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Pro-inflammatory neuroimmune signaling pathways are implicated in the 

acute and chronic effects of alcohol exposure. Genetic association studies in 

humans, gene expression microarray studies in postmortem brains of alcoholics, 

transcriptome meta-analysis in rodents, and drinking models in mice support the 

role of neuroimmune signaling in alcohol abuse disorder. Nuclear factor kappa-B 

(NF-κB) is a ubiquitously expressed transcription factor that controls the 

expression of genes important for innate- and adaptive-immune responses, cell 

proliferation/death, and inflammation. More specifically, the NF-κB canonical 

pathway is responsible for the expression of pro-inflammatory genes. The 

inhibitory kappa-B kinase (IKK) complex, composed of IKKα, IKKβ, and IKKγ 

represents a point of convergence for many extracellular signals and regulates 

the NF-κB canonical pathway by targeting the inhibitor of NF-κB (IκB) for 

degradation. NF-κB is disinhibited, translocates to the nucleus, and acts as a 

transcription factor for numerous pro-inflammatory chemokines and cytokines. 

However, IKKβ is the only member of the IKK complex that specifically mediates 

this pathway. As such, I hypothesized that inhibiting IKKβ/NF-κB pathway would 

limit/decrease voluntary ethanol consumption. This was studied by determining 

the brain region and cell type-specificity of all the IKK isoforms. It was observed 
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that all IKKs were primarily expressed in neurons and ubiquitously expressed 

throughout the brain regions studied [prefrontal cortex (PFC), nucleus 

accumbens (NAc), amygdala (AMY), and ventral tegmental area (VTA)]. 

Subsequently, the effects of inhibiting/knocking down IKKβ were investigated 

both systemically and centrally to determine the effects on voluntary ethanol 

drinking. It was observed that both antagonizing IKKβ peripherally and 

genetically knocking it down centrally in the NAc and central amygdala (CeA) 

reduced voluntary ethanol consumption and preference in two bottle choice 

(2BC) ethanol drinking paradigms. Lastly, ethanol-responsive microRNAs were 

explored in the PFC, NAc, and AMY. Several differentially expressed MicroRNAs 

were discovered that were either predicted/validated to target genes of the 

IKKβ/NF-κB pathway. One candidate, let-7g, was manipulated in vivo to 

determine its effect on voluntary ethanol drinking behaviors, however, no 

significant phenotypes were observed. These results demonstrate that blocking 

IKKβ decreases voluntary ethanol consumption and indicate its role as a 

potential therapeutic target for alcohol abuse. 
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CHAPTER I:  Background and Significance 
 

The production and consumption of fermented beverages dates back to the 

seventh millennium B.C. in Neolithic villages in what is now China. Since then, 

fermented drinks have been used throughout history in nearly every society all around 

the world, and have played an important role in the development of human culture 

(McGovern et al. 2004). This widespread usage can be explained by alcohol’s 

combined disinfectant, analgesic, and psychotropic effects (McGovern et al. 2004). For 

most people, the use of ethanol is enjoyable and produces no ill effects (Carr 2011). In 

fact, greater that 85% of adults in the United States reported that they drank alcohol at 

some time in their life, and 56.4% of these adults have consumed alcohol within the 

past month (Manit et al. 2009). Many studies have shown that moderate ethanol 

consumption as defined as 1 drink per day for women and 2 drinks per day for men is 

beneficial and reduces the risk of developing some diseases, such as coronary artery 

disease, ischemic strokes, and diabetes (Ahmed and Blumberg 2011). 

However, alcohol’s mind altering properties and its ability to produce dependence 

have made it arguably the oldest and most devastating drug of abuse (Carr 2011; World 

Health Organization 2014). The fifth edition of the Diagnostic and Statistical Manual 

(DSM–5), published by the American Psychiatric Association, defines Alcohol Use 

Disorder (AUD) as a problematic pattern of alcohol use that results in noticeable 

distress or impairment in daily life that continues despite negative consequences 

(American Psychiatric Association 2013). A person must also exhibit, within the same 

one year period, at least two additional criteria, such as craving, tolerance, withdraw, 

inability to control use, drinking more than intended, inability to fulfill obligations, and 

continued use despite problems with health or relationships, etc. (American Psychiatric 

Association 2013). The social, economic, and health burden associated with the harmful 
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use of alcohol is staggering (World Health Organization 2014). Approximately 10% of 

the United States population over the age of 12 (7% of adults and 2.8% of youth) have 

AUD, which amounts to over 17 million individuals suffering from this disease (Manit et 

al. 2009). This 10% of individuals is responsible for consuming about 75% of alcohol 

ingested in the United States (Dombrowski et al. 2001). In regards to economic 

damage, it was estimated that excessive alcohol consumption costs the United States 

$223.5 billion annually (Bouchery et al. 2011). Health wise, irresponsible use of alcohol 

plays a role in more than 200 different diseases and injury-related conditions such as 

cancers, liver cirrhosis, and suicides (World Health Organization 2014). It is estimated 

that alcohol contributes to 5.1% of the burden of disease and injury globally, and to 

5.9% of all deaths worldwide, or roughly 3.3 million deaths/year (World Health 

Organization 2014). 

It is not clear what distinguishes the person that can consume alcohol in 

moderate amounts with no ill effects compared to individuals who consume excessive 

amounts despite the negative consequences. Thus, a major goal of alcohol research is 

to better understand the neurobiology associated with AUD.  Although the exact etiology 

of AUD is currently unknown, we do know that repeated exposure to alcohol induces 

changes in the neural circuits that control reward, stress, arousal, and decision making. 

These neuroadapative changes have been traditionally thought to be mediated by the 

signaling molecules, such as dopamine, serotonin, opioid peptides, glutamate, γ-

aminobutyric acid, and systems that modulate the brain’s stress response systems 

(Gilpin and Koob 2008). However, in recent years it has become increasing evident that 

pro-inflammatory neuroimmune signaling contribute to the cognitive dysfunction and 

behavioral alterations that are observed in AUD (Szabo and Lippai 2014). Thus, it is 

imperative to investigate key pro-inflammatory neuroimmune signaling pathways to gain 
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a better understanding of this devastating disease and to discover new therapeutic 

treatments that could help individuals suffering from this ailment. 
 
IKKβ/NF-κB PATHWAY 

NF-κB is an important contributor to neuroinflammation in numerous 

neuroimmune pathways. It is a ubiquitously expressed transcription factor family that 

controls the transcription of hundreds of genes that are involved in many physiological 

processes, including inflammation, immunity, cell proliferation, and cell death (Perkins 

and Gilmore 2006; Scheidereit 2006). More specifically, NF-κB transcription factors are 

homo- or heterodimers of the Rel family composed of the proteins NF-κB1 (p50/p105), 

NF-κB2 (p52/p100), RelA (p65), RelB, and c-Rel. All the Rel proteins possess a 

conserved N-terminal region, called the Rel Homology Domain (RHD). DNA-binding and 

dimerization domains are located in the N-terminal and C-terminal regions of the RHD, 

respectively. The Nuclear Localization Signal (NLS), which is essential for the transport 

of active NF-κB transcription factors into the nucleus, is located close to the C-terminal 

end of the RHD. NF-κB dimers are normally found in the cytosol of unstimulated cells 

due to the masked NLS (Perkins 2007; Schmid and Birbach 2008; Okvist et al. 2007). 

Different signaling pathways stimulate each NF-κB dimer, and as a direct result, 

specific NF-κB dimers are responsible for transcribing unique sets of genes. However, it 

is the NF-κB canonical pathway that is most responsible for the expression of pro-

inflammatory genes. The NF-κB dimer most commonly associated with this pathway is 

composed of the Rel proteins p65 and p50, which are normally sequestered in the 

cytosol of unstimulated cells by non-covalent interactions with the IκB that masks the 

NLS (Perkins 2007; Schmid and Birbach 2008; Okvist et al. 2007). NF-κB (p65/p50) 

activation requires degradation of IκB. Degradation is achieved when the inhibitory 

kappa-B kinase (IKK) complex, composed of IKKα, IKKβ, and two non-enzymatic IKKγ 
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accessory molecules, phosphorylates two adjacent serine residues in IκB which leads to 

ubiquitination and proteasomal degradation of the inhibitor. The NLS is then exposed 

and NF-κB is subsequently released where it translocates to the nucleus and acts as a 

transcription factor for numerous pro-inflammatory chemokines and cytokines, such as 

Tumor Necrosis Factor α (TNFα) and Interleukin-6 (IL-6) (Gamble et al. 2012; Schmid 

and Birbach 2008). The IKK complex represents a point of convergence for many pro-

inflammatory extracellular signals, including endotoxins (LPS), pro-inflammatory 

cytokines (IL-6 and TNF-α), lymphokines, growth factors, double stranded RNA, certain 

bacterial antigens, and B or T-Cell activation, etc. (Fig.1.1). Thus, IKKs plays a key role 

in a number of diseases where inflammation is important (Gamble et al. 2012; Schmid 

and Birbach 2008). However, IKKβ is the only member of the IKK complex that 

specifically mediates the NF-κB canonical pathway, which is why the IKKβ/NF-κB 

pathway is the desired target of the proposed studies (Hayden and Ghosh 2004; 

Perkins 2007; Schmid and Birbach 2008). 
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Figure 1.1. NF-κB Canonical Pathway (IKKβ/NF-κB Pathway). The IKK complex 
(IKKα, IKKβ, IKKγ) mediates numerous pro-inflammatory extracellular signaling 
pathways. When the IKK complex is activated, IKKα and IKKβ phosphorylate IκB to 
target it for proteasomal degradation, which in turn disinhibits the NF-κB dimer 
(p65/p50), which translocates to the nucleus and acts as transcription factor for pro-
inflammatory chemokines and cytokines. TCR: T-cell Receptor; TLR: Toll-like Receptor; 
LPS: Lipopolysaccharide; IL-1(R): Interleukin-1 (Receptor); TNF(R): Tumor Necrosis 
Factor (Receptor); Lt-β(R): Leukotriene Beta (Receptor); BCR: B-cell Receptor; dsRNA: 
double stranded RNA; IKK: Inhibitory Kappa Kinase; NF-κB: Nuclear Factor Kappa B; 
IκB: Inhibitor of NF-κB. 
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BRAIN REGIONS IMPLICATED IN ALCOHOLISM 

Many areas of the brain are thought to be involved in mediating ethanol drinking 

behaviors, but arguable the most import are the AMY, PFC, NAc, and VTA (Fig. 1.2) 

(Koob 2014; Koob and Volkow 2010). The AMY is linked to motivational behavior 

associated with drug abuse and alcoholism. For example, the CeA has been shown to 

mediate the behavioral effects of acute and chronic ethanol consumption in rodents 

(Lam et al. 2008; Roberto et al. 2004b; Roberto et al. 2004a; Roberto et al. 2005). 

Specifically, lesions of the central, but not basolateral, amygdala decrease voluntary 

alcohol consumption (Möller, Wiklund, Sommer, Thorsell, & Heilig, 1997). In addition, 

Koob and Volkow (2010) reviewed the neurocircuitry of drug addiction and concluded 

that plasticity in both frontal cortical and sub regions of the amygdala are important for 

craving, withdrawal, negative affect, and loss of control. The extended amygdala 

"circuit" emphasizes the CeA as well as the projections from the PFC (Peters et al. 

2009). 

The PFC is critical for executive function, which involves decision-making, 

planning, goal setting, motivation, and inhibiting impulses. It helps individuals predict the 

consequences of their choices. The lack of the PFC’s control over impulsivity is one of 

the reasons alcoholics make high-risk, poorly conceived actions that often result in 

undesired consequences (Crews and Boettiger 2009; Zou and Crews 2010). Interesting, 

the PFC is the most severely damaged region of the brain in human alcoholics, and is 

closely related to the reward system (Liu et al. 2005). 

The mesolimbic reward pathway includes the VTA and NAc, where dopaminergic 

neurons project from the VTA to the NAc. This "reward pathway" has been widely 

implicated in the development of AUD since it regulates behaviors associated with 

pleasurable outcomes (Engel and Jerlhag 2014). In rodents, ethanol increases 

dopamine release in the NAc (Engel and Jerlhag 2014; Blomqvist et al. 1997; Larsson 
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et al. 2003). Specifically, dopamine is released in the NAc in rats after voluntary ethanol 

consumption (Larsson et al. 2005). Likewise, ethanol administration increases firing 

rates of dopaminergic neurons in the VTA projecting to NAc (Gessa et al. 1985). In 

humans, intoxicating doses of ethanol increase dopamine release in the ventral striatum 

(Boileau et al. 2003). While knockdowns of metabotropic glutamate 7 and dopamine D1 

receptors in the nucleus accumbens decrease alcohol drinking in mice (Bahi and Dreyer 

2012; Bahi 2012).  

In summary, four important brain regions involved in AUD include the AMY 

(involved in fear-motivated behaviors), the PFC (which controls decision making and the 

prediction of rewarding activities), and the NAc/VTA (mediates reward-related activities) 

(Jakobsson and Lundberg 2006). Investigation of these brain regions (homologous 

across multiple species) will allow us to better understand how the IKKβ/NF-κB 

pathways play a role in mediating the behavioral effects of alcohol. 
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Figure 1.2. Brain Regions Important in the Development of Alcoholism. A 
simplified schematic of the mouse brain showing the regions associated with the 
neurobiology of alcoholism. Relevant dopaminergic (Green), glutamatergic (Red) and 
GABAergic (Blue) connections are shown between the areas of interest. PFC: 
Prefrontal Cortex; NAc: Nucleus Accumbens; AMY; Amygdala; VTA: Ventral Tegmental 
Area; Hipp: Hippocampus; LDTg: lateral dorsal tegmentum; LHb: Lateral Habenula; LH: 
Lateral Hypothalamus; RTMg: Rostromedial Tegmentum. 
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NEUROIMMUNE SIGNALING GENES AND ALCOHOLISM 

Molecular and behavioral studies support the importance of neuroimmune 

signaling in the development of alcohol and drug abuse (Mayfield et al. 2013). For 

example, innate immune signaling has been implicated in paying a role in 

binge/intoxication, withdrawal/negative affect, and craving in alcohol abuse (Coller and 

Hutchinson 2012; Crews et al. 2011; Harris and Blednov 2012; Mayfield et al. 2013). 

The role of innate immunity genes in alcoholism is also supported by genetic 

association studies in humans (Edenberg et al. 2007; Pastor et al. 2005; Pastor et al. 

2000; Saiz et al. 2009), transcriptome meta-analysis in rodents (Mulligan et al. 2006), 

and gene expression microarray studies in postmortem brains of alcoholics (Liu et al. 

2006; Okvist et al. 2007). Behavioral studies in mice with null mutations of 

neuroimmune genes demonstrate reduced ethanol consumption (Blednov et al. 2005; 

Blednov et al. 2012; Blednov 2003). Many of the immune-related genes implicated in 

the above mentioned studies mediate their affect through NF-κB. Moreover, systemic 

injection of LPS, which conveys its signal through Toll-like receptor 4 (TLR4), and the 

IKKβ/NF-κB pathway, produces long-lasting elevations of brain pro-inflammatory 

cytokines and increases ethanol consumption in mice (Blednov et al. 2011; Qin et al. 

2008; Qin et al. 2007). Likewise, knockdown of TLR4 in the CeA shows reduced 

operant self-administration of ethanol (Liu et al. 2011). Interestingly, NF-κB DNA binding 

in the brain has been shown to increase with ethanol treatments (Crews et al. 2006) and 

the human NF-κB1 gene, which codes for the precursor of the p50, is genetically linked 

to alcoholism (Edenberg et al. 2007). Ethanol increases transcription of NF-κB target 

genes, including pro-inflammatory chemokines (MCP-1) and cytokines (TNF-α, IL-6, 

and IL-1β) (Zou and Crews 2010). It is thought that the repeated alcohol exposures 

promote the activation of NF-κB in neurons and glia leading to autocrine and paracrine 

amplification of pro-inflammatory innate immune genes. This activation is thought to 
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spread through positive feedback loops that eventually lead to progressive and 

persistent changes associated with alcohol abuse (Crews et al. 2011). This evidence 

suggests that a neuroimmune signaling pathway mediated by IKKβ/NF-κB pathway is 

important in the neurobiology of alcoholism.  

 
NEUROIMMUNE SIGNALING MICRORNAS AND ALCOHOLISM 

However, genes do not solely regulate the neuroimmune response to alcohol. In 

recent years, microRNAs have emerged as important regulators of gene expression. 

MicroRNAs are small (18-22 nucleotides) non-coding RNA molecules. They post-

transcriptionally regulate gene expression by binding to complementary sequences in 

the 3’ untranslated regions (UTR) of mRNAs, which results in either translational 

repression or cleavage of the message (Miranda et al. 2010) (Fig 1.3). A single 

microRNA can target numerous mRNA transcripts, while a single mRNA transcript can 

be targeted by many microRNAs. There is considerable regulatory potential of 

microRNAs since over 1000 microRNAs have been identified in humans and are 

thought to target over 60% of protein-coding genes (Iliopoulos et al. 2009; Miranda et al. 

2010). Since microRNAs are capable of silencing the expression of large collections of 

target genes, it is reasonable to expect that they are involved in regulating the 

neuroimmune system, such as the IKKβ/NF-κB pathway. Recent studies have revealed 

that microRNAs play important roles in immune signaling, neuronal differentiation, and 

neurogenesis (Miranda et al. 2010). For example, let-7 family members (let-7i, let-7e) 

directly targets expression of TLR4 and thus regulate responsiveness to LPS 

(Androulidaki et al. 2009; Chen et al. 2007; Virtue et al. 2012). MiR-146a fine tunes 

many pro-inflammatory genes that utilize the IKKβ/NF-κB pathway (TLR4, IRAK1, 

TRAF6 and cytokine signaling) (Sonkoly et al. 2007; Virtue et al. 2012). MiR-152 inhibits 

TLR-triggered major histocompatibility complex (MHC) II expression (Liu et al. 2010). 
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MiR-9 regulates NF-κB1, and mir-199 targets IKKβ (Bazzoni et al. 2009; Virtue et al. 

2012). MicroRNAs also participate in positive pro-inflammatory feedback loops involving 

NF-κB, let-7, and IL-6 (Iliopoulos et al. 2009). Even with this supporting evidence, the 

role of neuroimmune signaling in the induction and maintenance of AUD remains 

elusive.  
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Figure 1.3. MicroRNA Post-Transcriptional Regulation of mRNAs. Primary 
microRNA hairpin transcripts are transcribed by RNA polymerase II. Cleaved by the 
RNAase Drosha into a shorter hairpin that is transported from the nucleus to the 
cytoplasm. Subsequently, another RNAase, called Dicer, removes the hairpin and the 
mature microRNA associates with the Argonaut protein (Ago) to form to the RNA-
induced silencing complex (RISC). Ago directs the complex to the 3’UTR of mRNAs 
complementary to the mature microRNA where translation is disrupted or mRNA 
cleavage occurs. 
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GAPS IN OUR KNOWLEDGE 

 Our understanding of the neuroimmune system and its impact on ethanol-

drinking behaviors has improved in recent years; however, little is known about the 

potential involvement of IKKβ/NF-κB pathways. There are no published studies to date 

that have directly manipulated IKKβ-specific pathways either in vitro or in vivo to 

investigate alcohol or other substance abuse disorders. Thus, we lack the appropriate 

evidence to discern whether the IKKβ/NF-κB pathway is important centrally in the brain, 

in the periphery, or in both. There is also limited information about the brain region and 

central nervous system (CNS) cell-type specificity of IKKβ, and even less in the brain 

regions commonly associated with alcoholism (PFC, NAc, AMY, VTA). In essence, we 

do not know which brain regions or what cell types IKKβ, or more generally, the 

IKKβ/NF-κB pathway is predominately expressed. Nor do we know which of the cell 

types or brain regions, if any, are most important in regulating voluntary ethanol drinking 

phenotypes. Moreover, there is a scarcity of knowledge on potential upstream pro-

inflammatory signaling pathways that may activate the IKKβ/NF-κB pathway in the 

response to alcohol intake. Lastly, even though the field of investigating ethanol-

responsive microRNAs is increasing, we still lack knowledge about which microRNAs 

change and where they change in the brain in response to ethanol exposure. More 

specifically, there are only a few studies that have looked at which microRNAs are 

important for regulating the IKKβ/NF-κB pathway in the brain, but none have 

investigated how modulating these specific microRNAs would affect ethanol-drinking 

behaviors. This dissertation contains two specific aims that will address many of these 

areas and will contribute to a more thorough understanding of IKKβ/NF-κB pathway’s 

role in alcoholism. 
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SPECIFIC AIMS 

1. Assess how neuroimmune signaling genes in the IKKβ/NF-κB pathway modulate 

voluntary ethanol drinking. 

a. Investigate brain region and cell type-specific expression of signaling 

genes associated with the IKKβ/NF-κB pathway. 

b. Modulate signaling genes associated with the IKKβ/NF-κB pathway in 

brain-specific regions. 

2. Assess how ethanol-responsive microRNAs associated with the IKKβ/NF-κB 

pathway modulate voluntary ETOH drinking in the brain. 

a. Determine differentially expressed microRNAs in brain-specific regions 

associated with the IKKβ/NF-κB pathway. 

b. Manipulate microRNAs associated with the IKKβ/NF-κB pathway in brain-

specific regions. 

 

 

 

 

 

 

 

 

 

 

 



 15 

CHAPTER II:  IKK Isoform Expression in Brain Regions Associated 
with Alcohol Use Disorder 

 
INTRODUCTION 

 

Over 17 million individuals in the United States, or approximately 10% of the total 

population over 12 years old abuse alcohol (Manit et al. 2009). Excessive alcohol 

consumption is the third leading cause of preventable mortality in the United States 

trailing only behind tobacco use and obesity/poor diet (Mokdad 2004). The economic 

burden in the United States due to loss of productivity, societal damage, and healthcare 

costs amounts to a staggering $223.5 billion annually (Bouchery et al. 2011). Alcohol 

use disorder (AUD) is a chronic, relapsing condition with few treatment options. In fact, 

there are only 3 drugs currently approved by the FDA for use in AUD (disulfiram, 

naltrexone, and acamprosate) (Jonas et al. 2014).  

Although the etiology of AUD is unknown, cortical executive dysfunction, 

cognitive inflexibility, and increased limbic anxiety and impulsivity may be involved 

(Vetreno and Crews 2014). Brain areas that are important in the development of AUD 

include the AMY, PFC, NAc, and VTA (Fig. 1.2) (Vetreno and Crews 2014; Koob 2014; 

Koob and Volkow 2010; Crews and Vetreno 2014). The AMY is linked to motivational 

behavior associated with drug and alcohol abuse. Koob and Volkow reviewed the 

neurocircuitry of drug addiction and concluded that plasticity in both PFC and AMY is 

important for craving, withdrawal, negative affect, and loss of control (Koob and Volkow 

2010). More specifically, the PFC is critical for executive function, which involves 

decision making, planning, goal setting, motivation, and inhibiting impulses (Crews and 

Boettiger 2009; Crews et al. 2011). Interestingly, the PFC is the most severely damaged 

region of the brain in human alcoholics, and is closely related to the reward system (Liu 

et al. 2006). The mesolimbic dopamine reward system, consisting of the NAc and VTA, 
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is a well-documented pathway in alcohol and other substance abuse disorders. The 

NAc receives dopaminergic input from neurons in the VTA and has been shown to 

positively reinforce addictive behaviors (Bahi and Dreyer 2012; Koob and Volkow 2010; 

Ross and Peselow 2009).  

The neurobiological changes in brain regions associated with the addictive 

process may be partly mediated by increased pro-inflammatory immune signaling. The 

IKK isoforms (IKKα, IKKβ, IKKγ) and the IKK-related kinase (IKKε) are critical for 

innate/adaptive immunity activation through either NF-κB or interferon regulatory factors 

(IRFs), respectively (Chau et al. 2008). IKKε is also known to activate NF-κB through an 

poorly understood mechanism (Chau et al. 2008; Sankar et al. 2006; Takeda and Akira 

2004). NF-κB is a ubiquitously expressed transcription factor that plays an essential role 

in transcribing genes related to inflammation, immunity, cell proliferation, and cell death 

(Perkins and Gilmore 2006; Scheidereit 2006).  

NF-κB exerts most of its effects through the IKK-dependent canonical and non-

canonical pathways (Fig 2.1) (Oeckinghaus and Ghosh 2009). However, the majority of 

the physiologically diverse signaling pathways activate NF-κB through the canonical 

pathway, which is mediated by the IKK complex (composed of IKKα, IKKβ, and two 

non-enzymatic IKKγ accessory molecules). This particular pathway is activated by 

numerous pro-inflammatory stimuli such as endotoxins (LPS), inflammatory cytokines 

(IL-1), TNF-α, lymphokines, growth factors, double stranded RNA, certain bacterial 

antigens, and B or T-Cell activation, etc. (Gamble et al. 2012; Perkins 2007; Schmid 

and Birbach 2008). The IKK complex activates this pathway when IKKβ phosphorylates 

two adjacent serine residues in the inhibitor IκB, which leads to ubiquitination and 

proteasomal degradation of the inhibitor. This unmasks NLS and NF-κB is subsequently 

released where it translocates to the nucleus and acts as a transcription factor for 
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numerous pro-inflammatory chemokines and cytokines (Gamble et al. 2012; Perkins 

2007; Schmid and Birbach 2008). Thus, the IKK isoforms represent an important 

mediatory step for numerous pro-inflammatory signaling cascades (Fig 1.1) (Gamble et 

al. 2012; Oeckinghaus and Ghosh 2009). Although IKKα and IKKγ are required, IKKβ is 

the only member of the IKK complex that specifically mediates the NF-κB canonical 

pathway (Hayden and Ghosh 2004; Perkins 2007; Perkins and Gilmore 2006; Schmid 

and Birbach 2008). 
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Figure 2.1 IKK-Dependent Signaling Pathways. IKKs play a critical role in numerous 
signaling pathways involving innate/adaptive immunity. The IKK complex consisting of 
IKKα, IKKβ, and IKKγ mediates the NF-κB canonical pathway (IKKβ/NF-κB pathway). 
The canonical pathway is activated by numerous pro-inflammatory stimuli, such as 
TNF-α, IL-1, and LPS. IKKβ phosphorylates IκB targeting it for proteasomal degradation 
and releases NF-κB (p50/p65) that translocates to the nucleus and transcribes 
numerous pro-inflammatory cytokines and other innate immunity genes. In contrast, 
IKKα dimers and IKKγ modulate the NF-κB non-canonical pathway, which is activated 
by stimuli such as CD40, BAFF, and lymphotoxin-β. The IKKα dimers are activated by 
way of NIK, which in turn phosphorylates NF-κB (p100/RelB), and proteolytically 
process it to NF-κB (p52/RelB) that translocates to the nucleus and transcribes genes 
important for cycle regulation and the adaptive immune system. IKKε mediates the 
interferon response and is activated by stimuli such as LPS or viral dsRNA and 
phosphorylates IRF3 or IRF7, which translocates to the nucleus to transcribe Type I 
interferon genes.   
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In contrast, the non-canonical pathway proceeds via activation of NF-kB-inducing 

kinase (NIK), which in turn activates a complex consisting of an IKKα dimer and IKKγ, 

ultimately resulting in the transcription of genes important for cell cycle regulation and 

the adaptive immune system (Oeckinghaus and Ghosh 2009; Perkins 2007; Perkins 

and Gilmore 2006). 

IKKε is preferentially expressed in T cells and peripheral blood cells. The IKK-

related kinase IKKε (also called IKKi) has a similar sequence to IKKα and IKKβ, and is 

also implicated in activating NF-κB. However, IKKε’s primary function is to mediate the 

expression of type I interferon genes from stimuli that activate the TLR4- and TLR3-

dependent signaling cascades, such as LPS (component of gram negative bacteria) 

and double-stranded RNA (product of replicating viruses), respectively. Once IKKε is 

activated, it phosphorylates either IRF3 or IRF7 transcription factors, which translocate 

to the nucleus and transcribe type I interferon genes (Chau et al. 2008; Hacker and 

Karin 2006).  

Considering the role of IKKα, IKKβ, IKKγ, and IKKε in mediating pro-inflammatory 

cytokine expression in NF-κB pathways together with the evidence for a neuroimmune 

component of AUD, we studied the expression patterns of individual IKK isoforms in 

brain regions that are important in addiction. The brain region, cell type specificity, and 

subcellular expression patterns for the IKK isoforms were previously unexamined. Thus, 

determining the expression patterns of these isoforms would provide us with the 

necessary information to selectively manipulate specific isoforms in vivo in order to 

study their potential role in ethanol drinking behaviors.  

 
MATERIALS AND METHODS 
 
Animals  

IKK isoform expression studies were conducted in adult male C57BL/6J mice 

purchased from Jackson Laboratories (Jackson Laboratories, Bar Harbor, ME). The 

C57BL/6J strain was chosen because of its propensity for voluntary ethanol 
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consumption (Belknap et al. 1997). Mice were group-housed 4 or 5 per cage in the 

Animal Resources Center at The University of Texas at Austin on a 12 h light/12 h dark 

cycle (lights on at 7:00 a.m.) with ad libitum access to water and rodent chow (Prolab 

RMH 180 5LL2 chow, TestDiet, Richmond, IN). The temperature and humidity of the 

room were kept constant. All experiments were approved by the university's Institute for 

Animal Care and Use Committee and conducted in accordance with NIH guidelines with 

regard to the use of animals in research. 

 
Tissue harvest  

Animals were sacrificed and transcardially perfused with Phosphate Buffer Saline 

(PBS) and 4% paraformaldehyde (PFA). Brains were harvested, postfixed for 24 h in 

4% PFA at 4°C, and cyroprotected for 24 h in 20% sucrose in PBS at 4°C. Brains were 

placed in molds containing OCT compound (VWR, Radnor, PA) and frozen in 

isopentane on dry ice. The brains were equilibrated in a -12 to -14°C cryostat (Thermo 

Fischer Scientific) for at least 1 h and coronal 30-µm sections between +3.20 and -4.00 

mm relative to bregma were collected. Sections of sequential triplicate samples were 

placed in sterile PBS and stored at 4°C. 

 
Immunohistochemistry 

Brains sections were categorized using low magnification light microscopy 

relative to bregma with a mouse stereotaxic brain atlas in order to identify the PFC 

(+3.20 mm to +2.00 mm), NAc (+1.80 mm to +0.90 mm), AMY (-0.60 mm to -2.00 mm), 

and VTA (-2.80 mm to -3.40 mm). Sections from each region were selected and 

stained. Sections were permeabilized with 0.1% Triton-X 100 (2 x 10 min at 25°C), 

washed in PBS (3 x 5 min at 25°C), blocked with 10% goat or donkey serum (30 min at 

25°C), and treated with 1:50 anti-IKKα (Novus, Littleton, CO), 1:250 anti-IKKβ (Millipore, 

Billerica, MA), 1:250 anti-IKKγ (Abcam, Cambridge, MA), 1:100 anti-IKKε (Santa Cruz, 
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Santa Cruz, CA), 1:500 anti-NeuN (Santa Cruz), 1:300 anti-GFAP (Santa Cruz), 1:1000 

anti-Iba1 (Dako, Dako, Denmark), and 1:1000 anti-GFP (Santa Cruz) antibodies (at 4°C 

overnight). Sections were washed in PBS (3 x 10 min at 25°C), subjected to reaction 

with fluorescence-conjugated secondary antibodies of 1:1000 Alexa 488 and 1:1000 

Alexa 568 (Invitrogen, Waltham, MA) (2 hr at 25°C), and rinsed with PBS (3 x 10 min at 

25°C). The sections were mounted on slides using sterile 0.2% gelatin and DAPI 

mounting media (Vector Laboratories, Burlingame, CA) and cover slipped. Two sets of 

control experiments were performed to test antibody specificity: 1) replacement of the 

primary antibody with only the serum of the appropriate species and 2) omission of 

secondary antibodies. No immunostaining was detected under either of these 

conditions. 

 
Imaging/Analysis 

Epi-fluorescent images were acquired using a Zeiss Axiovert 200M Fluorescent 

Microscope (Zeiss, Oberkocheen, Germany) equipped with a 20x objective and an 

automated stage. Images of the PFC, NAc, AMY and VTA were captured (nine 20x 

images per brain half for anti-IKKs co-stained with anti-NeuN or anti-Iba1; entire half of 

brain for anti-IKKs co-stained with anti-GFAP and for examination of overall cell type 

composition, which equaled twenty-four 20x images/side) in red, green, and blue 

channels then stitched together creating a composite view for further analysis. Images 

were taken without saturating the signal and digitized at 8-bits using the full intensity 

range of 0–256 and imported into the ImageJ software package 

(http://imagej.nih.gov/ij/). Composite images were split into the individual channels and 

overlaid with grids that contained 100 cells per square (for anti-IKKs co-stained with 

anti-NeuN and anti-Iba1) or entire halves of the brain (for anti-IKKs co-stained with anti-

GFAP). Cells were co-localized with the aid of a cell counter to quantify cell-type 

specificity. For determining overall cell type composition in each brain area, entire 
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halves of the brain were analyzed using an automatic cell counting plugin (ICTN) in 

ImageJ. A Zeiss LSM 710 Confocal Microscope (Zeiss) equipped with a 63x objective 

was used to take representative images for IKK cell-type specificity and to investigate 

subcellular localization patterns using a z-stack of images throughout the width of the 

cell. 

 
Statistical Analysis  

Numerical data are given as mean ± SEM, and n represents the number of 

animals tested.  

 
RESULTS 
 
Cell Type-Specificity of IKK Isoforms in the Brain 

 High magnification confocal microscopy was used to qualitatively investigate the 

cell type-specificity of each of the IKK isoforms (IKKα, IKKβ, IKKγ, and IKKε) in the 

PFC, NAc, AMY, and VTA. All of the IKK isoforms were ubiquitously expressed 

throughout all brain regions studied and were present in neurons, microglia, and 

astrocytes (Fig. 2.2, 2.3, 2.4, 2.5). However, each isoform demonstrated some unique 

brain regional and subcellular distributions. For example, IKKγ was co-localized in 

almost every neuron in each brain region. In general, IKKε was not seen in astrocytes in 

the VTA. Interestingly, each isoform had unique subcellular expression characteristics. 

IKKα was observed throughout the nucleus and cytoplasm, including the soma and 

processes, in both neurons (Fig. 2.2 A-C) and astrocytes (Fig 2.2 D-E), but was 

localized to very distinct regions in the microglia near the major processes (Fig 2.2 G-

H). IKKβ and IKKε demonstrated almost exactly the same pattern as IKKα, except that 

IKKβ and IKKε were not found in the processes of neurons (Fig 2.3, 2.5). In contrast, 

IKKγ’s expression was different than IKKα and IKKβ. IKKγ appeared to be localized in 

the nucleus but not the cytoplasm of neurons and astrocytes, and exhibited the same 

localization in microglia as seen with the other IKK isoforms. 
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Figure 2.2. Cell Type-Specificity of IKKα in the Brain. Representative fluorescent 
light microscope images illustrating cell-type specific antibodies in the first column (A: 
anti-NeuN for neurons; D: anti-GFAP for astrocytes; G: anti-Iba1 for microglia), anti-
IKKα stains in the second column (B, E, H), and overlay of the first two in the third 
column (C, F, I). Arrows illustrate co-localization of cells using anti-IKKα and cell type-
specific stains.  
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Figure 2.3. Cell Type-Specificity of IKKβ in the Brain. Representative fluorescent 
light microscope images illustrating cell-type specific antibodies in the first column (A: 
anti-NeuN for neurons; D: anti-GFAP for astrocytes; G: anti-Iba1 for microglia), anti-
IKKβ stains in the second column (B, E, H), and overlay of the first two in the third 
column (C, F, I). Arrows illustrate co-localization of cells using anti-IKKβ and cell type-
specific stains. 
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Figure 2.4. Cell Type-Specificity of IKKγ in the Brain. Representative fluorescent 
light microscope images illustrating cell-type specific antibodies in the first column (A: 
anti-NeuN for neurons; D: anti-GFAP for astrocytes; G: anti-Iba1 for microglia), anti-
IKKγ stains in the second column (B, E, H), and overlay of the first two in the third 
column (C, F, I). Arrows illustrate co-localization of cells using anti-IKKγ and cell type-
specific stains. 
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Figure 2.5. Cell Type-Specificity of IKKε in the Brain. Representative fluorescent 
light microscope images illustrating cell-type specific antibodies in the first column (A: 
anti-NeuN for neurons; D: anti-GFAP for astrocytes; G: anti-Iba1 for microglia), anti-
IKKε stains in the second column (B, E, H), and overlay of the first two in the third 
column (C, F, I). Arrows illustrate co-localization of cells using anti-IKKε and cell type-
specific stains. 
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Brain Region-Specific Protein Expression of IKK Isoforms  

Expression levels of the IKK isoforms (IKKα, IKKβ, IKKγ, and IKKε) were 

quantified by immunostaining sections from the PFC, NAc, AMY, and VTA with 

antibodies against each IKK isoform and using the nuclear DNA stain, DAPI. The total 

IKK expression was determined by calculating the percentage of DAPI-positive cells co-

localized with the IKK antibodies out of the total DAPI-positive cells (n=5/group for IKKα, 

IKKβ, IKKγ and n=3 for IKKε). All the IKK isoforms, except IKKε, appeared to have a 

similar overall expression pattern. For example, the highest levels of IKKα, IKKβ, and 

IKKγ were in the NAc followed by roughly equal levels in the PFC and AMY, while the 

VTA contained markedly lesser amounts. In contrast, IKKε levels were almost constant 

throughout the brain (PFC: 63.5% ± 4.4%; NAc: 66.0% ± 2.0%; AMY: 72.7% ± 2.9%; 

VTA: 63.3% ± 2.7%). Interestingly, all the IKK isoforms were expressed in > 60% of the 

cells in the PFC, NAc, and AMY. IKK expression in the VTA was more varied, ranging 

from approximately 30% of the cells containing IKKα and IKKβ, to over 60% of cells 

containing IKKε. IKKγ was the most abundant in the PFC and NAc, while IKKε was the 

most abundant in the AMY and VTA. However, IKKγ was the most abundant in all brain 

regions when compared to the IKKα and IKKβ (Fig. 2.2).  
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Figure 2.6. Brain Region-Specific Protein Expression of IKK Isoforms. Expression 
levels of the IKK isoforms (IKKα, IKKβ, IKKγ, and IKKε) were quantified by determining 
the percentage of DAPI-positive cells co-localized with the IKK antibodies out of the 
total DAPI-positive cells in the sampling area in the PFC, NAC, AMY, and VTA. 
(n=6/group for IKKα, IKKβ, IKKγ and n=3 for IKKε). Mean ± SEM.  
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Cell Type-Specific Protein Expression of IKK Isoforms  

 Cell-specific expression levels of the IKK isoforms (IKKα, IKKβ, IKKγ, and IKKε) 

were quantified by immunostaining sections from the PFC, NAc, AMY, and VTA with 

antibodies against each IKK isoform, co-stained with the nuclear DNA stain (DAPI), and 

antibodies against cell-specific markers for neurons (NeuN), microglia (Iba1), and 

astrocytes (GFAP). Cell-specific IKK isoform expression was determined using only 

DAPI-positive cells and by calculating the percentage of cells co-localized with the IKK 

antibodies and cell-specific markers out of cells with only the cell-specific marker (n=3-

5/group for IKKα, IKKβ, IKKγ, IKKε). All IKK isoforms, except IKKε, appeared to have a 

similar overall expression pattern. For example, IKKα, IKKβ, and IKKγ were most 

abundant in neurons, with lower expression in microglia, and lowest expression in 

astrocytes in the PFC, NAc, AMY, and VTA. In contrast, IKKε was expressed in 

approximately equal amounts in neurons and microglia, but significantly less in 

astrocytes. Interestingly, over 80% of the neurons in all brain regions expressed IKKs 

regardless of the isoform, and IKKγ was expressed in at least 95% of neurons. Microglia 

expression was more variable ranging from 35 to 84%, depending on the brain region 

and IKK isoform (Fig. 2.3). More specifically, IKKα, IKKβ, IKKγ were expressed in 

approximately half of microglia cells (IKKα: 48.8% ± 2.8%; IKKβ 55.5% ± 4.2%; IKKγ: 

61.9% ± 5.1%), while IKKε was expressed in over three fourths of microglial cells (IKKε: 

78.4% ± 3.1%) (Fig.2.4). The only notable exception was IKKγ microglia expression in 

the VTA, where IKKγ (75.9% ±9.8%) and IKKε (73.4% ±.0.5%) were about the same 

(Fig. 2.3). In contrast to microglia, IKKα, IKKβ, IKKγ were expressed in greater amounts 

than IKKε (Fig 2.3). However, the IKK isoforms were not well expressed in astrocytes in 

any brain region. IKKα, IKKβ, IKKγ were found in approximately one third of astrocytes 

throughout the brain (IKKα: 30.6.8% ± 4.6%; IKKβ 30.2% ± 7.5%; IKKγ: 39.8% ± 6.1%), 

while IKKε was present in only 15.9% ± 6.4 of astrocytes (Fig 2.4). One notable 
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difference is that astrocytic expression of IKKα and IKKβ was much lower in VTA than 

the other brain regions (IKKα: 18.2% ± 6.3%; IKKβ 16.1% ± 5.9%) (Fig 2.3). 
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Figure 2.7. Cell-Specific Protein Expression of IKK Isoforms. Expression levels of 
the IKK isoforms (IKKα, IKKβ, IKKγ, and IKKε) were quantified in DAPI-positive cells by 
calculating the percentage of cells co-localized with the IKK antibodies and cell-specific 
markers out of the total cells expressing the cell-specific marker (neurons: NeuN; 
microglia: Iba1; astrocytes: GFAP) in the A: PFC, B: NAC, C: AMY, and D: VTA. 
(n=5/group for IKKα, IKKβ, IKKγ, IKKε, except n=3 for IKKε/NeuN). Mean ± SEM.  
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Figure 2.8. Average Cell-Specific Protein Expression of IKK Isoforms in the PFC, 
NAc, AMY, and VTA. Average expression levels across the PFC, NAc, AMY, and VTA 
of the IKK isoforms (IKKα, IKKβ, IKKγ, and IKKε) were quantified in DAPI-positive cells 
by calculating the percentage of cells co-localized with the IKK antibodies and cell-
specific markers out of the total cells expressing the cell-specific marker (neurons: 
NeuN; microglia: Iba1; astrocytes: GFAP). (n=5/group for IKKα, IKKβ, IKKε, except n=3 
for IKKε/NeuN). Mean ± SEM. 
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Cell Type Composition in the PFC, AMY, NAc, and VTA 
 

The brain region and cell type-specificity for the IKK isoforms were explored both 

qualitatively and quantitatively. Understanding cell type composition for each of these 

brain regions would provide an additional quantitative metric of where IKK isoforms are 

predominately expressed. Percentages of the different cell types were measured by 

immunostaining sections from the PFC, NAc, AMY, and VTA with DAPI and antibodies 

against cell-specific markers for neurons (NeuN), microglia (Iba1), and astrocytes 

(GFAP). The total IKK expression was determined by calculating the percentage of 

DAPI-positive cells co-localized with the cell type-specific antibodies out of the total 

DAPI-positive cells (n=6/group per brain region/cell type combination). Neurons were 

the predominant cell type in all the brain regions studied, present in over 80% of the 

total cells in the PFC, NAc, and AMY. Although the VTA had a significantly lower 

amount of neurons (68%), they were still the most prevalent cell type in that region. The 

second most abundant cell type was microglia, which accounted for 9 to 15% of all 

cells, followed by astrocytes, which made up only 1 to 3% of the total cell population. 

Cells that did not co-localize with cell type-specific markers were classified as 

“Unknown” and ranged anywhere from 3% to upwards of 19% of all cells. This group 

was probably composed of glial cells that did not express IBA1 or GFAP, such as 

oligodendrocytes or populations of neurons, microglia, and astrocytes deficient in the 

cell type-specific markers used in the immunostaining process. Nevertheless, if the 

“Unknown” group is assumed to be predominately glial cells, then the glia to neuron 

ratio would be approximately 0.25 in the PFC, NAc, and AMY, and 0.5 in the VTA. 
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Figure 2.9. Cell-Type Composition per Brain Region. The percentages of NeuN+ 
neurons, Iba1+ microglia, and GFAP+ astrocytes in the A) PFC, B) NAc, C) AMY, and 
D) VTA represented relative to the total number of cells stained with the DAPI nuclear 
stain. The “Unknown” designation refers to the percentage of DAPI+ cells that did not 
co-localize with any of the cell type-specific stains (n=6/group per brain region/cell type 
combination). 
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DISCUSSION 

The neurobiological changes associated with AUD may be mediated by 

increased pro-inflammatory neuroimmune signaling in the brain. It is thought that pro-

inflammatory cytokines promote excessive alcohol consumption (Blednov et al. 2011; 

Crews and Vetreno 2015; Vetreno and Crews 2014), which subsequently induces a 

positive feedback loop that promotes further inflammatory responses. NF-κB represents 

a point of convergence for many inflammatory cascades and a potential target for 

regulating alcohol consumption. The IKK isoforms (IKKα, IKKβ, IKKγ, and IKKε) all 

mediate NF-κB activation in some capacity and with a certain degree of specificity 

(Hacker and Karin 2006). Because the expression of these isoforms in brain had not 

been previously determined, we studied their brain region and cell type-specificity in 

brain regions known to be important in addictive behaviors. Ultimately, this information 

was used to facilitate in vivo manipulations of IKK isoforms in specific brain regions to 

study their discrete effects on ethanol drinking behaviors.  

IKKα, IKKβ, IKKγ, and IKKε were ubiquitously expressed in all the brain regions 

(PFC, NAc, AMY, and VTA) and cell types (neurons, microglia, and astrocytes) that 

were examined. This observation is likely due to the essential involvement of the IKK 

isoforms in many critical physiological pathways, such as immunity, inflammation, and 

cell-cycle regulation (Chau et al. 2008; Hacker and Karin 2006). One key observation 

was that the PFC, NAc, AMY, and VTA were composed primarily of neurons, and all 

IKK isoforms were primarily found in neurons. These results suggest that neurons play 

an integral role in IKK-mediated pathways. The neuroimmune system is generally 

understood to be regulated by microglia and astrocytes (Bailey et al. 2006; Tian et al. 

2012; Tian et al. 2009), and neurons are thought to serve a more passive role of 

receiving input from the glial cells rather than actively regulating the neuroimmune 

system (Tian et al. 2012; Tian et al. 2009). Nevertheless, neurons have been shown to 
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produce numerous neuropeptides and neurotransmitters that are immunoregulatory 

(Tian et al. 2012; Tian et al. 2009). In our study, the glia to neuron ratios ranged from 

approximately 0.25 (PFC, NAc , AMY) to 0.5 in the VTA. However, it is generally 

accepted that glial cells out number neurons at least 10 to 1 (Allen and Barres 2009; 

Bear et al. 2007; Kandel et al. 2000), which would mean that the expected percentage 

of neurons should have been closer to 10% instead of the observed 68% to 80%. Other 

studies have demonstrated glia to neuron ratios of 0.5 or 1 (Dombrowski et al. 2001; 

Azevedo et al. 2009; Lidow and Song 2001). Although there is limited published data of 

the cell type composition in the areas examined in this study, one report found a glia to 

neuron ratio of 1 in the PFC of rhesus monkeys (Dombrowski et al. 2001). 

Interestingly, all the IKK isoforms (IKKα, IKKβ, IKKγ) primarily associated with 

regulating the NF-κB canonical pathway had similar expression profiles (Oeckinghaus 

and Ghosh 2009). For example, IKKα, IKKβ, and IKKγ were highly expressed in the 

NAc, with lower expression in the PFC and AMY, followed by weak expression in the 

VTA. The low VTA expression was probably due the overall lower number of neurons in 

that region. Cell-type specificity was comparable between the isoforms, with each being 

found in almost all the neurons, about half of the microglia, and one third of astrocytes 

across brain regions. The expression of IKKγ was slightly greater in every brain region 

and cell type. This could be due to the fact that IKKγ acts as an important non-catalytic 

accessory protein in both the IKKβ- and IKKα-containing complexes of the NF-κB 

canonical and non-canonical pathways, respectively (Gamble et al. 2012; Perkins 

2007). IKKγ also mediates an additional pathway that responds to genotoxic stress such 

as DNA double stranded breaks (Hacker and Karin 2006; Perkins 2007) and is thus a 

key cellular mediator. Moreover, while IKKα and IKKβ were found in both the nucleus 

and cytoplasm of neurons and astrocytes, IKKγ was found only in the nucleus. NF-κB 
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dimers are normally sequestered in the cytoplasm of unstimulated cells by non-covalent 

interactions with IκB (Gamble et al. 2012; Perkins 2007). This physical separation of 

IKKγ from the other isoforms offers a possible explanation for the abundant expression 

of IKKα, IKKβ, and IKKγ in the absence of a major pro-inflammatory response in naive 

mice. Perhaps IKKγ resides in the nucleus under normal conditions and translocates to 

the cytoplasm in response to pro-inflammatory stimuli and disinhibits the NF-κB dimers. 

Alternatively, IKKα, IKKβ, and IKKγ shared the same unique localization pattern in 

microglia, which appeared to be at beginning of the major processes. Microglia are 

known to play a critical role in neuroimmune signaling (Bailey et al. 2006), and the NF-

κB canonical pathway may first be activated in microglia since it is the only cell type 

where IKKα, IKKβ, and IKKγ have a similar localization.  

IKKε demonstrated a different expression profile when compared to the other IKK 

isoforms. IKKα, IKKβ, and IKKγ expression varied depending on the brain region, but 

IKKε was uniformly expressed throughout the PFC, AMY, NAc, and VTA in 

approximately two thirds of the total cells. Another distinction between IKKε and the 

other isoforms was in cell type distribution. For example, IKKε was expressed in roughly 

the same percentage of neurons and microglia, and relatively scarce in astrocytes 

(neurons = microglia >> astrocytes), while the other IKK isoforms were expressed in 

nearly all neurons and sequentially decreased in the other cell types (neurons > 

microglia > astrocytes). The markedly higher expression of IKKε in microglia compared 

to astrocytes is supported by evidence that demonstrates IKKε mediates signals 

primarily from TLR3 and TLR4 (Chau et al. 2008), and astrocytes only express these 

receptors in an activated state, while microglia express them in both resting and active 

states (Suzumura 2013). There is, however, no clear explanation of why IKKε is 
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expressed in significantly more microglia than the rest of the IKK isoforms, other than it 

known that IKKε is preferentially expressed in peripheral leukocytes (Shimada 1999).  

In summary, we showed that all the IKK isoforms were primarily neuronal and 

ubiquitously expressed throughout areas of the brain that had a predominantly neuronal 

composition (PFC, NAc, AMY, and VTA). Thus, modulating IKK isoforms specifically in 

neurons in these areas would offer important insight into the neuronal role of IKKs. 

Ultimately, this information could be used for developing targeted strategies for 

manipulating IKKs within the brain in order to determine their effects on alcohol drinking 

behaviors. Knowledge of such IKK characterizations will possibly aid the development 

of new therapeutic treatments for AUD.  
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CHAPTER III:  Inhibition of IKKβ Reduces Ethanol Consumption in 
C57BL/6J Mice 

 
INTRODUCTION 

The World Health Organization estimates that approximately 3.3 million deaths/year 

worldwide are related to the harmful use of alcohol (World Health Organization 2014) 

and the Centers for Disease Control and Prevention determined the economic costs 

related to excessive alcohol consumption to be greater than $223.5 billion/year in the 

US alone (Bouchery et al. 2011). These statistics, become even more concerning given 

the limited number of FDA-approved medications to treat alcohol use disorder (AUD) 

and their limited efficacy. (Jonas et al. 2014). 

There is an increasing body of evidence linking pro-inflammatory neuroimmune 

signaling to alcohol intake (Crews 2012), suggesting that these pathways may be 

targets for medication development. A role of neuroimmune signaling in alcohol abuse 

is supported by genetic association studies in humans (Edenberg et al. 2007; Pastor et 

al. 2000; Pastor et al. 2005; Saiz et al. 2009), gene expression microarray studies in 

postmortem brains of alcoholics (Liu et al. 2005; Okvist et al. 2007), transcriptome 

meta-analysis in rodents (Mulligan et al. 2006), and drinking models in mice (Gorini et 

al. 2013a; Gorini et al. 2013b; Nunez et al. 2013; Osterndorff 2013). Mice with null 

mutations of immune-related genes showed reduced ethanol drinking (Ponomarev et al. 

2012), while stimulation of the immune system using lipopolysaccharide (LPS) produced 

prolonged increases in ethanol intake (Blednov et al. 2011). Many of the immune-

related genes implicated in the above mentioned studies mediate their affect through 

NF-κB. 

NF-κB transcription family members are ubiquitously expressed throughout the 

body and play important roles in innate and adaptive immune responses, cell death, and 
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inflammation (Perkins 2007; Scheidereit 2006). However, it is the NF-κB canonical 

pathway that is most responsible for the expression of pro-inflammatory genes. The NF-

κB dimer most commonly associated with this pathway is composed of the Rel proteins 

p65 and p50, and is normally sequestered in the cytosol of unstimulated cells by non-

covalent interactions with IκB (Perkins 2007; Schmid and Birbach 2008; Okvist et al. 

2007). NF-κB activation requires degradation of IκB. This is achieved when the 

inhibitory kappa-B kinase (IKK) complex (composed of IKKα, IKKβ, and two non-

enzymatic IKKγ accessory molecules) phosphorylates two adjacent serine residues in 

IκB, which leads to ubiquitination and proteasomal degradation of the inhibitor. NF-κB is 

subsequently released where it translocates to the nucleus and acts as a transcription 

factor for numerous pro-inflammatory chemokines and cytokines such as TNFα and IL-6 

(Gamble et al. 2012; Schmid and Birbach 2008). The IKK complex represents a point of 

convergence for many pro-inflammatory extracellular signals (Fig. 1.1) and plays a key 

role in inflammation and a number of diseases (Gamble et al. 2012; Schmid and 

Birbach 2008). IKKβ is the only member of the IKK complex that specifically mediates 

the NF-κB canonical pathway (Hayden and Ghosh 2004; Perkins 2007; Perkins and 

Gilmore 2006; Schmid and Birbach 2008).  

IKKβ has a clearly established role as an intermediate in NF-κB-mediated cellular 

inflammation and is involved in many inflammatory disease conditions such as asthma, 

atherosclerosis, hepatitis, pancreatitis, neurodegeneration, inflammatory bowel disease, 

and arthritis (Grivennikov et al. 2010; Sunami et al. 2012). Specific modulation of IKKβ 

has been successfully shown to improve outcomes in many in vivo animal models of the 

above-mentioned diseases (Ethridge et al. 2002; Ziegelbauer et al. 2005; Jimi et al. 

2004; Long et al. 2009), and IKKβ antagonists have even been through phase II clinical 

trials in humans for the treatment of osteoarthritis (Manit et al. 2009). Only a few studies 
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have examined the relationship between IKKβ and ethanol exposure, and these focused 

on the peripheral effects of chronic ethanol exposure, such as exacerbation of 

pancreatic and hepatic inflammation (Huang et al. 2014; Sunami et al. 2012). 

Furthermore, only a few studies examined the central actions of IKKβ, and these 

focused on its role neurodegeneration and metabolic disorders and none involved 

ethanol exposure (Maqbool et al. 2013; Zhang et al. 2008). To date, no studies have 

explored the peripheral or central role of IKKβ on ethanol drinking behavior or any other 

substance abuse disorders.  

In this study, we examined the effect of IKKβ on voluntary alcohol drinking in 

mice peripheral administration of pharmacological inhibition and brain region-specific 

knockdown of IKKβ. Two different inhibitors were used (TPCA-1 and sulfasalazine), 

both of which act peripherally and do not cross the blood brain barrier (BBB) (Liu et al. 

2012a). TPCA-1 is a selective small molecule inhibitor of IKKβ (Podolin et al. 2005). 

Sulfasalazine possess strong IKKβ inhibitory activity and is commonly used for treating 

patients with inflammatory bowel disease, ulcerative colitis, and Crohn’s disease 

(Lappas et al. 2005). Centrally, we used a virally mediated Cre/Lox system to selectively 

knockdown IKKβ in the nucleus accumbens (NAc) and central amygdala (CeA). Based 

on our previous work (Blednov et al. 2011; Blednov et al. 2012), we hypothesized that 

inhibition of IKKβ would limit/decrease alcohol drinking. 

 
MATERIALS AND METHODS 
 
Animals  

Pharmacological antagonist studies were conducted in adult male C57BL/6J 

mice taken from a colony maintained at The University of Texas at Austin (original 

breeders were purchased from Jackson Laboratories, Bar Harbor, ME). Genetic 

knockdown studies used adult male mice with a floxed Ikkβ gene on a C57BL/6J 
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background (i.e., C57BL/6J mice with Ikkβ flanked by LoxP sites or more commonly 

denoted as IkkβF/F). Original breeders were acquired from Casey W. Wright, College of 

Pharmacy, The University of Texas at Austin. The C57BL/6J strain was chosen 

because of its propensity for voluntary ethanol consumption (Belknap et al. 1997). Mice 

were group-housed 4 or 5 per cage on a 12-hour light/dark cycle (lights on at 7:00 a.m.) 

with ad libitum access to water and rodent chow (Prolab RMH 180 5LL2 chow, TestDiet, 

Richmond, IN). The temperature and humidity of the room were kept constant. 

Behavioral testing began when the mice were at least 2 months of age. Experiments 

were conducted in isolated behavioral testing rooms in the Animal Resources Center at 

The University of Texas at Austin. All experiments were approved by the university's 

Institute for Animal Care and Use Committee and conducted in accordance with NIH 

guidelines with regard to the use of animals in research. 

 
Pharmacological Inhibitors of IKKβ 

 Sulfasalazine (Sigma-Aldrich, St. Louis, MO) was injected i.p., and TPCA-1 

(Tocris Bioscience, Minneapolis, MN) was administered p.o. Both drugs were freshly 

prepared as suspensions in saline with 4-5 drops of Tween-80 and injected in a volume 

of 0.1ml/10 g of body weight for i.p. administration and 0.05 ml/10 g of body weight for 

oral administration. Drugs were administered 30 min prior to ethanol presentation times 

(see below). Doses of drugs and routes of administration were based on published data 

that showed anti-inflammatory activity in vivo. 

 
Brain Region-Specific Lentiviral-Mediated Knockdown of IKKβ  

IkkβF/F mice were injected bilaterally into the NAc or CeA with either a vesicular 

stomatitis virus (VSV-G) pseudotyped lentivirus expressing Cre recombinase fused to 

enhanced green fluorescent protein (EGFP) under the control of a CMV promoter (LV-
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Cre-EGFP) or an “empty” VSV-G pseudotyped lentiviral vector expressing only the 

EGFP transgene under a CMV promoter. Mice were anesthetized by isoflurane 

inhalation, placed in a model 1900 stereotaxic apparatus (David Kopf, Tujunga, CA), 

and administered preoperative analgesic (Rimadyl, 5 mg/kg). The skull was exposed, 

and bregma and lambda visualized with a dissecting microscope. A digitizer attached to 

the micromanipulator of the stereotaxic apparatus was used to locate coordinates 

relative to bregma. Burr holes were drilled bilaterally above the injection sites in the skull 

using a drill equipped with a #75 carbide bit (David Kopf, Tujunga, CA). The injection 

sites targeted either the NAc using the following coordinates relative to bregma: 

anteroposterior (AP) +1.49 mm, mediolateral (ML) ±0.9 mm, dorsoventral (DV) -4.8 mm 

or the CeA using the following coordinates: AP -1.14 mm, ML ±2.84 mm, DV -4.8 mm. 

Injections were performed using a Hamilton 10-μL microsyringe (model #1701) and a 

30-gauge needle. The syringe was lowered to the DV coordinate and retracted 0.2 mm. 

Viral solution (1.0 μL with titer of 1.8 x 108 vp/mL in PBS) was injected into each site at 

a rate of 200 nL/min. After each injection, the syringe was left in place for 5 min before 

being retracted over a period of 3 minutes. Incisions were closed with tissue adhesive 

(Vetbond, 3 M; St. Paul, MN). Mice were individually housed after surgery and given a 

4-week recovery before starting the ethanol drinking tests.  

 
Behavioral Testing 

 Three different ethanol drinking models were used in this study: 1) continuous 

24-hr 2BC with access to water or ethanol using a constant high ethanol concentration, 

2) two-bottle choice with limited 3-hr access to ethanol (2BC-DID), and 3) 2BC using 

ascending concentrations of ethanol solutions.  

Pharmacological inhibitors of IKKβ. The effects IKKβ antagonists on ethanol 

intake were measured in adult male C57BL/6J mice in two different drinking paradigms: 
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2BC with 15% ethanol and 2BC-DID per protocols previously described (Blednov 2003; 

Blednov et al. 2014). For both tests, mice were pre-trained to consume 15% ethanol for 

at least 3 weeks to provide stable consumption. Ethanol intake was measured after 

saline injection (i.p. or p.o.) for 2 days and mice were grouped to provide similar levels 

of ethanol intake and preference. In the 2BC test, measurements of ethanol intake were 

made 6 and 24 hr after beginning the drinking test, which began immediately after lights 

off. In the 2BC-DID test, drinking began 3 hr after lights off and lasted for 3 hr. Ethanol 

intake was measured once at the end of the 3-hr drinking period. Position of 

administration tubes was changed daily to control for side preferences. Mice were 

weighed every 4 days. For both experiments, ethanol consumption (g/kg/time), 

preference (ratio of alcohol consumption to total fluid consumption), and total fluid intake 

were measured at the appropriate time points.  

Brain region-specific lentiviral-mediated knockdown of IKKβ. The effects IKKβ 

knockdown in NAc and CeA were measured in adult male IkkβF/F mice using the 2BC 

test. This 2BC test consisted of giving mice treated with either LV-Cre-EGFP or LV-

EGFP-Empty 24-hr continuous access to water and ascending concentrations of 

ethanol solutions (3%, 6%, 8%, 10%, 12%, 14%, 16% v/v) at 2-day intervals (Blednov et 

al. 2014). The position of administration tubes was changed daily to control for position 

preferences. Mice were weighed every 4 days. Ethanol consumption (g/kg/day), 

preference, and total fluid intake were measured.  

Preference for non-ethanol tastants in the two-bottle choice test. Upon 

completion of the 2BC test described above, the IkkβF/F mice were also tested for 

saccharin to evaluate sweet taste preferences. The mice were offered saccharin in 

increasing concentration (0.008%, 0.016%, and 0.033%) and 24-hr ethanol intake was 

calculated. Each concentration was offered for 2 days with bottle positions changed 
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daily. The low concentration was always presented first, followed by the higher 

concentrations. 

 
RNA Isolation  

Upon completion of behavioral experiments, mice were sacrificed by cervical 

dislocation and decapitated. The brains were quickly removed, flash frozen in liquid 

nitrogen, and later embedded in Optimal Cutting Temperature (OCT) media in 

isopentane on dry ice. Brains were then stored at −80° C for future processing. Brains 

were transferred to a cryostat set at −6° C for at least 1 hr before sectioning. Sections 

(300 μm) were collected from +1.80 to +0.60 mm, and -0.60 to -1.80 mm (AP) relative to 

bregma for NAc and CeA, respectively, and transferred to pre-cooled glass slides on dry 

ice. Micropunch sampling was performed on a frozen stage (−25° C) using Dual 

Fluorescent Protein Flashlight (Nightsea, Bedford, MA), and a mouse stereotaxic atlas 

to identify the EGFP expression and anatomical location of the injection site. 

Microdissection punches (Stoelting Co., Wood Dale, IL) with an inner diameter of 0.75 

mm and 0.50 mm were used to obtain samples of NAc and CeA, respectively. This 

inner diameter fit within the viral spread around the injection site and minimized 

contamination from other tissue. Punches were taken bilaterally from 4-300 μm sections 

and stored at −80° C until RNA extraction. Micropunches were washed with 100% 

ETOH and RNasZap (Life Technologies) between each animal. All equipment used to 

obtain tissue was treated with RNAseZap (Life Technologies) to prevent RNA 

degradation. Total RNA was extracted using the MagMAX™-96 for Microarrays Total 

RNA Isolation Kit (Life Technologies, Carlsbad, CA) according to the manufacturer’s 

instructions. RNA yields and purity were assessed using a NanoDrop 8000 (Thermo 

Fisher Scientific, Waltham, MA) with both the 260/230 and 260/280 ratios >2.00. RNA 
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quality was determined using the Agilent 2200 TapeStation (Agilent, Santa Clara, CA) 

with RNA integrity numbers (RIN) averaging above 8.0.  

 
Quantitative PCR  

To verify Ikkβ mRNA knockdown, single-stranded cDNA was synthesized from 

total RNA using the TaqMan® High Capacity RNA-to-cNA kit (Life Technologies). 

Following reverse transcription, quantitative real-time PCR (qPCR) was performed in 

triplicate using TaqMan® Gene Expression Assays together with the TaqMan® Gene 

Expression Master Mix (Life Technologies), per manufacturer’s instructions. TaqMan® 

Gene Expression assays used were Ikbkb (ID: Mm01222247_m1), Tnf-α (ID: 

Mm00443258_m1), Il-6 (ID: Mm00446190_m1), and Enhanced GFP (ID: 

Mr04097229_mr). Gapdh (Mm99999915_g1) (glyceraldehyde-3-phosphate 

dehydrogenase) gene was used as a reference gene, and relative mRNA levels were 

determined using the 2−▵▵CT method (Schmittgen and Livak 2008). Gapdh was used as 

the endogenous control because it’s low variability between samples. Reactions were 

carried out in a CFX384™ Real-Time PCR Detection System (Bio-Rad) and data 

collected using Bio-Rad CFX Manger. All genes were normalized to the endogenous 

housekeeping gene, Gapdh, and expressed relative to their respective LV-EGFP-Empty 

control treatment. 

 
Immunohistochemistry 

Tissue harvesting. Animals were sacrificed, transcardially perfused with 

Phosphate Buffer Saline (PBS) and 4% paraformaldehyde (PFA), harvested, postfixed 

for 24 hr in 4% PFA at 4°C, and cyroprotected for 24 hr in 20% sucrose in PBS at 4°C. 

Brains were placed in molds containing OCT compound (VWR, Radnor, PA) and frozen 

in isopentane on dry ice. The brains were equilibrated in a -12 to -14°C cryostat 
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(Thermo Fischer Scientific) for at least 1 hr and coronal sections of 30µm were taken of 

the NAc and CeA and placed in sterile PBS.  

Immunostaining. Sections were penetrated with 0.1% Triton-X 100 (2 x 10 min at 

25°C), washed in PBS (3 x 5 min at 25°C), blocked with 10% serum of either goat or 

donkey (30 min at 25°C), and treated with 1:250 anti-IKKβ (Millipore, Billerica, MA), 

1:500 anti-NeuN (Santa Cruz, Santa Cruz, CA), 1:300 anti-GFAP (Santa Cruz), 1:1000 

anti-Iba1 (Dako, Dako, Denmark), 1:1000 anti-GFP (Santa Cruz) antibodies (4°C 

overnight), washed in PBS (3 x 10 min at 25°C), and then subjected to reaction with 

fluorescence-conjugated secondary antibodies of 1:1000 Alexa 488 and 1:1000 Alexa 

568 (Invitrogen, Waltham, MA) (2 hr at 25°C), and rinsed with PBS (3 x 10 min at 25°C). 

The sections were mounted on slides using sterile 0.2% gelatin and DAPI mounting 

media (Vector Laboratories, Burlingame, CA) and cover slipped. Images were taken 

using either a Zeiss Axiovert 200M Fluorescent Microscope (Zeiss, Oberkocheen, 

Germany) equipped with a 20x objective or a Zeiss LSM 710 Confocal Microscope 

(Zeiss) equipped with a 63x objective. For the immunohistochemistry, two sets of 

control experiments were performed to test specificity: 1) replacement of the primary 

antibody with only the serum of the appropriate species and 2) omission of secondary 

antibodies. No immunostaining was detected under either of these conditions. 

Target verification. Serial sections (30 µm) of NAc (AP +2.00 to 0.00 mm) and 

CeA (AP 0.00 to -2.00 mm) were mounted on slides with DAPI mounting media (Vector 

Laboratories) and visualized using a Zeiss Axiovert 200M Fluorescent Microscope 

(Zeiss) equipped with a 10x objective to assess the location of the injection site. The 

quality of injection was quantitatively scored based of the strength of EGFP viral 

expression, injection location relative to target, and the spread of the virus. The injection 

was considered on target if the needle placement was within 0.3 mm of the desired 
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stereotaxic coordinates and the virus EGFP expression covered at least 1/3 of the brain 

region of interest (i.e., NAc, CeA) on at least one side of the brain. If the animals failed 

the target verification analysis, they were included in the statistical analysis of the data.  

Image analysis. Brain sections were prepared as described in the 

Immunohistochemistry methods. Epi-fluorescent images were acquired using a Zeiss 

Axiovert 200M Fluorescent Microscope (Zeiss) equipped with a 20x objective and an 

automated stage. Images of the brain region of interest were captured (multiple 20X 

images in red, green, and blue channels) then stitched together creating a composite 

view for further analysis. Images were taken without saturating the signal and digitized 

at 8-bits using the full intensity range of 0–256 and imported into the ImageJ software 

package (http://imagej.nih.gov/ij/). Composite images were split into the individual 

channels, overlaid with a grid. A Zeiss LSM 710 Confocal Microscope (Zeiss) equipped 

with a 63x objective was used to take representative images for IKKβ cell-type 

specificity viral-trophism. 

  
Statistical Analysis 

Numerical data were given as mean ± SEM, and n represents the number of 

animals tested. Data were analyzed using either analysis of variance (ANOVA) with 

repeated measures followed by Bonferroni post hoc tests or Student’s t-test as 

appropriate (GraphPad Software, Inc., La Jolla, CA). Calculated p-values of less than 

0.05 were considered statistically significant. 

 

http://imagej.nih.gov/ij/
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RESULTS 
 
Pharmacological Inhibitors of IKKβ in a Continuous 24h Two-Bottle Choice (2BC) 
Test 

We first investigated how global IKKβ inhibition affected voluntary ethanol 

drinking behavior. A pharmacological approach was selected because it has previously 

been shown that IKKβ-deficient mice demonstrate embryonic lethality due to liver 

degeneration and apoptosis (Tanaka et al. 1999). A low and high dose of either TPCA-1 

or sulfasalazine paired was administered to adult male C57BL/6J mice on a daily basis. 

Voluntary ethanol drinking was evaluated using a continuous 24-hr 2BC bottle-drinking 

test in which the mice could drink either water or 15% ethanol. The lower dose of TPCA-

1 (30 mg/kg) showed no significant differences, but the higher dose (50 mg/kg) reduced 

ethanol intake [F(1,18) = 6.9, p<0.05] and preference [F(1,18) = 8.3, p<0.01] 6 hrs after 

administration (Fig. 3.1 A and B). Both doses of sulfasalazine reduced ethanol intake 

[50 mg/kg: p<0.05; 100 mg/kg: F(1,10) = 24.1, p<0.001] and preference [50 mg/kg: 

p<0.05; 100 mg/kg: F(1,10) = 12.4, p<0.01] (Fig.3.1 D and E). No changes in total fluid 

intake after administration of either drug were observed (Fig. 3.1 C and F). There were 

also no differences in ethanol intake or preference between drug- and saline-treated 

groups of mice 18 hrs post treatment for either drug (data not shown; see Table 3.1 for 

complete statistical analyses).  
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Figure 3.1. Effect of IKKβ Inhibitors on Ethanol Intake after the First 6h of a 
Continuous 24h 2BC Test in C57BL/6J Mice. A-C: TPCA-1-treated (n=13 per group). 
D-F: Sulfasalazine-treated (n=6 per group). A and D. 15% ethanol consumption 
(g/kg/6h). B and E: Preference for ethanol. C and F: Total fluid intake (g/kg/6h). Day 2 in 
each panel shows the averages of 2 days of saline injections for each group ± SEM. 
Additional time points are the averages of 2 days of drinking ± SEM. Significant main 
effect of treatment is shown by the p-value beneath the treatment dose (two-way 
ANOVA with repeated measures). Statistical significance of drug compared with the 
corresponding saline group is indicated by symbols above each time point (Bonferroni 
post-hoc test for multiple comparisons *p<0.05, **p<0.01, ***p<0.001, or a Student's t-
test #p<0.05). 
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Drug Dose Factors 15% Ethanol 

   Amount of 
ethanol 

consumed 
(g/kg/6h) 

Preference Total fluid 
intake 

(g/kg/6h) 

TPCA-1 
 

30 
mg/kg 

treatment F(1,21) = 0.01 
p>0.05 

F(1,21) = 1.1 
p>0.05 

F(1,21) = 3,5 
p>0.05 

time F(1,21) = 10.1 
p<0.01 

F(1,21) = 1.6 
p>0.05 

F(1,21) = 2.5 
p>0.05 

interaction F(1,21) = 1.8 
p>0.05 

F(1,21) = 2.7 
p>0.05 

F(1,21) = 0.4 
p>0.05 

50 
mg/kg 

treatment F(1,18) = 6.9 
p<0.05 

F(1,18) = 8.3 
p<0.01 

F(1,18) = 0,1 
p>0.05 

time F(1,18) = 0.1 
p>0.05 

F(1,18) = 0.2 
p>0.05 

F(1,18) = 0.8 
p>0.05 

interaction F(1,18) = 0.5 
p>0.05 

F(1,18) = 1.2 
p>0.05 

F(1,168) = 0.4 
p>0.05 

Sulfasalazine 
 

50 
mg/kg 

Student’s 
t-test 

p<0.05 p<0.05 p>0.05 

100 
mg/kg 

treatment F(1,10) = 24.1 
p<0.001 

F(1,10) = 12.4 
p<0.01 

F(1,10) = 0.1 
p>0.05 

time F(1,10) = 9.1 
p<0.05 

F(1,10) = 25.5 
p<0.001 

F(1,10) = 1.0 
p>0.05 

interaction F(1,10) = 1.9 
p>0.05 

F(1,10) = 0.1 
p>0.05 

F(1,10) = 2.5 
p>0.05 

 
Table 3.1. Statistical Analyses of the Effects of TPCA-1 and Sulfasalazine on 
Ethanol Intake in the 2BC Test (two-way ANOVA with repeated measures or 
Student’s t-test). Statistically significant results are shown in bold font. 
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Pharmacological Inhibitors of IKKβ in a Limited Access Two-Bottle Choice 
Drinking Test 

 We administered TPCA-1 (50 mg/kg) or sulfasalazine (100 mg/kg) daily to a 

different cohort of adult male C57BL/6J mice and performed a two-bottle choice with 

limited access to 15% ethanol, also known as the Drinking in the Dark (2BC-DID) test. 

Compared to the previous continuous 2BC drinking test, the 2BC-DID drinking paradigm 

more closely replicates binge drinking because mice typically consume higher levels of 

ethanol and exhibit behavioral evidence of intoxication (Thiele and Navarro 2014). In 

this model, TPCA-1 reduced ethanol consumption (F(1,10) = 14.0, p<0.01) and 

preference (F(1,10) = 21.6, p<0.01) without affecting total fluid intake (Fig. 3.2 A-C). 

Sulfasalazine, however, did not significantly alter ethanol or total fluid intake, but did 

reduce ethanol preference (F(1,14) = 31.7, p<0.001) (Fig. 3.2 D-F). There was a 

significant interaction between treatment and time of ethanol consumption with a 

gradual time-dependent decrease in the effect of sulfasalazine (Fig. 3.2 D; see Table 

3.2 for complete statistical analyses). 
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Figure 3.2. Effect of IKKβ Inhibitors on Ethanol Intake after the First 3h in a 
Limited Access 2BC-DID Test in C57BL/6J Mice. A-C: 50 mg/kg TPCA-1-treated 
(n=6 per group). D-F: 100 mg/kg sulfasalazine-treated (n=8 per group). A and D: 15% 
ethanol consumption (g/kg/3h). B and E: Preference for ethanol. C and F: Total fluid 
intake (g/kg/3h). Day 2 in each panel shows the averages of 2 days of saline injections 
for each group ± SEM. Additional time points are the averages of 2 days of drinking ± 
SEM. Significant main effect of treatment is shown by the p-value beneath the treatment 
dose (two-way ANOVA with repeated measures). Statistical significance of drug 
compared with corresponding saline group is indicated by symbols above each time 
point. (Bonferroni post-hoc test for multiple comparisons *p<0.05, **p<0.01, ***p<0.001). 
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Drug Dose Factors 15% Ethanol 
   Amount of 

ethanol 
consumed 
(g/kg/3h) 

Preference Total fluid 
intake 

(g/kg/3h) 

TPCA-1 
 

50 
mg/kg 

treatment F(1,10) = 14.0 
p<0.01 

F(1,10) = 21.6 
p<0.001 

F(1,10) = 0,1 
p>0.05 

time F(2,20) = 1.9 
p>0.05 

F(2,20) = 2.8 
p>0.05 

F(2,20) = 0.4 
p>0.05 

interaction F(2,20) = 3.0 
p>0.05 

F(2,20) = 7.5 
p<0.01 

F(2,20) = 0.2 
p>0.05 

Sulfasalazine 
 

100 
mg/kg 

treatment F(1,14) = 3.2 
p>0.05 

F(1,14) = 31.7 
p<0.001 

F(1,14) = 3.2 
p>0.05 

time F(1,14) = 0.9 
p>0.05 

F(1,14) = 1.1 
p>0.05 

F(1,14) = 0.1 
p>0.05 

interaction F(1,14) = 5.8 
p<0.05 

F(1,14) = 0.2 
p>0.05 

F(1,14) = 3.8 
p>0.05 

 
Table 3.2. Statistical Analyses of the Effects of TPCA-1 and Sulfasalazine on 
Ethanol Intake in the 2BC-DID Test (two-way ANOVA with repeated measures). 
Statistically significant results are shown in bold font. 
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Brain Region-Specific Knockdown of IKKβ in the NAc and CeA in a Continuous 
24h 2BC Test 

We next examined the role IKKβ in areas of the brain implicated in the 

pathogenesis of AUD. The NAc was chosen because it is part of the mesolimbic 

dopamine reward system which positively reinforces addictive behavior (Koob 2014; 

Koob and Volkow 2010). The CeA was selected because it is in involved in activating 

brain stress systems through the release of corticotropin-releasing factor (CRF) and 

negatively reinforces addictive behaviors (Koob 2014; Koob and Le Moal 2008; Koob 

and Volkow 2010). To accomplish the brain region-specific knockdown, mice genetically 

engineered with a conditional Ikkβ deletion (IkkβF/F) were injected bilaterally in the brain 

region of interest with a lentivirus expressing either Cre fused to EGFP (LV-EGFP-Cre) 

or only EGFP (LV-EGFP-Empty). The transgenes of both viral vectors were under the 

control of a cytomegalovirus (CMV) promoter and were pseudotyped with vesicular 

stomatitis virus glycoprotein (VSV-G). Expression of Cre results in the excision of Ikkβ. 

This method of local IKKβ deletion was validated by injecting LV-EGFP-Cre (n=8) and 

LV-EGFP-Empty (n=8) in the NAc of adult male IkkβF/F mice followed by a 3- or 8- week 

incubation period. The time points were selected based on a similar protocol used in 

mouse neurons that showed maximal change in expression 2 to 4 weeks post injection 

(Ahmed et al. 2004). We selected 3- and 8- post injection time points to assess the level 

of IKKβ knockdown near the beginning (4 weeks post injection) and end (8 weeks post 

injection) of the drinking studies. At the appropriate time points, brains were perfused, 

harvested, sectioned, and immunostained with anti-IKKβ and anti-EGFP. The number of 

cells with the viral EGFP that colocalized with IKKβ were measured and compared 

between the LV-EGFP-Cre and LV-EGFP-Empty treatments at each time point. The 

relative expression of IKKβ in Cre-treated animals vs. controls was 0.596 ± 0.012 (p < 
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0.01) at 3 weeks and 0.099 ± 0.023 (p < 0.001) at 8 weeks (Fig. 3.3). This equates to a 

40% and a 90% decrease in IKKβ after 3 and 8 weeks, respectively. 
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Figure 3.3. IKKβ Protein Knockdown (3 and 8 Weeks Post Injection) in NAc of 
IkkβF/F Mice. A fluorescent light microscope image is shown of a representative stain 
from the 3 week post-injection time point in NAc. A: anti-IKKβ fluorescently-labeled 
antibody. B: anti-EGFP fluorescently-labeled antibody. C: Overlay of A and B (“IKKβ –“ 
represents transduced cells with no IKKβ and “IKKβ +” represents transduced cells with 
IKKβ) D: Knockdown of IKKβ (LV-EGFP-Cre) measured by IKKβ -positive cells 
colocalized with EGFP-positive cells relative to their time matched control (LV-EGFP-
Empty). Each point is the average of eight fields of view (20x) per mouse for 4 mice 
(mean ± SEM) (n=4 for each group: 3wk LV-EGFP-Cre, 3wk LV-EGFP-Empty, 8wk LV-
EGFP-Cre, 8 wk LV-EGFP-Empty). (Student’s t-test **p<0.01, ***p<0.001). 
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Subsequently, IkkβF/F mice were injected bilaterally with LV-EGFP-Cre or LV-

EGFP-Empty into either the NAc or CeA. After 4 weeks, the 2BC drinking test was 

administered in which the mice could drink either water or a series of increasing ethanol 

concentrations ranging from 0 to 16%. Similar to the results after global inhibition of 

IKKβ, local deletion of IKKβ in NAc also reduced ethanol consumption [F(1, 50) = 10.0, 

p<0.005] and preference [F(1, 50) = 8.3, p<0.01] without affecting total fluid intake (Fig. 

3.4 A-C). Likewise, local deletion of IKKβ in the CeA reduced ethanol consumption 

[F(1,196) = 19.1, p <0.0001] and preference [F(1,196) = 23.9, p <0.0001] with no 

change in total fluid intake (Fig. 3.5 A-C). At the higher ethanol concentrations, 

consumption and preference were reduced by greater than 40% and 25% for each brain 

region (see Table 3.3 for complete statistical analyses). 
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Figure 3.4. Effect of IKKβ Knockdown in NAc on Ethanol Intake During the 24h 
2BC Test in IkkβF/F Mice. A-C: n = 32 animals injected with LV-Cre-EGFP and n = 20 
injected with LV-Cre-Empty. A: Ethanol consumption (g/kg/24h). B: Preference for 
ethanol. C: Total fluid intake (g/kg/24). Each point is the average of 2 days of drinking ± 
SEM. Significant main effect of treatment is shown by the p-value in upper left hand 
corner (two-way ANOVA with repeated measures). Statistical significance of LV-EGFP-
Cre treatment compared with corresponding LV-EGFP-Empty treatment is indicated by 
symbols above each time point (Bonferroni post-hoc test for multiple comparisons 
*p<0.05, **p<0.01, ***p<0.001). 
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Figure 3.5. Effect of IKKβ Knockdown in CeA on Ethanol Intake during a 
Continuous 24 h 2BC Test in IkkβF/F Mice. A-C: n = 20 injected with LV-EGFP-Cre 
and n = 10 injected with LV-EGFP-Empty. A: Ethanol consumption (g/kg/24h). B: 
Preference for ethanol. C: Total fluid intake (g/kg/24h). Significant main effect of 
treatment is shown by the p-value in upper left hand corner (two-way ANOVA with 
repeated measures). Statistical significance of LV-EGFP-Cre treatment compared with 
corresponding LV-EGFP-Empty treatment is indicated by symbols above each time 
point (Bonferroni post-hoc test for multiple comparisons *p<0.05, **p<0.01, ***p<0.001). 
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Brain 
region 

Factors Ethanol concentrations 

  Amount of 
ethanol 

consumed 
(g/kg/24h) 

Preference Total fluid 
intake   

(g/kg/24h) 

NAc 
 

treatment F(1,50) = 10.0 
p<0.005 

F(1,50) = 8.3 
p<0.01 

F(1,50) = 0.05 
p>0.05 

concentration F(5,250) = 32.8 
p<0.0001 

F(5,250) = 45.3 
p<0.0001 

F(6,300) = 5.0 
p<0.0001 

interaction F(5,250) = 5.8 
p<0.0001 

F(5,250) = 3.0 
p<0.05 

F(6,300) = 2.0 
p>0.05 

CeA 
 

treatment F(1,196) = 19.1 
p<0.0001 

F(1,196) = 23.9 
p<0.0001 

F(1,224) = 0.5 
p>0.05 

concentration F(6,196) = 9.5 
p<0.0001 

F(6,196) = 8.6 
p<0.0001 

F(7,224) = 1.2 
p>0.05 

interaction F(6,196) = 1.1 
P>0.05 

F(6,196) = 0.3 
p>0.05 

F(7,224) = 1.0 
p>0.05 

 
Table 3.3. Statistical Analyses of the Effects of IKKβ Knockdown in the NAc or 
CeA on Ethanol Intake in the 2BC Test (two-way ANOVA with repeated measures). 
Statistically significant results are shown in bold font. 
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Ethanol drinking behavior in the 2BC drinking tests depend partly on taste 

(Bachmanov et al. 2003). We investigated the effect of the lentiviral-mediated genetic 

knockdown of IKKβ in the NAc and CeA on preference for sweet/noncaloric (saccharin) 

solutions. After the ethanol drinking experiments, we administered a 2BC test using 

three different concentrations of saccharin versus water. Analysis of preference for 

saccharin indicated a significant main effect of concentration in both the NAc [F(2,56) = 

69.97, p < 0.0001] and CeA [F2,56 = 53.43, p < 0.0001], but no effect of treatment (LV-

EGFP-Cre, LV-EGFP-Empty) or treatment × concentration interaction (Fig. 3.6A and 

3.6C, respectively). Analysis of total fluid intake revealed no significant differences 

between the LV-EGFP-Cre and LV-EGFP treatment groups (Fig. 3.6B and 3.6D, 

respectively). Knockdown of IKKβ in either the NAc or CeA did not change preference 

for saccharin. 
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Figure 3.6. Preference for Non-Ethanol Tastants in the Two-Bottle Choice Test. 
Lentiviral-mediate knockdown of IKKβ in the NAc and CeA on saccharin preference 
using a continuous 24h 2BC test in IkkβF/F mice. Effect of knockdown of IKKβ in NAc (n 
= 32 LV-EGFP-Cre, n = 20 LV-EGFP-Empty) is shown in panels A and B. A: Preference 
for saccharin. B: Total fluid intake (g/kg/24h). The effect of knockdown of IKKβ in CeA (n 
= 20 LV-EGFP-Cre, n = 10 LV-EGFP-Empty) is shown in panels C and D. C: 
Preference for saccharin. D: Total fluid intake (g/kg/24h). Each point is the average of 2 
days of drinking ± SEM. Main effects were determined using a two-way ANOVA with 
repeated measures. Statistical significance of LV-EGFP-Cre treatment compared with 
corresponding LV-EGFP-Empty was determined using a Bonferroni post-hoc test for 
multiple comparisons. 
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Upon completion of the behavior experiments (~8 weeks post injection), 

knockdown of IKKβ in the NAc and CeA was verified by 1) anatomical assessment of 

needle placement and viral spread, 2) confirmation of IKKβ protein knockdown, and 3) 

exploration of changes in mRNA levels of Ikkβ and downstream pro-inflammatory 

cytokines in the NF-κB canonical pathway. To assess needle placement and viral 

spread, animals were perfused and brains harvested from a subset of the lentiviral-

treated IkkβF/F mice used in the brain region-specific IKKβ knockdown experiments 

(NAc: n= 22 LV-EGFP-Cre, n= 14 LV-EGFP-Empty; CeA: n= 15 LV-EGFP-Cre, n= 5 

LV-EGFP-Empty). Injection coordinates and coverage of the NAc and CeA were verified 

using immunofluorescence to detect EGFP. Figures 3.7A and 3.7C are representative 

images of coronal sections in the NAc [Anterior Posterior (AP) +1.49 mm] and CeA (AP 

-1.14 mm), respectively, of the IkkβF/F mice treated with either LV-EGFP-Cre or LV-

EGFP-Empty. The left side of the fluorescent image shows the EGFP signal (surrogate 

marker for lentiviral transduction) in green and DAPI (a stain that visualizes the nuclei of 

all cells) in blue. The right side of the image is a brightfield image used to better 

visualize the neuroanatomical landmarks. Figures 3.7C and 3.7D are coronal sections 

from a mouse brain atlas in the area of the desired target coordinates with the blue 

circles showing the NAc and CeA, and the green ovals demonstrating the typical area 

where the LV-EGFP-Cre and LV-EGFP-Empty treatments transduced. After completion 

of the drinking tests, analysis of brain sections from knockdowns in NAc and CeA 

revealed that 100% of the samples met the criteria of 1) needle placements in at least 

one side within ± 0.3 mm of the desired stereotaxic coordinates, and 2) viral expression 

coverage that was greater than 1/3 of the area in the brain region of interest. The 

average viral coverage per injection site as indicated by EGFP signal was 37.8% ± 

4.8% in the NAc and 50.9% ± 5.7% in the CeA (mean ± SEM). 
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Figure 3.7: Injection Target Verification for the Studies Involving Lentiviral-
Mediated IKKβ Knockdown in the NAc and CeA. A and C: Composite microscope 
images of a coronal section in the (A) NAc or (C) CeA of a representative lentiviral 
injection using fluorescent microscopy (on left) to show EGFP marker signal (green), 
and bright-field (on right) to demonstrate neuroanatomy. B and D: Coronal brain atlas 
figure at the injection site with blue circles indicating the (B) NAc or (D) CeA, and the 
green ovals illustrating the typical lentiviral injection location and spread. 
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After the 2BC drinking tests, we confirmed IKKβ protein knockdown in a subset of 

mice from the NAc and CeA experiments using immunohistochemistry (n=5 LV-EGFP-

Cre and n=5 LV-EGFP-Empty for each experiment). Brains were prepared, 

immunostained, and analyzed in the same manner as the IKKβ knockdown experiment 

(3 weeks/8 weeks) previously described. The relative expression of IKKβ in Cre-treated 

animals vs. the control was 0.122 ± 0.026 (p < 0.001) in the NAc and 0.141 ± 0.028 (p < 

0.001) in the CeA (mean ± SEM) (Fig. 3.8A). This represents an 88% and 86% 

decrease in the NAc and CeA, respectively. These results were consistent with those 

obtained in trial IKKβ knockdown experiment 8 weeks post injection.  

To determine changes in mRNA levels of Ikkβ and downstream cytokines in the 

NF-κB canonical pathway, we performed quantitative PCR on micropunches from the 

NAc and CeA. A subset of brains from NAc (n= 10 LV-EGFP-Cre, n= 6 LV-EGFP-

Empty) and CeA (n=5 LV-EGFP-Cre, n= 5 LV-EGFP-Empty) experiments were 

harvested, flash frozen, sectioned, and micropunches were collected at the injection 

site. The relative expression of Ikkβ was 0.321 ± 0.049 (p < 0.001) in the NAc and 0.360 

± 0.056 (p < 0.001) in the CeA; Tnf-α was 0.568 ± 0.059 (p < 0.01) in the NAc and 0.488 

± 0.084 (p < 0.01) in the CeA; and Il-6 was 0.595 ± 0.055 (p < 0.01) in the NAc and 

0.641 ± 0.060 (p < 0.01) in the CeA (mean ± SEM). This equates to an approximately 

68% and 64% decrease in IKKβ mRNA in the NAc and CeA, respectively, and at least a 

35% knockdown for TNF-α and IL-6 mRNA in both brain regions (Fig. 3.8).  
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Figure 3.8. Determination of IKKβ Protein Levels and mRNA Expression of IKKβ, 
TNF-α, and IL-6 at Injection Site Upon Completion of Behavioral Studies. A: IKKβ 
protein levels in NAc and CeA (n=5 per group: NAc LV-EGFP-Cre, NAc LV-EGFP-
Empty, CeA LV-EGFP-Cre, and CeA LV-EGFP-Empty). B-D: mRNA levels of IKKβ, 
TNF-α, and IL-6 in the NAc (n = 10 LV-EGFP-Cre, n = 5 LV-EGFP-Empty) and CeA (n = 
5 LV-EGFP-Cre, n = 5 LV-EGFP-Empty). B: IKKβ mRNA expression C: TNF-α mRNA 
expression. D: IL-6 mRNA expression. All values shown relative to LV-EGFP-Empty 
treated mice. IKKβ protein levels were analyzed using immunohistochemistry. IKKβ 
mRNA levels at the target site in the NAc and CeA were assessed by quantitative RT-
PCR and normalized relative to GADPH. **p<0.01, ***p<0.001 determined by Student t 
test. All data are shown as the mean ± SEM. 
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IKKβ Cell Type-Specificity NAc and CeA 

To further investigate IKKβ’s role in the brain, we determined the cell type 

localization of IKKβ in the NAc and CeA. Brain slices were co-stained using antibodies 

against IKKβ and three common cell type markers in the brain (neurons: anti-NeuN; 

astrocytes: anti-GFAP; microglia: anti-Iba1) from 3 adult male alcohol-naive C57Bl/6J 

mice. Using fluorescent light microcopy to visualize IKKβ signal colocalization, we 

observed that in both the NAc and CeA IKKβ was expressed in all three cell types to 

some degree, but was primarily in neurons (Fig. 3.9). 
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Figure 3.9. Cell Type-Specific Localization of IKKβ in the NAc and CeA. 
Representative fluorescent light microscope images illustrating cell-type specific 
antibodies in the first column (A: anti-NeuN for neurons; D: anti-GFAP for astrocytes; G: 
anti-Iba1 for microglia), anti-IKKβ stains in the second column (B, E, H), and overlay of 
the first two in the third column (C, F, I). Arrows illustrate co-localization cells between 
anti-IKKβ and cell type-specific stains. 
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Subsequently, we examined the trophism of the viral vector delivery system by 

co-staining brain slices from LV-EGFP-Cre treated animals in the NAc and CeA (n =2 

NAc LV-EGFP-Cre, n=2 CeA LV-EGFP-Cre) using an antibody to target EGFP and the 

same three cell-specific described above. EGFP under the control of a CMV promoter in 

the VSV-G pseudotyped lentiviral vectors was expressed primarily in neurons (74.6% ± 

1.3%), slightly in astrocytes (10.8% ± 2.2%), and only marginally in microglia (1.8% ± 

0.5%) (Fig. 3.10). Thus, the brain-region specific knockdown of IKKβ observed in these 

studies was predominately neuronal. 
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Figure 3.10. Cell Type Trophism of Lentiviral Vectors in the NAc and CeA. 
Representative fluorescent light microscope image illustrating cell-type specific stains in 
the first column (A: anti-GFAP for astrocytes; D: anti-NeuN for neurons; G: anti-Iba1 for 
microglia), anti-GFP stains in the second column (B, E, H), and overlay of the first two in 
the third column (C, F, I). Arrows illustrate cells in which co-localization can be seen 
between anti-GFP and cell type-specific stains. 
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DISCUSSION 

We investigated the role of IKKβ in modulating drinking based upon previous 

findings showing that alcohol-dependent behaviors are mediated in part by pro-

inflammatory genes (Blednov et al. 2011; Blednov et al. 2012). Inhibiting/knocking down 

IKKβ either peripherally, or in brain regions associated with addictive behaviors 

decreased ethanol consumption and preference. These effects were observed using 

two the IKKβ inhibitors, TPCA-1 and sulfasalazine, in two separate drinking models 

(2BC and 2BC-DID). Neither sulfasalazine nor TPCA-1 can penetrate the BBB, so their 

anti-inflammatory effects would be confined to the periphery (Liu et al. 2012a). This is 

consistent with other anti-inflammatory agents, such as minocycline which have also 

reduced drinking in adult mice (Agrawal et al. 2014). 

Knockdown of IKKβ in the NAc or CeA was sufficient to disrupt the pro-

inflammatory cascade and decrease voluntary 2BC ethanol drinking, showing that 

drinking behavior can also be selectively regulated by central actions. The NAc is part of 

the mesolimbic dopamine reward system, which has a well-documented role in 

substance abuse. The central amygdala is involved in fear-motivated behaviors 

associated with drug and alcohol abuse and has been shown to mediate the behavioral 

effects of acute and chronic ethanol consumption in rodents (Lam et al. 2008; Roberto 

et al. 2004b; Roberto et al. 2005; Roberto et al. 2004a). Lesions of the central, but not 

basolateral, amygdala decrease voluntary ethanol consumption (Möller et al., 1997), 

and a review of the neurocircuitry of drug addiction discussed plasticity in both frontal 

cortical and subregions of the amygdala as important for craving, withdrawal, negative 

affect, and loss of control (Koob and Volkow 2010). Thus, the brain regions targeted 

here are important in alcohol-mediated behaviors.  

Evidence for disruption of the pro-inflammatory cascade in the NAc and CeA was 

verified by reduction of IKKβ protein and mRNA, as well as a decrease in expression of 
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downstream products of the NF-κB canonical pathway (TNF-α and IL-6) in these 

regions. In contrast, increases in cytokines following alcohol intake have been 

hypothesized to promote excessive alcohol consumption, which may in turn exacerbate 

pro-inflammatory responses (Blednov et al. 2011), in part via activation of NF-κB. In 

fact, NF-κB DNA binding in the brain has been shown to increase with ethanol 

treatments (Crews et al. 2006) and the human NFKB1 gene is linked to alcoholism 

(Edenberg et al. 2007).  

In addition to brain regions, different cell types play unique roles in the 

neuroimmune response (Szabo and Lippai 2014). In our study, the selective knockdown 

of IKKβ did not affect all cell types equally. For example, IKKβ was expressed primarily 

in neurons in the NAc and CeA with lessor amounts found in glial cells (astrocytes and 

microglia). The cell-type specificity of the viral vector system delivering Cre favored the 

transduction in neurons, and to a lesser degree in astrocytes, and only marginally in 

microglia. It has been documented that VSV-G lentiviral vectors under the control of a 

CMV promoter predominately express their transgene in neurons compared to glia cells, 

and the in vivo activity of the CMV promoter in glia cells is low (Jakobsson and 

Lundberg 2006). Even though IKKβ was knocked down to some extent in all three cell 

types (neurons, astrocytes, microglia), neurons were the primary target, suggesting that 

the majority of central IKKβ knockdown was neuronal.  

The IKK complex (IKKα, IKKβ, and IKKγ) is a key mediator for several pro-

inflammatory pathways that ultimately result in the activation of the NF-κB canonical 

pathway. Specifically, IKKβ primarily regulates the NF-κB canonical pathway 

(transcription of pro-inflammatory genes/anti-apoptosis), IKKα regulates the NF-κB non-

canonical pathway (cell cycle regulation/proliferation), while IKKγ participates in both 

pathways (Gamble et al. 2012; Perkins 2007). Thus, knockdown of IKKβ in the NAc and 
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CeA likely prevented activation of the canonical pathway in neurons, interrupting pro-

inflammatory signaling and feedback loops (Fig. 1.1).  

The central effects of IKKβ are not well studied, and its potential role in alcohol 

drinking had not been investigated. Our results provide novel evidence that peripheral 

or central inhibition of IKKβ decreases ethanol drinking. Ethanol could induce peripheral 

pro-inflammatory cytokines that ultimately activate expression of immune-related genes 

in the brain or it could directly stimulate central neuroimmune responses. Inhibiting 

IKKβ-mediated signaling could limit the peripheral and central inflammatory effects of 

ethanol. Our results are consistent with previous studies showing that null mutant mice 

lacking genes associated with pro-inflammatory signaling pathways displayed reduced 

levels of chemokines and cytokines and reduced ethanol consumption in voluntary 2BC 

drinking tests (Ponomarev et al. 2012; Blednov et al. 2005). 

In summary, voluntary ethanol drinking can be decreased by inhibiting IKKβ 

peripherally using pharmacological inhibitors or centrally using genetic deletions in the 

CeA and NAc, regions known to be important in the neurobiology of alcohol abuse 

(Koob and Volkow 2010). Although the effects of neuroimmune signaling are thought to 

be predominately glial (astrocytes and microglia), this study highlights an important 

neuronal role in reducing alcohol drinking. Our results also provide evidence that the 

use of peripheral acting IKKβ inhibitors with anti-inflammatory properties is a potential 

treatment strategy for regulating drinking. In particular, drugs like sulfasalazine that are 

already FDA approved, may advance treatment options for AUD or other disorders 

linked with neuroimmune activation. 
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CHAPTER IV:  Ethanol-Responsive MicroRNAs Associated with the 
IKKβ/NF-κB Pathway 

 
INTRODUCTION 

MicroRNAs have emerged as important regulators of gene expression. 

MicroRNAs are small (18-22 nucleotides) non-coding RNA molecules that post-

transcriptionally regulate gene expression by binding to complementary sequences on 

the 3’ UTR of mRNAs which results in either translational repression or cleavage of the 

message (Miranda et al. 2010) (Fig 1.3). They are highly abundant in the brain and 

mediate most biological processes, including neuroimmune signaling (Robinson et al. 

2014; Soreq and Wolf 2011). For example, let-7 family members regulate 

responsiveness to LPS by targeting TLR4 (Chen et al. 2007) and modulate NF-κB 

expression by targeting IL-6 (Iliopoulos et al. 2009), while mir-9 has been implicated in 

the regulation of NF-κB (p50/p105) (O'Neill, Sheedy, & McCoy, 2011b). MicroRNAs 

have been implicated in adaptations resulting from ethanol exposure (Lewohl et al. 

2011). A comprehensive study examined changes in gene and microRNA expression in 

the PFC of human alcoholics found 35 differentially expressed microRNAs targeted the 

60% of the differentially expressed genes (Lewohl et al. 2011; Liu et al. 2005). Even 

with this supporting evidence, the role neuroimmune signaling plays in the development 

of AUD remains elusive. The goal of this study is to identify ethanol-responsive 

microRNAs associated with the IKKβ/NF-κB pathway, and then modulate those 

candidates the areas of the brain that are associated with the development of AUD 

 
MATERIAL AND METHODS 
 
Animals 

Brain region-specific determination of ethanol-responsive microRNAs was 

conducted in adult female hybrid F1 FVBxB6 mice from reciprocal intercrosses 
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C57BL/6J x FVB/NJ F1 and FVB/NJ x C57BL/6J F1 (maternal strain x paternal strain). 

Brain region-specific modulation of microRNAs was conducted in adult male C57BL/6J 

mice. All mice were taken from a colony maintained at The University of Texas at Austin 

(original breeders were purchased from Jackson Laboratories, Bar Harbor, ME). Both 

mouse strains was chosen because of their propensity to drink large amounts of ethanol 

and to achieve behaviorally significant blood ethanol concentrations (Belknap et al. 

1997; Blednov et al. 2005). Mice were group-housed 4 or 5 per cage on a 12h light/12h 

dark cycle (lights on at 7:00 a.m.) with ad libitum access to water and rodent chow 

(Prolab RMH 180 5LL2 chow, TestDiet, Richmond, IN). The temperature and humidity 

of the room were kept constant. Behavioral testing began when the mice were at least 2 

months of age. Experiments were conducted in isolated behavioral testing rooms in the 

Animal Resources Center at The University of Texas at Austin. All experiments were 

approved by the university's Institute for Animal Care and Use Committee and 

conducted in accordance with NIH guidelines with regard to the use of animals in 

research. 

 
Brain Region-Specific MicroRNA Modulation 

 For microRNA overexpression, C57BL/6J mice were injected bilaterally into the 

NAc with either a VSV-G pseudotyped lentivirus expressing the pri-mmu-let-7g and an 

EGFP both under the control of a CMV promoter (Let-7g-miRNA), or an equivalent 

vector expressing a scrambled shRNA sequence (Control) (Courtesy of Dr. Amy Lasek 

at the University of Illinois at Chicago). For the microRNA inhibition experiments, 

C57BL/6J mice were injected bilaterally into the NAc with either an Exiqon in vivo 

LNA™ microRNA inhibitor labeled with Tye 568 for mmu-let-7g-5p in PBS or an 

equivalent oligonucleotide expressing a scrambled shRNA sequence (Control) (Exiqon, 

Vedbaek, Denmark). Mice were anesthetized by isoflurane inhalation, placed in a model 
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1900 stereotaxic apparatus (David Kopf, Tujunga, CA), and administered preoperative 

analgesic (Rimadyl, 5 mg/kg). The skull was exposed, and bregma and lambda 

visualized with a dissecting microscope. A digitizer attached to the micromanipulator of 

the stereotaxic apparatus was used to locate coordinates relative to bregma. Burr holes 

were drilled bilaterally above the injection sites in the skull using a drill equipped with a 

#75 carbide bit (David Kopf, Tujunga, CA). The injection sites targeted the NAc using 

the following coordinates relative to bregma: anteroposterior (AP) +1.49 mm, 

mediolateral (ML) ±0.9 mm, dorsoventral (DV) -4.8 mm. Injections were performed 

using a Hamilton 10-μL microsyringe (model #1701) and a 30-gauge needle. The 

syringe was lowered to the DV coordinate and retracted 0.2 mm. Viral solutions (1.0 μL 

with titer of 1.8 x 108 vp/mL in PBS) or antagomirs (1.0 μL, 0.125 nmol) were injected 

into each site at a rate of 200 nL/min. After each injection, the syringe was left in place 

for 5 min before being retracted over a period of 3 minutes. Incisions were closed with 

tissue adhesive (Vetbond, 3 M; St. Paul, MN). Mice were individually housed after 

surgery and given a 1-week (let-7g mimic) or 4 days (anti-let-7g) recovery before 

starting the ethanol drinking tests.  

 
Behavioral Testing 

Brain region-specific determination of ethanol-responsive microRNAs. The mice 

were given access to alcohol according to a 2BC-DID protocol previously described 

(Blednov et al. 2014) In this drinking paradigm, mice were allowed to voluntarily drink 

either water or 20% ethanol from two separate bottles during the first 3h of their dark 

cycle. Ethanol consumption (g/kg/3h), preference, and total fluid intake (g/kg/day) were 

measured once at the end of the 3h drinking period over a course of 20 days. Food was 

available ad libitum, and mice were weighed every 4 days. 
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 Brain region-specific modulation of microRNAs. The mice were given access to 

alcohol according to continuous access and intermittent access 2BC drinking protocols 

previously described (Blednov 2003; Melendez 2011). In the continuous access 2BC 

drinking model, mice were allowed to voluntarily drink either water or ascending 

concentrations of ethanol solutions (3%, 6%, 8%, 10%, 12%, 14%, 16% v/v) from two 

separate bottle. Concentrations were changed every two days. In the intermittent 

access 2BC drinking model, mice were allowed to voluntarily drink either water every 

day or 15% ethanol solution every other day. For both drinking tests, ethanol 

consumption (g/kg/day), preference, and total fluid intake (g/kg/day) were measured 

daily over a period of 14 days for the continuous access and 16 days for intermittent 

access drinking paradigms. Food was available ad libitum, and mice were weighed 

every 4 days. Data was analyzed using analysis of variance (ANOVA) with repeated 

measures followed by Bonferroni post hoc tests (GraphPad Software, Inc., La Jolla, 

CA). Calculated p-values of less than 0.05 were considered statistically significant. 

 
RNA Isolation 

Within one day of completing the behavioral experiments, mice were sacrificed 

by cervical dislocation followed by decapitation. The brains were quickly removed, flash 

frozen in liquid nitrogen, and later embedded in Optimal Cutting Temperature (OCT) 

media in isopentane on dry ice. Brains were then stored at −80° C for future processing. 

Brains were transferred to a cryostat set at −6° C for at least 1 h before sectioning. 

Sections (300 μm) were collected from the PFC +3.20 mm to 1.80 mm, NAc +1.80 to 

+0.60 mm, and AMY -0.60 to -1.80 mm (AP) relative to bregma, and transferred to pre-

cooled glass slides on dry ice. Micropunch sampling was performed on a frozen stage 

(−25° C) using Dual Fluorescent Protein Flashlight (Nightsea, Bedford, MA), and a 

mouse stereotaxic atlas to identify the EGFP expression and anatomical location of the 
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injection site. Microdissection punches (Stoelting Co., Wood Dale, IL) with an inner 

diameter of 1.25 mm was used to obtain samples of the PFC, NAc and AMY. This inner 

diameter fit within the brain region of interest and minimized contamination from other 

tissue. Punches were taken bilaterally from the 300 μm sections and stored at −80°C 

until RNA extraction. Micropunches were washed with 100% ETOH and RNasZap (Life 

Technologies) between each animal. All equipment used to obtain tissue was treated 

with RNAseZap (Life Technologies) to prevent RNA degradation. Total RNA was 

extracted using the MagMAX™-96 for Microarrays Total RNA Isolation Kit (Life 

Technologies, Carlsbad, CA) according to the manufacturer’s instructions. RNA yields 

and purity were assessed using a NanoDrop 8000 (Thermo Fisher Scientific, Waltham, 

MA) with both the 260/230 and 260/280 ratios >2.00. RNA quality was determined using 

the Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA) with RNA integrity numbers 

(RIN) averaging above 8.0.  

 
Microarray Expression Profiling 

 To evaluate brain region-specific ethanol-responsive microRNAs, biotin-labeled 

cRNA was prepared using Illumina TotalPrep RNA Amplification kit (Ambion, Austin, 

TX) and then hybridized to Illumina MouseRef-8 v2.0 Expression BeadChips (Illumina, 

San Diego, CA). The Bioconductor packages Lumi and arrayQualityMetrics were used 

to assess the quality of the Illumina bead summary data. The Lumi package was used 

for data preprocessing and included variance stabilization and quantile normalization. 

Statistical analysis comparing ethanol-treated and control groups were performed using 

the Bioconductor package limma. Exiqon miRCURY LNA microRNA Arrays 5th 

generation (Exiqon) was used for hybridization and scanning at the Moffitt Cancer 

Center Microarray Facility (Tampa, FL). The limma package was used for data analysis 

preprocessing, which included minimum background correction and scale normalization 
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between arrays. Within-array replication was assessed using the limma duplicate 

correlation function since each probe was spotted as replicated of four on the arrays, 

False discovery rate (FDR) was assessed using the Benjamini-Hochberg method 

(Benjamini et al. 2001). We compared our list of differentially expressed microRNAs in 

the PFC with those found in a previously reported human alcoholics study (Lewohl et al. 

2011). The statistical significance of the matches was empirically evaluated using Monte 

Carlo simulations in the R environment (R Foundation for Statistical Computing, Vienna, 

Austria).  

 
Quantitative PCR  

Quantitative PCR was used to both validate the brain region-specific expression 

of ethanol-responsive microRNAs, and to confirm microRNA/gene manipulations 

involved with the brain region-specific modulation of microRNAs. Following reverse 

transcription, qPCR was performed in triplicate, using TaqMan® MiRNA Assays 

together with the TaqMan® Universal PCR Master Mix (Life Technologies), as per 

manufacturer’s instructions. TaqMan® miRNA assays used were: mmu-let-7g-5p (ID: 

002282), mmu-miR-140-5p (ID: 001187), mmu-miR-152-3p (ID: 000475), mmu-miR-7a-

5p (ID: 000268), mmu-let-7f-5p (ID: 000382), mmu-miR-15b-5p (ID: 000390), mmu-miR-

101a-3p (ID: 002253), mmu-miR-301a-5p (ID: 006346), mmu-let-144-5p (ID: 000379), 

mmu-miR-34c-5p (ID: 000428). Assays used for endogenous control were: snoRNA234 

(ID: 001234) and snoRNA142 (ID: 001231), which were chosen out of five endogenous 

control assays tested in our samples. For mRNA validation, single-stranded cDNA was 

synthesized from total RNA using the TaqMan® High Capacity cDNA Reverse 

Transcription Kit (Life Technologies). Following reverse transcription, qPCR was 

performed in triplicate, using TaqMan® Gene Expression Assays together with the 

TaqMan® Universal PCR Master Mix (Life Technologies), as per manufacturer’s 
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instructions. TaqMan® Gene expression assays used were Igf2bp1 

(Mm00501602_m1), Hmga2 (Mm04183367_g1), and pri-let-7g (Mm03306155_pri). 

Gapdh (Mm99999915_g1) gene was used as a reference gene, and relative mRNA 

levels were determined using the 2−▵▵CT method (Schmittgen and Livak 2008). Gapdh 

was used as the endogenous control because it’s low variability between samples. 

Reactions for the brain region-specific expression of ethanol-responsive micoRNAs 

were carried out in a 7900HT Fast Real-Time PCR System and data collected using 

SDS software (Life Technologies). Reactions for the brain region-specific modulations 

of microRNAs were carried out in a CFX384™ Real-Time PCR Detection System (Bio-

Rad) and data collected using Bio-Rad CFX Manger. All genes were normalized to the 

endogenous housekeeping genes and expressed relative to their respective control 

treatment. 

 
RESULTS 
 
Brain Region-Specific Expression of Ethanol-Responsive MicroRNAs 
 To explore the impact that alcohol consumption has on microRNA expression in 

brain areas associated with AUD (PFC, NAc, AMY), we conducted a microRNA profiling 

study on 20 ethanol-treated mice and 12 matched controls. The analysis of the 

microarray data revealed numerous changes in microRNAs in alcohol-drinking mice 

relative.to the non-drinking controls in all three brain regions. For example, the PFC had 

77 differentially expressed microRNAs (FDR <10%) (Table 4.1). We then compared our 

list with the 35 differentially expressed microRNAs found in the PFC of a previously 

reported human alcoholics study and noticed some interesting similarities (Lewohl et al. 

2011). The microRNAs were predominately up regulated in both studies and had 14 

microRNAs common between the mouse and the human (p<1.8 x 10-5 as determined 

after 10,000 Monte Carlo simulations) (Lewohl et al. 2011) (Fig. 4.1). The microRNAs 



 82 

that changed expression in both mouse and human were: miR-7a let-7g, let-7f, miR-

101a, miR-152, miR-15b, and miR-140 all validated by qPCR (p < 0.05), but miR-301, 

miR-144 as, miR-34c did not. Quantitative PCR was not performed on remaining 

commonly expressed microRNAs: miR-17, miR-146b, miR-339, and miR-368. 

Moreover, the NAc had 49 differentially expressed microRNAs with 11 upregulated and 

38 downregulated (FDR <20%) (Table 4.1). The AMY had 60 differentially expressed 

microRNAs with 41 upregulated and 19 downregulated (FDR <20%) (Table 4.1).  
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Table 4.1. Ethanol-Responsive MicroRNAs. Differentially expressed microRNAs in 
the PFC, NAc, and AMY after exposure to a 2BC-DID test. Yellow highlights indicate 
mouse microRNAs commonly expressed with human alcoholics. 

Name Adjusted p value Name Adjusted p value Name Adjusted p value
mmu-let-7g-5p 1.27E-04 mmu-miR-465b-5p 7.90E-03 mmu-miR-433-3p 1.35E-06
mmu-let-7d-5p 1.27E-04 mmu-miR-187-3p 7.90E-03 mmu-miR-106b-5p 1.44E-05
mmu-miR-26a-5p 1.27E-04 mmu-miR-377-3p 4.34E-02 mmu-miR-145-5p 7.78E-05
mmu-let-7c-5p 1.49E-04 mmu-miR-7a-5p 4.41E-02 mmu-miR-669m-3p 1.12E-04
mmu-let-7b-5p 1.49E-04 mmu-miR-5097 4.41E-02 mmu-miR-541-5p 1.56E-04
mmu-miR-30d-5p 3.79E-04 mmu-miR-411-3p 4.51E-02 mmu-miR-183-3p 4.27E-04
mmu-let-7a-5p 6.88E-04 mmu-miR-708-5p 4.51E-02 mmu-miR-27b-3p 4.26E-03
mmu-let-7i-5p 6.88E-04 mmu-miR-148b-3p 4.51E-02 mmu-miR-187-5p 6.50E-03
mmu-miR-320-3p 6.88E-04 mmu-miR-153-3p 4.51E-02 mmu-miR-24-1-5p 1.25E-02
mmu-miR-34c-5p 6.88E-04 mmu-miR-30c-5p 5.83E-02 mmu-miR-214-5p 2.11E-02
mmu-miR-7a-5p 7.91E-04 mmu-miR-26a-5p 5.96E-02 mmu-miR-325-3p 2.11E-02
mmu-miR-101b-3p 9.11E-04 mmu-miR-34a-5p 5.96E-02 mmu-miR-7b-5p 2.11E-02
mmu-miR-24-2-5p 9.26E-04 mmu-let-7a-5p 7.50E-02 mmu-miR-328-3p 2.11E-02
mmu-miR-16-5p 1.25E-03 mmu-let-7i-5p 8.41E-02 mmu-miR-882-5p 2.11E-02
mmu-miR-29a-5p 1.34E-03 mmu-miR-1983 8.41E-02 mmu-miR-30a-5p 2.32E-02
mmu-miR-15a-5p 2.24E-03 mmu-miR-335-5p 8.41E-02 mmu-miR-1952-5p 3.09E-02
mmu-miR-361-5p 2.90E-03 mmu-miR-491-3p 8.41E-02 mmu-miR-1954-5p 3.25E-02
mmu-miR-138-5p 3.20E-03 mmu-miR-691 8.72E-02 mmu-miR-664-3p 3.25E-02
mmu-miR-376b-3p 3.50E-03 mmu-miR-218-5p 1.04E-01 mmu-miR-466d-3p 3.25E-02
mmu-miR-195-5p 4.01E-03 mmu-miR-212-3p 1.17E-01 mmu-miR-693-5p 3.25E-02
mmu-miR-181d-5p 4.59E-03 mmu-miR-503-3p 1.20E-01 mmu-miR-490-3p 3.25E-02
mmu-let-7f-5p 4.83E-03 mmu-let-7b-5p 1.20E-01 mmu-miR-184-3p 3.25E-02
mmu-miR-434-3p 4.88E-03 mmu-miR-190-5p 1.20E-01 mmu-miR-382-5p 3.25E-02
mmu-miR-24-3p 5.27E-03 mmu-miR-126-3p 1.20E-01 mmu-miR-1958-5p 3.25E-02
mmu-miR-152-3p 5.65E-03 mmu-let-7g-5p 1.20E-01 mmu-let-7d-3p 3.25E-02
mmu-miR-222-3p 5.81E-03 mmu-miR-299-5p 1.20E-01 mmu-miR-203-3p 3.25E-02
mmu-miR-451-5p 6.57E-03 mmu-miR-409-5p 1.20E-01 mmu-miR-883b-5p 3.25E-02
mmu-miR-193-3p 8.12E-03 mmu-miR-767 1.20E-01 mmu-miR-298-5p 3.25E-02
mmu-miR-1952-5p 8.12E-03 mmu-miR-1902 1.23E-01 mmu-miR-140-3p 3.25E-02
mmu-miR-335-5p 8.50E-03 mmu-miR-129-1-3p 1.33E-01 mmu-miR-34c-3p 3.25E-02
mmu-miR-149-5p 8.75E-03 mmu-miR-883a-5p 1.48E-01 mmu-miR-494-3p 3.25E-02
mmu-miR-9-3p 1.28E-02 mmu-miR-301a-3p 1.48E-01 mmu-miR-124-3p 3.25E-02
mmu-miR-301a-3p 1.29E-02 mmu-miR-1957 1.52E-01 mmu-miR-200b-3p 3.25E-02
mmu-miR-204-5p 1.29E-02 mmu-miR-541-5p 1.69E-01 mmu-miR-1839-3p 3.25E-02
mmu-miR-221-3p 1.54E-02 mmu-miR-30e-3p 1.69E-01 mmu-miR-320-3p 3.25E-02
mmu-miR-708-5p 1.61E-02 mmu-miR-382-3p 1.81E-01 mmu-miR-297b-3p 3.25E-02
mmu-miR-101a-3p 1.92E-02 mmu-miR-32-5p 1.81E-01 mmu-miR-466a-3p 3.25E-02
mmu-miR-23a-3p 1.92E-02 mmu-miR-674-3p 1.81E-01 mmu-miR-150-5p 3.25E-02
mmu-miR-30e-5p 1.92E-02 mmu-miR-329-3p 1.81E-01 mmu-miR-1903-5p 3.25E-02
mmu-miR-140-3p 1.94E-02 mmu-miR-146b-5p 1.81E-01 mmu-miR-7a-5p 3.25E-02
mmu-miR-191-5p 1.94E-02 mmu-miR-103-3p 1.81E-01 mmu-miR-741-3p 3.25E-02
mmu-miR-125a-5p 2.26E-02 mmu-miR-30b-5p 1.81E-01 mmu-miR-300-3p 3.25E-02
mmu-miR-30e-3p 2.38E-02 mmu-miR-139-5p 1.81E-01 mmu-let-7a-2-3p 3.25E-02
mmu-miR-93-5p 2.45E-02 mmu-miR-379-5p 1.84E-01 mmu-miR-503-5p 3.25E-02
mmu-miR-340-5p 2.45E-02 mmu-miR-434-3p 1.84E-01 mmu-miR-381-3p 3.25E-02
mmu-miR-144-3p 3.30E-02 mmu-miR-302a-3p 1.84E-01 mmu-miR-1249-3p 3.25E-02
mmu-miR-26b-5p 3.35E-02 mmu-miR-99b-5p 1.84E-01 mmu-miR-467e-5p 3.25E-02
mmu-miR-146b-5p 3.38E-02 mmu-miR-132-5p 1.84E-01 mmu-miR-34a-5p 3.25E-02
mmu-miR-185-5p 3.38E-02 mmu-miR-298-5p 1.98E-01 mmu-miR-467b-3p 3.25E-02
mmu-miR-107-3p 4.12E-02 mmu-miR-337-3p 3.25E-02
mmu-miR-23b-3p 4.63E-02 mmu-miR-467d-3p 3.25E-02
mmu-miR-135b-5p 4.99E-02 mmu-miR-483-3p 3.25E-02
mmu-miR-15b-5p 4.99E-02 mmu-miR-361-3p 3.25E-02
mmu-miR-676-3p 5.28E-02 mmu-miR-195-5p 3.25E-02
mmu-miR-485-3p 6.39E-02 mmu-miR-881-5p 3.25E-02
mmu-miR-376a-3p 6.40E-02 mmu-miR-151-5p 3.25E-02
mmu-miR-130a-3p 6.44E-02 mmu-miR-877-5p 3.25E-02
mmu-miR-181a-5p 6.44E-02 mmu-miR-706-5p 3.25E-02
mmu-miR-24-1-5p 6.44E-02 mmu-miR-346-5p 3.25E-02
mmu-miR-674-5p 6.45E-02 mmu-miR-713-5p 3.25E-02
mmu-miR-183-5p 6.99E-02
mmu-miR-221-5p 6.99E-02
mmu-miR-9-5p 6.99E-02
mmu-miR-124-5p 7.09E-02
mmu-miR-669n-5p 7.31E-02
mmu-miR-669c-5p 7.41E-02
mmu-miR-339-5p 7.53E-02
mmu-miR-145-5p 7.73E-02
mmu-miR-182-5p 8.21E-02
mmu-miR-429-3p 8.68E-02
mmu-miR-330-5p 8.70E-02
mmu-miR-1961-5p 9.11E-02
mmu-miR-96-5p 9.22E-02
mmu-miR-136-5p 9.39E-02
mmu-miR-30b-5p 9.39E-02
mmu-miR-34a-5p 9.66E-02

PFC NAc AMY
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Figure 4.1. Ethanol-Responsive MicroRNAs in the PFC of Humans and Mice. Venn 
diagram highlighting a common set of 14 upregulated microRNAs in prefrontal cortex of 
human alcoholics (Lewohl et al. 2011) and ethanol-treated mice (current study). 
MicroRNAs associated with the IKKβ pathway are in red. (p value empirically assessed 
after 100,000 Monte Carlo simulations). 
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Differentially expressed MicroRNAs across the three brain regions were 

subsequently screened to find validated/predicted targets associated with the IKKβ/NF-

κB pathway and five candidates were identified: let-7g, let-7f, miR-152, miR-140, and 

miR-146b. Each of the candidates shared differential expression in PFC with the human 

alcoholic, but some were changed in other brain regions, such as let-7g (NAc), miR-140 

(AMY), and miR-146b (NAc) (Table 4.1). The let-7 family has been shown to target 

TLR4 and IL-6 and regulate responsiveness to LPS (Chen et al. 2007; Iliopoulos et al. 

2009). Let-7g is predicted to target TRAF3 and IKKβ. miR-140 is upregulated after LPS 

treatment in mice (Moschos et al. 2007). miR152 inhibits TLR-triggered major 

histocompatibility complex (MHC) II expression (Liu et al. 2010) and is predicted to 

target IKKβ, IKKγ, and TRAF3. Lastly, miR-146 fine tunes many pro-inflammatory genes 

that utilize the IKKβ/NF-κB pathway (TLR4, IRAK1, TRAF6 and cytokine signaling) 

(Sonkoly et al. 2007; Virtue et al. 2012). 

 
In Vivo Validation of Brain Region-Specific MicroRNA Modulation  

 Let-7g was selected as the best candidate to manipulate in vivo since it was 

differentially expressed in both mouse and humans in the PFC, was changed in other 

brain regions (NAc), and has many validated/predicted targets associated with the 

IKKβ/NF-κB pathway (TLR4, IL-6, IKKβ). The NAc was selected since manipulations of 

the IKKβ/NF-κB pathway were successful in altering ethanol drinking phenotypes in 

dissertation chapter 3. Trial experiments for both the let-7g mimic (1 μL of 1 x 108 

vp/mL) vs. control and anti-let-7g antagomir (1 μL of 0.125 nmols) vs. control were 

conducted at 1 wk and 4 wk time points (n=6/group/time point). We measured mRNA 

levels for both precursor and mature let-7g, and its validated targets (HMGA2, and 

IGF2B1) to evaluate overexpression, and other unrelated micoRNAs (miR-140) to 

evaluate off-target effects. For the let-7g mimic at 1 week we observed a 70% increase 
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in mature let-7g and no changes in unrelated microRNAs (mir-140). We also saw a 

substantial increase in the precursor let-7g (53%) that the virus was actually expressing, 

and respectable decreases of 30 to 35% in the validated targets (HMGA2 and IGF2B1) 

(Fig. 4.2 A and B). We observed essentially the same results for the 4-week time point 

(Fig 4.2 C and D). For the let-7g antagomir at 1 week, we observed a 60% decrease in 

mature let-7g and no changes in unrelated microRNAs (mir-140), or in the precursor let-

7g. The validated targets (HMGA2 and IGF2B1) decreased 20 to 25% (Fig. 4.3 A and 

B). We observed essentially the same results for the 4-week time point except that the 

decrease in mature let-7g was blunted being 44 %, instead of 60% (Figure 4.3 C and 

D). Thus, it was determined that we had a stable modulating effect over a month and 

there was an absence of nonspecific binding at the administered doses.  
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Figure 4.2. In Vivo Validation of Let-7g Mimic. Mice were bilaterally injected into the 
NAc with a let-7g mimic and incubated for 1 and 4 weeks, respectively (N=6/group/time 
point). A) microRNA expresion 1 wk post injection. B) gene expression 1 wk post 
injection. C) microRNA expression 4 wks post injection. D) gene expression 4 wks post 
injection. Students T-test, * p < .0.05, ** p < 0.01. 
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Figure 4.2. In Vivo Validation of Let-7g Antagomir. Mice were bilaterally injected into 
the NAc with a let-7g antagomir and incubated for 1 and 4 weeks, respectively 
(N=6/gorup/time point). A) microRNA expresion 1 wk post injection. B) gene expression 
1 wk post injection. C) microRNA expression 4 wks posti injection. D) gene expression 4 
wks post injection. Students T-test, * p < .0.05, ** p < 0.01. 
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Brain Region-Specific Modulation of MicroRNAs associated with the IKKβ/NF-κB 
Pathway 

Let-7g was modulated in the NAc by either overexpression or inhibition. For let-

7g overexpression, we injected 15 mice with a lentiviral vector containing a precursor 

let-7g shRNA and 15 mice with an equivalent scrambled shRNA. Mice were left to 

recover for a week and a continuous access 2BC drinking model was started. However, 

we did not see any significant changes in ethanol consumption, preference or total fluid 

intake (Fig 4.4). We subsequently exposed the same treated mice to a more stringent 

intermittent access 2BC paradigm, but again observed no phenotypic changes in 

ethanol intake, preference or total fluid intake (Fig 4.5). For let-7g inhibition, we injected 

15 mice with a lentiviral vector containing a let-7g antagomir and 15 mice with an 

equivalent scrambled shRNA oligonucleotide. Mice were left to recover for 4 days and a 

continuous access 2BC drinking model was started. However, similar to the 

overexpression we did not see any significant changes in ethanol consumption, 

preference or total fluid intake (Fig 4.6). Upon completion of these experiments, mice 

brains were harvested and a subset (n=6/group) were micropunched at the injection 

site, and processed for qPCR to validate modulation of microRNAs/target genes. 

Results were closely matched to the previous week 4 results for the respective 

treatments (data not shown). 
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Figure 4.4. Overexpression of Let-7g in the NAc had No Effect on Ethanol 

Drinking Behaviors in a Continuous Access 2BC model. A lentiviral vector 
expressing either the precursor let-7g shRNA (let-7g-miRNA) (N =15) or an equivalent 
scrambled control was injected bilaterally into the NAc. Mice were then exposed to a 
continuous access 2BC drinking model. A) Ethanol consumption (g/kg/day), B) 
Preference, C) Total fluid intake (g/kg/day). Each point is the average of 2 days of 
drinking ± SEM. Analyzed with a two-way ANOVA with repeated measures. Statistical 
significance of let-7g-miRNA treatment compared with Bonferroni post-hoc test for 
multiple comparisons.  
  



 91 

 
 

 
 
 
Figure 4.5. Overexpression of Let-7g in the NAc had No Effect on Ethanol 
Drinking Behaviors in an Intermittent Access 2BC Model. A lentiviral vector 
expressing either the precursor let-7g shRNA (let-7g-miRNA) (N =15) or an equivalent 
scrambled control was injected bilaterally into the NAc. Mice were then exposed to an 
intermitted access 2BC drinking model. A) Ethanol consumption (g/kg/day), B) 
Preference, C) Total fluid intake (g/kg/day). Each point is the average of 2 days of 
drinking ± SEM. Analyzed with a two-way ANOVA with repeated measures. Statistical 
significance of let-7g-miRNA treatment compared with Bonferroni post-hoc test for 
multiple comparisons. 
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Figure 4.6. Inhibition of Let-7g in the NAc had No Effect on Ethanol Drinking 
Behaviors in an Continuous Access 2BC model. Either a let-7g antagomir (N =15) or 
an equivalent scrambled control oligonucleotide was injected bilaterally into the NAc. 
Mice were then exposed to a continuous access 2BC drinking model. A) Ethanol 
consumption (g/kg/day), B) Preference, C) Total fluid intake (g/kg/day). Each point is the 
average of 2 days of drinking ± SEM. Analyzed with a two-way ANOVA with repeated 
measures. Statistical significance of let-7g-miRNA treatment compared with Bonferroni 
post-hoc test for multiple comparisons. 
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DISCUSSION 
 

The fact that we discovered numerous microRNAs differentially expressed in the 

brain regions important for AUD underscores the relevance of gene regulation by 

miRNAs in response to alcohol consumption. Likewise, the observation that the many of 

the differentially expressed microRNAs in the PFC were common between mouse and 

human, and even changed in the same direction, suggests there is conservation of 

alcohol-responsive microRNA regulatory pathways. However there are caveats when 

trying to make this comparison, our analysis represents mice drinking for a relatively 

short time (20 days) and were probably undergoing withdrawal since they were 

harvested 24 hours post drinking experiments. Conversely, the post-mortem human 

brain samples originated from lifelong human alcoholics that were heavy drinkers until 

the time of death, and thus would not be in acute withdrawal. For mouse studies, it 

would be beneficial to conduct longer drinking studies and harvest them immediately 

after drinking to better replicate what is happening in the human samples. 

The connection between microRNAs and neuroimmune in AUD is becoming 

increasingly evident. It has been shown that neuroimmune signaling pathways, such as 

those mediated by TLRs and chemokines, are up regulated by alcohol and over-

targeted by up-regulated microRNAs (Nunez et al. 2013; Lewohl et al. 2011; Nunez and 

Mayfield 2012). This was evident in our study where we found many up regulated 

ethanol-responsive microRNAs associated with the IKKβ/NF-κB Pathway (let-7g, let-7f, 

miR-152, miR-146b, and miR-140). In particular, let-7g stood out as an attractive 

modulation target in the NAc because it appears to be a central regulator in alcohol-

responsive gene modules preferentially targeted by alcohol-induced miRNAs. (Nunez et 

al. 2013). Also, a previous study manipulated a let-7 family member in the NAc and was 

able to alter cocaine-induced conditioned place preference behavior in rats 



 94 

(Chandrasekar and Dreyer 2011). Even though we demonstrated successful modulation 

of let-7g in the NAc as evident by changes in gene expression of both precursor and 

mature let-7g, and those of known targeted genes (HMGA2 and IGF2B1), our 

manipulation produced no changes in ethanol drinking phenotypes in 2BC tests. There 

are many possible explanations for this outcome. For example, our microRNA 

expression profiles came from adult female hybrid F1 FVBxB6 mice that may or may not 

be relevant in adult male C567BL/6J mice since they are a different sex and a slightly 

different mouse strain. Moreover the F1 FVBxB6 mice have a higher propensity to drink 

more alcohol that the C57BL/6J (Blednov et al. 2005) and were exposed to a 2BC-DID 

drinking paradigm that leads to higher blood ethanol concentrations than our drinking 

studies (Blednov et al. 2014). This could mean that our microRNA expression profile 

might only exist or be important when higher amounts of ethanol are present. Lastly, let-

7g is known to be related/target TLR4 responsive neuroimmune signaling (Iliopoulos et 

al. 2009), so it is possible that the TLR4 pathway may not be important for regulating 

ethanol drinking behaviors in the NAc. Regardless of our in vivo results, miRNAs are 

still promising therapeutic candidates for the treatment of alcoholism and other 

substance abuse disorders. 
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CHAPTER V:  Discussions and Implications 

 

AUD is a devastating disease that affects over 17 million people in the US and is 

responsible for exacting an immeasurable toll on the individual’s lives, families, and 

society (SAMHSA 2015). It is characterized as a chronic, relapsing condition that has 

very few treatment options (Jonas et al. 2014). Although the exact etiology of alcoholism 

is unknown, it is thought that it arises from cortical executive dysfunction, cognitive 

inflexibility, and increased limbic anxiety, and impulsivity (Vetreno and Crews 2014). 

These neurobiological changes are thought to be, in part, mediated by increased pro-

inflammatory neuroimmune signaling in areas of the brain such as the PFC, NAc, AMY 

and VTA (Crews and Vetreno 2014; Koob 2014; Koob and Volkow 2010; Vetreno and 

Crews 2014).  

Current theory suggests that increases in cytokines following alcohol intake 

promotes excessive alcohol consumption, producing a positive feedback loop promoting 

additional inflammatory responses and leads to persistent neurobiological changes in 

the brain (Blednov et al. 2011; Crews and Vetreno 2015; Vetreno and Crews 2014). 

This is consistent with previous studies showing that null mutant mice lacking genes 

necessary for pro-inflammatory signaling pathways displayed both decreased levels of 

cytokines and reduced voluntary ethanol consumption (Ponomarev et al. 2012; Blednov 

et al. 2005). Likewise, LPS-treated mice had prolonged increases in voluntary ethanol 

consumption (Blednov et al. 2011). However, genes do not solely regulate the 

neuroimmune response to alcohol. MicroRNAs have been implicated in 

neuroadaptations resulting from long-term ethanol exposure in humans (Lewohl et al. 

2011), and participate in positive pro-inflammatory feedback loops including entities 

such as NF-κB, let-7, and IL-6 in cell culture (Iliopoulos et al. 2009) .  
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Activation of NF-κB is an important part of the neuroimmune response because 

of its role in transcribing numerous pro-inflammatory chemokines and cytokines 

(Perkins 2007). In fact, NF-κB DNA binding in the brain has been shown to increase 

with ethanol treatments (Crews et al. 2006) and the human NF-κB1 gene, which codes 

for the precursor of the p50, is genetically linked to alcoholism (Edenberg et al. 2007). 

However, NF-κB is also crucial for normal physiological functions such as regulating 

immunity, cell proliferation and cell death. In this regard, non-selective inhibition of NF-

κB could be detrimental to both normal development and susceptibility to infection 

(Gamble et al. 2012; Perkins 2007). The IKK complex (IKKα, IKKβ and IKKγ) includes 

key mediators for numerous pro-inflammatory pathways that ultimately result in the 

activation of the NF-κB canonical pathway, or alternatively called the IKKβ/NF-κB 

pathway. However, not all IKK isoforms are specific to a particular NF-κB pathway. For 

example, IKKβ primarily regulates the NF-κB canonical pathway (transcription of pro-

inflammatory genes/anti-apoptosis), IKKα regulates the NF-κB non-canonical pathway 

(cell cycle regulation/proliferation), and IKKγ participates in both pathways (Gamble et 

al. 2012; Perkins 2007). We investigated the role of IKKβ and the IKKβ/NF-κB pathway 

in modulating drinking behaviors based upon previous finding alcohol-dependent 

behaviors are mediated in part by pro-inflammatory genes. 

Our understanding of how neuroimmune systems affect ethanol-drinking 

behavior is constantly expanding; however, very little is known about the IKKβ/NF-κB 

pathway’s role. There are many questions that this study addressed. For example, does 

the IKKβ/NF-κB pathway even regulate ethanol-drinking behaviors? There are no 

published studies that have directly manipulated IKKβ either in vitro or in vivo to 

specifically investigate alcohol or any other substance abuse disorder. Even though it is 

generally accepted that NF-κB is ubiquitously expressed throughout the body (Perkins 



 97 

and Gilmore 2006), it is still a matter of debate whether peripheral and/or central 

mediation by neuroimmune pathways are important in the development of AUD (Crews 

2012; Szabo and Lippai 2014; Vetreno and Crews 2014). What brain regions play a role 

the IKKβ/NF-κB pathway’s effect on ethanol drinking behaviors? There is extensive 

evidence supporting the PFC, NAC, AMY, and VTA in the neurobiology of AUD (Koob 

and Volkow 2010). However, little is known where the IKKβ/NF-κB pathway is 

expressed and its involvement in modulating ethanol-drinking behavior in these brain 

areas. In what central nervous system cell types does the IKKβ/NF-κB pathway exist, 

and which are critical for IKKβ/NF-κB pathway-mediated changes in ethanol drinking 

phenotypes? It is currently thought that astrocytes and microglia are the predominate 

cell types involved in neuroimmune-mediated changes in ethanol drinking (Crews and 

Vetreno 2015; Szabo and Lippai 2014). What upstream pro-inflammatory signaling 

cascades are responsible for mediating the IKKβ/NF-κB pathway’s effect on ethanol 

drinking? The IKK complex represents a point of convergence for many pro-

inflammatory extracellular signals, including endotoxins (LPS), pro-inflammatory 

cytokines (IL-1 and TNF-α), lymphokines, growth factors, double stranded RNA, certain 

bacterial antigens, and B or T-Cell activation, etc. (Fig.1.1.). It is unclear which one of 

these stimuli is important in mediating the IKKβ/NF-κB pathway’s effect on ethanol 

drinking. What ethanol-responsive microRNAs are differentially expressed in these brain 

regions? Even though the field of investigating ethanol-responsive microRNAs is ever 

increasing, there is limited knowledge about brain region-specific changes in 

microRNAs in response to ethanol exposure. Can microRNAs associated with the 

IKKβ/NF-κB pathway modulate ethanol drinking? There are only a few studies that have 

looked at which micoRNAs are important for regulating the IKKβ/NF-κB pathway, but 
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none have investigated how modulating these specific microRNAs would affect ethanol 

drinking behaviors (Bazzoni et al. 2009; Virtue et al. 2012).  

The goal of this dissertation was to help elucidate the IKKβ/NF-κB pathway’s role 

in AUD by answering the questions presented above through two specific aims. Specific 

Aim I assessed how neuroimmune signaling genes in the IKKβ/NF-κB pathway regulate 

voluntary ethanol drinking by determining brain region and cell type-specific expression 

and modulation of genes associated with the IKKβ/NF-κB pathway. Specific Aim II 

assessed how ethanol-responsive microRNAs associated with the IKKβ/NF-κB pathway 

regulate voluntary ethanol drinking by determining brain region-specific expression and 

modulation of microRNAs associated with the IKKβ/NF-κB pathway. We hypothesized 

that inhibiting IKKβ would limit/decrease voluntary ethanol consumption based on 

previous findings that over-activation of pro-inflammatory neuroimmune signaling 

promotes alcohol drinking (Blednov et al. 2011), and inhibiting this signaling reduces 

alcohol drinking (Ponomarev et al. 2012),.  

To explore genes associated with the IKKβ/NF-κB pathway, we determined brain 

region and cell-type expression characteristics of IKKα, IKKβ, IKKγ, and IKKε. These 

genes were selected since they make up the IKK complex (IKKα, IKKβ, IKKγ) that is 

responsible for disinhibiting NF-κB and so that it can translocate from the cytosol to the 

nucleus to transcribe numerous pro-inflammatory cytokines and chemokines (Perkins 

2007). While IKKε was chosen since it has been implicated to interact with NF-κB, but 

through a poorly understood mechanism (Chau et al. 2008; Sankar et al. 2006; Takeda 

and Akira 2004). We discovered that all the IKK isoforms were found primarily in 

neurons (>80% of neurons), ubiquitously expressed (>60% of cells in the PFC, NAc and 

AMY), and that the brain regions studied (PFC, NAc, AMY, and VTA) were 

predominantly neuronal in composition. All the isoforms share a nuclear and cytosolic 

localization in the neurons and astrocytes, and at distinct areas at the beginning of 
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major processes in microglia, with the notable exception of IKKγ that is only found in the 

nucleus of astrocytes and neurons. The abundant expression throughout brain regions 

and cell types is likely due to the essential involvement of the IKK isoforms in many 

critical physiological pathways, such as immunity, inflammation, and cell-cycle 

regulation (Chau et al. 2008; Hacker and Karin 2006). However, the predominate 

neuronal expression of the IKK isoforms and neuronal composition of the individual 

brain regions were unexpected since glia cells (astrocytes and microglia) are commonly 

thought to be the preeminent cell type for neuroimmune signaling (Bailey et al. 2006; 

Tian et al. 2012; Tian et al. 2009), and to make up the vast majority of cells in the brain 

(Allen and Barres 2009; Bear et al. 2007; Kandel et al. 2000). The cytosolic location 

agrees with the notion that IKK isoforms are functionally active in the cytosol (Gamble et 

al. 2012; Perkins 2007). IKKγ’s nuclear localization in neurons and astrocytes may be a 

regulatory mechanism to prevent the IKK complexes from becoming active until pro-

inflammatory stimuli translocates them into the nucleus. Interestingly, all the members 

of the IKK complex (IKKα, IKKβ, IKKγ) share an almost identical expression profile with 

brain region-specific expression highest in the NAc, followed by the AMY and PFC, and 

least in the VTA, and cell type-specific expression in almost all neurons, about half of 

microglia, and a third of astrocytes. A notable exception is that IKKγ is found in a slightly 

higher percentage of cells than IKKα and IKKβ, but then again, IKKγ is a non-catalytic 

protein for many IKK-dependent pathways (Hacker and Karin 2006; Perkins 2007). 

These findings help answer the question regarding the brain region and cell type-

specificity of genes associated with the IKKβ/NF-κB pathway, and provides guidance to 

selectively target this pathway in vivo. 

We manipulated IKKβ both peripherally and centrally to examine the role of the 

IKKβ/NF-κB pathway in voluntary 2BC ethanol drinking paradigms. To evaluate 

peripheral effects, the pharmacological IKKβ antagonists, TPCA-1 and sulfasalazine, 

were systemically administered and drinking behaviors assessed with a 2BC and 2BC-
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DID tests. Both antagonists act only peripherally and do not cross the BBB (Liu et al. 

2012b). TPCA-1 is a selective small molecule inhibitor of IKKβ (Podolin et al. 2005), 

while sulfasalazine possess strong IKKβ inhibitory activity (Lappas et al. 2005). TPCA-1 

reduced ethanol consumption and preference with no changes in total fluid intake in 

both the 2BC and the 2BC-DID tests. Sulfasalazine reduced ethanol consumption in the 

2BC test, but only reduced ethanol preference in the 2BC-DID with no changes in total 

fluid intake in either test. One possible explanation for this slight discrepancy in the 

2BC-DID results is that TPCA-1 specifically inhibits IKKβ, while sulfasalazine, even 

though it possess strong activity towards IKKβ, is not as specific as TPCA-1 for IKKβ. 

To evaluate central effects, we performed a virally-mediated IKKβ genetic knockdown in 

brain-specific regions (NAc and CeA) and drinking behaviors were assessed with a 2BC 

test. We selected the NAc and CeA because of their previously stated roles in AUD 

development (Koob and Volkow 2010). We observed that knockdown of IKKβ in both 

the NAc and CeA decreased ethanol intake and preference without affecting total fluid 

intake or sweet tastes preferences. Furthermore, the genetic knockdown of IKKβ 

decreased pro-inflammatory cytokines (TNF-α and IL-6) that are commonly associated 

with the IKKβ/NF-κB pathway (Perkins 2007). We then investigated the tropism of our 

viral vector and discovered that it primarily transduced neurons. These results provide 

insight into the central vs peripheral question by suggesting that both are important for 

modulating ethanol-drinking phenotypes, but that certain brain regions, such as the NAc 

and CeA can mediate ethanol-drinking on their own. This new data also supports our 

previous IKK characterization study, and reiterates the importance of the IKKβ/NF-κB 

pathway in neurons. 
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Lastly, we explored the role of ethanol-responsive microRNAs associated with 

the IKKβ/NF-κB pathway. We first determined which microRNAs were differentially 

expressed in the PFC, NAc, and AMY. Female F1 FVBxB6 hybrid mice were exposed 

to a 20-day 2BC-DID paradigm. The sex, strain, and drinking test were selected to 

facilitate the highest possible drinking in order to maximize differences in microRNA 

expression. For example, females generally drink more than males, the F1 FVBxB6 

strain drink more than C57BL/6J mice, and the 2BC-DID test generates higher ethanol 

consumption than the continuous 2BC test (Blednov et al. 2005; Thiele and Navarro 

2014). Upon completion of drinking, RNA was extracted, microarray expression analysis 

was performed, and the results were validated with qPCR. We discovered numerous 

microRNAs that were changed in each brain region (77 in the PFC, 49 in the NAc, and 

60 in the AMY). Interestingly, all the microRNAs in the PFC were upregulated, while 

those in the NAc and AMY had mixed levels of regulation with the NAc being primarily 

downregulated and the AMY primarily upregulated. There were numerous microRNAs 

that were common between the brains regions, but changed in different directions. For 

example let-7g was upregulated in the PFC and downregulated in the NAc. This 

suggests that some microRNAs might play a unique role depending on the brain region. 

Moreover, the expression pattern in the PFC was similar to that seen in a study that 

examined the PFC of human alcoholics that reported 35 differentially expressed 

microRNAs that were all up regulated with 14 of these common with our mouse results 

(Lewohl et al. 2011). Interestingly, 5 of these 14 microRNAs were associated with the 

IKKβ/NF-κB pathway. This suggests there may be conserved ethanol responsive-

microRNA-mediated pathways between the two species.  

We selected let-7g for in vivo modulation in NAc to explore the effects of a 

microRNA that is associated with the IKKβ/NF-κB pathway on ethanol drinking. Let-7g 
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was selected for a number of reasons. It was differentially expressed in the human and 

mouse PFC, as well as other brain regions including the NAc. Moreover, the let-7 family 

is responsible for mediating the effects of LPS by targeting TLR4 (Chen et al. 2007), 

regulating NF-κB and IL-6 (Iliopoulos et al. 2009), and let-7g is predicted to specifically 

target IKKβ. The NAc was selected since we previously demonstrated that knocking 

down IKKβ in this area decreases ethanol consumption and preference, and since let-

7g is predicted to target IKKβ, we expected to see a similar change. Moreover, the let-7 

family has been shown to alter behavioral phenotypes in other substance abuse rodent 

models in the NAc (Chandrasekar and Dreyer 2011). We observed successful 

overexpression of let-7g in the NAc. Both the precursor and mature let-7g mRNA levels 

were increased by over 50% and 70%, respectively, over the period of the behavioral 

experiments (4 weeks). There were no negative effects on the microRNA processing 

machinery as indicated by an absence of changes in unrelated microRNAs. The ability 

of let-7g to modulate the known validated target genes of HMGA2 and IGF2B1 were 

verified when we observed approximately 30% reductions in both of their mRNA 

expression levels. Likewise, we observed similar results, but in opposite direction, when 

we inhibited let-7g. Unfortunately, we did not see any ethanol drinking phenotypic 

changes in either the overexpression or inhibition let-7g in the NAc using either 

continuous access or limited access 2BC drinking tests. There are many possible 

explanations for this outcome. For example, the microRNA expression profiles may be 

different in the naturally higher drinking female F1 FVBxB6 hybrid strain then in the 

male C57CL/6J mice used in the behavioral experiments (Blednov et al. 2005). Another 

possibility is let-7g is known to be target TLR4 responsive neuroimmune signaling 

(Iliopoulos et al. 2009), so it is possible that the TLR4 pathway may not be important for 

regulating ethanol drinking behaviors in the NAc. This ideas is supported by previous 
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work in which we specifically manipulated TLR4 and the TLR/IL-R adaptor protein, 

MYD88, in the NAc and observed no changes in ethanol drinking behavior during 2BC 

tests (Fig 5.1 and 5.2). Similarly, we observed relatively modest changes (20 to 30%) in 

the validated targets of let-7g, which could possibly indicate that this microRNA only fine 

tunes expression of its targets that may not produce a noticeable phenotypic change, or 

that we simply did not inject a high enough dose of (lentivirus/antagomir) to elicit a 

significant effect. Alternatively, IKKβ is only a predicted target of let-7g, and thus let-7g 

may not actually target this molecule. However, we still found many other ethanol-

responsive-microRNAs associated with the IKKβ/NF-κB pathway in the PFC, NAc, and 

AMY, which could be promising therapeutic candidates for the treatment of AUD. 
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Figure 5.1. TLR4 Knockdown in NAc had no Effect on Ethanol Intake during 2BC 
test Tlr4F/F Mice. A) Ethanol consumption (g/kg/24h). B) Preference C) Total fluid intake 
(g/kg/24h). Each point is the average of 2 days of drinking ± SEM. Main effects were 
determined using a two-way ANOVA with repeated measures. Statistical significance of 
LV-EGFP-Cre treatment compared with corresponding LV-EGFP-Empty was 
determined using a Bonferroni post-hoc test for multiple comparisons. (N = 20 LV-Cre-
EGFP, N = 10 LV-Cre-Empty, and N= 10 Untreated Control). 
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Figure 5.2. MYD88 Knockdown in NAc had no Effect on Ethanol Intake during 2BC 
test Myd88F/F Mice. A) Ethanol consumption (g/kg/24h). B) Preference C) Total fluid 
intake (g/kg/24h). Each point is the average of 2 days of drinking ± SEM. Main effects 
were determined using a two-way ANOVA with repeated measures. Statistical 
significance of LV-EGFP-Cre treatment compared with corresponding LV-EGFP-Empty 
was determined using a Bonferroni post-hoc test for multiple comparisons. (N = 10 LV-
Cre-EGFP, N = 10 LV-Cre-Empty). 
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Our results provide novel evidence that peripheral or central inhibition of IKKβ 

decreases ethanol drinking. Ethanol could induce peripheral pro-inflammatory cytokines 

that ultimately activate expression of immune-related genes in the brain or it could 

directly stimulate central neuroimmune responses. Inhibiting IKKβ-mediated signaling 

could limit the peripheral and central inflammatory effects of ethanol. Pharmacological 

data demonstrate that neither sulfasalazine nor TPCA-1 can penetrate the blood brain 

barrier, so their anti-inflammatory effect would be peripheral (Liu et al. 2012a). One 

possible mechanism is that high doses of ethanol (causing the gut to become 

permeable by disrupting tight junctions and allowing the gut biome to enter the portal 

circulation and subsequently the liver (Ferrier et al. 2006; Sims et al. 2010). Biome 

leakage contain endotoxins, such as LPS, which can induce Kupffer cell activation in 

the liver resulting in secretion of TNF-α and other pro-inflammatory cytokines into the 

blood (Qin et al. 2008). In fact, LPS levels are elevated in the serum of alcoholics 

(Szabo and Lippai 2014). Ethanol and pro-inflammatory cytokines, such as TNF-α, are 

then transported across the blood brain barrier (BBB) (Qin et al. 2008; Banks and 

Erickson 2010; Vetreno and Crews 2014). Even though the exact mechanism for the 

movement of cytokines across the BBB has yet to be fully elucidated, it is thought that 

they are either directly transported across by receptors (e.g., TNF-α by TNF-α receptor) 

or indirectly activate the release of cytokines through endothelial cells (Watkins et al. 

1995; Mayfield et al. 2012; Banks and Erickson 2010). The former method is supported 

by a study that demonstrated radiolabeled TNF-α does directly cross BBB (Pan and 

Kastin 2002). However, it is unlikely that LPS itself can directly cross the BBB (Singh 
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and Jiang 2004). Once ethanol and the peripheral cytokines (TNF-α) enter the brain 

they activate positive loops of pro-inflammatory neuroimmune signaling in neurons and 

glial cells that all converge upon nuclear translocation of NF-κB. Consequently, NF-κB 

transcribes numerous pro-inflammatory mediators that amplify through autocrine and 

paracrine positive loops (Vetreno and Crews 2014). Unfortunately, It is unknown if the 

levels of ethanol in our voluntary drinking models would produce high enough 

concentrations for this to happen as this effect has only been demonstrated when 

ethanol is administered in concentrated doses over a short period of time using gastric 

gavage. However, if the gut did become leaky, the IKKβ inhibition from the 

pharmacological inhibitors would probably be near the beginning of this pro-

inflammatory cascade in the liver. It is here that LPS, which is a ligand for Toll-like 4 

receptors (TLR4), would induce the expression of TNF-α and other pro-inflammatory 

cytokines through IKKβ and NF-κB (Fig. 5.3) (Vetreno and Crews 2014). 

Conversely, it is possible that the reduced ethanol drinking observed from the 

local knockdown of IKKβ in the NAc and CeA prevented the activation of NF-κB 

pathway in neurons, effectively reducing the amplification of pro-inflammatory mediators 

through autocrine and paracrine positive loops. More specifically, it is known that 

ethanol can induce the high-mobility group box 1 (HMGB1) protein, which is a nuclear 

protein that is ligand for TLR4 and has endogenous cytokine-like activity. This activation 

occurs primarily in neurons and is responsible for activating microglia and neuronal 

TLR4 mediated by IKKβ resulting in expression of pro-inflammatory cytokines (Zou and 

Crews 2014; Crews and Vetreno 2015). Moreover, peripheral cytokines such as TNF-α 
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can activate TNF receptor pathways in neurons, astrocytes, or microglia that are also 

mediated by IKKβ through NF-κB that produce additional pro-inflammatory cytokines 

(Vetreno and Crews 2014; Crews and Vetreno 2015). Initiation of these pro-

inflammatory mediators ultimately reinforces positive feedback loops (Vetreno and 

Crews 2014; Crews and Vetreno 2015). However, if there is no IKKβ in the neurons, 

than this could possibly interrupt these pro-inflammatory feedback loops (Fig. 1) (Zou 

and Crews 2014) (Fig. 5.3). 
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Figure 5.3. Possible Mechanism of the IKKβ/NF-κB Pathway can Affect Drinking 
Both Peripherally and in Brain Specific Regions. For peripheral activation: Ethanol in 
gut may cause leakage of bacterial products (LPS), which in turn activates TLR4 
receptors in liver, and subsequently TNF-α, which can cross the barrier through a 
transporter and activate the IKKβ/NF-κB pathway and induce reinforcing pro-
inflammatory positive feed forward loops that cause long term neurobiological changes 
in the brain. For central activation: Ethanol enters the brain directly and activates the 
IKKβ/NF-κB pathway to induce the same pro-inflammatory positive feed forward loops.  
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In summary, we found that all the members of the IKK complex (IKKα, IKKβ, 

IKKγ), which are the key mediators of the IKKβ/NF-κB pathway, are located primarily in 

neurons. The IKK complex is ubiquitously found throughout brain regions associated 

with alcohol reward and dependence (PFC, NAc, AMY, and VTA), which are primarily 

neuronal in cell-type composition. Knockdown of IKKβ both peripherally or in the brain-

specific regions of the NAc and CeA decreased/limited voluntary ethanol drinking in 

2BC tests. The central knockdown of IKKβ down was primarily in neurons and reduced 

production of pro-inflammatory cytokines (TNF-α and IL-6) in both the NAc and CeA. 

There were numerous differentially expressed ethanol-responsive microRNAs in the 

PFC, NAc and AMY. Many of the ethanol-responsive microRNAs in the PFC of mice 

were conserved in human alcoholics suggesting there may be conserved microRNA-

mediated pathways between the two species. Interestingly, 5 out the 14 conserved 

microRNAs in the PFC were associated with the IKKβ/NF-κB pathway. Of these, let-7g 

was the most prominent member. Let-7g was successfully modulated in the NAc, but 

produced no changes in ethanol drinking behaviors. However, this result does that 

exclude the possible significance of microRNAs associated with the IKKβ/NF-κB 

pathway regulating ethanol drinking, but rather justifies additional research.  Thus, the 

work contained in this dissertation, when taken in its totality, strongly supports the 

hypothesis that inhibiting the IKKβ/NF-κB pathway decreases voluntary ethanol 

drinking. However, future studies are needed to better elucidate the exact mechanism, 

such as exploring which of the upstream stimuli are essential for IKKβ/NF-κB pathway’s 

effect on ethanol drinking behaviors and to determine how microRNAs play a role. 
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