

The system-wide economics of a carbon dioxide capture, utilization, and storage network: Texas Gulf Coast with pure CO₂-EOR flood

GCCC Publication Series #2013-11

C.W. King G. Gulen S.M. Cohen V. Nunez-Lopez

Keywords: economics

Cited as:

King, C.W., G. Gulen, S.M. Cohen, and V. Nunez-Lopez, 2013, The system-wide economics of a carbon dioxide capture, utilization, and storage network: Texas Gulf Coast with pure CO₂-EOR flood, GCCC Publication Series #2013-11, originally published in *Environmental Research Letters*

TEXAS Geosciences Bureau of Economic Geology Jackson School of Geosciences The University of Texas at Austin

Abstract

This letter compares several bounding cases for understanding the economic viability of capturing large quantities of anthropogenic CO₂ from coal-fired power generators within the Electric Reliability Council of Texas electric grid and using it for pure CO₂ enhanced oil recovery (EOR) in the onshore coastal region of Texas along the Gulf of Mexico. All captured CO₂ in excess of that needed for EOR is sequestered in saline formations at the same geographic locations as the oil reservoirs but at a different depth. We analyze the extraction of oil from the same set of ten reservoirs within 20- and five-year time frames to describe how the scale of the carbon dioxide capture, utilization, and storage (CCUS) network changes to meet the rate of CO₂ demand for oil recovery. Our analysis shows that there is a negative system-wide net present value (NPV) for all modeled scenarios. The system comes close to breakeven economics when capturing CO₂ from three coal-fired power plants to produce oil via CO₂-EOR over 20 years and assuming no CO₂ emissions penalty. The NPV drops when we consider a larger network to produce oil more quickly (21 coal-fired generators with CO_2 capture to produce 80% of the oil within five years). Upon applying a CO_2 emissions penalty of $60\$2009/tCO_2$ to fossil fuel emissions to ensure that coal-fired power plants with CO₂ capture remain in baseload operation, the system economics drop significantly. We show near profitability for the cash flow of the EOR operations only; however, this situation requires relatively cheap electricity prices during operation.