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This dissertation contains a number of results on properties of infinite

algebraic extensions of the rational field, all of which have a view toward the

study of heights in diophantine geometry. We investigate whether subexten-

sions of extensions generated by roots of polynomials of a given degree are

themselves generated by polynomials of small degree, a problem motivated by

the study of heights. We discuss a relative version of the Bogomolov property

(the absence of small points) for extensions of fields of algebraic numbers. We

describe the relationship between the Bogomolov property and the structure

of the multiplicative group. Finally, we describe some results on height lower

bounds which can be interpreted as diophantine approximation results in the

multiplicative group.
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Chapter 1

Introduction

The four parts of this dissertation contain results on what we will call

“nice” extensions of fields of algebraic numbers. All such extensions will be

assumed to lie in a fixed algebraic closure Q of the rational field Q unless

otherwise stated. By a nice extension, we mean one satisfying a property

which is always satisfied by extensions of number fields, but may or may not

be satisfied by extensions of possibly infinite algebraic extensions of Q. Each

of chapters 2-5 is self-contained. We refer the reader to the introductions in

each chapter for precise statements of the main results.

Chapter 2 is joint work with Itamar Gal, and has been accepted for

publication [22]. In this chapter we study the compositum k[d] of all degree d

extensions of a number field k in a fixed algebraic closure. We show that kd

contains all subextensions of degree less than d if and only if d ≤ 4. We prove

that for d > 2 there is no bound c = c(d) on the degree of elements required

to generate finite subextensions of k[d]/k. Restricting to Galois subextensions,

we prove such a bound does not exist under certain conditions on divisors of

d, but that one can take c = d when d is prime. This question was inspired by

work of Bombieri and Zannier on heights in similar extensions, and previously
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considered by Checcoli.

Chapter 3, on relative Bogomolov extensions, was written solely by the

author and has been submitted for publication separately. A subfield K ⊆ Q

has the Bogomolov property (property (B)) if there exists a positive ε such

that no non-torsion point of K× has absolute logarithmic height below ε. We

define a relative extension L/K to be Bogomolov if this holds for points of

L× \K×. We construct various examples of extensions which are and are not

Bogomolov. We prove a ramification criterion for this property, and use it to

show that such extensions can always be constructed if some rational prime

has bounded ramification index in K.

Chapter 4 discusses the relationship between property (B) and the

structure of the multiplicative group, and also the analogous question for el-

liptic curves. It was observed by Vaaler that for a field K to satisfy property

(B) implies that K×/K×tors is free abelian. Counterexamples to the converse

of this statement, i.e. fields K where K×/K×tors is free abelian, yet K does

not satisfy property (B), were constructed independently by the author and

by Philipp Habegger and Lukas Pottmeyer. These examples, as well as an

extensive investigation into the analogous question for elliptic curves, are the

subject of a current joint work by the author, Habegger, and Pottmeyer, which

will later be submitted for publication separately. Chapter 4 represents part

of this paper.

Chapter 5 is part of a joint work in progress with Jeffrey Vaaler, which

will later be submitted for publication separately. In this chapter we show
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that, for a subfield K of Q, elements of Q×/Q×tors cannot be approximated by

elements of the Q-vector space spanned by K×/K×tors, in the metric induced

by the height. These results can be thought of as diophantine approximation

in the multiplicative group. Our results yield a generalization of Vaaler’s

aforementioned observation about property (B) and free abelian groups to

relative Bogomolov extensions.
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Chapter 2

The compositum of all degree d extensions of

a number field

(with Itamar Gal)

2.1 Introduction

Let k be a field. Throughout this paper, all extensions of k will be

assumed to lie in a fixed algebraic closure k. We are interested in fields obtained

by adjoining to k all roots of irreducible polynomials of a given degree d. For

any positive integer d we will write

k[d] = k(β
∣∣ [k(β) : k] = d), and

k(d) = k(β
∣∣ [k(β) : k] ≤ d) = k[2]k[3]k[4] · · · k[d].

We have k[1] = k(1) = k, and for all d it is clear that k[d] and k(d) are

normal extensions of k. We are primarily interested in the case where k is a

number field, in which case these are infinite Galois extensions. When d > 2

it is natural to ask what polynomials of degree less than d split in k[d]. If c < d

and all irreducible polynomials of degree c split in k[d], then k[c] ⊆ k[d]. Notice

that this occurs in particular when c divides d, since every degree c extension

admits a degree d/c extension. If all polynomials of degree less than d split in

k[d], then k[d] = k(d). We will prove the following results along these lines.
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Theorem 2.1.1. If k is a number field †, then

(a) k[2] ⊆ k[d] for all d ≥ 2,

(b) k[3] ⊆ k[4], and

(c) for each d ≥ 5, there exists a prime p < d such that k[p] 6⊆ k[d].

The following corollary is immediate.

Corollary 2.1.2. If k is a number field, then k[d] = k(d) if and only if d < 5.

We now introduce the notion of boundedness for an extension of fields.

We will use this language to state our remaining results.

Definition 2.1.3. We say an infinite extension M of k is bounded over k (or

that M/k is bounded) if there exists a constant c such that all finite subexten-

sions of M/k can be generated by elements of degree less than or equal to c. If

there is no such c, we say that M/k is unbounded.

If all finite Galois subextensions of M/k can be generated by elements

of degree less than or equal to c, we say M/k is Galois bounded; otherwise we

say M/k is Galois unbounded.

It was first shown by Checcoli that, for a number field k, the extension

k(d)/k is not in general Galois bounded (see [12], Theorem 2, part ii). We will

†Many of our results contain the hypothesis that k is a number field or global function
field. However, the astute reader will notice after reading the proofs that this hypothesis
could be replaced with more technical restrictions on the field k – specifically, that certain
embedding problems have solutions over k.
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address the question of how boundedness and Galois boundedness depend on

d for the fields k(d) and k[d]. Further restricting attention to abelian Galois ex-

tensions greatly simplifies the discussion. It is easily seen that k
(d)
ab is bounded

over k for all d, where the subscript denotes the maximal abelian subextension.

This is contained in the proof of [14, Proposition 2.1] and can be seen in the

statement of [12, Theorem 1.4]. It follows from the fact that a finite abelian

group can be written as a product of cyclic groups, where the trivial subgroup

is the intersection of subgroups of index not exceeding the greatest order of a

cyclic factor.

In the case where k is a number field, Bombieri and Zannier ask in [10]

whether, for any given constant T , only finitely many points in k(d) have ab-

solute Weil height (see [9], p. 16 for a definition) at most T . Such a finiteness

property is called the Northcott property. This problem has been further dis-

cussed in [47] and [13], but remains open. In Theorem 1 of [10] it is proved that

this property is enjoyed by k
(d)
ab , and the boundedness of k

(d)
ab /k plays a role in

the proof. The authors of the present work are hopeful that understanding the

boundedness properties in k[d] and k(d) will be useful in understanding such

problems.

The following theorems summarize our results on boundedness and Ga-

lois boundedness.

Theorem 2.1.4. If k is a number field, then k[d] is bounded over k if and only

if d ≤ 2.
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Theorem 2.1.5. If k is any field and p is a prime number, then k[p] is Galois

bounded over k. More precisely, all finite Galois subextensions of k[p]/k can be

generated by elements of degree at most p over k.

We will also establish the following partial converse to Theorem 2.1.5.

Theorem 2.1.6. If k is a number field or global function field and d > 2, then

k[d]/k is Galois unbounded in the following cases:

(a) d is divisible by a square;

(b) d is divisible by two primes p and q such that q ≡ 1 (mod p).

In particular, this includes the case where d is even and greater than 2.

In terms of the fields k(d), Theorems 2.1.4, 2.1.5, and 2.1.6 immediately

imply the following.

Corollary 2.1.7. Let k be a number field. Then

(a) k(2)/k is bounded,

(b) k(3)/k is Galois bounded but not bounded, and

(c) k(d)/k is Galois unbounded for d ≥ 4.

This paper is organized as follows. Sections 2 and 3 are devoted to

preliminaries and background material on group theory and Galois theory. In

Section 4 we prove Theorem 2.1.1; parts (a) and (b) appeal to existing results
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on embedding problems, while part (c) follows by a purely group theoretic

argument. We conclude Section 4 with an elementary construction which

gives part (a) in the case where k = Q. In Section 5 we prove Theorems 2.1.4

and 2.1.6 using explicit constructions. Finally, in Section 6 we prove Theorem

2.1.5 as an immediate corollary of a purely group theoretic statement (see

Proposition 2.6.2).

Acknowledgments

The authors would like to thank Daniel Allcock, Sara Checcoli, Joseph

Gunther, Andrea Lucchini, Jeffrey Vaaler, and anonymous referees for numer-

ous useful communications. We would also like to express our appreciation to

the GAP group. Although we did not use computer calculations directly for any

of the results in this paper, we used the GAP software package extensively to

improve our understanding of the group theoretic aspects of these problems.

2.2 Preliminaries on group theory

We recall some standard definitions. A transitive group of degree d will

mean a finite permutation group acting faithfully and transitively on a set

Ω of size d, such as the Galois group of an irreducible degree d polynomial

acting on the roots. A transitive group is primitive if there is no nontrivial

partition of Ω such that the group has an induced action on the blocks of the

partition. Since all such blocks must be equal in size, any transitive group

of prime degree must be primitive. For more background on transitive and
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primitive groups, see [16] or [48].

Let us fix some notation for finite groups. We will denote by Cd, Dd,

Ad, and Sd the cyclic, dihedral, alternating, and symmetric groups of degree

d, respectively. Note that Dd has order 2d. We denote the Klein 4-group by

V .

A subdirect product G of some collection of groups {Gi}i is a subgroup

of the direct product
∏

iGi with the property that the projection map from

G to each factor Gi is surjective. We will sometimes write G ≤sd
∏

iGi to

abbreviate that G is such a group.

Let H1, H2 and Q be groups, and let α1 : H1 → Q and α2 : H2 → Q be

surjective group homomorphisms. The fibered product of H1 with H2 over Q

(with respect to the maps α1 and α2) is defined to be the subgroup H1×QH2

of the direct product H1 ×H2 given by

H1 ×Q H2 = {(h1, h2) ∈ H1 ×H2

∣∣ α1(h1) = α2(h2)}.

Notice that we have

|H1 ×Q H2| =
|H1| · |H2|
|Q|

.

The following lemma can be found in different forms in many texts,

and is variously attributed to Goursat or Goursat and Lambek. A short proof

can be found in [11], p. 864.

Lemma 2.2.1 (Goursat’s Lemma). Let H1 and H2 be groups. The set of
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subdirect products of H1×H2 is equal to the set of fibered products H1×QH2.

In particular, every subdirect product of H1 ×H2 is of the form H1 ×Q H2.

2.3 Galois theory and embedding problems

The following elementary proposition highlights the role of Galois the-

ory in the proofs of our results.

Proposition 2.3.1. Let k be a perfect field and let L/k be a finite Galois

extension of fields. The following are equivalent:

(a) L is generated by elements of degree d over k;

(b) in Gal(L/k) the trivial group is the intersection of subgroups of index d;

(c) Gal(L/k) is a subdirect product of transitive groups of degree d.

Proof. The equivalence (a) and (b) follows immediately from the Galois cor-

respondence and the primitive element theorem. If (a) is satisfied, then L is

a compositum of the splitting fields of some degree d polynomials. It follows

from basic Galois theory that Gal(L/k) is a subdirect product of these Galois

groups, which are transitive groups of degree d, so (c) is satisfied. Suppose

(c) is satisfied, so we have Gal(L/k) acting on a disjoint union of sets of size

d, transitively on each set. Then all point-stabilizers have index d, and the

intersection of these subgroups is trivial, yielding (b).

In order to establish Theorem 2.1.1, we must discuss the embedding

problem in Galois theory. Let K/k be a Galois extension of fields, G a finite
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group, and N a normal subgroup of G with a short exact sequence

1→ N → G
φ→ Gal(K/k)→ 1.

These data give us the embedding problem (K/k,G,N). A solution to

the embedding problem is an extension L/k with L ⊇ K such that Gal(L/k) ∼=

G and the natural map Gal(L/k)→ Gal(K/k) agrees with φ. Hence, a solution

to the embedding problem is described by the following commutative diagram.

Gal(L/k)

1 N G Gal(K/k) 1.// //
φ
// //

o

�� !!

For our purposes, all that is important is finding an extension L/k such

that L ⊇ K and Gal(L/k) ∼= G, and therefore we will not mention the map φ

in what follows.

A celebrated result in this context is a theorem of Shafarevich, which

states that if k any number field or global function field, any solvable group

can be realized as the Galois group of some extension of k. Since products

of solvable groups are solvable, this allows us to realize a solvable group as

the Galois group of infinitely many extensions, whose pairwise intersections

are k. A full proof of Shafarevich’s Theorem, along with more background on

embedding theory, can be found in [35].

The following proposition is a simple yet important observation which
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is used implicitly throughout the proof of Theorem 2.1.1.

Proposition 2.3.2. Let k be a field and let K/k be a finite extension. Then

K ⊆ k[d] if and only if the following two conditions are met.

(i) We can find a group H which is a subdirect product of transitive groups

of degree d with some normal subgroup N such that there is a short exact

sequence

1→ N → H → Gal(K/k)→ 1.

(ii) We can solve the corresponding embedding problem, i.e. find L ⊇ K such

that Gal(L/k) ∼= H.

Proof. IfK ⊆ k[d], thenK is contained in some finite Galois extension L/k gen-

erated by elements of degree d. By Proposition 2.3.1, we have that Gal(L/k)

is a subdirect product of transitive groups of degree d, and (i) and (ii) are

clearly satisfied via the short exact sequence

1→ Gal(L/K)→ Gal(L/k)→ Gal(K/k)→ 1.

Conversely, if (i) and (ii) are satisfied, then we have K ⊆ L as in (ii),

and L ⊆ k[d] by (i) and Proposition 2.3.1.
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2.4 Proof of Theorem 2.1.1

We implicitly apply Proposition 2.3.2 throughout. For integers m < d,

we are interested in whether or not k[m] ⊆ k[d]. Let K be the splitting field

of an irreducible polynomial of degree m in k[x]. In the case m = 2, we must

have that Gal(K/k) ∼= C2, and we use the following result due to O. Neumann

(cf. [36], Theorem 2) in order to conclude that K ⊆ k[d].

Proposition 2.4.1. Let K/k be a quadratic extension of number fields and

let d ≥ 3. Then there is a solution to the embedding problem (K/k, Sd, Ad)

arising from

1→ Ad → Sd → Gal(K/k)→ 1.

In other words, every irreducible quadratic splits in the splitting field of some

degree d polynomial (with symmetric Galois group).

This establishes part (a) of Theorem 2.1.1, that k[2] ⊆ k[d] for all d ≥ 2,

and in particular it tells us that k[3] = k(3). At the end of this section we give

a short, elementary proof of part (a) of Theorem 1 in the case where k = Q.

For part (b) of Theorem 1 it now suffices to consider the case m =

3, d = 4. We must have Gal(K/k) ∼= S3 or C3. The following is a special case

of a classical result of Shafarevich that gives the solution to all embedding

problems with nilpotent kernel (see [44], Claim 2.2.5).

Proposition 2.4.2. Let k be a number field and let f(x) ∈ k[x] be an irre-

ducible cubic with splitting field K. Let V denote the Klein 4-group.
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(a) If Gal(K/k) ∼= S3, then there is a solution to the embedding problem

(K/k, S4, V ) arising from

1→ V → S4 → Gal(K/k)→ 1.

(b) If Gal(K/k) ∼= C3, then there is a solution to the embedding problem

(K/k,A4, V ) arising from

1→ V → A4 → Gal(K/k)→ 1.

In other words, every irreducible cubic splits in the splitting field of some quar-

tic.

This proves that k[3] ⊆ k[4], and combining with part (a) of Theorem 1

we now have that k[4] = k(4).

To prove part (c) of Theorem 2.1.1 we consider the case d ≥ 5. We

will show that, for certain primes p < d, if Gal(K/k) ∼= Cp, then there is no

possible subdirect product of transitive groups of degree d having Gal(K/k)

as a quotient. That is, we cannot even find groups H and N satisfying a short

exact sequence as in (2.3.2) above. We begin with a lemma.

Lemma 2.4.3. For any integer d ≥ 5 there exists a prime number p ∈ (d
2
, d)

such that, if G is a transitive subgroup of Sd containing a p-cycle, then either

G = Sd or G = Ad.

Proof. The transitive groups of degree d are well-known for small d – see for

example [11] for the groups up to degree 11; GAP (see [29], [23]) has a library
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of all of them for d ≤ 30. It can be checked easily that we can use p = 3 when

d = 5, and we can use p = 5 when d = 6, 7; in each of these cases, Sd and Ad

are the only transitive subgroups with order divisible by p. Therefore all that

remains is to prove our lemma in the case d ≥ 8.

There exists at least one prime p ∈ (d
2
, d − 2). This follows from

Bertrand’s Postulate, first proved by Chebyshev, which states that for m > 3

there exists a prime in the interval (m, 2m − 2) – see [27], p. 343, Theorem

418; cf. p. 373. Let p be such a prime, and suppose G is a transitive subgroup

of Sd containing some p-cycle g. Without loss of generality, g = (1 2 3 · · · p).

Since G is transitive, for each i ∈ {p+ 1, . . . , d} there is some element σi ∈ G

such that σi(1) = i. If we let gi = σigσ
−1
i , then gi will be a p-cycle in G

whose support contains i. Since p is prime, each 〈gi〉 acts primitively on its

support, which is a set of size p. Since p > d
2
, the pairwise intersections of the

supports of the groups 〈gi〉 are nontrivial. Therefore we can apply Proposition

8.5 from [48] inductively to see that the subgroup H = 〈g, gp+1, gp+2, . . . , gd〉 is

a primitive subgroup of Sd. Since H contains a p-cycle and p < d−2, Theorem

13.9 from [48] tells us that either H = Sd or H = Ad, and since H ≤ G, our

proof is complete.

Part (c) will be an immediate corollary of the following proposition.

Proposition 2.4.4. For any integer d ≥ 5 there exists some prime p < d such

that, if G ≤sd G1×· · ·×Gn is a subdirect product of transitive groups of degree

d, then G has no quotient that is cyclic of order p.
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Proof. Fix d ≥ 5. By Lemma 2.4.3, there is a prime p ∈ (d
2
, d) such that

the only transitive subgroups of Sd containing a p-cycle are Sd and Ad. We

proceed by induction on n, noting that the case n = 1 follows immediately

by our choice of p. In general, we will have that G ≤sd G0 × Gn, where Gn

is a transitive group of degree d and G0 is a subdirect product of n − 1 such

groups. If N is any normal subgroup of G, we have that N ≤sd N0 × Nn for

some normal subgroups N0 �G0 and Nn�Gn. By Goursat’s Lemma, we may

write G as a fibered product G = G0 ×Q Gn for some group Q which is a

quotient of both G0 and Gn. Similarly, we have N = N0×RNn for some group

R which is a quotient of both N0 and Nn.

By the inductive hypothesis, neither G0/N0 nor Gn/Nn has order p.

Suppose that G/N ∼= Cp. Since G/N surjects onto both G0/N0 and Gn/Nn,

the latter two groups must be trivial. Therefore, using (2.2), we have

p =
|G|
|N |

=
|G0| · |Gn|/|Q|
|N0| · |Nn|/|R|

= |G0/N0| · |Gn/Nn| ·
|R|
|Q|

=
|R|
|Q|

.

This means that |R| is divisible by p, and therefore |Gn| and |Nn| are both

divisible by p as well. This means Gn must be isomorphic to either Sd or

Ad. Hence the only possibilities for Q are Sd, Ad, C2, or 1, and the only

possibilities for R are Sd or Ad. None of these possibilities allows for the

equality in (2.4).

This establishes part (c) of Theorem 2.1.1. Indeed, it shows that k[p] (

k[d], for p and d as above, whenever k is any field that admits a degree cyclic
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Galois extension of degree p.

In summary, if d ≤ 4, an irreducible polynomial in k[x] of degree less

than d splits in the splitting field of a single irreducible polynomial of degree

d. When d > 4, however, some irreducible polynomials of degree less than

d do not split in any compositum of such splitting fields. We conclude this

section by demonstrating that part (a) of Theorem 2.1.1 can be proved by a

very elementary construction when k = Q.

Elementary proof that Q[2] ⊆ Q[d] for all d ≥ 2. In general, k[`] ⊆ k[d] if `|d.

Hence it will suffice to show that
√
p ∈ Q[`] for any prime ` ≥ 3, whenever p is

a rational prime or p = −1. If p is any rational prime or equal to ±1, define

fp(x) = x` − `(`p+ 1)x+ (`− 1)(`p+ 1)

The discriminant ∆p of this polynomial is given by the following (see for ex-

ample [32]):

(−1)(`−1)(`−2)/2∆p = −(`− 1)`−1``+1(`p+ 1)`−1 · p.

In particular, it follows that
√
p will be in the splitting field of either fp(x)

or f−p(x). We now show that fp(x) is irreducible. First notice that if ` 6= p

then fp(x + 1) is Eisenstein at `. Next we consider the case where ` = p.

To handle this case we use the following version of Dumas’s Irreducibility

Criterion. A proof can be found in [39, Section 2.2.1], where the langauge of

Newton diagrams is used.
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Proposition 2.4.5 (Dumas’s Irreducibility Criterion). Let f(x) = a0x
n +

a1x
n−1 + · · ·+ an ∈ Z[x]. Suppose there exists a prime q such that vq(a0) = 0,

vq(ai)/i > vq(an)/n for i ∈ {1, . . . , n} and gcd(vq(an), n) = 1. Here vq(·)

denotes the greatest power of q dividing the argument. Then f(x) is irreducible.

Applying Dumas’s criterion in the case l = p, we find that a sufficient

condition for the irreducibility of fp is the existence of a prime q and an integer

m such that qm exactly divides p2 + 1, such that q is coprime to p − 1, and

and such that m is coprime to p. Notice that

(p2 + 1)− (p+ 1)(p− 1) = 2.

Since 2 is an integer combination of p2 + 1 and p− 1, it follows that gcd(p2 +

1, p− 1) divides 2. Also notice that

p2 + 1 = (p− 1)2 + 2(p− 1) + 2 ≡ 2 (mod 4).

Thus p2 + 1 is not a power of 2, and we can take q to be any one of its odd

prime factors. Now choose m such that qm exactly divides p2 + 1. Since

p2 + 1 < qp for p, q ≥ 3, it follows that 1 < m < p. Thus m is coprime to p,

which completes the proof.

2.5 Unboundedness: proofs of Theorems 2.1.4 and 2.1.6

In the spirit of Proposition 2.3.1, let G be a finite group and d a positive

integer. Suppose that H is a subgroup of G that cannot be written as an

intersection of subgroups of index less than or equal to d in G. If G is the
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Galois group of a field extension L/k, this implies that the fixed field K of H

is not generated over k by elements of degree less than or equal to d. In order

to prove unboundedness results, we must exhibit groups with these properties

which can be realized as Galois groups of subextensions of k[d]. The example

in the next lemma will be applied toward establishing Theorem 2.1.4.

Lemma 2.5.1. Let p be an odd prime number, and let

G = Dn−1
p × Cp = 〈r1, s1, . . . , rn−1, sn−1, rn〉

be the direct product of n−1 copies of the dihedral group Dp and a cyclic group

of order p, where for i ∈ {1, . . . , n− 1} the ith Dp = 〈ri, si〉 is generated by the

p-cycle ri and the 2-cycle si, and Cp = 〈rn〉. Let

H = 〈r1rn, r2rn, . . . , rn−1rn〉 ≤ G.

If B is a subgroup of G with H � B ≤ G, then rn ∈ B. In particular, the

intersection of all such subgroups B strictly contains H.

Proof. Let Gp = 〈r1, . . . , rn〉 be the unique Sylow p-subgroup of G, considered

as an n-dimensional Fp-vector space. Any Sylow 2-subgroup G2 of G will be

an (n − 1)-dimensional F2-vector space which acts by conjugation on Gp, so

that G = Gp oG2.

Let H � B ≤ G. Note that H is a codimension 1 subspace of Gp, so

if B contains any element of order p not in H, then B contains all of Gp. If
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B contains any involution τ ∈ G, notice that there will be some i such that τ

acts non-trivially on the ith copy of Dp, so that 〈rirn, τ〉 will contain rn. Since

every nontrivial element of G is either of order p, an involution, or of order 2p

(a power of which is an involution), this completes our proof.

Corollary 2.5.2. Let k be a number field or a global function field, and let p

be an odd prime number. Then k[p]/k is unbounded.

Proof. Let G and H be as in Lemma 2.5.1. Since G is solvable we have an

extension L/k with Gal(L/k) ∼= G. Let LH be the fixed field in L of H, and

notice that LH ⊆ k[p]. It is clear from our construction that [LH : k] = p ·2n−1.

The Galois correspondence tells us that every proper subextension of LH/k

corresponds to a subgroup B of G with H � B ≤ G. Furthermore, since

the intersection of all such groups strictly contains H, the compositum of all

proper subextensions of LH/k is strictly a subfield of LH . This shows that LH

is not generated by elements of degree less than p · 2n−1.

Notice that the field extension LH/k in the proof above is not Galois (H

is not normal in G). As we will prove in the next section, this was necessarily

so.

In order to prove our Galois unboundedness results, we must now in-

troduce extraspecial p-groups. We write Hp for the finite Heisenberg group of

order p3, when p is a prime. This group is defined as the multiplicative group
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of upper triangular matrices of the form 1 a c
0 1 b
0 0 1

 ,

with a, b, and c belonging to the finite field Fp.

The group Hp plays an important role in our Galois unboundedness

results. We review some of its properties. First, Hp has a natural action on

the three-dimensional vector space F3
p. Analyzing this action, it is easy to see

that when an element of Hp acts on a vector, the third coordinate is fixed,

and Hp acts faithfully and transitively on a 2-dimensional affine subspace (the

subspace with third coordinate equal to 1, say), which has p2 elements. Thus

we see that Hp is isomorphic to a transitive group of degree p2.

The group Hp is an extraspecial p-group, meaning its center, commuta-

tor, and Frattini subgroups coincide and have order p. We can construct larger

extraspecial p-groups as follows. Let n be a positive integer, and consider the

normal subgroup Np,n of the direct product Hn
p given by

Np,n = {(za11 , . . . , z
an
n )

∣∣ Σn
i=1ai ≡ 0 (mod p)},

where zi generates the center of the ith copy of Hp. The quotient Hn
p /Np,n is

an extraspecial p-group of order p2n+1 and exponent p (except when p = 2,

when the exponent is 4), which we will denote by Ep,n. The basic properties

of these groups are discussed in [17, Section A.20].

The following lemma can be found in [12] (cf. Proposition 2.4), where

it is stated only for p odd. We briefly recall the proof below.
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Lemma 2.5.3. Let p be a prime number. The intersection of all subgroups of

index less than pn in Ep,n contains the commutator subgroup. In particular,

this intersection is nontrivial.

Proof. Any subgroup H of Ep,n of index less than pn has order greater than

pn+1 and is therefore non-abelian by [7, Theorem 4.7 (d)]. Since H contains a

pair of non-commuting elements and the commutator subgroup [Ep,n, Ep,n] is

cyclic of order p, we have that H contains the commutator subgroup.

Checcoli used this fact in [12] to show that, for a number field k, the

extension k(d)/k is not in general Galois bounded. The idea of using extraspe-

cial groups for this purpose is attributed to A. Lucchini. However, the author

was not concerned with the question of which values of d suffered from this

pathology, nor with the more general question of the boundedness of k[d]/k.

The use of extraspecial p-groups (which are certainly not the only groups with

properties like the conclusion of Lemma 2.5.3, but are natural and easy to

work with) remains our primary tool for proving that extensions are Galois

unbounded. The following lemma simplifies our application of this principle.

Lemma 2.5.4. Let d be a positive integer. Suppose there is a prime number p

such that there is a solvable group G which is a subdirect product of transitive

groups of degree d, and a quotient of G is isomorphic to Hp. Then k[d]/k is

Galois unbounded for any number field or global function field k.

Proof. By Shafarevich’s Theorem, for any positive integer n we can realize Gn

as the Galois group of some extension L/k, and we will have L ⊆ k[d]. There
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will be a Galois subextension K/k with Galois group Hn
p , and the subfield

of K corresponding to the normal subgroup defined in (2.5) will have Galois

group Ep,n, and will therefore not be generated by elements of degree less than

pn.

The following lemma gives a construction of a permutation group that

will allow us to apply Lemma 2.5.4 in our proof of part (b) of Theorem 2.1.6.

Lemma 2.5.5. Let d = pq, where p and q are primes with q ≡ 1 (mod p).

Then there exists a transitive group of degree d which is isomorphic to Cp
qoHp.

Proof. Write q = mp+1. Consider p sets Ωi of size q, written Ωi = {1i, 2i, . . . , qi}

for i ∈ Fp. We write Ω for the disjoint union of the sets Ωi. We will construct

a group G of permutations of Ω, which acts imprimitively with respect to the

partition into the sets Ωi. Let σ be the permutation (1 2 · · · q). The q-cycle

σ is normalized by some (q − 1)-cycle η in the symmetric group Sq and, since

q ≡ 1 (mod p), we have that ηm is a product of m disjoint p-cycles; we set

τ = ηm. The permutations σ and τ induce permutations on each set Ωi, which

we denote by σi and τi.

We define α = τ0τ1 · · · τp−1, β = τ 0
0 τ

1
1 · · · τ

p−1
p−1 , and define γ to be the

permutation on Ω sending ji to ji+1. Let A = 〈σ0, σ1, · · · , σp−1〉 ∼= Cp
q , and

B = 〈α, β, γ〉. Notice that our construction ensures that A is normalized by
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B. The interested reader will verify that B ∼= Hp via

α 7→

 1 0 1
0 1 0
0 0 1

 , β 7→

 1 1 0
0 1 0
0 0 1

 , γ 7→

 1 0 0
0 1 1
0 0 1

 .

The example below with p = 3, q = 7 makes the isomorphism more clear.

The Heisenberg group B acts simultaneously on m “planes” of p2 points, each

plane consisting of points ji with i ∈ Fp and j running over the indices in one

of the disjoint p-cycles that make up τ .

We let

G = AoB

and notice that G acts transitively on Ω (indeed, 〈σ0, γ〉 is already transitive

on Ω).

It would be quite tedious to write explicitly the generators of the group

constructed in the proof of Lemma 2.5.5 for general p and q, but we will make

this construction more clear by giving an example with d = 21 = 3 · 7.

Example 2.5.6. We assume the notation of the preceding proof. The 7-cycle

σ = (1 2 3 4 5 6 7) is normalized by the 6-cycle η = (2 6 5 7 3 4). Squaring this

permutation yields a product of 3-cycles τ = (2 5 3)(6 7 4), which normalizes

σ. As described above, we have

Ω =
{
ji
∣∣ i ∈ Fp, j ∈ {1, . . . , 7}}.

The permutations defined in the proof are given as follows:
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σ0 =
(
10 20 30 40 50 60 70

)
,

σ1 =
(
11 21 31 41 51 61 71

)
,

σ2 =
(
12 22 32 42 52 62 72

)
,

τ0 =
(
20 50 30

)
·
(
60 70 40

)
,

τ1 =
(
21 51 31

)
·
(
61 71 41

)
,

τ2 =
(
22 52 32

)
·
(
62 72 42

)
,

α = τ0τ1τ2,

β = τ1τ
2
2 ,

γ =
(
10 11 12

)
·
(
20 21 22

)
· · ·
(
70 71 72

)
, and

G = 〈σ0, σ1, σ2〉o 〈α, β, γ〉.

To verify that 〈α, β, γ〉 ∼= H3 as given by (2.5), we consider the following

way of visualizing Ω.

Ω2

Ω1

Ω0

y y

x x

• • • • • • •

• • • • • • •

• • • • • • •

12 22 52 32 62 72 42

11 21 51 31 61 71 41

10 20 50 30 60 70 40
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Shown are two copies of the affine plane z = 1 inside of F3
3 = {(x, y, z)

∣∣ x, y, z ∈
F3}. These eighteen points, together with the three points on the left, corre-

spond to elements of Ω by the labelings. For example, the point (2, 0, 1) in

the plane on the left corresponds to 30 ∈ Ω0. The blocks Ωi are represented as

the three horizontal rows in the diagram. The columns have been partitioned

according to the cycle decomposition of permutations τi, so that α, β, and γ

act via the matrices given in (2.5), simultaneously on each plane of nine points.

Proof of Theorem 2.1.6. Recall that if c divides d, then k[c] ⊆ k[d]. Since Hp

is solvable and transitive of degree p2, if follows immediately from Lemma

2.5.4 that k[p2] is Galois unbounded over k for any prime p, yielding part (a).

Checcoli showed how to realize these groups explicitly in [12]. Since the group

constructed in Lemma 2.5.5 is solvable, we again apply Lemma 2.5.4 to see

that k[pq] is Galois unbounded over k whenever p and q are primes with q ≡ 1

(mod p). This gives part (b).

Proof of Theorem 2.1.4. We know that k[2] = k
(2)
ab , so k[2]/k is bounded. If

d > 2, then d is divisible by c, where c is either 4 or an odd prime. We

have k[c] ⊆ k[d], and by Corollary 2.5.2 and part (a) of Theorem 2.1.6, k[c] is

unbounded over k.

We remark that our proofs actually demonstrate that k[d]/k is also

unbounded in the case where k is a global function field and d ≥ 3.
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2.6 Galois boundedness in prime degree

In this section we prove Theorem 2.1.5. Clearly the general technique

for showing boundedness is to find subgroups of small index inside of a Galois

group G, whose intersection is a given subgroup H. If we want to show Galois

boundedness, we take H to be normal. We will show that we can accomplish

this task when G is a subdirect product of transitive groups of prime degree.

The following lemma characterizes the transitive groups of degree p.

Lemma 2.6.1. If p is a prime number and G is a transitive group of degree

p, then we have G = T o B, where T is simple and transitive, and B is a

subgroup of Cp−1.

This lemma can be proved by elementary means. It can also be seen

quickly using the classification of finite simple groups: a theorem of Burnside

(see [48], Theorem 11.7; cf. [16], Theorem 4.1B) implies that G is either a

subgroup of Cp × Cp−1 containing Cp, or an almost simple group, meaning

that there is a simple group T such that T ≤ G ≤ Aut(T ); in this case we

also have that G is doubly transitive, meaning that G can send any two points

to any other two points. That T is itself transitive of degree p follows from

[48], Proposition 7.1, which states that every normal subgroup of a primitive

permutation group is transitive. The Classification Theorem for Finite Simple

Groups implies that there is a very small list of possibilities for T (see [20],

Corollary 4.2), and the lemma can be easily checked in these cases.
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We are now ready to establish a group theoretic result, of which The-

orem 2.1.5 will be an immediate corollary.

Proposition 2.6.2. Let p be a prime number and let G be a finite subdirect

product of transitive groups of degree p. If N is a normal subgroup of G, then

N is an intersection of subgroups of index at most p in G.

Proof. Let G ≤sd G1 × · · · × Gn, where Gi is a transitive group of degree

p for i ∈ {1, . . . , n}. If we consider each group Gi acting transitively on a

set Ωi of size p, we have G acting faithfully on the disjoint union of these

sets, which we denote by Ω. Let πi denote the projection onto Gi, and let Ti

denote the (unique) minimal normal subgroup of Gi. As mentioned following

Lemma 2.6.1, we know that each Ti is either isomorphic to Cp or to a simple

non-abelian group. We write Ki = G ∩ Gi, which is a normal subgroup of

both G and Gi. We proceed by induction on n. The case n = 1 follows easily

from Lemma 2.6.1, since if N is nontrivial we must have G/N abelian of order

dividing p−1; if N is trivial, observe that the point-stabilizers in G have index

p and trivial intersection.

For each i we have that G/Ki is a subdirect product of the groups

{Gj}j 6=i. Notice that we may apply the inductive hypothesis to write NKi/Ki

as an intersection of some subgroups {Hl/Ki}l of index at most p in G/Ki.

Now the subgroups {Hl}l are of index at most p in G, and NKi = ∩lHl. If Ki

is trivial, then our proof is complete. Alternatively, if N acts trivially on Ωi,
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notice that

N =
(
∩x∈Ωi StabG(x)

)
∩NKi =

(
∩x∈Ωi StabG(x)

)
∩
(
∩l Hl

)
.

Since the stabilizers StabG(x) have index p in G, we have written N as an

intersection of subgroups of index at most p in G. Thus we may assume

that, for each i, the subgroup Ki is nontrivial, and N acts nontrivially on

Ωi. Moreover, since Ki is nontrivial and normalized by Gi, it follows that

Ki contains the unique minimal normal subgroup Ti of Gi. In particular this

means that Ti ≤ G, and writing T =
∏

i Ti we have that T ≤ G. Furthermore,

G/T is abelian of exponent dividing p− 1.

Since N acts nontrivially on each Ωi, we know that Ti ≤ πi(N). For

each i such that Ti is non-abelian (recall that Ti is simple), we will have

Ti = [Ti, N ] ≤ N . Write Tab for the product of the Ti which are abelian (these

are all isomorphic to Cp), and write Tn for the product of those which are

non-abelian. We have Tn ≤ N , so

TN

N
=
TabTnN

N
=
TabN

N
∼=

Tab

Tab ∩N
.

Therefore TN/N is an elementary abelian p-group. We also know that G/TN

is abelian of exponent dividing p− 1, so the short exact sequence

1→ TN/N → G/N → G/TN → 1

splits by the Schur-Zassenhaus Theorem (Theorem 39 from Chapter 17 of [18]).
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Let V = TN/N and B = G/TN , so (2.6) gives us

G/N = V oB.

We want to show that there is a collection of subgroups of index at

most p in G/N whose intersection is trivial. It is clear that we can find such

subgroups whose intersection is V , since B is abelian of exponent dividing

p− 1. Therefore it suffices to find subgroups of G/N of index at most p whose

intersection meets V trivially.

Considering the Fp-vector space V as a B-module, Maschke’s Theorem

(Theorem 1 from Chapter 18 of [18]) tells us that V decomposes as a direct

sum of irreducible B-modules. Since xp−1 − 1 splits over Fp, it follows that

these irreducible submodules are one dimensional. Now we have submodules

Vi of index p (codimension-one submodules), which yield subgroups Vi oB of

index p in G/N , and the intersection of all of these meets V trivially.

Proof of Theorem 2.1.5. Let k be any field, and let K/k be a finite Galois

subextension of k[p]/k, where p is prime. This implies that K is contained in

a compositum L of the splitting fields of finitely many irreducible, separable

polynomials of degree p over k. Let G = Gal(L/k) and N = Gal(L/K).

Then G isomorphic to a subdirect product of transitive groups of degree p,

and N is normal in G. Proposition 2.6.2 implies that N is an intersection of

subgroups of index at most p in G. By the Galois correspondence, this means

that K is the compositum of finitely many extensions of k of degree at most
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p. Therefore, K/k is generated by elements of degree at most p. (In fact, it

must be generated by elements whose degrees are either equal to p or divide

p− 1.)
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Chapter 3

Relative Bogomolov extensions

3.1 Introduction

We work within a fixed algebraic closure Q of Q throughout this paper.

We write h for the usual absolute logarithmic height on algebraic numbers. If

K is a subfield of Q, then K satisfies the Bogomolov property, (B), if there

exists some ε > 0 such that there is no element α ∈ K× such that 0 < h(α) < ε.

This definition was first stated in [10]. Recall that h(α) = 0 if and only if α is

a root of unity [9, Theorem 1.5.9]. We introduce the following generalization

of (B) to relative extensions.

Definition 3.1.1. Let Q ⊆ K ⊆ L ⊆ Q be fields. We say that L/K is

Bogomolov, or that L/K satisfies the relative Bogomolov property, (RB), if

there exists ε > 0 such that

{α ∈ L×
∣∣ 0 < h(α) < ε} ⊆ K.

In other words, L/K satisfies (RB) if and only if there is no sequence {αn} ⊆

L× \K× with 0 < h(αn) → 0 as n → ∞. The following facts are immediate

from the definition.

Proposition 3.1.2. Suppose K ⊆ L ⊆M are subfields of Q.
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(a) If K satisfies (B) (in particular if K/Q is finite), then L/K is Bogomolov

if and only if L satisfies (B);

(b) M/K is Bogomolov if and only if M/L and L/K are both Bogomolov;

and

(c) if L\K contains a root of unity and L/K is Bogomolov, then K satisfies

(B).

Part (c) follows because multiplying an algebraic number by a root of

unity does not affect the height. Therefore, if K× contains a sequence with

positive height tending to zero, then so does L× \K×.

It has already been shown that finite extensions may not satisfy (RB),

as demonstrated in [2, Example 5.3], where it is shown that Qtr(i)/Qtr is not

Bogomolov. Here Qtr denotes the maximal totally real extension of Q, which

satisfies (B) [41]. Interestingly, Pottmeyer [38] has recently stated a bound

that implies that every finite extension of Qtr(i) (the so-called “maximal CM

field”) satisfies (RB), using an archimedean estimate of Garza [24].

One of the main parts of this paper is the construction of examples

that show that there exist examples of extensions L/K which satisfy (RB)

even though K does not satisfy (B). Example 3.4.2 is such an example where

L/K is infinite – this construction uses our results from Section 3.3. Example

3.4.1 shows a finite extension L/K which does not satisfy (RB). This example

is quite elementary and does not rely on other results in this paper.
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It is natural to ask what conditions can be placed on a field K of

algebraic numbers to ensure that there exists at least one relative Bogomolov

extension L/K. To this end we prove the following, our main result.

Theorem 3.1.3. Let K/Q be an algebraic extension. Assume there exists a

(finite) rational prime ` and a number field F ⊆ K such that no prime of OF

lying over ` is ramified in K/F – in particular this holds if K/Q is Galois

and some prime ` has finite ramification index in K. Then there exist relative

Bogomolov extensions L/K. These extensions can be constructed explicitly of

the form K(
√̀
α) for appropriately chosen elements α ∈ K.

This theorem should be compared with [10, Theorem 2], which states that a

Galois extension with bounded local degrees (ramification index times inertial

degree) has the Bogomolov property.

We briefly describe what is known on fields with the Bogomolov prop-

erty in order to put our results in context. Schinzel [41] showed in 1973 that

there is a positive lower bound on the height of totally real numbers outside

of {±1}, establishing (B) for the maximal totally real field Qtr. This can be

described as an “archimedean” height estimate, and was generalized by Garza

to a lower bound on the height of algebraic numbers with at least one real

conjugate [24]. Another common approach that has been used (for example

for the archimedean part of the argument in [26]) for archimedean estimates

is equidistribution, starting with Bilu’s Theorem [8], but these techniques will

not be used in the current paper in favor of the Schinzel-Garza inequality.
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One non-archimedean strategy originates in Amoroso and Dvornicich’s

paper [3], where it is shown that (B) is enjoyed by the maximal abelian exten-

sion Qab of Q, which was generalized to relative extensions and strengthened

considerably in [4] and [5]. Their strategy involves estimating how close a

certain automorphism in a Galois group is to the action of raising an element

to a power, with respect to a place lying over some auxilliary prime. This

strategy is quite powerful and is also used in [26], the elliptic curve analogue

of [3]† , and in [2], where it is summarized nicely by their Lemma 2.2. The

main theorem (Theorem 1.2) of the latter paper generalizes both the results

on abelian extensions and [10, Theorem 2], which states that (B) is satisfied

by a field having bounded local degrees above some rational prime.

In our present efforts to prove that a relative extension L/K is Bogo-

molov when K may not satisfy (B), it is not clear that the Amoroso-Dvornicich

technique can be used to produce any new results. Instead we appeal to

more classical bounds in terms of ramification. Our main tool is the lower

bound [45, Theorem 2], due to Silverman. This bound is written in notation

more similar to ours in [47, Section 3], where the author uses it effectively to

give examples of fields satisfying the closely related Northcott property, (N).

This stronger property, first defined along with (B) in [10], is satisfied by a

field K if for any T at most finitely points in K have height at most T . Silver-

†The theorem from [3] is a result about heights on Gm(Qab) = Gm(Q(Gm,tors). Theorem
1 of [26] replaces the inner Gm with an elliptic curve. Another well-known analogue of [3]
is the main result of [6], which is the analogous result for A(Qab), where A is an abelian
variety.
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man’s inequality generalizes to the relative case a type of bound going back

to the theorem [31, Theorem 1] of Mahler, which is exactly the lower bound

used in [10, Theorem 2], where as mentioned before the authors exploit the

existence of a bound on local degrees above some finite rational prime. Our

Theorem 3.1.3 has the related hypothesis of finite ramification above a prime

– for this theorem we also require an archimedean estimate coming from the

above stated theorem of Garza.

The rest of this paper is organized as follows. In Section 3.2 we in-

troduce notation and prove a criterion, Theorem 3.2.4, for when we can use

ramification information to conclude that a finite relative extension L/K is Bo-

gomolov. In Section 3.3 we describe how to apply these techniques to bound

below the heights of elements properly contained in an extension of the form

K(
√̀
α), using Hecke’s classical theory of ramification in Kummer extensions.

We combine this with the archimedean Schinzel-Garza inequality to prove The-

orem 3.1.3. Finally, in Section 3.4 we construct the aforementioned explicit

examples. We use our ramification criterion to construct explicitly a field K

such that for each α ∈ K× there is a Bogomolov extension of the form K(
√̀
α).

We conclude the introduction by mentioning a few questions for further

investigation. As mentioned above, if L \K contains a root of unity ζ and K

does not satisfy (B), then L \K contains elements of arbitrarly small positive

height of the form ζα, with α ∈ K. If one could construct such an extension

where the only elements of small height in L\K were obtained by multiplying

elements of K by roots of unity, this would suggest a weaker version of (RB)
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that could be explored. Pottmeyer has shown that all finite extensions of the

maximal CM field are Bogomolov. In this same spirit, it would be interesting to

exhibit fields K ( Q admitting no Bogomolov extensions. One easy example

of this can be found if K is the subfield of Q fixed by complex conjugation, i.e.

Q∩R (if we first embed Q ↪→ C), but one might expect this to happen for other

fields K that are sufficiently “big,” for example pseudo-algebraically closed (a

“PAC field,” a field K such that every geometrically irreducible variety over

K has a K-rational point – see [21, Chapter 11] for more; see [2, Section 6]

for speculations on PAC fields and property (B)). If this occurs for a field

K satisfying (B), this field would be maximal with respect to the Bogomolov

property.
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3.2 Lower bounds and a ramification criterion for (RB)

First we establish some notation conventions. For a finite extension of

number fields M/F , we write DM/F for the relative discriminant ideal, and

NM/F for the relative ideal norm. For a tower of number fields M ′/M/F will
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often use the well-known identity

DM ′/F = D
[M ′:M ]
M/F ·NM/F

(
DM ′/M

)
[34, Proposition 4.15].

A prime p of F will mean a prime ideal in the ring of integers OF , with

corresponding non-archimedean valuation vp. If π is a uniformizing parameter

for the associated place v, and if p divides the rational prime `, we normalize

the absolute value | · |v so that |π|[F :Q]
v = `f , where f is the associated residue

class degree.

The absolute logarithmic height of an algebraic number α is given by

h(α) =
∑
v

log+ |α|v,

the sum being taken over the places of any number field containing α. We

denote the multiplicative height H(α) = exph(α). We will often use basic

facts about the height such as [9, Lemma 1.5.18] and [9, Proposition 1.5.15]

without specific reference.

Let F be a number field of degree d over Q, and let K/F be an algebraic

extension. We define

ρ(K/F ) = lim sup {δ(M)/[M : F ]
∣∣ F ⊆M ⊆ K, [M : F ] <∞},

where δ(M) denotes the number of archimedean places of M . In this context

the limit superior is taken over the directed set of finite subextensions of K/F .

In other words, ρ(K/F ) is the least real number ρ such that for any finite

extension M/F contained in K, there is a finite extension M ′/M with M ′ ⊆ K
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such that δ(M ′)/[M ′ : F ] ≤ ρ. Note that d/2 ≤ ρ(K/F ) ≤ d, and that

ρ(L/F ) ≤ ρ(K/F ) for any tower L/K/F . Of course if K/F is finite, then

ρ(K/F ) = δ(K)/[K : F ].

We will apply the following inequality of Silverman [45, Theorem 2],

cf. [47, Section 3] to produce a ramification criterion for (RB).

Theorem 3.2.1 (Silverman). If γ generates a relative extension of number

fields B/M , where [B : M ] = s and [B : Q] = d, then

H(γ) ≥ s−
δ(M)

2d(s−1) ·NM/Q
(
DB/M

) 1
2ds(s−1) .

This is a relative field discriminant version of a bound of Mahler [31,

Theorem 10]. Widmer exploited the dependence only on relative ramification

in this bound to produce a ramification criterion for the Northcott property

[47]. The following proposition illustrates our use of Silverman’s Inequality

Proposition 3.2.2. Let M/F/Q be a tower of finite extensions, and let d =

[F : Q] and e = [M : F ]. Assume α generates an extension F ′/F and that F ′

and M are linearly disjoint over F . Let L = M(α). Suppose γ ∈ L× \M×.

Let B = M(γ), C = B ∩ F ′, and s = [B : M ] = [C : F ]. We have

H(γ) ≥ s−
ρ(M/F )
2d(s−1) ·NF/Q

 De
C/F

gcd
(
De
C/F , D

s
M/F

)
 1

2des(s−1)

. (3.2.1)

In particular, if no prime ramifying in F ′/F is ramified in K/F , we have

H(γ) ≥ s−
ρ(M/F )
2d(s−1) ·NF/Q

(
DC/F

) 1
2ds(s−1) . (3.2.2)
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Figure 3.2.3. Diagram of the fields described in Proposition 3.2.2.

L

B
M F ′

C
F

Q

s

s

e

e

d

e

Proof. We apply Silverman’s Inequality to the extension B/M . Since M/F is

finite, we have δ(M)/e = ρ(M/F ), and thus we obtain

H(γ) ≥ s−
ρ(M/F )
2d(s−1) ·NM/Q

(
DB/M

) 1
2des(s−1) . (3.2.3)

Using basic properties of relative norms and discriminants, we have

NM/Q
(
DB/M

)
= NF/Q

(
NM/F

(
DB/M

))
= NF/Q

(
DB/F

Ds
M/F

)
.

Since DB/F is divisible by both De
C/F and Ds

M/F , we now have

NM/Q
(
DB/M

)
≥ NF/Q

 lcm
(
De
C/F , D

s
M/F

)
Ds
M/F

 = NF/Q

 De
C/F

gcd
(
De
C/F , D

s
M/F

)
 .

Combining this inequality with (3.2.3) completes the proof of (3.2.1). Inequal-

ity (3.2.2) follows immediately.
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Now we move from the case of a finite extension M/F to that of a

possibly infinite extension K/F , which leads to a criterion for a finite relative

extension to satisfy (RB).

Theorem 3.2.4. Let K/Q be an algebraic extension, and let L = K(α)/K

be a finite extension. Let f(x) denote the minimal polynomial of α over K.

Let L = K(α) be a finite extension of K, and let F be a number field such

that F ⊆ K and [F (α) : F ] = [L : K]‡. Let d = [F : Q], ρ = ρ(K/F ), and

F ′ = F (α). Assume that F ′ and K are linearly disjoint over F , and that no

prime ramifying in F ′/F is ramified in K/F . If γ ∈ L× \K×, then

H(γ) ≥ min
{(
NF/Q

(
DC/F

)
· s−ρs

) 1
2ds(s−1)

∣∣ F ( C ⊂ F ′, s = s(C) = [C : F ]
}
.

(3.2.4)

In particular, if for each field C with F ( C ⊆ F ′ we have

NF/Q
(
DC/F

)
> sρs, (3.2.5)

where s = [C : F ] and ρ = ρ(K/F ), then L/K is Bogomolov.

Proof. Let M/F be a finite extension such that M ⊆ K and [M(γ) : M ] =

[K(γ) : K]. For any field C with F ( C ⊆ F ′, Proposition 3.2.2 gives us that

H(γ) ≥ s−
ρ(M/F )
2d(s−1) ·NF/Q

(
DC/F

) 1
2ds(s−1) ,

and since ρ(M/F ) ≤ ρ, inequality (3.2.4) follows. Moreover, if inequality

(3.2.5) is satisfied for all such fields C, then the lower bound in (3.2.4) is

greater than one and depends only on K and L.

‡This is satisfied, for example, if F contains the coefficients of f(x)
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Remark 3.2.5. Notice that the lower bound in Theorem 3.2.4 depends on the

choice a primitive element α – in fact α could be replaced by any collection of

elements which generate the finite extension L/K.

3.3 Adjoining `th roots and the proof of Theorem 3.1.3

Extensions formed by adjoining an `th root of an element, where ` is

a prime, are an easy source of examples in which we can successfully apply

the bounds of the previous section. An extension of prime degree have no in-

termediate extensions, so application of Theorem 3.2.4 becomes much cleaner.

Furthermore, the discriminants of such extensions when the base field contains

a primitive `th root of unity (Kummer extensions) are completely understood

thanks to classical work of Hecke (see [28, §39], cf. [15, Section 10.2.3]). We

now illustrate how we can exploit this theory.

For the next lemma and its corollaries we use the following setup. Let

F/Q be a finite extension of degree d, let α ∈ OF , and let ` be a rational prime.

Assume α is not an `th power in F , which by Capelli’s Theorem [42, Theorem

19] implies that x`−α is irreducible over F . Let F ′ = F (α1/`) for some choice

of the root. Assume that `OF and αOF are relatively prime ideals. In the

following lemmas p will always denote a prime of F lying over ` with residue

class degree f(p|`) = [OF/p : Z/`Z] and ramification index e(p|`). For each

p|` define a(p) to be the greatest integer k such that the congruence

x` − α ≡ 0 (mod pk) (3.3.1)
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has a solution in OF .

Lemma 3.3.1. Let ρ be a real number with 1
2
≤ ρ < 1. If for each p|` we have

a(p) ≤ 1 + `(1− ρ), (3.3.2)

then we have

`dρ`eOF

∣∣ DF ′/F , (3.3.3)

where dxe denotes the least integer greater than or equal to the real number x.

Proof of Lemma 3.3.1. Let p be a prime of F lying over ` with ramification

index e = e(p|`) and residual degree f = f(p|`). First, assume that F contains

a primitive `th root of unity, and notice that this means that

`− 1|e. (3.3.4)

By [15, Theorem 10.2.9 (3)], (3.3.2) implies that p is totally ramified in F ′/F ,

and we have

vp
(
DF ′/F

)
= (`− 1)(`

e

`− 1
+ 1− a(p)). (3.3.5)

Combining (3.3.2) with (3.3.4), we certainly have

a(p) ≤ 1 +
`e(1− ρ)

`− 1
,

and combining this with (3.3.5) yields

vp
(
DF ′/F

)
≥ e · ρ`.
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This means that

DF ′/F ⊆
∏
p

pe(p|`)·dρ`e = `dρ`eOF ,

and we now have (3.3.3) in the case where F contains a primitive `th root of

unity. In general, let F ′′ = F (ζ`), where ζ` is a primitive `th root of unity. Let

n = [F ′′ : F ]. We have n|`− 1, and so F ′′ ∩ F ′ = F and [F ′′F ′ : F ′] = n. We

claim that

NF ′′/F

(
DF ′′F ′/F ′′

) ∣∣ Dn
F ′/F . (3.3.6)

An easy way to see this is by considering relative different ideals as gener-

ated by the differents of elements, as in [34, Theorem 4.16]. Since F ′/F and

F ′′F ′/F ′′ are generated by the same polynomial, it is clear that

DF ′/FOF ′′F ′ ⊆ DF ′′F ′/F ′′ . (3.3.7)

Taking the norm NF ′′F ′/F of both sides of (3.3.7) yields (3.3.6). Our previous

argument shows that DF ′′F ′/F ′′ is divisible by `dρ`eOF ′′ , and so (3.3.6) gives us

that Dn
F ′/F is divisible by `dρ`e·nOF , and take nth roots.

To simplify application of this Lemma 3.3.1, we will prove the following

two corollaries.

Corollary 3.3.2. Suppose that for each p|` we have

vp(α
`f−1 − 1) = 1, (3.3.8)

where f = f(p|`). Then each of the primes p is totally ramified in F ′/F , and

``OF

∣∣ DF ′/F .
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Proof. Since (OF/p)× has order `f − 1, we have α`
f−1 − 1 ≡ 0 (mod p), so

x1 = α`
f−1

is a solution to (3.3.1) for k = 1. We have

vp(x
`
1 − α) = vp

(
α`

f − α
)

= vp

(
α`

f−1 − 1
)
.

Now, by [15, Proposition 10.2.13], there is no solution to (3.3.1) if vp

(
α`

f−1 − 1
)
<

k < `+ 1. If we assume (3.3.8) holds, this means that a(p) = 1 for all p|`, and

the corollary follows directly from Lemma 3.3.1.

Corollary 3.3.3. Let ρ be a real number with 1
2
≤ ρ < 1. Assume that for

each p we have that f(p|`) = 1. There exists a constant c depending only on d

and α such that if ` ≥ c, then

`dρ`eOF

∣∣ DF ′/F .

Proof. We now assume f(p|`) = 1 for all p|`. The corollary will be proved

once we show that, for ` sufficiently large, the inequality (3.3.2) is satisfied. It

is well known that, for an algebraic number β and a finite set of places S of a

field containing β, we have

−h(β) ≤
∑
v∈S

log |β|v ≤ h(β) [9, (1.8, p. 20)]. (3.3.9)

We fix a prime p|` and take the set S to consist of only that place v corre-

sponding to p. We have h(α`−1−1) ≤ log 2 + (`−1)h(α), and so the left-hand

inequality of (3.3.9) yields

− log 2− (`− 1)h(α) ≤ |α`−1|v = − log `

d
· vp(α`−1 − 1),
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so that

vp(α
`−1 − 1) ≤ d log 2

log `
+

(`− 1)d · h(α)

log `
≤ 1 + `(1− ρ)

if ` is sufficiently large in terms of d and α. As in the previous proof, the

congruence (3.3.1) has no solution in F if vp
(
α`−1 − 1

)
< k < `+ 1, and so we

have a(p) = vp(α
`−1 − 1), establishing the inequality (3.3.2) and completing

the proof.

Proof of Theorem 3.1.3. Let K/Q be an algebraic extension such that some

rational prime ` has bounded ramification indices in K. Let F be a number

field such that F ⊆ K and no primes of F lying over ` are ramified in K/F ,

and set d = [F : Q]. Let p1, . . . pn be the primes of F lying above `. For

i = 1 . . . n, let βi be a nontrivial element of (OF/p
2
i )
× such that β`

f ≡ 1. By

the Chinese Remainder Theorem we can find an element α ∈ OF such α ≡ βi

(mod pi) for each i. Therefore we have

vpi(α
`f−1 − 1) = 1, for i = 1 . . . n.

Let F ′ = F (
√̀
α) for some choice of the root. Using Corollary 3.3.2 we now

have

``
∣∣ DF ′/F ,

and therefore

NF/Q
(
DF ′/F

)
≥ ``d.
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Let L = K(
√̀
α). We want to show that L/K is Bogomolov. If p is a prime of

F lying over `, we know p is unramified in K/F and totally ramified in F ′/F ,

so we have that K and F ′ are linearly disjoint over F .

First suppose that ρ(K/Q) < 1, so that ρ := ρ(K/F ) < d. Our

construction ensures now that

NF/Q
(
DF ′/F

)
≥ `d` > `ρ`, (3.3.10)

and therefore L/K is Bogomolov by Theorem 3.2.4. (Note that there are no

intermediate fields between F and F ′, since [F ′ : F ] = `). More specifically,

let γ ∈ L \K, so that ` = [K(γ) : K]. Then, combining (3.2.4) and (3.3.10)

we have

H(γ) ≥
{
NF/Q

(
DF ′/F

)
· `−ρ·`

} 1
2d`(`−1) (3.3.11)

≥
{
`d` · `−ρ·`

} 1
2d`(`−1) ≥ `

d−ρ
2d(`−1) > 1,

and in this case we are done using only our ramification criterion.

If ρ = d, we will have to use the following archimedean estimate of

Garza.

Theorem 3.3.4 (Garza [24]). Let K be a number field of degree d over Q with

r real places and r′ complex places. If K = Q(γ), then

H(γ) ≥
(

2−d/r +
√

1 + 4−d/r
) r

2d
. (3.3.12)

Now we fix an arbitrary real number θ ∈
(

2`−1
2`
, 1
)
. If ρ(M/Q) ≤ θ,

then as in (3.3.11) we have

H(γ) > `
(1−θ)
2(`−1) > 1. (3.3.13)
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On the other hand, if ρ(M/Q) > θ, let r and s denote the number of

real and complex archimedean places of M , respectively. Notice that M(γ) =

M(
√̀
α) has r real places and r(`−1)

2
+ s` complex places. This means that

ρ(Q(γ)/Q) ≥ ρ(M(γ)/Q) =
r + r(`−1)

2
+ s`

`[M : Q]

= ρ(M/Q)− rM
[M : Q]

·
(
`− 1

2`

)
> θ − `− 1

2`
.

If Q(γ) has r′ real places and s′ complex places, then we now have that

r′

d′
= 2ρ(Q(γ)/Q)− 1 > 2θ − 1− `− 1

`
> 0

by our choice of θ > 2`−1
2`

.

Now we may bound below the height of γ by an absolute constant using

(3.3.12). Explicitly, writing φ = 2θ − 1− `−1
`

, we have

H(γ) ≥
(

2−
1
φ +

√
1 + 4−

1
φ

)φ
2

> 1. (3.3.14)

Either (3.3.13) or (3.3.14) must hold. Taking the minimum of these

bounds, we see that H(γ) is bounded below by a constant greater than 1

which depends only on `, and our proof is complete.

3.4 Examples

After establishing the following two examples, it is clear that, even if K

does not satisfy (B), an extension L/K, may or may not satisfy (RB), whether

L/K is finite or infinite.
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Example 3.4.1 (L/K not Bogomolov). Let b be a nonsquare rational number

and let K = Q(b1/2, b1/4, b1/8, . . . ), for any choices of the roots. Notice that

b1/3 6∈ K, and let L = K(b1/3). The extension L/K is not Bogomolov. To see

this, consider the elements b1/3bx ∈ L \K, where x is a rational number close

to −1/3 with denominator a power of 2. Notice that h(b1/3bx) = h(bx+ 1
3 ) =

(x + 1
3
)h(b) → 0 as x → −1/3. Many similar examples can be constructed

easily, including of course infintie relative extensions.

Example 3.4.2 (L/K Bogomolov). Let K = Q(31/3, 31/9, 31/27, . . . ), and note

that 3 is the only rational prime that ramifies in K. Let 3 < p1 < p2 < · · ·

be an infinite sequence of primes congruent to 3 (mod 4). Set K0 = K, and

for each n ≥ 1 set Kn = Kn−1(
√
pn). For a given n ≥ 1, we wish to apply

Proposition 3.2.2 to estimate the height of an element γ ∈ K×n \ Kn−1. To

match the notation of Proposition 3.2.2 we set F = Q and choose M ⊆ Kn−1

to be a number field containing
√
p1,
√
p2, . . . ,

√
pn−1, and the coefficients for

the minimal polynomial of γ over Kn. We use C = F ′ = Q(
√
pn). Note that in

this case NF/Q
(
DC/F

)
, is simply the discriminant of the quadratic field, which

in this case is pn. We have the trivial estimate ρ(M/F ) ≤ d, so applying

(3.2.2), we have

H(γ) ≥ 2−
1
2 · p

1
4
n =

(pn
4

) 1
4 ≥

(p1

4

) 1
4
.

Letting L = ∪nKn, we now have that L/K is an infinite Bogomolov extension,

and in fact L can be constructed so that the lower bound on the height of an

element of L× \K× is arbitrarily large.
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If the roots 31/3i are chosen in a compatible way (e.g. if we fix an

embedding Q ↪→ C and impose that the roots are all real), then K has the

property that all of its proper subfields are finite extensions of Q. (The in-

terested reader will verify that the only subfields of Q(31/3n) are Q(31/3i),

0 ≤ i ≤ n.) Therefore, not only does K fail to satisfy (B), but it is not a

Bogomolov extension of any subfield.

Example 3.4.3. We now construct a Galois extension K/Q which does not

satisfy (B), but with the property that for every element α ∈ K×, there is

an integer n such that K( n
√
α)/K is Bogomolov. As mentioned before, the

maximal CM field Qtr(i) also enjoys this property – in fact, all finite extensions

of this field are Bogomolov. Our example is of a different sort, as it is generated

by polynomials with no real roots, which prevents us from using archimedean

estimates. It will suffice to consider α an algebraic integer, as any extension

K( n
√
α) could have been generated in this way by clearing denominators.

Set K0 = Q, b1 = 12, and let Kn be generated over Kn−1 by adjoining

all of the roots of

fn(x) = xbn + x+ 1,

where bn is a multiple of 12 chosen so that the discriminant of fn is not divisible

by any of the rational primes which are ramified in Kn−1. This is easily

accomplished, since the discriminant of fn is of the form −
(
bbnn +(bn−1)(bn−1)

)
(see [32] for example – we have used that 4|bn), which will not be divisible by

any prime dividing bn. By the Chebotarev Density Theorem, any number field
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has infinitely many rational primes that are totally split in it. Therefore we

can also choose a new prime `n at each step such that `n splits completely in

Kn−1 (and hence in Km for all m < n), and also choose bn to be divisible by

`1`2 · · · `n. In this way, we obtain an infinite set of primes S = {`1, `2, . . . },

none of which is ramified in any of the fields Kn. Furthermore, for any n

we have that S contains arbitrarily large primes that split completely in Kn.

Let K = ∪∞n=1Kn. By making each bn divisible by 3, we ensure that fn(x) is

irreducible over Q with symmetric Galois group [37, Theorem 1], [43, Theorem

1]. By making each bn even, we ensure that each polynomial fn(x) has no real

roots, so we have ρ(K/Q) = 1
2
. Using basic facts about the height, we see that

if αn is a root of fn(x), we have

bn · h(αn) = h(αbnn ) = h(αn + 1) ≤ log 2 + h(αn) + h(1) = log 2 + h(αn),

which yields

0 < h(αn) ≤ log 2

bn − 1
,

which shows that K does not satisfy (B).

By construction the integers bn are all at least 6, so the Galois group

(over Q) of each polynomial fn is a symmetric group of degree at least 6.

The splitting field of each fn over Q is a simple An extension of a quadratic

extension of Q, and K ∩ Q(2) is the compositum of all these quadratic fields.

Notice that any finite Galois subextension of K/
(
K ∩Q(2)

)
has Galois group

a product of simple alternating groups. To see this, note that the only proper,
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nontrivial normal subgroups of a product of G1 × G2 of simple nonabelian

groups G1 and G2 are the “obvious” ones, G1×1 and 1×G2. We also see now

that K/
(
K ∩Q(2)

)
has no nontrivial solvable subextension.

We now fix an arbitrary α ∈ K×, and we want to show that there is

some integer n such that K( n
√
α)/K is Bogomolov. For an odd prime ` ∈ S,

let β` denote some root of x` − α. We assume without loss of generality

that α is not an `th power in K, or else we could replace α by an `th root

until this hypothesis is satisfied, since there is no solvable subextension of

K/
(
K ∩Q(2)

)
. This implies that x` − α is irreducible over K, as its Galois

group over
(
K ∩Q(2)

)
(α) is solvable of odd prime degree. For any m such

that α ∈ Km, the only rational primes possibly ramifying in Km(β`) will be

those lying below prime divisors of αOKm , those ramified in Km, and `. Since

` does not ramify in any field Kn, we can choose m = m(α) large enough that

α ∈ Km, and such that no primes ramifying in Km(β`) divide the discriminant

of fn for any n > m, for any ` ∈ S. As described above, we know that Km(β`)

and K are linearly disjoint over Km. Let d = [Km : Q].

Now by Corollary 3.3.3 we can fix an ` ∈ S such that ` splits completely

in Km and is large enough so that

`dρ`eOKm

∣∣ DKm(β)/Km ,

where β = β`, and ρ = 3
4
, say. Since none of the primes ramifying in

Km(β)/Km are ramified in K/Km, and we have

N/Q
(
DKm(β)/Km)

)
> ``d/2 = ``ρ(K/F ),
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Theorem 3.2.4 shows that K(β)/K is Bogomolov.
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Chapter 4

Small points and free abelian groups

(with Philipp Habegger and Lukas Pottmeyer)

4.1 Introduction

Let G denote either an algebraic torus (product of finitely many mul-

tiplicative groups) or an abelian variety defined over a number field K. Let

Q denote a fixed algebraic closure of Q containing K. If G is an abelian

variety, by the canonical height on G we understand the Néron Tate height

ĥ : G(Q)→ [0,∞). If G = Gr
m is a torus, we understand the sum of the abso-

lute logarithmic Weil heights on the coordinates as the canonical height on G.

In both cases the height is well-defined modulo torsion, and induces a norm

on the Q-vector space G(Q)/G(Q)tors (in the case of the Néron-Tate height ĥ

on an abelian variety, the norm is given by
√
ĥ.) For the definitions and basic

properties of these heights, see [9].

After [10], we say that a subfield F ⊆ Q has the Bogomolov property,

or Property (B) with respect to G if the canonical heights of non-torsion points

of G(F ) are bounded away from zero (recall that torsion points are exactly the

points of height zero). This is equivalent to saying that the norm induced by

the height is induces the discrete topology on G(F )/G(F )tors. It was shown
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by Lawrence [30] and Zorzitto [49] that a countable abelian group which is

discrete under the topology induced by a norm is free abelian. (All groups

considered here are countable, but the countability condition was later removed

by Steprāns [46].) This immediately implies the following.

Proposition 4.1.1. If F is a subfield of Q that satisfies property (B) with

respect to G, then G(F )/G(F )tors is free abelian.

In this chapter we will discuss the failure of the converse of this state-

ment when G is a torus. We will prove the converse does not hold by explicitly

constructing counterexample fields F . This amounts to showing

1. that F×/F×tors is free abelian, and

2. that F× contains non-torsion points of arbitrarily small height.

In [25] we will also describe such examples for elliptic curves, and give more

examples in the torus case as well.

4.2 Free Abelian Criteria

In this section we will develop two simple criteria for G(F )/G(F )tors

to be free abelian. As the arguments are very general, we will not restrict

ourselves to the Gm case here. Recall that a subgroup H of an abelian group

G is called pure if G/H is torsion-free. The following version of Pontryagin’s

famous result on free abelian groups is proved (in stronger form) in [19, chapter

IV, Theorem 2.3].

55



Theorem 4.2.1 (Pontryagin’s Criterion). Let G be a countable abelian group.

The following are equivalent:

1. G is free abelian;

2. G is torsion-free and every finite subset of G is contained in a finitely

generated pure subgroup of G;

3. every finite subset of G is contained in a pure free abelian subgroup of

G;

4. every finite rank subgroup of G is free abelian.

Proposition 4.2.2 (Criterion A). Let G be an algebraic torus or elliptic curve

defined over a number field K, and let F be a subfield of Q which is a Galois

extension of K. If G(F )tors is finite, then G(F )/G(F )tors is free abelian.

Proof. Set c := |G(F )tors|. We first prove the following inequality. For all

P ∈ G(F ) and all k ∈ N we have

[K(P ) : K([k]P )] ≤ c (4.2.1)

All conjugates σ(P ) of P over K([k]P ) satisfy the equation [k]σ(P ) = [k]P .

Hence they are of the form P+Qσ, where Qσ is a k-torsion point of G. As F was

chosen to be Galois over K, all these Qσ are contained in F . By assumption

there are at most c of those and hence we have [K(P ) : K([k]P )] ≤ c.

To prove the proposition it suffices, by Pontryagin’s Theorem 4.2.1, to

prove that every finite rank subgroup G of G(F )/G(F )tors is free abelian. Let G
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be such a subgroup and let P1, . . . , Pn be a maximal set of linearly independent

elements inG. Here Pi is the residue class of the element Pi ∈ G(F ). LetQ ∈ G

be arbitrary. Then there exist (k1, . . . , kn) ∈ Zn and k ∈ Z with k 6= 0 such

that [k1]P1 + · · ·+[kn]Pn = [k]Q. Every Galois conjugate of [k]Q is of the form

σ([k1]P1) + · · ·+ σ([kn]Pn), σ ∈ Gal(Q/K). Using (4.2.1) we find

[K(Q) : K] ≤ c

n∏
i=1

[K(Pi) : K] =: C .

This means that every element in G has a representative in G(F ) with its

degree bounded by the constant C. Northcott’s theorem implies that the

canonical height ĥG is discrete on G. Hence, ĥG (if G is a torus) or

√
ĥG (if G is

an elliptic curve) is a discrete norm on the abelian group G. By the theorem

of Lawrence, Steprans, Zorzitto mentioned in the introduction we know that

G is free abelian. This proves the proposition.

Proposition 4.2.3 (Criterion B). Let G be an abelian variety or algebraic

torus defined over some subfield F0 of Q, and let F be a field with F0 ⊆ F ⊆ Q.

If for every finite extension M/F0 with M ⊆ F , we have that G(M)/G(M)tors

is free abelian, and the torsion subgroup of G(F )/G(M) has finite exponent,

then G(F )/G(F )tors is free abelian.

Proof. This was proven by May ( [33], Lemma 1) in the torus case. However,

his proof applies one to one if G is an abelian variety.
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4.3 Example for Gm

We will now construct examples of fields F which do not satisfy prop-

erty (B), yet where F×/F×tors is free abelian.

There are many ways of seeing the following using height theory, but

it was originally proved in [40].

Lemma 4.3.1. Let d be any positive integer and Q(d) the compositum of all

number fields K, with [K : Q] ≤ d. Then Q(d) contains only finitely many

roots of unity.

Theorem 4.3.2. Let F be a finite extension of Qsym, then F×/F×tors is free

abelian.

Proof. As F is a finite extension of Qsym, there is an integer d ≥ 24 such that

F ⊆ QsymQ(d). We will prove that (QsymQ(d))× is free modulo torsion, which

implies our stated result.

The extension (QsymQ(d))/Q is Galois. By Proposition 4.2.2 it suffices

to prove that there are only finitely many roots of unity in QsymQ(d). Let ζ ∈

QsymQ(d) be a root of unity. Then there are finitely many fields Kn1 , . . . , Knr

such that Kni is a finite Galois extension of Q with Galois group isomorphic

to Sni for all i ∈ {1, . . . , r}, and such that

ζ ∈ Kn1 · · ·KnrQ(d).

Of course we can assume that the fields Q(d), Kn1Q(d), . . . , KnrQ(d) are pairwise

distinct. Since d was chosen to be at least 24 = |S4| we conclude ni ≥ 5 for all
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i ∈ {1, . . . , r}. The fieldQ(d)∩Kni is a Galois extension ofQ. Hence, the Galois

group Gal(KniQ(d)/Q(d)) is isomorphic to a normal subgroup of Gal(Kni/Q) ∼=

Sni for all i ∈ {1, . . . , r}. By the assumption above Q(d)∩Kn 6= Kn. Moreover

Q(d) ∩Kn 6= Q because Kn contains a quadratic subfield. Therefore,

Gal(KniQ(d)/Q(d)) ∼= Ani for all i ∈ {1, . . . , r}

The fields Kn1Q(d), . . . , KnrQ(d) are linear disjoint over Q(d), as they are

pairwise distinct and there Galois groups are simple. We can conclude

Gal(Kn1 · · ·KnrQ(d)/Q(d)) ∼=
r∏
i=1

Ani .

The extension Q(d)(ζ)/Q(d) is abelian and we have Q(d)(ζ) ⊆ Kn1 · · ·KnrQ(d).

Thus, there is a normal subgroup H ⊆
∏r

i=1 Ani such that

Gal(Kn1 · · ·KnrQ(d)/Q(d))/H ∼= (
r∏
i=1

Ani)/H
∼= Gal(Q(d)(ζ)/Q(d)) (4.3.1)

is abelian. However, the only normal subgroups of
∏r

i=1Ani are of the form∏
j∈J Anj for some subset J ⊂ {1, . . . , r}. Hence, the quotient on the left hand

side of (4.3.1) is abelian, if and only if it is trivial. This implies, that ζ is an

element of Q(d). As ζ was an arbitrary root of unity in QsymQ(d), we find that

the set of roots of unity in QsymQ(d) is equal to the set of roots of unity in

Q(d). This set is finite by Lemma 4.3.1. This was left to prove.

Now consider the polynomials fn(x) = xn − x − 1. Corollary 3 of [37]

tells us that the Galois group of the splitting field of fn(x) over Q is isomorphic
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to the full symmetric group Sn. Let α be a root of fn(x), so αn = α+1. Using

basic facts about the height, we see that

n · h(α) = h(αn) = h(α + 1) ≤ log 2 + h(α) + h(1) = log 2 + h(α),

which yields

0 < h(α) ≤ log 2

n− 1
.

Now we see that any finite extension of (Qsym)× / (Qsym)×tors is free

abelian, yet Qsym contains points of arbitrarily small positive height.
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Chapter 5

Multiplicative Diophantine approximation

(With Jeffrey D. Vaaler)

5.1 Introduction

The main result of this section is the following result, which can be

interpreted as a theorem on diophantine approximation in the multiplicative

group, using the metric (α1, α2) 7→ h(α1α
−1
2 ).

Theorem 5.1.1. Let K be a subfield of Q, and let α an element of Q×. If

there is no integer n such that αn ∈ K, then we have

inf
{
h(βλα−1)

∣∣ β ∈ K,λ ∈ Q} ≥ max
{
h(α/σα)

∣∣ σ ∈ GK

}
> 0.

Note that the quantity on the left-hand side of the above inequality is well-

defined independent of the choice of root βλ.

Recall from Section 4.1 that a theorem of Lawrence and Zorzitto implies

that a (torsion-free) abelian group which is made discrete by a norm must be

free abelian. This means that if K is a subfield of Q with the Bogomolov

property (no small points), then K×/K×tors is free abelian. Now we achieve a

version of this for relative Bogomolov extensions which are also Galois. Recall
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from Section 3.1 that L/K is Bogomolov if there exists ε > 0 such that all

points of L of height less than ε lie in K.

Corollary 5.1.2. Let K ⊆ L ⊆ Q. If L/K is Galois and Bogomolov, then

(L×/K×)/(L×/K×)tors is free abelian.

Proof of Corollary. Let EK denote the set of those algebraic numbers β such

that βn ∈ K for some integer n (the “division closure” of K×). As the height

defines a norm onQ×/Q×tors, we may define a quotient norm on (L×/K×)/(L×/K×)tors

by

‖α‖ = inf
{
h(αβ−1)

∣∣ β ∈ EK} .
By (5.1.1) we know that, for any α in L× which is not in EK , we have

‖α‖ ≥ max
{
h(α/σα)

∣∣ σ ∈ GK

}
.

Since L/K is Galois and Bogomolov, the elements σα/α all lie in L, and thus

their heights are bounded away from zero, meaning the norm we have defined

is discrete.

Ignoring the middle part of the inequality (5.1.1) yields a weaker state-

ment which can be rephrased as follows.

Theorem 5.1.3. Let K be an algebraic extension of Q, and let α an element

of Q×. Assume that for every ε > 0, there exists an integer m 6= 0, and a
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point β in K×, such that

h
(
αmβ−1

)
< ε|m|.

Then there exist an integer n 6= 0 such that αn belongs to K×.

In Section 5.3 we will generalize this result to the completion X of

G := Q×/Q×tors with respect to the metric induced by the height, a Banach

spaced which is described in [1]. For any subfield K ⊆ Q, let FK be the image

of K×/K×tors in X, let F be the image of G, let EK denote the Q-span of FK ,

and let XK denote the closure of EK in X. We will prove the following.

Theorem 5.1.4. For any subfield K ⊆ Q, we have XK ∩ F = EK.

5.2 Inequalities for heights

In this section we give a proof of Theorem 5.1.1 by comparing the size

of two distinct functions defined on the multiplicative group Q× of nonzero

algebraic numbers.

Lemma 5.2.1. Let K be an algebraic extension of Q, and let α a point in

Q×. Write

α = α1, α2, . . . , αM ,

for the distinct conjugates of α over K. Then the following are equivalent.

(i) There exists an integer n 6= 0 such that αn belongs to K.

(ii) For each m = 1, 2, . . . ,M , there exists ρm in Q×tors such that αm = ρmα.
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Proof. Assume that (i) holds. By replacing α with α−1 if necessary, we may

assume that n is a positive integer. Write β = αn, so that α is a root of the

monic polynomial xn − β in K[x]. The distinct roots of xn − β in Q are

{
α, αζn, αζ

2
n, αζ

3
n, . . . , αζ

n−1
n

}
,

where ζn is a root of unity of order n. As the minimal polynomial for α over

K divides xn − β in K[x], all conjugates of α over K belong to the set (5.2).

This clearly implies (ii).

Now suppose that (ii) holds. Then

α1α2 · · ·αM = αM(ρ1ρ2 · · · ρM) = αMζ

belongs to K, where ζ is a root of unity. If ζ has order L, then

αLM =
(
αMζ

)L
belongs to K. Hence (i) holds with n = LM .

Let Aut(Q/K) denote the group of automorphisms of Q which fix each

element of K. We define two functions

VK : Q× → [0,∞), and WK : Q× → [0,∞),

by

VK(α) = inf
{
|m|−1h

(
αmβ−1

)
: m 6= 0 is an integer, and β ∈ K×

}
,
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and

WK(α) = sup
{
h
(
ατ(α)−1

)
: τ ∈ Aut(Q/K)

}
.

As an algebraic number α 6= 0 has finitely many distinct conjugates over K,

it is clear that the supremum on the right of (5.2) is attained. Thus the

supremum could be replaced by a maximum. Alternatively, write

α = α1, α2, . . . , αM ,

for the distinct conjugates of α over K. Then we have

WK(α) = max
{
h
(
αα−1

m

)
: m = 1, 2, . . . ,M

}
.

Theorem 5.1.1 follows immediately from the following.

Lemma 5.2.2. Let K be an algebraic extension of Q, then for all α in Q× we

have

1
2
WK(α) ≤ VK(α) ≤ WK(α).

Proof. Let σ be an automorphism in Aut(Q/K) such that

WK(α) = h
(
σ(α)α−1

)
.

65



Let m 6= 0 be an integer and β an element of K×. Then we have

WK(α) = |m|−1h
(
σ
(
αm)α−m

)
= |m|−1h

(
σ
(
αmβ−1

)
βα−m

)
≤ |m|−1h

(
σ
(
αmβ−1

))
+ |m|−1h

(
βα−m

)
= 2|m|−1h

(
αmβ−1

)
.

We take the infimum on the right of (5.2) over all integers m 6= 0 and all β in

K×, and obtain the inequality

1
2
WK(α) ≤ VK(α)

on the left of (5.2.2).

Next we suppose that (5.2) are the distinct conjugates of α over K.

Then

β = α1α2 · · ·αM

belongs to K×. It follows that

VK(α) ≤M−1h
(
αMβ−1

)
.

Then using (5.2) we find that

VK(α) ≤M−1h
(
αMα−1

1 α−1
2 · · ·α−1

M

)
≤M−1

M∑
m=1

h
(
αα−1

m

)
≤ max

{
h
(
αα−1

m

)
: m = 1, 2, . . . ,M

}
= WK(α).

This verifies the inequality on the right of (5.2.2).
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5.3 Generalizations to the Banach space X

If α is point in Q× and ρ is a point in Q×tors, then it follows easily that

VK(ρα) = VK(α) and WK(ρα) = WK(α).

That is, both VK and WK are well defined on cosets of the quotient group

G = Q×/(Q×tors.

In this section we show that both of these functions are continuous on G with

respect to the metric topology induced in G by the Weil height. Hence they

have unique extensions to the completion X. Because the image of G in X is

dense in X, the basic inequality (5.2.2) continues to hold at all points of the

Banach space X. This leads to a Galois correspondence between the closed

subgroups Aut(Q/K) ⊆ Aut(Q×/Q) and closed linear subspaces XK ⊆ X. We

now describe these results in more detail.

As in [1] we write

G = Q×/(Q×tors,

so that G is a Q-vector space (written multiplicatively). Also as in [1], we

write

F =
{
fα(y) : α ∈ G

}

for the image of G in the Banach space X. Thus F is also a Q-vector space but

written additively, and F is a dense subset of X. If Q ⊆ K ⊆ Q we write GK
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for the image of K× in G, so that GK is an abelian group and isomorphic to

K×/K×tors. Similarly we write

FK =
{
fα(y) : α ∈ GK

}
for the image of GK in F. Obviously FK is also an abelian group, isomorphic

to K×/K×tors, but written additively. We use FK to generate a linear subspace

of the Q-vector space F, namely

EK = spanQ FK .

Each element of EK is a finite linear combination

N∑
n=1

qnfηn(y),

where q1, q2, . . . , qN , are rational numbers, and η1, η2, . . . , ηN , are elements of

GK . If the positive integer m is the least common multiple of the denominators

of q1, q2, . . . , qN , then it is clear that (5.3) can be written more simply as

m−1fβ(y),

with β in GK . That is, (5.3) is a generic element in the Q-vector space EK .

Finally we define

XK = closureEK ,

so that XK ⊆ X is a closed linear subspace. Then the statement of Theorem

5.1.3 has the following alternative formulation.
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Theorem 5.3.1. Let K be an algebraic extension of Q, and let fα be an

element of F. Assume that for every ε > 0, there exists an integer m 6= 0, and

a point fβ in FK, such that

∥∥fα(y)−m−1fβ(y)
∥∥

1
< ε.

Then fα belongs to EK.

The hypothesis (5.3.1) asserts that fα is a limit point of EK in X, and

therefore fα belongs to XK . Thus we obtain Theorem 5.1.4: For any subfield

K ⊆ Q, we have

F ∩ XK = EK .

Next we consider extensions of the maps VK and WK to the Banach

space X. We define

VK : X→ [0,∞)

by

2VK(F ) = inf
{
‖F − ξ‖1 : ξ ∈ XK

}
.

Then F 7→ 2VK(F ) is the usual quotient norm on X/XK induced by the norm

‖ ‖1 on X. In particular F 7→ 2VK is continuous on X, and is constant on each

coset in X/XK . Because EK is dense in XK , we also have

2VK(F ) = inf
{
‖F −m−1fβ‖1 : m−1fβ belongs to EK

}
.
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Thus F 7→ VK(F ) is an extension of the map (5.2).

For each automorphism τ in Aut(Q/Q) we define a map

Φτ : L1(Y,B, λ)→ L1(Y,B, λ)

by

Φτ (F )(y) = F (τ−1y).

Then it is obvious that Φτ is a linear map. And it follows from Theorem 4

of [1] that ∫
Y

∣∣Φτ (F )(y)
∣∣ dλ(y) =

∫
Y

|F (y)| dλ(y)

for each function F in L1(Y,B, λ). Thus Φτ is an isometry of L1(Y,B, λ) onto

itself. Again from Theorem 4 of [1], we find that∫
Y

Φτ (F )(y) dλ(y) =

∫
Y

F (y) dλ(y),

and this shows that Φτ is also an isometry of X onto X. For a function F (y)

in X we have

Φσ

(
Φτ (F )

)
(y) = Φστ (F )(y).

Therefore the map τ 7→ Φτ is a homomorphism from the group Aut(Q/Q) into

the group I(X) of all isometries of X onto itself.

If fα(y) = log ‖α‖y belongs to the Q-vector subspace F ⊆ X, then it

follows from (5.3) that

Φτ

(
fα
)
(y) = fα

(
τ−1y

)
= log ‖τα‖y,
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and therefore the group of isometries

{
Φτ : τ ∈ Aut(Q/Q)

}
acts on the Q-vector space F.

If F belongs to X then it can be shown that τ 7→ Φτ (F )(y) is a contin-

uous map from the compact group Aut(Q×/K) into the Banach space X. In

particular the image of this map,

{
Φτ (F )(y) : τ ∈ Aut(Q×/K)

}
is a compact subset of X. Therefore the value of the function WK : X→ [0,∞)

given by

2WK(F ) = sup
{
‖F − Φτ (F )‖1 : τ ∈ Aut(Q×/K)

}

is finite, and is taken on at a point in the group Aut(Q×/K). We note the

simple bound

2WK(F ) ≤ sup
{
‖F‖1 + ‖Φτ (F )‖1 : τ ∈ Aut(Q×/K)

}
≤ 2‖F‖1.

It is clear that WK defined on X by (5.3), extends the function WK defined by

(5.2).

Lemma 5.3.2. The map WK defined by (5.3) satisfies the triangle inequality

WK(F1 + F2) ≤ WK(F1) +WK(F2),
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and the Lipschitz inequality∣∣WK(F1)−WK(F2)
∣∣ ≤ ‖F1 − F2‖1,

at all points F1 and F2 in X.

Proof. Let σ be a point in Aut(Q×/K) such that

2WK(F1 + F2) = ‖(F1 + F2)− Φσ(F1 + F2)‖1.

Then we have

2WK(F1 + F2) ≤ ‖F1 − Φσ(F1)‖1 + ‖F2 − Φσ(F2)‖1

≤ 2WK(F1) + 2WK(F2),

which verifies (5.3.2).

Now using (5.3) and (5.3.2) we find that

WK(F1)−WK(F2) = WK

(
(F1 − F2) + F2

)
−WK(F2)

≤ WK(F1 − F2)

≤ ‖F1 − F2‖1.

In a similar manner we get

WK(F2)−WK(F1) ≤ ‖F1 − F2‖1,

and this proves (5.3.2).

Corollary 5.3.3. Let K be an algebraic extension of Q. At each point F in

X we have

1
2
WK(F ) ≤ VK(F ) ≤ WK(F ).
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Proof. We have already observed that F 7→ VK(F ) is the quotient norm on

X/XK and is therefore continuous. The Lipschitz inequality (5.3.2) shows that

F 7→ WK(F ) is also continuous. The inequality (5.3.3) has been proved for

functions fα in F. As F is dense in X, the inequality (5.3.3) must also hold for

all functions F in X.

Corollary 5.3.4. Let K be an algebraic extension of Q. Then we have

XK =
{
F ∈ X : Φτ (F ) = F for all automorphisms τ ∈ Aut(Q/K)

}
.

Proof. Clearly a function F in X satisfies the condition

Φτ (F ) = F for all automorphisms τ ∈ Aut(Q/K),

if and only if WK(F ) = 0. By Corollary 5.3.3, WK(F ) = 0 if and only if

VK(F ) = 0. As VK is the quotient norm on X/XK , it is obvious that VK(F ) = 0

if and only if F belongs to XK . This proves the identity (5.3.4).

In the present setting, the fundamental theorem of Galois theory asserts

that there is a bijection between intermediate fields K such that Q ⊆ K ⊆ Q,

and closed subgroups of Aut(Q/Q), given by

K ←→ Aut(Q/K).

The identity (5.3.4) allows us to extend this to certain special closed linear

subspaces of X by

K ←→ Aut(Q/K)←→ XK .
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