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 The a-stratification procedure of item exposure control was designed to stratify 

items by item discrimination to ensure that an adaptive test would administer items from 

the entire range of items, not just the most-informative ones. An improvement to the a-

stratification method, the a-stratification with b-blocking procedure added stratification 

according to item difficulty in order to take into account any correlation that might exist 

within the item pool between item discrimination and item difficulty. These procedures 

have been shown to work well using dichotomous items. This dissertation explored both 

stratification procedures using polytomous item pools to investigate whether or not an 

optimum number of strata could be implemented when administering polytomous 

computerized adaptive tests.  
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In addition to the stratification procedures, two other exposure control conditions 

were studied. The randomesque procedure was used in one condition while a no exposure 

control condition served as a baseline condition. Items calibrated according to the 

generalized partial credit model were used to construct two item pools. Since the items 

covered three areas of science, content balancing procedures were incorporated to ensure 

that each adaptive test provided the appropriate balance of content. Maximum likelihood 

estimation was used to estimate ability levels from simulated CATs. The number of strata 

used with both stratification procedures ranged from two to five, to ensure enough items 

per stratum. 

 Along with descriptive statistics and correlations, bias and root mean squared 

error helped portray the accuracy of the simulated tests. Item exposure and item pool 

usage rates were used to show how much of the item pools were being used across 

administrations of the tests. Finally, item overlap rates were calculated to show how 

many of the same items were being used among simulated examinees of similar and 

different abilities.  

The results of this study did not reveal an optimum number of strata for the 

stratification procedures with either item pool. Furthermore, the randomesque procedure 

outperformed the stratification procedures in terms of item exposure and item overlap 

rates for both item pools. This surprising result was not affected by the number of strata 

used within the stratification procedures. 
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CHAPTER ONE: INTRODUCTION 
 

Computerized adaptive testing has become widely acknowledged as a means of 

tailoring tests to individual examinees and providing efficient estimates of examinees’ 

abilities from these tests. The theoretical and psychometric basis for tailored (adaptive) 

testing was described by Frederic M. Lord (1980), followed by his proposal of using 

computers to achieve adaptive testing. Introducing computers into adaptive testing meant 

that computers could essentially present a different test to each examinee, using items 

from a common pool, and compute an ability estimate for each examinee based on the 

responses to the items. In other words, the examinees would take a computerized 

adaptive test (CAT) that was designed for their own individual level of ability – not 

having to wade through items that are not necessarily appropriate for them. Along with 

this, scores (ability estimates) could be obtained with the same or better accuracy as 

traditional paper-and-pencil tests, but with fewer items. 

Although computerized adaptive testing has become widely used, there are 

several practical issues that limit its expansion into larger arenas, namely high-stakes 

testing. Even with the Graduate Record Examination (GRE) Board and National Council 

of State Boards of Nursing introducing computer adaptive versions of their tests in the 

mid ‘90s, other testing agencies are slow to move into computerized adaptive testing due 

to its limitations. Unfortunately, this reluctance is not without reason. 

In 1994, the Kaplan Educational Center demonstrated just how simple it was to 

“steal” some of the item pool of the GRE. Kaplan instructed some of its employees to 

take the GRE over several weeks and remember all of the items that they encountered. 

These items were written down and kept in a journal by Kaplan. As time progressed, 
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several items appeared repeatedly in the journal. It became apparent to Kaplan that a high 

proportion of the items on the GRE had been seen by its employees. Kaplan shared this 

finding with Educational Testing (ETS), the company responsible for the GRE. 

Despite the repercussions against Kaplan for suggesting and overseeing such a 

seemingly unethical task, the issue of test/item security became an issue of concern for 

computer adaptive testing. Although it was proposed that the GRE item pools were too 

small for proper operation, simply enlarging them would not have solved the problem. 

Therefore, the item selection procedure used in the CAT became the next suspect. 

 Wainer and Eignor (2000) discussed analyses of real data on GRE item usage – 

data obtained during the first few years of the GRE-CAT operation – that focused on the 

number of times an item was used and its resulting rank, for the 2,000 most commonly 

used items from the GRE-Verbal and GRE-Quantitative tests. In this case, the item used 

most frequently had the highest ranking, 1, while the least used item had lowest, 2000. It 

was found that the GRE-Quantitative used its items more evenly than the GRE-Verbal 

and that, for both item pools, there was an exponential decline in item usage as the items’ 

ranks decreased. What this tells us is that the item selection algorithm did a poor job of 

selecting items evenly, enhancing the opportunity of a test/item security breach. This was 

a problem of item exposure control. 

 The main concern with item exposure control in computerized adaptive testing is 

that if examinees can answer CAT questions correctly from any previous knowledge of 

particular items then the ability estimate generated through the CAT is not accurate. The 

ability estimates are intended to reflect how much of a domain, or single dimension, an 

examinee knows, not how much of the item pool an examinee knows ahead of time. A 
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second issue of item exposure control concerns item pool utilization. Item pools are 

difficult, not to mention expensive, to develop for large-scale testing. Knowing this, it is 

more cost effective to use the entire item pool, which is not always the case with CAT. 

Also, the effects of item overexposure are aggregated when CATs are 

administered over long periods of time. With this, items can be overexposed with the 

frequent administrations of the tests and examinees could help other examinees by 

alerting them to particular items on the test. However, when testing schedules are 

restricted to “windows” of times, then the effects may be subdued, if not eliminated. 

Restricting the test scheduling, however, is largely dictated by practical and policy issues 

and is often not a viable option. Constraints such as these have led to the use of statistical 

algorithms for controlling item exposure. 

 Since the Kaplan-GRE scandal, new security measures have been implemented 

within CAT to control the exposure of items. For example, a new conditional-exposure 

control method was incorporated into an adaptive version of the Scholastic Aptitude Test 

(SAT). However, as shown by Wainer and Eignor (2000), the item pool was still not used 

evenly.  A knowledge-performance curve analysis was used to portray the relationship 

between the number of items answered correctly and the “percent of the item pool known 

by the examinee”. In this particular analysis, the item pool represents the “domain of 

knowledge” that the test is to tap. From this analysis, it was found that knowing 17% of 

the SAT-Verbal domain would result in a 50% correct score while knowing 33% of the 

domain would achieve a 75% correct sore.  

From these numbers, it is apparent that the ratio of knowledge-to-performance for 

the SAT-Verbal is remarkably different from an ideal situation. In an ideal situation, if 
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50% of a domain is known, then one could expect that the performance score would be 

close to 50%, causing a 1:1 knowledge-to-performance ratio. With the SAT-Verbal, 

though, the ratio is about 1:3 at one point along the knowledge continuum and about 1:2 

at another, showing an inefficient use of the item pool.  

 Eignor, Stocking, Way and Steffen (1993) presented simulation studies done with 

item exposure control methods for the computer adaptive versions of the GRE and SAT. 

The GRE CAT used the Sympson-Hetter exposure control methodology, which controls 

item exposure in a probabilistic fashion. This approach distinguishes between the 

probability that an item is selected for an examinee and the probability that the item is 

administered. The goal of this method is to control the probability of the item being 

administered, since overexposure can result if the item is administered each time it is 

selected. As will be discussed in greater detail later, the Sympson-Hetter procedure is a 

multistage process that involves, first, generating exposure control parameters for items, 

then a random number generation to determine whether or not an item is actually 

administered. It should be noted that since the GRE item pools contain sets of items that 

are based on common stimulus material, exposure control parameters are generated for 

the stimulus material as well as for the items. 

 Simulation studies on the GRE CAT revealed that the highest exposure rates for 

items and item sets were in the .2 to .3 range for all three GRE item pools – GRE Verbal 

(GRE-V), GRE Quantitative (GRE-Q), and GRE Analytical (GRE-A). This means that an 

item or passage could appear on 20 to 30% of the CATs administered to the typical 

population. The desired maximum rate of exposure was set to .2. For the GRE-V and 
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GRE-Q item pools, the average exposure rate for all used items and sets was just over 

10%, while it was just under 9% for the GRE-A item pool (See Eignor et al., 1993). 

 In contrast to the GRE, the SAT CAT – SAT Verbal and SAT Math – involved a 

randomization procedure for controlling item exposure. As outlined by McBride and 

Martin (1983), the first item was randomly chosen from a set of the eight best items, the 

second from the seven best items, the third from the best six items, and so forth. The idea 

was that the eighth and subsequent items were optimal for the examinee. In other words, 

after the initial items – those before the first optimal item – examinees would be 

presented items optimal for them and the items, in theory, would vary from examinee to 

examinee. 

Results from SAT CAT simulation studies showed that the highest exposure rates 

for both the SAT-V and SAT-M were in the .5 to .6 range. However, the average 

exposure rate for all used items and passages in the SAT-V was just over 11%, while it 

was just over 10% for the SAT-M CAT (see Eignor et al., 1993). 

 Since these early simulation studies, and perhaps before, security in computer 

adaptive testing has generated great concern leading to several new developments in 

controlling item exposure (Chang & Ying, 1999; and Chang, Qian, & Ying, 2001). 

Researchers have looked at different ways of controlling item exposure by developing 

new techniques for handling the phenomenon and performing various studies comparing 

the techniques with one another. Comparing exposure control techniques with one 

another, researchers have taken aim at proposing which technique appears to work the 

best given a particular computer adaptive testing situation. In doing so, other issues have 
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been taken into account, including item pool size and content balancing restraints, when 

prescribing the best procedure. 

 It is worth mentioning that only until recently most of the previous research on 

item exposure control methods has been with items that follow the multiple-choice 

format. This could be due to the fact that most tests that have been developed into CATs 

have also followed this item format. However, with the advent of using more 

performance-based items in CATs, more research is needed in controlling item exposure 

and item pool use with polytomously scored items, items that produce multiple-category 

scoring options.  An example of this type of item is a Likert-type item in which the 

response could be one of five categories (i.e., strongly disagree, disagree, neutral, agree, 

and strongly agree). Other types of polytomous items include essay questions and 

constructed-response math items, which are scored on the basis of what a student can do, 

rather than the typical “right/wrong” criterion. As a result, these types of items use 

statistical models that facilitate complex scoring schemes, such as partial credit scoring. 

Statistical models that use such scoring schemes are the graded response model 

(Samejima, 1969), partial credit model (Masters, 1982), the generalized partial credit 

model (Muraki, 1992). 

 Performance assessment items, such as the types just mentioned, have achieved 

an increasing amount of attention, especially within the computerized adaptive testing 

framework, for several reasons. Proponents of these items argue that they represent a 

better means of finding what the students can and cannot do. For example, an item that 

involves five steps for arriving at the solution could score the examinees according to the 

number of steps that were performed correctly. In this case, each step might be worth one 
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point leading to a possible range of scores of 1 to 5 for that particular item. The scores 

achieved by the examinees will reflect how far they were able to correctly work through 

the problem. Knowing which steps were incorrectly performed gives the examinees an 

indication of what particular knowledge they lack instead of the typical global notion that 

they do not understand a particular problem. In other words, this type of task makes it 

easier to pinpoint where an error in understanding occurs rather than in a typical multiple-

choice item. 

 From this, it appears very crucial that efforts of expanding computerized adaptive 

testing to include more performance-based assessments continue. Specifically, it is 

important to continue examining the many innovations that have been designed for 

traditional multiple-choice CATs and see how well they apply to CATs for polytomously 

scored items.  

This dissertation will focus on the integration of performance-based items and 

item exposure control methods – methods that have been designed more for traditional 

multiple-choice assessments – to further analyze the potential of these exposure control 

procedures in performance-based assessments. The exposure control procedures that will 

be investigated in this simulation study are the a-stratification procedure (Chang & Ying, 

1999) and a-stratification with b-blocking procedure (Chang, Qian, & Ying, 2001). The 

goal of analyzing these methods is to determine if there is an optimum number of strata 

needed to stratify a polytomous item pool in order to achieve the perceived advantages of 

these item exposure control procedures. These procedures will also be compared to a 

frequently used randomization procedure and a no item exposure control condition. The 

latter condition serves a s a baseline condition. 
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CHAPTER TWO: LITERATURE REVIEW 
 

The purpose of this literature review is to provide the theoretical framework for 

investigating item exposure control methods in computerized adaptive testing. The first 

section will discuss item response theory, its assumptions and models. The assumptions 

are crucial to the appropriate uses of item response theory and its models and, therefore, 

are discussed first. Following the assumptions, the models of item response theory are 

presented. The dichotomous item response theory models will be discussed followed by 

models that are used with items having ordered-response categories (i.e., Likert-scale 

items, or items scored based on partial credit). 

Following the discussion of item response theory, the subject of adaptive testing 

will be discussed. A brief introduction to computerized adaptive testing will be presented 

followed by the well-known advantages it has over traditional paper-and-pencil testing. 

In addition to this, several components of computerized adaptive testing will be discussed 

beginning with the topic of item pools in adaptive testing. Next, the most common item 

selection techniques for progressing through an adaptive test will be reviewed as well as 

criticisms of using such procedures. Along with this, typical procedures for terminating a 

computerized adaptive test (CAT) will also be mentioned.  

 Ability estimation procedures in adaptive testing will also be discussed including 

their advantages and disadvantages in the scope of computerized adaptive testing. 

Content balancing and item exposure control will conclude the section on computerized 

adaptive testing. Within the item exposure control section, several procedures that have 

been developed for enhancing test security will be addressed along with empirical 

research outlining their advantages and disadvantages.  
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 Lastly, previous research in dichotomous and polytomous item response theory on 

procedures of exposure control will be reviewed. This section will focus on the previous 

research investigating stratification methods of exposure control in an attempt to provide 

the foundation for the investigation conducted in this dissertation.  

Item Response Theory 

 Computing an examinee’s ability from responses obtained through a CAT is 

based on item response theory (IRT), which is essentially a collection of mathematical 

models that characterize items and examinees on a common scale. Within this 

framework, the scale that indicates the difficulty of an item is the same scale that is used 

to assign scores (ability estimates) to all examinees. With this, one of the benefits of IRT 

is that examinees can be compared; using the ability estimates, regardless of the items 

each examinee is administered. 

 IRT is a measurement theory that was developed to address areas that have been 

problematic for the classical test theory (CTT) that had dominated the measurement 

models and procedures for constructing tests and interpreting scores. It was revealed that 

CTT had some shortcomings that affected its utility in certain applications. First, item 

statistics determined through CTT depended on the particular group of examinees with 

which they were obtained. This prevented the generalization of the item statistics to other 

groups of examinees without careful sampling procedures. Also, the ability estimates 

depended upon the particular choice of items used on a test, preventing the generalization 

of the ability estimates to other items that could have been used without extensive 

equating procedures.  
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 The property of invariance distinguishes IRT from CTT in that the item statistics 

or estimates do not depend on a particular group of examinees and the ability estimates 

do not depend on a particular set of items. In other words, assuming decent model fit, 

using an IRT model to fit response data should result in the same item characteristic 

curves regardless of the distribution of ability used to estimate the item parameters and 

the ability estimates should be the same regardless of the items administered from a given 

calibrated item pool. This invariance has been shown to hold within a linear 

transformation (Lord, 1980).  

 The statistical models that IRT plays host to can be classified into two categories: 

dichotomous and polytomous models. Dichotomous IRT models are used when the items 

are scored according to a “right/wrong” criterion. In this case, the examinee either gets 

the item right or wrong. Polytomous IRT models, however, are used when more complex 

scoring schemes are necessary for the items. Typical item types for polytomous IRT 

models include essay questions, constructed-response math items, and Likert-type items. 

These items are not scored on a strict “right/wrong” criterion, but on a partial-credit or 

graded-response criterion.  

In general, IRT models give the probability of an examinee answering an item in 

a given way, incorporating both the estimation of ability and the item parameters of the 

models. An item characteristic curve (ICC) represents the mathematical expression that 

relates the probable success on an item to an examinee’s ability. ICCs differ across IRT 

models due to the parameters used to estimate them. 

 IRT does have some assumptions, which are addressed by Hambleton and Cook 

(1977), that the data (item responses) must meet in order for its models to be properly 
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used. One assumption of many IRT models is that the items used must measure the same 

thing – a single dimension of knowledge or underlying trait, such as verbal proficiency, 

statistical reasoning, and spatial memory, to name a few. This assumption is referred to as 

unidimensionality. It should be understood that this assumption cannot be strictly met as 

factors such as motivation and anxiety most often affect test performance. However, as 

Lord (1968) pointed out, showing a unidimensional structure to a set of items “may 

provide a tolerably good approximation”. 

 Local independence, an assumption related to unidimensionality, is classified into 

two forms: strong and weak. The strong form of local independence refers to the item 

responses of an individual examinee being statistically independent. In other words, a 

response to one item is not influenced by the response on the other items within the test. 

This is related to unidimensionality, in a sense, because only the underlying ability 

measured through the items influences item response, not some other ability. The weak 

form of local independence is the idea that pairs of test items are uncorrelated for 

examinees of the same ability level. The difference between the two forms of local 

independence is that the strong form defines the condition of being “statistically 

uncorrelated” while the weak form defines the condition of just being “uncorrelated”. 

 The third assumption of IRT is that the probability of responding in a given 

category is a mathematical function of the item parameter(s) and the person’s trait level. 

A graphical representation of the mathematical function is called an item characteristic 

curve (ICC). The different IRT models specify this relationship between probable success 

and ability in different forms, leading to differing displays of the ICCs.  
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P θ( )=
1

1+ e− θ −b( )

where θ denotes an examinee’s ability and b represents an item’s difficulty. The 1PL 

gives the probability of an examinee with ability θ responding correctly to an item of 

difficulty b. 

 The Rasch model, proposed by Georg Rasch (1960), is the simplest IRT model 

since it characterizes items using just one parameter, an item’s difficulty (b). Commonly 

known as the one-parameter logistic model (1PL), the Rasch model can be 

mathematically represented as 

Rasch (One Parameter Logistic) Model 

As Figure 1 illustrates, ICCs resulting from the 1PL will only differ in location; slopes 

and lower asymptotes of the curves for all items will be the same. Also, since guessing is 

not modeled under this model, the lower asymptotes of the ICCs will be zero. From this 

graph, the items’ difficulty, b, is represented by the trait level at the “point of inflection.” 

 Since the application of the 1PL model assumes that only item difficulty 

influences examinee performance, two other assumptions are implied. First, since there 

are no indices of item discrimination allowed in this model, it is assumed that all items 

are equally discriminating. The second assumption is that correct responses are unlikely 

due to guessing. Within the 1PL, there are no parameters indicating the probability of 

correct responses through guessing, which can happen using multiple-choice items.  

Dichotomous IRT Models 

    (1) 
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Figure 1. Item characteristic curves for the 1PL. 
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 Allowing the items to have different discrimination capabilities adds a parameter 

to the 1PL. The resulting model, the two-parameter logistic model (2PL) was proposed 

by Birnbaum (1968) and is given by 

Two Parameter Logistic Model 

This point on the ICC – where the probability of a correct response is .50 - signifies 

where the rate of change shifts from increasingly accelerating to increasingly 

decelerating.  
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P θ( )=
1

1+ e−a θ −b( )

 The differences in item discrimination parameters reveal the differences in utility 

of separating examinees into different ability levels. For example, with a high 

discrimination parameter an item is more useful for separating examinees into different 

ability levels than an item with a low discrimination parameter.  The usual range for item 

discrimination parameters is between 0 and 2. 

where the addition of the a parameter signifies that each item might discriminate among 

the examinees differently. From this, it can be said that some items will discriminate 

among the examinees better than others. ICCs from the 2PL will differ in location and 

slope, but not lower asymptotes (see Figure 2). The discrimination parameter is 

proportional to the slope of the ICC, so that higher discrimination parameters will yield 

steeper slopes than items with lower discrimination parameters.  

    (2) 
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Figure 2. Item characteristic curves for the 2PL.

 15

  

 



  

 16

P θ( )= c +
1

Three Parameter Logistic Model 
 

Although the Rasch and 2PL models do not account for examinees guessing on 

test items, it cannot be ruled out in multiple-choice items. It can occur that an examinee 

gets an item correct that is outside the appropriate range of difficulty. Given this 

situation, the most logical solution is to account for the capacity for guessing that can 

take place. The three-parameter logistic model (3PL), also proposed by Birnbaum (1968) 

and defined as  

does just that. The c parameter represents the lowest probability of getting an item correct 

through guessing. For this model, c now represents the lower asymptote of the ICCs. 

Allowing for guessing raises the lower asymptote of the ICCs so that they do not have to 

be zero, as with the 1- and 2PL (see Figure 3). Of course, an examinee will likely only 

guess on an item that is seemingly difficult, in which case that examinee has low ability 

for answering that item.  

 Figure 3 shows two items, one with a guessing parameter and the other without a 

guessing parameter, therefore being modeled under the 2PL for comparison. Although 

both items have the same difficulty, the item modeled under the 3PL appears to have a 

different point of inflection. Even though the item difficulties are the same, the guessing 

parameter causes the shift of the inflection point with the 3PL item. The item difficulty of  

− c
1+ e−a θ −b( )     (3) 
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Figure 3. Item characteristic curves for the 3PL.
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the 3PL item is associated with a higher probability of a correct response than the item 

with a guessing parameter of zero. 

Urry (1977) stated that the 3PL is the most appropriate IRT model for multiple-

choice items since those items usually vary in discriminatory power and can be answered 

correctly through guessing. Also, Urry outlined four conditions for choosing items for the 

item pools used for computerized adaptive testing, specifically for the dichotomous case. 

These conditions are: 1) the item’s discrimination value must exceed 0.8; 2) the item  

difficulties must be evenly and widely distributed, for example from -2.0 to +2.0; 3) the 

“guessing” parameter must be less than 0.3 and 4) there must be at least 100 items in the 

item pool. 

Item and Test Information for Dichotomous IRT Models 

Related to item discrimination is the notion of item information – the amount of 

measurement precision an item provides at each point along the ability continuum. More 

specifically, an item with high discrimination at a particular ability level provides more  

information at that ability level than an item with low discrimination. In this sense, item 

information is related to the slope of the ICC. As will be discussed later, one goal of 

computerized adaptive testing is to select items that provide the most information at the 

examinee’s current ability level. Birnbaum (1968) demonstrated the notion of item 

information, for dichotomous IRT models, using    

Ii θ( )=
Pi

' θ( )[ ]2

Pi θ( )Qi θ( )
    (4) 
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where Ii θ( ) represents the amount of information an item  provides at ability θ. i Pi
' θ( ) is 

the first derivative of Pi θ( ) with respect to θ, Pi θ( ) is the probability of a correct 

response given θ, and Qi θ( )= 1− Pi θ( ), the probability of an incorrect response. 

 Item information can be summed across a test to provide test information.  

I θ( )= Ii θ( )
i=1

n

∑      (5) 

 
The same principles hold here as well. The higher the test information the greater the 

measurement precision achieved. This should not be surprising since high test-

information is the direct result of the high item information provided by the items that 

comprise test. Given this, test information can be made analogous to test reliability since 

it indicates how well the test measured the examinee’s ability (Parshall, Spray, Kalohn, 

and Davey, 2002). This comparison is often made by assuming that the error of 

measurement has the same value at all ability levels. However, scores based on IRT may 

have different errors of measurement at different levels of ability preventing the precision 

of a test from being easily described by a single estimate of reliability. From this, Green, 

Bock, Humphreys, Linn, and Reckase (1984) showed that an average of the measurement 

error – across all ability levels – could be used to generate a “marginal reliability” 

estimate 

ρ =
σθ

2 −σ e*
2

σθ
2      (6) 

where σθ
2 is the variance of proficiency and σ e*

2
 is the average of the values of error 

variance.   
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Furthermore, as defined by Birnbaum (1968), the amount of information a test 

provides is inversely related to the precision with which ability is estimated: 

SE θ
∧⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟ =

1
I θ( )

,    (7) 

 

where SE θ
∧⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟  is the standard error of estimate of ability. 

Polytomous IRT Models 

This section provides an overview of some of the polytomous IRT models. Although 

several polytomous IRT models exist, this section will only  provide an in-depth 

explanation of three of the models: the graded response model, the partial credit model, 

and the generalized partial credit model. Other polytomous models will be introduced, 

but any readers interested in those models should refer to the original sources.  

Graded Response Model 

 Samejima (1969) proposed a graded response model that deals with ordered 

polytomous categories, such as letter grading, A, B, C, D, and F, used in the evaluation of 

students’ performance; strongly disagree, disagree, agree, and strongly agree used in 

attitude surveys; or partial credit given in accordance with an examinee’s degree of 

attainment in solving a problem. The graded response model requires two steps for 

determining response probabilities. The first step involves determining the characteristic 

curves for each score category of each item, 

P*
ix θ( )=

exp[ai(θ − bix )]
1+ exp[ai(θ − bix )]

,    (8) 
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bix

ai

Pix
*

representing the probability of an examinee responding to an item in a particular category 

or higher, using  as the between category “threshold” parameter for each of the x 

categories of item i and  as the slope parameter for item i . The category threshold 

parameters represent the ability level needed to respond above the threshold x with .50 

probability θ( )

mi + 1( )

xi = 0,1,...,mi

Pix

 represents an “operating characteristic curve” for the threshold 

between adjacent categories of an item. Under this model, an item may have  

scoring categories, with  representing the possible scores for the item. 

Figure 4 shows the operating characteristic curves for a five-category item. The actual 

category response probabilities, called category response curves, are computed using the 

operating characteristic curves   

θ( )= Pix
* θ( )− Pi(x+1)

* θ( )

Pi0
*

This equation is simply a subtraction of the probabilities of an examinee responding in 

adjacent categories of an item. In order to use this formula, the probability of responding 

in or above the lowest category is defined as 

    (9) 

 

θ( )=1.0

Pxi +1
*

 and the probability of 

responding above the highest category is θ( )= 0.0 . Figure 5 shows the category  

response curves for the same five-category item represented in figure 4. The graded  
 
response model simplifies to the 2PL when there are only two categories.



  

0.0

0.2

0.4

0.6

0.8

1.0

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

Trait Level

P
ro

b.
 o

f P
os

iti
ve

 R
es

po
ns

e

 

Figure 4. Operating characteristic curves for a five-category item under the graded response model.
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Figure 5. Category response curves for the five-category item under the graded response model.
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x

Pix (θ) =
exp θ − bik( )

k= 0

x

∑

exp θ − bik( )

Partial Credit Model 
 
 The partial credit model (Masters, 1982), like the Rasch model for dichotomies, 

only uses difficulty parameters to characterize the items, or more specifically the  

response categories of the items. The probability of receiving a score  on item i  can be 

obtained through 

k= 0

h

∑
h= 0

m

∑
,x = 0,1,...,mi

mi bi

,   (10) 

where  is the number of categories, minus one, for item i  and k  is the step difficulty 

for the  category. The step difficulty is the difficulty associated with the transition from 

one category to the next. Also, the step difficulty is the point on the ability scale where 

two consecutive category response curves intersect, arriving at its name of category  

x

mi

Explicitly, Equation 10 states that the probability of an examinee responding in 

category x on an  step item is a function of the difference between an examinee’s trait 

level and a category intersection parameter (Embretson & Reise, 2000). This equation 

simplifies to the Rasch model, for the dichotomous case, when there are only two 

categories. Figure 6 is an illustration of a three-category item under the partial credit 

model. The intersection points of adjacent category curves are represented by the step 

difficulties – the “difficulty” associated with the transition from one category to the next. 

intersection parameter.  
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Figure 6. Category response curves for a three-category item under the partial credit model.
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Pix (θ) =
exp ai θ − bik( )

k= 0

x

∑

exp ai θ − bik( )

Generalized Partial Credit Model 
 
 Just as the 2PL could be obtained by relaxing the assumption of uniform item 

discrimination from the 1PL, the same maneuver can obtain the generalized partial credit 

model from the partial credit model, as proposed by Muraki (1992). However, it is 

assumed that the categories within an item are uniformly discriminating thus requiring a 

single discrimination parameter for each item. The generalized partial credit model (see 

Figure 7) is given by 

k= 0

h

∑
h= 0

mi

∑
,x = 0,1,...,mi

mi biwhere  and k  are defined as they were in the partial credit model and  indicates 

“the degree to which the categorical responses vary among items as θ level changes” (see 

Muraki, 1992) and is analogous to item discrimination in dichotomous IRT.  

,   (11) 

ai

Models Not Described 

 There are other polytomous IRT models that will not be described in detail here. 

However, these models will be introduced so that interested readers may consult with the 

original citations. Bock (1972) introduced the nominal response model to  

characterize item responses when the responses are not ordered along a trait continuum. 
  
Andrich (1978) developed a rating scale model which could be derived from the  
 
partial credit model. This model provides a scale location parameter for each item as well  
 
as category intersection thresholds for the entire set of items. Muraki (1990) proposed a  
 
rating scale model, a “modified” graded response model, to analyze questionnaires with  
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Figure 7. Category response curves for a five-category item under the generalized partial credit model.



  

rating-scale type response formats. This model breaks the category threshold parameter 

of the original graded response model into a location parameter for each item and a 

category threshold parameter for the entire scale. Finally, Rost (1988) designed the 

successive intervals model that combines features of the partial credit and rating scale 

models.  

Item and Test Information for Polytomous IRT Models 

 Although similar in concept, item information in polytomous IRT is quantified 

differently than in dichotomous cases. Here, item information is composed of the 

individual contributions that each of the score categories of the polytomous item 

provides. These individual contributions were first defined by Samejima (1969) as 

Iix θ( )=
Pix

' θ( )[ ]2

Pix θ( )
−

Pix
'' θ( )

Pix θ( )
   (12) 

 
otherwise known as the item-category information function (Muraki, 1993). In equation 

12, Pix θ( ) is the probability of responding in category x for item i given θ , Pix
' θ( ) is the 

first derivative of Pix θ( ) with respect to θ , and Pix
'' θ( ) is the second derivative of Pix θ( ) 

with respect to θ . From this, item information, Ii θ( ), is defined as 

Ii θ( )= Iix θ( )Pix θ( )
xi = 0

mi

∑  .   (13) 

 
Substituting Equation 12 into Equation 13 and simplifying the resulting equation shows 

item information defined as 
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Ii θ( )=
Pix

' θ( )[ ]2

Pix θ( )x= 0

m

∑ − Pix
'' θ( )

x= 0

m

∑  .  (14) 

 
It was shown by Samejima that the second term in equation 14 equals zero and therefore 

can be removed from the equation. 

 As with information functions in dichotomous IRT, test information in the 

polytomous context can be obtained through the summation of the item information 

functions, and that test information is inversely related to the precision with which ability 

is estimated. (Refer to Equations 5 and 6.) 

Adaptive Testing 

 Adaptive testing, as we know it today, is based on the principles of intelligence 

testing by Alfred Binet (1857-1911). This form of testing follows the simple logic that if  

an examinee is asked a question and answers it correctly, then the next question asked 

should be more difficult. Conversely, if an examinee is asked a question and answers it 

incorrectly, then the next question should be easier. This approach appears logical  

since a correct response to an item should not be rewarded with an item in which the 

chance of another correct response is unjustifiably greater. Similarly, an item with an 

increased probability of a wrong response should not follow a wrong response to an item. 

Adaptive tests that do not utilize this mechanism of administering items run the risk of 

obtaining inadequate information about an examinee’s ability. For a sufficient adaptive 

test, this mechanism of presenting items to the examinee should continue until the test 

administrator feels an accurate estimate of the examinee’s ability has been obtained.  
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  The main advantage that adaptive testing has over conventional (non-adaptive) 

tests is that scores from adaptive tests are highly accurate for individuals of all ability 

levels, rather than just for the “average” ability individuals as in the conventional tests. 

This idea is based on the fact that most conventional tests are designed for the “average” 

individual. In other words, these tests provide very accurate scores for “average” abilities, 

but not for extreme high or extreme low abilities.  

While adaptive testing was first introduced in the form of paper-and-pencil tests, 

the technological advancements of computers have made computerized adaptive testing a 

desired reality and will be discussed as such for the remainder of this paper. 

Computerized Adaptive Testing 

Studies have shown the psychometric efficiency of computerized adaptive testing. 

Urry (1977) used 57 Civil Service Job applicants on an adaptive verbal ability test to 

demonstrate the improved measurement of computerized adaptive testing over 

conventional testing. The CAT achieved an 80% reduction (compared to a conventional 

test) in the test length required to attain any of several specified levels of reliability. 

However, McBride and Martin (1983) claim that these results were based on indirect 

evidence since “the conventional test reliabilities were based on Spearman-Brown 

equation adjustments to the reliability obtained in an independent sample, and the 

adaptive test reliability was merely assumed, not empirically verified” (p. 225). 

From this, McBride and Martin (1983) conducted two studies investigating the 

psychometric properties of CAT in comparison with a conventional test. The goal of the 

studies was to determine if CAT is more reliable and more valid than a comparable 

conventional test, holding test length constant between the two modes of testing. Both 
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studies used 150 items that fit the guidelines set forth by Urry (1977), mentioned earlier, 

and a sample of male Marine recruits at the Marine Corps Recruit Depot, San Diego as 

the examinees. The difference in the studies is two-fold: 1) study II used a larger sample 

than study I, and 2) study II utilized a different computer system for administering the 

tests. 

In terms of reliability, both studies demonstrated that the adaptive tests achieved 

higher reliabilities than the conventional tests, but only up to certain test lengths: 10 items 

for study 1 and 13 for study 2.  However, the superiority of the adaptive tests was not 

clear in terms of validity. For these studies, validity was defined as the correlation 

between scores on adaptive and conventional tests created (“experimental” tests) and the 

scores from a concurrently administered 50-item criterion test, created from two obsolete 

operational test forms measuring word knowledge. The first study, based on a “pilot 

sample” did not show any significant differences in validity between the adaptive and 

conventional tests. However, the second study, based on a larger sample, showed 

significant differences in validity between the tests, again, up to a particular test length.  

Green (1983) noted other advantages of computerized adaptive testing, apart from 

the psychometric efficiency already discussed, including: 

1) Improved test security. 

2) Elimination of answer sheets. 

3) Immediate scoring and score reporting. 

4) Each examinee can work at his/her own pace - staying busy, productively.  

5) New items can be pre-tested without disrupting the flow of the testing 

program. 
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One other advantage listed as a potential advantage, given the year it was mentioned, that 

has certainly become a reality with the advancement in computing technology is the use 

of new types of items. For example, constructed-response items or items involving 

pictures or video clips can now be used in CATs. 

Components of Computerized Adaptive Testing 

It is through all of these advantages that computerized adaptive testing has 

continued to flourish in measurement testing. There are, however, important issues to 

analyze when considering the implementation of a CAT. These issues include item pool 

size and characteristics, item selection algorithms and stopping rules, ability estimation 

procedures, content balancing, and item/test security. Throughout this section, each of 

these issues is examined in greater detail. 

Item Pool 

 Compared to traditional paper-and-pencil tests, in which the items used give the 

best measurement for the average examinee, CAT item pools provide the best 

measurement precision at all levels of proficiency. Along with this, CAT item pools need 

to be large enough to offset 1) the uneven item exposure of CAT item selection 

algorithms and 2) the number of occasions - within a short period of time - which some 

CATs may be administered. Stocking (1994) conducted a study investigating optimal 

item pool sizes for five adaptive tests that mirrored high-stakes tests. The CATs included 

two measures of verbal reasoning, two measures of mathematical reasoning, and one 

measure of analytical reasoning. CAT simulations found that across the five adaptive 

tests, an item pool 12 times the size of an average CAT was sufficient for fixed length 

adaptive testing. This finding was consistent across content and statistical considerations 
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of the CATs. Stocking went on to conclude that an item pool with six to eight linear test 

forms would support fixed-length adaptive testing, when the fixed length is 

approximately one-half that of the linear paper-and-pencil test.  

Way (1998) concluded that the results obtained in Stocking’s study generalized 

best to admissions testing programs (i.e., GRE, SAT, ACT, etc.). These testing programs 

are considered high-stakes, but there is no control over the testing populations. For 

licensure or certification tests in which the testing population is controlled, the required 

item pool size is not as straightforward. Stahl and Lunz (1993) recommended item pools 

between 600 and 800 items, with 500 items being a minimum, for certification exams that 

ranged from 50 to 100 items. 

Way (1994) and Way, Zara, and Leahy (1996) conducted simulations on two 

medical licensure exams in which one ranged from 60 to 250 items and the other 60 to 

180 items. The operational item pool for the exam with a maximum of 250 items was 

found to have 1,300 to 1,800 items while the other exam had an item pool of 

approximately 1,100 to 1,500 items. The size of these item pools is necessary for two 

reasons. First, examinees are usually allowed to take a licensure exam once after a failed 

attempt, thereby exposing another set of items to the examinee. Also, it is suggested that 

an item pool be able to accommodate the content coverage of four maximum length 

exams (Way, 1994). 

Item Selection 

Item selection techniques govern how a CAT starts, continues, and stops for an 

examinee. Several approaches have been proposed for each of these functions. A general 

progression of a computer adaptive testing system is illustrated below: 



  

1) How to start: Specify an initial estimate of proficiency; this specifies an initial 

item. 

2) How to continue: Estimate proficiency (Θ
∧

)  after each item response. Choose 

the next item that is most-informative near Θ  to be administered. 

3) How to stop: Stop when the precision of Θ is adequate, or when some number 

of items has been administered. 

Starting a CAT. A widely used method of selecting the initial item of a CAT is to 

assume that each examinee is of “average” ability, therefore prompting the item selection 

algorithm to choose an item of medium (average difficulty) as the initial CAT item. Also, 

starting a CAT with an easy item can serve as a “warm-up” and confidence enhancer for 

the examinees. These methods are typically used when no prior information is obtained 

on the tested population. However, when prior knowledge is known about the testing 

population – for example, ability estimates obtained through previous testing – it can be 

used to specify an actual ability estimate to start a CAT. 

The issue of test security is very important to discuss here and will be discussed 

throughout this paper. Choosing the most informative item to begin a test could result in 

over exposure of some items. For example, a single group of examinees, defined by 

previous background information, could receive the same first item – it being the most 

informative item for an age group, for example. This would lead to a large number of 

examinees being exposed to same item, leading to high exposure of that item. High 

exposure lends itself to the possibility that examinees could get an item right based on 

their previous knowledge of the item, not on the skill that was supposed to be measured. 
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In turn, ability estimates obtained through the examinees’ previous knowledge of an item 

is highly inaccurate and provides false information about their performance and ability.  

Continuing a CAT. Three goals are inherent in item selection for continuing a 

CAT: 1) maximize test efficiency, retain appropriate content balancing, and maintain test 

security. These goals are often in conflict resulting in a compromise among them, in 

practice. Maximum information and Bayesian item selection methods for maximizing test 

efficiency will be discussed next while content balancing and test security will be 

discussed later in this paper. 

 Maximum information item selection (Lord, 1977) selects the item that has the 

largest information value at the examinee’s current ability for administration. In this 

procedure, item information may be determined using the IRT model that is assumed to 

underlie the examinee’s responses to the test items. When the next item is to be selected, 

the item information for all items not yet administered is determined and the item with 

the highest information value at the individual’s current level of ability is chosen for 

administration. This procedure may lend itself to estimation error in that items that appear 

to measure well at the estimated ability level may not do so at the true ability level.  

Under this method, the item information at the true ability level represents the 

efficiency of the item for estimating θ. However, it can be the case that the estimated 

ability level θ
∧

 is substantially different from θ, disallowing the item information value 

from being a good indicator of efficiency in estimating θ. The discrepancy between θ
∧

 

and θ is prevalent in the early stages of a CAT when a small number of items are used to 
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estimate ability. This problem has led researchers to investigate other mechanisms for 

selecting the next item in a CAT, specifically for the early stages of the test. 

Chang and Ying (1996) made a distinction between the local and global 

information around θ - local information being the information around a small region of θ 

and global information being the information outside the region. Global information was 

defined as the expected value of the log-likelihood ratio between θ
∧

 and θ. The 

researchers argued that the global information is valuable for use when the location of θ 

is not sufficiently known. Furthermore, simulation studies on using global information 

showed improvements on minimizing the differences between estimated and true abilities 

at the early stage of simulated tests (see Chang & Ying, 1996 for complete study). 

 Much more computationally intensive than the maximum information method, the 

Bayesian item selection method (Owen, 1975) selects items based on how much the 

variance of the posterior ability distribution will decrease. Items that have the potential of 

decreasing the variance of resulting ability distribution will have greater chances of being 

chosen as the next item. Although this procedure can often choose an item that may not 

be the most informative at a particular ability level, this procedure does yield superior 

results to maximum information method (Parshall et al., 2002). 

Stopping a CAT. CATs can be group into two categories according to their 

lengths: fixed length or variable length. Fixed length CATs are specified by a fixed 

number of items to be administered to each examinee. In this case, each examinee 

receives the same number of items regardless of ability level. The problem with this is 

that the ability estimates of some examinees will not be as  precise as others, depended on 

item response patterns. The more items an examinee can respond to, the more accurate 
 36
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the resulting ability estimate will. Occasionally, fixed length CATs are not long enough 

for all examinees to obtain precise ability estimates (Thissen & Mislevy, 2000). Also, 

simply increasing the number of items to be administered would lessen the advantage of 

gathering information about ability using the fewest items possible. 

 Variable length CATs prescribe the amount of precision in ability estimation that 

is needed before terminating the test. This allows the testing program to continue 

administering items until such a precision is met. In doing so, examinees will complete 

the test with different numbers of items each responded to, preventing imprecise 

estimates of ability that could occur if a fixed stopping rule was used. Because a CAT 

could run out of items in the pool before the specified precision of ability estimation is 

met, a combination of “target precision” and “maximum number of items” should be 

utilized as a stopping rule (Thissen & Mislevy, 2000).  

Ability Estimation 

 Throughout a CAT, an examinee’s ability estimate is updated after each response 

to give the best guess of the ability at that point. This provisional ability estimate 

represents the hypothesized ability, not the true (actual) ability. Two types of ability 

estimation procedures are commonly used in adaptive testing: those based on maximum 

likelihood estimates and those based on Bayesian strategies.  

Maximum likelihood estimation procedures (Andersen, 1972; Bock, 1972; Lord, 

1968; Samejima, 1969) give the maximum value of the likelihood function – the 

maximum probability that an examinee produces a given pattern of correct and incorrect 

answers to a set of items, given that the ability is at a fixed value. Hambleton, 

Swaminathan, and Rogers (1991) denotes the likelihood function is given as 



  

L u1,u2,...,un | Θ( )= Pj
u j Qj

1−u j

j=1

n

∏    (15) 

 
 where  represents the observed response to item j, 0 for correct and 1 for incorrect; u j

 
Q Θ( )= 1− P Θ( ). 

The likelihood function is also a function of the item parameters, which could be 

explicitly specified in the likelihood function as 

L u1,u2,...,un | Θ,β j( )= Pj
u j Qj

1−u j

j=1

n

∏    (16) 

 
where β j  represents the item parameter vector a j ,bj ,c j( ) for item j. 

 The primary disadvantage of maximum likelihood estimation procedures is that 

the estimation process cannot begin until there is at least one correct and one incorrect 

response obtained from the examinee. This means that a maximum likelihood estimate of 

ability cannot be determined for the examinee that gets every item correct or for the 

examinee that gets every item incorrect, the dichotomous case. Therefore, for the high 

ability examinee that continues to get items correct, difficult items continue to be 

administered until an incorrect response is obtained. Similarly, for low ability examinee 

that continues getting item incorrect, easier items continue to be administered until a 

correct response is obtained. Until this mixed set of responses has been obtained, a 

variable step-size estimation approach is used to update the ability estimate after each 

item. In most cases, this approach involves placing the trait estimate at half the distance 

 38



  

 39

between the current ability estimate and the most extreme b-value within the appropriate 

content area. 

However, in the polytomous case, maximum likelihood estimation can occur after 

an examinee’s first response provided that the response is not in the extreme response 

categories. Variable step-size estimation is also used for ability estimation when 

maximum likelihood estimation cannot occur. As with dichotomous items, the variable 

step-size estimation procedure in the polytomous case assigns a new ability estimate that 

is half the distance between the current ability estimate and the most extreme item 

difficulty parameter, within the appropriate content area. 

The maximum likelihood estimation procedures assume that no prior information 

on the examinees is being used to help estimate abilities. Researchers argue that using 

such information for ability estimation is a more proper approach in adaptive testing. 

Prior information may be obtained through previous experiences with the testing 

population and can provide information leading to an ability distribution before testing. 

This prior ability distribution can be integrated into the ability estimation procedure 

through the application of Bayes’ theorem, which gives the probability of an event 

occurring given that another event has occurred (Weiss, 1974).  

 Bock and Aitkin’s (1981) maximum a posteriori (MAP) and expected a posteriori 

(EAP) were introduced to distinguish between the Bayes modal and the Bayes estimators, 

respectively, that had been previously proposed as variants on Bayesian ability estimation 

methods. Bock and Mislevy (1982) adapted the EAP to computerized adaptive testing. 

 In adaptive testing, beginning after the first response has been obtained, a 

posterior distribution is determined that specifies a range in where an examinee’s ability 
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may lie. However, the EAP and MAP procedures are designed to summarize this range 

using only one value. Therefore, the EAP uses the mean (expected value) of the posterior 

distribution as the point estimate of ability while the MAP uses the mode (maximum), 

given the prior information on the examinee. 

 An advantage of the EAP method over the maximum likelihood estimation 

methods is that EAP estimates always exist, even for an all-correct or all-incorrect 

response vector. With this, the EAP estimator is stable at all adaptive test lengths.  

 Weiss and McBride (1984) highlight one major disadvantage of the Bayesian 

strategies of ability estimation. In a simulation study, it was found that only unbiased 

measurement and measurements of equal precision resulted when an accurate prior of 

ability estimate was used. In ability testing, the actual ability of an examinee is never 

known; otherwise the testing would be essentially pointless. Therefore, accurate priors 

are never accomplished in Bayesian strategies. Given this, it was found that bias in ability 

measurement and measurement precision occurs when inappropriate priors of ability 

estimate is used. Specifically, when the prior is above the actual ability, then positive bias 

will occur; on the other hand, negative bias will occur when the prior is below the actual 

ability.  Weiss and McBride recommend using maximum likelihood estimation (over the 

Bayesian method) when there is no differential prior information available for examinees.  

Content Balancing 

 Up to this point, it has been stressed that item selection mostly relies on the 

amount of information that an item may provide toward estimating ability. However, in 

practice, the item selection techniques that were previously discussed often are forced 

into a compromise with the actual item content that is required by the test. Conventional 
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and adaptive tests are often designed from a “table of specifications” or blueprint of some 

sort, outlining the breakdown of specific item types and content needed for the test. The 

compromise in adaptive testing is that when a CAT is selecting the next item for 

administration it may have to forego the item with the most information in favor of the 

item that represents what is actually needed to adhere to the test blueprint. This is 

commonly known as content balancing.  

 Positive effects of content balancing in measurement testing can be seen in 

several ways. First, it can serve as a validity check in that the items on a test represent 

what the test blueprint says they will test. For example, suppose a math test has three 

sections: algebra, geometry, and calculus. The algebra section is to cover 40% of the test 

with geometry and calculus each representing 30% of the test. Each CAT constructed 

from the math item pool should represent this breakdown of item types in order for it to 

achieve content validity.  

 Secondly, content balancing provides a means of developing alternate forms of 

the test that are parallel to each other. Again, this guarantees that each CAT constructed 

from the item pool, although possessing different questions, will have approximately the 

same percentage of item types, as specified by the blueprint. Thirdly, depending on the 

difficulty of specific contents, any lack of content balancing would prevent the more 

difficult contents from being administered to everyone even though the content needs to 

be tested on everyone. For example, if the calculus items were difficult, then without 

content balancing less proficient examinees would never see these items, thus removing 

calculus as a part of overall math ability for those examinees. Similarly, highly proficient 
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examinees may only take these difficult items, removing the other (easier) skills from 

overall math ability for these examinees.  

 Three methods of content balancing an computerized adaptive testing have been 

proposed: the constrained CAT (CCAT) method (Kingsbury & Zara, 1989), modified 

multinomial model (MMM) approach (Chen & Ankenmann, 2004), and a modified 

CCAT approach (Leung, Chang, and Hau, 2001). The CCAT method selects items from 

content area that is the farthest below its targeted ideal administration percentage. The 

MMM method was designed to prevent the order effects that could occur using the 

CCAT procedure. This method uses a random number from a uniform distribution to 

determine the content area where the next optimal item would be selected. However, 

sampling errors could prevent target percentages from being met during testing. 

Therefore, once a content area has fulfilled its targeted percentage, a new multinomial 

distribution is generated using the unfulfilled percentages of the remaining content areas. 

The modified CCAT approach selects the optimal item from all of the unfulfilled content 

areas, avoiding the order effect of the CCAT method. 

Exposure Control (Test Security) 

A major goal of the exposure control techniques used in CATs is maintaining test 

security throughout the test’s progression. As mentioned earlier, proficiency estimates are 

highly inaccurate when examinees have prior knowledge of test items. The effect of prior 

knowledge, as shown by Kaplan, typically results when several examinees respond to 

some of the same items, although they test on different occasions, and pass on their 

“knowledge” to individuals who will test at a later time. When this occurs, the only 

logical solution would be to discard the compromised items from the item pool. The 
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problem with this is that item pools are expensive and time-consuming to develop and 

discarding items may render the item pool temporarily inoperable. A disabled item pool, 

in this case, may result from a sharp decrease in number of available items and/or a 

significant change in the content coverage – and psychometric properties – of the item 

pool, due to the content of items that are discarded. 

 The maximum information and maximum posterior precision procedures have 

received attention in CAT research when dealing with test security. Recall that the 

maximum information procedure selects the item that has the largest information value at 

the examinee’s current ability estimate for administration while the maximum posterior 

precision procedure selects items based on how much the variance of the posterior ability 

distribution will decrease. These procedures can, and most often will, select the same 

initial item for every examinee, when no auxiliary information is used to start the CAT. 

Furthermore, the second item chosen for administration would be based upon whether the 

examinee got the first item right or wrong; the second item would be chosen out of two 

possibilities. Therefore, over time, the three most informative items could be over-used 

and examinees could eventually share these items with future examinees, thus arriving at 

the possibility of inaccurate ability estimates. 

 Item exposure control methods influence exposure rates through statistical 

algorithms incorporated into the item selection procedures. Parshall et al. (2002) 

mentioned item exposure control as a more direct alternative to 1) using a “big pool” of 

items (more than 5,000 items) and 2) restricting the testing schedule, for maintaining test 

security. However, modifying item selection techniques with item exposure methods has 

shown a decrease in test precision.  
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 The methods proposed for item exposure control can fall into three categories, as 

first proposed by Way (1998): a) randomization procedures, b) conditional procedures, 

and c) stratification procedures. It should be noted that Way discussed the first two 

categories of exposure control methods and not the stratification procedures since they 

were developed later. The following section will introduce some of the methods for 

controlling item exposure. Other methods that are not described here will be listed at the 

end of the section for interested readers. 

Randomization procedures. Perhaps the earliest, and most simple, statistical 

method for controlling item exposure was proposed by McBride and Martin (1983). 

Aimed as reducing sequence predictability and the exposure of initial items, the method 

first called for the five most appropriate (informative) items from which one would be 

randomly chosen as the first item administered. From there, the second item to be 

administered would be randomly chosen from the remaining four most-appropriate items, 

third from the three best items, and so on until the fifth item is administered, representing 

the best item. Although this method is easy to implement, it should be obvious that it 

does not prevent the overexposure of the most “popular” items that could start a CAT. 

However, this method does prevent sequence predictability. 

 A slight, and effective, variation to this method is the randomesque item selection 

procedure introduced by Kingsbury and Zara (1989). This method chooses the next item 

of administration from a group of items, with different groups used for choosing each 

subsequent item. The random component of this method is that the algorithm could 

randomly choose the next item from a group of items. However, this technique also 
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allows for the next item chosen to be, in fact, the best item of the group – non-random 

selection. 

 This method can be used with either maximum-information or Bayesian selection 

procedures and it accomplishes the two goals of reducing item sequence predictability 

and reducing the exposure of initial items. The random component of this method also 

prevents examinees with the same ability level from seeing the same items, which the 

previous method may allow. It was suggested that an item is chosen from among the 

2,3,…, up to 10 best items. One may consider item groups larger than 5 items to become 

laborious to determine statistically, thus increasing processing time and slowing the 

overall pace of the CAT. However, the necessary computations for determining the next 

group of items to choose from are done while the examinee is answering the current 

question, preventing a lag in computer processing time. 

 A third randomization procedure, Revuelta and Ponsoda’s progressive-restricted 

method (1998), was developed to control item exposure without a decrease in test 

precision. This method is a hybrid of two separate exposure control methods that both 

enhanced test security individually. The restricted maximum information procedure 

selects items using the maximum information procedure, but does not allow items to be 

administered in more than 100k% of the tests. Here, k represents an item’s maximum 

exposure rate. The progressive method, proposed by Revuelta (1995) and Revuelta and 

Ponsoda (1996), also adds a random component to the maximum information procedure, 

but this random component’s influence in item selection decreases as the CAT 

progresses. 
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 In a simulation study (Revuelta & Ponsoda, 1998), it was found that for variable-

length tests these methods yielded longer tests – 3 more items – needed to reach the same 

degree of precision as the maximum information, McBride and Martin’s randomization 

procedure, and Kingsbury and Zara’s randomesque procedures. As a result, no clear 

differences in precision rates emerged. For fixed-length tests, the progressive and 

maximum restricted procedures had fewer items with high exposure rates, compared to 

the other methods. Since item exposure depends on test length, results of exposure 

control for the variable-length tests were not reported. 

 From these individual results, Revuelta and Ponsoda found it beneficial to 

combine the methods into one procedure in order to achieve maximum precision and 

exposure control. Simulation studies revealed that the progressive-restricted method had 

control over maximum exposure rates and the number of unused items. Furthermore, the 

precision rates achieved by this combined procedure were similar to rates obtained using 

the restricted maximum information procedure (see Revuelta and Ponsoda, 1998). 

Conditional procedures. In order to control item exposure more directly, 

Sympson and Hetter (1985) suggests a probabilistic algorithm that controls item exposure 

using a pre-specified rate of exposure.  This procedure is computationally intensive 

requiring simulations for generating exposure parameters, K, before actual live testing. 

The exposure parameters are used in CATs to govern which items are administered to the 

examinees, after been selected. What follows are the steps that outlines this procedure. 

1) Specify the maximum expected item exposure rate r for the test. 



  

2) Construct an information table that lists all available items by ability level. 

Within each ability level, their information level ranks the items, with the 

most informative item on top. 

3) Generate the first set of  values, specifying a vector of 1s to represent first 

set of exposure parameters. 

K i

4) Conduct simulated adaptive tests to a random sample of simulees. Use 

maximum information to select an item  then generate a random number x 

from the distribution (0,1). If x is less than or equal to , administer item . 

Exclude item  from being selected again, regardless of whether or not it was 

administered.  

i

K i i

i

5) When the simulee sample has been tested, use the number of times item  was 

selected (NS) and the number of times it was administered (NA) to compute 

its probability of selection, P(S) and its probability of being administered, 

P(A), for all items. 

i

P(S) = NS /NE
P(A) = NA /NE

                              (17) 

(NE = total number of examinees) 

6) Using r from Step 1, compute new exposure parameters as follows: 

If P(S) > r, then new Ki = r / P(S)  

If P(S) ≤  r, then new Ki = 1.0  

7) If n represents test length, then there should be at least n items in the pool 

where . These items are always administered when selected. If there 

are not enough of these items, then set the n largest  to 1.0. 

Ki = 1.0

Ki
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8) With the new , repeat steps 4-7 until the maximum value of P(A) obtained 

in step 5 is slightly above r. 

Ki

The final  estimates are used in the live CAT testing, shown in the following 

steps: 

Ki

1) Select the most informative item for the current ability estimate. 

2) Generate a random number x from the distribution (0,1). 

3) If x is less than or equal to , administer the item; if x is greater than , do 

not administer the item. Repeat steps 1-3 with the next most-informative item. 

Items selected but not administered are withheld from future selection. 

Ki Ki

Disregarding the disadvantage that the Sympson-Hetter methodology (SH) 

requires time-consuming simulations to generate the exposure parameters need for 

operational testing, the exposure parameters can only be used for the expected ability 

distribution from which they were based on. In other words, the ability distribution that 

was specified as the starting point for generating the exposure parameters may, in fact, 

not be the same as the actual ability distribution of the actual examinees that will be 

tested. Therefore, the exposure parameters obtained through one ability distribution 

cannot be used for one of different characteristics. 

A solution to this problem is to generate exposure parameters for different ability 

levels. The conditional Sympson-Hetter (Parshall, Davey, & Nering, 1998) controls item 

exposure for examinees with similar abilities, making them independent of a specific 

ability distribution. The steps of the original SH approach are used for the conditional 

Sympson-Hetter (CSH) with one modification. The ability distribution is divided into 
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distinct groupings allowing the frequencies of item selection to be recorded for each 

ability level. 

Stratification procedures. Based on the issues pointed out by Chang and Ying 

(1996) and Chang and Stout (1993), a new procedure of item exposure control was 

developed that considers an item’s discrimination power as the criterion for selecting 

items. The a-stratification procedure (Chang & Ying, 1999) was designed to use items 

with high as more efficiently than in the case of information-based selection procedures. 

Items with high discrimination provide more information than those with low 

discrimination, thus leading to the greater use of  high discriminating items. However, 

Chang and Ying showed mathematically that high discriminating items might not be 

useful if the difficulty levels of these items are not near the estimated ability θ. The 

conclusion reached was that high discriminating items should not be used at the 

beginning of a CAT, when little information is known about θ, but as the test progresses 

when more information is obtained (see Chang & Ying, 1996). 

The a-stratified selection (AS) method is described in the following steps: 

1) Partition the item pool into K levels (strata) according to a values; 

2) Partition the test into K stages; 

3) For each stage, select  items from the kth level based on the similarity 

between b and 

nk

θ
∧
, then administer the items; 

4) Repeat step 3 from k = 1, 2, …, K. 

The number of levels needed to partition an item pool depends on the spread of item 

discrimination values within the item pool, how well the range of item difficulty matches 

that of the expected ability, test length, and item pool size. It should be apparent that 
 49
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when the item pool consists of little variability among the values, then few levels are 

necessary. However, greater variability among the values requires a larger number of 

levels. Also, item pools in which the difficulty range corresponds to the expected ability 

distribution can be divided into more levels. Furthermore, larger item pools can be 

partitioned into more levels than smaller ones. 

 Chang and Ying argued that the a-stratification was most appropriate when there 

was not a correlation between item discrimination and item difficulty. However, previous 

research indicates that is seldom the case. For example, Lord (1975) illustrated how the 

use of the ability, θ, scale almost invariably leads to an undesirable situation in which 

item discrimination and item difficulty become positively correlated with each other. 

Although, a transformation on the ability scale was proposed by Lord to overcome this 

condition, the relevant issue to the study proposed in this paper is that of the correlation 

between the item parameters. Lord’s study analyzed six separate sets of test data and 

found a positive correlation between item discrimination and item difficulty, leading him 

to believe that this phenomenon occurs more often than it should. Other authors have also 

experienced this phenomenon in their studies (Lord & Wingersky, 1984; Parshall, 

Hogarty, & Kromrey, 1999). Furthermore, Stocking (1998) argued that the positive 

correlation between item discrimination and item difficulty that is typically found in item 

pools may interfere with the technique of stratification hampering the mechanisms of the 

CAT. Given this, a modification to a-stratification is necessary to overcome the issue of a 

correlation between item discrimination and item difficulty.  

 Weiss (1973) presented a stratification approach that involved portioning an item 

pool according to item difficulty. This method was based upon the design of the 
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Stanford-Binet Scales. In short, test items were organized in sets of  “mental age” levels 

in which 50% of the norm group of the corresponding chronological age responded 

correctly to those items. There was a distinction made between an examinee’s “basal age” 

and “ceiling age”. The basal age referred to the level of difficulty in which all items, 

presumably, would be answered correctly by the examinee. The idea is that those items 

would not provide any information on the examinee’s ability since they were too easy. 

The ceiling age defined the upper limit of difficulty in which all items are answered 

incorrectly. Like those of the basal age, these items do not provide any information on 

ability, but the reason is because they are too difficult. Therefore, this testing structure 

defines the outer limits of ability, administering items from the appropriate b group that 

closely matches the examinee’s ability.  

 Given this structure by Weiss, Chang, Qian, and Ying (2001) proposed an 

improvement to the a-stratification procedure, the AS with b-blocking (BAS) method. 

This approach uses the original framework of the AS procedure, but includes a b 

grouping mechanism to prevent possible mismatches between b and θ during item 

selection. The BAS method is outlined below: 

1) Divide the item pool into M blocks of b values, each block containing the 

same number of items. 

2) Partition each of the M blocks into K strata of a values. 

3) For k=1, 2, …, K, recombine the kth stratum items across M blocks into a 

single stratum. There are now K strata (analogous to K strata in the AS 

method). 

4) Divide the test into K stages. 
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5) In the kth stage, select items from the kth stratum based on the closeness of the 

b values to current θ. 

6) Repeat step 5 for k= 1, 2, …, K. 

The result is obtaining K strata of item discrimination each consisting of the same range 

of b values. 

 Following the notion that successful adaptive tests benefit from simultaneously 

controlling the statistical and content properties of the items, Yi and Chang (2003) 

suggested adding a content balancing component to the a-stratification procedure. This 

new method takes the content specifications of the test and the relationship between the 

difficulty and discrimination of the items into consideration during item pool 

stratification. Simply, an item pool is first stratified according to content specifications 

then assembled into “difficulty” strata according to the BAS approach. Lastly, the items 

within a stratum are pooled across content groups to obtain the operational strata 

structure (see Yi & Chang, 2003 for details outlining this procedure).  

 Previous research investigating the utility of content balancing in stratification 

designs has supported its perceived usefulness. Leung, Chang, and Hau (2003) performed 

a simulation study comparing the three methods of stratification: a-stratification (AS) a-

stratification with b-blocking (BAS), and BAS with content balancing (CBAS). The 

study found that the CBAS was best in terms of pool utilization and control of 

overexposed items. Yi and Chang (2003) found similar results, but also found that 

measurement precision was enhanced using content balancing within the stratification 

approach, yielding precision estimates similar to those of the maximum-information with 

SH exposure control procedure. 



  

 53

Research on Stratification Procedures 

Hau and Chang (2001) notes three advantages of the a-stratification procedure. 

First, as pointed out in a previous study, the precision of ability estimation is comparable 

to the traditional maximum information approach. Secondly, stratification of the item 

pool results in more even item exposure control – less chance of some items becoming 

overexposed. Third, it is easier to implement, compared to procedures such as those 

involving SH methodology in which numerous a priori computations are required.  

The rest of this section will be devoted to examining some of the research that has 

been conducted investigating the mechanisms of the a-stratification procedures.  A study 

investigating the optimum number of strata for these procedures is analyzed first, 

followed by a review of research that compares the a-stratification procedures to other 

common methods of item exposure control. 

Optimum Number of Strata (Dichotomous Items) 

 When using the a-stratification procedures, it should be apparent that the required 

number of strata necessary for maximum efficiency is of great concern. As Hau, Wen, 

and Chang (2002) points out, having just one stratum produces lower efficiency in ability 

estimation than the maximum information approach, since it allows item selection based 

solely on difficulty. However, having too many strata can lower the chances of selecting 

items, within stratum, near the current ability estimate if the stratum does not have a 

sufficient range of difficulty.  

 The aforementioned researchers conducted a simulation study to investigate the 

optimum number of strata necessary to maximize the efficiency of the a-stratification 

procedures. The goal of the study was to determine the relationship between testing 
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performance, in terms of efficiency and item pool usage, and the stratification process 

(number of strata used). This study utilized a 3x2x2 research design: three item pool sizes 

(200, 400, and 800 items); two item characteristics (no correlation between item 

difficulty and item discrimination and moderate correlation, 0.5, between item difficulty 

and item discrimination); and two item selection methods (maximum information and 

matched item difficulty with estimated ability). The items were calibrated according to 

the 2PL model and maximum likelihood estimation was implemented for estimating 

ability. 

 Two (fixed) tests lengths were examined each having a set of the number of strata 

used for the investigation. The 24-item test used 1, 2, 3, 4, 6, 8, 12, and 24 strata while 

the 48-item test used 1, 2, 3, 4, 6, 8, 12, 16, 24, and 48 strata. To reflect the conditions 

and analyses that will be used in the simulation study presented later in this chapter, the 

analyses from Hau et al. (2002) involving the conditions of maximum information item 

selection and the correlation between item difficulty and item discrimination being 0.05 

will be discussed here. Since only one test length will be investigated later in this paper, 

the results presented here will reflect both test lengths used by Hau, Wen, and Chang. 

 For all three item pool sizes, the average bias in ability estimation did not exceed 

0.01. Furthermore, the mean squared error (MSE) estimates of CAT accuracy not only 

decreased as the number of strata increased within each item pool size condition, but also 

decreased as the item pool size itself increased. Also, the correlations between the true 

and estimated abilities was above 0.97 across the three item pool size conditions.  

 Item exposure rates was analyzed in terms of underexposure – items exposed up 

to 5% of the time – and overexposure – items exposed at least 20% of the time. The 
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number of underexposed items increased dramatically as the item pool size increased, for 

both test length conditions. For example, for the 24-item simulated CATs, the maximum 

number of underexposed items for the 200-item pool was 101, 289 for the 400-item pool, 

and 675 for the 800-item pool. However, the number of overexposed items did not show 

this dramatic trend. The maximum number of overexposed items for the 200-item pool 

was 55, 47 for the 400-item pool, and 41 for the 800-item pool, all for the 24-item 

simulated CAT. Finally, test overlap rates tended to decrease with increasing number of 

strata within each item pool size condition, as well as decreasing as the item pool size 

increased.  

 Presenting these findings illustrates how the stratification procedures work while 

varying the number of strata for dichotomous item pools. Although an optimum number 

of strata was not found, per se, patterns of the accuracy of the simulated CATs as well as 

the efficiency of item pool usage is shown. As will be detailed later in this paper, similar 

analyses will be compared to a traditional method of item exposure control to see how 

well the stratification procedures work in a polytomous context. 

Comparisons to Other Exposure Control Methods (Polytomous Items) 

 Simulation studies have been done investigating the a-stratification procedures 

against the more traditional methods of exposure control using a polytomous item pool. 

These studies have looked at the how precision of ability estimation and item pool usage 

of the stratification procedures compares to these other methods. The results of the 

studies have been surprising and have called for further research on the stratification 

procedures if they are to become the appropriately used for exposure control in adaptive 

testing. 
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Pastor, Dodd, and Chang (2002) conducted a study comparing six methods of 

exposure control: no exposure control, the a-stratification procedure, the Sympson-Hetter 

approach, the conditional Sympson-Hetter methodology, the enhanced stratified design, 

and a conditional enhanced stratified design – exposure conditioned on ability. These 

methods were assessed in terms of item exposure control, item pool utilization, and 

measurement precision using two pools of items calibrated according to the generalized 

partial credit model, with five strata. The results indicated that the a-stratification method 

is promising in terms of providing exposure control, but perhaps in low- to medium-

stakes testing, since it did not achieve the same level of control as the other methods. 

 Another study found some surprising results regarding the use of stratification 

procedures. Davis (2004) used a pool of 157 polytomous items to compare nine exposure 

control methods: no exposure control, four randomization procedures, two conditional 

procedures, and two stratification procedures (a-stratified and enhanced a-stratified). 

Again, the items used in this study were calibrated according to the generalized partial 

credit model, and were divided into five strata. However, this study differed from the 

previous study in that content balancing was used, taking into account the content area 

and number of categories for each item. 

 It was found that the a-stratification procedure produced high values of unused 

items, contradicting what was thought to be the strength of the procedure. However, 

Davis revealed that meeting the content and category restraints most likely had an effect 

on these results. Therefore, the multiple stages of stratification prevented the basic 

benefits of stratification from being realized, paving the way for more refinements on this 

procedure.  
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Research on Randomesque Item Exposure Control 

 Burt, Kim, Davis, and Dodd (2003) conducted a study comparing six exposure 

control methods in a polytomous CAT using generalized partial credit items. These 

methods were no exposure control, randomesque-3, randomesque-6, within .10 logits-3, 

within .10 logits-6, and Sympson-Hetter. Item groups of three and six were used for the 

randomesque-3 and randomesque-6 procedures, respectively, as well as for both within 

.10 logits procedures. An item pool of 210 items from the NAEP 1996 Science test was 

used which contained three- and four-category items covering three areas of science: 

physical, earth, and life science. With these content areas, Kingsbury and Zara’s content 

balancing procedure was used for the CAT simulations. 

 The results of this study showed that the Sympson-Hetter method yielded the 

smallest maximum exposure rates and the fewest numbers of non-convergent cases 

compared to the other exposure control procedures. A non-convergent case is defined as 

having a trait estimate greater than or equal to 4.0 or less than or equal to -4.0 or if the 

maximum likelihood estimation was never reached (Davis, 2004). The randomesque-6 

and within .10 logits-6 procedures yielded a high number of non-convergent cases due to 

a high number of inappropriate items that had been administered. Also, the randomesque-

6 method produced the largest mean standard error associated with the ability estimates. 

However, this method (along with the within .10 logits-6 method) utilized more of the 

item pool than the other methods. 

 The previously mentioned study by Davis (2004) also investigated the 

randomesque and within 0.10 logits randomization procedures using two item group sizes 

of three and six. As with the Burt et al. study, the randomesque-6 procedure yielded a 
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large number of non-convergent cases and seemed to provide high item pool usage. The 

difference between these studies is that Davis did not find overwhelming support of the 

Sympson-Hetter methodologies over the randomization procedures. This conclusion 

provides the basis for using the randomesque procedure to compare against the findings 

of the stratification procedures to be investigated in this study. 

Statement of Purpose 
 
 The stratification procedures proposed by Chang and Ying were designed for use 

in CATs that utilized the theories of dichotomous IRT. Most of the CATs used today still 

employ dichotomous IRT structures, using the “right vs. wrong” scoring mechanism.  

However, there has been a growing desire for CATs that use more “performance” items 

that can give more information about examinees’ abilities than the traditional 

dichotomously scored items. Over the past decade, research has shifted into investigating 

ways of incorporating polytomous item structures into computerized adaptive testing. 

Although great strides have been made in this area of IRT, there still is a lot to be 

accomplished before polytomous CATs can become widely implemented. 

The research studies outlined in the previous section of this paper have 

demonstrated the continued need for investigations concerning stratification procedures 

and polytomous CATs. However, the previous research studies in polytomous IRT have 

only investigated the a-stratification procedure. In addition to that procedure, this 

dissertation will also investigate the a-stratification with b-blocking procedure due to its 

previously mentioned advantage over its predecessor. 
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Hau, Wen, and Chang (2002) perhaps provided the initial impetus for 

investigating the stratification procedures within polytomous IRT. Although, an optimum 

number of strata was not found for dichotomous item pools, their study did reveal that 

increasing the number of strata produced CATs that also increased in efficiency and 

decreased in overlap rates. However, since dichotomous item pools are typically larger 

than polytomous item pools, using this many strata on a polytomous item pool would not 

be feasible. Therefore, it is necessary to perform a similar simulation study to investigate 

the performance of the stratification procedures using a smaller polytomous item pool. 

This leads to the first question of the study presented in this dissertation: Is there an 

optimum number of strata to employ when using the a-stratification and a-stratification 

with b-blocking procedures on a polytomous item pool? 

As previously discussed, there have been studies done comparing the stratification 

procedures to other established methods of exposure control within polytomous IRT, but 

with mixed results. Pastor, Dodd, and Chang (2002) found that the stratification 

procedures could work, but not necessarily on the same level as the Sympson-Hetter 

methodologies. Davis (2004) found that the stratification procedures did not work well, 

showing large numbers of unused items across the generated CATs. Both of these studies 

show the weak performance of the stratification procedures in relation to other methods. 

However, both of these studies did utilize one fixed number of strata for the stratification 

procedures – five. From this, this dissertation is concerned with judging the performance 

of the stratification procedures, with a varying number of strata, against another 

procedure of exposure control: Using polytomous items, does varying the number of 
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strata within the a-stratification and a-stratification with b-blocking procedures help 

achieve the same level of exposure control as the randomesque procedure? 

Hau, Wen, and Chang (2002) and Pastor, Dodd, and Chang (2002) both examined 

the effects of item pool size on the performance of the stratification procedure. Both 

studies found that for the smaller item pools used, the a-stratification procedure did 

produce lower numbers of unadministered items (compared to the no-exposure control 

condition), but higher indices of item/test overlap. In other words, for Hau, Wen, and 

Chang, the 200-item pool resulted in the lowest numbers of “underexposed” items over 

the 400- and 800-item pools, but higher values of test overlap. By the same token, Pastor, 

Dodd, and Chang found that the 60-item pool produced a lower number of un-

administered items than the 100-item pool, but higher values of item overlap. These same 

results are to be expected in this dissertation for the a-stratification, however the a-

stratification with b-blocking procedure will also be investigated to determine the nature 

of its performance across two item pool sizes: Does the a-stratification with b-blocking 

procedure show a similar trend in exposure and overlap rates across two item pool sizes? 

How do the overlap rates of the stratification procedures compare to the randomesque 

procedure? 

This dissertation presents a simulation study conducted to investigate the a-

stratification and a-stratification with b-blocking procedures of exposure control on 

polytomous CATs, with items calibrated according to Muraki’s generalized partial credit 

model. The goal of this study was to analyze these stratification procedures of exposure 

control in terms of the preceding questions.  
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CHAPTER THREE: METHODOLOGY 
 
 Two polytomous item pools were used to compare three exposure control 

procedures in a simulated CAT: randomesque, a-stratification, and a-stratification with b-

blocking, as well as a “no exposure control” condition. CATs were simulated utilizing 

these various conditions of these exposure control methods to determine when item 

exposure is best controlled and the item pool is used most effectively for items calibrated 

according Muraki’s generalized partial credit model.  

Item Pool 

 The items used in this study were taken from the 1996 National Assessment of 

Education Progress (NAEP) science assessment (Allen, Carlson, & Zelenak, 1999). The 

items investigated had three response categories, allowing for two step-difficulty values 

per item. Although the original set of items contained four-category items, they were not 

used in this study because of the insufficient number of these types of items and because 

of the pitfall of meeting both content and category restraints when using the stratification 

procedures, as outlined by Davis (2004). There were 208 available three-category items 

within the index of NAEP item parameters, however only 175 of them were used in this 

simulation. Those items that possessed step-difficulty values greater than +4 and/or less 

than -4 were cut from the item pool that was to be used in this simulation. This resulted in 

an item pool that contained items that fit the goal of determining ability estimates 

between -4 and +4. These items (n=175) covered three content areas of science: physical, 

earth, and life science. Table 1 shows the number of items in each content area. 
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Table 1: Number of Items Per Content Area for NAEP Science Items 

 Content Area  

Physical Science Earth Science Life Science

50 63 62 

 

The information in Table 1 was used when specifying the target values for administering 

items of each content area. A second item pool (n=85) was constructed by randomly 

selecting items from the 175-item pool so that this second item pool resembled 

approximately the same balance across content areas as the first. The purpose of the 

second item pool was to be able to compare analyses of this simulation across two sizes 

of item pools. Table 2 shows the number of items in each content area for the 85-item 

pool used in this study.  

It is known that the NAEP assessment carries no weight on the actual academic 

standing of its examinees. In other words, there is no real motivation for the examinees to 

do their best since the exam does not determine whether or not they actually pass on to 

the next grade level. Therefore, this exam is considered “low-stakes” and results in item 

discrimination parameters that are lower than desired for a “high-stakes” exam. Given 

this, the item discrimination parameter of each item was increased by 0.40 (Burt et al., 

2003) so that the items used for this study would reflect those typically used in high-

stakes assessments. 

Stratification of the Item Pools 

 This study used a range of the “number of strata” for the a-stratification (AS) and 

a-stratification with b-blocking (BAS) methods. Although, the process of stratification 
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for this study is described later, the reasoning for determining the number of strata 

conditions is worth mentioning. It has been suggested through previous research that the 

number of strata to use on an item pool is influenced by the structure of the item pool 

itself (Hau et al., 2002). Since the BAS procedure involves more stratification steps than 

the AS procedure, the range of “number of strata” to use in the simulations was  

Table 2: Number of Items Per Content Area for NAEP Science Items 

 Content Area  

Physical Science Earth Science Life Science

24 31 30 

 

determined by finding the maximum number of strata for use with this procedure. For 

this study, the range of the number of strata for the 175-item pool was two to five, given 

that five was used in previous research studies (Pastor, Dodd, & Chang, 2002; Davis, 

2004). Since having one stratum is analogous to the no-exposure control condition, it was 

not included in the study. Table 3 displays the breakdown of the item pool by content and 

difficulty level.  

Table 3: Number of Items Per Content Area and Difficulty Level for NAEP Science 
Items in the 175-Item Pool 

  Content Area 

  Physical Science Earth Science Life Science 

Easy 7 8 21 

Average 11 16 47 

D
iff

ic
ul

ty
 L

ev
el

 

Difficult 32 39 47 



  

 

The process of determining the difficulty of each item is described later in this section. 

Given this item pool structure, the first condition for the 175 items used two strata for the 

item pool, the second condition three strata and so on until the last condition used five 

strata to group the item pools, for both stratification procedures. In the cases where there 

was not an even number of items per strata – for example, when there are two strata – the 

“extra” items were distributed as evenly as possible in the strata of the lower 

discriminating items to help control the use of items in higher strata. 

 For the 85-item pool, the maximum number of strata was three since due to its 

smaller size. This appears to be a reasonable number of strata to use since anything 

greater than three strata would guarantee some strata would not have enough items to 

choose from based on difficulty and content. Table 4 displays the breakdown of the 85-

item pool by content and difficulty level. 

Table 4: Number of Items Per Content Area and Difficulty Level for NAEP Science 
Items in the 85-Item Pool 

  Content Area 

  Physical Science Earth Science Life Science 

Easy 3 5 3 

Average 5 8 4 

D
iff

ic
ul

ty
 L

ev
el

 

Difficult 16 19 23 

 

Table 5 and Table 6 show the numbers of items per stratum for each condition of 

the AS procedure for the 175- and 85-item pool, respectively. This was determined by 
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breaking down each content area into the appropriate number of strata so that each 

stratum has approximately the same number of items, per content area. Table 7 and Table  

Table 5: Number of Items Per Stratum (AS) for the 175-Item Pool 

  “Number of Strata” Condition

 2 3 4 5 

1 88 59 45 36 

2 87 59 45 36 

3  57 43 35 

4   42 34 St
ra

tu
m

 N
um

be
r 

5    34 

 

 

Table 6: Number of Items Per Stratum (AS) for the 85-Item Pool 

  “Number of Strata” Condition

 2 3 

1 43 29 

2 42 28 

St
ra

tu
m

 N
um

be
r 

3  28 
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8 show the numbers of items per stratum for each condition of the BAS procedure for 

175- and 85-item pool, respectively.  

Table 7: Number of Items Per Stratum (BAS) for the 175-Item Pool 

  “Number of Strata” Condition

 2 3 4 5 

1 90 61 46 40 

2 85 59 45 37 

3  55 44 34 

4   40 33 St
ra

tu
m

 N
um

be
r 

5    31 

 

Table 8: Number of Items Per Stratum (BAS) for the 85-Item Pool 

  “Number of Strata” Condition

 2 3 

1 45 32 

2 40 28 

St
ra

tu
m

 N
um

be
r 

3  25 

 

The stratification with content balancing procedure described by Yi and Chang 

(2003) was used for both stratification procedures in this simulation to ensure that each 

stratum contains the appropriate balance of science content. More specifically, for the a-

stratification procedure, the item pool was first grouped by content area, then partitioned 
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as equally as possible into strata according to the item discrimination values. Similarly, 

for the a-stratification by b-blocking procedure, the item pool was first grouped by 

content area, but then sorted by item difficulty within each content area.  

Next, within each difficulty level, the items were sorted into strata according to their item 

discrimination values. 

As previously mentioned, the stratification procedures developed as item 

exposure control mechanisms were not designed for polytomous items. More important 

to this study, the stratification of polytomous items becomes difficult when the items 

have more than one parameter that could be used in the stratification process. For 

example, polytomous items may have more than one “difficulty” parameter associated 

with them – a “step difficulty” for each step of the item. Given this, classifying items  

according to their difficulty is not as straightforward as in the dichotomous case. Also, 

there is a lack of research on the ways to classify polytomous items according to 

difficulty. Therefore, the a-stratification with b-blocking procedure presents a challenge 

for polytomous items.  

 To deal with this challenge, the items chosen for this study were classified into 

three groups: easy, average, and difficult. This distinction was made based on the signs of 

both step difficulties of an item. If an item had two positive step difficulties, then the item 

was considered to be “difficult”. Conversely, if an item has two negative step difficulties, 

then it was considered to be “easy.” If an item has one positive and one negative step 

difficulty, then it was considered an item of “average” difficulty. However, it was not an 

automatic decision to classify the item as “average.” This is due to the fact that an item 

could have had a small positive step difficulty and a large negative step difficulty or vice 
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versa. Therefore, when an item was being considered as “average” the difference in 

distance-from-zero between both step difficulties was analyzed. If this difference was 

greater than one, then the item was classified according to the sign of the step difficulty 

furthest from zero. If this difference was less than one, then the item was considered as 

“average.” For example, if the value of the first step difficulty of an item was -0.085 and 

that of the second step difficulty was 2.437, then this item was considered “difficult” 

since the second step difficulty value is further from zero by a difference of 2.352.  

However, if the first step difficulty value was -0.74 and the second was 0.456, then this 

item was considered “average” since neither step difficulty value had a distance-from-

zero greater than one. Since the BAS method had not been previously tested in research 

on polytomous items, classifying the difficulty of the items in the manner specified here 

will provide the information necessary to judge its utility for implementing into 

operational CAT algorithms. 

Simulated Data Generation 

Item responses were simulated for samples of n = 1,000 simulees using IRTGEN 

(Whittaker, Fitzpatrick, Williams, & Dodd, 2003), a computer simulation program for 

polytomous items. The simulees were obtained from a normal distribution of ability, 

N(0,1). The ability of each simulee was determined through random assignment prior to 

the generation of the response vector. To prevent “chance” results among the CAT 

conditions, each condition used a different sample of n = 1,000 simulees, also drawn 

from a normal distribution of ability. Also, ten replications were simulated per condition 

for statistical stability Therefore, for each replication of each CAT condition a different 
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simulee population of 1,000 was used for the item response generation and the 

subsequent CAT simulation.  

CAT Simulations 

 SAS computer programs (Chen, Hou, & Dodd, 1998) were used in this study to 

simulate 20-item computer adaptive tests (Davis, 2004; Burt et al., 2003) to each sample 

of 1,000 simulees. For each simulee, an initial ability level, θ, of zero was specified for 

all CAT conditions. Maximum likelihood estimation was used to estimate ability levels 

once a mixed set of responses was obtained (i.e., response in two different categories). 

Prior to the mixed pattern of responses being obtained, a variable step-size approach was 

used to estimate the ability level, moving the trait estimate to a quarter of the distance to 

the most extreme item, within the appropriate content area. Although previous research 

on the variable step-size suggests using half the distance between the current ability 

estimate and the most extreme b-value, this study used a quarter of the distance between 

the ability and difficulty indices to prevent high numbers of simulees whose ability levels 

cannot be estimated through the simulated CATs. 

Kingsbury and Zara’s CCAT method was utilized for all conditions of this study 

ensuring that each CAT consisted of the appropriate balance of  physical science, earth 

science, and life science items, as specified by Tables 1 and 2. This procedure selected 

items from the content area that was farthest below its targeted ideal administration 

percentage. 

 Also, Table 9 and Table 10 show the number of items administered from each 

stratum for the item pools. The number of items to be administered per stratum was 

determined by the desire to use an even number of items in each stratum, whenever  
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Table 9: Number of Items Administered Per Stratum for the 175-Item Pool 

 
  “Number of Strata” Condition

 2 3 4 5 

1 10 7 5 4 

2 10 7 5 4 

3  6 5 4 

4   5 4 St
ra

tu
m

 N
um

be
r 

5    4 

 

Table 10: Number of Items Administered Per Stratum for the 85-Item Pool 

 
  “Number of Strata” Condition

 2 3 

1 10 7 

2 10 7 

St
ra

tu
m

 N
um

be
r 

3  6 



  

possible. When this was not the case, then the “extra” items were selected evenly from 

the lower discriminating strata, leaving fewer items to be administered from the higher 

discriminating strata. 

The no-exposure condition utilized maximum information item selection for 

selecting items to administer during the simulation. The randomesque procedure 

randomly chose the next item for administration from a group of the six most-informative 

items within the appropriate content area. This number of items was based on the fact that 

Burt et al. (2003) and Davis (2004) found that the randomesque-6 utilized the item pool  

as well as or better than the Sympson-Hetter method, a commonly used procedure of 

exposure control. For each stratum of the stratification procedures, the next item to be 

administered will be the most informative item from the content area that is furthest 

below its ideal target rate. 

Data Analyses 

Several statistical indices were used to investigate the accuracy of the CATs in terms of 

estimating the latent trait. Descriptive statistics are used to describe the nature of the item 

discrimination and step difficulty parameters achieved in the simulations. Pearson 

product-moment correlations between known and estimated thetas describe the  

accuracy of the computerized adaptive tests. Other statistics were also used to evaluate 

the accuracy of the CATs in this study. The measure of bias calculated using 

Bias =

ˆ θ k −θk( )
k=1

n

∑
n

       (18) 
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and the root mean squared error (RMSE)  

RMSE =

ˆ θ k −θk( )2

k=1

n

∑
n

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

1/ 2

               (19) 

also portray the accuracy of the simulated CATs. In equations 18 and 19  is the 

estimate of θ for simulee k, 

ˆ θ k

θk  is the known ability for simulee k, and n represents the 

total number of simulees. Along with this, mean conditional bias is also used to portray 

the accuracy of estimation within the simulated CATs (Gorin, Dodd, Fitzpatrick, & 

Shieh, 2005). 

 Item exposure rate is computed by dividing the number of times the item was 

administered by the total number of simulees. These rates are analyzed through frequency 

distributions and descriptive statistics. Item pool utilization is  evaluated through the 

percentage of items that were never administered throughout the CAT conditions.  

 Item overlap among the simulees, another indicator of exposure control, was 

investigated through the use of the simulees’ audit trails – the records of items that each 

simulee was administered. The audit trails were used to compare one simulee’s record of 

items with that of every other simulee. The number of items shared among the simulees 

was stored in file along with the difference between the known and estimated ability 

levels for pairs of simulees. This investigation made the distinction between “similar” 

simulees – simulees whose difference in known ability level was equal to or less than two 

logits – and “different” simulees – those simulees whose known ability levels differed by 

more than two logits (Pastor, Chiang, Dodd & Yockey, 1999; Davis, Pastor, Dodd, 

Chiang, & Fitzpatrick, 2003; Pastor, Dodd, & Chang, 2002). This analysis also made the 
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distinction between “similar” simulees those whose difference in known ability levels is 

equal to or less than one logit and “different” simulees whose difference in known ability 

levels differed by more than one logit (Boyd, 2003). 
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CHAPTER FOUR: RESULTS 

Descriptive Statistics for the Item Pools 
 
 Table 11 lists the mean, standard deviation, minimum and maximum values for 

the item discrimination parameter, A, as well as the first and second step difficulty values 

-  SD1 and SD2 - for the 175-item pool. The mean item discrimination parameter of one 

reflects the adjustment that was made to the item discrimination parameters of the items 

in the pool prior to their use in this simulation. Table 12 provides the same descriptive 

statistics for the item parameters according to item content.  

 Table 13 and Table 14 give descriptive statistics of the item discrimination 

parameter estimates for each stratum of the a-stratification and a-stratification by b-

blocking procedures, respectively. It is important to note the overlap of the item 

discrimination parameter estimates between the various strata within each strata condition 

beginning with the a-stratification-with-two-strata condition (AS-2). When using the 

stratification procedures, it is ideal to have the least amount of overlap of item 

discrimination among the strata (Davis, 2004). Intuitively, this ensures that the items 

selected from the higher strata are items with higher item discrimination values than 

those selected from the lower strata. 

 As an example of this, the AS-2 condition shows that the range of item 

discrimination values for stratum one is 0.64 to 0.97 while the second stratum has the 

range of 0.92 to 2.27. This may appear to be minimal overlap among the item  
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Table 11: Descriptive Statistics for the Item Parameter Estimates for the 175-Item Pool 

 
 A SD1 SD2 

 
Mean 1.00 0.60 1.09 

 
Standard Deviation 0.24 1.35 1.48 

 
Minimum 0.64 -3.95 -3.63

 
Maximum 2.27 3.73 3.92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 76

Table 12: Descriptive Statistics for the Item Parameter Estimates of the 175-Item Pool By 
Content Area 

 A SD1 SD2 

Physical Science    

Mean 0.98 0.60 0.82 

Standard Deviation 0.19 1.46 1.40 

Minimum 0.64 -3.17 -2.26

Maximum 1.64 3.73 3.41 

N 50   

    

Earth Science    

Mean 1.05 0.54 0.73 

Standard Deviation 0.28 1.16 1.47 

Minimum 0.64 -2.74 -3.63

Maximum 2.27 2.76 3.83 

N 63   

    

Life Science    

Mean 0.97 0.66 1.68 

Standard Deviation 0.21 1.47 1.38 

Minimum 0.66 -3.95 -1.56

Maximum 1.83 3.49 3.92 

N 62   
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Table 13: Descriptive Statistics for the Item Discrimination Parameter Estimates of the 
175-Item Pool By Strata Condition of the AS Procedure 

 Strata N Mean Standard Deviation Minimum Maximum 

AS-2       

 Stratum 1 88 0.85 0.08 0.64 0.97 

 Stratum 2 87 1.15 0.24 0.92 2.27 

AS-3       

 Stratum 1 59 0.81 0.08 0.64 0.94 

 Stratum 2 59 0.96 0.04 0.88 1.03 

 Stratum 3 57 1.24 0.26 1.02 2.27 

AS-4       

 Stratum 1 45 0.79 0.07 0.64 0.90 

 Stratum 2 45 0.91 0.03 0.85 0.97 

 Stratum 3 43 1.01 0.04 0.93 1.09 

 Stratum 4 42 1.31 0.27 1.05 2.27 

AS-5       

 Stratum 1 36 0.77 0.07 0.64 0.89 

 Stratum 2 36 0.89 0.03 0.83 0.96 

 Stratum 3 35 0.96 0.03 0.90 1.01 

 Stratum 4 34 1.04 0.04 0.99 1.14 

 Stratum 5 34 1.36 0.27 1.10 2.27 
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Table 14: Descriptive Statistics for the Item Discrimination Parameter Estimates of the 
175-Item Pool By Strata Condition of the BAS Procedure 

 Strata N Mean Standard Deviation Minimum Maximum

BAS-2       

 Stratum 1 90 0.86 0.09 0.64 1.01 

 Stratum 2 85 1.15 0.25 0.92 2.27 

BAS-3       

 Stratum 1 61 0.82 0.08 0.64 0.94 

 Stratum 2 59 0.96 0.05 0.87 1.07 

 Stratum 3 55 1.25 0.26 0.99 2.27 

BAS-4       

 Stratum 1 46 0.80 0.08 0.64 0.93 

 Stratum 2 45 0.92 0.05 0.81 1.01 

 Stratum 3 44 1.02 0.07 0.92 1.20 

 Stratum 4 40 1.31 0.28 1.00 2.27 

BAS-5       

 Stratum 1 40 0.78 0.07 0.64 0.92 

 Stratum 2 37 0.90 0.04 0.81 0.99 

 Stratum 3 34 0.96 0.04 0.90 1.04 

 Stratum 4 33 1.08 0.09 0.97 1.35 

 Stratum 5 31 1.35 0.30 1.02 2.27 
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discrimination parameter estimates, therefore not posing any substantial deficiency in 

item selection among the strata. Unfortunately, there is not an accepted standard for item 

discrimination overlap among strata, therefore, without any substantial overlaps, one 

cannot accurately speculate to when any overlaps affect the item selection processes of 

the stratification procedures.  

Table 15 lists the mean, standard deviation, minimum and maximum values for 

the item parameter estimates for the 85-item pool while Table 16 provides the same 

descriptive statistics for the item parameters according to item content for the same item 

pool.  

Table 17 and Table 18 show descriptive statistics for the item discrimination 

parameter estimates across the strata conditions for the a-stratification and a-stratification 

by b-blocking procedures. Even though it was mentioned earlier that it is hard tell when 

item discrimination overlap among the strata may be greater than desirable, the data 

presented in these two tables highlight overlap that just may count as far from desirable.  

For example, for the BAS-2 condition, stratum one has an item discrimination 

range of 0.64 to 1.03 while stratum two possesses the range from 0.72 to 2.27. Now this 

may be considered as a substantial amount of overlap of item discrimination estimates  

between the two strata since a) the spread of item discrimination parameters in stratum 

one is large and b) the lowest item discrimination value of stratum two, 0.72, is not far 

from the minimum value of stratum one. Therefore, this condition possesses two strata 

that contain a large number of the same item parameter estimates, leading to the 

speculation that items selected from stratum two may possess the same item  
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Table 15: Descriptive Statistics for the Item Parameter Estimates of the 85-Item Pool 

 
 A SD1 SD2 

Mean 1.01 0.72 1.08 

Standard Deviation 0.25 1.34 1.54 

Minimum 0.64 -3.95 -3.63

Maximum 2.27 3.73 3.83 
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Table 16: Descriptive Statistics for the Item Parameter Estimates of the 85-Item Pool By 
Content Area 

 A SD1 SD2 

Physical Science    

Mean 1.01 0.62 1.19 

Standard Deviation 0.20 1.39 1.44 

Minimum 0.68 -1.48 -2.46

Maximum 1.64 3.73 3.41 

N 24   

    

Earth Science    

Mean 1.04 0.61 0.55 

Standard Deviation 0.32 1.15 1.72 

Minimum 0.64 -2.73 -3.63

Maximum 2.27 2.76 3.83 

N 31   

    

Life Science    

Mean 0.96 0.91 1.54 

Standard Deviation 0.19 1.50 1.28 

Minimum 0.67 -3.95 -0.95

Maximum 1.45 3.49 3.72 

N 30   
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Table 17: Descriptive Statistics for the Item Discrimination Parameter Estimates of the 
85-Item Pool By Strata Condition of the AS Procedure 

 Strata N Mean Standard Deviation Minimum Maximum 

AS-2       

 Stratum 1 43 0.86 0.09 0.64 0.97 

 Stratum 2 42 1.16 0.27 0.93 2.27 

AS-3       

 Stratum 1 29 0.82 0.09 0.64 0.94 

 Stratum 2 28 0.96 0.04 0.86 1.03 

 Stratum 3 28 1.24 0.30 1.02 2.27 
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Table 18: Descriptive Statistics for the Item Discrimination Parameter Estimates of the 
85-Item Pool By Strata Condition of the BAS Procedure 

 Strata N Mean Standard Deviation Minimum Maximum

BAS-2       

 Stratum 1 45 0.90 0.10 0.64 1.03 

 Stratum 2 40 1.13 0.31 0.72 2.27 

BAS-3       

 Stratum 1 32 0.88 0.10 0.64 0.99 

 Stratum 2 28 0.97 0.10 0.71 1.10 

 Stratum 3 25 1.21 0.36 0.72 2.27 
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discrimination characteristics as those from stratum one. If this holds to be true, then the 

stratification procedure has not chosen items by its basic principle: selecting items of 

higher discrimination values from the higher strata. The BAS-3 condition also shows 

substantial overlap in item discrimination. 

Descriptive Statistics of the CAT Simulations 

 Tables 19 and 20 provide the grand mean, standard error of the mean, minimum 

and maximum vales of the estimated thetas for the 175- and 85 item pool, respectively. 

These values are based on the ten replications conducted on each of the exposure control 

conditions. The number of nonconvergent cases, across all ten replications, is also shown 

for each exposure control condition. These cases are defined as simulees whose final 

ability estimates were not obtained through the simulated CATs. This could occur for one 

of two reasons: 1) the ability estimate terminated at value exceeding the -4.0 to +4.0 

interval; or 2) the precision of ability estimation became 9.9 during the simulated CAT, 

thus causing the ability estimation process to terminate for that simulee. In either case, 

final ability estimates were not obtained for these simulees and were not used in the 

statistical analysis of the obtained parameters. From the information in these tables, the 

grand means of estimated thetas estimated occurred near zero for each of the exposure 

conditions, across both item pools. 

Tables 21 and 22 provide the descriptive statistics of the standard deviations of 

the estimated thetas for both item pools used in this study. For both item pools, the mean 

standard deviations of estimated thetas achieved by the exposure control conditions are 

close to 1, with the greatest mean at 1.073. Therefore, these statistics along with those of  
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Table 19: Descriptive Statistics of the Estimated Thetas and the Number of 
Nonconvergent Cases of the Exposure Control Conditions for the 175-Item Pool Across 

Ten Replications 

Exposure Control 
Condition 

Grand 
Mean 

Standard 
Error of the 

Mean 

Minimum Maximum Nonconvergent 
Cases 

No Exposure 
Control 

-0.012 0.011 -0.062 0.028 1 

Randomesque-6 -0.018 0.008 -0.067 0.019 15 

AS-2 -0.018 0.010 -0.082 0.022 2 

AS-3 -0.005 0.009 -0.043 0.048 1 

AS-4 0.003 0.007 -0.049 0.032 2 

AS-5 -0.010 0.011 -0.048 0.061 2 

BAS-2 0.007 0.011 -0.040 0.060 2 

BAS-3 -0.012 0.010 -0.070 0.039 1 

BAS-4 -0.007 0.013 -0.082 0.055 1 

BAS-5 0.001 0.011 -0.039 0.067 1 
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Table 20: Descriptive Statistics of the Estimated Thetas and the Number of 
Nonconvergent Cases of the Exposure Control Conditions for the 85-Item Pool Across 

Ten Replications 

Exposure Control 
Condition 

Grand 
Mean 

Standard 
Error of the 

Mean 

Minimum Maximum Nonconvergent 
Cases 

No Exposure 
Control 

0.002 0.015 -0.058 0.081 1 

Randomesque-6 -0.030 0.013 -0.091 0.027 13 

AS-2 -0.019 0.014 -0.099 0.028 1 

AS-3 -0.037 0.009 -0.076 0.010 1 

BAS-2 -0.015 0.008 -0.050 0.037 12 

BAS-3 -0.002 0.008 -0.032 0.056 1 
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Table 21: Descriptive Statistics of the Standard Deviations of the Estimated Thetas for 
the 175-Item Pool Across Ten Replications 

Exposure Control Condition Mean Minimum Maximum 

No Exposure Control 1.034 1.003 1.079 

Randomesque-6 1.043 0.997 1.081 

AS-2 1.044 1.002 1.078 

AS-3 1.037 0.994 1.080 

AS-4 1.050 1.004 1.086 

AS-5 1.043 1.011 1.083 

BAS-2 1.042 1.002 1.086 

BAS-3 1.034 0.988 1.067 

BAS-4 1.038 0.989 1.073 

BAS-5 1.038 1.017 1.070 
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Table 22: Descriptive Statistics of the Standard Deviations of the Estimated Thetas for the 85-
Item Pool Across Ten Replications 

Exposure Control Condition Mean Minimum Maximum 

No Exposure Control 1.049 1.003 1.102 

Randomesque-6 1.073 1.023 1.105 

AS-2 1.058 1.043 1.077 

AS-3 1.042 1.023 1.101 

BAS-2 1.058 1.016 1.118 

BAS-3 1.060 1.030 1.098 
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the mean estimated thetas show that the distribution of the ability estimates obtained 

through the simulations of this study is normal – possessing a mean of 0 and a standard 

deviation of 1. 

The standard errors of the estimated thetas show the degree of precision to which 

the thetas were estimated. Table 23 shows that the no exposure control condition 

produced the lowest grand mean of standard errors (0.261) while the BAS-4 and BAS-5 

produced the highest (0.284). This means that the no exposure control condition had 

better measurement precision than the other conditions. However, the difference between 

these minimum and maximum values is not substantial enough to raise concern, leading 

to the conclusion that all of the exposure control conditions performed to about the same 

degree of measurement. Table 24 shows different results for the 85-item pool. For this 

item pool, the no exposure control condition did produce the lowest grand mean of 

standard errors (0.283), but the randomesque procedure yielded the highest grand mean 

of standard errors (0.309). Again, the difference between these values does not warrant 

any concern. Therefore, as with the 175-item pool, the exposure control conditions 

appear to have performed with the same degree of measurement precision.  

 One index of the accuracy of the simulated CATs is the correlation between the 

thetas estimated from the simulated CATs and the “known” thetas specified for each 

simulee prior to the CATs. Tables 25 and 26 show the descriptive statistics for these 

correlations for the 175- and 85-item pool, respectively. For the 175-item pool, the means 

of the correlations range from 0.96 to 0.97, while the means from the 85-item pool range  
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Table 23: Descriptive Statistics of the Standard Errors for the 175-Item Pool Across Ten 
Replications 

Exposure Control Condition Grand Mean Minimum Maximum 

No Exposure Control 0.261 0.259 0.263 

Randomesque-6 0.278 0.274 0.280 

AS-2 0.275 0.274 0.278 

AS-3 0.281 0.279 0.284 

AS-4 0.283 0.281 0.285 

AS-5 0.287 0.285 0.289 

BAS-2 0.274 0.282 0.277 

BAS-3 0.279 0.276 0.281 

BAS-4 0.284 0.283 0.286 

BAS-5 0.284 0.282 0.286 
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Table 24: Descriptive Statistics of the Standard Errors for the 85-Item Pool Across Ten 
Replications 

Exposure Control Condition Grand Mean Minimum Maximum 

No Exposure Control 0.283 0.280 0.286 

Randomesque-6 0.309 0.305 0.311 

AS-2 0.295 0.293 0.298 

AS-3 0.301 0.299 0.303 

BAS-2 0.294 0.291 0.296 

BAS-3 0.298 0.296 0.299 
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Table 25: Descriptive Statistics of the Pearson Correlations Between Known and 
Estimated Thetas for the 175-Item Pool Across Ten Replications 

Exposure Control Condition Mean Minimum Maximum 

No Exposure Control 0.965 0.960 0.696 

Randomesque-6 0.956 0.940 0.966 

AS-2 0.962 0.958 0.966 

AS-3 0.962 0.959 0.968 

AS-4 0.963 0.959 0.968 

AS-5 0.958 0.955 0.962 

BAS-2 0.958 0.915 0.967 

BAS-3 0.961 0.956 0.966 

BAS-4 0.957 0.926 0.963 

BAS-5 0.960 0.957 0.964 
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Table 26: Descriptive Statistics of the Pearson Correlations Between Known and 
Estimated Thetas for the 85-Item Pool Across Ten Replications 

Exposure Control Condition Mean Minimum Maximum 

No Exposure Control 0.960 0.957 0.964 

Randomesque-6 0.946 0.935 0.953 

AS-2 0.957 0.955 0.961 

AS-3 0.955 0.952 0.960 

BAS-2 0.960 0.955 0.966 

BAS-3 0.958 0.956 0.962 
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from 0.95 to 0.96. Given these ranges of correlations between the estimated and known 

thetas, it appears that the exposure control conditions all performed to the same degree of 

accuracy, between the item pools as well as within them. 

 Bias and root mean squared error (RMSE) are other indicators CAT accuracy 

used in this study. Tables 27 and 28 display the mean, minimum, and maximum values of 

these indices for both item pools. The mean bias estimates were very similar across both 

item pools, being 0.01 or 0.02 – near zero. Since bias quantifies the difference between 

the known and estimated thetas, the values presented in tables 27 and 28 show relatively 

no bias in the estimation of ability. Appendix A contains plots of conditional bias for 

each of the CAT conditions simulated for both item pools. These plots portray the 

accuracy of the CATs at sixteen discrete intervals along the ability continuum. The 

general impression from these plots is that ability estimation becomes more accurate 

toward the center of the ability scale and less accurate at the extreme values of ability. 

Exposure Rates and Pool Utilization 

As previously defined, the item exposure rate is the number of times an item is given 

divided by the total number of test takers, simulees in this case. Tables 29 and 30 provide 

the grand mean, mean minimum, and mean maximum exposure rates for the simulated 

CATs for both item pools. The grand mean of the exposure rates for each CAT condition 

is of little importance since they are all the same - 0.114 for the 175-item pool and 0.235 

for the 85-item pool. This occurs because the mean exposure rate simply reflects the ratio 

of test length to item pool size. Also, as the results reveal, the minimum exposure rate 

achieved through all of the CAT conditions, in both item pools, is 0.00.  
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Table 27: Descriptive Statistics of the Bias and Root Mean Squared Error (RMSE) for the 
175-Item Pool Across Ten Replications 

Exposure Control Condition Mean Bias 
(Min, Max) 

Mean RMSE 
(Min, Max) 

 
No Exposure Control 0.013 

(0.008, 0.020) 
0.270 

(0.261, 0.277) 
 

Randomesque-6 0.011 
(-0.002, 0.036)

0.304 
(0.276, 0.371) 

 
AS-2 0.005 

(-0.024, 0.016)
0.285 

(0.270, 0.299) 
 

AS-3 0.005 
(-0.014, 0.019)

0.283 
(0.269, 0.294) 

 
AS-4 0.004 

(-0.015, 0.020)
0.284 

(0.273, 0.295) 
 

AS-5 0.007 
(-0.002, 0.018)

0.298 
(0.285, 0.313) 

 
BAS-2 0.004 

(-0.011, 0.015)
0.297 

(0.268, 0.430) 
 

BAS-3 0.012 
(0.001, 0.026) 

0.285 
(0.271, 0.297) 

 
BAS-4 0.010 

(-0.001, 0.018)
0.290 

(0.282, 0.298) 
 

BAS-5 0.010 
(0.003, 0.016) 

0.291 
(0.279, 0.304) 
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Table 28: Descriptive Statistics of the Bias and Root Mean Squared Error (RMSE) for the 
85-Item Pool Across Ten Replications 

Exposure Control Condition Mean Bias 
(Min, Max) 

Mean RMSE 
(Min, Max) 

 
No Exposure Control 0.013 

(0.004, 0.025) 
0.293 

(0.281, 0.307) 
 

Randomesque-6 0.014 
(-0.004, 0.023)

0.348 
(0.321, 0.386) 

 
AS-2 0.018 

(0.007, 0.035) 
0.307 

(0.292, 0.316) 
 

AS-3 0.013 
(-0.012, 0.026)

0.309 
(0.289, 0.321) 

 
BAS-2 0.008 

(-0.003, 0.018)
0.298 

(0.290, 0.312) 
 

BAS-3 0.005 
(-0.008, 0.022)

0.304 
(0.297, 0.313) 
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Table 29: Descriptive Statistics of the Exposure Rates for the 175-Item Pool Across Ten 
Replications 

Exposure Control 
Condition 

Grand 
Mean 

Mean Minimum 
Exposure Rate 

Mean Maximum 
Exposure Rate 

 
No Exposure Control 0.114 0.000 0.859 

Randomesque-6 0.114 0.000 0.608 

AS-2 0.114 0.000 0.778 

AS-3 0.114 0.000 0.799 

AS-4 0.114 0.000 0.799 

AS-5 0.114 0.000 0.690 

BAS-2 0.114 0.000 0.787 

BAS-3 0.114 0.000 0.817 

BAS-4 0.114 0.000 0.740 

BAS-5 0.114 0.000 0.822 
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Table 30: Descriptive Statistics of the Exposure Rates for the 85-Item Pool Across Ten 
Replications 

Exposure Control 
Condition 

Grand 
Mean 

Mean Minimum 
Exposure Rate 

Mean Maximum 
Exposure Rate 

 
No Exposure Control 0.235 0.000 0.933 

Randomesque-6 0.235 0.000 0.672 

AS-2 0.235 0.000 0.857 

AS-3 0.235 0.000 0.817 

BAS-2 0.235 0.000 0.832 

BAS-3 0.235 0.000 0.893 
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This means that some items were never administered in the simulated CATs. Therefore, 

the important information from these tables is that of the maximum exposure rates.  

 For the 175-item pool, the no exposure control condition produced the largest 

mean maximum exposure rate (0.859), as expected, while the randomesque-6 procedure 

yielded the lowest maximum exposure rate (0.608). Similarly, the 85-item pool yielded 

the largest mean maximum exposure rate for the no exposure control condition (0.933) 

and the lowest for the randomesque-6 condition (0.672). What should be surprising is that 

the BAS procedures yielded larger maximum exposure rates than the AS procedures. The 

reason that this is surprising is because the BAS procedures were designed to reduce the  

exposure rates, in comparison to the AS procedure, by taking into account any correlation 

that might exist between the discrimination and difficulty parameters. However, this 

should not be surprising given that Davis (2004) found that employing multiple 

stratification techniques leads to the poor performance of the stratification procedures.  

 The standard deviation of the exposure rates reveals how evenly the items within 

the pool were used. Tables 31 and 32 give the descriptive statistics of the standard 

deviations of the exposure rates for the 175- and 85-item pool, respectively. From table 

30, it appears that the randomesque-6 procedure yielded the most even use of the items 

with a standard deviation of exposure rates of 0.155, while the no exposure control 

condition yielded the most uneven use of items with a standard deviation of exposure 

rates of 0.197. The high standard deviation of exposure rates for the no exposure control 

procedure is to be expected. Similarly for the 85-item pool, the randomesque-6 condition 

had the lowest standard deviation of exposure rates (0.206) while the no exposure control  
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Table 31: Descriptive Statistics of the Standard Deviations of the Exposure Rates for the 
175-Item Pool Across Ten Replications 

Exposure Control Condition Mean Minimum Maximum 

No Exposure Control 0.197 0.194 0.199 

Randomesque-6 0.155 0.154 0.157 

AS-2 0.180 0.118 0.188 

AS-3 0.182 0.179 0.184 

AS-4 0.177 0.174 0.179 

AS-5 0.181 0.179 0.183 

BAS-2 0.189 0.187 0.190 

BAS-3 0.182 0.180 0.185 

BAS-4 0.183 0.179 0.188 

BAS-5 0.186   0.184 0.189 
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Table 32: Descriptive Statistics of the Standard Deviations of the Exposure Rates for the 
85-Item Pool Across Ten Replications 

Exposure Control Condition Mean Minimum Maximum 

No Exposure Control 0.271 0.268 0.277 

Randomesque-6 0.206 0.200 0.211 

AS-2 0.257 0.254 0.259 

AS-3 0.241 0.235 0.245 

BAS-2 0.258 0.253 0.262 

BAS-3 0.239 0.234 0.246 
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condition had the highest (0.271). Since the stratification procedures yielded mean 

standard deviations much greater than those of the randomesque-6 procedure, it is 

inferred that the randomesque-6 procedure used the items more evenly than the 

stratification procedure.  

 This result is quite surprising given that the stratifications procedures were meant 

to use items more evenly than a randomized approach. By placing items into strata, the 

procedures were design to “guarantee” a more even use of the items over random 

approaches. Another surprising result is that there was not a clear pattern of item usage as 

the number of strata changed within the stratification procedures using the 175-item pool. 

However, for the 85-item pool, the items appear to be more evenly used with three strata  

rather than two, for both stratification procedures. 

 Tables 33 and 34 provide information on the mean item pool usage for the item 

pools for each of the CAT conditions, respectively. This table shows the distribution of 

mean exposure rates for each item within the item pools, the mean number of un-

administered items, and the mean percentage of the item pool that was not administered 

for each of the CAT conditions. Perhaps the most important piece of information within 

these tables is the number, and percentage, of items that were never administered. For the 

175-item pool, the randomesque-6 procedure outperformed the other procedures given 

that it achieved the lowest grand mean number of unused items, 57 (33%). Although the 

no exposure control condition produced the largest mean number of unused items, 84 

(48%), the numbers achieved by the stratification procedures were not that far behind, 

ranging from 75 to 83 (43 to 47%). Similar results were found using the 85-item pool.  
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Table 33: Mean Frequency of Exposure Rates for the 175-Item Pool Averaged Across 
Ten Replications 

Exposure 
Rate 

No 
Exposure 
Control 

Randomesque-
6 

AS-
2 

AS-
3 

AS-
4 

AS-
5 

BAS-
2 

BAS-
3 

BAS-
4 

BAS-
5 
 
 

1 0 0 0 0 0 0 0 0 0 0 

.91-.99 0 0 0 0 0 0 0 0 0 0 

.81-.90 3 0 0 1 0 2 0 1 1 1 

.71-.80 2 0 3 2 1 0 2 1 2 2 

.61-.70 1 1 5 2 2 4 6 3 3 4 

.51-.60 6 3 3 7 9 8 5 8 5 5 

.41-.50 9 9 8 9 5 7 9 9 8 5 

.36-.40 4 8 3 2 7 3 2 1 3 7 

.31-.35 3 7 8 3 5 7 3 3 5 5 

.26-.30 5 12 7 7 7 6 7 6 6 4 

.21-.25 8 6 4 8 7 5 5 8 7 6 

.16-.20 5 7 7 9 6 6 9 8 8 9 

.11-.15 7 9 5 7 6 6 6 7 7 6 

.06-.10 8 15 11 11 15 13 12 13 11 13 

.01-.05 31 42 32 27 30 30 27 28 34 26 

0.0 84 57 81 81 77 80 82 79 75 83 

% Not 
Administered 

48 33 46 46 44 46 47 45 43 47 
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Table 34: Mean Frequency of Exposure Rates for the 85-Item Pool Averaged Across Ten 
Replications 

Exposure 
Rate 

No 
Exposure 
Control 

Randomesque-
6 

AS-
2 

AS-
3 

BAS-
2 

BAS-
3 
 
 

1 0 0 0 0 0 0 

.91-.99 1 0 0 0 0 0 

.81-.90 3 0 3 2 3 1 

.71-.80 3 0 3 3 4 3 

.61-.70 4 3 6 5 6 4 

.51-.60 7 9 3 4 2 5 

.41-.50 6 11 8 7 5 6 

.36-.40 3 5 3 3 4 5 

.31-.35 2 4 3 6 7 4 

.26-.30 4 5 3 7 3 6 

.21-.25 2 3 5 3 5 4 

.16-.20 4 4 5 5 3 4 

.11-.15 7 8 8 7 10 8 

.06-.10 7 9 15 14 14 14 

.01-.05 15 22 16 15 17 15 

0.0 19 3 16 15 17 15 

% Not 
Administered 

22 3 19 17 20 17 
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The randomesque-6 procedure yielded the smallest grand mean number of unused items, 

3 (3%), while the no exposure control condition yielded the largest grand mean, 19 

(22%). Again, the stratification procedures yielded item pool usage rates near that 

achieved by the no exposure control condition.  

 The poor performance of the stratification procedures, in relation to the 

randomesque-6 procedure, reveals that substantial portions of the 175-item pool were not 

used for the CATs – nearly 50%. In an operational CAT, this can be quite disappointing 

given the amount of work, time, and money that goes into planning, designing and 

maintaining an item pool.  However, as seen with the 85-item pool, the stratification 

procedures did utilize at least 75% of the item pool, although this was not at the same 

level as the randomesque-6. From this, it can be inferred that the stratification procedures  

do a better job at utilizing items from smaller polytomous item pools, a finding that is 

consistent with results from previously mentioned studies. 

Item Overlap 

 As another indicator of item exposure, item overlap was analyzed to determine 

which exposure control condition presented the highest (and lowest) degree of item 

overlap among the simulees. As well as determining the overall average item overlap 

among all of the simulees, this investigation also looked at the item overlap rates for four 

comparisons: 1) simulees whose known abilities differed by more than two logits; 2) 

simulees whose known abilities differed by less than two logits; 3) simulees whose 

known abilities differed by more than one logit; and 4) simulees whose known abilities 

differed by less than one logit. The comparisons among the simulees were such that each 

simulee was compared with every other simulee for each exposure control condition. 
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Table 35 provides the average item overlap results of the 175-item pool, for when 

simulees’ known abilities differed by two logits.  

 The lowest average of overall item overlap for the 175-item pool occurs for the 

randomesque procedure, six, while the no exposure control condition presents the highest 

average overall item overlap, nine. The stratification procedures show that eight items, on 

average, were shared among the simulees. Similar results were also found when the 

known abilities differed by less than two logits, The randomesque-6 procedure revealed 

seven items shared on average while the no exposure control condition produced ten. 

Nearly all of the stratification procedures showed nine items shared among the simulees,  

with the BAS-2 procedure showing ten (within rounding). When the known abilities 

differed by more than two logits the average number of shared items drops, but most of 

the conditions revealed the same number of shared items. Within rounding, the no 

exposure control, randomesque-6, AS-2, AS-3, AS-4, AS-5, BAS-2, and BAS-3 show 

that two items, on average, was shared among the simulees. However, the BAS-4 and 

BAS-5 procedures revealed three items shared, on average. 

 Table 36 shows the presents the same descriptive information for the 85-item 

pool. Again, the randomesque-6 procedure showed the lowest grand mean overall item 

overlap, the no exposure control condition revealed the highest, and the stratification 

procedure fell in the middle. For the simulees whose abilities differed by less than two 

logits, the randomesque-6 still performed better than the other exposure control methods 

by at least two items, within rounding. However, when the abilities differed by more than 

two logits,  
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Table 35: Descriptive Statistics of Item Overlap for the 175-Item Pool Across Ten 
Replications When Defining Ability Groups by Two Logits 

Exposure Control 
Condition 

Overall Overlap 
Grand Mean 
(Min, Max) 

Similar Abilities 
Grand Mean 
(Min, Max) 

Different Abilities 
Grand Mean 
(Min, Max) 

 
No Exposure Control 9.010 

(8.813, 9.010) 
10.211 

(10.122, 10.305) 
2.367 

(2.223, 2.579) 
 

Randomesque-6 6.448 
(6.373, 6.565) 

7.259 
(1.226, 7.296) 

1.981 
(1.788, 2.170) 

 
AS-2 8.328 

(8.210, 8.456) 
9.380 

(9.156, 9.484) 
2.203 

(2.022, 2.337) 
 

AS-3 8.049 
(7.844, 8.195) 

9.104 
(8.968, 9.210) 

2.203 
(2.064, 2.364) 

 
AS-4 7.662 

(7.184, 7.867) 
8.780 

(8.680, 8.923) 
2.071 

(1.909, 2.260) 
 

AS-5 7.989 
(7.876, 8.069) 

9.008 
(8.871, 9.096) 

2.336 
(2.120, 2.544) 

 
BAS-2 8.457 

(8.343, 8.584) 
9.590 

(9.547, 9.689) 
2.294 

(2.178, 2.412) 
 

BAS-3 8.098 
(7.913, 8.789) 

9.107 
(9.006, 9.253) 

2.173 
(1.928, 2.389) 

 
BAS-4 8.095 

(7.855, 8.419) 
9.075 

(8.819, 9.310) 
2.578 

(2.290, 2.847) 
 

BAS-5 8.309 
(8.163, 8.490) 

9.229 
(8.223, 9.489) 

3.257 
(2.518, 8.168) 
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Table 36: Descriptive Statistics of Item Overlap for the 85-Item Pool Across Ten 
Replications When Defining Ability Groups by Two Logits 

Exposure Control 
Condition 

Overall Overlap 
Grand Mean 
(Min, Max) 

Similar Abilities 
Grand Mean 
(Min, Max) 

Different Abilities 
Grand Mean 
(Min, Max) 

 
No Exposure Control 10.861 

(10.711, 11.139) 
12.165 

(12.012, 12.350) 
3.386 

(3.573, 3.827) 
 

Randomesque-6 8.265 
(8.069, 8.420) 

9.077 
(8.949, 9.209) 

3.945 
(3.778, 4.101) 

 
AS-2 10.246 

(10.130, 10.323) 
11.475 

(11.379, 11.573) 
3.362 

(3.447, 3.881) 
 

AS-3 9.580 
(9.349, 9.719) 

10.654 
(10.512, 10.829) 

3.586 
(3.205, 3.756) 

 
BAS-2 10.295 

(10.084, 10.452) 
11.525 

(11.336, 11.639) 
3.627 

(3.353, 3.918) 
 

BAS-3 9.504 
(9.312, 9.773) 

10.630 
(10.493, 10.835) 

3.594 
(3.326, 3.780) 
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the no exposure control condition and the AS-2 both revealed that three items were 

shared on average, the lowest of the exposure control condition.  

Tables 37 and 38 present the descriptive statistics for item overlap for both item 

pools when the differences in simulees’ abilities are defined by one logit. For the 175-

item pool and abilities differing by less than one logit, the randomesque-6 procedure 

outperformed the other conditions by showing only eight items shared, on average. The 

other conditions showed ranged from eleven to thirteen shared items. When the abilities 

differed by more than one logit for the same item pool, the randomesque-6 and AS-2 

showed only four shared items while the other conditions showed five. 

The 85-item pool revealed larger numbers of shared items than the 175-item pool as 

it did when the ability groups were defined by two logits. From table 38, the 

randomesque-6 showed only ten shared items, on average, when the abilities differed by 

less than one logit while the other exposure control conditions showed between thirteen 

and fifteen shared items. When the abilities differed by more than one logit, however, the 

range of shared items was only six to seven items. 
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Table 37: Descriptive Statistics of Item Overlap for the 175-Item Pool Across Ten 
Replications When Defining The Ability Groups by One Logit 

Exposure Control Condition Similar Abilities 
Grand Mean 
(Min, Max) 

Different Abilities  
Grand Mean 
(Min, Max) 

 
No Exposure Control 12.828 

(12.714, 12.897)
4.819 

(4.729, 4.926) 
 

Randomesque-6 8.716 
(8.650, 8.773) 

3.951 
(3.848, 4.029) 

 
AS-2 11.721 

(11.582, 11.816)
4.627 

(4.454, 4.738) 
 

AS-3 11.230 
(11.118, 11.331)

4.504 
(4.353, 4.637) 

 
AS-4 10.874 

(10.780, 11.027)
4.283 

(4.112, 4.426) 
 

AS-5 11.038 
(10.922, 11.190)

4.628 
(4.427, 4.765) 

 
BAS-2 11.835 

(11.744, 11.920)
4.771 

(4.644, 4.908) 
 

BAS-3 11.250 
(11.118, 11.367)

4.500 
(4.332, 4.714) 

 
BAS-4 11.080 

(10.911, 11.368)
4.775 

(4.439, 5.175) 
 

BAS-5 11.031 
(8.234, 11.460) 

5.334 
(4.778, 8.193) 
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Table 38: Descriptive Statistics of Item Overlap for the 85-Item Pool Across Ten 
Replications When Defining The Ability Groups by One Logit 

Exposure Control Condition Similar Abilities Mean 
(Min, Max) 

Different Abilities Mean
(Min, Max) 

 
No Exposure Control 14.527 

(14.363, 14.619) 
6.841 

(6.698, 7.078) 
 

Randomesque-6 10.168 
(10.089, 10.285) 

6.205 
(6.019, 6.377) 

 
AS-2 13.509 

(13.437, 13.657) 
6.706 

(6.548, 6.925) 
 

AS-3 12.510 
(12.399, 12.699) 

6.331 
(6.063, 6.563) 

 
BAS-2 13.628 

(13.431, 13.931) 
6.698 

(6.469, 6.877) 
 

BAS-3 12.509 
(12.426, 12.640) 

6.273 
(6.027, 6.433) 
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CHAPTER FIVE: DISCUSSION 
 
 The simulations within this study have provided some useful information in terms 

of using stratification procedures as mechanisms of item exposure control. The benefit of 

what has been presented here is that, unlike previous research studies involving the utility 

of the stratification procedures, this study investigated the various number of strata that 

could be used within an item pool and then compared those results to an already 

established method of exposure control. Also, this study provided, perhaps, the first 

procedure of blocking polytomous items that have more than one difficulty parameter 

into groups of different difficulties, something that had not been explored in-depth 

before.  

This chapter will discuss the results of the CAT simulations in relation to the three 

research questions outlined in chapter three. Following the results, a brief discussion of 

improvements that have been made to the stratification procedures will be presented 

along with previous research studies investigating them. Next, limitations of this study 

will be highlighted with possible solutions to overcome them in future studies. Lastly, 

this chapter will cover suggestions for future research in the area of stratification and 

polytomous items.  

Research Questions 

 Is there an optimum number of strata to employ when using the a-stratification 

and a-stratification with b-blocking procedures on a polytomous item pool? In terms of 

CAT efficiency and item pool utilization, the results from this study indicate that there is 

not an optimum number of strata to use when using the stratification procedures on 

polytomous items. This is not surprising given that the same conclusion was reached 
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when dichotomous items were used. The difference between the investigation of 

dichotomous items and this investigation of polytomous items is that patterns of 

increased efficiency and overlap rates were found using dichotomous items but not 

polytomous items. It is possible that from this finding that the stratification procedures 

investigated in this study were not designed to handle the characteristics of the 

polytomous items used. 

 Using polytomous items, does varying the number of strata within the a-

stratification and a-stratification with b-blocking procedures help achieve the same level 

of exposure control as the randomesque procedure? In general, the randomesque-6 

procedure performed better than the stratification procedures regardless of the number of 

strata that was used. This is quite surprising given that the randomesque procedure is 

based on a randomized approached of selecting items for administration and the 

stratification procedures are not. The stratification procedures were designed to control 

the item selection mechanisms better by placing the items into groups and specifying, 

within the testing algorithm, how to select items from each group. In short, this 

mechanism should have produced better exposure rates than that found using the 

randomesque procedure.  

A surprising result from this study is the performance of the a-stratification with 

b-blocking procedure itself. As discussed before, this procedure was designed to control 

item exposure better than the a-stratification procedure since it takes into account any 

positive correlation that might exist between the item discrimination and item difficulty 

parameters of an item pool. However, results of this study did not necessarily reveal that. 

In some cases, this procedure performed about the same as the AS procedure, sometimes 
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worse, but not better. This supports the result of Davis (2004) in which it was found that 

using multiple stratification procedures on polytomous items can lead to the poor 

performance of the stratification procedure. Even though Davis was referring to 

stratification in terms of item content and the number of score categories the items had, 

the premise still holds here: stratifying on item content and item difficulty probably had 

an effect on the overall performance of the procedure.  

 When using the a-stratification and a-stratification with b-blocking procedures, 

does the smaller item pool produce lower numbers of un-administered items but higher 

overlap rates than the larger item pool? How do the overlap rates of the stratification 

procedures compare to the randomesque procedure? Both stratification procedures 

exhibited better rates of item pool utilization for the 85-item pool over the 175-item pool. 

For the a-stratification procedure, the average percentage of un-administered items for 

the 175-item pool was 46% while it was 18% for the 85-item pool. Similarly, for the a-

stratification with b-blocking procedure, the 175-item pool yielded an average of 46% 

items never administered, but only 19% for the 85-item pool. The number of strata used 

for both item pools does not affect these results since the size of the item pools was taken 

into account when deciding upon the maximum number of strata to use on both item 

pools. Item overlap rates for the 175-item pool were generally lower than the 85-item 

pool across all comparisons. 

 Generally, the randomesque-6 procedure yielded better item overlap rates than the 

stratification procedures. In terms of overall item overlap, abilities differing by less than 

two logits, and abilities differing by less than one logit, the randomesque-6 procedure 

handled item overlap better than the stratification procedures. When the abilities differed 
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by more than two logits (and, subsequently, by more than one logit) the superiority in 

item overlap was not achieved by the randomesque-6 procedure. Therefore, the 

randomesque-6 procedure outperformed the stratification procedures in item overlap 

when investigating simulees that were considered to be “similar” in abilities but not when 

simulees were considered to be “different.”  

 A possible explanation of the superior performance of the randomesque procedure 

over the stratification procedures may lie in the availability of items throughout the 

CATs. In the randomesque procedure, the entire item pool is available when selecting the 

n most informative items from which one will be randomly chosen for the simulee. This 

is the case throughout the entire CAT. However, the stratification procedures are 

restricted to which items can be used for selection. In other words, if there are not any 

appropriate items to administer to a simulee from a particular stratum, the CAT must still 

use items from the stratum until the maximum number of items administered from that 

stratum has been reached. Therefore, the CAT cannot proceed to another stratum in the 

event that there are not any appropriate items available for a simulee. This possibly 

allows the randomesque procedure to use items more effectively than the stratification 

procedures. 

 Although this study did reveal a superior performance of the randomesque 

procedure in terms of item exposure control and item overlap, this does not mean that the 

randomesque procedure is the best procedure of exposure control. Other research studies 

using polytomous CATs have found that other methods of exposure control can perform 

at the same level or better than the randomesque procedure. For example, Burt et al. 

found that a modified within .10 logits procedure, with an item group size of 6, used 
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approximately the same amount of the item pool as the randomeque-6 procedure. In fact, 

these two procedures utilized the item pool more than the other procedures. Davis (2002) 

found similar results for the randomesque and modified within .10 logits procedures. 

However, the conditional Sympson-Hetter procedure also produced a high rate of item 

pool utilization, similar to the previous two procedures.  

Boyd (2003), however, found different results regarding the best method of 

exposure control. Investigating the optimal method of exposure control for CAT systems 

based on the three-parameter logistic testlet response theory and systems based on the 

partial credit model, it was found that the progressive restricted procedures, restricted to a 

maximum exposure rate of .20 or .30 yielded the best results. These procedures utilized 

the entire the set of items in both CAT systems. 

Stratification Procedures: New Developments 

 As shown in these simulations, the issue of exposure control was not resolved 

with the stratification procedures used. Leung, Chang, and Hau (2002) attributed findings 

such as those found in this study to a small ratio of item pool size to test length. In this 

dissertation, the ratios were approximately nine and 4 for the 175- and 85-item pool, 

respectively. Given this persistent dilemma, Leung, Chang, and Hau incorporated 

Sympson-Hetter methodologies into the a-stratification design and proposed the 

enhanced stratified to help overcome the effects of small item pool size to test length 

ratios. This procedure involves setting exposure control parameters through the 

Sympson-Hetter procedure with a stratified item pool. Following this development, 

Pastor, Dodd, and Chang (2002) proposed the conditional enhanced a-stratified design to 

further control exposure control by conditioning it on ability.  
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These stratification procedures are more advanced than the ones investigated in 

this paper, therefore the specific mechanisms of these procedures will not be discussed in 

this chapter. However, it is important to mention them given that they were designed to 

control item exposure better than what was found in this study. Using dichotomous items, 

Leung, Chang, and Hau found that the enhanced stratified procedure produced lower item 

overlap rates and lower rates of un-administered items than that found with the a-

stratification procedure. In other words, the enhanced stratified method provided a 

stronger approach at exposure control than the original a-stratification procedure.  

Pastor, Dodd, and Chang (2002) found support for the conditional enhanced stratified 

procedure in terms of item exposure, but not in terms of the precision of ability 

estimation. Given the weak performance of the a-stratification and a-stratification with b-

blocking procedures on polytomous items in this dissertation, the advanced stratification 

methods may prove beneficial to investigate more fully in the polytomous context. 

 However, it should be noted that adapting to these more advanced models of 

stratification inhibits the original simplicity of the stratification procedures as methods of 

exposure control. When these methods were first proposed, the idea was to be able to 

utilize exposure control procedures without the intensive calculations involved with the 

conditional procedures (e.g., Sympson-Hetter) and without leaving item selection up to 

chance (e.g., randomization). However, with the more advanced models of stratification, 

the simplicity is somewhat removed since they involve the methodologies of the 

Sympson-Hetter, calculating exposure control parameters by using a priori CAT 

simulations. If this type of procedure is more fruitful than the original stratification 

procedures, then, perhaps, it is more beneficial to just utilize the Sympson-Hetter without 
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stratification. This is the main reason that the advanced methods of stratification were not 

investigated in this study. 

Limitations 

One limitation of this study involves the characteristics of the items used for the 

CAT simulations. As previously mentioned, the assessment from which the items came 

from is a low-stakes assessment. Therefore, since the motivation to perform well is low 

then the subsequent item parameters might not be ideal, which was the case for this 

study. An attempt to rectify this problem involved adjusting the item discrimination 

parameters. This adjustment might not have reflected reality. As previously discussed, 

when stratifying items by discrimination it is necessary that the overlap of item 

discrimination across strata be minimal. This is to ensure that each stratum contains a 

unique set of information, leading to an optimal selection of items to administer. In other 

words, items chosen from higher strata should not reflect the same amount of information 

as items chosen from previous strata.  

Tables 13, 14, 17 and 18 reveal that the items used in this study did not always 

allow for minimal overlap in item discrimination among the strata. This could allow the 

test algorithm to choose items not appropriate from certain strata since they could be 

contributing the same information characteristics as items that have already been 

administered. Since there is not a specific standard of allowable overlap in item 

discrimination, making judgments about what is acceptable, given a stratified item pool, 

can sometimes be difficult. 

Another limitation of this study related to the characteristics of the items is the 

fact that some items exhibited a reversal of step difficulties. In other words, the second 
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step-difficulty value was sometimes lower than the first step-difficulty. Although this is 

not a violation of the item response theory model used in this study, it does present a 

challenge to the optimal characteristics of items. As pointed out by Andrich (1988), when 

the step difficulty values are in reversed order, there is not a region of ability level 

relative to the item’s difficulty for which a certain score category is most likely. Perhaps 

easier to understand, when the step difficulty values are in appropriate order, from 

smallest to largest, then there will be a region of ability level relative to item difficulty for 

which each score category is most likely.  

The manner in which the polytomous items were classified by item difficulty 

presented another challenge within this study. As discussed before, there is no previous 

research that lends support in classifying polytomous by difficulty when the items have 

more than one difficulty parameter. Therefore, the procedure of classification used in this 

study was designed without any reference to previous research literature. This suggests 

that there may be a more optimal way (e.g., using the width of the items’ information 

functions) that these items could have been classified according to difficulty.  

Some might argue that using an average value of item difficulties would, in fact, 

help solve the issue of classifying items with more than one difficulty parameter. 

Although, this could be done, it does present a major disadvantage. Using an average 

value of difficulty for items with more than one difficulty parameter would be analogous 

to adapting to a different item response theory model altogether. In the case of this study, 

that would mean going from the generalized partial credit model to Andrich’s rating scale 

model, which assumes only one index of difficulty per item. Therefore, even though 
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averaging difficulty parameters within an item can work, it does change the assumptions 

of the model originally being used. 

Directions for Future Research 

 The issue of an optimum number of strata to use when utilizing mechanisms of 

stratification on polytomous item pools is far from being resolved, despite what has been 

presented in this dissertation. There is still research to be done to continue refining the 

stratification procedures and finding support for their use in polytomous CATs. Two key 

aspects of future research investigating the stratification procedures with polytomous 

items are discussed next. 

 First, this study investigated the stratification procedures using their original 

methodologies, not incorporating the more advanced techniques developed years later. In 

other words, future research should be directed at analyzing the enhanced stratified and 

conditional enhanced stratified procedures to continue the search of an optimum number 

of strata. Since the enhanced stratified method was designed to overcome a small item 

pool size to test length, this procedure may be able to handle the small sizes typical of 

polytomous item pools.   

 Second, this study used fixed-length CATs to investigate the stratification 

procedures. Fixed-length CATs have the advantage of administering the same number of 

items to everyone regardless of ability. However, it can also result in different 

measurement errors of ability estimation across examinees. Variable length CATs have 

the advantage of producing approximately the same measurement error for all examinees 

despite the different numbers of items each examinee is administered. From this, Wen, 

Chang, and Hau (2000) adopted the stratification procedures into variable length CATs 
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and found that the a-stratification procedure, as utilized in this dissertation, performed 

well in terms CAT accuracy and item pool usage, using dichotomous items. From this, 

future research should investigate the stratification procedures – varying the number of 

strata – with variable length CATs. 

 
 



  

APPENDIX A: CONDITIONAL BIAS 
 
 
 
 
 
 

Figure A1: Conditional Bias for No-Exposure Control with the 175-Item Pool 
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Figure A2: Conditional Bias for Randomesque-6 with the 175-Item Pool 
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Figure A3: Conditional Bias for AS-2 with the 175-Item Pool 
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Figure A4: Conditional Bias for AS-3 with the 175-Item Pool 
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Figure A5: Conditional Bias for AS-4 with the 175-Item Pool 
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Figure A6: Conditional Bias for AS-5 with the 175-Item Pool 
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Figure A7: Conditional Bias for BAS-2 with the 175-Item Pool 
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Figure A8: Conditional Bias for BAS-3 with the 175-Item Pool 
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Figure A9: Conditional Bias for BAS-4 with the 175-Item Pool 
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Figure A10: Conditional Bias for BAS-5 with the 175-Item Pool 

Known Theta

43210-1-2-3-4

B
ia

s

2.0

1.5

1.0

.5

0.0

-.5

-1.0

-1.5

-2.0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 131



  

 
 

 
 
 
 
 
 

 
Figure A11: Conditional Bias for No-Exposure Control with the 85-Item Pool 
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Figure A12: Conditional Bias for Randomesque-6 with the 85-Item Pool 
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Figure A13: Conditional Bias for AS-2 with the 85-Item Pool 
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Figure A14: Conditional Bias for AS-3 with the 85-Item Pool 
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Figure A15: Conditional Bias for BAS-2 with the 85-Item Pool 
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Figure A16: Conditional Bias for BAS-3 with the 85-Item Pool 
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