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Abstract

The quark-gluon plasma is a new phase of matter and is the focus of much research
in particle physics today. One of the main purposes of the famous Large Hadron Col-
lider (LHC) at CERN is to create quark-gluon plasma by colliding lead nuclei at high
energies. The plasma can only exist for extremely short amounts of time, so our only
method of investigating it is to analyze the particles it produces. This is one of the
goals of A Large Ion Collider Experiment(ALICE) and the construction of the ALICE
detectors at the LHC. Of particular importance are so-called resonance particles. Like
the quark-gluon plasma, these particles only live for very short amounts of time be-
fore decaying. Therefore, they can be created and even re-created while the plasma
exists. For this reason, they are extremely important to our analysis of the quark-gluon
plasma. However, since they are so short-lived, we cannot directly see these resonance
particles either. Rather, we look at the longer-lived particles which they decay into. We
determine facts about the resonances from the information we have about their decay
products.

However, identifying these decay products can be difficult as well, especially in high-
energy experiments such as those in ALICE. It is often the case that we think that a
particle is a pion, for instance, when indeed it was a proton. This is called a misiden-
tification. By misidentifying decay products, we then misidentify the particle from
which those products decayed. To account for this phenomenon, we simulate particle
misidentification. The simulation gives us expectations for the shape of distributions of
misidentified particles. Knowing the shape, we can then attempt to locate these distri-
butions in experimental data and subtract them out to produce a cleaner distribution
of our resonance particle.

In this paper, we analyze the invariant mass distribution of the ∆0 resonance. We
look at four other particles which can by misidentified as the ∆0 and analyze their
misidentified invariant mass distributions. We then investigate the dependence of these
distributions upon the particle’s momentum. The analysis gives us information about
when it is possible to find a misidentified particle’s distribution inside an experimental
distribution of the ∆0 mass and what shape we should expect the misidentified distri-
bution to take. This analysis will be useful for further studies of the ∆0 in high-energy
collisions.
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1 Introduction

Particle physics is the study of the most basic units of matter — particles.
These are the objects which make up everything we see around us, from
the bacteria in our homes to the galaxies that surround us. Everything in
the universe is composed of particles. Thus, the field of particle physics
seeks to understand the physical laws which govern our universe at their
most fundamental level.

One of the most fundamental topics of all is the study of the forces of
nature. These interactions govern our entire universe. In particular, it
is the strong force which rules the domain of hadronic physics. It deter-
mines the interaction of the quarks which make up all hadrons, such as
protons and neutrons, and is often the force responsible for the interac-
tion of hadrons with other hadrons. The theory of the strong interaction
between particles is known as quantum chromodynamics (QCD). In this
theory, the strong force between quarks is mediated by exchanging particles
called gluons. The theory is one of the most important topics in theoretical
physics today.

1.1 The Quark-Gluon Plasma

Between individual quarks, the strong interaction is an attractive force
which acts like a spring [1]. When quarks are further away from one an-
other, the force is greater between them, and when the quarks are close
together, the force is very weak. Compared to other interactions, this force
is quite strong as its name would suggest, so quarks bind together very
tightly. These bound states are what we know as hadrons, composite par-
ticles made of quarks, such as the proton and the neutron among many
others. Under ordinary circumstances, a quark cannot leave its hadron
unless acted on by an outside force. For instance, we could collide two
hadrons, A and B, in a scattering experiment. In so doing, one of the
quarks of A might get very close to one of the quarks of B, resulting in
quark-quark scattering and knocking one of the quarks out of its hadron.
Even in this case, the energy of the strong interaction between the free
quark and the quarks of its original hadron is great enough to produce
a quark-antiquark pair. The quark and antiquark then combine with the
other quarks to form new hadrons, as discussed below (see Figure 2). Thus,
the quark which was “freed” by the interaction is immediately reconfined
to a hadron.

Despite this strict description of the strong interaction between quarks,
if we compress and heat a system of quarks enough, they can enter a new
state of matter known as the quark-gluon plasma (QGP) [2]. When this
happens, quarks are no longer restricted to stay within hadrons. Rather,
they move more freely, without binding to other quarks. Experimentally,
we create QGP by colliding heavy ions together at high energies. The QGP
is the state of matter thought to have existed shortly after the Big Bang,
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Figure 1: A Phase Diagram of the Transition from Hadronic Matter to QGP [4].

so by making QGP in the lab, we are creating “little Bangs” and studying
the early universe.

The QGP is a state of matter in the same way that solids, liquids, gases
and plasmas are states of matter. Thus, there is a phase transition be-
tween QGP and hadronic matter, i.e. ordinary matter in which quarks are
confined to hadrons (see Figure 1) [4]. In addition, in a heavy ion collision,
produced particles fly away from the point of collision in all directions.
Thus, the QGP expands, dropping in temperature as it does so. Because
the plasma must be very high in temperature to exist (as you can see in
Figure 1), this expansion limits the QGP lifetime to only a few fm{c where
c is the speed of light. In other words, the lifetime of the QGP is on the
order of 10�23 seconds [3]. This is an extremely short lifetime. Indeed, it
is too short for us to observe directly. Rather, we examine the QGP by
observing the particles which it produces.

The strong interaction has charges associated to it, much like electric
charge is associated with the electromagnetic interaction. Unlike the elec-
tromagnetic interaction, however, the strong force has three types of charge.
These are referred to as color charges and are labeled red, green and blue.
Having three types of charge, the theory of the strong interaction (QCD)
is based on the matrix group SUp3q. While we will not go into this de-
scription in detail in this paper, it is worth noting that the SUp3q algebra
gives us two ways for colored quarks to form color-neutral bound states:
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Figure 2: A hadron produces a quark-antiquark pair.

Three quarks, one of each color, may bind together and form a color-neutral
hadron (these are called baryons) or a quark (with red color, for instance)
may bind with an antiquark (with antired color in this case) [5].

When the strong interaction is given enough energy, it is capable of
converting this energy into mass and producing new particles. It does this
by creating quark-antiquark pairs, as shown in Figure 2. As the green
quark is pulled away from the red and blue quarks, the strong force pulls
harder on the quarks. Finally, when the interaction is strong enough, it has
enough energy to produce a green quark and an antigreen antiquark. Thus,
a hadron has been created. This same process occurs in the QGP. The
plasma has sufficient energy to produce many quark-antiquark pairs. Then,
as the plasma expands and cools, these quarks and antiquarks combine into
many different particles. This process is called the particle production of
the QGP. A single heavy ion collision may produce as many as 10,000
particles via the QGP, from only about 400 nucleons in the original nuclei.

1.2 The ∆ Resonances

One particle of interest is the family of ∆p1232q resonances. (Note that
the number in parentheses is the mass of the particle in MeV{c2. This
is common notation for resonance particles.) The resonances are baryons
composed of up and down quarks, just as the nucleons, i.e. protons and
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Figure 3: The LHC Location and Schematic

neutrons, are [6]. While the proton and neutron have an isospin of 1{2,
however, the ∆ resonances have an isospin of 3{2. By the rules of quantum
angular momentum, this permits four I3 states in the family, and hence
four ∆ particles. In particular, the ∆0 is the bound state of two down
quarks and an up quark, and it is the particle of interest in this paper.

The ∆0 was first discovered in 1951 at the Chicago cyclotron [7]. Physi-
cists there were examining the interaction between pions and nucleons when
they found an increase in the interaction cross section between pions and
nucleons near 180 MeV pion beam energy. This phenomenon of increase
cross section near a particular energy was referred to as a resonance in the
cross section, hence the name resonance for high-mass particles like the
∆0. Since that time, the ∆0 and its relatives have been studied in detail in
many different experiments. Its quantum numbers are all known, its mass
and width are known to good precision, and its decay channels have been
well-explored.

One useful facet of the ∆0 is its extremely short lifetime of about
5.6 � 10�24 seconds [6]. Being so short-lived, it can be produced in the
QGP, decay in the QGP, and be produced again (i.e. regenerated) in the
QGP, all in a single collision. Therefore, the ∆0 is affected by the QGP
in a very direct way compared to other, longer lived particles. Thus, any
distributions we measure about the ∆0 may be changed due to the interac-
tion of the particle with the QGP. For this reason, the ∆0 is an extremely
important particle to examine in any QGP experiment.
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Figure 4: The ALICE Time Projection Chamber [8]

1.3 ALICE

A Large Ion Collider Experiment (ALICE) is the name of the experiment
studying the QGP at the European Organization for Nuclear Research
(CERN). It makes use of the world’s highest-energy particle accelerator,
the Large Hadron Collider (LHC). The LHC is the massive, stretching 27
kilometers in circumference, as shown in Figure 3. In order to bring the
colliding particles up to the maximum energies of the LHC, other acceler-
ators are used to speed the particles up before they enter the LHC. These
are shown in the schematic in Figure 3.

1.3.1 The Time Projection Chamber

The primary detector used by ALICE for momentum measurements and
particle identification is the Time Projection Chamber (TPC), shown in
Figure 4 [8]. The TPC is a cylindrical detector filled with gas. When a
charged particle travels through the gas, it knocks electrons free of the gas
particles. Electric and a magnetic fields are applied parallel to the length
of the tube, so free electrons drift towards the ends of the tube. These
electrons travel parallel to the magnetic field, so their trajectories are not
affected by the magnetic field, but rather they fly straight down the length
of the tube into its ends. In addition, the air molecules provide resistance
to the electrons’ motion, balancing the force from the electric field, so the
electrons drift at a constant speed in the gas chamber.

At the ends of the tube there are grids of Multi-Wire Proportional Cham-
bers (MWPCs). These chambers consist of anode wires and cathode seg-
mented pads. The free electrons move towards the anode wires and produce
a readout signal on the cathode pads. Since the pads are segmented, this
gives specific information about the position at which the electron hit the
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Figure 5: Energy Loss per Unit Length vs. Momentum for a Few Particles [9]

end plate. The x and y component of the electron position on this plate is
equal to the x and y position of the charged particle at the time that it ion-
ized the electrons. In addition, experimenters record the times that these
electrons flew through the readout chambers, which gives us information
about the z position of the charged particle at the time that it ionized the
electrons. By keeping track of what times these electrons pass through the
grid and which points on the grid they pass through, we can reconstruct
the path that our particle of interest traced inside the TPC.

Since there are magnetic fields parallel to the length of the tube, our
particle will trace out a curved path through the TPC. The curvature
of the path gives us the momentum of the particle, and the number of
electrons it ionizes from gas atoms gives us the energy loss per unit length
dE{dx of the particle as it travels through the TPC. The cross section of
the particle’s interaction with gas atoms is dependent on the momentum of
the particle and the intrinsic properties of the particle, such as its charge,
mass and size. Thus, if we know the particle’s momentum and we know
its energy loss per unit length, we can identify the particle, as shown in
Figure 5. This is the method of particle identification in ALICE.

1.3.2 The Time of Flight Detector

The Time of Flight (TOF) is another detector used in ALICE, shown in
Figure 6 [10]. The purpose of the TOF is to measure charged particles’
velocities. The TOF uses a triggered start-stop sequence to find the veloc-
ities of particles. The start signal is triggered when remnants of the lead
nuclei flies through detectors at the ends of the tube. If the nuclei have
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Figure 6: The ALICE Time of Flight Detector [10]

coincidence signals, meaning they triggered the start signal at the same
time, then we know the collision happened at the center of the tube. We
discard events which do not have this coincidence signal. The stop signal
comes when a charged particle from the collision flies through the TOF
tube itself, as pictured in Figure 6. The TOF records the time of the start
signal and the time of the stop signal and, accounting for the known time
it takes for the nuclei remnants to intersect the TOF detectors, these times
give us the amount of time it took the particle to travel from the collision
to the TOF detector. With positional data from the TPC, we are then
able to calculate the velocity of the particle. The TOF has a time resolu-
tion of 100 picoseconds, which is the time it takes light to travel about 3
centimeters.

Since we can measure a particle’s momentum with the TPC and its
velocity with the TOF, we can then find its mass. This is a second method
by which ALICE identifies charged particles.

1.3.3 Detector Observables

There are a few observables which are often used in particle physics. They
are discussed here for reference. Firstly, the transverse momentum of a
particle is the component of its momentum which is perpendicular to the
beam axis (i.e. the z-axis). The symbol pT is typically used to denote this
quantity. Since the pT includes only the x and y components of momentum,
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we have that

pT �
b
p2
x � p2

y.

The rapidity of a particle, ϕ, is defined as the hyperbolic angle such that

tanhϕ � v{c

where v is the velocity of the particle. This quantity has the special prop-
erty that it is additive across reference frames. That is, if ϕXY denotes
the rapidity between reference frames X and Y , then ϕAC � ϕAB � ϕBC ,
assuming that the relative velocity between A and B and that between B
and C are parallel. In particle physics, we also refer to y as the rapidity of
a particle, where

tanh y � vz{c

letting vz denote the component of the velocity along the beam axis. Thus,
we have that

y � tanh�1pvz{cq �
1

2
ln

1 � βz
1 � βz

where we have defined βz � vz{c. Below, we find that pzc � βzE for a
particle, hence we have that

y �
1

2
ln
Ep1 � βzq

Ep1 � βzq
�

1

2
ln
E � pzc

E � pzc
.

The pseudorapidity of a particle, η, is defined as

η � � lnrtanpθ{2qs

where θ is the angle between the particle’s velocity and the beam axis.
This is the quantity commonly used to discuss a particle trajectory’s polar
angle.

2 Background

2.1 Special Relativity

When working with particles, one often is dealing with objects moving near
the speed of light. Therefore, we introduce some of the ideas of special
relativity here which are relevant to our study of particle physics.

We first define the relativistic quantities β and γ as

β � v{c

γ �
1a

1 � β2

where v is the speed of the object in question. Special relativity gives us
a tool to move between different inertial reference frames. This tool is the
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fundamental result of special relativity, not derived here, called the Lorentz
transformation. It is written as

p1‖ � γpp‖ � βE{cq

p1K � pK

E 1 � γpE � βp‖cq

Here β and γ correspond to the velocity of the first frame with respect to
the second, primed momenta and energies are in the second frame while
unprimed momenta and energies are in the first frame, p‖ refers to the
momentum component along the direction of the relative velocity of the
frames, and pK refers to the momentum component perpendicular to this
axis. We can use these relations to do calculations in the rest frame of a
particle, which is often easier, and then boost those calculations into the
lab frame.

A second standard result of special relativity that p � γmv � γβmc
and E � γmc2 where E is the energy, p is the momentum, and m is the
mass of the particle. As pointed out above, this implies that Eβ � pc, or
in particular, Eβz � pzc. Using these facts, we have that

p2c2�m2c4 �
β2m2c4

1 � β2
�m2c4 �

β2 � 1 � β2

1 � β2
m2c4 �

m2c4

1 � β2
� pγmc2q2 � E2.

Thus, we find that
E2 � ppcq2 � pmc2q2.

This is the famous energy-momentum relation of special relativity. We
will use this result to find the mass of particles from their energies and
momenta.

2.2 Particle Decays

Consider a particle a which decays as a Ñ bc. By the laws of special
relativity, this decay occurs the same way in all inertial reference frames,
so we may examine the decay in the rest frame of particle a. In this frame,
the momentum pa of a is zero. By momentum conservation, we must have
pb�pc � 0, so pb � �pc, i.e. b and c have equal but opposite momentum.
In other words, the particles decay back-to-back. Since total momentum
is zero in this frame, it is called the center-of-momentum (CM) frame.

Let p :� |pb| � |pc| be the common length momenta. Then by
the energy-momentum relation, the energies of these particles are Eb �a
p2c2 �m2

bc
4 and Ec �

a
p2c2 �m2

cc
4. Since pa � 0, we have Ea � mac

2.
Invoking energy conservation, we obtain

mac
2 �

b
p2c2 �m2

bc
4 �

a
p2c2 �m2

cc
4.
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Figure 7: Lorentz Boost of a Decay

Thus, the magnitude of the daughter particles’ momenta is uniquely deter-
mined in the CM frame. However, the direction in which they decay is not
determined. Figure 7 shows a typical decay.

The figure demonstrates the fact that angles are not conserved in differ-
ent frames. In this example, the momenta of particles b and c have an angle
of 180� between them in the CM frame, but have an angle of less than 90�

between them in the lab frame. Furthermore, if we vary the angle between
the momentum of b and the boost axis, we vary the amount by which each
momentum is boosted according to the Lorentz transformation. Thus, the
angle between pb and pc in the lab frame depends on the direction in which
the particles decay in the CM frame.

2.3 Resonance Particles

Consider a free particle, as described by quantum mechanics. In our initial
näıve description, we solve the Schrödinger equation

i~
B

Bt
Ψ � ĤΨ

with Ĥ � � ~2
2m

∇2 for a free particle. Solving this equation, we obtain

Ψpr, tq � Aeipp�r�E0tq{~ for a particle with momentum p and energy E0,
and where A is a constant. If ψptq is the time component alone, we have
ψptq � ψp0qe�iE0t{~. Of course, E0 is a purely real number, hence |ψptq|2 �
|ψp0q|2e�iE0t{~eiE0t{~ � |ψp0q|2, a constant. In other words, this model
predicts no particle decays, something which is obviously incorrect. To
correct for this, we introduce an imaginary component to the energy, so
we have E0 ÞÑ E0 � iΓ{2, where Γ is a real number. Plugging this in, we
obtain ψptq � ψp0qe�Γt{2~�iE0t{~. Thus,

|ψptq|2 � |ψp0q|2|e�Γt{2~|2|e�iE0t{~|2 � |ψp0q|2e�Γt{~
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Figure 8: The Breit-Wigner Distribution [11]

so the particle’s amplitude goes as e�Γt{~, indicating that it decays. In fact,
we define the lifetime of the particle τ such that it decays as e�t{τ , hence
we have Γ � ~{τ .

Now, consider the energy spectrum of such a particle. To analyze the
spectrum, we take the Fourier transform of ψptq. We have

φpωq �

» 8

�8

ψptqeiωtdt

where ω � E{~. Integrating and substituting ω � E{~, we obtain

φpEq � ψp0q
1

Γ{2~� ipE0 � Eq{~
.

We now normalize the wave function by setting
³8
0
φ�pEqφpEqdE � 1.

Calculating the integral, we get |ψp0q|2 � Γ{~22π, so

φpEq �

c
Γ

2π

1

Γ{2 � ipE0 � Eq
.

The probability density P pEq describing the energy distribution of this
particle is then

P pEq � |φpEq|2 �
Γ

2π

1

pE � E0q2 � pΓ{2q2
.
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The is the Breit-Wigner distribution, displayed in Figure 8. The distri-
bution has a width to it, determined by Γ. Thus, particles with finite
lifetimes, and thus nonzero widths Γ, do not have definite masses.

Particles with relatively long lifetimes, such as the π0, have small widths
and thus their spread in mass is very small. In many cases, the width is
indeed smaller than the experimental error made when measuring them in
the first place, and thus the Breit-Wigner shape of the particle is not seen
at all. Particles with shorter lifetimes, such as the ∆0, have broad mass
spectra and thus the width Γ of the particle is directly measurable.

3 Simulating the ∆0 Resonance

3.1 HIJING

To analyze heavy ion interactions, we simulate collisions and examine the
simulated detector responses. The tool we use to accomplish this is called
the Heavy Ion Jet INteraction Generator, or HIJING [12]. The HIJING
software simulates the scattering of several quarks off of one another within
a heavy ion collision. Thus, it takes a first principles approach to predicting
the nature of the QGP. It successfully simulates such phenomena as jet
production (i.e. the tendency for many particles to travel in about the
same direction at high momentum due to hard scattering of quarks) and
QGP medium interaction with particles and jets (to the best of our current
knowledge). Thus, it allows us to look inside the reaction as it unfolds and
directly examine illusive particles such as the ∆0 resonance. By examining
these simulated particles, we can then make predictions about the nature
and effects of these particles in actual experiments.

The AliRoot framework includes the HIJING software as a series of
classes. In particular, the AliGenHijing class is used to generate collision
simulations. The user sets the center-of-momentum energy, the reference
frame, the colliding particles and other variables relevant to the collision.
After the simulation is complete, the relevant information about each par-
ticle which is produced directly or indirectly from the collision is saved in
a TParticle object. The TParticle objects are then entered into a stack
which is saved in a ROOT file for later access.

Each collision is saved as an “event” in the ROOT file. Each event
includes its collision’s particle stack. Thus, when we access the file for
further analysis, it is easy to evaluate every particle from every collision.
We simply load up each event and iterate through the event’s stack. This
structure greatly simplifies the task of analyzing a particular particle over
many collisions.

The code used to produce and save simulated collisions can be found in
appendix A.
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3.2 Invariant Mass Distribution

One of the most important ways we identify resonance particles is via their
reconstructed invariant mass distributions. To find this distribution, we
use events simulated with HIJING as discussed above. These events are
stored in a number of different files, so our analysis program begins (after
defining some variables to be used throughout the program) by looping
through the files. Each file contains dozens of events, so we next loop over
the stored events. For each event, we loop over the particles produced in
the event. In this way, we can examine each particle of each event one at
a time.

To represent the capabilities of the detectors used in ALICE, we make
a pseudorapidity cut. In this case, we demand that our particles have a
pseudorapidity η such that |η|   0.9. This corresponds to particles whose
direction of motion is at least 45� from the z-axis. This is a quality selection
cut and is necessary to guarantee that our particles could have been seen
by the ALICE detectors [10].

Next, we select all of the remaining particles which are ∆0 resonances.
For each ∆0, we identify the particles into which it decays. The ∆ particles
decay into a nucleon and a pion, so in our case we have

∆0 Ñ nπ0 or ∆0 Ñ pπ�.

In the former case, both decay products are electrically neutral, and so
we can detect neither of them. Therefore, we only examine ∆0 resonances
which decay to p� π�. In this case, we store the information about the p
and π� daughters in a list to be examined later.

After we are done looping through the events in each file, we are ready
to begin our calculation of the invariant mass distribution. We iterate over
our list of daughter particles of ∆0 decays. For each decay pair, we add
the momenta and energies of the particles together. By momentum and
energy conservation, this total momentum and energy must be equal to
the original momentum and energy of the ∆0. We then use the energy-
momentum relation

E2 � pmc2q2 � ppcq2

to find the invariant mass of the ∆0. The mass obtained for each decay
pair is then entered in a histogram. The program described here can be
found in appendix B.

Since resonance particles such as the ∆0 have extremely short lifetimes,
they have a noticeable width Γ to their mass, as shown in Figure 9. There-
fore we expect repeated measurements of the ∆0 mass to accumulate in a
Breit-Wigner distribution, as discussed in Section 2.3. In this example, the
Breit-Wigner fit produced a mean of 1.2340 � 0.0008 GeV{c2 and a width
of 106 � 2 MeV{c2. The Particle Data Group (PDG) has as a standard
that the ∆0 mass is between 1.230 and 1.234 GeV{c2 and the width is be-
tween 114 and 120 MeV{c2. Thus, our mass measurement is correct, but
our width measurement is a bit low in this simulation.
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Figure 9: A typical invariant mass histogram of the delta resonance.

4 Particle Misidentification

When analyzing a particle collision, it is necessary to identify the particles
produced in the interaction. Using the ALICE TPC detector (as discussed
in Section 1.3 above), we can find the momentum p and energy loss per
unit length dE{dx of any electrically charged particle which survives long
enough to be seen by the TPC. As we discussed above, this gives us a way
to identify charged particles.

However, it is not always easy to differentiate between particles using
this method. As shown in Figure 5, the dE{dx values of different particles
get close together as their momentum increases. Thus, it is the case that
at high momenta, we may identify a π� as a p, or a K� as a π�, etc. This
causes a problem when we want to study high energy resonance particles,
such as the ∆0. We identify a ∆0 by its decay products, and its most
common decay to charged particles is ∆0 Ñ pπ�, as discussed above. We
also know that K0

S commonly decays via K0
S Ñ π�π�. Thus, if we correctly

identify the π� but misidentify the π� as a p, then we would reconstruct a
∆0 from the decay products of a K0

S. Therefore, we would over count the
number of ∆0 produced, and since the π� and π� did not actually come
from a ∆0, our reconstructed invariant mass distribution would be skewed.
It is important to understand the contributions of misidentified particles
to measured distributions of the ∆0 so that we may produce a cleaner ∆0

16



Figure 10: ∆0 Distribution and 5% of K0
S Misidentified Distribution

signal.

4.1 Simulating Misidentification

To study particle misidentification, we use a modified version of our invari-
ant mass program. Say that we are looking at the misidentification of the
particle A. Then instead of picking out decay products of the ∆0, we select
decay products of the A. As before, we loop through the events in each file,
and for each event, we store the decay products of the A particles in lists
for later analysis. After looping through all events, we then find the invari-
ant mass distribution by misidentifying one of the particle’s decay products
and reconstructing. Say that we are misidentifying a π� as a p in the decay
AÑ π�π�. Then we use the original π� momentum for our misidentified
particle, but instead of using its energy, we calculate a misidentified en-
ergy by substituting the p mass and using the energy-momentum relation
E2 � ppcq2 � pmc2q2. We then combine this misidentified particle with the
correctly identified π� to get the invariant mass of the misidentified mother
particle.

4.1.1 K0
S Misidentification

The K0
S commonly decays as K0

S Ñ π�π�. Thus, it can be mistaken for
a ∆0 if we misidentify the π� as a p. Because there are many more K0

S

particles than ∆0 particles produced in an event, we have taken only 5%
of the K0

S distribution. This misidentified distribution is shown in Figure
10, with the ∆0 distribution and total distribution included.

17



Figure 11: ∆0 Distribution and 5% of K� Misidentified Distribution

4.1.2 K�p892q Misidentification

The K�p892q is an excited state of the K0. It commonly decays as
K� Ñ K�π�. If the K� is mistaken for a p, then the K� is misidenti-
fied as a ∆0. Because there are many more K� particles than ∆0 particles
produced in an event, we have taken only 5% of the K� distribution. This
misidentified distribution is shown in Figure 11, with the ∆0 distribution
and total distribution included.

4.1.3 ρp770q Misidentification

Like the K0
S, the ρp770q commonly decays to π�π�, so if we mistake the π�

for a proton, then the ρ is misidentified as a ∆0. Because there are many
more ρ particles than ∆0 particles produced in an event, we have taken
only 5% of the ρ distribution. This misidentified distribution is shown in
Figure 12, with the ∆0 distribution and total distribution included.

4.1.4 ωp782q Misidentification

The ωp782q commonly decays as ω Ñ π�π�π0. Therefore we can misiden-
tify it as a ∆0 if we mistake the π� for a p and ignore the π0. Unfortunately,
the ROOT class TParticle does not support particles with more than two
decay products. By default, it only keeps track of the first two daughter
particles. To work around this issue, we first take all of the ω particles
which have a charged π as one of their first two daughters. For these, the
software stores the two daughters in the decay lists without regard to which
π has which charge. Since all of the π are nearly degenerate in mass, the
dynamics of the daughters are equal to one another on average. Thus, we
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Figure 12: ∆0 Distribution and 5% of ρ Misidentified Distribution

Figure 13: ∆0 Distribution and 5% of ω Misidentified Distribution
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Figure 14: ∆0 Distribution and 2% of Each Misidentified Distribution

simply assign one of the π daughters the p mass and combine it with the
other π daughter to simulate the ω misidentification. Our results are the
same as we would have obtained had we assigned the π� daughter the p
mass and recombined it with the π� daughter.

Because there are many more ω particles than ∆0 particles produced
in an event, we have taken only 5% of the ω distribution. This misidenti-
fied distribution is shown in Figure 13, with the ∆0 distribution and total
distribution included.

4.1.5 Total Misidentification

A summary plot of all misidentification distributions is shown in Figure 14.
We have also included the ∆0 distribution and the sum total of all of these
distributions. Here we have taken only 2% of each distribution since the
total distribution includes every misidentified particle we have analyzed so
far, and any bigger of a contamination would completely drown out the ∆0

signal.

5 Momentum Dependence

5.1 Invariant Mass Spectrum Shape

In the above plots, we have taken data from the entire pT range of the
mother particle. For the ∆0 signal, it does not change anything to view
its distribution in some smaller pT range since it has the same mass and
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Figure 15: Invariant Mass Distribution of the ∆0 and 2% of the Distributions of the Misidentified
Particles in Various pT Ranges
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width regardless of its momentum. The misidentified spectra, however, are
not determined by intrinsic properties of the misidentified particle, so their
shape can change in different pT regions.

To analyze how the shape changes, it is necessary to create plots of
the invariant mass distributions of the misidentified particles in different
pT ranges. To this end, while finding the misidentified distributions in
the first place, we not only store the invariant mass calculations, but also
the pT of the mother particle for each calculation. Thus, every entry in an
invariant mass spectrum has an associated pT value. Later, we loop through
these mass, pT pairs with a momentum cut in mind. If the pT value is
within the bounds of the cut, we enter the mass value into our distribution.
This is a convenient method to quickly build the invariant mass spectra of
misidentified particles in various pT regions. The results of this analysis
are shown in Figure 15, with ∆0 and total distributions included. Once
again, we have used only 2% of the misidentified distributions to ensure
that the ∆0 signal can be seen over the misidentified background.

At low momentum (less than 0.5 GeV{c), each of the distributions looks
very much like a Breit-Wigner hump. Except for the ρ, all humps peak
near the ∆0 mass of 1.232 GeV{c2 and do not trail off very much, so they
may be difficult to distinguish from the real ∆0 signal at this momentum
value.

At somewhat higher momentum (starting at 1 GeV{c or so) each of the
distributions has developed a long tail in the higher invariant mass region.
Since the real ∆0 invariant mass spectrum has no such tail, this is a shape
unique to the misidentified particles’ distributions. With some knowledge
of the expected shape of the misidentified distributions, we can use this
to estimate the distribution of misidentified particles in an experimental
distribution. More is said on this in the Conclusion.

At high momentum (2 GeV{c and higher), the tail of each individual
distribution is very long. In this momentum region, any one misidentified
particle’s tail would likely be obvious in an experimental ∆0 invariant mass
spectrum.

5.2 Peak Location

If the peak of a misidentified distribution is far enough from the ∆0 mass,
we may be able to identify it in a mass spectrum from an experiment. This
will assist us in guessing the spectrum of misidentified particles. To see in
which pT ranges this occurs for each misidentified particle, we run through
each of the spectra found above and look for the bin in the histogram
with the greatest number of counts. This bin is the peak of the spectrum.
We then plot these peaks in the graph shown in Figure 16. Note that the
horizontal error bars represent the pT range over which the peak was found,
while the vertical error bars correspond to the bin size used while finding
the peak.

Looking at the graph, we notice a few features of the invariant mass
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Figure 16: Peaks of Invariant Mass Spectra in Various pT Ranges

distributions. Firstly, the K0
S and ω distributions’ peaks are only near the

∆0 mass at low pT , namely for pT   0.5 GeV{c. Thus, if we look at the
∆0 distribution for higher pT , then we should expect to see the peaks of
the K0

S and ω misidentified distributions outside of the ∆0 peak. The ρ
distribution never peaks near the ∆0 mass. Thus, we should always expect
to be able find its peak in a ∆0 invariant mass distribution. The K�

peak is very often near the ∆0 mass, so we should expect to have trouble
identifying its peak in a ∆0 distribution. For this reason, we require a
very low contamination from K� misidentification if we are to accurately
analyze the ∆0 signal in an experiment. In other words, we must be able
to distinguish between K� and p with great accuracy. Finally, the total
background peak appears to be near the ∆0 mass for momenta between 1
and 3.5 GeV{c, so we should only expect to pick out its peak in the low
momentum and very high momentum ranges. This, however, is based on a
contamination from each misidentified particle exactly proportional to the
number of that particle produced in a collision. If we could decrease the
K� contamination, we would expect to see the total misidentification peak
shift away from the ∆0 mass in the mid momentum range. The data of
Figure 16 are listed in a table in Appendix C.
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6 Conclusion

By simulating the invariant mass distributions of misidentified particles, we
found the shape of the misidentified particles’ contributions to the mass
spectrum of the ∆0 in ALICE. Furthermore, we observed the way this shape
changes in different pT ranges and where the peaks of these distributions
were located as we varied pT .

The next step would be to begin finding functions that match the
misidentified spectra in each pT range. Once we have a working model
for each distribution, we can now begin to find these misidentified spec-
tra in experimental distributions of the ∆0 invariant mass. After picking
a particular pT range, we have an expectation of where each peak in the
misidentified distributions should be and what the shape of those distri-
butions should look like. Thus, we can fit a sum of these models to our
data. We can then measure the number of misidentified K� particles in
our distribution, for instance. Furthermore, by understanding the misiden-
tified background to our signal, we can subtract it out, leaving us with a
cleaner ∆0 distribution. Cleaner measurements of the ∆0 then give us more
accurate information about the QGP.

We note here that a better method may yield cleaner and more useful
results in the peak analysis above. Rather than simply taking the maximum
bin of each distribution, we should have fit a Gaussian curve to the part of
each distribution containing the peak. This method is much less sensitive
to random fluctuations in the distributions and would likely give more
accurate calculations of the peak of each distribution. Future experimenters
should make use of this method.

A fastGen.C

void fastGen ( I n t t nev = 100 , char ∗ f i l ename = ” g a l i c e 1 / g a l i c e . root ”)

{

cout << nev << endl ;

cout << f i l ename << endl ;

// Runloader

gRandom�>SetSeed ( 0 ) ; / / put 0 to use system time

gSystem�>SetInc ludePath (”�I$ROOTSYS/ inc lude �I$ALICE ROOT/ inc lude �I$ALICE ROOT” ) ;

gSystem�>Load (” l i b h i j i n g . so ” ) ;

gSystem�>Load (” l i bTHi j i ng . so ” ) ; // Al iGenHij ing i s de f i ned here

gSystem�>Load (” l i b l h apd f . so ” ) ; // Parton dens i ty f unc t i on s

gSystem�>Load (” libEGPythia6 . so ” ) ; // TGenerator i n t e r f a c e

gSystem�>Load (” l i bpy th i a 6 . so ” ) ; // Pythia

gSystem�>Load (” l i bA l iPy th i a6 . so ” ) ; // ALICE s p e c i f i c implementat ions
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AliRunLoader∗ r l = AliRunLoader : : Open( f i l ename , ”FASTRUN” , ” r e c r e a t e ” ) ;

r l�>SetCompress ionLevel ( 2 ) ;

r l�>SetNumberOfEventsPerFile ( nev ) ;

r l�>LoadKinematics (”RECREATE” ) ;

r l�>MakeTree (”E” ) ;

gAl ice�>SetRunLoader ( r l ) ;

// Create s tack

r l�>MakeStack ( ) ;

Al iStack ∗ s tack = r l�>Stack ( ) ;

// Header

AliHeader ∗ header = r l�>GetHeader ( ) ;

// Create and I n i t i a l i z e Generator

Al iGenHij ing ∗ gener = new AliGenHij ing (�1);

// cent r e o f mass energy

gener�>SetEnergyCMS ( 5 5 0 0 . ) ;

// r e f e r e n c e frame

gener�>SetReferenceFrame (”CMS” ) ;

// p r o j e c t i l e

gener�>S e tP r o j e c t i l e (”A” , 208 , 8 2 ) ;

gener�>SetTarget (”A” , 208 , 8 2 ) ;

// t e l l h i j i n g to keep the f u l l parent ch i l d chain

gener�>KeepFullEvent ( ) ;

// enable j e t quenching

gener�>SetJetQuenching ( 0 ) ; //RHIC quenching

// enable shadowing

gener�>SetShadowing ( 1 ) ;

// neu t ra l pion and heavy p a r t i c l e decays switched o f f

gener�>SetDecaysOff ( 0 ) ;

// Don ’ t t rack sp e c t a t o r s

gener�>SetSpec ta to r s ( 0 ) ;

// kinemat ic s e l e c t i o n

gener�>Se tS e l e c tA l l ( 0 ) ;

gener�>SetImpactParameterRange ( 0 . 0 , 4 . 8 ) ;

// I n i t i a l i z e genera to r

gener�>I n i t ( ) ;

gener�>SetStack ( s tack ) ;

//

// Event Loop

//
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I n t t i ev ;

f o r ( i ev = 0 ; i ev < nev ; i ev++) {
Pr in t f (Form(” Event number %d” , i ev ) ) ;

// I n i t i a l i z e event

header�>Reset (0 , i e v ) ;

r l�>SetEventNumber ( i ev ) ;

stack�>Reset ( ) ;

r l�>MakeTree (”K” ) ;

// Generate event

gener�>Generate ( ) ;

// F in i sh event

header�>SetNprimary ( stack�>GetNprimary ( ) ) ;

header�>SetNtrack ( stack�>GetNtrack ( ) ) ;

// I /O

stack�>FinishEvent ( ) ;

header�>SetStack ( s tack ) ;

r l�>TreeE()�>F i l l ( ) ;

r l�>WriteKinematics (”OVERWRITE” ) ;

} // event loop

// Termination

// Generator

gener�>FinishRun ( ) ;

// Write f i l e

r l�>WriteHeader (”OVERWRITE” ) ;

gener�>Write ( ) ;

r l�>Write ( ) ;

}

B deltaInvMass.C

#inc lude ”/Volumes/MacintoshHD3/agrounds/programs/ h i j i n g /PDGCodes . h”

#inc lude ”/Volumes/MacintoshHD3/agrounds/programs/ h i j i n g /DoubleWrap . h”

void deltaInvMass ( const char ∗ex = ”001” ,

const char ∗outputFileName = ” ./ data invmass / deltaInvMass . root ”) {
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// Dynamically l i n k some shared l i b s

i f ( gClassTable�>GetID(”AliRun ”) < 0) {
gROOT�>LoadMacro (” l o a d l i b s .C” ) ;

l o a d l i b s ( ) ;

}

gSystem�>SetInc ludePath (”�I$ROOTSYS/ inc lude �I$ALICE ROOT/ inc lude �I$ALICE ROOT” ) ;

gSystem�>Load (” l i b h i j i n g . so ” ) ;

gSystem�>Load (” l i bTHi j i ng . so ” ) ; // Al iGenHij ing i s de f ined here

gSystem�>Load (” l i b l h apd f . so ” ) ; // Parton dens i ty f unc t i on s

gSystem�>Load (” libEGPythia6 . so ” ) ; // TGenerator i n t e r f a c e

gSystem�>Load (” l i bpy th i a 6 . so ” ) ; // Pythia

gSystem�>Load (” l i bA l iPy th i a6 . so ” ) ; // ALICE s p e c i f i c implementat ions

I n t t f i l e o k =0;

I n t t Nevents =0;

I n t t mpart ; //gMC�>TrackPid ( )

Double t Pt ;

TObjArray ∗pos = new TObjArray ( ) ;

TObjArray ∗neg = new TObjArray ( ) ;

TObjArray ∗decay1 = new TObjArray ( ) ; // proton

TObjArray ∗decay2 = new TObjArray ( ) ; // pion

const I n t t hinvmassLow = 0 ;

const I n t t hinvmassHigh = 3 ;

const I n t t hinvmassNum = ( hinvmassHigh � hinvmassLow ) / 0 . 0 2 5 ;

TH1F ∗hinvmass = new TH1F(” hinvmass ” , ” Inva r i an t Mass o f the Delta Resonance ” ,

hinvmassNum , hinvmassLow , hinvmassHigh ) ;

hinvmass�>GetXaxis()�>Se tT i t l e (” Inva r i an t Mass (GeV/c ˆ2 ) ” ) ;

hinvmass�>GetYaxis()�>Se tT i t l e (”Number o f Counts ” ) ;

TH1F ∗hNev = new TH1F(”hNev” ,”Nev . ” , 1 0 , 0 , 1 0 ) ;
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std : : vector<Double t> massList , p tL i s t ;

char ∗ d i r e c t o r y = ”/Volumes/MacintoshHD3/agrounds/programs/ h i j i n g / g a l i c e /” ;

void ∗pDir = gSystem�>OpenDirectory ( d i r e c t o r y ) ;

const char ∗ f i leName ( 0 ) ;

AliRunLoader∗ r l = new AliRunLoader ( ) ;

// loop through f o l d e r s ho ld ing event f i l e s

whi l e ( ( f i leName = gSystem�>GetDirEntry ( pDir ) ) ) {
f i l e o k = 0 ;

const TString f i l e ( f i leName ) ;

i f ( f i l e . Contains (” g a l i c e ” ) ) {
cout << ” f i l e ok ”<<endl ;

f i l e o k = 1 ;

const TString f i l e 2 = ”/Volumes/MacintoshHD3/agrounds/programs/ h i j i n g / g a l i c e /”

+ f i l e + ”/ g a l i c e . root ” ;

// Connect the Root Gal i ce f i l e conta in ing Geometry , Kine and Hits

AliRunLoader∗ r l = 0x0 ;

r l = AliRunLoader : : Open( f i l e 2 , Al iConf ig : : GetDefaultEventFolderName ( ) ,

” read ” ) ;

i f ( r l == 0x0 ) {
de l e t e r l ;

cont inue ;

}

I n t t numOfevents = r l�>GetNumberOfEvents ( ) ;

//

// Loop over events

//

r l�>LoadKinematics ( ) ;

r l�>LoadHeader ( ) ;

f o r ( I n t t nev=0; nev<numOfevents ; nev++) {
hNev�>F i l l ( 1 ) ;

cout<< ” ��������event���������”<<Nevents++<<endl ;

P r i n t f (Form(” Event number %d” , nev ) ) ;
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r l�>GetEvent ( nev ) ;

Al iStack ∗ s tack = r l�>Stack ( ) ;

I n t t npart = stack�>GetNprimary ( ) ;

//

// Loop over primary p a r t i c l e s

//

cout << ” number o f p a r t i c l e s ” << npart<<endl ;

f o r ( I n t t part=0; part< npart ; part++) {
TPart i c l e ∗MPart = stack�>Pa r t i c l e ( part ) ;

mpart = MPart�>GetPdgCode ( ) ;

Pt = MPart�>Pt ( ) ;

Double t eta = MPart�>Eta ( ) ;

// make l i s t s f o r inv mass

i f ( abs ( eta ) < 0 . 9 ) {
i f (mpart == DELTA0 && MPart�>GetNDaughters ( ) >= 2) {

TPart i c l e ∗ ch i l d1 = stack�>Pa r t i c l e (MPart�>GetDaughter ( 0 ) ) ;

TPart i c l e ∗ ch i l d2 = stack�>Pa r t i c l e (MPart�>GetDaughter ( 1 ) ) ;

i f ( ch i ld1�>GetPdgCode ( ) == PROTON && chi ld2�>GetPdgCode ( ) == PIm1) {
decay1�>AddLast (new TPart i c l e (∗ ch i l d1 ) ) ;

decay2�>AddLast (new TPart i c l e (∗ ch i l d2 ) ) ;

p tL i s t . push back (Pt ) ;

}
i f ( ch i ld2�>GetPdgCode ( ) == PROTON && chi ld1�>GetPdgCode ( ) == PIm1) {

decay1�>AddLast (new TPart i c l e (∗ ch i l d2 ) ) ;

decay2�>AddLast (new TPart i c l e (∗ ch i l d1 ) ) ;

p tL i s t . push back (Pt ) ;

}
}

}

} //prim loop

} // event loop
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i f ( f i l e o k ==1) {
de l e t e r l ;

}

} // i f loop

} // f i l e loop

// f i nd de l t a mass d i s t r i b u t i o n

TPart i c l e ∗ ch i ld1 , ∗ ch i l d2 ;

const I n t t numDecay = decay1�>GetEntr ies ( ) ;

cout << ”numDecay = ” << numDecay << endl ;

f o r ( I n t t i = 0 ; i < numDecay ; ++i ) {
ch i l d1 = ( TPart i c l e ∗) decay1�>At( i ) ;

ch i l d2 = ( TPart i c l e ∗) decay2�>At( i ) ;

TLorentzVector mom( ch i ld1�>Px( ) + ch i ld2�>Px( ) , ch i ld1�>Py( ) + ch i ld2�>Py( ) ,

ch i ld1�>Pz ( ) + ch i ld2�>Pz ( ) ,

ch i ld1�>Energy ( ) + ch i ld2�>Energy ( ) ) ;

hinvmass�>F i l l (mom.M( ) ) ;

massList . push back (mom.M( ) ) ;

}

const I n t t arrDim = numDecay ;

Double t massArr [ arrDim ] ;

Double t ptArr [ arrDim ] ;

// c r e a t e TTree f o r wr i t i ng data

TTree∗ t r e e = new TTree (” t r e e ” , ”Mass and Pt L i s t s ” ) ;

t ree�>Branch (”numDecay” , &numDecay , ”numDecay/ I ” ) ;

t ree�>Branch (”massArr ” , massArr , ”massArr [ numDecay ] /D” ) ;

t ree�>Branch (” ptArr ” , ptArr , ”ptArr [ numDecay ] /D” ) ;

f o r ( I n t t i = 0 ; i < numDecay ; ++i ) {
massArr [ i ] = massList [ i ] ;

ptArr [ i ] = ptL i s t [ i ] ;

}

t ree�>F i l l ( ) ;

30



TFile ∗ o u t f i l e = new TFile ( outputFileName , ”RECREATE” ,” H i s t o f i l e ” ) ;

o u t f i l e �>cd ( ) ;

hNev�>Write ( ) ;

hinvmass�>Write ( ) ;

t ree�>Write ( ) ;

o u t f i l e �>Close ( ) ;

}
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C Figure 16 Data

The K0
S data:

pT Range (GeV{c) Peak (GeV{c2) Bin Size (GeV/c2)
0   pT   0.5 1.205 0.005
0.5   pT   1 1.12 0.005
1   pT   1.5 1.12 0.005
1.5   pT   2 1.11 0.005
2   pT   2.5 1.12 0.005
2.5   pT   3 1.12 0.01
3   pT   3.5 1.14 0.005
3.5   pT   4 1.18 0.005
4   pT   4.5 1.18 0.005

4.5   pT 1.135 0.005

The K� data:

pT Range (GeV{c) Peak (GeV{c2) Bin Size (GeV/c2)
0   pT   0.5 1.3 0.005
0.5   pT   1 1.27 0.005
1   pT   1.5 1.25 0.005
1.5   pT   2 1.265 0.005
2   pT   2.5 1.245 0.005
2.5   pT   3 1.26 0.005
3   pT   3.5 1.25 0.005
3.5   pT   4 1.25 0.01
4   pT   4.5 1.265 0.005

4.5   pT 1.26 0.005
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The ω data:

pT Range (GeV{c) Peak (GeV{c2) Bin Size (GeV/c2)
0   pT   0.5 1.205 0.005
0.5   pT   1 1.17 0.005
1   pT   1.5 1.14 0.005
1.5   pT   2 1.125 0.005
2   pT   2.5 1.14 0.005
2.5   pT   3 1.165 0.005
3   pT   3.5 1.15 0.01
3.5   pT   4 1.125 0.005
4   pT   4.5 1.19 0.005

4.5   pT 1.175 0.005

The ρ data:

pT Range (GeV{c) Peak (GeV{c2) Bin Size (GeV/c2)
0   pT   0.5 1.38 0.005
0.5   pT   1 1.35 0.005
1   pT   1.5 1.335 0.005
1.5   pT   2 1.3 0.005
2   pT   2.5 1.31 0.01
2.5   pT   3 1.315 0.005
3   pT   3.5 1.33 0.005
3.5   pT   4 1.28 0.005
4   pT   4.5 1.32 0.01

4.5   pT 1.32 0.005
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The Total Distribution data:

pT Range (GeV{c) Peak (GeV{c2) Bin Size (GeV/c2)
0   pT   0.5 1.27 0.01
0.5   pT   1 1.295 0.005
1   pT   1.5 1.26 0.005
1.5   pT   2 1.245 0.005
2   pT   2.5 1.265 0.005
2.5   pT   3 1.255 0.005
3   pT   3.5 1.25 0.005
3.5   pT   4 1.28 0.01
4   pT   4.5 1.265 0.005

4.5   pT 1.26 0.005
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