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Accurate prediction of protein-ligand binding affinity is essential to 

computational drug discovery. Current approaches are limited by the accuracy of the 

underlying potential energy model that describes atomic interactions. A more rigorous 

physical model is critical for evaluating molecular interactions to chemical accuracy. The 

objective of this thesis research is to develop a polarizable force field with an accurate 

representation of electrostatic interactions, and apply this model to protein-ligand 

recognition and to ultimately solve practical problems in computer aided drug discovery. 

By calculating the hydration free energies of a series of organic small molecules, an 

optimal protocol is established to develop the electrostatic parameters from quantum 

mechanics calculations. Next, the systematical development and parameterization 

procedure of AMOEBA protein force field is presented. The derived force field has gone 

through extensive validations in both gas phase and condensed phase. The last part of the 

thesis involves the application of AMOEBA to study protein-ligand interactions. The 

binding free energies of benzamidine analogs to trypsin using molecular dynamics 

alchemical perturbation are calculated with encouraging accuracy. AMOEBA is also used 
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to study the thermodynamic effect of constraining and hydrophobicity on binding 

energetics between phosphotyrosine(pY)-containing tripeptides and the SH2 domain of 

growth receptor binding protein 2 (Grb2). The underlying mechanism of an “entropic 

paradox” associated with ligand preorganization is explored. 
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1 Introduction 

Molecular modeling is one of the fastest growing fields in science. It combines 

physical and biological principles with computational techniques to simulate and 

understand the behavior of molecules. Common computational approaches include ab 

initio or semi-empirical quantum mechanics, empirical molecular mechanics, molecular 

dynamics (MD) and Monte Carlo simulations, free energy and solvation methods, 

structure activity relationships, chemical or biochemical information and databases, and 

so on. These computational techniques have been widely used in a variety of studies 

ranging from drug discovery, structural modeling of biomolecules to material assemblies. 

Combining with experimental methods, such as X-ray crystallography, nuclear magnetic 

resonance (NMR) spectroscopy, molecular modeling serves as a powerful tool to 

understand the molecular structure, interaction, energetics, and therefore provide insights 

into the underlying mechanism. 

Depending on the size of the systems, molecules can be represented at different 

scales, from highly accurate to very approximate. Quantum mechanics (QM) methods, 

providing the highest accuracy when used with proper theory and basis sets, are based on 

the solution of the Schrödinger equation which describes the motions of the electrons and 

nuclei in a molecular system from first principle. Molecular mechanics (MM) is a more 

popular and feasible tool for handling systems with significant larger number of atoms 

with reasonable efficiency. In MM models, the potential energy of a given conformation 

is represented by the sum of a series of individual energy terms including bond 
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stretching, angle bending, dihedral angle rotation and long range interactions. For 

mesosacle simulations, coarse-grained model is a good choice.  

Drug development relies on identifying lead compounds with high affinity for 

specific targets such as receptors, enzymes, hormones and ion channels. Structure-based 

computer modeling of ligand-protein interactions is now a core component of modern 

drug discovery. Although various studies suggest that the calculations of the binding free 

energies based on alchemical transformation have shown reasonable agreement with 

experimental data, chemical accuracy can hardly be achieved.[1, 2] The underlying 

physical model is a major bottleneck.[1, 3] While they are widely used in many areas of 

biological and materials sciences, several aspects of classical force fields require closer 

examination, especially the fixed atomic-charge based electrostatic model. For ligand-

protein binding systems, where ligand may experience significant change in environment, 

it is particularly important to have a more rigorous description in electrostatic interactions 

and take polarization effect into account.  

1.1 POLARIZATION EFFECTS IN MOLECULAR MECHANICAL FORCE FIELDS 

Molecular mechanics based modeling has been widely used in the study of 

chemical and biological systems. The classical potential energy functions and their 

parameters are referred to as force fields. Empirical force fields for biomolecules 

emerged in the early 1970's[4, 5], followed by the first molecular dynamics simulations 

of the bovine pancreatic trypsin inhibitors (BPTI).[6-8] Over the past 30 years, a great 

number of empirical molecular mechanics force fields, including AMBER,[9] 

CHARMM,[10] GROMOS,[11] OPLS,[12] and many others, have been developed. 

These force fields share similar functional forms, including valence interactions 
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represented by harmonic oscillators, point dispersion-repulsion for van der Waals (vdW) 

interactions, and an electrostatic contribution based on fixed atomic partial charges. This 

generation of molecular mechanics force fields has been widely used in the study of 

molecular structures, dynamics, interactions, design and engineering. We refer interested 

readers to some recent reviews for detailed discussions.[13, 14] 

Although the fixed charge force fields enjoyed great success in many areas there 

remains much room for improvement. In fixed charge based electrostatic models, the 

atomic partial charges are meant to be “pre-polarized” for condensed phases in an 

averaged fashion, typically achieved by the fortuitous overestimation of electrostatic 

charges by low-level ab initio quantum mechanics. Such models thus lack the ability to 

describe the variation in electrostatics due to many-body polarization effects, which have 

been shown to be a significant component of intermolecular forces.[14-16] With the rapid 

growth of computational resources, there has been increasing effort to explicitly 

incorporate many-body induction into molecular mechanics to improve the accuracy of 

molecular modeling. 

Classical electrostatics models that take into account polarization appeared as 

early as the 1950s. Barker in his 1953 paper “Statistical Mechanics of Interacting 

Dipoles” discussed the electrostatic energy of molecules in terms of “permanent and 

induced dipoles”.[17] Currently, polarizable models generally fall into three categories, 

those based on induced point dipoles,[13, 18-27] the classical Drude oscillators,[28-30] 

or fluctuating charges.[31-33] More sophisticated force fields that are “electronic 

structure-based” [34] or use “machine learning methods”[35] also exist, but incur higher 

computational costs. Compared to fixed charge models, the polarizable models are still in 
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a relatively early stage. Only in the past decade or so, has there been a systematic effort 

to develop general polarizable force fields for molecular modeling. A number of reviews 

have been published to discuss various aspects of polarizable force fields and their 

development.[13, 36-42] Discussions of the advantages and disadvantages of each model 

and their applications will be presented in the following sections.  

1.2 MODELING POLARIZATION EFFECT  

1.2.1 Induced Dipole Models 

To describe electrostatic interactions involving polarization, we will consider a 

system consisting of a collection of charge distribution sites located at lone-pair 

positions, atomic centers and/or molecular centers, depending on the resolution of the 

model.  The total charge distribution at site i is the sum of permanent and induced 

charge 

                                
    

                              (1.1) 

where M represents the charge distribution. This distribution can be a simple point 

charge, a point multipole expansion with charge, dipole, quadrupole and/or higher order 

moments, or a continuous charge distribution. While the principles described below are 

not limited to any particular representation of charge distribution, we will use point 

multipoles for convenience. 

The electrostatic interaction energy between two charge sites i and j is given by 

                             
 

 
    

                                  (1.2) 

where T is the interaction operator and is a function of the distance between i and j. In the 

case of point charge interactions, T simply equals 1/r. The work (positive energy) needed 
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to polarize a charge distribution also has a quadratic dependence on the induced charge 

distribution: 

                             
 

 
    

    
 
  
    

   
                      (1.3) 

where α is the polarizability of site i that includes all orders of polarizability including 

dipole polarizability.[43] Although α is in generally treated as an isotropic quantity, as in 

the Applequist scheme [43], ab initio anisotropic polarizability tensors can be derived 

from quantum mechanical calculations.[44, 45] 

The total energy is the sum of the electrostatic energy and work spent 

                       
 

 
    

           
 

 
    

    
 
  
    

   
            (1.4) 

The values of the induced moments minimize the total energy, by satisfying                           

              
     

   
             

    
   

                        (1.5) 

As a result 

                    
      

         
    

                        (1.6) 

The above equation can be solved iteratively to obtain the induced dipoles. The 

self-consistent calculation is computational expensive, however can be accelerated with 

predictors and non-stationary iterative methods.[4]  

Substituting   
    

    from Eq (1.5) into Eq (1.4), the final electrostatic energy 

becomes 

              
 

 
     

  
 
     

 
     

 

 
     

    
 
     

 
              (1.7) 

where the first term is the permanent electrostatic energy and the second term is the 

polarization energy. 
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1.2.2 Classic Drude Oscillators 

In the Drude oscillator model, the polarization effect is described by a point 

charge (the Drude oscillator) attached to each non-hydrogen atom via a harmonic spring. 

The point charge can move relative to the attachment site in response to the electrostatic 

environment. The electrostatic energy is the sum of the pairwise interactions between 

atomic charges and the partial charge of the Drude particles. 

      
          

             

 

   

  
          

             

    

   

  
          

             

  

   

  

           
 

 
                

   
                                    (1.8) 

where ND and N are the number of Drude particles and non-hydrogen atoms, qD and qC 

are the charges on the Drude particle and its parent atom, respectively; rD and rC are their 

respective positions, and kD is the force constant of the harmonic spring between the 

Drude oscillator and its parent atom. The last term in the above equation accounts for the 

cost of polarizing the Drude particles. 

The atomic polarizability (α) is a function of both the partial charge on the Drude particle 

and the force constant of the spring 

                               
  
    

  
                              (1.9) 

Both the induced-dipole and Drude oscillator approaches benefit from short-range 

Thole damping to avoid a polarization catastrophe and to produce an anisotropic 

molecular polarization response.[46] 

1.2.3 Fluctuating Charges 

The formalism of the fluctuating charge model is based on the charge 

equilibration (CHEQ) method,[47] in which the chemical potential is equilibrated via the 
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redistribution of charge density. The charge-dependent energy for a system of M 

molecules containing Ni atoms per molecule is expressed as 

                   

 

   

 

   

 
 

 
               

  

   

  

   

 

   

 

   

 
 

 
  

    

       

   

   

   

   

 

                   
 
           

      
                               (1.10) 

where Qi is the partial charge on atomic site i. The χ describes the atomic 

electronegativity that controls the directionality of electron flow and J is the atomic 

hardness that represents the resistance to electron flow or from the atom. These 

parameters are optimized to reproduce molecular dipoles and the molecular polarization 

response. The charge degrees of freedom are typically propagated via an extended 

Lagrangian formulation:[48] 

    
 

 
    

    

  
   

   
 
      

 

 
      

    

  
   

   
 
              

 
       

 
    

(1.11) 

where the first two terms represent the nuclear and charge kinetic energies, the third term 

is the potential energy, and the fourth term is the molecular charge neutrality constraint 

enforced on each molecule i via a Lagrange multiplier λi. The extended Lagrangian 

approach can also be applied to the induced dipole and Drude oscillator models described 

earlier. While the extended Lagrangian seems to be more efficient than the iterative 

method, fictitious masses and smaller time-steps are required to minimize the coupling 

between the polarization and atomic degrees of freedom, which can never be completely 

eliminated.[4] 

A few general force fields have been developed based on these formulas to 

explicitly treat the polarization effect. In the following sections, we will discuss 

development highlights for some of the representative force fields. 
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1.3 RECENT DEVELOPMENT 

1.3.1 AMOEBA 

The AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular 

Applications) force field, developed by Ponder, Ren and co-workers,[19, 22, 39] utilizes 

atomic multipoles to represent permanent electrostatics and induced atomic dipoles for 

many-body polarization. The valence interactions include bond, angle, torsion and out-of-

plane contributions using typical molecular mechanics functional forms. The van der 

Waals interaction is described by a buffered-14-7 function. The atomic multipole 

moments that consist of charge, dipole and quadrupole moments, which are derived from 

the ab initio quantum mechanical calculations using procedures such as Stone’s 

Distributed Multipole Analysis (DMA).[49-51] The higher order moments make possible 

anisotropic representations of the electrostatic potential outside atoms and molecules. The 

polarization effect is explicitly taken into account via atomic dipole induction. The 

combination of permanent atomic multipoles and induced dipoles enables AMOEBA to 

accurately capture electrostatic interactions in both gas and condensed phase. The vdW 

parameters of AMOEBA are optimized simultaneously optimized against both ab initio 

gas-phase data and condensed-phase experimental properties.  

In the past decade, AMOEBA has been applied to the study of water model,[19] 

monovalent and divalent ions,[52-54] small molecules,[55, 56] peptides[22, 57] and 

proteins.[58-60] AMOEBA demonstrated that a polarizable force field is able to perform 

well in both gas and solution phases with a single set of parameters. In addition, 

AMOEBA is the first general-purpose polarizable force field that has been utilized in 

molecular dynamics simulations of protein-ligand binding and calculation of absolute and 

relative binding free energies.[59-63] The calculation of binding free energies between 
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trypsin and benzamidine derivatives suggests significant non-additive electrostatic 

interactions as the ligand desolvates from water and enters the protein pocket. (see 

Section 4.4 for further discussion) Recently, AMOEBA has been extended to the 

biomolecular X-ray crystallography refinement[64, 65] and consistent prediction of the 

structure, thermodynamic stability and solubility of organic crystals[66] with encouraging 

success. 

To date, AMOEBA has been implemented in several widely used software 

packages, including TINKER,[67] OpenMM,[68] Amber,[69] and Force Field X.[70] 

The AMOEBA polarizable force field was first implemented within the FORTRAN 

based TINKER software package[71] using PME for long-range electrostatics. 

Implementation of the polarizable-multipole Poisson-Boltzmann,[72] which depends on 

APBS,[73] and generalized Kirkwood[74] continuum electrostatics models can also be 

found in TINKER, which is now being parallelized using OpenMP. The algorithms in 

TINKER are also available from within CHARMM using the MSCALE interface.[75, 

76] Alternative FORTRAN implementations of AMOEBA using Particle Mesh Ewald 

(PME) are available in the Sander and PMEMD molecular dynamics engines of the 

AMBER,[69] with the latter parallelized using MPI. The PME treatment of AMOEBA 

electrostatics has recently been extended within the Java Runtime Environment (JRE) 

program Force Field X by incorporation of explicit support for crystal space group 

symmetry,[64] parallelization for heterogeneous computer hardware environments[64] 

and support for advanced free energy methods such as the Orthogonal Space Random 

Walk (OSRW) strategy.[66, 77] These advancements are critical for applications such as 

AMOEBA-assisted biomolecular X-ray refinement,[64, 78] efficient computation of 
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protein-ligand binding affinity,[58, 62] and prediction of the structure, stability and 

solubility of organic crystals.[66] Finally, the OpenMM software is working toward a 

general implementation of AMOEBA using the CUDA GPU programming language.[79] 

1.3.2 SIBFA 

The SIBFA (Sum of Interactions Between Fragments Ab initio computed) force 

field for small molecules and flexible proteins, developed by Gresh, Piquemal et. al,[80-

84] is one of the most sophisticated polarizable force fields that incorporate polarization, 

electrostatic penetration [85] and charge-transfer effects.[86] 

The polarization is treated with induced dipole model, with the distributed 

anisotropic polarizabilities tensors[45] placed on the bond centers and on the heteroatom 

lone pairs. Quadrupolar polarizabilities are used to treat metal centers. The force field is 

designed to enable the simultaneous and reliable computations of both intermolecular and 

conformational energies governing the binding specificities of biologically and 

pharmacologically relevant molecules. Similar to AMOEBA, permanent multipoles are 

used for permanent electrostatics. A flexible molecule is modeled by combining the 

constitutive rigid fragments. SIBFA is formulated on the basis of quantum chemistry and 

calibrated on energy decomposition analysis, as oppose to AMOEBA which relies more 

on condensed-phase experimental data. It aims to produce accurate interaction energy 

comparable with ab inito results. Currently the analytical gradients for charge-transfer 

energy and solvation contribution are not yet available although molecular dynamics 

simulations with a simplified SIBFA potential have been attempted and will be reported 

in the near future. 
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The development of SIBFA emphasizes on separability, anisotropy, nonadditivity 

and transferability. SIBFA has been validated on a wide range of molecular systems from 

water clusters[87] to large complexes such as  metalloenzymes encompassing 

Zn(II).[88-93] It has been applied to investigate molecular recognition problems, 

including the binding of nucleic acids to metal ions,[94-96] the prediction of oligopeptide 

conformations,[97, 98] and ligand-protein binding.[99] Most of the SIBFA calculations 

closely reproduced the quantum chemistry results, both the interaction energy and the 

decomposed terms. At the same time, electrostatic parameters demonstrate its 

transferability between similar molecules.  

As an alternative to distributed point multipole electrostatic representation, a 

Gaussian based electrostatic model (GEM) has been explored.[100] GEM computes the 

molecular interaction energies using a similar approach to SIBFA but replacing 

distributed multipoles by electron densities.[101] GEM is shown to better capture the 

short-range effects on intermolecular interaction energies, and naturally includes the 

penetration effect. Calculations on a few simple systems like water clusters[101] have 

demonstrated GEM’s capability to reproduce quantum chemistry results. Furthermore, 

implementation of PME for GEM in PBC showed reasonable computational efficiency 

thanks to the use of Hermite Gaussian functions. [102] Therefore, replacing SIBFA’s 

distributed multipoles with the GEM continuous electrostatic model will be a future 

direction of methodology development.[100]  

1.3.1 NEMO 

NEMO (Non-Empirical Molecular Orbital) is a polarizable potential developed by 

Karlström and co-workers.[103-105] The NEMO potential energy function is composed 



 

 

 

12 

of electrostatics, induction, dispersion and repulsion terms. The induction is modeled 

using induced point–dipole moments with recent addition of induced point–quadrupole 

moments.[26] The electrostatics, previously represented by atomic charges and dipoles, 

has also been extended to include atomic quadrupole moments. These extensions showed 

notable improvement on formaldehyde. The atomic multipole moments are now obtained 

from ab initio calculation using a LoProp procedure.[106] The LoProp is claimed to 

provide atomic multipoles and atomic polarizabilities that are less sensitive to basis sets 

than other methods such as DMA. Also, NEMO is the only force field that explores the 

possibility of including interactions between permanent multipoles and higher-order 

induced multipoles involving higher-order hyperpolarizabilities.[26]  

NEMO has demonstrated its strength in accurate description of inter and 

intramolecular interactions in small systems, including glycine dipeptide conformation 

profiles,[107] ion-water droplets,[108] and urea transition from nonplanar to planar 

conformation in water.[109] Its application to biomacromolecules is no yet available. 

1.3.4 CHARMM-Drude 

In addition to the induced dipole model, the classical Drude oscillator model is 

another popular approach to model polarization effect.[41, 110] Roux, MacKerell and 

colleagues have been developing a polarizable CHARMM force field basing on this 

approach. [29, 30, 111-119] Unlike the induced dipole model, which treats the 

polarization response using point dipoles, the Drude model represents the polarizable 

centers by a pair of point charges.  For each non-hydrogen atom, a point partial charge is 

tethered via a harmonic spring. This point charge (the Drude oscillator) can react to the 

electrostatic environment and cause the displacement of the local electron density. The 
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atomic polarizability is dependent on both the charge on the Drude particle and the 

harmonic force constant. In MD simulations, the extended Lagrangian, rather than the 

self-consistent iteration is used to evaluate the polarization response, by allowing the 

Drude particles to move dynamically and experience nonzero force. Small fictitious 

masses are assigned to each Drude particle and separate low temperature thermostats are 

applied to the Drude particle degrees of freedom.[120] In case of energy minimization, 

self-consistent iteration will be required to solve for the polarization. 

Determination of electrostatic parameters for the Drude oscillator is not as 

straightforward as induced dipole models. Masses assigned to the Drude particles are 

chosen empirically. The determination of atomic charges and polarizabilities requires a 

series of calculations of perturbed ESP maps. To date, this force field has been for 

parameterized for water[29, 30], a series of organic molecules including alkanes,[112] 

alcohols,[113] aromatics,[114] ethers,[115, 116] amides,[111] sulfurs,[117] and 

ions.[121, 122] Attempt has also been made to combine the Drude based polarizable 

force field with quantum mechanics in QM/MM methods.[123] It was noted that pair-

specific vdW parameters are needed to obtain accurate hydration free energies of small 

molecules using the polarizable force field.  This is likely due to the problematic 

combining rules used to compute the vdW interactions between unlike atoms.  

The Drude model has been implemented in CHARMM[75, 124] and recently in 

NAMD package,[125] in which the computational cost is about 1.2 to 1.8 times that of 

fixed-charge CHARMM.[126] 
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1.3.4 CHARMM-FQ 

The fluctuating charge model, also known as charge equilibration or 

electronegativity equalization model, is an empirical approach for calculating the charge 

distributions in molecules. In the fluctuating charge formalism, the partial charge on each 

atom is allowed the change to adapt to different electrostatic environments. The variable 

partial charges are computed by minimizing the electrostatic energy for a given molecular 

geometry. Compared with the induced dipole and Drude models, the fluctuating charge 

models are minimally parameterized and easier to implement because the polarizability is 

induced without introducing new interactions beyond the point charges. Either extended 

Lagrangian or self-consistent iteration can be used to compute the fluctuating charges in 

the MD simulations, with similar advantages and disadvantages discussed above.  

The CHARMM-FQ force field,[127, 128] developed by Patel, Brooks, and 

coworkers, has been parameterized for small molecules,[32] proteins,[32, 129] lipids, 

lipid bilayers,[115, 130] and carbohyrates.[127] In addition to biophysical studies, the 

force field has been applied to investigate liquid–vapor interfaces.[131] On the other 

hand, there are some known limitations for the fluctuating charge models. Such models 

allow artificial charge transfer between widely separated atoms, which however can be 

controlled with addition constraints. Also the intramolecular charge-flow is limited by the 

chemical connectivity. Thus it is difficult to capture the out of plane polarization in 

molecules such as aromatic benzenes with additional charge sites. The CHARMM-FQ 

force field has been implemented in CHARMM software package.[75] 
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1.3.5 X-Pol 

Gao and coworkers proposed the X-Pol framework by combining the fragment-

based electronic structure theory with molecular mechanical force field.[34, 132] 

Different from the traditional force field conception, X-Pol does not need the bond 

stretching, angle, and torsion terms as they are explicitly represented by quantum 

mechanics. The polarization and charge transfer between fragments are also evaluated 

quantum mechanically with the electronic structure theory.[132] Furthermore, X-Pol can 

be used to model chemical reactions. 

In X-Pol, large molecular systems are divided into small fragments. Electrostatic 

interactions within the fragments are treated based on the electronic structure theory. 

Between fragments, the electrostatic interactions are described by the combined quantum 

mechanical and molecular mechanical (QM/MM) approach. Also, a vdW term is added to 

the interfragment interaction due to the omitted electron correlation and exchange 

repulsion. A double self-consistent-field (DSCF) procedure was applied to converge the 

total electronic energy of the system as well as within the fragments, which includes the 

mutual polarization effect. 

The X-Pol potential has been applied to MD simulations of liquid water,[133] 

liquid hydrogen fluoride,[134] and covalently bonded fragments.[135, 136] Recently, this 

model was demonstrated in a molecular dynamics simulation of solvated protein.[137] As 

expected the computational efficiency of the X-Pol is in between those of simple classical 

force fields and full ab initio method. For the solvated trypsin, it took 62.6 h to run 5 ps 

on a single 1.5 GHz IBM Power4 processor. The parallel version of the X-Pol is under 

development. 
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1.3.4 PFF 

Kaminski et al developed a polarizable protein force field (PFF) based on ab 

initio quantum chemistry.[138, 139] The electrostatic interaction is modeled with induced 

dipoles and permanent point charges. Except the dispersion parameter, all the other 

parameters, including the electrostatic charges and polarizabilties, are obtained by fitting 

to quantum chemical binding energy calculations for homodimers. The dispersion 

parameters were later refined by fitting to the experimental densities of organic liquids 

that relate to fragments through condensed-phase simulations.[20] Using the PFF model, 

gas-phase many-body effects, as well as the conformational energies can be well 

captured.[139] At the same time, MD simulations for real proteins were performed with 

reasonable accuracy and computational cost.[20, 140] 

To reduce the computational cost, a POSSIM (Polarizable Simulations with 

Second-order Interaction Model) force field was later proposed, and the calculation of 

induced dipoles stops after one iteration.[141, 142] By using this formalism, the 

computational efficiency can be improved by almost an order of magnitude. As the 

analytical gradients (forces) are unavailable, the Monte-Carlo technique is used in 

condensed-phase simulations. POSSIM have been validated on selected small model 

systems, showing good agreement with ab initio quantum chemical and experimental 

data. Recently, the parameters of alanine and protein backbone have been reported.[143]  

1.4 OVERVIEW OF THESIS WORK 

In this dissertation, the development and application of a polarizable atomic 

model, AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular 

Applications), is presented. By calculating the hydration free energies of a series of small 
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molecules, an optimized protocol was established to parameterize the electrostatic 

interactions. Next, the systematical development and parameterization procedure of 

AMOEBA protein force field was reported. To access the quality the force field, the 

binding free energies of benzamidine analogs to trypsin using molecular dynamics 

alchemical perturbation were calculated. Last, we applied AMOEBA to study the 

thermodynamic effect of constraining and hydrophobicity on binding energetics between 

phosphotyrosine(pY)-containing tripeptides and the SH2 domain of growth receptor 

binding protein 2 (Grb2). 
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2 Investigation of Multipole Electrostatics in Hydration Free Energy 

Calculations 

2.1 INTRODUCTION 

Hydration of small molecules is an important phenomenon in many chemical and 

biochemical processes. The ability to accurately calculate the hydration free energy is 

critical in the force field development and the application of molecular modeling to 

molecular design and drug discovery. For example, hydration free energy is one of the 

components in determining the binding affinity of a ligand to its receptor.[144] Since 

hydration free energy is a sensitive measure of the interaction between a solute and water, 

it has been commonly used to assess the accuracy of physical models, such as the quality 

of partial charges and implicit solvent models, by comparing with the experimental 

hydration free energies of a wide range of organic molecules.[145-149]  

Solvent effects can be computationally investigated with implicit and explicit 

methods.[150] The implicit solvent approaches including Poisson Boltzmann (PB) and 

Generalized Born (GB) methods. Studies with implicit models usually focus on the 

evaluation of charge parameters,[149] and improvement of the polar/nonpolar solvation 

models.[150-154] Although implicit-solvent methods are computationally efficient, there 

are still notable limitations. The continuum approximation ignores finite size effect of 

water as well as tightly bound individual water molecules.[155] It is unable to distinguish 

positively and negatively charged molecules of the same size[156] unless they are 

specially treated.[157] Extensive parameterizations against experimental data and 

explicit-solvent simulations are necessary.[151, 152, 158] The alternative in treating 

solvent is through explicit representation of solvent molecules. With recent 

computational and methodological advancement, alchemical approaches such as 
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thermodynamic integration (TI)[159, 160] and free energy perturbation (FEP)[161, 162] 

are increasingly used to compute precise hydration free energies of amino acid side chain 

analogs and small molecules in explicit solvent.[147, 148, 150, 163-166] In recent studies 

that cover a wide range of organic molecules,[147, 148, 162] the reported root mean 

square error (RMSE) of predicted hydration free energies from experimental values is 

slightly over 1 kcal/mol using fixed-charge models, which is somewhat similar to that 

using implicit solvent approach.[149] It was suggested that treatment of polar and poly-

functional molecules need to be improved.[147] Hydration free energy calculations have 

also been utilized in the parameterization of a Drude oscillator based polarizable force 

field.[167]  

In an effort to develop accurate atomic force field for molecular interactions, 

polarizable multipole has been introduced in AMOEBA to account for atomic charge 

distribution. While it is the advantage of a polarizable force field that the charge 

distribution can be derived from high-level gas-phase QM calculations of model 

compounds, there are various approaches available to obtain the atomic multipole 

expansion, such as distributed multipole analysis (DMA),[168, 169] atoms-in-molecules 

(AIM),[170] cumulative atomic multipole moments (CAMM),[171, 172] and electrostatic 

potential fitting.[173] Previously we have shown that DMA derived multipoles perform 

well in modeling both the inter- and intramolecular electrostatic interactions.[22] In the 

original DMA the multipole moments of the associated charge distribution are 

represented by a multipole expansion at a set of atoms (or selected sites). This procedure 

is exact and efficient, and gives an excellent representation of the molecular charge 

distribution with up to quadrupole moments at each atom.[169] For large basis sets with 
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diffuse functions, however, DMA yields seemingly “unphysical” atomic multipoles. In 

addition, the multipole values vary significantly with the size of the basis sets used.[51] 

Recently, a modified DMA procedure[51] was proposed to overcome these problems by 

using numerical quadrature for the diffuse functions. While the new DMA produces 

atomic multipoles converge with improved basis-sets, the magnitudes of monopole, 

dipole and quadrupoles seem very different from those given by original DMA. At very 

short range, such as hydrogen-bonding distance, the different distribution of multipoles 

will lead to different interaction energies, even though the molecular moments are always 

well reproduced. 

In this chapter, we applied a polarizable multipole-based electrostatic model to 

calculate hydration free energies of small ligands. The main purpose is to systematically 

investigate different approaches for derivation of atomic multipoles and the effect of 

basis sets on the hydration free energy. Beside the new DMA procedure, we evaluated an 

alternative approach to deal with the diffuse function issue in the original DMA: the 

atomic multipoles are derived from the original DMA with small basis set and then 

optimized by fitting to the electrostatic potential around the molecule. In addition, we 

examined the treatment of long-range correction to vdW interactions with finite cutoffs in 

the hydration free energy calculations. Finally, we explored the possibility of combining 

solutes with polarizable multipoles and solvent calculated through traditional molecular 

mechanics (PM/MM) in a hybrid model.  
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2.2 COMPUTATIONAL METHODS 

2.2.1 Molecular Systems 

The free energy of hydration was computed using molecular dynamics and 

Bennett Acceptance Ratio (BAR) method. Seven organic compounds were investigated: 

ethylbenzene, p-cresol, isopropanol, imidazole, methylethylsulfide, acetic acid and 

ethanol. This set of molecules represents the common chemical functional groups in 

bimolecular systems and drug-like compounds, including alkyl, benzyl, phenol, hydroxyl, 

imidazole, carboxyl, and sulfide groups. The solvent was modeled using both the 

AMOEBA[19] polarizable water and a TIP3P-like fixed-charge water model that we 

developed here to use with polarizable solutes. 

2.2.2 The Polarizable Multipole Force Field 

The molecular dynamics simulations for various systems have been performed 

using AMOEBA polarizable force field.[19, 22, 58, 62, 174, 175] In AMOEBA force 

field, each atom possesses permanent charge, dipole and quadrupole moments. Moreover, 

the electronic polarization effects are included, using a self-consistent dipole induction 

procedure.[22] Repulsion-dispersion interactions between pairs of non-bonded atoms are 

represented by a buffered 14-7 potential.[176] Parameters for all the organic compounds 

were taken from the AMOEBA force field for small molecules (available in TINKER 5.1 

molecular modeling package[177]), except atomic multipoles which have been varied in 

the current study. New atomic multipole parameters of these molecules were derived 

from ab initio calculations with different basis sets using the GDMA program.[178] Early 

version of GDMA (v1.x) offers the original DMA while the latest GDMA (v2.2) now 

implements the modified DMA to address diffuse function and basis set dependence 
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issues. In GMDA v2.2, by setting “Switch 0” and “Radius H 0.65”, one can also access 

the original DMA procedure. The default behavior is to set “Switch 4”, which invokes the 

modified DMA protocol. The structure of each molecule was optimized quantum 

mechanically at the level of HF/6-31G* using Gaussian 03.[179] Single point 

calculations were subsequently performed on the optimized geometry using MP2 method 

with four basis sets: (i) 6-311G**, (ii) 6-311++G(2d,2p), (iii) cc-pVTZ, and (iv) aug-cc-

pVTZ, for comparison.  

We tested two procedures to obtain the atomic multipoles for each basis set. One 

is to use the original DMA to derive the permanent atomic multipole using the 6-31G* 

basis set, and then optimize the multipoles to the electrostatic potential (ESP) derived 

from the above four basis sets. We refer to this procedure as “original-fit” in the 

discussion below. The optimization was done by using the POTENTIAL program in 

TINKER; the atomic monopoles were fixed at those from 6-31G* and only dipole and 

quadrupole moments were allowed to vary. This ESP fitting procedure also gave us a 

consistent set of multipoles across the basis sets by perturbing the dipole and quadrupole 

moments from a lower basis set. In the second approach, which we call “DMA2”, the 

new DMA procedure was used to compute the permanent multipole moments directly at 

each basis set. Multipoles for the same atom type were then averaged and optimized to 

the QM electrostatic potential (ESP) from the same basis set. GDMA 2.2 software 

package was used. The hydrogen atomic radius ratio was set to 0.31 in both original and 

modified DMA procedures. Also in both procedures, the atomic multipoles were 

optimized to the QM electrostatic potential until the root mean square gradient difference 

was smaller than 0.1, the grid offset 1.0 Å from the vdW surface of each atom. For 



 

 

 

23 

alcohols, the atomic quadrupole components of the hydroxyl group (O and H atoms) were 

reduced by a constant factor similar to that previously applied to water.[19] This 

reduction led to better agreement with both ab initio water dimer geometry and 

experimental liquid properties. 

2.2.3 Hydration Free Energy Caculation  

Alchemical transformation was performed to calculation the hydration free energy 

of the small organic compounds (Figure 2.1). The hydration free energy of a compound 

was calculated from: 

hydration discharging(aq.) decoupling(aq.) recharging(vac.)A A A A    
       

 

       

(2.1) 

where ΔArecharging(vac.) is the free energy change due to growing the intramolecular 

electrostatic interactions in vacuum; ΔAdischarging(aq.) results from annihilating electrostatic 

interactions both within the solute itself and between solute and solvent. ΔAdecoupling(aq.) 

represents the free energy change by turning off vdW interactions between the solute and 

its environment using a soft-core buffered 14-7 potential: 
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 where ε is the well depth and λ is the scaling factor. By varying λ from 1 to 0, the vdW 

interactions between ligand and its environment are gradually turned off. ρij=Rij/Rij
0
 with 

Rij as the actual separation between atoms i and j and Rij
0
 the minimum energy distance 

parameter.  

The scaling factor λ is also introduced to the long-range correction (LRC): 
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where rc is the cutoff radius, V is the system volume, U is the soft-core potential, Ni and 

Nj are the total number of atoms of type i and j in the system, Li and Lj are the number of 

soft-core interaction sites of atom type i and j in the solute being annihilated. In this way, 

ULRC is scaled to the same extent as soft-core interactions within the cutoff radius. When 

λ=0, the long-range vdW interactions between ligand and its environment is removed. 

Polynomial tapering function applied from 0.9 rc to rc reduces vdW interactions to zero at 

the distances beyond rc and maintains smooth atomic forces. The reduced energy and 

virial value in the tapering range are also included in the LRC correction.   

To compute the free energy changes between neighboring states (λi and λi+1), the 

Bennett Acceptance Ratio (BAR) method[180] was utilized:  

 

     (2.4) 

where C is given by: 

11( ) i iC A j                             (2.5) 

and j is the iteration index. Here, Uλi is the potential energy of the system evaluated using 

the parameters from λi, and <> is the ensemble average. A is solved iteratively until the 

value of (A(j) – A(j-1)) < 0.01 kcal/mol. The statistical error in the free energy change 

between two steps was computed from Eq. 10 in Reference [180]. The total statistical 

error in the solvation free energy in bulk water was computed as the sum of the errors 

from individual perturbation steps.  
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2.3 COMPUTATIONAL DETAILS 

All liquid simulations were performed using PMEMD and SANDER in AMBER 

9.[69] TINKER was used to prepare the initial systems and for the gas phase re-charging 

simulations in vacuum. An automation script to set up the system with all perturbation 

steps as well as the post free energy analysis procedures is available online. 

To carry out the perturbations in bulk water, the solute molecule was placed at the 

origin of a pre-equilibrated periodic box of solvent containing 800 water molecules in a 

cube with a 28.78 Å dimension on each side. The system was then equilibrated for 50 ps 

using NPT ensemble at 298 K. The last frame of the simulation was used as the starting 

point for all the intermediate states λi. The electrostatic interactions were decoupled in 11 

steps by scaling down solute atomic multipoles and polarizabilities linearly with λ = (1.0, 

0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0). For vdW interactions, we compared different 

scaling protocols (see Results and Discussion). For each value of λ, 500 ps or 1 ns of 

constant volume molecular dynamics was performed, with the density fixed at the NPT-

average and a time step of 1 fs. The temperature was maintained at 298 K using 

Berendsen thermostat[181]. The vdW cutoff was set to both 9 Å and 12 Å with and 

without long-range correction to evaluate the cutoff and LRC effects. Long-range 

electrostatics for all the systems were treated using Particle Mesh Ewald (PME) 

summation.[182-184] The PME calculation used a 36   36   36 grid and fifth-order 

B-spline interpolation. The induced dipoles were iterated until the root-mean-square 

change was below 0.01 D/atom. Atomic coordinates of the simulation system were saved 

every 500 fs. The first 100 ps simulation trajectories were ignored in the free energy 

analysis. A tighter induced dipole convergence of 10
-5

 D/atom was used in the energy 

calculation for the free energy analysis. 
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Gas phase simulations were run on the single solute molecule only for 50 ps with 

a time step of 0.1 ps. The temperature was maintained at 298 K using stochastic 

thermostat. The induced dipoles were converged to 10
-5

D. Atomic coordinates were 

collected every 100 fs. Post free energy analyses were performed on all 500 

configurations. BAR was used to evaluate the free energy change between adjacent 

states. 

2.4 RESULTS AND DISCUSSION 

2.4.1 Hydration Free Energy Calculation Protocol 

In alchemical free energy calculations, a sufficient number of “small” perturbation 

steps would ensure adequate overlaps between adjacent states. However the 

computational cost is also an important consideration especially given the AMOEBA 

polarizable potential is more costly than fixed charge models. In the approach adopted in 

this study, the electrostatic and vdW interactions between solute and solvent were 

decoupled sequentially. The sampling for vdW decoupling was the most challenging step 

since solute and solvent molecules begin to overlap. We thus first determined an optimal 

distribution of intermediate states and simulation length in the vdW decoupling 

simulations. 

Hydration free energy of ethylbenzene has been calculated using different 

simulation protocols with a different number of intermediate states. Figure 2 shows the 

hydration free energy results from three vdW decoupling schedules: (a). λ = (1.0, 0.95, 

0.9, 0.85, 0.8, 0.775, 0.75, 0.725, 0.7, 0.675, 0.65, 0.625, 0.6, 0.55, 0.5, 0.4, 0.2, 0.0); (b). 

λ = (1.0, 0.9, 0.8, 0.75, 0.7, 0.65, 0.6, 0.5, 0.4, 0.2, 0.0); (c). λ = (1.0, 0.9, 0.8, 0.7, 0.6, 

0.5, 0.4, 0.2, 0.0). Simulations for all intermediate states were performed for 1ns with a 
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12 Å cutoff, using AMOEBA force field. The results here include the electrostatic 

component of the hydration free energies and the long-range correction, however both 

contributions are constants and do not affect the comparisons we made. It can be seen 

that for the decoupling paths with 18 steps (a) and 11 steps (b), hydration free energies 

converge after 500 ps. Standard deviations of the hydration free energy value calculated 

from 500 ps to 1 ns (with a 100 ps interval) simulations are 0.04 kcal/mol for protocol 

(a), and 0.05 kcal/mol for protocol (b). However in the 9-step (c) vdW decoupling, the 

hydration free energy does not show a sign of convergence even at 1ns.  

We have summarized the vdW decoupling free energies calculated using the three 

schedules in Table 2.1. By further examining the free energy change at the intermediate 

states, it is clear that the difference between the hydration free energy from the 9-step 

protocol (c) and the results of the other two mostly occurs when λ is varied from 0.8 to 

0.6. The free energy change of this perturbation is -4.30 and -4.32 kcal/mol calculated 

from protocols (a) and (b), but -3.77 kcal/mol using protocol (c). A total of 9 steps 

(including the boundary states) were used in protocol (a) to transform λ from 0.8 to 0.6, 5 

steps in protocol (b), and 3 steps in protocol (c). The more than half a kcal/mol difference 

indicates the linear schedule of protocol (c) is not sufficient. In addition, the simulation 

results remain not converged by extending the simulation time from 500 ps to 1 ns. The 

difficulty in calculating the vdW decoupling free energy at λ near 0.5 is a result of large 

fluctuation in the soft-core vdW energy. On the other hand, all three protocols gave 

almost identical free energies when λ is varied from 1.0 to 0.8. The soft-core vdW 

potential is also greatly “smoothed” at the end point when λ approaches zero, and the 

contribution between λ=0.4 and 0 is nearly zero. The statistical errors in Figure 2, 
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calculated using Bennett’s formula, also show a trend of smaller statistical error with 

more intermediate states. Note that an excessive number of states could also lead to a 

large statistical error. At 500 ps, the statistical error of the calculated hydration free 

energies is ±0.05 kcal/mol, ±0.15 kcal/mol and ±0.25 kcal/mol for protocol (a), (b) and 

(c), respectively. The error due to the electrostatic decoupling is negligible and again 

does not affect the comparison here. With both computation expense and precision in 

consideration, 11 steps of 500 ps simulations were used to decouple the vdW interactions 

in the remaining hydration free energy calculations.  

2.4.2 van der Waals Cutoff and Long-range Correction 

Previous works showed that long-range vdW interactions between ligands and 

proteins can contribute to the binding affinity by more than 1 or 2 kcal/mol, with cutoff at 

7.0 to 9.0 Å[185]. The long range vdW interactions beyond a “large” cutoff should be 

negligible. In the current study, we are computing the hydration free energy values for 

relatively small solute molecules. To evaluate the effect of vdW cutoffs and long-range 

correction, we calculated the hydration free energy values of six organic compounds 

using different cutoffs with and without LRC. All the other setups of the six systems 

remained the same in the calculations, including box sizes, atomic multipoles (derived at 

MP2/6-311++G(2d,2p) level using the DMA2 method). Table 2.2 shows the hydration 

free energy results using either a 9 Å or a 12 Å cutoff for vdW interactions, with and 

without LRC in the vdW decoupling. Note that the LRC is a constant in the NVT 

simulations and thus contribute no forces on each atom at any given time. Therefore the 

LRC has no effect on the simulation trajectories or the electrostatic decupling free energy 

at the same vdW cutoff, but it does affect the vdW decoupling free energy when the 
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solute atoms are “disappeared” in the solvent.  The root mean square difference 

(RMSD) in the hydration free energies between the 9 Å and 12 Å cutoff simulations is 

0.33 kcal/mol without the LRC. When the LRC is included in the vdW decoupling free 

energy calculation, the difference is reduced to 0.17 kcal/mol. Since the electrostatic 

component of hydration free energy is not affected by the LRC, this error reduction was 

exclusively in the vdW component. For smaller molecules such as acetic acid, the results 

from 9 or 12 Å cutoff are essentially identical with the LRC. LRC is clearly making the 

results at different cutoffs more consistent. However a 9 Å with LRC can still lead to 

non-negligible errors for large molecules such as p-cresol. With regard to the 

computation cost, simulations with 12 Å cutoff are about 1.25 times slower than those 

using 9 Å cutoff. In our study, we chose the 12 Å cutoff, to get the most rigorous 

hydration free energy results. 

When a 12 Å cutoff is used for the vdW interaction, the inclusion of LRC lowered 

the hydration free energy by 0.14 kcal/mol (RMSD). For simulations using 9 Å cutoffs 

the contribution of LRC was -0.33 kcal/mol. The contribution of LRC to hydration free 

energy is more negative than those without LRC as the vdW interactions beyond the 

cutoff radii are always favorable. In the remaining study, a 12 Å cutoff has been applied 

to the vdW interactions, with LRC included. As the LRC to hydration free energy is 

already comparable to the magnitude of the statistical error in our hydration free energy 

calculations at the 12 Å cutoff, we believe the error (comparing to an infinite cutoff) 

should be negligible. However, it should be noted that the LRC contribution is roughly 

proportional to number of the atoms of the solute molecule. In the system studied here, 

the average atomic LRC contribution during vdW decoupling is ~0.01 kcal/mol per atom 



 

 

 

30 

at a 12 Å cutoff; for a molecule with 100 atoms, there would be an error of ~1 kcal/mol if 

the LRC decoupling is ignored. Similarly, for simulations with a 9 Å cutoff, every 37 

atoms in a drug molecule will lead to an error around 1 kcal/mol if the LRC decoupling is 

ignored. Therefore, when a 9 Å cutoff, which is frequently used in molecular simulations, 

is employed, LRC decoupling term is highly recommended. In addition, it should be kept 

in mind that the correction is based on the assumption of isotropic environment which is 

appropriate for solvation in a homogenous solvent. 

2.4.3 Electrostatic Multipoles from Different Methods and Basis Sets 

We investigated different approaches to derive atomic multipoles and the effect of 

basis sets on hydration free energy calculations. The vdW and remaining parameters are 

transferred from AMOEBA. All the simulations in this section employed a 12 Å cutoff 

for vdW plus LRC, so that the vdW contributions to the hydration free energy are exactly 

the same in all comparisons.  

Atomic multipoles for the small molecules were derived from QM single point 

calculations using the original DMA with ESP fitting (original-fit) or the new DMA2 

method (see Computational Methods). Table 2.3 compares the hydration free energy of 

p-cresol computed from atomic multipoles using four different basis sets (6-311G**, 6-

311++G(2d,2p), cc-pVTZ, and aug-cc-pVTZ) at the MP2 level. It can be seen that with 

6-311++G(2d,2p) and cc-pVTZ basis sets, hydration free energy difference between 

using original-fit and DMA2 is within 0.1 kcal/mol. With aug-cc-pVTZ and 6-311G**, 

the difference is around 0.4 kcal/mol. The overall RMSEs are 0.69 and 0.66 kcal/mol for 

original-fit and DMA2 respectively. Thus for small molecules, the atomic multipoles 
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from the new DMA2 procedure and old ESP fitting give very similar intermolecular 

interaction energies as reflected in the hydration free energy.  

Consistent with our previous study, we found that it is necessary to scale down 

the atomic quadrupole moments of the hydroxyl group for alcohols. According to the 

work by Ren and Ponder,[19] the quadrupole moments of AMOEBA water molecules 

were reduced to 73% of the QM DMA values, which led to a reduction of the water-

water flap angle to 57° and better reproduced a series of ab initio and experimental 

properties. From Table 2.4, we can see that hydration free energy values of isopropanol 

without scaling poorly agree with experiment (RMSE of 1.89 kcal/mol). All basis sets 

overestimate the hydration free energy values by more than 1 kcal/mol. However when 

quadrupoles of hydroxyl groups are scaled to 70% of the DMA2 values, the RMSE 

significantly reduces to 0.62 kcal/mol. Same quadrupole parameters obtained with 

original-fit needs to be scaled to 60% to achieve similar RMSE (0.58 kcal/mol). This is 

due to the different distribution of multipole moments given by the new and original 

DMA methods, even though both theoretically produce the same molecule moments and 

ESP. To verify the transferability, the same scaling factors were applied to the hydroxyl 

atomic quadrupoles in ethanol. Indeed, with the scaling, the hydration free energies of 

ethanol show a satisfactory agreement with experimental data using DMA2 (RMSE=0.61 

kcal/mol) and original-fit (RMSE=0.70 kcal/mol). Acetic acid and p-cresol also have the 

hydroxyl group, but no scaling is required since their hydroxyl groups are considered part 

of the larger functional groups and the scaling of the quadrupoles have little effect on the 

gas-phase dimer or hydration properties. 
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Table 2.5 illustrates the effects of basis sets on the hydration free energies for 

seven compounds. The atomic multipoles were optimized using the DMA2 approach. 

Overall Comparisons show that hydration free energies calculated with cc-pVTZ and 6-

311G** are similar to each other. The RMSD in the hydration free energy between these 

two basis sets is 0.23 kcal/mol. Also these two basis sets underestimate the experimental 

data in most cases, both with RMSEs around 1.0 kcal/mol. On the contrary, 6-

311++G(2d,2p) overestimates the hydration free energies in all cases except acetic acid, 

RMSE 0.77 kcal/mol. Acetic acid is a special case, hydration free energies calculated 

with all the four methods are underestimated by 1~2 kcal/mol. In general, 6-

311++G(2d,2p) gives more favorable hydration free energies for all the small molecules 

than the calculated results with all the other basis sets. Compared with cc-pVTZ and 6-

311G**, hydration free energies calculated from 6-311++G(2d,2p) are closer to that from 

aug-cc-pVTZ, with a RMSD of 0.58 kcal/mol. The aug-cc-pVTZ set does not show a 

systematical under- or overestimation.  

Overall, the agreement with experimental hydration free energy results improve 

with the size of the basis set used in the ab initio calculations to derive the atomic 

multipoles. The inclusion of diffuse function the QM basis set has a large effect, as seen 

in the comparison between the results from aug-cc-pVTZ and 6-311++G(2d,2p) with 

those of 6-311G** and cc-pVTZ. Obviously, aug-cc-pVTZ gives the best hydration free 

energy result, and 6-311++G(2d,2p) is also comparable. Plus 6-311++G(2d,2p) is much 

more affordable since it employs approximately half Gaussian basis functions as the aug-

cc-pVTZ basis set, it is recommended as the optimal basis set to MP2 to perform 

hydration free energy calculations for large molecules. Furthermore, since aug-cc-pVTZ 
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and 6-311++G(2d,2p) have better performances than the other two basis sets, we 

conclude that it is important to use basis sets with diffusion functions to capture 

intermolecular interactions. 

Table 2.5 also lists previously reported hydration free energies calculated with 

some of the fixed charge models GAFF, CHARMm-MSI and OPLS_2005. Although 

some of the calculated values are close to experimental data, some have erroes as large as 

5 kcal/mol. The MUEs and RMSEs of the available hydration free energy valuesare 

between 1 kcal/mol and 3 kcal/mol. Recent studies over a much wider range of organic 

molecules using fixed-charge model[147, 148, 162]  also reported root mean square 

error (RMSE) greater than 1 kcal/mol, consistent with the current finding. Our results 

suggest that the inclusion of polarization effect and/or the use of atomic multipoles 

moments offer better performance. It is interesting to note that the gas-phase electrostatic 

potentials of the atomic multipoles derived from the four basis sets are very similar for all 

the molecules (Table 2.6). However, the final hydration free energy values can be as 

different as more than 1 kcal/mol in some cases. For example, the RMSD of the average 

magnitude of gas phase potentials is 0.14 kcal/mol between results from aug-cc-pVTZ 

and 6-311G**; while the RMSD of the hydration free energies between these two basis 

sets is increased to 0.62 kcal/mol. The hydration free energies with atomic multipoles 

derived from gas phase show a favorable agreement with the experimental measurements, 

suggesting that the polarization effect between solute and solvent environment are well 

captured by the explicit atomic dipole induction model in AMOEBA. Note that the RMS 

gas phase potentials for isopropanol at 6-311++G(2d,2p) is very different from the other 
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three basis sets because of the quadrupole scaling on the hydroxyl group, leading to the 

hydration free energy difference of more than 1 kcal/mol from the other basis sets.  

The overall hydration free energy results using the polarizable atomic multipoles 

are encouraging compared those with fixed atomic charge force fields. It was 

suggested[147] that the fundamental limit of fixed-charge force fields is roughly 1 

kcal/mol (mean unsigned error (MUE)) for hydration free energy. Our work here shows 

hydration free energy can be calculated within an accuracy of 0.41 kcal/mol (MUE) using 

gas-phase atomic multipoles from MP2/aug-cc-pVTZ, with the polarization modeled via 

induced atomic dipoles. Previously we showed that the polarization enhances the 

solvation of benzamidinium ion in water, and the contribution of polarization to 

hydration free energy is about 10% of the total electrostatic contributions. Therefore it is 

expected that even a fixed charge model can lead to a reasonable hydration free energy 

when the atomic charges are systematically increased to implicitly account for the 

polarization effect in water environment. The challenge however is that the polarization 

in the protein-like environment had an opposite effect which actually weakens the 

interaction between the small molecule and the protein.  

2.5 CONCLUSIONS 

In this chapter, we computed the hydration free energies for several organic 

molecules using AMOEBA polarizable force field. We first evaluated the effect of vdW 

cutoff length and importance of decoupling of the long-range correction by performing a 

series hydration free energy simulations. We used an alchemical approach in which the 

electrostatic and then vdW interaction between the solute and solvent molecules were 

turned off in several steps. We showed that a long vdW cutoff (12 Å) with LRC and 11 
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perturbation steps in vdW annihilation are necessary for high-precision calculations of 

hydration free energy. Extra steps in the middle of vdW annihilation are needed as the 

system energy fluctuation is rather significant when solvent and solute molecules begin to 

penetrate each other.  

With the most appropriate simulation protocol determined, we have investigated 

various models for intermolecular electrostatic interactions between the organic 

molecules and water environment via the calculation of hydration free energies. By 

putting the solute with gas-phase atomic multipoles, the polarization effect between 

solute and water environment was well captured by the explicit atomic dipole induction 

model in AMOEBA, as evident by the good agreement between the calculated and 

experimental hydration free energies for the seven molecules. We tested two methods to 

derive the gas-phase atomic multipoles from ab initio calculations for the solute 

molecules. One is ESP fitting based on the original DMA method, and the other utilizes 

the new DMA procedure by Stone. The two methods gave very similar hydration free 

energies for p-cresol in our test, with the difference comparable to the statistical error of 

the simulation. We recommend the original-fit procedure to derive atomic multipoles 

based on our experience. Also this approach allows fitting to the ESP of multi-

conformations of flexible molecules simultaneously to derive “conformation-

independent” atomic multipoles and allows atoms in symmetry to share the same atom 

type (e.g. the three H atoms in a methyl group). We subsequently compared the 

electrostatic parameters (atomic multipoles) derived from MP2/6-311G*, MP2/6-

311++G(2d,2p), MP2/cc-pVTZ, and MP2/aug-cc-pVTZ. The hydration free energy 

results based on the four basis sets were in good agreement with experimental data, with 
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RMSEs from 0.63 to 1.09 kcal/mol. Among these four ab initio methods, the aug-cc-

pVTZ basis set gave the best hydration free energy results while the 6-311++G(2d,2p) 

also performed well and was computationally more affordable. It is encouraging that the 

overall accuracy increases with the larger basis sets and the inclusion of diffuse functions 

in the ab initio basis set is highly recommended in deriving the atomic multipoles for 

modeling intermolecular interactions. 

Furthermore, we investigated a hybrid PM/MM approach where the solute 

molecule was modeled with polarizable atomic multipoles and solvent was represented 

by fixed-charge TIP3P-like water molecules. The saving in computational cost is about 

50% when compared to a fully polarizable model. The calculated hydration free energy 

values were within 1.16 kcal/mol (MUE) of the experimental measurements. While the 

error is about twice of that from simulations using the polarizable AMOEBA water, there 

was a systematic overestimation for five out of the six molecules compared. It is likely 

that a better water model or careful parameterization can further improve the accuracy. 
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Table 2.1: vdW contributions of ethylbenzene hydration free energies from intermediate 

decoupling steps. All units are kcal/mol. Results are calculated using the 

dynamics simulations trajectories up to 500 ps. For schedule (a) and (b), 

which uses more intermediate steps, the results have been combined for 

comparison. 

Steps
1 

Intermediate Free Energy Changes 
Total 

1.0-0.9 0.9-0.8 0.8-0.7 0.7-0.6 0.6-0.5 0.5-0.4 0.4-0.2 0.2-0.0 

(a) 18 5.127 2.281 -0.241 -4.037 -4.848 -0.896 0.039 0.048 -2.53 

(b) 11 5.131 2.304 -0.237 -4.059 -4.851 -0.892 0.040 0.048 -2.52 

(c)  9 5.135 2.304 -0.169 -3.605 -4.851 -0.898 0.040 0.048 -2.00 

1. Three vdW decoupling schedules:  

(a). λ = (1.0, 0.95, 0.9, 0.85, 0.8, 0.775, 0.75, 0.725, 0.7, 0.675, 0.65, 0.625, 0.6, 0.55, 

0.5, 0.4, 0.2, 0.0);  

(b). λ = (1.0, 0.9, 0.8, 0.75, 0.7, 0.65, 0.6, 0.5, 0.4, 0.2, 0.0);  

(c). λ = (1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.2, 0.0).  
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Table 2.2: The effect of vdW cutoff length and LRC on the AMOEBA hydration free 

energies. Hydration free energies were estimated using both 9 Å and 12 Å 

with and without LRC decoupling. All the hydration free energies were 

decomposed into the electrostatic and vdW components. Statistical errors of 

the total HFE are given in the parenthesis. All values are in kcal/mol. 

Cutoff(Å) Ethylbenze p-cresol Isopropanol imidazole 
methylethyl 

sulfide 
acetic acid 

 ele
1
 vdW

2
 ele vdW ele vdW ele vdW ele vdW ele vdW 

w/ LRC 12.0 -3.35 2.65 -9.37 2.04 -8.28 2.64 -11.38 1.31 -4.42 2.55 -7.89 2.36 

 (0.15) (0.10) (0.11) (0.03) (0.09) (0.04) 

9.0 -3.37 2.74 -8.75 1.78 -7.99 2.58 -11.43 1.31 -4.38 2.45 -7.93 2.36 

(0.11) (0.10) (0.11) (0.01) (0.09) (0.04) 

w/o LRC 12.0 -3.35 2.88 -9.37 2.23 -8.28 2.58 -11.38 1.34 -4.42 2.69 -7.89 2.44 

 (0.15) (0.10) (0.11) (0.03) (0.09) (0.04) 

 9.0 -3.37 2.95 -8.75 2.24 -7.99 2.68 -11.43 1.66 -4.38 2.88 -7.93 2.61 

  (0.11) (0.10) (0.11) (0.03) (0.09) (0.04) 

1. “ele” refers to the free energy contributions of -ΔAdischarging(aq.)+ΔAdischarging(aq.) in 

equation (1). 

2.  “vdW” represents the contribtion of -ΔAdecoupling(aq.) in the same equation.  

 

 

Table 2.3: Comparison of hydration free energies between original-fit and DMA2 

methods for p-cresol. All units are kcal/mol. Statistical errors are given in 

the parenthesis. 

MP2 Basis Set cc-pVTZ 6-311G** 6-311++G(2d,2p) aug-cc-pVTZ Experiment
1
 

Original-fit -6.56 

(0.10) 

-6.47 

(0.10) 

-7.26 

(0.11) 

-7.38 

(0.10) 

-6.10 

-6.60 

DMA2 -6.47 

(0.11) 

-6.89 

(0.10) 

-7.33 

(0.10) 

-6.98 

(0.16) 

1. Experimental values are reported in ref [186]. 
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Table 2.4: Hydration free energies with scaled quadrupole moments of hydroxyl groups 

in alcohol molecules, using both original-fit and DMA2. Isopropanol and 

ethanol were selected for comparison. All units are kcal/mol. Statistical 

errors are given in the parenthesis. 

 

MP2 Basis Set 

 

  Isopropanol  Ethanol 

  Original-fit 

unscaled 

Original-fit 

scaled to 0.6 

DMA2 

scaled to 0.7 

 Original-fit 

scaled to 0.6 

DMA2 

scaled to 0.7 

cc-pVTZ  -5.43 

(0.11) 

-4.36 

(0.18) 

-4.04 

(0.11) 

 -3.58 

(0.19) 

-4.19 

(0.07) 

6-311G**  -5.60 

(0.10) 

-4.16 

(0.15) 

-4.34 

(0.10) 

 -4.84 

(0.20) 

-4.51 

(0.09) 

6-311++G(2d,2p)  -7.60 

(0.11) 

-5.59 

(0.18) 

-5.58 

(0.12) 

 -5.12 

(0.19) 

-5.67 

(0.09) 

aug-cc-pVTZ  -6.98 

(0.16) 

-4.36 

(0.28) 

-4.32 

(0.11) 

 -4.53 

(0.22) 

-5.04 

(0.09) 

Experiment
1
  -4.70, -4.80  -4.90 

1. Experimental values were reported in ref [186]. 
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Table 2.5: Comparison of hydration free energies of small molecules with four different 

basis sets: (i) 6-311G**, (ii) 6-311++G(2d,2p), (iii) cc-pVTZ, and (iv) aug-

cc-pVTZ. Hydration free energies calculated with fixed-charge models were 

also listed for comparison. All units are kcal/mol. Statistical errors are given 

in the parenthesis. 

 Ethylbenze p-cresol Isopropanol Imidazole 
Methylethyl 

sulfide 
Acetic acid Ethanol MUE RMSE 

cc-pvTZ -0.68 

(0.14) 

-6.56 

(0.11) 

-4.04 

(0.11) 

-9.07 

(0.03) 

-1.61 

(0.09) 

-4.57 

(0.04) 

-4.19 

(0.19) 

0.63 1.09 

6-311g** -0.53 

(0.14) 

-6.47 

(0.10) 

-4.34 

(0.10) 

-8.70 

(0.04) 

-1.53 

(0.10) 

-4.45 

(0.05) 

-4.51 

(0.19) 

0.61 1.15 

6-311++g(2d,2p) -0.70 

(0.14) 

-7.26 

(0.14) 

-5.58 

(0.12) 

-10.11 

(0.03) 

-1.87 

(0.09) 

-5.53 

(0.04) 

-5.67 

(0.20) 

0.64 0.77 

aug-cc-pvTZ -0.44 

(0.12) 

-7.05 

(0.11) 

-4.32 

(0.11) 

-9.72 

(0.03) 

-1.56 

(0.10) 

-5.48 

(0.04) 

-5.04 

(0.22) 

0.41 0.63 

GAFF/AM11 0.8 -5.1 - - -0.9 - -3.9 1.09 1.14 

GAFF/AM1(SSBP)2 -0.56 - -2.88 - - -8.31 -2.88 1.41 1.60 

MSI/AM1(SSBP)2 0.03 - -1.42 - - -12.52 -1.94 3.21 3.68 

OPLS_20053 -0.46 - -4.15 - - -5.44 -1.94 1.26 1.64 

Experiment4 -0.70 -6.10 

-6.60 

-4.70 

-4.80 

-9.63 -1.50 -6.70 -4.90  
 

1. Calculated hydration free energies from ref[147]. Solute molecules used GAFF, along with the 
semiempirical AM1-BCC charge model. Waters were represented by TIP3P model. 

2.  Calculated hydration free energies from ref[150]. Solute molecules used GAFF or CHARMm-

MSI force fields, along with the semiempirical AM1-BCC charge model. Water molecules close to 

the solute were represented by TIP3P model. SSBP were incorporated as the remaining bulk. 

3. Calculated hydration free energies from ref[163]. Solute molecules used OPLS_2005  force field. 

Waters were represented by TIP3P model. 

4. Experimental values are reported in ref [186], except for imidazole taken from ref [187]. 
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Table 2.6: The root mean square difference of gas phase potentials of the small molecules 

with multipole parameters generated from four different basis sets. All units 

are kcal/mol. 

 Ethylbenze p-cresol Isopropanol Imidazole 
Methylethyl 

Sulfide 
Acetic acid Ethanol 

cc-pVTZ 0.13 0.25 0.00 0.20 0.16 0.32 0.29 

6-311g** 0.21 0.34 0.16 0.27 0.07 0.67 0.33 

6-311++g(2d,2p) 0.07 0.11 0.41 0.16 0.07 0.12 0.14 

aug-cc-pVTZ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

 

 

 

Figure 2.1: Thermodynamic cycle of hydration free energy calculation in explicit water 

MD simulations. Potential energy of the solute backbone includes valence 

interactions and vdW interactions within the solute itself.  

ΔAhydration 
[solute]vac. [solute]aq. 

ΔAdischarging(aq.)  

+ ΔAdecoupling(aq.) ΔAdischarging(vac.)  
 

[solute backbone]vac. 

(vac.) 

[solute backbone]aq. 

(vac.) ΔA = 0 
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Figure 2.2: Convergence of hydration free energy of ethylbenzene at different simulation 

time with three vdW decoupling protocols. Hydration free energies with 18 

vdW steps (a) are in solid line with diamond, 11 vdW steps (b) in dashed 

line with square, and 9 vdW steps (c) in dotted line triangle. The bars are the 

statistical errors computed using Bennett’s formula. 
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3 Development of the Polarizable Atomic Multipole-based AMOEBA 

Force Field for Proteins  

3.1 INTRODUCTION 

Proteins are a ubiquitous class of biopolymers whose functionalities depend on 

the details of their 3D structures, which are encoded by their specific amino acid 

sequences. Computer modeling and simulations are widely utilized in the study of protein 

structure, function, dynamics, and interactions with other synthetic or biological 

molecules. In the so-called molecular mechanics (MM) approaches, interactions among 

atoms are described by classical empirical potentials that are often referred to as force 

fields. Unlike the ab initio quantum mechanical (QM) methods, the classical MM model 

treats atoms as rigid particles with electronic degrees of freedom averaged out, thereby 

lowering the computational cost and allowing simulation of biological events on greater 

length and time scales. On the other hand, high level ab initio theory is becoming more 

affordable and is now heavily utilized during the development of classic potentials for 

proteins such as Amber,[9] CFF,[188] CHARMM,[10] MM3[189] and OPLS-AA.[12] 

This class of force fields typically utilizes fixed atomic charges, point dispersion-

repulsion, and empirical functions for valence interactions. The current generation of 

force field has enjoyed much success in many areas of biological and materials sciences; 

however, there is still much room for improvement.  

Effort to advance molecular mechanics force fields to “next-generation” has been 

mostly focused on introducing explicit electronic polarization into the electrostatic 

model. A number of comprehensive reviews on the history and development of 

polarizable force fields have detailed the significance of polarization effects.[13, 38, 40, 

41, 190]. A wide range of studies on water [19, 30, 191], organic molecules [55, 56, 111, 
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114, 139, 192], peptides[22, 57], protein-ligand binding [59, 60, 62, 130, 193-195], 

ions[52-54, 122] and ion channels[42] and membrane lipids using polarizable force fields 

have all demonstrated various benefits of treating the polarization in molecular modeling. 

In addition to offering more accurate thermodynamic properties, a polarizable force field 

in principle is more transferable and can be more robustly parameterized by directly 

utilizing high-level ab initio quantum mechanical calculations in gas-phase.  

 Several different methods for incorporation of many-body effect have been 

explored. The fluctuating charge approach accounts for polarization by varying the 

magnitude of atomic charges based on electronegativity equalization.[31, 32, 196-201] 

Alternatively, the Drude oscillator model, where a point charge moves about the nuclear, 

has been attempted to model the induced dipole response in water and small molecule 

systems.[30, 202-206] It has been argued that fluctuating charge model fails for certain 

situations such as out of plane polarization and bifurcated hydrogen bonding due to the 

limited charge flow along the bonds.[207] Compared to the classical induced dipole 

method,[18, 20, 139, 191, 207-209] these schemes involves less complicated numerical 

algorithm as the point charge framework is sustained. However, the interactive atomic 

induced dipole model [43, 210] is superior when it comes to reproducing anisotropy and 

nonadditivity of molecular polarization response across many different types of 

compounds. Moreover, intramolecular polarization plays important roles when moving 

from small molecules to peptides that possesses conformational freedom, The 

conformational dependence of electrostatics, even though significant,[211, 212] has not 

been given due attention in the development of polarizable or nonpolarizable force fields. 
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We have shown that interactive induction model of AMOEBA offers an resolution to this 

issue.[22]  

In addition to polarization effect, we also stress that the atomic charge-based 

representation of permanent electrostatic itself is inadequate. It has been shown that the 

error in the electrostatic potentials can be reduced by orders of magnitudes by 

complementing monopoles with dipole and quadrupole moments.[173] The incorporation 

of higher order atomic multipoles has been shown to greatly improve the quality of 

crystal structure predictions of organic molecules.[213, 214] One may argue that an 

alternative to point multipoles, is to use additional off-center charges to enable the same 

level of description of electron density. In fact, the use of charges at lone-pair site of the 

water oxygen atom does improve the ability of a model to reproduce water properties 

such as the density anomaly and dielectric constant.[215] Nevertheless, the determination 

of both position and magnitude of the charges at the lone pair site is a nontrivial task, 

requiring fitting to the experimental density-temperature profile. In contrast, the 

distributed multipole analysis of Stone[49, 50] imparts relatively unambiguous 

determination of atomic multipoles directly from molecular orbital calculations.   

In this chapter, we present the development of a protein potential based on 

polarizable atomic multipole representation of electrostatics. The intramolecular 

polarization scheme formulated previously allows us to obtain the permanent atomic 

multipoles, directly from ab initio calculations on blocked dipeptides. A new protocol is 

applied to combine Distributed Multipole Analysis and electrostatic potential fitting to 

derive the conformation-independent permanent multipoles.  The valence and van der 

Waals parameters have been derived from liquid simulations of small organic molecules 
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consisting of similar functional groups. The merging of inter and intramolecular 

interaction at short separation, including electrostatics, vdW, and torsional contribution, 

is determined by comparing to gas phase QM data of di- and tetra- peptides. The resulting 

potential is examined and validated by the simulation of a number of peptides and 

proteins in solution and compared with experimental data. In the following sections, the 

potential model, parameterization and initial validations will be presented. 

3.2 POTENTIAL ENERGY MODEL 

 The potential energy model has been explained in details in our previous 

publications [19, 55]. We will summarize the key features briefly. The total energy of the 

system is given by   

                                             
    

     
                    (3.1) 

The first five terms are the valence contributions corresponding to the bond, 

angle, bond-angle coupling, out of plane and torsion energy, respectively. Common 

functional forms are used for these and the detailed equations have been given 

previously. [39] The earlier version of AMOEBA protein force field applied a cMAP-

style[216] two-dimensional bicubic spline [39] to the backbone torsional energy. In the 

current version, however, the “traditional” 3-term Fourier expansion function is used for 

all torsion angles except for the backbone of glycine. The pairwise additive vdW 

interaction in AMOEBA is described by the buffered 14-7 function.[217] The buffered 

14-7 function yields a slightly “softer” repulsive region than the Lennard-Jones 6-12 

function but steeper than typical Buckingham exp-6 formulations. For a hydrogen atom 

connected to a heavy atom X, the vdW site is actually placed along the HX bond such 
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that the distance between the atom X and vdW site of H is a percentage of the full bond 

length, referred to as the “reduction factor”.   

 The permanent electrostatic energy in AMOBEA arises from atomic multipole-

multipole interactions. Each atomic center consists of a point monopole (charge), a dipole 

vector and a quadrupole tensor. Note that there are only five independent quadrupole 

components due to the symmetry and the traceless requirement. The dipole and 

quadrupole are defined with respect to the “local” reference frames formed by 

neighboring atoms. Examples of such local frames are illustrated in Error! Reference 

ource not found.. As the molecules rotate and diffuse over the course of simulation, the 

atomic multipoles remain constant with respect to the local frame. The equation for 

calculating the interaction energy and gradient (forces and torque) between permanent 

multipoles was presented in ref [19] in traditional Ewald formula.  

 Electronic polarization accounts for the majority of the many-body effect 

experienced in biomolecular systems although there are situations where many-body 

effects for dispersion and repulsion may be important as well.[218] AMOEBA utilizes an 

interactive atomic dipole induction scheme where the field produced by permanent 

multipoles and induced dipoles induces a dipole at each polarizable site (atom), which 

will further polarize other atoms. As a result, the anisotropic molecular polarizability can 

be described by the isotropic distributed atomic polarizabilities. Based on Thole’s 

model,[210] the polarization at very short range is damped to avoid the so called 

polarization catastrophe. The same polarization model is used for both intermolecular and 

intramolecular polarization. A group-based scheme, where the permanent multipoles will 

not polarize other atoms within the same group but the induced-induced mutual 
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polarization occurs among all-atom, allow us to merge the molecular fragments into a 

chain molecule such as a protein. The extraction of intramolecular polarization to obtain 

“true” permanent atomic multipoles from ab initio quantum mechanical calculations, 

energy and gradient due to polarization for complex molecules made of more than one 

polarization groups were explained previously when the organic molecule AMOEBA 

force fields were reported .  

 The masking of short range intermolecular interaction is made by means of 

scaling factors, which were determined by optimizing the transferability of 

conformational energies from alanine dipeptide to tetrapeptide, as will be discussed in the 

parameterization section. The final set of scaling factors for interactions between 

permanent multipoles is 0.4 for the 1-4 interactions (separated by three bonds), 0.8 for 1-

5 interactions, and completely neglected for any closer pair. The polarization energy 

between induced dipoles and permanent multipole moments are computed fully between 

atoms separated by three (1-4) or more bonds, and are completely neglected for any 

shorter separation. Consequently, the analytical gradient of the polarization energy is 

nontrivial because the intramolecular “scaling” for polarization interaction energy differs 

from the group-based scheme used in induced dipole generation. The derivation of 

analytical polarization force is given in the Appendix of Reference [55].  

 A particle-mesh treatment (PME) of polarizable multipole interactions have been 

developed [219] and implemented in TINKER,[220] Amber[221] and OpenMM[68] for 

AMOEBA calculations. The latest TINKER has OpenMP shared-memory parallelization 

of AMOEBA simulations, AMBER (PMEMD) has the MPI parallel capability and 

OpenMM is specialized for GPU. More than 50% of the computational expense of 
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AMOEBA is due to iterative calculation of induced dipoles. Recently we have introduced 

a multi-time step algorithm for molecular dynamics in TINKER and AMBER where the 

high-frequency valence interactions are computed every 0.25 fs for flexible molecules 

while the nonbonded interactions including the polarization are updated every 2-3 fs. 

This simple algorithm leads to a factor of two improvements without constraining any 

bond stretching. In addition, it has been shown that the iterative solution of induced 

dipoles can be significantly accelerated by using least-squares fitting based predictor, 

conjugate gradient iterative method with an efficient pre conditioner [69]. 

3.3 COMPUTATIONAL DETAILS 

Ab initio calculations were performed using Gaussian 09[222] and Q-Chem 

4.0.[223] Geometry optimization was carried out at MP2/6-31G* level unless otherwise 

specified. The atomic multipoles for dipeptide model compounds were derived at MP2/6-

311G** level using Stone’s original DMA procedure.[50] Diffuse functions in the basis 

set are avoided for dipeptide at this point as they lead to spurious multipoles especially on 

the buried atoms. Note that the original DMA procedure can be achieved in the recent 

gdma program (v2.0 and above)[224] by setting “switch” to 0, H atom radius to 0.65 and 

S atom radius to 0.80. The resulting atomic multipole values were then optimized against 

MP2/aug-cc-pVTZ electrostatic potential on a grid around the dipeptide model 

compounds with the point charges fixed. All single point conformational energies were 

obtained with complete basis set (CBS) extrapolation from RI-TRIM MP2/cc-pVTZ and 

cc-pVQZ results.[225] The TINKER v6 and Amber v10 molecular modeling package 

were used for all the molecular mechanics calculations. Particle-Mesh Ewald 

summation[182, 183, 219] was applied for treating the electrostatic interactions, with a 
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real-space cutoff distance of 7.0 Å, grid spacing of 0.8 Å, and a 5
th

 order polynomial. A 

cutoff with a switching window at 12 Å was applied to the vdW interactions. The induced 

dipoles, which were also computed with PME, were iterated until the root mean square 

(RMS) changes were below 0.01 Debye per atom.   All the molecular dynamics 

simulations were performed using an integrator based on Velocity Verlet algorithm.[226] 

The RESPA algorithm was implemented to enable a 2.5 fs time step. The system 

temperature was controlled via the Nose-Hoover chain thermostat.[227] 

 For alanine, glycine, proline and some terminals (Ala-COOH, Gly-COOH, Gly-

COO
-
), the minimum energy map of the dipeptide was calculated on a uniform 15º grid in 

the - space. At each of the 576 points, MP2/6-31G* geometry optimization with 

constrained  and  was performed before a single point energy calculation at the RI-

TRIM/MP2 CBS level. In proline, fewer grid points were available for QM calculations 

due to the limited degree of conformational freedom. For the terminals, the single point 

energy was also calculated for each optimized structure using the Polarizable Continuum 

Model (PCM) quantum. The torsion parameters for these model compounds were fit to 

gas-phase ab initio conformational energy first and then adjusted based on the statistical 

populations sampled from Protein Data Bank (PDB). For the side chain torsions of all 

other residues, geometry optimization was performed at MP2/6-31G* level with the 

specific torsion angle constrained at every 30º from 0º to 360º, followed by the single 

point RI-TRIM MP2/CBS energy calculations. 

 The potential of mean force (PMF) of a solvated alanine tripeptide, NH3
+
-Ala-

Ala-Ala-COO
-
, with respect to  and of the middle Ala was computed using the two-

dimensional weighted histogram analysis method (2D-WHAM). [228-230] A total of 576 
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(on the same grid as in the gas-phase map) independent molecular dynamics simulations 

of alanine dipeptide plus 206 water molecules in a 26.6 Å octohedron box was carried out 

at 298K. In each simulation, the  and dihedral angles were restrained to one of the 

grid point on Ramachandran map using weak harmonic potentials (force constant = 0.01 

kcal/mol-deg
2
). The resulting alanine conformer population, sampled from the 576 × 70 

ps trajectory (after 30 ps equilibration), was utilized to construct the PMF or the relative 

free energy map via the 2D WHAM.  

The PDB PMF was calculated from –ln(P) where P is the torsion distribution 

sampled from PDB.[231] For alanine backbone, the PDB PMF was obtained by 

averaging the data for alanine with either right or left neighbor residue being alanine 

(Ala-Ala-X or X-Ala-Ala, X represents any type of residue, same below). For proline, 

the data with either right or left neighbor residue being glycine (Gly-Pro-X or X-Pro-

Gly) was averaged. Similarly, the glycine PDB PMF was calculated by averaging the 

data for Pro-Gly-X and X-Gly-Gly. 

 For peptide systems including unblocked and protonated (Ala)5, NH3
+
-Gly-Pro-

Gly-Gly-COO
-
, and Ac-(Ala-Ala-Glu-Ala-Ala)3–NH2. Replica exchange molecular 

dynamics (REMD)[232, 233] simulations were performed with 36 replicas at 

temperatures between 278 K and 620 K. The (Ala)5 was unblocked and protonated at both 

N- and C-termini, corresponding to the experimental conditions of pH 2.[99, 234] For 

each system, the peptide was soaked in an octahedron water box with ~800 water 

molecules. The MD simulations were performed under the NVT ensemble for at least 30 

ns/per replica, using the PMEMD module in Amber 10.[221] The snapshots were saved 

every 0.5 ps for analysis purpose. 
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 Protein molecular dynamics simulations were performed using Amber10 software 

package. The proteins simulated are as follows: Crambin (PDB:1EJG, 46 residues),[235] 

Trp Cage (PDB:1L2Y, 20 residues),[236] Villin Headpiece (PDB:1VII, 35 

residues),[237] Ubiquitin (PDB:1UBQ, 76 residues),[238] GB3 Domain (PDB:2OED, 56 

residues),[239] RD1 Antifreeze Protein (PDB:1UCS, 64 residues),[240]  SUMO-2 

Domain (PDB:1WM3, 72 residues),[239] BPTI (PDB:1BPI, 58 residues),[241] FK 

Binding Protein (PDB:2PPN, 107 residues),[242] and lysozyme (PDB:6LYT, 129 

residues).[243] For each system, the protein was soaked in a periodic octahedron box 

with a buffer distance of 8 Å to the wall. The simulation was performed in the NPT 

ensemble at a temperature of 298K. Approximately 10 ns of MD trajectories were 

generated for each system. The first 500 ps portion of the trajectory was discarded 

corresponding to equilibration and structural information was saved every 0.5 ps. 

Analyses of the dynamics trajectories and computation of RMSD values and average 

structures was done using the Ptraj module.[221] 

3.4 PARAMETER DERIVATION 

3.4.1 Electrostatic Parameters 

The permanent atomic multipoles for glycine, alanine and proline residues were 

derived from a capped (MeN-X-COMe) dipeptide. The goal is to derive the 

conformational independent permanent electrostatic parameters for the central residue X 

from QM. It is a critical step to define the intramolecular direct polarization groups since 

the intramolecular polarization contribution needs to be extracted from the DMA 

multipoles as described in the Potential Energy Model section. Recall the permanent 

atomic multipoles (PAMs) only polarize atoms outside its polarization group. Figure 3.2 
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shows the group definition for alanine. For side chains of other residues, the groups are 

chosen in the same spirit, i.e. no freely rotatable bonds within the group. For example, the 

-CH2-, phenyl ring, and hydroxyl group are each classified as one group in the direct 

polarization. Next, the initial multipole parameters were derived by using DMA at 

MP2/6-311G** level, which were then optimized against the MP2/aug-cc-pVTZ 

electrostatic potential computed on a set of grid points around the diepeptide compounds. 

The grid spacing is set as 0.35 Å with a 1.0 Å grid distance from the vdW surface. The 

parameters are iterated until the RMS differences from both the target QM potential and 

gradient are smaller than 0.5 kcal/mol/ Å. Note that the point charges in the optimization 

process are fixed while the dipole and quadrupole moments are relaxed. The point 

charges at the boundary between middle residue and caps, or backbone and side chain are 

manually adjusted to ensure each residue’s net charge is zero. The adjustment is usually 

small and the ESP optimization process also ensure its compensated by dipole and 

quadrupole changes. The resulting PAMs for the central residue are the “confirmation-

independent” PAMs included in the AMOEBA parameter file. When connected with caps 

or other residues in the peptide and proteins, the intramolecular polarization due to PAMs 

will take place according to the group definition. For alanine, we chose five local minima 

(αL, α’, C5, C7a and C7e) to repeat the above procedure using the average as the final 

multipoles, and one additional conformer (β2) as validation. PAMs for glycine and 

proline were obtained by following the same procedure.  

For all other residues, the capped (MeN-X-COMe) dipeptides are chosen to be the 

model compounds. For each amino acid, three conformations were used for 

parameterization, and another three for validation. The conformers have either extended 
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backbone or compact structures with internal hydrogen bonding as they are gas-phase 

minima. The ba ckbone atoms have the same PAM as alanine, while the side chain PAMs 

were derived from the dipeptides using the same procedure mentioned above. When the 

side chain parameters were merged with alanine backbone parameters, the charge 

neutralization (in the order of hundredth electron) was made on the C. Fitting to 

MP2/aug-cc-pVTZ electrostatic potential was subsequently done to the three conformers 

in the parameterizations set by only allowing the side chain atomic dipole and quadrupole 

moments to vary. The ESP fitting and validation results will be discussed in details below 

in the Simulation and Validation section. In addition to ACE (-COCH3) and NME (-

NHCH3) terminus, other N-terminus (-NH3
+
 and -NH2) and C-terminus (-COOH and -

COO
-
) were also parameterized. Note that glycine needs its own -NH3

+
, -COOH due to 

the different atom type used for glycine Ca. Due to the amount of data involved, most 

parameters, including the PAMs and direct polarization group definition, are not given in 

the text, but are included in the publicly available AMOEBA parameter file. 

3.4.2 vdW and Valence Parameters 

The van der Waals and valence parameters were transferred from the AMOEBA 

parameters for small organic molecules which was reported in a previous publication.[55] 

The parameterization essentially followed the same approach used for water[19] and 

ion[52] where the vdW parameters were optimized to both gas-phase cluster structures 

and energetics as well as condensed-phase properties. A critical strategy in deriving the 

vdW parameters, due to its empirical nature, is to ensure chemical consistency among 

different elements. This was achieved by parameterizing multiple compounds that share 

the same vdW “classes” simultaneously to improve the transferability. The “atom 
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classes” (super set of “atom types” used for electrostatics) in AMOEBA are slightly 

broader than the element types in order to take into account the different hybridizations 

such as sp
2
 vs. sp

3
. In Error! Reference source not found., the main vdW parameters are 

llustrated. The valence parameters, including bond, angle and out-of-plane parameters, 

were transferred from small organic molecules with minor modifications according to ab 

initio (MP2/6-31G*) geometries of peptides and protein PDB structures. 

3.4.3 Torsional Parameters 

Once the electrostatic, vdW, and valence parameters were determined, the last 

step was to derive the backbone torsional parameters by comparing AMOEBA and ab 

initio conformational energy values. Note that the molecular mechanics conformational 

energy not only depends on the torsional energy term, but also the treatment of 

nonbonded intramolecular interaction, in particular how the 1-4 interactions are handled. 

In this work the scaling factors for the intramolecular electrostatic and vdW interactions 

have been chosen so that they 1) minimize (maximize) the contribution of torsional 

(nonbonded) terms, and 2) also transfer well from dipeptides to tetrapeptides.  

 The alanine dipeptide is used to parameterize the backbone torsions for all the 

amino acids except glycine and proline. The ab initio (RI-TRIM MP2/CBS) energy of 

alanine dipeptide was systematically evaluated at different backbone torsion angles over 

a 24 × 24 grid (15
o 

interval in both  and ) as described in the computational details. 

The AMOEBA energy without the / torsional contribution was computed for the same 

conformation using torsion constraints. The difference between AMOEBA and RI-TRIM 

MP2/CBS energy is taken as the fitting target of the torsional parameters using a three-

term Fourier expansion. Subsequently 2D WHAM simulations of an (Ala)3 peptide in 
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explicit water were performed and the Ramachandran potential of mean force (PMF) of 

the middle residue were obtained.  The torsion parameters are further improved by 

comparing the AMOEBA PMF to the statistical alanine backbone PMF derived from the 

PDB database.[231] Note that there torsion parameters were not directly fit to the PDB 

PMF. Instead, the parameter refinement was achieved by assigning relatively higher 

weight factors to the QM energy of conformers located at the polyproline II (PII), α-

helical and β-sheet regions than the other while fitting to the whole QM gas-phase energy 

map. The torsion parameters are fine-tuned in 3-4 iterations to balance the simulated 

relative populations in these minimum-energy regions. The gas phase Ramachandran 

potential energy from RI-TRIM MP2/CBS and AMOEBA with the final torsion 

parameters are compared in Figure 3.3. The simulated solution-phase PMF using 

AMOEBA and the PDB statistical PMF maps for alanine backbone are shown in Figure 

3.4a. 

The parameterization of proline backbone torsion followed essentially the same 

procedure as alanine except that fewer grid points are used due to the limited 

conformational freedom. For glycine, a torsion-torsion spline term is introduced in 

addition to the Fourier torsional terms for and. After the Fourier torsions were fit to 

the gas-phase ab initio RI-TRIM MP2/CBS energy, the difference between the ab initio 

and AMOEBA energy were used as the 2-D spline parameters which were fixed in the 

subsequent optimization of the Fourier torsion parameters. The use of torsion-torsion 

term improves the fit to both ab initio data and solution phase properties. Similar to the 

parameterization of alanine backbone torsions, the torsion parameters for proline and 

glycine backbone were refined to match the statistical PMF of proline and glycine from 
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the PDB database, respectively. REMD simulations were performed with a model tetra-

peptide GPGG (NH3
+
-Gly-Pro-Gly-Gly-COO

-
) to obtain the simulated torsion angles 

distribution of proline and glycine backbone. All other residues share the same backbone 

torsion parameters (together with other valence, vdW and electrostatic parameters) as 

alanine. The parameterization of the –COOH terminal of alanine (and other non-Gly/Pro 

residues) and –COOH, -COO
-
 terminals of glycine were also fit to the RI-TRIM 

MP2/CBS energies on a 12 × 12 torsional grid Since there are no PDB data available, we 

have optimized these parameters by matching AMOEBA energy in implicit solvent with 

QM PCM energies at MP2/6-311G(2d,2p) level. 

 In addition, conformation energies for a benchmark set of 27 alanine 

tetrapeptides[244] have been assessed. This comparison was made to validate the 

transferability and adjusting scaling factors for the short-range intramolecular nonbonded 

interactions. The dipeptide data itself is obviously not useful for this task as its 

conformational energy surface has been explicitly fit to. The AMOEBA results are 

compared with those from MP2, LMP2, DFT and RI MP2 calculations in Error! 

eference source not found.3.2. All the ab initio calculations are single point energy 

evaluation of the same HF/6-31G** geometries. AMOEBA calculations were performed 

with both full geometry optimization and optimization with  and  angles constrained at 

HF geometry. All comparison is made against RI MP2/CBS results. While the 

AMOEBA-optimized structures deviate only slightly from those of HF/6-31G** (average 

srms = 0.47 Å), the rms difference between AMOEBA and RI MP2/CBS energies is 1.15 

kcal/mol, similar to those of LMP2/cc-pVTZ(-f) and MP2/6-311+G2d2p. Note that the 

relative conformational energies of the first two conformers (extended) vs. the third 
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(compact) given by RI MP2/CBS lie in between the canonical MP2 and LMP2 results, 

and so are the AMOEBA perditions.   

For the side chain torsions for all other residues, the parameters were obtained by 

fitting to the RI-TRIM MP2/CBS conformational energy of dipeptides. To derive 

parameters that are independent of the backbone conformation and also to verify the 

transferability of the backbone torsion parameters from alanine, two or more dipeptide 

conformation with backbone / values fixed at α-helix and β-sheet values were used 

simultaneously to fit the selected side chain  torsion parameters. For each conformer, 

the side chain torsion angle of interest was rotated at a step size of 30º. At each point, the 

dipeptide structure was optimized with ,  and  angles constrained to the same values 

in both ab initio level and AMOEBA calculations. Examples of conformational energy 

profile of isoleucine and serine side chain are plotted in Figure 3.5. The former has an 

alkane-like side chain, and a single set of torsional parameters performs rather well on 

both conformers. The order of the local minima is also well captured. The situation for 

serine on the other hand is a little worse due to intramolecular hydrogen bonding between 

the side chain and backbone. In both cases, the torsional energy contribution accounts for 

about 15% of the total conformational energy. In Error! Reference source not found., the 

veraged RMS error in conformational energy fitting for each residue is given.  

3.5 SIMULATION AND VALIDATION 

For small molecules, it is possible to systematically compare force field 

calculations to a range of ab initio data and experimental properties, which allows us to 

securitize the individual components in the potential energy model such as electrostatics 

vs. vdW. For larger biomolecules, however, one can only compare detailed simulations 
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with limited experimental data such as statistical population, NMR J coupling constants, 

and atomic structures of native proteins from X-ray or NMR. Such comparison, while 

absolutely necessary, is mostly useful for inspecting the torsional parameters while 

providing no feedback to other components (e.g. vdW or electrostatics) within the force 

field. It would require extensive investigations of a wide range of proteins in various 

areas, such as protein folding, binding, pKa shift and mutant stability, to fully validate the 

different components and aspects of a force field. Below we first examined the 

electrostatic parameters against QM for multiple conformations of each amino acid in 

gas-phase, and then assessed peptide conformational properties and protein structures in 

solution using the AMOEBA force field. 

3.5.1 Electrostatic Properties in Gas Phase 

One of the important advantages of a polarizable force field is its transferability 

from gas phase to solution. Therefore, it is to our advantage that the gas-phase 

electrostatic properties can be rigorously compared to QM ab initio results. Especially, 

we would like to ensure the transferability of the alanine backbone electrostatic 

multipoles to the other residues except for glycine and proline, and the transferability 

among different conformations for each amino acid.  Here, we validated the electrostatic 

properties of AMOEBA protein force field by computing the dipole moments, including 

the x, y, and z components, and electrostatic potentials of dipeptide mode compounds for 

each amino acid. For each amino acid dipeptide, three conformations were chosen as the 

validation set, which were excluded in the parameterization process. In Figure 3.6, we 

compare the AMOEBA and QM molecular dipole moments of these amino acid 

dipeptides in the validation set (except ala, gly and pro). The dipole components 
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including the x, y, and z components of all dipeptides were accurately reproduced, 

regardless of the conformations and residues. The correlation between AMOEBA and ab 

initio results is 0.998. The comparison between ab initio and AMOEBA electrostatic 

potential for all dipeptide model compounds can be found in the supporting information, 

for both parameterization and validation sets. The average RMSE is 0.45 kcal/mol per 

unit charge on a grid surrounding the neutral amino acids, and only slightly higher (0.64) 

for charged dipeptides, with the absolute values of the latter orders of magnitude higher. 

Thus, thanks to the intramolecular polarization model in AMOENA, the transferability of 

backbone and side chain electrostatic multipoles of AMOEBA are very satisfactory. We 

believe this test performed here, while not commonly done in force field development, is 

rather important and necessary for validating the electrostatics of the force fields, before 

other components such as the torsion parameters are empirically adjusted. 

3.5.2 Polyalanine Conformational Free Energy in Solution 

There has been increasing studies of oligopeptide conformational properties in 

solution to calibrate the force field torsional parameters.[99, 245-251] Simulated results 

can be directly compared to the experimental nuclear magnetic resonance (NMR) data for 

the corresponding peptides. Following the previous work, we have performed simulations 

on Ala/Gly/Pro based peptides using the current AMOEBA protein force field. 

For alanine, we have first examined the solvation of unblocked and protonated 

(Ala)5  peptide using REMD. The conformational preference is presented as a potential 

of mean force with respect to  and  in Figure 3.4b, which is calculated from the 

averaged  and  torsion population distributions of ala-2, ala-3, and ala-4 residues. A 

distinct global minimum is located around the PII conformation. Two other basins with 
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energies about half kcal/mol higher are in the -sheet and -helix region, respectively. 

The energy barrier between global and the two local minima is about 1~2 kcal/mol. 

Overall, the upper left region of the Ramachandran map is distinctively flat compared to 

the rest of conformational space. The shape and location of this highly populated vicinity 

agree well with the statistical PMF map from the PDB database (Figure 3.4c), [231] 

suggesting the transferability from (Ala)3 to (Ala)5 as we expected. 

The distributions of/torsion angles of (Ala)5 have been probed 

experimentally by NMR.[99] The NMR spin-spin coupling (J-coupling) constants reflect 

the ensemble character of the conformational distribution, which were compared with 

those calculated form REMD simulation trajectories of (Ala)5 via Karplus relations.[87, 

250] Totally eight NMR J-coupling constants were reported: five for the backbone angle 

, 
3
J(HN,Hα), 

3
J(HN,C’), 

3
J(Hα,C’), 

3
J(C,C’), 

3
J(HN,Cβ), two for the backbone angle , 

1
J(N,Cα), 

2
J(N,Cα) can be measured, and one for both  and 3J(HN,Cα).[99] The 

trajectory of 298 K in (Ala)5 REMD simulation was extracted to calculated the predicted 

J-coupling values. Twenty-seven predicted J-coupling values are compared to those 

measured by NMR experiments in Table 3.4. The J-coupling constants involved in the 

N- and the C-termini (COOH) were also included. The predicted J-coupling values are in 

excellent agreement with those probed by the experiments. The chi-square (χ
2
) difference 

between the simulations and experiments, computed using the experimental 

uncertainties,[99] is about 0.994, and the overall RMS difference is 0.33 (Table 3.4). 

Note that when using the torsion parameters that were directly fit to the gas-phase QM 

energy of alanine dipeptide, the χ
2
 is 3 or 4 times higher. The torsion refinement 

according to the PDB PMF thus has a significant effect in improving the calculated J-
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coupling constants. A notable consequence of the adjustment is the location of α-helix 

population from simulations shifted lower and to the right toward the (φ, ψ) angles in the 

PDB distribution. In contrast, with torsion terms fit to QM gas-phase energy alone, the 

simulated “α-helix” population was much broader than that of PDB and centered at much 

lower (more negative) φ and higher (less negative) ψ. A similar effect has recently been 

discussed for the CHAMRMM 22/CMAP, CHARMM36-MP2 and CHARMM36 force 

fields and it was suggested empirical correction to CMAP approach is important.[247, 

248] Improving the agreement with PDB distribution both in terms of shape and location, 

especially for residues not in actual helices, led to thermodynamic properties and 

cooperativity in helix-coil transition that were more consistent with experiments. 

3.5.3 Proline and Glycine Conformational Free Energy in Solution 

The /torsion angles distribution for proline and glycine backbone were 

validated by via REMD simulations of a tetra-peptide GPGG (NH3
+
-Gly-Pro-Gly-Gly-

COO
-
). For both proline (pro-2 residue) and glycine (gly-3 residue), the simulated PMF 

maps with respect to the /torsion angles show good agreement with the PDB 

statistical PMF maps (Figure 3.7). For Pro-2 residue, the relative free energy of the α-

helix and PII regions from the PDB data are well reproduced in our simulation and the 

local minimum in the α-helix region is about 1 kcal/mole higher than the global minimum 

in the PII region (Figure 3.7a).  The torsion distributions of Gly-3 residue from the 

simulations are also consistent with the PDB data. The global minima are located at the 

α-helix and the left-handed α-helix regions. Two local minima are located at the PII and 

the reflection of the PII regions, with about 1 kcal/mole higher than the global (Figure 

3.7c).   
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Similar to alanine, the J-coupling constants were calculated for Pro-2 and Gly-3 

residues. Three J-coupling constants, J(Hα,C’) for Pro-2, J(Hα,HN) and J(Hα,C’) for Gly-

3 were evaluated by using the Karplus coefficients obtained from B972 EPR-III and 

B3LYP EPR-III calculations.[252] Table 3.5 compares the J-coupling values obtained 

from the simulations and experiments for the GPGG tetra-peptide. The RMS difference 

between the calculated and experimental J-coupling constants is 0.44 (with B972) and 

0.39 (with B3LYP), respectively. 

3.5.4 Secondary Structure Distribution in Ac-(AAQAA)3-NH2 Peptide 

It is important to accurately reproduce the distributions and balances of peptide 

secondary structures in a force field, which is directly related to phenomena such as 

protein folding, mis-folding, aggregation, and conformational changes. The REMD 

simulation of short peptide (Ala)5 has already provided the sensitive test of the “intrinsic” 

secondary structure preferences of the AMOEBA force field. However, (Ala)5 peptide is 

too short to form a stable α-helix, in which a more extended PII backbone conformation 

is found more favorable than the right  handed α-helix in the Ramachandran free energy 

map.[99, 234, 250, 253-257] We have further simulated a longer helix-forming peptide, 

Ac-(AAQAA)3-NH2,[258, 259] to investigate the helix-coil transition. Because the 

helical populations of Ac-(AAQAA)3-NH2 have been determined from NMR chemical 

shift data,[260] we can directly compare the helical-fractions calculated from REMD 

simulations. We use the same definition of helical state as the previous study,[234] where 

φ is belongs to [-160°, -20°] and ψ is belongs to [-120°, 50°]. Figure 3.10 shows the 

fraction of helix <hi> for each residue from our simulation and NMR chemical shifts at 

303 K. A reasonable agreement can be seen between the simulated values and those 



 

 

 

64 

obtained from NMR experiments at 303K, where both fluctuated between 10 to 30% for 

most residues. The error was estimated using block average based on six 5-ns simulation 

windows. In addition, the lower helical propensity trend at the C-terminus was well 

captured. AMOEBA seems to underestimate the helix fractions of residue 3, 4 and 7. 

3.5.5 Molecular Dynamics Simulations of Protein Systems 

Ten well-studied proteins were chosen as the validation set to evaluate the new 

force field. While limited, this set is somewhat representative of different types of protein 

structures. For example, Trp Cage (1L2Y) and Villin Headpiece (1VII) mainly consist of 

alpha helices; GB3 domain (2OED) and FK binding protein (2PPN) contain more beta 

sheets; Crambin (1EJG) and Lysozyme (6LYT) are disulfide bond-rich domains; the 

others are mixtures of different motifs. 

The stability of the protein systems is characterized by the RMSD values relative 

to the PDB structures after 10 ns MD simulation, as summarized in Figure 3.8. The 

overall average RMSD of the ten simulated protein structures is 1.33 Å, and seven of 

them are ~1.0 Å. All the systems showed stable RMSD after ~300 ps, indicating the 

protein structures were well maintained. As a further demonstration, the final snapshot is 

superposed to the PDB structure as a comparison for all systems. From Figure 3.9, we 

can see that no helical and sheet structures drift away from experiment significantly. For 

some proteins, the large deviations usually come from the terminals. Take Ubiquitin as an 

example, inspection of the PDB entry for ubiquitin shows that the final 5 residues have 

significantly higher temperature factors and the rest of the structure. Flexibility near the 

C-terminus is also observed in MD results, particularly for the two glycine residues at 
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positions 75 and 76. Elimination of just these two residues from the data analysis yields a 

backbone structural RMSD of 1.16 Å against the PDB structure. 

3.5.6 Calculation of NMR Order Parameters 

The order parameter (S
2
) indicates the flexibility of each residue, and lower S

2
 

values correspond to higher flexibility. We have compared the simulated order 

parameters of ubiquitin and hen egg white lysozyme to NMR relaxation 

experiments,[261, 262] which is measured based on the amide N-H bond vibrational 

motion.[263, 264] The isotropic reorientational eigenmode dynamics (iRED) matrix was 

extracted from the MD trajectories. The order parameter (S
2
) was then computed by 

solving the Eigen values of the matrix.[265]  

Shown in Figure 3.11 is the comparison of S
2
 from 10 ns MD simulations and 

experimental measurements. The RMSDs from the experimental data are 0.04 and 0.09 

for ubiquitin and lysozyme respectively. The S
2
 curves in general correlated well with the 

NMR results. For ubiquitin, the higher flexibility at turn 1 (residue 7-10), turn 3 (residue 

37-40) and the terminal was nicely reproduced, while the flexibility at turn 6 (residue 62-

65) was underestimated. For lysozyme, the flexibility at turn 1 (residue 46-49), long loop 

2 (residue 61-78), loop 3 (residue 85-89), loop 4 (residue 100-107), loop 5 (residue 116-

119) and the terminal were reasonably predicted, although the intensities were a little 

higher than the experimental results. It is satisfying that the trend of the predicted order 

parameters match well with the experiment, and no remarkable deviation was observed. 

Overall, the AMOEBA force field is able to reproduce the protein structures and 

flexibilities 
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3.5.6 Calculation of Side Chain J-Couplings 

The amino acid side chain distributions were evaluated by comparing the 

simulated side chain J-couplings to the experimental NMR values for four protein 

systems: BPTI, GB3, Ubiquitin and Lysozyme.[262, 266-269] 

Table 3.6 lists the side-chain the RMSD between the experimentally derived and 

simulation-derived scalar couplings. Also listed for comparison are the RMSD values 

derived using AMBER ff99SB force field, and AMBER ff99SB-ILDN,[270] which were 

refined against the side chain NMR data of the four proteins. Note that the side chain 

parameters in the current AMOEBA were directly from fitting to QM energy profile and 

were not optimized against any experimental data. Overall, the performance of 

AMOEBA force field is comparable to the ff99SB-ILDN force field. Although a few 

outliers are found in each protein system, most of the experimental scalar couplings were 

reasonably reproduced. The correlation between the calculated and experimental J-

couplings of all the four protein systems is summarized in Figure 3.12. The correlation 

coefficient R
2
 is 0.75. The J-coupling values of each protein system can be found in the 

Supporting Information. We can see that within the high scalar-coupling region, 

AMOEBA failed to distinguish the subtle differences as observed in experiment. For 

example, most predicted J-coupling values by AMOEBA were ~10.8 Hz for 

experimental data ranging from 8.0 to 15.0 Hz. We further decomposed the RMSD 

values to each residue. The values ranged from ~0.7 to 3.3 (Figure 3.12). For residues 

with relatively high RMSDs, like Ile and Gln, we did not make further modifications 

since the sample size of these residues in the four proteins is small. The side chain J-

coupling data shown above suggests that the AMOEBA force field, derived based on the 

gas phase QM energy profiles, reasonably captures the side chain conformational 
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properties in solution while further improvement would require additional reliable 

experimental data each residues. 

3.6 CONCLUSIONS 

The development and parameterization of AMOEBA protein force field has been 

reported in this chapter. A distinct feature of the force field is the atomic multipole-based 

electrostatics with explicit treatment of dipole polarization. A mutual induction model 

with damping was applied to describe both inter and intramolecular polarization in a 

consistent manner. The polarization among permanent multipoles is handled via a group-

based scheme while the induced-induced dipole polarization occurs among all atoms 

(polarizable sites). By extracting the intramolecular polarization as defined by the force 

field, we are able to derive conformation-independent electrostatic multipole parameters 

from high-level first principle calculations by using a combination of Distributed 

Multipole Analysis and electrostatic potential fitting. The rigorously derived electrostatic 

model will be important for accurate description of protein interactions with other 

biomolecules as well as the electrostatic forces within the proteins.  

With the vdW parameters determined and transferred from liquid simulations of 

small organic molecules [55], AMOEBA was applied to the simulations of peptides and 

proteins. In addition to the non-bonded electrostatic and vdW forces, the “torsional” term 

also contributes to a fraction of the conformational energy. The torsion term is essentially 

an error function in the classical force field, and yet it plays a crucial role in determining 

the detailed conformational properties of peptides and proteins. The recent development 

of Amber [245, 270] and CHARMM force fields[247, 248] have demonstrated that the 

conformational populations of small peptides are extremely sensitive to subtle changes (a 
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fraction of kcal/mol) in the torsional parameters. In developing the current force field, we 

have resorted to both high-level ab initio (MP2/CBS) peptide energetics and PDB 

structural statistics in deriving the backbone torsion parameters. The resulting force field 

overall performed reasonable well compared with NMR J coupling constants and S
2
 

order parameters of several peptide and protein systems. Nonetheless, these are limited 

validations focusing on conformational properties and torsional parameters. Extensive 

investigations on more proteins and a broad range of thermodynamic properties will be 

necessary to understand the various aspect of the potential energy model and to fully 

determine the successes and failures of the force field. 

As previously noted,[247, 271] the CMAP style spline torsion allows a force field 

to reproduce the gas-phase ab initio conformational energy exactly. This however may 

also pick up unphysical errors in the force fields (e.g. in the other valence contributions) 

that are not transferable to the solution phase. While we have strived to derive a balanced 

and physical force field, further understanding of the limitations of the molecular 

mechanics force fields is essential for systematic improvement. Better modeling of 

electrostatics and vdW, as well as their coupling of valence interactions, will be the key 

to arrive at a transferable protein force field that can perform well in various physical and 

chemical environments.  
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Table 3.1: The vdW parameters for atoms in protein backbone. AMOEBA uses atom 

classes to define vdW and valence parameters while atom types are used for electrostatic 

parameters. Different atom types may belong to the same atom class. 

Atom class 2rÅ  kcal/mol) H-reduction factor 

C 3.650 0.101  

H 2.940 0.026 0.91 

C 3.820 0.101  

H 2.980 0.024 0.92 

N (amide) 3.710 0.110  

H (amide) 2.590 0.022 0.90 

C (carbonyl) 3.820 0.106  

O (carbonyl) 3.300 0.112  

O
-
 (in –COO

-
) 3.700 0.129  

S 4.005 0.355  

S
-
 4.200 0.355  
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Table 3.2: Comparison of the side chain conformational energy (kcal/mol) calculated by 

AMOEBA and QM (RI-TRIM MP2/CBS). The conformational energies 

were calculated by rotating the listed side chain torsion from 0 to 360º at a 

30º interval. In all RMSD calculations, data from two backbone 

conformations (α-helical and β-sheet) were combined.  

  

 
 

   

 Side chain torsion RMSD  Side chain torsion RMSD  

Cys 1 0.67 Asn 1 1.35 

 2 0.10  2 1.06  

Met 1 same as Glu and Gln 0.40 Glu 1 from Met 0.79 

 2 0.52  2 from Gln 1.86 

 3 0.10  3 from Asp 2 0.42 

Ser 1 0.84 Leu 1 0.32 

 2 0.22  2 averaged over Leu/ Ile 0.31 

Thr 1 same as Ser and Val 0.96 Val 1 0.58 

His 1 1.24 Phe 1 0.65 

 2 1.31  2 0.54 

Hid 1 0.83 Tyr 1 from Phe 0.55 

 2 0.67  2 0.44 

Hie 1 1.10 Trp 1 0.54 

 2 1.00  2 0.55 

Ile 1 from Val 0.53 

 

Asph 1 1.39 

 2 averaged over Leu/Ile 0.34  2 0.97 

Arg 1 from Met 1.63 Lys 1 from Asn 0.74 

 2 same as Lys 1.08  2 0.95 

 3 1.76  3 0.96 

 4 0.80  4 0.73 

Asp 1 from Asph 1.22 Gln 1 from Met 0.79 

 2 1.01   2 1.86 

    3 from Asn 2 0.42 
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Table 3.3: Comparison of alanine tetrapeptide conformational energy (kcal/mol). This set 

conformers were used in the previous studies. The RI MP2/CBS and other 

QM results are taken from taken from Two sets of AMOEBA results were 

listed. Both are from energy minimization of QM structures, one with 

backbone /torsions restrained at the QM values and the other fully 

relaxed. The RMSD was computed using the RI MP2/CBS energies as 

references. 

  

RI MP2/ 

CBS 

LMP2/ 

cc-
pVTZ(-

f) 

MP2/ 

6-
311+G2d2p 

DFT 

B3LYP/6-
31G* 

AMOEBA 
Struct. 
RMS 
(Å) 

AMOEBA 

( /  
restrained) 

4.13 2.50 4.61 1.62 3.07 0.30 2.54 

4.19 2.60 4.21 1.71 3.62 0.42 0.74 
0.57 0.00 -0.70 -1.00 0.00 0.21 0.33 

5.73 3.87 5.50 3.61 4.07 0.37 3.82 

5.26 3.88 5.14 4.25 3.96 0.30 2.27 

2.90 2.19 2.10 2.10 2.45 0.53 0.14 

6.67 5.73 5.61 6.56 7.64 0.45 0.65 

4.64 4.17 3.32 4.99 5.45 0.44 1.06 

7.92 6.93 6.98 5.20 10.01 0.25 3.14 

7.79 6.99 6.57 7.24 6.34 0.34 0.62 

0.00 -0.19 -1.41 0.14 0.75 0.68 0.58 

0.29 0.50 -1.07 1.73 0.75 0.91 0.22 

3.66 1.77 3.20 1.14 3.56 0.62 0.02 

4.68 3.68 4.14 3.89 4.66 0.71 0.00 

2.19 2.07 0.65 3.47 2.28 0.59 0.08 

3.55 2.83 2.33 3.31 2.93 0.48 0.24 

3.42 2.78 2.02 2.00 2.32 0.28 1.09 

1.91 0.52 1.15 -0.87 2.19 0.56 0.20 

3.82 2.83 2.90 1.13 4.25 0.56 0.19 

1.76 0.87 0.88 0.80 3.18 0.47 2.91 
2.92 2.11 1.59 1.78 0.00 0.92 8.51 

5.82 4.82 4.59 4.84 6.87 0.59 1.60 

5.82 4.82 4.57 4.84 6.84 0.33 1.46 

3.98 2.98 2.89 3.59 4.11 0.30 0.19 

2.50 1.59 1.54 1.92 2.87 0.50 0.35 

0.67 0.18 -0.41 1.40 1.60 0.37 1.51 

4.02 3.18 3.04 3.53 6.26 0.38 5.57 

RMS 
deviation 

1.05 1.06 1.54 1.15 0.47 1.22 
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Table 3.4: Comparison of J-coupling values (Hz) from the AMOEBA simulations and 

experiments for (Ala)5 peptide. The (Ala)5 was unblocked and protonated at 

both N- and C-termini, corresponding to the experimental conditions of pH 

2. Replica exchange molecular dynamics simulations were performed with 

32 replicas at temperatures between 278 K and 620 K (30-ns for each 

replica). The trajectory at 298 K was extracted for the J-coupling 

calculation. 

Rsidue 

index 
J-coupling type J-simulation J-expt.[99] 

Ala-2 
1
J(N,Cα) 11.066 11.36 

Ala-3 
1
J(N,Cα) 10.923 11.26 

Ala-4 
1
J(N,Cα) 10.922 11.25 

Ala-2 
2
J(N,Cα) 8.448 9.20 

Ala-3 
2
J(N,Cα) 8.170 8.55 

Ala-4 
2
J(N,Cα) 8.232 8.40 

Ala-5 
2
J(N,Cα) 8.250 8.27 

Ala-2 
3
J(C’,C’) 0.866 0.19 

Ala-2 
3
J(Hα,C’) 1.729 1.85 

Ala-3 
3
J(Hα,C’) 1.705 1.86 

Ala-4 
3
J(Hα,C’) 1.713 1.89 

Ala-5 
3
J(Hα,C’) 1.929 2.19 

Ala-2 
3
J(HN,C’) 1.087 1.13 

Ala-4 
3
J(HN,C’) 1.315 1.15 

Ala-5 
3
J(HN,C’) 1.216 1.16 

Ala-2 
3
J(HN,Cβ) 1.819 2.30 

Ala-3 
3
J(HN,Cβ) 1.833 2.24 

Ala-4 
3
J(HN,Cβ) 1.743 2.14 

Ala-5 
3
J(HN,Cβ) 1.584 1.96 

Ala-2 
3
J(HN,Hα) 6.269 5.59 

Ala-3 
3
J(HN,Hα) 5.988 5.74 

Ala-4 
3
J(HN,Hα) 6.079 5.98 

Ala-5 
3
J(HN,Hα) 6.607 6.54 

Ala-2 
3
J(HN,Cα) 0.421 0.67 

Ala-3 
3
J(HN,Cα) 0.614 0.68 

Ala-4 
3
J(HN,Cα) 0.648 0.69 

Ala-5 
3
J(HN,Cα) 0.663 0.73 

      Χ
2 
= 0.994          RMS=0.33 
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Table 3.5: Comparison of J-coupling values (Hz) from AMOEBA simulations and NMR 

experiments for GPGG tetra-peptide. Replica exchange molecular dynamics 

simulations were performed with 32 replicas at temperatures between 278 K 

and 620 K (30-ns for each replica). The trajectory at 298 K was extracted for 

J-coupling calculation. 

Residue 

index 
J-coupling type 

J-simulation 

(B972 EPR-III) 

J-simulation 

(B3LYP EPR-III) 
J-expt.[252]   

Pro-2 J(Hα,C’) 1.75 1.88 1.30 

Gly-3 J(Hα,HN) 4.94 3.67 4.10 

Gly-3 J(Hα,C’) 6.07 6.76 6.30 

  
RMS=0.44 RMS=0.39 

 
 
 
 
 
 

Table 3.6: Comparison (RMSD) of J-coupling values (Hz) from AMOEBA simulations 

and experiments for BPTI, GB3, Ubiquitin and Lysozyme. Results from 

AMBER FF99SB force field, and refined AMBER FF99SB-ILDN force 

field are included for comparison. 

 BPTI GB3 Ubiquitin Lysozyme 

AMOEBA 1.745 1.47 1.55 2.47 

AMBER FF99SB[270]  1.782 1.48 2.55 3.59 

AMBER FF99SB-

ILDN[270]  
1.452 0.90 1.63 2.93 
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Figure 3.1: Local frame definitions for (a) a protein backbone Cα, (b) backbone amide N, 

(c) carboxylate carbon, and (d) amine nitrogen. The Cα and amide N use the 

“Z-then-X” convention, where a first neighboring atom is selected to define 

the Z-axis, and a second neighbor defines the ZX-plane and the positive x 

direction. The carboxylate example uses the “Bisector” convention, where 

the bisector of two neighboring atoms defines Z-axis. This is mainly used in 

structures with 2-fold symmetry. The amine N is represented by the “Z-

Bisector” convention, where the N-R bond defines Z, and the bisector 

between the two N-H bonds defines X. In all cases, the Y-axis is defined 

according to the right hand rule. 

 

 

 

 

Figure 3.2: Illustration of the intramolecular polarization group definition. Each group 

consists of a functional group with limited conformational flexibility. The 

permanent multipole on each atom only polarizes atoms of other groups 

while induced dipoles on all atoms polarize all other atoms no matter what 

groups they are in.  
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Figure 3.3: Gas-phase energy contours for alanine dipeptide from RI-TRIM MP2/CBS (a) 

and AMOEBA (b). The energy was computed on a 24 x 24 grid. 
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Figure 3.4: Comparison of Ramachandran potential of mean force for alanine. (a) Ala-2 

residue of (Ala)3 as predicted by 2D-WHAM simulations. (b)  Average of 

ala-2, ala-3, and ala-4 residues in replica exchange molecular dynamics 

simulation of the (Ala)5 peptide. The trajectory at 298 K was used. (c) The 

PDB data. 
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Figure 3.5: Comparison of (a) isoleucine and (b) serine conformational energy about 
1
 

angle. The solid lines are RI-TRIM MP2/CBS energy while the dashed lines 

are AMOEBA values. The AMOEBA curve is shifted to minimize the 

overall RMS difference between AMOEBA and QM. The top set of curves 

(with higher energy at 0 degree) corresponds to a backbone conformation of 

(-60.0, -45.0), and the other corresponds to (-140.0, 135.0). 
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Figure 3.6: Comparison of amino acid molecular dipole moments predicted by AMEOBA 

and QM (MP2/aug-cc-pVTZ). The AMEOBA permanent atomic multipoles 

were derived from a set of dipeptides and validated on additional 

conformations (3 for each amino acid). Only the results for the validation 

sets are shown. The actual data can be found in the supporting information. 
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Figure 3.7: Comparison of Ramachandran potential of mean force maps for proline and 

glycine. (a) Pro-2 residue of GPGG from AMOEBA simulations. (b) The 

PDB data for proline. (c) Gly-3 residue of GPGG from simulations. (d)  

PDB data for glycine. All the PDB PMF were computed using data from 

Dunbrack et al.  
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Figure 3.8: The time evolution of backbone RMSDs from the X-ray structures for ten 

simulated proteins. For each protein, 10 ns simulations were performed with 

AMOEBA force field in explicit water. The X-axis represents time (ns) and 

the Y-axis is the RMSD values in Å. (a) Crambin (PDB:1EJG), (b) TRP 

Cage (PDB:1L2Y), (c) Villin Headpiece (PDB:1VII), (d) ubiquitin 

(PDB:1UBQ), (e) GB3 Domain (PDB:2OED), (f) RD1 Antifreeze Protein 

(PDB:1UCS), (g) SUMO-2 Domain (PDB:1WM3), (h) BPTI (PDB:1BPI), 

(i) FK Binding Protein (PDB:2PPN), (j) and lysozyme (PDB:6LYT). 
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Figure 3.9: Superimposition of the final structures from AMOEBA simulations and the 

experimental X-ray crystal structures. (a) Crambin (PDB:1EJG), (b) TRP 

Cage (PDB:1L2Y), (c) Villin Headpiece (PDB:1VII), (d) ubiquitin 

(PDB:1UBQ), (e) GB3 Domain (PDB:2OED), (f) RD1 Antifreeze Protein 

(PDB:1UCS), (g) SUMO-2 Domain (PDB:1WM3), (h) BPTI (PDB:1BPI), 

(i) FK Binding Protein (PDB:2PPN), (j) and lysozyme(PDB:6LYT). 
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Figure 3.10: Fraction of helix 〈hi〉 for each residue in Ac-(AAQAA)3-NH2 from replica 

exchange MD simulations and NMR chemical shifts at 303 K.   
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Figure 3.11: Order parameters (S2) derived from experimental NMR[261, 262] (dash lines) and 

calculated from MD simulations in explicit water using AMOEBA. (a) Ubiquitin, 
(b) Lysozyme. 
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Figure 3.12: (a) Correlation of the experimental NMR J-couplings and the calculated J-

coupling values from the MD simulations of BPTI, GB3, Ubiquitin and 

Lysozyme. (b) The RMSDs between the experimental and AMOEBA 

calculated J-coupling constants for each residue. 
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4 Trypsin-Ligand Binding Free Energies Calculation with AMOEBA 

4.1 INTRODUCTION 

The discovery of a lead molecule that binds to a targeted protein with high affinity 

is a major preoccupation of early-stage drug design [1, 272]. Accurate calculation of 

binding free energies is a must in this process. Treatments of protein-ligand binding, 

ranging from simple empirical scoring functions to thermodynamic free energy 

simulations with explicit solvent and full atomic details are widely used [273]. In 

principle, free energy perturbation (FEP) provides formally rigorous means to compute 

free-energy changes [274]. Although there have been numerous successful applications 

[3, 161, 273], calculating biomolecule-ligand affinities remains challenging for the highly 

polarized or charged system.  Both the potential energy functions and sampling 

efficiency need improvement. In a previous work, we reported the absolute and relative 

binding free energies of charged ligands to trypsin[58]. All the calculated binding free 

energies are well within the accuracy of experimental measurement. In this chapter, we 

study the relative binding free energies using a polarizable potential via explicit solvent 

molecular dynamics simulations. The free energies were decomposed into electrostatic 

and vdW components to examine the importance of different energy contributions. Also 

we investigated the relationship between the dipole moment, polarizability and binding 

free energy of the ligand.  

4.2 METHODS 

4.2.1 Atomistic Model 

The benzamidine-trypsin crystal structure (1BTY)[275] was used to generate new 

structures for the other ligands. Relative free energy changes of five ligands to 
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benzamidine were investigated. Ligand B and C replace the phenyl ring of benzamidine 

with a 1,3-diazine and 1,4-diazine respectively. Ligand D includes an amino group at 4-

position of the phenyl ring. Ligand E is the only ligand in this study with an amine group 

instead of amidinium group. Ligand F is a derivative of ligand D with two carbon atoms 

in the ring substituted by nitrogen atoms. Ligand B and C were mutated from 

benzamidine in the trypsin binding pocket with the crystal complex structure whereas 

ligand D to F were superimposed on the benzamidine in the pocket and new structures 

were saved. For each ligand, we soaked the protein in an octahedron box with 4515 water 

molecules and 58 Å on each side. 

4.2.2 Force Field and Parameterization 

The potential function for the entire system, including trypsin, ligand and water, is 

given by 

ooptorsionanglebondvdWele EEEEEEE 
             (4.1) 

In AMOEBA force field, the electrostatic interaction composes of permanent 

atomic charges, dipoles, quadrupoles and the polarization effect by atomic induced dipole 

[19, 22, 276]. The van der Waals interaction is described by a buffered-14-7 function 

[217]. The electrostatic parameters are derived from quantum mechanical calculation. 

Each ligand was first optimized with Gaussian03 package at the level of HF/6-31G* 

[179]. Then the single point calculation was run at MP2/6-311++G(2d,2p) and multipoles 

of the ligands were calculated with GDMA v2 [51]. The van der Waals (vdW), bond, 

angle, and atomic polarizability parameters of the ligands were transferred from 

AMOEBA potential (amoebapro.prm) in TINKER package[277]. 
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4.2.3 Alchemical Transformation 

Alchemical Transformation was used to compute the relative binding free 

energies between the different ligands. One ligand was perturbed from another ligand in 

both bulk water and the protein complex. The relative binding free energy between these 

two ligands can be computed as: 

( 1 2) ( 1 2) ( 1 2)bind pro watA L L A L L A L L      
              (4.2) 

    The free energy simulations were performed by changing electrostatic and 

van der Waals parameters between the ligands in steps. When it comes to the annihilation 

of atoms, the a soft-core buffered-14-7 vdW function used between the dummy atoms 

and all other atoms in the system.[278] The free energies between two neighboring steps 

were calculated using the Bennett Acceptance Ratio estimator [279].  

MD simulations were performed in parallel for all steps using PMEMD in 

AMBER v9. NVT dynamics simulations for 1 ns were run at each step, with a 1 fs time 

step, and 9 Å vdW cutoff. Particle Mesh Ewald (PME) was used to treat the electrostatic 

interactions, with a real-space cutoff of 7.0 Å. We used the Bennett acceptance ratio of 

10
-5

 D per atom as the convergence criterion. 

4.3 RESULTS AND DISCUSSION 

4.3.1 Relative Binding Free Energies 

Unlike the absolute binding free energy, relative binding free energy is more 

likely to be predicted accurately due to the small structural change and the systematic 

error cancellation. Ligands B through E were perturbed from ligand A whose absolute 

binding affinity was obtained in our previous work and ligand D was then transformed 

into ligand F. The calculated absolute and relative binding free energies are in excellent 



 

 

 

88 

agreement with experimental measurements (Figure 4.1).  The experimental binding 

free energies are based on inhibition constants determined by spectrophotometry or 

isothermal titration calorimetry under various assay conditions [280-284]. The existence 

of multiple experimental values for single ligand indicates that the experimental 

uncertainty is almost 1 kcal/mol in energy or one order of magnitude in binding affinity.  

4.3.2 Electrostatic Interaction as Driving Force for Binding 

Although the separation of electrostatics and vdW contribution to the binding free 

energy is somewhat artificial because their values may vary in different perturbation path, 

the decomposition of the free energy change may provide valuable illustrations of the 

driving force of the binding of the ligands. Figure 4.2 shows the decomposition of the 

binding affinity for the 6 ligands we calculated. Deng et al. [285] reported that the 

repulsive and dispersive interaction contribute significantly to the binding free energy 

from WCA decomposition, while the electrostatic interaction is slightly unfavorable. 

However, these computations were limited to nonpolar ligands such as benzene, toluene 

and phenol. In contrast, the benzamdine ligands carry net charges and form a salt bridge 

with the trypsin. For these systems, the electrostatic contributions range from -4.95 to -

7.97 kcal/mol, while the contributions from other interactions are only from -0.50 to 2.60 

kcal/mol. Thus the electrostatic interaction is indicated as the driving force of the binding 

of these highly charged ligands to trypsin. 

4.3.3 Molecular Dipole Moments of the Ligands 

Electrostatic interactions are important factors to the trypsin-ligand recognition as 

the presence of the charged group is crucial. In our previous work, we computed the 

“polarization free-energy” in both bulk water and trypsin by turning off polarization 
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between the ligand and trypsin. The results showed that polarization works to diminish 

the effect of permanent electrostatics in driving the binding of ligand to trypsin.  It is not 

surprising as the benzamidine (+) cancels the polarization effect of Asp 171(-) in the 

binding pocket while forming strong electrostatic attraction. In Figure 4.3, we showed 

the molecular dipole moments and polarizability of each ligand and their correlation with 

binding free energy.  

Essex et al. [286] and Talhout et al. [283] suggested a correlation between the 

molecular polarity and the binding affinity. They argued that the more polar ligand is 

better solvated in water and therefore has lower affinity binding to trypsin. However, the 

scattering plot of binding affinities and ligand dipole moments in Figure 4.3 does not 

imply any of such correlation, with a poor R square value of 0.026. Ligand B has the 

smallest dipole moment among the six ligands, yet its solvation free energy is the largest. 

The significant free energy change in bulk water (-25.51 kcal/mol) is compensated by 

that in complex (-23.76 kcal/mol) so that the binding affinity is no stronger than some 

other ligands. At the same time, ligand E, which bears the largest dipole moment (-10.80 

Debye) only has a binding free energy of -5.0 kcal/mol. The electrostatic details beyond 

the molecular dipole moment play the important role. 

Interestingly, Figure 4.3 shows a reasonable correlation between binding free 

energy and polarizability, indicating that the stronger the polarizability, the weaker the 

binding affinity will be. Ligand B, which has the smallest dipole moment, takes a 

polarizability (10.33 Å3) close to ligand C (10.37 Å3) and has a similar value of binding 

affinity with ligand C (-4.97 kcal/mol versus -4.87 kcal/mol). According to the study by 

Brian W. Matthews et al. [287], the strength of attraction is directly proportional to both 
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the polarizability and ionization potential of the interacting molecules. Considering the 

limited range of values for the ionization potential, the attractive force mainly depends on 

the polarizability. The outcome of our calculations supports this view point.  The R 

square value of linear fit is 0.85, RMSE 0.52, indicating a good linearity between binding 

affinity and polarizability.  

4.3.4 Structural Analysis 

There are a number of hydrogen bonds between ligands and trypsin, including the 

amidinium group with Asp 171, Gly 196, Ser 172 and water molecules and the amino 

group with Ser177. In the crystal structure (1TBY), Asp 171 forms double hydrogen 

bonding with the two nitrogen atoms of benzamidine. However, it is not always the case 

as shown in the simulations. Take ligand A, C, D and E for example, only one hydrogen 

bond between Asp 171 and amidinium group was consistently observed in the 

simulations. This is due to the competitive interaction from a water molecule in the 

binding pocket. Whenever double hydrogen bonding between the ligand and the protein 

is missing, there is always a water molecule nearby forming a hydrogen bond with the 

amidinium. Ligand B forms more stable salt bridge throughout the simulation, with the 

both N-O distances within 3.5 Å. As for the internal water molecule seen in the crystal 

structure, our simulation demonstrated the existence of this crystal water was no accident. 

It interacts with one of the nitrogen atoms of the ligands constantly except for ligand E 

which has an amine group.  

It is worth noting that making the ring less hydrophobic does not improve the 

binding affinity. On the contrary, the ligands with nitrogen atoms in place of oxygen 

atoms in the phenyl ring have relatively weaker binding to the trypsin. To be more 
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specific, ligand B and ligand C have higher binding free energies than ligand A. 

Moreover, the amidinium group (ligand A) has been proved to provide more interactions 

in the binding pocket than amine group (ligand E) and hence stronger binding. For ligand 

D, the amino group at 4-position of the phenyl ring formed an additional hydrogen bond 

with Ser 177 at the catalytic site which enhanced binding by 0.36 kcal/mol. 

4.5 CONCLUSIONS 

In this chapter, the binding affinities of five positively charged benzamidine 

analogs to trypsin were calculated with polarizable AMOEBA force field. The relative 

binding free energies were computed by mutating each ligand to benzamidine in both 

water and protein from MD simulations. The calculated binding free energies are well 

within the experimental uncertainty. Our results also indicate that electrostatic interaction 

is the dominant force of the binding of all the ligands. Although the correlation between 

dipole moments and binding free energies as other group has argued were completely 

invisible, there is a negative correlation between the polarizability and binding free 

energy. The structures of the binding complexes and hydrogen bonding dynamics were 

also examined carefully from molecular dynamics simulations. The presence of water 

seems play an important role.  
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Figure 4.1: Relative binding free energies between ligands. 

 

 

 

Figure 4.2: Decomposition of binding free energies (kcal/mol). Grey column is the 

electrostatic free energy and white column is the contribution of other free 

energy components including vdW and geometry. 
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Figure 4.3: Correlation between dipole/polarizability of the ligands and binding free 

energy. Molecular dipole moments are in black diamond while 

polarizabilities are in open squares.  
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5 Probing the Effect of Conformational Constraint on Phosphorylated 

Ligand Binding to an SH2 Domain using Polarizable Force Field 

simulations 

5.1 INTRODUCTION 

Understanding the effects of making chemical modifications to ligands upon their 

relative binding energetics is a critical step in structure-based drug design. Preorganizing 

a flexible ligand in the conformation it adopts upon binding has long been considered a 

useful strategy to achieve more a favorable binding entropy and thus an improved 

binding affinity.[288] Indeed, the program CAVEAT was developed in part to facilitate 

the design of constrained molecules bearing substituents directed in predefined 

orientations.[289] Awareness of the potential energetic benefits of ligand preorganization 

dates back to work by Jencks in the 1970s,[290] and there are numerous reports of the 

increased affinities that may accompany the introduction of conformational constraints 

into flexible ligands.[290-296] However, it has recently been reported that the binding 

entropy of a constrained ligand may actually be less favorable than its flexible 

control.[297-301] Even if ligand preorganization leads to a beneficial entropic 

contribution to binding, the enhancement to binding affinity may be offset by a 

compensating enthalpic penalty.[294, 302-310] Entropy-enthalpy compensation has been 

widely studied, but its origin is not well understood.[292, 311-316] While some consider 

this effect as an intrinsic physical phenomenon, others argue that the entropy-enthalpy 

compensation is a statistical artifact arising from obtaining entropy and enthalpy based on 

temperature dependent data from both experiment and theoretical calculations.[311, 312, 

314, 317-320] 
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In order to understand the detailed energetic effects of ligand preorganization on 

protein-ligand interactions, it is essential to perform systematic experimental studies to 

determine the contributions of entropy and enthalpy to binding free energy and to 

correlate these with structural and dynamic analyses of the protein-ligand complexes 

using X-ray crystallographic and NMR spectroscopic methods.[321] For example, 

DeLorbe et al.[301] recently examined the binding energetics and structures associated 

with complexes of a series of constrained and flexible phosphotyrosine-derived peptide 

analogs with the SH2 domain of growth receptor binding protein 2 (Grb2); Grb2is a 25 

KDa cytosolic adapter protein that is involved in activation of the Ras signal transduction 

pathway.[322] The constrained ligands cpYVN and cpYIN, which were preorganized by 

incorporating a cyclopropane ring at the pY replacement in the pseudopeptides fpYVN 

and fpYIN, respectively, (Figure 5.1), have the same functional groups and the same 

number and type of heavy atoms as their flexible controls. The thermodynamic binding 

parameters of these ligands for the Grb2 SH2 domain were determined by isothermal 

titration calorimetry (ITC),[323]and the binding entropies for the constrained ligands 

were found to be less favorable than for their flexible analogs. This unexpected finding is 

contrary to the conventional wisdom that ligand preorganization should be accompanied 

by a more favorable binding entropy. Their less favorable binding entropies 

notwithstanding, the constrained ligands bound with higher affinities than their more 

flexible counterparts because of significantly more favorable binding enthalpies. That the 

measured heat capacity changes on binding of the flexible/constrained ligand pairs were 

similar suggests that these thermodynamic differences do not arise from desolvation 

effects.[324] Although these experimental studies clearly show that ligand 
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preorganization does not necessarily result in a more favorable binding entropy, the 

molecular origin of the unanticipated behavior was not examined.  

Over the past decades, numerous efforts have been devoted to develop and apply 

computational approaches to screen and design potent ligands for drug discovery.[272, 

273, 325] Computational methods such as docking and molecular dynamics utilizing 

continuum and explicit solvent models have long been employed toward predicting 

protein-ligand binding affinities in silico.[2, 3, 272, 325] Among the various strategies 

that have been explored, detailed alchemical pathway simulations using explicit solvent 

show significant promise for providing energetically accurate predictions of protein-

ligand binding affinity.[1, 321, 326]Theabsolute binding free energies calculated from 

such pathways correlate reasonably well with experimental data, and root mean square 

(RMS) errors of less than 3 kcal/mol are often reported.[2] On the other hand, the relative 

binding free energies can be calculated more accurately, if there is sufficient sampling of 

protein-ligand-water configurational space.[327] Decomposition of binding free energy 

into entropic and enthalpic contributions offers important insights into the driving forces 

for protein-ligand recognition;[321] however, quantitative estimation of the binding 

entropy remains a significant challenge. Common approaches to estimating the binding 

entropy include quasi harmonic analysis,[328, 329] normal mode analysis,[330-332] and 

knowledge based scoring functions.[333-335] These methods have been applied to 

several protein-ligand systems,[336-342] but the contributions from solvation are 

typically neglected or approximated due to the computational expense. More physically 

rigorous alchemical pathway approaches are also applicable to evaluating entropy, but 

few investigations have reported using such methods in protein-ligand interactions.[343] 
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In this chapter, we use molecular modeling to explore how introducing 

conformational constraints into two closely related phosphotyrosine-derived peptides 

affects the thermodynamic parameters for their complexation with the Grb2 SH2 domain. 

Because the phosphate group in these ligands is charged, the AMOEBA polarizable force 

field,[19, 22, 39, 344] which accounts for multipole electrostatics and polarization 

effects, was used to model protein, ligand, and water components in each MD simulation. 

The AMOEBA force field has been successfully applied to accurately model a number of 

highly polar molecular systems, including water,[19] monovalent and divalent ions,[52, 

53, 345, 346] small molecules,[347] peptides,[348] and trypsin-benzamidinium 

binding.[58, 62, 63] We report herein the calculations of binding free energies, enthalpies 

and entropies, as well as the results from simulations of the structure and dynamics of the 

ligands in water and in their complexes with the Grb2 SH2 domain. The results are 

compared with experimental observations, and a possible molecular origin for the 

unexpected, unfavorable entropic effect resulting from preorganizing these 

phosphotyrosine-derived ligands is presented. 

5.2 METHOD 

5.2.1 Entropy Calculation 

The change in entropy (ΔS) is related to the change in free energy by[349] 

                            (5.1) 

In this study, we computed the entropy change numerically from the slope of a 

linear fit to the temperature dependence of free energy change near room temperature. 

This approach is essentially identical to the finite difference method that has been used 
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previously.[350-352] While other direct or perturbation methods exist for computing 

enthalpy of enthalpy, we have found that the numerical approach is the most stable for 

energetics calculations. In addition, as we are utilizing REMD to simulate free ligands in 

solution, it is natural to take advantage of the temperature dependence of free energy 

data. 

The relative change in enthalpy is then computed as 

ΔH= ΔA+TΔS                             (5.2) 

Bennett Acceptance Ratio (BAR) method[180] was utilized to calculate the 

relative binding free energy (ΔA). In order to avoid the end point singularity during 

alchemical transformation, the soft-core buffered 14-7 potential was used for van der 

Waals (vdW) interactions. 

5.2.2 Quasiharmonic Analysis 

Quasiharmonic analysis was performed to characterize the collective motions of 

molecules at thermodynamic equilibrium.[328, 329] The quasiharmonic approximation 

assumes that the spatial fluctuations in the system follow a multivariate Gaussian 

distribution. In a quasiharmonic frequency analysis on an n-atom system, the eigenvalues 

λi (i=1,2,…,3n-6) of the mass weighted covariance matrix of atomic fluctuations are 

calculated to determine the quasiharmonic frequencies,             , which are then 

used to estimate the conformational entropy, given by 
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(5.6) 

where ħ is the planck constant, and R is the gas constant. The quasiharmonic method has 

been successfully applied to simple molecular systems with few energy minima. 
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However, this method will overestimate the configurational entropy for more complex 

systems having multiple occupied energy wells, particularly when using Cartesian 

coordinates rather than internal coordinates.  

5.2.3 Force Field and Parameterization 

AMOEBA polarizable force field [19, 39] is applied to model the protein, water 

molecules, and most part of the peptide-analog ligands fpYVN, fpYIN, cpYVN and 

cpYIN (in Figure 5.1). Additional parameterization was necessary for the 

phosphotyrosine (pY) residue in the ligands.  Missing valence parameters for the 

constrained and unconstrained pY segments were derived from Quantum Mechanics 

(QM) calculations by using the “Valence” module in TINKER software package.[220] 

“Valence” sets the equilibrium bond lengths and angles based on the HF/6-31G* 

optimized structures of the pY segments; the force constants and vdW parameters were 

transferred from existing parameters of the same atom types in AMOEBA force field. 

Trimethyl and dimethyl phosphates (TMP and DMP) were used to derive the vdW 

parameters of the phosphate group, by fitting to both QM structure and energy of 

TMP/DMP-water dimers. The vdW parameters were fine-tuned to match experimental 

liquid density and heat of vaporization of TMP as well. The electrostatic parameters for 

the pY side chain were obtained from QM at the MP2/aug-cc-pVTZ level by the 

“original-fit” approach.[347, 353] In this approach, the atomic multipoles for the pY 

segment were initially derived from MP2/6-311g** density matrix using the original 

distributed multipole analysis (DMA).[169, 354] The dipole and quadrupole moments of 

the pY residue were then optimized to the electrostatic potential (ESP) around the whole 

ligand computed at the MP2/6-311++G(2d,2p) level (electrostatic parameters of other 
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residues were fixed). The ESP root mean square differences between QM and final 

atomic multipoles, evaluated over roughly 35000 grid points around the peptide, are 1.55 

kcal/mol per unit charge and 0.92 kcal/mol per unit charge for cpYVN and fpYVN, 

respectively.  

The model compounds of both unconstrained and constrained pY segments and 

the dihedral angles a~h for which parameters were derived are illustrated in Figure 5.2. 

Dihedral angle parameters in the pY subunit that were missing were obtained by 

comparing the QM conformational energy profile to the ones computed from 

corresponding MM (Molecular Mechanics) using all energy terms except the dihedral 

angle term. The difference in energy was then fit to a 3-term Fourier series torsional 

function. The “torsional energy” in MM works as an “error” function. In order to achieve 

better transferability, its contribution to overall conformational energy should be 

minimized. Typically, the torsional energy parameters (V1, V2, and V3) are less than 1-3 

kcal/mol for rotation about a single bond (compared to 15-20 kcal/mol for double bonds), 

whereas the overall conformational energy barriers are on the order of tens of kcal/mol. 

5.2.4 Computational Details 

In order to evaluate the thermodynamic driving forces for ligand binding to the 

SH2 domain, we calculated the relative binding free energy, enthalpy and entropy 

contributions for constrained and unconstrained ligand pairs, according to the alchemical 

pathway shown in Figure 5.1. The relative binding free energies for each pair of 

constrained and unconstrained ligands were computed from the free energy differences 

between the ligands in water and in the protein binding pocket. The fpYVN ligand was 

gradually transformed into cpYVN by performing 26 steps of simulations; 10 steps were 
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performed in the alchemical transformations of Val to Ile in the constrained and 

unconstrained ligands. For the ligand-water systems, replica exchange molecular 

dynamics (REMD) [233, 355, 356] simulations were performed with 48 replicas at 

temperatures between 260 and 620 K (detailed schedule can be found in the Supporting 

Information).[232] For perturbations from fpYVN to cpYVN, a bond was grown to form 

the cyclopropane by gradually increasing the force constant (from 0 to 550 kcal/mol/ Å
2
); 

at the same time, two hydrogen atoms were turned into “dummy atoms” by turning off 

their vdW and electrostatic interactions with other atoms. Note that the valence 

contributions due to the dummy atoms are canceled between perturbations of ligand in 

water and in solvated complex. NVT simulations of 2.5 ns were performed at each step. 

Replicas were exchanged every 2 ps, and the exchange success rates for all replicas were 

greater than 20%. All the REMD simulations were performed using the parallel 

SANDER module in AMBER10. We modified the REMD implemented in 

AMBER10[221] for use with the AMOEBA force field. For the protein-ligand complexes 

in explicit water, relative free energies for constrained and unconstrained ligands having 

Val and Ile at the pY+1 position were calculated at 288 K, 298 K and 308 K. For each set 

of alchemical calculations at each temperature, a total of 65 ns NVT simulations were 

performed over 26 steps, using the PMEMD module in AMBER10. For all the 

simulations, the vdW cutoff was set to 12 Å, and the long-range electrostatics were 

treated using Particle Mesh Ewald (PME) summation[182-184] with a grid space of 0.8 Å 

and a real space cutoff of 7 Å. The induced dipoles, also computed with PME, were 

iterated until the root mean square change was below 0.01 D/atom. A tighter induced 

dipole convergence of 10
-5

 D/atom was used in the energy calculation for the post free 
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energy analysis with Bennett Acceptance Ratio (BAR). By using a bootstrap procedure, 

the statistical uncertainty was estimated as the standard deviation of the average free 

energy values that are computed using100 partial simulation trajectory blocks (1.0 

ns).Given that the uncertainty in the entropy calculation was dominated by the free 

energies at the lowest and highest temperatures (288K and 308K), the statistical error for 

–TΔS was estimated from the upper and lower bound of free energy changes at 288K and 

308K; thus the statistical error for–TΔS is twice the statistical error of free energy. 

The entropy was extracted from the temperature dependency of free energies via 

linear regression (Eq. 5.1). For ligands in water, the relative free energy ΔAwat was 

obtained from REMD at 18 temperatures between 260 K and 360 K. A linear fit was used 

to interpolate ΔAwat at 288K, 298 K and 308 K. These values were then subtracted from 

the free energy changes of ligand in complex (ΔAcomp) at the same temperatures to obtain 

relative binding free energy ΔΔAbind. The entropic contribution was computed from the 

slope of the fitted linear temperature dependence of relative binding free energy. The 

enthalpy was evaluated via ΔΔA+TΔΔS. The total simulation time for the combined MD 

simulations of free ligands and complexes at all temperature is up to 6 µs.  

5.3 RESULT AND DISCUSSIONS 

5.3.1 Ligand Conformational Property and Sampling 

An accurate description of the conformational distribution of the peptide-like 

ligands is essential in this study. The ligands of interest possess a total of more than a 

dozen of rotatable bonds, with four being in the constrained pY residue (cpY) and six in 

the unconstrained pY residue (fpY). The large number of degrees of freedom suggests the 

ligand can be highly flexible, thus presenting a significant challenge for molecular 
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simulations. On the other hand, the strong intramolecular interactions between the 

charged phosphate moiety and the other polar groups in the gas phase result in certain 

stable conformations with low potential energy.  The conformational energy profile for 

the pY residue indicates the energy barrier for escaping these stable conformations can be 

tens of kcal/mol (Figure 5.2). In solution, it is likely that the conformational population 

will be significantly different due to the competition by water molecules. As a matter of 

fact, it is well known that alanine dipeptide has distinctly different local minimum energy 

structures in the gas and solution phases.[344] As AMOEBA is a polarizable model that 

responds to electrostatic environment via changes in the induced dipoles, we believe that 

it is important to reproduce the gas-phase conformational properties as well as to 

compare the computational and experimental data in the liquid phase as discussed below.  

We have examined each of the main conformational degrees of freedom for the pY 

residue that we have parameterized. Figure 5.2 shows that the AMOEBA conformational 

energy profiles are in good agreement with high-level ab initio QM results. The average 

root-mean-square derivation (RMSD) between QM and MM minimized structures is 

about 0.25 Å per atom.  

Adequate sampling of configurational space of the molecular system, including 

the ligand, is critical in order to obtain reliable thermodynamic information from the 

simulations. When the peptide-like ligands are bound to SH2 domain, they are restricted 

within the protein binding pocket, and their structures are relatively well-defined. They 

are similar to the X-ray crystallographic structures.[301] The ensemble of structures of 

the free ligands in solvent is unknown, so we performed MD simulations of the 

unconstrained fpYVN ligand in a dielectric medium (ε=80) at room temperature and 
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above in order to explore the conformational space of the peptide analogs in water and to 

guide the more elaborated explicit-solvent simulations. The potential energy and torsional 

RMSD distributions obtained from multiple independent simulation trajectories were 

compared to examine the convergence of the MD sampling.  We found that MD 

simulations at room temperature do not produce converged distributions after 30 ns. On 

the other hand, when these simulations are performed at 600K or above, the distributions 

quickly converge after a few nanoseconds. Detailed information about these distributions 

can be found in the supporting information. Based on the information obtained from the 

simple continuum simulations, replica-exchange molecular dynamics (REMD) 

simulations in explicit solvent at temperatures ranging from 260 K to 620 K were 

performed to compute the relative free energy/entropy between different ligands in the 

solvent environment. Using these simulations, we examined the distribution of the main 

torsions of fpYVN in solution at 298K. Overall, we observe a broad sampling in torsional 

space and a number of torsional transitions. The autocorrelation functions of these 

torsions exhibit fast decay of only a few ps to reach 1/e, perhaps because of the 

artificially fast kinetics of REMD; some examples are included in the Supporting 

Information. 

5.3.2 Calculated Binding Thermodynamics Consistent with Experimental 

Measurements 

We evaluated the relative binding free energy and entropy for complex formation 

of the constrained ligands cpYVN and cpYIN and their corresponding unconstrained 

analogs fpYVN and fpYIN with the Grb2 SH2 domain. The free energy and entropy were 

computed from molecular dynamics simulations using the AMOEBA polarizable force 

field, and results are summarized and compared with the values that were determined 
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experimentally by ITC in Table 5.1.[301]In order to facilitate the comparison of the 

calculated and experimental values, we used the fpYVN ligand as the reference and set 

the calculated values for it to those determined experimentally. The calculated 

thermodynamic parameters for the other ligands were then obtained by difference 

according to the relative binding free energies, entropies and enthalpies derived from the 

simulations. 

The order of the calculated binding free energies correspond tothose determined 

experimentally with fpYVN≈fpYIN<cpYIN<cpYVN. The calculated binding free energy 

difference between fpYVN and cpYVN was overestimated by about 1.2 kcal/mol 

compared to experiment, whereas the difference in free energies of the Val and Ile 

variants match experimental results reasonably well.  The transformation of fpYVN into 

cpYVN requires that a covalent bond be created. A small change in the bond length 

corresponds to large energy fluctuations due to the stiff bond stretching and angle 

bending energy term.[357, 358] During the transformation of fpYVN into cpYVN in 

water or in their complexes with the Grb2 SH2 domain, 26 intermediate steps are 

necessary to obtain sufficient overlap between the configurational spaces associated with 

neighboring steps. As illustrated in Figure 5.3, the relative free energies converge after 

1.5 ns simulations for each intermediate step at different temperatures, with a deviation of 

less than 0.1 kcal/mol. REMD simulations for the ligands in water at 48 different 

temperatures were performed to enhance the sampling near room temperature. 

Accordingly, the relative binding free energies for each pair of ligands are effectively the 

result of 3 μs of simulation time. 



 

 

 

106 

Additional analyses were performed in order to scrutinize the convergence and 

effectiveness of the free energy calculations. To inspect the thermodynamic cycle 

closure, we reevaluated the relative binding free energy associated with the alchemical 

transformation fpYVN to cpYVN at 298K after systematically skipping intermediate 

perturbation steps (skipping every 4
th

, 5
th
 ... 13

th
steps). The results indicate that the 

relative binding free energy converges within 0.3 kcal/mol after 22 to 26 perturbation 

steps. For neighboring steps during the perturbation, the histograms of potential energy 

differences from forward and backward perturbation have been obtained and verified to 

overlap with each other. In addition, statistical inefficiency calculations[359] show that 

~22 ps and ~45 ps are needed for ligand sampling in water and in the complex to lose 

“memory” of their previous configurations, respectively. Further details of the 

thermodynamic cycle, energy overlap, and statistical inefficiency tests are found in the 

Supporting Information. 

The relative binding free energies were then decomposed into enthalpy and 

entropy contributions. Perturbation methods, including finite difference, single state 

perturbation, β -perturbation, modified β -perturbation, and the perturbation and 

correction method, provide a physically rigorous evaluations of changes in entropy and 

enthalpy.[352, 360] However, compared with the free energy calculations, the entropy 

evaluated from computational methods has much greater error. With the exception of the 

finite difference approach, all of the above methods suffer from numerical underflow 

problems for systems with large energy fluctuations such as solvated protein-ligand 

complexes. Recently, Wyczalkowski et al.[361] calculated solvation entropy changes 

based on the analytical temperature derivative of the Bennett Acceptance Ratio and 
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Multistate Bennett Acceptance Ratio (mBAR) estimators. The BAR/mBAR approach to 

computing entropy is sensitive to energy fluctuations and thus requires long simulation 

times to achieve convergence. Using the restraint release (RR) approach, Warshelet 

al.[343] reported the binding entropy of three protein-ligand systems with encouraging 

agreement to experimental measurements. In the RR approach, multiple structures of the 

ligands must be selected before free energy perturbation and quasiharmonic calculations. 

Considering the potentially high flexibility of our peptide ligands, a large number of 

representative configurations are needed to account for the global minima in each 

perturbation.  In the current study, the REMD simulations that were performed on the 

free ligands in water already provided free energy data at different temperatures. 

Therefore, we took advantage of the simulations at different temperatures and adopted 

the finite difference method that has been utilized to calculate entropy change for both 

small and relatively large systems.[342, 349, 362-364]  We used a linear regression to 

fit the temperature dependence of the relative binding free energies at 288 K, 298 K and 

308 K (see Computation Details). For all the systems, the R
2
 values for the linear fit 

range from 0.81 to 0.97.  

The calculated relative binding entropies and enthalpies for the two ligand pairs 

show the same trends as experiment. Both calculation and experiment indicate that the 

constrained ligands bind to the Grb2 SH2 domain with less favorable binding entropy and 

more favorable binding enthalpy than their more flexible controls (Table 5.1). Relative to 

the unconstrained ligands fpYVN and fpYIN, the increased binding affinity, or lower 

binding free energy, that is observed for the two constrained ligands cpYVN and cpYIN 

is attributed to an enthalpic advantage rather than an entropic one. Based upon the 
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simulations, preorganization results in an unfavorable binding entropy change(higher –

TΔS)of 8 kcal/mol, which is offset by an enthalpic gain of about –10 kcal/mol. Hence, 

although constraining the ligands fpYVN and fpYIN increases their binding affinities, 

both computational and experimental results show that this affinity enhancement does not 

arise from more favorable entropic factors as would normally be expected. The 

calculated absolute binding entropy –TΔS of the constrained cpYV(I)N ligands is 

unfavorable (positive), whereas slightly favorable (negative) values were obtained 

experimentally. This difference is a reflection of our overestimation of the magnitude of 

the relative binding entropy between constrained and unconstrained ligand pairs, even 

though the sign of the relative change was predicted correctly. The mutation of Val to Ile 

in both constrained and unconstrained ligands had an insignificant effect upon both the 

calculated and the experimental values for binding enthalpies and entropies. Moreover, 

both the simulated and experimental data seem to suggest that enthalpy/entropy 

compensation limits the enhancement to the binding affinity, as reflected by the linear 

relationship between entropy and enthalpy in Figure 5.4. 

Binding is a process that involves ligand desolvation followed by formation of the 

protein-ligand complex, so the behavior of unbound ligands in water plays an important 

role in the overall process.  In the current study, the relative binding free energy and 

entropy was evaluated as the difference between the free energy and entropy changes of 

the protein and the ligands in solvent and complex environments. The entropy 

decomposition given in Table 5.2 suggests that the majority of the unfavorable binding 

entropy observed for constraining fpYVN and fpYIN arises from differences in the 

entropies of the free ligands in solvent rather than in their complexes.  
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5.3.3 Effect of Constraint on Organization of Unbound Ligands 

The concept underlying ligand preorganization is that constraining the unbound 

ligand in the three-dimensional shape that corresponds to that of the bound ligand will 

lead to a more favorable entropic term for binding. Provided the constrained ligand 

interacts in the same way with the protein and the solvent as the more flexible parent (i.e., 

∆∆H° ~ 0 kcal/mol), this entropic advantage would lead to an increased binding affinity. 

We thus analyzed the simulated structure and dynamics of constrained and unconstrained 

ligands to examine the effect of constraining fpYVN. 

The structures of the ligands extracted from molecular dynamics trajectories 

were hierarchically clustered based on the all-atom RMSD of ligands using average-

linkage algorithm[365] over 2 ns at 298 K. In an average-linkage algorithm, the distance 

between one cluster and another cluster is computed as the average distance from any 

member of one cluster to any member of the other cluster. Recall that REMD simulations 

with 48 replicas at various temperatures were performed to facilitate the sampling of 

ligand configurations at 298 K. This is equivalent to a total simulation time of 100 ns. By 

using 1.0 Å as the limit for the average distance to centroid, 22 and 20 clusters were 

obtained for unconstrained and constrained ligand trajectories, respectively. Interestingly, 

the most dominant configuration (34.7%) of fpYVN is a rather compact, macrocyclic-like 

structure, as shown in Figure 5.5, with a prominent intramolecular contact between the 

phosphate group and the amide groups of the pY+2 residue. On the other hand, the 

cyclopropane ring in the constrained ligands cpYVN and cpYIN prevents these 

functional groups from interacting with each other, so these residues interact with water 

and are oriented in opposite directions. Superimposition of the dominant structure of 

cpYVN with the structure extracted from the complex[301] reveals that the cyclopropane 
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ring does indeed preorganize the flexible pY replacement in its biologically active 

conformation when bound to the domain. Thus, even though the cyclopropane ring 

locally preorganized the pY replacement, the simulations suggest that the constrained 

ligands possess significant flexibility at the pY+1 and pY+2 positions.  

The entropy of both constrained and unconstrained ligands was estimated from 

quasiharmonic analysis (Table 5.3). The absolute entropy of solvated cpYVN (557 cal 

mol
-1

 K
-1

) is indeed about 25% greater than that of fpYVN (448 cal mol
-1

 K
-1

), which 

corresponds to a difference of 30 kcal/mol in TΔS at room temperature.  The same 

trend is also observed for fpYIN and cpYIN ligands, which have essentially the same 

entropies as that of fpYVN and cpYVN, respectively. Vibration contributes about 80% of 

the total entropy, while translation and rotation account for the remainder. The entropy 

difference between the constrained and unconstrained ligands thus arises primarily from 

the vibrational components. We further decomposed the vibrational entropy contribution 

to each atom and found that the modes contributing the most to the entropy difference 

arise from the pY+2 residue. This finding is consistent with the structural analysis above. 

Since the rigid cyclopropane ring separates the pY+2 residue and phosphate group of the 

pY replacement in the constrained ligands, the pY+2 residue is well exposed in solvent 

and tends to be mobile. On the other hand, the unconstrained ligands lack this ring, so 

motion of the pY+2 residue is restrained by strong hydrogen bonding interactions with 

the phosphate moiety.  

Water molecules also contribute to the entropy of the system and thus may affect 

binding thermodynamics. The average intermolecular hydrogen-bonds between water and 

the ligands were computed from the MD simulations at 298.79 K, and the results shown 
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in Table 5.4 reveal noticeable differences between the constrained and unconstrained 

ligands. The constrained ligands are solvated by about two more water molecules than 

their unconstrained counterparts on average. The higher number of contacts with water 

molecules for constrained ligands is consistent with the observation that constrained 

ligands are more extended and better exposed to solvent (Table 5.4). The unconstrained 

ligands possess more intramolecular hydrogen bonds than their constrained counterparts 

(2.6 vs. 1.4), so fewer water molecules bind to the unconstrained ligands. Although the 

interactions with more water molecules could translate into a higher enthalpic penalty for 

binding and more favorable binding entropy arising from ligand desolvation, the total 

relative binding enthalpy or entropy comprises the sum of contributions from both ligand 

and water molecules. The simulations and quasiharmonic analysis have thus far 

suggested that the unconstrained ligands actually have lower entropy than the constrained 

analogs owing to the intramolecular hydrogen-bonding interactions between the 

phosphate group and the amide groups of the terminal pY+2 residue. We conclude that 

variation in the structures of the ligands in solution is the predominant source of 

differences in observed differences in binding entropies and enthalpies. Although the 

cyclopropane ring in cpYVN and cpYIN does orient those atoms that interact with the 

domain in a manner closely similar to that of fpYVN and fpYIN, this ring also obviates 

the opportunity of forming intramolecular interactions between the phosphate group and 

the pY+2 residue. This may account for the fact that the constrained ligands bind with the 

less favorable entropy, seen by both our alchemical free energy calculations and 

experiment. 
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5.3.4 Flexibility of Solvated Complexes with Unconstrained and Constrained 

Ligands 

There is the possibility that introducing a conformational constraint into a 

flexible molecule might affect protein dynamics in the resultant complexes in a manner 

that could have entropic consequences. In order to probe this question, structures of the 

four solvated complexes were analyzed using the MD trajectories obtained from the free 

energy calculations. A comparison of the structures of the solvated complexes of the 

Grb2 SH2 domain with each of fpYVN, cpYVN, fpYIN and cpYIN derived from 

simulations and X-ray crystallography yielded all-atom RMSDs of 1.6 Å, 1.6 Å, 1.1 Å 

and 1.5 Å, respectively, suggesting that the structures obtained computationally are 

generally in good agreement with those determined by experiment. The RMSDs between 

the complexes of cpYVN and cpYIN and the complexes of fpYVN and fpYIN are both 

1.4 Å. Representative structures of the complexes of fpYVN and cpYVN containing 

complexes from MD simulations are compared with crystal structures in Figure 5.7.  

The calculated B-factors about the mean coordinates of the simulations over 2 ns 

for all Cα atoms are shown in Figure 5.6. The four complexes share very similar 

fluctuation modes, and the coordinates of most of the residues vary within only 1 Å, 

although residues in some of the loops fluctuate by as much as 2.1 Å. Structural 

variations in the BC loop (GluBC1-GluBC4) were observed upon comparing the crystal 

structures of complexes of the Grb2 SH2 domain with constrained and unconstrained 

ligands, although comparable variations in the BC loops were also found in coexisting 

complexes in the asymmetric unit.[298, 301, 366] In our B-factor calculations, the 

fluctuations (1.5 to 2.0 Å) in the BC loops of the four complexes are the highest among 

all other loops. This observation suggests that the variations of the BC loop are more 
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likely to result from the intrinsic flexibility of the loop rather than from differences in the 

binding modes of the constrained and unconstrained ligands. Based on the simulated B-

factors in Figure 5.6, the B-factors for the protein backbone in the complexes of the 

constrained ligands are slightly greater than in the complexes of their unconstrained 

counterparts. Although the trends in the B-factors obtained computationally and 

experimentally are the same, the differences are more prominent in the experimental 

values.[301] 

The entropies calculated from quasiharmonic analysis (Table 5.3) suggest that 

the C-atoms in the Grb2 SH2 domain complexed with each of the four different ligands 

have similar entropies of about 820 cal/mol/K. The entropies of the domain in the 

complexes of the constrained ligands cpYVN and cpYIN are slightly higher than in the 

complexes with their unconstrained controls (about 1%). The higher entropies of the 

domain in the complexes of the constrained ligands suggest a more favorable contribution 

to binding free energy, however, the opposite trend is seen by both experiment and 

calculation. Based on the analyses above, we are unable to find evidence that a change in 

dynamics of the SH2 domain is responsible for differences in the experimentally 

observed binding entropies for the various complexes. 

The structures of fpYVN, cpYVN, fpYIN, and cpYIN in their respective 

complexes with the SH2 domain were also examined. The structures of the complexes 

were clustered based on RMSD of all atoms in the ligands from all MD snapshots using 

the same method described above for free ligands. For complexes containing fpYVN and 

cpYVN, there is one dominant conformation of the ligand that forms strong polar 

interactions with the protein, whereas there are two dominant conformers for fpYIN and 
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cpYIN because of the flexibility of the pY+1 (Ile) residue. Other portions of the 

pseudopeptides fpYIN and cpYIN are highly similar to each other as well as to fpYVN 

and cpYVN. The most representative structures of fpYVN and cpYVN are depicted in 

Figure 5.7, while the corresponding structures for fpYIN and cpYIN not shown due to 

their high similarity. The entropies calculated from quasiharmonic analysis of the four 

ligands in the bound state range from 345.6 to 358.0 cal/mol/K, with the largest entropy 

difference being only 12 cal/mol/K, which is within statistical error, between cpYVN and 

fpYIN. Therefore, quasiharmonic analysis of the protein and the ligands in the respective 

complexes suggests that the entropic advantage for binding of the unconstrained ligands 

fpYVN and fpYIN does not arise from any differences in the entropy of either the protein 

or the ligands in bound state. 

5.4 CONCLUSION 

In order to probe the origin of the unexpected entropic consequences observed 

for binding of a series of constrained and flexible phosphotyrosine-derived peptide 

analogs to the Grb2 SH2 domain,
14

we performed a series of calculations involving 

alchemical transformations at different temperatures on two sets of these analogs.  

Consistent with experimental results, these computations predicted that the binding 

affinity of the unconstrained peptides fpYV(I)N for the Grb2 SH2 domain is lower than 

that of the corresponding constrained peptides cpYV(I)N and that the mutation of V to I 

is not accompanied by significant changes in binding free energy. The experimental 

observation that unconstrained peptide analogs bind with more favorable entropies but 

significantly less favorable enthalpies than their constrained counterparts is also well 

reproduced by our computations, but the differences in the relative binding entropy and 
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enthalpy components are overestimated. Even though these simulations nicely reproduce 

those trends observed experimentally, further refinements to the method are needed in 

order to improve the accuracy of predicting differences in the relative binding 

thermodynamic parameters. Sampling of the conformations of the pseudo peptide ligands 

in solution is the most demanding calculation in this study. Some 26 perturbation steps 

were applied to introduce a bond between carbon atoms that are separated by two bonds, 

and REMD simulations with 48 replicas were performed at each perturbation step. 

Hence, in order to evaluate the relative solvation free energy/entropy of the two pairs of 

peptide ligands, about 6 μs MD simulations were performed; however, the statistical 

uncertainties remain significant. More advanced sampling techniques beyond the first-

order scheme adopted in this study are needed in order to compute the solvation and 

binding free energy more efficiently and precisely. 

We analyzed the structures and dynamics of ligands in solution and in their 

complexes with the SH2 domain in order to probe the molecular origin of the effects of 

ligand preorganization on binding thermodynamics in this system.  Conformational 

clustering and quasiharmonic analysis of the free ligands in solution suggest that the 

unconstrained ligands possess significantly lower entropy than their constrained 

counterparts. This unexpected finding is the consequence of intramolecular hydrogen 

bonding interactions between the phosphate group of the flexible pY replacement and the 

C-terminalamide moieties of the pY+2 residue that lead to a more compact and rigid, 

macrocyclic-like structure. The presence of the cyclopropane ring in the constrained pY 

replacement prevents this interaction, thereby resulting in more extended conformations 

in solution. MD simulations of the protein-ligand complexes show that the unconstrained 
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and constrained ligands share similar binding modes; the distribution of conformations of 

the bound forms of the unconstrained and constrained ligands are comparable as are their 

nonbonded interactions with the domain. These findings are consistent with the structures 

determined experimentally by X-ray crystallography.  

These simulations reveal an important caveat that has not been previously 

acknowledged regarding the use of ligand preorganization, which is widely presumed to 

have a favorable effect upon binding entropy as a general design strategy. Namely, this 

work demonstrates that introducing a conformational constraint into a flexible ligand 

does not necessarily lower its entropy in solution, because the flexibility of a ligand in 

solution is determined by a subtle balance between any intramolecular interactions and 

the intermolecular interactions between the ligand and its aqueous environment. 

Comparing the dominant structures of the constrained ligands in their bound and unbound 

states shows that the cyclopropane ring in the constrained ligands, cpYVN and cpYIN, 

locally constrains and orients functionality on the flexible phosphotyrosine replacement 

in fpYVN and fpYIN in the bound conformation as predicted from modeling studies. 

However, the macrocyclic-like structures of fpYVN and fpYIN in solution, which do not 

correspond to their bound conformations, reduce the global flexibility of these ligands to 

an even greater degree than the cyclopropane ring. Because the binding entropies for 

fpYVN and fpYIN are more favorable than for their constrained derivatives cpYVN and 

cpYIN, it is now apparent that one cannot think simply in terms of introducing 

constraints to stabilize the biologically active conformation of a small molecule as a 

strategy for enhancing ligand binding affinities. Rather, lowering the entropy of a ligand 

in any way that allows it to adopt its bound conformation can lead to more favorable 
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binding entropies. These studies also reveal that knowing the structures of small 

molecules in their unbound states is a critical prerequisite to correlating changes in their 

structures with protein binding entropies and enthalpies. 

  



 

 

 

118 

Table 5.1: Calculated and experimental thermodynamics (kcal/mol) for phosphotyrosine 

(pY)-containing peptide analogs and their constrained counterparts binding 

to the SH2 domain of Grb2. fpYV(I)N is the unconstrained tri-peptide 

analog consisting of pY, V (or I) and N residues; cpYV(I)N are the 

constrained counterparts (see Figure 5.1). The ΔG, ΔH and ΔS are the 

absolute binding free energy, enthalpy and entropy, respectively. With the 

calculated values of fpYVN set to experimental values, thermodynamics for 

the remaining ligands have been computed from the relative binding free 

energy and enthalpy obtained from MD simulations. Statistical errors of the 

calculated binding free energy are given in the parenthesis. 

 
Calculation 

 
Experiment

[301]
 

 

ΔG 

(kcal/mol) 

ΔH 

(kcal/mol) 

-TΔS 

(kcal/mol)  

ΔG 

(kcal/mol) 

ΔH 

(kcal/mol) 

-TΔS 

(kcal/mol) 

fpYVN -7.7  -5.4 -2.3 
 

-7.7 -5.4 -2.3 

cpYVN -10.0(0.6) -15.7  5.7(1.2) 
 

-8.8 -7.9 -0.8 

fpYIN -7.7(0.1) -3.2 -4.5(0.2)  -7.7 -5.5 -2.2 

cpYIN -9.8(0.4) -14.0   4.3(0.8)  -8.6 -8.3 -0.3 
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Table 5.2: Comparison of relative binding energetics (kcal/mol) between the 

unconstrained and constrained ligands (fpYVN/cpYVN and fpYIN/cpYIN), 

and decomposition of the relative binding free energy and entropy into the 

unbound (in solvent) and complex contributions. 

 

 

ΔΔG 

kcal/mol 

ΔGsolvent* 

kcal/mol 

  ΔGcomplex* 

kcal/mol 

 -TΔΔS 

kcal/mol 

-TΔSsolvent 

kcal/mol 

 -TΔScomplex 

kcal/mol  

fpYVN->cpYVN -2.27 26.68 24.41 8.05 -6.88 1.16 

fpYIN->cpYIN -2.07 26.80 24.73 7.45 -7.42 0.03 

*The free energy contributions from solvent and complex (ΔGsolvent and ΔGcomplex) 

both include the relevant valence contributions from fpYV(I)N to cpYV(I)N.  The 

valence contributions from water and protein were canceled in the calculation of relative 

binding free energy. 

 

Table 5.3: Estimation of absolute configurational entropy by quasiharmonic analysis. 

Spro(complex), Slig(complex), and Slig(solvent) represent the entropy 

contributions of α-carbons of the Grb2 SH2 in solvated complex, ligands in 

solvated complex and unbound ligands in solvent, respectively. All the 

entropy contributions are in cal mol
-1

 K
-1

. 

  
Spro(complex) Slig(complex) Slig(solvent) 

fpYVN  822.37 353.80 448.07 

fpYIN  814.78 345.58 444.43 

cpYVN  831.80 358.08 557.30 

cpYIN  818.00 350.00 563.84 
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Table 5.4: The average numbers of intermolecular water-ligand hydrogen-bonds around 

the four solvated ligands, and the average numbers of intramolecular 

hydrogen bonds within the ligands in solution at 298.79 K. 

 fpYVN fpYIN cpYVN cpYIN 

Intermolecular H-bond 33.5 33.2 35.7 35.2 

Intramolecular H-bond 2.7 2.4 1.4 1.4 
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Figure 5.1: Chemical structures of the ligands studied and the perturbation scheme. A. 

fpYVN; B. cpYVN; C. fpYIN; D. cpYIN. 
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Figure 5.2: Conformational energy profiles for constrained and unconstrained pY 

segments. The grey lines with squares are QM relative energy, and the back 

dotted lines with triangles are the MM relative energy. Y-axis is the relative 

energy in kcal/mol. X-axis is the dihedral angle in degree. 
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Figure 5.3: Convergence of relative binding free energy between fpYVN and cpYVN 

over simulation time at selected temperatures.   
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Figure 5.4: Correlation between binding enthalpy and binding entropy of fpYVN, fpYIN, 

cpYVN and cpYIN. Blue diamonds are calculated values; Red squares are 

experimental data. Both calculated and experimental binding enthalpy and 

entropy of fpYVN are shifted to zero for comparison purpose. 
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Figure 5.5: Clustering of the solvated ligand structures for fpYVN (pink) and cpYVN 

(blue). The most representative structures are plotted for clusters higher than 

10%. 
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Figure 5.6: B-factor of α-carbons calculated from MD trajectories of fpYVN (blue), 

fpYIN (green), cpYVN (red) and cpYIN (purple) binding to Grb2 SH2 

domain (top); B-factor of α-carbons of the four ligands binding to Grb2 SH2 

domain from experiment (bottom). 

a 
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Figure 5.7: Representative structures from MD simulations of fpYVN (pink) and cpYVN 

(deep blue) binding to Grb2 SH2 domain. The structures are generated by 

pyMOL.  
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6 Conclusion 

Modeling and prediction of binding affinity of a ligand to protein receptor will not 

only help advance our understanding of the underlying recognition mechanism but also 

facilitate the experimental drug discovery.[1, 272, 360] Although computational 

techniques have been extensively used in virtual screening and de novo drug design, 

predicting binding affinity within chemical accuracy remains challenging.[1, 2] 

Representation of electrostatic interactions with fixed atomic challenges imposes serious 

limitations on the accuracy of molecular modeling.[2, 3] Therefore, AMOEBA 

polarizable force field was developed, providing a better representation of the 

electrostatic interactions.  

Accurately predicting HFE is recognized as one fundamental capability of 

molecular mechanics force field. We present a systematic investigation on HFE 

calculations with AMOEBA polarizable force field at various parameterization and 

simulation conditions. The HFEs of seven small organic molecules have been obtained 

alchemically using the Bennett Acceptance Ratio (BAR) method. We have compared two 

approaches to derive the atomic multipoles from quantum mechanical (QM) calculations: 

one directly from the new distributed multipole analysis (DMA) and the other involving 

fitting to the electrostatic potential around the molecules. Wave functions solved at the 

MP2 level with four basis sets (6-311G*, 6-311++G(2d,2p), cc-pVTZ, and aug-cc-pVTZ) 

are used to derive the atomic multipoles. HFEs from all four basis sets show a reasonable 

agreement with experimental data (root mean square error 0.63 kcal/mol for aug-cc-

pVTZ). We conclude that aug-cc-pVTZ gives the best performance when used with 

AMOEBA, and 6-311++G(2d,2p) is comparable but more efficient for larger systems. 
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The results suggest that the inclusion of diffuse basis functions is important for capturing 

intermolecular interactions. The effect of long-range correction to van der Waals 

interaction on the hydration free energies is about 0.1 kcal/mol when the cutoff is 12Å, 

and increases linearly with the number of atoms in the solute/ligand.  

Next, the AMOEBA force field for proteins is developed. The current version 

(AMOEBA’12) continues to utilize permanent electrostatic multipole moments through 

the quadrupole at each atom, and treats explicitly the polarization effects in various 

chemical and physical environments. The atomic electrostatic multipoles for each amino 

acid type were derived from high-level gas phase quantum mechanical calculations via a 

consistent and extendable protocol. Both the inter- and intramolecular polarization is 

treated via the mutual-interactive Thole-style model with short-range damping. The 

intramolecular polarization ensures the transferability of the electrostatic parameters 

among different conformations as demonstrated by good agreement between QM and 

AMOEBA electrostatic potentials and dipole moments of the dipeptides. The backbone 

and side chain torsional parameters were determined by comparing to both gas-phase QM 

(RI-TRIM MP2/CBS) conformational energy of dipeptides and statistical distributions 

from the Protein Data Bank. Molecular dynamics simulations have been performed on 

short peptides in explicit water to examine the conformational properties in solution. The 

calculated conformational free energy and J-coupling constants are consistent with the 

PDB statistics and experimental NMR results, respectively. In addition, the experimental 

crystal structures of a number of proteins were well maintained during the MD 

simulations. While extensive calculations will be necessary to fully validate the force 

field, the initial results suggest that this polarizable multipole-based force field is able to 
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describe the structure and energetics peptides and proteins in gas-phase and solution 

environments. 

AMOEBA was then applied to the calculation of protein-ligand binding free 

energies of several benzamidine-like inhibitors to trypsin. All the computed binding free 

energies are in good agreement with the experimental data. From free energy 

decomposition, electrostatic interaction was found to be the driving force for the binding. 

Structural analysis shows that the ligands form hydrogen bonds with residues and water 

molecules nearby in a competitive fashion. The dependence of binding free energy on 

molecular dipole moment and polarizability was also studied. While the binding free 

energy is independent on the dipole moment, it shows a negative correlation with the 

polarizability. 

Finally, AMOEBA was used to investigate the thermodynamic effect of 

constraining and hydrophobicity on binding energetics. Preorganizing a ligand in the 

conformation it adopts upon binding to a protein has long been considered to be an 

effective way to improve affinity by making the binding entropy more favorable. 

However, recent thermodynamic studies of a series of complexes of the Grb2 SH2 

domain with peptide analogs having constrained and flexible replacements for a 

phosphotyrosine residue revealed that less favorable binding entropies may result from 

constraining ligands in their biologically active conformations. Toward probing the origin 

of this unexpected finding, we examined the complexes of four phosphotyrosine-derived 

analogs with the Grb2 SH2 domain using molecular dynamics simulations with a 

polarizable force field. Significantly, the computed values for the relative binding free 

energies, entropies and enthalpies of two pairs of constrained and unconstrained ligands 
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reproduced the trends that were determined experimentally, although the relative 

differences were overestimated. These calculations also revealed that a large fraction of 

the ligands lacking the constraining element exist in solution as compact, macro cyclic-

like structures that are stabilized by interactions between the phosphate groups and the 

amide moieties of the C-terminal pY+2 residues. In contrast, the three-membered ring in 

the constrained ligands prevents the formation of such macro cyclic structures, leading 

instead to globally extended, less ordered conformations. Quasiharmonic analysis of 

these conformational ensembles suggests that the unconstrained ligands possess 

significantly lower entropies in solution, a finding that is consistent with the experimental 

observation that the binding entropies for the unconstrained ligands are more favorable 

than for their constrained counterparts. This study suggests that introducing local 

constraints in flexible molecules may have unexpected consequences, and a detailed 

understanding of the conformational preferences of ligands in their unbound states is a 

critical prerequisite to correlating changes in their chemical structure with protein binding 

entropies and enthalpies. 
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