

OBJECT–ORIENTED MODELING AND FAULT DETECTION OF A POWDER
FEEDER FOR A LASER METAL DEPOSITION SYSTEM

Robert G. Landers*, Michael Hilgers†, Frank W. Liou*, and Bruce M. McMillin†

*Department of Mechanical and Aerospace Engineering and Engineering Mechanics

†Department of Computer Science
University of Missouri at Rolla, Rolla, Missouri 65409

ABSTRACT
One of the most critical components of a laser metal deposition system is the powder feeder unit.
Techniques are required to efficiently design and analyze these systems and to ensure fault
tolerance during the operation. In this paper, a model of the powder feeder unit, based on object–
oriented abstractions of it components, is developed. This model is modular in that specific
components can be efficiently updated or replaced with components that perform a similar
function. In addition, the model can be used for simulation allowing for efficient design and
analysis. Assurance of the correctness of the powder feeder system is obtained from concurrent
run–time evaluation of temporal logic expressions. A simulation example is provided.

INTRODUCTION

Laser Metal Deposition System
A novel hybrid manufacturing system consisting of integrated laser metal deposition and
machining processes has been developed at the University of Missouri at Rolla [LiCLJBA01].
The system includes a 2.5 kW Nd–YAG laser, custom–built powder feeder system capable of 5–
15 g/min continuous flow rate, and a five–axis CNC machining center. Additional sensors have
been added to the system to sense the bead profile and melt pool temperature. Monitoring and
control is performed on a National Instrument’s PXI 8170/850 MHz real–time processor. The
software performs communication with the machining center, monitoring and control of the
powder feeder, laser, and deposition process, and fault detection and correction. The system
(hardware, process, and software) is very complicated and has stringent safety and correctness
requirements. To gain a greater understanding of the overall system performance, advanced
modeling techniques such as object–oriented modeling are required. Object–oriented modeling
allows efficient model construction and has the added benefit of modularity (i.e., the model can
easily be modified as the system design is modified with new hardware and software
components). Since the safety and correctness properties are of paramount concern, advanced
fault tolerance techniques must be employed to ensure both the safety and liveness properties of
the software system as well as safe and productive operation of the manufacturing system.

Object–Oriented Modeling
Two approaches may be adopted to model the laser metal deposition system: algorithmic and
object–oriented. The algorithmic perspective [BOST86] views all software processes as a
composition of simple functions in the form of algorithms. While there is nothing inherently

271

wrong with this approach, software developed using this perspective has proven to be brittle.
That is, a small change to a basic sub–function can have a far–reaching impact, even to the point
of disabling the entire software system. The object–oriented approach, meanwhile, directly
models the way individual components of the system communicate or interact. For example, the
rate at which a screw feeder turns depends on the voltage given to the motor. An algorithm
approach would write the functional relationship between the rate of turn and the voltage as it
depends on a number of physical parameters. In the object–oriented approach, the physical
parameters determine the state of the motor and screw feeder objects. The voltage is modeled as
a “message” communicated to the motor object. The screw object turns at the “request” of the
motor object. While this may be unusual way to view the mechanical interactions, it should be
apparent that changing a motor, for example, is very localized in the software system. Hence, the
object model approach claims to offer easy reusability not only of individual objects but entire
designs [MEYE87]. The object model approach also facilitates utilization of the full potential of
powerful languages such as C++ [STRO87] and it leads to software that is built upon stable
intermediate forms and is more resilient to change [BOOC91].

Dynamic Fault Detection
Dynamic failure detection is accomplished through run–time predicate detection; if a predicate (a
logical expression on the system variables) is violated, the system is halted before any harm can
come. Recent work has shown the attractiveness of this approach through fault containment
wrappers using safety predicates [SRFA99] and safety and liveness through temporal logic
[RoFA00] to create robust microkernels. Moreover, the wrapper can monitor the correctness of
Commercial–Off–the–Shelf (COTS) software by wrapping the COTS object as well as provide a
standard interface [PDFS01] using languages such as Java. Existing work uses locally–
implemented wrappers to ensure that predicates are correct based on the observed state and
messages of the wrapped object. In many cases, however, predicates of interest involve state and
message information distributed throughout the system. In this case we are interested in
collecting and checking an observed global state – that which occurs across multiple objects
within the system.

POWDER FEEDER SYSTEM
The powder feeder is shown in Figure 1. The hopper is the physical container that holds the
metal powder. A motor turns the screw feeder and powder is delivered via gravity to the splitter
that delivers powder to multiple tubes. These tubes deliver the powder to an annulus that directs
the powder into the laser beam (not shown in Figure 1) where the metal powder deposits onto the
substrate. Note that the powder mass flow rate at the hopper is, in general, different from the
powder mass flow onto the part, which is the mass flow rate of interest. The difference is due to
the physical transport delay in the tubes. The tubes and annulus may also get clogged. A
tachometer generates an electrical signal proportional to the motor speed. In this scenario, the
tachometer signal is calibrated via off–line experiments to the actual powder mass flow rate. The
tachometer is described by a static gain relating voltage to angular velocity. Tachometers may
encounter faults such as electrical noise and a disconnected wire.

272

���
���
���

����
����
����

m o to r

s c r e w
fe e d e r

����������������
��� ���

tu b e s

s p l i t e r

n o z z le

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

p a r t

v o l t a g e
ta c h o m e te r

s ig n a l

d e s ir e d m a s s
f lo w r a te

c o n t r o l le r
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����

h o p p e r

�����������
�����������

The powder feeder controller is part of a hierarchical control system [BoLMARL02] that monitors
and regulates operation productivity and part quality. A higher level in this hierarchical
controller specifies the desired powder mass flow rate to the powder feeder system controller,
which has several responsibilities. First, it must determine the voltage to send to the hopper
motor. To do this, it appeals to a mathematical model of the motor in the form of a delay
differential equation. Physical parameters included in this model are angular position, speed,
acceleration, input voltage, and disturbance torque. The numerical approximation of this delay
differential equation is a history dependent difference equation that requires the desired mass
flow rate, a finite history of previous measured flow rates, and the physical parameters to
estimate the required motor voltage. Other responsibilities of the controller include calculating
errors, saturating the control output, and communicating with a digital to analog converter. The
raw tachometer signal is processed via a low pass filter and the controller periodically obtains the
signal using an analog to digital converter. The controller also monitors faults such as powder
clogging and an empty hopper.

Object–Oriented Modeling
In developing an object–oriented model of a system, one begins by simply describing it. Nouns
are a good starting place for the basic objects [BRJ99]. For instance, the powder feeder system is
composed of a Hopper1, Motor, Tube, Splitter, DeliveryBarrel, Material, Generator and a
screw or, as in this experiment, a DimpledShaft2. Next, the verbs used in describing the
system suggest the ways in which objects interact. For example, the Motor changes the state of
the DimpledShaft by turning it. Hence, the DimpledShaft should have a turn() operation.
Likewise, objects must be able to answer questions concerning themselves, such as the Hopper
letting the society of object know the rate at which mass is leaving it through a query operation
like getFlowOut().

1 This font will be used to indicate the name of a class. A class is a set of objects, just like int refers to the objects
…, –2, –1, 0, 1, 2, … .
2 In this experiment, the material powder is moved using a so–called dimpled shaft rather than a screw. The dimple
shaft has small holes of various shapes in it. As it rotates, these dimples fill with powder then empty out of the
delivery barrel.

Figure 1: Powder Feeder System Schematic.
The screw feeder powder that is gravity
feed to the laser beam (not shown) that
melts the powder that is deposited on the
part and subsequently solidifies. The
controller regulates the powder mass flow
rate by adjusting the motor voltage. The
input to the controller is the desired mass
flow rate and the screw feeder tachometer
signal that is precalibrated to the actual
powder mass flow rate.

273

Figure 2: An UML Collaboration Diagram Modeling the Interactions Required to Advance One Time Step.

Once basic the basic structure of the objects is know, the focus turns to a set of objects.
Typically, a fundamental task performed by the system is chosen and the necessary interactions
between objects are modeled. Tools to do this are supplied by the Unified Modeling Language
or UML [BRJ99], which is a graphical language. Figure 2 shows how a collection of objects (the
rectangles) communicates (the message arrows) along links (the lines) in order to advance the
system a time step. The order of the messages is indicated by the numeric prefix. Even a person
new to UML and powder feeder systems can follow the sequence of messages and probably
ascertain what is happening; however the experienced individual learns much. For example, the
HalfSphereDimple class must have an operation called getDimpleVolume(). In order to
calculate the dimple volume, the radius must be known. This becomes an attribute of the class
and so forth. See Figure 33.

Once the basic structure and interactions are
modeled, advanced techniques can be employed to
improve the vitality of the software. To illustrate,
suppose that the engineers are considering three
different shafts that vary by the type of dimple each
with their own volume calculation. The traditional
approach would be to use “if–then–else” to

determine the type of the dimple before calculating the volume. This is very error prone. A
simple object–oriented approach would be to create a new class for each type of dimple that
knows how to calculate the volume for its dimple. Then each time a system is instantiated, the
programming must change the code and recompile to accommodate a change in dimple type.
This is inefficient.

3 In UML, the second sub rectangle lists the attributes and the bottom the operations. Types are given after the name.
A minus sign means the visibility is private whereas the plus sign means public.

Figure 3: A UML Class Diagram.

274

Figure 4: A Diagram Showing the Dimple Class Generalizing the Other Three Classes.

A better approach is indicated in Figure 4. The DimpledShaft object will have a number of
generic dimple object pointers. At the time the system is instantiated, these pointers will be
directed to one of the children of Dimple; the compiler determines which
getIndentationVolume() function to used based upon the type of the child. This structure frees
the program from making type–sensitive decisions. This technique is called polymorphism.

Polymorphism can also be used effectively in handling faults during the run of the system. From
the perspective of error management, every Component of the system has a Status that must be
checked. Whether or not a Component is in some form of error state will differ by part type; yet
each must respond to a checkStatus() query. Similarly, each Component will respond to an
error state differently, but each must be able to throwException(). All of this suggests that an
ExceptionHandler could maintain a list of the generic components and use the dynamic binding
of polymorphism to query specific objects at run time. This is summarized in Figure 5.

Figure 5: A UML Diagram Illustrating the use of Generalization and Polymorphism for Handling Faults of
Component Pieces.

DYNAMIC FAULT DETECTION
Since system correctness and fault tolerance are expressed at a high level, temporal formulae
must be expressed within the collaboration diagram. Also, the correctness of the logic
expressions in a distributed computation, at run time, in the presence of partial information must
be checked. Modified Interval Temporal Logic (MITL) [TsIM95] that is an event–based logic

275

allowing reasoning about time, if it can be expressed in terms of an event, is used. The primitive
type of formula is called eval_term. This can denote a state or transition event in a state diagram,
time, a condition that has to be fulfilled or it could alternatively denote a special term that is very
specific to the implementation. These can be distinguished by the parentheses that we use, a
square bracket indicates a state or time interval. A curly bracket indicates a condition to be
satisfied.

AG[eval_term1, eval_term2]{eval_term3} Over all possible causalities of log events on the
interval [eval_term1, eval_term2], {eval_term3} holds during the interval.
AF[eval_term1, eval_term2]{eval_term3} Over all possible causalities of log events on the
interval [eval_term1, eval_term2], {eval_term3} holds some time during the interval.
EF[eval_term1, eval_term2]{eval_term3} Over some possible causality of log events on the
interval [eval_term1, eval_term2], {eval_term3} holds some time during the interval.

Using MITL for the powder feeder example, some properties of correctness (not an exhaustive
list), referencing Figure 2, are:

Safety: AG[time=T,time=T+delta]{afr:=getActualFlowRate()>0} – Over a particular
time interval delta, the actual flow rate is positive (in other words the hopper isn’t clogged or
empty). Since flow is a continuous phenomena, it is expected to hold continuously over the delta
time interval.
Liveness: AF[10:afr:=getActualFlowRate() at time T, T+.1 second]{ mass flow rate
at the splitter 12:setflowRateIn(afr)=afr}} – The time delay between a set of the mass
flow rate message to the :Hopper and an observed change is bounded by .1 second (physically
the delay until the result of the change appears at the :Splitter in the material tubes).

These properties are checked at Hopper and Splitter. Note that Splitter needs values both from
itself and Hopper to check its liveness property. These are available in the simulation, but in an
actual implementation, a distributed structure is used [HLML02].

SIMULATION EXAMPLE
In this section, a simulation example of the object–oriented powder feeder model is provided.
The object–oriented model simulates the open–loop transient response (i.e., the controller is not
included in the model) and typical faults of the powder feeder system. To make the model user–
friendly, a graphical user interface (GUI) was constructed in Pearl. The main GUI screen is
shown in Figure 6. From this screen, the simulation can be run in one of three modes: the motor
input voltage is specified, the motor angular speed is specified, or the powder flowrate is
specified. Also, faults in various components can be injected during the simulation to analyze the
effects of the fault on the performance of the powder feeder system and the software. In the
simulation example, a “dimpled” shaft is used in the powder feeder. This shaft has indentations
machined into it. In the model, prismatic, cylindrical, and spherical are assumed. As the shaft
rotates, powder is caught in the indentations and then falls into the delivery tubes. For this
example, the powder flow rate is simulated for all three types of indentations. Each indentation
has a different volume that can be specified by the user. There are 50 indentations in each shaft,
and during the operation, each one fills up with powder at the top of the rotation and emptys the

276

powder at the bottom of the rotation. The simulation results are shown in Figure 7. The transient
response is the same for each type of shaft since the shafts are driven by the same motor and
have approximately the same inertia. Although the number of indentations and shaft angular
speed are identical, the steady–state flowrates are different for each shaft since each type of
indentation contains a different volume of powder. The technique of polymorphism allows one to
easily select the indentation type and conduct the simulation for the purpose of design and
simulation. In future work, multiple shaft, motor, controller, etc. types will be available to the
designer.

0 2 4 6 8 10 12

0

5

10

15

20

25

30

time (s)

m
as

s
flo

w
 ra

te
 (g

/m
in

)

cylinderical dimples
prismatic dimples
spherical dimples

 Figure 6: Main Simulator GUI. Figure 7: Mass Flow Rates for Different Shafts.

The simulation runs until the powder is exhausted at which point the Safety property is violated
and an exception is thrown.

SUMMARY, CONCLUSIONS, AND FUTURE WORK
An object–oriented model of a powder feeder unit for the laser metal deposition process has been
developed. The model can be utilized for the design and analysis of the open–loop response of
the powder feeder unit. In addition, the effect of common faults can be analyzed. The strength of
this model is its modularity that allows specific components to be efficiently updated or replaced
with components that perform a similar function and that common faults can be easily
incorporated. A simulation example was provided. The object–oriented paradigm allows the
designer to easily understand the function of the entire powder feeder system and to make
incremental changes when necessary. Assurance of the correctness of the powder feeder system
is obtained from concurrent run–time evaluation of temporal logic expressions. In future work,
the powder feeder controller will be incorporated into the object–oriented model and the model
will be validated experimentally.

277

ACKNOWLEDGEMENTS
The authors gratefully acknowledge their students’ contributions to this paper and the financial
support of the National Science Foundation (DMI–9871185), Missouri Research Board, Society
of Manufacturing Engineers, and Missouri Department of Economic Development.

REFERENCES
[BoLMARL02] Boddu, M.R., Landers, R.G., Musti, S., Agarwal, S., Ruan, J., and Liou, F.W.,
2002, “System Integration and Real–Time Control Architecture of a Laser Aided Manufacturing
Process,” to appear in Thirteenth Annual Solid Freeform Fabrication Symposium, Austin, Texas,
August 5–7.
[BOST86] Bobrow, D., and Stefik, M. “Perspectives on Artificial Intelligence Programming,”
Science, Vol. 231, p. 951.
[BOOC91] Booch, 1991, Object Oriented Design with Applications.
[BRJ99] Booch, G., Rumbaugh, J., Jacobson, I. The Unified Modeling Language User Guide,
Addison–Wesley, 1999.
[LiCLJBA01] Liou, F.W., Choi, J., Landers, R.G., Janardhan, V., Balakrishnan, S.N., and
Agarwal, S., 2001, “Research and Development of a Hybrid Rapid Manufacturing Process,”
Twelfth Annual Solid Freeform Fabrication Symposium, Austin, Texas, August 6–8, pp. 138–
145.
[MEYE87] Meyer, B., 1987, “Reusability: the Case for Object–Oriented Design,” IEEE
Software, March, 50–64.
[PDFS01] Pawlek, R., Duchien, L., Florin, G., Seinturier, L., 2001, “Dynamic Wrappers:
Handling the Composition Issue with JAC,” 39th International Conference and Exhibition on
Technology of Object–Oriented Languages and Systems, TOOLS39, pp. 56–65.
[RoFA00] Rodriguez, M., Fabre, J.–C., and Arlat, J., 2000, “Formal Specification for Building
Robust Real–Time Microkernels,” Proceedings 21st IEEE Real–Time Systems Symposium,
November 27–30, Orlando, Florida, pp. 119–128.
[SRFA99] Salles, F., Rodriguez, M., Fabre, J–C., Arlat, J., 1999, “Metakernels and Fault
Containment Wrappers,” Twentieth Annual Symposium on Fault–Tolerant Computing, pp. 22–
29.
[TsIM95] Tsai, G., Insall, M., and McMillin, B, 1995, “Ensuring the Satisfaction of a Temporal
Specification at Run–Time,” Proceedings 1st IEEE International Conference on Engineering of
Complex Computer Systems, Nov. 6–10, Fort Lauderdale, Florida, pp. 397–404.
[HLML02] Hilgers, M., Landers, R.G., McMillin, B., and Liou, F.W., 2002, “Object-Oriented
and Fault–Tolerant Embedded Hybrid Systems for Manufacturing,” Technical Report 02-01,
University of Missouri–Rolla, Department of Computer Science.

278

