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Hybrid inverse problems refer to inverse problems where two partial

differential equations of different types are coupled. Such problems appear in

modern hybrid imaging modalities where we attempt to combine two different

imaging modalities together to achieve imaging abilities that could not be

achieved by either of the two modalities alone.

This dissertation is devoted to the study of hybrid inverse problems

in two molecular imaging modalities that are based on photoacoustics: the

coupling of ultrasound imaging with optical tomography through photoacous-

tic effect to achieve high-resolution and high-contrast imaging of molecular

functions of biological tissues.

The first inverse problem we study here is related to quantitative two-

photon photoacoustic tomography (TP-PAT). The mathematical problem here

is to reconstruct coefficients in a semilinear diffusion equation from interior
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information on the solution of the PDE. We derive some uniqueness, non-

uniqueness and stability results on the reconstruction problem under various

circumstances. Moreover, we propose a few image reconstruction algorithms

and perform numerical simulations using these algorithms to complement our

theoretical analysis.

The second inverse problem we study here arise in quantitative fluo-

rescence photoacoustic tomography (fPAT). The objective is to reconstruct

optical coefficients in a system of radiative transport equations from interior

data on the solution to the system. We study the question of uniqueness and

stability of reconstructions and develop some direct and iterative image re-

construction methods for the reconstruction of the quantum efficiency and the

fluorescent absorption coefficient. We also perform numerical studies on the

inverse problems for media with different absorption and scattering properties.
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Chapter 1

Introduction

Inverse problems in optics and acoustics have been extensively studied

in recent years. These problems have many applications in biomedical imaging

where we are interested in learning physical properties of biological tissues

from acoustic or optical measurements. Many imaging methods of interests

in biomedical imaging are non-invasive in the sense that we would only have

measurements outside or at the boundary of the domain.

Even though an ideal imaging modality would produce images that

have both high resolution and high contrast, most traditional modalities are

observed to only have one of the two desired properties when used indepen-

dently. To achieve both high resolution and high contrast, a natural idea is

to combine different imaging modalities with complementary properties. For

example, optical tomography is a high-contrast and low-resolution imaging

modality. It has high contrast as the optical properties of healthy and un-

healthy tissues are observed to have a large difference. However, its spatial

resolution is limited due to multiple scattering of light [13, 15]. Ultrasound

imaging, however, exhibits much lower contrast, due to the fact that ultra-

sound speeds vary little between healthy and unhealthy tissues, but much
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higher resolution, due to its ability to focusing accurately. Photoacoustic to-

mography is an imaging modality that that combines the advantage of optical

tomography and ultrasound imaging.

1.1 Coupling Optics with Acoustics in PAT

Photoacoustic tomography (PAT) is a hybrid imaging modality based

on the photo-acoustic effect, which couples optical and ultrasonic waves. In a

PAT experiment, we send near infrared (NIR) light into the medium of inter-

est. As optical radiation propagates, a fraction of its energy is absorbed and

generates a local heating of the underlying medium. The medium expanses

due to the temperature rise and then contracts when the remaining photons

leave the medium. The mechanical expansion and contraction result in an

acoustic signal that propagates through the domain of interest. Finally, ultra-

sonic transducers located at the boundary of the domain record the emitted

pressure waves as a function of time. We then intend to infer from the ul-

trasonic measurements the optical properties of the medium, for instance the

optical absorption and scattering coefficients.

It is generally believed that the propagation of near infra-red light in

biological tissues can be accurately modeled by the radiative transport equa-

tion. Let Ω ∈ Rd(d ≥ 2) be the domain of interests and Sd−1 be the unit

sphere in Rd. We denote by X = Ω×Sd−1 the phase space and Γ± = {(x,v) ∈

∂Ω×Sd−1|±n(x) ·v > 0} its boundary sets. We denote by u(x,v) the density

of photons at location x, traveling in direction v ∈ Sd−1. Then u(x,v) solves
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the following radiative transport equation [12, 84]

−v · ∇u+ (σa + σs)u = σs

∫
Sd−1

Θ(v,v′)u(x,v′)dv′, in X

u(x,v) = g(x,v), on Γ−.
(1.1)

The coefficient σa(x) and σs(x) are respectively the absorption and scattering

coefficients, and the scattering kernel Θ(v,v′) describes the probability that a

photon traveling in direction v′ gets scattered into direction v.

The initial pressure field generated by the photoacoustic effect can be

written as [43]:

H(x) = Ξ(x)σa(x)KI(u)(x), (1.2)

where Ξ is the (nondimensional) Grüneisen coefficient that measures the pho-

toacoustic efficiency of the underlying medium, andKI(u)(x) =
∫
Sd−1 u(x,v)dv

is local photon density at x ∈ Ω.

The initial pressure field generated from the photoacoustic effect, H,

evolves in space and time following the acoustic wave equation [22, 43, 98]:

1

c2(x)

∂2p

∂t2
−∆p = 0, in R+ × Rd

p(0,x) = H,
∂p

∂t
(0,x) = 0, in Rd

(1.3)

where c(x) is the speed of the ultrasound in the medium. The data that

we measure are the solutions to the wave equation (1.3) on the surface of

the medium, p|(0,tmax)×Σ, tmax being large enough and Σ ⊂ ∂Ω, for various

excitation light sources.
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1.2 Hybrid Inverse Problems in PAT

The inverse problem in PAT is to reconstruct optical absorption and

scattering coefficients, as well as the Grüneisen coefficient from measured ul-

trasound signals. This is an inverse problem that involves both optics and

acoustics. The problem is usually solved in two steps.

In the first step of PAT, the initial pressure field H is inferred from

the ultrasound measurements p(t,x)|(0,tmax)×Σ. This is a relatively well-known

inverse source problem for the wave equation that has been extensively studied

in the past [29, 40, 41, 51, 52, 57, 58, 64, 67, 74, 76, 78, 81, 98, 99, 100, 104].

In most of the settings considered, the sound speed is assumed to be known.

When sound speed is constant, explicit formulas have been obtained for a large

class of geometries of interest [42, 64, 67, 78]. When the sound speed is not

constant but known, time reversal algorithms have good performance under

non-trapping conditions [8, 58, 98, 105].

In the second step of PAT, which is often called quantitative photoa-

coustic tomography (QPAT), we intend to reconstruct optical properties (σa

and σs) and the Grüneisen coefficient Ξ from the reconstruction result of

the first step, the data H in (1.2). This step has recently attracted signif-

icant attention from both mathematical [8, 9, 18, 19, 21, 22] and computa-

tional [23, 30, 31, 33, 45, 70, 93, 122, 123] perspectives. The reconstruction

problem in this step is identical to diffuse optical tomography (DOT) problem

except that here we have interior H while in DOT we only have data on the

boundary of the domain. The use of interior data improve the resolution of
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the reconstruction significantly. This is the main advantage of photoacoustic

tomography over diffuse optical tomography.

Let us remark that most of the past works on hybrid inverse problems

in PAT have been done in diffusive regimes of light propagation. Let U(x) =

KI(u) ≡
∫
Sd−1

u(x,v)dv, where u(x,v) is solution to (1.1), γ(x) =
1

3(σa + σs)
,

then U(x) solves approximately [34]:

∇ · (γ∇U) + σaU = 0, in Ω
U(x) = g(x), on ∂Ω

(1.4)

when the underlying medium is strongly scattering but weakly absorbing. In

this regime, equation (1.4) provides an alternative mathematical model for

the second step of PAT reconstruction. The advantage of this model over the

transport model (1.1) is that the diffusion equation is posed in physical space

and therefore is computationally less expensive to solve than the transport

model.

1.3 PAT in Molecular Imaging

The objective of this dissertation is to study hybrid inverse problems

in two-photon abosorption photoacoustic tomography (TP-PAT) and fluores-

cence photoacoustic tomography (fPAT), two variants of PAT in the setting

of molecular imaging where the goal is to image specific molecular functions

inside biological tissues. In both cases, we prove uniqueness and stability re-

sults on the inverse problems in the quantitative steps and provide numerical

simulations to complement the mathematical analysis.
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The rest of the disseration is organized as follows.

In Chapter 2, we study two-photon quantitative PAT in diffusion regime

where we are interested in recovering single-photon and two-photon absorption

coefficients. We present some of the general properties of the semilinear diffu-

sion equation. We then develop some uniqueness and stability results for recon-

structing both a single coefficients and two coefficients. Uniqueness results for

reconstructing the diffusion coefficient along with the two optical absorption

coefficients under linearized setting are also obtained. Non-uniqueness result

to recover Grüniesen coeffcient together with the aforementioned coefficients

is also presented. We demonstrate the theoretical results with some numer-

ical simulations based on synthetic data. The semilinear diffusion equation

is discretized with a first-order finite element method on triangular meshes

and solved using a quasi-Newton method based on the variational formula-

tion. The inversion is performed with both direct methods and optimization

methods. The results in this chapter is based on a joint work with Professor

Kui Ren in [89].

In Chapter 3, we study quantitative PAT for fluorescence optical tomog-

raphy in transport regime. The aim is to reconstruct fluorescent absorption

coefficient and quantum efficiency. We develop some uniqueness and stability

results on reconstructing both a single coefficient and two coefficients. We also

present some numerical experiments based on synthetic data. The transport

equation is discretized angularly with discrete ordinate method and spatially

with a fist-order finite element method on triangular meshes. The inversions
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are performed using direct methods and standard optimization algorithm. The

results in this chapter is based on a joint work with Professor Kui Ren and

Yimin Zhong in [90].

A summary of the disseration, as well as some perspectives on future

work are presented in Chapter 4.
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Chapter 2

Hybrid Inverse Problems in Two-Photon PAT

2.1 Introduction

Two-photon photoacoustic tomography (TP-PAT) [68, 69, 106, 108,

117, 118, 119, 121, 120] is an imaging modality that aims at reconstructing

optical properties of heterogeneous media using the photoacoustic effect re-

sulted from two-photon absorption. Here by two-photon absorption we mean

the phenomenon that an electron transfers to an excited state after simultane-

ously absorbing two photons whose total energy exceed the electronic energy

band gap. The main motivation for developing two-photon PAT is that two-

photon optical absorption can often be tuned to be associated with specific

molecular signatures, such as in stimulated Raman photoacoustic microscopy,

to achieve label-free molecular imaging. Therefore, TP-PAT can be used to

visualize particular cellular functions and molecular processes inside biological

tissues.

The principle of TP-PAT is the same as that of the regular PAT [24,

32, 71, 110], except that the photoacoustic signals in TP-PAT are induced via

two-photon absorption in addition to the usual single-photon absorption. In

TP-PAT, we send near infra-red (NIR) photons into an optically absorbing and
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scattering medium, for instance a piece of biological tissue, Ω ⊆ Rn (n ≥ 2),

where they diffuse. The density of the photons, denoted by u(x), solves the

following semilinear diffusion equation:

−∇ · γ(x)∇u(x) + σ(x)u(x) + µ(x)|u|u(x) = 0, in Ω
u(x) = g(x), on ∂Ω

(2.1)

where γ(x) is the diffusion coefficient, σ(x) and µ(x) are respectively the

single-photon and the two-photon absorption coefficients, and the incoming

NIR photon source is modelled by the function g(x). The medium absorbs a

portion of the incoming photons and heats up due to the absorbed energy. The

heating then results in thermal expansion of the medium. The medium cools

down after the photons exit. This cooling process results in contraction of

the medium. The expansion-contraction of the medium generates ultrasound

waves. The process is called the photoacoustic effect. The initial pressure field

generated by the photoacoustic effect can be written as [22, 43]

H(x) = Ξ(x)
[
σ(x)u(x) + µ(x)|u|u(x)

]
, x ∈ Ω. (2.2)

where Ξ is the Grüneisen coefficient that describes the efficiency of the pho-

toacoustic effect. This initial pressure field generated by single-photon and

two-photon absorption processes evolves, in the form of ultrasound, according

to the classical acoustic wave equation [22, 43].

The data we measure in TP-PAT are the ultrasound signals on the

surface of the medium. From these measured data, we are interested in re-

constructing information on the optical properties of the medium. The re-

construction is usually done in two steps. In the first step, we reconstruct
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the initial pressure field H in (2.2) from measured data. This step is the

same as that in a regular PAT, and has been studied extensively in the past

decade; see, for instance, [10, 27, 29, 40, 52, 57, 61, 63, 74, 81, 98] and ref-

erences therein. In the second step of TP-PAT, we attempt to reconstruct

information on the optical coefficients, for instance, the two-photon absorp-

tion coefficient µ, from the result of the first step inversion, i.e. the inter-

nal datum H in (2.2). This is called the quantitative step in the regular

PAT [8, 15, 22, 20, 31, 44, 70, 72, 80, 88, 90, 94, 123].

It is clear from (2.1) that the two-photon absorption strength depends

quadratically, not linearly, on the local photon density u(x). It is generally

believed that events of two-photon absorption in biological tissues can only

happen when the local photon density is sufficiently high. In fact, the main

difficulty in the development of TP-PAT is to be able to measure the ultrasound

signal accurate enough such that the photoacoustic signal due to two-photon

absorption is not completely buried by noise in the data. In recent years, many

experimental research have been conducted where it is shown that the effect

of two-photon absorption can be measured accurately; see, for instance, the

study on the feasibility of TP-PAT on various liquid samples in [118, 119, 120]

(solutions), [68, 120] (suspensions) and [69] (soft matter).

Despite various experimental study of TP-PAT, a thorough mathemat-

ical and numerical analysis of the inverse problems in the second step of TP-

PAT is largely missing, not to mention efficient reconstruction algorithms. The

objective of this study is therefore to pursue in these directions. In the rest
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of the chapter, we first recall in Section 2.2 some fundamental mathematical

results on the properties of solutions to the semilinear diffusion equation (2.1).

We then develop in Section 2.3 the theory of reconstructing the absorption

coefficients. In Section 2.4 we analyze the linearized problem of simultane-

ously reconstructing the absorption coefficients and the diffusion coefficient.

Numerical simulations are provided in Section 2.5 to validate the mathemat-

ical analysis and demonstrate the quality of the reconstructions. Concluding

remarks are offered in Section 2.6.

2.2 The Semilinear Diffusion Model

To prepare for the study of the inverse coefficient problems, we recall

in this section some general results on the semilinear diffusion model (2.1).

Thanks to the absolute value operator in the quadratic term µ|u|u in the

equation, we can follow the standard theory of calculus of variation, as well

as the theory of generalized solutions to elliptic equations in divergence form,

to derive desired properties of the solution to the diffusion equation that we

will need in the following sections. The results we collected here are mostly

minor modifications/simplifications of classical results in [7, 14, 39, 46]. We

refer interested readers to these references, and the references therein, for more

technical details on these results.

We assume, in the rest of the chapter, that the domain Ω is smooth

and satisfies the usual exterior cone condition [46]. We assume that all the co-

efficients involved are bounded in the sense that there exist positive constants
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θ ∈ R and Θ ∈ R such that

0 < θ ≤ Ξ(x), γ(x), σ(x), µ(x) ≤ Θ <∞, ∀x ∈ Ω̄. (2.3)

Unless stated otherwise, we assume also that

(γ, σ, µ) ∈ [W 1,2(Ω̄)]3, and, g(x) is the restriction of a C3(Ω̄) function on ∂Ω.

(2.4)

where W 1,2(Ω) denotes the usual Hilbert space of L2(Ω) functions whose first

weak derivative is also in L2(Ω). Note thathere we used W 1,2(Ω) instead of

H1(Ω) to avoid confusion with the H we used to denote the internal data

in (2.2).

Technically speaking, in some of the results we obtained below, we can

relax part of the above assumptions. However, we will address this issue at

the moment. For convenience, we define the function f(x, z) and the linear

operator L,

f(x, z) = σ(x)z + µ(x)|z|z, and Lu = −∇ · γ∇u. (2.5)

With our assumption above, it is clear that L is uniformly elliptic, and f(x, z)

is continuously differentiable with respect to z on Ω̄×R. Moreover, fz(x, z) :=

∂zf(x, z) = σ(x) + 2µ(x)|z| ≥ θ > 0, ∀z ∈ R.

We start by recalling the definition of weak solutions to the semilinear

diffusion equation (2.1). We say that u ∈ W ≡ {w|w ∈ W 1,2(Ω) and w|∂Ω = g}

is a weak solution to (2.1) if∫
Ω

γ(x)∇u · ∇v + σ(x)u(x)v(x) + µ(x)|u|u(x)v(x)dx = 0, ∀v ∈ W 1,2
0 (Ω).
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We first summarize the results on existence, uniqueness and regularity of the

solution to (2.1) in the following lemma.

Lemma 2.2.1. Let (γ, σ, µ) satisfy (2.3), and assume that g ∈ C0(∂Ω). Then

there is a unique weak solution u ∈ W 1,2(Ω) such that u ∈ Cα(Ω) ∩ C0(Ω̄) for

some 0 < α < 1. If we assume further that (γ, σ, µ) and g satisfy (2.4), then

u ∈ W 3,2(Ω) ∩ C0(Ω̄).

Proof. This result is scattered in a few places in [7, 14] (for instance [14,

Theorem 1.6.6]). We provide a sketch of proof here. For any function w ∈ W ,

we define the following functional associated with the diffusion equation (2.1):

I[w] =

∫
Ω

L(x, w,Dw)dx =

∫
Ω

[
1

2
γ|∇w|2 +

1

2
σw2 +

1

3
µ|w|w2

]
dx.

It is straightforward to verify that I[w] : W → R is strictly convex (thanks

again to the absolute value in the third term) and differentiable on W with

I ′[w]v =

∫
Ω

[
γ(x)∇w · ∇v + σ(x)wv + µ(x)|w|wv

]
dx.

We also verify that the function L(x, z,p) satisfies the following growth con-

ditions:

|L(x, z,p)| ≤ C(1 + |z|3 + |p|2),

|DzL(x, z,p)| ≤ C(1 + |z|2),

|DpL(x, z,p)| ≤ C(1 + |p|),

for all x ∈ Ω, z ∈ R and p ∈ Rn. It then follows from standard results in

calculus of variations [7, 14, 39] that there exists a unique u ∈ W satisfies

I[u] = min
w∈W

I[w],
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and u is the unique weak solution of (2.1). By Sobolev embedding, when

n = 2, 3, there exists q > n, such that u ∈ Lq(Ω). This then implies that

f(x, u) ∈ Lq/2(Ω) with the assumption (2.3). Let us rewrite the diffusion

equation (2.1) as

−∇ · (γ∇u) = f(x, u), in Ω, u = g, on ∂Ω. (2.6)

Following standard results in [39, 46], we conclude that f ∈ Lq/2(Ω) implies

u ∈ Cα(Ω) for some 0 < α < 1, where α = α(n,Θ/θ). Moreover, when

g ∈ C0(∂Ω), u ∈ C0(Ω̄). If we assume further that (γ, σ, µ) and g satisfy (2.4),

then f ∈ W 1,2 thanks to the fact that u ∈ C0(Ω̄). Equation (2.6) then implies

that u ∈ W 3,2(Ω) ∩ C0(Ω̄) [39, 46].

We now recall the following comparison principle for the solutions to

the semilinear diffusion equation (2.1).

Proposition 2.2.2. (i) Let u, v ∈ W 1,2(Ω) ∩ C0(Ω̄) be functions such that

Lu + f(x, u) ≤ 0 and Lv + f(x, v) ≥ 0 in Ω, and u ≤ v on ∂Ω. Then

u ≤ v in Ω. (ii) If, in addition, Ω satisfies the exterior cone condition or

u, v ∈ W 2,2(Ω), then either u ≡ v or u < v.

Proof. For t ∈ [0, 1], let ut = tu+ (1− t)v and define a(x) =

∫ 1

0

fz(ut,x)dt. It

is then straightforward to check that a(x) ≥ θ > 0 (since fz ≥ θ > 0). With

the assumption that u ∈ C0(Ω̄) and v ∈ C0(Ω̄), we conclude that ut is bounded

from above when t ∈ [0, 1]. Therefore, a(x) ≤ Λ < ∞ for some Λ > 0. We
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also verify that f(u,x)− f(v,x) = a(x)(u− v). Let w = u− v, we have, from

the assumptions in the proposition, that

Lw + a(x)w ≤ 0, in Ω, w ≤ 0, on ∂Ω.

Since L + a is uniformly elliptic, by the weak maximum principle for weak

solutions [46, Theorem 8.1], w ≤ 0 in Ω. This then implies that u ≤ v in Ω.

If we assume in addition that u, v ∈ W 2,2(Ω), we can use the strong

maximum principle to conclude that w ≡ 0 if w(0) = 0 for some x ∈ Ω.

Therefore, either w ≡ 0, in which case u = v, or w < 0, in which case u < v.

If u, v ∈ W 1,2(Ω) and Ω satisfies the exterior cone condition, we can use [46,

Theorem 8.19] to draw the same conclusion.

The above comparison principle leads to the following assertion on the

solution to the semilinear diffusion equation (2.1).

Proposition 2.2.3. Let uj be the solution to (2.1) with boundary condition

gj, j = 1, 2. Assume that γ, σ, µ and {gj}2
j=1 satisfy the assumptions in (2.3)

and (2.4). Then the following statements hold: (i) if gj ≥ 0, then uj ≥ 0; (ii)

supΩ uj ≤ sup∂Ω gj; (iii) if g1 > g2, then u1(x) > u2(x) ∀x ∈ Ω.

Proof. (i) follows from the comparison principle in Proposition 2.2.2 and the

fact that u ≡ 0 is a solution to (2.1) with homogeneous Dirichlet condition

g = 0. (ii) By (i), uj ≥ 0. Therefore f(x, uj) ≥ 0. Therefore, we can have

−∇ · (γ∇uj) = −f(x, uj) ≤ 0, in Ω.
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By the maximum principle, supΩ uj ≤ sup∂Ω gj. (iii) is a direct consequence

of part (ii) of Proposition 2.2.2.

In the study of the inverse problems in the next sections, we sometimes

need the solution to the semilinear diffusion equation to be bounded away from

0. We now prove the following result.

Theorem 2.2.4. Let u be the solution to (2.1) generated with source g ≥ ε > 0

for some ε. Then there exists ε′ > 0 such that u ≥ ε′ > 0.

Proof. We follow the arguments in [5]. We again rewrite the PDE as

−∇ · γ∇u = −f(x, u), in Ω, u = g, on ∂Ω.

Then by classical gradient estimates, see for instance [53, Proposition 2.20],

we know that there exists K > 0, depending on γ, |∇γ| and Ω, such that

|u(x)− u(x0)| ≤ K|x− x0|, ∀x ∈ Ω, x0 ∈ ∂Ω.

Using the fact that g ≥ ε, we conclude from this inequality that there exists a

d > 0 such that

u(x) ≥ ε/2, ∀x ∈ Ω\Ωd,

where Ωd = {x ∈ Ω : dist(x, ∂Ω) > d}. Therefore, supΩd/2
u ≥ ε/2.

Let c(x) = σ(x) + µ(x)|u(x)|. Due to the fact that u is nonnegative

and bounded from above, we have that 0 < θ ≤ c(x) ≤ Θ(1 + sup∂Ω |g|). We

then have that u solves

−∇ · γ∇u+ cu = 0, in Ω, u = g, on ∂Ω.
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By the Harnack inequality (see [46, Corollary 8.21]), we have that there exists

constant C, depending on d, γ, c, Ω, and Ωd/2, such that

C inf
Ωd/2

u ≥ sup
Ωd/2

u.

Therefore, infΩd/2 u ≥
ε

2C
. The claim then follows from

inf
Ω
u ≥ min{ inf

Ωd/2
u, inf

Ω\Ωd
u} ≥ ε

2
min{1/C, 1} ≡ ε′.

We conclude this section by the following result on the differentiability

of the datum H with respect to the coefficients in the diffusion equation. This

result justifies the linearization that we perform in Section 2.4.

Proposition 2.2.5. The datum H defined in (2.2) generated from an illumi-

nation g ≥ 0 on ∂Ω, viewed as the map

H[γ, σ, µ] :
(γ, σ, µ) 7→ Ξ(σu+ µ|u|u)

W 1,2(Ω)× L∞(Ω)× L∞(Ω) → W 1,2(Ω)
(2.7)

is Fréchet differentiable when the coefficients satisfies (2.3) and (2.4). The

derivative at (γ, σ, µ) in the direction (δγ, δσ, δµ) ∈ W 1,2(Ω)×L∞(Ω)×L∞(Ω)

is given by H ′γ[γ, σ, µ](δγ)
H ′σ[γ, σ, µ](δσ)
H ′µ[γ, σ, µ](δµ)

 = Ξ

 σv1 + 2µuv1

δσu+ 2µ|u|v2

δσv3 + 2µ|u|v3 + δµ|u|u

 , (2.8)

where vj (1 ≤ j ≤ 3) is the solution to the diffusion equation

−∇ · (γ∇vj) + (σ + 2µ|u|)vj = Sj, in Ω, vj = 0, on ∂Ω (2.9)
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with

S1 = ∇ · δγ∇u, S2 = −δσu, S3 = −δµ|u|u.

Proof. We show here only that u is Fréchet differentiable with respect to γ, σ

and µ. The rest of the result follows from the chain rule.

Let (δγ, δσ, δµ) ∈ W 1,2(Ω)×L∞(Ω)×L∞(Ω) be such that (γ′, σ′, µ′) =

(γ + δγ, σ + δσ, µ + δµ) satisfies the bounds in (2.3). Let u′ be the solution

to (2.1) with coefficients (γ′, σ′, µ′), and define ũ = u′−u. We then verify that

ũ solves the following linear diffusion equation

−∇ · (γ∇ũ) +
[
σ + µ(u+ u′)

]
ũ = ∇ · δγ∇u′ − δσu′ − δµu′2, in Ω
ũ = 0, on ∂Ω

where we have used the fact that u ≥ 0 and u′ ≥ 0 following Proposition 2.2.3

(since g ≥ 0 on ∂Ω). Note also that both u and u′ are bounded from above by

Proposition 2.2.3. Therefore, σ+µ(u+u′) is bounded from above. Therefore,

we have the following standard estimate [46]

‖ũ‖W 1,2(Ω) ≤ C1

(
‖δγ∇u′‖L2(Ω) + ‖δσu′‖L2(Ω) + ‖δµu′2‖L2(Ω)

)
≤ C′1(‖δγ‖L∞(Ω) + ‖δσ‖L∞(Ω) + ‖δµ‖L∞(Ω)). (2.10)

Let ˜̃u = u′ − u − (v1 + v2 + v3) with v1, v2 and v3 solutions to (2.9).

Then we verify that ˜̃u satisfies the equation

−∇ · (γ∇˜̃u) +
[
σ + 2µu

]˜̃u = ∇ · δγ∇ũ− δσũ− δµ(u′ + u)ũ, in Ω˜̃u = 0, on ∂Ω
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Therefore, we have the following standard estimate

‖˜̃u‖W 1,2(Ω) ≤ C2

(
‖δγ∇ũ‖L2(Ω) + ‖δσũ‖L2(Ω) + ‖δµũ2‖L2(Ω)

)
≤ C′2

(
‖δγ‖L∞(Ω)‖∇ũ‖L2(Ω) + ‖δσ‖L∞(Ω)‖ũ‖L2(Ω) + ‖δµ‖L∞(Ω)‖ũ‖L2(Ω)

)
.

(2.11)

We can thus combine (2.10) with (2.11) to obtain the bound

‖˜̃u‖W 1,2(Ω) ≤ C
(
‖δγ‖2

L∞(Ω) + ‖δσ‖2
L∞(Ω) + ‖δµ‖2

L∞(Ω)

)
.

This concludes the proof.

We observe from the above proof that differentiability of H with respect

to σ and µ can be proven when viewed as a map L∞(Ω)× L∞(Ω)→ L∞(Ω),

following the maximum principles for solutions ũ and ˜̃u. The same thing

can not be done with respect to γ since we can not control the term ‖∇ ·

δγ∇u′‖L∞(Ω) with ‖δγ‖L∞(Ω) without much more restrictive assumptions on

δγ.

2.3 Reconstructing Absorption Coefficients

We now study inverse problems related to the semilinear diffusion

model (2.1). We first consider the case of reconstructing the absorption coeffi-

cients, assuming that the Grüneisen coefficient Ξ and the diffusion coefficient

γ are both known.
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2.3.1 One coefficient with single datum

We now show that with one datum set, we can uniquely recover one of

the two absorption coefficients.

Proposition 2.3.1. Let Ξ and γ be given. Assume that g ≥ ε > 0 for some

ε. Let H and H̃ be the data sets corresponding to the coefficients (σ, µ) and

(σ̃, µ̃) respectively. Then H = H̃ implies (u, σ + µ|u|) = (ũ, σ̃ + µ̃|ũ|) provided

that all coefficients satisfy (2.3). Moreover, we have

‖(σ + µ|u|)− (σ̃ + µ̃̃|u|)‖L∞(Ω) ≤ C‖H − H̃‖L∞(Ω), (2.12)

for some constant C.

Proof. The proof is straightforward. Let w = u− ũ. We check that w solves

−∇ · (γ∇w) = − 1

Ξ
(H − H̃), in Ω, w = 0, on ∂Ω. (2.13)

Therefore H = H̃ implies w = 0 which is simply u = ũ. This in turn implies

that
H

u
=
H̃

ũ
, that is σ + µ|u| = σ̃ + µ̃|ũ|. Note that the condition g ≥ ε > 0

implies that u, ũ ≥ ε′ > 0 for some ε′ following Theorem 2.2.4. This makes

it safe to take the ratios H/u and H̃/ũ, and to omit the absolute values on u

and ũ.

To derive the stability estimate, we first observe that

|(σ + µ|u|)− (σ̃ + µ̃|ũ|)| = 1

Ξ
|H
u
− H̃

ũ
| = |H(ũ− u) + (H − H̃)u

Ξuũ
|.
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Using the fact that u and ũ are both bounded away from zero, and the triangle

inequality, we have, for some constants c1 and c2,

‖(σ + µ|u|)− (σ̃ + µ̃|ũ|)‖L∞(Ω) ≤ c1‖ũ− u‖L∞(Ω) + c2‖H − H̃‖L∞(Ω). (2.14)

On the other hand, classical theory of elliptic equations allows us to derive,

from (2.13), the following bound, for some constant c3,

‖u− ũ‖L∞(Ω) ≤ c3‖H − H̃‖L∞(Ω). (2.15)

The bound in (2.12) then follows by combining (2.14) and (2.15).

The above proof provides an explicit algorithm to reconstruct one of σ

and µ from one datum. Here is the procedure. We first solve

−∇ · (γ∇u) = − 1

Ξ
H, in Ω, u = g, on ∂Ω (2.16)

for u since Ξ and γ are known. We then reconstruct σ as

σ =
H

Ξu
− µ|u|, (2.17)

if µ is known, or reconstruct µ as

µ =
H

Ξu|u|
− σ

|u|
, (2.18)

if σ is known.

The stability estimate (2.12) can be made more explicit when one of

the coefficients involved is known. For instance, if µ is known, then we have

|σ−σ̃| = 1

Ξ

∣∣H
u
−µ|u|−

(H̃
ũ
−µ|ũ|

)∣∣ =
1

Ξ

∣∣(H(ũ− u) + (H − H̃)u

uũ
−µ(|u|−|ũ|)

∣∣.
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This leads to, using the triangle inequality again,

‖σ − σ̃‖L∞(Ω) ≤ c′1‖ũ− u‖L∞(Ω) + c′2‖H − H̃‖L∞(Ω).

Combining this bound with (2.15), we have

‖σ − σ̃‖L∞(Ω) ≤ C ′‖H − H̃‖L∞(Ω), (2.19)

for some constant C ′. In the same manner, we can derive

‖µ− µ̃‖L∞(Ω) ≤ C ′′‖H − H̃‖L∞(Ω), (2.20)

for the reconstruction of µ if σ is known in advance.

2.3.2 Two coefficients with two data sets

We see from the previous result that we can reconstruct σ+ µ|u| when

we have one datum. If we have data generated from two different sources

g1 and g2, then we can reconstruct σ + µ|u1| and σ + µ|u2| where u1 and u2

are the solutions to the diffusion equation (2.1) corresponding to g1 and g2

respectively. If we can choose g1 and g2 such that |u2| − |u1| 6= 0 anywhere,

we can uniquely reconstruct the pair (σ, µ). This is the idea we have in the

following result.

Proposition 2.3.2. Let Ξ and γ be given. Let (H1, H2) and (H̃1, H̃2) be the

data sets corresponding to the coefficients (σ, µ) and (σ̃, µ̃) respectively that are

generated with the pair of sources (g1, g2). Assume that gi ≥ ε > 0, i = 1, 2,

and g1 − g2 ≥ ε′ > 0 for some ε and ε′. Then (H1, H2) = (H̃1, H̃2) implies
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(σ, µ) = (σ̃, µ̃) provided that all coefficients involved satisfy (2.3). Moreover,

we have

‖σ − σ̃‖L∞(Ω) + ‖µ− µ̃‖L∞(Ω) ≤ C̃
(
‖H1 − H̃1‖L∞(Ω) + ‖H2 − H̃2‖L∞(Ω)

)
,

(2.21)

for some constant C̃.

Proof. Let wi = ui − ũi, i = 1, 2. Then wi solves

−∇ · (γ∇wi) = − 1

Ξ
(Hi − H̃i), in Ω, wi = 0, on ∂Ω. (2.22)

Therefore Hi = H̃i implies ui = ũi and

σ + µ|ui| = σ̃ + µ̃|ui|.

Collecting the results for both data sets, we have(
1 |u1|
1 |u2|

)(
σ
µ

)
=

(
1 |u1|
1 |u2|

)(
σ̃
µ̃

)
. (2.23)

When g1 and g2 satisfy the requirements stated in the proposition, we have

u1 − u2 ≥ ε′ > 0 for some ε′. Therefore, the matrix

(
1 |u1|
1 |u2|

)
is invertible.

We can then remove this matrix in (2.23) to show that (σ, µ) = (σ̃, µ̃).

To get the stability estimate in (2.21), we first verify that

(σ − σ̃) + (µ− µ̃)|ui| =
Hi

ui
− H̃i

ũi
− µ̃(|ui| − |ũi|), i = 1, 2.

This leads to,

(
1 |u1|
1 |u2|

)(
σ − σ̃
µ− µ̃

)
=


H1

u1

− H̃1

ũ1

− µ̃(|u1| − |ũ1|)

H2

u2

− H̃2

ũ2

− µ̃(|u2| − |ũ2|)

 .
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Therefore, we have

(
σ − σ̃
µ− µ̃

)
=

(
1 |u1|
1 |u2|

)−1


H1(ũ1 − u1) + (H1 − H̃1)u1

u1ũ1

− µ̃(|u1| − |ũ1|)

H2(ũ2 − u2) + (H2 − H̃2)u2

u2ũ2

− µ̃(|u2| − |ũ2|)

 .

It then follows that

‖σ − σ̃‖L∞(Ω) + ‖µ− µ̃‖L∞(Ω)

≤ c
(
‖H1 − H̃1‖L∞(Ω) + ‖H2 − H̃2‖L∞(Ω) + ‖u1 − ũ1‖L∞(Ω) + ‖u2 − ũ2‖L∞(Ω)

)
.

(2.24)

Meanwhile, we have, from (2.22),

‖ui − ũi‖L∞(Ω) ≤ c′‖Hi − H̃i‖L∞(Ω), i = 1, 2. (2.25)

The bound in (2.21) then follows from (2.24) and (2.25).

2.4 Reconstructing Absorption and Diffusion Coefficients

We now study inverse problems where we intend to reconstruct more

than the absorption coefficients. We start with a non-uniqueness result on the

simultaneous reconstruction of all four coefficients Ξ, γ, σ, and µ.

2.4.1 Non-uniqueness in reconstructing (Ξ, γ, σ, µ)

Let us assume for the moment that γ1/2 ∈ C2(Ω). We introduce the

following Liouville transform

v =
√
γu. (2.26)
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We then verify that the semilinear diffusion equation (2.1) is transformed into

the following equation under the Liouville transform:

∆v −
(

∆γ1/2

γ1/2
+
σ

γ
+

µ

γ3/2
|v|
)
v = 0, in Ω, v = γ1/2g, on ∂Ω (2.27)

and the datum H is transformed into

H(x) = Ξ(x)

(
σ

γ1/2
v(x) +

µ

γ
v2(x)

)
. (2.28)

Let us now define the following functionals:

α =
∆γ1/2

γ1/2
+
σ

γ
, β =

µ

γ3/2
, ζ1 = Ξ

σ

γ1/2
, ζ2 = Ξ

µ

γ
. (2.29)

The following result says that once (α, β, ζ1) or (α, β, ζ2) is known, introducing

new data would not bring in new information.

Theorem 2.4.1. Let γ1/2|∂Ω be given and assume that γ1/2 ∈ C2(Ω). Assume

that either (α, β, ζ1) or (α, β, ζ2) is known, and H is among the data used to

determine them. Then for any given new illumination g̃, the corresponding

datum H̃ is uniquely determined by (g̃, H).

Proof. Let us first rewrite the datum as H = ζ1v + ζ2v
2. When α and β are

known, we know the solution v of (2.27) for any given g. If ζ1 is also known,

we know also ζ1v. We therefore can form the ratio

H̃ − ζ1ṽ

H − ζ1v
=
ζ2ṽ

2

ζ2v2
=
ṽ2

v2
.

We then find H̃ as H̃ =
ṽ2

v2
(H− ζ1v) + ζ1ṽ. If ζ1 is not known but ζ2 is known,

we can form the ratio

H̃ − ζ2ṽ
2

H − ζ2v2
=
ζ1ṽ

ζ1v
=
ṽ

v
.
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This gives H̃ =
ṽ

v
(H − ζ2v

2) + ζ2ṽ
2. The proof is complete.

The above theorem says that we can at most reconstruct the triplet

(α, β, ζ1) or the triplet (α, β, ζ2). Neither triplet would allow the unique de-

termination of the four coefficients (Ξ, γ, σ, µ). Once one of the triplets is

determined, adding more data is not helpful in terms of uniqueness of recon-

structions.

Similar non-uniqueness results were proved in the case of the regular

PAT [19, 20]. In that case, it was also shown that if the Grüneisen coefficient

Ξ is known, for instance from multi-spectral measurements [21, 72], one can

uniquely reconstruct the absorption coefficient and the diffusion coefficient

simultaneously. In the rest of this section, we consider this case, that is, Ξ is

known, for our TP-PAT model.

2.4.2 Linearized reconstruction of (γ, σ, µ)

We study the problem of reconstructing (γ, σ, µ), assuming Ξ is known,

in linearized setting following the general theory of overdetermined elliptic

systems developed in [36, 95]. For the sake of the readability of the presentation

below, we collect some necessary terminologies in the theory of overdetermined

elliptic systems in Appendix A. We refer interested readers to [17, 65, 114] for

overviews of the theory in the context of hybrid inverse problems and references

therein for more technical details on the theory. Our presentation below follows

mainly [17].
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We linearize the nonlinear inverse problem around background coeffi-

cients (γ, σ, µ), assuming that we have access to data collected from J different

illumination sources {gj}Jj=1. We denote by (δγ, δσ, δµ) the perturbations to

the coefficients. Let uj be the solution to (2.1) with source gj and the back-

ground coefficients. We then denote by δuj the perturbation to solution uj.

Following the calculations in Proposition 2.2.5, we have, for 1 ≤ j ≤ J , in Ω,

−∇ · (δγ∇uj)−∇ · (γ∇δuj) + δσuj + δµ|uj|uj + (σ + 2µ|uj|)δuj = 0,

(2.30)

δσuj + δµ|uj|uj + (σ + 2µ|uj|)δuj = δHj/Ξ,
(2.31)

To simplify our analysis, we rewrite the above system into, 1 ≤ j ≤ J ,

−∇ · (δγ∇uj)−∇ · (γ∇δuj) = −δHj/Ξ, in Ω (2.32)

ujδσ + |uj|ujδµ+ (σ + 2µ|uj|)δuj = +δHj/Ξ, in Ω (2.33)

This is a system of 2J differential equations for J+3 unknowns {δγ, δσ, δµ, δu1,

. . . , δuJ}.

To supplement the above system with appropriate boundary conditions,

we first observe that the boundary conditions for the solutions {δuj}Jj=1 are

given already. They are homogeneous Dirichlet conditions since g does not

change when the coefficients change. The boundary conditions for (δγ, δσ, δµ)

are what need to be determined. In the case of single-photon PAT, it has

been shown that one needs to have γ|∂Ω known to have uniqueness in the

reconstruction [19, 88]. This is also expected in our case. We therefore take
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δγ|∂Ω = φ1 for some known φ1. The boundary conditions for σ and µ are given

by the data. In fact, on the boundary, u = g. Therefore, we have, from (2.33)

which holds on ∂Ω, that

gjδσ + |gj|gjδµ = δHj/Ξ, on ∂Ω.

If we have two perturbed data sets {δH1, δH2} with g1 and g2 sufficiently

different, we can then uniquely reconstruct (δσ|∂Ω, δµ|∂Ω):

δσ|∂Ω =
δH1|g2|g2 − δH2|g1|g1

Ξg1g2(|g2| − |g1|)
≡ φ2, δµ|∂Ω =

δH2g1 − δH1g2

Ξg1g2(|g2| − |g1|)
≡ φ3.

Therefore, we have the following Dirichlet boundary condition for the un-

knowns

(δγ, δσ, δµ, δu1, . . . , δuJ) = (φ1, φ2, φ3, 0, · · · , 0). (2.34)

Let us introduce v = (δγ, δσ, δµ, δu1, . . . , δuJ), S = (−δH1, δH1, . . .,

−δHJ , δHJ)/Ξ, φ = (φ1, φ2, φ3, 0, · · · , 0). We can then write the linearized

system of equations (2.32)-(2.33) and the corresponding boundary conditions

into the form of

A(x, D)v = S, in Ω B(x, D)v = φ, on ∂Ω (2.35)

whereA is a matrix differential operator of size M×N , M = 2J and N = 3+J ,

while B is the identity operator. The symbol of A is given as

A(x, iξ) =


−iV1 · ξ −∆u1 0 0 γ|ξ|2 − iξ · ∇γ . . . 0

0 u1 |u1|u1 σ + 2µ|u1| . . . 0
...

...
...

...
...

...
−iVJ · ξ −∆uJ 0 0 0 . . . γ|ξ|2 − iξ · ∇γ

0 uJ |uJ |uJ 0 . . . σ + 2µ|uJ |

 ,

(2.36)
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with Vj = ∇uj, 1 ≤ j ≤ J and ξ ∈ Sn−1.

It is straightforward to check that if we take the associated Douglis-

Nirenberg numbers as

{si}2J
i=1 = (0,−2, . . . , 0,−2), {tj}J+3

j=1 = (1, 2, 2, 2, . . . , 2), (2.37)

the principal part of A is simply A itself with the −iξ · ∇γ and −∆uj (1 ≤

j ≤ J) terms removed.

In three-dimensional case, we can establish the following result.

Theorem 2.4.2. Let n = 3. Assume that the background coefficients γ ∈

C4(Ω), σ ∈ C2(Ω), and µ ∈ C1(Ω) satisfy the bounds in (2.3). Then, there exists

a set of J ≥ n+ 1 illuminations {gj}Jj=1 such that A is elliptic. Moreover, the

corresponding elliptic system (A,B), with boundary condition (2.34), satisfies

the Lopatinskii criterion.

Proof. Let us first rewrite the principal symbol A0 as

A0(x, iξ) =


−iV1 · ξ 0 0 γ|ξ|2 . . . 0

iV1·ξ
γ|ξ|2 (σ + 2µ|u1|)u1 u1 |u1|u1 0 . . . 0

...
...

...
...

...
...

−iVJ · ξ 0 0 0 . . . γ|ξ|2
iVJ ·ξ
γ|ξ|2 (σ + 2µ|uJ |)uJ uJ |uJ |uJ 0 . . . 0

 .

It is then straightforward to check that A0(x, iξ) is of full-rank as long as the

following sub-matrix is of full-rank:

Ã0(x, iξ) =

 iV1·ξ
γ|ξ|2 (σ + 2µ|u1|)u1 u1 |u1|u1

...
...

...

iVJ ·ξ
γ|ξ|2 (σ + 2µ|uJ |)uJ uJ |uJ |uJ

 .
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To simplify the calculation, we introduce Σj = σ + 2µ|uj|, F̂j = Vj · ξ.

We also eliminate the non-zero common factor
i

γ|ξ|2
from the first column

and uj from each row. Without loss of generality, we check the determinant

of first 3 (since J ≥ n+ 1 = 4) rows of the simplified version of the submatrix

Ã0(x, iξ). This determinant is given as

det(Ã0) = F̂1
Σ1

u1

(|u3| − |u2|) + F̂2
Σ2

u2

(|u1| − |u3|) + F̂3
Σ3

u3

(|u2| − |u1|)

=
Σ1Σ2Σ3

u1u2u3

(
F̂1
u3u2(|u3| − |u2|)

Σ3Σ2

+ F̂2
u1u3(|u1| − |u3|)

Σ1Σ3

+ F̂3
u2u1(|u2| − |u1|)

Σ2Σ1

)
.

With the assumptions on the background coefficients, we can take uj to

be the complex geometric optics solution constructed following Theorem 2.6.6

(in Appendix B) for ρj with boundary condition gj. Then we have

F̂k
uiuj(|ui| − |uj|)

ΣiΣj

=
uiuj(|ui| − |uj|)

ΣiΣj

∇uk · ξ

= uiujuk
(|ui| − |uj|)

ΣiΣj

(ρk +O(1)) · ξ.

This gives us,

det(Ã0) ∼
(

Σ1(|u2|−|u3|)ρ1 +Σ2(|u3|−|u1|)ρ2 +Σ3(|u1|−|u2|)ρ3

)
·ξ. (2.38)

Let us define αk = Σk(|ui| − |uj|) with (k, i, j) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.

Then we have α1 + α2 + α3 = 0. Let (e1, e2, e3) an orthonormal basis for R3.

Then ξ =
∑3

k=1 ckek with |c1|2 + |c2|2 + |c3|2 = 1. We take

ρ1 = β1

(
τ1e1 + iτ̃1e2

)
,

ρ2 = β2

(
τ2e2 + iτ̃2e3

)
,

ρ3 = β3

(
τ3e3 + iτ̃3e1

)
,
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where |τk| = |τ̃k|, ∀1 ≤ k ≤ 3. It is straightforward to verify that ρk · ρk = 0,

|ρk| =
√

2|τk||βk| for all 1 ≤ k ≤ 3. We now deduce from (2.38) that det(Ã0) ∼

R + i I where

R = α1τ1β1c1 + α2τ2β2c2 + α3τ3β3c3, I = α1τ̃1β1c2 + α2τ̃2c3 + α3τ̃3β3c1.

Take β1 = β2 = β3, τk = τ̃k = 1, 1 ≤ k ≤ 3. Then det(A0) 6= 0 unless

c1 = c2 = c3. [ This is because if det(A0) = 0, we have R = 0, I = 0, and

a1 + a2 + a3 = 0. That is 1 1 1
c1 c2 c3

c2 c3 c1

α1

α2

α3

 =

0
0
0

 .

This contradicts the construction of {αk}3
k=1]. Let us now take

ρ4 = 2ρ3.

Then the submatrix formed by u1, u2 and u4 will have full rank when c1 =

c2 = c3. Therefore the submatrix formed by u1, u2, u3 and u4 is of full rank

for any ξ.

To show that (A,B) satisfies the Lopatinskii criterion given in Defini-

tion 2.6.4 for a set of well chosen uj, we first observe that since B = I, we

have, from the definition in (2.55),

{ηj}J+3
j=1 = {−1, · · · ,−1} (2.39)

with the selection of the Douglis-Nirenberg numbers {si}2J
i=1 and {tj}J+3

j=1 in (2.37),

and the principal part of B has components B0,11 = 1 and B0,k` = 0 otherwise.
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Therefore, the system of differential equations in (2.56) and (2.57) takes the

following form

(Vj · ζ − iVj · ν
d

dz
)δγ(z)− γ(−|ζ|2 +

d2

dz2
)δuj(z) = 0, z > 0 (2.40)

ujδσ(z) + |uj|ujδµ(z) + (σ + 2µ|uj|)δuj(z) = 0, z > 0 (2.41)

δγ = 0, z = 0 (2.42)

where γ, σ, µ, uj and Vj (1 ≤ j ≤ J , are all evaluated at y ∈ ∂Ω. We first

deduce from (2.41) that, for 1 ≤ j ≤ J ,

δuj = − uj
Σj

δσ − |uj|uj
Σj

δµ, z > 0.

Plugging this into (2.40), we obtain that, for 1 ≤ j ≤ J ,

(Vj · ζ − iVj · ν
d

dz
)δγ + γ(−|ζ|2 +

d2

dz2
)

(
uj
Σj

δσ +
|uj|uj

Σj

δµ

)
= 0, z > 0.

Without loss of generality, we consider the system formed by u1, u2, u3. Let

F̃j = Vj · ν, pj =
uj
Σj

and qj =
u2j
Σj

. We look for eigenvalues of the system as

the root of

det

F̂1 − iλF̃1 p1γ(λ2 − |ζ|2) q1γ(λ2 − |ζ|2)

F̂2 − iλF̃2 p2γ(λ2 − |ζ|2) q2γ(λ2 − |ζ|2)

F̂3 − iλF̃3 p3γ(λ2 − |ζ|2) q3γ(λ2 − |ζ|2)

 = 0.

We observe first that the above equation admits two repeated roots λ2,3 = ±|ζ|.

Besides that, we have another root

λ1 = −i F̂1(p2q3 − p3q2) + F̂2(p3q1 − p1q3) + F̂3(p1q2 − p2q1)

F̃1(p2q3 − p3q2) + F̃2(p3q1 − p1q3) + F̃3(p1q2 − p2q1)
.
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Moreover, the eigenvectors corresponding to λ2,3 are of the form

π2,3 =

0
x
y


with x and y arbitrary. Therefore, δγ(z) = cei|λ1|z. Using the boundary

condition δγ(0) = 0 and the decay condition δγ(z) → 0 as z → ∞, we

conclude that δγ(z) ≡ 0. This in turn implies, from (2.41), that δσ(z) ≡ 0

and δµ(z) ≡ 0. The proof is complete.

For the set of Douglis-Nirenberg numbers {si} and {tj} in (2.37), as

well as the parameters {ηk} given in (2.39), we defined the function space,

parameterized by ` > n+ 1
2
,

W` = W `−s1,2(Ω)× . . .×W `−s2J ,2(Ω)×W `−η1− 1
2
,2(∂Ω)× . . .W `−η3− 1

2
,2(∂Ω).

We have the following uniqueness and stability result.

Theorem 2.4.3. Under the same conditions of Theorem 2.4.2, let {δHj}Jj=1

and {δ̃Hj}Jj=1 be the data sets generated with (δγ, δσ, δµ) and (δ̃γ, δ̃σ, δ̃µ) re-

spectively. Assume that the data are such that (S, φ) ∈ W` and (S̃, φ̃) ∈ W`.

Then there exists a set of J ≥ n + 1 boundary illuminations, {gj}Jj=1, such

that {δHj}Jj=1 = {δ̃Hj}Jj=1 (resp. (S, φ) = (S̃, φ̃)) implies (δγ, δσ, δµ) =

(δ̃γ, δ̃σ, δ̃µ) (resp. v = ṽ) if δγ|∂Ω = δ̃γ|∂Ω. Moreover, the following stabil-

ity estimate holds:

J+3∑
j=1

‖vj−ṽj‖W `+tj ,2(Ω) ≤ C
( 2J∑
i=1

‖Si−S̃i‖W `−si,2(Ω)+
3∑

k=1

‖φk−φ̃k‖W `−ηk−
1
2 ,2(∂Ω)

)
,

(2.43)
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for all ` > n+ 1
2
.

Proof. We start with the uniqueness result. Let δHj = 0, 1 ≤ j ≤ 3, we then

have that

ujδσ + |uj|ujδµ+ (σ + 2µ|uj|)δuj = 0, 1 ≤ j ≤ 3.

We can eliminate the variables δσ and δµ to have, with E = {(1, 2, 3), (2, 3, 1),

(3, 1, 2)}, ∑
(i,j,k)∈E

uiuj(uj − ui)(σ + 2µ|uk|)δuk = 0. (2.44)

Let G be the Green function corresponding to the operator −∇ · γ∇ with

the homogeneous Dirichlet boundary condition. We can then write (2.44) as,

using δγ|∂Ω = 0 as well as δuj |∂Ω = 0,∑
(i,j,k)∈E

uiuj(uj − ui)(σ + 2µ|uk|)
∫

Ω

δγ(y)∇uk(y) · ∇G(x; y)dy = 0.

Take uk to be the complex geometric optics solution we constructed in The-

orem 2.6.6 with complex vector ρk, using the fact that uk ∼ eρk·x(1 + ϕk)

(and ϕk decays as |ρk|−1) and ∇uk = uk(ρk +O(1)), we can rewrite the above

equation as, for |ρk| sufficiently large,∑
(i,j,k)∈E

uiuj(uj − ui)(σ + 2µ|uk|)
∫

Ω

δγ(y)uk(y)ρk · ∇G(x; y)dy = 0.

Even though it is not necessary here, but if we select ρk such that <ρk < 0

and |<ρk| is sufficiently large, then we can simplify the above equation further

to ∫
Ω

δγ(y)v(x; y) · ∇G(x; y)dy = 0. (2.45)
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with v the vector given by

v =
∑

(i,j,k)∈E

σ(x)
(
uiuj(uj − ui)

)
(x)uk(y)ρk. (2.46)

We now need the following lemma.

Lemma 2.4.4. Let v be such that: (i) there exists c > 0 such that |v| ≥ c > 0

for a.e. x ∈ Ω; and (ii) v ∈ [W 1,∞(Ω)]n at least. Then (2.45) implies that

δγ ≡ 0.

Proof. Let u be the solution to

−∇ · γ∇u−∇ · (δγv) = 0, in Ω, u = 0, on ∂Ω (2.47)

Then

u(x) =

∫
Ω

δγ(y)v(x; y) · ∇G(x; y)dy.

Therefore (2.45) implies that u ≡ 0. Therefore

−∇ · δγv = 0, in Ω, δγ = 0, on ∂Ω. (2.48)

This is a transport equation for δγ that admits the unique solution δγ ≡ 0 with

the vector field v satisfying the assumed requirements; see for instance [19, 25,

28, 35, 54] and references therein.

It is straightforward to check that we can select {ρj}3
j=1 such that the

vector field v defined in (2.46) satisfies the requirement in Lemma 2.4.4. We

then conclude that δγ ≡ 0.
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The conditions assumed on the background coefficients ensure the ellip-

ticity of the system as proven in Theorem 2.4.2. The stability result then fol-

lows from (2.58); see more discussions in [17] and references therein. Note that

the simplification inthe last term in (2.43) is due to the fact that φk = φ̃k = 0

when 4 ≤ k ≤ J + 3. Note also that the following simplification can be made

in (2.43):

2J∑
i=1

‖Si − S̃i‖W `−si,2(Ω) ≤ 2
J∑
i=1

‖δHj − δ̃Hj‖W `+2,2(Ω).

The proof is complete.

2.5 Numerical Simulations

We present in this section some preliminary numerical reconstruction

results using synthetic internal data. We restrict ourselves to two-dimensional

settings only to simplify the computation. The spatial domain of the recon-

struction is the square Ω = (1, 1)2. All the equations in Ω are discretized with

a first-order finite element method on triangular meshes. In all the simula-

tions in this section, reconstructions are performed on a finite element mesh

with about 6000 triangular elements. The nonlinear system resulted from the

discretization of the diffusion equation (2.1) is solved using a quasi-Newton

method as implemented in [86].

To generate synthetic data for inversion, we solve (2.1) using the true

coefficients. We performed reconstructions using both noiseless and noisy syn-

thetic data. For the noisy data, we added additive random noise to the data
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by simply multiplying each datum by (1 +
√

3ε× 10−2random) with random a

uniformly distributed random variable taking values in [1, 1], ε being the noise

level (i.e. the size of the variance in percentage).

We will focus on the reconstruction of the absorption coefficients σ and

µ. We present reconstruction results from two different numerical methods.

Direct Algorithm. The first method we use is motivated from the method

of proofs of Propositions 2.3.1 and 2.3.2. When we have J ≥ 2 data sets

{Hj}Jj=1 from J illuminations {gj}Jj=1, we first reconstruct, for each j, u∗j as

the solutions to

−∇ · (γ∇u∗j) = −
H∗j
Ξ

in Ω, u∗j = gj on ∂Ω.

We then reconstruct σ + µ|u∗j | =
Hj
Ξu∗j

. Collecting this quantity from all data,

we have, for each point x ∈ Ω,1 |u∗1|
...

...
1 |u∗J |

(σ
µ

)
=


H∗1
Ξu∗1
...
H∗J
Ξu∗J

 .

We then reconstruct (σ, µ) by solving this small linear system, in least square

sense, at each point x ∈ Ω. Therefore, the main computational cost of this

algorithm lies in the numerical solution of the J linear equations for {u∗j}.

Least-Square Algorithm. The second reconstruction method that we will

use is based on numerical optimization. This method searches for the unknown
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coefficient by minimizing the objective functional

Φ(σ, µ) ≡ 1

2

J∑
j=1

∫
Ω

(Ξσuj + Ξµ|uj|uj −H∗j )2dx + κR(σ, µ), (2.49)

where we use the functional R(σ, µ) = 1
2

(∫
Ω
|∇σ|2dx +

∫
Ω
|∇µ|2dx

)
together

with the parameter κ to add regularization mechanism in the reconstructions.

We use the BFGS quasi-Newton method that we developed in [86] to solve

this minimization problem. It is straightforward to check, following Proposi-

tion 2.2.5, that the gradient of the functional Φ(σ, µ) with respect to σ and µ

are given respectively by

Φ′σ[σ, µ](δσ) =

∫
Ω

{
J∑
j=1

[
zjΞuj + vjuj

]
δσ + κ∇σ · ∇δσ

}
dx (2.50)

Φ′µ[σ, µ](δµ) =

∫
Ω

{
J∑
j=1

[
zjΞ|uj|uj + vj|uj|uj

]
δµ+ κ∇µ · ∇δµ

}
dx (2.51)

where zj = Ξ(σuj + µ|uj|uj)−H∗j and vj solves

−∇ · γ∇vj + (σ + 2µ|uj|)vj = −zjΞ(σ + 2µ|uj|), in Ω, vj = 0, on ∂Ω

(2.52)

Therefore, in each iteration of the optimization algorithm, we need to solve

J semilinear diffusion equations for {uj}Jj=1 and then J adjoint linear elliptic

equations for {vj}Jj=1 to evaluate the gradients of the objective function with

respect to the unknowns.

Experiment I. We start with a set of numerical experiments on the recon-

struction of the two-photon absorption coefficient µ assuming that the single-

photon absorption coefficient σ is known. We use data collected from four
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Figure 2.1: The true coefficients, γ (left), σ (middle), µ (right), used to gen-
erate synthetic data for the reconstructions.

Figure 2.2: The absorption coefficient µ reconstructed using synthetic data
containing different levels (ε = 0, 1, 2, 5 from left to right) of noises. The
Direct Algorithm is used in the reconstructions.
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different sources {gj}4
j=1, {Hj}4

j=1. We perform reconstructions using the Di-

rect Algorithm. In Fig. 2.2 we show the reconstruction results from noisy

synthetic data with noise levels ε = 0, ε = 1, ε = 2, and ε = 5. The true

coefficients used to generate the data are shown in Fig. 2.1.

To measure the quality of the reconstruction, we use the relative L2

error. This error is defined as the ratio between (i) the L2 norm of the difference

between the reconstructed coefficient and the true coefficient and (ii) the L2

norm of the true coefficient, expressed in percentage. The relative L2 errors

in the reconstructions of µ in Fig 2.2 are 0.00%, 2.45%,4.98%, and 12.23% for

ε = 0, ε = 1, ε = 2 and ε = 5 respectively.

Figure 2.3: Same as in Fig. 2.2 except that the reconstructions are performed
with the Least-Square Algorithm.

Experiment II. One of the main limitations on the Direct Algorithm is that

it requires the use of illumination sources that are positive everywhere on the

boundary. This is difficult to implement in practical applications. The Least-

Square Algorithm, however, does not have such requirement on the optical

sources (but it is computationally more expensive). Here we repeat the simu-

lations in Experiment I with the Least-Square Algorithm. The reconstruction
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results are shown in Fig 2.3. We observe that, with the same (not exactly

the same since the realizations of the noise are different) data sets, the recon-

structions from the two different algorithms are of very similar quality. The

relative L2 errors for the reconstructions in Fig 2.3 are 0.00%, 2.44%,4.62%,

and 9.36% respectively for the four cases.

Figure 2.4: The absorption coefficient pair σ (top row) and µ (bottom row)
reconstructed using the Direct Algorithm with data at different noise levels
(ε = 0, 1, 2, 5 from left to right).

Experiment III. In the third set of numerical experiments, we study the

simultaneous reconstructions of the single-photon and two-photon absorp-

tion coefficients, σ and µ. We again use data collected from four different

sources. In Fig. 2.4, we show the reconstructions from data containing dif-

ferent noise levels using the Direct Algorithm. The relative L2 error in the

reconstructions of (σ, µ) are (0.00%, 0.00%), (0.79%, 2.76%),(1.56%, 5.55%),

and (3.91%, 13.71%) respectively for data with noise levels ε = 0, ε = 1, ε = 2
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and ε = 5.

Figure 2.5: The same as in Fig. 2.4 except that the reconstructions are per-
formed using the Least-Square Algorithm.

Experiment IV. We now repeat the simulations in Experiment III with the

Least-Square Algorithm. The results are shown in Fig. 2.5. The relative L2 er-

rors in the reconstructions are now (0.22%, 2.38%), (1.21%, 6.43%),(2.34%, 10.98%),

(5.64%, 22.06%) respectively for data with noise levels ε = 0, ε = 1, ε = 2,

and ε = 5. The quality of the reconstructions is slightly lower than, but still

comparable to, that in the reconstructions in Experiment III.

We observe from the above simulation results that, in general, the qual-

ity of the reconstructions is very high. When we have the illumination sources

that satisfy the positivity requirement on the whole boundary of the domain,

the Direct Algorithm provides an efficient and robust reconstruction method.

The Least-Square Algorithm is less efficient but is as robust in terms of the

quality of the reconstructions. The reconstructions with the Least-Square Al-
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gorithm are done for a fixed regularization parameter that we selected by a

couple of trial-error test. It is by no means the optimal regularization parame-

ter that can be selected through more sophisticated algorithms [38]. However,

this is an issue that we think is not important at the current stage of this

project. Therefore, we did not pursue further in this direction.

2.6 Concluding Remarks

We studied in this chapter inverse problems in quantitative photoa-

coustic tomography with two-photon absorption. We derived uniqueness and

stability results in the reconstruction of single-photon and two-photon absorp-

tion coefficients, and proposed explicit reconstruction methods in this case with

well-selected illumination sources. We also studied the inverse problem of re-

constructing the diffusion coefficient in addition to the absorption coefficients

and obtained partial results on the uniqueness and stability of the reconstruc-

tions for the linearized problem. We presented some numerical studies based

on the explicit reconstruction procedures as well as numerical optimization

techniques to demonstrate the type of quality that can be achieved in reason-

ably controlled environments (where noise strength in the data is moderate).

Our focus in this chapter is to study the mathematical properties of

the inverse problems. There are many issues that have to be address in the

future. Mathematically, it would be nice to generalize the uniqueness and sta-

bility results in Section 2.4, on multiple coefficient reconstructions in linearized

settings, to the full nonlinear problem. Computationally, detailed numerical
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analysis, in three-dimensional setting, need to be performed to quantify the

errors in the reconstructions in practically relevant scenarios. It is especially

important to perform reconstructions starting from acoustic data directly to

see how sensitive the reconstruction of the two-photon absorption coefficient

is with respect to noise in the acoustic data. On the modeling side, it is very

interesting to see if the current study can be generalized to radiative transport

type models for photon propagation.

Appendix A: Terminologies in overdetermined elliptic
systems

We recall here, very briefly, some terminologies and notations related to

overdetermined linear elliptic systems, following the presentation in [17, 114].

Let M, M̃,N be three positive integers such that M > N . we consider the

following system of M differential equations for N variables {v1, · · · , vN} with

M̃ boundary conditions:

A(x, D)v = S, in Ω (2.53)

B(x, D)v = φ, on ∂Ω (2.54)

Here A(x, D) is a matrix differential operator whose (i, j) element, denoted

by Aij(x, D) (1 ≤ i ≤ M , 1 ≤ j ≤ N), is a polynomial in D for any x ∈ Ω.

B(x, D) is a matrix differential operator whose (k, `) element, denoted by

Bk`(x, D) (1 ≤ k ≤ M̃ , 1 ≤ ` ≤ N), is a polynomial in D for any x ∈ ∂Ω.

We associate an integer si (1 ≤ i ≤M) to row i of A and an integer tj
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to column j (1 ≤ j ≤ N) of A.

Definition 2.6.1. We call the integers {si}Mi=1 and {tj}Nj=1 the Douglis-Nirenberg

numbers associated to A if: (a) si ≤ 0, 1 ≤ i ≤ M ; (b) when si + tj ≥ 0,

the order of Aij(x, D) is not greater than si + tj; and (c) when si + tj < 0,

Aij(x, D) = 0.

Definition 2.6.2. The principal part of A, denoted by A0, is defined as the

part of A such that the degree of A0,ij(x, D) is exactly si + tj.

We say thatA is elliptic, in the sense of Douglis-Nirenberg, if the matrix

A0(x, ξ) is of rank N for all ξ ∈ Sn−1 and all x ∈ Ω.

Let bk` be the order of Bk` and define

ηk = max
1≤`≤N

(bk` − t`), 1 ≤ k ≤ M̃. (2.55)

Definition 2.6.3. The principal part of B, denoted by B0, is defined as the

part of B such that the order of B0,k` is exactly ηk + t`.

Let B0(x, D) be the principal part of B. Fix y ∈ ∂Ω, and let ν be the

inward unit normal vector at y. Let ζ ∈ Sn−1 be a vector such that ζ · ν = 0

and |ζ| 6= 0. We consider on the half line y + zν, z > 0 the system of ordinary

equations

A0(y, iζ + ν
d

dz
)ũ(z) = 0, z > 0, (2.56)

B0(y, iζ + ν
d

dz
)ũ(z) = 0, z = 0. (2.57)
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Definition 2.6.4. If for any y ∈ ∂Ω, the only solution to the system (2.56)-

(2.57) such that ũ(z)→ 0 as z →∞ is ũ ≡ 0, then we say that (A,B) satisfies

the Lopatinskii criterion.

It is well-established that [17, 95, 114] when (A,B) satisfies the Lopatin-

skii criterion, the system (2.53)-(2.54) can be solved up to possibly a finite

dimensional subspace. Moreover, a general a priori stability estimate can be

established for the system. Define the function space

W` = W `−s1,2(Ω)× . . .×W `−sM ,2(Ω)×W `−η1− 1
2
,2(∂Ω)× . . .W `−σ

M̃
− 1

2
,2(∂Ω),

for some ` > n+ 1
2
. Then it can be shown that, if (S, φ) ∈ W`,∑N

j=1 ‖vj‖W `+tj ,2(Ω)

≤ C
(∑M

i=1 ‖Si‖W `−si,2(Ω) +
∑M̃

i=1 ‖φi‖W `−ηi−
1
2 ,2(∂Ω)

)
+ C̃

∑
tj>0 ‖vj‖L2(Ω),

(2.58)

provided that all the quantities involved are regular enough. The last term in

the estimate can be dropped when uniqueness of the solution can be proven.

More details on this theory can be found in [17] and references therein.

Appendix B: CGO solutions to equation (2.1)

This appendix is devoted to the construction of complex geometric op-

tics (CGO) solutions [101, 107] to our model equation (2.1). We restrict the

construction to the three-dimensional setting (n = 3). We start by revisit-

ing CGO solutions to the classical diffusion problem that was first developed

in [101]:

−∇ · (γ∇u) + σu = 0, in Ω (2.59)
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with the assumption that γ ∈ C2(Ω) and σ ∈ C1(Ω). Let u∗ be a solution

to this equation, then the Liouville transform defined in (2.26) shows that

ũ∗ =
√
γu∗ solves

∆ũ∗ −
(∆
√
γ

√
γ

+
σ

γ

)
ũ∗ = 0, in Ω. (2.60)

The following result is well-known.

Theorem 2.6.5 ([16, 101, 107]). Let γ ∈ C4(Ω) and σ ∈ C2(Ω). For any

ρ ∈ Cn such that ρ ·ρ = 0 and |ρ| sufficiently large, there is a function g such

that the solution to (2.60), with the boundary condition ũ∗|∂Ω = g, takes the

form

ũ∗ = eρ·x(1 + ϕ(x)), (2.61)

with ϕ(x) satisfying the estimate

|ρ|‖ϕ‖W 2,2(Ω) + ‖ϕ‖W 3,2(Ω) ≤ C

∥∥∥∥∆
√
γ

√
γ

+
σ

γ

∥∥∥∥
W 2,2(Ω)

. (2.62)

The function ũ∗ is called a complex geometric optics solution to (2.60)

and

u∗ = γ−1/2eρ·x(1 + ϕ(x)) (2.63)

is a complex geometric optics solution to (2.59). With the regularity assump-

tion on γ and (2.62), it is easy to verify that

∇u∗ ∼ u∗(ρ +O(1)). (2.64)

We now show, using the Newton-Kantorovich method [75], that we can

construct a CGO solution to our semilinear diffusion model that is very close,

in W 3,2(Ω), to u∗ for some ρ.
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Theorem 2.6.6. Let γ ∈ C4(Ω), σ ∈ C2(Ω) and µ ∈ C1(Ω). Let ρ ∈ Cn be

such that ρ · ρ = 0 and |ρ| sufficiently large. Assume further that ρ and Ω

satisfy

− κ̃|ρ| ≤ <(ρ · x) ≤ −κ|ρ|, ∀x ∈ Ω̄, (2.65)

for some 0 < κ < κ̃ < ∞. Then, there exists a function g such that the

solution to (2.1) takes the form

u(x) = u∗(x) + v(x), (2.66)

with v such that

‖v‖W 3,2(Ω) ≤ ce−κ
′κ|ρ|, (2.67)

for some constant c and some κ′ ∈ (1, 2).

Proof. Let us first remark that since Ω is a bounded domain, the assumption

in (2.65) is nothing more than the constraint that <(ρ) ≤ c0 < 0 for some c0.

Moreover, the assumption in (2.65) allows us to bound the CGO solution u∗

and its gradient as

‖u∗‖L∞(Ω) ≤ ce−κ|ρ|, (2.68)

‖∇u∗‖L∞(Ω) ≤ ce−κ|ρ|(|ρ|+ 1). (2.69)

Let P(x, D) be the differential operator defined in (2.1). We verify

that, with the assumptions on the coefficients involved, P ′u∗ , the linearization

of P at u∗, P ′u∗ := −∇ · γ∇+ σ+ 2µ|u∗|, admits a bounded inverse as a linear

map from W 3,2(Ω) to W 1,2(Ω).
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We observe from the construction that u∗ is away from 0. Therefore,

there exists a constant r > 0 such that the ball Br(u∗) (in the W 3,2(Ω) metric)

contains functions that are away from 0. Let u1 ∈ Br(u∗), u2 ∈ Br(u∗) and

v ∈ W 3,2(Ω) be given, we check that

P ′u1v − P
′
u2
v = 2µ(|u1| − |u2|)v. (2.70)

This leads to

‖P ′u1v − P
′
u2
v‖L2(Ω) = ‖2µ(|u1| − |u2|)v‖L2(Ω) ≤ c‖u1 − u2‖W 3,2(Ω)‖v‖W 3,2(Ω).

(2.71)

We can also bound ‖∇(P ′u1v − P
′
u2
v)‖L2(Ω) as follows. We first verify that

‖∇(P ′u1v − P
′
u2
v)‖L2(Ω) = 2‖∇

(
µ(|u1| − |u2|)v

)
‖L2(Ω)

≤ 2‖µ(|u1| − |u2|)∇v‖L2(Ω) + 2‖∇
(
µ(|u1| − |u2|)

)
v‖L2(Ω)

≤ 2‖µ(|u1| − |u2|)‖L∞(Ω)‖∇v‖L2(Ω) + 2‖∇
(
µ(|u1| − |u2|)

)
‖L∞(Ω)‖v‖L2(Ω)

≤ C‖v‖W 3,2(Ω)

(
‖u1 − u2‖L∞(Ω) + ‖∇

(
µ(|u1| − |u2|

)
‖L∞(Ω)

)
. (2.72)

We then perform the expansion, using the fact that |uj| > 0 (j = 1, 2),

∇
(
µ(|u1| − |u2|)

)
= (|u1| − |u2|)∇µ+ µ<

( u1

|u1|
∇(ū1− ū2) + (

u1

|u1|
− u2

|u2|
)∇ū2

)
.

This gives us the bound

‖∇
(
µ(|u1| − |u2|)

)
‖L∞(Ω) ≤ c1‖u1 − u2‖L∞(Ω) + c2‖∇(u1 − u2)‖L∞(Ω). (2.73)

We can then combine (2.72) with (2.73) and use Sobolev embedding, for in-

stance [46, Corollary 7.11], to conclude that

‖∇(P ′u1v − P
′
u2
v)‖L2(Ω) ≤ C‖u1 − u2‖W 3,2(Ω)‖v‖W 3,2(Ω). (2.74)
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We then have, from the bounds in (2.71) and (2.74), the following

bound on the operator norm of P ′u1 − P
′
u2

by

‖P ′u1 − P
′
u2
‖
L
(
W 3,2(Ω),W 1,2(Ω)

) ≤ c‖u1 − u2‖W 3,2(Ω). (2.75)

Let w be the solution to P ′u∗(x, D)w = P(x, D)u∗ , that is,

−∇ · γ∇w + (σ + 2µ|u∗|)w = µ|u∗|u∗, in Ω, w = 0, on ∂Ω. (2.76)

It then follows from classical elliptic theory that

‖(P ′u∗)
−1P(x, D)u∗‖W 3,2(Ω) ≤ c‖|u∗|u∗‖W 1,2(Ω) ≤ c̃e−2κ|ρ|(|ρ|+ 1) ≤ ˜̃ce−κ

′κ|ρ|,

(2.77)

for some κ′ ∈ (1, 2), where the last step comes from the bounds in (2.68)

and (2.69).

It then follows from the Newton-Kantorovich theorem [75] that, when

|ρ| is sufficiently large, there exists a solution to (2.1) in the ball of radius

r′ = ˜̃ce−κ
′κ|ρ| centered at u∗, in W 3,2(Ω). The solution is of the form (2.66).
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Chapter 3

Hybrid Inverse Problems in Fluorescence PAT

3.1 Introduction

Fluorescence PAT (fPAT) is another variant of PAT that is used as a

tool of optical molecular imaging [26, 82, 83, 109, 112, 111, 116]. The main ob-

jective here is to visualize particular cellular functions and molecular processes

inside biological tissues by using target-specific exogenous contrasts. In a typ-

ical fPAT imaging process, we first inject fluorescent markers into the medium

to be probed. The markers will travel inside the medium and accumulate on

their targets, for instance cancerous tissues inside the normal tissue. We then

send a short pulse of NIR photons at wavelength λx to the medium to excite

the fluorescent markers who then emit NIR photons at a different wavelength

λm. The absorption of both the excitation and the emission photons by the

medium will then generate ultrasound waves inside the medium following the

photoacoustic effect just as in a regular PAT process, assuming that fluores-

cence takes place instantaneously as excitation light pulse is absorbed [92].

We then measure the ultrasound signals on the surface of the medium and

This chapter is based on K. Ren, R. Zhang, and Y. Zhong. Inverse transport problems
in quantitative PAT for molecular imaging. Inverse Problems, 31, 2015. 125012. The author
of this dissertation is the main contributor.
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attempt to recover information associated with the biochemical markers.

The density distributions for the external light source and the flu-

orescent light in the tissues are both described by the radiative transport

equation. Let Ω ⊂ Rd (d ≥ 2) be the domain of interests and Sd−1 be

the unit sphere in Rd. We denote by X = Ω × Sd−1 the phase space and

Γ± = {(x,v) ∈ ∂Ω × Sd−1| ± n(x) · v > 0} its boundary sets. We denote by

ux(x,v) and um(x,v) the density of photons at the excitation and emission

wavelengths respectively, at location x, traveling in direction v ∈ Sd−1. Then

ux(x,v) and um(x,v) solve the following coupled system of radiative transport

equations

v · ∇ux + (σa,x + σs,x)ux = σs,xKΘ(ux), in X
v · ∇um + (σa,m + σs,m)um = σs,mKΘ(um) + ησa,xf (x)KI(ux)(x), in X

ux(x,v) = gx(x,v), um(x,v) = 0, on Γ−
(3.1)

where the subscripts x and m denote the quantities at the excitation and

the emission wavelengths, respectively. The coefficients σa,x and σs,x (resp.

σa,m and σs,m) are respectively the absorption and scattering coefficients at

wavelength λx (resp. λm). The scattering operator KΘ and the averaging

operator KI are defined respectively as

KΘ(ux)(x,v) =
∫
Sd−1 Θ(v,v′)ux(x,v

′)dv′

KI(ux)(x,v) =
∫
Sd−1 ux(x,v

′)dv′,
(3.2)

with the scattering kernel Θ(v,v′) describing the probability that a photon

traveling in direction v′ gets scattered into direction v.

The total absorption coefficient σa,x consists of a contribution σa,xi

from the intrinsic tissue chromophores and a contribution σa,xf from the flu-
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orophores of the biochemical markers: σa,x = σa,xi + σa,xf . The absorption

coefficient due to fluorophores, σa,xf is proportional to the concentration ρ(x)

and the extinction coefficient ε(x) of the fluorophores, i.e. σa,xf = ε(x)ρ(x).

The coefficient η(x) is the quantum efficiency of the fluorophores. The coef-

ficients η and σa,xf are the main quantities associated with the biochemical

markers.

The energy absorbed by the medium and the markers consists of two

parts. The first part is from the excitation photons. This part can be written

as σa,xKI(ux). The second part of absorbed energy comes from emission pho-

tons. This part can be written as σa,mKI(um). Therefore, the pressure field

generated by the photoacoustic effect can therefore be written as:

H(x) = Ξ(x)
[(
σa,x(x)− η(x)σa,xf (x)

)
KI(ux)(x) + σa,m(x)KI(um)(x)

]
,

≡ Ξ(x)
(
σηa,xKI(ux)(x) + σa,m(x)KI(um)(x)

)
, (3.3)

where Ξ is the (nondimensional) Grüneisen coefficient that measures the pho-

toacoustic efficiency of the underlying medium, and σηa,x is the short nota-

tion for σa,xi + (1 − η)σa,xf . We want to emphasize that when calculating

the initial pressure field generated, we have subtract a portion of the energy,

ησa,xfKI(ux), from the total energy absorbed by the medium and the markers.

This is because that portion of energy is used to generate fluorescence, not the

heating in the photoacoustic process.

The initial pressure field generated from the photoacoustic effect, H,

evolves in space and time following the acoustic wave equation (1.3) as in a
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regular PAT process. The data that we measure are the solutions to the wave

equation (1.3) on the surface of the medium, p|(0,tmax)×∂Ω, tmax being large

enough, for various excitation light sources.

Following [92], we call the process of reconstructing information on η

and σa,xf from datum p|(0,tmax)×∂Ω fluorescence PAT (fPAT). This is a molec-

ular imaging modality that combines PAT with fluorescence optical imaging.

We refer interested readers to [92] for more discussions on the mathematical

modeling of fPAT, including detailed derivation and justification the mod-

els (3.1) (in diffusive regime) and (1.3), and to [26, 82, 83, 109, 112] for some

experimental and computational results on fPAT. Recent progress on fluores-

cence optical imaging itself can be found in [6, 11, 47, 66, 79, 96] and references

therein.

Image reconstruction in fPAT is a two-step process as in regular PAT.

In the first step, we reconstruct H from measured acoustic data. We assume

here that this step has been finished with methods such as those in [4, 10, 27,

29, 40, 50, 52, 57, 61, 63, 81, 98] and we are given the internal datum (3.3).

Moreover, we assume that: (A-i) the Grüneisen coefficient Ξ as well as the

absorption and scattering coefficients of the medium at the excitation wave-

length, σa,xi and σs,x, have been known from other imaging technologies (for

instance a multi-spectral quantitative PAT step [21, 72]) before the fluorescent

biochemical markers are injected into the medium; and (A-ii) the absorption

and scattering coefficients at the emission wavelength, σa,m and σs,m, are also

reconstructed by other imaging methods (for instance a regular quantitative
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PAT technique [8, 18, 19, 21, 22, 31, 33, 44, 72, 80, 88, 94, 123] after the

Grüneisen coefficient is known). Therefore, our main objective is only to re-

construct the quantum efficiency η and the fluorescence absorption coefficient

σa,xf (x) in the system (3.1) from the datum H in (3.3). This is the quantitative

fPAT (QfPAT) problem.

Let us now remark on a couple of issues regarding the practical rele-

vance of the current work. First of all, in many practical applications, it is

preferable to use contrast agents that do not emit photons after absorbing

incoming excitation photons. In other words, the biochemical markers have

quantum efficiency η = 0. In this case, the second equation in (3.1) drops out

of the transport system, and the terms involve η and um all drop out from the

datum (3.3). We are therefore back to the same mathematical problem as in

a regular quantitative PAT process. The theory of the reconstruction in this

case is covered in Theorem 3.3.3 of our results. Our results in this chapter

are in fact more general in the sense that we can deal with the general case

of non-negligible quantum efficiency, that is η � 0. When η � 0, we have

to take into account the impact of the emitted fluorescence photons in the

reconstruction process. Neglecting this impact in the model would certainly

introduce errors in the images reconstructed. The second issue we need to

address is the difference between the work we have here and the theory on the

same problem that have been developed in the diffusive regime [92]. It is gen-

erally believed that the radiative transport equation is a more accurate model

than the diffusion equation to describe the propagation of NIR photons in

55



biological tissues [12, 87], even though it is more complicated to theoretically

analyze and numerically solve. Our analysis in this chapter is useful when the

diffusion approximation to the radiative transport equation breaks down, for

instance in media of small volumes but large mean free paths. Optical imaging

of small animals [56], for instance, is one of such biomedical applications for

our work here.

The rest of the chapter is organized as follows. We first present in

Section 3.2 some general properties of the inverse problem, especially the con-

tinuous dependence of the datum H on the unknown coefficients. We then

consider in Section 3.3 the reconstruction of a single coefficient from a sin-

gle internal data set. We derive some uniqueness and stability results on the

reconstruction. In Section 3.4 we study the problem of reconstructing two co-

efficients simultaneously, mainly in linearized settings. We then present some

numerical simulations based on synthetic data in Section 3.5 to validate the

theory and the reconstruction algorithms we developed. Concluding remarks

are offered in Section 3.6.

3.2 General Properties of the Inverse Problems

We review in this section some general properties of the inverse problem

of reconstructing η(x) and/or σa,xf (x) in the transport system (3.1) from the

datum H in (3.3). We denote by Lp(X) (resp. Lp(Ω)) the Lebesgue space of

real-valued functions whose p-th power are Lebesgue integrable on X (resp.

Ω), and H1
p(X) the space of Lp(X) functions whose derivative in direction v
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is in Lp(X), i.e. H1
p(X) = {f(x,v) : f ∈ Lp(X) and v · ∇f ∈ Lp(X)}. We

denote by Lp(Γ−) the space of functions that are traces of H1
p(X) functions

on Γ− under the norm ‖f‖Lp(Γ−) = (
∫
∂Ω

∫
Sd−1
x−
|n(x) · v||f |pdvdγ)1/p, dγ being

the surface measure on ∂Ω and Sd−1
x− = {v : v ∈ Sd−1 s.t. − n(x) · v > 0}.

It is well-known [2, 34] that both H1
p(X) and Lp(Γ−) are well-defined. To

avoid confusion with H1
p(X), we use W k

2 (Ω) to denote the usual Hilbert space

of L2(Ω) functions whose partial derivatives up to order k are all in L2(Ω).

Besides the assumptions in (A-i)-(A-ii), we assume further that:

(A-iii) The domain Ω is simply-connected with C2 boundary ∂Ω. The known

optical coefficients satisfy 0 < c1 ≤ σa,xi, σs,x, σa,m, σs,m,Ξ ≤ c2 < +∞ for some

positive constants c1 and c2. The unknown coefficients, (η, σa,xf ) belongs to

the class

A = {(η, σa,xf ) : 0 < c3 ≤ η ≤ c4 < 1, 0 < c5 ≤ σa,xf ≤ c6 < +∞} (3.4)

for some positive constants c3, c4, c5 and c6. The scattering kernel Θ is sym-

metric, bounded and normalized in the sense that

Θ(v,v′) = Θ(v′,v), 0 < c7 ≤ Θ(v,v′) ≤ c8 < +∞, ∀v,v′ ∈ Sd−1,∫
Sd−1

Θ(v,v′)dv′ =

∫
Sd−1

Θ(v′,v)dv′ = 1, ∀v ∈ Sd−1,
(3.5)

for some positive constants c7 and c8. The illumination gx(x,v) is strictly

positive such that 0 < c9 ≤ gx(x,v) for some c9.

With the above settings, it is easy to see, following standard results

in [2, 34], that the system (3.1) admits a unique solution in the following

sense.
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Lemma 3.2.1. Let p ∈ [1,∞] and assume that (A-iii) holds. Then for any

given function gx(x,v) ∈ Lp(Γ−), there exists a unique solution (ux, um) ∈

H1
p(X)×H1

p(X) to the couple transport system (3.1). Moreover, the following

bound holds:

‖ux‖Lp(X) + ‖um‖Lp(X) ≤ c‖gx‖Lp(Γ−) (3.6)

with the constant c depending only on Ω and the bounds for the coefficients in

assumption (A-iii).

Proof. When the assumptions are satisfied, it follows directly from standard

transport theory in [2, 34] that the first transport equation admits a unique

solution ux ∈ H1
p(X) such that ‖ux‖Lp(X) ≤ c̃‖gx‖Lp(Γ−). We then deduce,

with the same argument that the second equation admit a unique solution

um ∈ H1
p(X) such that ‖um‖Lp(X) ≤ ĉ‖ησa,xfKI(ux)‖Lp(Ω) ≤ ˆ̂c‖ux‖Lp(X). The

bound in (3.6) then follows from selecting c = c̃(1 + ˆ̂c).

The above lemma ensures that the datum H in (3.3) is well-defined for

any gx(x,v) ∈ Lp(Γ−) (p ∈ [1,∞]) that satisfies the assumptions in (A-iii).

Moreover H ∈ Lp(Ω) following standard results in [34]. The next result shows

that the datum H depends continuously on the unknown coefficients and is

differentiable with respect to the coefficients in appropriate sense.

Proposition 3.2.2. Let p ∈ [1,∞] and assume that (A-iii) holds. Then for

any given function gx(x,v) ∈ Lp(Γ−), the datum H defined in (3.3), viewed
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as the map

H[η, σa,xf ] :
(η, σa,xf ) 7→ Ξ

(
σηa,xKI(ux) + σa,mKI(um)

)
L∞(Ω)× L∞(Ω) 7→ Lp(Ω)

(3.7)

is Fréchet differentiable at any (η, σa,xf ) ∈ L∞(Ω) × L∞(Ω) in the direction

(δη, δσa,xf ) ∈ L∞(Ω) × L∞(Ω) that satisfy (η, σa,xf ) ∈ A and (η + δη, σa,xf +

δσa,xf ) ∈ A. The derivative is given by

H ′[η, σa,xf ](δη, δσa,xf )

= Ξ
(

(−δησa,xf + (1− η)δσa,xf )KI(ux) + σηa,xKI(vx) + σa,mKI(vm)
)

(3.8)

where (vx, vm) ∈ H1
p(X)×H1

p(X) is the unique solution to

v · ∇vx + σt,xvx = σs,xKΘ(vx)− δσa,xfux, in X
v · ∇vm + σt,mvm = σs,mKΘ(vm) + ησa,xfKI(vx)

+(ηδσa,xf + δησa,xf )KI(ux), in X
vx(x,v) = 0, vm(x,v) = 0 on Γ−

(3.9)

where σt,x = σa,x + σs,x and σt,m = σa,m + σs,m.

Proof. Let η̃ = η + δη, σ̃a,xf = σa,xf + δσa,xf , and define ∆(ησa,xf ) = η̃σ̃a,xf −

ησa,xf . We denote by (ũx, ũm) the solution to (3.1) with the coefficients

(η̃, σ̃a,xf ), and H̃ the corresponding datum. It is straightforward to verify

that (u′x, u
′
m) ≡ (ũx − ux, ũm − um) solves the following system of transport

equations

v · ∇u′x + σt,xu
′
x = σs,xKΘ(u′x)− δσa,xf ũx, in X

v · ∇u′m + σt,mu
′
m = σs,mKΘ(u′m) + ησa,xfKI(u

′
x) + F (x), in X

u′x(x,v) = 0, u′m(x,v) = 0 on Γ−
(3.10)
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with F (x) = ∆(ησa,x)KI(ũx), and (u′′x, u
′′
m) ≡ (u′x − vx, u

′
m − vm) solves the

following system

v · ∇u′′x + σt,xu
′′
x = σs,xKΘ(u′′x)− δσa,xfu′x, in X

v · ∇u′′m + σt,mu
′′
m = σs,mKΘ(u′′m) + ησa,xfKI(u

′′
x) +G(x), in X

u′′x(x,v) = 0, u′′m(x,v) = 0 on Γ−,
(3.11)

with G(x) = ∆(ησa,xf )KI(u
′
x) + δηδσa,xfKI(ux).

With the assumptions on the coefficients and the illumination source

gx, we conclude that (ux, um) ∈ H1
p(X) × H1

p(X) and (ũx, ũm) ∈ H1
p(X) ×

H1
p(X) [2, 34]. This implies that F ∈ Lp(Ω) and

‖F‖Lp(Ω) = ‖(ηδσa,x + δησa,xf + δηδσa,xf )KI(ũx)‖Lp(Ω)

≤ (c̃1‖δη‖L∞(Ω) + c̃2‖δσa,xf‖L∞(Ω) + c̃3‖δη‖L∞(Ω)‖δσa,xf‖L∞(Ω))‖ũx‖Lp(X)

≤ (˜̃c1‖δη‖L∞(Ω) + ˜̃c2‖δσa,xf‖L∞(Ω) + ˜̃c3‖δη‖L∞(Ω)‖δσa,xf‖L∞(Ω))‖gx‖Lp(Γ−),
(3.12)

Following the same argument as in Lemma 3.2.1 we conclude that (3.10) admits

a unique solution (u′x, u
′
m) ∈ H1

p(X)×H1
p(X) that satisfies

‖u′x‖Lp(X) ≤ ĉ‖δσa,xf ũx‖Lp(X) ≤ ĉ‖δσa,xf‖L∞(Ω)‖ũx‖Lp(X)

≤ˆ̂c‖δσa,xf‖L∞(Ω)‖gx‖Lp(Γ−), (3.13)

and

‖u′m‖Lp(X) ≤ c̄
(
‖ησa,xfKI(u

′
x)‖Lp(Ω) + ‖F‖Lp(Ω)

)
≤ ¯̄c
(
‖u′x‖Lp(X) + ‖F‖Lp(Ω)

)
≤ (c̄1‖δη‖L∞(Ω) + c̄2‖δσa,xf‖L∞(Ω) + c̄3‖δη‖L∞(Ω)‖δσa,xf‖L∞(Ω))‖gx‖Lp(Γ−).

(3.14)
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Therefore we have G ∈ Lp(Ω) and the bound

‖G‖Lp(Ω) ≤ ‖(ηδσa,x+δησa,xf+δηδσa,xf )KI(u
′
x)‖Lp(Ω)+‖δηδσa,xfKI(ux)‖Lp(Ω)

≤ (c′1‖δη‖L∞(Ω) + c′2‖δσa,xf‖L∞(Ω) + c′3‖δη‖L∞(Ω)‖δσa,xf‖L∞(Ω))‖u′x‖Lp(X)

+ ‖δη‖L∞(Ω)‖δσa,xf‖L∞(Ω))‖ux‖Lp(X)

≤ (c′′1‖δη‖L∞(Ω) + c′2‖δσa,xf‖L∞(Ω) + c′3‖δη‖L∞(Ω)‖δσa,xf‖L∞(Ω))

× ‖δσa,xf‖L∞(Ω)‖gx‖Lp(Γ−). (3.15)

We then deduce, in the same manner as above, that (3.11) admits a unique

solution (u′′x, u
′′
m) that satisfies

‖u′′x‖Lp(X) ≤ ĉ‖δσa,xfu′x‖Lp(Ω) ≤ ĉ‖δσa,xf‖L∞(Ω)‖u′x‖Lp(X)

≤ĉˆ̂c‖δσa,xf‖2
L∞(Ω)‖gx‖Lp(Γ−), (3.16)

and

‖u′m‖Lp(X) ≤ c̄
(
‖ησa,xfKI(u

′
x)‖Lp(Ω) + ‖F‖Lp(Ω)

)
≤ ¯̄c
(
‖u′x‖Lp(X) + ‖F‖Lp(Ω)

)
≤ (c̄1‖δη‖L∞(Ω) + c̄2‖δσa,xf‖L∞(Ω) + c̄3‖δη‖L∞(Ω)‖δσa,xf‖L∞(Ω))‖gx‖Lp(Γ−).

(3.17)

The estimates (3.16) and (3.17) show that (ux, um) is Fréchet differentiable

with respect to η and σa,xf as a map: L∞(Ω) × L∞(Ω) 7→ Lp(Ω) × Lp(Ω)

(p ∈ [1,∞]). Note that ux is independent of η, so its derivative with respect

to η is zero, as can be seen from (3.16).

The differentiability of H with respect to (η, σa,xf ) then follows from

the chain rule and the fact that σηa,x is differentiable with respect to (η, σa,xf ).
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Alternatively, it can also be seen easily from the bounds (3.13), (3.16), (3.17)

and the following algebraic calculation:

H[η̃, σ̃a,xf ]−H[η, σa,xf ]−H ′[η, σa,xf ](δη, δσa,xf )

= Ξ
[
σηa,xKI(u

′′
x)+σa,mKI(u

′′
m)+(δσa,xf−∆(ησa,x)KI(u

′
x)−δηδσa,xfKI(ux)

]
.

(3.18)

This completes the proof.

We will study Born approximation, i.e. linearization, of the inverse

problem of QfPAT in Section 3.4. The above result justifies the linearization

process. To compute the partial derivative with respect to η (resp. σa,xf ),

denoted by H ′η[η, σa,xf ] (resp. H ′σ[η, σa,xf ]), we simply set δσa,xf = 0 (resp.

δη = 0) in (3.8) and (3.9). It is straightforward to check that

H ′η[η, σa,xf ](δη)

Ξσa,xfKI(ux)
= −δη +

σa,m
σa,xfKI(ux)

KI(vm), (3.19)

with vm ∈ H1
p(X) the unique solution to

v · ∇vm + σt,mvm = σs,mKΘ(vm) + δησa,xfKI(ux), in X
vm(x,v) = 0, on Γ−,

(3.20)

and

H ′σ[η, σa,xf ](δσa,xf )

Ξ(1− η)KI(ux)
= δσa,xf +

σηa,x
(1− η)KI(ux)

KI(vx) +
σa,m

(1− η)KI(ux)
KI(vm),

(3.21)

with (vx, vm) ∈ H1
p(X)×H1

p(X) the unique solution to

v · ∇vx + σt,xvx = σs,xKΘ(vx)− δσa,xfux, in X
v · ∇vm + σt,mvm = σs,mKΘ(vm) + ησa,xfKI(vx) + ηδσa,xfKI(ux), in X

vx(x,v) = 0, vm(x,v) = 0 on Γ−.
(3.22)
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The following result is a standard application of the averaging lemma [34,

48, 73]. It will be useful in Section 3.4.

Lemma 3.2.3. Assume that (A-iii) holds. Let gx(x,v) ∈ L∞(Γ−) be such

that KI(ux) ≥ c > 0 for some constant c. Then the rescaled linearized data

H′σ [η,σa,xf ](δσa,xf )

Ξ(1−η)KI(ux)
, viewed as the linear operator

H ′σ[η, σa,xf ](δσa,xf )

ΞKI(ux)
:
δσa,xf 7→ (1− η)δσa,xf +

σηa,x
KI(ux)

KI(vx) + σa,m
KI(ux)

KI(vm)

L2(Ω) 7→ L2(Ω)
(3.23)

is Fredholm. The same is true for
H′η [η,σa,xf ](δη)

ΞKI(ux)
if the background coefficient

σa,xf ≥ c̃ > 0 for some c̃.

Proof. Let us denote by Sz (z ∈ {x,m}) the solution operator of the transport

equation with coefficients σa,z, σs,z and vacuum boundary condition, i.e. wz =

Sz(f) with wz the solution to:

v · ∇wz + σt,zwx − σs,zKΘ(wz) = f, in X, wz = 0 on Γ−.

We can then write KI(vx) and KI(vm) in (3.23) respectively as

KI(vx) = −Λx(δσa,xf ), and, KI(vm) = −Λmx(δσa,xf ) + Λm(ηδσa,xf )

(3.24)

where the operators Λx, Λm and Λmx are defined as

Λx(δσa,xf ) ≡ KI

(
Sx(uxδσa,xf )

)
, Λm(δσa,xf ) = KI

(
Sm(KI(ux)δσa,xf )

)
,(3.25)

Λmx(δσa,xf ) ≡ KI

(
Sm(ησa,xfKI(Sx(uxδσa,xf ))

)
.(3.26)
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Following the averaging lemma [34, 48, 73] and the compact embedding of

W
1/2
2 (Ω) to L2(Ω), we conclude KI : L2(X) → L2(Ω) is compact. Due to

boundedness of ux (and therefore KI(ux)), η and σa,xf , both Sx and Sm are

compact as operators from L2(Ω) to L2(X) with the assumptions on the coef-

ficients in (A-i) [34, 73]. Hence, Λx, Λm, and Λmx are all compact operators

on L2(Ω). Therefore
H′σ [η,σa,xf ](δσa,xf )

ΞKI(ux)
as an operator can be represented as

(1− η)I +K with K compact. Therefore it is Fredholm. The same argument

works for
H′η [η,σa,xf ](δη)

ΞKI(ux)
.

3.3 Reconstructing of a Single Coefficient

In this section, we consider the reconstruction of one of the two coef-

ficients of interests, assuming the other is known. We start with the recon-

struction of the quantum efficiency.

3.3.1 The reconstruction of η

Assume now that the fluorescence absorption coefficient σa,xf is known

and we are interested in reconstructing only η. This is a linear inverse source

problem. We can derive the following stability result on the reconstruction.

Theorem 3.3.1. Let p ∈ [1,∞] and the source gx ∈ Lp(Γ−) be such that the

transport solution ux to (3.1) satisfies KI(ux) ≥ c̃ > 0 for any (η, σa,xf ) ∈ A.

Let H and H̃ be two data sets generated with coefficients (η, σa,xf ) and (η̃, σa,xf )

respectively. Then H = H̃ a.e. implies η = η̃ a.e.. Moreover, the following
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stability estimate holds,

c‖H − H̃‖Lp(Ω) ≤ ‖(η − η̃)σa,xfKI(ux)‖Lp(Ω) ≤ C‖H − H̃‖Lp(Ω) (3.27)

where the constants c and C depend on Ω and the coefficients σa,xi, σa,m, σs,x,

σs,m, and Ξ.

Proof. Let (ux, um) and (ũx, ũm) be solutions to the coupled transport sys-

tem (3.1) with coefficients (η, σa,xf ) and (η̃, σa,xf ) respectively. We notice im-

mediately that ux = ũx. Define wm = um − ũm. We then verify that

(H − H̃)/Ξ = −(η − η̃)σa,xfKI(ux) + σa,mKI(wm) (3.28)

This leads to the bound

‖H− H̃‖Lp(Ω) ≤ c1‖(η− η̃)σa,xfKI(ux)‖Lp(Ω) +c2(σa,m)‖KI(wm)‖Lp(Ω). (3.29)

and the bound

‖(η − η̃)σa,xfKI(ux)‖Lp(Ω) ≤ c̃1(Ξ)‖H − H̃‖Lp(Ω) + c̃2(σa,m)‖KI(wm)‖Lp(Ω),

(3.30)

We check also that wm solves the transport equation

v · ∇wm + (σa,m + σs,m)wm = σs,mKΘ(wm) + (η − η̃)σa,xfKI(ux), in X
wm(x,v) = 0, on Γ−.

(3.31)

It then follows from classical results in transport theory [2, 34] that this equa-

tion admits a unique solution wm ∈ H1
p(X) that satisfies the following stability

estimate

‖wm‖Lp(X) ≤ c3(Ω, σa,m, σs,m,Ξ)‖(η − η̃)σa,xfKI(ux)‖Lp(Ω). (3.32)
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The left bound in (3.27) then follows from (3.29) and (3.32).

To derive the right bound in (3.27), we replace the last term in the

transport equation (3.31) with σa,mKI(wm)− (H − H̃)/Ξ to get

v · ∇wm + (σa,m + σs,m)wm = σa,mKI(wm) + σs,mKΘ(wm)− H−H̃
Ξ
, in X

wm(x,v) = 0, on Γ−.

(3.33)

We define Θ̃(x,v,v′) = σa,m
σa,m+σs,m

+ σs,m
σa,m+σs,m

Θ. It is straightforward to verify

that Θ̃ is symmetric and normalized in the sense of (3.5). We can then rewrite

the above transport equation as

v · ∇wm + (σa,m + σs,m)wm = (σa,m + σs,m)KΘ̃(wm)− H−H̃
Ξ
, in X

wm(x,v) = 0, on Γ−.

(3.34)

This is a transport equation for a conservative medium. Due to the fact that Ω

is bounded, classical results in transport theory (see for instance [34, Theorem

1 on page 337]) then concludes that the equation admits a unique solution

wm ∈ H1
p(X). Moreover, we have the stability estimate

‖wm‖Lp(X) ≤ c4(Ω, σa,m, σs,m,Ξ)‖H − H̃‖Lp(Ω) (3.35)

The right bound in (3.27) then follows from (3.30) and (3.35). The uniqueness

of the reconstruction then follows from the fact that H = H̃ implies wm = 0

from (3.34), which then implies η = η̃ from (3.28).

Note that the bound in (3.27) is weighted in the sense that it is on

(η− η̃)KI(ux) not directly on (η− η̃). This means that if KI(ux) is too small,

it is very hard to reconstruct accurately η.
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The proof of the above stability result is constructive in the sense that

it provides an explicit reconstruction procedure for the recovery of η. We now

summarize the procedure in the following algorithm.

Reconstruction Algorithm I.

S1. Given σa,xf , solve the first transport equation in (3.1) with the boundary

condition gx for ux;

S2. Evaluate the function q(x) = σa,xKI(ux)− H
Ξ

;

S3. Solve the following transport equation for um:

v · ∇um + (σa,m + σs,m)um = (σa,m + σs,m)KΘ̃(um) + q(x), in X
um(x,v) = 0, on Γ−.

(3.36)

S4. Reconstruct η as −
(H

Ξ
− σa,xKI(ux)− σa,mKI(um)

)
/(σa,xfKI(ux)).

This is a direct reconstruction algorithm in the sense that it does not involve

any iteration on the the unknown coefficient. The algorithm is very efficient

since it requires solving the transport equation (3.36) only once.

Remark 3.3.2. Thanks to the fact that the problem of reconstructing η given

σa,xf is linear, we can easily verify that the same type of uniqueness and sta-

bility results in Theorem 3.3.1 hold for the linearized problem of reconstructing

η defined in (3.20) and (3.19). Moreover, the above reconstruction algorithm

works in exactly the same manner in the linearized setting.
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3.3.2 The reconstruction of σa,xf

We now assume that we know η and aim at reconstructing σa,xf . In

this case, we can show the following result.

Theorem 3.3.3. Let gx ∈ Lp(Γ−) (p ∈ [1,∞]) be such that the solution ux to

the transport system (3.1) satisfies ux = KI(ux) ≥ c̃ > 0 for any coefficient

pair (η, σa,xf ) ∈ A. Let H and H̃ be data sets generated with coefficient pairs

(η, σa,xf ) and (η, σ̃a,xf ) respectively. Then H = H̃ a.e. implies σa,xf = σ̃a,xf

a.e.. Moreover, the following bound holds,

c‖H − H̃‖Lp(Ω) ≤ ‖(σa,xf − σ̃a,xf )KI(ux)‖Lp(Ω) ≤ C‖H − H̃‖Lp(Ω), (3.37)

with c and C depending on Ω, σa,xi, σa,m, σs,x, σs,m, η and Ξ.

Proof. Let (ux, um) and (ũx, ũm) be solutions to the coupled transport sys-

tem (3.1) with coefficients (η, σa,xf ) and (η, σ̃a,xf ) respectively. Define wx =

ux − ũx and wm = um − ũm. Then we have

H − H̃
Ξ

= σ̃ηa,xKI(wx) + σa,mKI(wm) + (1− η)(σa,xf − σ̃a,xf )KI(ux). (3.38)

This leads to the bound

‖H − H̃‖Lp(Ω) ≤ c′1‖KI(wx)‖Lp(Ω) + c′2‖KI(wm)‖Lp(Ω)

+ c′3‖(σa,xf − σ̃a,xf )KI(ux)‖Lp(Ω), (3.39)

and the bound

‖(σa,xf − σ̃a,xf )KI(ux)‖Lp(Ω) ≤ c′′1‖H − H̃‖Lp(Ω) + c′′2‖KI(wx)‖Lp(Ω)

+ c′′3‖KI(wm)‖Lp(Ω). (3.40)
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We now verify that (wx, wm) solves the following transport system:

v · ∇wx + σ̃t,xwx = σs,xKΘ(wx)− (σa,xf − σ̃a,xf )ux, in X
v · ∇wm + σt,mwm = σs,mKΘ(wm) + ησ̃a,xfKI(wx)

+η(σa,xf − σ̃a,xf )KI(ux), in X
wx(x,v) = 0, wm(x,v) = 0, on Γ−

(3.41)

where σt,x = σa,xi + σ̃a,xf + σs,m. We then deduce, following similar procedure

as in the proof of Proposition 3.2.2, that

‖wx‖Lp(X) + ‖wm‖Lp(X) ≤ c′4‖(σa,xf − σ̃a,xf )KI(ux)‖Lp(Ω). (3.42)

The left bound in (3.37) then follows from (3.39) and (3.42).

To derive the right bound in (3.37), we use (3.38) to eliminate the

quantity σa,xf − σ̃a,xf in the transport system (3.41) to obtain:

v · ∇wx + σ̃t,xwx = σs,xKΘ(wx) + σ′s,xKI(wx) + σ′s,xmKI(wm)

− (H−H̃)ux
Ξ(1−η)KI(ux)

, in X

v · ∇wm + σt,mwm = σs,mKΘ(wm)− σ′s,mKI(wm)− σ′s,mxKI(wx)

+ (H−H̃)η
Ξ(1−η)

, in X

wx(x,v) = 0, wm(x,v) = 0, on Γ−
(3.43)

where σ′s,x =
σ̃ηa,xux

(1−η)KI(ux)
, σ′s,xm = σa,mux

(1−η)KI(ux)
, σ′s,m = ησa,m

1−η , and σ′s,mx =
ησa,xi
1−η .

To write the system in standard form, we perform the change of variable

wx → −wx. We then have

v · ∇wx + σ̃t,xwx + σ′s,xmKI(wm) = σs,xKΘ(wx) + σ′s,xKI(wx)

+ (H−H̃)ux
Ξ(1−η)KI(ux)

, in X

v · ∇wm + σt,mwm + σ′s,mKI(wm) = σs,mKΘ(wm) + σ′s,mxKI(wx)

+ (H−H̃)η
Ξ(1−η)

, in X

wx(x,v) = 0, wm(x,v) = 0, on Γ−
(3.44)
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With the assumption on gx, the coefficients σ′s,x, σ
′
s,xm, σ′s,m, and σ′s,mx are

all positive. We check also, after using the assumption ux = KI(ux), that

∆1 ≡ σ̃t,x + σ′s,xm− σs,x− σ′s,x = σ̃a,x + (σa,m− σ̃ηa,x)/[(1− η)] and ∆2 ≡ σt,m +

σ′s,m−σs,m−σ′s,mx = (σa,m− ησa,xi)/(1− η). The conditions in Theorem 3.3.3

ensure that ∆1,∆2 ≥ c′ > 0 for some c′. We can therefore combine the

techniques in [49, 102, 103, 115], see detailed analysis in [85], to show that

system (3.44) admits a unique solution (wx, wm) that satisfies

‖wx‖Lp(X) + ‖wm‖Lp(X) ≤ c′′4‖H − H̃‖Lp(Ω). (3.45)

We can now combine (3.40) and (3.45) to obtain the right bound in (3.37).

The uniqueness result follows from the fact that (3.44) admits only the trivial

solution (wx, wm) = (0, 0) when H = H̃.

Linearized Case. Unlike in the case of reconstructing η, the above proof is

not constructive since the unknown coefficient σa,xf shows up in the transport

system (3.44). Therefore, the proof does not provide directly a reconstruction

algorithm. For numerical reconstructions in this nonlinear setting, we use

the optimization-based algorithm in Section 3.4.4. If we consider the same

problem in linearized setting, we can indeed derive an explicit reconstruction

procedure. To do that, we replace the δσa,xf in (3.22) with its expression given
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in the linearized datum (3.21) to get the following system:

v · ∇vx + σt,xvx + σ′s,xmKI(vm) = σs,xKΘ(vx) + σ′s,xKI(vx)

− uxH′σ
(1−η)ΞKI(ux)

, in X

v · ∇vm + σt,mvm + σ′s,mKI(vm) = σs,mKΘ(vm) + σ′s,mxKI(vx)

+ ηH′σ
(1−η)Ξ

, in X

vx(x,v) = 0, vm(x,v) = 0, on Γ−
(3.46)

where we have performed the change of variable vx → −vx, and the coefficient

σ′s,x =
σηa,xux

(1−η)KI(ux)
, while the coefficients σ′s,xm, σ′s,m, and σ′s,mx are defined as

in (3.43). This system does not contain the unknown coefficient δσa,xf . It can

be solved for (vx, vm). We can then reconstruct δσa,xf following (3.21). The

reconstruction procedure can be summarized into the following reconstruction

algorithm.

Reconstruction Algorithm II.

S1. Given the background coefficient σa,xf , solve the first transport equation

in (3.1) with the boundary condition gx for ux (and therefore KI(ux));

S2. Evaluate the coefficients σ′s,x, σ
′
s,xm, σ′s,m and σ′s,mx;

S3. Solve the transport system (3.46) for (vx, vm) and perform the transform

(−vx, vm)→ (vx, vm);

S4. Reconstruct δσa,xf as
[H ′σ

Ξ
−σηa,xKI(vx)−σa,mKI(vm)

]
/
[
(1− η)KI(ux)

]
.

Following the control theory for transport equations developed in [1, 3, 62], we

can show, under reasonable assumptions, the existence of sources gx such that
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ux = KI(ux) holds for each pair (η, σa,xf ) ∈ A. Such sources, however, might

be complicated, for instance we might need to solve a control problem, to con-

struct in practical applications. The usefulness of Reconstruction Algorithm II

is therefore limited by this fact. Note that in applications where the medium is

scattering-free, see for instance discussions in [37, 72], this algorithm is indeed

very useful since there are many ways to construct illuminations sources to

have ux = KI(ux).

3.4 Simultaneous Reconstruction of Two Coefficients

We now consider the problem of simultaneous reconstruction of the

quantum efficiency and the fluorescence absorption coefficient. We start with

the linearized case.

3.4.1 Linearization around (η, σa,xf ) = (0, 0)

We first consider the special case where both coefficients are small. In

this case the product of the coefficient is small so that generation of fluo-

rescence is very small and can be neglected. Therefore, the system involves

only the light at the excitation wavelength. The QfPAT problem reduces to

the usual quantitative PAT problem. To be precise, we linearize the problem

around the background (η, σa,xf ) = (0, 0). Then the second transport equation

in (3.9) has the solution vm = 0. Therefore, the datum (3.8) simplifies to

1

Ξ
H ′[0, 0](δη, δσa,xf ) = δσa,xfKI(ux) + σa,xiKI(vx), (3.47)
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and the first transport equation in system (3.9) simplifies to

v · ∇vx + (σa,xi + σs,x)vx = σs,xKΘ(vx)− δσa,xfux, in X
vx(x,v) = 0, on Γ−.

(3.48)

We observe that δη does not appear in the datum (3.47) or the equation (3.48).

Therefore, it can not be reconstructed in this setting. We can show the fol-

lowing result.

Proposition 3.4.1. Let ux be the solution to the first transport equation

in (3.1) with σa,xf = 0. Let gx ∈ Lp(Γ−) (p ∈ [1,∞]) be such that ux =

KI(ux) ≥ c̃ > 0. Denote by H ′[0, 0] and H̃ ′[0, 0] the perturbed data sets in

the form of (3.47), generated with perturbed coefficients (δη, δσa,xf) and (δ̃η,

δ̃σa,xf) respectively. Then H ′[0, 0] = H̃ ′[0, 0] a.e. implies δσa,xf = δ̃σa,xf a.e..

In addition, we have,

c‖H ′[0, 0]− H̃ ′[0, 0]‖Lp(Ω) ≤ ‖(δσa,xf − δ̃σx,f )KI(ux)‖Lp(Ω)

≤C‖H ′[0, 0]− H̃ ′[0, 0]‖Lp(Ω), (3.49)

with c and C constants that depend on Ω, Ξ, σa,xi and σs,x.

Proof. The datum (3.47) implies directly that

‖H ′[0, 0]− H̃ ′[0, 0]‖Lp(Ω) ≤ c1‖(δσa,xf − δ̃σa,xf )KI(ux)‖Lp(Ω) + c2‖vx− ṽx‖Lp(X),

(3.50)

and

‖(δσa,xf − δ̃σa,xf )KI(ux)‖Lp(Ω) ≤ c′1‖H ′[0, 0]− H̃ ′[0, 0]‖Lp(Ω) + c′2‖vx− ṽx‖Lp(X),

(3.51)
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with the constants depend on Ω, σa,xi and Ξ.

With the assumptions in the theorem, we deduce from the transport

equation (3.48) that

‖vx − ṽx‖Lp(Ω) ≤ c3‖(δσa,xf − δ̃σa,xf )KI(ux)‖Lp(Ω). (3.52)

The left bound in (3.49) then follows from (3.50) and (3.52). To get the

right bound in (3.49), we use the datum (3.47), and the assumption that

ux = KI(ux), to rewrite (3.48) as

v · ∇vx + (σa,xi + σs,x)vx = σs,xKΘ(vx) + σa,xiKI(vx)− H′[0,0]
Ξ

, in X
vx(x,v) = 0, on Γ−.

(3.53)

This is a conservative transport equation that admits a unique solution with

the stability result:

‖vx − ṽx‖Lp(Ω) ≤ c′3‖H ′[0, 0]− H̃ ′[0, 0]‖Lp(Ω), (3.54)

where c′3 depends on Ω, σa,xi, σs,x and Ξ. The right bound in (3.49) then

follows from (3.51) and (3.54).

The above proof is again constructive when a gx that satisfies the as-

sumption in the theorem is available to us, in the sense that we only need to

solve (3.53) for vx and then compute δσa,xf = (H ′[0, 0]/Ξ−σa,xiKI(vx))/KI(ux).
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3.4.2 Linearization around a general background

We now consider the linearization around a general background (η 6≡

0, σa,xf 6≡ 0). We study the case where we have J ≥ 2 data sets, 1 ≤ j ≤ J :

H ′j[η, σa,xf ](δη, δσa,xf )

ΞKI(u
j
x)

= (−δησa,xf + (1− η)δσa,xf )

+
σηa,x

KI(u
j
x)
KI(v

j
x) +

σa,m

KI(u
j
x)
KI(v

j
m) (3.55)

where ujx is the solution to the first transport equation in (3.1) with background

coefficient σa,xf and illumination source gjx, while (vjx, v
j
m) is the solution to the

coupled system (3.9).

To study the linear inverse problem defined in (3.55), we introduce two

new variables ζ = δησa,xf + ηδσa,xf and ξ = δσa,xf . It is straightforward to

verify that (ζ, ξ) uniquely determines (δη, δσa,xf ) when η 6≡ 0 and σa,xf 6≡ 0.

We can then collect the J data sets to have the following linear system for the

unknown coefficient pair (ζ, ξ):

Π

(
ζ
ξ

)
= z, with, Π =

 −I + Π1
ζ I − Π1

ξ
...

...
−I + ΠJ

ζ I − ΠJ
ξ

 and z =


H′1[η,σa,xf ]

ΞKI(u1x)
...

H′J [η,σa,xf ]

ΞKI(uJx)


(3.56)

with Πj
ζ = σa,m

KI(ujx)
Λj
m and Πj

ξ =
σηa,x

KI(ujx)
Λj
x + σa,m

KI(ujx)
Λj
mx. Here Λj

x, Λj
mx and Λj

m

are defined as in (3.25) and (3.26) with ux replaced by ujx. From Lemma 3.2.3

we know that Πj
ζ and Πj

ξ (1 ≤ j ≤ J) are compact operators on L2(Ω).

From the discussion in the previous sections, we know that I −Πj
ζ and

I − Πj
ξ are all invertible for well-selected illumination sources gjx, 1 ≤ j ≤ J .
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However, that does not guarantee the invertibility of the linear system (3.56).

For the case of J = 2, the invertibility of the system (3.56) is equivalent to

the invertibility of (I − Π2
ζ)
−1(I − Π2

ξ) − (I − Π1
ζ)
−1(I − Π1

ξ). Therefore, we

need to choose illumination sources g1
x and g2

x such that (I −Π2
ζ)
−1(I −Π2

ξ)−

(I − Π1
ζ)
−1(I − Π1

ξ) is invertible; see next section for some discussions on the

regularized version of this problem.

3.4.3 A partially linearized model

We now briefly discuss a very popular simplification of the mathemati-

cal model in the fluorescence optical tomography literature. This simplification

assumes that the fluorescence absorption coefficient σa,xf is small compared to

the background tissue absorption coefficient σa,xi. Therefore, it can be dropped

from the first equation in the model (3.1); see for instance [77]. In other words,

the model, for source gjx (1 ≤ j ≤ J), now reads,

v · ∇ujx + (σa,xi + σs,x)u
j
x = σs,xKΘ(ujx), in X

v · ∇ujm + (σa,m + σs,m)ujm = σs,mKΘ(ujm) + ησa,xfKI(u
j
x), in X

ujx(x,v) = gjx, ujm(x,v) = 0 on Γ−.
(3.57)

The data, for source gjx (1 ≤ j ≤ J), now simplify to,

H̃j ≡
Hj

ΞKI(u
j
x)
− σa,xi = (1− η)σa,xf +

σa,m

KI(u
j
x)
KI(u

j
m). (3.58)

The inverse problem of reconstructing η and σa,xf from datum (3.58)

is a nonlinear problem despite the fact that a partial linearization has been

performed on the transport model. However, if we define ζ = (1− η)σa,xf and
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ξ = σa,xf , then the inverse problem is bilinear with respect to (ζ, ξ). Precisely,

we can write the datum as,

H̃j = ζ − Πj
ζ(ζ) + Πj

ζ(ξ), 1 ≤ j ≤ J (3.59)

with Πj
ζ = σa,m

KI(ujx)
Λj
m defined the same way as before and being compact on

L2(Ω). This can again be written into the form of linear system (3.56) with

the coefficient matrix and source vector respectively

Π =

 I − Π1
ζ Π1

ζ
...

...
I − ΠJ

ζ ΠJ
ζ

 , and, z =

 H̃1
...

H̃J

 . (3.60)

Regularized Inversion with J = 2. In the case that two data sets are

available, we can solve the inverse problems in this section and Section. 3.4.2

in regularized form. To do that, we observe that if we define

Π α = Π +

(
0 0
0 αI

)
, α > 0 (3.61)

then Π α is a Fredholm operator on L2(Ω) × L2(Ω) for the Π defined in

both (3.56) and (3.60). To be precise, Π α are respectively,

Π α =

(
−I + Π1

ζ I − Π1
ξ

−I + Π2
ζ αI + I − Π2

ξ

)
∼
(
−I + Π1

ζ I − Π1
ξ

Π2
ζ − Π1

ζ αI + Π1
ξ − Π2

ξ

)
=

(
−I + Π1

ζ I
0 αI + Π1

ξ

)
+

(
0 −Π1

ξ

Π2
ζ − Π1

ζ −Π2
ξ

)
, (3.62)

and

Π α =

(
I − Π1

ζ Π1
ζ

I − Π2
ζ αI + Π2

ζ

)
=

(
I − Π1

ζ 0
I αI

)
+

(
0 Π1

ζ

−Π2
ζ Π2

ζ

)
(3.63)
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where ∼ is used to denote the elementary operation of subtracting the first row

from the second row. For any fixed α > 0, let us denote by N (Π α) the null

space of matrix operator Π α, then the following result follows immediately

from classical stability theory of Fredholm operators [59].

Proposition 3.4.2. Let z and z̃ be two perturbed data sets defined as in (3.56)

or (3.60). Let (ζ, ξ)t and (ζ̃ , ξ̃)t be the solution to Π α

(
ζ
ξ

)
= z and Π α

(
ζ̃

ξ̃

)
= z̃ respectively for some α > 0. Then we have

c̃‖z− z̃‖(L2(Ω))2 ≤ ‖(ζ, ξ)− (ζ̃ , ξ̃)‖(L2(Ω))2/N (Π α) ≤ C̃‖z− z̃‖(L2(Ω))2 . (3.64)

for some constants c̃ and C̃.

In the numerical computation, to solve (3.56) or (3.60) directly, we

have to construct the operator Π explicitly. This is hard to do in practice

since it essentially requires the analytical form of the Green’s function for the

transport equation at the emission wavelength. We do not have access to this

Green’s function. Instead, solve the linear problem with a classical method of

Landweber iteration [60] that we summarize in the following algorithm.

Reconstruction Algorithm III.

S1. Take initial guess (ζ0, ξ0);

S2. Iteratively update the unknown through the iteration:(
ζk+1

ξk+1

)
= (I− τΠ ∗Π )

(
ζk
ξk

)
+ τΠ ∗z, k ≥ 0. (3.65)

Stop the iteration when desired convergence criteria are satisfied.
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Here τ is a positive algorithmic parameter that we select by trial and error.

The adjoint operator Π ∗ is formed by transposing Π and replacing Πj
ζ and

Πj
ξ with Πj∗

ζ = KI(u
j
x)S

∗
m◦KI ◦ σa,m

KI(ujx)
and Πj∗

ξ = ujxS
∗
x◦KI ◦ σηa,x

KI(ujx)
+ujxS

∗
x◦KI ◦

ησa,xfS
∗
m ◦KI ◦ σa,m

KI(ujx)
respectively. Here S∗z is the adjoint of Sz (z ∈ {x,m})

that is defined as the solution operator of the adjoint transport equation with

coefficients σa,z, σs,z and vacuum boundary condition, i.e. wz = S∗z (f) with

wz the solution to:

−v · ∇wz + (σa,z + σs,z)wx − σs,zKΘ(wz) = f, in X, wz = 0 on Γ+.

Therefore, at iteration k of the Landweber algorithm, we solve J forward

transport systems and then J adjoint transport systems to apply the operator

Π ∗Π to the vector (ζk, ξk)
t.

3.4.4 Iterative reconstruction for the nonlinear case

For the simultaneous reconstruction of η and σa,xf in the general non-

linear case, we do not have any theoretical results on uniqueness and stability

currently. Nor do we have more explicit reconstruction methods. We rely

mostly on general computational optimization techniques to solve the inverse

problem. More precisely, we search for solutions to the inverse problem by

minimizing the objective functional:

Φ(η, σa,xf ) ≡
1

2

J∑
j=1

∫
Ω

{
Ξ
[
σηa,xKI(u

j
x) + σa,mKI(u

j
m)
]
−Hj

}2

dx + βR(η, σa,xf )

(3.66)
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where the regularization functional is taken as R(η, σa,xf ) = 1
2
(‖∇η‖2

[L2(Ω)]d
+

‖∇σa,xf‖2
[L2(Ω)]d

).

Following the result in Proposition 3.2.2 and the chain rule, we can

obtain the following result straightforwardly.

Corollary 3.4.3. The functional Φ(η, σa,xf ), viewed as the map: Φ : W 1
2 (Ω)×

W 1
2 (Ω) 7→ R+ is Fréchet differentiable at any (η, σa,xf ) ∈ W 1

2 (Ω)×W 1
2 (Ω)∩A.

The partial derivatives in the direction δη (such that (η + δη, σa,xf ) ∈ A) and

the direction δσa,xf (such that (η, σa,xf + δσa,xf ) ∈ A) are given respectively as

Φ′η[η, σa,xf ](δη)

=

∫
Ω

{ J∑
j=1

zjΞ
[
− δησa,xfKI(u

j
x) + σa,mKI(w

j
m)
]

+ β∇δη · ∇η
}
dx, (3.67)

Φ′σ[η, σa,xf ](δσa,xf )

=

∫
Ω

J∑
j=1

zjΞ
[
δσa,xf (1− η)KI(u

j
x) + σηa,xKI(vx) + σa,mKI(vm)

]
dx

+ β

∫
Ω

∇δσa,xf · ∇σa,xfdx, (3.68)

where the residual zj = Ξ
[
σηa,xKI(u

j
x) + σa,mKI(u

j
m)
]
− Hj, wm is the unique

solution to (3.20), and (vx, vm) is the unique solution to (3.22).

We can therefore employ gradient-based minimization techniques to

minimize the functional (3.66). Here we use the limited memory version of

the BFGS quasi-Newton method that we implemented in [86]. This method

requires only the gradients of the objective functional which we derived in

Corollary 3.4.3. To simplify the computation of these gradients numerically,
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we apply the adjoint state technique. We denote by (qjx, q
j
m) the unique solution

to the following adjoint transport system:

−v · ∇qjx + σt,xq
j
x = σs,xKΘ(qjx) + Ξσηa,xzj + ησa,xfKI(q

j
m), in X

−v · ∇qjm + σt,mq
j
m = σs,mKΘ(qjm) + Ξσa,mzj, in X

qjx(x,v) = 0, qjm(x,v) = 0 on Γ+.
(3.69)

It is then straightforward to show that

Φ′η[η, σa,xf ](δη)

=

∫
Ω

{ J∑
j=1

δησa,xfKI(u
j
x)
[
− Ξzj +KI(q

j
m)
]

+ β∇δη · ∇η
}
dx, (3.70)

Φ′σ[η, σa,xf ](δσa,xf )

=

∫
Ω

J∑
j=1

δσa,xfKI(u
j
x)
[
Ξ(1− η)zj + ηKI(qm)−KI(qx)

]
dx

+ β

∫
Ω

∇δσa,xf · ∇σa,xfdx. (3.71)

Therefore, to compute gradients of the Φ at (η, σa,xf ), we only need to solve

a set of J forward transport systems (3.1) and a set of J adjoint transport

systems (3.69). We can then evaluate the gradients in any given direction

(δη, δσa,xf ) according to (3.70) and (3.71).

It is obvious that this optimization-based nonlinear reconstruction method

can be used also to reconstruct a single coefficient. To only reconstruct η, we

only need to set the gradient with respect to σa,xf to zero and vice versa.
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3.5 Numerical Experiments

We now present some numerical reconstructions using synthetic interior

data. We restrict ourselves to two-dimensional settings only to simplify the

computation.

The spatial domain of the reconstruction is the square Ω = (−1, 1) ×

(−1, 1). All the transport equations in Ω×S1 are discretized angularly with the

discrete ordinate method and spatially with a first-order finite element method

on triangular meshes. In all the simulations in this section, reconstructions

are performed on a finite element mesh consisting of about 2000 triangles and

a discrete ordinate set with 64 directions. For the absorption and scattering

coefficients that are known, we take

σa,xi = σa,m = σba (2− (b2xc+ b2yc mod 2)) , (3.72)

σs,x = σs,m = σbs (1 + (b2xc+ b2yc mod 2)) , (3.73)

where b·c represents the floor operation, σba and σbs are respectively the base

level absorption and scattering coefficients. In all the cases below, we set

σba = 0.1. The value of σbs varies from case to case and will be given below; see

Fig. 3.1 (i) and (ii) for plots of the two coefficients. The scattering kernel Θ

is set to be the Henyey-Greenstein phase function [12, 55, 113] which depends

only on the product v · v′.

To generate synthetic data for the nonlinear inversions, we solve the

transport system (3.1) with true quantum efficiency η and fluorescent absorp-

tion coefficient σa,xf and compute H according to (3.3). To generate synthetic
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data for linearized inversions, for instance in Experiment 3 below, we use di-

rectly the linearized data models, for instance (3.55), with the true coefficient

perturbations. This way, we can exclude the linearization error from the data

used in the inversion. We do this since our main aim is to test the performance

of the reconstruction algorithms, not to check the accuracy of the lineariza-

tions. To mimic noisy measurements, we add additive random noise to the

synthetic data by multiplying each datum point by (1+γ×10−2normrnd) with

normrnd a standard Gaussian random variable and γ a number representing

the noise level in percentage. When γ = 0, we say the data are noise-free.

To measure the quality of the reconstruction, we use the relative L2

error. This error is defined as the L2 norm of the difference between the

reconstructed coefficient and the true coefficient, divided by the L2 norm of

the true coefficient and then multiplied by 100.

We performed numerical simulations on the reconstructions of many

different coefficients pairs (η, σa,xf ). The qualities of the the reconstructions

are very similar. To avoid repetition, we will present only reconstructions for

a typical coefficient pair we show in (iii)-(iv) of Fig. 3.1.

Experiment 1. In the first set of numerical studies, we consider the recon-

struction of the quantum efficiency η assuming that the fluorescent absorption

coefficient σa,xf is known. We use the Reconstruction Algorithm I presented

in Section 3.3.1. We first perform numerical experiments in isotropic medium

with two different strengths of scattering coefficients. We show in Fig. 3.2 the
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Figure 3.1: From left to right are: (i) the absorption coefficient σa,xi = σa,m
defined in (3.72) with σba = 0.1, (ii) the scattering coefficient σs,x = σs,m
defined in (3.73) with σbs = 2.0, (iii) the true quantum efficiency η to be
reconstructed in the numerical experiments, and (iv) the true fluorescence
absorption coefficient σa,xf to be reconstructed.

reconstructions of η under base scattering σbs = 1.0. Shown from left to right

are respectively the η reconstructed using data with noise level γ = 0, 2, 5 and

10 respectively. The relative L2 errors in the reconstructions are respectively

0.01%, 14.24%, 35.59% and 71.18%. We repeat the simulations for a medium

with stronger (but still isotropic) scattering (σbs = 9.0). The results are shown

in Fig. 3.3. The relative L2 errors in this case are 1.04%, 14.84%, 37.02% and

74.02% respectively. If we compare the results in Fig. 3.2 and those in Fig. 3.3,

we see that the quality of the reconstructions are almost independent of the

scattering strength. This is what we observed in our numerical experiments

in other cases as well.

Experiment 2. In the second set of numerical studies, we consider the re-

construction of the fluorescent absorption coefficient σa,xf assuming that the

quantum efficiency η is known. Currently, we do not have a well-established

method to construct illuminations sources such that the condition ux = KI(ux)

84



Figure 3.2: The quantum efficiency η reconstructed with different types of
data. The noise levels in the data used for the reconstructions, from left to
right are γ = 0, 2, 5 and 10 respectively. The base scattering strength is
σbs = 1.0.

Figure 3.3: Same as in Fig. 3.2 but with base scattering strength σbs = 9.0.
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is satisfied for the transport solution, besides in non-scattering media. We

therefore can not use directly the Reconstruction Algorithm II as we com-

mented before. Instead, we use the nonlinear reconstruction algorithm in

Section 3.4.4. We show in Fig. 3.4 the reconstructions of σa,xf in an isotropic

medium with base scattering strength σbs = 1.0. Shown from left to right are

respectively the reconstructions using data with noise levels γ = 0, 2, 5 and

10. The relative L2 errors in the four reconstructions are 0.01%, 6.42%,16.06%

and 32.12% respectively. In Fig. 3.5, we show the same reconstructions in an

anisotropic scattering medium with base scattering strength σbs = 9.0 and

anisotropic factor 0.9. The relative L2 errors are 0.02%,6.70%,16.74% and

33.42%, respectively. We again observed that the reconstructions are of good

quality with data contains reasonably low level of random noise.

Figure 3.4: The fluorescence absorption coefficient σa,xf reconstructed with
different types of data. The noise level in the data used for the reconstructions,
from left to right are: γ = 0 (noise-free), γ = 2, γ = 5, and γ = 10. The base
scattering strength is σbs = 1.0.

Experiment 3. In the third set of numerical simulations, we study the simul-

taneous reconstruction of the coefficients η and σa,xf in the linearized setting
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Figure 3.5: Same as in Fig. 3.4 but in a medium of anisotropic scattering with
base scattering strength σbs = 9.0 and anisotropic factor 0.9.

described in Section 3.4.3 using the Reconstruction Algorithm III. The syn-

thetic perturbed data are generated using directly the linearized model (3.55),

not the original nonlinear model. Our aim here is to test the stability of

the reconstruction, not the accuracy of the linearization. We use data sets

collected from four angularly-resolved illuminations supported respectively on

the four sides of the boundaries of the domain, pointing toward the interior of

the domain. The background scattering strength is σbs = 1.0. We linearize the

problem around the background coefficients:

η0 =
1

|Ω|

∫
Ω

η(x)dx and σ0
a,xf =

1

|Ω|

∫
Ω

σa,xf (x)dx.

The reconstructions, after adding back the background, are shown in Fig. 3.6.

The relative L2 error in the reconstructions using data with noise level γ = 0,

γ = 2, γ = 5 and γ = 10 are respectively (0.00%, 0.00%), (14.65%, 7.45%),

(37.28%, 18.77%) and (75.80%, 39.04%) respectively. In all reconstructions, we

applied the Tikhonov regularization with a small regularization strength that

we select by trial and errors. We hope to develop more systematical strategy

on regularization in the future.
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Figure 3.6: Simultaneous reconstructions of the coefficient pair (η, σa,xf ) in the
linearized setting with different types of data. The noise level in the data used
for the reconstructions are (from left to right): γ = 0, 2, 5 and 10 respectively.
The base scattering strength is σbs = 1.0.

Experiment 4. The last set of numerical simulations are devoted to the

simultaneous reconstructions of the coefficient pair (η, σa,xf ) in the fully non-

linear setting. We use the optimization-based reconstruction algorithm de-

veloped in Section 3.4.4. The setup is the same as in Experiment 3. We

performed reconstructions with data containing various noise levels. When

the noise level is too high, we have difficulties to find reasonable initial guesses

to make the algorithm converge. We show in Fig. 3.7 reconstructions with data

containing a small amount of noise, γ = 0, 1 and 2 respectively, with the initial

guess (η0, σ0
a,xf ) being the average of the true coefficients inside the domain.

The relative L2 error in the reconstructions are respectively (16.40%, 8.32%),

(18.26%, 9.17%) and (23.26%, 19.30%) respectively. We again impose weak

Tikhonov regularizations in all the reconstructions with the regularization
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strengths selected by trial and error. Tuning various parameters in the al-

gorithm could potentially improve the reconstructions results, but we did not

pursue in that direction.

Figure 3.7: Simultaneous reconstruction of the coefficient pair (η, σa,xf ) in the
nonlinear setting with different types of data. The noise level in the data used
for the reconstructions, from left to right, are respectively γ = 0, 1 and 2.

3.6 Concluding Remarks

We studied in this work a few inverse problems in quantitative flu-

orescence photoacoustic tomography in the radiative transport regime. We

derived some uniqueness and stability results on the reconstruction of the flu-

orescence absorption coefficient and the quantum efficiency of the medium. In

some cases, we were also able to develop efficient numerical reconstruction al-

gorithms. These results complement the results in [92] for the QfPAT problem

in the diffusive regime. We showed numerical simulations based on synthetic
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data to support the mathematical analysis and demonstrate the performance

of some of the reconstruction algorithms.

One important application of the results in this chapter is in X-ray mod-

ulated fluorescence tomography (or X-ray luminescence tomography (XLT)) [97].

In XLT, X-rays, instead of NIR photons, are used to excite the molecular mark-

ers. The X-ray density ux and the generated NIR photon densities um solve

the coupled transport system (3.1) with the scattering term KΘ(ux) = 0 since

X-rays travel in straight lines without being scattered. The theory and re-

construction methods we developed in this work remain valid in that case.

In other words, we can recover stably the fluorescence absorption coefficient

using data collected from one X-ray illumination. This would provide a useful

alternative to the reconstruction method for XLT in [97].

Even though the QfPAT problem has been analyzed in detail in [92]

in the diffusive regime, the developments in this work are still useful in many

settings. One well-known example is the application in optical imaging of small

animals [56] where the diffusion model is not sufficiently accurate to describe

the propagation of NIR photons inside the animals.

Our main research focus in near future is to analyze the uniqueness

and stability properties of the simultaneous reconstruction problem, i.e. the

problem of reconstructing the pair (η, σa,xf ), in the fully nonlinear setting. This

is an unsolved problem even in the diffusive regime [92], although numerical

simulations we have so far suggested that uniqueness and stability both hold,

at least in the regime where both coefficients are sufficiently large.
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Chapter 4

Summary and Perspectives

In this dissertation, we studied, mathematically and computationally,

two hybrid inverse problems in photoacoustics for molecular imaging: quantia-

tive two-photon PAT and quantitative fluorescence PAT. Our main objective

was to reconstruct optical properties of tissues from interior data of absorption

energy inferred from ultrasound data.

4.1 Summary of Main Results

In Chapter 2, we studied an inverse coefficient problem for a semilin-

ear diffusion equation which models the optical propagation with two-photon

absorption in the diffusion regime. We obtained positivity and comparative

results on the solutions to the semilinear diffusion equation using standard

theory of partial differential equations. Based on these results, we presented

uniqueness and stability results on reconstructing the single-photon and two-

photon absorption coefficients. We also proposed a direct method for simul-

taneous reconstruction of the two coefficients. We then studied the problem

of reconstructing the diffusion coefficient along with the two optical absorp-

tion coefficients in the linearized setting. We obtained uniqueness and stability
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based on the construction of CGO solutions and classical results on elliptic sys-

tems. We also showed non-uniqueness results on reconstructing the diffusion

coefficient, Grüneisen coefficient along with the two optical absorption coeffi-

cients. We performed numerical experiments on reconstructing the two optical

absorption coefficients to demonstrate the theoretical results. The semilinear

equation is discretized using finite element methods in 2-D and solved using a

quasi-Newton method based on the variational formulation of the problem. To

complement the direct method we proposed, we also performed experiments

using optimization based reconstruction method. The optimization algorithm

is implemented with limited memory BFGS.

In Chapter 3, we studied an inverse coefficient problem to a system

of radiative transport equations with interior data, where we intend to recon-

struct the optical absorption coefficient and quantum efficiency of the medium.

We obtained uniqueness and stability results for reconstructing a single coeffi-

cient. We proposed direct reconstruction method for quantum efficiency. We

also obtained direct reconstruction for optical absorption coefficient in the

linearized setting. We studied the problem of reconstructing simultaneously

the two coefficient in the fully and partially linearized setting and proposed

regularized reconstruction methods. We then derived optimization based re-

construction methods in the nonlinear case. For numerical experiments, we

discretized the radiative transport equation with discrete ordinate method and

finite element method in 2-D. We solved nonlinear optimization problem with

a BFGS type quasi-Newton method. Numerical simulations demonstrate that
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the inverse problem of recovering a single coefficient in nonlinear setting and

two coefficients in linearized setting is stable.

4.2 Perspectives on Future Work

The results we obtained in this dissertation are the first ones on these

hybrid inverse problems. Many results can be improved and many new di-

rections of research should be pursued to further understand these inverse

problems, as well as the physical ability of the corresponding imaging modal-

ities.

On the two-photon PAT inverse problem, it is important to gener-

alize our results on the simultaneous reconstruction of multiple (more than

two) parameters to the fully nonlinear setting. Moreover, one should be able

to generalize the results in [21] on PAT with multispectral data to the two-

photon problem to reconstruct all four coefficients in the model which we have

shown that is impossible to do without multispectral data. For applications

of two-photon PAT in less diffusive media, it is important to see if we can

derive similar uniqueness and stability results for the same problem in the

radiative transport regime. A starting point in this direction would be to con-

struct a nonlinear transport model that is similar to the semilinear diffusion

model (2.1). From the practical point of view, it is of great importance to de-

velop a computational method for image reconstruction in three-dimensional

setting, starting with the measured acoustic data.

On fluorescence PAT, uniquness and stability theory for the simulta-
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neous reconstruction of the pair (η, σa,xf ), when both coefficients are large

enough, in fully nonlinear setting is still missing, in both the diffusive regime

and the transport regime. It is also useful to consider the case where the

Grüneisen coefficient is an unknown to be reconstructed as well. In general,

we would expect that multispectral data are needed in order to have unique-

ness of reconstructions. From the computational point of view, the transport

model we have for fPAT is extremely expensive to solve numerically. Therefore,

image reconstructions based on iterative schemes are very time-consuming. It

would be very important to try to develop fast transport solvers for such

inverse problems, for instance following the line of work in [91]. From the

application point of view, it is of great interest to develop a mathematical

theory for fluorescence PAT with two-photon fluorescence generations. In this

case, a quadratic term of the form ηµ[KI(ux)]
2 will need to be added to the

right of the second equation in the model (3.1). We expect that the results we

developed in the dissertation can be generalized to this problem.
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