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Multiple-input multiple-output (MIMO) communication is expected to play a

central role in future wireless systems through the deployment of a large number of

antennas at the transmitters and receivers. In low-frequency systems, massive MIMO

offers high multiplexing gains that boost system spectral efficiency. In millimeter wave

(mmWave) systems, the deployment of large antenna arrays at both the base station

and mobile users is necessary to guarantee sufficient received signal power. Real-

izing these systems in practice, however, requires addressing several key challenges:

(i) fully-digital solutions are costly and power hungry, (ii) channel training and esti-

mation process has high overhead, and (iii) precoders design optimization problems

are non-trivial. In this dissertation, precoding and channel estimation strategies that

address these challenges are proposed for both mmWave and massive MIMO sys-

tems. The proposed solutions adopt hybrid analog/digital architectures that divide

vi



precoding/combining processing between RF and baseband domains and lead to sav-

ings in cost and power consumption. Further, the developed techniques leverage the

structure and characteristics of mmWave and massive MIMO channels to reduce the

training overhead and precoders design complexity. The main contributions of this

dissertation are (i) developing a channel estimation solution for hybrid architecture

based mmWave systems, exploiting the sparse nature of the mmWave channels, (ii)

designing hybrid precoding algorithm for multi-user mmWave and massive MIMO sys-

tems, (iii) proposing a multi-layer precoding framework for massive MIMO cellular

systems, and (iv) developing hybrid precoding and codebook solutions for frequency

selective mmWave systems. Mathematical analysis as well as numerical simulations

illustrate the promising performance of the proposed solutions, marking them as en-

abling technologies for mmWave and massive MIMO systems.
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Chapter 1

Introduction

MIMO communication with large numbers of antennas is a principal feature

of next-generation wireless systems [1–4]. At low-frequency, base stations equipped

with massive antenna numbers can simultaneously serve large numbers of users [1,

2]. This boosts system sum spectral efficiency thanks to the orders of magnitude

increase in multiplexing gains. Further, massive MIMO focuses the transmission

into small dimensional subspaces, which reduces the required transmit power [1, 5].

Moreover, the asymptotic orthogonality characteristics of massive MIMO systems

allows simplified multi-user processing to achieve near-optimal performance.

Antennas also play a critical but different role at millimeter wave (mmWave)

frequencies. In mmWave systems, deploying large antenna arrays at both the base

station and mobile users is necessary to guarantee sufficient received signal power

[4, 6]. This allows signal transmission with ultra high data rates thanks to large

bandwidths available at the mmWave frequency bands [7–11]. Large-dimensional

arrays also enable mmWave cellular systems to achieve good coverage performance

[7, 9], rendering it as a key candidate for 5G systems.

The efficient realization of mmWave and massive MIMO gains in practice,

however, face several challenges. Next, we discuss three key challenges, namely, the

1



hardware constraints, the channel acquisition overhead, and the precoding design

complexity. Then, we will introduce our contributions for addressing these challenges.

1.1 Massive MIMO Hardware Constraints

Traditional MIMO systems normally perform the required signal processing

for precoding, combining, and channel estimation, entirely at baseband. This im-

plicitly assumes that a complete RF chain is dedicated for each antenna. In large

antenna array systems, however, the high cost and power consumption of mixed

signal components makes fully digital processing difficult to realize in practice [12].

This is particularly critical at mmWave systems. To overcome this challenge, an ini-

tial proposed solution was to move all the required processing to the analog domain,

resulting in analog-only beamforming/combining architectures [13–15]. Analog-only

beamforming is usually implemented using networks of phase shifters [16, 17]. These

analog-only solutions, though, are mainly limited to single-stream transmission. Fur-

ther, the hardware constraints on the RF components, like the difficulty of having

variable gains and the availability of only quantized phase shifters, make it difficult

to perform sophisticated multi-stream or multi-user processing using analog-only ar-

chitectures.

To compromise between system performance and hardware limitations, hybrid

analog/digital architectures were proposed [18–20]. As shown in Fig. 1.1, hybrid ar-

chitectures divide the precoding processing between the analog and digital domains,

which reduces the required number of RF chains. The hardware constraints associated

with the hybrid architectures such as the limitations on the RF components and the

2
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Figure 1.1: Hybrid analog/digital architectures divide the precoding/combining pro-
cessing between analog and digital domains.

coupling between analog and digital precoders, however, impose new constraints on

the precoding and channel estimation design problems. Initial work considered hybrid

precoding design for point-to-point narrow-band MIMO channels. In [18, 19], joint

analog/digital precoder design problem was considered for both spatial diversity and

multiplexing systems. In large-scale mmWave systems, [20] leveraged the sparse struc-

ture of the channels [21], and proposed a low-complexity hybrid precoding/combining

solution on the algorithmic concept of basis pursuit. More work, though, is required

to extend these solutions to multi-user systems and frequency selective channels.

1.2 Massive MIMO Channel Aquisition Overhead

Acquiring channel state information is critical for efficient operation in wireless

communication systems. The overhead associated with obtaining this channel knowl-

edge, though, represents a major challenge. This overhead also scales when more
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users are served or more antennas are deployed at the transmitters and receivers.

The time/frequency resources overhead accompanying channel estimation/feedback

and the possible error in channel estimation define the fundamental limits in mas-

sive MIMO systems. In [22], it was found that performance could be increased by

reducing the number of transmit antennas in FDD massive MIMO systems. In [1],

error due to channel estimation is shown to limit the performance in massive MIMO,

even with very large antenna numbers. At lower frequency, some solutions have been

proposed to overcome the massive MIMO channel acquisition overhead. In [23], large

channel statistics were leveraged to reduce the dimensions of the effective channels

in FDD massive MIMO systems, and hence save some training/feedback overhead.

In [1], channel reciprocity was exploited to relax the training and feedback overhead

in TDD massive MIMO systems.

Channel training and estimation is even more challenging at mmWave systems.

In addition to the large training overhead associated with the large antennas, the SNR

is typically low before beamforming design. Further, the hardware constraints, that

results from RF/hybrid precoding, makes the channels at the baseband seen only

through the RF lens. Initial solutions employed analog-only architectures and at-

tempted to overcome the channel estimation problem by resting to beam training

algorithms. In beam training, the BS and MS iteratively design the analog beam-

forming coefficients without channel knowledge at the transmitter. In [13, 15, 24],

adaptive beamwidth beamforming algorithms and multi-stage codebooks were devel-

oped by which the transmitter and receiver jointly design their beamforming vectors.

In [14], multiple beams with unique signatures were simultaneously used to mini-
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Figure 1.2: Designing precoders to manage different sources of interference in massive
MIMO systems is of high complexity and requires training of large channel matrices.

mize the required beam training time. Despite the reduced complexity of [13–15,24],

they generally share the disadvantage of converging towards only one communication

beam. Hence, these techniques are not capable of achieving multiplexing gains by

sending multiple parallel streams. This motivates devising new channel estimation

solutions for low-frequency and mmWave massive MIMO systems.

1.3 Massive MIMO Precoding Design Complexity

Harvesting the massive MIMO gains requires performing some sort of pre-

coding/combining processing. The general objective of this precoding is to manage

the different sources of interference and maximize the achievable rates of the serving

users, see Fig. 1.2. In fact, this interference in the uplink and downlink transmission

is the main limiting factors for the performance of massive MIMO systems. For ex-

ample, the interference between the same-pilot users in the uplink channel training

cause channel estimation errors, which ultimately limits the performance of TDD mas-

sive MIMO systems [1]. Further, handling the inter-cell interference usually requires

some collaboration between the neighboring base stations. The overhead associated

5



with this collaboration, though, can be a limiting factor for system performance [25].

Moreover, the design of the precoders commonly leads to non-trivial and non-convex

optimization problems [26], where closed-form solutions are difficult to obtain. This

becomes more complex at massive MIMO systems because of the large-dimensional

precoding matrices associated with the large channels. The hardware constraints

resulting from employing practical architectures, such as hybrid analog/digital archi-

tectures, add more constraints and difficulties to the precoding design problems. All

that motivates the need to develop low-complexity precoding solutions for massive

MIMO systems.

1.4 Overview of Contributions

Enabling low-frequency and mmWave massive MIMO systems in practice re-

quires addressing the key challenges discussed in Section 1.1-1.3. With this motiva-

tion, the problems tackled in this dissertation lie on the intersection of these chal-

lenges. We propose low-complexity precoding and channel estimation solutions that

yield efficient performance while respecting the hardware constraints. The primary

contributions of this dissertation can be summarized as follows.

1. We propose efficient channel estimation algorithms for mmWave systems with

hybrid architectures. Leveraging the mmWave channel characteristics, we de-

velop a sparse formulation of the mmWave channel estimation problem. Based

on this formulation, we propose adaptive channel training algorithms that esti-

mate the defining parameters of the multi-path mmWave channels. We also pro-

pose a hierarchical beamforming/combining codebook that constructs training
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beamforming beams with arbitrary beamwidth, employing hybrid analog/digital

architectures [27–29].

2. We propose and analyze a hybrid precoding algorithm for downlink multi-user

massive MIMO systems. The proposed algorithm attempts to construct the

precoding and combining matrices with low-training overhead. This solution

is analytically proved to achieve asymptotically optimal performance compared

to fully-digital precoding techniques. Further, we analyze the proposed hybrid

precoding strategy under limited feedback settings, and draw insights into the

quantization impact of both the analog and digital precoders on the system

performance [30,31].

3. We propose and analyze a general precoding framework, called multi-layer pre-

coding, for full-dimensional and massive MIMO systems. Multi-layer precoding

extends the hybrid precoding ideas to cellular systems, where both the inter-cell

interference and multi-user interference are considered. Leveraging the direc-

tional structure of massive MIMO channels, the proposed solutions manages the

different sources of interference while requiring low training overhead. We ana-

lyze multi-layer precoding and prove that it can achieve an asymptotic optimal

performance for some special yet important channel models [32, 33].

4. We propose hybrid precoding and codebook designs for frequency selective

mmWave MIMO systems. Considering an OFDM-based mmWave system, we

find the optimal hybrid precoders for any given RF codebook. Based on that,

we develop efficient codebooks for the analog and digital precoders and draw
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insights into their performance at limited feedback systems. Further, we devise

a low-complexity greedy solution for constructing near-optimal hybrid analog

and digital precoders for frequency selective mmWave channels [34].

1.5 Notations and Abbreviations

We use the following notation throughout this thesis: A is a matrix, a is

a vector, a is a scalar, and A is a set. |A| is the determinant of A, ‖A‖F is its

Frobenius norm, whereas AT , A∗,Ac, A−1, A† are its transpose, Hermitian (conjugate

transpose), conjugate, inverse, and pseudo-inverse respectively. [A]R,: ([A]:,R) are the

rows (columns) of the matrix A with indices in the set R, and diag(a) is a diagonal

matrix with the entries of a on its diagonal. I is the identity matrix and 1N is the

N -dimensional all-ones vector. A◦B is the Khatri-Rao product of A, and B, A⊗B is

the Kronecker product of A, and B, and A�B denotes the Hadamard product of A,

and B. N(m,R) is a complex Gaussian random vector with mean m and covariance

R. E [·] is used to denote expectation.

The abbreviations used in this dissertation are summarized in Table 1.1

1.6 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we propose

a channel estimation solution for mmWave channels. Then, we consider multi-user

mmWave systems in Chapter 3, and propose a low-complexity hybrid analog/digital

precoding algorithm. This is then extended in Chapter 4 for full-dimensional and
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massive MIMO systems, where out-ot-cell interference is considered. In Chapter 5,

we consider frequency selective massive MIMO systems and develop hybrid precoding

and codebook designs. Concluding remarks and future work are finally presented in

Chapter 6.
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Table 1.1: Summary of Abbreviations

AoA Angle of Arrival
AoD Angle of Departure
BD Block Diagonalization
BS Base Station
CS Compressed Sensing
DFT Discrete Fourier Transform
FDD Frequency Division Duplexing
FD-MIMO Full-Dimensional MIMO
LOS Line of Sight
LTE Long-Term Evolution
MIMO Multiple-Input Multiple-Output
mmWave Millimeter Wave
MS Mobile Station
NLOS Non Line of Sight
OFDM Orthogonal Frequency Division Multiplexing
RVQ Random Vector Quantization
SINR Signal-to-Interference-Plus-Noise Ratio
SNR Signal-to-Noise Ratio
SVD Single Value Decomposition
TDD Time Division Duplexing
ULA Uniform Linear Array
UPA Uniform Planar Array
3GPP The 3rd Generation Partnership Project
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Chapter 2

Channel Estimation for Hybrid Architectures

2.1 Overview

In this chapter1, we develop an adaptive algorithm to estimate the mmWave

channel parameters when the transmitter and receiver employ hybrid analog/digital

architectures. The proposed solution exploits the poor scattering nature of the chan-

nel. To enable the efficient operation of this algorithm, a novel hierarchical multi-

resolution codebook is designed to construct training beamforming vectors with dif-

ferent beamwidths. For single-path channels, an upper bound on the estimation error

probability using the proposed algorithm is derived, and some insights into the effi-

cient allocation of the training power among the adaptive stages of the algorithm are

obtained. The adaptive channel estimation algorithm is then extended to the multi-

path case relying on the sparse nature of the channel. Using the estimated channel,

this chapter proposes a new hybrid analog/digital precoding algorithm that overcomes

the hardware constraints on the analog-only beamforming, and approaches the perfor-

mance of digital solutions. Simulation results show that the proposed low-complexity

1This chapter is based on the work published in the journal paper: A. Alkhateeb, O. ElAyach,
G. Leus, and R. W. Heath Jr, “Channel Estimation and Hybrid Precoding for Millimeter Wave
Cellular Systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 831-846,
Oct. 2014. This work was supervised by Prof. Robert Heath. Prof. Geert Leus and Dr. Omar
ElAyach provided important ideas for the channel estimation and hybrid precoding design that
greatly improved the work.

11



channel estimation algorithm achieves comparable precoding gains compared to ex-

haustive channel training algorithms. The results also illustrate that the proposed

channel estimation and precoding algorithms can approach the coverage probability

achieved by perfect channel knowledge even in the presence of interference.

2.2 Introduction

MmWave communication is a promising technology for future outdoor cellu-

lar systems [6, 21, 35, 36]. Directional precoding with large antenna arrays appears

to be inevitable to support longer outdoor links and to provide sufficient received

signal power. Fortunately, large antenna arrays can be packed into small form fac-

tors at mmWave frequencies [16, 17], making it feasible to realize the large arrays

needed for high precoding gains. The high power consumption of mixed signal com-

ponents, however, makes digital baseband precoding impossible [6]. Moreover, the

design of the precoding matrices is usually based on complete channel state informa-

tion, which is difficult to achieve in mmWave due to the large number of antennas and

the small SNR before beamforming. Because of the additional hardware constraints

when compared with conventional microwave frequency MIMO systems, new channel

estimation and precoding algorithms that are tailored to mmWave cellular systems

must be developed.

To overcome the radio frequency (RF) hardware limitations, analog beam-

forming solutions were proposed in [13–15,24]. The main idea is to control the phase

of the signal transmitted by each antenna via a network of analog phase shifters.

Several solutions, known as beam training algorithms, were proposed to iteratively
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design the analog beamforming coefficients in systems without channel knowledge

at the transmitter. In [13, 15, 24], adaptive beamwidth beamforming algorithms and

multi-stage codebooks were developed by which the transmitter and receiver jointly

design their beamforming vectors. In [14], multiple beams with unique signatures

were simultaneously used to minimize the required beam training time. Despite the

reduced complexity of [13–15, 24], they generally share the disadvantage of converg-

ing towards only one communication beam. Hence, these techniques are not capable

of achieving multiplexing gains by sending multiple parallel streams. Moreover, the

performance of analog strategies such as those in [13–15,24] is sub-optimal compared

with digital precoding solutions due to (i) the constant amplitude constraint on the

analog phase shifters, and (ii) the potentially low-resolution signal phase control.

To achieve larger precoding gains, and to enable precoding multiple data

streams, [18, 19, 37] propose to divide the precoding operations between the ana-

log and digital domains. In [18], the joint analog-digital precoder design problem

was considered for both spatial diversity and multiplexing systems. First, optimal

unconstrained RF pre-processing signal transformations followed by baseband pre-

coding matrices were proposed, and then closed-form sub-optimal approximations

when RF processing is constrained by variable phase-shifters were provided. In [19],

hybrid analog/digital precoding algorithms were developed to minimize the received

signal’s mean-squared error in the presence of interference when phase shifters with

only quantized phases are available. The work in [18, 19], however, was not special-

ized for mmWave systems, and did not account for mmWave channel characteristics.

In [20], the mmWave channel’s sparse multi-path structure [21,38], and the algorith-
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mic concept of basis pursuit, were leveraged in the design of low-complexity hybrid

precoders that attempt to approach capacity assuming perfect channel knowledge is

available to the receiver. In [20,39], the hybrid precoding design problem was consid-

ered in systems where the channel is partially known at the transmitter. While the

developed hybrid precoding algorithms in [18–20,39] overcome the RF hardware limi-

tations and can support the transmission of multiple streams, the realization of these

gains require some knowledge about the channel at the transmitter prior to design-

ing the precoding matrices. This motivates developing multi-path mmWave channel

estimation algorithms, which enable hybrid precoding to approach the performance

of the digital precoding algorithms.

In this chapter, we develop low-complexity channel estimation and precoding

algorithms for a mmWave system with large antenna arrays at both the BS and MS.

These algorithms account for practical assumptions on the mmWave hardware in

which (i) the analog phase shifters have constant modulus and quantized phases, and

(ii) the number of RF chains is limited, i.e., less than the number of antennas. The

main contributions of the work in this chapter can be summarized as follows:

• We propose a new formulation for the mmWave channel estimation problem.

This formulation captures the sparse nature of the channel, and enables lever-

aging tools developed in the adaptive CS field to design efficient estimation

algorithms for mmWave channels.

• We design a novel multi-resolution codebook for the training precoders. The

new codebook relies on joint analog/digital processing to generate beamforming
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vectors with different beamwidths, which is critical for proper operation of the

adaptive channel estimation algorithms presented in the chapter.

• We design an adaptive CS based algorithm that efficiently estimates the pa-

rameters of mmWave channels with a small number of iterations, and with high

success probability. The advantage of the proposed algorithm over prior beam

training work appears in multi-path channels where our algorithm is able to

estimate channel parameters. Hence, it enables multi-stream multiplexing in

mmWave systems, while prior work [13–15, 24] was limited to the single-beam

training and transmission.

• We analyze the performance of the proposed algorithm in single-path chan-

nels. We derive an upper bound on the error probability in estimating channel

parameters, and find sufficient conditions on the total training power and its

allocation over the adaptive stages of the algorithm to estimate the channel

parameters with a certain bound on the maximum error probability.

• We propose a new hybrid analog/digital precoding algorithm for mmWave

channels. In the proposed algorithm, instead of designing the precoding vec-

tors as linear combinations of the steering vectors of the known angles of ar-

rival/departure as assumed in [20], our design depends only on the quantized

beamsteering directions to directly approximate the channel’s dominant singu-

lar vectors. Hence, it implicitly considers the hardware limitations, and more

easily generalizes to arbitrary antenna arrays.
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Figure 2.1: A mmWave cellular system model, in which BSs and MSs communicate
via directive beamforming using large antenna arrays

• We evaluate the performance of the proposed estimation algorithm by simula-

tions in a mmWave cellular system setting, assuming that both the BS and MS

adopt hybrid precoding algorithms.

Simulation results indicate that the precoding gains given by the proposed

channel estimation algorithm are close to that obtained when exhaustive search is

used to design the precoding vectors. Multi-cell simulations show that the spectral

efficiency and coverage probability achieved when hybrid precoding is used in conjunc-

tion with the proposed channel estimation strategy are comparable to that achieved

when perfect channel knowledge and digital unconstrained solutions are assumed.

2.3 System Model

Consider the mmWave cellular system shown in Fig. 2.1. A BS with NBS

antennas and NRF RF chains is assumed to communicate with a single MS with NMS
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antennas and NRF RF chains as shown in Fig. 2.2. The number of RF chains at

the MSs is usually less than that of the BSs in practice, but we do not exploit this

fact in our model. The BS and MS communicate via NS data streams, such that

NS ≤ NRF ≤ NBS and NS ≤ NRF ≤ NMS [20].

In this chapter, we will focus on the downlink transmission. The BS is assumed

to apply an NRF×NS baseband precoder FBB followed by an NBS×NRF RF precoder,

FRF. If FT = FRFFBB is the NBS ×NS combined BS precoding matrix, the discrete-

time transmitted signal is then

x = FTs, (2.1)

where s is the NS × 1 vector of transmitted symbols, such that E [ss∗] = PS

NS
INS

,

and PS is the average total transmit power. Since FRF is implemented using analog

phase shifters, its entries are of constant modulus. We normalize these entries to

satisfy
∣∣∣[FRF]m,n

∣∣∣
2

= N−1
BS , where

∣∣∣[FRF]m,n

∣∣∣ denotes the magnitude of the (m,n)th

element of FRF. The total power constraint is enforced by normalizing FBB such that

‖FRFFBB‖2
F = NS.

We adopt a narrowband block-fading channel model in which an MS observes

the received signal

r = HFTs + n, (2.2)

where H is the NMS×NBS matrix that represents the mmWave channel between the

BS and MS, and n ∼ N(0, σ2) is the Gaussian noise corrupting the received signal.
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Figure 2.2: Block diagram of BS-MS transceiver that uses RF and baseband beam-
formers at both ends.

At the MS, the combiner WT composed of the RF and baseband combiners

WRF and WBB is used to process the received signal r which results in

y = W∗HFs + W∗n. (2.3)

We will explain the proposed algorithms for the downlink model. The same

algorithms, however, can be directly applied to the uplink system whose input-output

relationship is identical to (2.3) with H replaced by the uplink channel, and the roles

of the precoders (FRF, FBB) and combiners (WRF, WBB) switched.

While the mmWave channel estimation and precoding algorithms developed

in the following sections consider only a BS-MS link with no interfering BSs, these

algorithms will also be numerically evaluated by simulations in the case of mmWave

cellular systems where out-of-cell interference exists in Section 2.8.2.

Since mmWave channels are expected to have limited scattering [21, 40], we
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adopt a geometric channel model with L scatterers. Each scatterer is further assumed

to contribute a single propagation path between the BS and MS [20]. Under this

model, the channel H can be expressed as

H =

√
NBSNMS

ρ

L∑

`=1

α`aMS (θ`) a∗BS (φ`) , (2.4)

where ρ denotes the average path-loss between the BS and MS, and α` is the complex

gain of the `th path. The path amplitudes are assumed to be Rayleigh distributed,

i.e., α` ∼ N
(
0, P̄R

)
, ` = 1, 2, ..., L with P̄R the average power gain. The variables

φ` ∈ [0, 2π] and θ` ∈ [0, 2π] are the `th path’s azimuth AoDs/AoAs of the BS and MS,

respectively. Considering only the azimuth, and neglecting elevation, implies that all

scattering happens in azimuth and that the BS and MS implement horizontal (2-D)

beamforming only. Extensions to 3-D beamforming are possible [20]. Finally, aBS (φ`)

and aMS (θ`) are the antenna array response vectors at the BS and MS, respectively.

While the algorithms and results developed in this work can be applied to arbitrary

antenna arrays, we use ULAs, in the simulations of Section 2.8. If a ULA is assumed,

aBS (φ`) can be written as

aBS (φ`) =
1√
NBS

[
1, ej

2π
λ
d sin(φ`), . . . , ej(NBS−1) 2π

λ
d sin(φ`)

]T
, (2.5)

where λ is the signal wavelength, and d is the distance between antenna elements.

The array response vectors at the MS, aMS (θ`), can be written in a similar fashion.

The channel in (2.4) is written in a more compact form as

H = AMSdiag (α) A∗BS, (2.6)
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where α =
√

NBSNMS

ρ
[α1, α2, ..., αL]T . The matrices

ABS = [aBS (φ1) , aBS (φ2) , ..., aBS (φL)] , (2.7)

and

AMS = [aMS (θ1) , aMS (θ2) , ..., aMS (θL)] , (2.8)

contain the BS and MS array response vectors.

In this work, we assume that both the BS and MS have no a priori knowledge

of the channel. Hence, in the first part of the chapter, namely, Section 2.4-Section 2.6,

the mmWave channel estimation problem is formulated, and an adaptive CS based

algorithm is developed and employed at the BS and MS to solve it. In the second

part, i.e., Section 2.7, the estimated channel is used to construct the hybrid precoding

and decoding matrices.

2.4 Formulation of the MmWave Channel Estimation Prob-
lem

Given the geometric mmWave channel model in (2.4), estimating the mmWave

channel is equivalent to estimating the different parameters of the L channel paths;

namely the AoA, the AoD, and the gain of each path. To do that accurately and

with low training overhead, the BS and MS need to carefully design their training

precoders and combiners. In this section, we exploit the poor scattering nature of the

mmWave channel, and formulate the mmWave channel estimation problem as a sparse

problem. We will also briefly show how adaptive CS work invokes some ideas for the
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design of the training precoders and combiners. Inspired by these ideas, and using

the hybrid analog/digital system architecture, we will develop a novel hierarchical

multi-resolution codebook for the training beamforming vectors in Section 2.5. We

will then propose algorithms that adaptively use the developed codebook to estimate

the mmWave channel along with evaluating their performance in Section 2.6.

2.4.1 mmWave Channel Estimation: A Sparse Formulation

Consider the system and mmWave channel models described in Section 2.3. If

the BS uses a beamforming vector fp, and the MS employs a measurement vector wq

to combine the received signal, the resulting signal can be written as

yq,p = w∗qHfpsp + w∗qnq,p, (2.9)

where sp is the transmitted symbol on the beamforming vector fp, such that E
[
sps
∗
p

]
=

P , with P the average power used per transmission in the training phase. In Sec-

tion 2.5, we will develop a hybrid analog/digital design for the beamforming/ mea-

surement vectors, fp and wq. If MMS such measurements are performed by the MS

vectors wq, q = 1, 2, ...,MMS at MMS successive instants to detect the signal transmit-

ted over the beamforming vector fp, the resulting vector will be

yp = W∗Hfpsp + diag(W∗ [n1,p, ...,nMMS,p]), (2.10)

where W = [w1,w2, ...,wMMS
] is the NMS ×MMS measurement matrix. If the BS

employs MBS such beamforming vectors fp, p = 1, ...,MBS, at MBS successive time

slots, and the MS uses the same measurement matrix W to combine the received
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signal, the resultant matrix can then be written by concatenating the MBS processed

vectors yp, p = 1, 2, ...,MBS

Y = W∗HFS + Q, (2.11)

where F = [f1, f2, ..., fMBS
] is the NBS×MBS beamforming matrix used by the BS, and

Q is an MMS×MBS noise matrix given by concatenating the MBS noise vectors. The

matrix S is a diagonal matrix carrying the MBS transmitted symbols sp, p = 1, ...,MBS

on its diagonal. For the training phase, we assume that all transmitted symbols are

equal, namely, S =
√
P IMBS

and therefore

Y =
√
PW∗HF + Q. (2.12)

To exploit the sparse nature of the channel, we first vectorize the resultant

matrix Y

yv =
√
Pvec (W∗HF) + vec (Q) (2.13)

(a)
=
√
P
(
FT ⊗W∗) vec (H) + nQ (2.14)

(b)
=
√
P
(
FT ⊗W∗) (Ac

BS ◦AMS)α+ nQ, (2.15)

where (a) follows from [41, Theorem 13.26], (b) follows from the channel model in

(2.6), and the properties of the Khatri-Rao product, [42]. The matrix (Ac
BS ◦AMS) is

an NBSNMS×L matrix in which each column has the form (acBS (φ`)⊗ aMS (θ`)) , ` =

1, 2, ..., L, i.e., each column ` represents the Kronecker product of the BS and MS

array response vectors associated with the AoA/AoD of the `th path of the channel.

To complete the problem formulation, we assume that the AoAs, and AoDs

are taken from a uniform grid of N points, with N � L, i.e., we assume that
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φ`, θ` ∈
{

0, 2π
N
, ..., 2π(N−1)

N

}
, ` = 1, 2, ..., L. As the values of the AoAs/AoDs are

actually continuous, other off-grid based algorithms like sparse regularized total least

squared [43], continuous basis pursuit [44], or Newton refinement ideas [45] can be

incorporated to reduce the quantization error. In this work, we consider only the

case of quantized AoAs/AoDs, leaving possible improvements for future work. We

evaluate the impact of this quantization error on the performance of the proposed

algorithms in this work by numerical simulations in Section 2.8.

By neglecting the grid quantization error, we can approximate yv in (2.15) as

yv =
√
P
(
FT ⊗W∗)ADz + nQ, (2.16)

where AD is an NBSNMS × N2 dictionary matrix that consists of the N2 column

vectors of the form
(
acBS

(
φ̄u
)
⊗ aMS

(
θ̄v
))

, with φ̄u, and θ̄v the uth, and vth points,

respectively, of the angles uniform grid, i.e, φ̄u = 2πu
N
, u = 0, 2, ..., N − 1, and θ̄v =

2πv
N
, v = 0, 2, ..., N − 1. z is an N2 × 1 vector which carries the path gains of the

corresponding quantized directions. Note that detecting the columns of AD that

correspond to non-zero elements of z, directly implies the detection of the AoAs and

AoDs of the dominant paths of the channel. The path gains can be also determined

by calculating the values of the corresponding elements in z.

The formulation of the vectorized received signal yv in (2.16) represents a

sparse formulation of the channel estimation problem as z has only L non-zero el-

ements and L � N2. This implies that the number of required measurements,

MBSMMS, to detect the non-zero elements of z is much less than N2. In other

words, this means that the BS does not need to transmit along each vector defined
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in the dictionary, nor does the MS need to observe signals using its entire codebook.

Given this formulation in (2.16), CS tools can be leveraged to design estimation algo-

rithms to determine the quantized AoAs/AoDs. If we define the sensing matrix Ψ as

Ψ =
(
FT ⊗W∗)AD, the objective of the CS algorithms will be to efficiently design

this sensing matrix to guarantee the recovery of the non-zero elements of the vector

z with high probability, and with a small number of measurements. One common

criterion for that is the restricted isometry property (RIP), which requires the matrix

Ψ∗Ψ to be close to diagonal on average [46].

To simplify the explanation of the BS-MS beamforming vectors’ design prob-

lem in the later chapters, we prefer to use the Kronecker product properties and write

(2.16) as [42]

yv =
√
P
(
FTAc

BS,D ⊗W∗AMS,D

)
z + nQ (2.17)

=
√
PFTAc

BS,DzBS ⊗W∗AMS,DzMS + nQ, (2.18)

where zBS, and zMS are two N × 1 sparse vectors that have non-zero elements in the

locations that correspond to the AoDs, and AoAs, respectively. ABS,D, and AMS,D

are NBS×N , and NMS×N dictionary matrices that consist of column vectors of the

forms aBS

(
φ̄u
)
, and aMS

(
θ̄u
)
, respectively.

In the standard CS theory, the number of measurement vectors required to

guarantee the recovery of the L-sparse vector z with high probability is of order

O(L log(N/L)) [47]. While these results are theoretically proved, their implemen-

tations to specific applications and the development of efficient algorithms require

further work. We therefore resort to adaptive CS tools which invoke some ideas for
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the design of the training beamforming vectors.

2.4.2 Adaptive Compressed Sensing Solution

In adaptive CS [48,49], the training process is divided into a number of stages.

The training precoding, and measurement matrices used at each stage are not deter-

mined a priori, but rather depend on the output of the earlier stages. More specifically,

if the training process is divided into S stages, then the vectorized received signals of

these stages are

y(1) =
√
P(1)

(
FT

(1)A
∗
BS,D ⊗W∗

(1)AMS,D

)
z + n1

y(2) =
√
P(2)

(
FT

(2)A
∗
BS,D ⊗W∗

(2)AMS,D

)
z + n2

...

y(S) =
√
P(S)

(
FT

(S)A
∗
BS,D ⊗W∗

(S)AMS,D

)
z + nS

(2.19)

The design of the sth stage training precoders and combiners, F(s),W(s), de-

pends on y(1),y(2), ..., y(s−1). Recent research in [48, 49] shows that adaptive CS

algorithms yield better performance than standard CS tools at low SNR, which is the

typical case at mmWave systems before beamforming. Moreover, these adaptive CS

ideas that rely on successive bisections provide important insights that can be used

in the design of the training beamforming vectors.

In our proposed channel estimation algorithm described in Section 2.6, the

training beamforming vectors are adaptively designed based on the bisection concept.

In particular, the algorithm starts initially by dividing the vector z in (2.19) into a

number of partitions, which equivalently divides the AoAs/AoDs range into a number

of intervals, and design the training precoding and combining matrices of the first
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stage, F(1),W(1), to sense those partitions. The received signal y(1) is then used to

determine the partition(s) that are highly likely to have non-zero element(s) which

are further divided into smaller partitions in the later stages until detecting the non-

zero elements, the AoAs/AoDs, with the required resolution. If the number of BS

precoding vectors used in each stage of the adaptive algorithm equals K, where K

is a design parameter, then the number of adaptive stages needed to detect the

AoAs/AoDs with a resolution 2π
N

is S = logK N , which we assume to be integer for

ease of exposition. Before delving into the details of the algorithm, we will focus in

the following section on the design of a multi-resolution beamforming codebook which

is essential for the proper operation of the adaptive channel estimation algorithm.

2.5 Hybrid Precoding Based Multi-Resolution Hierarchical
Codebook

In this section, we present a novel hybrid analog/digital based approach for

the design of a multi-resolution beamforming codebook. Besides considering the RF

limitations, namely, the constant amplitude phase shifters with quantized phases, the

proposed approach for constructing the beamforming vectors is general for ULAs/non-

ULAs, has a very-low complexity, and outperforms the analog-only beamforming

codebooks thanks to its additional digital processing layer.

The design of a multi-resolution or variant beamwidth beamforming vector

codebook has been studied before in [13–15, 24]. This prior work focused on analog-

only beamforming vectors, and on the physical design of the beam patterns. Un-

fortunately, the design of analog-only multi-resolution codebooks is subject to prac-
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tical limitations in mmWave. (1) The existence of quantized phase shifters makes

the design of non-overlapping beam patterns difficult, and may require an exhaus-

tive search over a large space given the large number of antennas. (2) The design

of analog-only beamforming vectors with certain beamwidths relies mostly on the

beamsteering beam patterns of ULAs, and is hard to apply for non-ULAs due to the

lack of intuition about their beam patterns.

To simplify explaining the codebook structure and design, we focus on the

design of the BS training precoding codebook F; a similar approach can be followed

to construct the MS training codebook W.

2.5.1 Codebook Structure

The proposed hierarchical codebook consists of S levels, Fs, s = 1, 2, ..., S.

Each level contains beamforming vectors with a certain beamwidth to be used in the

corresponding training stage of the adaptive mmWave channel estimation algorithm.

Fig. 2.3 shows the first three levels of an example codebook with N = 256, and

K = 2, and Fig. 2.4 illustrates the beam patterns of the beamforming vectors of each

codebook level.

In each codebook level s, the beamforming vectors are divided into Ks−1 sub-

sets, with K beamforming vectors in each of them. Each subset k, of the codebook

level s is associated with a unique range of the AoDs equal to {2πu
N
}u∈I(s,k) , where

I(s,k) =
{

(k−1)N
Ks−1 , ...,

kN
Ks−1

}
. This AoD range is further divided into K sub-ranges,

and each of the K beamforming vectors in this subset is designed so as to have an

almost equal projection on the vectors aBS

(
φ̄u
)
, with u in this sub-range, and zero
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Figure 2.3: An example of the structure of a multi-resolution codebook with a reso-
lution parameter N = 8, and with K = 2 beamforming vectors in each subset.

projection on the other vectors. Physically, this implies the implementation of a

beamforming vector with a certain beamwidth determined by these sub-ranges, and

steered in pre-defined directions.

While the proposed codebook structure is similar to the codebooks in [13,

24], which also have multiple levels, each with beamforming vectors with a certain

beamwidth, we adopt a different way for defining each beamforming vector in terms

of the set of quantized angles that it covers. This is different from the previous

work in [13,24] which defined each vector by the central beamforming angle and the

beamwidth. This difference leads to a novel formulation of the arbitrary beamwidth

beamforming design problem in addition to a completely new way for realizing these

vectors using analog/digital architecture as will be explained shortly. To the best

of our knowledge, this is the first work that considers implementing beamforming

vectors of different beamwidth using joint analog/digital processing; as the previous

work relied on analog-only designs. This additional digital processing layer adds

more degrees of freedom to the beamforming design problem which can be leveraged
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Figure 2.4: The resulting beam patterns of the beamforming vectors in the first three
codebook levels of an example hierarchical codebook.

to obtain better characteristics in the beamforming patterns.

2.5.2 Design of the Codebook Beamforming Vectors

In each codebook level s, and subset k, the beamforming vectors
[
F(s,k)

]
:,m
,m =

1, 2, ..., K are designed such that

[
F(s,k)

]∗
:,m

aBS

(
φ̄u
)

=

{
Cs if u ∈ I(s,k,m)

0 if u 6∈ I(s,k,m)
, (2.20)

where I(k,s,m) =
{
N
Ks (K(k − 1) +m− 1) + 1, ..., N

Ks (K(k − 1) +m)
}

defines the sub-

range of AoDs associated with the beamforming vector
[
F(s,k)

]
:,m

, and Cs is a normal-

ization constant that satisfies ‖F(s,k)‖F = K. For example, the beamforming vector
[
F(2,1)

]
:,1

in Fig. 2.3 is designed such that it has a constant projection on the array

response vectors aBS

(
φ̄u
)
, u is in {0, 1, ..., 63}, i.e., φ̄u is in

{
0, ..., 2π 63

256

}
, and zero

projection on the other directions.

In a more compact form, we can write the design objective of the beamforming
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vectors F(s,k) in (2.20) as the solution of

A∗BS,DF(s,k) = CsG(s,k), (2.21)

where G(s,k) is an N × K matrix where each column m containing 1′s in the loca-

tions u, u ∈ I(s,k,m), and zeros in the locations u, u 6∈ I(s,k,m). Now, we note that the

BS AoDs matrix ABS,D is an over-complete dictionary with N ≥ NBS, i.e., (2.21)

represents an inconsistent system of which the approximate solution is given by

F(s,k) = Cs(ABS,DA∗BS,D)−1ABS,DG(s,k). Further, given the available system model

in Section 2.3, the precoding matrix F(s,k) is defined as F(s,k) = FRF,(s,k)FBS,(s,k). As

each beamforming vector will be individually used in a certain time instant, we will

design each of them independently in terms of the hybrid analog/digitl precoders.

Consequently, the design of the hybrid analog and digital training precoding matrices

is accomplished by solving

{
F?

RF,(s,k),
[
F?

BB,(s,k)

]
:,m

}
=

arg min ‖
[
F(s,k)

]
:,m
− FRF,(s,k)

[
FBB,(s,k)

]
:,m
‖F ,

s.t.
[
FRF,(s,k)

]
:,i
∈
{

[Acan]:,` | 1 ≤ ` ≤ Ncan

}
, i = 1, 2, ..., NRF

‖FRF,(s,k)

[
FBB,(s,k)

]
:,m
‖2
F = 1,

(2.22)

where
[
F(s,k)

]
:,m

= Cs(ABS,DA∗BS,D)−1ABS,D

[
G(s,k)

]
:,m

, and Acan is an NBS × Ncan

matrix which carries the finite set of possible analog beamforming vectors. Note that

the choice of the Frobenious norm in the objective function of (2.22) is based on the

point that the unconstrained vectors have semi-unitary structure and they, therefore,
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Figure 2.5: Beam patterns approximation of one of the beamforming vectors in the
second codebook level with different numbers of RF chains.

represent points on the Grassman manifold. Hence, and due to the manifold’s locally

Euclidean property, minimizing the Euclidean distance ( with the Frobenious norm)

becomes a good approximation of minimizing the chordal distance between the un-

constrained and hybrid precoders points on the Grassmann manifold. The columns of

the candidate matrix Acan can be chosen to satisfy arbitrary analog beamforming con-

straints. Two example candidate beamformer designs we consider in the simulations

of Section 2.8 are summarized as follows.

1. Equally spaced ULA beam steering vectors [20], i.e., a set of Ncan vectors of the

form aBS( tcanπ
N

) for tcan = 0, 1, 2, . . . , Ncan − 1.

2. Beamforming vectors whose elements can be represented as quantized phase

shifts. In the case of quantized phase shifts, if each phase shifter is controlled

by an NQ-bit input, the entries of the candidate precoding matrix Acan can all

be written as e
j
kQ2π

2
NQ for some kQ = 0, 1, 2, . . . , 2NQ − 1.

Now, given the matrix of possible analog beamforming vectors Acan, the op-
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timization problem in (2.22) can be reformulated as a sparse approximation problem

similar to the optimization problem in [20, equation(17)], with the matrices F̃opt
BB,

Fopt, FBB and At in [20, equation(17)] taking the values
[
F?

BB,(s,k)

]
:,m

,
[
F(s,k)

]
:,m

,
[
FBB,(s,k)

]
:,m

, and Acan, respectively, and with setting Ns = 1. This sparse problem

can be then solved using Algorithm 1 in [20] which is a variant of orthogonal matching

pursuit algorithms.

An example of the beam patterns resulting from applying the proposed algo-

rithm is shown in Fig. 2.5. These patterns are generated by a BS has 32 antennas,

and a number of RF chains NRF = 5, 10, 15 to approximate one of the unconstrained

beamforming vectors in the second codebook level shown in Fig. 2.4.

After the design of the BS training beamforming vectors for the kth subset of

the sth codebook, the following quantities are calculated, as they will be used after

that in the channel estimation algorithm in Section 2.6:

• Beamforming Gain: Given the channel model in (2.4), and the codebook

beamforming design criteria in (2.20), we define the beamforming gain of the

BS training vectors at the sth stage as GBS
(s) = NBSC

2
s . A similar definition can

be used for the MS beamforming vectors, yielding a total training beamforming

gain at the sth stage equal to G(s) = GBS
(s)G

MS
(s) .

• Error Matrix: As the system in (2.21) is inconsistent, the solution given by

the pseudo-inverse means that A∗BS,DF(s,k) may not be exactly equal to CsG(s,k).

Moreover, the limitations of the RF beamforming vectors and the approximate

solution of the optimization problem in (2.22) result in an additional error
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in satisfying (2.21). This error physically means (i) the existence of a spectral

leakage of the beamforming vectors outside their supposed AoD sub-ranges, and

(ii) the beamforming gain is not exactly uniform over the desired AoD ranges.

To take the effect of this error into the performance analysis of the proposed

channel estimation algorithm in Section 2.6, we define the error matrix of each

subset k of the sth BS beamforming codebook level as

EBS
(s,k) = A∗BS,DF(s,k) − CsG(s,k). (2.23)

As a similar error exists in the MS combining codebook, we can define the overall

beamforming error matrix experienced by the received vector ys in (2.18) after

applying the Kronecker product as

E
(s)
kBS,kMS

= EBS
(s,kBS)

T⊗EMS
(s,kMS)

T
+EBS

(s,kBS)

T⊗CMS
s GT

(s,kMS)+C
BS
s GT

(s,kBS)⊗EMS
(s,kMS)

T
.

(2.24)

Now, if we also define the overall gain matrix as G
(s)
kBS,kMS

= G(s,kBS) ⊗G(s,kMS),

then we can rewrite ys in (2.19) as follows assuming the subsets kBS of Fs, and

kMS of Ws are used at the BS and MS

y(s) =
√
P(s)

(
FT

(s,kBS) ⊗W∗
(s,kMS)

)
ADz + nQ (2.25)

=
√
P(s)

(
FT

(s,kBS)ABS,D ⊗W∗
(s,kMS)AMS,D

)
z + nQ (2.26)

=
√
P(s)



√

G(s)

NBSNMS

G
(s)
kBS,kMS

+ E
(s)
kBS,kMS


 z + nQ. (2.27)
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• Actual Beamforming Gain: To include the effect of the previously de-

fined error matrix on the beamforming gain, we will define the actual forward

and backward gains of the designed beamforming vectors. First, note that
(
G

(s)
kBS,kMS

+ E
(s)
kBS,kMS

)
is a K2 × N2 matrix in which each row corresponds to

a certain pair of the precoding/measurement vectors, and each column corre-

sponds to a certain quantized AoA/AoD pair. We denote each AoA/AoD pair

as a direction d, d = 1, 2, ..., N2, and the set of directions covered by each

pair m of the precoder/measurement vectors as D (m) ,m = 1, 2, ..., K2. Now,

if d is one of the directions covered by the joint beamforming vector m, i.e.,

d ∈ D(m), then the actual beamforming gain of the vector m in the direction d

can be defined as

Ĝ
(s)
d = NBSNMS

∣∣∣∣∣∣



√

G(s)

NBSNMS

G
(s)
kBS,kMS

+ E
(s)
kBS,kMS



m,d

∣∣∣∣∣∣

2

, (2.28)

(a)
=

∣∣∣∣
√
G(s) +

√
NBSNMS

[
E

(s)
kBS,kMS

]
m(d),d

∣∣∣∣
2

, (2.29)

where (a) is by noting that
[
G

(s)
kBS,kMS

]
m,d

= 1 if d ∈ D(m). We can also define

the side lobe gain introduced by each one of the other precoding/measurement

vectors, m̄, in the direction d as ∆
(s)
m̄,d = NBSNMS

∣∣∣∣
[
E

(s)
kBS,kMS

]
m̄,d

∣∣∣∣
2

, m̄ = 1, 2, ...,

K2, m̄ 6= m. To simplify the notation, we omitted the beamforming subset

symbols kBS, kMS from the previous definition; as each direction d is covered by

only one beamforming/combining vector on each codebook level.

In the analysis of the proposed channel estimation algorithm in Section 2.6, we

will be interested in the ratio between the previously defined gains. Hence, we
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define the ratio between the actual forward gain in a certain direction d and the

side lobe gain, in the same direction, induced by beamforming vector m̄ as

β
(s)
d,m̄ =

Ĝ
(s)
d

∆
(s)
d,m̄

. (2.30)

Note that one disadvantage of the proposed approach for constructing the

beamforming vectors is the shown ripples in the main lobes in Fig. 2.4. This comes

from the approximate solution of the inconsistent system in (2.21), and from the fact

that we design over a finite set of directions in ABS,D. These patterns, however, are

acceptable for the sparse channel estimation problem that we consider. The main

reason is that this ripple is in the main lobe, while the side lobes of these patterns

are very small except for the end-fire points, i.e., the patterns containing the 0 and

180 angles for the half-wavelength ULA adopted in Fig. 2.4. If the channel has

only one path in a certain direction d, then it will be affected by only one sample

of this main lobe, which is in the direction d. Hence, this ripple in the main lobe

just affects the forward beamforming gain. As we will show in the analysis of the

proposed adaptive channel estimation algorithm in Section 2.6, the performance of

the proposed algorithm depends mainly on the ratio of the backward to forward gain

which is very small in the designed patterns except for small set of directions around

the end-fire angles. Further, these patterns have very small overlapping which also

decreases the probability of error in estimating the right AoA/AoD range as will be

shown in Section 2.6.
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2.6 Adaptive Estimation Algorithms for MmWave Channels

In this section, we consider the sparse channel estimation problem formulated

in (2.19) of Section 2.4, and propose algorithms that adaptively use the hierarchical

codebook developed in Section 2.5 to estimate the mmWave channel. We firstly

address this problem for the rank-one channel model, i.e., when the channel has only

one-path, in Section 2.6.1. We then extend the proposed algorithm for the multi-path

case in Section 2.6.2.

2.6.1 Adaptive Channel Estimation Algorithm for Single-Path Channels

Given the problem formulation in (2.19), the single-path channel implies that

the vector z has only one non-zero element. Hence, estimating the single-path channel

is accomplished by determining the location of this non-zero element, which in turn

defines the AoA/AoD, and the value of this element, which decides the channel path

gain. To efficiently do that with low training overhead, we propose Algorithm 1

which adaptively searches for the non-zero element of z by using the multi-resolution

beamforming vectors designed in Section 2.5.

Algorithm 1 operates as follows. In the initial stage, the BS uses the K training

precoding vectors of the first level of the codebook F in Section 2.5. For each of those

vectors, the MS uses the K measurement vectors of the first level of W to combine the

received signal. Note that the first level of the hierarchical codebook in Section 2.5 has

only one subset of beamforming vectors. After the K2 precoding-measurement steps

of this stage, the MS compares the power of the K2 received signals to determine the

one with the maximum received power. As each one of the precoding/measurement
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Algorithm 1 Adaptive Estimation Algorithm for Single-Path MmWave Channels

Input: BS and MS know N,K, and have F,W.
Initialization: kBS

1 = 1, kMS
1 = 1 // Initialize the subsets to be used of codebooks

F,W
S = logK N // The number of adaptive stages
for s ≤ S do

for mBS ≤ K do
BS transmits a training symbol using

[
F(s,kBS

s )

]
:,mBS

for mMS ≤ K do
MS makes a measurement using

[
W(s,kMS

s )

]
:,mMS

After MS measurements: ymBS
=
√
Ps
[
W(s,kMS

s )

]
H
[
F(s,kBS

s )

]
:,mBS

+ nmBS

Y(s) = [y1,y2, ...,yK ]

(m?
BS,m

?
MS) = arg max∀mBS,mMS=1,2,...,K

[
Y(s) �Y∗(s)

]
mMS,mBS

kBS
s+1 = K(m?

BS − 1) + 1, kMS
s+1 = K(m?

MS − 1) + 1

φ̂ = φ̄kBS
S+1
, θ̂ = θ̄kMS

S+1

α̂ =
√

ρ
P(S)G(S)

[
Y(S)

]
m?MS,m

?
BS

vectors is associated with a certain range of the quantized AoA/AoD, the operation of

the first stage divides the vector z in (2.19) into K2 partitions, and compares between

the power of the sum of each of them. Hence, the selection of the maximum power

received signal implies the selection of the partition of z, and consequently the range

of the quantized AoA/AoD, that is highly likely to contain the single path of the

channel. The output of the maximum power problem is then used to determine the

subsets of the beamforming vectors of level s+ 1 of F, and W to be used in the next

stage. The MS then feeds back the selected subset of the BS precoders to the BS to

use it in the next stage, which needs only log2K bits. As the beamforming vectors of

the next levels have higher and higher resolution, the AoA/AoD ranges are further

refined adaptively as we proceed in the algorithm stages until the desired resolution,
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2π
N

, is achieved. Note that the training powers in the S stages are generally different

as will be discussed shortly.

Based on the proposed algorithm, the total number of stages required to es-

timate the AoA/AoD with a resolution 2π
N

is logK N . Also, since we need K beam-

forming vectors, and K measurement vectors for each beamforming vector in each

stage, the total number of steps needed to estimate the mmWave channel using the

proposed algorithm becomes K2 logK N steps. Moreover, since NRF RF chains can be

simultaneously used at the MS to combine the measurements, the required number

of steps can be further reduced to be Kd K
NRF
e logK N .

In the following theorem, we characterize the performance of the proposed

algorithm for the case of single dominant path channels, i.e., assuming that the chan-

nel model in (2.4) has L = 1. We find an upper bound of the probability of error

in estimating the AoA/AoD with a certain resolution using Algorithm 1. We will

then use Theorem 1 to derive sufficient conditions on the total training power and

its distribution over the adaptive stages of Algorithm 1 to guarantee estimating the

AoA/AoD of the mmWave channel with a desired resolution, and a certain bound on

the maximum error probability.

Theorem 1 Algorithm 1 succeeds in estimating the correct AoA and AoD of the

single-path channel model in (2.4), for a desired resolution 2π
N

, with an average prob-
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ability of error p̄ which is upper bounded by

p̄ ≤ K2 − 1

2N2

S∑

s=1

N2∑

d=1




1−

(
1− 1

β
(s)
d

)
P(s)Ĝ

(s)
d γ̄

4

√
1 + 1

2

(
1 + 1

β
(s)
d

)
P(s)Ĝ

(s)
d γ̄ + 1

16
P 2

(s)Ĝ
(s)2

d γ̄2

(
1− 1

β
(s)
d

)2




(2.31)

where β
(s)

d = min
∀m̄=1,2,...,K2,

d6∈D(m̄)

β
(s)
d,m̄ is the minimum forward to backward ratio in the direc-

tion d, Ĝ
(s)
d is the actual beamforming gain in this direction, and γ̄ is the average

channel SNR defined as γ̄ = P̄R
ρσ2 .

Proof: See [27]. 2

While the central idea of the proof of Theorem 1 is similar to the beam mis-

alignment analysis in [24], this theorem has a number of important contributions over

the prior work. One key difference is that Theorem 1 considers the case when the

channel path gains are taken from a fading distribution; the analysis in [24] assumes

constant LOS channels. Both the LOS and NLOS cases are important for mmWave

systems, and using blockage models, e.g., the model in [50], we can combine the proba-

bility of estimation error in the two cases to get more accurate performance evaluation

in mmWave systems. Theorem 1 also characterizes the AoA/AoD estimation error as

a function of the different parameters of the designed hierarchical codebook in Sec-

tion 2.5: the forward to backward gain ratios and the actual beamforming gains with

imperfect realization errors. Hence, it provides a realistic evaluation of the proposed

adaptive channel estimation algorithm with more practical beamforming patterns.

Further, while the beam alignment analysis in [24] focused on the exhaustive search
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case, i.e., when only the highest resolution beams are used, Theorem 1 considers the

case when the AoAs/AoDs are estimated using adaptive algorithms. This is of par-

ticular interest in this channel estimation work, as the bound in Theorem 1 hints

that the training power can be distributed among the different adaptive stages to

reduce the probability of estimation error. These insights into the power allocation

are explained in the remainder of this section.

Now, for the case when β
(s)
d → ∞, i.e., when the backward gain in negligible

and E
(s)
kBS,kMS

→ 0, we can proceed further, and obtain a sufficient condition on the

training power distribution to guarantee estimating the AoA/AoD of the channel with

a certain bound on the maximum probability of error.

Corollary 2 Consider using Algorithm 1 to estimate the AoA and AoD of the single-

path mmWave channel of model (2.4), with a resolution 2π
N

, with K precoding and

measurement vectors of F,W used at each stage, and with β
(s)
d →∞, and E

(s)
kBS,MS →

0. If the power at each stage P(s), s = 1, 2, ..., S satisfies:

P(s) ≥
Γ

G(s)

(2.32)

with

Γ =
2

γ̄

(
(K2 − 1)S

δ
− 2

)
, (2.33)

then, the AoA and AoD are guaranteed to be estimated with an average probability of

error p̄ ≤ δ.

To prove Corollary 2, it is sufficient to substitute with the given P(s), and Γ in (2.31)

to get p̄ ≤ δ.
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We can also note that the power allocation strategy described in Corollary 2

makes the probability of AoA/AoD estimation error equal for the different stages.

The intuition behind this result is that the stages with narrower, i.e., higher res-

olution, beamforming vectors have higher beamforming gains, and hence need less

training power to achieve the same estimation success probability compared with the

staged with wider beamforming vectors. Another advantage of Corollary 2 is that

it characterizes an upper bound on the required training power to achieve a certain

success probability. From Corollary 2, it is easy to show that a total training power

PT, with PT ≥ K2Γ
∑S

s=1
1

G(s)
is sufficient to estimate the AoA/AoD of the single-

path mmWave channel with p̄ ≤ δ if it is distributed according to the way described

in Corollary 2.

Finally, if we have a bound on the total training power, we can use Theorem

1 to get an upper bound on the error probability.

Corollary 3 Consider using Algorithm 1 to estimate the AoA and AoD of the single-

path mmWave channel of model (2.4), with a resolution 2π
N

, with K precoding and

measurement vectors of F,W used at each stage, and with β
(s)
d →∞, and E

(s)
kBS,MS →

0. If the total training power is PT, and if this power is distributed over the adaptive

stages of Algorithm 1 such that:

P(s) =
PT

K2
∑S

n=1

G(s)

G(n)

, s = 1, 2, ..., S (2.34)

Then, the AoA and AoD are guaranteed to be estimated with an average prob-

41



−5 0 5 10
10

−3

10
−2

10
−1

10
0

SNR (dB)

A
ve

ra
ge

 P
ro

ba
bi

lit
y 

of
 E

st
im

at
io

n 
E

rr
or

 

 

Derived upper bound in Theorem 1 − Equal power allocation
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Figure 2.6: Average probability of error in estimating the AoA/AoD of single-path
channels using Algorithm 1.

ability of error p̄ where

p̄ ≤ (K2 − 1)S
PTγ̄

2K2
∑S
s=1

1
G(s)

+ 2
. (2.35)

To prove Corollary 3, it is sufficient to substitute with the given P(s) in (2.31) to get

the bound on p̄. Corollary 3 is important as it gives an indication of the reliability of

the AoA/AoD estimation when a certain training power is used.

To study the accurateness of the derived bound in Theorem 1 and the power

allocation strategy in Corollary 3, Fig. 2.6 compares the average probability of the

AoA/AoD estimation error when Algorithm 1 is used with the bound in Theorem 1.

In this figure, we assume a BS with 64 antennas and 10 RF chains is communicating
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with a MS that has 32 antennas and 6 RF chains. The actual average estimation error

and the bound in Theorem 1 are plotted for the case when an equal power allocation

over the adaptive stages is used and when the power allocation strategy in Corollary

3 is adopted. The results in Fig. 2.6 indicate that although the derived bound is not

very tight, it gives very useful insights on how the training power can be distributed

among the adaptive stages of the proposed channel estimation algorithm to reduce

the average probability of estimation error.

In this section, the main idea of the proposed adaptive mmWave channel

estimation algorithm was explained and analyzed for the single-path channels. Now,

we extend this algorithm to the general case of multi-path mmWave channels.

2.6.2 Adaptive Channel Estimation Algorithm for Multi-Path Channels

Consider the case when multiple paths exist between the BS and MS. Thanks

to the poor scattering nature of the mmWave channels, the channel estimation prob-

lem can be formulated as a sparse compressed sensing problem as discussed in Sec-

tion 2.4. Consequently, a modified matching pursuit algorithm can be used to esti-

mate the AoAs and AoDs along with the corresponding path gains of Ld paths of

the channel, where Ld is the number of dominant paths need to be resolved. Given

the problem formulation in (2.19), the objective now is to determine the Ld non-zero

elements of z with the maximum power. Based on the single-path case, we propose

Algorithm 2 to adaptively estimate the different channel parameters.

Modified Hierarchical Codebook: For the multi-path case, we need to

make a small modification to the structure of the hierarchical codebook described
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Algorithm 2 Adaptive Estimation Algorithm for Multi-Path MmWave Channels

Input: BS and MS know N,K,Ld, and have F,W
Initialization: TBS

(1,1) = {1, ..., 1},TMS
(1,1) = {1, ..., 1}, S = logK (N/Ld)

for ` ≤ Ld do
for s ≤ S do

for mBS ≤ KLd do

BS transmits a training symbol using
[
F(s,TBS

(`,s)
)

]
:,mBS

for mMS ≤ KLd do

MS makes a measurement using
[
W(s,TBS

(`,s)
)

]
:,mMS

After MS measurements: ymBS
=
√
Ps

[
W(s,TMS

(`,s)
)

]
H
[
F(s,TBS

(`,s)
)

]
:,mBS

+

nmBS

y(s) = [yT1 ,y
T
2 , ...,y

T
K ]T

for p = 1 ≤ ` − 1 do Project out the contributions of the previously esti-
mated paths

g = FT
(s,TBS

(p,s)
)
[ABS,D]∗:,TBS

(p,s)
(1) ⊗W∗

(s,TMS
(p,s)

)
[AMS,D]:,TMS

(p,s)
(1)

y(s) = y(s) − y∗(s)g (g∗g) g

Y = matix(y(s)) Return y(s) to the matrix form
(m?

BS,m
?
MS) = arg max∀mBS,mMS=1,2,...,K [Y �Y∗]mMS,mBS

TBS
(`,s+1)(1) = K(m?

BS − 1) + 1,TMS
(`,s+1)(1) = K(m?

MS − 1) + 1
for p = 1 ≤ `− 1 do

TBS
(`,s+1)(p) = TBS

(p,s+1)(1),TMS
(`,s+1)(p) = TMS

(p,s+1)(1)

φ̂` = φ̄TBS
(`,S+1)

(1), θ̂` = θ̄TMS
(`,S+1)

(1)

g = FT
(S,TBS

(`,S)
)

[
A∗BS,D

]
:,TBS

(`,S+1)
(1)
⊗W∗

(S,TMS
(`,S)

)
[AMS,D]:,TMS

(`,S+1)
(1)

α̂` =
√

ρ
P(S)G(S)

y∗
(S)

g

g∗g

in Section 2.5. As will be explained shortly, the adaptive algorithm in the multi-

path case starts by using KLd precoding and measurement vectors at the BS and

MS instead of K. In each stage, Ld of those KLd partitions are selected for further

refinement by dividing each one into K smaller partitions in the next stage. Hence,

to take this into account, the first level of the codebook F in Section 2.5 consists
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of one subset with KLd beamforming vectors that divide the initial AoD range into

KLd ranges. Similarly, in each level s, s > 1, the codebook Fs has Ks−1Ld levels, and

the ranges I(s,k), and I(s,k,m) are consequently defined as I(s,k) =
{

(k−1)N
LdKs−1 , ...,

kN
LdKs−1

}
,

and I(k,s,m) =
{

N
LdKs (K(k − 1) +m− 1) + 1, ..., N

LdKs (K(k − 1) +m)
}

. Given these

definitions of the quantized AoD ranges associated with each beamforming vector m,

of the subset k, of level s, the design of the beamforming vectors proceeds identical

to that described in Section 2.5.2.

To estimate the Ld dominant paths of the mmWave channel, Algorithm 2

makes Ld outer iterations. In each one, an algorithm similar to Algorithm 1 is exe-

cuted to detect one more path after subtracting the contributions of the previously

estimated paths. More specifically, Algorithm 2 operates as follows: In the initial

stage, both the BS and MS use KLd beamforming vectors defined by the codebooks

in Section 2.5 to divide the AoA, and AoD range into KLd sub-ranges each. Similar to

the single-path case, the algorithm proceeds by selecting the maximum received signal

power to determine the Ld most promising sections to carry the dominant paths of

the channel. This process is repeated until we reach the required AoD resolution, and

only one path is estimated at this iteration. The trajectories used by the BS to detect

the first path is stored in the matrix TBS to be used in the later iterations. In the

next iteration, a similar BS-MS precoding/measurement step is repeated. However,

at each stage s, the contribution of the first path that has been already estimated

in the previous iteration, which is stored in TBS, is projected out before determining

the new promising AoD ranges. In the next stage s+ 1, two AoD ranges are selected

for further refinement, namely, the one selected at stage s of this iteration, and the
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one selected by the first path at stage s + 1 of the first iteration which is stored in

TBS. The selection of those two AoD ranges enables the algorithm to detect different

path with AoDs separated by a resolution up to 2π
N

. The algorithm proceeds in the

same way until the Ld paths are solved. After estimating the AoAs/AoDs with the

desired resolution, the algorithm finally calculates the estimated path gains using a

linear least squares estimator (LLSE).

Note that one disadvantage of the adaptive beamwidth algorithm in the multi-

path case is the possible destructive interference between the path gains when they are

summed up in the earlier stages of the algorithm. This disadvantage does not appear

in the exhaustive search training algorithms; as only high resolution beams are used

in estimating the dominant paths of the channel. The impact of this advantage on

the operation of the proposed algorithm, however, is smaller in the case of mmWave

channels thanks to the sparse nature of the channel.

The total number of adaptive stages required by Algorithm 2 to estimate the

AoAs/AoDs of the Ld paths of the channel with a resolution 2π
N

is logK

(
N
Ld

)
. Since

we need KLd precoding vectors, and KLd measurement vectors for each precoding

direction in each stage, and since these adaptive stages are repeated for each path, the

total number of steps required to estimate Ld paths of the mmWave channel using

the proposed algorithm is K2L3
d logK

(
N
Ld

)
. If multiple RF chains are used in the

MS to combine the measurements, the required number of training time slots is then

reduced to be KL2
ddKLdNRF

e logK

(
N
Ld

)
.
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2.7 Hybrid Precoding Design

We seek now to design the hybrid precoders/combiners, (FRF, FBB, WRF,

WBB), at both the BS and MS to maximize the mutual information achieved with

Gaussian signaling over the mmWave link in (2.3) [51] while taking the different RF

precoding constraints into consideration. Regardless of whether uplink or downlink

transmission is considered, the hybrid precoding problem can be summarized as di-

rectly maximizing the rate expression

R = log2

∣∣∣∣INS
+

P

NS

R−1
n WBB

∗WRF
∗HFRFFBBFBB

∗FRF
∗H∗WRFWBB

∣∣∣∣ , (2.36)

over the choice of feasible analog and digital processing matrices (FRF, FBB, WRF,

WBB). Note that in (2.36), Rn is the post-processing noise covariance matrix, i.e.,

Rn = WBB
∗WRF

∗WRFWBB in the downlink, and Rn = FBB
∗FRF

∗FRFFBB in the

uplink.

For simplicity of exposition, we summarize the process with which the BS

calculates the hybrid precoding matrices, (FRF, FBB), to be used on the downlink.

Calculation of the uplink precoders used by the MS follows in an identical manner.

We propose to split the precoding problem into two phases. In the first phase,

the BS and MS apply the adaptive channel estimation algorithm of Section 2.4 to esti-

mate the mmWave channel parameters. At the end of the channel training/estimation

phase, the BS constructs the downlink channel’s matrix leveraging the geometric

structure of the channel. If the channel is not reciprocal, the estimation algorithm of

Section 2.6 can be used to construct the uplink channel matrix at the MS.
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As a result of the downlink channel training/estimation phase in Section 2.6,

the BS now has estimated knowledge of its own steering matrix ÂBS, the MS steering

matrix ÂMS, and the estimated path gain vector α̂. Thus, the BS may construct the

estimated downlink channel matrix as

Ĥ = ÂMSdiag (α̂) Â∗BS. (2.37)

The BS can now build its hybrid data precoders FRF and FBB to approxi-

mate the dominant singular vectors of the channel, Ĥ, denoted by the unconstrained

precoder Fopt using a similar procedure to equation (16)-(18) of [20] and using the

matching pursuit based algorithm presented in Algorithm 1 in [20].

2.8 Simulation Results

In this section, we present numerical results to evaluate the performance of

the proposed training codebook, adaptive channel estimation algorithm, and hybrid

precoding algorithm. We firstly consider a single BS-MS link, and then show some

results for the mmWave cellular channel model.

2.8.1 Performance Evaluation with Point-to-Point Channels

In these simulations, we consider the case when there is only one BS and one

MS, i.e., without any interference. The system model and the simulation scenario are

as follows:

System Model We adopt the hybrid analog/digital system architecture pre-

sented in Fig. 2.2. The BS has NBS = 64 antennas, and 10 RF chains, the MS has
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NMS = 32 antennas and 6 RF chains. The antenna arrays are ULAs, with spac-

ing between antennas equal to λ/2, and the RF phase shifters are assumed to have

only quantized phases. Hence, only a finite set of the RF beamforming vectors is

allowed, and assumed to be beamsteering vectors, as discussed in Section 2.5.2, with

7 quantization bits.

Channel Model We consider the channel model described in (2.4), with

P̄R = 1, and a number of paths L = 3. The AoAs/AoDs are assumed to take

continuous values, i.e., not quantized, and are uniformly distributed in the range

[0, 2π]. The system is assumed to operate at 28GHz carrier frequency, has a bandwidth

of 100MHz, and the path-loss exponent equals npl = 3.

Simulation Scenario All the simulations in this section will present spectral

efficiency results with different system, and algorithms parameters. To generate these

results, the channel parameters are estimated using the algorithms presented in Sec-

tion 2.6, which in turn use the hierarchical training codebooks designed in Section 2.5.

After estimating its parameters, the geometrical channel is reconstructed according

to (2.37), and is used in the design of the hybrid precoders and decoders according

to Section 2.7. Unless otherwise mentioned, these are the parameters used for both

of the two steps:

1. Channel estimation parameters: For the single-path channels, Algorithm 1 is

used to estimate the channel parameters with AoA/AoD resolution parameter

N = 64, and with K = 2 beamforming vectors at each stage. For the multi-

path case, the parameters N,K,Ld will be defined with each simulation. The
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Figure 2.7: Spectral efficiency achieved when the precoding matrices are built using
the mmWave channel estimated by the proposed algorithms in a channel with L =
3, and Ld = 1, 2, 3. The figure compares the performance of the algorithm when
different values of the parameter K are chosen. The results indicate that a very close
performance to the exhaustive search case can be achieved with K << N , which
maps to much smaller numbers of iterations.

training power are determined according to Corollary 2, with a desired maxi-

mum probability of error δ = 0.05. Hence, the training power changes based on

the parameter K, and N . Also, the total training power is distributed over the

adaptive estimation stages according to Corollary 2.

2. Hybrid precoding parameters: The hybrid precoding matrices are constructed

with the same available system architecture described above, and assuming a

number of multiplexed streams NS = Ld.

In Fig. 2.7, the precoding gains given by the proposed mmWave channel esti-

mation algorithms are simulated for the cases when the desired number of estimated
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Figure 2.8: The improvement of the spectral efficiency with the development of the
adaptive channel estimation algorithm is shown and compared with the exhaustive
search and perfect channel knowledge cases. While the exhaustive search in this
case needs a large number of iterations, a much smaller number of iterations may be
sufficient to approximate its performance using the proposed adaptive algorithms.

paths Ld equals 1, 2, and 3. Algorithm 1, and Algorithm 2 are simulated for different

values of K, and compared with the precoding gain of the exhaustive search solution.

The results indicate that comparable gains can be achieved using the proposed algo-

rithms despite their low-complexity, and the requirement of a much smaller number of

iterations. For example, for Ld = 3, and K = 2, although only 96� NBSNMS = 2048

training steps are required, the spectral efficiency performance degradation is less

than 1 bps/Hz compared with the exhaustive search solution that requires much

more iterations.

In Fig. 2.8, the improvement of the precoding gains achieved by the proposed

algorithm for Ld = 3 with the training iterations is simulated. The results show that
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Figure 2.9: The performance error due to the AoAs/AoDs quantization assumption
in (2.16) is evaluated. The performance error is the difference between the curve with
continuous angles, and the one with quantization, as this continuity of angles’ values
is not taken into consideration while designing the algorithm.

more than 90% of the exhaustive search gain can be achieved with only 70 iterations

with K = 2. These results also indicate that a wise choice of the desired resolution

parameter N is needed in order to have a good compromise between performance

and training overhead. For example, the figure shows that doubling the number of

training steps, i.e., from 70 to 140, achieves an improvement of only 1 bps/Hz in the

spectral efficiency.

In Fig. 2.9, we evaluate the error in the performance of the proposed chan-

nel estimation algorithm caused by the AoAs/AoDs quantization assumption made

in (2.16), the proposed algorithms are simulated for the cases when the channel

AoAs/AoDs are quantized, i.e., when the used quantization assumption is exact, and
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Figure 2.10: Spectral efficiency as a function of phase quantization bits in a hybrid
system with only quantized analog phase control. Results compare the performance
of the hybrid analog digital channel estimation and precoding algorithms with the
unconstrained digital system with perfect channel knowledge at an SNR of 0dB.

when the AoAs/AoDs are continuous, i.e, with quantization error induced in our for-

mulation. The figure plots the performance of the proposed algorithms for the cases

Ld = 1, K = 2, N = 81,Ld = 2, K = 2, N = 128, and Ld = 3, K = 3, N = 96, and

show that the performance loss in our algorithms due to the quantization assumption

is very small for large enough resolution parameters N .

In Fig. 2.10, the impact of the RF system limitations on the performance of

the proposed channel estimation, and precoding algorithms, is evaluated, and com-

pared with the case of constraints-free system. Two system models are considered in

Fig. 2.10, one with 10 RF chains at the BS, 6 RF chains at the MS, and the other

with 5 RF chains at the BS, and 3 RF chains at the MS. The other parameters are
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the same as the previous simulations with Ld = 3. The performance achieved by

those two systems is further simulated with different number of quantization bits of

the phase shifters. Simulation results show that the proposed hybrid analog-digital

precoding algorithm can achieve near-optimal data-rates compared with the uncon-

strained solutions if a sufficient number of RF chains, and quantization bits exist.

Also, the results show that 5 quantization bits may be sufficient to accomplish more

that 90% of the maximum gain.

2.8.2 Performance Evaluation with MmWave Cellular System Setup

Now, we consider evaluating the proposed algorithm in a mmWave cellular

system setting with out-of-cell interference. To provide a practical evaluation, we

adopt the following stochastic geometry model.

Network and System Models The desired BS, in a cell of radius Rc =

100m, is assumed to communicate with a MS using the channel estimation, and hybrid

precoding algorithms derived. Each MS is assumed to receive its desired signal sd in

addition to cellular interference. The interfering BSs follow a Poisson point process

(PPP) Φ(λ) with λ = 1
πR2

c
to model the downlink out-of-cell interference [52–54].

To simulate a cellular setting, the nearest BS to the MS is always considered as the

desired BS. The received signal at the MS can be then written as

y = W∗HdFdsd +
∑

ri∈Φ(λ)
ri≥rd

W∗HiFisi + n (2.38)

where rd, ri are the distances from the MS to the desired and the ith interfering BSs,

respectively. Each interfering BS is assumed to have the same number of ULA anten-
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nas NBS = 64, and to have the same horizontal orientation of the antenna arrays, i.e.,

all the beamforming is in the azimuth domain. Further, each BS generates a beam-

steering beamforming vectors that steers its signal in a uniform random direction,

i.e., Fi = aBS (φi), φi is uniformly chosen in [0, 2π]. Hi has the same definition in

(2.4) with the path loss calculated for each BS based on its distance ri. For fairness,

all BSs are assumed to transmit with the same average power P . All the other system

parameters are similar to the previous section.

In each stage s of the estimation phase, the received signal at the MS is given

by (2.38) with W and F equal to the BS and MS training precoders and combiners

descried in Section 2.6. Hence, the cellular interference affects the maximum power

detection problem at every stage of the channel estimation algorithm. After the

channel is estimated, the precoders W and F are designed as shown in Section 2.7.

To evaluate the performance of the proposed hybrid precoding algorithm, we

adopt the coverage probability as a performance metric. As we are interested in

multiplexing many streams per user, we define the coverage probability relative to

the rate instead of the signal to interference and noise ratio (SINR). Consequently,

we use the following definition of the coverage probability

P(c) (η) = P(R ≥ η). (2.39)

An outage happens if the user’s rate falls below a certain threshold η.

Scenario and Results In Fig. 2.11, the coverage probability is evaluated
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Figure 2.11: Coverage probabilities of the proposed channel estimation and precoding
algorithms in a mmWave cellular system setting with PPP interference. The figure
compares the different cases when the estimation and/or interference error exist to
evaluate the effect of each of them on the proposed algorithms.

as described before. The curves with ’Estimated Channel’ label represents the case

when Algorithm (3) is used to estimate the channel parameters in the presence of

interference. After estimating the channel, this interference is taken into consideration

again in calculating the coverage probability in the curve labeled ’With Interference’,

and omitted for the curve with the label ’No Interference’. Hence, those two curves

represent the cases when cellular interference affects both the channel estimation and

data transmission phases, or the channel estimation phase only. The presented results

compare the performance of the mentioned scenario using the proposed algorithms,

with the case when the hybrid precoding algorithm in Section 2.7 is designed based

on perfect channel state information (CSI). They are also compared with the case

56



when only analog beamforming is used to steer the signal towards the dominant

channel paths. The results show that a reasonable gain can be achieved with the

proposed hybrid precoding algorithm due to its higher capability of managing the

inter-stream interference, in addition to overcoming the RF hardware constraints. The

simulations also indicate that the effect of the cellular interference of the performance

of the channel estimation and precoding algorithms is not critical despite of the low-

complexity of the proposed algorithms.

2.9 Comments and Discussion

In this chapter, we clarify important comments on the proposed channel esti-

mation algorithm and discuss its relation to standard compressed sensing framework.

2.9.1 Establishing RIP conditions:

For the adaptive channel estimation measurement matrix, we did not prove

that it satisfies RIP conditions because (i) we are not solving the sparse channel

estimation problem using a standard (non-adaptive) compressed sensing tools which

require these conditions to guarantee support recovery, and (ii) for the adaptive struc-

ture of the measurement matrix that we have, we can not prove any RIP conditions

as these conditions are by definition contradicting adaptive structures of the mea-

surement matrices. Hereafter, we explain these points in more detail. For sparse

reconstruction problems, we can identify two main research directions to solve them

(i) standard (non-adaptive) compressed sensing [47, 55, 56], and (ii) adaptive com-

pressive sensing [48,49,57,58].
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• In the standard compressed sensing, the measurement matrix is constructed

one time a priori of the sensing. To guarantee the recovery of the sparse vector

support with high success probability, conditions on the measurement matrix

such as RIP and maximum coherence are useful to establish these guarantees.

One important point is that these conditions on the sensing matrix should

guarantee the recovery of any s-sparse vector as the measurement matrices are

designed one time.

• Adaptive compressed sensing that is proposed more recently is based on the

point that if the rows of the measurement matrix are designed more smartly in

a recursive way given the result of the previous sensing, then we can intuitively

get better recovery results with the same number of measurements. As this

recursive measurement matrix structure is adaptively designed depending on the

sparse vector under sensing, though, the definitions of the recovery conditions

(like RIP), that should guarantee recovery of any sparse vector, do not hold.

In fact, establishing theoretical support recovery guarantees for the adaptive

measurement matrices is more complex than that in the standard way. Instead

of the RIP and coherence conditions, adaptive CS solutions usually attempt to

derive bounds on the probability of error in recovering the support. In the recent

work [48], bounds on the probability of support recover error were derived for a

bisection sensing algorithm for the cases when the non-zero elements are real,

and was shown to have SNR gain over standard compresses sensing tools.

With this motivation of the work in [48], we designed our hybrid precoders/

combiners to work as a bisection sensing of the sparse vector z in (2.16). As the
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Figure 2.12: Probability of error in estimating the sparse vector support (angles of
arrival and departure) with a channel that has 3 paths, and with a desired resolution
2π
N

for N = 48.

non-zero elements of z are complex, though, deriving bounds on the probability of

error is non-trivial in general. So, we derived a bound on the error probability for

the single-path case, and relied on numerical simulations for evaluating the general

performance of the algorithm.

2.9.2 Recovering the support with some error:

In the proposed channel estimation algorithm, we can recover the support but

with some probability of error that depends on the SNR, the hardware constraints of

the hybrid architecture, and the different algorithm parameters such as the number

of measurements per adaptive step k, and the desired resolution N . In Fig. 2.12

and Fig. 2.13, we plot the probability of error in support error, and the normalized
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Figure 2.13: Normalized MSE of the estimated channel matrix, defined as NMSE=

E
[
‖H=Ĥ‖2F
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]
, with H and Ĥ the original and estimated channel matrices, respectively.

The channel is assumed to have 3 paths, and the desired resolution is 2π
N

for N = 48.

mean-squared error of the estimated channel matrix, respectively, for different SNR

values. The SNR is defined as SNR = P
σ2 , where P is the average training power. The

results in Fig. 2.12-Fig. 2.13 assume a system that employ 64 antennas, 16 RF chains

at the transmitter, and 32 antennas with 8 RF chains at the receiver. The channel is

assumed to have L = 3 paths, and the desired estimate resolution is N = 48.

2.9.3 The sparsity level in the proposed sparse formulation of the mmWave
channel estimation problem

In our algorithm, we assume exact sparse vectors, i.e., number of zeros equals

the number of paths L, which is much less than the size N2 of the sparse vector z

in (2.16). In the simulation results, we do not neglect the impacts of the grid error
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and sidelobe error, and hence we do not have exact sparse vectors. The exact sparse

assumption becomes more suitable when the number of antennas and grid size grow

large [59], which is usually the case in mmWave massive MIMO systems.

2.10 Conclusions

In this chapter, we considered a single-user mmWave system setting, and inves-

tigated the design of suitable mmWave channel estimation and precoding algorithms.

First, we formulated, and developed a hierarchical multi-resolution codebook based on

hybrid analog/digital precoding. We then proposed mmWave channel estimation al-

gorithms that efficiently detect the different parameters of the mmWave channel with

a low training overhead. The proposed algorithms depend on the developed sparse

formulation of the poor scattering mmWave channel, and on the designed hierar-

chical codebooks to adaptively estimate the channel parameters. The performance

of the proposed algorithm is analytically evaluated for the single-path channel case,

and some insights into efficient training power distributions are obtained. Despite

the low-complexity, simulation results showed that the proposed channel estimation

algorithm realizes spectral efficiency and precoding gain that are comparable to that

obtained by exhaustive search. The mmWave hybrid precoding algorithms are also

proved to achieve a near-optimal performance relative to the unconstrained digital

solutions, and attain reasonable gains compared with analog-only beamforming.
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Chapter 3

Multi-User Hybrid Precoding

3.1 Overview

In this chapter1, we develop a low-complexity hybrid analog/digital precoding

algorithm for downlink multiuser mmWave systems. The proposed algorithm config-

ures hybrid precoders at the transmitter and analog combiners at multiple receivers

with a small training and feedback overhead. The performance of the proposed algo-

rithm is analyzed in the large dimensional regime and in single path channels. When

the analog and digital precoding vectors are selected from quantized codebooks, the

rate loss due to the joint quantization is characterized and insights are given into the

performance of hybrid precoding compared with analog-only beamforming solutions.

Analytical and simulation results show that the proposed techniques offer higher sum

rates compared with analog-only beamforming solutions, and approach the perfor-

mance of the unconstrained digital beamforming with relatively small codebooks.

1This chapter is based on the work published in the journal paper: A. Alkhateeb, G. Leus,
and R. Heath, “Limited feedback hybrid precoding for multi-user millimeter wave systems,” IEEE
Transactions on Wireless Communications, vol. 14, no. 11, pp. 6481-6494, Nov. 2015. This work
was supervised by Prof. Robert Heath. Prof. Geert Leus provided important ideas for the multi-user
hybrid precoding design that greatly improved the work.

62



3.2 Introduction

The large bandwidths in the mmWave spectrum make mmWave communica-

tion desirable for wireless local area networking and also a promising candidate for

future cellular systems [6,7,20,21,27]. Achieving high quality communication links in

mmWave systems requires employing large antenna arrays at both the access point

or BS and the MSs [17, 20, 60]. For efficient system performance, each BS needs to

simultaneously serve a number of MS’s. Multiplexing different data streams to dif-

ferent users requires some form of precoding be applied to generate the transmitted

signal at the BS. In conventional lower frequency systems, this precoding was com-

monly done in the baseband to have a better control over the entries of the precoding

matrix. Unfortunately, the high cost and power consumption of mixed signal com-

ponents make fully digital baseband precoding unlikely with current semiconductor

technologies [12,20]. Further, the design of the precoding matrices is usually based on

complete channel state information, which is difficult to achieve in mmWave systems

due to (i) the large number of antennas which would require a huge training overhead

and (ii) the small SNR before beamforming. Therefore, new multi-user precoding

algorithms that (i) respect the mmWave hardware constraints and (ii) require much

less complexity need to be developed for mmWave systems.

In single-user mmWave systems, analog beamforming, which controls the phase

of the signal transmitted at each antenna via a network of analog phase shifters and is

implemented in the radio frequency (RF) domain, was proposed instead of the base-

band solutions [13, 14, 24, 61]. This was also adopted in commercial indoor mmWave

communication standards like IEEE 802.11ad [36] and IEEE 802.15.3c [35]. In [13,24],
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adaptive beamforming algorithms and multi-resolution codebooks were developed by

which the transmitter and receiver jointly design their analog beamforming vectors.

In [14], unique signatures are assigned to the different training beamforming vectors

and used to minimize the training overhead. In [61], beamspace MIMO was intro-

duced in which DFT beamforming vectors are used to direct the transmitted signals

towards the subspaces that asymptotically maximize the received signal power with

large numbers of antennas. Analog beamformers as in [13, 14, 24, 61] are subject to

additional constraints, for example, the phase shifters might be digitally controlled

and have only quantized phase values and adaptive gain control might not be imple-

mented. These constraints limit the potential of analog-only beamforming solutions

relative to baseband precoding, as they limit the ability to make sophisticated pro-

cessing, for example to manage interference between users.

To multiplex several data streams and perform more accurate beamforming,

hybrid precoding was proposed [20,27,62], where the processing is divided between the

analog and digital domains. In [20], the sparse nature of the mmWave channels was

exploited to develop low-complexity hybrid precoding algorithms using the algorith-

mic concept of basis pursuit assuming the availability of channel knowledge. In [62],

low-complexity hybrid beamforming algorithms were proposed for single-user single-

stream MIMO-OFDM systems with the objective of maximizing either the received

signal strength or the sum-rate over different sub-carriers. In [27], a hybrid precod-

ing algorithm that requires only partial knowledge about the mmWave channels was

devised. The hybrid precoding algorithms in [20,27,62], though, were designed to ob-

tain either diversity or spatial multiplexing gain from single-user channels, which can
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support a limited number of streams [21]. In multi-user systems, the digital precoding

layer of hybrid precoding gives more freedom in designing the precoders, compared

with analog-only solutions, which can be exploited to reduce the interference between

users. Hence, developing low-complexity hybrid precoding algorithms for multi-user

mmWave systems is of special interest.

Pre-precoding processing has been investigated for other systems [18, 19, 23].

In [18], the joint analog-digital precoder design problem was studied for both diversity

and spatial multiplexing systems. In [19], hybrid analog/digital precoding algorithms

were developed to minimize the received signal’s mean-squared error in the presence

of interference when phase shifters with only quantized phases are available. In [23],

two-layer beamforming algorithms were proposed to group the users and reduce the

channel feedback overhead in massive MIMO systems. The approaches in [18,19,23],

however, were not designed specifically for mmWave systems as they did not consider

the mmWave-related hardware constraints, and did not leverage mmWave channel

characteristics to realize low-complexity solutions.

In this work, we develop a low-complexity yet efficient hybrid analog/digital

precoding algorithm for downlink multi-user mmWave systems. The proposed algo-

rithm is general for arbitrary known array geometries, and assumes the availability of

only a limited feedback channel between the BS and MS’s. The main contributions

of the work on this chapter can be summarized as follows:

• Developing a hybrid precoding/combining algorithm for multi-user mmWave

systems. Our model assumes that the MS’s employ analog-only combining while
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the BS performs hybrid analog/digital precoding where the number of RF chains

is at least as large as the number of MS’s. The proposed algorithm is designed

to reduce the training and feedback overhead while achieving performance close

to that of unconstrained solutions.

• Analyzing the performance of the proposed algorithm in special cases: (i) when

the channels are single-path, and (ii) when the number of transmit and receive

antennas are very large, which are relevant for mmWave systems.

• Characterizing the average rate loss due to joint analog and digital codebook

quantization, and identifying the cases at which large hybrid precoding gains

exist compared with analog-only beamforming solutions.

The proposed algorithm and performance bounds are evaluated by simulations and

compared with both analog-only beamforming solutions and digital unconstrained

precoding schemes. The results indicate that with a relatively small feedback and

training overhead, the proposed hybrid precoding algorithm achieves good perfor-

mance thanks to the sparse nature of the channel and the large number of antennas

used by the BS and MS’s.

3.3 System Model

Consider the multi-user mmWave system shown in Fig. 3.1. A base station

with NBS antennas and NRF RF chains is assumed to communicate with U mobile

stations. Each MS is equipped with NMS antennas as depicted in Fig. 3.2. We focus

on the multi-user beamforming case in which the BS communicates with every MS
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Figure 3.1: A multi-user mmWave downlink system model, in which a BS uses hybrid
analog/digital precoding and a large antenna array to serve U MSs. Each MS employs
analog-only combining and has a limited feedback channel to the BS.

via only one stream. Therefore, the total number of streams NS = U . Further, we

assume that the maximum number of users that can be simultaneously served by the

BS equals the number of BS RF chains, i.e., U ≤ NRF. This is motivated by the

spatial multiplexing gain of the described multi-user hybrid precoding system, which

is limited by min (NRF, U) for NBS > NRF. For simplicity, we will also assume that

the BS will use U out of the NRF available RF chains to serve the U users.

On the downlink, the BS applies a U×U baseband precoder FBB =
[
fBB
1 , fBB

2 ,

..., fBB
U

]
followed by an NBS×U RF precoder, FRF =

[
fRF
1 , fRF

2 , ..., fRF
U

]
. The sampled

transmitted signal is therefore

x = FRFFBBs, (3.1)

where s = [s1, s2, ..., sU ]T is the U × 1 vector of transmitted symbols, such that

E [ss∗] = P
U

IU , and P is the average total transmitted power. We assume equal power

allocation among different users’ streams. Since FRF is implemented using analog

phase shifters, its entries are of constant modulus. We normalize these entries to
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Figure 3.2: A BS with hybrid analog/digital architecture communicating with the
uth MS that employs analog-only combining.

satisfy
∣∣∣[FRF]m,n

∣∣∣
2

= N−1
BS . Further, we assume that the angles of the analog phase

shifters are quantized and have a finite set of possible values. With these assumptions,

[FRF]m,n = 1√
NBS

ejφm,n , where φm.n is a quantized angle. The angle quantization

assumption is discussed in more detail in Section 3.4. The total power constraint is

enforced by normalizing FBB such that ‖FRFFBB‖2
F = U .

For simplicity, we adopt a narrowband block-fading channel model as in [20,

27,63] in which the uth MS observes the received signal as

ru = Hu

U∑

n=1

FRFfBB
n sn + nu, (3.2)

where Hu is the NMS×NBS matrix that represents the mmWave channel between the

BS and the uth MS, and nu ∼ N(0, σ2I) is the Gaussian noise corrupting the received

signal.
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At the uth MS, the RF combiner wu is used to process the received signal ru:

yu = w∗uHu

U∑

n=1

FRFfBB
n sn + w∗unu, (3.3)

where wu has similar constraints as the RF precoders, i.e., the constant modulus

and quantized angles constraints. In this work, we assume that only analog (RF)

beamforming is used at the MS’s as they will likely need cheaper hardware with

lower power consumption.

MmWave channels are expected to have limited scattering [38, 40]. To incor-

porate this effect, we adopt a geometric channel model with Lu scatterers for the

channel of user u. Each scatterer is assumed to contribute a single propagation path

between the BS and MS [20]. The adopted geometrical channel model can also be

transformed into the virtual channel model [64]. The virtual channel model simplifies

the generalization for larger angle spreads by incorporating spatial spreading func-

tions as will be briefly discussed in Section 3.6.2. Under this model, the channel Hu

can be expressed as

Hu =

√
NBSNMS

Lu

Lu∑

`=1

αu,`aMS (θu,`) a∗BS (φu,`) , (3.4)

where αu,` is the complex gain of the `th path, including the path-loss, with E [|αu,`|2] =

ᾱ. The variables θu,`, and φu,` ∈ [0, 2π] are the `th path’s AoAs/AoDs respectively.

Finally, aBS (φu,`) and aMS (θu,`) are the antenna array response vectors of the BS and

uth MS respectively. The BS and each MS are assumed to know the geometry of

their antenna arrays. While the algorithms and results developed in the chapter can

be applied to arbitrary antenna arrays, we use ULAs and UPAs in the simulations of
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Section 3.8. If a ULA is assumed, aBS (φu,`) can be defined as

aBS (φu,`) =
1√
NBS

[
1, ej 2π

λ
d sin (φu,`), ..., ej(NBS−1) 2π

λ
d sin(φu,`)

]T

, (3.5)

where λ is the signal wavelength, and d is the distance between antenna elements.

The array response vectors at the MS, aMS (θu,`), can be written in a similar fashion.

3.4 Problem Formulation

Our main objective is to efficiently design the analog (RF) and digital (base-

band) precoders at the BS and the analog combiners at the MS’s to maximize the

sum-rate of the system.

Given the received signal at the uth MS in (3.2) which is then processed using

the RF combiner wu, the achievable rate of user u is

Ru = log2

(
1 +

P
U

∣∣w∗uHuFRFfBB
u

∣∣2
P
U

∑
n6=u |w∗uHuFRFfBB

n |2 + σ2

)
. (3.6)

The sum-rate of the system is then Rsum =
∑U

u=1Ru.

Due to the constraints on the RF hardware, such as the availability of only

quantized angles for the RF phase shifters, the analog beamforming/combining vec-

tors can take only certain values. Hence, these vectors need to be selected from

finite-size codebooks. There are different models for the RF beamforming codebooks,

two possible examples are

1. General quantized beamforming codebooks Here, the codebooks are de-

signed to satisfy some particular properties, e.g., maximizing the minimum
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distance between the codebook vectors as in Grassmannian codebooks. These

codebooks are usually designed for rich channels and, therefore, attempt a uni-

form quantization on the space of beamforming vectors. These codebooks were

commonly used in traditional MIMO systems.

2. Beamsteering codebooks The beamforming vectors, here, are spatial matched

filters for the single-path channels. As a result, they have the same form of the

array response vector and can be parameterized by a simple angle. Let F repre-

sents the RF beamforming codebook, with cardinality |F| = NQ. Then, in the

case of beamsteering codebooks, F consists of the vectors aBS

(
2πkQ
NQ

)
, for the

variable kQ taking the values 0, 1, 2, and NQ − 1. The RF combining vectors

codebook W can be similarly defined.

Motivated by the good performance of single-user hybrid precoding algorithms

[20, 27] which relied on RF beamsteering vectors, and by the relatively small size of

these codebooks which depend on single parameter quantization, we will adopt the

beamsteering codebooks for the analog beamforming vectors. While the problem

formulation and proposed algorithm in this work are general for any codebook, the

performance evaluation of the proposed algorithm done in Sections 3.6-3.7 depends on

the selected codebook. For future work, it is of interest to evaluate the performance

of the proposed hybrid precoding algorithm with other RF beamforming codebooks.

If the system sum-rate is adopted as a performance metric, the precoding
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design problem is then to find F?
RF,

{
f?BB
u

}U
u=1

and {w?
u}Uu=1 that solve

{
F?

RF,
{
f?BB
u

}U
u=1

, {w?
u}Uu=1

}
= arg max

U∑

u=1

log2

(
1 +

P
U

∣∣w∗uHuFRFfBB
u

∣∣2
P
U

∑
n6=u |w∗uHuFRFfBB

n |2 + σ2

)

s.t. [FRF]:,u ∈ F, u = 1, 2, ..., U,

wu ∈W, u = 1, 2, ..., U,

‖FRF

[
fBB
1 , fBB

2 , ..., fBB
U

]
‖2
F = U.

(3.7)

The problem in (3.7) is a mixed integer programming problem. Its solution

requires a search over the entire FU ×WU space of all possible FRF and {wu}Uu=1

combinations. Further, the digital precoder FBB needs to be jointly designed with

the analog beamforming/combining vectors. In practice, this may require the feed-

back of the channel matrices Hu, u = 1, 2, ..., U , or the effective channels, w∗uHuFRF.

Therefore, the solution of (3.7) requires large training and feedback overhead. More-

over, the optimal digital linear precoder is not known in general even without the RF

constraints, and only iterative solutions exist [65, 66]. Hence, the direct solution of

this sum-rate maximization problem is neither practical nor tractable.

Similar problems to (3.7) have been studied before in literature, but with

baseband (not hybrid) precoding and combining [65–71]. The main directions of

designing the precoders/combiners in [65–71] can be summarized as follows.

• Iterative Coordinated Beamforming Designs The general idea of these

algorithms is to iterate between the design of the precoder and combiners in

multi-user MIMO downlink systems, with the aim of converging to a good solu-

tion [65,66]. These algorithms, however, require either the availability of global
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channel knowledge at the transmitter, or the online BS-MS iterations to build

the precoders and combiners. In mmWave systems, the application of coordi-

nated beamforming is generally difficult as feeding the large mmWave channel

matrix back to the BS requires a huge feedback overhead. Moreover, coor-

dinated beamforming usually depends on using matching vectors at the MS’s

which can not be perfectly done with hybrid analog/digital architectures due to

the hardware limitations on the analog precoders. Further, the convergence of

coordinated beamforming has been established only for digital precoders [65,66],

and the extension to hybrid precoders has not yet been studied.

• Non-iterative Designs with Channel State Information at the Trans-

mitter To avoid the design complexity associated with iterative methods, some

non-iterative sub-optimal algorithms, like block diagonalization, were proposed

[67, 68]. Block diagonalization, however, requires global channel knowledge at

the transmitter, which is difficult to achieve at mmWave systems. Further, the

hardware constraints on the analog (or hybrid) precoding make it difficult to

exactly design the pre-processing matrix to have no multi-user interference.

• Non-iterative Designs with Channel State Information at the Re-

ceiver The main idea of these schemes is to first combine the MIMO channel

at each receiver according to a certain criterion. Then, each each user quan-

tizes its effective channel based on a pre-defined codebook, and feeds it back

to the BS which uses it to construct its multi-user precoding matrix [69–71].

The application of these precoding/combining algorithms in mmWave systems
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is generally difficult because of the large dimensions of the mmWave channel

matrix which makes the assumption of its availability at the MS’s difficult to

achieve in practice. Further, the hardware constraints make the direct applica-

tion of the combining vector design schemes in [69–71] generally infeasible.

Given the practical difficulties associated with applying the prior precod-

ing/combining algorithms in mmWave systems, we propose a new mmWave-suitable

multi-user MIMO beamforming algorithm in Section 3.5. Our proposed algorithm is

developed to achieve good performance compared with the solution of (3.7), while

requiring (i) low training overhead and (ii) small feedback overhead. After explaining

the developed algorithm in Section 3.5, its performance is analyzed in Section 3.6

assuming infinite-resolution feedback and neglecting channel estimation errors. The

performance degradations due to limited feedback are then analyzed in Section 3.7.

3.5 Two-stage Multi-user Hybrid Precoding Algorithm

The additional challenge in solving (7), beyond the usual coupling between

precoders and combiners [65–71], is the splitting of the precoding operation into two

different domains, each with different constraints. The main idea of the proposed

algorithm is to divide the calculation of the precoders into two stages. In the first

stage, the BS RF precoder and the MS RF combiners are jointly designed to maximize

the desired signal power of each user, neglecting the resulting interference among

users. In the second stage, the BS digital precoder is designed to manage the multi-

user interference.
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Algorithm 3 Two-Stage Multi-user Hybrid Precoders Algorithm

Input: F BS RF beamforming codebook of size |F| = 2B
BS
RF

W MS RF beamforming codebook of size |W| = 2B
MS
RF

First stage: Single-user RF beamforming/combining design
For each MS u, u = 1, 2, ..., U

The BS and MS u select v?u and g?u that solve
{g?u,v?u} = arg max

∀gu∈W
∀vu∈F

‖g∗uHuvu‖

MS u sets wu = g?u
BS sets FRF = [v?1,v

?
2, ...,v

?
U ]

Second stage: Multi-user digital precoding design
For each MS u, u = 1, 2, ..., U

MS u estimates its effective channel hu = w∗uHuFRF

MS u quantizes hu using a codebook H of size 2BBB and feeds back ĥu where
ĥu = arg max

ĥu∈H
‖h∗uĥu‖

BS designs FBB = Ĥ∗
(
ĤĤ∗

)−1

with Ĥ =
[
ĥT

1 , ..., ĥ
T
U

]T

fBB
u = fBB

u

‖FRFfBB
u ‖F

, u = 1, 2, ..., U

Algorithm 3 can be summarized as follows. In the first stage, the BS and each

MS u design the RF beamforming and combining vectors, fRF
u and wu, to maximize

the desired signal power for user u, and neglecting the other users’ interference. As

this is the typical single-user RF beamforming design problem, efficient beam training

algorithms developed for single-user systems such as [13, 72], which do not require

explicit channel estimation and have a low training overhead, can be used to design

the RF beamforming/combining vectors.

In the second stage, the BS trains the effective channels, hu = w∗uHuFRF, u =

1, 2, ..., U , with the MS’s. Note that the dimension of each effective channel vector is

U×1 which is much less than the original channel matrix. This is not the case for the
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algorithms developed in [69, 71] in which the effective channels have larger NBS × 1

dimensions. Then, each MS u quantizes its effective channel using a codebook H, and

feeds the index of the quantized channel vector back to the BS with BBB bits. Finally,

the BS designs its zero-forcing digital precoder based on the quantized channels.

Thanks to the narrow beamforming and the sparse mmWave channels, the effective

MIMO channel is expected to be well-conditioned [73, 74], which makes adopting a

simple multi-user digital beamforming strategy like zero-forcing capable of achieving

near-optimal performance [75], as will be shown in Sections 3.6-3.7.

Both the separate and joint designs of the analog and digital precoders were

investigated before for single-user mmWave systems. For example, the work in [62]

considered a single-user single-stream MIMO-OFDM system, where the analog and

digital precoders were sequentially designed to maximize either the received signal

strength or the sum-rate over different frequency sub-carriers. Alternatively, the

analog and digital precoders were jointly designed in [20,27,62] to maximize the rate

of single-user systems. In this work, we consider a different setup which is multi-

user downlink transmission. Therefore, the objective of the hybrid analog/digital

beamforming in our work is different than that in [20, 27, 62] as we need to manage

the multi-user interference as well. This leads to a completely different analysis.

In the next two sections, we analyze the performance of the proposed multi-

user hybrid precoding algorithm in different settings. For this analysis, we adopt the

beamsteering codebook for the design of the analog beamforming/combining vectors.

We also assume that the effective channels in the second stage of Algorithm 3 are

quantized using a RVQ codebook. RVQ simplifies the analytical performance analysis
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of the proposed algorithm and allows leveraging some results from the limited feedback

MIMO literature [66,69,70].

3.6 Performance Analysis with Infinite Codebooks

The analysis of hybrid precoding is non-trivial due to the coupling between

analog and digital precoders. Therefore, we will study the performance of the pro-

posed algorithm in two cases: With single-path channels and with large numbers of

antennas. These cases are of special interest as mmWave channels are likely to be

sparse, i.e., only a few paths exist [21], and both the BS and MS need to employ

large antenna arrays to have sufficient received power [20]. Further, the analysis of

these special cases will give useful insights into the performance of the proposed al-

gorithms in more general settings which will also be confirmed by the simulations in

Section 3.8.

In this section, we analyze the achievable rates of the proposed algorithm

assuming perfect effective channel knowledge and supposing that the angles of the

RF beamsteering vectors can take continuous values, i.e., we assume that both the RF

codebooks (F and W) and the RVQ codebook H are of infinite size. In Section 3.7,

we will study how limited feedback and finite codebooks affect the rates achieved by

the developed hybrid precoding algorithm.

3.6.1 Single-Path Channels

In this section, we consider the case when Lu = 1, u = 1, 2, ..., U . For ease of

exposition, we will omit the subscript ` in the definition of the channel parameters in
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(3.4). The following theorem characterizes a lower bound on the achievable rate by

each MS when Algorithm 3 is used to design the hybrid precoders at the BS and RF

combiners at the MS’s.

Theorem 4 Let Algorithm 3 be used to design the hybrid precoders and RF combiners

described in Section 3.3 under the following assumptions

1. All channels are single-path, i.e., Lu = 1, u = 1, 2, ..., U .

2. The RF precoding vectors fRF
u , u = 1, 2, ..., U , and the RF combining vectors

wu, u = 1, 2, ..., U are beamsteering vectors with continuous angles.

3. Each MS u perfectly knows its channel Hu, u = 1, 2, ..., U .

4. The BS perfectly knows the effective channels hu, u = 1, 2, ..., U .

and define the NBS×U matrix ABS to gather the BS array response vectors associated

with the U AoDs, i.e., ABS = [aBS (φ1) , aBS (φ2) , ..., aBS (φU)], with maximum and

minimum singular values σmax(ABS) and σmin(ABS), respectively. Then, the achiev-

able rate of user u is lower bounded by

Ru ≥ log2

(
1 +

SNR

U
NBSNMS |αu|2G

(
{φu}Uu=1

))
, (3.8)

where G
(
{φu}Uu=1

)
= 4

(
σ2
max(ABS)

σ2
min(ABS)

+
σ2
min(ABS)

σ2
max(ABS)

+ 2
)−1

, SNR = P
σ2 .

Proof: Consider the BS and MS’s with the system and channels described in

Section 3.3. Then, in the first stage of Algorithm 3, the BS and each MS u find v?u
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and g?u that solve

{g?u,v?u} = arg max
∀gu∈W
∀vu∈F

‖g∗uHuvu‖. (3.9)

As the channel Hu has only one path, and given the continuous beamsteering

capability assumption, the optimal RF precoding and combining vectors will be g?u =

aMS(θu), and v?u = aBS(φu). Consequently, the MS sets wu = aMS(θu) and the BS

takes fRF
u = aBS(φu). Gathering the beamforming vectors for the U users, the BS RF

beamforming matrix is then FRF = ABS = [aBS (φ1) , aBS (φ2) , ..., aBS (φU)].

The effective channel for user u after designing the RF precoders and combiners

is

hu = wuHuFRF

=
√
NBSNMSαua

∗
BS (φu) FRF.

(3.10)

Now, defining H = [h
T

1 ,h
T

2 , ...,h
T

U ]T, and given the design of FRF, we can write

the effective channel matrix H as

H = DA∗BSABS, (3.11)

where D is a U × U diagonal matrix with [D]u,u =
√
NBSNMSαu.

Based on this effective channel, the BS zero-forcing digital precoder is defined

as

FBB = H
∗ (

HH
∗)−1

Λ, (3.12)

where Λ is a diagonal matrix with the diagonal elements adjusted to satisfy the

precoding power constraints
∥∥FRFfBB

u

∥∥2
= 1, u = 1, 2, ..., U . The diagonal elements
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of Λ are then equal to

Λu,u =

√
NBSNMS

(A∗BSABS)−1
u,u

|αu| , u = 1, 2, ..., U. (3.13)

Note that this Λ is different than the traditional digital zero-forcing precoder

due to the different power constraints in the hybrid analog/digital architecture. [See

Appendix A in [30] for a derivation]

The achievable rate for user u is then

Ru = log2

(
1 +

SNR

U

∣∣∣h∗ufBB
u

∣∣∣
2
)
,

= log2

(
1 +

SNR

U

NBSNMS |αu|2

(A∗BSABS)−1
u,u

)
.

(3.14)

To bound this rate, the following lemma which characterizes a useful property

of the matrix A∗BSABS can be used.

Lemma 5 Assume ABS = [aBS (φ1) , ..., aBS (φU)], with the angles φu, u = 1, 2, ..., U

taking continuous values in [0, 2π], then the matrix P = A∗BSABS is positive definite

almost surely.

Proof: Let the matrix P = A∗BSABS, then for any non-zero complex vector z ∈ CU ,

it follows that z∗Pz = ‖ABSz‖2
2 ≥ 0. Hence, the matrix P is positive semi-definite.

Further, if the vectors aBS (φ1) , aBS (φ2), ..., aBS (φU) are linearly independent, then

for any non-zero complex vector z, ABSz 6= 0, and the matrix P is positive definite.

To show that, consider any two vectors aBS (φu) , aBS (φn). These vectors are linearly

dependent if and only if φu = φn. As the probability of this event equals zero when
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the AoDs φu and φn are selected independently from a continuous distribution, then

the matrix P is positive definite with probability one. 2

Now, using the Kantorovich inequality [76], we can bound the diagonal entries

of the matrix (A∗BSABS)−1 using the following lemma from [77].

Lemma 6 For any n× n Hermitian and positive definite matrix P with the ordered

eigenvalues satisfying 0 < λmin ≤ λ2 ≤ ... ≤ λmax, the element (P)−1
u,u , u = 1, 2, ..., n

satisfies

(P)−1
u,u ≤

1

4[P]u,u

(
λmax (P)

λmin (P)
+
λmin (P)

λmax (P)
+ 2

)
. (3.15)

Finally, noting that (A∗BSABS)u,u = 1, λmin (A∗BSABS) = σ2
min (ABS), and

λmax (A∗BSABS) = σ2
max (ABS) and using lemma 6, we get the lower bound on the

achievable rate in (3.8). 2

In addition to characterizing a lower bound on the rates achieved by the pro-

posed hybrid analog/digital precoding algorithm, the bound in (3.8) separates the

dependence on the channel gains αu, and the AoDs φu, u = 1, 2, ..., U which can be

used to claim the optimality of the proposed algorithm in some cases and to give

useful insights into the gain of the proposed algorithm over analog-only beamsteering

solutions. This is illustrated in the following results.

Proposition 7 Denote the single-user rate as R̊u = log2

(
1 + SNR

U
NBSNMS |αu|2

)
.

When Algorithm 3 is used to design the hybrid precoders and RF combiners described
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in Section 3.3, and given the assumptions stated in Theorem 4, the relation between

the achievable rate by any user u, and the single-user rate, R̊u satisfies

1. E
[
R̊u −Ru

]
≤ K (NBS, U).

2. limNBS→∞Ru = R̊u almost surely.

where K (NBS, U) is a constant whose value depends only on NBS and U .

Proof: See Appendix B in [30]. 2

Proposition 7 indicates that the average achievable rate of any user u using

the proposed low-complexity precoding/combining algorithm grows with the same

slope of the single-user rate at high SNR, and stays within a constant gap from it.

This gap, K (NBS, U), depends only on the number of users and the number of BS

antennas. As the number of BS antennas increases, the matrix ABS becomes more

well-conditioned, and the ratio between its maximum and minimum singular values

will approach one. Hence, the value of G
(
{φu}Uu=1

)
in (3.8) will be closer to one,

and the gap between the achievable rate using Algorithm 3 and the single-user rate

will decrease. This will also be shown by numerical simulations in Section 3.8. One

important note here is that this gap does not depend on the number of MS antennas,

which is contrary to the analog-only beamsteering, given by the first stage only of

Algorithm 3. This leads to the following corollary.

Corollary 8 Let RBS denote the rate achieved by user u when the BS employs analog-

only beamsteering designed according to Step 1 of Algorithm 3. Then, the relation
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between the average achievable rate using Algorithm 3 Ru and the average rate of

analog-only beamsteering solution when the number of MS antennas goes to infinity

satisfies: limNMS→∞ E [Ru −RBS|] =∞.

Proof: See Appendix C in [30]. 2

This corollary implies that multi-user interference management is still impor-

tant at mmWave systems even when very large numbers of antennas are used at the

BS and MS’s. Note also that this is not the case when the number of BS antennas

goes to infinity as it can be easily shown that the performance of RF beamsteering

alone becomes optimal in this case.

3.6.2 Large-dimensional Regime

Under the assumption of large numbers of transmit antennas, a different ap-

proximation of the achievable rate can be derived. We approach this problem us-

ing the virtual channel model framework and its simplifications in large MIMO sys-

tems [64] [78]. The results of this section are, therefore, valid only for uniform arrays,

e.g., ULAs and UPAs [64,79]. The virtual channel model characterizes physical chan-

nels via joint spatial beams in fixed virtual transmit and receive directions exploiting

the finite dimensionality of the MIMO system, i.e., the finite number of transmit and

receive antennas. The virtual transmit and receive directions are fixed because they

depend only on the number of BS and MS antennas. Hence, they are common for

the different users with the same number of antennas. Using this channel model, the
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uth user channel Hu can be written as [64]

Hu = AMSH
v
uA
∗
BS, (3.16)

where ABS = [aBS

(
φ̄1

)
, aBS

(
φ̄2

)
, ..., aBS

(
φ̄NBS

)
] is an NBS×NBS matrix carrying the

BS array response vectors in the virtual directions φ̄p, p = 1, 2, ..., NBS that satisfy

2πd
λ

sin
(
φ̄p
)

= 2πp
NBS

. Similarly, AMS = [aMS

(
θ̄1

)
, aMS

(
θ̄2

)
, ..., aMS

(
θ̄NMS

)
] carries the

MS array response vectors in the virtual directions θ̄q, q = 1, 2, ..., NMS that satisfy

2πd
λ

sin
(
θ̄q
)

= 2πq
NMS

. Thanks to these special virtual channel angles, the matrices

ABS and AMS are DFT matrices [64]. Finally, Hv
u is the uth MS virtual channel

matrix with each element [Hv
u]q,p representing a group of physical spatial paths, and

approximately equal to the sum of the gains of those paths [64].

One advantage of using the virtual channel model in analyzing our proposed

multi-user precoding algorithm lies in the fact that it provides a common space of the

transmit eigenvectors of the different users. This means that the BS eigenvectors for

each MS form a subset of the columns of the DFT matrix ABS. The virtual channel

model also provides a simple way to incorporate the angle spread associated with

mmWave channel scatterers by defining each element of the virtual channel matrix

as the sum of the channel gains associated with the scatterers located in a certain

direction multiplied by the integration of the spatial spreading functions of these

scatterers [64].

Before leveraging this channel model in analyzing the proposed hybrid precod-

ing algorithm, we rewrite the channel in (3.16) as

Hu =

√
NBSNMS

Lu

NBSNMS∑

m=1

γu,maMS

(
θ̄u,m

)
a∗BS

(
φ̄u,m

)
, (3.17)
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where |γu,1| ≥ |γu,2| ≥ ... ≥ |γu,NBSNMS
|. γu,m equals the element in Hv

u with the

mth largest virtual channel element magnitude, and φ̄u,m, θ̄u,m are the corresponding

transmit and receive virtual directions, respectively.

In the following proposition, we use this channel model to characterize a simple

lower bound on the achievable rate of Algorithm 3 for arbitrary numbers of channel

paths assuming for simplicity that Lu = L, u = 1, 2, ..., U . The derived results give

useful analytical insights into the asymptotic performance of the proposed algorithm

in the multi-path case.

Proposition 9 Define the single-user rate as R̊u = log 2(1 + SNR
UL

NBSNNS |γu,1|2).

Then, when Algorithm 3 is used to design the hybrid analog/digital precoders at the

BS and RF combiners at the MSs, with the assumptions in Theorem 4, and adopting

the virtual channel model in (3.17), the average achievable rate of user u is lower

bounded by

E [Ru] ≥ (3.18)

E
[
R̊u

](U−1∏

i=1

(
1− i

NBS

)(
1− L− 1

NMS

)U
+ 1(L>1)

U−1∏

i=1

(
1− iL

NBS

)(
1

NMS

)(L−1)U
)
.

(3.19)

Proof: Consider the BS and MS’s with the system model described in Section 3.3,

and the approximated channel model in (3.17). In the first stage of Algorithm 3, the

BS and each MS u find v?u and g?u that solve (3.9). Given the virtual channel model

in (3.17), we get wu = g?u = aMS

(
θ̄u,1
)

and v?u = aBS

(
φ̄u,1
)
. Consequently, the RF

precoder at the BS becomes FRF =
[
aBS

(
φ̄1,1

)
, aBS

(
φ̄2,1

)
, ..., aBS

(
φ̄U,1

)]
. Now, we
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can write the uth MS effective channel as

hu = w∗uHuFRF =

√
NBSNMS

L
γu,1 [ζu,1, ζu,2, ..., ζu,U ] , (3.20)

where the values of the ζu,n elements are

• ζu,u = 1,

• ζu,n = 1( ¯φu,1=φ̄n,1) +
L∑

m=2

γu,2
γu,1

1(φ̄u,m=φ̄n,1)1(θ̄u,1=θ̄u,m), ∀n 6= u,

where the summation in ζu,n is over the first L elements only due to the sparse channel.

Note that the characterization of ζu,n is due to the DFT structure of the matrices

ABS and AMS.

The overall effective channel, H, can be then written as

H = DvPv, (3.21)

where Dv is a diagonal matrix with the diagonal elements [Dv]u,u =
√

NBSNMS

L
γu,1, u =

1, 2, ..., U , and the U × U matrix Pv has [Pv]u,n = ζu,n,∀u, n.

The digital zero-forcing precoder is therefore FBB = H
∗ (

HH
∗)−1

Λ, and

the diagonal elements of Λ are chosen to satisfy the precoding power constraint∥∥FRFfBB
u

∥∥2
= 1. Using a similar derivation to that in [30, Appendix A], we get

[Λ]u,u =

√
NBSNMS

L |γu,1|√(
(PvP∗v)−1 PvF∗RFFRFP∗v (PvP∗v)−1

)
u,u

. (3.22)

Using the designed digital and analog precoders, the rate of user u can be written
as

E [Ru] = E
[
log2

(
1 +

SNR

U

∣∣∣h∗ufBB
u

∣∣∣
2
)]

, (3.23)
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= E


log2


1 +

SNR

UL

NBSNMS |γu,1|2(
(PvP∗v)−1 PvF∗RFFRFP∗v (PvP∗v)−1

)
u,u





 . (3.24)

Now, we note that the term
(
(PvP

∗
v)−1 PvF

∗
RFFRFP∗v (PvP

∗
v)−1)

u,u
= 1 if Pv =

I. Then, considering only the case when Pv = I gives a simple lower bound on the
achievable rate

E [Ru] ≥ E
[
log2

(
1 +

SNR

UL
NBSNMS |γu,1|2

)
1 (Pv = IU )

]
, (3.25)

(a)
= E

[
log2

(
1 +

SNR

UL
NBSNMS |γu,1|2

)]
P (Pv = IU ) , (3.26)

where (a) is by leveraging the independence between γu,1 and the virtual transmit

angles of the different users. Thanks to the sparse nature of mmWave channels, this

simple bound in (3.26) can be a tight bound on the achievable rate. Finally, the

probability of the event Pv = I can be bounded as follows by considering only the

cases when all the AoAs are equal or all of them are different

P (Pv = IU ) ≥ P

(
Pv = IU

∣∣∣∣∣
U⋂

u=1

(
θ̄u,1 6= θ̄u,m, ∀m 6= 1

)
)

P

(
U⋂

u=1

(
θ̄u,1 6= θ̄u,m, ∀m 6= 1

)
)

+ P

(
Pv = IU

∣∣∣∣∣
U⋂

u=1

(
θ̄u,1 = θ̄u,m, ∀m 6= 1

)
)

P

(
U⋂

u=1

(
θ̄u,1 = θ̄u,m, ∀m 6= 1

)
)
,

(3.27)

≥
U−1∏

i=1

(
1− i

NBS

)(
1− L− 1

NMS

)U
+ 1(L>1)

U−1∏

i=1

(
1− iL

NBS

)(
1

NMS

)(L−1)U

,

(3.28)

where all these probabilities are calculated from the expression of ζu,n, n 6= u (the

off-diagonal entries of Pv). 2

This bound shows the asymptotic optimality of the sum-rate achieved by the

proposed hybrid precoding algorithm in the large-dimensional regime, as it approaches
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1 with large numbers of antennas. Hence, the average achievable rate by the proposed

algorithm in (3.26) will be very close to the single-user rate. Indeed, this simple bound

can be shown to be tight when the number of paths is very small compared with the

number of antennas which is the case in mmWave systems. Also, this bound shows

the relatively small importance of the other paths, rather than the strongest path,

on the performance as L
NBS
� 1 and L−1

NMS
� 1. Finally, note that the bound in (3.19)

is an approximated bound, as it depends on the asymptotic properties of the virtual

channel model in (3.17), which becomes a good approximation when the number of

antennas is very large.

3.7 Rate Loss with Limited Feedback

In this section, we consider RF and digital codebooks with finite sizes, and an-

alyze the rate loss due to the joint RF/baseband quantization. Although the analysis

will consider the special cases of single-path mmWave channels, and large-dimensional

regimes, it helps making important conclusions about the performance of the hybrid

precoding over finite-rate feedback channels.

3.7.1 Single-Path Channels

Considering single-path mmWave channels, the following theorem character-

izes the average rate loss when the hybrid analog/digital precoders and RF combiners

are designed according to Algorithm 3 with the quantized beamsteering RF precoders

F,W, and the effective channel RVQ codebook H.

Theorem 10 Let RQ
u denote the rate achieved by user u when Algorithm 3 is used to
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design the hybrid precoders and RF combiners described in Section 3.3 while assuming

that

1. All channels are single-path, i.e., Lu = 1, u = 1, 2, ..., U .

2. The RF precoding and combining vectors, fRF
u , u = 1, 2, ..., U and wu, u =

1, 2, ..., U , are beamsteering vectors selected from the quantized codebooks F and

W.

3. Each MS u perfectly knows its channel Hu, u = 1, 2, ..., U .

4. Each MS u quantizes its effective channel hu using a RVQ codebook H of size

|H| = 2BBB.

Recall that Ru is the rate achieved by user u with the assumptions in Theorem

4. Then the average rate loss per user, ∆Ru = E
[
Ru −RQ

u

]
, is upper bounded by

∆Ru ≤ log2




1 + SNR
U
NBSNMSᾱ

(
1 + U−1

NBS

)
2−

BBB
U−1

|µBS|2 |µMS|2


 , (3.29)

where |µBS| = min
fu∈F

max
fn∈F
|f∗ufn|, and |µMS| = min

wu∈W
max
wn∈W

|w∗uwn|.

Proof: See [30, Appendix D]. 2

Theorem 10 characterizes an upper bound on the rate loss due to quantization.

It can be used to determine how the number of baseband and RF quantization bits

should scale with the different system and channel parameters to be within a constant

gap of the optimal rate. This is captured in the following corollary.
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Corollary 11 To maintain a rate loss of log2 (b) bps/Hz per user, the number of
baseband quantization bits should satisfy

BBB ≥
U − 1

3
SNRdB + (U − 1) log2

(
NBSNMS

U
ᾱ

(
1− U − 1

NBS

))

− (U − 1) log2

(
|µBS|2 |µMS|2 b− 1

)
, (3.30)

|µBS|2 |µMS|2 >
1

b
. (3.31)

This corollary shows that the number of bits used to quantize the effective

channels should increase linearly with the SNR in dB for any given number of users

and logarithmically with the number of antennas. It also illustrates that more base-

band quantization bits will be needed if the RF beamsteering vectors are poorly

quantized, i.e., if |µBS| and |µMS| are small.

The relation between the RF and baseband quantization bits is important

to understand the behavior of hybrid precoding algorithms. Indeed, in some cases,

e.g., when the effective channel is poorly quantized, the performance of analog-only

beamforming can exceed that of the hybrid precoding. In Section 3.8, the hybrid pre-

coding and beamsteering algorithms are compared for different quantization settings,

and some insights are given to highlight the cases in which using a digital layer to

manage the multi-user interference is useful.

3.7.2 Large-dimensional Regime

When large antenna arrays are used at both the BS and MS’s, using the virtual

channel model in Section 3.6.2, we can bound the average rate loss using the proposed

hybrid precoding algorithm with finite size codebooks.
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Proposition 12 Using Algorithm 3 to design the hybrid precoders at the BS and

RF combiners at the MSs, with the assumptions in Theorem 10, and adopting the

virtual channel model in (3.17), the average rate loss per user due to quantization,

∆Ru = E
[
Ru −RQ

u

]
, is upper bounded by

∆Ru ≤ log2

(
1 +

SNR

U
ᾱNBSNMS

(
1 +

U − 1

NBS

(
1 +

L− 1

NBSNMS

))
2−

BBB
U−1

)
. (3.32)

The proof is similar to Theorem 10, but leverages the definition of the effective

channel in (3.20). In addition to characterizing the rate loss due to quantization

for more general settings with multi-path mmWave channels, this result illustrates

the marginal impact of the other paths on the performance of mmWave systems as

L−1
NBSNMS

� 1. In other words, this indicates that considering only the path with the

maximum gain gives a very good performance.

3.8 Simulation Results

In this section, we evaluate the performance of the proposed hybrid ana-

log/digital precoding algorithm and derived bounds using numerical simulations.

All the plotted rates in Fig. 3.3-Fig. 3.7 are the averaged achievable rates per user;

E
[

1
U

∑U
u=1Ru

]
with Ru in equation 3.6.

First, we compare the achievable rates without quantization loss and with

perfect effective channel knowledge in Fig. 3.3(a) and Fig. 3.3(b). In Fig. 3.3(a),

we consider the system model in Section 3.3 with a BS employing an 8 × 8 UPA

with 4 MS’s, each having a 4 × 4 UPA. The channels are single-path, the azimuth

AoAs/AoDs are assumed to be uniformly distributed in [0, 2π], and the elevation
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Figure 3.3: Achievable rates using the hybrid precoding and beamsteering algorithms
with perfect channel knowledge. Single-path channels are assumed in (a), while chan-
nels with L = 3 paths are examined in (b).

AoAs/AoDs are uniformly distributed in [−π
2
, π

2
]. The SNR in the plots is defined

as SNR = Pᾱ
σ2U

. The rate achieved by the proposed hybrid precoding/combining

algorithm is compared with the single-user rate and the rate obtained by beamsteer-

ing. These rates are also compared with the performance of a particular uncon-

strained (all digital) block diagonalization algorithm in [67, Section III], where the

beamforming and combining vectors of user u are selected to be fu = Ṽ
(0)
u vu and

wu = uu, where vu and uu are the dominant right and left singular vectors of the

effective channel matrix HuṼ
(0)
u , with Ṽ

(0)
u an orthogonal basis for the null space of

the matrix
[
HT

1 ... HT
u−1H

T
u+1 ... HT

U

]T
. This block diagonalization algorithm requires

NBS − rank
([

HT
1 ... HT

u−1H
T
u+1 ... HT

U

]T)
> 0, ∀u which is expected to be satisfied

with high probability in mmWave systems with large arrays and sparse (low-rank)

channels. Note that other block diagonalization algorithms, like coordinated Tx-Rx
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Figure 3.4: Achievable rates using the hybrid precoding and beamsteering algorithms
with perfect channel knowledge. In (a), the performance of hybrid precoding is shown
to approach the single-user rate with large numbers of BS antennas. In (b), the
performance gap between hybrid precoding and beamsteering increases with more
MS antennas.

block diagonalization [67], may have more relaxed dimension constraints. The figure

indicates that the performance of hybrid precoding is very close to the single-user rate

thanks to canceling the residual multi-user interference, and is almost similar to the

performance of the unconstrained block diagonalization. Note also that the gain of

any other unconstrained precoding solution over the proposed hybrid precoding is ex-

pected to be small given the small gap between the hybrid precoding solution and the

single user upper bound, which is also a bound for any other unconstrained precod-

ing solution. The figure also illustrates the gain of hybrid precoding over analog-only

beamsteering solution which increases with SNR as the beamsteering rate starts to

be interference limited. The tightness of the derived lower bound in Theorem 4 is

also shown.
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In Fig. 3.3(b), we consider the same setup, but when each channel has L = 3

paths. The rates of the single-user, hybrid precoding, and beamsteering are simulated

with different numbers of BS and MS antennas, assuming that NBS = NMS. The

bound derived in Proposition 9 was also plotted where it is shown to be tight at large

number of antennas as discussed in Section 3.6.2.

In Fig. 3.4(a), the same setup in Fig. 3.3(a) is considered at SNR= 0 dB, but

with different values of BS antennas. The figure shows that even at very large numbers

of antennas, there is still a considerable gain of hybrid precoding over beamsteering.

This figure also shows that the difference between hybrid precoding and the single-

user rate decreases at a large number of BS antennas which validates the second part

of Proposition 7.

In Fig. 3.4(b), the same setup is considered with an 8 × 8 BS UPA and with

different numbers of MS antennas. The figure illustrates how the performance gap

between hybrid precoding and beamsteering increases with increasing the number of

MS antennas which coincides with Corollary 8. This means that hybrid precoding

has a higher gain over analog-only beamforming solutions in mmWave systems when

large antenna arrays are employed at the MS’s.

To illustrate the impact of RF quantization, the performance of hybrid precod-

ing and analog-only beamsteering are evaluated in Fig. 3.5(a) with different numbers

of quantization bits at the BS and MS. We consider the same setup of Fig. 3.3(a) with

4× 4 MS UPAs and when each channel has L = 3 paths. As shown in the figure, the

performance of the beamforming strategies degrades with decreasing the number of

quantization bits. The gain, however, stays almost constant for the same number of
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Figure 3.5: Achievable rates using the hybrid precoding and beamsteering algorithms
are plotted for different numbers of RF beamforming quantization bits in (a), and for
different numbers of effective channel quantization bits in (b).

antennas. The figure also shows that the number of quantization bits should increase

with the antenna numbers to avoid significant performance degradations.

In Fig. 3.5(b), the case when both RF and baseband quantized codebooks exist

is illustrated. For this figure, the same system setup of Fig. 3.5(a) is adopted again,

and the spectral efficiency achieved by hybrid precoding is shown for different sizes of

the RVQ codebook used in quantizing the effective channels. The RF codebooks are

also quantized with BBS
RF = 3 bits and BMS

RF = 2 bits. These results show that when the

effective channel is poorly quantized, the loss of multi-user interference management

is larger than its gain, and using analog-only beamsteering achieves better rates. For

reasonable numbers of effective channel quantization bits, however, the performance

of hybrid precoding maintains its gain over the described analog-only solutions.

In Fig. 3.6, we evaluate the performance of the proposed two-stage hybrid
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Figure 3.6: Performance of the multi-user hybrid precoding versus the number of
users, for different numbers of channel paths. The users are assumed to be moving
with speed 30m/s.

precoding algorithm in the presence of user mobility. In this simulation, we consider

the system model in Section 3.3 with NBS = 64 antennas and NMS = 8 antennas.

The users’ channels follow the geometric channel model in (3.4), but with each path

having an additional exponential term that captures the mobility(Doppler) effect, as

shown in [80]. The users are assumed to be moving with speed 30 m/s on a distance

50m away from the serving BS. In the beginning of every beam coherence time, the

BS and MSs perform beam training to find the best beams, then use these beams for

the rest of the beam coherence time. In Fig. 3.6, the beam coherence time is assumed

to be .1 s, based on the results in [80]. This figure shows that the optimal number

of users that can be simultaneously served depends on the number of channel paths.

As the channel becomes more sparse, i.e., with less number of paths, more users can

be served to optimize the system sum-rate.
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Finally, Fig. 3.7 evaluates the performance of the proposed hybrid precoding

algorithm in a mmWave cellular setup including inter-cell interference, which is not

explicitly incorporated into our designs. In this setup, BS’s and MS’s are assumed to

be spatially distributed according to a Poisson point process with MS’s densities 30

times the BS densities. The channels between the BS’s and MS’s are single-path and

each link is determined to be line-of-sight or non-line-of-sight based on the blockage

model in [7]. Each MS is associated to the BS with less path-loss and the BS randomly

selects n = 2, .., 5 users of those associated to it to be simultaneously served. BS’s

are assumed to have 8× 8 UPAs and MS’s are equipped with 4× 4 UPAs. All UPA’s

are vertical, elevation angles are assumed to be fixed at π/2, and azimuth angles

are uniformly distributed in [0, 2π]. Fig. 3.7 shows the per-user coverage probability,

defined as P (Ru ≥ η), where η is an arbitrary threshold. This figure illustrates that

hybrid precoding has a reasonable coverage gain over analog-only beamsteering thanks

to its interference management capability.

3.9 Conclusions

In this chapter, we proposed a low-complexity hybrid analog/digital precoding

algorithm for downlink multi-user mmWave systems leveraging the sparse nature

of the channel and the large number of deployed antennas. The performance of

the proposed algorithm was analyzed when the channels are single-path and when

the system dimensions are very large. In these cases, the asymptotic optimality of

the proposed algorithm, and the gain over beamsteering solutions were illustrated.

The results indicate that interference management in multi-user mmWave systems is
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Figure 3.7: Coverage probability of the proposed hybrid precoding algorithm com-
pared with single-user per cell and analog-only beamsteering solutions. The figure
shows the per-user performance with different numbers of users per cell.

required even when the number of antennas is very large. When the feedback channels

are limited, the average rate loss due to joint analog/digital codebook quantization

was analyzed and numerically simulated. These simulations show that the hybrid

precoding gain is not very sensitive to RF angles quantization. It is important,

however, to have a good quantization for the digital precoding layer to maintain a

reasonable precoding gain over analog only solutions.
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Chapter 4

Multi-Layer Precoding for Massive MIMO

Systems

4.1 Overview

In this chapter1, we propose a general precoding framework, called multi-layer

precoding, to enable efficient and low complexity full-dimensional massive MIMO

operation. Multi-layer precoding (i) leverages the directional characteristics of large-

scale MIMO channels to manage inter-cell interference with low channel knowledge

requirements, and (ii) allows for an efficient implementation using low-complexity hy-

brid analog/digital architectures. We present a specific multi-layer precoding design

for full-dimensional massive MIMO systems. The performance of this precoding de-

sign is analyzed and the per-user achievable rate is characterized for general channel

models. The asymptotic optimality of the proposed multi-layer precoding design is

then proved for some special yet important channel models. Numerical simulations

verify the analytical results and illustrate the potential gains of multi-layer precoding

compared to traditional pilot-contaminated massive MIMO solutions.

1This chapter is based on the work that is to be published in the journal paper: A. Alkhateeb,
G. Leus, and R. Heath, “Multi-layer Precoding: A Potential Solution for Full-Dimensional Massive
MIMO Systems,”. This work was supervised by Prof. Robert Heath. Prof. Geert Leus provided
important ideas for the multi-layer precoding design that greatly improved the work.
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4.2 Introduction

Massive MIMO promises significant spectral efficiency gains for cellular sys-

tems. Scaling up the number of antennas, however, faces a number of challenges that

prevent the corresponding scaling of the gains [2, 4, 22, 81]. The large-dimensional

channels have high feedback overhead in frequency division duplexing (FDD) sys-

tems. To overcome that, channel reciprocity in conjunction with time division du-

plexing (TDD) systems is used alternatively [1,82]. Reusing the uplink training pilots

among cells, however, causes channel estimation errors which in turn lead to downlink

inter-cell interference, especially for cell-edge users [1]. Handling inter-cell interfer-

ence using traditional network MIMO techniques requires high coordination overhead,

which limits the overall system performance [25]. Another challenge with the large

number of antennas lies in the hardware implementation [4, 12]. Traditional MIMO

precoding techniques normally assumes entire baseband processing, which requires

dedicating an RF chain per antenna. This may lead to high cost and power consump-

tion in massive MIMO systems [4]. Therefore, developing precoding schemes that can

overcome the challenges of inter-cell interference and complete baseband processing

is of great interest.

Inter-cell interference is a critical problem for cellular MIMO systems. Typ-

ical network MIMO solutions for managing this interference require some sort of

collaboration between the base stations (BSs) [26]. The overhead of this cooperation,

though, fundamentally limits the system performance [25]. When the number of an-

tennas grows to infinity, the performance of the network becomes limited by pilot

contamination [1], which is one form of inter-cell interference. Pilot contamination
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happens because of the channel estimation errors that result from reusing the uplink

training pilots among users in TDD massive MIMO systems. Several solutions have

been proposed to manage inter-cell interference in massive MIMO systems [83–86].

In [83,84], multi-cell zero-forcing and MMSE MIMO precoding strategies were devel-

oped to cancel or reduce the inter-cell interference. The solutions in [83,84], however,

require global channel knowledge at every BS, which makes them feasible only for

finite numbers of antennas [87]. To reduce the channel requirement overhead, pilot

contamination precoding was proposed in [85] to overcome the pilot contamination

problem, relying on the large channel statistics. The technique in [85], though, re-

quires sharing the transmitted messages between all BSs, which is difficult to achieve

in practice. In [86], the directional characteristics of large-dimensional channels were

leveraged to improve the uplink channel training in TDD systems. This solution,

however, requires fully-digital hardware and does not leverage the higher degrees of

freedom provided in full-dimensional massive MIMO systems.

On a relevant research direction, precoding solutions that divide the processing

between two stages have been developed in [20,23,30,88,89] for mmWave and massive

MIMO systems. Motivated by the high cost and power consumption of RF chains, [20]

developed hybrid analog/digital precoding algorithm for mmWave systems. Hybrid

precoding divides the precoding between RF and baseband domains, and requires

a much smaller number of RF chains compared to the number of antennas. For

multi-user systems [30] proposed a two-stage hybrid precoding design where the first

precoding matrix is designed to maximize the signal power for each user and the

second matrix is designed to manage the multi-user interference. Similar solutions

101



were also developed for massive MIMO systems [88, 89], with the general objective

of maximizing the system sum-rate. In [23], a two-stage joint spatial division and

multiplexing (JSDM) precoding scheme was developed to reduce the channel training

overhead in FDD massive MIMO systems. In JSDM, the base station (BS) divides the

mobile stations (MSs) into groups of approximately similar covariance eigenspaces,

and designs a pre-beamforming matrix based on the large channel statistics. The

interference between the users of each group is then managed using another precoding

matrix given the effective reduced-dimension channels. The work in [20, 23, 30, 88,

89], however, did not consider out-of-cell interference, which ultimately limits the

performance of massive MIMO systems.

In this work, we introduce a general framework, called multi-layer precod-

ing, that (i) coordinates inter-cell interference in massive MIMO systems leveraging

large channel statistics and (ii) allows for efficient implementations using hybrid ana-

log/digital architectures. The main contributions of our work are summarized as

follows.

• Designing a specific multi-layer precoding solution for full-dimensional massive

MIMO systems. The proposed precoding strategy writes the precoding matrix

of each BS as a multiplication of three precoding matrices, called layers. The

three precoding layers are designed to avoid inter-cell interference, maximize

effective signal power, and manage intra-cell multi-user interference, with low

channel training overhead.

• Analyzing the performance of the proposed multi-layer precoding design. First,
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the per-user achievable rate using multi-layer precoding is derived for a general

channel model. Then, asymptotic optimality results for the achievable rates

with multi-layer precoding are derived for two special channel models: the one-

ring and the single-path models. Lower bounds on the achievable rates for the

cell-edge users are also characterized under the one-ring channel model.

The developed multi-layer precoding solution and other proposed extensions are also

evaluated by numerical simulations. Results show the multi-layer precoding can ap-

proach the single-user rate, which is free of inter-cell and intra-cell interference, in

some special cases. Further, results illustrate that significant rate and coverage gains

can be obtained by multi-layer precoding compared to conventional conjugate beam-

forming and zero-forcing massive MIMO solutions.

4.3 System and Channel Models

In this section, we present the full-dimensional massive MIMO system and

channel models adopted in the paper.

4.3.1 System Model

Consider a cellular system model consisting of B cells with one BS and K

MS’s in each cell, as shown in Fig. 4.1. Each BS is equipped with a two-dimensional

(2D) antenna array of N elements, N = NV (vertical antennas) ×NH (horizontal

antennas), and each MS has a single antenna. We assume that all BSs and MSs are

synchronized and operate a TDD protocol with universal frequency reuse. In the

downlink, each BS b, b = 1, 2, ..., B, applies an N × K precoder Fb to transmit a
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the achievable rates for the cell-edge users are also characterized under the one-ring channel

model.
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rate, which is free of inter-cell and intra-cell interference, in some special cases. Further, results

illustrate that significant rate and coverage gains can be obtained by multi-layer precoding

compared to conventional conjugate beamforming and zero-forcing massive MIMO solutions.

We use the following notation throughout this paper: A is a matrix, a is a vector, a is a

scalar, and A is a set. |A| is the determinant of A, kAkF is its Frobenius norm, whereas AT ,
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Fig. 1. A full-dimensional MIMO cellular model where each BS has a 2D antenna array and serves K users.
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symbol for each user, with a power constraint ‖ [Fb]:,k ‖2 = 1, k = 1, 2, ..., K. Uplink

and downlink channels are assumed to be reciprocal. If hbck denotes the N ×1 uplink

channel from user k in cell c to BS b, then the received signal by this user in the

downlink can be written as

yck =
B∑

b=1

h∗bckFbsb + nck, (4.1)

where sb = [sb,1, ..., sb,K ]T is the K × 1 vector of transmitted symbols from BS b, such

that E [sbs
∗
b ] = P

K
I, with P representing the average total transmitted power, and

nck ∼ N(0, σ2) is the Gaussian noise at user k in cell c. It is useful to expand (4.1) as

yck = h∗cck [Fc]:,k sc,k︸ ︷︷ ︸
Desired signal

+
∑

m 6=k
h∗cck [Fc]:,m sc,m

︸ ︷︷ ︸
Intra-cell interference

+
∑

b6=c
h∗bckFbsb

︸ ︷︷ ︸
Inter-cell interference

+nck, (4.2)

to illustrate the different components of the received signal.

4.3.2 Channel Model

We consider a full-dimensional MIMO configuration where 2D antenna ar-

rays are deployed at the BS’s. Consequently, the channels from the BS’s to each
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user have a 3D structure. Extensive efforts are currently given to 3D channel mea-

surements, modeling, and standardization [90, 91]. One candidate is the Kronecker

product correlation model, which provides a reasonable approximation to 3D covari-

ance matrices [92]. In this model, the covariance of the 3D channel hbck, defined as

Rbck = E [hbckh
∗
bck], is approximated by

Rbck = RA
bck ⊗RE

bck, (4.3)

where RA
bck and RE

bck represent the covariance matrices in the azimuth and elevation

directions. If RA
bck = UA

bckΛ
A
bckU

A
bck
∗

and RE
bck = UE

bckΛ
E
bckU

E
bck
∗

are the eigenvalue

decompositions of RA
bck and RE

bck, then using Karhunen-Loeve representation, the

channel hbck can be expressed as

hbck =
[
UA
bckΛ

A
bck

1
2 ⊗UE

bckΛ
E
bck

1
2

]
wbck, (4.4)

where wbck ∼ N(0, I) is a rank
(
RA
bck

)
rank

(
RE
bck

)
× 1 vector, with rank(A) repre-

senting the rank of the matrix A. Without loss of generality, and to simplify the

notations, we assume that all the users have the same ranks for the azimuth and

elevation covariance matrices, which are denoted as rA and rE.

4.4 Multi-Layer Precoding: The General Concept

In this section, we briefly introduce the motivation and general concept of

multi-layer precoding. Given the system model in Section 4.3, the signal-to-interference-
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plus-noise ratio (SINR) at user k in cell c is

SINRck =

P
K

∣∣∣h∗cck [Fc]:,k

∣∣∣
2

P
K

∑

m6=k
|h∗cck [Fc]:,m |2 +

P

K

∑

b 6=c
‖h∗bckFb‖2 + σ2

, (4.5)

where the terms
∣∣∣h∗cck [Fc]:,k

∣∣∣
2

,
∑

m6=k|h∗cck [Fc]:,m |2, and
∑

b6=c‖h∗bckFb‖2 represent the

desired signal power, intra-cell multi-user interference, and inter-cell interference, re-

spectively. Designing one precoding matrix per BS, Fc, to manage all these kinds of

signals by, for example, maximizing the system sum-rate is non-trivial. This normally

leads to a non-convex problem whose closed-form solution is unknown [26]. Also, co-

ordinating inter-cell interference between BS’s typically results in high cooperation

overhead that makes the value of this cooperation limited [25]. Another challenge lies

in the entire baseband implementation of these precoding matrices, which may yield

high cost and power consumption in massive MIMO systems [4].

Our objective is to design the precoding matrices, Fb, b = 1, 2, ..., B, such that

(i) they manage the inter-cell and intra-cell interference with low requirements on the

channel knowledge, and (ii) they can be implemented using low-complexity hybrid

analog/digital architectures [30], i.e., with a small number of RF chains. Next, we

present the main idea of multi-layer precoding, a potential solution to achieve these

objectives.

Inspired by prior work on multi-user hybrid precoding [30] and joint spatial

division multiplexing [23], and leveraging the directional characteristics of large-scale

MIMO channels [86], we propose to design the precoding matrix Fc as a product of

a number of precoding matrices (layers). In this paper, we will consider a 3-layer
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precoding matrix

Fc = F(1)
c F(2)

c F(3)
c , (4.6)

where these precoding layers are designed according to the following criteria.

• One precoding objective per layer: Each layer is designed to achieve

only one precoding objective, e.g., maximizing desired signal power, minimizing

inter-cell interference, or minimizing multi-user interference. This simplifies the

precoding design problem and divides it into easier and/or convex sub-problems.

Further, this decouples the required channel knowledge for each layer.

• Successive dimensionality reduction: Each layer should be properly de-

signed such that the effective channel, including this layer, has smaller dimen-

sions compared to the original channel. This reduces the channel training over-

head of every precoding layer compared to the previous one. Further, this makes

a successive reduction in the dimensions of the precoding matrices, which eases

implementing them using hybrid analog/digital architectures [4,20,30,93] with

small number of RF chains.

• Different channel statistics: These precoding objectives are distributed over

the precoding layers such that F
(1)
c requires slower time-varying channel state

information compared with F
(2)
c , which in turn requires slower channel state

information compared with F
(3)
c . Given the successive dimensionality reduction

criteria, this means that the first precoding layer, which needs to be designed

based on the large channel matrix, requires very large-scale channel statistics

and needs to be updated every very long period of time. Similarly, the second
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and third precoding layers, which are designed based on the effective channels

that have less dimensions, need to be updated more frequently.

In the next sections, we will present a specific multi-layer precoding design

for full-dimensional massive MIMO systems, and show how it enables leveraging the

large-scale MIMO channel characteristics to manage different kinds of interference

with limited channel knowledge. We will also show how the multiplicative and suc-

cessive reduced dimension structure of multi-layer precoding allows for efficient im-

plementations using hybrid analog/digital architectures.

4.5 Proposed Multi-Layer Precoding Design

In this section, we present a multi-layer precoding algorithm for the full-

dimensional massive MIMO system and channel models described in Section 4.3.

Following the proposed multi-layer precoding criteria explained in Section 4.4, we

propose to design the NvNH ×K precoding matrix Fb of cell b, b = 1, ..., B as

Fb = F
(1)
b F

(2)
b F

(3)
b , (4.7)

where the first precoding layer F
(1)
b is dedicated to avoid the out-of-cell interference,

the second precoding layer F
(2)
b is designed to maximize the effective signal power, and

the third layer F
(3)
b is responsible of canceling the intra-cell multi-user interference.

Writing the received signal at user k in cell c in terms of the multi-layer precoding in

(4.7), we get

yck = h∗cckF
(1)
c F(2)

c F(3)
c sc︸ ︷︷ ︸

received signal from serving BS

+
∑

b 6=c
h∗bckF

(1)
b F

(2)
b F

(3)
b sb

︸ ︷︷ ︸
received signal from other BSs

+nck. (4.8)
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Next, we explain in detail the proposed design of each precoding layer as well

as the required channel knowledge.

4.5.1 First Layer: Inter-Cell Interference Management

We will design the first precoding layer Fb
(1) to avoid the inter-cell interference,

i.e., to cancel the second term of (4.8). Exploiting the Kronecker structure of the

channel model in (4.4), we propose to construct F
(1)
b as

F
(1)
b = FA

b

(1) ⊗ FE
b

(1)
. (4.9)

Adopting the channel model in (4.4) with wbck =
(
ΛA
bck

1
2 ⊗ΛE

bck

1
2

)
wbck and employ-

ing the Kronecker precoding structure in (4.9), the second term of the received signal

yck in (4.8) can be expanded as

∑

b6=c
h∗bckF

(1)
b F

(2)
b F

(3)
b sb =

∑

b 6=c
w∗bck

(
U
∗

bckF
A
b

(1) ⊗UE∗

bckF
A
b

(1)
)

F
(2)
b F

(3)
b sb. (4.10)

Avoiding the inter-cell interference for the users at cell c can then be satisfied if

F
(1)
b , b 6= c is designed such that UE∗

bckF
E
b

(1)
= 0,∀k. Equivalently, for any cell c to

avoid making interference on the other cell users, it designs its precoder FE
c

(1)
to be

in the null-space of the elevation covariance matrices of all the channels connecting

BS c and the other cell users, i.e., to be in Null
(∑

b 6=c
∑

k∈Kb RE
cbk

)
with Kb denoting

the subset of K scheduled users in cell b.

Thanks to the directional structure of large-scale MIMO channels, we note that

with a large number of vertical antennas, NV, the null-space Null
(∑

b6=c
∑

k∈Kb RE
cbk

)

of different scheduled users Kb will have a large overlap. This means that designing
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FE
c

(1)
based on the interference covariance subspace averaged over different scheduled

users may be sufficient. Leveraging this intuition relaxes the required channel knowl-

edge to design the first precoding layer. Hence, we define the average interference

covariance matrix for BS c as

RI
c =

∑

b 6=c
EKb

[
RE
cbk

]
. (4.11)

Let
[
UI
c UNI

c

]
Λc

[
UI
cU

NI
c

]∗
represent the eigen-decomposition of RI

c with the Nv × rI

matrix UI
c and Nv× rNI matrix UNI

c corresponding to the non-zero and zero eigenval-

ues, respectively. Then, we design the first precoding layer F
(1)
c to be in the null-space

of the average interference covariance matrix by setting

F(1)
c = INH

⊗UNI
c , (4.12)

which is an NVNH × rNINH matrix.

Given the design of the first precoding layer in (4.12), and defining the rNI×rE

effective elevation eigen matrix U
E

cck = UNI
c
∗
UE
cck, the received signal at user k of cell

c in (4.8) becomes

yck = w∗cck

(
UA∗

cck ⊗U
E∗

cck

)
F(2)
c F(3)

c sc + nck. (4.13)

Note that the first precoding layer in (4.9) acts as a spatial filter that entirely elim-

inates the inter-cell interference in the elevation domain. This filter, however, may

have a negative impact on the desired signal power for the served users at cell c if

they share the same elevation subspace with the out-of-cell users. Therefore, this first

layer precoding design is particularly useful for systems with low-rank elevation sub-

spaces. It is worth mentioning here that recent measurements of 3D channels show
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that elevation eigenspaces may have low ranks at both low-frequency and millimeter

wave systems [9, 38, 94]. Relaxations of the precoding design in (4.9) are proposed

in Section 4.7 to compromise between inter-cell interference avoidance and desired

signal power degradation.

Required channel knowledge: The design of the first precoding layer in

(4.9) requires only the knowledge of the interference covariance matrix averaged over

different scheduled users. It depends therefore on very large time-scale channel statis-

tics, which means that this precoding layer needs to be updated every very long pe-

riod of time. This makes its acquisition overhead relatively negligible from an overall

system perspective. In fact, this is a key advantage of the decoupled multi-layer

precoding structure that allows dedicating one layer for canceling the out-of-cell in-

terference based on very large time-scale channel statistics while leaving the other

layers to do other functions based on different time scales. This can not be done by

typical precoding schemes that relies on one precoding matrix to manage different

precoding objectives, as this precoding matrix will likely need to be updated based

on the fastest channel statistics.

4.5.2 Second Layer: Desired Signal Beamforming

The second precoding layer Fc
(2) is designed to focus the transmitted power

on the served users’ effective subspaces, i.e., on the user channels’ subspaces including

the effect of the first precoding layer. If we define the matrix consisting of the effective

eigenvectors of user k in cell c as Ucck =
(
UA
cck ⊗U

E

cck

)
, then we design the second
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precoding layer Fc
(2) as a large-scale conjugate beamforming matrix, i.e., we set

Fc
(2) =

[
Ucc1, ...,UccK

]
, (4.14)

which has NHrNI ×KrArE dimensions.

Given the second precoding layer design, and defining Gc,(k,r) = U
∗
cckUccr, the received

signal by user k in cell c can be written as

yck = w∗cck
[
Gc,(k,1), ...,Gc,(k,K)

]
F(3)
c sc + nck. (4.15)

The main objectives of this precoding layer can be summarized as follows. First,

the effective channel vectors, including the first and second precoding layers, will

have reduced dimensions compared to the original channels, especially when very

large numbers of antennas are employed. This reduces the overhead associated with

training the effective channels, which is particularly important for FDD systems [23,

30]. Second, this precoding layer supports the multiplicative structure of multi-layer

precoding with successive dimensional reduction, which simplifies its implementation

using hybrid analog/digital architectures, as will be briefly discussed in Section 4.7.

Required channel knowledge: The design of the second precoding layer

requires only the knowledge of the effective eigenvector matrices Ucck, k = 1, ..., K,

which depends on large-scale channel statistics. Further, it is worth noting that during

the uplink training of the matrices Ucck, the first precoding layer works as spatial

filtering for the other cell interference. Hence, this reduces (and ideally eliminates)

the channel estimation error due to pilot reuse among cells, and consequently leads

to a pilot decontamination effect.
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4.5.3 Third Layer: Multi-User Interference Management

The third precoding layer Fc
(3) is designed to manage the multi-user inter-

ference based on the effective channels, i.e., including the effect of the first and

second precoding layers. If we define the effective channel of user k in cell c as

hck =
[
Gc,(k,1), ...,Gc,(k,K)

]∗
wcck, and let Hc = [hc1, ..., hcK ], then we construct the

third precoding layer F
(3)
c as a zero-forcing matrix

F(3)
c = Hc

(
H
∗
cHc

)−1

Υc, (4.16)

where Υc is a diagonal power normalization matrix that ensures satisfying the pre-

coding power constraint ‖ [Fb]:,k ‖2 = 1. Note that this zero-forcing design requires

NHrNI ≥ KrArE, which is satisfied with high probability in massive MIMO systems,

especially with sparse and low-rank channels. Given the design of the precoding

matrix F
(3)
c , the received signal at user k in cell c can be expressed as

yck = [Υc]k,k sc,k + nck. (4.17)

Required channel knowledge: The design of the third precoding layer

relies on the instantaneous effective channel knowledge. Thanks to the first and

second precoding layers, these effective channels may have much smaller dimensions

compared to the original channels in massive MIMO systems, which reduces the

required training overhead.

4.6 Performance Analysis

The proposed multi-layer precoding design in Section 4.5 eliminates inter-cell

interference as well as multi-user intra-cell interference. This interference cancellation,
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however, may have a penalty on the desired signal power which is implicitly captured

by the power normalization factor [Υc]k,k in (4.17). In this section, we will first

characterize the achievable rate by the proposed multi-layer precoding design for a

general channel model in Lemma 13. Then, we will show that this precoding design

can achieve optimal performance for some special yet important channel models in

Section 4.6.1 and Section 4.6.2.

Lemma 13 Consider the system and channel models in Section 4.3 and the multi-

layer precoding design in Section 4.5. The achievable rate by user k in cell c is given

by

Rck = log2


1 +

SNR
(
W∗

cF
(2)
c

∗
F

(2)
c F

(2)
c

∗
F

(2)
c Wc

)−1

k,k


 , (4.18)

where Wc = IK ◦ [wcc1, ...,wccK ] and SNR = P
Kσ2 .

Proof: See Appendix A 2

Note that the achievable rate in (4.18) is upper bounded by the single-user rate—

the rate when the user is solely served in the network—which is given by Rck =

log2

(
1 + SNR ‖wcck‖2). Therefore, Lemma 13 indicates that the proposed multi-

layer precoding can achieve an optimal performance if F
(2)
c

∗
F

(2)
c = I. To achieve that,

it is sufficient to satisfy the following two conditions.

(i) Gc,(k,m) = 0,∀m 6= k, a condition that captures the impact of multi-user inter-

ference cancellation on the desired signal power.

114



(ii) Gc,(k,k) =
(
UA
cck
∗ ⊗UE

cck
∗)

F
(1)
c F

(1)
c

∗ (
UA
cck ⊗UE

cck

)
= I,∀k, a condition that cap-

tures the possible impact of the inter-cell interference avoidance on the desired

signal power.

Next, we characterize the performance of multi-layer precoding for two special

yet important channel models, namely, the one-ring and single-path channel models.

4.6.1 Performance with One-Ring Channel Models

Motivated by its analytical tractability and meaningful geometrical interpre-

tation, we will consider the one-ring channel model in this subsection [95–98]. This

will enable us to draw useful insights into the performance of multi-layer precoding,

which can then be extended to more general channel models. Note that due to its

tractability, one-ring channel models have also been adopted in prior massive MIMO

work [23,86,99,100].

18

rck

x

y

A
A

�ck

BS

dck

Figure 4.2: An illustration of the one-ring channel model in the azimuth direction.
The BS that, has a UPA in the y-z plane, serves a mobile user in the x-y plane at
distance dck. The user is surrounded by scatterers on a ring of radius rck, and its
channel experience an azimuth angular spread ∆A.
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The one-ring channel model describes the case when a BS is elevated away

from scatterers and is communicating with a mobile user that is surrounded by a

ring of scatterers. Consider a BS at height HBS employing an NV × NH UPA, and

serving a mobile user at a distance dck with azimuth and elevation angles φck, θck, as

depicted in Fig. 4.2. If the mobile is surrounded by scatterers on a ring of radius rck

in the azimuth dimension, then the azimuth angular spread ∆A can be approximated

as ∆A = arctan
(
rck
dck

)
. Further, assuming for simplicity that the received power is

uniformly distributed over the ring, then the correlation between any two antenna

elements with orders n1, n2 in the horizontal direction is given by

[
RA
cck

]
n1,n2

=
1

2∆A

∫ ∆A

−∆A

e−j
2π
λ
d(n2−n1) sin(φck+α) sin(θck)dα. (4.19)

The elevation correlation matrix can be similarly defined for the user k, in terms of

its elevation angular spread ∆E.

In the next theorem, we characterize the achievable rate for an arbitrary user

k in cell c under the one-ring channel model.

Theorem 14 Consider the full-dimensional cellular system model in Section 4.3.1

with cells of radius rcell, and the channel model in Section 4.3.2 with the one-ring

correlation matrices in (4.19). Let φck, θck denote the azimuth and elevation angles of

user k at cell c, and let ∆A,∆E represent the azimuth and elevation angular spread.

Define the maximum distance with no blockage on the desired signal power as dmax =

HBS tan
(

arctan
(
rcell
HBS

)
− 2∆E

)
. If |φck − φcm| ≥ 2∆A or |θck − θcm| ≥ 2∆E, ∀m 6= k,
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and dck ≤ dmax, then the achievable rate of user k at cell c, when applying the multi-

layer precoding algorithm in Section 4.5, satisfies

lim
NV,NH→∞

Rck = Rck = log2

(
1 + SNR ‖wcck‖2) . (4.20)

Proof: See Appendix B 2

Theorem 14 indicates that achievable rate with multi-layer precoding converges

to the optimal single-user rate for the users that are not at the cell edge (rcell − dmax

away from cell edge), provided that they maintain either an azimuth or elevation

separation by double the angular spread. For example, consider a cellular system

with cell radius 100m and BS antenna height 50m, if the elevation angular spread

equals ∆E = 3◦, then all the users within ∼ 80m distance from the BS achieves

optimal rate. It is worth noting here that these rates do not experience any pilot

contamination or multi-user interference impact and can, therefore, grow with the

antenna numbers or transmit power without any bound on the maximum values that

they can reach.

The angular separation between the users in Theorem 14 can be achieved

via user scheduling techniques or other network optimization tools. In fact, even

without user scheduling, this angular separation is achieved with high probability as

will be illustrated by simulations in Section 2.8 under reasonable system and channel

assumptions. Further, for sparse channels with finite number of paths, it can be shown

that this angular separation is not required to achieve the optimal rate. Studying

these topics are interesting future extensions.

117



In the following theorem, we derive a lower bound on the achievable rate with

multi-layer precoding for the cell-edge users.

Theorem 15 Consider the system and channel models described in Theorem 14. If

|φck − φcm| ≥ 2∆A or |θck − θcm| ≥ 2∆E, ∀m 6= k, and dmax ≤ dck ≤ rcell, then the

achievable rate of user k at cell c, when applying the multi-layer precoding algorithm

in Section 4.5, satisfies

lim
NV,NH→∞

Rck ≥ log2

(
1 + SNR ‖wcck‖2 σ2

min

(
U

E

cck

))
. (4.21)

Proof: Similar to the proof of Theorem 14, if |φck − φcm| ≥ 2∆A or |θck − θcm| ≥

2∆E, ∀m 6= k, then limNV,NH→∞Gc,(k,m) = 0. Using the matrix inversion lemma and

leveraging the block diagonal structure of Wc, we get
(
W∗

cF
(2)
c

∗
F

(2)
c F

(2)
c

∗
F

(2)
c Wc

)−1

k,k
=

(
w∗cckGc(k,k)wcck

)−1
. Note that since d > dmax, Ucck is not guaranteed to be in

Range
(
UNI
c

)
, and U

E∗

cckU
E

cck 6= I in general. The achievable rate of user k at cell c can

therefore be written as

lim
NV,NH→∞

Rck = log2

(
1 + SNR w∗cckGc(k,k)wcck

)
(4.22)

(a)

≥ log2

(
1 + SNR |wcck‖2 σ2

min

(
I⊗U

E

cck

))
(4.23)

(b)
= log2

(
1 + SNR |wcck‖2 σ2

min

(
U

E

cck

))
, (4.24)

where (a) follows by applying the Rayleigh-Ritz theorem [101], and (b) results from

the properties of the Kronecker product.

2
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Theorem 15 indicates that cell edge users experience some degradation in their

SNRs as a cost for the perfect inter-cell interference avoidance. In Section 4.7, we

will discuss some solutions that make compromises between the degradation of the

desired signal power and the management of the inter-cell interference for cell-edge

users, under the multi-layer precoding framework.

4.6.2 Performance with Single-Path Channel Models

Rank-1 channel models describe the cases where the signal propagation through

the channel is dominated by one line-of-sight (LOS) or non-LOS (NLOS) path.

This is particularly relevant to systems with sparse channel, such as mmWave sys-

tems [7, 21, 38]. A special case of rank-1 channel models is the single-path channels.

Consider a user k at cell c with a single path channel, defined by its azimuth and

elevation angles φck, θck, the channel vector can be expressed as

hcck = ρ
1
2
cck βck aA (φck, θck)⊗ aE (φck, θck) , (4.25)

where aA (φck, θck) and aE (φck, θck) are the azimuth and elevation array response

vectors, βck is the complex path gain, and ρcck is its path loss.

In the next corollary, we characterize the achievable rate of the proposed multi-

layer precoding design for single-path channels.

Corollary 16 Consider the full-dimensional cellular system model in Section 4.3.1,

and the single-path channel model in (4.25). When applying the multi-layer precoding

algorithm in Section 4.5, the achievable rate of user k at cell c satisfies

lim
NV,NH→∞

Rck = Rck = log2

(
1 + SNR ‖hcck‖2) . (4.26)
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Proof: The proof is similar to that of Theorem 14, and is omitted due to space

limitations. 2

Corollary 16 indicates that the proposed multi-layer precoding design can

achieve an optimal performance for single-path channels, making it a promising so-

lution for mmWave and low channel rank massive MIMO systems. This will also be

verified by numerical simulations in Section 2.8.

4.7 Discussion and Extensions

While we proposed and analyzed a specific multi-layer precoding design in

this paper, there are many possible extensions as well as important topics that need

further investigations. In this section, we briefly discuss some of these points, leaving

their extensive study for future work.

4.7.1 Multi-Layer Precoding with Augmented Vertical Dimensions

As explained in Section 4.5, the proposed multi-layer precoding design at-

tempts to perfectly avoid the inter-cell interference by forcing its transmission to be

in the elevation null-space of the interference. While this guarantees optimal per-

formance for cell-interior users and decontaminates the pilots for all the cell users,

it may also block some of the desired signal power at the cell-edge. In this section,

we propose a modified design for the first precoding layer F
(1)
c that compromises be-

tween the inter-cell interference avoidance and the desired signal degradation. The

main idea of the proposed design, that we call multi-layer precoding with augmented

vertical dimensions, is to simply extend the null-space of the inter-cell interference via
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exploiting large channel characteristics. This is summarized as follows. Leveraging

Lemma 2 in [86], the rank of the one-ring correlation matrix can be related to its

angular range [θmin, θmax] as

rank (R) =
ND

λ
(cos(θmin)− cos(θmax)) as N →∞. (4.27)

Applying this lemma to the elevation inter-cell interference subspace, setting θmin =

π/2, BS c can estimate its maximum interference elevation angle, denoted θI, as

θI = arccos

(
−rank (RI)λ

NVD

)
. (4.28)

Extending the null space of the interference can then be done by virtually reducing

the inter-cell interference subspace. Let δE denote the angular range of the extended

subspace, the modified inter-cell interference covariance can then be calculated as

[
RI

]
n1,n2

=
1

θI − δE − π/2

∫ θI−δE

π
2

ejkD(n2−n1) cos(α)dα. (4.29)

Finally, if
[
U

I

c U
NI

c

]
Λc

[
U

I

cU
NI

c

]∗
represents the eigen-decomposition of RI, with U

I

c

and U
NI

c correspond to the non-zero and zero eigenvalues, then the modified first

precoding layer can be constructed as

F(1)
c = I⊗U

NI

c . (4.30)

Note that under this multi-layer precoding design, only cell edge users will

experience inter-cell interference and pilot contamination while optimal performance

is still guaranteed for cell-interior users. This yields an advantage for multi-layer

precoding over conventional massive MIMO precoding schemes, which will also be

illustrated by numerical simulations in Section 2.8.
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4.7.2 TDD and FDD Operation with Multi-Layer Precoding

While we focused on TDD systems in this paper, the fact that multi-layer

precoding relies on large-scale channel statistics makes it attractive for FDD oper-

ation as well. In FDD systems, the adjacent cells will cooperate to construct the

elevation inter-cell interference subspace, which is needed to build the first precoding

layer. Since this channel knowledge is of very large-scale statistics and this precod-

ing layer needs to be updated every long time period, this cooperation overhead can

be reasonably low. Given the first layer spatial filtering, every BS can estimate its

users covariance knowledge free of inter-cell interference. Thanks to the multiplica-

tive structure of the multi-layer precoding and its successive dimensional reduction,

only the third precoding layer requires the instantaneous knowledge of the effective

channel, which has much smaller dimensions. It is worth noting here that other FDD

massive MIMO precoding schemes, such as JSDM [23] with its user grouping func-

tions, can be easily integrated into the proposed multi-layer precoding framework for

full-dimensional massive MIMO cellular systems.

In TDD systems, the required channel knowledge for the three stages can be

done through uplink training with different time scales. One important note is that

the second precoding layer (and its channel training) may not be needed in TDD

systems with fully-digital transceivers, as the instantaneous channels can be easily

trained in the uplink with a small number of pilots. This precoding layer, however, is

important if multi-layer precoding is implemented using hybrid architectures, as will

be shown in the following subsection.
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Figure 4.3: The figure shows a hybrid analog/digital architecture, at which base-
band precoding, RF precoding, and antenna downtilt beamforming can be utilized to
implement the multi-layer precoding algorithm.

4.7.3 Multi-Layer Precoding using Hybrid Architectures

Thanks to the multiplicative structure and the specific multi-layer precoding

design in Section 4.5, we note that each precoding layer has less dimensions compared

to the prior layers. This allows the multi-layer precoding matrices to be implemented

using hybrid analog/digital architectures [4, 20, 30, 93], which reduces the required

number of RF chains. In this section, we briefly highlight one possible idea for the

hybrid analog/digital implementation, leaving its optimization and extensive investi-

gation for future work.

Considering the three-stage multi-layer precoding design in Section 4.5, we

propose to implement the first and second layers in the RF domain and perform the

third layer precoding at baseband. Given the successive dimensional reductions, the

required number of RF chains is expected to be much less than the number of anten-

nas, especially in sparse and low-rank channels. As the first precoding layer focuses

on avoiding the inter-cell interference in the elevation direction, we can implement it
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using downtilt directional antenna patterns. We assume that each antenna port has

a directional pattern and electrically adjusted downtilt angle [90, 102]. For example,

The 3GPP antenna port elevation gain GE (θ) is defined as [90]

GE(θ) = GE
max −min

{
12

(
θ − θtilt

θ3dB

)2

, SL

}
, (4.31)

where θtilt is the downtilt angle, and SL is the sidelobe level. Therefore, one way

to approximate FE
c

(1)
is to adjust the downtilt angle θtilt to minimize the leakage

transmission outside the interference null-space UNI
c .

Once Fc
(1) is implemented, the second precoding layer Fc

(2) can be designed

similar to [30], i.e., each column of Fc
(2) can be approximated by a beamsteering vector

taken from a codebook that captures the analog hardware constraints. Finally, the

third precoding layer F
(3)
c is implemented in the baseband to manage the multi-user

interference based on the effective channels that include the effect of the first and

second precoding layers.

4.8 Simulation Results

In this section, we evaluate the performance of the proposed multi-layer pre-

coding algorithm using numerical simulations. We also draw insights into the impact

of the different system and channel parameters.

We consider a single-tier 7-cell cellular system model as depicted in Fig. 4.4(a),

and calculate the performance for the cell in the center. Unless otherwise mentioned,

every BS is assumed to a have a UPA, oriented in the y-z plane, at a height HBS =

35m, and serving users at cell radius rcell = 100m. Users are randomly and uniformly
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dropped in the cells, and every cell randomly schedules K = 20 users to be served

at the same time and frequency slot. The BS transmit power is P = 5 dB and the

receiver noise figure is 7 dB. The system operates at a carrier frequency 4 GHz, with a

bandwidth 10 MHz, and a path loss exponent 3.5. Two channel models are assumed,

namely, the single-path and the one-ring channel models.

The BSs in the adopted system apply the multi-layer precoding algorithm in

Section 4.5. The required channel knowledge is obtained through three-stage uplink

channel training, and every stage includes the effect of the previously designed pre-

coding layers. Next, we present the simulation results for the two adopted channel

models.

4.8.1 Results with Single-Path Channels

In this section, we adopt a single-path model for the user channels as described

in (4.25). The azimuth and elevation angles are geometrically determined based on

users locations relative to the BSs, and the complex path gains βck ∼ CN (0, 1).

Optimality with large antennas: In Fig. 4.4(b), we compare the per-user

achievable rate of multi-layer precoding with the single-user rate and the rate with

conventional conjugate beamforming. The BSs are assumed to employ UPAs that

have NH = 30 horizontal antennas and different numbers of vertical antennas. First,

we note that the per-user achievable rate with multi-layer precoding approaches the

optimal single-user rate as the number of antennas grow large. This verifies the

asymptotic optimality result of multi-layer precoding given in Corollary 16. Note

that the single-user rate is the rate if only this user is served in the network, i.e.,
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Figure 4.4: The adopted single-tier (7-cells) cellular model with FD massive MIMO
antennas at the BSs is illustrated in (a). In (b), the achievable rate of the pro-
posed multi-layer precoding is compared to the single-user rate and the rate with
conventional conjugate beamforming, for different numbers of vertical antennas. The
number of BS horizontal antennas is NH = 30, and the users are assumed to have
single-path channels.

with no inter-cell or multi-user intra-cell interference. In the figure, we also plot the

achievable rate with conventional conjugate beamforming. This assumes that chan-

nels are estimated using uplink training and then conjugate beamforming is applied

in the downlink data transmission [1]. As a function of the path-loss ρbck in (4.25),

the conjugate beamforming rate is theoretically bounded from above by [1]

R
CB

ck = log2

(
1 + SNR

ρ2
cck∑

b 6=c ρ
2
bck

)
, (4.32)

which limits its rate from growing with the number of antenna beyond this value.

Interestingly, the multi-layer precoding rate does not have a limit on its rate and can

grow with the number of antennas and transmit power without a theoretical limit.

126



Antenna Height (m)
20 30 40 50 60 70 80 90 100 110 120

S
p
e
ct

ra
l E

ff
ic

ie
n
cy

 (
b
p
s/

H
z)

4

6

8

10

12

14

16

18

20

22

Single-user (No Interference)
Multi-Layer Precoding
Upper Bound on Conjugate Beamforming
Conjugate Beamforming

(a) rcell = 200m
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Figure 4.5: The achievable rate of the proposed multi-layer precoding is compared
to the single-user rate and the rate with conventional conjugate beamforming for
different cell radii. The BSs are assumed to employ 120 × 30 UPAs, and the users
have single-path channels.

The intuition behind that lies in the inter-cell interference avoidance using large chan-

nel statistics in multi-layer precoding. This works as a spatial filtering that avoids

uplink channel estimation errors due to pilot reuse among cells and cancels inter-cell

interference in the downlink data transmission. Therefore, the multi-layer precoding

rate is free of the pilot-contamination impact. Note that while the asymptotic op-

timality of multi-layer precoding is realized at large antennas numbers, Fig. 4.4(b)

shows it can still achieve gain over conventional massive MIMO beamforming schemes

at much lower number of antennas.

Impact of antenna heights and cell radii: In Fig. 4.5, we evaluate the

impact of the BS antenna height and cell radius on the achievable rates. This figure

adopts the same system and channel assumptions in Fig. 4.4(b). In Fig. 4.5(a), the
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Figure 4.6: The rate coverage gain of the proposed multi-layer precoding algorithm
over conventional conjugate beamforming and zero-forcing is illustrated. This rate
coverage is also shown to be close to the single-user case. The BSs are assumed to
employ 120× 30 UPAs at heights HBS = 35m, the cell radius is rcell = 100m, and the
users have single-path channels.

achievable rates for multi-layer precoding, single-user, and conjugate beamforming

are compared for different antenna heights, assuming cells of radius 200m. The fig-

ure shows that multi-layer precoding approaches single-user rates at higher antenna

heights. This is intuitive because forcing the transmission to become in the elevation

null-space of the interference may have less impact on the desired signal blockage if

higher antennas are employed. Note that the convergence to the single-user rate is

expected to happen at lower antenna heights when large arrays are deployed. These

achievable rates are again compared in Fig. 4.5(b), but for different cell radii. This

figures illustrates that higher cell radius generally leads to less rate because of the
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higher path loss. Further, the difference between single-user and multi-layer precod-

ing rates increases at higher cell radii. In fact, this is similar to the degradation with

less antenna heights, i.e., due to the impact of the inter-cell interference avoidance

on the desired signal power. For reasonable antenna heights and cell radii, how-

ever, the multi-layer precoding still achieves good gain over conventional conjugate

beamforming.

Rate coverage: To evaluate the rate coverage of multi-layer precoding, we

plot Fig. 4.6. The same setup of Fig. 4.4(b) is adopted again with cells of radius 100m,

and BSs with 120× 30 UPAs at heights 35m. First, the figure shows that multi-layer

precoding achieves very close coverage to the single-user case, especially for users

not at the cell edge. For example, ∼ 60% of the multi-layer precoding users get the

same rate of the single-user case. At the cell edge, some degradation is experienced

due to the first precoding layer that filters out-of-cell interference and affects the

desired signal power. This loss, though, is expected to decrease as more antennas

are employed. The figure also shows significant rate coverage gain over conventional

conjugate beamforming and zero-forcing precoding solutions.

4.8.2 Results with One-Ring Channels

In this section, we adopt a one-ring model for the user channels as described

in (4.19). The azimuth and elevation angles are geometrically determined based on

users locations relative to the BSs, and the angular spread is set to ∆A = 5◦,∆E = 3◦.

Every BS randomly selects K = 20 users to be served, i.e., no scheduling is done to

guarantee the angular separation condition in Theorem 14 and Theorem 15.
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Figure 4.7: The rate coverage gain of the proposed multi-layer precoding algorithms
over conventional conjugate beamforming and zero-forcing is illustrated. This rate
coverage is also shown to be close to the single-user case. Further, the modified
algorithm with augmented vertical dimensions can overcome the cell-edge blockage.
The BSs are assumed to employ 100×40 UPAs at heights HBS = 35m, the cell radius
is rcell = 100m. The users have one-ring channel models of azimuth and elevation
angular spread ∆A = 5◦,∆E = 3◦

Rate coverage: In Fig. 4.7-Fig. 4.9, we compare the rate coverage of multi-

layer precoding, single-user, and conventional conjugate beamforming, for different

antenna sizes. We also plot the rate coverage of the multi-layer precoding with aug-

mented vertical dimensions described in Section 4.7.1, assuming an extended angle

δE = 2∆E. This choice makes the maximum no-blockage distance dmax, defined in

Theorem 14, to be equal to the cell radius. Optimization of this parameter deserves

more study in future extensions. Fig. 4.7 considers the system model in Section 4.3

with 100 × 40 BS UPAs and one-ring channel model. First, the figure shows that

multi-layer precoding achieves close coverage to single-user case at cell center. For
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Figure 4.8: The rate coverage gain of the proposed multi-layer precoding algorithms
over conventional conjugate beamforming and zero-forcing is illustrated. This rate
coverage is also shown to be close to the single-user case. Further, the modified
algorithm with augmented vertical dimensions can overcome the cell-edge blockage.
The BSs are assumed to employ 140×40 UPAs at heights HBS = 35m, the cell radius
is rcell = 100m. The users have one-ring channel models of azimuth and elevation
angular spread ∆A = 5◦,∆E = 3◦.

cell edge, though, multi-layer precoding users experience high blockage, which results

from the elevation inter-cell interference avoidance. This can be improved when aug-

menting vertical subspaces as described in Section 4.7.1. Note that, different than

the multi-layer precoding case, the small degradation at the cell-edge users is due

to inter-cell interference, not signal blockage. Further, it is important to note that

cell-center with the modified algorithm in Section 4.7.1 still achieve asymptotic op-

timal rate, i.e., no inter-cell interference or pilot contamination impact exist. The

same behavior is shown again in Fig. 4.8, when larger array sizes are employed. In

this case, though, the cell-edge blockage with multi-layer precoding is less at better
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Figure 4.9: The rate coverage gain of the proposed multi-layer precoding algorithms
over conventional single-cell conjugate beamforming and multi-cell MMSE precoding.
This rate coverage is also shown to be close to the single-user case. The BSs are
assumed to be at heights HBS = 35m, the cell radius is rcell = 100m. The users have
one-ring channel models of azimuth and elevation angular spread ∆A = 5◦,∆E = 3◦.

separation between the desired cell and the other cells’ users can be achieved. In

the two figures, multi-layer precoding with augmented vertical subspaces is shown to

have good coverage gain over conventional massive MIMO precoding solutions.

In Fig. 4.9, we consider the same system and channel models in Fig. 4.7, but

with 80×20 UPAs and K = 5 users to reduce the computational complexity. Fig. 4.9

compares the rate coverage of the proposed augmented dimension based multi-layer

precoding with the single-user rate and the single-cell conjugate beamforming. The

figure also plots the rate coverage of the multi-cell MMSE precoding in [84] that

132



User Distance from Cell Center / Cell Radius
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
pe

ct
ra

l E
ffi

ci
en

cy
 (

bp
s/

H
z)

0

5

10

15

20

25

30

35

40
Single-User (No Interference)
Multi-Layer Precoding - Augmented Elevation Subspace
Multi-Layer Precoding
Conjugate Beamforming

Asymptotic Optimality of
Multi-Layer Precoding

Blockage at Cell Edge
due to Spatial Filtering

Figure 4.10: The achievable rates of the proposed multi-layer precoding algorithms are
compared to the single-user rate and the rate with conventional conjugate beamform-
ing, for different distances from cell center. The BSs are assumed to employ 120× 40
UPAs at heights HBS = 35m and the cell radius is rcell = 100m. The users have
one-ring channel models of azimuth and elevation angular spread ∆A = 5◦,∆E = 3◦.

manages the inter-cell interference. As shown in the figure, multi-layer precoding

achieves a close performance to single-user rate and good gain over single-cell pre-

coding. Fig. 4.9 also illustrates that multi-layer precoding achieves a reasonable gain

over multi-cell MMSE precoding despite the requirement of less channel knowledge.

Rates at cell-interior and cell-edge: To illustrate the achievable rates for

cell-interior and cell-edge users, we plot the achievable rates of multi-layer precod-

ing, single-user, and conventional conjugate beamforming in Fig. 4.10. The rates are

plotted versus the user distance to the BS, normalized by the cell radius rcell = 100m.

The figure confirms the asymptotic optimal performance of multi-layer precoding at
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cell-interior, given in Theorem 14. At cell edge, users experience some blockage that

can be fixed with the augmented vertical dimension modification in Section 4.7.1.

Compared to conventional conjugate beamforming performance, the multi-layer pre-

coding with augmented vertical dimensions exhibits very good gains, even at cell

edge.

4.9 Conclusion

In this paper, we proposed a general precoding framework for full-dimensional

massive MIMO systems, called multi-layer precoding. We developed a specific de-

sign for multi-layer precoding that efficiently manages different kinds of interference,

leveraging the large channel characteristics. Using analytical derivations and numer-

ical simulations, we showed that multi-layer precoding can guarantee asymptotically

optimal performance for the cell-interior users under the one-ring channel models and

for all the users under single-path channels. For the cell-edge users, we proposed a

modified multi-layer precoding design that compromises between desired signal power

maximization and inter-cell interference avoidance. Results indicated that multi-layer

precoding can achieve close performance, in terms of rate and coverage, to the single-

user case. Further, results showed that multi-layer precoding achieves clear gains over

conventional massive MIMO precoding techniques. For future work, it would be inter-

esting to investigate and optimize the implementation of multi-layer precoding using

hybrid analog/digital architectures. It is also important to develop techniques for the

channel training and estimation under hybrid architecture hardware constraints.
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Chapter 5

Frequency Selective Hybrid Precoding

5.1 Overview

Most prior work has focused on hybrid precoding for narrow-band mmWave

systems, with perfect or estimated channel knowledge at the transmitter. MmWave

systems, however, will likely operate on wideband channels with frequency selectivity.

In this chapter1, therefore, we consider wideband mmWave systems with a limited

feedback channel between the transmitter and receiver. First, the optimal hybrid

precoding design for a given RF codebook is derived. This provides a benchmark for

any other heuristic algorithm and gives useful insights into codebook designs. Sec-

ond, efficient hybrid analog/digital codebooks are developed for spatial multiplexing

in wideband mmWave systems. Finally, a low-complexity yet near-optimal greedy

frequency selective hybrid precoding algorithm is proposed based on Gram-Schmidt

orthogonalization. Simulation results show that the developed hybrid codebooks and

precoder designs achieve very good performance compared with the unconstrained

solutions while requiring much less complexity.

1This chapter is based on the work published in the journal paper: A. Alkhateeb and R. W.
Heath, “Frequency Selective Hybrid Precoding for Limited Feedback Millimeter Wave Systems,” in
IEEE Transactions on Communications, vol. 64, no. 5, pp. 1801-1818, May 2016. This work was
supervised by Prof. Robert Heath.
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5.2 Introduction

MmWave communication can leverage the large bandwidths potentially avail-

able at millimeter wave carrier frequencies to provide high data rates [103]. This

makes mmWave a promising carrier frequency for 5G cellular systems [3,6–8,104,105].

Recent channel measurements have confirmed the feasibility of using mmWave not

only for backhaul [24, 105, 106], but also for the access link [21]. Further, system

level evaluation of mmWave network performance indicate that mmWave cellular

systems can achieve a similar spectral efficiency to that obtained at lower-frequency

while providing orders of magnitudes more data rate thanks to the larger band-

width [9, 107–109]. Though mmWave cellular is recently of interest for 5G, it was

proposed as early as thirty years ago [110]. MmWave wireless communication has

been considered for many other applications beyond cellular systems including wire-

less local area networks [36], personal area networks [111], wearable device commu-

nications [112,113], joint vehicular communication and radar systems [114–116], and

simultaneous energy/data transfer [117–119].

To guarantee sufficient received signal power at mmWave frequencies, large

antenna arrays are beneficial at both the transmitter and receiver [6,11,20,21,93,103].

Fortunately, large antenna arrays can be packed into small form factors due to the

small mmWave antenna size [17, 120]. Exploiting large arrays using MIMO signal

processing techniques like precoding and combining, however, is different at mmWave

compared with sub-6 GHz solutions. This is mainly due to the different hardware

constraints on the mixed signal components because of their high cost and power

consumption [29]. Further, the best precoders are designed based on instantaneous
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channel state information, which is difficult to acquire at the transmitter in large

mmWave systems [29] due to the high channel dimensionality. Therefore, developing

precoding algorithms and codebooks for limited feedback wideband mmWave systems

is important for building these systems.

Hybrid analog/digital precoding, which divides the precoding between analog

and digital domains, was proposed to handle the trade-off between the low-complexity

limited-performance analog-only solutions and the high-complexity good-performance

fully digital precoding [18–20,27,39,62,121–123]. The main advantage of hybrid pre-

coding over conventional precoding is that it can deal with having fewer RF chains

than antennas. For general MIMO systems, hybrid precoding for diversity and multi-

plexing gain were investigated in [18], and for interference management in [19]. These

solutions, however, did not make use of the special mmWave channel characteristics

in the design as they were not specifically developed for mmWave systems. In [20], the

sparse nature of mmWave channels was exploited; low-complexity iterative algorithms

based on orthogonal matching pursuit were devised, assuming perfect channel knowl-

edge at the transmitter. Extensions to the case when only partial channel knowledge

is required and when the channel and hybrid precoders are jointly designed were con-

sidered in [27,39]. Algorithms that do not rely on orthogonal matching pursuit were

proposed in [121–123] for the hybrid precoding design with perfect channel knowl-

edge at the transmitter. The main objective of these algorithms was to achieve an

achievable rate that approaches the rate achieved by fully-digital solutions. The work

in [20, 27, 39, 121, 122], though, assumed a narrow-band mmWave channel, with per-

fect or partial channel knowledge at the transmitter. In [62], hybrid beamforming
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with only a single-stream transmission over MIMO-OFDM system was considered.

The solution in [62] though relied on the joint exhaustive search over both RF and

baseband codebooks without giving specific criteria for the design of these codebooks.

As mmWave communication is expected to employ broadband channels, developing

spatial multiplexing hybrid precoding algorithms for wideband mmWave systems is

important. Further, acquiring the large mmWave MIMO channels at the transmitter

is difficult, which highlights the need to devise limited feedback hybrid precoding

solutions.

In this work, we develop hybrid precoding solutions and codebooks for limited

feedback wideband mmWave systems. In our proposed system, the digital precoding

is done in the frequency domain and can be different for each subcarrier, while the

RF precoder is frequency flat. The contributions of the work in this chapter are

summarized as follows.

• First, we consider a frequency-selective hybrid precoding system with the RF

precoders taken from a quantized codebook. For this system, we derive the opti-

mal hybrid precoding design that maximizes the achievable mutual information

under total power and unitary power constraints. Even though an exhaustive

search over the RF codebook will be still required, the derived solution provides

insights into hybrid analog/digital codebooks and greedy hybrid precoding de-

sign problems. Further, this solution gives a benchmark for the other heuristic

algorithms that can be useful for evaluating their performance.

• Second, we consider a limited feedback frequency-selective hybrid precoding
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system where both the baseband and RF precoders are taken from quantized

codebooks. For this system, we develop efficient hybrid analog and digital

precoding codebooks that attempt to minimize a distortion function defined

by the average mutual information loss due to the quantized hybrid precoders

when compared with the unconstrained digital solution.

• Finally, we design a greedy hybrid precoding algorithm based on Gram-Schmidt

orthogonalization for limited feedback frequency selective mmWave systems.

Despite its low-complexity, the proposed algorithm is illustrated to achieve a

similar performance compared with the optimal hybrid precoding design that

requires an exhaustive search over the RF and baseband codebooks.

The performance of the proposed codebooks and precoding algorithms is evaluated

by numerical simulations in wideband mmWave setups, and compared with digital

only precoding schemes in Section 5.8.

5.3 System and Channel Models

In this section, we describe the adopted frequency selective hybrid precoding

system model and the wideband mmWave channel model. Key assumptions made for

each model are also highlighted.

Consider the OFDM based system model in Fig. 5.1 where a BS with NBS

antennas and NRF RF chains is assumed to communicate with a single MS with NMS

antennas and NRF RF chains. The BS and MS communicate via NS length-K data

symbol blocks, such that NS ≤ NRF ≤ NBS and NS ≤ NRF ≤ NMS. In practice, the

139



+

+

+

FRF

RF
Precoder

RF 
Chain

NRF

Baseband
PrecoderNS

K-point 
IFFT

K-point 
IFFT

Digital 
Precoding

F{   }k

NRF

Add
CP

RF 
Chain

NBS

--

--

--

Baseband
PrecoderNMS NRF NRF NS

RF 
Chain

RF 
Chain

Delete  
CP

Delete  
CP

K-point 
FFT

K-point 
FFT

RF
Combiner
WRF

Digital 
Combining 

{     }kW

Add
CP

Figure 5.1: A block diagram of the OFDM based BS-MS transceiver that employs
hybrid analog/digital precoding.

number of RF chains at the MS’s is usually less than that of the BS’s, but we do not

exploit this fact in our model for simplicity of exposition.

At the transmitter, the NS data symbols sk at each subcarrier k = 1, ..., K

are first precoded using an NRF ×NS digital precoding matrix F[k], and the symbol

blocks are transformed to the time-domain using NRF K-point IFFT’s. Note that

our model assumes that all subcarriers are used and, therefore, the data block length

is equal to the number of subcarriers. A cyclic prefix of length D is then added to

the symbol blocks before applying the NBS×NRF RF precoding FRF. It is important

to emphasize here that the RF precoding matrix FRF is the same for all subcarriers.

This means that the RF precoder is assumed to be frequency flat while the baseband

precoders can be different for each subcarrier. This is an important feature of the

frequency selective hybrid precoding architecture in Fig. 5.1 that differentiates it from

the conventional OFDM-based unconstrained digital scheme where only frequency-

selective digital precoders exist. The discrete-time transmitted complex baseband
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signal at subcarrier k can therefore be written as

x[k] = FRFF[k]s[k], (5.1)

where s[k] is the NS × 1 transmitted vector at subcarrier k, such that E [s[k]s∗[k]] =

P
KNS

INS
, and P is the average total transmit power. Since FRF is implemented

using analog phase shifters, its entries are of constant modulus. To reflect that,

we normalize the entries
∣∣∣[FRF]m,n

∣∣∣
2

= 1. Further, we assume that the angles

of the analog phase shifters are quantized and have a finite set of possible val-

ues. With these assumptions, [FRF]m,n = ejφm,n , where φm.n is a quantized angle.

The angle quantization assumption is discussed in more detail in Section 5.6. Note

that the RF beamforming can also be designed as a frequency selective filter [124],

with additional hardware complexity. Two precoding power constraints are consid-

ered in this work: (i) a total power constraint, where the hybrid precoders satisfy
∑K

k=1 ‖FRFF[k]‖2
F = KNS, and (ii) a unitary power constraint, where the hybrid

precoders meet FRFF[k] ∈ UNBS×NS
, k = 1, 2, ..., K, with the set of semi-unitary

matrices UNBS×NS
=
{
U ∈ CNBS×NS |U∗U = I

}
. Note that while the total power con-

straint allows the transmit power to be distributed, possibly non-uniformly, among

the subcarriers and the data streams on each subcarrier, the unitary power constraint

enforces an equal power allocation among the subcarriers and the data streams on

each subcarrier.

At the MS, assuming perfect carrier and frequency offset synchronization, the

received signal is first combined in the RF domain using the NMS × NRF combining

matrix WRF. Then, the cyclic prefix is removed, and the symbols are returned back
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to the frequency domain with NRF length-K FFT’s. The symbols at each subcarrier k

are then combined using theNRF×NS digital combining matrix W[k]. The constraints

on the entries of RF combiner WRF are similar to the RF precoders. Denoting the

NMS ×NBS channel matrix at subcarrier k as H[k], the received signal at subcarrier

k after processing can be then expressed as

y[k] = W∗[k]W∗
RFH[k]FRFF[k]s[k] + W∗[k]W∗

RFn[k], (5.2)

where n[k] ∼ N(0, σ2
NI) is the Gaussian noise vector corrupting the received signal.

To incorporate the wideband and limited scattering characteristics of mmWave

channels [6,7,21,36,125,126], we adopt a geometric wideband mmWave channel model

with L clusters. Each cluster ` has a time delay τ` ∈ R, and angles of arrival and

departure (AoA/AoD), θ`, φ` ∈ [0, 2π]. Each cluster ` is further assumed to contribute

with R` rays/paths between the BS and MS [9,125,127]. Each ray r` = 1, 2, ..., R`, has

a relative time delay τr` , relative AoA/AoD shift ϑr` , ϕr` , and complex path gain αr` .

Further, let ρPL represent the path-loss between the BS and MS, and prc(τ) denote

a pulse-shaping function for TS-spaced signaling evaluated at τ seconds [128]. Under

this model, the delay-d MIMO channel matrix, H [d], can be written as [128]

H [d] =

√
NBSNMS

ρPL

L∑

`=1

R∑̀

r`=1

αr`prc (dTS − τ` − τr`) aMS (θ` − ϑr`) a∗BS (φ` − ϕr`) ,

(5.3)

where aBS (φ) and aMS (θ) are the antenna array response vectors of the BS and MS,

respectively. Given the delay-d channel model in (5.3), the channel at subcarrier k,
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H[k], can be then expressed as [59]

H[k] =
D−1∑

d=0

H [d]e−j
2πk
K
d. (5.4)

While most of the results developed in this work are general for large MIMO

channels, and not restricted to the channel model in (5.3), we described the wideband

mmWave channel model in this section as it will be important for understanding the

motivation behind the proposed construction of the hybrid analog/digital precoding

codebooks in Section 5.6. Further, it will be adopted for the simulations in Section 5.8

and for drawing conclusions about the performance of the proposed precoding schemes

and codebooks in wideband mmWave channels.

5.4 Problem Statement

In this work, we consider the downlink system model in Section 5.3 when the

BS and MS are connected via a limited feedback link. For this setup, we assume the

MS has perfect channel knowledge with which it selects the best RF and baseband

precoding matrices F?
RF and {F?[k]}Kk=1 from predefined quantization codebooks to

maximize the achievable mutual information when used by the BS. The main objective

of this work then is to develop efficient RF and baseband precoding codebooks for

limited feedback wideband hybrid analog/digital precoding architectures. In this

section, we first formulate the optimal hybrid precoding based mutual information

when given RF and baseband precoding codebooks are used. Then, we briefly explain

how the main objective of this work will be investigated in the subsequent sections.

As this chapter focuses on the limited feedback hybrid precoding design, i.e.,
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the design of FRF, {F[k]}Kk=1, we will assume that the receiver can perform optimal

nearest neighbor decoding based on the NMS-dimensional received signal with fully

digital hardware. This allows decoupling the transceiver design problem, and focusing

on the hybrid precoders design to maximize the mutual information of the system [20],

defined as

I
(
FRF, {F[k]}Kk=1

)
=

1

K

K∑

k=1

log2

∣∣∣∣INMS
+

ρ

NS

H[k]FRFF[k]F∗[k]F∗RFH∗[k]

∣∣∣∣ , (5.5)

where ρ = P
Kσ2 is the SNR. As combining with fully digital hardware, though, is

not a practical mmWave solution, the hybrid combining design problem needs also

to be considered. The design ideas that will be given in this chapter for the hybrid

precoders, however, provide direct tools for the construction of the hybrid combining

matrices, WRF, {W[k]}Kk=1, and is therefore omitted due to space limitations.

If the RF and baseband precoders are taken from quantized codebooks FRF

and FBB, respectively, then the maximum mutual information under the given hybrid

precoding codebooks and the total power constraint is

I?HP = max
FRF,{F[k]}Kk=1

I
(
FRF, {F[k]}Kk=1

)

s.t. FRF ∈ FRF,

F[k] ∈ FBB, k = 1, 2, ..., K,

K∑

k=1

‖FRFF[k]‖2
F = KNS.

(5.6)

The maximum mutual information with hybrid precoding and under the unitary

power constraint is similar but with the last constraint in (5.6) replaced with FRFF[k] ∈

UNBS×NS
.
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Our main objective in this work is to construct efficient hybrid precoding

codebooks FRF and FBB to maximize the achievable mutual information in (5.6). To

get initial insights into the solution of this problem, we will first investigate a special

case of the limited feedback hybrid precoding problem in Section 5.5 when only the

RF precoders are taken from quantized codebooks while no quantization constraints

are imposed on the baseband precoders. For this problem, we will derive the optimal

hybrid precoding design for any given RF codebook FRF. The results of Section 5.5

will help us developing RF and baseband precoders codebook in Section 5.6.

5.5 Optimal Hybrid Precoding Design for a Given RF Code-
book

In this section, we investigate the limited feedback hybrid precoding design

when only the RF precoders are taken from quantized codebooks. This problem is

of a special interest for two main reasons. First, it will provide useful insights into

the construction of efficient hybrid analog/digital precoding codebooks as will be

summarized at the end of this section. Second, the hybrid precoding design problem

with only RF precoders quantization can also be interpreted as the hybrid precoding

design problem with perfect channel knowledge. The reason is that even when perfect

channel knowledge is available at the transmitter, the RF precoders will be taken

from a certain codebook that captures the hardware constraints such as the phase

shifters quantization. With this motivation, we consider the following relaxation of

the optimization in (5.7) that captures the assumption that only the RF precoders
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are quantized.

I?HP = max
FRF,{F[k]}Kk=1

I
(
FRF, {F[k]}Kk=1

)

s.t. FRF ∈ FRF,

K∑

k=1

‖FRFF[k]‖2
F = KNS.

(5.7)

The design of the hybrid analog/digital precoders in (5.7) is non-trivial due to

(i) the RF hardware non-convex constraint FRF ∈ FRF, and (ii) the coupling between

the analog and digital precoding matrices, which arises in the power constraint (the

second constraint in (5.7)). Due to these difficulties, prior work [20, 27, 62] focused

on developing heuristics designs for the hybrid analog/digital precoders in (5.7). Al-

though these heuristic algorithms were shown to give good performance, they do not

provide enough insights that help, for example, to design limited feedback hybrid

precoding codebooks.

In this section, we will consider the coupling between the analog and digital

precoders, and show that the optimal baseband precoders can be written as a function

of the RF precoders under both the total and unitary power constraints. This will

reduce the hybrid precoding design problem to an RF precoder design problem.

5.5.1 Total Power Constraint

As the RF precoding matrix FRF in (5.7) is taken from a quantized codebook

FRF, then the optimal mutual information in (5.7) can also be equivalently written
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in the following outer-inner problems form

I?HP = max
FRF∈FRF





max
{F[k]}Kk=1

I
(
FRF, {F[k]}Kk=1

)

s.t.
K∑

k=1

‖FRFF[k]‖2
F = KNS,





(5.8)

where the outer maximization is over the set of possible quantized RF precoding

matrices, and the inner problem is over the set of feasible baseband precoders given

the RF precoder,
{

F[k] ∈ CNRF×NS|∑K
k=1 ‖FRFF[k]‖2

F = KNS

}
.

Note that the solution of the optimal baseband precoders in the inner prob-

lem of (5.8) is not given by the simple SVD of the effective channel with the RF

precoder, H[k]FRF, because of the different power constraint that represents the cou-

pling between the baseband and RF precoders. In the following proposition, we find

the optimal baseband precoders of the inner problem of (5.8).

Proposition 17 Define the SVD decompositions of the kth subcarrier channel matrix

H[k] as H[k] = U[k]Σ[k]V∗[k], and the SVD decomposition of the effective channel

matrix Σ[k]V∗[k]FRF (F∗RFFRF)−
1
2 = U[k]Σ[k]V

∗
[k]. Then, the baseband precoders

{F[k]}Kk=1 that solve the inner optimization problem of (5.8) are given by

F?[k] = (F∗RFFRF)−
1
2
[
V[k]

]
:,1:NS

Λ[k], k = 1, 2, ..., K, (5.9)

where
[
V[k]

]
:,1:NS

is the NRF × NS matrix that gathers the NS dominant vectors of

V[k], and Λ[k] is an NS ×NS water-filling power allocation diagonal matrix with

[Λ[k]]2i,i =

(
µ− NS

ρ
[
Σ[k]

]2

)+

, i = 1, ..., NS, k = 1, ..., K, (5.10)
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and with µ satisfying

K∑

k=1

NS∑

i=1

(
µ− NS

ρ
[
Σ[k]

]2

)+

= KNs (5.11)

Proof: See Appendix A in [34]. 2

Given the optimal baseband precoder in (5.9), the optimal hybrid precoding

based mutual information with the RF codebook FRF and a total power constraint

can now be written as

I?HP = max
FRF∈FRF

1

K

K∑

k=1

log2

∣∣∣∣INS
+

ρ

NS

[
Σ[k]

]2
1:NS,1:NS

Λ[k]2
∣∣∣∣ , (5.12)

where Σ[k]2 and Λ[k]2 are functions only of FRF and H[k] as defined in Proposi-

tion 17. This means that the optimal hybrid precoding based mutual information

is determined only by the RF precoders design. Hence, an exhaustive search over

the RF precoders codebook FRF is sufficient to find the maximum achievable mutual

information with hybrid precoding.

The hybrid precoding design in Proposition 17 can also be extended to the

case when the power constraint is imposed on each subcarrier. In this case, the power

constraint on the hybrid precoders is written as ‖FRFF[k]‖F = NS, k = 1, ..., K. The

following corollary presents the optimal baseband precoder for a given RF codebook,

under the per-subcarrier total power constraint.

Corollary 18 The optimal baseband precoders that maximizes the objective of the

inner optimization problem of (5.8), under the constraint ‖FRFF[k]‖F = NS, k =
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1, ..., K, are given by

F?[k] = (F∗RFFRF)−
1
2
[
V[k]

]
:,1:NS

ΛP[k], k = 1, 2, ..., K, (5.13)

where ΛP[k] is an NS ×NS water-filling power allocation diagonal matrix with

[ΛP[k]]2i,i =

(
µ− NS

ρ
[
Σ[k]

]2

)+

, i = 1, ..., NS, (5.14)

and with µ satisfying

NS∑

i=1

(
µ− NS

ρ
[
Σ[k]

]2

)+

= Ns, k = 1, ..., K. (5.15)

Proof: The proof is similar to Proposition 17 and is therefore omitted. 2

It is worth mentioning here that most current wireless systems do not perform

per subcarrier power allocation. This constraint, therefore, is not especially critical

for practical systems.

An important note on the structure of the optimal hybrid precoders derived in

Proposition 17 and corollary 18 is that the matrix FHP[k] representing this optimal

hybrid precoders at subcarrier k can be written as

FHP[k] = FU[k]Λ[k], (5.16)

where FU[k] = F?
RF ((F?

RF)∗F?
RF)
− 1

2
[
V[k]

]
:,1:NS

is a semi-unitary matrix, as it can be

verified that F∗U[k]FU[k] = INS
. This means that the structure of the optimal hybrid

precoders is similar to that of the unconstrained SVD precoders, as it is written as a

product of a semi-unitary matrix and a diagonal water-filling power allocation matrix.
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5.5.2 Unitary Power Constraint

For limited feedback MIMO systems, the unitary power constraint which re-

quires the columns of the precoding matrix FRFF[k] to be orthogonal with equal

power, is an alternative important constraint. Even though some performance loss

should be expected with unitary constraints compared with the more relaxed total

power constraint, unitary constraints usually lead to more efficient codebooks and

codeword selection algorithms for limited feedback systems [70]. Further, they nor-

mally offer a close performance to the total power constraint [70]. In this subsection,

we investigate the optimal hybrid precoding design under a unitary power constraint,

and conclude important results for limited feedback hybrid precoding.

Similar to (5.8), the optimal mutual information with hybrid precoding under

the unitary power constraint can be written in the following outer-inner problems

form

I?HP = max
FRF∈FRF





max
{F[k]}Kk=1

I
(
FRF, {F[k]}Kk=1

)

s.t. FRFF[k] ∈ UNBS×NS
, k = 1, 2, ..., K.



 (5.17)

Given an RF precoder FRF, we find, in the following proposition, the optimal base-

band precoders of the inner problem of (5.17).

Proposition 19 Define the SVD decompositions of the kth subcarrier channel matrix

H[k] and the matrix Σ[k]V∗[k] (F∗RFFRF)−
1
2 as in Proposition 17, then the baseband

precoders {F[k]}Kk=1 that solve the inner optimization problem of (5.17) are given by

F?[k] = (F∗RFFRF)−
1
2
[
V[k]

]
:,1:NS

, k = 1, 2, ..., K. (5.18)
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Proof: The proof is similar to that in Appendix A in [34], and is skipped due to

space limitations. 2

Given the optimal baseband precoder in (5.18), the optimal hybrid precod-

ing based mutual information with the RF codebook FRF and the unitary power

constraint can be written as

I?HP = max
FRF∈FRF

1

K

K∑

k=1

log2

∣∣∣∣INS
+

ρ

NS

[
Σ[k]

]2
1:NS,1:NS

∣∣∣∣ , (5.19)

where Σ[k]2 depends only on FRF and H[k] as defined in Proposition 17. Next, we

state an important remark on the structure of the optimal hybrid precoding design.

Remark 1. The optimal baseband precoder F?[k] under the unitary hybrid precoding

power constraint FRFF[k] ∈ UNBS×NS
is decomposed as F?[k] = ARFG?[k], where

ARF = (F∗RFFRF)−
1
2 depends only on the RF precoder, and G?[k], which we call the

equivalent baseband precoder, is a semi-unitary matrix, G?[k] ∈ UNRF×NS
, with the

optimal design described in (5.18).

Remark 1 shows that for the BS to achieve the optimal mutual information with the

unitary power constraint and RF codebook FRF, it needs to know (i) the index of the

RF precoder codeword that solves (5.19), and (ii) the optimal semi-unitary equivalent

baseband precoding matrix G?[k].

Although an exhaustive search over the RF codebook is still required to find

the optimal mutual information in (5.12) and (5.19), the derived results are useful

for several reasons. First, equations (5.12) and (5.19) provide, for the first time, the

maximum achievable rate with hybrid precoding for any given RF codebooks. There-

fore, these equations give a benchmark that can be used to evaluate the performance
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of any heuristic/iterative hybrid analog/digital precoding algorithms, and to estimate

how much additional improvement is possible. Further, the optimal mutual informa-

tion in (5.12) and (5.19), depend only on the RF codebook, which will help in the

design of the RF codebook as we will see in Section 5.6. Another useful finding is the

special construction of the optimal baseband precoder described in Remark 1 which

offers insights into the limited feedback hybrid precoding design as will be described

in Section 5.6.

For the remaining part of this chapter, we will focus on the hybrid precod-

ing design problem with the unitary constraint. In the next section, we will address

the design of hybrid precoding codebooks for limited feedback wideband mmWave

systems. Then, in Section 5.7, we will develop a greedy frequency selective hybrid

precoding algorithm based on Gram-Schmidt orthogonalization, that relaxes the ex-

haustive search requirement over the RF codebook in (5.19) while providing a near-

optimal performance. It is worth noting here that as shown in (5.16), the optimal

hybrid precoders under total power constraints consist of a semi-unitary matrix mul-

tiplied by a diagonal water-filling power allocation matrix. Therefore, the hybrid

precoding codebooks and codeword selection algorithms that will be designed under

unitary power constraints can also be used for hybrid precoding under total power

constraints. The water=filling power allocation can be done as a subsequent step to

further improve the performance.
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5.6 Codebook Design for Frequency Selective Hybrid Pre-
coding

In this section, we consider the wideband mmWave system model in Section 5.3

with limited feedback, and develop hybrid analog and digital codebooks. First, we

will consider the case NS = NRF in Section 5.6.1 where we leverage the structure

of the optimal hybrid precoders developed in Section 5.5 to show that the hybrid

codebook design problem can be reduced to an RF codebook design problem. Then,

we consider the case NS < NRF in Section 5.6.2, where we develop hybrid analog and

digital precoding codebooks leveraging the results in Section 5.6.1.

5.6.1 Case 1: NS = NRF

Given the optimal baseband precoder structure from (5.18), the optimal hybrid

precoding based mutual information when NS = NRF, and with the RF codebook FRF

can be written as I?HP =

max
FRF∈FRF

1

K

K∑

k=1

log2

∣∣∣∣Ir(H[k]) +
ρ

NS

Σ[k]2V∗[k]FRF (F∗RFFRF)−
1
2 G[k]G∗[k]

× (F∗RFFRF)−
1
2 F∗RFV[k]

∣∣∣ . (5.20)

Since G[k] is unitary for NS = NRF, equation (5.20) can be equivalently written as

I?HP = max
FRF∈FRF

1

K

K∑

k=1

log2

∣∣∣∣Ir(H[k]) +
ρ

NS

Σ[k]2V∗[k]FRF (F∗RFFRF)−1 FRFV[k]

∣∣∣∣ .

(5.21)

As a result, the optimal mutual information is invariant to the optimal equivalent

baseband precoder, and depends only on the knowledge of the RF precoder FRF. This
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leads to the following remark.

Remark 2. With NS = NRF, feeding back only the index of the optimal RF precoder

that solves (5.21) is sufficient to achieve the optimal mutual information with limited

feedback hybrid precoding.

Remark 2 also means that no quantization of the baseband precoder is re-

quired when NS = NRF. Further, optimizing the limited feedback hybrid precoding

performance is achieved by the optimization of the RF codebook design FRF, which

is addressed in the remaining part of this subsection.

RF Codebook Design Criterion: Our objective is to design the RF code-

book to minimize the distortion given by the average mutual information loss of

hybrid precoding compared with the optimal unconstrained per-subcarrier SVD so-

lution. Denoting the SVD of the RF precoder as FRF = URFΣRFV∗RF, the optimal

mutual information with limited feedback hybrid precoding in (5.21) can be written

as

I?HP = max
FRF∈FRF

1

K

K∑

k=1

log2

∣∣∣∣Ir(H[k]) +
ρ

NS

Σ[k]2V∗[k]URFU∗RFV[k]

∣∣∣∣ . (5.22)

For large mmWave MIMO systems, a reasonable assumption as stated in [20]

for narrowband channels is that the hybrid precoders can be made sufficiently close to

the dominant channel eigenspace. Further, the dominant channel eigenspaces of the

different subcarriers may have high correlation at mmWave channels [21, 129]. This

means that the eigenvalues of the matrix I−Ṽ∗[k]FRFF[k]F∗[k]F∗RFṼ[k] can be made

sufficiently small. Using this assumption, which will also be evaluated by simulations

in Fig. 5.4-Fig. 5.6, and following similar steps to that in equations (12)-(14) of [20],
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I?HP can be approximately written as

I?HP ≈ max
FRF∈FRF

1

K

K∑

k=1

(
log2

∣∣∣∣INRF
+

ρ

NS

Σ̃[k]2
∣∣∣∣−
(
NRF −

∥∥∥U∗RFṼ[k]
∥∥∥

2

F

))
, (5.23)

=
1

K

K∑

k=1

log2

∣∣∣∣INRF
+

ρ

NS

Σ̃[k]2
∣∣∣∣− min

FRF∈FRF

1

K

K∑

k=1

(
NRF −

∥∥∥U∗RFṼ[k]
∥∥∥

2

F

)
,

(5.24)

where Σ̃[k] = [Σ[k]]1:NRF,1:NRF
and Ṽ[k] = [V[k]]:,1:NRF

.

When fully digital unconstrained precoding with perfect channel knowledge

is possible, the optimal mutual information with per-subcarrier unitary constraint is

achieved by per-subcarrier SVD precoding and is equal to

I?UC =
1

K

K∑

k=1

log2

∣∣∣∣INRF
+

ρ

NS

Σ̃[k]2
∣∣∣∣ . (5.25)

We can now define the distortion due to limited feedback hybrid precoding

with the RF precoder FRF as

D (FRF) = E{H[k]}Kk=1
[I?UC − I?HP] , (5.26)

≈ E{H[k]}Kk=1

[
min

FRF∈FRF

1

K

K∑

k=1

(
NRF −

∥∥∥U∗RFṼ[k]
∥∥∥

2

F

)]
, (5.27)

= E{H[k]}Kk=1

[
min

FRF∈FRF

1

K

K∑

k=1

d2
chord

(
URF, Ṽ[k]

)]
, (5.28)

= E{H[k]}Kk=1

[
min

FRF∈FRF

Φchord

(
URF,

{
Ṽ[k]

}K
k=1

)]
, (5.29)

where dchord (X,Y) is the chordal distance between the two points X,Y on the Grass-

mann manifold G (NBS, NRF). Φchord

(
X, {Y[k]}Kk=1

)
is the average of the squared

chordal distances between the Grassmann points X and {Y[k]}Kk=1. If no constraints
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are imposed on X, the solution of arg minX∈G(NBS,NRF) Φchord

(
X, {Y[k]}Kk=1

)
is given

by the Karcher mean of the K NRF-dimensional subspaces defined by the points

{Y[k]}Kk=1 [130]. Our RF codebook design criterion is then to minimize the distortion

function expression in (5.29)

RF Codebook Construction: Developing a closed-form solution for the

RF precoders codebook that minimizes the distortion in (5.29) is non-trivial for two

main reasons. First, the RF hardware constraints like the constant modulus limitation

on the entries of the RF precoding matrix and the angle quantization of the phase

shifters, which impose non-convex constraints on the distortion function minimization

problem. Second, the lack of knowledge about the closed-form distributions of the

mmWave channel matrices. These closed-form distributions usually play a key role

in constructing the precoders codebook. For example, the uniform distribution of the

dominant singular vectors of the IID complex Gaussian MIMO channels led to the

codebook design based on isotropic packing of the Grassmann manifold [70,131].

To overcome these challenges, we developed Algorithm 4 which is a Lloyd-

type algorithm [132, 133], that first constructs a precoders codebook to minimize

the distortion function in (5.29) for wideband mmWave channels while neglecting

the RF hardware constraints. Then, the RF precoding codewords are designed to

minimize the additional distortion results from the RF hardware constraints. One

advantage of developing a Lloyd-type algorithm is that no knowledge about the closed-

form distributions of the channel matrices is required, and only the knowledge of the

mmWave channel parameter statistics, which are given by measurements [125], is

needed. These parameter statistics are used to generate random channel realizations,
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Algorithm 4 RF Codebook Construction for Frequency Selective Hybrid Precoding

1) Initialization: Generate random initial centroid points FU =
{
FU

1 , ...,F
U
NCB

}
⊂

UNBS×NS
.

2) Source: Generate random mmWave channels according to (5.4), H ={
{H[k]}Kk=1

}
, and construct the set of dominant right singular vectors correspond-

ing to the generated channels V where

V =

{{
Ṽ[k]

}K
k=1
⊂ UNBS×NS

∣∣∣Ṽ[k] = [V[k]]:,1:NS
, {H[k]}Kk=1 ∈ H

}
.

3) Nearest Neighbor Partitioning: Partition the set V into NCB Voronoi cells
{R1, ...,RNCB

} according to (5.30)-(5.31).
4) For each Voronoi cell n, n = 1, ..., NCB

a) Karcher Mean Calculation: Calculate the Karcher mean Mn of the
points {{

Ṽ[k]
}K
k=1

}
in Rn according to (5.33).

b) Updating the Centroid: Update the nth unconstrained codeword FU
n =

Mn.
c) RF Codeword Approximation: Calculate the approximated RF code-

word FRF
n

according to (5.38).
5) Loop back to step 3) until convergence

according to (5.3), which are employed in constructing the RF precoders codebook

as described in Algorithm 4.

The operation of Algorithm 4 can be summarized as follows.

• Initialization and source generation: In this step, NCB initial codewords FU
n , n =

1, ..., NCB for the unconstrained codebook are randomly chosen from UNBS×NS
.

Further, random wideband mmWave channel realizations are generated ac-

cording to (5.3), (5.4) with the parameter statistics given from measurements,
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e.g., [125]. For each channel realization, theK subcarrier channels {H[k]}Kk=1 are

calculated, and their dominant right singular vectors are determined
{

Ṽ[k]
}K
k=1

.

Note that each element of H (and V) is a set of K matrices for the K subcarriers.

• Nearest neighbor partitioning: In this step, the points in V are partitioned into

NCB Voronoi cells with respect to the codewords in FU to minimize the average

distortion. To do that, we first define the quantization map C

({
Ṽ[k]

}K
k=1

)
,

that determines the closest codeword in FU to
{

Ṽ[k]
}K
k=1

in terms of the average

squared chordal distance Φchord(.), as

C

({
Ṽ[k]

}K
k=1

)
= arg min

X∈FU

Φchord

(
X,
{

Ṽ[k]
}K
k=1

)
. (5.30)

Once the codeword closest to each point in V is determined, these points can

be partitioned into NCB sets Rn, n = 1, 2, ..., NCB as follows

Rn =

{{
Ṽ[k]

}K
k=1
∈ V

∣∣∣∣C
({

Ṽ[k]
}K
k=1

)
= FU

n

}
. (5.31)

• Centroid calculation: The centroid of each partition Rn is then derived to min-

imize the average distortion for this partition. Hence, the objective of this step

is to calculate the new codeword FU
n that solves

FU
n = arg min

X∈UNBS×NS

E
[
Φchord

(
X,
{

Ṽ[k]
}K
k=1

) ∣∣∣∣
{

Ṽ[k]
}K
k=1
∈ Rn

]
. (5.32)

Minimizing the objective function of the problem in (5.32) is similar to mini-

mizing the function Φchord

(
X,
{

Ṽ[k]
}K
k=1

)
, whose solution is found to be given
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by the Karcher mean [133, 134]. Therefore, the new centroid of (5.32) can be

calculated in a closed form as

Mn = eig1:NS

(∑

Rn

K∑

k=1

Ṽ[k]Ṽ∗[k]

)
, (5.33)

where eig1:NS
(X) represents the first NS eigenvectors of the matrix X corre-

sponding to the NS largest eigenvalues.

• RF codewords approximation: The final objective of Algorithm 4 is to construct

an RF codebook FRF that minimizes the distortion in (5.29). Using the triangle

inequality on the chordal distances [135], the additional distortion due to the

RF hardware constraints can be bounded by

Φchord

(
URF
n ,
{

Ṽ[k]
}K
k=1

)
− Φchord

(
FU
n ,
{

Ṽ[k]
}K
k=1

)
≤ d2

chord

(
FU
n ,U

RF
n

)
,

(5.34)

where URF
n is the NS dominant left singular vectors of the nth RF codeword.

As the chordal distance between two Grassmannian points X,Y ∈ UNBS×NS

is invariant to the right multiplication of any of them by a unitary matrix in

UNS×NS
, then we have

d2
chord

(
FU
n ,U

RF
n

)
= d2

chord

(
FU
n ,U

RF
n VRF

n

)
= d2

chord

(
FU
n ,F

RF
n

(
FRF∗

n FRF
n

)− 1
2

)
.

(5.35)

So, our objective is to solve

FRF?

n = arg min
|FRF
n |p,q=1

d2
chord

(
FU
n ,F

RF
n

(
FRF∗

n FRF
n

)− 1
2

)
. (5.36)
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Finding the exact solution of (5.36) is non-trivial because of the constant-

modulus constraint on the entries of FRF
n . For the sake of a closed-form approx-

imated solution, however, we make the following two approximations, that will

be shown by simulations in Section 5.8 to give very good results compared with

the optimal unconstrained solution. (i) For large mmWave MIMO channels, the

columns of FRF
n can be chosen to be nearly orthogonal, i.e.,

(
FRF∗

n FRF
n

)
≈ I. (ii)

The hybrid precoding and the unconstrained points FRF
n

(
FRF∗

n FRF
n

)− 1
2 and FU

n

can be made very close [20]. Hence, by leveraging the locally Euclidean property

of the Grassmann manifold, the chordal distance in (5.36) can be replaced by

the Euclidean distance [20,136]. Therefore, minimizing the distortion in (5.36)

is approximately equal to the following problem

FRF?

n = arg min
|FRF
n |p,q=1

∥∥FU
n − FRF

n

∥∥2

F
. (5.37)

The problem in (5.37) is a per-entry optimization problem, of which the optimal

solution is given by
[
FRF?

n

]
p,q

= e
j]
(
[FU
n ]
p,q

)
, (5.38)

where the angle ]
([

FU
n

]
p,q

)
can then be approximated to the closest quantized

angle of the available phase shifters.

The convergence of Algorithm 4 is shown in Fig. 5.2 for a 32 × 16 mmWave

system with NRF = 3 RF chains, and for a codebook size 128. The monotonic

convergence of Algorithm 4 to a local optimal solution is guaranteed as the precod-

ing codewords are updated in each iteration according to the nearest neighbor and
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Figure 5.2: Average distortion in (5.29) of the proposed RF codebook constructed
using Algorithm 4 with NS = NRF = 3, and codebook size NCB = 128. The rest
of the channel and simulation parameters are similar to Fig. 5.4(a) described in Sec-
tion 5.8. The figure shows the convergence of the unconstrained and RF approximated
codebooks to small distortion values.

centroid steps (5.30) - (5.32) to make an additional reduction in the distortion func-

tion [132]. In the next subsection, we extend the developed codebook to the case

when NS < NRF.

5.6.2 Case 2: NS < NRF

When NS < NRF, we can see from (5.19) that the optimal hybrid precoding

based mutual information depends on the value of the equivalent baseband precoders,

and are not invariant with respect to them because they will not have a unitary struc-

ture as when NS = NRF. Hence, both the RF and baseband precoders FRF, {F[k]}Kk=1,
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need to be quantized and fed back to the transmitter in this case. Inspired by the

optimal structure of the baseband precoders in (5.18) and by Remark 1, we propose

to quantize the equivalent baseband precoders {G[k]} instead of the baseband pre-

coders. In addition to the intuitive good performance expected to be achieved with

equivalent baseband quantization thanks to following the optimal precoders struc-

ture, one main advantage of equivalent baseband precoders quantization appears in

the favorable structure of the optimal equivalent baseband codebooks as will be dis-

cussed shortly. With RF and equivalent baseband precoders quantization, the optimal

mutual information is given by

I?HP = max
FRF,{F[k]}Kk=1

1

K

K∑

k=1

log2

∣∣∣∣INMS
+

ρ

NS

H[k]FRF (F∗RFFRF)−
1
2 G[k]G∗[k]

× (F∗RFFRF)−
1
2 F∗RFH∗[k]

∣∣∣

s.t. FRF ∈ FRF,

G[k] ∈ GBB ⊆ UNRF×NS
, k = 1, 2, ..., K,

(5.39)

where the constraint GBB ⊆ UNRF×NS
on the equivalent baseband precoders codebook

GBB follows from the unitary power constraint on the hybrid precoders, which requires

the equivalent baseband precoders to have a unitary structure. Before delving into

the design of RF precoders codebook FRF and the equivalent baseband precoders

codebook GBB, we make the following remark on the codebook structure of the optimal

equivalent baseband precoders.

Remark 3. Regardless of the RF codebook, the optimal codebook for the equivalent

baseband precoders {G[k]}Kk=1 under a unitary hybrid precoding constraint is unitary.
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In the remaining part of this subsection, we present the proposed design and

construction of the RF and equivalent baseband precoders codebooks, FRF and GBB.

Hybrid Codebook Design Criterion: The objective now is to design FRF

and GBB to minimize the distortion function D (FRF,GBB) defined as the average mu-

tual information loss of limited feedback frequency selective hybrid precoding com-

pared with the unconstrained perfect channel knowledge solution. Formally, the dis-

tortion function D (FRF,GBB) is written as

D (FRF,GBB) = E{H[k]}Kk=1
[I?UC − I?HP] , (5.40)

where I?UC and I?HP are as defined in (5.25) and (5.39), respectively.

The main challenge of this distortion function is that the hybrid precoding

mutual information depends on the joint RF and equivalent baseband precoders code-

books as shown in (5.39), which makes the direct design of these codebooks to min-

imize the distortion in (5.40) non-trivial. Next, we leverage the optimal baseband

prcoders structure in Section 5.5 to derive an upper bound on the limited feedback

hybrid precoding distortion in (5.40). This bound will attempt to decouple the distor-

tion impact of the RF and equivalent baseband precoding codebooks, and therefore

simplify the hybrid codebook design problem. The limited feedback hybrid precoding

distortion D (FRF,GBB) in (5.40) can be written as

D (FRF,GBB) = E{H[k]}Kk=1
[I?UC − I?HP] , (5.41)

163



(a)
=E{H[k]}Kk=1

[
I?UC − max

FRF∈FRF

1

K

K∑

k=1

log2

∣∣∣∣INS
+

ρ

NS

[
Σ[k]

]2
1:NS,1:NS

∣∣∣∣

]

︸ ︷︷ ︸
∆IRF

+ E{H[k]}Kk=1

[
max

FRF∈FRF

1

K

K∑

k=1

log2

∣∣∣∣INS
+

ρ

NS

[
Σ[k]

]2
1:NS,1:NS

∣∣∣∣− I?HP

]

︸ ︷︷ ︸
∆IBB|RF

,

(5.42)

= D (FRF) + D (GBB |FRF ) , (5.43)

where (a) follows by adding and subtracting the optimal hybrid precoding based mu-

tual information with optimal equivalent baseband precoding knowledge in (5.19).

The first term is therefore the average mutual information loss due to RF codebook

alone, D (FRF), while the second term represents the additional loss with equivalent

baseband precoders quantization D (GBB |FRF ). Exploiting the optimal baseband pre-

coders design in (5.18), we can bound mutual information loss due to RF quantization

as

∆IRF
(a)
=

1

K

K∑

k=1

log2

∣∣∣∣I +
ρ

NS

Σ̃[k]2
∣∣∣∣

− max
FRF∈FRF

1

K

K∑

k=1

NS∑

i=1

log2

(
1 +

ρ

NS

λi (Σ[k]V∗[k]URFV∗RFVRFU∗RFV[k]Σ∗[k])

)
,

(5.44)

(b)

≤ 1

K

K∑

k=1

log2

∣∣∣∣I +
ρ

NS

Σ̃[k]2
∣∣∣∣

− max
FRF∈FRF

1

K

K∑

k=1

NS∑

i=1

log2

(
1 +

ρ

NS

λi

(
Σ̃[k]Ṽ∗[k]URFU∗RFṼ[k]Σ̃

∗
[k]
))

, (5.45)

=
1

K

K∑

k=1

log2

∣∣∣∣I +
ρ

NS

Σ̃[k]2
∣∣∣∣
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− max
FRF∈FRF

1

K

K∑

k=1

log2

∣∣∣∣I +
ρ

NS

Σ̃[k]Ṽ∗[k]URFU∗RFṼ[k]Σ̃
∗
[k]

∣∣∣∣ , (5.46)

(c)≈ min
FRF∈FRF

1

K

K∑

k=1

d
2

chord

(
URF, Ṽ[k]

)
, (5.47)

= min
FRF∈FRF

Φchord

(
URF,

{
Ṽ[k]

}K
k=1

)
, (5.48)

where (a) follows from the design of the optimal baseband precoder in (5.18). The

bound in (b) follows by considering only the NS dominant right singular vectors of

the channel, i.e., the first NS columns of V[k], and (c) follows by considering the

large mmWave MIMO approximations used in (5.23). In (c), dchord is the generalized

chordal distance between subspaces of different dimensions defined as [137]

d
2

chord

(
URF, Ṽ[k]

)
= min (NRF, NS)−

∥∥∥U∗RFṼ[k]
∥∥∥

2

F
, (5.49)

where the dimensions of URF and Ṽ[k] are NBS × NRF and NBS × NS, respectively.

Finally, Φchord(.) is defined as in (5.29), but with respect to the generalized chordal

distance dchord(.). Given the result in (5.48), we reach the following bound on D (FRF)

D (FRF) ≤ E

[
min

FRF∈FRF

1

K

K∑

k=1

Φchord

(
FRF,

{
Ṽ[k]

}K
k=1

)]
. (5.50)

Now, we derive a similar bound on the additional distortion due to the equiv-

alent baseband quantization given a certain RF codebook D (GBB |FRF ). Let F?
RF ∈

FRF be the solution of (5.19), i.e., the solution of the first term in ∆IBB|RF in (5.42),

and Σ
?
[k] be the corresponding Σ[k]. As F?

RF represents a feasible (not necessarily

the optimal) solution of the problem in (5.39), then D (GBB |FRF ) in (5.43) can be
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bounded as

D (GBB |FRF ) ≤ E

[
1

K

K∑

k=1

(
log2

∣∣∣∣INS
+

ρ

NS

[
Σ[k]

]2
1:NS,1:NS

∣∣∣∣

+ max
G[k]∈GBB

log2

∣∣∣∣INS
+

ρ

NS

[
Σ[k]

]2
1:NS,1:NS

[
V[k]

]∗
:,1:NS

G[k]G∗[k]
[
V[k]

]
:,1:NS

∣∣∣∣
)]

,

(5.51)

(a)≈ E

[
min

G∈GBB

1

K

K∑

k=1

dchord

(
G,
[
V[k]

]
:,1:NS

)]
, (5.52)

= E
[

min
G∈GBB

Φchord

(
G,
{[

V[k]
]

:,1:NS

}K
k=1

)]
, (5.53)

where (a) follows by considering the large mmWave MIMO approximations used in

(5.23). The codebook design objective is then to minimize the upper bound on

the distortion function, that is given by the bounds in (5.53), (5.50) on D (FRF) +

D (GBB |FRF ).

Hybrid Codebook Construction: Given the distortion function upper

bounds in (5.50) and (5.53), we will design the RF codebook FRF to minimize the

derived bound on D (FRF). Then, we will design the equivalent baseband codebook

GBB to minimize the bound on the additional distortion of the equivalent baseband

precoders quantization D (GBB |FRF ). As the distortion bounds in (5.50) and (5.53)

are similar to the expression of the RF codebook distortion in (5.29), we use Algo-

rithm 4 to design the hybrid RF and equivalent baseband codebooks FRF and GBB.

For the RF codebook, Algorithm 4 will be used, but with replacing the chordal dis-

tance dchord (.) in (5.30), (5.32), (5.34), (5.36) by the generalized chordal distance

between subspaces of different dimensions in (5.48). To build the unitary equivalent

baseband precoders codebook, Algorithm 4 will be also used, but without step 4-c
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as no RF approximation is required. Even though the dependence of the distortion

function D (GBB |FRF ) on the RF codebook FRF is relaxed in the design, i.e., the RF

and baseband codebooks are sequentially designed, the developed hybrid codebooks

achieve good performance compared with the perfect channel knowledge case as will

be shown in Section 5.8.

5.7 Gram-Schmidt Based Greedy Hybrid Precoding

The optimal hybrid precoding design for any given RF codebook was derived

in Section 5.5. An exhaustive search over the RF codebook, however, is still required

to find the optimal RF precoder in (5.19). This search may be of high complexity,

especially for large antenna systems. Therefore, and inspired by the optimal baseband

precoder structure in (5.18), we develop a greedy frequency selective hybrid precoding

algorithm in this section based on Gram-Schmidt orthogonalization. Different from

prior work that mainly depends on heuristic ideas for the joint design of the RF and

baseband precoders [20, 27, 123], we will make statements on the optimality of the

proposed algorithm in some cases, even though it sequentially designs the RF and

baseband precoders.

Equation (5.19) showed that the optimal hybrid precoding based mutual infor-

mation can be written as a function of the RF precoding alone. Hence, the remaining

problem was to determine the best RF precoding matrix, i.e., the best NRF beam-

forming vectors, from the RF precoding codebook FRF. This requires making an

exhaustive search over the matrices codewords in FRF. A natural greedy approach to

construct the hybrid precoder is to iteratively select the NRF RF beamforming vectors
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to maximize the mutual information. In this chapter, we call this the direct greedy

hybrid precoding (DG-HP) algorithm. For simplicity of exposition, we will assume

that the RF beamforming vectors of the NRF RF chains are to be selected from the

same vector codebook Fv
RF =

{
fRF
1 , ..., fRF

NCB

}
, but choosing unique codewords. Ex-

tensions to the case when each of the NRF RF beamforming vectors is taken from a

different codebook is straightforward.

The operation of the DG-HP algorithm then consists of NRF iterations. In

each iteration, the RF beamforming vector from Fv
RF that maximizes the mutual

information at this iteration will be selected. Let the NBS × (i − 1) matrix F
(i−1)
RF

denote the RF precoding matrix at the end of the (i − 1)th iteration. Then by

leveraging the optimal baseband precoder structure in (5.18), the objective of the ith

iteration is to select fRF
n ∈ Fv

RF that solves

I
(i)
HP = max

fRF
n ∈Fv

RF

1

K

K∑

k=1

i∑

`=1

log2

(
1 +

ρ

NS

λ`

(
H [k] Ḟ

(i,n)
RF

(
Ḟ

(i,n)∗

RF Ḟ
(i,n)
RF

)−1

Ḟ
(i,n)∗

RF H [k]∗
))

,

(5.54)

with Ḟ
(i,n)
RF =

[
F

(i−1)
RF , fRF

n

]
. The best vector fRF

n? will be then added to the RF precod-

ing matrix to form F
(i)
RF =

[
F

(i−1)
RF , fRF

n?

]
. The achievable mutual information with this

algorithm is then IDG−HP
HP = I

(NRF)
HP . The main limitation of this algorithm is that it

still requires an exhaustive search over Fv
RF and eigenvalues calculation in each itera-

tion. The objective of this section is to develop a low-complexity algorithm that has a

similar (or very close) performance to this DG-HP algorithm. In the next subsection,

we will make the first step towards this goal by proving that a Gram-Schmidt based

algorithm can lead to exactly the same performance of the DG-HP. This will be then

leveraged into the design of our algorithm in Section 5.7.2.
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5.7.1 Gram-Schmidt Based Greedy Hybrid Precoding

In hybrid analog/digital precoding architectures, the effective channel seen at

the baseband is through the RF precoders lens. This gives the intuition that it is

better for the RF beamforming vectors to be orthogonal (or close to orthogonal), as

this physically means that the effective channel will have a better coverage over the

dominant subspaces belonging to the actual channel matrix. This intuition is also

confirmed by the structure of the optimal baseband precoder discussed in Remark

1, as the overall matrix FRF (F∗RFFRF)−
1
2 has a semi-unitary structure. Indeed, this

observation can also be related to the structure of the solutions of the nearest matrix

and nearest tight frame problems [138, 139]. This note means that in each iteration

i of the greedy hybrid precoding algorithm in (5.54) with a selected codeword fRF
n? ,

the additional mutual information gain over the previous iterations is due to the con-

tribution of the component of fRF
n? that is orthogonal on the existing RF precoding

matrix F
(i−1)
RF . Based on that, we modify the DG-HP algorithm by adding a Gram-

Schmidt orthogonalization step in each iteration i to project the candidate beamform-

ing codewords on the orthogonal complement of the subspace spanned by the selected

codewords in F
(i−1)
RF . This can be simply done by multiplying the candidate vectors

by the projection matrix P(i−1)⊥ =

(
INBS

− F
(i−1)
RF

(
F

(i−1)∗

RF F
(i−1)
RF

)−1

F
(i−1)∗

RF

)
. Given

the optimal precoder design in (5.18), the mutual information at the ith iteration of

the modified Gram-Schmidt hybrid precoding (GS-HP) algorithm can be written as

I
(i)

HP =

max
fRF
n ∈Fv

RF

1

K

K∑

k=1

i∑

`=1

log2

(
1 +

ρ

NS

λ`

(
H [k] F

(i,n)

RF

(
F

(i,n)

RF

∗
F

(i,n)

RF

)−1

F
(i,n)

RF

∗
H [k]∗

))
,

(5.55)
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(a)
= max

fRF
n ∈Fv

RF

1

K

K∑

k=1

i∑

`=1

log2

(
1 +

ρ

NS

λ`

(
T(i−1) + H[k]P(i−1)⊥fRF

n fRF
n

∗
P(i−1)⊥∗H∗[k]

))
,

(5.56)

with F
(i,n)

RF =
[
F

(i−1)
RF ,P(i−1)⊥fRF

n

]
, T(i−1) = H [k] F

(i−1)
RF

(
F

(i−1)
RF

∗
F

(i−1)
RF

)−1

F
(i−1)
RF

∗
H [k]∗.

Note that T(i−1) is a constant matrix at iteration i, and (a) follows from the Gram-

Schmidt orthogonalization which allows the matrix F
(i,n)

RF

(
F

(i,n)

RF

∗
F

(i,n)

RF

)− 1
2

at iteration

i to be written as

[
F

(i−1)
RF

(
F

(i−1)
RF

∗
F

(i−1)
RF

)− 1
2
,P(i−1)⊥fRF

n

]
. Hence, the eigenvalues cal-

culation in (5.56) can be calculated as a rank-1 update of the previous iteration

eigenvalues, which reduces the overall complexity [140]. The best vector fRF
n? will be

then added to the RF precoding matrix to form F
(i)
RF =

[
F

(i−1)
RF , fRF

n?

]
. At the end

of the NRF iterations, the achieved mutual information is IGS−HP
HP = I

(NRF)

HP . In the

following proposition, we prove that this Gram-Schmidt hybrid precoding algorithm

is exactly equivalent to the DG-HP algorithm.

Proposition 20 The achieved mutual information of the direct greedy hybrid pre-

coding algorithm in (5.54) and the Gram-Schmidt based hybrid precoding algorithm in

(5.55) are exactly equal, i.e., IDG−HP
HP = IGS−HP

HP .

Proof: See Appendix B in [34]. 2

5.7.2 Approximate Gram-Schmidt Based Greedy Hybrid Precoding

The main advantage of the Gram-Schmidt hybrid precoding design in Sec-

tion 5.7.1 is that it leads to a near-optimal low-complexity design of the frequency

selective hybrid precoding as will be discussed in this section. Given the optimal
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Algorithm 5 Approximate Gram-Schmidt Based Frequency Selective Hybrid Pre-
coding

Initialization
1) Construct Π = ṼHΣ̃H, with Σ̃H = diag

(
Σ̃1, ..., Σ̃K

)
and ṼH =

[
Ṽ1, ..., ṼK

]
.

Set FRF = Empty Matrix. Define ACB =
[
fRF
1 , ..., fRF

Nv
CB

]
, where fRF

n , n = 1, ...,

Nv
CB are the codewords in FRF

RF Precoder Design
2) For i, i = 1, ..., NRF

a) Ψ = Π∗ACB

b) n? = arg maxn=1,2,..Nv
CB

∥∥∥[Ψ]:,n

∥∥∥
2
.

c) F
(i)
RF =

[
F

(i−1)
RF fRF

n?

]

d) Π =

(
INBS

− F
(i)
RF

(
F

(i)∗

RF F
(i)
RF

)−1

F
(i)∗

RF

)
Π

Digital Precoder Design

3) F[k] = F
(NRF)
RF

(
F

(NRF)∗

RF F
(NRF)
RF

)− 1
2 [

V[k]
]

:,1:NS
, k = 1, ..., K, with V[k] defined in

(5.18)

baseband precoding solution in (5.18), the mutual information at the ith iteration in

(5.55) can be written as

I
(i)

HP = max
fRF
n ∈Fv

RF

1

K

K∑

k=1

i∑

`=1

log2

(
1 +

ρ

NS

λ`

(
H [k] F

(i,n)

RF

(
F

(i,n)

RF

∗
F

(i,n)

RF

)−1

F
(i,n)

RF

∗
H [k]∗

))

(5.57)

(a)

≥ max
fRF
n ∈Fv

RF

1

K

K∑

k=1

i∑

`=1

log2

(
1 +

ρ

NS

λ`

(
Σ̃[k]Ṽ∗[k]F

(i,n)

RF

(
F

(i,n)

RF

∗
F

(i,n)

RF

)−1

× F
(i,n)

RF

∗
Ṽ[k]Σ̃

∗
[k]
))

, (5.58)

(b)≈ 1

K

K∑

k=1

(
log2

∣∣∣∣I +
ρ

NS

Σ̃[k]2
∣∣∣∣− tr

(
Σ̃[k]

))
(5.59)
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+ max
fRF
n ∈Fv

RF

1

K

K∑

k=1

∥∥∥∥Σ̃[k]Ṽ∗[k]F
(i,n)

RF

(
F

(i,n)

RF

∗
F

(i,n)

RF

)− 1
2

∥∥∥∥
2

F

,

(5.60)

where the bound in (a) is by considering only the first NS dominant singular values

of H[k], and (b) follows from using the large mmWave MIMO approximations used

in (5.23). The objective then of the ith iteration is to select fRF
n ∈ FRF that solves

fRF
n? = arg max

fRF
n ∈Fv

RF

1

K

K∑

k=1

∥∥∥∥Σ̃[k]Ṽ∗[k]F
(i,n)

RF

(
F

(i,n)

RF

∗
F

(i,n)

RF

)− 1
2

∥∥∥∥
2

F

, (5.61)

(a)
=

∥∥∥∥Σ̃HṼ∗HF
(i−1)
RF

(
F

(i−1)∗

RF F
(i−1)
RF

)− 1
2

∥∥∥∥
2

F

+ arg max
fRF
n ∈Fv

RF

∥∥∥Σ̃HṼ∗HP(i−1)⊥fRF
n

∥∥∥
2

2
, (5.62)

where Σ̃H = diag
(
Σ̃[1], ..., Σ̃[K]

)
, ṼH =

[
Ṽ[1], ..., Ṽ[K]

]
, and (a) follows from

Gram-Schmidt which makes F
(i,n)

RF

(
F

(i,n)

RF

∗
F

(i,n)

RF

)− 1
2

, with F
(i,n)

RF =
[
F

(i−1)
RF ,P(i−1)⊥fRF

n

]

at the ith iteration equals to the matrix

[
F

(i−1)
RF

(
F

(i−1)∗

RF F
(i−1)
RF

)− 1
2
,P(i−1)⊥f

(i)
n

]
. The

problem in (5.62) is simple to solve with just a maximum projection step. We call

this algorithm the approximate Gram-Schmidt hybrid precoding (Approximate GS-

HP) algorithm. As shown in Algorithm 5, the developed algorithm sequentially build

the RF and baseband precoding matrices in two separate stages. First, the RF

beamforming vectors are iteratively selected to solve (5.62). Then, the baseband

precoder is optimally designed according to (5.18). Despite its sequential design

of the RF and baseband precoders, which reduces the complexity when compared

with prior solutions that mostly depend on the joint design of the baseband and

RF precoding matrices [20, 27], Algorithm 5 achieves a significant gain over prior

solutions, and gives a very close performance to the optimal solution in (5.19), as will

be shown in Section 5.8. In fact, for some special cases like the case when NS = NRF,
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Algorithm 5 can be proved to provide the optimal baseband and RF precoding design

of the problem max
FRF∈FRF,‖FRFF[k]‖2F≤NRF

1
K

∑K
k=1

∥∥∥Σ̃ [k] Ṽ∗ [k] FRFF [k]
∥∥∥

2

F
which has been

an important optimization objective for many hybrid precoding papers [20, 27].

5.7.3 Total Feedback Overhead

In this subsection, we summarize the feedback overhead associated with the

proposed hybrid precoding strategies in Section 5.6 and Section 5.7 as illustrated in

Table 5.1.

In Section 5.6, we develop an algorithm to construct efficient codebooks FRF

for RF precoding matrices. Hence, the MS will need to feedback the index of the best

RF precoding codeword, i.e., BRF = log2 |FRF| bits. For the baseband precoders, we

found in Section 5.5 that the optimal baseband precoder can be written in terms of

the RF precoder and a semi-unitary matrix (the equivalent baseband precoder). In

the case when NS = NRF, though, this equivalent baseband precoder takes a unitary

structure, and the spectral efficiency is invariant to this equivalent baseband precoder.

Hence, no baseband feedback bits are needed in this case. If NS < NRF, log2 |GBB|

bit will be needed for each subcarrier.

In Section 5.7.2, we developed a greedy hybrid precoding algorithm that re-

quires only a per RF beamforming vector codebook Fv
RF. Hence, the index of the

best codeword for each RF beamforming vectors will be fed back, i.e., a total of

BRF = NRF log2 |Fv
RF| bits. The baseband feedback bits are similar to the other

scheme.
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Table 5.1: Total feedback overhead with the proposed limited feedback hybrid pre-
coding strategies

Hybrid Precoders Quantization Scheme RF Bits BRF Baseband Bits BBB

NS = NRF NS < NRF

RF matrices quantization with FRF

and baseband matrices quantization
with GBB codebook as in Section 5.6

log2 |FRF| 0 K log2 |GBB|

RF vectors quantization with Fv
RF

and baseband matrices quantization
with GBB codebook as in Section 5.6

NRF log2 |Fv
RF| 0 K log2 |GBB|

5.8 Simulation Results

In this section, we validate our analytical results and evaluate the performance

of the proposed codebooks and hybrid precoding designs using numerical simulations.

We adopt the wideband mmWave channel as in (5.3)-(5.4), where a raised-cosine filter

is adopted for the pulse shaping function [128], i.e., prc (t) is modeled as

prc (t) =





π
4

sinc
(

1
2β

)
, t = ± Ts

2β

sinc
(
t
Ts

)
cos(πβtTs )
1−( 2βt

Ts
)
2 , otherwise,

(5.63)

with Ts the sampling time and the roll-off factor β = 1. The number of clusters is

assumed to be L = 6, and the center AoAs/AoDs of the L clusters θ`, φ` are assumed

to be uniformly distributed in [0, 2π). Each cluster has R` = 5 rays with Laplacian

distributed AoAs/AoDs [20, 127], and angle spread of 10o. The number of system

subcarriers K equals 512, and the cyclic prefix length is D = 128, which is similar

to 802.11ad [36]. The paths delay is uniformly distributed in [0, DTs]. While the

proposed algorithms and codebooks are general for large MIMO channels, we assume
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Figure 5.3: The performance of the optimal hybrid precoding design under different
power constraints in Proposition 17, Corollary 18, and Proposition 19 versus the SNR
in (a) and versus the number of channel clusters with SNR = 0 dB in (b). The adopted
system model has NBS = 32 antennas, NMS = 8 antennas, and NS = NRF = 3.

in these simulations that both the BS and MS has a ULA with NRF = 3. Hence,

aBS (φ) is defined as

aBS (φ) =
1√
NBS

[
1, ej 2π

λ
ds sin (φ), ..., ej(NBS−1) 2π

λ
ds sin(φ)

]T

, (5.64)

where λ is the signal wavelength, and ds is the distance between antenna elements

with ds = λ/2. The array response vectors at the MS, aMS (θ), can be written in a

similar fashion.

5.8.1 Optimal Hybrid Precoders and Codebook Designs

First, we compare the performance of the optimal hybrid precoders and the

fully-digital unconstrained precoders for different power constraints in Fig. 5.3(a)-

Fig. 5.3(b). For these figures, we adopt the system model in Section 5.3 with NBS = 32
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antennas, NMS = 8 antennas, and NS = NRF = 3 streams. In Fig. 5.3(a), the

spectral efficiencies of the optimal hybrid precoders under total power constraints,

per-subcarrier total power constraints, and unitary power constraints are plotted, and

compared with the spectral efficiencies of the SVD unconstrained precoding under the

same power constraints. Fig. 5.3(a) shows that the gain of total power constraints

over unitary constraints is limited, and decreases with the SNR. The same setup

is adopted again in Fig. 5.3(b) where the optimal hybrid precoders under different

power constraints are compared for different numbers of channel clusters, assuming

that each cluster contributes with a single ray, and fixing the number of transmitted

streams at NS = 3. Fig. 5.3(b) illustrates that the gain of total power constraints

over unitary constraints increases when the channel is very sparse, i.e., when a very

small number of clusters exist. This gain, though, is very small if the channel has

more than 4-5 clusters.

Next, we evaluate the performance of the proposed hybrid precoding code-

books in Fig. 5.4, adopting the system model in Fig. 5.1 with NBS = 32 antennas,

and NMS = 16 antennas. In Fig. 5.4(a), the case NS = NRF = 3 is considered, the

RF codebook is constructed using Algorithm 4 with different sizes, and the hybrid

precoders are designed according to (5.19). Fig. 5.4(a) shows that the proposed code-

book improves the performance compared with the prior work in [20], even though

much smaller numbers of feedback bits are needed, namely 10 and 7 bits compared

with 18 bits in the case of beamsteering codebooks in [20,27]. In Fig. 5.4(b), the same

setup is considered again, but with NS = 2 streams and NRF = 3 RF chains. In this

case, the hybrid codebooks are constructed as explained in Section 5.6.2, with an RF
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Figure 5.4: The performance of the proposed hybrid codebook design in Algorithm
4, compared with the unconstrained SVD solution, and the prior work, for the case
when NS = NRF = 3 in (a), and the case NS = 2, NRF = 3 in (b).

codebook of size 128 and an equivalent baseband precoders codebook of size 8. The

figure shows that a very good performance can be also achieved with the designed

codebook, despite the relatively small codebook sizes. Further, Fig. 5.4 shows that

the proposed limited feedback hybrid precoding codebooks achieve a good slope with

the SNR relative to the unconstrained with perfect channel knowledge solution.

5.8.2 Low-Complexity Gram-Schmidt Based Greedy Hybrid Precoding

In Fig. 5.5 and Fig. 5.6, we validate the result in Proposition 20, in addition

to evaluating the approximate Gram-Schmidt based hybrid precoding algorithm. In

Fig. 5.5, the same setup of Fig. 5.4(a) is adopted, and the hybrid precoders are

greedily constructed using the direct greedy hybrid precoding algorithm in (5.54),

the Gram-Schmidt hybrid precoding in (5.55), and the low-complexity approximate

Gram-Schmidt hybrid precoding design in Algorithm 5. The spectral efficiencies
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Figure 5.5: The performance of the approximate Gram-Schmidt hybrid precoding
design in Algorithm 5 compared with the optimal hybrid precoding solution in (5.19),
the unconstrained SVD solution, and the prior work. The system has NBS = 32
antennas, NMS = 16 antennas, and NS = NRF = 3.

achieved by these greedy algorithms are compared with the optimal hybrid precoding

design in (5.19) where the RF precoders are selected through an exhaustive search over

the RF beamforming vectors codebook. The rates are also compared with the prior

solution in [20]. For a fair comparison, we assume that each RF beamforming vector

is selected from a beamsteering codebook with a size Nv
CB = 64. First, Fig. 5.5 shows

that the direct greedy and Gram-Schmidt based hybrid precoding algorithms achieve

exactly the same performance which verifies Proposition 20. Their performance is

also shown to be almost equal to the optimal solution given by (5.19). Despite its

low-complexity, the developed approximate Gram-Schmidt hybrid precoding design in

Algorithm 5 achieves a very close performance to the optimal solution. We emphasize
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Figure 5.6: The performance of the approximate Gram-Schmidt hybrid precoding
design in Algorithm 5 for different codebook sizes, compared with the unconstrained
SVD solution, and the prior work. The system has NBS = 64 antennas, NMS = 16
antennas, and NS = NRF = 3.

here that any hybrid precoding design can not perform better that the shown optimal

hybrid precoding solution with the considered RF codebook, which confirms the near-

optimal result of the proposed algorithm. This is also clear in the considerable gain

obtained by the proposed algorithm compared with the prior solution in [20]. Also, it

is worth mentioning that the developed hybrid precoding algorithms in this work can

be applied to any large MIMO system (not specifically mmWave systems). The same

setup is considered in Fig. 5.6, but with NBS = 64 antennas. Fig. 5.6 illustrates the

gain achieved by Algorithm 5 compared with the designs in [20] for different codebook

sizes.

In Fig. 5.7, we evaluate the performance of the proposed approximate Gram-
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Figure 5.7: The performance of the approximate Gram-Schmidt hybrid precoding
design in Algorithm 5 compared with the fully-digital SVD solution for different
numbers of data streams. The system has NBS = 32 antennas, NMS = 8 antennas,
and NRF = NS.

Schmidt hybrid precoding algorithm compared with the digital unconstrained solution

for different numbers of transmitted data streams. In this figure, we adopt the same

setup of Fig. 5.4(a), but with NBS = 32 antennas and NMS = 8 antennas. Further,

each RF beamforming vector is selected from a beamsteering codebook with a size

Nv
CB = 128. The number of RF chains are assumed to be equal to the number of data

streams. First, Fig. 5.7 shows that the performance of the both the unconstrained

precoding and the hybrid precoding increases then decreases again with the num-

ber of data streams. This decrease with large numbers of transmitted data streams

is a result of the sparse mmWave channels and the equal power allocation among
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Figure 5.8: The performance of the approximate Gram-Schmidt hybrid precoding
design in Algorithm 5 compared with the fully-digital SVD solution for different
numbers of data streams. The system has NBS = 32 antennas, NMS = 8 antennas,
and NRF = NS.

the different streams, which causes some power to be allocated to less important

multi-path components. The solution to this problem is what is called multi-mode

precoding [141, 142]. Further, this figure illustrates that the difference between the

proposed hybrid precoding algorithm and digital SVD solution is small at both the

small number of streams and the large number of streams regimes, which also follows

from the sparsity of mmWave channels.

5.8.3 Gain of RF Chains

In Table 5.1, we summarize the required feedback overhead for the limited

feedback operation of OFDM-based hybrid precoding systems. Table 5.1 shows that
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when the number of transmitted streams equals the number of RF chains, NS = NRF,

then only the feedback bits that correspond to the RF precoding codeword need to

be fed back to the transmitter. Note that the reason is not that we only need RF

beamforming for this case, but because the optimal baseband precoder, as obtained

by Proposition 19, can be written as a matrix that depends only on the RF precoder

multiplied by a unitary matrix. Table 5.1 also shows that the number of feedback

bits scales linearly with the number of subcarriers if NS < NRF. It is, therefore,

interesting to evaluate the gain of employing more RF chains than the number of

streams, as achieving this gain requires considerable feedback overhead. In Fig. 5.8, we

plot the spectral efficiency achieved with the proposed Gram-Schmidt greedy hybrid

precoding versus the number of RF chains for NS = 1, 2, and 3 streams. The RF

beamforming vectors are quantized with 5 bits and the equivalent baseband precoders

are quantized with 6 bits. This figure shows that the spectral efficiency gain of having

more RF chains saturates after a few RF chains. Fig. 5.8 also illustrates that having

a number of RF chains NRF = 2NS achieves less than 20% gain, with the cost of much

more feedback overhead. The required numbers of feedback bits and the achievable

spectral efficiency are also listed in Table 5.2 for the case NS = 2 streams. Table

5.2 shows that 3102 bits are needed to achieve 9.7 bps/Hz spectral efficiency when 6

RF chains are employed, while only 10 bits are enough to obtain 8.6 bps/Hz when

NRF = NS = 2. These results indicate that activating a number of RF chains equals to

the number of data streams may be a good technique to reduce the feedback overhead

and increase the feasibility of limited feedback operation in hybrid precoding based

wideband mmWave systems.

182



Table 5.2: Required feedback overhead for the hybrid precoding transmission in
Fig. 5.8 with NS = 2 streams

Number of RF chains NRF 2 4 6
RF feedback bits NRF log2 |Fv

RF| 10 bits 20 bits 30 bits
Baseband feedback bits per subcarrier 0 bits 6 bits 6 bits
Total feedback bits for 512 subcarriers 10 bits 3092 bits 3102 bits
Spectral efficiency with NS = 2 streams 8.6 bps/Hz 9.5 bps/Hz 9.7 bps/Hz

5.9 Conclusion

In this chapter, we investigated limited feedback hybrid precoding design for

wideband mmWave systems. First, we derived the optimal hybrid precoding design

that maximizes the achievable mutual information for any given RF codebook, and

showed that the optimal baseband structure can be decomposed into an RF precoder

dependent matrix and a unitary matrix. This indicated that when the number of

data streams equals to the number of RF chains, only the feedback of the RF pre-

coder index is sufficient to achieve the maximum mutual information. Exploiting

the structure of the optimal hybrid precoders, we also showed that the codebook

of the equivalent baseband precoders should have a unitary structure. These notes

led to efficient hybrid analog/digital precoders codebooks for spatial multiplexing in

wideband mmWave systems. Further, we developed a novel greedy hybrid precoding

algorithm based on Gram-Schmidt orthogonalization. Thanks to this Gram-Schmidt

orthogonalization, we showed that only sequential design of the RF and baseband

precoders is required to achieve the same performance of more sophisticated algo-

rithms that requires a joint design of the RF and baseband precoders in each step.
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Simulation results illustrated that the proposed codebook and precoding algorithms

improve over prior work and stay within a small gap from the unconstrained perfect

channel knowledge solutions.
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Chapter 6

Concluding Remarks

6.1 Summary

This dissertation focused on developing precoding and channel estimation so-

lutions that address key challenges in massive MIMO systems, namely, the hardware

constraints, the channel acquisition overhead, and the precoding design complexity.

First, we proposed efficient mmWave channel estimation algorithms leveraging the

sparse nature of the channels. Then, we developed hybrid analog/digital precoding

techniques for multi-user mmWave MIMO systems. This solution is then generalized

to consider out-of-cell interference resulting, what we called, multi-layer precoding.

Finally, we considered frequency-selective channels and developed hybrid precoding

and codebook designs that leverage the large-scale MIMO channel characteristics to

realize low-complexity solutions.

For the mmWave channel estimation problem, we developed a sparse formu-

lation leveraging the sparse nature of the channels. Based on this formulation, we

proposed a channel estimation algorithms that efficiently detect the different pa-

rameters of the mmWave channel with a low training overhead. Employing hybrid

analog/digital architectures, we designed a hierarchical precoding codebook that con-

structs training beams with arbitrary beamwidth. The performance of the proposed
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algorithm is analytically evaluated for the single-path channel case, and some insights

into efficient training power distributions are obtained. Despite its low-complexity,

results showed that the proposed mmWave channel estimation solution can achieve

good estimation quality, which yields close spectral efficiency to that obtained by

exhaustive search techniques.

For downlink multi-user mmWave MIMO systems, we proposed a low-complexity

yet near-optimal hybrid analog/digital precoding algorithm. The proposed solution

leverages the characteristics of the mmWave channels and the massive MIMO sys-

tems. The performance of the proposed algorithm was analyzed when the channels

are single-path and when the system dimensions are very large. In these cases, the

asymptotic optimality of the proposed algorithm was established, and the gains over

beamsteering solutions were illustrated. Results showed indicated that interference

management in multi-user mmWave systems is required even when the number of an-

tennas is very large. With limited feedback channels, results showed that the hybrid

precoding gains are sensitive to RF angles quantization. Further, good quantization

of the effective lower-dimensional baseband precoders is required to maintain good

gains over analog-only solutions.

For massive MIMO cellular systems, we proposed a general precoding frame-

work, called multi-layer precoding. We developed a specific multi-layer precoding

design for full-dimensional and massive MIMO systems that efficiently manages dif-

ferent kinds of interference. Further, the developed algorithm leverages the large-

scale channel statistics and the directional structure of the massive MIMO channels

to reduce the required training overhead. The performance of multi-layer precoding is

186



analyzed, and its asymptotic optimality is proved for one-ring and single-path channel

models. Results indicated that multi-layer precoding can achieve a close performance,

in terms of rate and coverage, to the single-user case. Further, results showed that

multi-layer precoding achieves clear gains over conventional massive MIMO precoding

techniques.

For frequency-selective channels, we designed and OFDM-based hybrid pre-

coding and codebook designs. Different than fully-digital MIMO precoding, the RF

precoding is common between all subcarriers in the hybrid architectures. We derived

the optimal hybrid precoding design that maximizes the achievable mutual informa-

tion for any given RF codebook, and showed that the optimal baseband structure

can be decomposed into an RF precoder dependent matrix and a unitary matrix.

This indicated that when the number of data streams equals to the number of RF

chains, only the feedback of the RF precoder index is sufficient to achieve the maxi-

mum mutual information. Exploiting the optimal precoding structure, we developed

efficient codebooks for the hybrid analog and digital precoders. Results showed that

the proposed codebooks and precoding designs achieve close spectral efficiencies to

that obtained by fully-digital solutions, despite adopting cost and power efficient

architectures.

6.2 Future Work

There are several possible directions for future research

Radom Measurements for mmWave Channel Estimation: In Chap-

ter 2, we proposed a low-complexity mmWave channel estimation algorithm that
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leverages the sparse nature of the channel and adaptive compressed sensing tools.

Extending this solution to multi-user system, however, is non-trivial. This is mainly

due to the adaptive nature of the solution that causes the training overhead to scale

with the number of users. One way to prevent this scaling is by adopting random

beamforming/measurement vectors. Random beamforming/measurement allows all

users to simultaneously estimate the channels, and hence decreases the associated

training overhead. Therefore, it would be interesting to develop random compressed

sensing based channel estimation algorithms for mmWave systems leveraging the

sparse formulation developed in Chapter 2.

Several challenges, though, face channel estimation with random compressive

sensing at hybrid architecture based mmWave systems. First, the hardware con-

straints makes it challenging to derive closed-form recovery guarantees. This, there-

fore, requires developing new analytical tools to overcome the challenges and to enable

formulating solid statements on the mmWave channel estimation performance under

random compressive sensing. Further, given that the final communication objective

is the data rate, it is interesting to optimize the compressive measurement tools and

algorithms for hybrid architecture based mmWave systems while adopting the sys-

tem sum-rate as a performance metric. One difficulty of doing that come from the

mmWave geometric channel model that leaves a small gap for tractable analysis. This

opens new rooms for future work.

Multi-Layer Precoding Operation with Hybrid Architectures: The

multiplicative structure of the proposed multi-layer precoding framework in Chapter

4 makes it feasible for hybrid architecture implementations. While we highlighted
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one main idea for this implementation, several open problems still need careful in-

vestigations. For example, it is important to develop novel and optimized solutions

for implementing the inter-cell interference avoidance stage in the RF beamforming.

One initial way to do that is by employing antenna elements that have electrically-

controlled directional patterns. This, however, needs further research in the optimiza-

tion and the actual implementation.

Another important challenge with hybrid architecture based multi-layer pre-

coding is the channel acquisition. In Chapter 4, we outlined a three-stage channel

acquisition procedure to obtain the required channel knowledge for designing the

proposed multi-layer precoding algorithm. Implementing this procedure with hybrid

architecture, though, is not straight forward and needs some research. For exam-

ple, estimating the elevation interference covariance matrix when the channel is seen

through the RF lens is an interesting problem. Therefore, extending the hybrid archi-

tecture based channel estimation solution in Chapter 2 to the multi-layer precoding

is an interesting problem for future work.

Analyzing hybrid architecture with accurate RF circuit models: Prior

research on hybrid architectures based precoding and channel estimation algorithms

assumed ideal RF circuit components and antenna. Practical circuits and antennas,

however, have non-ideal characteristics that can affect these designs and resulting

conclusions. It is therefore important to study the impact of hardware impairments

on the performance of low-frequency and mmWave massive MIMO systems. For ex-

ample, it is known that the fully-connected hybrid architecture has an array gain

over the array-of-subarray one, but it is not clear what is the net gain if the insertion
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losses in the power dividers, combiners, and phase shifters are taken into consider-

ation. Analyzing different hybrid architectures under practical RF circuit models is

critical to provide an accurate evaluation of the different architectures.

It would also be interesting to develop impairment-aware precoding and chan-

nel estimation solutions. Based on the insights that will be obtained from analyzing

hybrid architectures under practical circuit models, it might be possible to design new

optimized hybrid architectures, precoding, and channel estimation solutions that take

these insights into consideration. Further, developing solutions that are more robust

to the hardware impairments can boost the actual performance of hybrid architec-

tures under practical conditions. Therefore, developing such hybrid architectures and

associated signal processing solutions and analyzing their performance is important

for future mmWave and massive MIMO systems.
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Appendix A

Proof of Lemma 13

To prove the achievable rate in (4.18), it is sufficient to prove that the power

normalization factor [Υ]k,k that satisfies the multi-layer precoding power constraint
∥∥∥∥
[
F

(1)
c F
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where (a) follows by noting that F
(1)
c has a semi-unitary structure. The effective

channel matrix Hc = [hc1, ..., hcK ] with hck =
[
Gc,(k,1), ...,Gc,(k,1)

]∗
wcck, k = 1, ..., K

can also be written as Hc = F
(2)
c

∗
F

(2)
c Wc with Wc = IK ◦ [wcc1, ...,wccK ], which leads

to (b). Finally, (c) follows by substituting with the value of [Υ]k,k.
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Appendix B

Proof of Theorem 14

Considering the system and channel models in Section 4.3 and applying the

multi-layer precoding algorithm in Section 4.5, the achievable rate by user k at cell c

is given by Lemma 13

Rck = log2


1 +

SNR
(
W∗

cF
(2)
c

∗
F

(2)
c F

(2)
c

∗
F

(2)
c Wc

)−1

k,k


 . (B.1)

If Gc,(k,m) = 0,∀m 6= k and Gc,(k,k) = I, then by noting that the matrix Wc

has a block diagonal structure and using the matrix inversion lemma [143], we get
(
W∗

cF
(2)
c

∗
F

(2)
c F

(2)
c

∗
F

(2)
c Wc

)−1

k,k
= ‖wcck‖−2. Therefore, to complete the proof, it is suf-

ficient to prove that (i) limNV,NH→∞Gc,(k,m) = 0,∀m 6= k and (ii) limNV,NH→∞Gc,(k,k) =

I. To do that, we will first present the following useful lemma, which is a modified

version of Lemma 3 in [86].

Lemma 21 Consider a user k at cell c with an azimuth angle φck. Adopt the one-

ring channel model in (4.19) with an azimuth angular spread ∆A and correlation

matrix RA
cck. Define the unit-norm azimuth array response vector associated with

an azimuth angle φm and elevation angle θm as um = a(φm,θm)√
(NH)

, where a(φm, θm) =
[
1, ..., ejkD(NH−1) sin(θx) sin(φx)

]
. If the angle φx /∈ [φck −∆A, φck + ∆A], then

ux ∈ Null
(
RA
cck

)
, as NH →∞. (B.2)
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Proof: First, note that
[
RA
cck

]
n1,n2

in (4.19), can also be written as
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Then, we have
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Using Lemma 1 in [144], we reach

lim
NH→∞

u∗mRum = 0, ∀φm /∈ [φck −∆A, φck + ∆A] . (B.6)

2

Now, to prove that Gc,(k,m) = U
∗
cckUccr = UA∗

cckU
A
ccr⊗U

E∗

cckU
E

ccr = 0, we need to prove

that either UA∗

cckU
A
ccr = 0 or U

E∗

cckU
E

ccr = 0. If |φck − φcm| ≥ 2∆A, then the columns

of UA
ccm ∈ Span

{
a(φm)√

(NH)
|φm ∈ [φcm −∆A, φcm + ∆A]

}
⊆ Null

(
RA
cck

)
as NH → ∞,

which follows from Lemma 21. This leads to limNH→∞UA
cck
∗
UA
ccm = 0. Similarly,

if |θck − θcm| ≥ 2∆E, then limNV→∞UE∗

cckU
E
ccm = 0. Further, since d ≤ dmax, we

have |θck − θI | ≥ 2∆E, for any elevation angle θI of another cell user. This implies

that UE
cck ∈ Range {UNI} as NV → ∞ by Lemma 21, and ∃Ack such that UE

cck =

UNIAck. For the Uccm, it can be generally expressed as Uccm = UNIAcm + UIBcm for

some matrices Acm,Bcm of proper dimensions. As limNV→∞UE∗

cckU
E
ccm = 0, we have

limNV→∞A∗ckAcm = 0. Then, U
E∗

cckU
E

ccm = A∗ckAcm = 0 as NV →∞. This completes

the proof of the first condition, Gc,(k,m) = 0 if |φck − φcm| ≥ 2∆A or |θck − θcm| ≥ 2∆E,

∀m 6= k.

195



To prove that limNV,NH→∞Gc,(k,k) = I, we need to show that U
E∗

cckU
E

cck = I.

Since UE
cck can be written as UE

cck = UNIAck when NV →∞, then we have UE∗

cckU
E
cck =

A∗ckAck = I. This results in U
E∗

cckU
E

cck = A∗ckAck = I as NV → ∞, which completes

the proof.
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