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A key trade-off for planetary system exploration is the fuel cost re-

quired versus science data obtained. Historically, planetary systems have been

explored utilizing multiple flybys, such as Galileo, Cassini’s complex Satur-

nian tour, as well as the trajectory for the proposed Europa Clipper mission.

While this approach eliminates the need for expensive capture maneuvers,

it can require days to weeks between observations, limiting available science

data. An alternative that seeks to maximize science return is to capture about

each moon of interest. Investigations of low-energy dynamics have shown the

existence of relatively inexpensive transfers between halo orbits at different

moons. Chaining these transfers in a moon-hopping tour allows one spacecraft

to visit multiple moons. The next step for a multi-moon mission is to connect

the inter-moon transfers to science orbits at specific moons. Two capture or-

bit scenarios are considered for comparison: 1) traditional, tightly captured

low-altitude orbits and 2) low-energy, loosely captured high-altitude orbits.
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Near-global grid search methods are developed to generate initial capture tra-

jectories from staging halo orbits. To help determine which solutions are near

optimal, an analytical expression for the predicted floor cost is derived. Low

cost captures are identified and optimized using impulsive primer vector theory

to determine the ideal number and location of impulses. The trajectory is then

extended to include the last resonant-orbit of the inter-moon transfer, using

the halo orbit as a patch point to connect the phases. A new three-dimensional

periodic orbit that naturally transfers between the resonant and halo orbits

is generated to facilitate the connection. The resulting resonant-to-capture

transfers are again optimized with primer vector theory, resulting in several

optimized options for comparison. As an additional mission design option, the

possibilities of advanced exploration using an electrodynamic tether are inves-

tigated. An approximation to the tether-perturbed dynamics is derived that

allows for an integral of motion, enabling useful analytical techniques. New

periodic orbit families are generated as a function of tether length, using con-

tinuation from non-perturbed Lyapunov orbits. The new orbits are analyzed

in terms of stability and utility for future use in mission design.
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Chapter 1

Introduction

1.1 Motivation

The design of planetary system exploration missions is a challenging

balance of science return versus propulsive cost. A critical component of ded-

icated orbiter missions is the endgame problem: the final sequence of trajec-

tories leading to capture. High-value science orbits tend to be low-altitude,

high-inclination trajectories that can provide global mapping, whereas the

capture maneuvers required for such orbits may be prohibitively expensive,

particularly for large planetary moons of interest such as Europa or Titan. To

date there have been no dedicated orbiters about any planetary moon other

than our own. Science returns have historically been limited to observations

performed over the course of multiple flybys. The most famous example of

this approach is the Cassini-Huygens mission which performed 162 flybys of

Saturn’s moons, and landed a probe on the surface of Titan [47]. The proposed

Europa Clipper mission will similarly map out Jupiter’s moons with a series

of close Europa approaches [8].

While the science returns from flyby-based missions have been excep-

tional, there are limitations. Notably, the time gap of days to months between
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close approaches limits in-depth study of short-term phenomena. A dedicated

orbiter remains as an appealing option that enables continuous observation.

Dedicated orbits at multiple moons is especially desirable to maximize the

science gain for planetary system exploration. The options to achieve a multi-

moon tour are effectively limited to either a complex architecture of multiple

orbiters, or a single orbiter that targets several moons. The need for ex-

pensive capture and departures maneuvers, along with inter-moon transfers,

makes the single orbiter mission approach propulsively infeasible for designs

based on standard two-body orbital dynamics.

Fortunately, the compact Jupiter and Saturn systems are ideal for tak-

ing advantage of third-body perturbations to achieve otherwise infeasible tra-

jectories. Recent and ongoing research has already shown that near-ballistic

transfers between libration points at Jupiter’s moons exist, eliminating one

major cost of a multi-moon tour. Related works have found highly-perturbed

capture orbits that can be used to observe and map out moons at a fraction of

the cost of traditional science orbits. A survey of these studies is explored in

the next section. The combination of these two key developments significantly

reduces the prohibitive propulsive costs. However, the methods used for these

studies decouple the transfer and capture problems, i.e there are no complete

trajectories from the inter-moon phase through to the capture orbit. What

remains then is the need for an investigation into connecting the two phases

into a full trajectory to enable a true single orbiter, multi-moon mission.

The succeeding sections of this chapter discuss the background of the

2



ideas and techniques used within this dissertation, followed by a layout of the

dissertation structure and a summary of the contributions from this work.

The background sections are intended to be a concise overview of past and

recent works to aid the reader’s understanding of the relevant material, rather

than a comprehensive literature review of all mission design and optimization.

The first section provides an overview of the history of low-energy trajectory

design, as well as recent developments focused on the Jupiter system. Next is

a discussion about impulsive primer vector theory in the context of trajectory

design. The last background section provides motivation and information for

a potential advanced, mission enabling technology: electrodynamic tethers.

1.2 Trajectory Design utilizing Low-Energy Dynamics

The analysis of chaotic dynamical systems begins with Henri Poincaré’s

research in the late 19th century [78]. His work is the foundation for the the-

ory of dynamical systems, deriving many of the techniques still used to study

trajectories in the three-body problem. Key developments include proof of

the existence of libration point orbits and periodic solutions, the concept of

using repeat trajectory crossings of a surface to map phase space (now fittingly

referred to as Poincaré maps), and the existence of asymptotic approach and

departure trajectories of libration points, known as invariant manifolds. Over

70 years later advances in computational power enabled numerical techniques

to thoroughly investigate the dynamics, primarily through the generation and

analysis of periodic orbits about libration points [14, 36–39, 44, 63, 66]. Con-

3



currently, the advent of lunar spacecraft led to interest in the application of

these orbits to trajectory design. One of the first methodologies to generate

low-energy transfers was developed by Conley for Earth-Moon transit orbits

(using the equivalent of invariant manifolds) [23]. Further development of these

low-energy techniques culminated in practical application to multiple mission

designs [17, 30, 103]. A relatively recent example is the GRAIL mission to map

the Moon’s gravitational field, which utilized the dynamics of the Earth-Sun

system to significantly reduce the cost of lunar orbit insertion [21]. In the near

future, NASA’s planned Lunar Orbital Platform - Gateway intends to place a

manned station in a lunar halo orbit [15, 16].

The complex dynamics of the Jupiter and Saturn systems make them

well-suited for low-energy trajectories as part of the mission endgame. As

mentioned in the previous section, a common strategy to simplify the endgame

problem is to decouple it into two main phases:

1) The final trajectories leading to approach of the moon’s sphere of

influence

2) Capture into a dedicated science orbit

An unstable periodic orbit, such as a halo orbit, is typically used as a boundary

condition to decouple the endgame phases, turning each phase into two-point

boundary value problems. The approach phase primarily focuses on the final

sequence of orbits that lead to favorable capture conditions. Given that the

Jovian system consists of several gravitationally significant moons, multiple

4



studies have utilized flybys to sequentially reduce the energy of the spacecraft

relative to Europa. A useful starting point for approach trajectory design is to

approximate the system with patched two-body dynamics when far from the

planetary moon, as it allows fast, analytical approaches [4, 5, 31]. The resulting

trajectories can then be used as initial guesses for refinement in higher fidelity

dynamical models. As a practical example of this approach, Campagnola

and Russell used V-infinity leveraging to design multi-moon tours [18]. These

authors then extended leveraging to the multi-body realm using the Tisserand

parameter, creating a graphical tool for preliminary studies [19]. This tool was

effectively used to design low-energy transfers with timespans comparable to

high-energy options [20].

Rather than start with two-body approximations, the natural dynamics

of the multi-body system can also be expressed via invariant manifolds. Initial

work by Koon et. al showed that intersections of these manifolds form near-

ballistic transfers between periodic orbits at similar energy levels [46]. Con-

nections within the same periodic orbit are referred to as homoclinic, whereas

heteroclinc connections exist between different periodic orbits. In general, in-

variant manifolds can be used to generate transfers between any periodic orbits

at different energies [28]. Vaquero and Howell utilized this approach to con-

nect unstable resonant orbits in the Earth-Moon system [101]. Related work

by Lantoine et al. investigated connecting two moons using a combination of

multi-body and patched three-body dynamics, with halo orbits as boundary

conditions [54]. Their results, as well as work by Grover and Ross, show that

5



such transfers can be completed with relatively low ∆V (on the order of tens

of meters per second) [35]. Restrepo and Russell showed that similar transfers

can be simply constructed by patching together periodic orbits with natural

transfers between different families, avoiding the complexity of generating and

connecting unstable manifolds [81]. The selection of patching orbits requires

searching a large database of previously generated periodic orbit families [80].

The final phase of the endgame problem consists of the transfer to a

capture orbit, as well as design of the capture orbit itself. Moons such as Eu-

ropa have strongly perturbed orbits due to non-spherical gravitational fields

and close proximity to Jupiter, significantly reducing capture orbit lifespans.

Paskowitz and Scheeres sought the conditions needed for long lifetime orbits

on the order of 150 days via averaging techniques [72]. Lara and Russell

found similar long lifetime science orbits at Europa using highly resonant pe-

riodic orbits [56]. Alternatives to orbits deep in the gravity well of moons

have been proposed as descope options to reduce propulsive cost. Russell and

Brinckerhoff investigated the use of circulating eccentric orbits that provide

near-global coverage while avoiding tight capture [86]. These high-altitude

orbits take advantage of the third-body perturbations from Jupiter, leading

to close approaches distributed above the moon’s surface. However, the or-

bits can be difficult to classify due to their chaotic nature. Davis and Howell

sought to identify the short and long-term behavior of similar chaotic orbits

using periapse Poincaré maps [25]. At the lowest propulsive cost, capture can

be avoided altogether by chaining transfers between periodic orbits using un-

6



stable manifolds [6, 71]. In certain cases these transfers are effectively free,

allowing multiple viewing angles and close approaches for minimal cost.

The existence of a broad range of capture orbit options leads to the

development of different techniques to generate approach to capture trans-

fers. Baoyin and McInnes looked into transfers from the Lagrange points and

Lyapunov orbits that provide whole-surface coverage of both primaries using

numerical integration and invariant manifolds of the three-body dynamics [7].

Work by Russell and Lam used stable manifolds of unstable periodic orbits to

generate ballistic capture trajectories to highly-inclined Europa science orbits,

before transitioning to a low-thrust ephemeris model [87]. Anderson classified

the required final approach resonances when using invariant manifolds of Lya-

punov orbits, and showed that the costs to capture from either resonant or

Lyaponuv orbits can be equivalent [4]. The reverse problem of escape from

low-altitude circular orbits was investigated by Villac and Scheeres for multiple

Jovian and Saturnian moons through the use of Poincaré maps [102]. Purely

ballistic captures in the n-body ephemeris model were investigated by Luo et

al. via a grid of osculating orbital elements, with classification of the captures

based on a stability index [62].

The chaotic nature of the dynamics makes it difficult to readily com-

pare the different mission architectures proposed. Transfer trajectories are

strongly dependent on specific boundary conditions and are generally expen-

sive to compute and optimize. The ability to rapidly predict the optimal cost

without finding physical transfers (i.e. numerically propagated trajectories)

7



is desirable for quick evaluation of mission design options. Sweetser showed

that an optimal maneuver is tangential to the rotating velocity and related

to the change in Jacobi constant [96]. Davis further showed that finding the

minimum ∆V requires maximizing the rotating velocity, although no explicit

minimizing location was given due to minimal variations when close to the

capture body [26]. Mengali and Quarta derived an expression for approximat-

ing the minimum ∆V for planar, bi-impulsive transfers between tight captures

at the Earth and Moon, again assuming close proximity to the capture body

[65].

1.3 Primer Vector Theory

Optimization of spacecraft trajectories is a historic problem with multi-

ple approaches, broadly categorized as direct gradient methods, indirect meth-

ods, and hybrids. For details on the general optimization problem, the inter-

ested reader is referred to several resources; the focus of this dissertation is on

the hybrid use of impulsive primer vector theory [24, 50, 51, 100]. This theory

was introduced by Lawden, who utilized calculus of variations to derive condi-

tions for the optimality of a time-fixed, impulsive spacecraft trajectory subject

to an inverse-square gravity field [60]. Lion and Handelsman extended the the-

ory to non-optimal trajectories, deriving the conditions for the locations and

times where additional impulses will improve the cost of the trajectory [61].

These equations were used by Jezewski and Rozendaal to develop an algo-

rithm for iteratively adding impulses to the trajectory, including a first-order
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prediction for the magnitude of the interior impulse that leads to the greatest

cost reduction [43]. Finding these additional maneuvers is a key advantage of

primer vector theory over direct optimization methods [49].

Primer vector theory was extended to the Elliptical-Restricted Three-

Body Problem by Hiday, who optimized transfers between libration point or-

bits [41]. Davis later noted that the primer vector equations and optimality

conditions in the Circular-Restricted Thee-Body Problem (CRTBP) are essen-

tially identical to those derived by Hiday [26]. A notable problem for primer

vector theory when applied to low-energy dynamics is that it traditionally re-

quires at least two impulses to generate the primer vector history. However,

the use of invariant manifolds often results in transfers with a single impulse,

such as ballistic capture trajectories. Davis avoided this complication by cre-

ating two-impulse bridging transfers between manifolds [27]. An alternative

approach by Griesemer derived new necessary conditions on the primer vector

at the time that the spacecraft is considered ballistically captured [34].

1.4 Electrodynamic Tethers

Among many unique challenges of outer planet missions, the extreme

distances from the sun lead to restrictive power constraints. In particular, the

use of solar arrays is limited due to solar radiation decreasing as an inverse

square law. While the ongoing Juno mission to Jupiter is able to make use of

solar cells, its power is less than 500 W, limiting its science capabilities [68].

The common alternative to solar power is the use of radioisotope thermal
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generators (RTGs) such as those used for the Cassini and Galileo missions.

RTGs come with their own set of design challenges.

A developing alternative is making use of electrodynamic tethers and

their interaction with the rotating magnetic fields of planets. Jupiter is of

greatest interest due its strong magnetic field, but magnetic fields also exist at

the other gas giants and at the Earth. The premise of using a tether to provide

power relies on basic principles of electromagnetism, namely, that current is

induced when a conductor moves through a magnetic field in the presence of

a plasma ambient. This current generation makes for an attractive alternative

power source for spacecraft [89, 91]. Power scarcity is a common limiting factor

in spacecraft design, making any additional power of much practical interest.

Research has explored power generation in different motion regimes including

system satellite tours and orbiters that are stationary relative to a secondary

body [10, 12, 94].

The second capability of electrodynamic tethers is as a force generator.

Charged particles (such as current in a tether) moving through a magnetic

field generate the so-called Lorentz force. The force naturally occurs during

power generation from an induced current, but it can also be created by provid-

ing artificial current from an on-board power source, resulting in controllable

thrusting. This nonconservative force is a function of position, velocity, tether

orientation, the characteristics of the tether material, and the plasma ambi-

ent. Given that this force can be generated with negligible propellant necessary

for attitude control and the tether hollow cathode, there is potential for sig-
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nificant mass savings. Applications with the largest potential for propellant

mass reduction include departure and capture for interplanetary trajectories,

as these typically require large fractions of propellant budgets. Ongoing re-

search shows that capture from hyperbolic orbits can be greatly assisted, if

not completely performed by, electrodynamic tethers [32, 90, 93]. Additional

work by Tragesser and San shows how tethers can be used for orbital transfers

about a single body [98]. Also of interest is the mass efficiency of tethers for

these transfers relative to electric thrusters, noting research has shown that

tether systems can allow mass savings over long-term applications [92].

The addition of the Lorentz force also alters the equilibrium points

in unperturbed systems such as the CRTBP. Research has been done on the

stability and dynamics for tethers operating at these modified equilibrium

points, typically in the interest of power generation with the tether without

altering the orbit of the spacecraft. Various analyses have shown that these

equilibrium points are stable or can be made stable through the use of control

laws [11, 74, 75, 104]. A natural next step is to expand these perturbed

equilibrium points into periodic orbits in the Lorentz force-perturbed CRTBP.

Periodic orbits are useful for a variety of applications including parking orbits

and intermoon transfers and as descope alternatives to science orbits [48, 53,

86]. The addition of a tether can make spacecraft self-powered but introduces

Lorentz forces that will alter the orbits. Knowledge of the effects of these

forces on orbit orientation and stability is needed for a full end-to-end mission

design with tethers.
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1.5 Outline of Dissertation

The dissertation is structured with the intent to follow the logical pro-

gression of the work presented. Chapter 2 is a non-contribution chapter where

the models and methods common to multiple chapters are discussed. This

centralized approach eliminates repetition while keeping specific techniques

in their respective chapters for ease of reference. Chapter 3 and Chapter 4

follow the natural progression of finding resonant to capture orbit transfers

using a halo orbit for patching. Chapter 3 discusses the methods developed

to generate halo to capture transfers, with emphasis on the need for different

approaches based on the type of capture. These trajectories then serve as

initial guesses for optimization in Chapter 4, which builds off the optimized

trajectories to construct full resonant to capture transfers. Chapter 5 investi-

gates the dynamics with perturbations from an electrodynamic tether, which

enables unique families of periodic orbits. The concept is approached with the

overarching motivation of reducing the costs of planetary system exploration

using low-energy dynamics. Lastly, Chapter 6 provides concluding remarks for

the contributions of the work, and discusses possible future extensions.

1.6 Summary of Contributions

1.6.1 Chapter 3

� A new general analytical expression is derived for the minimum ∆V

required to transfer between bounding energy levels in both the CRTBP and

Hill’s models.
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� Finds the first known survey of transfers from halo orbits targeting specific

low-altitude Europa science orbits, as well as transfers to chaotic loose capture

orbits.

1.6.2 Chapter 4

� First known case in the literature of the application of primer vector

theory to optimize n-impulse, highly-sensitive, multi-revolution trajectories in

the CRTBP.

� Derivation of new equations using the primer vector to remove small

impulses from the trajectory, eliminating singularities from the optimization

problem.

� Development of a hybrid optimization algorithm, including numerical

methods to mitigate the sensitivities of the transfers and meet the strict opti-

mality conditions required by impulsive primer vector theory.

1.6.3 Chapter 5

� A conservative approximation for the Lorentz force from a radial electrody-

namic tether is derived, facilitating the application of analytical and numerical

techniques that require an integral of motion.

� Generation of the first known tether-perturbed periodic orbit families,

with orbits characterized by tether length and motion integral.
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Chapter 2

Models and Methods

In this chapter the non-contribution methods common throughout the

dissertation are presented. The majority of the chapter is devoted to the dy-

namics of the CRTBP, including periodic orbit generation. Concise summaries

of the state transition matrix and complex step differentiation are also pro-

vided. For details on primer vector theory, see Chapter 4. The equations

relevant to electrodynamic tethers are presented in Chapter 5.

2.1 The Circular-Restricted Three-Body Problem

The framework used for the dynamics is the barycentric form of the

CRTBP [45, 97]. Figure 2.1 depicts the xy-plane of the rotating frame, with

the z-axis completing the right-handed coordinate system. The system is

normalized to derived length and time units (LU and TU), where 1 LU is

the mean distance between the primaries and TU is set such that the system

angular velocity is one radian per time unit. The normalized equations of

motion for a spacecraft in the CRTBP are expressed as:

r̈ + 2Ω× ṙ = ∇J (2.1)
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Figure 2.1: The xy-plane of CRTBP rotating frame and coordinate system,
including the locations of the primaries, spacecraft position vectors, and first
two Lagrange points
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1− µ
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+
µ

r2

(2.2)

where µ is defined as the mass ratio of the secondary to the total system mass,

r(x, y, z) is the spacecraft position vector, ṙ(u, v, w) is the spacecraft velocity

relative to the rotating frame, Ω = [0 0 1]T is the normalized frame rotation

rate, and J is the pseudo-potential given by Equation (2.2).

The full spacecraft state is denoted as x = [x, y, z, u, v, w]T. The space-

craft distances to the primary and secondary are r1 and r2, respectively. There

is one energy-like integral of motion known as the Jacobi constant, defined as

C = 2J − V 2, where V = ||ṙ||. An approximation of the region where the

secondary dominates the dynamics of the system is given by the Hill radius:
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RHill = 3
√
µ/3(1− µ) . In this work, the Hill radius is used to define a region

where the spacecraft is considered to be within the influence of the secondary.

Five equilibrium points exist in the equations of motion, known as

the Lagrange points Li. Only the first two points, depicted in Figure 2.1,

are relevant in this work due to their proximity to the secondary. Simple

three-dimensional periodic orbits about these points exist, known as halo or-

bits. These orbits are commonly used to decouple the capture problem from

the approach problem, as in Reference [54] where the halo orbits are used as

boundary conditions.

2.1.1 Periodic Orbit Generation

The equations of motion of the CRTBP are known to exhibit symme-

tries due to invariance to specific variable transformations; this symmetry is

useful to search for periodic orbits [42, 85]. The first invariance occurs under

the transformation {y = −y, t = −t}, such that a forward-time trajectory

has a corresponding reverse-time trajectory mirrored through the xz-plane.

Accordingly, if the initial state of the forward trajectory is a perpendicular

crossing of the xz-plane, the mirrored, reverse-time trajectory is as well, re-

sulting in a single, continuous trajectory. The second invariant transformation

is {y = −y, z = −z, t = −t}. The resulting forward-backward symmetry

is a 180◦ rotation about the x-axis. A forward trajectory that starts on and

perpendicular to the x-axis will be continuous with its reverse-time counter-

part. By targeting a combination of xz-plane and x-axis crossings for both
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initial and final states, the combined symmetric trajectories will be a fully

continuous periodic orbit. Different targeting algorithms exist, however the

general approach is to use differential correction to target k (ξ) = 0, where

k is the difference vector between actual and target states at the end of the

trajectory, and ξ is the vector of free state variables [88]. Symmetry-based

targeting algorithms are discussed in Chapter 4. Periodic orbits can also be

generated by targeting the full initial state after one orbital period, which is

discussed in Chapter 5.

Once a periodic orbit has been identified it can be numerically con-

tinued into a full family of periodic orbits, characterized by their initial state

x0 and periodic time, T [3, 33]. Continuation is initialized by selecting an

independent variable referred to as the generating parameter, and treating the

remaining states as functions of this parameter. The independent variable

is typically chosen based upon the periodic orbit generating method, as it is

held constant during targeting. Common parameter selections are one of the

orbit initial position variables or the Jacobi constant. A family is followed by

perturbing the generating parameter and differentially correcting the remain-

ing initial states to a new periodic orbit. The size of the first perturbation is

generally small such that the differential corrector can successfully converge.

Larger step sizes are enabled by using extrapolation to guess the initial state

and period of the next orbit in the family as a function of the generating

parameter.

Occasionally one or more variables of the family may go through “re-
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flections”, where the direction of the generating parameter must reverse in

order to further continue the family. A simple solution is to switch to a dif-

ferent generating parameter whenever a reflection is encountered. However,

reflections can be avoided entirely by using the pseudo-arc-length continua-

tion method. A new variable, ρ is defined to be approximately equal to the

arc-length traveled along the family curves. This definition makes ρ a strictly

monotonic variable, preventing reflections. The pseudo-arc-length is initial-

ized by starting continuation with a different generating parameter. After at

least two periodic orbits have converged a guess length, ρ∗ = ρi + ∆ρ, is used

to extrapolate the initial state of the next periodic orbit, where ∆ρ is a freely

chosen step size. Once a new periodic orbit is found, the actual pseudo-arc-

length is updated such that ρi+1 = ρi + ||x0,i+1 − x0,i||, where ρ0 = 0 and x0,i

is the initial state of the ith converged periodic orbit.

2.1.2 Invariant Manifolds

Periodic orbits are often unstable, such that a small perturbation leads

to rapid departure from the orbit. The family of ballistic transfers that asymp-

totically depart in this manner are called the unstable manifolds of the orbit.

Propagating the perturbation in reverse-time generates stable manifolds that

asymptotically approach the orbit in forward-time. These trajectories serve as

a natural first guess for efficient transfers to or from periodic orbits. In-depth

discussions of generating manifolds are found in References [87] and [45], a brief

summary is presented here. Evaluating the state transition matrix (STM) over
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one full period gives the monodromy matrix Φ (T, t0) (see Section 2.2). The

eigenvector of this matrix with the maximum real eigenvalue is the unstable

perturbation direction at the initial time, ξ (t0). This direction can be mapped

to any other time through the STM: ξ (t) = Φ (t, t0) ξ (t0). The initial state

for the manifold that leaves the periodic orbit at time t, xε (t), is found by

adding a small perturbation to the full state in the unstable direction with

magnitude ε:

xε (t) = x (t)± ε ξ (t)

||ξ (t)|| (2.3)

The alternating sign addresses that the perturbation can be made in either di-

rection along the perturbation vector. The choice of sign generally determines

if the manifold departs towards or away from the secondary. Both directions

are used in this dissertation.

2.1.3 Europa-Jupiter System

Table 2.1: Jupiter-Europa system CRTBP parameters
Parameter Value
Europa Semi-major Axis; LU, km 6.711×105

Europa Mean Radius, km 1560.70
Jupiter Mean Radius, km 71,942.0
Europa GM, km3/s2 3,202.73879
Jupiter GM, km3/s2 1.26686535×108

Mass Ratio; µ 2.5280175×10−5

TU, s 48,843.88

The Jupiter-Europa system is selected for in-depth analysis due to sig-

nificant scientific interest; the Decadal Survey named Europa as the top outer-

planet destination, leading to numerous mission design studies [22, 77]. Recall
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from Chapter 1, the Europa Clipper is a planned mission in development by

NASA’s Jet Propulsion Laboratory to perform science at Europa via multiple

flybys [1, 8]. A summary of the parameters used to model the CRTBP of the

Jupiter-Europa system is given in Table 2.1 [2]. When calculating two-body

orbital elements for capture at Europa, a non-rotating frame centered at Eu-

ropa is used, with the axis aligned with the CRTBP frame at the start of the

integration.

2.2 The State Transition Matrix

Small perturbations to a trajectory are linearly mapped to a later time

using the STM, Φ(t, t0), where t0 is the time at the initial state [99]. The ma-

trix is generated by integrating the variational equations alongside the equa-

tions of motion:

Φ̇(t) =
∂ẋ

∂x
(t)Φ(t, t0), Φ(t0, t0) = I6 (2.4)

Φ(t, t0) =

[
A B
C D

]
(2.5)

where I6 is the 6 × 6 identity matrix. The full perturbation state mapping

is evaluated as δx = Φ(t, t0)δx0. Often only part of the STM is required,

such as when mapping velocity-only perturbations to position differences. For

ease of reference in these partial cases, the STM is partitioned into four 3× 3
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submatrices, shown in Equation (2.5). Two important properties of a general

STM are that:

1) They can be chained together in sequence: Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0)

2) The inverse of the matrix is identical to the reverse time STM:

Φ(t1, t0)−1 = Φ(t0, t1).

2.3 Complex Step Finite Differentiation

A critical necessity in optimization problems is obtaining accurate deriva-

tives. Assuming analytical equations are unavailable, there are multiple well-

known numerical methods that use finite differences to approximate deriva-

tives. A key driver for the accuracy of these methods is the step size, h, with

the exact derivative occurring in the limit as h goes to zero. However, the use

of subtraction leads to machine precision errors that place a lower limit on

useful step size (on the order of 10-8 for double precision).

In order to obtain high accuracy derivatives, this dissertation takes

advantage of the relatively simple complex step method [64]. The derivative

is approximated as:

f
′
(x) ≈ Im [f(x+ ih)]

h
(2.6)

Essentially, complex arithmetic is utilized to obtain the finite difference as the

imaginary part of the function, avoiding subtractions. This approach allows h
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to be sufficiently small (i.e. on the order of 10-50 or smaller) that the derivatives

can be considered exact to working precision.
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Chapter 3

Generating Halo to Capture Transfers1

In this chapter, the problem of generating feasible transfers from halo

orbits to different capture orbit options is investigated. The chapter begins by

deriving an energetic equation for the floor transfer ∆V in both the CRTBP

and Hill’s models. The development of analytical expressions for a lower ∆V

bound as a function of boundary conditions leads to a simple and rapid tool

for preliminary mission design. Extending the expressions to the Hill’s model

makes it possible to scale the results to any body of interest. A provided appli-

cation is an archived table giving estimated capture costs for a broad survey of

planet-moon systems from the L2 halo family. Next, applied grid searches for

transfers are developed based on capture type (tight or loose). Comparison of

the actual propulsive costs shows the energetic minimum is likely a true lower

bound. The resulting loose captures provide a broad selection for mission de-

sign trade studies, such as mapping coverage versus predictable, quasi-periodic

orbits.

1Bokelmann, K.A., Russell, R.P., “Halo Orbit to Science Orbit Captures at
Planetary Moons,” Acta Asronautica, Vol. 134, May 2017, pp. 141-151,
https://doi.org/10.1016/j.actaastro.2017.01.035
Technical work and writing by Bokelmann, with guidance and edits by Russell
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3.1 Lower Bound Transfer Delta-V

When constructing transfers between orbits at different energy levels,

it is useful to know the expected minimum ∆V for comparison. Given that

the bounding orbits have distinct Jacobi constants, an energy-like approach

based on the fixed ∆C is employed to derive an analytical expression for the

minimum. It is shown in References [102] and [96] that the energy change is

optimally achieved with a single impulsive maneuver tangential to the velocity

in the rotating frame. A theoretical ideal transfer with this property would be

one that ballistically departs the initial orbit via unstable manifolds, and then

intersects the capture orbit such that a single tangential maneuver is sufficient

for capture. Note that this ideal transfer ignores the constraints of a physical

transfer; feasible transfers may require multiple impulses or non-tangential

directions to be optimal.

The assumed single impulse leads to the bounded problem of finding

the minimum ∆V to achieve a given ∆C. Differentiating the Jacobi constant

shows dC = −2V dV , as an impulse can only change velocity. It is apparent

that maneuvers become more efficient at higher velocities, analogous to the

two-body problem. Finding the minimum ∆V therefore requires first finding

the position location of maximum velocity. The derivation is initially devel-

oped in the CRTBP model. While this derivation is system specific it allows

the equation to be applied far from the secondary, such as during the resonant

transfer phase connecting two moons. A second derivation in the Hill’s model

removes dependency on a specific three-body system, enabling a rapid survey
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over numerous bodies of interest, but limits the equation accuracy to orbits

near the secondary.

3.1.1 Derivation in the CRTBP

The position location of the minimum ∆V is first formulated in the

CRTBP. To initially reduce the problem to two variables, the location is limited

to a sphere of constant radius. Spherical coordinates relative to the secondary

are used to represent the location:

x = −r2 cosφ cosλ+ 1− µ

y = −r2 cosφ sinλ

z = −r2 sinφ

(3.1)

where r2 is the distance from the center of the secondary, φ is the angle above

the xy-plane, and λ is the angle in the xy-plane measured counterclockwise

from the negative x direction. For synchronous, tidally-locked moons, the

angular coordinates are in agreement with IAU planetocentric conventions of

latitude and longitude. Terminology of “interior” and “exterior” sides of the

secondary is introduced to refer to λ = 0 and π, respectively.

The Jacobi integral is rearranged to solve for V 2, expressed in terms of

the spherical coordinates:
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V 2 = −r2
2 cos2 φ− 2r2 (1− µ) cosφ cosλ+ (1− µ)2 +

2 (1− µ)

r1

+
2µ

r2

− C

r1 =
(
r2

2 − 2r2 cosφ cosλ+ 1
)1/2

(3.2)

where r1 is the distance between the spacecraft and the primary. The square

of the velocity is used to simplify the equations and derivatives. Derivatives

with respect to the angles are taken to find locations of extrema:

∂ (V 2)

∂φ
= 2r2κ sinφ

κ = cos(λ) (1− µ)

(
1− 1

r3
1

)
− r2 cosφ

(3.3)

∂ (V 2)

∂λ
= 2r2 (1− µ)

(
1− 1

r3
1

)
cosφ sinλ (3.4)

where κ is introduced to simplify Equation (3.3). Note that the derivatives

are independent of Jacobi constant. The Hessian matrix, H, is also derived

and its eigenvalues are computed to characterize each extrema. All positive

eigenvalues indicate a minimum, all negative eigenvalues indicate a maximum,

and a combination of both indicates a saddle point.
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H =

[
∂2V 2

∂λ2
∂2V 2

∂λ∂φ
∂2V 2

∂λ∂φ
∂2V 2

∂φ2

]
∂2V 2

∂λ2
= 2r2 (1− µ) cosφ cosλ

[
3r2 cosφ sinλ tanλ

r5
1

+

(
1− 1

r3
1

)]
∂2V 2

∂φ2
= 2r2 (1− µ) cosφ cosλ

[
3r2 sinφ cosλ tanφ

r5
1

+

(
1− 1

r3
1

)]
+ 2r2

2

(
sin2 φ− cos2 φ

)
∂2V 2

∂λ∂φ
= 2r2 (1− µ) sinφ sinλ

[
3r2 cosφ cosλ

r5
1

+

(
1− 1

r3
1

)]
(3.5)

Root-solving Equations (3.3) and (3.4), then evaluating the eigenvalues

at the roots shows that the velocity maxima occur on the x-axis (i.e. φ = 0,

λ = 0, π). Comparing velocities at the interior versus exterior of the secondary

shows that the interior is the global maximum when the distance from the

secondary, r2, is less than unity. Radii larger than that value are well beyond

a feasible capture; therefore in this work the global velocity maximum occurs

on the interior x-axis in-between the primary and secondary.

The minimum ∆V for a specified capture radius r2 is found by eval-

uating the maximum velocities for values of Jacobi constant before and after

the maneuver, C− and C+. Substituting the location of the global maximum

into Equation (3.2) and taking the difference in velocities leads to a simple

analytical expression for the theoretical minimum impulse magnitude:

∆V =
∣∣∣√A− C+ −

√
A− C−

∣∣∣
A = (1− µ− r2)2 +

2 (1− µ)

1− r2

+
2µ

r2

(3.6)
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Figure 3.1: Analytical minimum ∆V for capture from C− = 2.990 LU2/TU2

to several C+ values, as capture radius r2 is varied. Dashed line indicates L1
point

The analytical minimum ∆V is plotted in Figure 3.1 for several ener-

getic arrival conditions. Note that discontinuities in the lines occur due to that

range of r2 being inaccessible for the given value of capture Jacobi constant.

The plot shows that ∆V increases with distance from the secondary up to the

L1 point, indicated by the vertical dashed line. Typical science orbits require

altitudes closer than L1, indicating that efficient capture maneuvers should

occur at the smallest feasible radius relative to the secondary.

3.1.2 Application to a Range of Departure and Capture Orbits

Equation (3.6) can be rapidly applied over a broad survey of arrival

and capture conditions. This capability for fast preliminary mission design is
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demonstrated by comparing two capture options at Europa. First is a 200 km

altitude, 95° inclination circular orbit representative of tight capture planetary

moon science orbit designs [55, 72]. The remaining osculating Keplerian orbital

elements of longitude of the ascending node, Ω, and the argument of latitude at

epoch, ω + ν, are considered free variables. This freedom results in a variable

final Jacobi constant. Considering all possible phasing pairs of (Ω, ω + ν)

shows a small range of 3.0094828 ≤ C+ ≤ 3.0095035 for the capture. In

order to calculate the minimum impulse for tight capture, the capture radius,

r2, is required. As the average semi-major axis of a tightly captured orbit

will remain constant, the capture radius in Equation (3.6) is set to the target

orbit’s semi-major axis of 1760 km.

The second capture option is a loosely captured orbit. Reference [85]

reveals an approximate limiting case of a maximum radius at 7000 km with

inclinations near 70° for stable near-circular orbits at Europa; this capture

option has a calculated Jacobi constant range of 3.0027272 ≤ C+ ≤ 3.0030558.

The perturbed nature of the loose capture leads to rapidly varying radii relative

to Europa, complicating the choice of capture radius. Utilizing the physical

limit of Europa’s mean radius for r2 in Equation (3.6) ensures the analytical

propulsive costs are indeed a lower bound for capture at Europa.

To consider a broad range of possible arrival conditions the initial values

are from a high-energy arrival of C− = 2.990 up to an effectively free arrival

of C− = C+. Cases where C+ < C− are not considered for this analysis, as the

condition implies the initial orbit is already more tightly captured than the
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Figure 3.2: Contours of analytical minimum ∆V (km/s) over a range of energy
levels for (a) Tight capture (b) Loose capture

final orbit. The range of C− includes the L2 halo orbit family, which is between

3.0008370 and 3.0033259 at Europa [59]. Gridding over the boundary values

for both capture cases results in the contours shown in Figure 3.2. Dashed lines

show the Jacobi constant bounds of the L2 halo orbits, as that family is a likely

candidate for the initial boundary orbit. Looking at tight capture, transfers

within the L2 halo family bounds have floor ∆V s between 400 m/s and 500

m/s. Larger values of ∆C result in maneuvers up to 1 km/s for the considered

range of Jacobi constants, although this maximum represents a high-energy

arrival orbit prior to capture. In plot (b) of Figure 3.2 it is seen that loose

captures have potentially free transfers from L2 halo orbits when C− = C+,

although the existence of such transfers is not guaranteed. Comparing the
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tight and loose capture options it is apparent that loose capture requires less

∆V for all arrival conditions, as expected.

3.1.3 Derivation in the Hill’s Model

While Equation (3.6) can be rapidly evaluated, the results are system

specific. In particular, the energy bounds of a given family of orbits vary be-

tween systems. This variation requires finding and continuing L2 halo orbit

families for every system before the energetic minimum can be evaluated. To

allow scaling both the bounds and the propulsive costs between three-body

systems, the analysis is re-derived in the Hill’s model. This model is the lim-

iting case of the CRTBP as µ goes to zero, eliminating the body-specific mass

ratio from the equations of motion while preserving the essential dynamics

near the secondary [97]. Note that the model uses a rotating frame centered

at the secondary, rather than the system barycenter. Normalized length units

are defined such that LU = (GM2/N
2)1/3, where N is the dimensional angular

velocity of the secondary. The normalized time remains unchanged from the

CRTBP. As the minimum ∆V equations do not require physical orbits, the

Hill’s model equations of motion can be ignored for this work; the pertinent

development is a modification in the motion integral from C to Γ [86]:

Γ = 3x2 − z2 +
2

r2

− V 2 (3.7)
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Table 3.1: Hill’s model analytical floor ∆V range for tight and loose capture
orbits from the L2 halo orbit family at moons of interest

Secondary Rm, Length Time Tight Capture Loose Capture
km Unit, km Unit, s r2, LU h, km ∆V , m/s Max ∆V , m/s

Moon 1738 88,454.7 104.36 0.022 200.0 609–642 27.8
Phobos 11 23.1 1.22 0.693 — — 4.13
Deimos 6 33.8 4.82 0.325 — — 0.77
Io 1815 15,196.3 6.76 0.133 200.0 353–597 194
Europa 1561 19,696.11 13.57 0.089 200.0 378–501 99.3
Ganymede 2631 45,733.4 27.33 0.062 200.0 602–717 96.1
Callisto 2400 72,283.6 63.75 0.036 200.0 601–659 48.7
Amalthea 98 282.7 1.90 0.391 — — 25.8
Himalia 93 19,592.3 957.09 0.005 11.9 31.6–32.0 0.33
Elara 38 8645.0 991.80 0.005 5.00 14.0–14.1 0.13
Pasiphae 25 10,897.8 2807.49 0.003 5.00 8.43–8.49 0.04
Sinope 18 8196.2 2895.35 0.003 5.00 6.12–6.16 0.03
Lysithea 81 4,008.2 990.15 0.023 10.4 2.85–3.02 0.13
Carme 20 8308.9 2643.25 0.003 5.00 6.53–6.58 0.04
Ananke 15 5,756.7 2,410.24 0.003 5.00 4.62–4.66 0.03
Leda 8 1,600.0 911.84 0.008 5.00 2.18–2.22 0.03
Thebe 50 163.4 2.58 0.345 — — 10.0
Adrastea 10 27.7 1.14 0.542 — — 4.34
Metis 20 47.0 1.13 0.532 — — 8.38
Mimas 196 798.8 3.60 0.277 — — 30.1
Enceladus 250 1205.2 5.23 0.234 32.0 2.01–39.7 28.0
Tehtys 530 3215.0 7.21 0.186 67.9 31.4–92.6 46.7
Dione 560 4632.3 10.45 0.136 71.8 66.6–116 38.6
Rhea 765 8636.0 17.26 0.100 98.0 115–160 36.4
Titan 2575 75,714.8 60.91 0.047 1000.0 548–622 64.2
Hyperion 148 4601.2 81.27 0.036 19.0 29.8–32.8 2.39
Lapetus 730 53,010.4 303.02 0.016 93.5 153–159 4.78
Phoebe 110 11,501.6 2102.68 0.011 14.1 5.83–5.99 0.12
Ariel 579 4766.7 9.63 0.137 74.2 73.5–128 43.2
Umbriel 586 6328.1 15.83 0.104 75.1 87.2–125 29.8
Titania 790 14,982.5 33.25 0.059 101.2 167–198 24.7
Oberon 762 19,014.2 51.43 0.045 97.6 168–189 17.5
Miranda 240 1204.4 5.40 0.225 30.8 4.33–39.7 26.3
Triton 1353 21,075.1 22.45 0.072 173.4 296–367 57.2
Nereid 170 32,280.8 1375.62 0.006 21.8 34.3–34.8 0.39
Charon 593 11,931.7 24.40 0.056 76.0 190–222 26.0

By simple inspection it is apparent that Γ has the same sensitivity to velocity

as the Jacobi constant, and so the floor ∆V remains dependent on the location

of maximum velocity.

As the dynamics of the three-body system are preserved near the sec-

ondary in the Hill’s model, the location of the maximum velocity remains

along the x-axis. Equation (3.7) is solved for velocity and evaluated at this
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maximum location. Taking the difference in the velocities at both boundary

conditions gives the analytical minimum ∆V in the Hill’s model. The results

can be scaled to any three-body system using the discussed scaling parameters,

included in Table 3.1 for multiple planetary moons [95]:

∆V =
∣∣∣√B − Γ+ −

√
B − Γ−

∣∣∣
B = 3r2

2 + 2/r2

(3.8)

Calculating the floor ∆V for the two capture options requires con-

verting the boundary conditions to the Hill’s model. For loose capture the

Γ+ values remain between 3.2835761 ≤ Γ+ ≤ 3.6625036 for all planet-moon

systems. However, the minimum capture radius in Equation (3.8) varies as

r2 = Rm, where Rm is the mean radius of the planetary moon. Conversely, the

tight capture orbits are completely defined relative to the secondary, making

both r2 and the range of Γ+ system specific. For this work, tight captures are

defined to have altitude h = max (5,min (0.1281Rm, 200)) km. The capture

radius then is defined as r2 = Rm + h. This definition is a heuristic based

on the 200 km tight capture at Europa used in this dissertation; it scales the

altitude for bodies smaller than Europa, while maintaining a maximum limit

of 200 km altitude. An absolute minimum altitude of 5 km is enforced. Titan

is an exception, which uses a 1000 km altitude for both capture options to

account for the moon’s thick atmosphere. Tight capture orbits with r2 greater

than 0.2667 LU in the Hills’ model are considered to be dynamically at loose

capture, hence no tight capture ∆V s are calculated. The motion integral for

33



L2 halo orbits ranges from Γ− = 1.3130857 to 4.0053035 for all bodies.

The analytical floor capture costs are calculated for numerous moons

of interest, shown in Table 3.1. Note that the minimum for loose capture

is always zero as the motion integral ranges for the L2 family and capture

orbits overlap. Comparing the ∆V s at Europa to the results in Figure 3.2

shows reasonable agreement between the CRTBP and Hill’s model approaches,

verifying the scalability of the results. The Hill’s approach shows a range of

378–501 m/s, while Figure 3.2 from the CRTBP approach shows values of

approximately 390–500 m/s between the L2 halo bounds indicated by dashed

lines. A majority of the large moons of interest, such as the Galilean moons

or Titan, all require tight captures on the order of hundreds of meters per

second. Smaller moons such as Enceladus require tens of meters per second,

while the smallest bodies require as little as 3 m/s for tight capture. Note that

tight captures at several small moons near their primary, such as Enceladus or

Miranda, have significant variation in the theoretical floor ∆V . This variation

is due to the normalized capture radii approaching the defined dynamical limit

of tight capture. Near this limit the phasing at capture significantly alters Γ+,

and thus the maneuver cost. For these bodies, capturing at the optimal phase

angle saves on the order of tens of meters per second.

For all moons, loose capture enables a reduction in ∆V , up to the

extreme case of free transfers from the L2 halo orbit family. Reductions on

the order of a magnitude over tight capture are typical for large moons such as

Ganymede and Europa, as well as for small bodies far from their primary such
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as Pasiphae. Relatively small moons near their primary show the smallest

reduction, with several bodies having tight captures cheaper than the most

expensive loose captures. As discussed, tight captures at these moons approach

the defined radius limit where the orbit transitions to loose capture, resulting

in dynamically similar orbits with overlapping energy levels.

3.2 Generating Feasible Bi-Impulsive Capture Trajec-
tories

The work now proceeds to search for physical capture trajectories with

∆V costs in the vicinity of the energetic lower bound. The focus remains on

transfers from the L2 halo family to both tight and loose captures at Europa.

Two systematic near-global grid search methods are utilized to find impulsive

transfers. The searches are developed specifically for each capture option due

to their differing dynamical behaviors and boundary constraints. The result-

ing propulsive costs are compared to the analytical minimum to verify the

analytical equations and assess the idealness of the captures.

3.2.1 Tight Capture

For tight capture, the grid search is developed using a two-impulse

assumption: an initial impulse to depart the boundary halo orbit, with the

terminal capture impulse applied at an apse relative to the secondary. Note

that this approach does not use the assumed ideal of an unstable manifold

departure from the halo orbit. While the departure impulse was not included in
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the single-impulse assumption, the maneuver allows an extra degree of freedom

in the search and is relatively small for near-ideal transfers. In ideal cases the

maneuver is trivially small, representing catalysts to precipitate a transfer

along an unstable manifold.

The assumptions on the transfer reduce the problem to two variables:

the location of the departure impulse on the halo, τ , and the magnitude of the

departure impulse, ∆VD. The impulse is defined with positive and negative

values to indicate maneuvers in the same or opposite direction of the orbit

velocity, respectively. The parameter τ is defined as the normalized arclength

distance along the initial orbit. This parameter is calculated by integrating

a new equation along with the CRTBP equations of motion to get the total

distance traveled over one period, τ̃P:

˙̃τ =
(
u2 + v2 + w2

)1/2
(3.9)

The total length is then normalized to τ = τ̃ /τ̃P such that 0 ≤ τ ≤ 1. The

equations of motion become a function of τ using a variable transformation:

dX

dτ
=
τ̃P

˙̃τ
Ẋ (3.10)

Note that the non-normalized total arc length must be calculated before using

Equation (3.10) for the periodic orbit to have a period of τ = 1. The equation

results in the three-body equivalent of a Sundman transformation. Due to this
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transformation, constant step sizes in τ guarantee equally spaced points along

any orbit.

Figure 3.3: Diagram of nominal transfer trajectory, showing the departure
location X(τ), departure impulse ∆VD, and orbit capture impulse ∆VC applied
at an apse relative to the secondary

The grid of τ and ∆VD leads to unique pairs of departure conditions.

The corresponding initial states are propagated forward in time using a vari-

able step Runge-Kutta 7(8) integration scheme. As the flight time to capture

is unknown, the propagation ends with either impact or departure from the

planetary moon. For this work departure is defined as r2 exceeding five times

the Hill radius, defined in Chapter 2. Each trajectory has several apsides rela-

tive to the secondary determined by ṙ2 = 0 . The capture is applied at the apse

closest to the target capture orbit altitude. At this location, the two-body os-
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culating orbital elements are calculated, along with the capture impulse ∆VC

required to match the target eccentricity. Figure 3.3 shows an example trans-

fer trajectory using the developed approach, including the departure location

as a function of τ .

The grid search results in near-global knowledge of feasible two-impulse

transfer trajectories, as well as their resultant capture cost and initial oscu-

lating orbital elements. A combined objective function of semi-major axis

and inclination quantifies how well the transfers meet the target conditions

(recalling that the eccentricity is already explicitly enforced):

F =

(
a∗ − a
ascale

)2

+

(
i∗ − i
iscale

)2

(3.11)

The star superscript indicates the target values, and the scaling parameters

are used to weight the two elements. Choice of the scales is based on making

F equally sensitive to changes in semi-major axis and inclination; values of

100 km and 1.4 degrees were used in this work. The minimum values of F are

used to identify grid points where the transfers closely approach the desired

science orbit, with an optimal value of zero.

The n best points are chosen for further improvement via differential

correction. A Newton corrector iterates τ and ∆VD using a step direction

calculated as:

[
∆τ

∆ (∆VD)

]
= −

[
∂a/∂τ ∂a/∂∆VD

∂i/∂τ ∂i/∂∆VD

]−1 [
a∗ − a
i∗ − i

]
(3.12)
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The partial derivatives are approximated using the complex step finite differ-

ence method [64]. Solutions are considered converged if the semi-major axis

and inclination are met to within 100 m and 0.5 degrees, respectively. Figure

3.4 summarizes the algorithm used to find tight capture solutions.

1 

 

FOR 𝜏 = 0 to 1 by 𝑑𝜏 

    Propagate halo orbit forward in 𝜏 to 𝐗(𝜏) 
        FOR ∆𝑉D = ∆𝑉D,min to ∆𝑉D,max by 𝑑∆𝑉D 

            Apply ∆𝑉D to 𝐗(𝜏), store updated initial transfer state  𝐗T,0 

            Propagate 𝐗T,0 forward in 𝑡 until impact or departure 

            Interpolate and store time and state of apsides along trajectory 

            Set 𝐗C,0 and 𝑇T to state and transfer time at apse closest to target capture radius 

            Evaluate osculating orbital elements of 𝐗C,0 relative to Europa 

            Calculate ∆𝑉C to target capture orbit eccentricity 

            Store 𝜏, ∆𝑉D, ∆𝑉C, 𝑇T, and capture orbit osculating orbital elements 

        END ∆𝑉1 loop 

END 𝜏 loop 

Evaluate 𝐹 for all grid points, identify 𝑛 lowest captures 

FOR 𝑖 = 1 to 𝑛 

    Differentially correct 𝜏, ∆𝑉D to reduce 𝐹 

    IF [improved solution meets tolerances] 

        Record 𝜏, ∆𝑉D, ∆𝑉C, 𝑇T, and capture orbit osculating orbital elements as solutions 

END 𝑖 loop 

Figure 3.4: Tight capture grid search algorithm

Transfers to the target 200 km altitude, 95° inclination tight capture

orbit are found through the full range of the L2 halo family. To avoid multiple

runs of the time-consuming grid search (using the algorithm in Figure 3.4), new

transfers from neighboring halo orbits are found using continuation methods,

leading to families of transfer trajectories. To start the continuation, the

initial orbit Jacobi constant is varied by a small perturbation to a different,

precomputed L2 halo orbit. The differential corrector in Equation (3.12) then

searches for a transfer from this halo orbit using solutions from the previous

halo orbit as initial guesses. Once transfers are found for two halo orbits,
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further initial guesses of τ and ∆VD are found by polynomial extrapolation as

a function of C−. Occasionally the full grid search is repeated to reinitialize

the continuation and find additional transfer orbits.
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Figure 3.5: Tight capture costs for: a) Depart impulse b) Zoom view of de-
parture c) Capture impulse

For this initial study, 16 unique transfer families are identified consisting

of 3821 transfers. The evolution of the transfer ∆V s are shown in Figure 3.5.

From plots (a) and (b) it is seen that in general there is no overall trend for the

departure maneuver, indicating it has little correlation with C−. Conversely,

the capture impulse in Figure 3.5(c) shows an apparent correlation to C−: as

the Jacobi constant increases, the majority of the families decrease in ∆VC,

consistent with the analytical results. Also of note is the limited range in the

values of ∆VC, all the families remain within 420–520 m/s, with most families

varying by less than 50 m/s throughout the entire range of Jacobi constant.

This consistency indicates that even large differences in departure maneuver

can have little impact on the required capture cost.

The total ∆V for the transfers are given in Figure 3.6, with lines of
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Figure 3.6: Total ∆V for tight capture transfer families, including detail view
near analytical floor. Shading indicates region below minimum

maximum and minimum floor cost (corresponding to the minimum and max-

imum C+) included for comparison. As the range of C+ is small there is

negligible difference between the two floor values, resulting in an apparent sin-

gle line. The area below the lines is grayed out as it is inaccessible based on the

analytical theory. It is clear from the plots that there are no computed solu-

tions below the floor, although several families closely approach the limit. As

discussed, the use of the unstable L2 halo orbit family permits effectively free

departure on manifold-like trajectories, some of which are likely to intersect

the desired science orbit tangentially with near-ideal capture cost. In gen-

eral, the near-minimum solutions found can be replaced with these manifold

transfers at the expense of additional flight time.

The lowest total ∆V solution from the search occurs at τ = 0.3999,

∆VD = −1.85 m/s with a total velocity change of 426.7 m/s. Plots of the
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Figure 3.7: Minimum ∆V transfer trajectory (point a in Figure 3.6) and tight
capture orbit in (a,b) The rotating frame (c) The Europa-centered inertial
frame

transfer and capture are given in Figure 3.7. A relatively small magnitude

departure impulse results in a manifold-like transfer that follows the initial

halo orbit before falling off towards Europa. The non-rotating plot shows

how the three-body dynamics “twist” the transfer trajectory such that the

spacecraft arrives at Europa with the desired target inclination at the correct

capture altitude.

3.2.2 Loose Capture

Loose capture orbits are strongly perturbed by Jupiter, resulting in

rapid variation of the osculating orbital elements. Targeting specific orbital

elements is therefore not useful, and a different approach is required. The con-

straint of targeting a specific orbit is reduced to simply matching the expected

range of Jacobi constant for loose captures. To fully survey this range the
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capture maneuver ∆VC becomes a grid variable, with the bounds calculated

from the loose capture range of C+:

∆VC =
(
V 2
− + C− − C+

)1/2 − V− (3.13)

The departure impulse grid is eliminated and replaced with unstable manifold

transfers, generated over the grid of departure location τ . To expand the

amount of solutions found, all apsides along the transfer are considered for

capture (equivalent to an apse Poincaré map) leading to a third grid over each

apse. A summary of the grid search is given in Figure 3.8.

1 

 

FOR 𝜏 = 0 to 1 by 𝑑𝜏 

    Propagate halo orbit forward in 𝜏 to 𝐗(𝜏) 
    FOR 𝑠 = −1,1 (sign of perturbation) 

        Perturb 𝐗(𝜏) to get manifold transfer initial state 𝐗T,0 

        Propagate manifold forward in 𝑡 until impact or departure 

        Interpolate and store time 𝑡𝑖 and state 𝐗T(𝑡𝑖) at all 𝑁 apsides along manifold 

        FOR 𝑖 = 1 to 𝑁 

            Set capture initial state 𝐗C,0 to 𝐗T(𝑡𝑖) 

            Evaluate ∆𝑉C,min and ∆𝑉C,max from 𝐶+,min and 𝐶+,max 

            FOR ∆𝑉C = ∆𝑉C,min to ∆𝑉C,max by 𝑑∆𝑣 

Apply ∆𝑉C to 𝐗C,0 

                Propagate 𝐗C,0 forward in 𝑡 by 90 days 

 IF [no impact or departure within 45 days] 

     Store 𝜏, 𝑠, transfer time 𝑇T = 𝑡𝑖, ∆𝑉C, and 𝐗C,0 as solutions 

     Return to 𝑖 loop 

            END ∆𝑉 loop 

        END 𝑖 loop 

    END 𝑠 loop 

END 𝜏 loop 

Figure 3.8: Loose capture grid search algorithm
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Figure 3.9: Impulse cost for loose captures from L2 halos with inaccessible
shaded region. Captures remain bound (dot), depart (plus), or impact (x)
within 90 days. Labels correspond to orbits in Figure 3.10

The grid search is run using a 100 × 100 grid of τ and ∆VC. Un-

stable manifolds are generated using Equation (2.3) with perturbation size

ε = ±10−6. All capture trajectories are integrated forward by 90 days to ver-
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ify long lifetime orbits. Trajectories that impact or depart Europa within 45

days are discarded. In order to save computer memory and runtime, the ∆VC

grid stops after the first long lifetime capture is found. This approach ensures

that the capture found has the smallest impulse for a given apse. The grid cap-

ture search is applied to multiple halo orbits spanning the entire range of the

L2 halo family to ensure a thorough search of the available design space. The

resulting manifold transfers and capture trajectories are fully parameterized

by halo orbit Jacobi constant C−, depart location τ , manifold perturbation

sign, transfer time to capture TT, and maneuver ∆VC.

A total of 19,604 captures were found with a lifetime greater than 45

days. Figure 3.9 plots the total ∆VC of the captures as a function of the

initial L2 halo Jacobi constant. Lines of the analytical minimum for both the

maximum and minimum C+ values are included. Unlike the tight capture

case, the range of capture Jacobi constant is relatively broad, resulting in a

difference of approximately 17 m/s between the lines. Trajectories that closely

follow the ideal capture case are between these bounds. The dark gray region

indicates values that are inaccessible. Captures are further classified based on

their lifetime behavior within 90 days: bound to the secondary, departure, or

impact.
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Figure 3.10: Example manifold trajectories (thick) leading to an apse collinear
insertion maneuver and capture orbits (thin) that remain bound to Europa for
at least 45 days. Each solution has xy-plane and xz-plane projections
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Table 3.2: Transfer trajectory parameters for example captures, including cap-
ture radius and expected capture lifetime

Case τ C−,
LU2/TU2

C+,
LU2/TU2

TT,
day

∆VC,
m/s

∆Vmin,
m/s

r2, km Lifetime,
day

a) 0.01010 3.0021634 3.0027306 4.184 29.19 29.12 1661 78.7
b) 0.13131 3.0021439 3.0028920 3.221 40.65 38.49 1825 90.0+
c) 0.10101 3.0025316 3.0030558 8.330 49.48 27.18 4130 90.0+
d) 0.94949 3.0013279 3.0027273 5.675 72.00 71.03 1699 74.1
e) 0.12121 3.0022785 3.0027554 2.367 85.41 24.53 8713 50.1
f) 0.94949 3.0019234 3.0027273 3.527 91.04 41.14 5743 53.1
g) 0.60606 3.0023160 3.0029511 10.54 101.7 32.78 8041 90.0+
h) 0.63636 3.0017574 3.0027577 3.133 122.5 51.09 6133 90.0+
i) 0.97980 3.0018202 3.0027273 2.564 142.0 46.35 7968 90.0+
j) 0.51515 3.0015876 3.0028609 4.246 147.5 64.98 6006 48.1
k) 0.92929 3.0023898 3.0030470 0.994 147.8 34.00 9847 90.0+
l) 0.41414 3.0018410 3.0027273 0.109 154.5 45.31 8811 90.0+

Figure 3.9 illustrates that only a few of the found captures approach

the analytical floor. The sparsity of solutions is largely due to the use of the

minimum 45-day lifetime limit. Reducing this constraint would yield more

results; however investigating changes to this limit is not within the scope of

this work. All the captures are less expensive than the tight captures seen

in Figure 3.6, typically on the order of hundreds of meters per second. The

case closest to the ideal floor, (a), requires 29.19 m/s for capture, slightly

larger than the expected minimum value. Two other captures, (b) and (d),

are similarly near-ideal at 40.65 and 72.00 m/s respectively. In total, 569

captures are found with costs less than 100 m/s, with 20 transfers below 50

m/s.

A collection of example capture orbits propagated for 30 days are plot-

ted in Figure 3.10, with associated data in Table 3.2. The captures chosen

represent the majority of general qualitative behaviors seen for both transfer

and capture orbits. For example, transfers (c), (d), and (g) represent options
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with total transfer times on the order of a week. These transfer manifolds

exhibit multiple low and high-altitude apsides of Europa before final capture.

As stated, case (a) shows the lowest ∆V capture. The low cost is primarily

due to the efficient capture radius of 1661 km. Two other near-ideal captures

(b) and (d) have similarly small capture radii. Several captures such as (d),

(e), and (h), resemble the “ball-of-yarn” orbits found in Reference [86]. These

orbits provide a wide range of viewing geometries and varying locations of

periapse but are dynamically chaotic. If a more predictable orbit is desired,

captures (i), (j), and (l) represent near-periodic orbits that could potentially

be driven to periodicity with minor targeting adjustments.

Comparison of the actual and analytical impulse costs in Table 3.2

matches expectations: all captures are above the energetic floor. In addition,

the idealness of the solution can be determined by its distance from the floor.

Captures that occur with r2 close to the physical radius limit of 1560 km, such

as case (a), (b), and (d), are within a few meters per second of the ideal values.

As capture radius is increased the solutions diverge from ideal. Solution (c) is

particularly notable: it has the third lowest ∆V of the solutions listed, which

initially indicates that it may be a near-ideal solution. However, comparison

to the energetic floor shows that the impulse cost can be nearly halved if a

lower capture radius can be found. Solution (k), with the largest listed capture

radius, is furthest from ideal. Assuming a lower radius impulse location can

be found, it is possible to save over 100 m/s.
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3.3 Conclusions

The problem of transferring from the L2 halo family to two types of

capture orbits is addressed. Equations for an energetic minimum on the ∆V

in the CRTBP are derived, allowing rapid analysis of the expected propulsive

costs without the need for generating physical transfers. Notably, the new

equation is general in nature and can be applied to any transfer constrained

by energetic bounds. A similar derivation in the Hill’s model removes system

dependency from the equation, enabling scaling of the results (assuming the

energy bounds are constant between systems). While this consistency is not

true for the capture orbit energy, it holds for the L2 halo orbits, eliminating

the need to generate a periodic orbit family for every planet-moon system.

Due to this scalability, a survey of capture costs for most planetary moons of

interest is rapidly generated using the Hill’s model equation. Comparing costs

of the capture options shows that loose captures can save up to an order of

magnitude in ∆V over traditional tight captures.

The analytical results are confirmed with physical transfers to Europa

capture. Systematic grid searches are presented to find transfers for each cap-

ture option. In the tight capture case, application of the continuation method

leads to multiple transfer families connecting orbits in the L2 halo family at

Europa to a specified science orbit state. While a departure impulse is al-

lowed, the lowest ∆V transfers closely follow the ideal transfer assumptions

of a manifold-like departure with a single, tangential capture impulse. Due to

less restrictive capture constraints a wide variety of loose captures are found,
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allowing some flexibility in the choice of capture orbit. General classes of

orbit are highlighted from a mission design perspective, including circulating

eccentricity “ball-of-yarn” orbits and less chaotic near-periodic orbits. The

numerical results confirm that loose captures can significantly reduce propul-

sive costs over tight capture, up to an order of magnitude. This cost reduction

over tight capture, coupled with long lifetimes and access to multiple viewing

geometries, indicates that loose captures can enable single orbiter, multi-moon

missions.
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Chapter 4

Primer Vector Optimization

In this chapter the problem of optimizing highly-sensitive transfer tra-

jectories is investigated. The initial contributions are algorithm developments

to mitigate or otherwise account for the extreme sensitivity encountered when

using long, multi-revolution orbits with chaotic dynamics. As part of this

work, a specialized nonlinear programming optimizer is written to account

for convergence difficulties due to the sensitivity; a pseudcode is provided in

Appendix A. Primer vector theory is then extended to include the removal

of impulses that converge towards zero magnitude, eliminating singularities.

A new family of three-dimensional periodic orbits is generated that enables

efficient connection of resonant and halo orbits. Optimization of several dif-

ferent transfers leads to new insights on the utility of the primer vector in

determining the proximity of an initial guess to an optimal solution.

4.1 Problem Definition

The problem posed is to find the minimum ∆V , time-free, impulsive

transfer that connects two boundary orbits:
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Γ (ti, ri) =
N∑
i=0

∆Vi (4.1)

where there are N + 1 impulsive maneuvers, with the number determined dur-

ing optimization. Note that the impulses are not controlled directly, but are

instead implicit functions of the times and positions of the maneuvers, ti and

ri, respectively. There are three conditions which impose limits on the trajec-

tory, leading to constraints:

1) The trajectory is continuous in position

2) The positions of the trajectory at the initial and final times must be

on their respective boundary orbits

3) The trajectory must not impact Jupiter or Europa

The first condition is predominately satisfied implicitly by integrating the

equations of motion between impulses. However, at each impulse the con-

tinuity condition leads to an equality constraint, which is satisfied using a

forward-shooting algorithm presented later in this chapter. The boundary

orbit constraints are trivially satisfied by explicitly setting the first and last

maneuvers to be within their receptive orbits, with the position determined

via cubic spline functions. The last condition results in two inequality con-

straints, which are handled using an event function on the trajectory to stop

integration when impacts occur.
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4.1.1 Impulsive Primer Vector Theory

The Hamiltonian of the system, H, is introduced to augment the opti-

mization problem:

H = λT
r v + λT

v r̈ (4.2)

where λr and λv are 3× 1 vector Lagrange multipliers that include the equa-

tions of motion as differential constraints in the augmented optimization prob-

lem. Specifically, λv is known as the primer vector, hereafter represented as

p (following Prussing’s notation) [79]. Using calculus of variations, several

conditions for the local optimum of a time-free trajectory are obtained:

||p(t)|| ≤ 1 (4.3)

p(ti) =
∆Vi

∆Vi
(4.4)

ṗ(ti) = 0 (4.5)

where ∆Vi is the i th impulse vector, ti is the time at each impulse, and ṗ is the

time derivative of the primer vector magnitude [26, 60]. Equation (4.5) must

always hold for intermediate impulses, however it only applies to the initial

and final maneuvers for time-free optimal departures and arrivals. In addition

to these necessary conditions, the primer vector and its time derivative must

be continuous everywhere, including across impulses.
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The full time histories of the primer vector and its time derivative are

required to evaluate whether a trajectory is optimal. Noting that the primer

vector equations of motion are identical to the variational equations of motion,

i.e. Equation (2.4), the state transition matrix is used to propagate p and ṗ

for each leg:

p(t) = A(t)pi + B(t)ṗi (4.6)

ṗ(t) = C(t)pi + D(t)ṗi (4.7)

where A(t), B(t), etc. are the submatrices of the state transition matrix

Φ(t, ti), and pi and ṗi are evaluated at time ti. At each impulse, Equa-

tion (4.4) is explicitly enforced, providing known boundary conditions pi and

pi+1 between two successive impulses. Rearranging Equation (4.7) solves for

the initial time derivative vector:

ṗi = B−1
i [pi+1 −Aipi] (4.8)

The subscripts on Ai and Bi denote the mapping is from ti to the time of the

next impulse (typically ti+1). Note that Equations (4.6) – (4.8) must be eval-

uated only between successive impulses, as the primer vector time derivative

may not be continuous across a maneuver.

54



x0(t0)
v0+

t0

x1+x1−

t1
x2+x2−

t2

xN+(tN)
xN−

tN

x01

x02
x11

x21
x22

Figure 4.1: Example forward-shooting trajectory with leg nodes xi at times
ti, and segment nodes at xij. Velocity v0+ is independent of t0

4.1.2 Multiple Forward-Shooting

The position continuity constraints of the trajectory are explicitly en-

forced using a multiple forward-shooting algorithm. Given an initial guess

trajectory, the transfer is divided into multiple legs bounded by nodes located

at impulses in the initial guess. Figure 4.1 depicts a notional four-impulse

trajectory, consisting of three legs. Each leg node has two associated space-

craft states: xi+ and xi−. The plus state is the initial state of the leg starting

at time ti, and is generally independent of other variables. An exception is

that the position at the first node and the full state at the final node are con-

strained to the originating and capture orbits, making these states functions

of the departure and arrival times, respectively. The minus state, xi−, is the

end state of a leg after integrating the previous node forward to time ti. Note

that the full 6-state of the first node, x0− is also constrained to the originat-

ing boundary orbit as a function of the departure time. Plus and minus sign

subscripts are used throughout this work to indicate whether a variable is at

the start or end of a leg, respectively.
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The chaotic dynamics of the CRTBP can lead to highly-sensitive tra-

jectories that are difficult to differentially correct. These sensitivities are mit-

igated by further subdividing trajectory legs into n segments. Similar to the

legs, each segment is bounded by nodes with states xij+ and xij− at time tij,

where subscript i indicates the leg and j denotes the segment node. The seg-

ments are initialized such that the maximum norm of the STM between nodes,

‖Φ(tij, ti(j−1))‖max, does not exceed 103, enforcing an upper limit on the sen-

sitivity. Once initialized, the times of the segment nodes remain constant.

The dynamics of the problem require the constraints that a) the legs

are continuous in position and b) the segments are continuous in position

and velocity across their respective nodes. In the tradition of primer vector

theory, these constraints are explicitly enforced by solving a boundary value

subproblem of the optimization process. For a given leg, the discontinuities

of the leg and segment nodes are combined into a single constraint vector,

gi(vi+,xi1+,xi2+, ...,xij+, ri+1,+) = 0, which is minimized via differential cor-

rection using the associated sparse Jacobian matrix Ji:

Ji =


−Φxv(ti1, ti) I6 0

−Φ(ti2, ti1) I6

−Φ(ti3, ti2)
. . . I6

0 −Φrx(t(i+1), ti(n−1))


(4.9)

where Φxv is the 6 × 3 submatrix of Φ containing B and D, and Φrx is the

3× 6 submatrix consisting of A and B.
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4.1.3 Optimization Algorithm

Once the forward-shooting algorithm has enforced position continuity,

the total cost of the trajectory expressed in Equation (4.1) is calculated by

treating the velocity discontinuities as impulses, i.e. ∆Vi = ||vi+ − vi−||. The

independent design variables that affect the cost are stored in a single-column

vector, k:

k =
[
t0 rT

1+ t1 rT
2+ t2 ... rT

N+ tN
]T

(4.10)

The gradient of the cost with respect to k can be expressed in terms of the

primer vector and its time derivative [79]. For readability, the gradient is

decomposed into its constituent derivatives:

dΓ

dt0
= −ṗ0∆V0 (4.11)

dΓ

dri+
= ṗT

i+ − ṗT
i− (4.12)

dΓ

dti
= ṗT

i−vi− − ṗT
i+vi+ (4.13)

dΓ

dtN
= −ṗN∆VN (4.14)

∇Γ =
[

dΓ
dt0

dΓ
dr1+

dΓ
dt1

dΓ
dr2+

dΓ
dt2

... dΓ
drN+

dΓ
dtN

]
(4.15)
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Note that these derivatives are specific to the time-free, bounding-orbit con-

strained problem, and assume continuity has been enforced by the forward-

shooting inner-loop BVP.

The existence of a simple, analytical gradient naturally leads to the use

of a gradient-based line search method to minimize the cost. Given a normal-

ized search direction, s, the variable vector k is updated as k = k +αs, where

α is the value that minimizes the cost along s, found using the golden-ratio

line search technique. The direction of s strongly influences the total num-

ber of iterations needed to optimize the problem. In an effort to reduce the

number of iterations required, the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm is utilized to generate the search direction [100]. This quasi-Newton

method approximates the inverse of the shifted Hessian matrix, typically re-

sulting in fewer optimization iterations than basic steepest descent algorithms.

As the second-order update uses an approximation, the BFGS algorithm is

reinitialized every twenty iterations, or when the search direction is uphill, i.e.

sT∇Γ ≥ 0.

4.1.4 BVP Predictor-Corrector

A prediction step is included in the initial step of the line search to

reduce the number of inner-loop BVP iterations. Linear approximations to

the expected changes in the positions due to perturbations of the design vari-

ables in k are calculated using the STM. These perturbations are then further

mapped to the required change in the velocities. Excluding the simple case
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of varying ri+ directly, the general, non-contemporaneous perturbation to the

position at a node is:

dri+1,− = Aidri+ + vi+1,− (dti+1 − dti) (4.16)

Two special cases exist as the initial and final positions, r0 and rN+, are

constrained to specific orbits and can not be varied independently of time:

dr0 = v0−dt0 (4.17)

drN+ = vN+dtN (4.18)

To enforce continuity, the position differential at each node is corrected via a

change in the velocity of the previous node:

(dri+1,+ − dri+1,−) = Bidvi+ (4.19)

Substituting Equations (4.16) – (4.18) leads to the predicted changes in the

velocities required by the multi-shooting algorithm:

dvi+ = B−1
i [vi+1,− (dti − dti+1)−Aidri+ + dri+1,+] i 6= 0,N− 1 (4.20)

dv0+ = B−1
0 [(v1− −A0v0−) dt0 − v1−dt1 + dr1+] (4.21)
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dvN−1,+ = B−1
N−1 [vN−1,−dtN−1 + ∆VNdtN −AN−1drN−1,+] (4.22)

Equation (4.21) and Equation (4.22) are again special cases due to the bound-

ary orbit constraints on r0 and rN+. The use of linear approximations limits

the prediction step accuracy to small perturbations. After two additional con-

verged solutions, larger steps in the line search are predicted using quadratic

polynomial extrapolation of previously converged states as a function of α.

Inclusion of the predictor step is found to at least halve the number of inner-

loop iterations. However, the predictor step also enables larger overall step

sizes (typically by several orders of magnitude) that might otherwise diverge

when solving the inner-loop BVP. The cumulative effect of the increased step

size can be the elimination of hundreds of inner-loop calls.

4.1.5 Addition and Removal of Impulses

It is quite common for all the optimality conditions except the magni-

tude limit on the primer vector, Equation (4.3), to be satisfied. In this case at

least one additional interior impulse is required, located at the time of maxi-

mum primer vector magnitude, tm. A new node is added to k at time tm with

state x(tm). The position of the node is perturbed by drm to initiate a veloc-

ity discontinuity, i.e. a new impulse (when the associated BVPs are solved).

As the new node must be position continuous (drm− = drm+ = drm), the

position perturbation is mapped to state perturbations at neighboring nodes
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using Equation (4.19) along with dri+1,− = Amdrm, where i + 1 corresponds

to the node immediately after the new interior impulse. Further mapping to

the velocity differentials at the new node gives the linear approximation of the

new impulse:

dvm+ − dvm− = −B−1
m Amdrm −DiB

−1
i drm (4.23)

Recall from Equation (4.4) that an optimum impulse is parallel to the primer

vector. Enforcing this condition and solving for the position perturbation

gives:

drm = α
[
−B−1

m Am −DiB
−1
i

]−1 pm

||pm||
(4.24)

where α is the value that minimizes the cost in the search direction given by the

vector components of drm. Note that this equation follows the same derivation

by Davis in Reference [26], modified to be consistent with the forward-shooting

approach used in this work.

After an initializing search in the direction given by Equation (4.24),

optimization using the full search direction with the newly added impulse

is resumed until the gradient again becomes trivially small. This iterative

loop of optimize, add interior impulse, optimize, continues until all optimality

conditions are satisfied. It is important that the method is applied iteratively,

one additional impulse at a time, as the primer vector changes unpredictably

during the optimization [43]. For example, a trajectory that initially violates
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||p(t)|| ≤ 1 may satisfy all optimality conditions upon convergence, indicating

that additional interior impulses are not actually necessary.

Traditionally, impulsive primer vector theory has been applied to bi-

impulsive initial guess trajectories. In this work trajectory phases are patched

together, resulting in initial transfers with multiple interior impulses. Ma-

neuvers unnecessary to the optimal solution shrink towards zero during opti-

mization, causing singularities in the derivatives that can prevent convergence.

Simply removing minuscule impulses is not possible, as some of them may be

necessary for the optimal solution. An analytical check is required to ensure

that removing an impulse will improve the cost of the transfer.

For a given node xi+, assume that the impulse is small and the tra-

jectory is sufficiently close to the neighboring perturbed path such that linear

approximations are sufficient. The impulse is effectively removed when ri+ is

perturbed such that dvi+ = −∆Vi. Mapping the state changes necessary to

maintain continuity leads to the required change in the design variable:

dri+ = B(i−1)B
−1 (ti+1, ti−1) Bi∆Vi (4.25)

The mapping from ti−1 to ti+1 excludes the impulse at the ith node and must be

calculated with an additional integration. Substitution into Equation (4.12)

and noting that the change in cost must be negative gives the sufficient con-

dition for removal of an interior impulse to improve the cost:
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(
ṗT
i+ − ṗT

i−
)
B(i−1)B

−1 (ti+1, ti−1) Bi∆Vi < 0 (4.26)

A similar condition exists for the initial impulse. Note that the initial

impulse is removed by explicitly setting r1 to the state of the initial boundary

orbit at time t1:

(
ṗT

1+ − ṗT
1−
)

B0∆V0 > 0 (4.27)

Evaluating the removal of an impulse occurs when the magnitude of the ma-

neuver is below a specified tolerance, typically selected sufficiently small such

that the linear approximations are reasonably valid.

4.1.6 Numerical Considerations

As part of the goal of this work is to verify the energetic floor cost

derived in the previous chapter, the convergence criteria are chosen to be

extremely tight in order to document the lowest minima possible. Ideally, the

optimization is considered converged when the gradient magnitude is on the

order of 10-10. Occasionally the problem becomes highly sensitive such that the

gradient is not small despite being close to the optimum. A second convergence

criteria on the absolute improvement of the impulsive cost is included, set at

|Γ(k + αs)− Γ(k)| ≤ 10-11 (equivalent to 10-7 m/s). The absolute difference

criteria must be satisfied several times in succession before the solution is

considered to be “converged”.
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For highly sensitive problems near the optimum, values of α on the

order of 10-13 can be sufficient to minimize the cost along the current search

direction. At this small magnitude, perturbations to k can leave the position

discontinuities in the forward-shooting algorithm within the defined tolerance,

resulting in no change in vi+. As a consequence, the cost function is not truly

continuous at this very fine resolution. While the severity of this behavior is

reduced with smaller tolerances, the position discontinuities can not be made

arbitrarily small due to limitations on machine precision. With double preci-

sion numbers the tolerance is limited to roughly 10-13, insufficient to mitigate

the cost discontinuity.

While the position tolerance issue can not be fully eliminated, its ef-

fects can be significantly diminished by using quadruple precision (∼32 digit)

numbers. As a result, the position discontinuity tolerances can be reasonable

reduced to as small as 10-20, improving the continuity of the cost function.

Similar improvement in the precision of the velocity differences leads to more

accurate primer vector and gradient information. The notable drawback of

this extra precision is a significant increase in the total computation time (ap-

proximately two orders of magnitude in the current Fortran implementation).

The impact of this slowdown is reduced by first optimizing in double precision,

then switching to quadruple precision for highly sensitive problems near the

optimum (and only when necessary).
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4.2 Halo to Capture Optimization

In this section the optimization algorithm is applied to two spacecraft

trajectories generated in the previous chapter which are expected to be near-

optimal. Both trajectories start on an L2 halo orbit, and transfer to one

of two capture options: a tightly captured, low-altitude orbit, or a loosely

captured high-altitude orbit. The impulsive cost of the trajectories before and

after optimization are compared as a means of verifying the methods used to

construct the orbits. The optimized cost is also used to confirm that the floor

∆V is a good measure of optimality.

4.2.1 Halo Orbit to Tight Capture
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Figure 4.2: (a) Initial two-impulse, one-leg, halo orbit to tight capture trajec-
tory. (b) Primer vector time history of the transfer. Circles indicate impulse
locations
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The first example is the transfer to the tight capture orbit. This tra-

jectory is shown in plot (a) of Figure 4.2. A small impulse of 1.86 m/s leads to

a relatively swift departure from the initial halo orbit. The transfer follows a

highly-perturbed trajectory with several low-altitude Europa periapsides, end-

ing with a 422 m/s impulse to enter the capture orbit (not shown for transfer

visibility). The time history of the primer vector magnitude is shown in plot

(b) of Figure 4.2, where time is measured from the initial xz-plane crossing of

the halo orbit. It is readily seen from the history that the trajectory is sub-

optimal: both impulses have non-zero slopes of p, and its value is frequently

above unity with a notable spike near T = 5.50 TU. While the primer vector

appears to indicate a highly sub-optimal trajectory, the floor ∆V is 422.18

m/s. Therefore from an energy standpoint, the cost can at most be reduced

by 1.65 m/s, implying that the current solution is already near-optimal. It

follows that the apparent severe optimality violation of the primer magnitude

can not be considered as a proxy for optimality, an important takeaway when

using primer vector theory on such highly-sensitive orbits.

Optimization of the trajectory results in the converged transfer shown

in Figure 4.3. From a physical standpoint the transfer is essentially unchanged,

indicating the solution has stayed within its local bin of attraction. Inspection

of the optimized trajectory shows that the departure time has been shifted

backwards, as expected from the initial non-zero slope of p. This coasting arc

accounts for the largest change from the initial guess, with a total difference

of 0.15 TU, equivalent to 2 hours. Another notable change in the transfer is
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Figure 4.3: Optimized three-leg halo orbit to tight capture transfer, circles
indicate impulse locations. (a) xy view (b) xz view

the addition of two interior impulses, both occurring near Europa periapse.

These locations are expected, as the energy of the trajectory is most sensitive

to changes when the velocity in the rotating frame is at a maximum [26].

Note that based on the peaks in the primer vector history in Figure 4.2, it

initially appears that an additional five interior impulses are required. The

fact that only two are required emphasizes the principle that impulses should

be iteratively added only as needed.

The optimality of the solution is verified by checking the primer magni-

tude and magnitude derivative history in Figure 4.4. It is first noted that the

primer magnitude remains below unity throughout the trajectory. Recall from

Equation (4.4) that the primer magnitude is explicitly enforced to be unity at
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Figure 4.4: Optimal three-leg tight capture transfer primer vector history,
circles indicate impulse locations. (a) Primer magnitude (b) Primer magnitude
time derivative

impulses. Visually it appears the slopes are non-zero “cusps” at the impulses,

however the time derivative history in the right plot of Figure 4.4 confirms

that ṗ is sufficiently near-zero and continuous (although rapidly varying) at

maneuvers. As all of the necessary conditions are satisfied within tolerance,

the final trajectory is confirmed to be a local optimum.

Table 4.1: Impulse magnitudes for the halo orbit to tight capture transfer,
m/s

Case ∆V0 ∆V1 ∆V2 ∆V3 Γ
Initial 1.854 421.97 — — 423.83
Optimal 1.035 0.399 0.091 422.03 423.56

A comparison of the impulses before and after optimization is given in

Table 4.1. Looking at the total cost, Γ, it is seen that the optimized trajectory
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requires 423.56 m/s, saving (a rather small) 0.27 m/s from the original trajec-

tory. Given that the is 1.36 m/s above the energetic floor, it is plausible that

the solution is a global minimum. Looking at individual impulses, it can be

seen that the departure cost was reduced by 0.82 m/s due to the inclusion of

the coasting arc. This improvement is offset by the two new interior impulses,

which add 0.49 m/s to the total cost. Both new impulses are nearly parallel to

their corresponding velocities, primarily changing the energy of the trajectory.

4.2.2 Halo Orbit to Loose Capture
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Figure 4.5: (a) Initial one-leg guess transfer trajectory from halo orbit to loose
capture. (b) Primer magnitude time history of the transfer. Circles indicate
impulse locations

The next transfer trajectory considered is from a second L2 halo orbit

to a loose capture at Europa. Recall from Chapter 3 that this transfer was
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generated using a full-state perturbation unstable manifold of the halo orbit.

As the current multi-shooting algorithm assumes the positions across the first

impulse are identical, targeting is used to change the trajectory to a velocity-

only perturbation with negligible change to the total ∆V . An xy-plane view of

the trajectory is shown in the plot (a) of Figure 4.5. The use of the unstable

manifold results in a gradual departure from the halo orbit, leading to the

insertion impulse at a low-altitude periapse. Looking at the primer history in

the plot (b), the transfer appears to be a good initial guess as the magnitude

remains below unity at all times. Evaluation of the slopes at the impulses

gives ṗ0 = −2.40 and ṗN = 0.05, indicating that an initial coasting arc may

be sufficient to optimize the transfer [41]. However, considering that the total

cost of this transfer is 29.22 m/s compared to a predicted floor of 29.12 m/s,

a notable improvement is not expected.

Running the optimization algorithm for the loose capture transfer does

not result in an analytically optimal time-free orbit: ṗ0 is non-zero in the final

solution despite a significant coasting arc of 27 hours, more than half of the

period of the halo orbit. This continual time-shifting follows a known property

of unstable manifolds, where a trade off between flight time and perturbation

size exists for a given manifold [53]. Essentially, the initial impulse to depart

the halo orbit can be made infinitesimally small at the cost of infinite travel

time. Given this insight, the constraint that ṗ0 = 0 can be safely ignored as

the spacecraft is departing on a manifold-like transfer.

The converged trajectory is given in the plot (a) of Figure 4.6. Once
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Figure 4.6: (a) Optimal two-leg transfer trajectory from halo orbit to loose
capture at Europa. (b) Primer magnitude time history of the transfer. (c)
Primer derivative time history of the transfer. Circles indicate impulses

again, the overall path of the spacecraft remains unchanged, although an in-

terior impulse has been added near a high-altitude periapse at Europa. The

interior and final maneuvers are near-parallel to the velocity in the rotating

frame, indicating they primarily change the energy of the trajectory. Con-

versely, the initial impulse is almost perpendicular to the velocity, resulting in

a small direction change to initiate the unstable manifold transfer. Looking

at the primer magnitude history in plot (b) and the primer time derivative

in plot (c) of Figure 4.6 shows that all optimality conditions are satisfied to

numerical tolerance, recalling that ṗ0 = 0 has been excluded.

Table 4.2: Impulse magnitudes for the halo orbit to loose capture transfer,
m/s

Case ∆V0 ∆V1 ∆V3 Γ
Initial 0.026 29.19 — 29.22

Optimal 3.1E-4 1.8E-5 29.19 29.19

A summary of the impulses and total cost is given in Table 4.2. It is
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readily apparent that the converged solution is marginally improved, with a

total reduction of only 0.026 m/s. The minimal reduction in the total cost

is expected, as the initial solution was already near the predicted floor cost

of 29.12 m/s. The optimal cost in a marginal 0.07 m/s above the energetic

floor, strongly indicating it is a global optimum. Note that while the interior

impulse is minuscule, evaluating Equation (4.26) shows that it is necessary for

analytical optimality. In terms of practicality for real spacecraft, the interior

impulse can be excluded with negligible effects on the trajectory and cost.

4.3 Resonant Orbit to Europa Capture

The trajectories optimized so far have focused on the final phase of the

capture problem, starting at a halo orbit already in the vicinity of Europa.

It is ultimately desirable to have a fully optimized end-to-end transfer that

includes the approach phase from beyond Europa’s orbit. Constructing such a

trajectory is a complex process, particularly in three-dimensions where natural

intersections of orbits are not guaranteed to exist. As a starting point, this

work focuses on extending the capture transfers optimized in earlier sections

to include one additional approach orbit. A detailed process of generating this

extension is given below.

4.3.1 Three-dimensional Resonant Orbit

Extending the transfer to include the approach phase starts with the

generation of a new initial reference orbit. An exterior Europa approach from
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Ganymede typically utilizes resonant orbits, as seen in References [54] and [4].

Following these works, the orbits are referred to as p:q resonances, where p and

q are the number of inertial spacecraft and moon revolutions, respectively.

Given that an optimized transfer from the L2 halo orbit has been found, a

useful connecting orbit would be one that naturally transfers between a res-

onant orbit and a halo orbit. Periodic orbits that traverse multiple dynamic

regimes are well known, typically found directly using heteroclinic connections

between invariant manifolds, or indirectly by continuation of bifurcations to

an unstable orbit [57, 101]. The trajectory sought here is a 3D version of what

Restrepo and Russell call connecting resonance periodic orbits [80].

Recall from symmetry of the CRTBP that any trajectory with per-

pendicular crossings of the xz-plane as boundary conditions will result in a

periodic orbit. Given the initial state of the halo orbit is defined with a per-

pendicular crossing of the xz-plane, it follows that finding a second perpen-

dicular crossing far from Europa will lead to a new periodic orbit. A small

parallel perturbation of δv is added to the initial perpendicular velocity. The

perturbed state is propagated forward in time by 94 TU, approximately equal

to 15 Europa revolutions. This time is sufficiently long to result in expected

useful resonances. The state and time of the trajectory at subsequent xz-plane

crossings are saved. To ensure the state is associated with a resonant orbit,

only crossings that occur after the trajectory has departed Europa’s sphere of

influence are recorded. The process is repeated over a 10,000 point grid search

of velocity perturbations, up to a maximum δv of 0.10 m/s.
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to perturbations of halo orbit initial state v0

In the search for a second perpendicular crossing only two states are

relevant: u and w. The dimensionality can be further reduced by combin-

ing the velocities to ũ =
√
u2 + w2, where ũ = 0 for a perpendicular planar

crossing. Figure 4.7 shows this velocity magnitude as a function of the pertur-

bation to the halo orbit. Most perturbation magnitudes result in only one or

two plane crossings in the alloted time frame, however there are two regions

where numerous crossings can be seen. These clusters indicate that the tra-

jectory returns to a loose orbit near Europa. The corresponding trajectories

with small values of ũ are used as initial guesses to hone in on new periodic

orbits.

The initial state is differentially corrected to target an exact (to machine

precision) perpendicular plane crossing. For an xz-plane to xz-plane trajectory

with initial state x0, there are three variables (x0, z0, and v0) to target two
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velocities. The dimension is reduced by one by keeping either of the position

variables constant, resulting in a fully constrained problem. Recall that there

may be multiple plane crossings between the initial and final states. Given the

time between desired crossings, T/2, is implicitly varied by stopping at y = 0,

and keeping z0 fixed, the differential correction to the initial state is given by

the solution to the system of equations:

[
δu
δw

]
=

([
Φux Φuv

Φwx Φwv

]
− 1

v

[
u̇
ẇ

] [
Φyx Φyw

])
T/2

[
δx0

δv0

]
(4.28)

where Φux, etc. are individual elements of the STM corresponding to the

subscripted variables [42].
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near Europa
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Table 4.3: Non-zero parameters and stability indices for example members of
the resonant-halo orbit family

Parameter a b c d
x0, LU 1.00742246381 1.01360110944 1.02040012031 1.02156524254
z0, LU 0.03267463087 0.02587220941 0.01614679433 0.01253412421
v0, LU/TU -0.00000000024 -0.01238895614 -0.02580667789 -0.02431113981
T , TU 91.257100 89.125299 88.280002 88.311965
C, LU2/TU2 3.0005299 3.0013841 3.0021643 3.0025645
k1 6.6E+12 2.6E+13 2.8E+13 1.0E+14
k2 -7.05 -0.30 0.03 -2.0
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Differential correction of the grid search based initial guess leads to

the fully-periodic, three-dimensional orbit shown in Figure 4.8, with non-zero

initial states and periodic time listed as orbit (d) in Table 4.3. The Jacobi

constant of this new orbit is a small increase from the original halo orbit energy.

Given that the tight capture Jacobi constant is 3.00950434, the new periodic

orbit is energetically closer to the capture orbit than the halo orbit was, and a

cheaper transfer is expected. The trajectory starts in a near-halo orbit before

falling off after a few revolutions, similar to the path followed by invariant

manifolds. Next the trajectory enters a slightly inclined, 5:6 resonant orbit.

Halfway through the orbit there is a high-altitude Europa flyby shadowing the

near-halo phase, visible in plot (b) of Figure 4.8. A second resonant phase

occurs, ending at reentry of the halo-like orbit.

A family of these orbits is generated using continuation methods with

the Jacobi constant as a generating parameter. Surveying the family allows

selection of different resonant orbits depending on the desired transfer. Initial

states and periodic times for a few members of the family are provided in 4.3,

with full characteristic curves shown in Figure 4.9. The stability of the periodic

orbits to perturbations in the initial state is evaluated using the eigenvalues, λi,

of the STM over one orbital period, a.k.a. the monodromy matrix. Stability

indices are defined as ki = λi + 1/λi, where absolute values greater than 2

indicate instability, and only two non-trivial indices exist [14]. All members

of the resonant-halo family are extremely unstable with indices on the order

of 1013, as seen in Table 4. The instability is predominantly a result of the
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dynamically chaotic near-halo portion of the orbit.

4.3.2 Resonant Orbit to Tight Capture

The next step is to connect the new periodic orbit to the previously

optimized tight capture transfer. Orbit (d) of the resonant-halo family is

selected as it closely shadows the halo orbit of the optimized tight capture

transfer. A simple direct targeting approach is used to avoid generating and

searching a broad space of three-dimensional invariant manifolds. It is assumed

that two small maneuvers will be sufficient to connect the phases: the first to

target the halo orbit from the resonant phase, and the second to capture

into the halo orbit. For this initial approach, the locations of the impulses

are selected heuristically. Following two-body approximations it is expected

that a near-optimal targeting impulse will occur at one of the apsides of the

resonant orbit. Similarly, recall that in the CRTBP the energy change from

an impulse is maximized at the location of maximum velocity in the rotating

frame. The combination of these two insights indicates that the apsides just

before and after the high-altitude Europa flyby are likely good initial guesses

for the resonant departure impulse location. Both options are considered for

comparison. The targeted halo orbit location is the initial state of the halo

orbit, as the location is naturally in close proximity to the halo-resonant orbit

and occurs at an xz-plane crossing, allowing use of Equation (4.28). A minor

difference to the equation is that the time of flight is from the initial departure

impulse to the target plane crossing, tf , rather than the time between two
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planar crossings, T/2.

With the location of the resonant departure and halo capture impulses

known, the resonant-to-halo transfer trajectory becomes a highly-sensitive

single-leg BVP solved by iterative application of Equation (4.28). Compar-

ing the potential departure locations shows that the impulse before Europa

flyby requires 0.53 m/s to target the halo orbit, versus 3.56 m/s for the post-

flyby impulse. However, the total cost up to halo orbit capture is effectively 15

m/s for both options. Given the near-equal cost, a different selection criteria is

used to proceed. Accounting for the sensitivity of the trajectory to the design

variables leads to the selection of the post-flyby option, as it is expected to

exhibit less chaotic behavior and faster targeting convergence. The total ∆V

for this initial transfer is 439.88 m/s, with a predicted floor cost of 419.38 m/s.

Note that this minimum is lower than the original tight capture as the energy

difference between the resonant orbit and capture orbit is smaller.
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Figure 4.10: Initial five-leg guess for resonant to tight capture transfer trajec-
tory. Circles indicate impulses. (a) Full trajectory with Jupiter for scale; (b,
c) xy and xz detailed views near Europa

79



−30 −20 −10 0
0

1

2

3

4

5

6

Time, TU

P
ri
m
er

M
ag
n
it
u
d
e

−2 0 2 4 6 8
0

0.5

1

1.5

2

Time, TU
P
ri
m
er

M
ag
n
it
u
d
e

(a) (b)

Figure 4.11: Primer magnitude history of initial guess resonant to capture
transfer. Circles indicate impulses. (a) Full history; (b) Detailed view over
the halo to capture phase

The initial guess trajectory for the transfer is shown in Figure 4.10,

where circle markers highlight the location of the impulses. Plot (a) shows

the full trajectory in the rotating frame, with detailed views of the halo and

capture phase in plots (b) and (c). The halo orbit capture maneuver is seen at

the top of the halo orbit, followed by a short coasting phase to the start of the

halo to capture phase of the transfer. Comparison to Figure 4.3 shows that this

phase is unchanged from the previously optimized solution, with optimality of

the phase verified by the primer vector history in plot (b) of Figure 4.11. It

is clear from plot (a) that the newly added resonant to halo orbit phase does

not satisfy optimality, indicated by several long periods with p > 0.
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Figure 4.12: Optimized resonant to tight capture transfer trajectory with three
legs. Circles indicate impulses. (a) Full orbit with Jupiter for scale; (b, c) xy
and yz detailed views near Europa
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Figure 4.13: Time history of the primer vector for the optimal three-leg res-
onant to tight capture transfer. Circles indicate impulses. (a) Primer magni-
tude; (b) Primer magnitude time derivative

The optimization algorithm successfully converges to the trajectory
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Table 4.4: Impulse magnitudes for the resonant orbit to tight capture transfer,
m/s

Case ∆V0 ∆V1 ∆V2 ∆V3 ∆V4 ∆V5 Γ
Initial 3.56 12.77 1.04 0.40 0.09 422.03 439.88

Optimal 0.15 1.23 0.89 421.74 — — 424.12

shown in Figure 4.12. A total of five major iterations, where an impulse

is either added or removed, are required. The initial departure impulse is re-

moved, shifting the new departure maneuver forward in time to shortly after

perijove of the resonant orbit. A new impulse has been added roughly 4 days

before entering the region of the halo orbit. Both of the impulses used to

patch the transfer phases are removed, resulting in a ballistic trajectory leg

that closely shadows the halo orbit. Similarly, the first Europa periapse ma-

neuver has been removed, indicating that optimizing the full transfer requires

changing the previously optimal halo to tight capture phase. The last two im-

pulses remain near Europa periapse. Optimality is visually confirmed by the

primer vector history seen in Figure 4.13, with all impulse satisfying pi = 1

and ṗi = 0.

A summary of the impulse magnitudes in Table 4.4 shows that the

optimized total ∆V is 424.12 m/s, an improvement of 16 m/s. This total cost

is 5 m/s above the energetic floor and is therefore close to the global optimum,

noting that primer vector theory confirms the solution is a local optimum.

The first three impulses are all small, on the order of 1 m/s or less, indicating

that the transfer has converged towards quasi-ballistic, manifold-like behavior.

These maneuvers are not tangential to the rotating velocity and primarily align
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the transfer with the capture orbit, equivalent to a plane change in the two-

body problem. The capture burn is near-parallel to the velocity and performs

the majority of the energy change from the transfer.

4.3.3 Resonant Orbit to Loose Capture

The next transfer considered is from the resonant phase to the loose

capture orbit. A different initial resonant orbit, family member (c), is selected

to be more energetically consistent with the halo orbit used in the previously

optimized halo to loose capture solution. Connecting both phases results in

an initial guess transfer with a total cost of 52.58 m/s, compared to the floor

of 30 m/s.
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Figure 4.14: Initial four-leg resonant to loose capture transfer trajectory. Cir-
cles indicate impulses. (a) Full transfer with Jupiter for scale; (b, c) xy and
xz detailed views near Europa
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Figure 4.15: (a) Primer magnitude time history of initial resonant to loose
capture transfer. (b) Detail of primer magnitude during halo to capture phase.
Circles indicate impulses

Figure 4.14 shows the initial four-leg trajectory. Once again the reso-

nant orbit connects directly to the halo, followed by a short coast to match

the phasing of the halo to loose capture transfer. The primer vector history in

Figure 4.15 shows that this new transfer is not optimal. An interesting note

is that the previously optimal two-leg halo to loose capture phase (starting at

t2 = 1.0) now has a non-optimal first leg. This change is a numerical artifact

caused by near-singular derivatives when the impulses are close to zero; the

slight change to the halo departure impulse from adding the resonant orbit is

sufficient to drastically change the primer vector history.
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Figure 4.16: Optimal resonant to loose capture transfer trajectory. Circles
indicate impulses. (a) Full orbit with Jupiter for scale; (b, c) xy and xz
detailed views near Europa
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Figure 4.17: Primer vector time history of the optimal three-leg resonant to
loose capture transfer, circles indicate impulses. (a) Primer magnitude (b)
Primer magnitude derivative

Optimization converges to a four-impulse trajectory that closely shad-
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Table 4.5: Impulse magnitudes for the resonant orbit to loose capture transfer,
m/s

Case ∆V0 ∆V1 ∆V2 ∆V3 ∆V4 Γ
Initial 18.79 4.52 0.08 1.81E-5 29.19 52.58

Optimal 0.35 0.34 10.44 29.38 — 40.51

ows the initial guess, shown in Figure 4.16. The first impulse is shifted back

towards an earlier departure shortly before apojove. As with the tight cap-

ture case, the halo orbit patching maneuvers are removed. Two new impulses

are added leading up to the halo, one before the last apojove and another on

approach to the halo orbit. The location of the capture maneuver remains

relatively unchanged. Optimality of the solution is again visually confirmed

via the primer vector history shown in Figure 4.17.

A summary of the impulses in Table 4.5 shows that the optimized total

∆V is 40.51 m/s, a 23% improvement of 12 m/s from the initial guess, and

10 m/s above the energetic floor. This relatively large distance from the floor

is expected, as several significant maneuvers occur well above the idealized

minimum maneuver radius of r2 = 1760.7 km used in Equation (3.6). The

first two maneuvers of the transfer are small, non-tangential impulses that

lead up to the halo orbit phase. Surprisingly, the large third maneuver (∆V2)

is nearly perpendicular to the velocity in both the rotating and inertial frames,

solely changing the trajectory direction rather than energy. The final capture

impulse is within 3◦ of the rotating velocity (4◦ of the inertial velocity), and

accounts for most of the energy change throughout the entire transfer.
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4.3.4 Resonant Orbit to Loose Capture: “Bad” Initial Guess

All of the transfers optimized thus far have started with considerably

good initial guesses. While the use of solutions close to the final answer is

desirable in optimization, it leaves the robustness of the optimizer method

untested. In a similar vein, the flexibility of the solution based on the initial

guess (i.e. whether it is stuck in a local minimum well) is so far unknown as

the initial and optimal trajectories are relatively close to the energetic floor.

To that end, a third transfer case is considered utilizing an initial guess that

is relatively poor compared to the minimum ∆V .
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Figure 4.18: Initial bad guess, four-leg resonant to loose capture transfer tra-
jectory. Circles indicate impulses. (a) Full transfer with Jupiter for scale; (b,
c) xy and xz detailed views near Europa
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Figure 4.19: (a) Primer magnitude time history of initial bad guess resonant to
loose capture transfer. (b) Detail of primer magnitude during halo to capture
phase. Circles indicate impulses

The transfer is intentionally constructed using energetically similar res-

onant and capture orbits (C = 3.0025645 and 3.0027306 LU3/TU2, respec-

tively) such that a low-cost solution is analytically plausible. However, the

resonant orbit does not naturally travel near the halo orbit used for the loose

capture, leading to high costs to depart the resonant orbit and capture into

the halo, at 192 m/s and 150 m/s respectively. As an additional measure the

halo departure impulse location is altered such that a significant 18 m/s ma-

neuver replaces the original manifold transfer. This construction results in a

relatively high cost of 388.85 m/s, while the energetic floor is 8.87 m/s second.

Figure 4.18 shows the initial four-leg transfer. Detailed views in plots (b) and

(c) show that the trajectory approaches the halo orbit at a high angle; the im-
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pulse is 130° relative to the velocity in the rotating frame such that much of the

impulse is spent changing the direction of the trajectory. The primer history

in Figure 4.19 clearly shows a non-optimal solution, as the primer magnitude

is above unity for most of the transfer.
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Figure 4.20: Optimized bad guess resonant to loose capture transfer trajectory.
Circles indicate impulses. (a) Full orbit with Jupiter for scale; (b, c) xy and
xz detailed views near Europa

Table 4.6: Impulse magnitudes for the bad guess resonant orbit to loose cap-
ture transfer, m/s

Case ∆V0 ∆V1 ∆V2 ∆V3 ∆V4 Γ
Initial 191.82 148.99 18.85 1.81E-5 29.19 388.85

Optimal 1.87 8.03 13.10 53.20 — 76.21

The optimization algorithm successfully converges to an optimal solu-

tion, showing that it is robust to poorly generated initial guesses. The tra-

jectory shown in Figure 4.20 is markedly different from the original solution,

particularly during the halo orbit phase. Much like the earlier transfers, the

phase patching maneuvers have been removed and replaced by new impulses

on approach to Europa. However, the new transfer does not cleanly shadow
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Figure 4.21: Primer vector time history of the optimized bad guess resonant
to loose capture transfer, circles indicate impulses. (a) Primer magnitude (b)
Primer magnitude derivative

the original halo orbit, but instead follows a relatively chaotic path. Another

unique result is that the first impulse has shifted backward by 1.5 days to a

non-apse departure that is 50,000 km from Europa, arguably close to its sphere

of influence. The newly added maneuvers on approach to Europa are similarly

not located at apsides. Despite these non-intuitive results, the primer history

in Figure 4.21 visually confirms that all necessary conditions of optimality are

met.

A summary of the impulses in Table 4.6 shows that the total cost has

significantly reduced from 389 m/s down to 76 m/s. Much of the improvement

comes from the initially large departure impulse shrinking by two orders of

magnitude, and the complete removal of the large original ∆V1. The savings
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are mildly offset by a 24 m/s increase in the capture impulse. Checking the

maneuver directions relative to the velocity shows that all of the impulses are

non-tangential in both the rotating and inertial frames. The final impulse has

a particularly noteworthy angle of 163° relative to the rotating frame, whereas

all previous cases considered have near-tangential capture maneuvers.

While the cost of the transfer is markedly improved, it remains an order

of magnitude larger than the energetic floor. This disparity strongly implies

that the initial guess does indeed lead to a solution that is stuck in a local

well. A likely culprit of this result is the use of the patching halo orbit, which

has a Jacobi constant of 3.0021548 LU3/TU2. This energy level is in the

wrong direction compared to the expected increase from the resonant orbit

to the capture orbit. In fact, all of the maneuvers of the optimal solution

take the trajectory energetically farther from the capture orbit, ultimately

increasing the cost of the final impulse. While useful for patching transfer

phases together, the halo orbit forces the trajectory to follow an inefficient

path that is likely not the global optimum.

4.4 Conclusions

The principles of primer vector theory are successfully applied to opti-

mize time-free capture transfer trajectories at Europa. The first two transfers

considered are previously generated trajectories from halo orbits to a low-

altitude tight capture, as well as a high-altitude loose capture. Despite the

initial primer vector history appearing highly non-optimal, the optimization of
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the two-impulse transfer to tight capture is relatively well-behaved. The total

cost is slightly improved, indicating that the predicted floor ∆V is a good ini-

tial measure of optimality. Conversely, optimization of the unstable manifold

transfer to loose capture experiences constant non-zero ṗ0, as the cost can al-

ways be improved with a longer flight time. It follows that manifold transfers

require a fixed time of departure to prevent the optimizer from targeting an

infinite-time solution.

In order to extend the endgame problem to the approach phase, a new

family of three-dimensional periodic orbits is generated using a grid search of

perturbations to the L2 halo orbit. This perturbation-based technique enables

the rapid construction of a manifold-like connection between resonant and

halo orbits, without the need to employ intersections of stable and unstable

manifolds. The use of the halo orbit as a boundary condition enables direct

connection of the resonant-to-halo phase with the previously optimized cap-

ture transfers, with phasing naturally handled by a coasting arc along the halo.

While impulses are initially used to connect the transfer phases, optimization

of the end-to-end trajectory converges to a quasi-ballistic, manifold-like solu-

tion.

The use of unstable manifolds and long flight times in the trajectory

results in hyper-sensitivity of the cost, primer vector, and gradient to changes

in the design variables, particularly when near the local optimum. To the

authors’ knowledge, the resulting problem is the most sensitive application of

impulsive primer vector theory in literature. This sensitivity is successfully
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overcome by using a combination of multiple shooting legs and segments to

limit the maximum values of the STM in the algorithm that solves the em-

bedded boundary value problem solutions. New equations to decide when to

remove miniscule impulses enables the elimination of most of the singularities

in the transfer. Quadruple precision numbers similarly help by providing extra

precision when the problem is in a shallow basin near the optimal solution.

A final take away from the sensitivity of the problem is that the primer

vector necessary conditions are found to be extremely strict, confirming the

typical struggles to optimize such highly sensitive orbits (using any method).

This null result highlights the difficulty of claiming optimality when optimizing

such challenging orbits, i.e. practitioners always have to decide on an optimal-

ity tolerance, typically in the absence of a known minimum ∆V (a luxury in

the current study). While primer vector theory provides a strong visual confir-

mation of necessary conditions, the severity of the violations do not necessarily

serve as a measure of proximity to optimality, as small perturbations to the

design variables can completely alter the primer vector history. A prime exam-

ple is that small maneuvers that have minimal impact on the total cost may be

necessary for an analytically optimal trajectory. Conversely to primer vector

theory, typical direct methods rely on arbitrarily set numerical tolerances to

claim optimality. In either case, strict optimality conditions are notoriously

challenging to achieve for multiple-revolution, multi-body space trajectories

problems. As demonstrated in this chapter, a post processed primer vector

history remains a useful tool (only requiring the STM along the final solution)
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for such complicated problems, even if the optimization is performed without

explicit use of primer vector theory.
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Chapter 5

Electrodynamic Tether Periodic Orbits1

In this chapter the use of an electrodynamic tether in the Jupiter sys-

tem is investigated. The primary focus of the work is on generating periodic

orbits due to their utility in low-energy mission design. To that end a new con-

servative approximation to the tether force is developed that allows an integral

of motion, enabling many of the techniques common to unperturbed CRTBP

analysis. Analytical equations are derived for the torque on the tether to as-

sess the controllability of a given orbit. The modified equilibrium points of

this conservative tether are found as a function of tether length for both Metis

and Io. From these equilibrium points new families of perturbed Lyapunov

orbits are generated at Io, using a specialized targeting algorithm due to the

lack of symmetry in the dynamics.

5.1 Tether-Perturbed Body Dynamics

The CRTBP is modified to the Lorentz-perturbed equations of motion:

1Bokelmann, K.A., Russell, R.P., Lantoine, G., “Periodic Orbits and Equilibria Near Jo-
vian Moons using an Electrodynamic Tether,” Journal of Guidance, Control, and Dynamics,
Vol. 38, No. 1, 2015, pp. 15-29, DOI: 10.2514/1.G000428
Technical work and writing by Bokelmann, with guidance and edits by Russell and initial
research ideas proposed by Lantoine
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Figure 5.1: Planar diagram of CRTBP frame including radial tether and
Lorentz force directions

r̈EDT + 2Ω× ṙEDT = ∇J + kfL (5.1)

The subscript EDT signifies tether-perturbed dynamics. The Lorentz force,

fL, is normalized by k = 0.001b2/(msca
2) LU·kg−1km−1TU−2 (assuming the

force is given in Newtons), where msc is the spacecraft mass in kilograms, and

a and b are the length and time normalization factors, respectively. Figure 5.1

shows the tether and Lorentz force in the synodic frame.

The electrodynamic principle of the Lorentz force occurs where a con-

ductive wire moving in a magnetic field with a plasma ambient has an induced

current that reacts with the magnetic field to generate a force. The induced

electric field, E, is dependent on the relative velocity between the spacecraft
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and the plasma field fixed to Jupiter’s magnetic field, vpl = ωJ × r1:

E = (vsc − vpl)×B(r) (5.2)

where B is the local vector of the magnetic field and ωJ is the angular velocity

of Jupiter [90].

The specifics of the current generation and Lorentz force are dependent

on the choice of tether. For the purposes of this dissertation, a noninsulated

aluminum tape tether with length L and width w is used. The lack of insu-

lation allows the tether itself to collect plasma (eliminating the need for an

anodic plasma contactor). Tape geometry improves survivability by reducing

micrometeorite impacts to minor holes rather than severing the tether, as may

be expected with traditional wire [52]. The dynamical properties of a physical

tether such as bowing or twisting are beyond the scope of this work. Averaging

the current along the length of the tether and choosing the zero-bias point for

maximum current gives the Lorentz force [104]:

Iavg =
3

5
I0 (5.3)

I0 =
4

3

(w
π

)
qeNeL

3
2

√
2Etqe/me (5.4)

fL = IavgL (û×B) (5.5)
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The current given by Equation (5.3) is ideal and requires tether control that

is not the focus of this work. The current depends on the orientation of the

tether with the electric field as Et = E · û, where the tether direction û is

aligned with the tether and points toward the tether cathode. Magnetic field

properties are included in Equation (5.4), where qe and me are the charge and

mass of an electron and Ne is the local plasma electron density. Note that the

Jovian magnetic environment is a complex system requiring several models for

a full and accurate representation. As a basic example, the actual magnetic

field of Jupiter is offset from Jupiter’s center by 0.1 RJ and tilted by 10.77 deg

from the Jupiter rotational plane, resulting in nonautonomous dynamics [29].

Additional complexities include variations in the plasma density and corotating

velocity. To simplify the model, it is assumed that the magnetic field is a basic

dipole aligned with and in the opposite direction of the rotation of Jupiter.

The primary consequence of this simplification is a time-varying error in the

magnetic field direction. The magnetic field strength is assumed to follow an

inverse cube law B = M/r3
1, where M = 4.25 × 10−4 T · RJ

3. The plasma

density is assumed constant at its maximum value from the Divine-Garrett

model in Reference [29], for example, Ne = 3× 109 m−3 at Io. Figure 5.1 gives

an example of the tether and the Lorentz force. As described previously, the

Lorentz force fL is perpendicular to both the tether orientation û and the local

magnetic field B.

Note from Equation (5.4) and Equation (5.5) that the Lorentz force

scales linearly with tether width but to the five-halves power with tether
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length. If the force is known for a given tether orientation, position, and ve-

locity, one can quickly recalculate the force for different tether sizes using this

scaling property. Tether direction has a significant effect on the Lorentz force,

both in that the force is limited to be perpendicular to the tether direction

and that the force magnitude depends on the dot product Et. From Equation

(5.4), tether attitudes that lead to Et < 0 do not produce current or Lorentz

force. To reduce the scope of the problem, tether orientation is assumed to

be aligned with the position vector, û = r̂, such that the tether is always

pointing radially to or away from the center of mass of the primaries, unless

stated otherwise. This assumption results in the tether force being at near

maximum and also leads to a generally stable tether attitude when far from

moons [83]. Note that, while recent higher-fidelity studies indicate dynamic

instabilities in tether attitude for inclined orbits, the planar assumptions in

this work mitigate that instability [73, 76].

As this work focuses on spacecraft operating near moons, the torque

on the tether must be considered. At a minimum, the gravitational torque

must be counteracted by a control torque MC to maintain tether orientation.

The tether is treated as a rigid dumbbell, with point masses at each end. To

simplify the analysis, the tether center of mass is located such that the tether

is self-balancing, i.e. there is no Lorentz torque. Given the selection of the

zero-bias point for maximum current, the tether center-of-mass location as a

fraction of tether length from the cathode end is γ = 0.64286 [74]. With this

selection, the torque on the tether is reduced to the gravitational torque about
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the center of mass MG. Taking into account the distribution of the masses,

the normalized gravitational torque per unit mass is given by:

MG = MG,1 + MG,2 (5.6)

MG,j = (−1)j
(
γ − γ2

) 1000L

a
û×

(
−(1− µ)

r3
1j

r1j −
µ

r3
2j

r2j

)
(5.7)

ri1 = ri −
1000L

a
(1− γ) û (5.8)

ri2 = ri +
1000L

a
γû (5.9)

where i = 1, 2 denotes the attracting body, j = 1, 2 represents the anode and

cathode ends of the tether, respectively, and rij is the position vector of the

tether ends from the primaries.

The attitude of the tether varies over periodic orbits, requiring an addi-

tional control torque MC. The required torque is found by characterizing the

dynamics of the tether attitude. The tether angular momentum is HG = IGωT,

where IG is the central inertia tensor and ωT = û× ˙̂u+ωû is the general tether

rotation rate in an inertial frame. Noting that the moment of inertia about

the tether direction is effectively zero, the tether attitude behaves as:

d

dt
(HG) = Is

(
û× ¨̂u

)
= MG + MC (5.10)

100



¨̂u = û
′′

+ 2Ω× û
′
+ Ω× (Ω× û) (5.11)

where Is = (1000L/a)2 (γ − γ2) is the normalized principal moment of inertia

per unit mass about an axis orthogonal to the tether and û
′′

and û
′

are time

derivatives of the attitude in the rotating frame. As the tether is limited to

the xy-plane in this work, all torques and angular accelerations are aligned

with the z axis.

For all simulations in this study, a spacecraft mass of 1000 kg with a

tether width of 0.01 m is used. Note that the tether thickness is sufficiently

smaller than the width such that its effect on the Lorentz force is negligible [12].

The dynamics are considered at Io and Metis on a per case basis to highlight

differences deriving from changes in the magnetic field strength and relative

plasma velocity. Moons with larger orbital radii, such as Europa, Ganymede,

and Callisto, are not considered as the tether forces become small.

5.1.1 Tether Conservative Approximation

The tether force is a function of velocity, making the tether-perturbed

problem nonconservative. As the energy change is path dependent, it is un-

likely that exact periodic orbits will exist in general, although they have been

found under special conditions in another nonconservative system [14, 73]. To

transform the equations to a conservative form, the following assumptions are

made:
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1) The force magnitude is proportional to a constant divided by the

spacecraft in-plane distance from system center

2) The force direction is always perpendicular to the position vector,

as occurs for tether attitudes parallel to the position vector:

f̃L =
αL5/2w

x2 + y2
(ẑ× r) (5.12)

The definition of the force approximation is motivated because of its

simple associated potential function:

VL = αL5/2w tan−1
(y
x

)
(5.13)

The constant α is determined using a least-squares fit to the actual

Lorentz force calculated over 0.95 < x2 + y2 < 1.05 with zero spacecraft

velocity within the rotating frame.

Table 5.1: Lorentz force approximation parameters, distance of unperturbed
equilibrium points, and comparative forces at bodies of interest

Parameter Europa Io Metis
a, km/LU 671,100 421,700 128,000
b, s/TU 48,843.88 24,329.32 4,068.64
GM, km3/s2 3,202.74 5,959.92 0.002403
rL1, km 13,563 10,466 23.67
rL2, km 13,749 10,642 23.67
Ne, m

−3 7.0E7 3.0E9 3.4E8
α,N ·m−7/2 1.8241805E-13 4.6696398E-11 -4.4917363E-10
f̃L, N 0.0002 0.0461 0.4439

The parameter α is calculated at Metis, Io, and Europa to highlight

variations in the Lorentz force as the distance from Jupiter’s center increases,
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as shown in Table 5.1. A comparison of the approximated force magnitudes

is also given for a tether length of 25 km. For Metis, there is a negative

value in α due to the body’s velocity about Jupiter exceeding the rotational

velocity of the magnetic field, resulting in a drag-like force. As the distance

from Jupiter is increased, the Lorentz force decreases by orders of magnitude

between each body due to the weakening magnetic field strength. This dimin-

ishing force strength limits tether utility primarily to within the orbital radius

of Ganymede.

There are two main sources of inaccuracies in the approximate model

force magnitude. Due to an imperfect line fit, the approximation breaks down

as r deviates from near unity. While the Lorentz force is better approximated

as 1/r3, conservative models that use this approximation introduce errors in

the direction of the force; the chosen conservative model always results in a

force perpendicular to the radial tether orientation. This direction is the same

for both the full and approximate models, resulting in zero error for the force

direction. Additional error derives from the force dependency on the velocity

of the tether relative to the magnetic field, whereas the approximation assumes

constant zero spacecraft velocity. To quantify the error, calculations are made

of the actual and approximate tether forces over a grid of radii and tangential

velocities v. At each grid point, the spacecraft state in the rotating frame is

X = [−r 0 0 0 v 0]T.

The analysis is applied at Io to obtain a relative error for the conser-

vative force approximation, shown in Figure 5.2. Negative values indicate the
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Figure 5.2: Relative error percentage in the force approximation at Io

actual tether force is larger than the conservative model approximation. Be-

cause of the size scaling of the force, the relative error is independent of tether

length. Looking at the contours, it is clear that differing radii are the largest

contributors to errors. Large periodic orbits can go beyond the radii depicted

in Figure 5.2, although orbits about the L1 and L2 Lagrange points are ex-

pected to remain within 15% error. At the unperturbed L1 and L2 points, the

error is at -7.11% and 7.94%, respectively. These are roughly on order with

expected errors introduced from assumptions made about the magnetic field

strength and simple non-tilted dipole simplifications. The error is compara-

tively invariant to small changes in orbital velocity, as the spacecraft velocity

relative to the plasma is approximately 56 km/s.

104



The potential function enables a new integral of motion that augments

the standard CRTBP Jacobi constant:

C = 2 (J + kVL)−
(
u2 + v2 + w2

)
(5.14)

This new integral allows the use of several standard CRTBP analytical tools.

It can be used to determine allowed regions of motion through zero-velocity

curves, and provides a natural generating parameter for periodic orbit families.

The values of the velocity curves are found by setting the velocity in Equation

(5.14) to zero and solving for C over a grid of locations.
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Figure 5.3: Zero-velocity curves near Io for (a) no tether (b) 200 km tether

Plots of zero-velocity curves for the unperturbed and tether-perturbed

systems are given in Figure 5.3. The tether curves were made using a 200

km length tether to exaggerate effects. The introduction of the tether leads
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to changes as the angle from the Jupiter-Io line varies. In the plots from

Figure 5.3, it is seen that relative to the unperturbed case, the tether-perturbed

contours of C = 3.0035 converge prograde of Io, leading to increased regions of

motion. The converse is true retrograde of Io. At C = 3.0054, the Hill throats

around L1 and L2 are seen, which indicates that travel between Jupiter and

Io is possible. For the unperturbed case, the throat at L2 is barely closed.

Introduction of the Lorentz force opens this throat, enabling escape from Io

via L2. Similar behavior is expected for the throat at L1.

5.2 Equilibrium Points

Equilibrium points are a typical starting point for finding periodic or-

bits. A primary interest is in the tether-modified equilibrium points within

the CRTBP system, particularly the variation of the L1 and L2 points as a

function of tether size. The authors of Reference [74] provide a thorough anal-

ysis of the stability and dynamics of equilibrium position and attitude for both

librating and rotating tethers near the secondary in the Hill model. Zanutto

et al. focus on the evolution of the L4 and L5 points with tethers pointing

toward the system center of mass, while Bombardelli and Peláez investigate

the stability of general artificial equilibrium points [11, 104]. The current work

analyzes the equilibrium points in the context of the newly developed conser-

vative model. Qualitative comparisons with the results of the listed references

show the dynamical similarity of the conservative model to the full model.

In addition, the analysis is made at both Metis and Io to show changes that
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arise from differing system mass ratios and switching the sign of the relative

velocity in Equation (5.2).

For tether-perturbed equilibrium points to exist, the tether force must

exactly cancel the standard three-body acceleration. It is straightforward to

show that equilibrium points must satisfy three conditions:

1) Recalling that the Lorentz force is perpendicular to tether attitude,

r̈ · r̂ = 0 for the tether force to be aligned with the three-body

acceleration.

2) The Lorentz force needs to be opposite the three-body acceleration

such that r̈ · (r×B) < 0.

3) For the Lorentz force to exist, Et > 0.

The conservative model assumes the force exists so the third condition is sat-

isfied, and the second condition simplifies to αr̈ · (ẑ× r) < 0. A key result

of this development is that potential equilibrium locations are solely a func-

tion of tether orientation, with tether size determined such that the Lorentz

force magnitude cancels the three-body acceleration. For example, when us-

ing the radially aligned tether, the equilibrium points in the conservative and

nonconservative models will be identical, although the tether sizes will differ

due to errors in the Lorentz force magnitude. However, changing the tether

orientation in the nonconservative model will result in different equilibrium

locations.

As solving for the condition r̈ · r̂ = 0 is analytically challenging, a nu-
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merical approach is used to find the tether-perturbed equilibrium points. The

method uses a continuation approach to get modified equilibrium points L1*

and L2* as functions of tether length. Starting at an unperturbed Lagrange

point as an initial guess along with an initially small tether size, a differential

corrector is used to iterate on the spacecraft position until a perturbed equilib-

rium position is found. The tether length is then increased and the differential

corrector rerun to obtain a new equilibrium point using the previous point as

the initial guess. Continuation methods generate further equilibrium points

until they impact the surface of the moon or the tether decreases back to zero

length.

The differential corrector uses derivatives of the total tether-perturbed

acceleration with respect to position. These derivatives are obtained using

the numerical complex step approach that is proven to be accurate to ma-

chine precision [64]. The Newton update step is calculated using the following

equation:

dreq = −
(
∂r̈EDT

∂r

)−1

r̈EDT (5.15)

The update is iterated until the total acceleration magnitude is near zero

within some small tolerance. Since the starting locations are the known L1

and L2 points, the initial guesses for a small perturbation in tether size are

sufficiently close for the simple differential corrector to converge.

In Figure 5.4, the evolution of the equilibrium positions in the xy-plane
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Figure 5.4: Tether-modified L1* (diamond) and L2* (circle) equilibrium coor-
dinates at Io in the xy-plane. The L2* curve travels along Io’s orbital radius
ending at the unperturbed L4 point

at Io is plotted, while Figure 5.5 gives the x coordinate as a function of tether

length. Recalling the start at the unperturbed L1 and L2 points with y = 0, the

equilibrium points shift toward positive y as tether length increases. Larger

tethers lead to curving in front of the leading side of Io at nearly constant

distance from the moon. The perturbed L1* points eventually shift down to

the surface of Io and impact at a maximum tether length of 1718 km. The

L2* points conversely travel away from Io as the tether length decreases from

a maximum of 410 km. From Figure 5.4, it can be seen that the L2* curve

nearly follows Io’s orbital radius, ending at the standard L4 point with zero

tether length. Beyond this point, the force direction of the radial tether is

incapable of canceling the three-body acceleration. An important result seen
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Figure 5.5: (a) Tether-perturbed x equilibria at Io (b) Normalized gravita-
tional torque MG, on the tether

in Figure 5.5 is that the L2* curve has two equilibrium points for a given tether

length. This non-uniqueness leads to interesting dynamics for some periodic

orbits, which is explored in the succeeding section.

The gravitational torque on the tether center of mass is shown in plot

(b) of Figure 5.5 as a function of the tether length. Starting from the un-

perturbed points at zero length, the torque for both L1* and L2* rapidly

grows with tether length up to a local maximum of approximately ±1.5E-8

LU2/TU2 (4.51 kN·m for the 1000 kg spacecraft) at L = 370 km. As the

L1* points approach Io’s surface, the torque rapidly decreases, goes through a

point of zero torque, and then grows in the opposite direction due to the large

tether lengths and increasing proximity to Io. Conversely, the torque for the
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L2* points rapidly decreases and stays relatively small, as expected for radially

pointing tethers located far from both bodies.

Note that the evolutions of these points are similar to results from

Reference [74] in that the points curve around the front of the primary and

then both down to and away from the surface. Initial similarity is expected

as both works start at the unperturbed equilibrium points. However, the

equilibrium locations in this work follow a roughly circular curve around Io,

whereas those from Reference [74] follow an ellipse-like shape that ultimately

leads Io approximately twice as far away. The differences arise from the facts

that a) those authors included tether attitude equilibrium rather than a general

heuristic and b) they developed the analysis in the Hill model of motion.
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Figure 5.6: Metis L1* (diamond) and L2* (circle) equilibrium coordinates in
the xy-plane, and as function of tether length

Next the dynamics at the inner moonlet Metis are considered. The
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moonlet has less mass and is in a stronger region of Jupiter’s magnetic field,

leading to more effective tether forces and smaller tether lengths. Plots are

again made to show the equilibrium points, seen in Figure 5.6. As Metis is only

1.83 RJ from Jupiter, its orbital velocity is greater than the rotating magnetic

field; thus, the direction of the tether Lorentz force is switched from that at

Io, causing the equilibrium points to shift toward the trailing edge of Metis.

Note that the figure does not include the full L2* curve, which extends out

to the L5 point. The stronger Lorentz force allows for significantly shorter

tether lengths, with a 60 km tether capable of equilibrium directly trailing the

moonlet. This difference in force magnitudes allows for unique possibilities

including placing the spacecraft in a position where Metis itself functions as
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a partial radiation shield from Jupiter [40]. The gravitational torque is given

in Figure 5.7, where it follows a similar evolution as it did at Io. The peak

normalized torque is -3.63E-7 LU2/TU2 at a tether length of 32.5 km, which

converts to 360 kN·m, two orders of magnitude larger than the peak torque

for Io.

It is important to note that the unperturbed equilibrium locations are

within 2.2 km of the surface of Metis. This close proximity, combined with the

radial tether attitude, results in tether lengths that impact Metis. Lengths

between 2.17 and 41.5 km result in impacts. These nonphysical locations

are plotted for completeness, as the tether length requirements can be scaled

using different model parameters such as tether width and density, enabling

shorter tether lengths. However, feasible limits on the tether sizing imply that

there will always be some impacting equilibrium points. Another practical

concern (aside from the ignored nonspherical gravity and uncertainties in the

dynamics) is that the average radius of the moonlet is only 21.5 km, meaning

the tether length is a significant fraction of the moonlet’s circumference.

5.3 Tether-Modified Periodic Orbits

The evolution of the tether-perturbed L1* and L2* Lyapunov orbits is

a natural extension to equilibrium positions. Two options are explored for

finding initial periodic orbits:

1) Starting from known unperturbed orbits
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2) Starting from very small orbits about the perturbed equilibrium

points

These initial orbits are then expanded into families using continuation meth-

ods. The families are naturally characterized by both their integral of motion

and the tether size. To limit the scope of the work, only a limited range of

the variables is considered by holding one constant while allowing the others

to vary. Because of the close proximity of the equilibrium points to Metis, the

Lyapunov orbits are generally limited to a small range with little variation,

and so only orbits at Io are considered here.

5.3.1 Periodic Orbit Generation

The existence of the tether force causes the CRTBP equations of motion

to lose both xy-plane and x-axis symmetry, preventing the common approach

of targeting perpendicular planar crossings to find periodic L1 and L2 orbits.

Therefore, a full-dimensioned targeting algorithm is implemented to search for

periodic orbits [88]. Although the focus of this work is on planar orbits, the

algorithm is developed including out-of-plane components for completeness.

In brief, the method starts with choosing one fixed variable of the position

state (x0, y0, z0) to enable checking for repeats of the initial state (r0,v0).

Typical selections are crossings of the xy-, xz-, or yz- planes. Again, the

Lorentz force breaks the system symmetry so these crossing selections are

chosen for convenience; the actual trajectory is generally not perpendicular to

the crossing plane. As the final state is calculated at this crossing, the fixed
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variable is automatically satisfied and can be ignored, leading to a reduced

state vector ξ. Consider a practical example: if x0 = 0 is the fixed state, then

the crossing plane is the yz plane. The value of x at this crossing matches the

initial state and does not need correction, so the state is removed from the

full state vector to get ξ. A constraint vector K is introduced to enforce that

the trajectory returns to its initial state, with an optional constraint to target

specific energy levels C∗:

K =

[
ξT − ξ0

C − C∗
]

(5.16)

where ξT is the constraint vector evaluated at the cutting plane intersection.

Given an initial ξ0 that yields nonzero K, an update to the state, ∆ξ0, is

computed through the solution to the linear equation [88]:

dK

dξ0

∆ξ0 = −K (5.17)

where:

dK

dξ0

=

[
dξT/dξ0 − I5×5

dC/ξ0

]
6×5

(5.18)

dξT

dξ0

=
∂ξT

∂ξ0

+
∂ξT

∂T

∂T

∂ξ0

(5.19)

An important attribute of the algorithm is its use of singular value decomposi-

tion to solve Equation (5.17), allowing it to handle over- or underconstrained
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problems as well as singularities.

The algorithm is used iteratively with continuation methods to generate

families of orbits characterized by either tether length or the Jacobi constant.

In general, the orbits are found using planar x-axis crossings. Because of the

asymmetrical tether-perturbed equations of motion, a subset of the periodic

orbits does not cross the x-axis. When y = 0 fails to occur, the crossing plane is

changed to the average x value over the full period of the previously converged

periodic orbit. Because of the change in the crossing variable, discontinues

initially appear in the characteristic curves of the orbital families. To enforce

continuous values, the initial states of the periodic orbit are integrated forward

until u0 = 0. The state at this point then becomes the new initial state. As

all periodic orbits have a minimum of two locations where u0 = 0, a proximity

check ensures that states are sufficiently close between orbits within the family

to ensure continuous characteristic curves. Note that the selection of u0 = 0

is done solely for the purpose of plotting continuous characteristic curves and

is not indicative of symmetric, perpendicular crossings seen in unperturbed

periodic orbits.

To obtain ∂ξT/∂ξ0, the convenient and accurate numerical complex

step method is again used [64]. For each periodic orbit, the state transition

matrix over one period, the monodromy matrix, is calculated. The eigenvalues

of this matrix indicate the stability indices of the periodic orbit using:

bi = λi + 1/λi (5.20)
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As the eigenvalues occur in reciprocal pairs, only three unique stability indices

exist [14]. Additionally, because the system is autonomous, one index is trivial

as it is always 2, representing a perturbation along the orbit trajectory. For lin-

ear stability, the remaining two indices must be real and have magnitudes less

than 2; otherwise, the orbit is unstable with larger magnitudes representing

greater instability. For planar periodic orbits, the stability indices are denoted

as vertical or horizontal, bv and bh, respectively. The horizontal indices cor-

respond to perturbations within the orbit plane, while the vertical indices are

out-of-plane deviations [39].

5.3.2 Variable Length Families

The effects of varying the tether length are analyzed while holding C

constant for the perturbed Lyapunov orbits. For both L1 and L2, a represen-

tative starting orbit is selected from the unperturbed Lyapunov families. The

only criteria used for initial orbit selection is a general consideration of the

approach distance to Io. The initial L1 orbit has C = 3.0025008 with a period

of 3.5872 TU (24.24 h), while the L2 orbit starts with C = 3.0024488 and has

a period of 3.6613 TU (24.74 h). Each periodic orbit is then extended into a

family by increasing the tether length and converging the differential correc-

tor, while maintaining a fixed Jacobi constant. Continuing the family requires

traversing reflections where the direction of the generating parameter changes.

At these reflections, the continuation method temporarily varies x instead of

length for traversing to the next member of the family. The L2 family ends
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with an impact at the surface of Io, while the L1 family is continued until

convergence becomes difficult without using unreasonably small steps.
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Figure 5.8: Evolution of modified L2 Lyapunov orbits at constant C with (a)
full view and (b) detail view. Legend indicates tether length
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Figure 5.10: Detailed view of the modified L1 Lyapunov family at constant
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equilibrium point at L = 185 km
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Figure 5.11: Characteristic curves at constant C for (a) L1 family (b) L2
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Figure 5.8 plots a few of the orbits from the L2 family, including the

initial unperturbed orbit and the final orbit before impact. Because of the

choice of different energy levels between the L1 and L2 families, the L1 family

does not impact Io and has a larger range of orbits. The L1 family is plotted

in Figure 5.9 and Figure 5.10, where two plots are used for clarity. The plots

labeled (a) show orbits until the family achieves its maximum distance from

Io (set 1), while the orbits after this point (set 2) are shown in the (b) plots.

Figure 5.11 gives the characteristic curves for both modified L1 and L2 families,

with markers correlating to the orbits plotted in the trajectory figures. The

curves show the nonzero initial states, the orbit period, and the orbit closest

approach. Note that tether lengths below 150 km have minimal variation and

have been excluded from the plot to clearly show regions of rapid change.

Starting with a qualitative analysis of the orbits for both the L1 and L2

families, it is seen that increasing tether length causes the orbits to shift for-

ward and slightly rotate about Io. It is clear that the orbits are not symmetric

about the x-axis as there is bulging on the leading side of the moon due to the

positive y direction of the Lorentz force. For small orbits that remain within a

few Io radii of the moon, the L1 and L2 families are near reflections about Io.

With larger orbits, the trajectories of both families tend to follow the curve of

Io’s orbit about Jupiter, as they effectively depart from and re-encounter Io

at non-resonant intervals. The last orbit found in the L1 family at a length

of 185 km (denoted with hexagram markers) is of particular interest in that

half of its orbit time (≈88 h) is spent in a loop with a smaller inner loop near
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its closest approach. This looping structure is clearly visible in plot (b) of

Figure 5.10. The plus-shaped marker shows the L2* equilibrium point that

leads Io when tether length is at 185 km. The proximity of the loop about

this marker indicates that the slow looping is due to dynamics influenced by

that equilibrium point. Distances from Io during this looping time range from

15,470 to 31,630 km.

Figure 5.11 shows the characteristic curves for the families, with mark-

ers correlating to the orbits in Figures 5.8 – 5.10. The characteristic curves

show that the families are initially near-invariant to changes in tether length.

It is only after lengths exceeding 100 km that notable differences occur; how-

ever, these changes are small relative to the variations that start after the

first reflection at a 217 km tether length. The L2 curves go through a second

reflection before impacting, while the L1 curves go through seven reflections

before the corrector encounters convergence difficulties. Each reflection occurs

at smaller changes in tether length, which can be seen clearest in the plot of the

L1 orbital period. The change in tether length between the last two reflections

is only 1 km. It is this shrinking reflection interval that leads to difficulty in

converging to new periodic orbits as the step sizes to enable convergence be-

come infeasibly small. While alternative algorithms such as pseudo-arc-length

or multishooting methods could help mitigate the convergence issues, the or-

bit itself becomes effectively invariant to the continuation process, making the

benefit of further continuation minimal.
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Figure 5.12: Horizontal and vertical stability indices for the constant C L1
(solid) and L2 (dashed) families

Consider the stability indices for the Lyapunov families at constant C

given by Figure 5.12, where the indices have been separated by the horizontal

(bh) and vertical (bv) grouping, and the gray region indicates stability. Similar

to the characteristic curves, the tether length has little effect on the stability

indices before 100 km; these values are ignored in favor of regions where rapid

variation occurs. Both indices are typically real valued only, and instances

in which imaginary components appear are therefore likely due to numerical

error as the imaginary magnitudes are 10-14 or smaller. Comparing the two

families, it is seen that both indices tend to follow the same general shape,

although the qualitative differences increase through the family continuation

process. The effect is most noticeable after the second reflection where the

L2 vertical indices diverge from the L1 line as the L2 orbits approach and
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ultimately impact Io.

With each successive reflection, the indices become increasingly sensi-

tive to changes in tether length to the point that they appear to be vertical

lines. The indices for out-of-plane perturbations consistently remain within or

just beyond stability. Horizontal stability is atypical and usually occurs during

a reflection where the indices are rapidly changing from positive to negative

values. As mentioned, orbits with real-valued indices in which the magnitudes

of both the vertical and horizontal indices are less than the critical value of

2 are dynamically stable. Because of the sensitivity of the indices to changes

in tether length after several reflections, it becomes numerically difficult to

precisely find stable orbits; however, they do exist. Examples of these elusive

stable orbits that occur during the first reflection for both families can be seen

in Figure 5.8 and Figure 5.9. These are the second smallest orbits plotted and

are indicated by the square makers. The orbits occur with a tether length

just above 200 km and loosely resemble distorted versions of the unperturbed

Lyapunov orbits, with bulges on the leading side of Io. No other stable exam-

ples exist for the L2 family in the orbits generated here. The L1 family has a

limited number of additional stable orbits. One such stable orbit is included

in the right plot of Figure 5.9, marked with upward-pointing triangles. The

orbit leads Io in a simple ellipse-like shape far from the Jovian moon with

a closest approach of 18,000 km from the moon center. The stability of the

discussed orbits is verified by propagating over 100 orbital periods with no

notable departures.
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Figure 5.13: Normalized torques on the tether during a stable periodic orbit.
(a) Required angular acceleration and experienced gravitational torque (b)
Control torque to achieve ḢG

As the scope of analyzing the attitude control of every orbit is infeasible,

only one analysis is made as a demonstration. The orbit selected is the stable

orbit denoted by the upward-pointing triangle markers in Figure 5.9, as the

stability makes it an attractive option for mission design. The gravitational

torque over the orbit period is calculated using Equations (5.6 – 5.9), along

with ¨̂u, where û′ and û′′ are approximated using finite differencing on u. The

control torque MC required to maintain the orbit attitude is then calculated

with Equation (5.10). In plot (a) of Figure 5.13, the total angular acceleration

required to fly the periodic orbit (i.e., the left-hand side of Equation (5.10))

(solid) is compared to the gravitational torque (dash). The difference between

these values gives the normalized control torque, shown in plot (b). It is
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clear that the gravitational torque dominates the control, as it is an order of

magnitude larger than the ḢG term. Converting to SI units for the 1000 kg

spacecraft, there is a peak control torque of 3.75 kN·m.

5.3.3 Varying Lorentz-Perturbed Jacobi Integral of Motion

The Jacobi constant provides a second parameter for classifying the

periodic orbits. To keep the scope manageable, an in-depth analysis is con-

sidered at only two constant tether lengths for both L1 and L2 families. The

first case uses a 150 km tether, while the second is at 200 km. While families

at smaller lengths were generated, they do not sufficiently differ from either

the 150 km or unperturbed families to be dynamically interesting.
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Figure 5.14: Lyapunov orbits at tether length of 150 km for (a) L1 family (b)
L2 family
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Figure 5.15: Characteristic curves at tether length 150 km for (a) L1 family
(b) L2 family. Markers correspond to orbits in Figure 5.14
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Several orbits from both the L1 and L2 families are given in Figure 5.14,

where the legend shows C values, while Figure 5.15 plots the characteristic

curves. As expected, the families start as small orbits about the perturbed

equilibrium points (indicated by plus markers) that have been shifted toward

the leading side of Io due to tether forces. These initial orbits are at the

maximum C of 3.0054928 and 3.0054301 for L1 and L2, respectively. The orbit

size increases as C is decreased, with initial orbits closely resembling typical

Lyapunov orbits. At the end of the families, the orbits exhibit bulging on the

leading side of Io. The sensitivities of the families to changes in C increase

as the families are continued with most of the changes occurring over a small

subinterval of the total range considered. While this sensitivity is indicative of

an upcoming reflection, both families impact Io and are considered complete

for the purposes of this work.
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families with 150 km tether length. Gray areas indicate stable regions
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The stability indices of the families at a constant tether length of 150

km are shown in Figure 5.16. The imaginary components of the indices are

again negligibly small and are ignored. Note that the curves for the vertical

indices are nearly identical, making visual differentiation between the L1 and

L2 families difficult. The horizontal indices have a minimum value of 34, well

above the critical value, indicating that no orbits within the families are stable.

Vertical stability alternates through the families with a total of three crossings

of the critical value. These crossings indicate that there are at least two simple

and one period-doubling bifurcations of the periodic orbit that can be followed

to find additional periodic orbit families.
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Figure 5.17: Periodic orbits with a 200 km tether length for the (a) L1 fam-
ily (b) L2 family. Legend indicates C energy levels, the plus markers show
equilibrium points for the 200 km tether
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Figure 5.18: Characteristic curves at tether length 200 km for (a) L1 family
(b) L2 family. Markers indicate trajectories from Figure 5.17
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Orbits from the L1 and L2 families calculated using a constant 200 km

length tether are given in Figure 5.17. Neither family experiences an impact

with Io, resulting in the continuation process ending after a series of increas-

ingly frequent reflections similar to the length-varying families. The orbits

found before the first reflection are qualitatively similar to those found at the

150 km length. Beyond the first reflection, the orbits continue to grow up to

a maximum size. As the families continue, the orbits reduce in size before

developing fractal-like looping behavior similar to what was observed for the

length-varying families. These loops again exhibit hovering-like motion near

the Io-leading L2* equilibrium point. All the characteristic curves addition-

ally have fractal-like spiraling over successive reflections with the exception of

periodic time, which monotonically increases.

The orbits shown from the L1 family highlight the small orbit about

the tether-modified equilibrium point, the orbit with maximum Io distance

(diamond markers), the last orbit found in the family (triangles), and two

stable orbits (squares and circles). As the L2 family is nearly identical to

the L1 family, the plot does not include the stable orbits. Instead, an orbit

with similarities to a rotated and shifted standard Lyapunov orbit (squares)

is plotted. Two of the orbits (marked by circles and triangles) in the L2

family are shown specifically to highlight that changes to orbital shape become

predominantly limited to the looping structure.

Figure 5.18 shows the evolution of the nonzero initial conditions along

with the orbit periodic time and the orbits’ closest approach values. The sta-
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Figure 5.19: Horizontal and vertical stability indices for L1 (solid) and L2
(dashed) orbits with a constant tether length of 200 km. Gray indicates the
stable region

bility indices are given in Figure 5.19, where again there are no significant

imaginary components. Note that, for improved visibility, the horizontal in-

dices plot has been cropped to exclude significant spikes of -92,000 and 376,000

that occur over the final two reflections of the families. It is clear that both

vertical and horizontal indices go through the stable region, indicating the

existence of stable orbits. As was seen for the variable length families, the

horizontal indices are highly sensitive to changes to C during these stability

transitions.

New orbits can be found directly from the perturbed equilibrium points

in addition to the orbits found from unperturbed Lyapunov orbits. An addi-

tional orbital family is found to demonstrate the potential for this approach.

The starting equilibrium point chosen is the perturbed L1* point with a tether
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length of 500 km, at (x, y) = (0.9993311, 0.0200962) LU. A perturbation of 1

km is made in the x direction from the equilibrium point, and trial and error

for u0 and v0 leads to an initial near-periodic orbit. The differential corrector

then drives the orbit to the periodic conditions. The continuation method

generates a full family of orbits using the Jacobi constant as the generating

parameter.

0.98 0.99 1 1.01 1.02
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035  

x, LU

 

y
,
L
U

3.00915

3.00895

3.00829

3.0067

3.00433

Figure 5.20: Orbital family at a constant tether length of 500 km. The leg-
end indicates C values. The plus marker indicates the L1* equilibrium point
leading Io for 500 km tether length

Example orbits from the family are given in Figure 5.20. A resemblance

exists between this family and the unperturbed L1 and L2 Lyapunov orbits

as all three families exhibit oval and kidney-like shapes. Because of the in-

troduction of the Lorentz force, the new family is rotated nearly 90 deg from

the unperturbed family, toward the leading edge of Io. Looking at individual
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orbits, it can be seen that the smallest orbit shown is a narrow oval about the

initiating equilibrium point. As Jacobi constant is decreased, the orbits grow

in size and shift down toward Io, ending with an orbit that barely clears Io’s

mean radius.
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Figure 5.21: Characteristic curves for the L1 family at a tether length of 500
km. Markers correlate to orbits plotted in Figure 5.20

Figure 5.21 shows the characteristic curves for the orbit family, includ-

ing markers for the orbits shown in Figure 5.20. All the curves show smooth,

monotonic variation as the Jacobi constant is varied. In particular, larger or-
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Figure 5.22: Horizontal and vertical stability indices for the L1 orbital family
at 500 km tether length

bits lead to shorter periodic times and smaller close approaches. Figure 5.22

plots the stability indices for the family, where it is seen that all orbits in

the family are unstable due to the high sensitivity to in-plane perturbations.

However, all the orbits are within the stable region for the vertical index.

5.4 Conclusions

The introduction of electrodynamic tethers to the circular-restricted

three-body problem leads to changes in both the equilibrium points and the

periodic orbits of the model. The first main contribution of this work is the

introduction of a conservative approximation to the tether force. By making

a conservative force approximation, a modified Jacobi integral of motion is

found and used to generate zero-velocity curves, which show that tether forces
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can enable escape from the secondary. The conservative force also facilitates

the generation of periodic orbit families in the three-body system, along with

the associated stability analysis. While some error is introduced by the con-

servative approximation, the error is small in the expected regions of motion

and is overshadowed by the multiple benefits of the integral of motion. Local

equilibria near the secondary shift about the body as tether size is increased,

with the perturbed L1 points ultimately descending to and impacting the sur-

face while the L2 departs along the moon’s orbit. A preliminary analysis of

the gravitational torque shows that points close to the moon will require a

counteracting control torque to maintain tether attitude.

The second contribution of this chapter is the generation of tether-

perturbed Lyapunov families for both constant length and varying length.

Several orbits with differing qualities are identified as stable, with verification

from long-term numerical integration. Calculations on the tether attitude for

one stable orbit quantify the expected peak control torque to fly the periodic

orbit with a radially oriented tether. Again, the focus of this work is on the

translational behavior of the tether, and so only a preliminary analysis of the

attitude control is performed to quantify the expected range of the control

torque. Attitude control for an actual flight may be prohibitively complex and

merits further investigation.

A notably finding is that the tether-perturbed dynamics yield modi-

fied equilibrium points that provide opportunities for new mission designs. If

there is interest in placing the spacecraft in an equilibrium point for constant
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observation geometries of a moon, a tether provides mission designers with

extra degrees of freedom for equilibrium locations. Assuming controllability

in tether length, it would be possible to transfer across a range of equilibrium

points for long-term constant observation. Selection criteria for these loca-

tions can include using the bodies as partial shielding from Jovian radiation.

A more innovative concept is the use of a probe at the end of the tether to

physically sample the moons while the Lorentz force holds the spacecraft in a

steady location. Obviously, such a concept assumes highly precise control of

the tether and may not be feasible in practice.

While the equilibrium points are generally unstable, an alternative to

maintaining a highly constrained position is through the use of periodic orbits,

some of which are stable for various ranges of tether length and energy lev-

els. After generating multiple families of basic Lyapunov-like orbits from the

unperturbed orbit families, it is found that stable orbits do exist for differing

tether lengths and energy levels, including stable orbits in families that were

originally only unstable. These new orbits exhibit dynamical behavior not

seen in the unmodified families. In particular, the existence of multiple equi-

librium points relatively close to each other results in new, slowly traversed

loops leading Io. An additional simple orbit family found directly from the

perturbed equilibrium points shows the potential for new and unexpected dy-

namical behavior. Investigations of broader classes of periodic orbits (via grid

searches and bifurcations, extensions to three dimensions, etc.) will likely find

more orbits of interest. From a mission design standpoint, these orbits can
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be used as long-term parking orbits near a moon. Additionally, power can be

generated over the course of the orbit without the need to maintain position as

would be necessary at equilibrium points. Assuming the orbit is favorable for

science data, such orbits are more propellant efficient to realize than typical

low-altitude science orbits deep in the moon’s gravity well.

Electrodynamic tethers are currently in a state of infancy, with only a

few low-Earth-orbit proof-of-concept flights. The physical problem of safely

and accurately controlling a tether tens of kilometers long is challenging and

requires significant development in multiple fields of research. However, the

addition of the Lorentz force leads to new and unique dynamics. With a few

basic simplifications, the dynamics become relatively straightforward while

retaining their core properties. The controllability of the Lorentz force as an

essentially propellantless propulsion adds new variables to the design space,

leading to potential new mission design applications not feasible otherwise.
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Chapter 6

Conclusions

In this closing chapter, a summary overview of the developments made

by this dissertation are presented. The key contributions and insights from

the results are discussed in the broader context of low-energy mission design.

Lastly, thoughts on avenues for further research building from this dissertation

are explored.

6.1 Low-Energy Mission Design

The design of low-energy trajectories is a complex problem with a myr-

iad of feasible approaches. Notably, the chaotic dynamics afford broad design

space while simultaneously limiting analytical intuition on expected costs. As

seen in Chapter 3, the derivation of a general analytical expression for the

energetic cost enables rapid evaluation of any mission design option, whereas

previous expressions were only accurate for low-altitude maneuvers. Further

extension to the Hill’s model allows the costs to be scaled to any three-body

system of interest with minimal loss of accuracy. The equation provides an

important benchmark for physical transfers by placing a lower bound on the

cost. Earlier works were generally content to accept low-energy costs as a sig-
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nificant improvement over two-body approaches, or optimized multiple feasible

solutions to identify a best case. The knowledge of the energetic minimum en-

ables a better approach to evaluate the capability of a technique to generate

low-cost trajectories, as well as the means to determine whether an optimal

solution might be a local or global minimum.

Finding good feasible transfer trajectories is a common challenge for

low-energy missions. Intersections of invariant manifolds are frequently used

as a starting point due to their effectively free cost, however they only exist

for unstable orbits. In addition, locating any intersections (let alone efficient

ones) is not guaranteed in three-dimensional space. Indeed, the author’s ini-

tial attempts based on a global, time intensive, brute force method to search

for all intersections of two trajectories typically resulted in extremely large

maneuvers. Quickly generating good feasible transfers ultimately requires key

assumptions on an ideal transfer to limit the design space and force the trajec-

tories into favorable capture conditions. This insight lead to the development

of grid searches to capture from L2 halo orbits in Chapter 3. For tight cap-

tures, targeting only the desired altitude and inclination eliminates the need

to find intersections of a specific three-dimensional orbit, while allowing im-

pulsive departures of the halo orbit provides a necessary additional degree of

freedom in the search. The chaotic nature of loose captures effectively pre-

vents straightforward orbital element targeting, and requires a different search

method. Fortunately, simply matching energy levels is sufficient to generate

some of the first known trajectories to loose capture orbits, and evaluating the
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resultant orbits leads to a broad survey of interesting capture options. Com-

paring the energetic minimum to these trajectories shows that finding low-cost

transfers is rare, even when utilizing searches based on an ideal trajectory.

The problem of generating good feasible transfers is revisited in Chap-

ter 4, this time in the context of connecting resonant orbits to the optimized

halo to capture transfers that are generated in Chapter 3. While another

grid search approach is certainly feasible, the long timespan of resonant orbits

creates a significantly larger search space than seen for the halo orbit depar-

tures. As previously discussed, efficiently targeting a specific halo orbit with

only one constant of motion is an additional challenge. These difficulties are

circumvented by instead generating a new periodic orbit that naturally trans-

fers between resonant and halo phases. The search for the orbit proves to be

straightforward, although it should be noted that targeting a specific resonance

is left for future consideration. Continuation methods quickly generate one of

the first known families of three-dimensional, resonant-halo orbits. The utility

of this family is proven, as targeting techniques with simple heuristics are suf-

ficient to generate good, feasible initial transfers to halo orbits. Importantly,

there is no need to precisely match the timing of the halo capture maneuver

with the halo departure, as the periodic orbit naturally handles phasing.

The resonant to halo transfer phase passes through a chaotic dynamic

region, leading to extremely sensitive trajectories that are difficult to optimize.

Several of the transfers constructed in this dissertation are among the most

sensitive trajectories known to the author. While multi-shooting techniques
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are already well-known for mitigating sensitivities, simply using single legs

between each impulse are insufficient for the extreme transfers in this disser-

tation. The addition of minor segments to each leg proves to be critical for

a robust optimization algorithm. By using the max norm of the STM to de-

termine the locations of the minor segment nodes, an explicit limit is placed

on the sensitivity that provides an intuitive tuning parameter compared to

simply selecting some integer number of evenly spaced nodes. The selection

criteria also reduces the size of the shooting algorithm by automatically creat-

ing fine resolutions of nodes only in chaotic regions, whereas stable trajectories

are sparsely populated. A notable drawback from multi-shooting is that the

cost is not truly a smooth, continuous function due to convergence tolerances

in the shooting algorithm. The discontinuity is particularly problematic for

extremely sensitive trajectories near the optimum. For these cases quadruple

precision calculations prove to be crucial to refine solutions to a true analytical

optimum.

Impulsive primer vector theory has historically been limited to initial-

izing with two-impulse trajectories, with additional maneuvers determined it-

eratively such that all impulses are required for an optimal solution. However

it is not uncommon to start with initial guess trajectories that have multiple

maneuvers, as seen when patching trajectory phases together. Optimization

drives unnecessary impulses towards zero, causing singularities in the deriva-

tives. A common method to prevent this problem is to add a small, finite

number to the impulse magnitude such that it is never exactly zero. In Chap-
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ter 4, the derivation of new necessary conditions to remove maneuvers neatly

eliminates the singularities without the need for artificial terms in the cost

function. The equations are successfully used in this dissertation to remove

patching maneuvers that are known to be initially necessary. For one transfer

the conditions also determine that a miniscule impulse is in fact necessary for

analytical optimality. Notably, this contribution also enables the use of primer

vector theory on trajectories that start with any number of impulses, regard-

less of necessity. For example a mission designer could reasonably construct

a transfer starting with miniscule maneuvers at every apse, then allow the

extended primer vector theory to determine the optimal number of impulses.

Due to the improvements in both multi-shooting algorithms and primer

vector theory (as well as several new predictor equations in Chapter 4 to im-

prove optimizer convergence speed), this dissertation provides the first optimal,

extreme sensitivity, three-dimensional transfers from resonant orbits to cap-

ture at Europa. A key observation from the results is that while the primer

vector provides a useful visual tool for optimality, it does not generally in-

dicate proximity to an optimum. It is also found that while the halo orbit

serves as a convenient patching point, its use forces the transfer into a specific

path that may not be globally optimal. Directly connecting the resonant orbit

to capture may yield better results, assuming an efficient connection exists.

Perhaps most importantly, the optimized resonant to loose capture transfers

have costs that are an order of magnitude lower than a single tight capture

maneuver. Combined with the existence of near-ballistic inter-moon transfers,
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it is effectively demonstrated that a low-cost, single orbiter multi-moon tour

is not only feasible, it can arguably be accomplished with less propellant than

a tight capture orbiter dedicated to a single moon.

6.2 Electrodynamic Tethers

A natural (if advanced) extension to reducing the costs of planetary

system exploration is the use of electrodynamic tethers, which have the poten-

tial to eliminate the need for propellant entirely. However, the addition of the

velocity-dependent Lorentz force alters the dynamics such that they are no

longer conservative. The dependence of the force direction on tether attitude

introduces additional challenges, and ultimately necessitates some assumption

on the tether direction to enable meaningful analytical analysis. While some

periodic orbits might exist in the non-conservative tether dynamics (likely

with active attitude control), initial attempts using standard techniques ulti-

mately ended in failure. An approximation to the tether dynamics is derived

in Chapter 5 that allows an integral of motion, enabling many of the power-

ful analytical techniques common to low-energy mission design. In particular,

recall that the energetic minimum derived in Chapter 3 requires the Jacobi

constant, as does the transfer grid search for loose captures.

As seen throughout this dissertation, periodic orbits frequently form

the basis for low-energy mission designs. However, there are no prior works

to find such orbits for electrodynamic tethers known to the author. Chapter

5 therefore provides the first survey of periodic orbits using electrodynamic
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tethers. While the families are currently limited to the equivalent of Lya-

punov orbits, several of them provide unique possibilities for mission designs,

including trajectories that always lead or follow a planetary moon in its orbital

path. Significant work remains to explore the new dynamics, however Chap-

ter 5 shows that the conservative tether perturbed system can be investigated

using essentially the same techniques as the unperturbed CRTBP. Presum-

ably this similarity includes the methods developed to generate transfers in

the previous chapters. Ideally, the inclusion of tether dynamics could be used

to generate a fully ballistic capture trajectory, enabling true propellant-less

exploration of the Jovian system.

6.3 Future Work

The work of this dissertation leads to numerous possibilities for further

research, ranging from straightforward extensions of the current methods, to

new investigations motivated by some of the interesting and unanticipated

results. This section presents a non-exhaustive discussion of potential ad-

vancements that build upon this dissertation.

Perhaps the most compelling extension to the work is to construct a

fully-optimized transfer between Ganymede and Europa. Critically, the as-

sumption that the costs of the inter-moon transfer and the capture transfer

remain relatively unchanged when patched together needs to be validated. In

particular, the use of an inclined final resonant orbit in this dissertation could

incur non-negligible cost when connected to the typically planar inter-moon
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transfers. Ideally, constructing the end-to-end transfer would be a straight-

forward extension using the methods already developed in this dissertation,

combined with the use of the patched CRTBP (similar to patched conics) to

initially decouple the two moon phases. The Europa approach phase would

be extended to the first resonant orbit and connected to the final state of a

similar trajectory for Ganymede departure. With intelligent construction the

two optimized phases are expected to patch together near-ballistically at neg-

ligible cost. A more complete approach would include optimizing the entire

trajectory including this patching impulse, however this approach would likely

be taken in an n-body model using accurate ephemerides. The long, multi-

revolution transfers would be non-trivially perturbed by ephemeris dynamics,

necessitating a methodology to maintain the trajectory when converting from

the patched three-body model.

The transfers constructed in this dissertation use halo orbits to decouple

the problem and patch together transfer phases. However, this method forces a

specific trajectory solution that may end up stuck in a local minimum well. An

investigation into alternative methods to connect orbits without halos, such

as directly connecting manifold-like trajectories of the resonant and capture

orbits, would enable different trajectory options that could lead to better initial

guess transfers. Part of this work would include identifying efficient methods

to target specific loose capture orbits, rather than treating them as an output

of the transfer generation method. An interesting larger scale project would be

to catalog and compare different construction methods according to their ease
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of implementation, and likelihood of generating good initial guesses depending

on the type of transfer.

A natural continuation of any trajectory design is to translate the prob-

lem to higher fidelity dynamics. Extension to higher order models will certainly

perturb the trajectory, however the use of multi-shooting legs and segments is

expected to sufficiently preserve the transfer such that the solution will quickly

reconverge to a continuous trajectory. However, care must be taken as it is

known that long trajectories with multiple flybys tend to not hold if the per-

turbations are sufficiently large [13]. Presumably the propulsive costs would

remain relatively unchanged such that further optimization would not signifi-

cantly improve the solution, although a significant increase would indicate the

need for some refinement. A more comprehensive extension with optimization

would include verification of the validity of impulsive primer vector theory in

the increased complexity, nonautonamous models, along with derivation of the

analytical derivatives if feasible.

While the resonant-halo periodic orbits provide a natural connection,

the resulting transfers are extremely sensitive to small perturbations. These

sensitivities warrant an investigation into the robustness of the transfer to

the precision of practical impulsive maneuvers. This work would quantify the

expected costs of trajectory correction maneuvers to account for stochastic

perturbations to both the magnitude and direction of the impulses. Another

useful result would be to identify patterns in the optimal timing of any cor-

rection maneuvers, likely by utilizing the established primer vector history
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method for adding interior impulsive maneuvers. If the time between impulses

is sufficiently short, the spacecraft would require on-board state estimation and

correction maneuver evaluation, due to the long communication time between

Earth and the Jovian system.

The loose captures found in this work are accepted as is, with only a

cursory analysis on their stability over a typical science mission lifetime. Given

the wide range of behaviors seen in these orbits, there is interest in further

investigation into quantifying the utility of the captures for science observation.

In the short term, it would be useful to evaluate the previously generated

orbits in terms of scientific utility. For most science objectives, desirable orbit

properties are global mapping coverage and repeat observations. A focused,

larger scale project would attempt to identify if certain capture conditions

lead to specific behaviors, providing a means to target a desired type of loose

capture orbit.

The periodic orbits generated with an electrodynamic tether are lim-

ited to planar Lyapunov orbits about the L1 and L2 points. It is expected

to be straightforward to expand the current results to other families using

bifurcation methods. Initial emphasis would be on generating the equivalent

of three-dimensional halo orbits, due to their utility for generating transfers

as seen in this dissertation. However, the perturbed dynamics likely allow for

a broad range of unique and unexpected periodic families, meriting a global

search to find new orbits. Additionally, it would be interesting to see if the

nonconservative tether dynamics allow periodic orbits. However, finding such
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families is expected to require a significantly more complex investigation uti-

lizing active control on the tether via some control law.

The ultimate goal of generating EDT periodic orbits is to provide the

initial basis for constructing low-energy tether mission designs. It is expected

that the typical method of finding intersections of unstable manifolds will re-

main useful for tether dynamics. However, a primary motivation of using the

tether is to eliminate the need for impulses entirely. Finding near-ballistic

intersections is expected to be particularly challenging, and would likely re-

quire active control of the tether to exactly target the full state at the in-

tersection. This approach requires the development of a method to solve the

tether-perturbed boundary value problem, including the derivation of feasi-

ble control laws on the tether attitude throughout the trajectory. While this

leads to a fairly complex optimal control problem, finding purely ballistic tra-

jectories would provide strong motivation to consider electrodynamic tethered

spacecraft for Jovian system exploration.
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Appendix A

Optimization Algorithm

The optimization of highly-sensitive trajectories in Chapter 4 requires a

specialized algorithm. A concise, high-level summary pseuodocode is provided

here for clarity on the major steps used in the method. When available,

specific calculations are followed by the relevant equation in parentheses for

reference. Select subroutines that are modified to account for the sensitivity

are also included in this appendix. Several steps are optional if the problem

has been previously initialized, and are marked with * to note the associated

data should be saved for reuse.

A.1 Main Program

1. Input vector of initial guess states and times, k0 (Eq. 4.10)

2. Set body system parameters, multi-shooting and optimizer convergence

tolerances, and initial line search step size, ∆α

3. Create spline data for boundary orbits (See A.2)*

4. Run multi-shooting algorithm to evaluate Γ and all Φi (Eq. 4.9)

(a) Initialize times and nodes of minor segments if needed*
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5. Evaluate primer vector history (Eq. 4.6 – 4.8)

6. Evaluate gradient (Eq. 4.11 – 4.15)

7. While optimality is not satisfied within tolerance: (Eq. 4.3 – 4.5)

(a) Calculate search direction s using BFGS algorithm

(b) Calculate predictor step direction for vi+ (Eq. 4.20 – 4.22)

(c) Find α∗ that minimizes Γ(k + αs) via line search (See A.3)

(d) If line search fails to find improvement (α∗ = 0): restart algorithm

using quadruple precision for at least several iterations

(e) If an impulse is near-zero: check for removal. If impulse node is

removed: reinitialize algorithm at Step 4 (Eq. 4.26 – 4.27)

(f) Update k = k + α∗s, ∆α = 2α∗

(g) Evaluate primer vector history and gradient

(h) If norm of the gradient is zero within tolerance:

i. If ||p(t)|| > 1: add new node to k at time of peak primer

magnitude and return to step 7c with special search direction

on that node only (Eq. 4.24)

8. Output k and Γ of optimal solution
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A.2 Boundary Orbit Interpolation via Cubic Splines

The boundary value constraints on the initial and final states of the

transfer are satisfied by explicitly setting the states to be within the corre-

sponding orbit as a function of time. Piecewise polynomial splines interpolate

the state to reduce calculation time and ensure that the same time results in

the same state. Given two points in the trajectory, xj and xj+1, the spline

is defined as x(t) ≈ pj(τ) = ajτ
3 + bjτ

2 + cjτ + dj, where τ = [0, 1] is the

normalized, shifted time for t = [tj, tj+1] [99].

The points of the trajectory used in the spline are spaced using time

steps scaled to the local acceleration, similar to a true anomaly Sundman

transformation in the two-body problem [99]. The exact number and spacing

of points in the spline is controlled by a tuning parameter, χ. While this

variable requires some manual iteration to get the desired spacing, the scaling

automatically creates finer resolutions when the trajectory is rapidly changing.

A.2.1 Spline Generation

1. Input initial state and time of boundary orbit

2. Define desired timespan of spline, t = [t−, t+] and point spacing tuning

parameter, χ

3. Initialize by integrating state to x0 at time t0 = t−, and set integer

counter j = 0

4. While tj < t+:
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(a) Evaluate step size ∆t = χ/ ||r̈j||

(b) Evaluate tj+1 = tj + ∆t

(c) If tj+1 > t+: set tj+1 = t+, ∆t = tj+1 − tj

(d) Integrate xj to xj+1

(e) dj = xj

(f) cj = ẋj∆t

(g) bj = −3xj − 2ẋj∆t+ 3xj+1 − ẋj+1∆t

(h) aj = 2xj + ẋj∆t− 2xj+1 + ẋj+1∆t

(i) Store coefficients and associated time tj

(j) Update j = j + 1

5. Write out stored coefficients and times to data file

A.2.2 Spline Evaluation

1. Input time t, initialize counter j = 0

2. Read in spline coefficients and times

3. If t is outside bounds of spline: generate new spline data centered at t

4. While tj+1 < t : j = j + 1

5. Evaluate τ = (t− tj) / (tj+1 − tj)

6. x(t) = ajτ
3 + bjτ

2 + cjτ + dj
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A.3 Line Search

A line search method is used to find the values α∗ and k∗ = k+α∗s that

result in the minimum value Γ∗ = Γ(k∗). The line search algorithm is based

on the golden ratio (ϕ = (1 +
√

5)/2) method [100]. However, the sensitivity

of the trajectories frequently prevent the full step sizes commonly used to

bracket the minimum. Several modifications are added to automatically scale

the search step size ∆α while maintaining convergence of the multi-shooting

algorithm. The history of the three previous solutions are saved as kj and

Γj, along with the associated αj. These histories are used to quadratically

extrapolate/interpolate k (and segment node velocities vi+) as a function of α

to improve convergence of the multi-shooting algorithm, as well as to identify

when the minimum is bracketed.

1. Input initial k, Γ, s, ∆α, and minimum allowed α, εα

2. Initialize k0 = k, Γ0 = Γ, α0 = 0

3. Set α = ∆α, update k = k0 +αs, and all vi+ +∆vi+ from BVP predictor

(Eq. 4.20 – 4.22)

4. Evaluate Γ(k) via multi-shooting algorithm

5. If multi-shooter does not converge:

(a) If α > εα: ∆α = ∆α/3 and go to Step 3

(b) Else: exit search with α∗ = 0
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6. If Γ > Γ0:

(a) Save histories: k1 = k, Γ1 = Γ, α1 = α

(b) While Γ > Γ0:

i. Set α = ϕα1

ii. If α < εα: exit search with α∗ = 0

iii. Interpolate k (and vi+): k = ϕk1 + (1− ϕ)k0

iv. Evaluate Γ(k) via multi-shooting algorithm

v. Save histories: k2 = k1, Γ2 = Γ1, α2 = α1, k1 = k, Γ1 = Γ,

α1 = α

7. If Γ < Γ0:

(a) Save histories: k2 = k, Γ2 = Γ, α2 = α, k1 = k0, Γ1 = Γ0, α1 = α0

(b) While Γ < Γ1:

i. Set α = α2 + ∆α

ii. From histories, extrapolate k (and vi+) as function of α

iii. Evaluate Γ(k) via multi-shooting algorithm

iv. If multi-shooter does not converge: ∆α = ∆α/2, restart loop

v. Resize ∆α based on number of multi-shoot iterations (i.e. de-

crease if convergence takes a long time, increase if converges

immediately)
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vi. Save histories: k0 = k1, α0 = α1, Γ0 = Γ1, k1 = k2, α1 = α2,

Γ1 = Γ2, k2 = k, α2 = α, Γ2 = Γ

8. With minimum bracketed between α0 and α2, find α∗, k∗, and Γ∗ using

golden ratio method

9. Output α∗, k∗ and Γ∗, as well as all Φi of the minimum trajectory
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[38] M. Hénon. “Vertical Stability of Periodic Orbits in the Restricted Prob-
lem I: Equal Masses”. Astronomy and Astrophysics 28 (1973), pp. 415–
426.
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