availability are believed to be the most crucial limiting 

factors for the biodegradation process (Hassanshahian & Cappello, 2013). 

Biodegradation of saturated hydrocarbons (e.g. alkanes) is quantitatively the most 

important process in the removal of crude oil due to the large relative quantity of them in 

crude oil by mass. The biodegradations of PAHs and other less abundant compounds are 

of importance as well due to their high toxicity. The use of dispersants can enhance the 

rate of biodegradation since it increases the exposed surface area of crude oil droplets for 

biological attack (Hassanshahian & Cappello, 2013). 

SUMMARY 

Marine protists are eukaryotic microbes consisting of producers and consumers at 

the base of food web. Increased recognition of mixotrophy in marine protists has brought 
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new insights and complexity to the understanding of the marine ecosystems. Increases in 

the seawater temperature due to climate change has inspired ecologists to test the 

prediction that planktonic mixotrophs become more heterotrophic in a warmer 

environment. Apart from temperature, environmental pollutants such as petroleum 

hydrocarbons have been shown to cause adverse effects on marine protists from the sub-

cellular level to the community level. A large proportion of these hydrocarbon pollutants 

is eventually metabolized by marine microbes, especially by oil-degrading bacteria. 

Bacterivory by small protozoa can affect the abundance and community composition of 

the bacteria and can potentially influence the processes of biodegradation of the 

hydrocarbon pollutants. This dissertation focuses on the trophic interaction of marine 

protists in response to environmental factors including increased seawater temperature 

and influx of petroleum hydrocarbon pollutants.   
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Chapter 2: Effects of Temperature on the Growth and Grazing of the 

Mixotrophic Dinoflagellate Fragilidium subglobosum 

ABSTRACT 

Great concern related to climate change and global warming have been the 

inspiration of marine ecologists to study the ecological implications of elevated seawater 

temperature in the planktonic food web. Mixotrophic protists play pivotal roles at the 

base of the food web in a warming environment. Incubation experiments were conducted 

to test the hypothesis that the mixotrophic dinoflagellate Fragilidium subglobosum 

becomes more heterotrophic at increased temperatures. The cell densities of F. 

subglobosum and its prey Tripos tripos in mono-specific and mixed cultures at 19°C and 

23°C were monitored for 20 days. The specific growth rate F. subglobosum in 

autotrophic growth did not differ between 19°C and 23°C, with a range between 0.30-

0.32 d-1. Contrary to previous reports, the dinoflagellate F. subglobosum did not grow 

well in mixed cultures with potential prey at both temperatures tested. An incubation 

experiment with a shorter period revealed near zero or negative per capita ingestion rate 

of T. tripos by F. subglobosum at both temperatures, suggesting the dinoflagellate 

cultures used may not be mixotrophic. The maximum photosynthetic efficiency (Fv/Fm) 

of F. subglobosum was approximately 0.4 at 19°C for both the mono-specific and mixed 

cultures. These ratios were significantly higher than those at 23°C. With the observation 

that the F. subglobosum cultures used may not be mixotrophic, the hypothesis that this 

mixotroph species becomes more heterotrophic at elevated temperature was not proved or 

disapproved.  

INTRODUCTION 

Climate change has been an important issue globally and sea surface temperatures 

are projected to keep rising (Alexander et al., 2018). Ecological models predict a greater 

increase in rates of consumption by heterotrophs than synthesis of cellular organic carbon 
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by autotrophs in various organisms over a certain increase in temperature range (Allen et 

al., 2005). In the perspective of predator-prey interactions, this prediction implies 

strengthened consumer control on primary production with rising temperature, which is 

evident in studies on planktonic organisms (O’Connor et al., 2009; Yang et al., 2016; Liu 

et al., 2019). Mixotrophy in plankton, a combination of autotrophic and heterotrophic 

nutrition modes within an organism, is now recognized as a norm rather than an 

exception in aquatic ecosystems for protists (Stoecker et al., 1989; Jacobson & Anderson, 

1996; Jeong et al., 2005). The incorporation of planktonic mixotrophs into the food chain 

is thought to increase the trophic transfer efficiency and enhance the sequestration of 

oceanic carbon (Ward & Follows, 2016; Stoecker et al., 2017). Mixotrophs being both 

primary producers and consumers simultaneously leads to changes in their ecological 

functions in aquatic food webs in warmer environments that have just started to be 

discovered. For instance, in cultures of the freshwater mixotrophic chrysophyte 

Dinobryan sociale, Princiotta et al. (2016) found increases in photosynthesis and bacteria 

ingestion rates with increasing temperatures from 8-16°C. By comparing the difference in 

the activation energy of the metabolic processes associated with the growth and grazing 

as a function of temperature, Wilken et al. (2013) concluded that the mixotrophic 

chrysophyte Ochromonas sp. shifted the balance between phototrophy and phagotrophy 

towards the latter with increased temperatures.  

Protistan mixotrophs are thought to be favored in mature ecosystems over other 

protistan groups (Flynn et al., 2018) and many harmful algae species that form blooms in 

eutrophic waters are thought to be mixotrophs (Stoecker et al., 2006; Burkholder et al., 

2008). Phagotrophic phytoplankton could have higher growth rates than those growing 

autotrophically in nutrient-rich habitats. They are therefore also potential consumers of 

primary production. Particularly, mixotrophic flagellates were shown to be substantial 

grazers of bacteria and other protists in both field and laboratory studies (Safi & Hall, 

1999; Zubkov & Tarran, 2008; Glibert et al., 2009; Hansen, 2011). Given their 

widespread prevalence and ecological significance, there is a greater need to understand 
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the balance between autotrophy and heterotrophy within planktonic mixotrophs in 

response to increased temperature. 

Fragilidium subglobosum, a facultative mixotrophic dinoflagellate species 

previously thought to be an obligate phototroph, has been shown to feed exclusively on 

marine Tripos spp. (previously known as Ceratium spp., later proposed to be named 

under the genus name Tripos Gomez (2013)) by engulfment (Skovgaard, 1996a). F. 

subglobosum could therefore be a biological control of the Tripos spp. that form blooms 

in various regions of the oceans (Nielson, 1991; Carstensen et al., 2004; Pitcher & 

Probyn, 2011). Being a constitutive mixotroph, F. subglobosum is thought to be able to 

form bloom and increase the cumulative C-fixation in computer simulations (Mitra et al., 

2016). Previous studies showed that heterotrophic activity of F. subglobosum was 

affected by light intensity, prey species and prey concentration (Hansen & Nielsen, 1997; 

Skovgaard et al., 2000). However, the effect of rising seawater temperatures on the 

phagotrophy of F. subglobosum and their contribution to the trophic transfer of carbon 

has not been studied. In this study, we conducted incubation experiments to examine the 

changes in the autotrophy and heterotrophy of F. subglobosum at increased temperatures, 

with the goal of understanding the general ecological roles of planktonic mixotrophs in a 

warmer environment.  

METHODOLOGY 

Preparation and maintenance of dinoflagellate cultures 

A culture of the dinoflagellate Fragilidium subglobosum (CCMP-3029) was 

obtained from National Center for Marin Algae and Microbiota (NCMA) at Bigelow 

Laboratory for Ocean Sciences. It was isolated from the seawater near Florida (U.S.A.) in 

2005 and reported to have a temperature range between 18-24°C. Tripos tripos cultures 

were initiated from cells obtained from local waters (Port Aransas, Texas) by isolating 

single cells in droplets of autoclaved 0.2 µm filtered seawater (AFSW) that were rinsed 

several times. The two dinoflagellate species were maintained in AFSW (28-32 PSU) 
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with modified F/2-Si enrichment (Guillard, 1975) and unilateral illumination at ~60 µE 

m-2 s-1 (measured with LICOR LI250 light meter) with a light:dark cycle of 12:12 in 

incubator conditioned at 20±1°C until experiments. The light intensity was chosen based 

on previous study that F. subglobosum showed a highest ingestion rate on T. lineatum at 

approximately 60 µE m-2 s-1 (Skovgaard, 1996b).  

Physiological temperature range of autotrophic growth 

To determine the autotrophic growth rate of F. subglobosum at various 

temperatures, cultures of the dinoflagellate originally maintained at 20°C were 

acclimated for 4-5 days separately at temperatures of 18°C, 20°C, 22°C, 24°C, and 27°C 

with the same light regime (~60 µE m-2 s-1) before incubation experiments. Cultures 

acclimated to the temperatures were separately incubated in 72 mL tissue-culture flasks 

in triplicate. At different time points, subsamples (2mL) from each flask were collected 

and preserved with acidic Lugol’s solution (~2% final concentration) for microscopic cell 

enumeration (Olympus BX60). Specific growth rate (SGR) was determined for the 

exponential growth phase of cultures as: 

SGR = ln (
Nt

N0
) /t   Eqn 2.1 

where Nt is the cell density at time t, N0 is the initial cell density at the previous time 

point, and t is the time duration of the incubation in days. 

Growth and ingestion at different temperatures 

Population dynamics in mono-specific and mixed cultures 

Mono-specific stock cultures of F. subglobosum and T. tripos in F/2-Si enriched 

AFSW were acclimated at temperatures of 19±1°C and 23±1°C separately for ≥ 7 days at 

a light intensity of ~60 µE m-2 s-1 with a 12:12 light:dark cycle. These two temperatures 

were chosen based on the results from the physiological temperature range of F. 

subglobosum during autotrophic growth (Fig. 2.1). Within this temperature range of 19-
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23°C, F. subglobosum was shown to have an increasing growth rate with increasing 

temperature. The light intensity was chosen based on a study of F. subglobosum which 

showed the highest per capita ingestion rate of prey occurred at this light intensity 

(Skovgaard, 1996b). Triplicates of mono-specific and mixed cultures of F. subglobosum 

and T. tripos were prepared with fresh enriched medium in 72 mL tissue-culture flasks 

with the initial cell densities of F. subglobosum and T. tripos of 0-1 cells mL-1 and 35-46 

cells mL-1 (F. subglobosum:T. tripos ratio at ~1:110), respectively, and incubated at the 

corresponding temperatures. The incubation experiment lasted for 20 days and sampling 

was conducted every other day. During sampling, duplicate 2 mL subsamples from each 

flask were taken, preserved with acidic Lugol’s solution (~2% final concentration), and 

enumerated under the microscope. Meanwhile, fresh enriched medium acclimated at the 

corresponding temperatures were added into the flasks to replenish the withdrawn 

volume (totally 4 mL each sampling). The determination of cell densities of the 

dinoflagellates was adjusted to account for the dilution effect from the added fresh 

medium. The SGRs of F. subglobosum and T. tripos in the different treatments (i.e. 

19Mono: mono-specific culture at 19°C; 19Mixed: mixed culture at 19°C; 23Mono: 

mono-specific culture at 23°C; and 23Mixed: mixed culture at 23°C) were determined for 

the exponential growth phase of cultures according to Eqn 2.1. 

Per capita ingestion rate 

In a 6-day experiment, another set of mono-specific and mixed cultures of F. 

subglobosum and T. tripos were prepared in triplicate in 72 mL tissue-culture flasks using 

the temperature-acclimated stock cultures. Given the observation that F. subglobosum in 

mixed cultures tend to decrease in cell density, the initial cell density of F. subglobosum 

was increased to ~7 cells mL-1 and the ratio of F. subglobosum:T. tripos was increased to 

approximately 1:5. On days 0 and 3, triplicate subsamples from each flask were collected, 

preserved with acidic Lugol’s solution (~2% final concentration), and enumerated under 

the microscope. Again, the SGRs of F. subglobosum and T. tripos at the different 

treatments were determined according to Eqn 2.1 assuming the cultures were in 
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exponential growth phase. The ingestion rate (IR) of F. subglobosum in the mixed 

cultures at the corresponding temperature was also determined according to Frost (1972) 

and Heinbokel (1978) as 

IR =
(µc−µg)·NP

NG
   Eqn 2.2 

where µc is the specific growth rate of T. tripos in mono-specific cultures and µg is the 

specific growth rate of T. tripos in mixed cultures. NP and NG represent the geometric 

mean density (Gallegos et al., 1996) of T. tripos and F. subglobosum, respectively, in 

mixed cultures during incubation.  

Photosynthetic performance 

On the last day of the 6-day incubation, ~350-510 live cells (except for cultures in 

the 23Mixed treatment that only ~130 cells were collected due to low cell abundance), 

including both motile cells and  non-motile division cysts, of F. subglobosum from each 

culture flask were picked using a glass micropipette (Stoecker et al., 1988) under a 

dissecting microscope (Olympus SZ61). The cells were temporarily stored in a 2 mL tube 

and acclimated in darkness at the corresponding temperature for ≥ 30 minutes. They were 

then transferred into the sample-holding tube of the FASTact system (Chelsea 

Technologies) and measured with the fast repetition rate fluorometry (FRRF) using a 

single-turnover (ST) acquisition protocol with 12 sequences. The sequence protocol 

consists of 100 flashes (1 µs duration) with 1µs interval at a saturation level, followed by 

50 relaxation flashes (1 µs flash duration and 49 µs interval). The fluorescence of 

replicates of 2 mL AFSW were also measured as fluorescence blanks. The readings of 

fluorescence from all samples were corrected by subtracting the values of the 

fluorescence blanks. The blank-corrected maximal photochemical efficiency (Fv/Fm) of 

the photosystem II (PSII) of dark-adapted cells was calculated as  

Fv/Fm = (Fm-Fo)/Fm,   Eqn 2.3  
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where Fo and Fm are the minimal and maximum fluorescence yield, respectively, of the 

cells. The Fv/Fm ratio generally represents the overall availability of functional PSII 

reaction centers of the cells.   

The chlorophyll-a levels (Chl-a) of the picked live cells in the sample-holding 

tube were also measured by the FRRF method. The cellular Chl-a content of F. 

subglobosum in the treatments (i.e. 19Mono, 19Mixed, 23Mono, and 23Mixed) were 

determined and corrected for by using the fluorescence blanks. After measurement, the 

cells were preserved with acidic Lugol’s solution (2% final concentration). Images of the 

preserved cells were captured with a digital camera and analyzed with the image 

processing software ImageJ (1.52h, N.I.H.) to measure the cross-sectional area. The 

estimated equivalent spherical diameter (ESD) of cells were computed based on the area 

measurements of 50-70 imaged cells for each treatment.   

Statistical analysis 

All statistical analyses and graphical presentations were conducted using R 

version 3.6.1 (R Core Team, 2019) and packages emmeans version 1.4.6 (Length, 2020) 

and ggplot2 version 3.2.1 (Wickham, 2016). One-way ANOVA with post-hoc Tukey’s 

test were conducted to test for significant difference (α = 0.05) of the measurements 

among the 4 treatments.  

RESULTS 

Physiological temperature range of mono-specific cultures  

Within the tested temperature range of 18-27°C, the mean specific growth rates of 

F. subglobosum in mono-specific cultures were -0.62 d-1 at 18°C and 0.09 d-1 at 20°C. 

Specific growth rate increased with temperature and peaked at 0.21 d-1 at 24°C. It then 

dropped to 0.10 d-1 at 27°C (Fig. 2.1). The physiological temperature range of F. 

subglobosum, which is defined as the sub-optimal temperature range that the cells can 

maintain an increasing trend of growth rate, is therefore > 18°C and < 24°C. 
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Population dynamics in mono-specific and mixed cultures 

Throughout the 20-day experiment, the mono-specific cultures of F. subglobosum 

maintained an exponential growth and reached a mean cell density of ~8 cells mL-1 and 

~13 cells mL-1 at 19°C and 23°C, respectively, on day 20. However, F. subglobosum in 

mixed cultures did not grow well and decreased to 0 cells mL-1 at the end of experiment 

for both temperatures (Fig. 2.2). The mean specific growth rate of F. subglobosum, 

determined by the change in cell densities between days 8 and 20, in the 19Mono and 23 

Mono treatments were 0.30 d-1 and 0.32 d-1, respectively while those in the 19Mixed and 

23Mixed treatments were significantly (P < 0.05) lower, at 0 d-1 and -0.09 d-1, 

respectively (Fig. 2.3).   

The cell densities of T. tripos increased exponentially within the first 10 days and 

remained steady in the days onwards in all the 4 treatments. T. tripos reached the peak 

mean cell densities of ~260 cells mL-1 on day 14 in the 19Mono treatment and of ~272 

cells mL-1 on day 18 in the 19Mixed treatment (Fig. 2.2). Similarly, the peak mean cell 

densities were ~367 cells mL-1 on day 10 and ~413 cells mL-1 on day 10 in the 23Mono 

and 23Mixed treatments, respectively (Fig. 2.2). The mean specific growth rates of T. 

tripos in the 4 treatments, determined by the change in cell densities between days 0 and 

8, ranged from 0.21 d-1 to 0.23 d-1 and did not differ significantly (P > 0.05) (Fig. 2.3). 

Photosynthetic performance, cellular Chl-a content and cell size of F. subglobosum 

On the last day of the 6-day incubation, the maximal photochemical efficiency 

(Fv/Fm) of F. subglobosum differed significantly (P < 0.05) between 19°C and 23°C. At 

19°C, the mean Fv/Fm ratios were 0.42 and 0.41, respectively, in the mono-specific and 

mixed cultures. At 23°C, those ratios were 0.27 and 0.28, respectively, in the mono-

specific and mixed cultures (Fig. 2.4).  

The mean cellular Chl-a content of F. subglobosum did not differ significantly (P 

> 0.05) in the 19Mono, 19Mixed, and 23Mono treatments, with a range between 36.2 pg 
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cell-1 and 38.0 pg cell-1. The mean Chl-a level in the 23Mixed treatment was significantly 

(P < 0.05) higher than the others, at 43.1 pg cell-1 (Fig. 2.4).    

The mean estimated equivalent spherical diameters (ESDs) of F. subglobosum 

were 40.4 µm and 41.1 µm in the 19Mono and 19Mixed treatments. Those in the 

23Mono and 23Mixed treatments were 36.1 µm and 37.9 µm, respectively (Fig. 2.4). The 

ESD in the 19Mixed was significantly (P < 0.05) higher than that in the 23Mixed 

treatments.  

Per capita ingestion rate 

The estimated per capita ingestion rate of T. tripos by F. subglobosum was -0.13 

cells grazer-1 d-1 at 19°C and 0.03 cells grazer-1 d-1 at 23°C (Fig. 2.5), indicating no 

obvious prey ingestion by the dinoflagellate at both temperatures.   

DISCUSSION 

Population growth, prey ingestion and mixotrophic capacity of F. subglobosum 

This strain of F. subglobosum (CCMP-3029) from NCMA was reported to 

originate from western Florida, in Gulf of Mexico waters, and have a temperature 

tolerance range between 18°C and 24°C. The results of the physiological temperature 

range experiment confirmed the reported temperature tolerance. The dinoflagellates did 

not growth well at 18°C and obtained a lower than optimal growth at temperature higher 

than 24°C in mono-specific cultures (Fig. 2.1). 

Previous study showed that, at ~60 µE m-2 s-1, F. subglobosum obtained growth 

rates at ~0.2 d-1 and ~0.45 d-1 in phototrophic and mixotrophic growth, respectively 

(Skovgaard, 1996b). Contrary to previous reports (Skovgaard 1996a; Skovgaard, 1996b; 

Hansen & Neilsen, 1997), F. subglobosum did not grow in cultures with added prey T. 

tripos at 19°C and 23°C. The cell densities of F. subglobosum decreased to 0 cells mL-1 

near the end of experiment in both the 19Mixed and 23Mixed treatments (Fig. 2.2). The 

cell densities of the prey, T. tripos, in the mixed cultures seemed not affected by the 
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presence of the mixotroph F. subglobosum (Fig. 2.2). Hansen et al. (2000) showed a 

rapid decrease in cell density of T. tripos and a complete depletion of them after 7 days in 

mixed cultures with F. subglobosum. However, this was not the case in our results. While 

F. subglobosum grew well and maintained specific growth rates 0.30 d-1 and 0.32 d-1 in 

the 19Mono and 23Mono treatments, respectively (Fig. 2.3), the population in the 

19Mixed and 23Mixed cultures died off (Fig 2.2). This contradicts other studies that 

reported the growth rates in mixotrophic culture were higher than those in  phototrophic 

cultures at the same light intensities (Skovgaard, 1996b; Hansen & Nielson, 1997). It 

suggests that the presence of T. tripos could have an adverse effect on F. subglobosum in 

our experiments.  

F. subglobosum was reported to be mixotrophic and feed solely on Tripos spp. 

(Skovgaard, 1996a; Hansen & Neilsen, 1997; Rodriguez et al., 2014), the reversal of the 

roles of predator and prey has not been reported for this species. However, such reversal 

in the predator-prey interaction was observed in a close relative species, Fragilidium cf. 

mexicanum (Jeong et al., 1997). The authors reported that when the initial concentration 

ratio of F. cf. mexicanum: Protoperidinium cf. divergens was ≤ 0.4, both species prey on 

each other and when the ratio was > 0.8, P. cf. divergens was readily preyed upon by F. 

cf. mexicanum. Aware of the effect of initial cell density ratio on the predator-prey 

interaction, in our 20-day incubation experiment, the ratio of the initial cell density of F. 

subglobosum:T. tripos was tried to be kept at 1:10, but not successfully. In another set of 

experiments that lasted 6 days, the initial density ratio was kept at ~1:5 with the cell 

density of F. subglobosum at ~7 cells mL-1. Similar ratios were used in previous studies 

(Skovgaard, 1996b; Hansen et al. 2000) that showed obvious ingestion on Tripos spp. by 

F. subglobosum. However, F. subglobosum in our experiment did not show obvious 

ingestion of prey cells at either 19°C or 23°C even with the increased initial predator:prey 

ratio (Fig. 2.5). Results from both sets of experiments suggest that the F. subglobosum 

culture that we used is not mixotrophic on the prey we offered.   

Assuming there were not misidentifications of both F. subglobosum and T. tripos, 

the lack of prey ingestion by F. subglobosum in our experiments could be related to prey 
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selectivity, the triggering of phagotrophy, or the intraspecific strain variation in 

mixotrophic capacity of this mixotrophic dinoflagellate.  

F. subglobosum was reported to be a facultative mixotroph that can survive 

autotrophically in light, and heterotrophically when in the dark (Skovgaard, 1996b). It 

was shown to prey on several Tripos spp. and with a selectivity towards T. tripos and T. 

lineatum, where T. tripos was the maximum prey size that the mixotroph can handle 

(Skovgaard, 1996a). Though F. subglobosum needs approximately 24 hours to transit 

from phototrophic to phagotrophic growth, they attack and ingest Tripos spp. prey 

readily. The dinoflagellate ingested 0-0.8 cells grazer-1 d-1 for T. tripos and 2.1-5.8 cells 

grazer-1 d-1 for T. lineatum (Skovgaard, 1996b; Hansen & Nielson, 1997). The 

mechanisms of prey selectivity of F. subglobosum are not well known. Hansen & Nielson 

(1997) observed greater growth and grazing responses in F. subglobosum when fed with 

the larger species T. tripos than with the smaller species T. fusus and T. furca. However, 

they cannot conclude that such prey selectivity was solely based on cell size because 

another study showed that the growth rates of F. subglobosum feeding on T. tripos and T. 

lineatum, two prey species with very contrasting cell volumes, were similar (Skovgaard, 

1996b). Other mechanisms for the prey selectivity have been proposed. For instance, 

Skovgaard et al. (2000) suggested that carbon content of the prey, which is in turn 

affected by light intensity, could contribute to the variation in ingestion rates of prey 

cells. Rodriguez et al. (2014) suggested that lectin and carbohydrate-binding proteins 

could be the prey recognition mechanism of Fragilidium spp. We identified our prey 

dinoflagellate T. tripos based on its morphology (Tomas et al., 1996). Even though it 

could be another Tripos species and misidentified as T. tripos, the mixotroph F. 

subglobosum was expected to have at least a baseline ingestion rate toward the prey 

species. Misidentification of the prey species could not explain the observation that the F. 

subglobosum populations died off and had negligible specific growth rates in mixed 

cultures of our experiment (Fig. 2.2 & 2.3), unless the Tripos species we used was 

phagotrophic or could cause adverse effects on the growth of F. subglobosum.   
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Triggering of phagotrophy in presumed photosynthetic phytoplankton under 

certain conditions has been demonstrated in various species. For instance, the marine 

mixotrophic dinoflagellate Tripos furca was shown to feed on microzooplankton only 

when the cultures were grown under nitrogen (N) or phosphorus (P) depleted condition 

for > 10 days or shown to have high feeding rate only at low irradiance levels (Smalley et 

al., 2003; Smalley et al., 2012). Similarly, only when under N or P limitation, the 

dinoflagellate Heterocapsa triquetra was shown to ingest small flagellates, 

cyanobacterium and diatom species (Legrand et al., 1998), and the dinoflagellate 

Prorocentrum minimum was shown to ingest cryptophyte species (Johnson, 2015). There 

has been no reported N- or P-starvation related triggering of phagotrophy in F. 

subglobosum so far. In previous studies (Skovgaard, 1996b; Hansen et al., 2000; 

Skovgaard et al, 2000), the mixotroph was maintained in B-medium (Hansen, 1989) that 

was not significantly different from the modified F/2-Si medium we used in terms of 

chemical composition, except that there were no H3BO3 and trace amount of 

CuSO4·5H2O in the F/2-Si medium. However, these two compounds are not commonly 

reported as major nutrients required for the growth of phytoplankton species (Anderson, 

2005). The lack of these two compounds in our medium should not be affecting the 

phagotrophic capability of F. subglobosum. Furthermore, prey ingestion rates of F. 

subglobosum were shown to vary with light intensity, with the highest ingestion rate 

towards T. lineatum at ~60 µE m-2 s-1 and reduced rates at lower and higher light 

intensities (Skovgaard, 1996b). In our experiment, the light intensity was maintained at 

approximately 60 µE m-2 s-1 throughout the whole experiment. Therefore, light intensity 

should not be a limiting factor that caused negligible prey ingestion in our experiment.  

Another possibility for causing the observed discrepancy in prey ingestion rates 

between our experiment and previous studies could be intraspecific strain variation, 

which is largely understudied in mixotrophic phytoplankton. One study by Calbet et al. 

(2011) revealed that the 11 strains of the mixotrophic dinoflagellate Karlodinium 

veneficum showed diverse ingestion rates on Rhodomonas salina, with a range from 0.22-

1.3 cells grazer-1 d-1, which was 8-52% of their daily ration. The F. subglobosum strain 
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we used originated from the Gulf of Mexico, which was different from the strain isolated 

from northern Europe and used in previous studies (Skovgaard, 1996b; Hansen et al., 

2000; Skovgaard et al, 2000). It is possible that strain variability in the phagotrophic 

capacity of F. subglobosum led to the lack of prey ingestion in our experiments.  

Photosynthetic performance and other cell traits at different temperatures 

F. subglobosum showed a significantly (P < 0.05) higher maximum 

photosynthetic efficiency (Fv/Fm) at 19°C than at 23°C for both mono-specific and 

mixed cultures while there was not a difference in photosynthetic efficiency between the 

cultures at the same temperature (Fig. 2.4). Using the 14C-uptake method, Skovgaard et 

al. (2000) reported an increase in photosynthesis rate of F. subglobosum for both 

phototrophic and mixotrophic growth at irradiance levels from 7 to 75 µE m-2 s-1. 

Compared to strictly phototrophic growth, they found reductions in photosynthetic rates 

and cellular Chl-a content of the mixotroph under food-replete conditions. Though not 

directly comparable, the maximum photosynthetic efficiency of phytoplankton measured 

by the 14C-uptake method and by the fast repetition rate fluorescence (FRRF) method 

were correlated on some occasions (Cermeno et al., 2005). By comparison, our results 

did not agree with the results from Skovgaard et al. (2000). Given the above-mentioned 

argument that the F. subglobosum used in our experiment was not mixotrophic, it is 

reasonable that there was no difference in the photosynthetic efficiency between the 

mono-specific and mixed cultures at the same temperature since F. subglobosum in both 

cultures was in autotrophic growth.  

Changes in Fv/Fm as a function of temperature were mixed in the phytoplankton 

community and in mono-specific cultures. For instance, Quigg et al. (2013) separately 

measured the Fv/Fm ratios of phytoplankton communities in 2 fjords in Alaska, USA, 

with different median water temperatures and revealed no significant difference in the 

photo-physiology between the communities. Similarly, Rose et al. (2009) revealed that an 

increase of 4°C did not significant increase the Fv/Fm of the Antarctic phytoplankton 

assemblages, while the addition of the nutrient iron sharply increased the ratio. In 
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laboratory cultures, the ratio of Fv/Fm was shown to increase with increasing temperature 

for some phytoplankton species, such as Emiliania huxleyi (Feng et al., 2008) and 

Microcystis aeruginosa (Dong et al., 2015). However, the opposite pattern showing 

decreases in Fv/Fm with temperature or without significant change was observed in 

laboratory cultures of Phaeodactylum tricormutum (Geel et al., 1997), Fragilariopsis 

cylindrus (Mock & Hoch, 2005), Monoraphidium sp., Staurastrum sp., and Raphidiopsis 

raciborskii (Willis et al., 2019). The study by Akimov & Solomonova (2019) may 

suggest some conclusive insight into the controversy: species subjected to above-optimal 

temperatures tends to have decreased Fv/Fm while species grown at lower temperature 

and subjected to a near optimal higher temperature tend to have greater maximum 

photosynthetic efficiency. In other words, the relationship of Fv/Fm as a function of 

temperature for a phytoplankton species could be a bell-shape curve with the highest 

Fv/Fm at the optimal temperature and lower ratios at both ends. In our study, F. 

subglobosum was tested to have a physiological temperature range of > 18°C and < 24°C, 

where 24°C is the optimal temperature in terms of growth rate. If the bell-shape curve 

assumption is valid, the Fv/Fm of F. subglobosum should be as 23°C > 19°C. However, 

for unknown reasons, this was not the case in our observations.  

Nevertheless, the cellular Chl-a content of cultures in the 23Mixed treatment was 

significantly (P < 0.05) higher than those in the other 3 treatments (Fig. 2.4). 

Phagotrophy of prey cells was believed to reduce cellular Chl-a content in the mixotroph 

F. subglobosum (Skovgaard, 1996a). Skovgaard et al. (2000) reported a 13-67% decrease 

in Chl-a content of F. subglobosum cells in mixotrophic growth when compared to 

phototrophic growth at the same light intensity. The reduction in cellular Chl-a content 

was thought to be solely due to the dilution effect from increased cell division with 

feeding in mixotrophically grown cells, and the net production of Chl-a was not inhibited 

by phagotrophy (Hansen et al., 2000). There was inconsistency in our observation 

between the per capita ingestion rate and cellular Chl-a. Given that F. subglobosum in 

our experiments did not ingest any prey and the reported observation by Hansen et al. 

(2000) that Chl-a content was affected by prey ingestion during mixotrophic growth, the 
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difference in cellular Chl-a content of both the mono-specific and mixed cultures in our 

experiment cannot be explained. 

F. subglobosum becomes more heterotrophic at increased temperature? 

Previous studies have demonstrated increased prey grazing by other mixotrophic 

protists at elevated temperatures. Wilken et al. (2013) and Zhang et al. (2017) found 

increased grazing rates of the mixotrophic chrysophyte Ochromonas sp. towards the 

bacterium Pseudomonas fluorescens and the cyanobacterium Microcystis sp., 

respectively, at higher temperatures. Cabrerizo et al. (2019) showed an increased degree 

of bacterivory by the haptophyte Isochrysis galbana towards an unidentified bacterial 

species at higher temperature in cultures. Jeong et al. (2018) found that the mixotrophic 

dinoflagellate Paragymnodinium shiwhaense feeding on Amphidinium carterae 

demonstrated an increase in ingestion rate at temperatures from 5-20°C.  

The feeding of F. subglobosum is thought to be characterized by the Holling type 

I functional response (Hansen & Nielson, 1997) which suggests that its ingestion rate 

increases linearly with prey concentration until the maximum rate is reached. To 

demonstrate that F. subglobosum shifts the balance towards phagotrophy at elevated 

temperature and becomes more heterotrophic, one must provide evidence that the 

increase in prey ingestion rate is greater than the increase in photosynthetic rate during 

mixotrophic growth. This study is the first attempt to investigate the changes in grazing 

of Fragilidium spp. in reaction to temperature variation. However, the results that the F. 

subglobosum populations died off in the mixed cultures at both temperature and there 

was no obvious prey ingestion suggest that the dinoflagellate we used was not 

mixotrophic. The lack of feeding in the mixotroph cultures used could be due to strain 

variation, triggering mechanisms, prey selectivity or other unknown reasons. Given that, 

the hypothesis that this mixotrophic species becomes more heterotrophic at elevated 

temperatures was therefore not tested by this study.  

To put this result into a broader perspective, the global temperature is expected to 

rise by 1.5°C or more near the end of this century, depending on the effort to reduce 
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greenhouse gas emission (IPCC, 2018). Regionally, the average sea surface temperature 

is projected to rise, with the strongest warming in the Bering Sea, the Norwegian and 

Barents seas, and the western North Atlantic (Alexander et al., 2018). The reaction of 

planktonic mixotrophs to the increase in seawater temperature is therefore related to their 

biogeographical distribution over the globe. Recent efforts to map the distribution of 

mixotrophs have revealed markedly different geographic distributions. For instance, non-

constitutive mixotrophs (NCMs) with acquired phototrophy that rely on “stolen” plastids 

were found to dominate productive areas while those that rely on endosymbionts were 

found to be abundant in oligotrophic areas (Leles et al., 2017). Mixotrophic 

nanoflagellates were predicted to increase in abundance at lower latitudes and in 

productive coastal areas as driven by increases in light availability and in nitrogen input, 

respectively (Edwards, 2019). F. subglobosum, being a constitutive mixotroph (CM), was 

regarded as an outlier of the > 20 µm dinophytes group that were over-represented in a 

biogeographic survey of mixotrophs (Leles et al., 2018). Although we did not prove or 

disapprove that F. subglobosum becomes more heterotrophic at elevated temperature, 

how the routine sampling methods select against other under-represented mixotrophs and 

undermine our true understandings to their contributions to the biogeochemical cycling of 

carbon and other substances at a warmer environment is worthwhile of further 

investigations. 

CONCLUSION 

Contrary to expectations, the strain of F. subglobosum isolated near Florida did 

not grow well in cultures with added T. tripos as prey and obtained negligible or negative 

specific growth rate in the mixed cultures. This discrepancy could be related to prey 

selectivity, triggering of phagotrophy or intraspecific strain variation of the F. 

subglobosum culture used in our experiment. The dinoflagellate species also showed 

reduced maximal photosynthetic efficiency but no difference in the per capita ingestion 

rate at higher temperature. We suspect that the Florida strain of F. subglobosum cultures 
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used are not mixotrophic and therefore this study does not prove or disapprove that this 

mixotrophic species became more heterotrophic at elevated water temperature.   
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Figure 2.1  Mean specific growth rates (±1 S.D.) of F. subglobosum in mono-specific 

culture at various temperatures at the same light intensity.  

  



 26 

 

Figure 2.2  Mean cell densities (±1 S.D.) of F. subglobosum and T. tripos in the 4 

treatments throughout the experiment.  
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Figure 2.3  Mean specific growth rates (±1 S.D.) of F. subglobosum and T. tripos in the 

4 treatments. Lower case letters denote statistical significance (α = 0.05) of 

pairwise comparison in Tukey’s test.   
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Figure 2.4  Mean maximum photosynthetic efficiencies (Fv/Fm) (±1 S.D.), cellular Chl-

a contents (Chl-a) (±1 S.D.) and the estimated equivalent spherical 

diameters (ESD) (±1 S.D.) of F. subglobosum in the 4 treatments. Lower 

case letters denote statistical significance (α = 0.05) of pairwise comparison 

in Tukey’s test.   
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Figure 2.5  Per capita ingestion rates of T tripos by F. subglobosum at 19°C and 23°C. 
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Chapter 3: Effects of Water Accommodated Fraction of Crude Oil and 

Dispersant on the Growth and Grazing of Heterotrophic Dinoflagellates 

and Ciliates 

ABSTRACT 

The water accommodated fraction (WAF) of crude oil containing soluble 

aromatic hydrocarbons is thought to be highly toxic to aquatic organisms. The application 

of chemical dispersants to crude oil increases the bioavailability and the toxicity of these 

compounds. Exposure to such toxicants causes lethal and sub-lethal effects to marine 

protists, depending on the concentration. Heterotrophic dinoflagellates and ciliates are the 

most important components of microzooplankton, which are the major consumers of 

phytoplankton in the oceans. Exposure experiments were conducted to investigate the 

sub-lethal effects of WAF on the grazing and growth of these protozoa and their algal 

prey species in cultures. In exposure to 0-30 µL L-1 of chemically enhanced WAF 

(CEWAF), protozoan Protoperidinium sp. and Metacylis sp., fed with algal prey, were 

highly sensitive and showed drastically reduced specific growth rates even at low 

concentrations while their prey exhibited widely varying sensitivities in mono-specific 

cultures. Additionally, in exposure to the treatments of WAF, dispersant alone (Disp), 

and CEWAF of the same concentration, protozoa Oxyrrhis marina showed reduced 

grazing impact towards its algal prey population in all three treatments when compared to 

the control. Similarly, Protoperidinium sp. and Metacylis sp. had reduced per capita prey 

ingestion rates in exposure to WAF or CEWAF. However, the gross growth efficiencies 

of these two grazer species apparently were not affected by the hydrocarbon toxicity. 

With suppressed growth and impaired grazing of the protozoan species at high CEWAF 

concentrations, accumulation of their algal prey in the culture containers was observed. 

This suggested the potential link between impaired grazers and the formation of algal 

blooms when exposed to soluble oil pollutants.  
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INTRODUCTION 

There are estimated > 1.2 million tons of oil released into the marine waters per 

year globally (NRC, 2003). Water accommodated fraction (WAF) of crude oil contains 

soluble aromatic components, such as benzene, toluene, ethylbenzene and xylenes 

(BTEX), and polycyclic aromatic hydrocarbons (PAHs), that are regarded as the most 

important substances for the toxicity of petroleum hydrocarbons (NRC, 2003; Boehm & 

Page 2007; Forth et al., 2017a). While the application of chemical dispersant in 

remediation of oil spill events is still controversial (Fiocco & Lewis, 1999; George-Ares 

& Clark, 2000; Wise & Wise, 2011), dispersants are thought to increase the area of the 

water-oil interface and the release of soluble compounds into seawater, and therefore 

enhance their bioavailability to aquatic organisms (Hansen et al., 2012; Jung et al., 2012).  

Marine protozoa, mainly heterotrophic dinoflagellates and ciliates, play an 

important role in the recycling of carbon and nutrients in the ecosystem by being both the 

main consumers of primary production and an important constituent of copepod’s diet 

(Sherr & Sherr, 2002; Calbet & Saiz, 2005). Exposure to the toxic substances of 

petroleum hydrocarbons causes lethal or sub-lethal effects on marine protists (Connell et 

al., 1981). Their sensitivities to pollutants are taxon-specific. For instance, Almeda et al. 

(2014b) exposed ciliates and  heterotrophic dinoflagellates to a mixture of crude oil and 

Corexit dispersant  for ≤ 48 hours and showed that the ciliates Strombidium sp., 

Spirostrombidium sp., and Eutintinnus pectinis were more sensitive to the toxicity than 

the ciliate Favella ehrenbergii, and heterotrophic dinoflagellates Gyrodinium spirale  and 

Protoperidinium divergens. 

Although protozoan species could be exposed to the adverse effects of petroleum 

hydrocarbons by ingestion of tiny oil droplets (Bonnet et al., 2005; Almeda et al., 2014a), 

direct uptake of dissolved components of crude oil through the cell membrane 

(Lindmark, 1981; Bamdad et al., 1997; Kim et al., 2017) and ingestion of toxicant-loaded 

prey items (Tso & Taghon, 1998; Moore et al., 2006; Gomiero et al, 2012) are of greater 

concern. We conducted exposure experiments on the soluble components of various 

combinations of crude oil and dispersant on 4 different protozoan species in cultures, 
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including Oxyrrhis marina and one species from each of the following genera: 

Protoperidinium, Euplotes and Metacylis. O. marina is a heterotrophic dinoflagellate of 

widespread distribution and is frequently used as a model organism for ecological 

experiments (Montagnes et al. 2011; reviewed in Guo et al., 2013). The hypotrich ciliates 

Euplotes spp. are frequently used in ecotoxicity tests and pre-chemical screenings for 

anthropogenic stresses at estuarine and coastal sites (Tso & Taghon, 1998; Trielli et al., 

2007; Kim et al., 2014). The heterotrophic dinoflagellate Protoperidinium spp. and the 

tintinnid ciliate Metacylis spp. are commonly found in the Gulf of Mexico and are often 

used in growth and feeding studies (Jeong & Latz, 1994; Buskey, 1997; Clough & Strom, 

2005; Menden-Deuer et al., 2005; Graham & Strom, 2010; Lee & Choi, 2016). This 

project’s objective is to investigate the sub-lethal effects of the soluble components of 

petroleum hydrocarbons and dispersant on the grazing and growth responses of these 

protozoan species.  

METHODOLOGY 

Preparation and maintenance of plankton cultures 

Algal prey cultures of Isochrysis galbana, Rhodomonas salina, Peridinium 

sociale, Zooxanthella microadriatica and the heterotrophic dinoflagellate Oxyrrhis 

marina were obtained from the UTEX Culture Collection of Algae (Texas, USA). The 

diatom Ditylum brightwellii, dinoflagellate Protoperidinium sp. and ciliates Euplotes sp. 

and Metacylis sp. were isolated from water samples collected from the Ship Channel of 

Port Aransas (Texas, USA). Clonal cultures of protozoan species were maintained in 

autoclaved 0.2 µm filtered seawater (AFSW, 28-32 PSU) and fed regularly with mono-

specific cultures of the corresponding algal prey (Table 3.1) which were maintained in 

F/2-Si (Guillard, 1975) enriched AFSW. All protistan cultures were non-axenic and 

grown in clean containers (72 or 250 mL) with regular inoculation with fresh enriched 

AFSW. They were maintained at 20±1°C, except Protoperidinium sp., with illumination 

at light:dark cycle of 12:12 at light intensity of ~30-70 µmol photon m-2 s-1. Cultures of 
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Protoperidinium sp. were maintained in 72 mL containers held in a transparent plastic 

tube on a bench roller (~0.5 rotations per minute) and placed inside an incubator that was 

maintained at 24±1°C with the same illumination as the other cultures.  

The cell volume of each protistan species was estimated by imaging preserved 

cells in acidic Lugol’s (~2%) and glutaraldehyde (~2%), separately, under microscope 

and by measuring the cell dimensions using ImageJ software (version 1.52h, N.I.H.). The 

calculation of cell volume (without cell shrinkage or swelling corrections since Menden-

Deuer et al. (2001) showed that the fixatives Lugol’s and glutaraldehyde could lead to 

mixed effects on the changes of cell volume of dinoflagellates and diatoms) was based on 

the geometric models proposed by Sun & Liu (2003, Table II): shape code 1-H for I. 

galbana, P. sociale and Z. microadriatica; shape code 2-H for R. salina and O. marina; 

shape code 3-H for Euplotes sp.; shape code 9-H for Metacylis sp.; shape-code 30-H for 

D. brightwellii; and modified shape code 25-SL for Protoperidinium sp.  

Crude oil and dispersant treatments  

Light Louisiana Sweet crude oil and Corexit 9500A dispersant were used and the 

ratio of nominal concentrations of crude oil to dispersant was 20:1. The crude oil was 

provided by BP Exploration & Production Inc. as a surrogate for the oil released during 

the Deepwater Horizon oil spill, and the dispersant was provided by Nalco/Exxon Energy 

Chemicals, I.P. The non-weathered crude oil and dispersant were stored in capped glass 

bottles in darkness at ~4°C and warmed at room temperature for ≥ 1 hour before use. 

Overall, four types of test media were used: 1) control (Ctrl): 0.2 µm filtered seawater 

(FSW) without the addition of crude oil or dispersant; 2) dispersant alone (Disp): 

dispersant in FSW; 3) water accommodated fraction (WAF): crude oil in FSW; and 4) 

chemically enhanced WAF (CEWAF): crude oil in FSW with the addition of dispersant. 

The preparation of Disp, WAF and CEWAF media followed the standardized protocol 

(Singer et al., 2000) with modifications. Briefly, crude oil and (or) dispersant were added 

to 1 L of FSW in a capped glass aspirator bottle pre-cleaned by soaking in 2% Micro-90 

solution (Cole-Parmer, USA), followed by rinsing with deionized water. The mixture in 
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the aspirator bottle was physically mixed with a magnetic stir bar for 18 hours in 

darkness at room temperature while maintaining a vortex of ~20% of the depth of the 

water column inside the bottle. After mixing, the solution was settled for > 3 hours. To 

minimize the amount of tiny oil droplets in the test media, only the subsurface part of the 

settled solution in the aspirator bottle was collected and used in experiments.  

To determine the effects of petroleum hydrocarbons on the growth responses of 

marine protists, CEWAF media at a range of nominal concentrations (0 to 30 µL L-1) 

were prepared. To determine the effects of petroleum hydrocarbons on the grazing 

responses of marine protozoa, four different treatments (i.e. Ctrl, Disp, WAF, and 

CEWAF) at certain nominal concentrations were prepared.  

Assuming that light Louisiana crude oil has a density of 0.839 g cm-3 at 15°C and 

0% volume of evaporation (FISG, 2010), the concentrations of total PAHs (TPAH50, 

consist of 23 parent PAHs and 27 alkylated homologs) and some of the individual PAHs 

were estimated based on the published data by Forth et al. (2017b) and were presented in 

Table 3.2. In their assessment, Coexit 9500 dispersant and MC252 crude oil were used, 

where MC252 is of similar chemical composition and toxicity to the surrogate light 

Louisiana crude oil we used. We chose their reported average TPAH50s of source 

CEWAF (1981 µg L-1) and LEWAF (196 µg L-1) and the percentage composition of 

individual PAHs to estimate the concentrations of PAHs in our CEWAF and WAF 

treatments, respectively, since similar methods of preparation of the test media were 

used, except that the preparation of LEWAF in Forth et al., (2017b) did not mix the 

seawater-oil mixture with a visible vortex as we did for the WAF test medium and the 

volume ratio of crude oil to dispersant used was 10:1 rather than 20:1 in our experiment. 

In Table 3.2, abbreviation Chr represents the combined concentration of alkylated C1-C4 

chrysenes; C/T represents the combined concentration of chrysene and triphenylene; Flo 

represents the combined concentration of fluorene plus C1-C3 fluorenes; F/P represents 

the combined concentration of alkylated C1-C4 fluoranthenes or pyrenes; Nap represents 

the combined concentration of naphthalene plus the alkylated C1-C4 naphthalenes; Phe 
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represents the combined concentration of phenanthrene plus alkylated C1-C4 

phenanthrene or anthracenes. 

Growth responses of grazers and algal prey in CEWAF 

Specific growth rate 

Mono-cultures of algal prey and grazers were separately exposed to nominal 

concentrations from 0 to 30 µL L-1 of CEWAF by adding the protistan stock culture to 

the prepared CEWAF solutions in capped polystyrene containers (72 mL for algal 

cultures and 250 mL for grazers with added algal prey) in triplicate. For the grazers 

Protoperidinium sp. and Metacylis sp., 5 and 50, respectively, actively swimming cells 

were picked with a glass pipette and added to the containers. Additionally, algal prey was 

added to all the grazer cultures at the beginning of the experiment. To minimize the 

dilution effect to the CEWAF, the addition of stock cultures to the CEWAF medium was 

limited to ≤ 10% of the total volume of the mixture. Enrichments of major and trace 

elements (Guillard, 1975) were added to make the final concentrations in the incubation 

containers exceeded 0.88 mM nitrate (NO3
-) and 0.036 mM phosphate (PO4

3-). All 

containers were incubated at the same temperature and illumination conditions as those in 

culture maintenance except for Protoperidinium sp. for which the cultures were incubated 

on a bench roller at room temperature (~21-27°C) near the window with natural sun light 

(~38-142 µE m-2 s-1). Except for Protoperidinium sp., subsamples of mono-specific algal 

prey (2 mL) and grazers (30-50 mL for each sampling) were collected regularly from 

each container without medium replacement (eventually 100-180 mL removed in total 

after all samplings), preserved with acidic Lugol’s solution (~2-5% final concentration) 

and enumerated under microscope to estimate the cell densities. For Protoperidinium sp., 

different sets of triplicate cultures were sacrificed for sample collection at time intervals. 

Specific growth rates (SGR, d-1) of the algal prey and grazers were calculated based on 

the changes in cell densities during the exponential growth phase as: 
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SGR = ln (
Nt

N0
) /t   Eqn 3.1 

where Nt is the cell density at time t, N0 is the cell density at the previous time point, and 

t is the time duration of incubation in days. 

The relationship between the natural-log of cell volume and SGR of protistan 

species in normal growth condition (i.e. without the addition of CEWAF) was explored to 

reveal the possible linkage between cell size and growth rates using model II linear 

regression (standard major axis).   

Toxicant sensitivity 

The median growth inhibition concentration (IC50) of CEWAF of each protistan 

species was estimated by fitting the SGR data into the 4-parameter log-logistic model 

(Ritz et al., 2015) as: 

SGR = c +  
d−c

1+exp(b(log(Con)−log(e)))
   Eqn 3.2 

where Con is the nominal concentration of CEWAF, d and c are the upper and lower 

asymptotes or limits of SGR, respectively, b is the slope of the sigmoidal curve, and e is 

the IC50. Only the protistan species with a good fit of the SGR data to the model were 

included for further analysis and discussion. The relationships between the estimated IC50 

and the cell volume of the protistan species were then investigated using natural-log 

bivariate model II linear regressions (standard major axis).  

Grazing by protozoan grazers in different combinations of crude oil and dispersant 

Grazing impact on algal prey population 

The grazing rates of O. marina and Euplotes sp. were determined using the 

dilution method (Landry & Hassett, 1982). Pre-diluted stock mixtures of grazers and prey 

were prepared to obtain a gradient of dilution fractions (e.g. 0.2, 0.5, 1.0 of undiluted 

stock mixtures) by mixing stock cultures with FSW. The pre-diluted stock mixtures were 

then added to the test media, namely Ctrl, Disp, WAF, and CEWAF, with the same 
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concentrations for crude oil and dispersant when applicable. For the grazer-prey pair of 

O. marina and I. galbana, the nominal concentrations of 10 µL L-1 of crude oil and 0.5 

µL L-1 of dispersant were used. For that of Euplotes sp. and Rhodomonas salina, the 

nominal concentrations were 3 µL L-1 and 0.15 µL L-1 for crude oil and dispersant, 

respectively. These concentrations were chosen based on the results from the growth 

experiment in CEWAF exposure, where at the concentration a substantial drop in the 

SGR was observed.  Again, to minimize the dilution effect to the test media, the addition 

of protistan stock mixtures to the media was limited to ≤ 13% of the total volume of the 

mixture. Enrichments of major and trace elements (Guillard, 1975) were added (≥ 0.88 

mM NO3
- and ≥ 0.036 mM PO4

3- final concentrations) to eliminate the possibility that 

phytoplankton growth is limited by nutrient availability. The mixture was then filled into 

a 72 mL polystyrene tissue-culture flask in duplicate or triplicate and incubated for 24 

hours in conditions identical to those used in culture maintenance. Subsamples of 2 mL 

were taken from the common medium mixture in duplicate before incubation and from 

each incubation flask after incubation. All subsamples were preserved with acidic 

Lugol’s solution (~2-5% final concentration) for estimation of cell densities. 

The coefficients of instantaneous population growth (µ, d-1) and grazing mortality 

(g, d-1) of algal prey were obtained from the linear regression analysis according to 

Landry & Hassett (1982):  

ln (
Nt

N0
) = (µ − Dg)t   Eqn 3.3 

where Nt is the algal density after incubation and N0 is the initial algal density before 

incubation. Symbol D represents the dilution fractions and t is the time duration of 

incubation in days. The slope and the y-intercept of the linear regression, which 

respectively represent the grazing mortality (in negative value) and population growth 

rates of algal prey, of each treatment were tested against all treatments for statistical 

difference.  
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Per capita grazing rate 

The per capita grazing rates of Protoperidinium sp. and Metacylis sp. in various 

treatment media, namely Ctrl, Disp, WAF, and CEWAF with the same concentrations for 

crude oil and dispersant when applicable, were determined. For the grazer-prey pair of 

Protoperidinium sp. and D. brightwellii, the nominal concentrations of 1 µL L-1 of crude 

oil and 0.05 µL L-1 of dispersant were used. For Metacylis sp. and P. sociale and Z. 

microadriatica, the nominal concentrations were 5 µL L-1 and 0.25 µL L-1 for crude oil 

and dispersant, respectively. These concentrations were chosen based on the results from 

the growth experiment in CEWAF exposure, where at the concentration a substantial 

drop in the SGR was observed.   

One set of the mono-specific cultures of D. brightwellii was prepared by adding 

the stock culture to the test media without the addition of a grazer. It was then enriched 

with major and trace nutrients (Guillard, 1975) (≥ 0.88 mM NO3
- and ≥ 0.036 mM PO4

3- 

final concentrations) and incubated in a capped 72 mL polystyrene flask in triplicate at 

conditions identical to those used in culture maintenance of Protoperidinium sp. 

Meanwhile, 10 actively swimming Protoperidinium sp. cells were picked from the stock 

culture with a glass pipette, added to another set of 72 mL flasks of algal prey cultures in 

test media with nutrient enrichment, and incubated in triplicate for 4 days at conditions 

identical to those used in culture maintenance. Again, to minimize the dilution effect to 

the test media, the addition of stock cultures to the media was limited to ≤ 10% of the 

total volume of the mixture. The same experimental procedures were repeated for the 

ciliate Metacylis sp. and the prey mixture of P. sociale and Z. microadriatica, except that 

30 actively swimming Metacylis sp. cells were added to each tissue-culture flask with 

grazer addition and all containers were incubated for 2 days. The initial prey:predator 

density ratios were approximately 130:1 and 3400:1 for Protoperidinium sp. and 

Metacylis sp., respectively. Subsamples of algal prey (2 mL) were collected before and 

after incubation, and those of grazers (50 mL) were collected only after incubation. The 

samples were preserved with acidic Lugol’s solution (~2-5% final concentration) for 

estimation of cell densities under the microscope. The ingestion rate (IR, cells grazer-1 d-
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1) of protozoan grazers in each test medium was determined based on the methods of 

Frost (1972) and Heinbokel (1978) as  

IR =
(µc−µg)·NP

NG
   Eqn 3.4 

where µc is the specific growth rate of the algal prey without grazer addition and µg is the 

specific growth rate of the algal prey with grazer addition. NP represents the geometric 

mean density of algal prey during incubation in cultures with the grazer addition while 

NG represents the geometric mean density of the grazer (Gallegos et al., 1996) during 

incubation in cultures. 

Gross growth efficiency  

The gross growth efficiencies (GGEs) of Protoperidinium sp. and Metacylis sp. in 

the four different treatments were calculated (Montagnes & Lessard, 1999) based on the 

data of SGR and IR as:  

GGE =
SGR × VG × pgC

VP × pgC ×IR
   Eqn 3.5  

where VG and VP represent the cell volumes of grazers and prey, respectively. The 

conversions from cell volume to carbon content (pgC) for the diatom and the 

dinoflagellates were pgC cell-1 = 0.288 x volume0.811 (µm3) and pgC cell-1 = 0.760 x 

volume0.819 (µm3) (Menden-Deuer & Lessard, 2000), respectively, and for the tintinnid 

was pgC cell-1 = 0.19 x volume (µm3) (Putt & Stoecker, 1989).   

Statistical analysis 

All statistical analyses and graphical presentations were conducted using R 

version 3.6.1 (R Core Team, 2019) and packages lmodel2 version 1.7-3 (Legendre, 

2018), drc version 3.0-1(Ritz et al., 2015), emmeans version 1.5.0 (Lenth, 2020), and 

ggplot2 version 3.2.1 (Wickham, 2016).  

Model II linear regressions tests (with 50,000 permutations) were applied to test 

for the presence of a significant relationship between SGR and the natural-log of cell 

volume, and between the natural-log of IC50 and the natural-log of cell volume using the 
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package lmodel2 in R. Considering that the independent variables (i.e. the natural-log of 

cell volume for both cases) were subject to natural variation and measurement error, and 

the fact that both independent and dependent variables were not in comparable units of 

measurement, results from the standard major axis regression analysis were chosen for 

further result presentations and  discussion (Sokal & Rohlf, 2012).  

To fit the SGR data into the log-logistic model (Eqn 3.2) using the drc package in 

R, the model was simplified by setting coefficient c (i.e. the lower limit of SGR) at 0 for 

most of the cases, except Metacylis sp. and P. sociale. The model for Metacylis sp. was 

not simplified (i.e. 4-parameter model) while that of P. sociale was further simplified by 

setting coefficient d, the upper asymptote of SGR, at 0.35 as well. The lack-of-fit test is a 

built-in test (against one-way ANOVA model) of the package that was used as one of the 

criteria for choosing the current model among the candidates. The larger the P value, the 

better the model fit in general. The no-effect test is another built-in function that was 

applied by using the Chi-square test to test for the presence of a significant dose-response 

relationship (α = 0.05).  

RESULTS 

Specific growth rate of grazers and algal prey in CEWAF 

The mean specific growth rates (SGRs) of O. marina ranged from 0.43-0.52 d-1 

when exposed to CEWAF at nominal concentrations from 0 µL L-1 to 30 µL L-1, with the 

highest growth rate at 20 µL L-1 (Fig. 3.1). On the other hand, the mean SGRs of its prey, 

I. galbana, in mono-specific cultures, decreased from 0.61 d-1 at 0 µL L-1 to 0.42 d-1 at 30 

µL L-1. Unexpectedly, the lowest rate was found at 1 µL L-1 CEWAF, with a mean SGR 

of 0.01 d-1 (Fig 3.1). This lowest SGR of I. galbana was due to the averaging of both 

positive and negative values of SGRs of replicates. If only positive value is reported, the 

SGR at 1 µL L-1 CEWAF would be 0.39 d-1.  

The SGRs of Euplotes sp. averaged 0.84 d-1 at 0 µL L-1 CEWAF and decreased to 

the lowest at 0.44 d-1 at 20 µL L-1 CEWAF (Fig. 3.1). The mean SGRs of R. salina in 
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mono-specific cultures was 0.61 d-1 at 0 µL L-1. It dropped to below zero at 10 µL L-1 

CEWAF and increased to 0.25 d-1 at 20 µL L-1 CEWAF (Fig. 3.1).  

The mean SGRs of Protoperidinium sp. were 0.77 d-1 and 0.52 d-1 at 0 µL L-1 and 

1 µL L-1 CEWAF, respectively. The rates dropped drastically to near zero or became 

negative when the concentrations of CEWAF were > 1 µL L-1 (Fig. 3.1). In contrast, the 

mono-specific cultures of D. brightwellii showed relatively high SGRs, with a mean rate 

of 0.96 d-1 at 0 µL L-1 and decreasing gradually to 0.69 d-1 at 30 µL L-1 CEWAF (Fig. 

3.1). Additionally, the cell densities of D. brightwellii at the beginning and the end of the 

experiment (on the 6th day) in the grazer-prey cultures were determined. The ratios of 

final:initial prey densities were 31.1 at 0 µL L-1 and ranged from 36.6-41.5 at higher 

CEWAF concentrations (Table 3.2). 

The mean SGRs of Metacylis sp. were 0.52 d-1 and 0.57 d-1 at 0 µL L-1 and 1 µL 

L-1 CEWAF, respectively. The rates were below zero when exposure concentrations were 

≥ 15 µL L-1 CEWAF (Fig. 3.1). The mean SGRs of one of its prey species, P. sociale,  

ranged from 0.27 d-1 to 0.36 d-1 except that the SGR was 0.47 d-1 at 1 µL L-1 CEWAF. 

The other prey species, Z. microadriatica, obtained mean SGRs ranging from 0.32 d-1 to 

0.37 d-1 across the exposure concentrations in mono-specific cultures (Fig. 3.1). The 

ratios of final:initial prey density of Z. microadriatica in the grazer-prey cultures after a 

5-day CEWAF exposure ranged from 0.0-0.1 at 0-5 µL L-1 CEWAF and were ≥ 1.7 at 

higher concentrations (Table 3.2).  

Model II linear regression (standard major axis) revealed no significant 

relationship (R2 = 0.04, P = 0.64) between the natural-log of cell volume and the mean 

SGR of the tested species grown at 20±1°C in the control treatment (i.e. 0 µL L-1 

CEWAF) (Fig. 3.2).   

Toxicant sensitivities of protistan plankton to CEWAF 

The fitted dose-response curve of each protistan species in exposure to CEWAF is 

presented in Fig 3.3. Data of R. salina, D. brightwellii, Euplotes sp., Protoperidinium sp. 

and Metacylis sp. showed a good fit of the SGRs to the model (Table 3.4). Estimated 
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median growth inhibition concentration (IC50) of CEWAF to the SGR revealed relatively 

high toxicity tolerance of D. brightwellii among the algal prey species, with an estimated 

IC50 at ~169 µL L-1 while R. salina was very sensitive, with an estimated IC50 at 0.9 µL 

L-1 CEWAF.  The dinoflagellate grazer O. marina was apparently highly tolerant to 

CEWAF toxicity (an estimated IC50 at ~297 µL L-1), even though there was a large 

standard error of the estimation and a poor model fit. Grazers Protoperidinium sp. and 

Metacylis sp. were highly sensitive, with estimated IC50 at 1.1 µL L-1 and 5.9 µL L-1, 

respectively. The sensitivity of Euplotes sp. was between those of the protistan grazers, 

with an estimated IC50 at 26.1 µL L-1 CEAWAF (Table 3.4). 

When considering only the good-fit estimations of IC50, model II linear 

regressions (standard major axis) between the natural-log of cell volume and the natural-

log of IC50 revealed a weak positive relationship for the algal prey species (R2 = 1.00, P = 

not available) and a weak negative relationship for the grazer species (R2 = 0.77, P 

=0.31). When all species were considered, there was a weak positive relationship 

between the variables (R2 = 0.01, P = 0.89) (Fig. 3.4).   

Grazing rate of O. marina and Euplotes sp. in different combinations of crude oil 

and dispersant 

At 10 µL L-1 of crude oil and 0.5 µL L-1 of dispersant, dilution experiments with 

the predator-prey pair of O. marina and I. galbana revealed varying rates of population 

growth (µ) and grazing mortality (g) of the algal prey among treatments. The values of µ 

and g were 1.17 d-1 and 1.05 d-1, respectively, in the Ctrl treatment while they 

respectively ranged from -0.03-0.32 d-1 and from -0.13-0.02 d-1 in the treatments of Disp, 

WAF, and CEWAF. Comparison of the coefficients of linear regressions among the 

treatments revealed that g and µ in the Ctrl treatment were significantly different (P < 

0.05) from those in the other treatments. In other words, at these exposure concentrations, 

O. marina showed negligible grazing rate on algal prey populations in all crude oil or 

dispersant loaded treatments when compared to the Ctrl treatment (Fig. 3.5). Compared 

to the SGRs results (Fig. 3.1) in CEWAF exposure at 10 µL L-1, there was apparent 
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discrepancy in the growth rates of I. galbana between the growth experiment and dilution 

experiment. Explanation for the possible reasons is discussed below. 

For the predator-prey pair of Euplotes sp. and R. salina exposed to 3 µL L-1 of 

crude oil and 0.15 µL L-1 of dispersant, the population growth rates of algal prey were 

exceptionally high in all treatments, with the highest population growth rate of 4.54 d-1 in 

the Ctrl treatment and a range of 3.3-3.4 d-1 in the treatments of Disp, WAF, and CEWAF 

(Fig. 3.5). Comparison of the coefficients of linear regressions among the treatments 

revealed that µ in the Ctrl treatment was significantly different (P < 0.05) from those in 

the other treatments (Fig. 3.5). Grazing mortality rates of R. salina were unusually high 

as well. They ranged from 2.19 d-1 to 2.74 d-1 among treatments, with the highest rate in 

the Ctrl treatment. The abnormally high population growth and grazing mortality rates of 

R. salina were due to its low cell density in the samples before incubation that could have 

introduced measurement errors in the haemocytometer counting and exaggerated the 

change in cell densities between before and after incubations. Caution should be used 

when interpreting these exceptionally high values of both the population growth and the 

grazing mortality rates.  

Ingestion rates and gross growth efficiencies of Protoperidinium sp. and Metacylis sp. 

in different combinations of crude oil and dispersant 

At the nominal concentrations of 1 µL L-1 of crude oil and 0.05 µL L-1 of 

dispersant, Protoperidinium sp. feeding on D. brightwellii showed ~60 cells grazer-1 d-1  

ingestion rates in the Ctrl, Disp and WAF treatments while that in the CEWAF treatment 

dropped to ~34 cells grazer-1 d-1 (Fig. 3.6). The growth rates of Protoperidinium sp. in 

Ctrl and WAF were 0.28 d-1 and 0.31 d-1, respectively, while that in CEWAF was 0.18 d-

1. Interestingly, the growth rate in Disp was much lower than the other treatments (Fig. 

3.6). The estimated gross growth efficiencies (GGEs) of Protoperidinium sp. ranged from 

0.17 to 0.20 in the treatments of Ctrl, WAF, and CEWAF. The GGE was abnormally low 

at 0.03 in the Disp treatment (Table 3.5). The seemingly contrasting ingestion rate and 

growth rates of Protoperidinium sp. in the Disp treatment (Fig. 3.6) were due to 
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averaging all the positive and negative values of growth rates from replicates. If only the 

positive value is used, the growth rate in the Disp treatment would be at 0.29 d-1 and the 

corresponding GGE would be 0.20 in Table 3.5. 

At the nominal concentrations of 5 µL L-1 of crude oil and 0.25 µL L-1 of 

dispersant, the combined ingestion rates of Metacylis sp. feeding on a prey mixtures of P. 

sociale and Z. microadriatica were ~400 cells grazer-1 d-1 in the Ctrl and Disp treatments. 

The rates changed drastically to below zero in the WAF and CEWAF treatments (Fig. 

3.6). The growth rates of Metacylis sp. in the Ctrl and Disp treatments were ~0.5 d-1 

while that in WAF was the highest among treatment, reaching 0.70 d-1. The growth rate 

of Metacylis sp. in CEWAF was slightly below zero (Fig. 3.6). The seemingly contrasting 

ingestion rates and growth rates of Metacylis sp. in the WAF treatment were due to the 

fact that the estimation of ingestion rate relied on the changes in the combined cell 

density of both P. sociale and Z. microadriatica, where the latter species predominated 

the prey population in term of cell abundance. When only considering the cell density of 

P. sociale, Metacylis sp. ingested 2.7 and 2.0 cells grazer-1 d-1 for P. sociale in the WAF 

and CEWAF treatments, respectively, while those in the Ctrl and Disp treatments were 

4.7 and 4.3 cells grazer-1 d-1, respectively. P. sociale has a cell volume ~100 times of that 

of Z. microadriatica (Table 3.1). Although Metacylis sp. showed a negative ingestion 

rates on the combined population of P. sociale and Z. microadriatica, the 2.7 cells grazer-

1 d-1 on P. sociale could have contributed to the growth of the grazer in the WAF 

treatment (Fig. 3.6). The estimated GGEs of Metacylis sp. in the Ctrl and Disp treatments 

were 0.44 and 0.40, respectively. The GGEs in the WAF and CEWAF treatments were 

not estimated due to the negative IRs of the grazer (Table 3.5).  

DISCUSSION 

Protists’ growth in normal condition 

It has been commonly reported that different species of phytoplankton have 

different growth rates at a given temperature (Eppley, 1972, Montagnes & Franklin, 
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2001) and that smaller protistan species tend to have faster growth rates than larger ones 

(Chisholm, 1992; Hansen et al., 1997). Testing the relationship between cell size and 

growth rates under normal conditions without the addition of crude oil or dispersant was 

not the primary objective of this study. However, the results can complement the 

discussion about the relationship between the cell traits and the growth responses in oil-

polluted waters. In the Ctrl treatment (i.e. 0 µL L-1 CEWAF), results showed taxon-

dependent growth rates in the photosynthetic phytoplankton species tested. At the same 

temperature (i.e. 20°C), the SGR of the diatom D. brightwellii was higher than those of 

the phytoflagellates I. galbana and R. salina and the dinoflagellates Z. microadriatica 

and P. sociale (Fig. 3.1). In agreement with Banse (1982), there was a weak dependence 

of maximal growth rates of phytoplankton with cell volume or mass. We found the eight 

tested species grown at 20°C in the control treatment did not show an inverse relationship 

between cell volume and SGR. In contrast, a weak positive relationship between these 

two variables was observed (P = 0.64, Fig. 3.2). Although all the phytoplankton species 

were grown in nutrient enriched media at 20°C, the light intensity they were provided in 

this study varied in the range of 30-70 µE m-2 s-1, which may not be the optimal 

irradiance for them to achieve maximal growth. Limited irradiance could have also 

caused some phytoplankton species to experience reduced sensitivity to temperature. 

Edwards et al. (2016) complied data from 57 species of freshwater and marine 

phytoplankton and found that the chlorophyll-specific carbon uptake rates showed no 

trend with increasing temperatures (median 17°C) when the irradiance was < 20 µE m-2 s-

1 but increased with temperatures when the irradiance was between 100-200 µE m-2 s-1. In 

our study, the lack of significant relationship between the growth rate and cell volume of 

the tested protistan species in the control treatment could be due to limited irradiance or 

other factors that hindered them from achieving maximal growth rate at the given 

temperature.  
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Growth responses in exposure to CEWAF 

Cell size and sensitivity to CEWAF 

It has been reported that smaller cells tend to be more sensitive to the toxicity of 

petroleum hydrocarbons in culture (Echeveste et al., 2010a; Othman et al., 2012, Ozhan 

et al., 2014). Nevertheless, a different pattern has also been reported in a natural 

phytoplankton community in which the persistence of picophytoplankton in the 

population and the lack of correlation between phytoplankton cell size and PAHs 

sensitivity were observed (Othman et al., 2018). In our study, the estimated IC50 was used 

to reflect the protists’ sensitivity to hydrocarbon toxicity (Table 3.4). Unfortunately, the 

lack of fit to the log-logistic model for some species hindered the estimation of their 

sensitivity. When considering only the good-fit IC50 estimations, the linear relationship 

between cell volume and the IC50 for all plankton species was not statistically significant 

(P = 0.89, Fig. 3.4), indicating that cell volume was not the sole contributor to the 

species’ sensitivity to the toxicity. As mentioned above, limited irradiance or other 

factors could have affected the growth of the tested species and influenced the estimation 

of IC50 which was based on the SGR data. Interestingly, when considering only the grazer 

species, a  negative relationship was revealed, though not statistically significant (P = 

0.31, Fig. 3.4). This could suggest that the larger the grazer cell, the more sensitive it is to 

the toxicity of petroleum hydrocarbons. This sounds counterintuitive and, obviously, 

more data on the response of various protozoan species to increasing CEWAF 

concentrations are needed to draw a solid conclusion. A few possible scenarios that could 

support the observation  are provided.  

First, the intake of soluble petroleum hydrocarbons through ingestion of 

hydrocarbon-loaded prey items could have accumulated inside the cell body of grazers 

and hence strengthened the toxic effect on larger grazers. For instance, in a feeding 

experiment where female copepods of Calanus helgolandicus were exposed to 14C-1-

naphthalene, the uptake of the PAH through the ingestion of food particles (barnacle 

nauplii or diatoms) was much higher than the direct uptake from the culturing medium. 
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One third of the hydrocarbons remained inside the animals after 10 days, suggesting 

bioaccumulation and low elimination rates of the PAH for the copepods (Corner et al., 

1976). Liu et al. (2007) found approximately a 10-fold increase in the concentration of 

hexachlorobenzene in a majority heterotrophic plankton community than that in the 

ambient water of a river. This suggests a significant intake of hydrocarbons occurs 

through the dietary route rather than by passive diffusion or active transport through cell 

membrane. In fact, though the intake amount of hydrocarbons through ingestion of algal 

particles depends on the species-dependent bioconcentration (passive uptake) by the algal 

cells, the total intake amount by the grazers tend to be large for larger grazers since the 

per capita intake of prey biovolume increases with the predator’s body size (DeLong & 

Vasseur, 2012). Therefore, larger grazers could be subject to a stronger bioaccumulation 

effect of toxicant through consuming more toxicant-loaded food items than smaller 

grazers, leading to their higher sensitivity to the toxic medium.  

Second, some protistan species are known to have detoxification mechanisms. For 

example, Bamdad et al. (1997) showed that the ciliate Tetrahymena pyriformis was 

resistant to as high as 37 µM of individual PAHs (benzo[a]pyrene, 3-methylcholanthrene, 

benzanthracene, and 7,12-dimethylbenzanthracene) through rapid elimination. The 

organisms lost half of the accumulated hydrocarbons mostly within 60 min through an 

efflux mechanism. The elimination of accumulated hydrocarbons in other ciliates and 

dinoflagellate grazers is largely understudied, not to mention that the relationship 

between cell size and elimination efficiency is not well understood. Hence, it was 

possible that the inter-species variations in the ability to eliminate the accumulated 

toxicants contributed to the observed inverse relationship between CEWAF sensitivity 

and cell volume of protistan grazers in this study.  

Taxonomy and sensitivity to CEWAF 

Despite the reported taxon-dependent growth rates of protistan species under 

normal condition (Banse, 1982), the group-dependent vulnerability and changes in 

growth rates in response to the toxicity of CEWAF was not obvious. In this study, the 
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diatom D. brightwellii showed relatively high tolerance (IC50 ~170 µL L-1, Table 3.4; 

equivalent to ~283 µg L-1 of TPAH50, Table 3.2) to hydrocarbon toxicity. Ozhan et al. 

(2014) reported higher tolerances of the diatoms species D. brightwellii and Chaetoceros 

socialis than the dinoflagellates Heterocapsa triquetra, Pyrocystis lunala, and 

Scrippsiella trochoidea to > 1200 ppb total petroleum hydrocarbons (TPH) (i.e. > ~1200 

µg L-1) from a mixture of South Louisiana sweet crude oil and Corexit EC9500A. 

However, in another study the same researcher reported the opposite pattern that D. 

brightwellii was more vulnerable than H. triquetra to the individual PAH components 

naphthalene and benzo[a]pyrene (Ozhan & Bargu, 2014c). The reported 50% growth 

inhibition concentrations of benzo[a]pyrene were 1.13 µg L-1 for D. brightwellii and 7.02 

µg L-1 for H. triquetra, and those of naphthalene were 1011 µg L-1 for D. brightwellii and 

1653 µg L-1 for H. triquetra. These studies demonstrated the mixed responses of 

phytoplankton to hydrocarbon toxicity in terms of taxon-dependency.  

For protistan grazers, Almeda et al. (2014b) found higher vulnerability of ciliates 

species (Strombidium sp., Spirostrombidium sp., Eutintinnus pectinis and Favella 

ehrenbergii) than heterotrophic dinoflagellates species (Gyrodinium spirale and 

Protoperidinium divergens) in a 48-hour exposure to dispersant-treated crude oil. The 

same pattern, however, was not observed in this study. Among the protistan grazers 

tested, dinoflagellate species O. marina had the highest tolerance to CEWAF, despite the 

larger standard error in the IC50 estimation, while Protoperidinium sp. had the lowest IC50 

of specific growth rate. The estimated IC50 values of ciliate species Euplotes sp. and 

Metacylis sp. fell between those of the two dinoflagellate grazers (Table 3.4).   

Toxicity tolerance and associated bacteria 

Species-specific growth responses to CEWAF exposure were observed on the 

tested protistan species. The diatom D. brightwellii, the cryptophyte R. salina, and the 

dinoflagellate Protoperidinium sp. showed decreasing specific growth rates (SGRs) with 

increasing CEWAF concentrations of up to 30 µL L-1, while the decreasing trend of 

change in SGR was not observed on the haptophyte I. galbana, the dinoflagellates P. 
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sociale and Z. microadriatica, in the tested concentration range of CEWAF and led to 

poor model fit to the dose-response curve (Fig. 3.3). As mentioned above, some 

phytoplankton species are highly tolerant to petroleum hydrocarbons. C. socialis, H. 

triquetra, P. lunala, and S. trochoidea had an estimated 50% growth inhibition at 

concentrations of TPH at 1000-1800 ppb (i.e. ~1000-1800 µg L-1) and of PAHs at 7-25 

ppb (i.e. ~7-25 µg L-1) (Ozhan et al., 2014). One possible reason for the lack of decrease 

in SGRs for some species in our study was that these species could be highly tolerant to 

petroleum hydrocarbons toxicity and even the highest tested CEWAF concentration in 

this experiment (i.e. 30 µL L-1, estimated to be ~50 µg L-1 of TPAH50, Table 3.2) was 

not high enough to cause a significant reduction in their growth. High tolerance of the 

algal cells could be mediated by antioxidant enzymes and non-enzymatic substances that 

counteract the damages by the reactive oxygen species produced in exposure to 

petroleum pollutants. Antioxidant enzymes include the superoxide dismutase, catalase, 

and glutathione peroxidase involved in the biochemistry of the photosystems (reviewed 

in Lesser, 2006) and non-enzymatic antioxidants include β-carotene pigment and vitamin 

E (Ozhan et al., 2015). 

Apart from cell tolerance of the protist itself, the associated microbes of the algal 

cells could be responsible for the tolerance of the host cells by degrading the toxic 

hydrocarbons (Mishamandani et al., 2016; Thompson et al., 2017). Since all protistan 

species in this study were grown in non-axenic cultures, , their associated bacteria might 

comprise hydrocarbonoclastic species that were capable of breaking down the toxic 

compounds in the test media and potentially contributed to the tolerance to hydrocarbon 

toxicity of the host species. For example, Abed et al. (2010) reported that the addition of 

an aerobic heterotrophic bacteria strain that was phylogenetically related to known oil-

degrading species to the cultures of the cyanobacterium Synechocystis sp. caused a 8-fold 

increase in the biomass of the cyanobacteria in hydrocarbon-loaded media. They further 

argued that the exudates of the cyanobacteria, in turn, facilitated the degradation activities 

of the heterotrophic bacteria. However, the causation relationship was not always evident 

for some algal species. Severin & Erdner (2019) found the presence of oil-degrading 
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bacteria associated with the dinoflagellates Amphidinium carterae and P. sociale. but the 

associated bacteria did not cause significant changes in the growth or photosynthetic 

performance of their host cells. Overall, more research could be done to investigate the 

contribution of the associated microbes of phytoplankton cells to the tolerance of their 

host cells.  

Grazing responses when exposed to the combination of petroleum hydrocarbons 

and dispersant 

Sub-lethal effects of petroleum hydrocarbons on protozoan grazing 

Exposure to the soluble components of petroleum hydrocarbons caused the 

reduction in grazing activities of the grazers O. marina, Protoperidinium sp., and 

Metacylis sp. (Figs. 3.5 & 3.6). Among the soluble compounds, polycyclic aromatic 

hydrocarbons (PAHs) are considered Class 1 narcotic (non-ionic organic) chemicals 

(Hermens, 1989; Verhaar et al., 1992), and those with relatively lower molecular weight 

are thought to be the most toxic to aquatic organisms (NRC, 2003; Boehm & Page 2007; 

Forth et al., 2017a). The reduced grazing and ingestion rates of protozoan grazers in 

cultures could be a result of the toxic effects of petroleum hydrocarbons and (or) 

dispersant exposure that may alter the physiological and behavioral biology of the 

organisms (Connell et al., 1981).  

The Louisiana sweet crude oil used in this study contains high relative abundance 

of the PAHs naphthalene and phenanthrene (Table 3.2; Fig. 4.1 in Dissertation Chapter 4; 

Almeda et al., 2013). These two PAHs are highly water soluble (31.0 g m-3 and 4.57 g m-

3 for naphthalene and phenanthrene, respectively, Dabestani & Ivanov, 1999) and 

therefore were at high concentrations in the WAF and CEWAF media. Though the 

concentrations of PAHs were not directly determined, the concentrations of them in the 

CEWAF and WAF treatments were estimated based on published data (Forth et al., 

2017b). At the initial nominal concentration of 10 µL L-1 of CEWAF and WAF, there 

could be 11.2 µg L-1 of naphthalene and its alkylated homologs and 1.9 µg L-1 of 
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phenanthrene and its alkylated homologs in CEWAF and 1.2 µg L-1 of naphthalene and 

its homologs in WAF (Table 3.2). Naphthalene was shown to cause declines in motility, 

egg and fecal pellet production, clearance rate, and daily ration in the marine copepods 

Paracartia grani in a 4-day exposure at 130 µg L-1 (Calbet et al., 2007) and Oithona 

davisae in a 24-hour exposure at ≥ 1000 µg L-1 (Saiz et al., 2009). Phenanthrene was 

reported to cause impairment of embryogenesis and larval development of the oyster 

Crassostrea gigas in a 24-hour exposure at 2.0 µg L-1 (Nogueira et al., 2017). A 

detergent component, the linear alkylbenzene sulphonate, was shown to reduce the 

swimming speed and the grazing rate of blue mussel larvae (Hansen et al., 1997). The 

authors suspected that exposure to the chemical may have damaged the larval ciliary 

apparatus that is crucial for the animal’s swimming behavior. Although scientific 

literature on the effects of soluble PAHs on the behavioral physiology of unicellular 

plankton is less available, presumably, the mechanistic steps in prey capture by protozoa, 

including searching, capture, processing, and ingestion (Montagnes et al., 2008), could be 

interfered with by petroleum hydrocarbons exposure through the chemosensory and 

mechanosensory system pathways, and hence led to reduced grazing activity in the tested 

protozoa.  

CEWAF is the most toxic among treatments 

Exposure to either Corexit 9500A dispersant alone (Disp), Louisiana sweet crude 

oil alone (WAF), or a combination of crude oil and dispersant (CEWAF) at 

concentrations below 10 µL L-1 caused decline in grazing rates of the protistan grazers 

tested, except for Euplotes sp. (Figs. 3.5 & 3.6). In agreement with previous studies 

(Rogerson & Berger, 1981; Hemmer et al., 2011; Jung et al., 2012; Almeda et al., 2014b; 

Ozhan et al., 2014), a combination of crude oil and dispersant caused the most adverse 

effects to the protistan grazers Protoperidinium sp. and Metacylis sp. in general in this 

study. Protoperidinium sp. showed a greater drop in per capita ingestion rate in CEWAF 

(~45% drop) than in Disp (~10% drop) or WAF (~5% increase) media at 1 µL L-1 when 

compared to the Ctrl treatment. Similarly, Metacylis sp. showed zero per capita ingestion 
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rate (i.e. 100% drop) in both WAF and CEWAF media at 5 µL L-1 compared to the Ctrl 

treatment. While the Corexit 9500A dispersant itself can be toxic to aquatic species 

(George-Ares & Clark, 2000; Rico-Martinez et al., 2013), the application of this 

dispersant to Louisiana sweet crude oil likely increased the water solubility and thus the 

bioavailability of petroleum hydrocarbons to the tested aquatic species (Fiocco & Lewis, 

1999). Ozhan et al. (2014) reported a 50-fold increase in the concentration of TPH in 

South Louisiana sweet crude oil in the water column when Corexit EC9500A dispersant 

was added. In our study, at the initial nominal concentration of 5 µL L-1, the estimated 

concentration of TPAH50 in the CEWAF treatment was 8.3 µg L-1, which is 

approximately 10 times of that in the WAF treatment (Table 3.2) It is therefore 

reasonable that at the same nominal concentration, the CEWAF treatment containing 

higher concentration of water-soluble toxic components caused  greater decline in 

grazing rate of the tested protozoan species than the WAF treatment.  

However, the same pattern was not observed for O. marina and Euplotes sp., 

where the grazing rates did not differ significantly (P > 0.05) among the Disp, WAF and 

CEWAF treatments at the exposed nominal concentrations (Fig. 3.5). For the dilution 

experiment at 10 µL L-1 of crude oil and 0.5 µL L-1 of dispersant, the exposure to the 

CEWAF test medium caused near zero population growth and grazing mortality rates of 

I. galbana (Fig. 3.5), which was contradicting the results of SGRs at the same exposure 

concentration where mono-specific culture of I. galbana obtained a mean SGR of 0.39 d-1 

(Fig. 3.1). As discussed above, the associated bacteria or the pelagic bacteria in the 

cultures could have contributed to the degradation of the toxic compounds of petroleum 

hydrocarbons and thus the increased toxicity tolerance of the algal host cells. It could 

therefore have contributed to the tolerance of I. galbana to 10 µL L-1 CEWAF in the 

mono-specific culture in the SGR experiment. On the other hand, in the dilution 

experiment, though the grazing mortality of I. galbana by O. marina was near zero at 10 

µL L-1 CEWAF, O. marina is reported to graze on bacteria as well (reviewed in Guo et 

al., 2013), which could include the oil-degrading bacteria related to the tolerance of I. 

galbana to CEWAF. With the helpful bacteria being grazed down by O. marina, I. 
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galbana in the dilution experiment could therefore showed susceptibility to CEWAF 

toxicity and obtained a near zero growth rate. Meanwhile, in the dilution experiment, O. 

marina could be mainly consuming the bacterial prey and therefore its grazing rate 

towards the algal prey were negligible in exposure to crude oil pollutants.  

Gross growth efficiency apparently not affected by hydrocarbon pollutants 

The gross growth efficiency (GGE) represents the conversion fraction of prey 

carbon consumed to the predator carbon. The GGEs of Metacylis sp. in the Ctrl and Disp 

treatments were 0.44 and 0.40 (Table 3.5), respectively, which were within the reported 

range of 0.26-0.49 of the tintinnid ciliate Favella taraikaensis feeding on the 

dinoflagellate Alexandrium tamarense (Kamiyama et al., 2005). For Protoperidinium sp., 

the GGEs in the Ctrl, WAF, and CEWAF treatments were at similar levels of 0.17-0.20 

(Table 3.4). These GGEs were within the range reported by Buskey et al. (1994) that the 

dinoflagellate Protoperidinium huberi feeding on D. brightwellii had GGEs ranged from 

0.17 to 0.59, with a decreasing trend at higher food concentrations. The abnormality of 

GGE in the Disp treatment was caused by the unexpectedly low growth rate of the 

grazers (Fig. 3.6). As explained above, the low growth rate was resulted from averaging 

all the positive and negative values. If only the positive value is used, the growth rate in 

the Dips treatment would be 0.29 d-1 and the corresponding GGE would be 0.20.   

The similar GGEs of the grazers Protoperidinium sp. and Metacylis sp. among the 

various treatments suggested that the conversion of prey carbon to predator carbon by the 

grazers was not affected by crude oil and dispersant at the tested concentrations (Table 

3.5). It implies that the difference in the growth of grazers among treatments was due to 

the different degrees of hindrance to the grazing of grazers, that is, the total carbon intake 

from prey items, but not the toxic effect of hydrocarbons on the growth mechanisms per 

se. However, as also acknowledged by other studies (Ohman & Snyder, 1991; Buskey et 

al., 1994), our results should be interpreted with caution. We did not directly determine 

the carbon:volume ratio of the prey and grazers but relied on the conversion factors in the 

literature. Although we kept the prey densities at the start of the incubation experiment at 
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similar levels for the 4 treatments and used the geometric mean densities of prey and 

grazers for calculation of IRs, the prey densities at the end of experiment varied greatly 

among treatments (data not shown) due to the differential vulnerability to potential 

toxicants in different treatments. This might lead to incomparability of GGEs among 

treatments since GGE tends to change with food concentrations (Straile, 1997). 

Implications of impaired protozoan grazing by petroleum hydrocarbons exposure 

Overall, this study provided evidence of the differential sensitivities of protistan 

species in cultures (both algal prey and grazers) towards petroleum hydrocarbons. In the 

> 5-day exposure to CEWAF in the growth responses experiments, the varying toxicity 

tolerance between the grazer and the prey and the impairment of grazing activities by the 

grazers led to the increased abundance and accumulation of algal prey in the incubation 

containers of grazers. For instance, the grazer cultures of Protoperidinium sp. and 

Metacylis sp. had higher ratios of final:initial prey density at high CEWAF 

concentrations ( ≥ 1 and ≥ 15 µL L-1, respectively) than those in the Ctrl treatment (Table 

3.3). In other words, algal prey species were released from grazing of the protozoan 

grazers and given opportunities to proliferate in exposure to petroleum hydrocarbons due 

to the differences in vulnerability between the grazer and the prey. The more important 

question is, could such differences potentially lead to phytoplankton blooms in the field? 

To answer the question, one should consider: 1) the differentiation in toxicity 

vulnerability is dependent on the grazer-prey pairs; 2) cultures in controlled incubation 

conditions in the laboratory had high initial prey cell densities and nutrients enrichment; 

3) laboratory cultures excluded the dilution and mixing effects to the plankton assembly 

which may affect the prey cell patches in the field; 4) laboratory cultures neglect the 

grazing impact from predators other than protozoan grazers on the algal prey population; 

5) the concentrations of petroleum hydrocarbons in the field after an oil spill could be 

much higher that both the grazers and algal prey are severely affected; and so on. Without 

a solid answer to each of the questions, we can only argue that the differential 



 55 

vulnerability between grazers and prey led to the accumulation of prey cells in laboratory 

cultures.     

Nevertheless, there are studies showing the possible linkage between a disrupted 

top-down control by protozoa and the potential for the formation of algal blooms in 

mesocosm studies or in the field (Johansson et al., 1980; Riaux-Gobin, 1985; Sheng et 

al., 2011; Tang et al., 2019). In another study, we found a mismatch between 

phytoplankton growth and microzooplankton grazing in a mesocosm study when a 

natural plankton community was exposed to chemically dispersed crude oil (Dissertation 

Chapter 4). Although an accumulation of phytoplankton cells (as reflected by Chl-a 

concentration) was not observed, phytoplankton growth recovered on the 6th day of 

pollutants exposure while microzooplankton grazing remained negligible. Almeda et al. 

(2018) monitored the abundance of bloom forming protistan species in exposure to 

petroleum hydrocarbons in the northern Gulf of Mexico and suggested that disrupted 

predator-prey interaction resulted from oil spills and dispersant application could 

indirectly induce potential harmful algal blooms. However, there are occasions when the 

linkage between algal proliferation and oil pollution is not obvious. For examples, Hu et 

al. (2011) used satellite data and numerical modelling to investigate the relationship 

between the Deepwater Horizon oil spill in 2010 and the anomalies of the fluorescence-

based detection of phytoplankton biomass after the spill event. Unfortunately, there was 

not enough direct evidence to support their hypothesis.  

CONCLUSIONS 

In exposure to 0-30 µL L-1 of CEWAF, protistan species showed varying growth 

responses when exposed to the soluble components of petroleum hydrocarbons. Algal 

prey R. salina and grazers Protoperidinium sp. and Metacylis sp. showed high sensitivity 

while diatom prey D. brightwellii were highly tolerant. The relationship between toxicant 

sensitivity and cell size or taxonomic grouping of the protistan species was not strong. In 

terms of the sub-lethal effect on reducing the grazing activity of protozoan species, a 

combination of crude oil and dispersant (i.e. CEWAF) caused more negative effect to the 
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grazers Protoperidinium sp. and Metacylis sp. than that by dispersant alone or crude oil 

alone. Proliferation and accumulation of prey cells in predator-prey mixture upon 

CEWAF exposure was observed when protozoan grazing was impaired. It suggested that 

algal prey could be alleviated from the toxicant-impaired grazing by predators due to the 

vulnerability difference between the grazer and the prey.   
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Plankton species  Class  
*Estimated cell 

volume ±1 S.D. (µm3) 
 Algal prey added 

Isochrysis galbana  Prymnesiophyceae  4±2 x10  NA 

Rhodomonas salina  Cryptophceae  21±7 x10  NA 

Zooxanthella microadriatica  Dinophyceae  40±14 x10  NA 

Peridinium sociale  Dinophyceae  49±20 x102  NA 

Ditylum brightwellii  Bacillariophyceae  94±39 x102  NA 

Oxyrrhis marina  Dinophyceae  26±13 x102  I. galbana 

Euplotes sp.  Spirotrichea  21±8 x103  R. salina 

Metacylis sp.  Oligotrichea  19±5 x104  P. sociale & Z. microadriatica 

Protoperidinium sp.  Dinophyceae  23±4 x104  D. brightwellii 

Table 3.1  Protozoan grazers and their corresponding algal prey in culture. * Estimation based on the geometric models in 

Sun & Liu (2003) (see Methodology for details). NA represents data not applicable.  
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 CEWAF  WAF 

Nominal concentration (µL L-1) 1 3 5 10 15 20 30 100 200  1 3 5 10 30 

Nominal loading (mg L-1) 0.8 2.5 4.2 8.4 12.6 16.8 25.2 83.9 168  0.8 2.5 4.2 8.4 25.2 

Estimated concentration (µg L-1)                

TPAH50 1.7 5.0 8.3 16.6 24.9 33.2 49.9 166 332  0.2 0.5 0.8 1.6 4.9 

Chr 0.0 0.1 0.1 0.3 0.4 0.6 0.9 3.0 6.0  0.0 0.0 0.0 0.0 0.0 

C/T 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.3 0.6  0.0 0.0 0.0 0.0 0.0 

Flo 0.1 0.3 0.5 1.1 1.6 2.1 3.2 10.6 21.3  0.0 0.0 0.0 0.0 0.1 

F/P 0.0 0.1 0.2 0.3 0.5 0.6 0.9 3.2 6.3  0.0 0.0 0.0 0.0 0.0 

Nap 1.1 3.4 5.6 11.2 16.8 22.4 33.6 112 224  0.1 0.4 0.6 1.2 3.7 

Phe 0.2 0.6 1.0 1.9 2.9 3.9 5.8 19.5 38.9  0.0 0.0 0.0 0.0 0.1 

Table 3.2   Estimated initial concentrations of total PAHs (TPAH50) and the components of PAHs in the CEWAF and WAF 

treatments. Chr: C1-C4 chrysenes; C/T: chrysene + triphenylene; Flo: fluorenes + C1-C3 fluorenes ; F/P: C1-C4 

fluoranthenes/pyrenes; Nap: naphthalene + C1-C4 naphthalenes; Phe: phenanthrene + C1-C4 

phenanthrene/anthracenes. 
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CEWAF 

(µL L-1) 

 Protoperidinium sp. 

feeding on D. brightwellii 

  Metacylis sp. feeding on 

Z. microadriatica 

 Initial prey density 

(cells mL-1) 

Ratio of final:initial 

prey density 

 Initial prey density 

(cells mL-1) 

Ratio of final:initial 

prey density 

0  

49.9±4.5 

31.1  

270.0±224.1 

0.0 

1  40.8  0.0 

5  40.5  0.1 

15  41.5  2.0 

30  36.6  1.7 

Table 3.3  Mean initial prey cell densities (±1 S.D.) and the final:initial prey density 

ratios of Protoperidinium sp. and Metacylis sp. with > 5 days exposure to 

CEWAF.  
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Species 
Estimated IC50  

(µL L-1) 

Lack-of-fit test  

(P value) 

No-effect test  

(P value) 

I. galbana 0.7 (32.1) 0.002 0.979 

R. salina 0.9 (3.3) 0.714 0.028 

D. brightwellii 168.7 (67.0) 0.528 0.000 

P. sociale 2.5 (4045.8) 0.001 0.241 

Z. microadriatica 0.0 (0.2) 0.805 0.991 

O. marina 297.1 (147160) 0.700 0.807 

Euplotes sp. 26.1 (17.4) 0.949 0.056 

Protoperidinium sp. 1.1 (0.8) 0.746 0.000 

Metacylis sp. 5.9 (4.1) 0.116 0.000 

Table 3.4  Estimated IC50 (S.E.) of the SGRs of experimental organisms with exposure 

to CEWAF. The lack-of-fit F test with P < 0.05 indicates there is a lack of 

fit in the logistic model. No-effect chi-square test with P > 0.05 indicates 

there is no dose effect on the response (i.e. SGR) within the tested 

concentration range of CEWAF. Bold IC50 value denotes a good fit to the 

log-logistic model of the protistan species.    
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 Protoperidinium sp. Metacylis sp. 

Ctrl 0.17 0.44 

Disp 0.03 0.40 

WAF 0.19 NA 

CEWAF 0.20 NA 

Table 3.5  Estimated GGEs of Protoperidinium sp. and Metacylis sp. in various 

treatments. NA represents data not available due to the negative IR rates of 

the grazers. 
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Figure 3.1  Mean specific growth rates (±1 S.D.) of algal prey and protozoan grazers in exposure to the nominal 

concentrations of CEWAF.  



 63 

 

Figure 3.2  Model II standard major axis regression between the natural-log of cell 

volumes and mean specific growth rate in the control treatment (0 µL L-1 of 

CEWAF) of planktonic species grown at 20°C (solid line: R2 = 0.04, P = 

0.64).  
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Figure 3.3  Fitted log-logistic model of the mean SGRs of algal prey and protistan grazer species in exposure to CEWAF. * 

denotes good model fit of the SGR data (see Table 3.4 for details). 
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Figure 3.4  Model II standard major axis regression between the natural-log of cell 

volume and the natural-log of IC50 of prey species (dashed line: R2 = 1.00, P 

= not available), grazer species (dotted line: R2 = 0.77, P = 0.31), and all 

protistan species (solid line: R2 = 0.01, P = 0.89) in CEWAF exposure.  
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Figure 3.5  Coefficients (S.E.) of grazing mortality (g, filled bar) and population growth 

(µ, empty bar) of I. galbana by grazer O. marina, and R. salina by grazer 

Euplotes sp. in exposure to different treatments. Symbols “*” and “#” 

represent significant (P < 0.05) statistical difference among treatments for 

the coefficients g and µ, respectively.   
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Figure 3.6  Ingestion (filled bar, left y-axis) and growth rates (empty bar, right y-axis) 

of Protoperidinium sp. fed on D. brightwellii and of Metacylis sp. fed on Z. 

microadriatica and P. sociale in exposure to different treatments.  
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Chapter 4. Microzooplankton Herbivory Reduced by Petroleum 

Pollutants in a Mesocosm Study 

ABSTRACT 

Microzooplankton are major consumers of phytoplankton and essential 

components in the biogeochemical cycling of carbon and nutrients in the oceans. 

However, their ecological functions in marine ecosystems could be substantially affected 

by crude oil pollution originating from anthropogenic activities, such as disastrous oil 

spills, or chronic natural seeps that occur in various regions of the ocean. Since on-site 

measurement of its effects on microzooplankton immediately after crude oil exposure is 

not always possible, a mesocosm study simulating an oil spill incident was conducted to 

investigate its effects on the grazing impact of microzooplankton on phytoplankton. A 

natural plankton community was exposed to 10 µL L-1 of chemically dispersed crude oil 

(DOil) in outdoor mesocosms for 7 days, with control (Ctrl) mesocosms set up for 

comparison. Dilution experiments were conducted to estimate the grazing rates of 

microzooplankton on the 2nd and 6th days of pollutants exposure. Results based on 

chlorophyll-a concentrations revealed that microzooplankton grazing rates in the Ctrl 

mesocosms ranged from 0.4-2.3 d-1 on the 2nd and 6th days. There was a lack of obvious 

microzooplankton grazing in the DOil mesocosms on both days, as reflected by negative 

grazing rates. While the coefficients of in situ phytoplankton growth rates in the Ctrl 

mesocosms average -0.32 d-1 and 1.68 d-1 on Days 2 and 6, respectively, , those in the 

DOil mesocosms were negative on the 2nd Day but averaged 2.16 d-1 on the 6th day. A 

significantly positive relationship between in situ phytoplankton growth and 

microzooplankton grazing rates was found in the Ctrl treatment but not in the DOil 

treatment. This suggests a de-coupling between phytoplankton growth and 

microzooplankton in oil-polluted seawater. 
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INTRODUCTION 

Microzooplankton (20-200 µm) are important consumers of primary production 

(Strom et al., 2001) that are capable of consuming > 60% of primary production daily in 

areas including open oceans, coastal region and estuaries (Calbet & Landry, 2004; 

Calbet, 2008). They are an essential food source of mesozooplankton as well (Stoecker & 

Capuzzo,1990; Calbet & Saiz, 2005). Toxic hydrocarbon components of crude oil cause 

lethal and sub-lethal effects on marine planktonic organisms that eventually change the 

abundance and composition of the plankton community (Dahl et al., 1983; Sargian et al., 

2005; Gonzalez et al., 2009; Gilde & Pinckney, 2012). For example, the water-soluble 

fraction of diesel fuel oil increased the abundance of bacterivorous nanoflagellates but 

decreased the abundance of micro- and mesozooplankton (Koshikawa et al., 2007). In a 

mesocosm study, exposure to dispersed crude oil drastically increased abundance of 

bacteria and heterotrophic flagellates and sharply reduced that of phytoplankton and 

zooplankton within the first 2 days (Jung et al., 2012).  

Crude oil released into aquatic ecosystems originates from sources such as natural 

seeps and incidents of leaks, oil spills, and discharges related to anthropogenic activities. 

The combined amount of pipeline and oil tank spills from 1990 to 1999 averaged 112 

kilotons annually, accounting for 9% of total crude oil entering the marine environment 

(Burgherr, 2007). During real-world oil spill events, however, the immediate effects of 

petroleum pollutants on microzooplankton are not well understood due to the delay in 

detection of spill incidents or difficulties in getting to the spill site promptly. While 

previous studies focused only on the changes in abundance and composition of 

planktonic organisms in reaction to crude oil pollutants, the effect of crude oil and 

dispersants on the trophic interactions of natural assemblages of microzooplankton is 

rarely investigated.  

In this study, we simulated an oil spill in outdoor mesocosms containing natural 

whole seawater to test the hypothesis that oil pollutants adversely interfere with the 

trophic interaction of microzooplankton. This study is one of the few that focused directly 
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on the effect of oil pollution on the grazing impact of microzooplankton on 

phytoplankton in semi-controlled conditions. 

METHODOLOGY 

Mesocosm set-up and sampling 

Six 500 L mesocosms (3 for the control treatment and 3 for the oil-spill treatment) 

containing whole seawater (WSW) from Ship Channel (Port Aransas, Texas) were set-up 

at the Fisheries and Maricultural Laboratory of the Marine Science Institute in May 2017. 

To maintain steady water temperature, all mesocosms were partially submerged into a 

rectangular trough with circulating water connected to a water cooler set at 25°C. To 

avoid damaging delicate planktonic organisms, artificial mixing by aeration was not 

employed in the mesocosms. Instead, seawater in mesocosms was manually mixed using  

paddles twice daily. Water temperature and salinity of the control treatment mesocosms 

were measured occasionally throughout the experimental period. 

To simulate an oil spill incident in the sea, three of the mesocosms were dosed 

with chemically dispersed crude oil (DOil) one hour after filling-in with WSW. Light 

Louisiana Sweet crude oil mixed with Corexit 9500A dispersant at a volume ratio of 20:1 

was used. The non-weathered crude oil and dispersant were stored in capped glass bottle 

in darkness at ~4°C and warmed at room temperature for ≥ 1 hour before use. The DOil 

mixture was pre-mixed using a magnetic stir-bar (at ~20-25% vortex) for one hour in a 1 

L glass capped aspirator bottle with 0.2 µm filtered seawater in darkness at room 

temperature. The mixture was then added into the mesocosm to make the final nominal 

concentrations of crude oil and dispersant to be 10 µL L-1 and 0.5 µL L-1, respectively. 

Control (Ctrl) mesocosms containing WSW without the addition of DOil were set-up in 

triplicate for comparison.  
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Concentrations of petroleum hydrocarbons  

Triplicate 40 mL water samples were collected below the surface from each DOil 

mesocosm for identification and quantification of polycyclic aromatic hydrocarbons 

(PAHs) and total petroleum hydrocarbon (TPH) at several time points: immediately after 

addition of pre-mixed DOil (as Day 0), on Day 1, Day 3, and Day 7. Hydrocarbon 

analyses using gas chromatography mass spectrometry were conducted by ALS 

Environmental (Houston, Texas).  

The petroleum hydrocarbon concentrations were further processed to obtain the 

degradation rates of PAHs. By assuming the degradation follows a first order reaction 

kinetics, the rate constant of degradation of each PAH component was computed as  

Ct  =  C0e−kt    Eqn 4.1 

where Ct is the instantaneous concentration at different time points and C0 is the initial 

concentration. The character k represents the rate constant and t represents time in days. 

The coefficient of k was estimated as the negative value of the slope of the linear 

regression of ln(Ct) against t. The half-life in days of the PAH component was calculated 

as ln(2)/k.    

Chlorophyll-a concentrations and microzooplankton herbivory 

To investigate the grazing impact of microzooplankton on phytoplankton under 

the influence of petroleum pollutants, dilution experiments (Landry & Hassett, 1982) 

were conducted on Days 2 and 6 to estimate the coefficients of population growth (µ) and 

grazing mortality (g) of phytoplankton in the mesocosms. WSW from each mesocosm 

was collected in the sub-surface (~0.5 m depth) using a Van Dorn water sampler, 

transported to the laboratory and processed within one hour. A portion of the WSW was 

filtered through GF/F filters (0.7 µm porosity, Whatman) to obtain filtered seawater 

(FSW). The remaining WSW was filtered through 200 µm mesh to remove large 

plankton and detritus. Dilutions fractions of 10%, 37%, 100% of WSW in duplicate were 

prepared by mixing 200 µm filtered WSW and FSW accordingly. Nutrient amendments 
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of nitrate (NO3
-), phosphate (PO4

3-), and silicate (SiO3
2-) were added to each dilution 

fraction to make the final concentrations in the 125 mL glass incubation bottles exceed 

0.88 mM, 0.036 mM, and 0.1 mM, respectively. Dilution fraction of 100% (i.e. 

undiluted) without nutrient amendment was prepared in duplicate to estimate in situ 

growth rate of phytoplankton (µ0) in mesocosms. All incubation bottles were incubated in 

the outdoor rectangular trough in the sub-surface (~0.5 m depth) for 24 hours. The bottles 

were manually inverted upside-down a few times for mixing during the incubation 

period.  

Chlorophyll-a (Chl-a) concentrations of each dilution fraction before and after 

incubation were determined by filtering 10 mL of water sample onto GF/F glass fiber 

filters. The filters were then extracted for photosynthetic pigments with 90% acetone in 

darkness at 4°C for 24 hours. Concentrations of Chl-a were measured using a Trilogy 

Spectrometer (Turner Designs) with a Chl-NA Module. Coefficients of population 

growth (µ) and grazing mortality (g) of phytoplankton of the enriched bottles were 

estimated according to method of Landry & Hassett (1982) based on the Chl-a 

concentrations. Coefficients of in situ phytoplankton growth were calculated using the 

growth rate of the 100% unamended bottles with correction for microzooplankton 

grazing when a statistically significant positive grazing was found in the dilution 

experiment. A subsample of 40-50 mL from each incubation bottle was preserved with 

acidic Lugol’s solution (~5% final concentration) for identification and enumeration of 

phytoplankton and microzooplankton.  

Statistical analysis 

All statistical analyses and graphical presentations were conducted using R 

version 3.6.1 (R Core Team, 2019) and packages lmodel2 version 1.7-3 (Legendre, 

2018), ggplot2 version 3.2.1 (Wickham, 2016), and ggforce version 0.3.2 (Pedersen, 

2020).  

Model II linear regressions tests (with 50,000 permutations) were applied to test 

for the presence of a significant relationship between the in situ population growth and 
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grazing mortality rates of phytoplankton in the Ctrl and DOil treatments using the 

package lmodel2 in R. Considering that the independent variables (i.e. the in situ 

population growth rate) were subject to natural variation and measurement error and both 

variables were in comparable units of measurement, results from the major axis 

regression analysis was chosen for further presentation and  discussion of results (Sokal 

& Rohlf, 2012).  

RESULTS 

Temperature, salinity of seawater and concentration of PAHs in mesocosms 

The temperature of seawater inside the Ctrl mesocosms ranged from 20.6-25.9 °C 

on average during the experiment period. Salinities of the Ctrl mesocosms increased from 

30.6 PSU on Day 0 to 32.1 PSU on Day 6 on average (Table 4.1).  

The concentrations of TPH averaged 16.6 mg L-1 on Day 0 and dropped to 6.1 mg 

L-1 on Day 1. The concentrations were below the detection limit of 0.19 mg L-1 on Days 3 

and 7 (Fig. 4.1). The concentration of naphthalene on Day 0 was 4.2 µg L-1 (Table 4.2). It 

dropped to 3.6 µg L-1 on Day 1 and to < 0.1 µg L-1 on Day 7 (Fig. 4.1). Phenanthrene was 

the most abundant component of PAHs of the crude-oil-dispersant mixture used in the 

experiment. Immediately after addition of pre-mixed DOil into the mesocosms, the 

average concentration of phenanthrene, fluorene, and chrysene were 13.3 µg L-1, 3.3 µg 

L-1, and 1.6 µg L-1, respectively, on Day 0 (Table 4.2). The concentrations of 

phenanthrene and fluorene dropped drastically to approximately 9% and 17%, 

respectively, within one day. On Day 7, the average concentrations of these 2 

components were 0.3 µg L-1 and 0.1 µg L-1, respectively, while concentrations of other 

PAH components were mostly below the detection limit of 0.1 µg L-1 (Fig. 4.1). Except 

for Benzo[a]pyrene, the rate constants of degradation of other PAH components ranged 

from 0.30 d-1 to 0.70 d-1, and the half-lives of all components ranged from 0.7 to 2.3 days 

(Table 4.2).   
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Chlorophyll-a concentration and abundance of plankton  

Chlorophyll-a (Chl-a) concentration was used as a proxy to reflect the abundance 

of phytoplankton. Unexpectedly, Chl-a concentrations were highly variable among 

mesocosms of the same treatment on both days, particularly in the DOil mesocosms. On 

Day 2, the Chl-a levels ranged from 0.15-3.50 µg L-1 in the DOil mesocosms and from 

1.41-3.59 µg L-1 in the Ctrl mesocosms (Fig. 4.2). Such great variation in the Chl-a levels 

could be due to the natural variation that was introduced during the set-up of mesocosms 

when natural seawater was collected directly from the Ship Channel and filled into the 

mesocosms. On Day 6, the average Chl-a concentration in the Ctrl mesocosms was 

higher than that in the DOil mesocosms, reflecting relatively higher abundance of 

pigmented plankton in the Ctrl mesocosms (Fig. 4.2).  

Unfortunately, some of the preserved plankton samples were lost in storage due to 

Hurricane Harvey in 2017. Enumeration of available samples revealed that the mean cell 

densities of microplankton grazers including aloricate ciliates (1 cells mL-1 in the Ctrl 

mesocosms and  0-0.8 cells mL-1 in the DOil mesocosms), loricate ciliates (0-2 cells mL-1 

in the Ctrl mesocosms and 0 cells mL-1 in the DOil mesocosms), and dinoflagellates (3-8 

cells mL-1 in the Ctrl mesocosms; 0-3.5 cells mL-1 in the DOil mesocosms) were 

relatively low in the DOil treatment (Table 4.3). There was a predominance of 

unidentified cells (< 5 µm) in both treatments on Day 6, with mean cell densities as high 

as up to 3 orders of magnitude greater than those of diatoms and dinoflagellates (Table 

4.3). 

Microzooplankton herbivory and phytoplankton growth 

Coefficients of population growth (µ) and grazing mortality (g) of phytoplankton 

were estimated based on Chl-a concentrations. Even though some of the estimated 

grazing coefficients were not statistically significant or only marginally significant (P > 

0.05, Table 4.4), coefficient g in the Ctrl mesocosms ranged from 0.36-1.38 d-1 on Day 2 

and from 1.00-2.28 d-1 on Day 6 while coefficients µ ranged  from1.61-1.89 d-1 on Day 2 
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and from 2.25-3.12 d-1 on Day 6. When both days are considered, in situ phytoplankton 

growth coefficients (µ0) in the Ctrl mesocosms ranged from -0.44 d-1 to 2.86 d-1 and were 

always lower than the corresponding µ (Table 4.4). On the other hand, coefficient µ was 

negative on Day 2 in the DOil mesocosms while they varied widely from -0.28 d-1 to 2.15 

d-1 on Day 6. Unexpectedly, coefficient µ0 was mostly higher than the corresponding µ in 

the DOil mesocosms. In the DOil mesocosms, the coefficient µ0 averaged 0.40 d-1 on Day 

2 and 2.16 d-1 on Day 6. Coefficient g in the DOil mesocosms on Days 2 and 6 were all 

negative (Table 4.4), indicating negligible grazing impact of microzooplankton. Model II 

linear regression (major axis) between coefficients g and µ0 revealed a statistically 

significant relationship in the Ctrl mesocosms (g = 0.47µ0 + 0.91; R2 = 0.63; P < 0.05) 

but not in the DOil mesocosms (g = -0.20µ0 - 1.23; R2 = 0.15; P = 0.22) (Fig. 4.3).  

DISCUSSION 

Simulation concentration and the rapid loss of petroleum hydrocarbons 

In real oil spill incidents in the oceans, the concentration of spilled oil in the water 

column depends on the total amount of the oil released into the environment and the 

various factors that affect the transport, distribution, and fate of the oil (NRC, 2003). For 

example, the reported range of the dissolved/dispersed crude oil in the surface water 

found at sites near the Prestige oil spill in Spain days after the incident was from 0.19-

28.8 µg L-1 (Gonzales et al., 2006). Other researchers reported higher concentrations of 

total soluble hydrocarbons in the same spill, with the highest concentration of 140 µg L-1 

shortly after the spill and a peak concentration of 75 µg L-1 months later (Bode et al., 

2006). A more disastrous oil spill occurred in the Gulf of Mexico in 2010. It was 

estimated that a total of 4.9 million barrels (~779,000 metric tons) of oil were released 

during the Deepwater Horizon spill event (Kerr, 2010), which was much higher than the 

total amount of spilled oil in the Prestige disaster (> 60,000 metric tons, Garcia-Soto, 

2004). Conceivably, the concentrations of soluble hydrocarbons at sites near the 

Deepwater Horizon spill right after the disaster would be higher than those detected in 
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the Prestige oil spill. The point is, the concentrations of oil in the water column after an 

oil spill could vary greatly, depending on the scale of the oil release and the fates of the 

spilled oil.   

In our experiment, we used a nominal concentration of 10 µL L-1 of chemically 

dispersed Louisiana sweet crude oil to simulate an oil spill event in the mesocosms. 

Assuming the crude oil has similar physical properties to those of Macondo (MC252) 

crude oil and an evaporation of ~45% volume at 15°C, its density would be ~0.9 g cm-3 

(FISG, 2010), and the concentration of 10 µL L-1 could therefore be equivalent to ~9 mg 

L-1. Although this concentration was higher than some detected concentrations in oil spill 

events (e.g. 140 µg L-1 in the Prestige oil spill, Bode et al. (2006)), similar or even higher 

concentrations were used in other ecotoxicity studies on aquatic organisms. For example, 

Ozhan et al. (2015) exposed marine phytoplankton Ditylum brightwellii and Heterocapsa 

triquetra to as high as 8 mg L-1 of total petroleum hydrocarbons and found that the 

antioxidant enzymes of the organisms were able to protect the phytoplankton species for 

concentrations < 4 mg L-1. Gertler et al. (2010) exposed marine protozoan grazers and 

heterotrophic bacteria in 500 L mesocosms spiked with 2.5 L heavy fuel oil (~4.5 g L-1 of 

oil, assuming a density of 0.9 g cm-3) and found changes in the community composition 

of protozoan grazers and increases in abundance of flagellates and ciliates associated with 

biofilms of oil-degrading microbes. Cohen et al. (2014) incubated a coastal copepod 

species, Labidocera aestiva, in the water accommodated fraction with a nominal loading 

of 50 mg L-1 of Macondo crude oil and observed impaired swimming and reduced 

swimming speed of the animals shortly after exposure. Given the wide variety of the 

physiological responses and the toxicity tolerance of the planktonic organisms, the 

simulation concentration of 10 µL L-1 of chemically dispersed crude oil was chosen for 

our study. It was expected to observe affected microzooplankton grazing activity at this 

concentration when compared to the control treatment.  

In the DOil mesocosms of the current study, the concentrations of total petroleum 

hydrocarbons (TPH) dropped drastically from 16.6 mg L-1 on Day 0 to 6.1 mg L-1 on Day 

1, and below 0.19 mg L-1 on Day 3. This indicated the rapid disappearance of petroleum 
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hydrocarbons in general. The concentrations of most components of the polycyclic 

aromatic hydrocarbons (PAHs) dropped to a half in approximately 1-2 days (Table 4.2). 

Similarly, Yamada et al. (2003) found in a mesocosm study that PAHs with less than 

three benzene rings (e.g. naphthalene and phenanthrene) disappeared mostly within 2 

days while those with more than 4 rings (e.g. pyrene and chrysene) remained in the water 

column for up to 9 days. Our results indicated that the concentration of the most abundant 

component, phenanthrene, dropped to ~9% within 1 day while that of the second most 

abundant component, naphthalene, dropped to ~42% on Day 3 (Fig. 4.1). The 

disappearance of pyrene and chrysene was more rapid than reported by Yamada et al. 

(2003), with a concentration percentage of < 2% on Day 3 for both components (Fig. 

4.1). Petroleum hydrocarbons in the outdoor mesocosms could be lost through various 

mechanisms in this study. For example, surface evaporation, photooxidation, 

emulsification, sedimentation, adsorption to inner surfaces of containers, intake by 

organisms, and biodegradation (NRC, 2005) are all possible sources of loss. Prince et al. 

(2017) reported that, though concentration dependent, the half-life of detectable oil 

hydrocarbons through biodegradation was from 7-14 days in the sea. Given the rapid loss 

of PAHs components to below the detection limit within the first 3 days in this study, it 

suggested that mechanisms other than biodegradation contributed substantially to the loss 

of petroleum hydrocarbons.  

Crude oil toxicity and phytoplankton growth 

Concentration of Chl-a was used as a proxy for phytoplankton abundance in this 

study. Ozhan et al. (2015) showed that an increase in crude oil concentration did not 

affect the cellular Chl-a content but did alter the cell abundance of the diatom D. 

brightwellii and the dinoflagellate H. triquetra. In our study, the drop in Chl-a 

concentration from Day 2 to Day 6 in DOil mesocosms might reflect a similar negative 

effect that cell abundance of photosynthetic cells was lowered by hydrocarbons toxicity, 

despite that phytoplankton growth rates were higher on Day 6 in general (Table 4.4).  
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Given that grazing mortality of phytoplankton was negligible in the DOil 

mesocosm (Table 4.4), the reduced  growth of phytoplankton on Day 2, compared to the 

Ctrl mesocosms, could have resulted from the toxicity of petroleum hydrocarbons. 

Louisiana sweet crude oil contains a high proportion of low molecular weight polycyclic 

aromatic hydrocarbons (PAHs) such as naphthalene and phenanthrene (Almeda et al., 

2013; this study). It is commonly believed that PAHs of crude oil are the major 

substances causing adverse effects to aquatic organisms due to their high solubility in 

water and thus high bioavailability (NRC, 2005). For example, Hjorth et al. (2008) 

showed a drastic decline in Chl-a concentration (to as low as 20% of control) in 

mesocosms after one day exposure to a nominal concentration of 50 nM of the PAH 

pyrene. In another study, pyrene and phenanthrene caused a decrease in the cell 

abundance in cultures of Synechococcus sp., Chlorella sp., Micromonas sp., and 

Phaeodactylum sp. (Echeveste et al., 2010a). Other components of PAHs, such as 

chrysene, could also affect the phytoplankton community. Using the oil source from the 

Prestige oil spill and the reported concentrations of hydrocarbons right after the spill (23 

µg L-1 of chrysene equivalents L-1), Gonzalez et al. (2009) observed decreases in both the 

Chl-a concentration and the photosynthetic activity of the exposed natural phytoplankton 

assemblages from both the oceanic and coastal regions. However, in a 120-hour 

exposure, they also observed a size-dependent sensitivity of autotrophic plankton to the 

hydrocarbons that increased the biomass of nanoflagellates and diatom < 20 µm but 

decreased the biomass of picophytoplankton and diatom > 20 µm. The use of dispersant 

facilitates dissolution of PAHs by breaking down crude oil into smaller droplets, which 

further increases the dissolution of soluble toxins, increasing their toxicity (Wolfe et al.., 

1998; Yamada et al., 2003). Dispersant alone can also be harmful to aquatic species 

(George-Ares & Clark, 2000; Ozhan & Bargu, 2014a).  

In the Ctrl treatments, in situ phytoplankton growth rates (µ0) were generally 

lower than those in the enriched incubation bottles (µ) (Table 4.4), suggesting nutrient 

limitation of phytoplankton growth inside the mesocosms. In contrast, coefficients µ0 

were generally greater than the corresponding µ in the DOil mesocosms. One plausible 
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explanation could be the result of under-estimation of µ in dilution experiment when the 

regression slope is positive and statistically significant (i.e. lowered value of y-intercept 

of the linear regression between dilution fractions and apparent growth rates of 

phytoplankton when the slope is positive).  

Phytoplankton on Day 6 in the Ctrl treatment obtained population growth rates µ 

of 2.25-3.12 d-1 in the enriched incubation and those in the DOil treatment obtained in 

situ growth rates µ0 ranged from 0.46-3.37 d-1 in unamended incubations (Table 4.4). 

Phytoplankton in the DOil mesocosms obtained an in situ growth rate (µ0) of 2.16 d-1 on 

Day 6 on average (Table 4.4), it indicated that the phytoplankton community recovered 

from the toxicity of pollutants on Day 6. It co-occurred with the drastic drops in the 

concentrations of most PAH components near the end of the experiment (Fig 4.1). 

Admittedly, these growth rates were relatively high compared to the reported range, 

however, they were not impossible. In a compilation of data that included 788 paired 

observations from 66 studies (Calbet & Landry, 2004), there were occasions that the 

phytoplankton growth rates exceeded 2.5 d-1 and reached as high as ~3.5 d-1 while the 

microzooplankton grazing rates ranged from approximately 0.5-2.0 d-1. With nutrient 

enrichment and outdoor incubation (i.e. light intensities averaged ~505 µE m-2 s-1 when 

all the 15-minute-interval measured data points during May 1st-31st, 2017, where 

considered. Data retrieved from http://cdmo.baruch.sc.edu/get/landing.cfm; the Ship 

Channel station), the phytoplankton in the Ctrl mesocosms could therefore reach very 

high population growth. Similarly, the high in situ population growth of phytoplankton in 

the DOil mesocosms on Day 6 could be related to outdoor incubation, though not 

nutrient-enriched, and the lack of microzooplankton grazing (Table 4.4). Additionally, 

the presence of oil-degrading bacteria in the mesocosm could have increased the 

remineralization of nutrients and thus promoted the growth of phytoplankton (e.g. Abed, 

2010; Discussion in Dissertation Chapter 3).  

Despite the high population growth rates of phytoplankton on Day 6 in both 

treatments, there was no increase in Chl-a concentration of the mesocosms when 

compared to Day 2 (Fig. 4.2). In the Ctrl treatment, microzooplankton grazing accounted 
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for only 47% of the phytoplankton growth while that in the DOil treatment was negligible 

(Fig 4.3). This suggested that mechanisms other than microzooplankton grazing could 

have also contributed to the loss of phytoplankton cells in the mesocosms. These 

mechanisms could include mesozooplankton grazing, viral lysis or sedimentation of 

phytoplankton cells to the bottom of the mesocosms. Future research efforts are needed to 

investigate the effects of these mechanisms on the loss of phytoplankton cells in oil-

polluted seawater.  

Microzooplankton herbivory in oil-polluted seawater 

Grazing coefficients in the Ctrl mesocosms ranged from 0.36-2.28 d-1 (Table 4.4), 

which were within the reported range of other studies (Nejstgaard et al., 1997; Suzuki et 

al., 2002; Calbet & Landry 2004; Sommer et al., 2005; Suffrian et al., 2008; Chen et al., 

2009; Liu et al., 2014), while those in the DOil mesocosms were negligible on both Days 

2 and 6. The relatively low abundance of microplankton grazers (heterotrophic 

dinoflagellates and ciliates) in the DOil mesocosms (Table 4.3) could be the reason for 

low microzooplankton herbivory, which is also evident in other mesocosm studies (Jung 

et al., 2012; Ortmann et al., 2012). 

Components of PAHs such as phenanthrene, fluoranthene, fluorene, pyrene, and 

benzo[a]pyrene have been shown to cause adverse effects on microzooplankton species at 

cellular and sub-cellular levels in laboratory studies (Pillai et al., 2003; Gomiero et al., 

2012; Nogueira et al., 2017; Han et al., 2019). Specifically, petroleum toxicity affects the 

grazing behavior of marine protozoa. The heterotrophic dinoflagellate Oxyrrhis marina, 

Protoperidinium sp., and the ciliate Metacylis sp. exhibited lower grazing impact towards 

algal prey in exposure to the water accommodated fraction of petroleum hydrocarbons 

(Dissertation Chapter 3). Apart from direct adverse effects on the grazers, petroleum 

hydrocarbons could have been taken up by protistan grazers through direct ingestion of 

oil droplets (Almeda et al., 2014a) or through the dietary route (Corner et al., 1976; Liu 

et al., 2007) and bioaccumulated inside their bodies. Even though the concentrations of 

PAHs in the DOil mesocosms dropped drastically within one day, the intermediate 
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products generated by photodegradation of petroleum hydrocarbons could persist or 

enhance their toxicity (reviewed in Pelletier et al., 2006) to negatively affect the 

microzooplankton community. For instance, the bioaccumulated hydrocarbons inside the 

cell body of protistan grazers could produce reactive oxygen species under the ultra-

violet exposure from sun light through the process of photosensitization and cause 

damage to the tissue of the grazers (Barron et al., 2017).  

The mesocosms were filled with whole seawater without pre-screening to remove 

mesozooplankton during the experiment initiation. Top-down control on 

microzooplankton by mesozooplankton could have occurred in both the Ctrl and DOil 

treatments. For example, Buskey et al., (2003) showed a significantly higher ciliates 

population in mesocosms with approximately half of the copepod Acartia tonsa removed 

from the zooplankton community. When the abundance of phytoplankton in the ambient 

water is low, ciliates can provide approximately 50% of copepods’ diet in terms of 

carbon (Calbet & Saiz, 2005). In exposure to petroleum hydrocarbons, copepods 

generally have higher tolerance to petroleum hydrocarbons than microzooplankton (Avila 

et al., 2010; Jiang et al., 2012; Cohen et al., 2014). Therefore, apart from hydrocarbon 

toxicity, we cannot rule out the possibility that the microzooplankton communities in the 

DOil mesocosms were further subject to the grazing from the less susceptible 

mesozooplankton. Though the density of mesozooplankton in the mesocosms and their 

grazing impact on the microzooplankton community were not determined in this study, 

our samples from Day 6 indicated that the DOil mesocosms had comparatively lower 

abundance of microzooplankton grazers (e.g. aloricate and loricate ciliates) than the Ctrl 

mesocosms (Table 4.3). At the current exposure concentration of dispersed crude oil (10 

µL L-1), less susceptible copepods could therefore have preyed on the oil-affected 

microzooplankton community, further reducing the micro-size grazers abundance in the 

DOil mesocosms when compared to the Ctrl treatment.  

Contrary to some studies indicating that plankton species of smaller cell size or 

biovolume are more sensitive to the toxicity of PAHs (Echeveste et al., 2010a; Echeveste 

et al., 2011; Othman et al., 2012), Lugol’s preserved samples of Day 6 revealed the 
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predominance of unidentified cells < 5 µm (Table 4.3) in both the Ctrl and DOil 

treatments, indicating that these small cells were relatively unaffected by hydrocarbons 

toxicity. Dalby et al. (2008) examined the communities of microeukaryotes in oil-

polluted systems of 100 ppm of crude oil and 10 ppm dispersant using genetic markers 

and revealed high abundance of the bacterivores Paraphysomonas spp. and Monosiga sp. 

phylotypes, which usually have cell size ≤ 6 µm in cultures. It is possible that the 

predominant small cells in our samples were heterotrophic flagellates that feed on small 

non-pigmented eukaryotic or prokaryotic microbes. Their grazing activities in the Ctrl 

and DOil mesocosms were therefore not effectively detected by experimental estimations 

based on the concentrations of Chl-a. Future research is needed to determine the 

population dynamics and degree of grazing impact of nano-size heterotrophic flagellates 

on small eukaryotes and bacteria in oil-polluted seawater.  

The coupling between phytoplankton growth and microzooplankton grazing 

Coupled phytoplankton growth and microzooplankton grazing was found in the 

Ctrl mesocosms but not in the DOil mesocosms (Fig. 4.3). Microzooplankton are 

commonly thought to be more important than mesozooplankton as consumers of primary 

producers due to their relatively higher growth rate, great feeding capability on diverse 

phytoplankton types, and rapid response to changes in food availability at both individual 

and population levels (Banse, 1982; Hansen et al., 1997; Strom & Morello, 1998; Hansen 

& Calado, 1999). Microzooplankton grazing is therefore thought to be an effective 

control of phytoplankton biomass, even during episodes of phytoplankton blooms (Sherr 

& Sherr, 1994; Strom et al., 2001; Calbet & Landry, 2004), though the suggestion that 

herbivorous protists are capable of controlling the initiation and development of algal 

blooms is questioned (Sherr & Sherr, 2009). In the present study, the relationship 

between in situ phytoplankton growth and grazing mortality in the Ctrl treatment showed 

that microzooplankton grazing accounted for 47% of phytoplankton growth based on the 

slope of Model II linear regression (Fig. 4.3). This means that nearly half of the 

phytoplankton cells produced daily in the Ctrl mesocosms were consumed by 
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microzooplankton. Other mechanisms like grazing by mesozooplankton, viral lysis, 

natural mortality or sinking to the container’s bottom could have contributed to the 

removal of phytoplankton cells from the water column in addition to microzooplankton 

grazing.  

In contrast to the Ctrl treatment, the lack of a significant relationship between in 

situ phytoplankton growth and grazing mortality in the DOil treatment (Fig. 4.3) 

suggested a de-coupled interaction between phytoplankton growth and microzooplankton 

grazing. Previous studies showed that differential sensitivity of planktonic species to 

crude oil and dispersant could contribute to the disruption of trophic interaction in oil-

polluted seawater (Echeveste et al., 2010b; Perez et al., 2010; Ozhan et al., 2014). In our 

study, the differential sensitivity of plankton was evident: compared to Day 2, in situ 

phytoplankton growth in the DOil mesocosms increased to the average of 2.16 d-1 on Day 

6 while microzooplankton grazing remained negligible (Table 4.4). Additionally, in other 

exposure experiments, it was reported that low concentration of petroleum hydrocarbons 

could stimulate phytoplankton growth or toxin production by harmful algal species 

(Dunstan et al., 1975; Huang et al., 2011; Ozhan & Bargu, 2014b). Strom (2002) argued 

that grazing-deterring toxins and other exudates produced by algal prey, and poor 

nutritional status or food quality of prey for micro-grazers could depress 

microzooplankton grazing, and thus contribute to the decoupling between phytoplankton 

growth and microzooplankton grazing.  

The consequences of de-coupled phytoplankton growth and microzooplankton 

grazing related to crude oil pollution is not well-known. Phytoplankton could proliferate 

rapidly in situ during the window of opportunity when microzooplankton grazing is 

disrupted by various mechanisms (Buskey et al., 1997; Irigoien et al., 2005; Stoecker et 

al., 2008). Reduced herbivory of microzooplankton by the toxicity of petroleum 

hydrocarbons could release phytoplankton from grazing pressure and allow them the 

opportunity to thrive. In a laboratory study, microzooplankton grazers were shown to be 

more likely influenced by petroleum toxicity than their algal prey in cultures and had a 

reduced grazing impact towards their prey (Dissertation Chapter 3). In the field, 



 84 

combined with environmental factors, phytoplankton blooms were shown to be 

potentially related to oil spill events as well (Johansson et al., 1980; Riaux-Gobin, 1985; 

Sheng et al., 2011; Tang et al., 2019). All these findings suggest that de-coupled 

phytoplankton growth and microzooplankton grazing in oil-polluted seawater could 

potentially contribute to the occurrence of algal blooms, though more direct evidence is 

needed.  

CONCLUSION 

This study is one of the few that investigate the trophic response of the 

microzooplankton community in oil-polluted seawater. Compared to the control 

treatment, exposure to chemically dispersed crude oil of 10 µL L-1 led to reduced 

phytoplankton growth and negligible microzooplankton herbivory on the 2nd day of 

exposure. Phytoplankton growth recovered on the 6th day while microzooplankton 

grazing remained negligible under the influence of toxicity of petroleum hydrocarbons. 

Results suggested a decoupling between phytoplankton growth and microzooplankton 

grazing in oil-polluted seawater, which could potentially lead to phytoplankton blooms in 

the field under certain conditions. 
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 Temperature (°C) Salinity (PSU) 

Day 0 25.9±0.1 30.6±0.2 

Day 2 20.6±0.2 30.8±0.1 

Day 6 23.3±0.0 32.1±0.1 

Table 4.1.  Mean temperatures and salinities (±1 S.D.) in the Ctrl mesocosms. 
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PAHs 
Day 0 concentration 

±1 S.D. (µg L-1) 
k (SE) (day-1) Half-life (day) R2 

Acenaphthene 0.97 ±1.08 0.41 (0.16) 1.7 0.422 

Acenaphthylene 0.45 ±0.22 0.47 (0.10) 1.5 0.710 

Anthracene 0.30 ±0.16 0.31 (0.12) 2.2 0.447 

Benz[a]anthracene 0.34 ±0.20 0.30 (0.14) 2.3 0.369 

Benzo[a]pyrene 0.24 ±0.13 1.03 (0.12) 0.7 0.918 

Benzo[b]fluoranthene 0.11 ±0.13 0.66 (0.27) 1.1 0.459 

Benzo[g,h,i]perylene 0.08 ±0.03 0.70 (0.07) 1.0 0.934 

Chrysene 1.56 ±0.96 0.58 (0.15) 1.2 0.606 

Dibenz[a,h]anthracene 0.07 ±0.03 0.62 (0.08) 1.1 0.887 

Fluoranthene 0.48 ±0.28 0.62 (0.15) 1.1 0.690 

Fluorene 3.26 ±1.87 0.36 (0.07) 1.9 0.705 

Indeno[1,2,3-cd]pyrene 0.07 ±0.02 0.62 (0.05) 1.1 0.951 

Naphthalene 4.20 ±1.39 0.65 (0.09) 1.1 0.850 

Phenanthrene 13.26 ±8.44 0.43 (0.10) 1.6 0.660 

Pyrene 0.39 ±0.22 0.59 (0.14) 1.2 0.680 

Table 4.2  Mean concentrations (±1 S.D.) on Day 0, the rate constants (k, with S.E. in 

parenthesis) of degradation, and the half-lives of individual PAH 

components in DOil mesocosms. R2 value represents the determination 

coefficient of the linear regression. Bold k value denotes P < 0.05 of the 

linear regression.  
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Taxonomic group 
Cell density (cells mL-1) 

Ctrl1 Ctrl2 Ctrl3 DOil1 DOil2 DOil3 

Diatoms 4.5±3.4 0 0 0 0 0 

Dinoflagellates 8.0±4.5 5.3±6.7 3.0±3.5 3.5±4.7 1.5±1.7 0 

Aloricate ciliates 1.0±2.0 1.0±2.0 1.0±2.0 0 0.8±1.5 0 

Loricate ciliates 0 0 2.0±2.3 0 0 0 

Unidentified cells (< 5 µm) 8939±2127 1610±682 1070±446 4269±1838 980±262 715±442 

Table 4.3.  Mean cell densities (±1 S.D.) of major taxonomic groups of < 200 µm 

plankton in the Ctrl and DOil mesocosms of Day 6 samples. 
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 Mesocosms µ (d-1) µ0 (d
-1) g (d-1) P value 

Day 2 DOil1 -0.18 (0.15) -0.54 -0.63 (0.25) 0.06 

 DOil2 -0.63 (0.18) -0.25 -2.16 (0.30) 0.00 

 Ctrl1 1.61 (0.37) -0.44 1.38 (0.60) 0.08 

 Ctrl2 1.89 (0.73) -0.20 0.36 (1.18) 0.78 

Day 6 DOil1 -0.28 (0.13) 0.46 -0.76 (0.17) 0.05 

 DOil2 0.22 (0.22) 2.64 -2.31 (0.36) 0.00 

 DOil3 2.15 (0.20)  3.37 -1.42 (0.32) 0.01 

 Ctrl1 3.08 (0.36)  2.86 2.28 (0.58) 0.02 

 Ctrl2 2.25 (0.55)  0.82 1.00 (0.89) 0.33 

 Ctrl3 3.12 (0.38) 1.37 1.62 (0.62) 0.06 

Table 4.4.  Coefficients (S.E.) of population growth in enriched seawater (µ) and 

unamended seawater (µ0), and grazing mortality (g) of phytoplankton < 200 

µm in the DOil and Ctrl mesocosms. P values represent the statistical 

significance of the slope of linear regression and coefficient of g in bold 

indicates  P ≤ 0.05. 
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Figure 4.1.  Mean concentrations (±1 S.D.) of the components of polycyclic aromatic hydrocarbons (PAH, µg L-1) and total 

petroleum hydrocarbons (TPH, mg L-1) in the DOil mesocosms on Days 0, 1, 3 and 7.  
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Figure 4.2  Mean chlorophyll-a concentrations (±1 S.D.) in the Ctrl and DOil 

mesocosms on Days 2 and 6.   
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Figure 4.3.  Model II linear regression (major axis) between in situ population growth 

(µ0) and grazing mortality (g) in the Ctrl and DOil mesocosms. Solid line 

represents the relationship of the Ctrl treatment (g = 0.47µ0 + 0.91; R2 = 

0.63; P < 0.05) while dashed line represents that of the DOil treatment (g = -

0.20µ0 – 1.23; R2 = 0.15; P = 0.22).  
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Chapter 5: Bacterivory by Nanoplankton in Oil-Polluted Seawater and 

Its Effect on the Biodegradation of Petroleum Hydrocarbons 

ABSTRACT 

Petroleum hydrocarbons released into seawater are eventually biodegraded by 

bacteria and other microbes. While nanoplankton (2-20 µm) are the major consumers of 

marine bacteria, their effect on the process of biodegradation of oil hydrocarbons is still 

debated. A 14-day microcosm experiment was conducted to investigate the degree of 

bacterivory by nanoplankton in oil-polluted seawater and its effect on the biodegradation 

of petroleum hydrocarbons. The coefficients of population growth and grazing mortality 

of bacteria estimated with the dilution method did not differ among the treatments of 

control (Ctrl), low dose chemically dispersed oil (LDOil, 2 µL L-1) and high dose 

chemically dispersed oil (HDOil, 8 µL L-1). The estimated percentages of standing stock 

and net production grazed were 30-80% and 37-156%, respectively, when all treatments 

were considered. The lack of increase in the cell density of bacterial cells in the oil-

loaded treatments is believed to be due to the tight coupling of nanoplankton grazing and 

bacterial growth. The shift in the community composition of prokaryotes and the 

relatively high abundance of oil-degrading bacteria, including Cycloclasticus and 

Alcanivorax on Days 3-14 of the experiment confirmed the presence of biodegradation of 

oil in the LDOil and HDOil treatments. Throughout the 14 days, the community 

composition of bacteria in the LDOil and HDOil treatment became more similar and they 

both differed from that in the Ctrl treatment. The changes in the bacterial community 

composition is believed to be related to the addition of chemically dispersed crude oil 

rather than the top-down control from nanoplankton grazing.   

INTRODUCTION 

Crude oil entering the natural aquatic environment undergoes various weathering 

processes. Apart from abiotic weathering, most of the crude oil components, including n-
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alkane compounds, small aromatics such as benzene and toluene, and polar molecules, 

are eventually removed from the ecosystem by microbial degradation (Prince, 2010). A 

recent list reported more than 320 genera of prokaryotes that can utilize hydrocarbons as 

sole or major energy source (Prince et al., 2018). Most aerobically biodegrading bacteria 

belong to Gamma-proteobacteria, with representative groups Alcanivorax spp. and 

Cycloclasticus spp. that degrade straight-chain and branched alkanes, and polycyclic 

aromatic hydrocarbons (PAHs), respectively (reviewed in Head et al., 2006; McGenity et 

al., 2012).  

Small sized protozoan grazers, particularly heterotrophic flagellates, are pivotal 

consumers of heterotrophic bacterioplankton (Fenchel, 1982; Landry et al., 1984; Sherr 

& Sherr, 1994). Mounting evidence has shown that nano-sized (2-20 µm) heterotrophic 

flagellates and ciliates preferentially graze on prokaryotes, instead of on phototrophic 

microeukaryotes, and they could potentially alter the bacterial community composition 

and abundance in various aquatic ecosystems (del Giorgio et al., 1996; Lavrentyev et al., 

2004; Okamura et al., 2012; Sanders & Gast, 2012). Alteration of bacterial populations 

by protozoan grazing could therefore affect the microbial biodegradation process of 

petroleum hydrocarbons, though the effects are controversial. On one hand, protozoan 

grazing is thought to increase the biodegradation of petroleum hydrocarbons. For 

instance, Tso & Taghon (2006) showed that active protozoan grazing led to a 4-fold 

increase in the mineralization rate of the PAH naphthalene in sediments. They argued that 

the selective grazing on non-degrading bacteria by protozoa provided niches for 

naphthalene-degrading bacteria to thrive. On the other hand, protozoan grazing is shown 

to hinder biodegradation of hydrocarbons. Kota et al. (1999) discovered that when 

protozoan bacterivory was inhibited, the aerobic biodegradation of benzene, toluene, 

ethylbenzene, and xylene (BTEX) in aquifer sediments was enhanced.  

Given the controversy, there is a great need to understand the changes in 

protozoan grazing in response to the presence of crude oil and dispersant, and how such 

changes could consequently affect the biodegradation of hydrocarbons in seawater. In 

this microcosm study, we investigated the degree of grazing by nano-sized protozoa on 
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bacteria. We hypothesized that oil pollutants interfere with the bacterivory by 

nanoplankton and in turn affect the abundance and the community composition of 

bacteria, and eventually influences the rate of degradation of petroleum hydrocarbons in 

seawater.  

METHODOLOGY 

Microcosms set-up 

In March 2020, whole seawater (25 PSU) from the Ship Channel, Port Aransas 

(Texas) was collected from the sub-surface with a Van Dorn water sampler, filtered 

through a 20 µm nylon mesh and gently filled into nine 20 L translucent carboy 

microcosms through a siphoned funnel. The carboys were pre-rinsed with 2% Micro 

solution and subsequently with deionized water several times before use. All carboys 

filled with seawater were then brought back to the laboratory and positioned indoors on a 

bench near the window. The low dose dispersed oil (LDOil) treatment was set up by 

adding a pre-mixed solution of Louisiana sweet crude oil and Corexit 9500A dispersant 

to make the final nominal concentrations at 2 µL L-1 and 0.1 µL L-1, respectively. The 

high dose dispersed oil (HDOil) treatment was prepared at the final nominal 

concentrations of 8 µL L-1 crude oil and 0.4 µL L-1 dispersant. The pre-mixed oil-

dispersant solution was prepared by mixing the crude oil and dispersant in 0.2 µm 

capsule-filtered (Parker Dominick Hunter Demicap) seawater with a magnetic stir bar in 

a 1 L capped glass aspirator bottle for at least 1 hour. A control (Ctrl) treatment without 

the addition of crude oil or dispersant was also set up for comparison. All the Ctrl, LDOil 

and HDOil treatments in triplicate contained ~18 L seawater in the microcosms. All the 

carboys were capped loosely to reduce the evaporations of water and volatile 

hydrocarbons. Additionally, abiotic controls of the oil treatments, namely abHDOil 

(initial nominal concentration of 8 µL L-1 crude oil and 0.4 µL L-1 dispersant) and 

abLDOil (initial nominal concentration of 2 µL L-1 crude oil and 0.1 µL L-1 dispersant), 

were prepared in duplicate by adding the pre-mixed oil-dispersant solution into 
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presumably bacteria-free seawater which was twice filtered through 0.2 µm capsule filter. 

The abiotic control solution (~4 L) was held in a translucent Teflon (Welch 

Fluorocarbon) plastic bags to minimize the adsorption of petroleum hydrocarbons to the 

inner wall of the container. The bags were put inside a large glass beaker and sealed 

loosely except during the subsequent samplings.  

The whole experiment lasted for 14 days. Light intensity reaching the outer 

surface of the carboy microcosms and the air temperature were measured daily during the 

time periods of 8-9 a.m., 12 noon – 1 p.m., and 4-5 p.m. The seawater in carboys was 

manually mixed in each of the three time periods by brief shaking for ~10 seconds. 

Bacterivory by nano-plankton on microbes 

Throughout the 14-day experiment, seawater (i.e. 20 µm pre-filtered) from each 

microcosm was collected to determine the impact of bacterivory by nanoplankton at 

different time points. A portion of the collected seawater was used to prepare bacterium-

free seawater (FSW) by filtration through 0.2 µm cellulose nitrate membrane (Whatman) 

with ≤ 7 mmHg vacuum pressure by handpump to minimize the damages to delicate cells 

and the release of cellular substances that could affect the growth of bacteria or grazers. 

The remaining portion of seawater was mixed with the FSW to establish a gradient of 

dilution fraction of seawater (i.e. 20% and 100% of < 20 µm seawater). The mixture was 

then  placed in duplicate 72 mL capped tissue-culture flasks and incubated, unamended, 

indoors at room temperature on a bench roller (~ 0.5 rpm) for 24 hours.  

Before the incubation, duplicate subsamples were obtained from the common 

mixture of each dilution fraction. After incubation, duplicate subsamples from each 72 

mL flask were obtained to determine the abundance of bacteria and nanoplankton. The 

seawater was serially filtered through 1.0 µm and 0.2 µm polycarbonate membrane 

(Poretics) filters to obtain nanoplankton and bacteria cells, respectively. The samples 

were stained with DAPI nuclear stain (0.4 µg mL-1 final concentration), preserved with 

glutaraldehyde (2% final concentration) and filtered onto membrane filters with a 
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vacuum pressure ≤ 7 mmHg using a hand pump. The membrane filters were then slide-

mounted and stored in darkness at -20°C until analysis.  

The slide-mounted membrane filters were observed under an epifluorescence 

microscope (Olympus BX60) with UV excitation at total magnifications of 200X for 

nanoplankton and 1000X for bacteria. Fifteen to twenty fields of view per membrane 

filter were randomly selected and captured using a digital camera connected to the 

microscope. All the pictures were processed with ImageJ software (ver. 1.52h, N.I.H.) to 

estimate the cell densities of bacterial and nanoplankton cells. Calculation of the grazing 

mortality of bacteria for each treatment was based on the dilution method (Landry & 

Hassett, 1982; Landry et al., 1984) as 

ln (
Nt

N0
) = (µ − Dg)t   Eqn 5.1 

where Nt is the bacterial density after incubation and N0 is the initial bacterial density 

before incubation. The symbol D represents the dilution fraction and t is the time duration 

of incubation in days. The symbols µ and g represent the coefficients of population 

growth and grazing mortality of the bacterial cells, respectively.  

Based on the results of the dilution experiments, the percentage of standing stock 

of bacterial cells grazed per day (%SS) was calculated according to Safi et al., (2007) as 

%SS = (1 - exp(-g)) x 100    Eqn 5.2 

And the potential percentage of net production grazed per day (%PP) was calculated as  

%PP = (1 - exp(-g) / (1 - exp(-µ)) x 100  Eqn 5.3 

where µ and g are the coefficients of population growth and grazing mortality of the 

bacterial cells, respectively. 

Changes in concentration of petroleum hydrocarbons 

Subsamples of seawater (~200 mL) from each microcosm were drawn from the 

sub-surface using siphon handpumps that were rinsed with 2% Micro solution and 

subsequently deionized water each day after use (for the Ctrl, HDOil and LDOil 

treatments) or one-use-only autoclaved pipette tips (for the abHDOil and abLDOil 
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treatments), acidified with 2 mL 6N hydrochloric acid, and briefly extracted with 20 mL 

dichloromethane by gentle shaking. The mixture was stored in pre-cleaned amber glass 

bottles (2% Micro solution soaked and rinsed with deionized water) at 4°C in darkness 

until analysis. The concentrations of saturated and aromatic hydrocarbons were 

quantified by Dr. Zhanfei Liu’s laboratory. Briefly, the samples were extracted with 

dichloromethane 3 times, concentrated by a gentle stream of nitrogen gas, and cleaned 

and fractionated with a chromatographic column that was dry-packed with activated 

silica gel, topped with anhydrous granular sodium sulfate, and conditioned with hexane. 

The saturated and aromatic hydrocarbons were eluted with hexane and 50% (v/v) 

benzene in hexane, respectively, and analyzed using a gas chromatography mass 

spectrometry (GC/MS) system (Shimadzu GC/MS QP2020) with the SH-Rxi-5Sil MS 

column (Shimadzu) according to an established protocol (Liu et al., 2012). 

Concentrations of total GC-detectable saturated hydrocarbons (C9-C36 n-alkanes in this 

study) and the 16 EPA priority PAHs were estimated using a three-point calibration 

curve. For the determination of the concentration of individual hydrocarbons, samples 

with a signal:noise ratio < 3 were manually assigned 0. Negatives values, which indicate 

concentrations below the detection limit (0.1 µg L-1 for the 16 PAHs and n-alkanes C9-

C35, and 5 µg L-1 for n-alkane C36), were assigned 0 as well.  

Assuming the degradation of hydrocarbons follows the first order reaction 

kinetics, the rate constant of degradation of individual hydrocarbons was computed as:  

Ct  =  C0e−kt    Eqn 5.4 

where Ct is the instantaneous concentration at different time points and C0 is the initial 

concentration. The coefficient k represents the rate constant and t represents time in days. 

The coefficient of k was estimated as the negative value of the slope of the linear 

regression of ln(Ct) against t.  

Changes in community composition of bacteria 

To determine the community composition of bacteria, subsamples of 400 mL 

from each microcosm were filtered serially through an autoclaved GF/A glass fiber filter 



 98 

(1.6 µm porosity, Whatman) and bacterial cells were retained onto an autoclaved 0.2 µm 

porosity cellulose nitrate membrane filter (Whatman). The 0.2 µm membrane filters were 

kept frozen at -80 °C until DNA extraction.  

The samples were extracted for DNA with DNeasy PowerWater Kit (Qiagen) 

according to the manufacturer’s instructions. Amplifications of the V3-V4 region of the 

16S rRNA gene of the DNA extracts were conducted using primers (forward: 5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-

3’; reverse: 5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVG 

GGTATCTAATCC-3’). The PCR reactions were performed in a total volume of 25 µL 

containing 12.5 µL of KAPA HiFi HotStart ReadyMix PCR Kit (KAPA Biosystems), 0.4 

µM of each primer and 5 µL of genomic DNA extract. The thermocycler parameters were 

as follows: 3 min at 95°C, 25 cycles of denaturation (30 sec at 95°C), annealing (30 sec at 

60°C) and extension (30 sec at 72°C), and finally followed by 5 min at 72°C. The PCR 

products were then stained with SYBR Safe DNA Gel Stain (Invitrogen), separated in 

standard agarose gel electrophoresis (1%) in 1X TAE solution, and visualized with 

GelPic LED Box (FastGene). Visualized DNA bands of ~500 bp with reference to a 

DNA marker (Lambda DNA/HindIII Marker 2, Thermo Scientific) were excised from the 

gel and purified using a MinElute Gel Extraction Kit according to the manufacturer’s 

instruction. The purified PCR products were checked for their A260/A280 ratio using a 

NanoVue Plus Spectrophotometer (Biochrom) and quantified for concentration using a 

Qubit 2 Fluorometer (Invitrogen) and Qubit dsDNA HS Assay Kits (Life Technologies). 

The purified amplicons were normalized in concentration and then sequenced in paired-

end (2 x 300 bp) on an Illumina MiSeq platform by RTL Genomics (Lubbock, Texas).  

The demultiplexed forward and reverse sequence data were separately trimmed, 

denoised, removed chimeras, and finally merged using the dada2 pipeline (Callahan et 

al., 2016) in QIIME 2 software (2020.2) (Bolyen et al., 2019). The denoised dataset 

contained 361,345 sequences (i.e. amplicon sequence variants (ASVs) for 45 samples. 

Samples with > 2000 AVSs were used to construct the percentage abundance bar charts 

with assigned taxonomic information by classifying the ASVs against the SILVA 132 
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gene sequence database with a trained feature-classifier (Bokulich et al., 2018) targeting 

the V3-V4 region of the gene at 7 taxonomic levels and 99% similarity. Assuming each 

bacterial phylotype has the same number of gene copies of the 16S rRNA gene (c.f. 

Farrelly et al., 1995; Klappenbach et al., 2000; Louca et al., 2018), the cell densities of 

the major bacterial phylotypes in samples were estimated based on their mean percentage 

abundance and the corresponding mean total cell density. A rooted phylogenetic tree of 

the ASVs was constructed de novo using the align-to-tree-mafft-fasttree pipeline (Katoh 

et al., 2002; Price et al., 2010). The ASV dataset was further explored for community 

diversity using the core-metric-phylogenetic pipeline in QIIME 2 with rarefication at a 

sampling depth of 5,000. Alpha diversity metrics including the Shannon’s diversity index 

(Shannon & Weaver, 1949) and the Pielou’s evenness index (Pielou, 1966) were 

computed. Beta diversity metrics including the unweighted UniFrac distance (Lozupone 

& Knight, 2005; McDonald et al, 2018) was computed as well. Results of the unweighted 

UniFrac distance were further tested for significant difference among treatments on 

separate experiment days using the permutational multivariate analysis of variance 

(PERMANOVA; Anderson, 2001) method with 9,999 permutations.   

Statistical analysis 

Except for the graphical presentations and statistical analyses that were generated 

with QIIME 2, all other analyses and graphical presentations were conducted using R 

version 3.6.1 (R Core Team, 2019) and packages lmodel2 version 1.7-3 (Legendre, 

2018), ggplot2 version 3.2.1 (Wickham, 2016), ggforce version 0.3.2 (Pedersen, 2020), 

tidyverse version 1.3.0 (Wickham et al., 2019) and  qiime2R version 0.99.34 (Bisanz, 

2018).  

Model II linear regressions tests (with 50,000 permutations) were applied to test 

for the presence of a significant relationship between the coefficients of population 

growth and grazing mortality of bacterial cells for the Ctrl, LDOil, and HDOil treatments 

using the package lmodel2 in R. Considering that both coefficients were subject to natural 

variation and measurement error and were in comparable units of measurement, results 
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from the major axis regression analysis were chosen for further result presentation and  

discussion (Sokal & Rohlf, 2012).  

RESULTS 

Physical parameters 

The average indoor air temperatures measured during daytime ranged from 22.1-

22.6°C throughout the whole experiment. The average light intensities on the surface of 

the microcosms during daytime were within the range of 3.2-6.0 µE m-2 s-1 (Fig. 5.1). 

Bacterial and nanoplankton abundances 

The bacterial abundance of all microcosms varied differently throughout the 

experiment. On Day 0, before the addition of the crude oil and dispersant mixture, the 

mean bacterial densities in the Ctrl, LDOil and HDOil treatments were approximately 

0.77, 0.66 and 0.79 x106 cells mL-1, correspondingly (Fig. 5.2). In the following days, the 

mean density in the Ctrl treatment dropped to the lowest at 0.21 x106 cells mL-1 on Day 3, 

increased to 0.52 x106 cells mL-1 on Day 7 and dropped slightly to 0.44 x106 cells mL-1 

on Day 14. The mean density in the LDOil treatment peaked on Day 1 at 0.86 x106 cells 

mL-1 and dropped drastically to 0.39 x106 cells mL-1 on Day 3. It then increased back to 

0.74 x106 cells mL-1 on Day 10 and decreased to 0.45 x106 cells mL-1 on Day 14. The 

mean bacterial density in the HDOil treatment ranged from 0.57-0.79 x106 cells mL-1 

during the first 8 days. It then dropped to 0.53 x106 cells mL-1 on Day 14 (Fig. 5.2).  

Similarly, the nanoplankton abundance varied differently throughout the 

experiment. In the Ctrl treatment, the cell densities of nanoplankton were the highest at 

1038 cells mL-1 on Day 0. It then dropped to the lowest of 377 cells mL-1 on Day 3 and 

increased to 543 cells mL-1 on Day 14. The nanoplankton densities in the LDOil 

treatments were at 817 cells mL-1 on Day 0, peaked at 1259 cells mL-1 on Day 7 and 

dropped to 587 cells mL-1 at the end of the experiment. In the HDOil treatment, the 
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density was 616 cells mL-1 on Day 0. It remained in the range of 1002-1270 cells mL-1 on 

Day 1 through Day 7, then dropped to 911 cells mL-1 on Day 14 (Fig 5.2).    

Bacterivory by nanoplankton 

Throughout the experiment, no obvious temporal trend of changes in the 

coefficients of population growth (µ, d-1) and grazing mortality (g, d-1) of bacteria were 

observed in all the treatments (Fig. 5.3). On Day 0, the mean values of µ and g in the Ctrl 

treatments were 0.56 d-1 and 0.89 d-1, respectively. In the following days, the growth 

coefficients ranged from 0.73-1.67 d-1 while the grazing coefficients ranged from 0.38-

1.65 d-1 on average. Model II linear regression (major axis) revealed a positive 

relationship between µ and g, though only marginally significant (g = 0.96µ - 0.29; R2 = 

0.24; P = 0.06; Fig. 5.5). The percentage of standing stock grazed (%SS) ranged from 

30% to 80%, with the lowest on Day 3 and the highest on Day 1. The percentage of 

potential production grazed (%PP) ranged from 37% to 156%, with the lowest on Day 3 

and the highest on Day 0 (Fig. 5.4).  

In the LDOil treatment, the mean values of µ and g were 0.97 d-1 and 1.03 d-1, 

respectively, on Day 1. The mean growth coefficients ranged from 0.71-1.44 d-1 during 

the following days (Fig. 5.3), which were always higher than the grazing coefficient of 

the same day. A positive relationship was found between µ and g in the LDOil treatment 

though not statistically significant ((g = 1.33µ – 0.71; R2 = 0.09; P = 0.34; Fig. 5.5). The 

%SS were relatively low, with a range between the lowest at 31% on Day 7 and the 

highest at 58% on Day 1. The %PP ranged from 48% to 97%, with the lowest and the 

highest percentages on Days 1 and 0, respectively (Fig. 5.4).  

The same pattern of higher population growth than grazing mortality on the same 

day was observed in the HDOil treatment. The mean values of µ and g ranged from 0.85-

1.80 d-1 and 0.55-1.49 d-1, respectively, in this treatment (Fig. 5.3). A significantly 

positive relationship was found between these two coefficients in the HDOil treatment (g 

= 0.82µ – 0.10; R2 = 0.86; P < 0.001; Fig. 5.5). The %SS was 75% on Day 3 and ranged 
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between 40-49% on the other days. The %PP was the highest on Day 1 at 96% and 

decreased gradually to 67% at the end of the experiment (Fig. 5.4).  

Concentrations of n-alkanes and PAHs 

For the concentrations of n-alkanes, unexpected results were observed. In terms of 

total n-alkane hydrocarbons (TNAH, C9-C36), the mean concentrations in the HDOil and 

LDOil treatments were 1.65 µg L-1 and 1.35 µg L-1, respectively, on Day 0. The mean 

concentrations unexpectedly increased to peaks on Day 3 at 6.00 µg L-1 for HDOil and 

8.16 µg L-1 for LDOil, which were 347% and 631% greater, respectively, compared to the 

concentrations on Day 0 (Fig. 5.6). The same unexpected pattern was observed for 

samples in the abHDOil and abLDOil treatments. The mean TNAH concentrations on 

Day 0 were 24.02 µg L-1 and 2.02 µg L-1 for abHDOil and abLDOil, respectively. The 

concentrations reached a maximum at 97.35 µg L-1 (355% of that on Day 0) on Day 1 for 

abHDOil and 5.99 µg L-1 (285% of that on Day 0) on Day 7 for abLDOil (Fig. 5.6).  

The individual n-alkane C9 was consistently detected in the four treatments 

throughout the experiment but with the peak concentrations occurring on different days 

(at 2.96 µg L-1 for HDOil on Day 14; at 2.23 µg L-1 for LDOil on Day 14; at 3.59 µg L-1 

for abHDOil on Day 7; and at 2.82 µg L-1 for abLDOil on Day 7). Concentrations of 

heavier n-alkanes (C15-C36) were low in general, except that sudden spikes in C16-C35 

n-alkanes were detected in the abHDOil treatment on Day 1, with the concentrations 

ranging from 2.31 µg L-1 to 8.44 µg L-1 (Fig. 5.7). Less intense spikes in the mean 

concentrations of individual n-alkanes (C14-C22) were also observed on Day1 through 

Day 7 in the LDOil, HDOil and abLDOil treatments (Fig. 5.7). Individual n-alkanes with 

mean concentrations consistently above the detection limit throughout the experiment, 

particularly the early stage of the experiment, were selected for the estimation of rate 

constants of degradation. The degradation rate constants of C9 n-alkane were negative in 

the HDOil, LDOil, and abHDOil treatments, which was practically impossible. The rate 

constants of C12, C14 and C15 n-alkanes in the abHDOil treatments were 0.13 d-1, 0.57 

d-1and 0.38 d-1, correspondingly (Table 5.1). 
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Unexpected results were also observed for the concentrations of PAHs. In terms 

of total PAHs (TPAH), the mean concentrations for HDOil and LDOil on Day 0 were 

0.77 µg L-1 and 0.59 µg L-1, respectively. The concentrations peaked at 3.29 µg L-1 

(442% of that on Day 0) on Day 7 and dropped to ~0.1 % on Day 14 for HDOil. 

Similarly, the peak concentration for LDOil was at 1.69 µg L-1 (309% of that on Day 0) 

on Day 3. The concentration dropped to 18% on the last day of experiment (Day 14) (Fig. 

5.6). The abnormal pattern was also observed on samples in the abHDOil and abLDOil 

treatments. The mean TPAH concentrations for abHDOil on Day 0 was 2.14 µg L-1. It 

peaked on Day 7 at 5.11 µg L-1 (238% of that on Day 0) and dropped drastically to 6% on 

Day 14. The mean TPAH concentration for abLDOil on Day 0 was 0.50 µg L-1. It peaked 

on Day 7 at 3.53 µg L-1 (741% of that on Day 0) and dropped to 0% on Day 14 (Fig. 5.6).  

The individual PAHs naphthalene, fluorene and phenanthrene were consistently 

detected throughout the whole experiment in the HDOil, LDOil, and abHDOil treatments 

while naphthalene and fluorene were consistently detected in the abLDOil treatment. The 

peak mean concentrations of naphthalene were 0.63 µg L-1 on Day 1 for HDOil, 0.34 µg 

L-1 on Day 0 for LDOil, 1.81 µg L-1 on Day 3 for abHDOil, and 0.45 µg L-1 on Day 1 for 

abLDOil. The peak mean concentrations of phenanthrene were 0.57 µg L-1 on Day 1 for 

HDOil, 0.48 µg L-1 on Day 3 for LDOil, 1.07 µg L-1 on Day 3 for abHDOil, and 0.91 µg 

L-1 on Day1 for abLDOil. Those of fluorene were 0.30 µg L-1 on Day 1 for HDOil, 0.20 

µg L-1 on Day 7 for LDOil, 0.68 µg L-1 on Day 3 for abHDOil, and 0.40 µg L-1 on Day 1 

for abLDOil (Fig. 5.8). The unexpected spikes in concentrations of benzo[a]anthracene, 

benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[g,h,i]perylene, 

diben[a,h]anthracene, and indeno[1,2,3-cd]fluoranthene on Day 7 were observed in the 

HDOil, abHDOil, abLDOil treatments (Fig. 5.8). Individual PAHs with mean 

concentrations consistently above the detection limit throughout the experiment, 

particularly in the early stage of the experiment, were selected for the estimation of rate 

constants of degradation. The rate constants of naphthalene in the HDOil, LDOil, and 

abHDOil treatments were 0.20 d-1, 0.08 d-1 and 0.19 d-1, correspondingly. The rate 

constant of fluorene in the abHDOil treatment was 0.09 d-1 (Table 5.2).  



 104 

Composition of bacterial communities 

In the Ctrl treatment, a shift in the dominant bacterial genera throughout the 

experiment was observed. The HIMB11 (Rhodobacteraceae) bacterial genus was 

abundant on Day 0 (30% mean abundance, ~232 x 103 cells mL-1) and Day 1 (40% mean 

abundance, ~223 x 103 cells mL-1). Its dominance was replaced by uncultured 

Actinomarina, with the mean percentage abundance of Actinomarina at 25% (~129 x 103 

cells mL-1) and 24% (~107 x 103 cells mL-1) on Days 7 and 14, respectively (Fig. 5.9 & 

5.12). The mean abundance of the bacterial genus Marinobacterium, bacteria capable of 

degrading crude oil (Pham et al., 2009), was 11% (~88 x 103 cells mL-1) on Day 0 and 

5% (~29 x 103 cells mL-1) on Day 1, and at very low abundance on the other days. 

Interestingly, aliphatic-hydrocarbon-degrading bacteria Alcanivorax (Yakimov et al., 

1998) was observed in the Ctrl treatment throughout the whole experiment, with the 

mean abundance percentages ≤ 2% and the estimated cell densities ≤ ~9 x 103 cells mL-1 

(Fig. 5.9 & 5.12). The Shannon’s diversity index and Pielou’s evenness index indicated 

that the bacterial community increased the within-sample species richness and evenness 

from Day 0 through Day 14, with the Shannon’s index at 5.05 on Day 0, peaking at 5.98 

on Day 7 and dropping slightly to 5.82 on Day 14 and the Pielou’s evenness index at 0.70 

on Day 0, peaking at 0.78 on Day 7 and decreasing to 0.76 on Day 14 (Fig. 5.13).  

Similar dominance of HIMB11 (Rhodobacteraceae) and uncultured Actinomarina 

were observed in the LDOil treatment, with the mean abundance of HIMB11 

(Rhodobacteraceae) at 28 % (~182 x 103 cells mL-1) on Day 0, 43% (~371 x 103 cells 

mL-1) on Day 1 and 2% (~10 x 103 cells mL-1) on Day 14. The mean abundance of the 

uncultured Actinomarina was 9% (~57 x 103 cells mL-1), 7% (~60 x 103 cells mL-1) and 

26% (~116 x 103 cells mL-1) on Days 0, 1 and 14, correspondingly. Marinobacterium 

was mainly observed on Day 0 (14%, ~91 x 103 cells mL-1) and Day 1 (6%, ~55 x 103 

cells mL-1) and diminished towards the end of the experiment (Fig. 5.10 & 5.12). 

Meanwhile, hydrocarbon-degrading bacteria Cycloclasticus (Dyksterhouse et al, 1995) 

and Alcanivorax were observed. Cycloclasticus was abundant  on Day 3 (11%, ~42 x 103 

cells mL-1) and Day 7 (4%, ~24 x 103 cells mL-1) while Alcanivorax was observed 
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throughout the whole experiment, with relatively higher mean abundance on Day 7 (4%, 

~21 x 103 cells mL-1) and Day 14 (1%, ~6 x 103 cells mL-1) (Fig. 5.10 & 5.12). The 

Shannon’s diversity indices in the LDOil treatment were 5.10, 6.24 and 5.73 on Days 0, 7 

and 14, correspondingly, while the Pielou’s evenness indices were 0.72, 0.82 and 0.75 on 

Days 0, 7 and 14, correspondingly (Fig. 5.13). 

In the HDOil treatment, the dominance of HIMB11 (Rhodobacteraceae) and 

uncultured Actinomarina was observed. The mean percentage abundance of HIMB11 

(Rhodobacteraceae) were 34% (~267 x 103 cells mL-1) on Day 0, 43% (~334 x 103 cells 

mL-1) on Day 1 and decreased to 2% (~10 x 103 cells mL-1) on Day 14 (Fig. 5.11 & 5.12). 

Those of uncultured Actinomarina were 11% (~88 x 103 cells mL-1), 8% (~63 x 103 cells 

mL-1), and 4% (~20 x 103 cells mL-1) on Days 0, 1 and 14, correspondingly. Meanwhile, 

Alcanivorax was observed throughout the whole experiment, with relatively higher mean 

abundances on Day 7 (6%, ~43 x 103 cells mL-1) and Day 14 (8%, ~40 x 103 cells mL-1). 

Cycloclasticus was first observed on Day 3, with a mean abundance of 12% (~67 x 103 

cells mL-1). It then decreased to 5% (~38 x 103 cells mL-1) on Day 7 and 1% (~6 x 103 

cells mL-1) on Day 14 (Fig. 5.11 & 5.12). Similarly, Marinobacterium was observed 

during the early stage of the experiment, with a mean abundance of 6% (~46 x 103 cells 

mL-1) on Day 0 and 3% (~26 x 103 cells mL-1) on Day 1 (Fig. 5.11 & 5.12). The 

Shannon’s diversity indices were 5.10, 6.61 and 6.17 on Days 0, 7 and 14, 

correspondingly, while the Pielou’s evenness indices were 0.72, 0.86 and 0.81 on Days 0, 

7 and 14, correspondingly (Fig. 5.13). 

The principal coordinate analysis (PCoA) of the unweighted UniFrac distance of 

all samples revealed a tight cluster of all samples on Day 0 except 1 sample in the LDOil 

treatment. Tight clusters of samples in the LDOil and HDOil treatments were also 

observed on Days 3, 7 and 14, indicating a high community similarity among the samples 

in these 2 treatments. Meanwhile, samples in the Ctrl treatment were generally 

differentiated from samples in the LDOil and HDOil treatments. The first 2 principal 

components of the PCoA combinedly explained 45.9% of the total co-variation of the 

samples (Fig. 5.14). Results of the PERMANOVA revealed no significant difference (P = 
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0.94, Table 5.3) in the unweighted UniFrac distance among the 3 treatments on Day 0 but 

significant difference in the distance on Day 7 (P = 0.04) and Day 14 (P = 0.02). 

However, pairwise comparisons between the treatments on these 2 days did not reveal 

significant difference (P > 0.05) in the unweighted UniFrac distance (Table 5.3). Caution 

should be used when interpreting the results due to the small sample size.  

DISCUSSION 

Abundance of marine protists and bacterivory in the treatments 

Despite the high bacterial growth rates (Ctrl: 0.56-1.67 d-1; LDOil: 0.71-1.44 d-1; 

and HDOil: 0.85-1.80 d-1; Fig. 5.3), there were no obvious increases in the abundance of 

bacterial cells following the addition of crude oil and dispersant mixtures in the LDOil 

and HDOil treatments (Fig. 5.2). Compared to the control treatment, Dalby et al. (2008) 

reported an approximately ≥ 7 fold increase in the bacterial cell density in a bottle 

incubation with the addition crude oil and emulsifier (100 ppm and 10 ppm, respectively) 

while the addition of crude oil alone did not trigger an increase in bacterial cells. They 

argued that the addition of emulsifier enhanced the bioavailability and biodegradation of 

the oil hydrocarbons and thus might be used as carbon and energy sources by the 

bacteria. Though we used a lower oil:dispersant concentration ratio than that used in 

Dalby et al. (2008), it is believed that the volume ratio of 20:1 is high enough to increase 

the bioavailability and biodegradation rate of petroleum hydrocarbons (Almeda et al, 

2014b; Bacosa et al., 2015).  

The lack of increase in the bacterial cells could be due to factors such as other 

bottom-up mechanisms or top-down controls. Apart from a carbon source, bacterial 

growth requires the supply of major nutrients such as nitrogen (N) and phosphorus (P). 

For instance, Apple et al. (2004) showed a persistent response pattern of bacterioplankton 

to the enrichment of nutrients on a system wide scale in Chesapeake Bay. Considering 

that seawater from the Ship Channel of Port Aransas (Texas), an coastal estuarine region 

with relatively high inorganic nutrient levels (Evans et al., 2012), was collected for our 
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experiment, we did not amend the seawater with N or P nutrients to the microcosms as a 

measure to directly reflect the effects of the addition of crude oil and dispersant on the 

abundance and community composition of the bacteria and nanoplankton (Tremaine & 

Mills, 1987; del Campo et al., 2013). However, our results suggest that the addition of as 

high as 8 µL L-1 final nominal concentration of chemically dispersed crude oil to the 

coastal seawater without the addition of major inorganic nutrients may not be enough to 

trigger increases in bacterial abundance (Fig. 5.2), although increase in the cell densities 

of hydrocarbon-degrading bacteria phylotypes was observed in the LDOil and HDOil 

treatment (Fig. 5.12). It therefore suggested that bacterial growth in our microcosms 

could be nutrient-limited, even though the bottom-up control of nutrient availability on 

bacterial abundance is more likely to occur in oligotrophic than in eutrophic 

environments (Sanders et al, 1992). Further, inorganic nutrients data (retrieved from 

http://cdmo.baruch.sc.edu/get/landing.cfm; the Ship Channel station) in March from 

2010-2014 revealed that the ratio of N (NO2
- and NO3

-) to P (PO4
3-) was ~1.8:1 on 

average in local water, which was much lower than the 16:1 Redfield ratio (Redfield, 

1934). It suggested that N limitation could have been limiting the bacterial growth.  

Although we did not distinguish the cell densities between phototrophic and 

heterotrophic nanoplankton, it is presumed that with the light intensities ≤ 6 µE m-2 s-1 

throughout the whole experiment (Fig. 5.1), most of the nanoplankton were phagotrophic 

heterotrophs or mixotrophs. The absence of sharp increases in the bacterial abundance 

co-occurred with the relatively steady levels of nanoplankton (Fig. 5.2). The overall ratio 

of the cell densities of bacteria:nanoplankton averaged ~860:1 for all samples (Ctrl: 

829:1; LDOil: 891:1; and HDOil: 860:1; data not shown). These ratios were close to the 

reported ratio between bacteria and nanoplanktonic protozoa of ~1000:1 from the 

euphotic zones of various marine and freshwater environments (Sanders et al., 1992). 

Nanoplankton (2-20 µm) are the main predators of bacterial cells. Heterotrophic 

nanoflagellates, particularly < 5 µm, are believed to be responsible for the majority of 

bacterivory (Fenchel, 1982; Landry et al., 1984; Sherr & Sherr, 1994; Unrein et al, 2007; 

Mansano et al, 2014). Our results revealed that bacterivory (reflected by the coefficient 
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of grazing mortality of bacteria) by nanoplankton ranged from 0.38 d-1 to 1.65 d-1 in the 

Ctrl treatment, which were not obviously different from those in the LDOil (0.27-1.03 d-

1) and HDOil (0.55-1.49 d-1) treatments (Fig. 5.3). The regression between coefficients µ 

and g revealed that grazing mortality accounted for most of the population loss of 

bacterial cells (82-133% based on the slope of the linear regression, Fig. 5.5), though the 

relationships were not statistically significant in the Ctrl (P = 0.06) and LDOil (P = 0.34) 

treatments. Admittedly, the in situ nutrient limitation of seawater in the microcosms and 

the absence of nutrient addition to the incubation containers in the dilution experiments 

could have violated the assumption of the dilution experiment that prey growth is not 

affected by the presence of other prey cells (Landry & Hassett, 1982). This violation 

could have led to an exaggerated negative slope of the linear regression and thus the 

grazing mortality rates, g, of bacterioplankton since the net growth rate of bacteria in the 

high dilution fraction (i.e. 100% < 20 µm seawater) was lowered. Consequently, with the 

exaggerated negative slope, the y-intercept of the linear regression, µ, would likely be 

overestimated as well since the regression line was tilted downward on the other end (i.e. 

the 100% dilution fraction). Though further confirmation is needed, it is believed that the 

comparison between coefficients µ and g in the forms of a linear regression (Fig. 5.5), the 

estimated %PP (Fig. 5.4) or the g:µ ratio (data not shown) are still valid to a certain 

degree.  

Bacterivory by nanoplankton was shown to have grazing selectivity based on the 

cell traits of bacteria including size, motility, cell wall structure, morphology, toxin 

production, and exopolymer formation (Monger et al., 1999; Jurgens & Matz, 2002; 

Pernthaler, 2005). Hahn & Hofle (2001) revealed that pelagic bacterial cells < 0.4 µm and 

> 1.6 µm were less susceptible to nanoplankton grazing than cells in the size of 0.4-1.6 

µm. Our dilution experiment focused on bacterial cells of 0.2-1.0 µm size, which were 

believed to be highly susceptible to nanoplankton grazing. This may explain the tight 

coupling between the population growth and grazing mortality of the bacteria in our 

experiments.  
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Biodegradation of petroleum hydrocarbons by marine bacteria 

The concentrations of petroleum hydrocarbons such as the n-alkanes and 

polycyclic aromatic hydrocarbons (PAHs) were expected to be at the highest on Day 0 

and decrease gradually to a baseline level during the 14-day incubation as bacterial 

degradation progresses. Unfortunately, we did not observe the expected results. Instead, 

the concentration of total PAH (TPAH) and total n-alkanes hydrocarbon (TNAH) reached 

the highest levels on Day 7 and Day 3, respectively (Fig. 5.6). The increase in TPAH on 

Day 7 was mainly caused by abnormal spikes in the concentration of individual PAHs 

(i.e. Benz[a]anthracene, Benzo[b]fluoranthene, Benzo[k]fluoranthene, Indeno[1,2,3-

cd]fluoranthene, and Benzo[g,h,i]perylene) that were not detected on the previous 

sampling days or on Day 14 in the treatments of LDOil, HDOil, abLDOil, and abHDOil 

(Fig. 5.8).  Similarly, the increase in the concentrations of TNAH on Day 3 were caused 

by sudden spikes in concentration of individual n-alkanes that were non-detectable or at 

very low levels in the previous sampling days, particularly in the abHDOil treatment 

(Fig. 5.7). The spikes in hydrocarbon concentrations in the middle of the experiment were 

suspected to be related to sample collection where oil adhered to the inner wall of the 

carboy microcosms or the siphon handpump and was subsequently released during the 

sampling events on Days 1, 3 or 7. This mechanism could be the reason for the cases of 

the LDOil and HDOil treatments. However, since Teflon bags were used to contain the 

oil-loaded seawater in the abLDOil and abHDOil treatments and once-only autoclaved 

pipette tips were used for the sampling, the adhesion-and-released-later mechanism could 

not explain the observed spikes in the concentration of hydrocarbons in the abiotic 

controls (Fig. 5.7 & 5.8). This suggests that mechanisms other than sampling errors could 

have also contributed to the abnormal temporal pattern of concentrations of the 

hydrocarbons. 

Using the same crude oil and dispersant source as ours, Bacosa et al. (2015) found 

that n-alkanes were readily degraded by microbes with the degradation rate constants of 

C9-C21 n-alkanes ranged approximately from 0.07 d-1 to 0.22 d-1 in the dark+oil+disp 

treatment (i.e. chemically dispersed oil in darkness). While the rate constants of PAHs 
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naphthalene, fluorene and phenanthrene were high (ranged 0.22-0.39 d-1) in the same 

treatment, they discovered a lag period of about 10 days in the biodegradation of the 

PAHs. Unexpectedly, we found negative degradation constants of C9 n-alkane for all the 

oil-loaded treatments in our experiment while those of C12, C14 and C15 n-alkanes in 

the abHDOil treatment were higher than previously reported (Table 5.1). The degradation 

constants of PAH naphthalene ranged from 0.08-0.20 d-1, which were close to the 

reported values (Bacosa et al., 2015) but lower than those determined in our mesocosm 

study (Dissertation Chapter 4, Table 4.2). The mesocosms in our study were exposed to 

natural sunlight and were not sealed, and the rates of weathering and degradation of 

PAHs were expected to be higher than those in this study. 

Even though increases in TPAH and TNAH concentrations were detected in the 

middle of the 14-day experiment, high abundances of hydrocarbon-degrading bacteria 

were present in the LDOil and HDOil treatments. Relatively high abundance of 

Cycloclasticus was found on Days 3, 7, and 14 in the LDOil and HDOil (Fig. 5.12) 

treatments. Similarly, high abundance of Alcanivorax was found on Days 7 and 14 in the 

LDOil and HDOil  treatments (Fig. 5.12). These two genera are believed to be important 

and widespread oil-consuming bacteria (Prince et al., 2018). Cycloclasticus pugetii 

described by Dyksterhouse et al. (1995) is an aerobic gram-negative bacterium that can 

utilize aromatic compounds such as biphenyl, naphthalene, phenanthrene, anthracene and 

toluene as carbon sources for growth. The Alcanivorax bacterium described by Yakimov 

et al. (1998) is an aerobic gram-negative prokaryote that can metabolize aliphatic 

hydrocarbons (e.g. n-alkanes) and produce active biosurfactants. The detection of these 

bacteria in the LDOil and HDOil treatments indicated that biodegradation of PAHs and 

n-alkanes occurred, especially during the later stage of the experiment (Days 7-14). 

Interestingly, Alcanivorax was detected in low abundance in the Ctrl treatment 

throughout the whole experiment (Fig. 5.12) and Marinobacterium, a bacterial genus 

believed to be an aerobic degrader of crude oil (Pham et al., 2009; Prince et al., 2018), 

was consistently detected in the Ctrl, LDOil and HDOil treatments throughout the entire 

experiment, with relatively high abundances on Days 0 and 1 (Fig. 5.9-5.11). The 



 111 

detection of these two hydrocarbon-degrading bacterial genera in the Ctrl treatment 

suggested that they are common in local seawater. It further implies that the local water 

of the Ship Channel may have been subjected to chronic baseline pollution of crude oil.  

The role of nanoplankton grazing in the bacterial biodegradation of petroleum 

hydrocarbons 

The role of nanoplankton grazing in the biodegradation of hydrocarbons is still 

controversial, some studies showed a stimulating effect of the protozoan grazers (Tso & 

Taghon, 2006) while others showed an inhibiting effect of the grazers on the 

biodegradation process (Kota et al, 1999). It was unfortunate that the abnormal changes 

in the concentrations of PAHs and n-alkanes in our results hindered the quantitative 

analysis of the degree of bacterivory on the degradation rates of the petroleum 

hydrocarbons.  

Metabarcoding of the 16S rRNA genes did reveal the changed community 

composition of the bacteria in our treatments. For instance, the Shannon’s diversity 

(quantitative measurement of the within sample species richness) and Pielou’s evenness 

indices increased from Day 0 to Day 3 and remained high in the Ctrl, LDOil, HDOil 

treatments (Fig. 5.13). They indicated that the bacterial communities changed to be more 

diverse in terms of the total number of phylotypes and more even in terms of the relative 

abundance of each phylotype of a sample. However, such changes did not indicate that 

the communities in each treatment are more similar. On the contrary, as the PCoA of the 

unweighted UniFrac phylogenetic distance revealed, while the community compositions 

of bacteria in the LDOil and HDOil become more similar towards the end of the 

experiment, those in the Ctrl treatment tended to differentiate from the oil-loaded 

treatments (Fig. 5.13), even though the pairwise comparison of the PERMANOVA tests 

did not reveal a statistically significant difference (P > 0.05, Table 5.3) between the 

treatments. The changes in the community composition of bacteria could be contributed 

by nanoplankton grazing and (or) the addition of petroleum hydrocarbons.  
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In the perspective of top-down control from nanoplankton grazing on the bacterial 

communities, the degree of bacterivory by nanoplankton did not differ among the 

treatments. The percentage of standing stock grazed (%SS) were 30-80% in the Ctrl 

treatment, 31-58% in the LDOil treatment and 40-75% in the HDOil treatment (Fig. 5.4). 

The potential percentage of net production grazed (%PP) were 37-156%, 62-98% and 67-

96% in the Ctrl, LDOil and HDOil treatment, correspondingly (Fig. 5.4). One-way 

ANOVA (data not shown) revealed that there was no significant difference (P > 0.05) 

among the treatments in terms of the %SS or %PP. This suggests that the addition of 

dispersed oil in the LDOil and HDOil treatments did not affect the degree of bacterivory 

of nanoplankton when compared to the Ctrl treatment.  

There are not many of studies documenting the grazing selectivity of 

nanoplankton towards hydrocarbon-degrading bacteria. However, bacterial engulfment 

rates by grazers were shown to be related to the differential digestion of bacterial cells 

and the digestion of gram-positive cells is more time-consuming than that of gram-

negative cells (reviewed in Pernthaler, 2005). While most of the hydrocarbon-degrading 

bacteria belong to Gamma-proteobacteria that are gram-negative organisms (Prince et al., 

2018), we did not observe direct evidence that nanoplankton grazed selectively towards 

these bacteria. In the LDOil and HDOil treatments, the increases in the mean percentage 

abundance and the estimated cell densities of hydrocarbon-degrading bacteria 

Alcanivorax and Cycloclasticus during the later stage of the experiment were 

accompanied by decreases in both the percentage abundance and cell densities of the 

predominating bacteria HIMB11 and Actinomarina (Fig. 5.10, 5.11 & 5.12). Meanwhile, 

the total bacterial cell densities did not experience obvious increase in LDOil and HDOil 

treatments (Fig.5.2) and the linear regression between the population growth and grazing 

mortality of bacterial cells indicated tight couplings between nanoplankton grazing and 

bacterial growth in the Ctrl (marginally significant, P = 0.06) and HDOil treatment (Fig. 

5.5). Therefore, it was likely that while nanoplankton grazing in oil-polluted seawater 

was not affected by the pollutants and kept the standing stock of bacterioplankton steady, 

there were changes in the community composition of the bacterial cells. These 
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compositional changes were likely caused by the addition of petroleum hydrocarbons 

rather than by nanoplankton grazing. 

CONCLUSION 

Results of the dilution experiments revealed similar degrees of bacterivory of 

nanoplankton in the Ctrl, LDOil and HDOil treatments, indicating the grazing on bacteria 

was not affected by the addition of chemically dispersed crude oil at the investigated 

concentrations. Even though the abnormal changes in the concentrations of PAHs and n-

alkanes hindered the quantitative measurement of the degradation of petroleum 

hydrocarbons, the relatively high abundance of oil-degrading bacteria including 

Cycloclasticus, Alcanivorax and Marinobacterium indicated the occurrence of 

biodegradation of crude oil in the LDOil and HDOil treatments. While the bacterial 

population growth was tightly coupled with the grazing mortality by nanoplankton 

grazing and the total abundance of bacterial cells were steady throughout the experiment 

in the HDOil treatment, changes in the community composition of bacteria was more 

likely related to the addition of dispersed crude oil rather than the top-down control from 

nanoplanktonic grazers.  

ACKNOWLEDGEMENTS 

The authors are thankful to Dr. Deana Erdner for the use of her laboratory and the 

equipment for the samples and DNA processing. This research was made possible by a 

grant from The Gulf of Mexico Research Initiative. Data are publicly available through 

the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC) at 

https://data.gulfresearchinitiative.org. 

  



 114 

Treatments n-alkanes 
Day 0 concentration 

(µg L-1) 
k (SE) (d-1) R2 

HDOil 
C9 0.84±0.14 -0.09 (0.02) 0.62 

C14 0.10±0.09 0.03 (0.09) 0.03 

LDOil C9 0.94±0.24 -0.12 (0.02) 0.75 

abHDOil 

C9 1.15±0.59 -0.09 (0.03) 0.52 

C12 1.75±0.23 0.13 (0.04)  0.70 

C14 3.15±0.72 0.57 (0.07) 0.96 

C15 3.33±1.19 0.38 (0.15) 0.57 

abLDOil C9 0.93±0.19 -0.07 (0.04) 0.41 

Table 5.1  Mean concentrations (±1 S.D.) of individual n-alkanes on Day 0 and the rate 

constants (k, with S.E. in parenthesis) of degradation in the treatments. R2 

value represents the determination coefficient of the linear regression. Bold 

k value denotes P < 0.05 of the linear regression.  
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Treatments PAHs 
Day 0 concentration  

(µg L-1) 
k (SE) (d-1) R2 

HDOil 

Fluorene 0.12±0.10 0.00 (0.04) 0.00 

Naphthalene 0.50±0.09 0.20 (0.05) 0.59 

Phenanthrene 0.16±0.15 0.03 (0.07) 0.03 

LDOil 

Fluorene 0.17±0.02 0.00 (0.02) 0.00 

Naphthalene 0.34±0.03 0.08 (0.02) 0.53 

Phenanthrene 0.09±0.15 0.02 (0.10) 0.00 

abHDOil 

Fluorene 0.51±0.08 0.09 (0.03) 0.69 

Naphthalene 1.12±0.14 0.19 (0.07) 0.54 

Phenanthrene 0.43±0.08 0.03 (0.09) 0.02 

abLDOil 
Fluorene 0.19±0.02 0.01 (0.05) 0.02 

Naphthalene 0.31±0.04 0.17 (0.07) 050 

Table 5.2  Mean concentrations (±1 S.D.) of individual PAHs on Day 0 and the rate 

constants (k, with S.E. in parenthesis) of degradation in the treatments. R2 

value represents the determination coefficient of the linear regression. Bold 

k value denotes P < 0.05 of the linear regression.  
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 Day 0 Day 7 Day 14 

Overall 

Sample size 9 7 7 

Test statistic 0.80 2.23 1.81 

P value 0.94 0.04 0.02 

Pairwise 

(P value) 

Ctrl:HDOil 1.00 0.34 0.11 

Ctrl:LDOil 0.81 0.10 0.33 

HDOil:LDOil 1.00 0.40 0.20 

Table 5.3  Results of the PERMANOVA pseudo-F statistics of the unweighted 

UniFrac distance of the bacterial communities among the 3 treatments on 

Days 0, 7 and 14 (number of permutations = 9,999).   
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Figure 5.1  Mean temperatures (±1 S.D., solid line, left y-axis) and light intensities (±1 

S.D., dashed line, right y-axis) on different experiment days. 
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Figure 5.2  Mean cell densities (±1 S.D.) of bacteria (0.2-1.0 µm) and nanoplankton 

(1.0-20 µm) in the treatments throughout the experiment. 
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Figure 5.3  Mean coefficients (±1 S.D.) of grazing mortality (g) and population growth 

(µ) of bacteria on different experiment days. Error bar represents standard 

error of estimation of the coefficients. 
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Figure 5.4  Mean percentages (±1 S.D.) of the standing stock grazed and the net 

production grazed of bacterial cells in the Ctrl, HDOil and LDOil 

treatments.  
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Figure 5.5  Model II linear regression (major axis) between population growth and 

grazing mortality of bacteria in the treatments. Red line represents the 

relationship of the Ctrl treatment (g = 0.96µ - 0.29; R2 = 0.24; P = 0.06), 

blue line represents that of the LDOil treatment (g = 1.33µ – 0.71; R2 = 

0.09; P = 0.34) and green line presents that of the HDOil treatment (g = 

0.82µ – 0.10; R2 = 0.86; P < 0.001). 

  



 122 

 

Figure 5.6. Mean percentage changes (±1 S.D.) of TPAH and TNAH compared to the 

concentrations on Day 0 in the treatments. 
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Figure 5.7  Mean concentrations (±1 S.D.) of n-alkanes (C9-C36) in the microcosms of 

HDOil, LDOil, abHDOil, and abLDOil on Day 0 through Day 14. 

  



 124 

 

Figure 5.8  Mean concentrations (±1 S.D.) of PAHs in the microcosms of HDOil, 

LDOil, abHDOil, and abLDOil on Day 0 through Day 14. Acn: 

acenaphthene; Acy acenaphthylene; Ant: anthracene; Baa: 

benz[a]anthracene; Bap: benzo[a]pyrene; Bbf: benzo[b]fluoranthene; Bgp: 

benzo[g,h,i]perylene; Bkf: benzo[k]fluoranthene; Chr: chrysene; Dba: 

diben[a,h]anthracene; Fla: fluoranthene; Flu: fluorene; Idf: indeno[1,2,3-

cd]fluoranthene; Nap: naphthalene; Phe: phenanthrene; and Pyr: pyrene.
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Figure 5.9  Mean percentage abundances of the 25 most abundant phylotypes (Genus) of microbial community in the Ctrl 

treatment.  
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Figure 5.10  Mean percentage abundances of the 25 most abundant phylotypes (Genus) of microbial community in the LDOil 

treatment.   
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Figure 5.11  Mean percentage abundances of the 25 most abundant phylotypes (Genus) of microbial community in the HDOil 

treatment.  
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Figure 5.12  The estimated cell densities of bacterial phylotypes Actinomarina, Alcanivorax, Cycloclasticus, HIMB11 and 

Marinobacterium in the Ctrl, HDOil, and LDOil treatments throughout the experiment. 
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Figure 5.13  Mean (± S.E.) values of Shannon’s diversity and Pielou’s evenness indices 

of the bacterial community on Days 0, 1, 3, 7 and 14 in the Ctrl, LDOil and 

HDOil treatments. 
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Figure 5.14 Results of PCoA of the unweighted UniFrac distance of the bacterial 

communities.  
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Chapter 6: General Conclusion 

Marine protists, consisting of both microscopic producers and consumers, are the 

most important components at the base of the food web. At the community level, a 

simulated 7-day oil spill experiment at the nominal concentration of 10 µL L-1 of crude 

oil in 500 L mesocosms revealed a disrupted coupling between phytoplankton growth and 

microzooplankton grazing. While microzooplankton grazing accounted for approximately 

50% of the phytoplankton growth in the control treatment, the microzooplankton grazing 

impacts in the oil-loaded treatment was negligible. The lack of microzooplankton grazing 

reduces the top-down control on phytoplankton and could potentially lead to algal blooms 

in the natural environment during oil spill events under certain conditions.  

The bacterivory by nanoplankton assembly in seawater added with chemically 

dispersed crude oil at 2 µL L-1 and 8 µL L-1 concentrations in the 20 L microcosms was 

examined in a 14-day experiment. The grazing on bacteria by nanoplankton seemed not 

affected by the addition of hydrocarbons and it was tightly coupled with the bacterial 

growth and kept the bacterial abundance relatively steady throughout the entire 

experiment. The community composition of bacteria shifted during the experiment, with 

the compositions in the oil-loaded treatments becoming more similar to one another and 

more differentiated from those in the control treatment towards the end of the experiment. 

The relatively high abundance of hydrocarbon-degrading bacteria Cycloclasticus and 

Alcanivorax in the oil-loaded treatments indicated the presence of biodegradation of 

crude oil. Given that the degrees of bacterivory did not differ among the three treatments, 

the compositional changes in the bacterial community is believed to be related to bottom-

up control of carbon and inorganic nutrient availabilities rather than top-down control by 

nanoplankton grazing.  

At the species level, the vulnerabilities of the heterotrophic dinoflagellates 

Oxyrrhis marina, Protoperidinium sp., ciliates Euplotes sp. and Metacylis sp., and their 

algal prey species to the water accommodated fraction of petroleum hydrocarbons and 

dispersant were tested. All the protistan species showed species-specific response to the 
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pollutants. Their cell volume and taxonomic grouping did not explain their variations in 

their vulnerability to toxicants. Most of the grazer species experienced reduced 

population grazing impacts or per capita ingestion rates in the treatments of crude oil 

alone and chemically dispersed crude oil at a certain concentration.    

Mixotrophic dinoflagellates and ciliates are thought to be capable of dominating 

the plankton grazer community. However, the mixotrophic dinoflagellate Fragilidium 

subglobosum tested did not grow well in media with Tripos tripos as added prey when 

separately maintained at 19°C and 23°C. While its maximum photosynthetic efficiencies 

were higher at 19°C, F. subglobosum did not show obvious feeding at both temperatures. 

The negligible prey ingestion could be due to prey selectivity, triggering mechanisms of 

phagotrophy or intra-specific strain variations. It is suspected that this Florida strain of F. 

subglobosum is not mixotrophic. The hypothesis that it becomes more heterotrophic at 

elevated seawater temperature is therefore not proved or disapproved. 

Overall, the herbivory by microzooplankton was reduced while the bacterivory by 

nanoplankton was not affected in the presence of chemically dispersed crude oil at the 

tested concentrations. The tested marine protists reacted differently to the changed 

environments of the elevated seawater temperature and the addition of petroleum 

hydrocarbon pollutants.  
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