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Application of Machine Learning Algorithms for Coral Disease Fate in Caribbean Corals

- The genotype fragment matching design provides a baseline, exposure, 
and infection rates for four different species of corals exposed to two 
different coral diseases 1,2. 

- Disease resistance follows the same pattern in both diseases.  
- Through a layering of machine learning methods, various unbiased and 

supervised methods will help indicate any genes or biological func-
tions that could act as a marker for disease fate. 

- Unsupervised machine learning approaches include PCA, IPCA, and 
sIPCA. 

- Supervised machine learning approaches include PLS-DA, Logistic 
Regression, and SVM. 

Background
 
- Unsupervised approaches highlight the lineage-specific differences between healthy species.
- Introducing non-linear approaches in unsupervised decreases the noise of lineage-based genetic expression 
- PLS-DA does not provide additional information already obtained from Logistic Regression
- 237 genes were significantly correlated to disease outcome through a logistic regression study 
- 100 genes were significantly correlated to disease outcome through the SVM-RFE study 
- Supervised approaches like SVM-RFE and Logistic Regression can be used to identify biological func-

tions correlated to disease outcome
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Citations

- 38 healthy coral fragments were used in this study
- Transcriptome reads were trimmed, filtered, sorted, indexed, and quan-

tified using fastp, BBSplit, and salmon 3,4,5. 
- Normalized read counts were generated using tximport and DESeq2 

for each individual 6,7. 
- Annotations with an e-value of < 1e-5 were kept in the master filtered 

list. All read counts were normalized by rlog by Treatment and Species 
Host. 

- PCA was performed on all read counts using package PCAtools 8.  
- IPCA and PLSDA on all species using package mixOmics 9. 
- Logistic regression and Support Vector Machine Learning-RFE 

(SVM-RFE) were performed using RegParallel and sigFeature with bi-
ological enrichments identified through STRINGv11 10, 11, 12. 

- All signficant genes were analyzed using ggvenn 13

Methods

Figure 2: All unsupervised approaches include information regarding their disease status; 
Diseased SCTLD or Diseased WP and Exposed SCTLD and Exposed WP. Filled samples
 indicated diseased fate, and outlined samples indicated disease exposure only. Red 
indicates exposure to SCTLD pathogen, and Blue indicates exposure to WP. A) PCA has 
a 31.14% variation along the x-axis and a 29.61% variation along the y-axis. Groupings 
follow lineage, with Mcav and Oanu grouped. B) IPCA has a variation of 28% along the 
x-axis and 27% along the y-axis. Species separate, and Past and Mcav are close together 
following disease outcome. C) sIPCA looking at the top 20 genes that influence variance, 
show greater separation within species regarding disease outcome. There is a 26% 
variation on the x-axis and a 28% variation on the y-axis.   
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Figure 1: Samples provided in this study come from genotype match studies. Four coral species overlapped in these 
two studies, and their disease resistance and susceptibility were the same in both pathogen challenges. Utilizing the 
fragmentation process, which includes a coral colony being split and then maintained either in a healthy environment 
or exposed to a pathogen, we can identify the fate of the healthy samples. Using the expression and known fate, we can 
identify differences in genetic expression correlated to disease fate.  

- Unsupervised approaches that decrease lineage-specific noise can help us identify species' unique charac-
teristics that influence their disease susceptibility. 

- The combined information of unsupervised and supervised approaches can help us identify a variety of 
genes, both lineage-specific and biologically relevant to disease outcomes. 

- Binary classifiers such as SVM-RFE and Logistic Regression have more significant information than a su-
pervised approach with multiple variables (disease assignment in PLS-DA) 

- Focusing on approaches like Logistic Regression and SVM-RFE will provide greater insight into the bio-
logical processes present/absent or genetic expression variation that plays into disease outcome. 

Conclusions

Figure 3: All machine learning needed to be 
compared to see what information became 
valuable to the project. Looking at the 38 coral 
colonies that remained healthy during this 
study, we can organize the two significant 
factors that make corals susceptible to disease; 
lineage-specific qualities and biological 
functions present/absent or frontloaded by an 
individual. This divide in information follows 
the unsupervised and supervised approaches. 
B) Taking the top 20 significant variable genes 
from sIPCA, the top 40 significant variable 
genes from PLS-DA, the top 100 significantly 
correlated genes from SVM-RFE, and the top 
237 significantly correlated genes from logistic 
regression, we identified overlaps of 
significant gene outcomes between PLS-DA 
and logistic regression and SVM-RFE. 
Logistic regression, sIPCA, and SVM-RFE 
provide significant genes associated with 
disease outcomes or lineage-specific qualities. 
C) When identifying lineage-specific traits, 
selecting the least amount of noise is crucial. 
All unsupervised results showed groupings 
based on species. The introduction of 
independence variation through IPCA 
decreased lineage-based noise to allow for 
identifying lineage-based traits relevant to 
disease outcome. D) Biological functions were 
found through STRING v11 analysis of 237 
Logistic regression genes and 100 SVM-RFE 
genes. For logistic regression, four enrichments 
were found. For SVM-RFE no enrichments 
were found. These biological functions can 
be further examed through presence/absence 
and heatmap expression to see how these 
functions relate to disease outcome. 
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Linear approaches like PCA may mask information regarding 
disease outcomes due to evolutionary lineage. Introducing 

independence into the unsupervised algorithms through IPCA 
helps decrease lineage-related noise. By running sparse on IPCA, 

we can identify which genes are driving the di�erentiation.
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Signi�cantly correlated diseases identi�ed through supervised approaches
can be anlayzed for biological enrichment through STRING v11. We see 
enrichments in Logistic Regression through four signi�cant biological 

enrichmentsand SVM-RFE having no enrichments. PLS-DA is encompases 
by Logistic Regression and SVM-RFE overlap.
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