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At the foundation of our ability to plan trajectories in complex terrain

is a basic need to establish one’s positional bearings in the environment, i.e.,

to self-localize. How does the brain perform self-localization? How does a net-

work of neurons conspire to solve this task? How does it self-organize? Given

that there might be multiple solutions to this problem, with what certainty

can we say that any such model faithfully captures the neural structure and

dynamics as it exists in the brain? This thesis presents a collection of three

theoretical works aimed at addressing these problems, with a particular focus

on biological plausibility and amenability to testing experimentally.

I first introduce the context within which the work in the thesis is situ-

ated. Chapter 1 provides a framework for understanding algorithmically how
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the brain might solve the problem of self-localization and how a neural cir-

cuit could be organized to perform self-localization based on the integration of

self-motion cues, an operation known as path integration. We also introduce

the neurobiology that underlies self-localization, with special emphasis on the

cell types found in and around the hippocampus. We discuss the case that

a particular class of cells – grid cells – subserve path integration, because of

their peculiar spatial response properties and their anatomical positioning as

the recipients of self-motion information. Continuous attractor models are in-

troduced as the favored description of the grid cell circuit. Key open questions

are introduced as motivation for the subsequently described work.

I next focus on the question of how the grid cell circuit may have orga-

nized. In Chapter 2, it is demonstrated that an unstructured immature neural

network, when subjected to biologically plausible inputs and learning rules,

can learn to produce grid-like spatial responses and perform path integration.

This model makes a number of predictions for experiment which are described

at length.

In Chapter 3, I describe a theoretically motivated experimental probe

of the organization and dynamics of the grid cell circuit. The proposed ex-

periment relies on sparse neural recordings of grid cells together with global

perturbations of the circuit (and is thus experimentally feasible). It promises

to yield special insight into the hidden structure of the grid cell circuit.

Finally, in Chapter 4, I provide an analytical treatment of pattern for-

mation dynamics in the grid cell circuit. This work focuses on nonlinear effects
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to show how parameters of neurons and networks relate to the formed pattern

in a model grid cell network beyond the results predicted by linear stability

analysis.
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Chapter 1

Introduction

We take for granted that our brains are responsible for the complex

workings of our inner lives. And yet the brain is really a biological entity,

composed of neurons that are, arguably, individually unintelligent, yet syner-

gistically capable of performing immensely complicated tasks like visual recog-

nition, motor control, short and long-term memory, etc. How does the brain ac-

complish these processes? Given that the brain of an infant, while wondrously

complex and worthy in its own right, is not like the fine-tuned apparatus of

the adult, how does the brain self-organize? As computational neuroscien-

tists, we address these questions by building models of the brain. However,

this enterprise is generally fraught with difficulty, given the brain’s dizzying

multi-scale complexity, structurally and dynamically – it is often cited as the

most complex object in the known universe. Even so, the field has made rapid

advances in recent years, so that some brain processes have been successfully

modeled down to the circuit-level description, e.g. [1, 19, 22, 30, 62, 63, 98].

This thesis focuses on a process that is often taken for granted: how

the brain keeps track of location in an environment. We will consider one

particular component of self-localization, which involves using self-motion cues
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to update the instantaneous position estimate. This operation is called “path

integration”. Importantly for computational neuroscientists, there exists for

this topic a relatively rich playground of experimental results [4, 5, 9, 10, 13, 14,

21, 34, 39, 43, 45, 48, 54, 71, 95, 97, 102, 111, 119], and much progress has been

made toward understanding the putative circuit behind this process. However,

key questions remain unanswered. This thesis presents work that addresses

several of this key issues.

1.1 The brain as a computer: computational demands
and neural hardware

From a computational perspective, the demands placed on the brain

are three-fold: to represent (or encode) information to compute with/on that

information, and to guide the agent to act on that information. Compared

with the hardware of man-made computer systems serving the same computa-

tions for the purposes of, say, guiding an autonomous robot, neural hardware,

while nonlinear, is particularly noisy and slow. However, it is massively par-

allel, with dense feedforward and feedback loops within and across its many

computational modules (we will define a module to be a collection of neurons

cooperating to perform some function, or subroutine). This organizational

property lends the brain its capacity to rival, or even dwarf, the fastest man-

made machines in computational power, as in the case of inference. Also

exceptional is its capacity to learn, and to self-organize. In fact, this is a ne-

cessity: the 20,000 genes in the human genome seem to few to specify the 100
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trillion synapses that connect the 100 billion neurons in the human brain.

This thesis is directed toward understanding the computations behind

the brain’s ability to self-localize based on internal cues related to the animal’s

motion (i.e., path integrate). In particular, how does the brain represent spatial

location, and how does it compute it from its inputs? (The question of how

this representation is used to guide the animal’s behavior, though intriguing,

will not be discussed further.) How are neurons connected to perform this

function, and what guides the system’s self-organization?

In the existing neuroscience literature, there is an important class of

neural models that suppose that within the module subserving path integra-

tion, the underlying connectivity of the neurons is highly organized and feeds-

back on itself: imagining that the neurons in the module are spread out on

a sheet, the connectivity is such that neurons located close to one another

excite (or disinhibit) one another, and neurons further apart inhibit one an-

other (Mexican-hat connectivity), Figure 1.1. Consider providing the neurons

with a constant external flux of energy, that activates all neurons uniformly

across the network. Now consider adding a small, transient pulse of input to

one of the neurons. If the strength of the feedback is sufficiently small, the

pulse dissipates and the neural profile goes back to reflecting the uniform in-

put. If, however, we increase the strength of the feedback, and again provide

a small, transient pulse to one neuron, the pulse widens into a bump, as be-

fore (via the local excitatory coupling), but this time, because the feedback is

larger, the long-range inhibition kicks in and shores up the bump, preventing
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it from spreading. This region of silence then allows for neurons just beyond

to spontaneously form, uninhibited, into their own activity clusters, and the

process propagates until the hotspots of activity have organized themselves

into a stable hexagonal array with a well-defined scale (period), orientation,

and phase. The process is reminiscent of the Turing patterns that develop in

activator-inhibitor reactions and is representative of pattern formation in bio-

logical systems in general, which occur when the external flux of energy coming

into the system are balanced by the local fluxes of energy (governed by local

self-enhancement and long-range inhibition between constituent elements of

the system).

Because the coupling between neurons is translation invariant, all phases

of this pattern are stable. This stability in phase endows the network nat-

urally with a certain useful representational capacity. For the purposes of

neural models responsible for keeping track of animal location, it is precisely

this phase that is used to encode the animal’s spatial displacement. How-

ever, the particular complication for such models is figuring out how to couple

the pattern formation process to the motion of the animal, such that when

the animal moves, the pattern also moves proportionally (path integration).

Thus, pattern formation in this implementation is not static, but necessarily

time-dependent. The coupling scheme that performs this function is a complex

variation of the Mexican-hat connectivity described above (and is described

in Chapter 2). The question of the self-organization of such a structure is not

at all understood. One of the contributions of this thesis is to address the
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question, using biologically plausible wiring rules and inputs. This biological

realism allows, for the first time, detailed predictions concerning the devel-

opment of the network connectivity and dynamics. This is the first part of

the thesis. The second part of the thesis involves the development of a novel

experimental probe for inferring certain structural and dynamical details nor-

mally hidden to experimentalists using conventional techniques. Specifically,

the probe is able to infer the existence of Turing-like patterning in the puta-

tive circuit believed responsible for self-localization via path integration, and

also the topology of the underlying network architecture. The probe relies on

systematically perturbing the dynamics of the network in a controlled way and

sparsely sampling the dynamics of only a handful of neurons, all well within

the realm of experimental feasibility. The last part of the thesis involves de-

veloping, for the first time, an analytical understanding of the constraints that

govern the patterning of the network dynamics.
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Figure 1.1: Pattern formation in a neural network. (A) 2D sheet of
neurons in brain space, one of which is highlighted as the black square at center.
The connectivity profile between this neuron and its neighbors is shown below
as the black contour, and has the form of a Mexican-hat (or, difference-of-
Gaussians), with local excitation (or, rather, in this specific case, disinhibition)
and long-range inhibition. This connectivity profile is shared by all neurons in
the sheet. (B) Steady-state pattern formation in the neural activity, given the
connectivity in (A). The yellow blobs represent clusters of neurons with high
firing rates, while the black surrounding regions indicate that the neurons are
silent. Figure modified from [16]
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1.2 What is self-localization and why we do it: A com-
putational view based on Marr’s levels of descrip-
tion

As an organizing principle for introducing the topics in this thesis, we

borrow a descriptive framework from David Marr, the late, great computa-

tional neuroscientist from the middle of the 20th century. Marr was respon-

sible for some of the first models linking high-level cognitive processes (e.g.,

memory recall) to plausible implementations at the neural circuit level. Marr’s

approach to understanding such processes was a description at three hierar-

chical levels: at a functional level, algorithmical level, and the level of a circuit

implementation. In what follows, we will consider how the brain computes the

animal’s location, i.e., the process of self-localization. As we shall see, there

are two algorithms for self-localization: a strategy akin to triangulation, and

path integration. The focus of much of the work of this thesis is on how the

brain learns and implements the latter algorithm.

Many animals, from insects to mammals, exhibit complex collections

of spatial behaviors for survival, including foraging for food, remembering

where home is, remembering safe routes between home and various known food

sources, improvising new routes back home after an exploratory outbound path

to a previously unvisited location, learning maps of new environments, and

setting goal locations. At the core of these behaviors is a basic need to know

where the animal is at any given time, i.e., to self-localize, which enables the

animal to plan routes towards desirable places, and avoid undesirable places.
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1.3 Algorithmical descriptions of self-localization: ex-
ternal vs. internal cues

Algorithmically, there are at least two well-known approaches to self-

localization, based on two entirely different sources of information. These two

strategies can be intuited in the context of navigation at sea where they are

known as celestial navigation and dead-reckoning. Assuming that the vessel

is well away from shore, the only available cues are the stars (and sun). We

will define these as external cues. Celestial navigation involves the mapping of

viewable constellations to coordinates on the globe. Importantly, the mapping

between constellations and position is the culmination of many years of obser-

vation, and it is only through this lengthy process of familiarization with the

night sky that a map is available to the sailor at all as a means to self-localize.

Distinguish this technique from dead-reckoning, or path integration, in

which the local motion of the ship, i.e., an internal cue, is used to compute

the ship’s displacement with respect to some origin. Here, there is no need to

reference landmarks. The strategy involves simple vector calculus: by holding

course on a particular heading direction, over some known time period at

fixed speed (the speed is measured, e.g., by throwing an object overboard

and measuring how long it takes the object to move from bow to stern), the

displacement vector can be computed and added to the previous estimate

(computed from other legs of the journey) to keep track of the ship’s relative

position with respect to its starting point. In conditions that obscure the

sky, dead-reckoning is all that is available to the sailor as a means of self-
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localization.

Such strategies, while used overtly by sailors, are not unique to humans.

Many species, from insects to mammals, are skilled at self-localization. For our

purposes, we will restrict ourselves to mammals, and in particular, because of

the wealth of behavioral experiments, to rodents. In familiar environments, in

the presence of stable cues, rodents tend to use available landmarks as beacons

to guide their immediate behavior. An important experiment, conducted by

Edward Tolman in 1946, showed that they can do so by accessing an inter-

nal (i.e., in their head), “cognitive” map of the external environment [109].

After preliminary training rats in a spatially restricted, L-shaped enclosure,

where they are rewarded to move from one end of the tract to the other, the

rats were then given the choice of many novel radial arms (having blocked the

original path) to move directly to the endpoint, i.e., along the hypotenuse of

the original L-shape. Interestingly, many rats, above chance, were observed

to take the shortest radial route corresponding to the beeline path between

the start and end points. This suggested that rats could improvise paths and

shortcuts through regions they had not previously traversed. Tolman reasoned

that animals were capable of constructing mental representations of spatial lo-

cations in the environment and relations between them, independent of reward

(because movement along the radial arms had never been experienced before,

let alone reinforced). He called these representations “cognitive maps”. By

construction, cognitive maps could hypothetically provide route information

between any two points in the environment and thus be used to navigate Tol-
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man’s sun-burst maze. Thus, like the celestial navigator, who relates perceived

landmarks to particular coordinates on his map, the brain of the mammal re-

lates proximal and distal landmarks to particular coordinates in its cognitive

map.

In the absence of known cues, as in novel or light-deprived environ-

ments, animals, just like the sailors, must rely on their sense of self-motion to

guide behavior. That animals are capable of navigation under such deprived

circumstances was shown in a classic paper by Mittelstaedt and Mittelstaedt

in 1980 [79]. Mother gerbils, in laboratory conditions in which their nest of

pups was placed on a large platform, were observed, in complete darkness, to

fetch a displaced pup and bring it back on a beeline path to the nest. Was

she simply beaconing on the odor/noises of the nest, or was she computing

a homing vector based on having maintained a representation of her position

via path integration? To answer this, the authors carefully moved the nest

after the mother had left to retrieve the pup. It was found that her return

path was usually directed towards the old location rather than the current

nest position, even if the nest location was relatively close by, showing that

she was navigating using path integration.

As a side note, it is interesting to consider how maps are constructed in

the first place. In the robotics literature, this is known as the SLAM problem

(Simultaneous Localization and Mapping). If self-motion estimates are pre-

cisely integrated to determine location, then building a map of the environment

involves simply visiting and attaching a coordinate to each landmark. Once
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constructed, the map can supplant the path integrator as the main means by

which the robot self-localizes. Typically, however, the sensory inputs (both

internal and external) are noisy and unreliable and can lead to large inaccura-

cies and inconsistencies in the map, e.g., multiple coordinates mapping to the

same landmark, or vice versa. Building a map that reflects the true arrange-

ment of objects in the environment requires probabilistic sequential Bayesian

methods (or approximations like Kalman filters) to optimally combine the ex-

pected sensory inputs with the current sensory inputs in order to correct both

the self-motion estimate and to update the map.

These processes described above, i.e., map-based and self-motion-based

self-localization, and the necessity of the latter for the development of the

former, have striking neural correlates, to which we now turn.

1.4 Neurobiology of self-localization

1.4.1 Hippocampus as the neural substrate of the cognitive map

There is particular region of the brain that has been implicated in play-

ing a crucial role in spatial navigation: the hippocampus. The first significant

interest in the hippocampus came in the 1950’s, when it was shown to be an

area related to memory. Patient HM, whose hippocampus was bilaterally le-

sioned in order to quell the epileptic seizures that emanated from there, was

left with the complete inability to form new memories. Importantly, his in-

tellectual and perceptual abilities remained intact. Later, and seemingly at

odds with this interpretation, was the discovery, by John O’Keefe in the early
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1970’s, of a special type of neuron recorded electrophysiologically within the

hippocampus of a behaving rodent. This cell fired if and only if the animal was

in the immediate neighborhood of a particular location (its place field) in a

particular environment [85], Figure 1.2B. Many place cells possess place fields

within any given environment. Because the recording environments (typically

0.5-1 m per dimension) tended to be covered by different place fields, place

cells were hypothesized to form the basis for spatial mapping. This pointed

to the hippocampus as the locus of a cognitive map for space, and, relating

back to its role in memory, to the possibility that the encoding and retrieval

of memories occurs within a spatial substrate.
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Figure 1.2: Spatial-coding cell types found in hippocampal formation.
(A) Schematic of square environment, i.e., open field, in which rat is placed to
measure responses of cells. (B) Response of a place cell in the hippocampus,
from experiment [26]. The trajectory of the rat is marked by the gray line. Red
dots show the locations of the animal when the cell fired a spike. (C) Response
of a grid cell in the MEC, from experiment [26]. Gray line and red dots, same
as in (B). (D) Response of a head-direction cell the in postsubiculum, from
experiment [110].
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The groundbreaking discovery of place cells prompted the renewal and

further development of Tolman’s cognitive map hypothesis from 20 years ear-

lier. O’Keefe and his colleague Lynn Nadel extensively reviewed the psycho-

logical, behavioral, anatomical, and physiological evidence for the existence of

abstract spatial maps in the brain, in their comprehensive and prescient book

on the topic [86]. O’Keefe and Nadel provided a clear definition of a spatial

map as an abstract representation of locations in an environment, the rela-

tionships between them, and the sensory inputs related to the locations. An

important contribution to the cognitive map theory by O’Keefe and Nadel [86]

was to elaborate on the problem of ongoing location identification. Reasoning

that it was sufficiently difficult to estimate location purely from the observation

of shifting angles of visible landmarks relative to the animal, they hypothe-

sized that another system, sensitive to the movements of the animal, would

be required. This second system was hypothesized to follow the self-motion

of the animal through space, shifting the hippocampal place representation

accordingly. The self-motion drive was suggested to supplement purely exter-

nal sensory inputs, which provided cues originating from viewing the world

from different locations and angles. Functionally, the “internal” system was

seen as providing predictions about what to expect at a particular place, that

were compared with the actual sensory input provided by the “external” sys-

tem. Discrepancies between expectation and actual input might be conveyed

via misplace units [84], whose hypothesized role was to signal mismatches be-

tween the two systems. In the theory, active misplace units would trigger
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further exploration of the environment until enough information was acquired

to fix the incongruities between the two inputs and silence the misplace units.

Thus, in a way, each system was seen as providing partially accurate repre-

sentations of the animal’s location within the environment, with the interplay

between the two suggested as leading to the formation of a consistent map.

At the time, there was no evidence for the “internal”, path-integration-

based module in the brain; the authors argued for its inclusion on theoretical

grounds. However, there is now some reason to believe that the“internal”

system is in the medial entorhinal cortex (MEC), which directly projects to

the hippocampus.

1.4.2 The entorhinal cortex as gateway to the hippocampus

In addition to the hippocampus, the entorhinal cortex (EC) is a key

brain area involved in spatial navigation. Lesion studies have implicated the

EC in spatial computation [34, 87, 88, 101, 111]. The EC is the cortical gateway

of inputs to the hippocampus, and divided into medial and lateral portions

(MEC and LEC, respectively) [76, 121, 122]. Electrophysiological studies in

the EC of the freely moving rat reveal a dissociation in the nature of the LEC

and MEC representations [28]: LEC cells tend to respond to objects in the

animal’s immediate environment [28, 113, 126, 128], while cells in MEC ignore

object locations and instead fire at multiple locations in the open field [2, 37,

41, 91, 117]. Thus, the LEC and MEC might form the two parallel streams

postulated in the cognitive map hypothesis, carrying external sensory and
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internal motion-based cues, respectively, to be synthesized in the hippocampus.

1.4.3 Grid cells as the hypothesized neural substrate of path inte-
gration

Less than a decade ago, the MEC of rats was found to contain a class of

cells – grid cells – with astonishing spatial firing characteristics [48]: each cell

fires at multiple locations in an environment, and the locations are arranged

on the vertices of an essentially equilateral triangular grid, Figure 1.2C. This

grid that tiles the space in which the animal moves (defined as the movement

space) is parameterized by period, orientation, and phase. Grid cells have

since been found in other mammals as well, including mice, bats, monkeys,

and humans [31, 40, 48, 61, 66, 124].

A couple of definitions are in order. In what follows, we will make

reference to three spaces: movement space, defined above; brain space, which

refers to the physical arrangement of cells in the brain; and topological space,

whose significance we will see later, defined as a special re-arrangement of the

cells in brain space based on their connectedness (note that this latter space

is only used as an aid for understanding the network structure). We define

the cell’s spatial tuning curve as follows: first, subdivide the environment into

spatial bins of width ∆x (which is usually on the order of 1 cm), with the ith

bin centered at ~xi; then, count the number of spikes emitted by the cell in each

bin and divide by how often the animal visits that spatial bin:

r(~xi) =
#of spikes fired in spatial bin centered at ~xi

time spent by animal at spatial bin ~xi
. (1.1)
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For grid cells, the spatial tuning curve has the shape of a grid. In contrast,

we define the entire network’s activity profile in brain/topological space as the

population activity. Population activity is a snapshot of the instantaneous (on

the order of a time bin ≈ 1ms in duration) dynamics of the network.

Below, we highlight six key properties of grid cells.

• Atopography of cell arrangement in brain space. Nearby cells in brain

space share common grid periods and orientation, but do not change

continuously in phase. This discontinuity in spatial tuning curves of

nearby cells means that the arrangement of cell is atopographic. In

other words, their arrangement in brain space has no bearing on the

similarity of their spatial tuning curve phases (i.e., their arrangement in

movement space). This is distinct from the sensory systems in the brain,

most notably the visual system, in which nearby cells in brain space are

tuned to nearby regions of visual space.

• Modularity. There is one other key organization principle, that applies

along the longitudinal axis of the MEC, Figure 1.3. Along this axis,

grid periods increase in size; however, the distribution of periods (and

orientations) is discretized, or chunked [102]. Thus we define a grid

cell network (GCN) as a collection of grid cells with a shared period

and orientation, but with phases distributed uniformly, and randomly

(i.e., atopographic organization of phases in brain space within each

GCN). It is believed that there are approximately 4000-40000 neurons

17



in a GCN [16, 38, 77]. Moreover, evidence suggests that the different

GCNs that span the longitudinal axis of the MEC function more or less

independently [102]. A quick note on the apparent redundancy of this

code: From the point of view of a downstream read-out, each GCN’s

encoding of position is only unique modulo the length of the GCN’s

characteristic spatial period; a unique encoding of position only comes

from reading out from all GCN’s simultaneously. The “why” question of

this particular encoding of position (called a modulo code) is interesting

in its own right but will not be discussed further in this thesis. Suffice it

to say that this particular code is especially sensitive to noise, and thus

can be used to correct error in the path-integrated estimate of location

[100, 115].
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Figure 1.3: Modular organization of grid cells along the longitu-
dinal axis of the MEC. Schematic organization of grid cells in MEC,
showing the span of modules (solid gray circles) along the MEC’s longi-
tudinal axis, from the dorsal (left) to the ventral (right) end. A GCN
module is defined as a collection of grid cells with common grid scale and
orientation. GCN’s are also reciprocally connected with the hippocam-
pus and postsubiculum, which provide place and velocity information,
respectively. Grid cell recordings shown above are from experiment [102].
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• Insensitivity to external cues: self-motion cues as primary drive of grid

response. The spatial tuning curves of grid cells (in movement space)

can rotate when salient external cues are rotated [48], and periods of

their spatial tuning can resize in response to a rescaling of a familiar

environment [4], but other than simple modulations of the heights of the

cell’s firing fields (while preserving grid orientation, scale, and phase)

[96], the spatial tuning curves of grid cells are relatively insensitive to

the particulars of the environment. This is in contrast to the spatial

responses of cells in the LEC and the hippocampus, which exhibit more

detailed and complex changes to environmental manipulation [23, 28,

72, 73, 82, 113, 117, 126, 128]. The relative insensitivity of grid cells to

external cues and the stability of their fields in cue-poor environments

and darkness [48] suggests that self-motion is the primary determinant

of grid cell firing. For these reasons, it is widely hypothesized that the

grid cell system computes, or at least is responsive to, a path integrated

estimate of the animal’s position. However, direct evidence of the role

of grid cells in path integration is lacking.

• Conjunctivity: grid + head direction tuning. Grid cells are most com-

monly found in the superficial layer (layer II) of MEC. The postsubicu-

lum, a major source of input to the MEC, terminates in the deep layers

[112]. The postsubiculum contains head direction cells, which fire when

the animal’s head points in a particular direction, usually with respect

to some salient, stable cue in the environment, independent of the actual
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location of the animal within the environment, Figure 1.2D. Because of

these inputs, the deep layers (layers III-V) of the MEC contain cells re-

sponsive to the animal’s head direction, either in the form of pure head

direction tuning or combined head direction and grid-like tuning. The

latter are known as “conjunctive” grid cells [95]. A fraction of these are

modulated by the animal’s speed as well [95], such that their firing rate

increases linearly with speed. In contrast, grid cells in the superficial

layer tend to be insensitive, or at least weakly tuned, to head direction

(“pure” grid cells) [95].

• Wiring constraints. Grid cells are most probably excitatory cells, mean-

ing that they excite the cells to which they project [32, 97]. In the deep

layers of the MEC, grid cells can directly excite one another. In layer II,

however, this is not the case; instead, communication between grid cells

is likely mediated by inhibitory cells [25, 29, 89].

• Grid cell inputs. As mentioned earlier, the MEC is poised to receive in-

formation about the animal’s location via the place cells of the hippocam-

pus as well as information about the animal’s velocity, via the speed-

sensitive head direction cells of the postsubiculum [122], Figure 1.3.
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1.5 Circuit implementation of path integration

1.5.1 Canonical model of neural activity

Given the evidence that suggests grid cells are the substrate on which a

path-integrated estimate of the animal’s location is computed and maintained,

and given the fact that the different subnetworks of the MEC, i.e., GCNs,

function more or less independently [102], we are faced with the task of figuring

out how a collection of cells within a single GCN can both solve this task and

elicit grid-like spatial responses (in movement space) in the process.

There are various levels at which to describe the dynamics of single neu-

rons. Hodgkin and Huxley introduced the first model of neural spiking, which

involved four coupled ode’s, one of which governed the membrane potential of

the cell, similar in form to the dynamics of the voltage in an RC circuit, the

other three governing the dynamics of ionic currents responsible for the cell’s

action potential [57], or “spike”. For sufficiently large firing rates (defined as

the number of spikes per second), and for a sufficiently long membrane time

constant, these four ode’s can be reduced to a single ode governing the fir-

ing rate of the cell, embedded in a network of other neurons with identical

dynamics [92]:

dsi
dt

+
si
τs

= f (Ii) , (1.2)

where si is analogous to the firing rate of the ith cell, τs is the characteristic

time scale of the cell’s response (assumed to be on the order of tens of millesec-

onds), and Ii is the total input into the cell. The total input is the sum of

two terms, derived from internal (within the GCN) and external (outside the
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GCN) sources:

Ii = greci + gexti , (1.3)

where greci =
∑

jWijsi is the total recurrent input from all other cells in the

GCN, Wij is the (i, j)th element of the coupling matrix, describing the strength

of the connection (or synapse) from cell j to cell i, and gexti is the external input.

We will assume that f is a simple rectification of the neuron’s inputs, namely

f(I) = I if I > 0, otherwise, f(I) = 0. Note that the dynamics specified

above is entirely deterministic, and that there is no explicit spiking (i.e., no

action potentials). This model is known as the Linear-Nonlinear (LN) model

of neural dynamics. There is evidence to believe that the cell’s transformation

of its input into output spiking events is a stochastic process with Poisson

statistics. The LN model can be extended by sampling, in each time bin ∆t,

spiking events from the distribution Poiss(n; f(I)∆t). This builds a spiking

vector of 0’s, 1’s, 2’s, etc., formalized in continuous time as the spike train

variable:

σ(t) =
∑

k

nkδ(t− tspkk ), (1.4)

where tspkk is the kth time bin in which nk spiking events occur. This term

then replaces the right hand side of Equation 1.2:

dsi
dt

+
si
τs

= σi, (1.5)

This extension is known as the Linear-Nonlinear-Poisson (LNP) model of neu-

ral spiking.
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Given the canonical description of the dynamics of single neurons (ei-

ther Equation 1.2 or Equation 1.5), the problem of circuit implementation is

reduced to finding the appropriate coupling matrix, W , as well as the appro-

priate inputs, gexti . For now, we will assume that gexti is constant and uniform

across the GCN. How, then, to specify W?

1.5.2 The challenge of modeling path integration with neurons: dif-
ference of time-scales

At the most basic level, path integration is spatial calculus. For any

given time step, while the new displacement is computed, the previous esti-

mate, or memory, is stored, to which the update is then added. Therefore,

there are two components: a mechanism that stores memories, and a mecha-

nism to update those memories by the appropriate amount related to animal

motion.

At the level of the neural circuit, keeping track of slowly changing

variables like animal position presents a problem: individual neurons have very

fast time constants (see τs above, which is on the order of tens of milleseconds),

orders-of-magnitude below what is needed. However, collectively, neurons can,

when coupled appropriately, exhibit dynamics with very slow time constants,

on the order of seconds. That is, a carefully constructed coupling matrix,

W , endows the state space of the system (where each dimension represents

the firing rate of a single neuron, and the total dimensionality is equal to the

total number of neurons) with fixed points, or attractors. These attractors
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are stable such that perturbations away from the attractor fall back in. These

attractor states can have any arrangement; an arrangement we are particularly

interested in is a 2D manifold of such attractor states, or a 2D continuous

attractor. Thus, animal position, which is a 2D continuous variable, can be

mapped onto the continuous manifold of stable network attractor states. As

far as path integration is concerned, this 2D continuous attractor manifold

will serve to store the current estimate of animal location. Secondly, we need

a way to couple the network state, which rests somewhere on the manifold,

to animal motion, so that when the animal moves the state is kicked along in

correspondence with the animal’s velocity.

What is the coupling matrix that solves the problem of path integration

as laid out above, and also gives grid-like responses from its constituent neurons

as a function of animal location in movement space? That particular problem

has been solved before, and we outline its construction below.

1.5.3 Continuous attractor models of grid cells

Continuous attractor models of grid cells [15, 16, 38, 46, 77] posit that

neuron-to-neuron connectivity in the form of short-range excitation and long-

range inhibition destabilizes the uniform activity state in the neural population

activity profile (in topological space, which is like brain space, except that the

neurons have been reordered based on the connectedness to their neighbors)

and stabilizes a state which displays regular triangular grid patterning of ac-

tivity bumps, or hotspots.
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Translation invariance of such connectivity stabilizes all translations of

this pattern, and an asymmetric component of the connectivity allows external

inputs signaling animal velocity to drive the pattern in direct proportion to

the direction and speed of the animal’s movements.

All cells in the continuous attractor network model share the same grid

period and orientation, because their responses are generated by translations

of the same pattern, and all spatial phases are exactly uniformly distributed,

consistent with the data. Disjoint network copies (modules) are required to

produce different grid periods, and because each network is large, leads to

the prediction of a few, discrete grid periods within each animal [16, 38, 77].

This prediction was recently experimentally verified in [102]. The fundamental

prediction of continuous attractor models is that the differences in preferred

spatial activation phase between pairs of grid cells will remain stable over time

and regardless of environmental manipulations that induce sizeable distortions

in the grid fields, if the network architecture remains unchanged. Recent anal-

ysis of simultaneously recorded grid cells with similar period and orientation

across experiments involving grid cell distortion (including the environmental

stretching experiments of [4] that induce likewise stretching of the grid fields)

establishes the stability of these predicted relationships and shows that the

grid cell population responses within a GCN are confined to a 2-d manifold

within the high-dimensional state space [125].

We have shown that continuous attractor models of grid cells provide

a satisfying account of self-localization via path integration through grid cells,
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thus fulfilling Marr’s last level of description. However, there are several key

questions left unaddressed in the literature.

1.6 Development of the grid cell circuit

It is poorly understood how the system might form. In rats, grid cell

responses emerge at 3-4 weeks of age, after eye opening, [71, 119], suggesting

that the system is not hardwired at birth. However, there are no existing

models of grid cell development consistent with the above observations. Thus

questions regarding the nature of the synaptic learning rules (see below) that

lead to a fully functioning grid cell network, or whether the emergence of the

network requires extensive experience of the animal exploring the environment,

are wholly unknown.

1.6.1 Spike time-dependent plasticity

A famous postulate by Donald Hebb, in 1948, stated without exper-

imental support, said the following: “Whenever an axon of cell A is near

enough to excite cell B and repeatedly or persistently takes part in firing it,

some growth process or metabolic change takes place in one or both cells such

that A’s efficiency, as one of the cells firing B, is increased.”

The implied temporal specificity of this learning rule has since received

experimental support, Figure 1.4 [6]. This has led to the following mathemat-

ical formalization of the the dynamics of the synapse connecting cell j (the

presynaptic cell) to cell i (the postsynaptic cell), which depends on the cells’
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relative spiking times (termed STDP, for Spike Time-Dependent Plasticity):

1

η

dWij

dt
=

∫ ∞

0

σi(t)σj(t− t′)k+(t′)dt′ +

∫ ∞

0

σj(t)σi(t− t′)k−(t′)dt′, (1.6)

where σ(t) denotes the cell’s spike vector (which consists of 0’s and 1’s in

discretized time, as described above in Equation 1.4), k+ and k− represent

the learning kernels relating how changes in the synapse are related to the

difference in times of the pre- and post-synaptic spiking events (k+ (k−) is

used when presynaptic spike temporally precedes (follows) the postsynaptic

spike), and η is the synaptic learning rate.
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Figure 1.4: Spike time-dependent plasticity in the hippocampus. Mod-
ification of the synapse connecting two cells as a function of the relative time
between pre- and post-synaptic spikes (i.e., “spike timing”), measured in exper-
iment [6]. The right (left) hand side of graph shows that when the presynaptic
cell fires before (after) the postsynaptic cell with a latency of less than 40 ms,
the synaptic weight increases (decreases). The solid lines are exponential fits
to the data, and would correspond to the functions k+ and k− in Equation 1.6.
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1.6.2 Why the question of grid cell development is hard

The question of grid cell development poses several conceptual chal-

lenges. First, the wiring needed to perform path integration is sophisticated

because of the necessary requirement that movements of the animal in move-

ment space relate to movements of the population activity pattern in brain

space. Secondly, the known atopographic arrangement (in brain space) of grid

cells precludes the usage of mechanisms for building the topographic maps

common to areas in the sensory cortices, like the visual cortex [120, 123].

Thirdly, it is common to model the emergence of tuning curves by assum-

ing that a supervisory input imposes the desired tuning on the network, and

that rules governing the development of neuron-to-neuron coupling (i.e., plas-

ticity rules, as described above) consolidate the imposed patterns [49, 105].

But it is implausible that fully functional supervisory grid-patterned inputs

exist before grid cell maturation.

1.6.3 What we show

In Chapter 2, we describe a neural network model for the emergence of

grid cells based on spatial experience. Despite its relative simplicity, the model

overcomes the conceptual hurdles described above. The inputs into the model

are based on the available anatomical and electrophysiological data (outline

above), which suggest that the MEC has access to both animal location infor-

mation (via place cells that are themselves assumed to be driven by landmarks

in an enriched environment) as well as animal velocity information (via speed-

30



sensitive head direction cells in the post-subiculum). The stochastic dynamics

of individual neurons is modeled according to Equation 1.2. The initially ran-

dom cell-to-cell coupling matrix is developed according to Equation 1.6, where

the learning kernels are assumed generically to be exponentials. The network

is then allowed to develop, driven by inputs derived from a quasi-random ex-

ploration of a 1D environment by a virtual rat. After development, the mature

network exhibits grid cell-like activity patterns, and is capable of path integra-

tion, even in the absence of the external landmark-derived place information

(i.e., darkness). It is consistent with the existing (but limited) data on the

organization of grid cells in layer II of the MEC, including the atopography

of the grid cell layer (see above), the use of conjunctive grid cells (see above),

and the exhibition of approximate 2D continuous attractor dynamics [125].

Beyond being the first developmental model of grid cells that exhibits

continuous attractor dynamics, the model is unique in that it is constructed

using stochastically spiking neurons, and thus is able to implement what is

widely considered to be the most biologically realistic form of synaptic learning,

STDP. In doing so, the model provides a unique opportunity to make predic-

tions regarding the developing, immature network as well, and thus to connect

with a host of experiments regarding grid cells in development [71, 118, 119].

Lastly, there is an important takeaway that ties into the next chap-

ter of the thesis; namely, that the topology of movement space constrains

the topology of brain/topological space (recall that “topological” space refers

to a specific reordering of the neurons in brain space based on connectivity,
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such that strongly connected neurons are placed next to one another). Here,

because movement space is necessarily planar, the topology of the network

structure is also planar. This is an important prediction of the developmental

model, and naturally leads to the next part of the thesis.

1.7 Inferring network topology and local connectivity
structure from experiment

The fact that the population activity of grid cells is localized around

a continuous low-dimensional manifold [39, 125] provides strong evidence for

strongly recurrent networks at the heart of the grid cell response. However,

such a result does not sufficiently discriminate between available continuous

attractor models. For one, it does not specify whether the computations that

give rise to the attractor dynamics are performed within [15, 16, 38, 46, 77] or

upstream [18, 68, 78, 114] of the grid cell layer. Further, amongst models in the

former category, there is ambiguity in the nature of the network connectivity:

some models posit that the topology of the network connectivity is toroidal

[16, 46], while others suggest that it is planar [16, 38, 116]. As discussed at the

end of the last section, this structural difference between models has qualitative

ramifications for how the circuit could have developed. Another unknown is

the spatial extent of the center-surround connectivity. This is directly related

to the nature of the population activity patterning in the network’s dynamics,

both in how large and how many activity bumps make up the population

activity pattern, as well as the permissible range of population activity pattern

32



periods.

1.7.1 Why circuit discrimination is hard

Despite their differences, the models are difficult to distinguish on the

basis of existing data, because all of them produce grid-patterned outputs

and exhibit approximate 2D continuous attractor dynamics. Worse, neither

complete cataloguing of the activity of every cell in the network or the strength

of every synapse in the network would be sufficient to distinguish between

proposed mechanisms.

1.7.2 What we show

We show how it is possible to gain surprisingly detailed information

about the network structure and dynamics of the grid cell circuit from a fea-

sible experimental strategy that depends on a circuit perturbation and sparse

neural recording. The proposed strategy can allow the experimenter to dis-

criminate between various distinct candidate mechanisms that are currently

undifferentiated by experiment. We show how, in particular, both the topol-

ogy of the network (planar vs. toroidal), and, under certain restrictions, how

many bumps there are in the network population activity (i.e., how spatially

restricted are the network connections) can be deduced through a feasible

experimental manipulation of the circuit.
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1.8 Analytical derivation of constraints related to pat-
tern formation of population activity

The last portion of the thesis is concerned with beginning to understand

what controls the period of the population activity pattern. In particular, we

want to understand a particular result of the previous two chapters, namely

that the period of the pattern changes with certain parameters of the network

dynamics (e.g., changing the neural time constant, τs). In this chapter, we

seek understand this dependency.

1.8.1 Why this is challenging

According to linear stability analysis, the period of the pattern for-

mation in the population activity should depend on the characteristic spatial

scale of the neural coupling. Changing dynamical parameters (like τs) is only

expected to modulate the threshold of the instability that leads to pattern for-

mation in the dynamics, but have no effect on the critical wavelength. Thus,

understanding why this is apparently not the case requires going beyond simple

linear stability analysis to consider the specific nonlinearities of the system.

1.8.2 What we show

We derive constraints between the dynamical/structural parameters of

the network, and relate them to the expected pattern parameters, including

the period of the pattern and the size of the individual hotspots that comprise

the pattern. These equations constrain the solution phenotype to a continu-
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ous, low-dimensional manifold. We confirm these predictions with numerical

simulations, and investigate, also with simulations, how the network boundary

conditions (i.e., topology) affect solution convergence.
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Chapter 2

A model of grid cell development through

spatial exploration and spike time-dependent

plasticity

2.1 Introduction

The unusual tuning properties of mammalian grid cells [31, 40, 48, 66,

124] have spurred a number of theoretical and experimental efforts to dis-

sect their function and mechanisms. The periodic response of grid cells to

two-dimensional (2D) animal location is relatively independent of non-spatial

variables. Thus, grid cells are widely conjectured to be responsible for com-

puting spatial displacements, by integrating self-motion cues [16, 35, 38, 48].

On the question of mechanism, grid cells from a module (defined as

the set of all cells with similar spatial period and orientation [102]) appear to

collectively exhibit 2D continuous attractor dynamics [125]. Consistent with

this finding, network input in the form of slow depolarizing current ramps

drives the spatial firing rate patterns of grid cells [32, 97]. Several hardwired

models demonstrate how grid cell-like activity can arise based on recurrent

circuits that exhibit low-dimensional continuous attractor dynamics [8, 16, 38,

46, 77, 78, 89]. Other models of individual grid cells are based on interfering

temporal oscillations [17, 52] that are mapped into spatially periodic responses.
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Nevertheless, key mechanistic questions remain unanswered. It is poorly

understood how the system might form. In rats, grid cell responses emerge

at 3-4 weeks of age, after eye opening, [71, 119], suggesting that the system

is not hardwired at birth. Here we describe a neural network model for the

emergence of grid cells based on spatial experience.

2.2 Results

2.2.1 Model ingredients: initial architecture and learning rules

Our model relies on active exploration of a spatially cue-rich environ-

ment. This work focuses on the assembly of an individual grid cell network

(GCN) whose model neurons correspond to grid cells in one experimentally

observed module. The GCN consists of excitatory (E) and inhibitory (I) neu-

rons in a 5 : 1 ratio, each modeled as LNP neurons (as described in Chapter

1; for a more complete description of the simulations, see the Methods section

at the end of this chapter):

dsi
dt

+
si
τs

= σi (2.1)

where σi(t) =
∑

k nkδ(t−tspkk ) is the cell’s spike train, based on Poisson samples

of its instantaneous firing rate: Poiss(nk, f (Ii) ∆t) (nk is the number of spike

events sampled within the kth time window, of size ∆t; f(Ii) is the same

rectification nonlinearity as described in Chapter 1). We will now describe the

input, Ii, into each cell.
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Figure 2.1: Initial architecture and learning rule. (A) The 1D GCN
consists of inhibitory (I; gray circles) and velocity-sensitive excitatory cells (EL

and ER and blue and red circles, respectively). All cells are assigned location-
specific inputs (gray bell-shaped curve: schematic of a location-specific input;
dotted gray envelope suppresses location-specific inputs near the environment
boundaries). The colored boxes labelled ‘L’ and ‘R’ are the two pools of speed-
modulated head-direction cells (not modeled explicitly) that supply velocity
input to the GCN and project only to the E cells. (B) Snapshot of population
activity derived from location-specific inputs during the learning. (C) Possible
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STDP windows (kernels) used in this work, for excitatory (left) and inhibitory
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the STDP windows, respectively.
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During exploration, the E and I populations receive inputs related to

the position and self-motion of a virtual animal moving in 1D, Figure 2.1A, (see

Figure A.1 for the statistics of the trajectory used for training). The former

inputs, termed location-specific, could hypothetically derive from any number

of sources connected to the MEC, including the hippocampus, Figure 2.1B,

and are such that each neuron in the GCN randomly inherits a location pref-

erence in movement space somewhere in the environment to which it is driven

to fire maximally (as we will see, this randomness in location-preference leads

to apparent randomness in how cells develop connections with each other in

brain space, and thus for the mature GCN to exhibit an atopographical orga-

nization; in order to visualize, and therefore understand, the development of

patterning in the network connectivity, we will resort to displaying neurons in

“topological” space, i.e., an ordering that respects their underlying connect-

edness). As we will see, once the GCN is mature, the location-specific inputs

become ineffective in driving neural activation and setting the network state.

The other input, velocity, is multiplicative (see below) and divides

the E cells into two populations: one population (ER) receives biased speed-

dependent excitation when the animal moves rightward, the other (EL) when

the animal moves leftward, Figure 2.1A. The I cells receive no velocity input.

In sum, the input into each cell is given by

Ii = αveli

(
greci + gexti

)
(2.2)

where the recurrent inputs is greci =
∑

jWijsj (this term implicitly includes

inputs from all cells across all populations), and the external input comprises
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of two terms, gexti = gloci + g0, where gloci = N(x − xi, σloc) is the location-

specific input (N is a Normal distribution, x is the location of the animal, xi

is the cell’s location preference, and σloc is the width of the location-specific

input into the GCN, all in units of meters in movement space) and g0 is the

constant uniform input, and αveli = 1 + β(êi · ~v) is the multiplicative velocity

input (~v is the animal’s velocity, β is the gain of the velocity input, and êi

is the cell’s direction preference equal to (0, 1), (0,−1), (0, 0) for the ER, EL,

and I populations respectively). We note that the velocity input, αvec, is also

technically derived from outside the network.

The synaptic weights (specifically EL-to-I, ER-to-I, I-to-EL, I-to-ER,

and I-to-I, which will be refered in shorthand as E-to-I, I-to-E and I-to-I,

respectively; we have excluded E-to-E connection to be consistent with ex-

perimental data [5, 25, 29, 89]) are initially random and weak, and are subject

to change according to spike time-dependent plasticity (STDP) rules, as de-

scribed in Chapter 1 in Equation 1.6. For example, the form of the STDP for

excitatory synapses (i.e., E-to-I) is the conventional Hebbian form (as shown in

Figure 1.4), where the synapse is strengthened (weakened) if the presynaptic

cell fires before (after) the postsynaptic cell [33, 36, 60, 75], Figure 2.1D, left.

For the inhibitory synapses, the window is reversed (anti-Hebbian [58]), Fig-

ure 2.1D, right. As a note, simultaneously reversing the time-axes of all STDP

windows used here, which would correspond to anti-Hebbian STDP in exci-

tatory synapses [36, 47] and Hebbian STDP in inhibitory synapses, results in

quantitatively the same outcome (up to a sign-flip of an arbitrary sign during
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integration, see Figure A.1).

During plasticity, neural activity is driven only by the location (gloc)

and velocity-specific (αvel) inputs (grec and g0 are suppressed), Figure 2.1B. We

define this phase as the plasticity phase, and distinguish it from the activation

phase in which all inputs are active, but learning is suppressed (η = 0 in

Equation 1.6). This division of phases is common practice for learning in

recurrent networks. We will return to the plausibility of this phase segregation

in the Discussion section at the end of the Chapter.
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2.2.2 Development of connectivity

Emergence of “local” connectivity and weight asymmetries. Driven by

the localized inputs shown in Figure 2.1B, cells with similar location prefer-

ences are activated within a short latency of each other. These short-latency

activations rapidly result in stronger synaptic weights, both excitatory and

inhibitory, that is “local” in the functional sense of location preference, i.e.,

neurons with similar location preferences are wired up together (Figure 2.2A-

C, row 1).

GCN neurons also spontaneously develop weight asymmetries based

on direction preference (Figure 2.2A-B). Consider the excitatory synapses, in

particular the synapses from the ER population to the I population. During

rightward traversals, the positive STDP lobe (Figure 2.1D, left) strengthens

weights from the ER population of cells to I population of cells with slightly

more rightward location preferences, which fire a short time later. The weight

gain is not fully cancelled by the opposite lobe of the same STDP kernel during

leftward trajectories, because during such runs, the net activation of the ER

neurons is lower (through of the modulatory term, αvel). Thus, ER cells project

to I cells with slightly right-shifted location preferences (Figure 2.2A, row 4).

The opposite happens for the EL population.

By a similar argument, I-to-E projections acquire slight shifts in the

opposite direction (Figure 2.2B, rows 3-4), because the STDP learning window

is flipped when the presynaptic cell is inhibitory (Figure 2.1D, right). The I-to-
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I connections remain symmetric and unbiased because I cells are not modulated

by velocity (Figure 2.2C-D, rows 3-4). The symmetries and asymmetries of

these network projections are summarized in Figure 2.2E (full weights are

shown in Figure A.2).

Learning time. The basic architecture of the GCN is established within

the first few minutes of exploration and plasticity (Figure 2.2A-C, rows 1-3).

However, two key developments unfold over hours. The first is a strengthening

of the weight profiles: until the weights reach a threshold in size, they cannot

drive pattern formation in the population activity in brain space (next sub-

section). The second is a progressive increase in translation invariance of the

synaptic weight profiles across cells. Translation invariance, which is impor-

tant for the formation of a continuum of fixed points for analog integration

and memory [127], is quantified by the increase in smoothness along the off-

diagonals of the weight matrices (Figure 2.2D, F). There is a tradeoff between

rapidity of weight growth and translation invariance in the mature GCN, so

that major changes in learning rate either cause learning to be too slow or cause

the mature network to exhibit too little translation invariance (Figure A.2).

Thus, the estimate of learning time is not susceptible to order-of-magnitude

changes through corresponding adjustments of the rate parameter.

We have not explored the dependence of learning time on neuron num-

ber. However, larger networks allow for more averaging, so we expect that

larger networks may reach a comparable level of performance sooner. Finally,

note that the accrual of ∼ 4 hours of plasticity time, as taken for matura-
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tion by the GCN in Figure 2.2, may span half a day or several days to weeks

in animals, if plasticity occurs only part of the time during exploration and

exploration itself occurs only in small bouts over the day.

2.2.3 Emergence of patterned activity

Next, we examine how the growing synaptic weights shape the popula-

tion activity (in brain space) and single-cell spatial tuning curves (in movement

space). In all that follows, neural responses are probed in the activation phase,

meaning that all the inputs active, but plasticity is turned off.

Population activity and path integration. Early in development, pop-

ulation activity is roughly uniform across cells (Figure 2.3A-B, rows 1-2). In

the presence of the uniform excitatory input, the relative contribution of the

location-specific input is small, and the largest source of activity modulation

is the velocity input (Figure 2.3A-B, rows 1-2).
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The growing synaptic weights eventually destabilize uniform activity

states within the GCN, and force a periodic patterning of the population

activity as viewed in topological space (Figure 2.3A-B, rows 3-5). Cells in

the ER (EL) population drive the activity pattern rightward (leftward), by

exciting I cells with a rightward (leftward) bias, which in turn inhibit the left

(right) flanks of the corresponding E bumps (Figure 2.2E). When the animal is

still, the two E populations exert an and equal and opposite influence, and the

pattern remains stationary. When the animal moves, one of the E populations

receives biased excitation (Figure 2.3A, row 5) and succeeds in driving the

activity pattern along its preferred direction. Thus, the GCN behaves as a

path integrator by flowing its population activity pattern (the patterns of

the three populations are yoked together via the connectivity) in an amount

corresponding to the movement of the animal. The integration accuracy of the

GCN improves with the number of neurons, and decreases with the variability

of the spiking process (i.e., by using a model of neural spiking that is sub-

Poisson), Figure A.3.

(Note: In this model, both E and I populations become patterned. This

result is a consequence of prohibiting direct E-to-E coupling. When E-to-E

coupling is permitted, it is possible for E cells to be patterned while I cells

remain largely unpatterned and exhibit minimal spatial tuning, Figure A.3.)

Spatial tuning curves of individual cells. During early development,

GCN neurons are not spatially tuned (Figure 2.3C, rows 1-2), as evident by

their lack of well-defined spatial firing fields in movement space, consistent
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with the uniform, unpatterned population activities in brain space at the same

stage (Figure 2.3A-B, rows 1-2). However, once the population activity begins

to become patterned, and the GCN begins to be able to path integrate, stable

spatial tuning curves appear (and at a relative lag – compare the emergence

of the population activity patterns in rows 2-3 of Figure 2.3C with the spatial

tuning curves of a single cell in rows 3-4; quantification to follow).

By the time the GCN has matured (i.e., integrates its inputs to suffi-

cient accuracy), the GCN’s internal location estimate has decoupled from the

location-specific input. This is because there is essentially a free parameter

linking the speed of the internal estimate from the animal’s speed. This gain

factor depends on both the degree of asymmetries in the recurrent weights and

the gain of the velocity input in the GCN. In fact, by the end of learning, the

recurrent weights have become so dominant in determining network activity

that the location-specific inputs even if present have become irrelevant.

2.2.4 Properties of the mature network

The connectivity structure of the mature GCN has aperiodic boundaries

(cells at one edge of the neural sheet do not connect to neurons at the opposite,

and neurons of a given preferred spatial phase are not connected with all others

of the same phase). This is a consequence of the fact that movement space

is itself aperiodic. As a consequence, cells that lie at the edge of the network

(i.e., cells whose location preferences are at the boundary edges) display poor

grid-like spatial tuning, but those in the bulk – a majority of the total – are
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very grid-like, Figure 2.4A. We quantify how grid-like the spatial tuning curves

are using gridness score, defined in Appendix A, which is essentially the power

of the largest spatial frequency in the normalized spatial tuning curve.

(Note: If weak synaptic plasticity is permitted in the activation phase

of the mature GCN, the same STDP rules will wire together all cells with com-

mon preferred phase (i.e., those cell’s with identical spatial tuning curves), pro-

ducing a network that is topologically equivalent to a single-bump patterned

network with periodic boundary conditions [15, 16, 46], Figure A.4. However,

plasticity in the activation phase is a strong positive feedback process, and

generically leads to instability and bias in the GCN dynamics, Figure A.4.

Therefore, it remains an open question whether there is a stable way to devel-

opmentally obtain a grid cell network with periodic boundaries.)

The mature GCN exhibits the key signatures of continuous attractor

dynamics [15, 16, 38, 125]. For instance, neurons in the mature GCN exhibit

very similar spatial tuning periods, Figure 2.4A, C. The distribution of spatial

phases, φα, is uniform (Figure 2.4D), and relative spatial phases between cells,

δαβ, are stably preserved even when the spatial tuning of individual cells drifts

over time (Figure 2.4E).
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bar: gridness of 0.5). Inset: Distribution of these scores (gray bars), as well
as when the constant external inputs are “lesioned” (red bars; see Methods).
For cells in the population whose spatial tuning curves have spatial gridness
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approximately uniformly distributed (D). (E) Left: Distribution of the change
across trials in the spatial phase of individual cells (shown is the distribution of
the magnitude of these changes, |∆t(φ

α)|, assuming the same initial conditions
in the two trials, pooled over all cells α that appear in (C-D)). Right: Change
in the relative spatial phase between pairs of cells across trials, δαβ (shown
is the distribution of the magnitude of changes in relative phase, |∆t(δ

αβ)|).
(F) The number of connections between cell pairs as a function of the spatial
relative phase difference between the cells, |δαβ|, for the E-to-I (top), I-to-E
(middle), and I-to-I (bottom) weights. Any synapse whose strength exceeds
5% of the strongest synapse of that type counts as a connection for this plot.
(G) Direction tuning scores in the mature GCN (gray bars), and after “lesion”
(red bars) (see Appendix A; plotted for cells in (B-C)). (H) Spatial tuning
curves in a 4-meter space (four times larger than the training environment)
for two cells from (A). The trajectory is a single, constant-speed unidirectional
sweep (vrat = 0.4 m/s) across the space.
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When the uniform excitation, g0, is removed, the population pattern is

lost and gridness scores drop precipitously (Figure 2.4B). The GCN neurons in-

stead display strongly direction-tuned, head direction cell-like responses (Fig-

ure 2.4F), consistent with results from experimental studies in which inputs

to MEC were lesioned [9, 10].

Cells in the mature GCN receive input from other cells with disparate

spatial tuning curve phases, Figure 2.4G. This is the case despite the highly

structured, “local” weight profile of the mature GCN.

Spontaneous periodic tuning in new and large environments. Cells in

the mature GCN generate periodic spatial responses on the very first run-

through in much larger environments than the training environment (Fig-

ure 2.4H). This is possible because, as described above, mature GCN neu-

ron responses are generated by integration of velocity inputs, independent of

external location-specific inputs.

2.2.5 The emergence of patterning is abrupt

To quantify how grid cell-like features emerge over development, we

examine several metrics of patterning and stability as a function of time during

development (Figure 2.5; Figure A.5).

As weights gradually reach and then exceed a threshold strength, pat-

terning of the population activity in brain space emerges abruptly (around

Tcrit in Figure 2.5A), because of a weight-driven linear instability in the GCN

dynamics. The population activity pattern is fully formed, in terms of reach-
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ing a maximal gridness score (computed on the periodic population activity

pattern just as it is for the periodic spatial tuning of individual cells, see Ap-

pendix A), by about the time labelled Tpatt. To display spatial tuning, the

GCN must be capable of sufficiently good path integration over the trajectory

on which tuning is assessed, in addition to displaying patterned population

activity. Thus, the emergence of grid-like spatial tuning in movement space

consistently lags, and is smoother in onset, than population activity pattern-

ing in brain/topological space (Figure 2.5B). Spatial tuning gridness scores

for shorter trajectories are sharper and better probes of population activity

patterning than longer trajectories, because they involve less integration (Fig-

ure 2.5B, black versus gray). The evolution of across-trial spatial tuning sta-

bility (i.e., correlation between spatial tuning curves on consecutive trials with

same initial conditions) and spatial coherence (how well spiking in a spatial

bin in movement space is predicted by spiking in neighboring spatial bins, see

Appendix A), Figure 2.5C-D, closely resembles the evolution of spatial tuning.

(Note: Early in development (T < Tcrit), cells exhibit an artifactual

spatial tuning over short trajectories. This is because of their strong velocity

modulation, coupled with the fact that variations in velocity are not averaged

over space in short trajectories. As recurrent weights develop, the artifactual

spatial tuning and spatial coherence decline slightly before Tcrit (black curves

in Figure 2.5B, D). This effect is weaker in longer trajectories because of

averaging (gray curves). However, longer trajectories obscure the emergence

of grid-like tuning because of the accumulation of path integration errors. The
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emergence of spatial tuning can also be obscured in datasets with fewer cells

and trials, Figure A.5.)

Finally, the relative phase of the spatial tuning curves (defined as the

phasic offset of one cell’s spatial tuning curve with respect to the others)

between cell pairs, Figure 2.5E, is a good measure of population activity pat-

terning, because patterning in the relative phases is arguably more abrupt

and possibly emerges sooner than spatial tuning gridness or spatial coherence

(compare Figure 2.5E with Figure 2.5B,D). (Note: The relative phases be-

tween cells, though clearly themselves patterned (in the sorted population),

are not constant over development (see the gradual expansion of the features

in Figure 2.5E), because of a slight gradual expansion of the period of the

population pattern after Tpatt, Figure 2.5F. This expansion is partly responsi-

ble for the oscillatory variation in the spatial gridness and coherence measures

late in development, Figure 2.5B,D.)
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Figure 2.5: Abrupt onset of patterning. (A) Development of population
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Tcrit ≈ 1.08 hours (dotted) and Tpatt ≈ 1.75 hours (solid), defined as the times
at which the population pattern gridness score reaches its half-maximum and
maximum value, respectively. (B-D) Development of gridness (B), inter-trial
stability (C), and spatial coherence in the spatial tuning of cells (see Appendix
A). Black dots (B-D) and gray dots (B,D) are average scores from a set of 10-
second and 60-second trajectories (see Appendix A), respectively. (Average
computed across n = 263 E cells and n = 10 trials. The same 10 trials are
used at each point in development. Cells are included if their spatial tuning
scores exceed 0.5 in the mature (at 4 hours) GCN). Red dot: average gridness
of spatial tuning in the GCN with “lesioned” feedforward input. (E) Relative
phases (δαβ∗ ; see Appendix A) of EL cells (labeled by α), with respect to
one reference cell (β∗; dark horizontal line marks the reference cell), averaged
across trials (same 10-second trajectories as in (B-D)). (F) Development of
the period of the population activity pattern (in neurons, see Appendix A),
estimated using the same data as in (A).
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2.2.6 Signatures of development in cell-cell correlations, direction
tuning, and speed tuning

By definition, population activity patterning involves the stable co-

activation of some cells and counter-activation of others. Thus, hallmarks of

population patterning should be visible in the emergence of stable cell-cell

correlations (measured as the Pearson’s correlation coefficient between the

spike trains of the two cells).

The key prediction associated with the emergence of population activity

patterning is that the pairwise correlation distribution should develop a uni-

form component. In simulated in vitro conditions, where the velocity inputs are

absent (the animal is motionless), the immature GCN exhibits only very weak

correlations (Figure 2.6A rows 1-2). With development of patterning, a uni-

form platform of correlations emerges (Figure 2.6A, row 3; especially see inset).

(Note: The uniform component is not large and not fully flat because, in the

absence of velocity inputs, the population activity pattern does not efficiently

flow; as a result, distant pattern phases and thus the larger anticorrelations

are simply not well-sampled, cf. Figure A.6). The predicted emergence of a

uniform component in the in vitro correlation distribution is consistent with

MEC slice data showing that (anti)correlations grow with maturation [71].

Over development, the standard deviation of the in vitro correlation distribu-

tion grows slowly (Figure 2.6B) even though population activity patterning

is abrupt and the uniform component (which is small in amplitude) in the

correlation distribution appears suddenly (insets, Figure 2.6A).
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When correlations are measured in vivo, the velocity input induces

strong (anti)correlations early in development, which can obscure the emer-

gence of correlations based on pattern formation of the population activity,

Figure A.6. However, in vivo data can provide a reasonable proxy for in vitro

correlations, and show more clearly the abrupt emergence of a uniform compo-

nent in the pairwise correlations, if the correlations are based only on segments

of the trajectory when the animal is moving slowly (thus the velocity input is

close to zero), Figure 2.6A-B, gray curves.
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Figure 2.6: Windows into development: Correlations, direction tun-
ing, and speed tuning. (A) Main plots: Development of in vitro pairwise
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in Figure 2.5B-D; correlations assessed over a 120 second trial (see Appendix
A; same trial and same cells used for remaining panels). Insets: Top: Semi-log
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E population. (D) Finely sampled evolution of mean direction tuning (error
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of speed tuning in E cells; color-coded according to preferred direction. (F)
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Absolute value of the slopes (left column) and intercepts (right column) of the
regression lines used to fit speed tuning curves. (G) Finely sampled evolution
of slopes and intercepts of speed tuning. Inset: Evolution of mean firing firing
rate for cells in E population.
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Over GCN development, the mean strength of direction tuning (how

sensitive the cell is to the animal’s head direction – in this case, left vs. right)

decreases slightly, while the variance grows (Figure 2.6C-D). (Note: The in-

ferred direction tuning (through the mean vector length statistic of a circu-

lar variable) depends on exploration speed: in a fixed network, faster speeds

produce larger vectors (Figure A.6), so comparisons across development in

experiment must be made carefully, with statistically matched trajectories.)

Speed tuning, the sensitivity of a cell’s firing rate to the animal’s speed,

broken down by speed along its preferred and antipreferred directions (see

Appendix A and Figure 2.6E, red and blue), decreases in strength over devel-

opment, as quantified by the absolute value of the slopes and the intercepts

of the firing rate vs. speed tuning curves (Figure 2.6F-G). This decrease can

be attributed to the increasing influence of recurrent inputs on cell firing over

development.

(Note: If speed tuning is instead computed by averaging together

changes in firing rate as a function of speed without taking into account motion

direction (and thus without taking the absolute values of the firing rate-input

speed curves for different directions before averaging), the results are different

(Figure A.6), but largely consistent with experimental results that use this

definition of speed tuning [118].)
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2.2.7 Multi-period GCNs

The present model allows us to parametrically explore possible mecha-

nisms for the differences in grid period of GCNs along the dorsoventral (DV),

or longitudinal, axis of the MEC.

If put in place over development, a smaller gain in velocity input, β, a

smaller temporal width of the STDP windows, a longer intrinsic biophysical

time-constant (τs) in neurons or synapses, or a larger learning rate for the

inhibitory synapses (I-to-E and I-to-I), all result in larger periods in the spa-

tial tuning curves(Figure 2.7A; Figure 2.7B, row 1, columns 1-4, respectively;

Figure A.7).

Decreasing the velocity gain leaves the population activity period un-

changed but reduces the ability of animal velocity to translate the population

activity pattern, thus increasing the spatial tuning period (Figure 2.7B, col-

umn 1, rows 1-3). In general, changing developmental parameters can affect

two or more distinct properties of the GCN that influence the spatial tun-

ing period, sometimes in opposite directions. For instance, as the width of

the STDP windows decreases, the period of the population activity pattern

shrinks, but the GCN’s velocity sensitivity increases (pattern translates faster

for a given animal velocity). In total, the enhanced velocity sensitivity wins out

over population activity pattern expansion, and grid periods actually increase

(Figure 2.7B, column 2, rows 1-3).
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Figure 2.7: Mechanisms for controlling spatial period across mod-
ules. (A) Differences in the velocity gain, βvel, the scaling of the STDP time-
constant, αSTDP (see Methods), and biophysical time-constant, τs (columns
1-3, respectively; all other parameters held fixed) result in systematic varia-
tions in the spatial tuning period (assessed over a 10-second, constant-speed
(0.4 m/s) sweep through the environment). (B) Metrics of the mature GCN
(rows), and how they vary as a function of parameter settings over devel-
opment. Note that many scales on the abscissa are inverted. GCN metrics
(in order): average spatial tuning period, inverse velocity sensitivity (see Ap-
pendix A), population activity period, average strength of direction tuning,
average strength (slope) of absolute values of speed tuning curves, and aver-
age intercepts of the speed tuning curves. Parameters (in addition to those
mentioned in (A)): the scale of learning of inhibition (γ; see Appendix A), the
width of the location-specific developmental input (σloc), and the mean speed
of exploration during development (vrat). (C) Relationship between blob size
(the widths of the activity bumps in the spatial tuning curves; see Appendix
A) and grid period, for different spatial tunings that result from varying dif-
ferent single parameters. Each color marks the effects of variations in a single
parameter.
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Although variations in any of several parameters can in theory produce

a range of spatial tuning periods (Figure 2.7B, row 1 and Figure A.7), they do

so in different and experimentally distinguishable ways. A mechanism based

on velocity gain alone would predict weaker direction tuning more ventrally

(Figure 2.7B, column 1, rows 1-3), consistent with recent reports [44], and

sufficiently explained by GCNs across the longitudinal axis to having identical

connectivity. By contrast, increasing the spatial tuning period ventrally by

increasing the STDP window width would predict narrower lateral inhibition

(and a smaller population period), together with a reduction in the intercepts

and slopes of speed tuning (Figure 2.7B, column 3). Increasing τs is predicted

to decrease the intercepts and slopes of speed tuning more ventrally (Fig-

ure 2.7 B, column 3, rows 4-5), while not significantly affecting the strength of

direction tuning; these effects are in contrast to the former two mechanisms.

A 3-fold variation in τs can, in our simulations, explain most of the (roughly

10-fold) variation in grid period along the DV axis (data not shown), consis-

tent with the experimentally estimated DV variation in the membrane and

synaptic integration time-constant of layer II stellate cells [42].

These and other mechanisms for varying the spatial tuning period –

scaling the learning rate (or equivalently, the overall strength) of lateral inhi-

bition, scaling the width of the location-specific inputs, or differentially scaling

the velocity input across GCNs – produce additional experimentally distin-

guishable predictions for DV variation across modules (Figure 2.7B, columns

4-6). A corollary of the predicted effect of exploration speed on grid period is
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that if animals are forced to move more slowly during development, all spatial

tuning periods would be larger than in control animals (Figure 2.7B, column

6).

Grid cells in MEC with different periods look like globally rescaled ver-

sions of one another; therefore, a plot of spatial tuning period against the

mean width of the individual spatial firing fields (i.e., “blob size”) should be

linear, with zero intercept. Figure 2.7C illustrates which parameter scalings

produce an appropriate relationship between spatial tuning period and blob

size. We find that the velocity gain, STDP window width, and velocity stan-

dard deviation parameters produce the smallest offsets from a zero-intercept

line.

We also plot the relationship between spatial tuning period agains the

overall strength of the recurrent inhibition in the network connectivity, and

find that stronger inhibition leads to larger spatial tuning periods, inconsistent

with the data [5]. On the other hand, in other simplified non-developmental

models of grid cells (e.g. [16], which uses neurons that both excite and inhibit

other cells in the network, inconsistent with experimental findigs), leads to the

correct dependence of spatial tuning period on inhibition. In more realistic,

conductance-based neuron models, inhibitory inputs can effectively shorten

the biophysical time-constant; if this effect is strong enough, more inhibition

might result in smaller-period spatial tuning (Figure 2.7B, column 3, row 1).

Alternatively, other variables explored above also influence grid period and in

MEC, may dominate over the effects of inhibition strength.
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We reiterate that the above discussion involved changing parameters in

the developing network and then measuring certain properties of the network

at the end of development. However, under certain experimental conditions,

spatial responses can change instantly [3, 4]. Several of the parameters con-

sidered above are related to plasticity and, because of their slower time-scales,

cannot be responsible for such rapid changes to the spatial responses. The

parameters that are capable of driving fast change (e.g. through neuromod-

ulation) include the velocity gain, the strength of recurrent inhibition (which

developmentally was equated with the learning rate of inhibitory synapses),

and the biophysical time-constant of neurons.

Analysis of grid cell data in such rapid rescaling experiments indicates

that the underlying population activity pattern does not change [125]. How-

ever, according to our model, varying the strength of inhibition in the mature

GCN changes the population pattern (Figure A.7), as does changing τs (Fig-

ure A.7). This lends support to the possibility that, regardless of the mecha-

nisms underlying the gradient in spatial tuning periods along the longitudinal

axis of the MEC, fast rescaling is driven by a change in the gain of the velocity

inputs to the mature grid cell system (Figure 2.7B and Figure A.7) because it

is the only parameter that does not change the period of the population ac-

tivity pattern. The possibility that rapid rescaling is caused by a gain change

in the velocity input can be tested by looking for variations in direction and

speed tuning that are predicted to accompany such a change, as predicted by

our model (Figure A.7).
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Figure 2.8: Two-dimensional grid cell network. (A) Spatial tuning of 5
cells in a mature 2D GCN, following development. The trajectory is a 5 min
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2.2.8 Two-dimensional network

The principles illustrated above for 1D GCN development carry directly

over to 2D (Figure 2.8). There are now four sets of E cells, defined by whether

the cells receive cosine-tuned inputs for north (EU), south (ED), east (EL), or

west (ER) motion. Each E set contains 40×40 = 1600 cells, as does the I pop-

ulation, so that the E:I cell ratio is 4:1. The reason to choose four distinct sets

of E cells with discrete direction tuning is to illustrate the systematic weight

shifts of each population. We obtain qualitatively similar functionality if each

E cell is independently and randomly assigned a preferred direction from a

continuous and uniform distribution over all possible angles, Figure B.4. We

already explored the effects of noise and variability (stochastic GCN neurons

and random trajectories) on development in 1D; thus, for tractability, we em-

ployed deterministic cells (see Methods) and a simple trajectory to train the

2D system (see Methods). For testing, however, we reverted to fully stochastic

dynamics, as in 1D. The STDP kernels are identical to those used in the 1D

GCN, and other parameters are similar (Methods and Appendix A).

Cells in the mature 2D GCN display grid-like spatial tuning in response

to velocity inputs (Figure 2.8A). (Note that the trajectory is 5 min long, with

no corrective mechanisms from outside the GCN to reduce the accumulation

of path integration errors over this long interval.) As expected, the popula-

tion activity underlying spatial tuning is itself patterned (Figure 2.8B). The

population pattern flows in proportion to and in the direction of animal dis-

placement (Figure 2.8C); therefore, the GCN performs path integration.
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The evolution of in vitro correlations, direction tuning, and speed tun-

ing in the 2D GCN qualitatively track the trends from 1D development (Fig-

ure B.4; for a description and comparison of in vivo correlations, see Fig-

ure A.6). In particular, the in vitro cell-cell correlation distribution is initially

narrow and centered around low correlation values, but evolves to display long

tails that reflect strong pattern-related correlations (Figure B.4). Also consis-

tent with 1D is the reduction in direction and speed tuning with development

(Figure B.4).

2.3 Discussion

2.3.1 Summary

We have presented a model for the development of grid cell networks

with continuous attractor dynamics, a recently substantiated property of grid

cells in animals [125]. This experience-dependent model is a proof-of-principle

demonstration of how grid tuning and path integration functionality might

arise through synaptic plasticity, with no assumptions about topograpical or-

der in the GCN. The mature cells in our model resemble layer II grid cells:

Mature cells have strong grid-like spatial tuning and weak direction tuning

[95], but lose their gridness and become strongly directional when the external

uniform inputs are removed [9]; consistent with existing data on connectivity

in MEC layer II [25, 29, 89], the principal (E) cells interact only through in-

hibitory interneurons; over development, gridness emerges abruptly and speed

tuning decreases [118], and the in vitro correlation strengths increase [71].
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2.3.2 Assumptions of model

If the role of grid cells is to estimate location during navigation, it may

seem like we are putting the cart before the horse by assuming that location-

specific inputs exist during GCN development. However, in our model, GCN

development is a process of bootstrapping on spatially informative input de-

rived from external cues in highly familiar cue-rich environments, so that the

mature GCN becomes capable of autonomous spatial estimation in novel and

cue-poor environments through integration of internal self-motion cues. This

is an important gain in functionality, because, as noted in Chapter 1, a major

computational challenge of navigation involves self-localization in novel spaces

and across relatively featureless stretches of familiar environments.

Location-specific input to the GCN is assumed to derive from multi-

sensory constellations of proximal and distal external cues during exploration

around the familiar home nest area, possibly via other spatially tuned cell types

of the hippocampal formation, including place cells [71, 119], border/boundary

cells [7, 74, 99], and landmark-specific LEC cells [27], or via bottom-up path-

ways including the visuo-spatial stream through the postrhinal cortex [65].

We found that pattern formation can proceed with sparser or less uniform

location-specific inputs, but the development of translation invariance and,

thus, path integration, suffers.

The suppression of location-specific inputs at the boundaries of the

environment during plasticity may be performed by inhibitory border cells,

similar to those found in the subiculum [104]. The network “edge” is not its
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topographic edge; it merely consists of cells that receive location-specific input

from the boundaries of the training environment. These cells are edge cells,

topologically speaking, because they are missing half of their potential lateral

partners: the GCN contains no cells whose input preferred location is directly

adjacent to the edge cells’, if it is outside the environment. If border cells were

to simply globally inhibit the GCN at the training environment boundary, the

result would be a weaker activation of the then-active GCN cells (the edge

cells). Attenuated activation of cells at the GCN edge during plasticity results

in a mature GCN with less pinning and more accurate path integration (even

though the GCN is tested in the activation phase without attenuated input at

the borders). Boundary-evoked activity suppression might also be linked to

the systematic orienting of grid fields in square environments (Figure B.4), as

seen in experiment [103].

The self motion-based velocity inputs required in our model are likely

derived from a combination of vestibular, optic flow, motor efference and pro-

prioceptive cues [20, 24, 81, 107]. The main requirements for the velocity inputs

are that the direction of movement be encoded by unimodal direction tuning

curves, and that speed inputs (whether they arise from the same or a different

pathway than the direction input) modulate the overall activity level of the

GCN subpopulation corresponding to the present motion direction.

GCN dynamics are divided into plasticity and activity phases to avoid

the deleterious effects of positive feedback associated with STDP, which tends

to create discrete fixed points at the cost of translation invariance. Restricting

71



recurrent input during plasticity breaks the positive feedback loop; such pro-

cedures are widely espoused in the learning of continuous attractors or when

learning the statistics of the external world [49, 50, 55, 56, 105]. Activation of

recurrent inputs may occur during some runs in the home environment and

when the animal explores test environments away from home [71, 119]. Or, the

network may spend a fraction of each theta-cycle in an activation phase and

another fraction in a plasticity phase, if modulators can control the alterna-

tion of recurrent synaptic transmission and plasticity on that time-scale [50].

In either case, the neural response collected in a given environment would

sample from both plasticity and activity phases and thus would reflect the

contribution of recurrent weights.

2.3.3 Questions for the future and relationship to existing work

There have been a number of papers examining development of con-

tinuous attractor networks. Below, we highlight a subset of such models, and

also describe their particular shortcomings.

In [49], a continuous attractor network is organized by supervised learn-

ing – the desired population activity patterns are imposed on the network, and

an error-driven rule makes these patterns permanent. In [105], the desired pat-

terns are imposed on the network, and are consolidated by associative learning

rules. However, to train a GCN with the desired patterns would require grid-

like population pattern inputs that translate with animal motion, just like

mature grid cells.
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Plasticity in [105] is governed by firing rates not spikes. Modeling noisy

spiking allows us to make an estimate of learning time; but other differences

between spiking versus rate models are less significant because the key time-

dependence of spikes in our model arises from the underlying time-varying

rates, and the temporal asymmetries of our STDP rules play a functionally

similar role to the asymmetric way in which pre- and post-synaptic neural

firing rates drive plasticity in [105].

In [68] and [78], competitive learning rules act on location-specific in-

puts to produce stripe-like or grid-like spatial tuning. However, in these mod-

els, velocity inputs do not influence the network’s spatial response, and the

network is unable to path integrate; spatial tuning remains entirely depen-

dent on the continued presence of location-specific inputs. In [38], associative

plasticity rules acting on traveling activity waves in the neural sheet generate

grid-like population patterning [38]. However, the resulting network is topo-

graphically organized, and there is no mechanism to associate activity patterns

with animal location or velocity, so the model does not produce spatial repre-

sentations.

The present model overcomes these hurdles to show that simple asso-

ciative rules can result in the development of periodic, path integrating neural

representations with the help of inputs that do not possess such features.

However, fundamental questions about how the brain could form continu-

ous attractors remain unanswered by our and all other works on the topic:

Are translation invariant training inputs necessary for building a translation-
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invariant network? Are infinitesimally small weight changes (and thus a very

large dynamic range in synaptic weights) necessary to overcome noise and non-

uniformity in the inputs? Is either the suppression of weights during plasticity

or an alternation of learn-and-erase phases necessary to suppress positive feed-

back instability? Our next steps are to attempt to understand how the brain

might solve these problems.

2.3.4 Predictions

Our model is robust – but therefore also non-specific – in the sense

that various parameters may be varied substantially and yet produce a func-

tional GCN. The model is insensitive to certain modifications of the STDP

windows, for which there are many suitable combinations (for one example,

see Figure A.1; various other examples: data not shown), although a tempo-

ral asymmetry is required. STDP windows for the three types of synapses

between the E and I populations are under-constrained by the experimental

data, even though there is support for the windows we used [33, 36, 58, 60, 75].

The GCN can be modified to model MEC layer III rather than layer

II, by adding E-to-E connectivity and a larger feedforward velocity gain (thus

increasing the strength of direction tuning; data not shown), and is robust

to adding direct velocity inputs to the inhibitory cells. When velocity inputs

drive I cells, these cells also develop asymmetries in their outgoing weight

profiles and become direction selective.

We can modify the sign and shapes of the STDP windows to generate
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anti-grid spatial tuning (constant background firing with inactivity at every

vertex of a triangular lattice) in inhibitory neurons while the E population

response remains grid-like [89]. For all these reasons, the key predictions of

our model are not a specific set of STDP windows or weight profiles, but

certain qualitative features and parametric trends, described next.

The model predicts that spatial experience is necessary for grid cell

development. Restriction of spatial exploration during the normal period of

grid cell development should delay or – if development occurs in a critical

period that is not extended by experiential deprivation – prevent development.

Changing the trajectory statistics (e.g., restricting the animal to a radial or

linear track (Figure B.4) or changing the spatial metric of the environment

(e.g., raising the animal on a non-Euclidean surface, as in [69]) is predicted to

lead to distortions in network wiring and population patterning, and thus to

qualitatively different single neuron spatial responses.

The prediction that velocity inputs are necessary for development is

consistent with the experimental observation that head direction responses are

stable before grid cells [71, 119]. It is unclear whether the predicted location-

specific inputs arrive in MEC during development, though both place cells and

border cells, which might supply such inputs, do display spatial tuning before

grid cells [7, 71, 119]. Moreover, while the location-specific inputs implicitly

carry all motion information (the time-derivative of location is velocity), such

inputs would fail, in our model, to induce the requisite asymmetries in the

weights needed for path integration. Thus, an explicit velocity input is neces-
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sary for development. It follows that the replay of trajectories (e.g. in sleep),

if unaccompanied by the proper velocity inputs [11], is itself insufficient for

training the GCN.

The GCN weights are predicted to exhibit a simple and local connec-

tivity profile (that can be inferred from the weight matrix even in the absence

of information about neural ordering, Figure A.2). Despite the local connec-

tivity, GCN cells are predicted to project with equal frequency to cells tuned

to similar and orthogonal spatial phases (Figure 2.4E). All neurons with di-

rect velocity input and synapses subject to asymmetric STDP are predicted

to exhibit asymmetries in their outgoing weight profiles.

The model predicts that population patterning arises abruptly. The

abruptness of patterning may be assessed by spatial tuning over short trajec-

tories. The abruptness of patterning is likely to be masked or smoothed when

assessed by spatial tuning over longer trajectories or when assessed based on a

limited number of neurons and trials. Thus, grid cell responses on short linear

tracks might more readily reveal pattern formation.

The mean direction tuning strength and the strength of speed tuning

are predicted to decline (Figure 2.6F,G) because of the growth in recurrent

weights over development. If pairwise neural correlations are computed in the

absence of velocity inputs to the GCN, as when the animal is at rest or in slice

preparations, the model predicts a considerable broadening of the correlation

distribution over development, with the emergence of a uniform platform-like

component. The in vivo system can, in the presence of velocity inputs, display
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strong velocity-driven (anti)correlations in early development, that are difficult

to tell apart from population pattern-induced (anti)correlations (Figure A.6).

The model also makes a number of parametric predictions, about how

spatial tuning in the mature GCN depends on the biophysical time-constant

of cells and synapses, the STDP window widths, the strength of the feedfor-

ward velocity input, the relative gain in excitatory and inhibitory synaptic

strengths, and the statistics of spatial exploration. Our results show how to

experimentally discriminate between possible mechanisms underlying the vari-

ation in grid period along the dorsoventral axis of the entorhinal cortex, based

not only on spatial tuning period, but on other aspects of neural response, in-

cluding direction and speed tuning, population pattern period, and the scaling

of grid period to blob width in different modules.

2.4 Methods

Roman subscripts (e.g. i, j) refer to individual cells within population

P . The population index P can take the values {I, ER, EL} in the 1D GCN

and {I, ER, EL, EU , ED} in the 2D GCN. Integration in all simulations is by

the Euler method with time-step dt.

In the 1D GCN, unless otherwise noted, the trajectories used during

the plasticity phase and for probes of GCN development consist of random

paths across a 1D environment (see Appendix A). In the 2D GCN, to re-

duce simulation time during development, the exploration trajectory consists

of fixed-speed (~vrat = 1 m/s) sweeps vertically and horizontally across the en-
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vironment. Successive parallel sweeps are staggered (separated by a distance

of 0.0125 meters) to provide approximately uniform coverage of the environ-

ment. The mature 2D GCN is evaluated with velocity inputs derived from rat

trajectories recorded in the open field [4].

2.4.1 Neural and synaptic dynamics.

Given a summed current input IPi (t) to the (P, i)th cell, the instanta-

neous firing rate of the cell is

rPi (t) = f(IPi (t)), (2.3)

with the neural transfer function f given by

f(x) =

{
0 x ≤ 0
x x > 0.

(2.4)

Based on this time-varying firing rate, neurons fire spikes according to an

inhomogeneous (sub-Poisson) point process with a coefficient of variance of

CV = 0.5 (see [16] and Appendix A for details on generating a sub-Poisson

point process).

The activation sPi (t) of synapses from the (P, i)th cell is given by

dsPi (t)

dt
+
sPi (t)

τs
= σPi (t), (2.5)

where

σPi (t) =

{
rPi (t) (deterministic dynamics)∑

k ni,kδ(t− tPi,k) (stochastic dynamics),
(2.6)
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where ni,k indicates the number of spike events of the ith cell at time tPi,k. For

both the 1D and 2D GCN, the neural dynamics ars stochastic during testing

in the activation phase. During the plasticity phase, dynamics are stochastic

for the 1D GCN and deterministic for the 2D GCN.

The total synaptic current IPi (t) into the (P, i)th cell is given by

IPi (t) = APi α
P,vel(v, t)(gP,reci (t) + gP,loci (t) + g0) + APi g

0′ , (2.7)

where g0 and g0′ are small, positive, constant bias terms common to all cells,

gP,reci are the recurrent inputs, gP,loci are the location-specific inputs, αP,vel are

the velocity inputs, and APi is the suppressive envelope function. The recurrent

input is

gP,reci (t) =
∑

P ′

N∑

j=1

W PP ′

ij sP
′

j (t), (2.8)

where W PP ′
ij are the recurrent weights. The location-specific input is a Gaus-

sian bump of height W loc and width σloc:

gP,loci (~x(t)) = W loc exp

[−||~x(t)− ~xPi ||2
2σ2

loc

]
, (2.9)

where ~x(t) is the location variable and ~xPi is the preferred location of the

input to the (i, P )th cell. (In the 1D GCN, location and preferred location

preference are scalars). The preferred locations are evenly distributed over the

unit interval in R1 and R2 for the 1D and 2D GCNs, respectively.

All cells in the P th population (with preferred direction given by the

unit vector êP ) receive a common velocity input:

αP,vel(~v(t)) = (1 + βvel~v(t) · êP ), (2.10)
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where ~v(t) is velocity of the animal and βvel sets the gain of the velocity input;

êP = (0,0), (0,1), (0,-1), (1,0), (-1,0) for the I, ER, EL, EU , ED populations,

respectively. The multiplicative influence of velocity inputs on the rest of

the inputs to each cell may be viewed as a shunting effect [53] from inputs

that arrive simultaneously at different parts of a dendritic tree and combine

nonlinearly.

The envelope function, which is only applied in the familiar home envi-

ronment (and not during testing; although performance would improve during

testing if the envelope were also applied then), is given by [16]:

APi =





1 XP
i < 1−∆X

exp

[
−a0

(
XP
i −1+∆X

∆X

)2
]

otherwise
(2.11)

where XP
i = ||~xPi − (0.5, 0.5)|| (in 1D, XP

i = |xPi − 0.5|), ∆X determines the

range over which tapering occurs, and a0 controls the steepness of the tapering.

2.4.2 Plasticity rule and development.

The recurrent weights W PP ′
ij are drawn initially from a uniform distri-

bution on the interval [0,±w0] (− when the presynaptic cell is inhibitory, and

+ when it is excitatory). We assume no direct E-to-E connections; thus, these

weights are 0. During plasticity in the home environment, g0, g0′ , and gP,reci

are set to zero; neural activity is based only on the feedforward inputs (which

are tapered at the edges according to the envelope function API ). Weights are
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incremented during exploration according to:

∆W PP ′
ij (t)

ηγPP ′
=

∞∫

0

σPi (t)σP
′

j (t−t′)kP ′+ (t′)dt′+

∞∫

0

σP
′

j (t)σPi (t−t′)kP ′− (t′)dt′, (2.12)

where η is the learning rate, γPP ′ is a term of order 1 that controls the relative

speed of learning for the different types of recurrent weights, and σPi is given

by (4). There are two learning kernels, kE and kI , depending on whether

the presynaptic cell is excitatory or inhibitory, respectively (Figure 2.1). The

causal (+) and acausal (−) sides of these two learning kernels are given by:

kE+(t) = Ae−t/2αSTDP τSTDP (2.13)

kE−(t) = −e−t/1.5αSTDP τSTDP ; (2.14)

kI+(t) = Be−t/2αSTDP τSTDP (2.15)

kI−(t) = −e−t/αSTDP τSTDP . (2.16)

The coefficients A and B control the relative magnitudes of the two sides of

the learning kernels, and the time constant τSTDP , with a scale factor αSTDP

of order 1, controls the widths.

In the testing condition (activation phase), η is set to zero and the

envelope is removed; all figures probing GCN dynamics, Figures 2.3-2.8, are

generated in the activation phase.

1D simulation parameters

NI = 80; NE = 400 (200 per E population); CV = 0.5; dt = 0.5 ms; τs = 30

ms; σloc = 1 cm; W I
loc = 50; WE

loc = 10; g0 = 50 (=1 for “lesioned” feedforward
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input); g0′ = 15 (=0 for “lesioned” feedforward input); βvel = 0.9; w0 = 0.001;

η = 0.015 s−1; γII = 7; γEI = 2; γIE = 1; τSTDP = 12 ms; αSTDP = 1; A =

1.2; B = 0.5; ∆r = 0.72; a0 = 60.

2D simulation parameters

NI = 1600; NE = 6400 (40 × 40 = 1600 per E population); βvel = 2; w0 = 0;

η = 0.012 s−1; γII = 5; γEI = 0.25. γIE = 16.7; ∆r = 36; a0 = 10. All other

parameters identical to 1D parameters.
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Chapter 3

Cortical microcircuit determination through

perturbation and sparse sampling in grid cells

3.1 Introduction

The unusual responses of grid cells present a challenge and simulta-

neously, an opportunity. The challenge is to understand how such a com-

plex cognitive response is generated; the opportunity is the availability of

versatile experimental tools and a rich set of relatively detailed models [16–

18, 38, 46, 51, 52, 78, 83, 114] that are well-constrained by the very complexity

of the grid cell response, to help meet the challenge.

The recent application of quantitative analyses to electrophysiologi-

cal data reveals that the population dynamics of grid cells (within individual

modules, or networks – we will refer to them as GCNs, for grid cell networks)

is localized around a continuous low-dimensional (2D) manifold [39, 125], a

finding that lends support to early models predicated on the idea of low-

dimensional pattern formation through strong cell-cell (i.e., recurrent) coupling

[15, 16, 38, 46, 77], as well as other models in which grid cells are the recipients

of spatially tuned inputs that conspire to drive grid cell firing [18, 68, 78, 114].

These models are architecturally and mechanistically distinct in impor-
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tant ways, both large and subtle: they differ in whether grid cells perform path

integration, in whether pattern formation originates wholly or partly within

grid cells, and in the structure of their connectivity. Some of the structural

differences within recurrent models which seem subtle have qualitative ramifi-

cations for how the circuit could have developed. Despite their differences, the

models are difficult to distinguish on the basis of existing data, because all of

them produce grid-patterned outputs and exhibit approximate 2D continuous

attractor dynamics. Worse, as we discuss at the end, neither having the com-

plete neural activity records nor the complete single synapse-resolution weight

matrices will be sufficient to distinguish between proposed mechanisms.

We show how it is nevertheless possible to gain surprisingly detailed

information about the grid cell circuit from a feasible experimental strategy

that depends on circuit perturbation, applied simultaneously to all cells in

the GCN, and sparse neural recording. The proposed strategy can allow the

experimenter to discriminate between various distinct candidate mechanisms

that are currently undifferentiated by experiment.

3.2 Results

3.2.1 Experimentally undifferentiated grid cell models

Let us begin by considering recurrent pattern forming models, the same

types of models we have been considering in Chapter 1 and 2, in which grid cells

are assumed to integrate velocity inputs (path integrate) and output location-

coded grid-like responses in movement space (the space in which the animal
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moves) [16–18, 38, 46, 51, 52, 78, 83, 114]. These models can be distinguished

primarily by the nature of their underlying connectivity along two dimen-

sions: the locality of the connectivity, which specifies in topological space (an

organization of cells based on their connectedness – see Chapter 1) the extent

of the Mexican-hat connectivity with respect to the size of the network and can

be changed continuously, and the topology of the connectivity, which is either

toroidal (with periodic boundary conditions) or planar (with aperiodic bound-

ary conditions). Dynamically, the locality knob controls the size and number

of bumps in the population activity pattern, and therefore its wavelength.

The topology knob imposes extra constraints on the pattern phenotype: For

periodic boundary conditions, the number of bumps in the pattern must be

an integer; for aperiodic boundary conditions, the situation is more complex

and depends on whether the neural activity near the boundary edges are ta-

pered or not (see Chapter 4 and reference [16]). If they are tapered, then the

boundaries have no affect on the pattern phenotype, and so the wavelength is

determined primarily by the locality – we will assume tapered boundaries for

the remainder of this chapter.

These two knobs, locality and topology, naturally subdivide grid cell

pattern-forming networks into three main types: (1) local connectivity (there-

fore supporting many activity bumps) with aperiodic boundaries, which we

will call aperiodic [16, 116], Figure 3.1A, (2) global connectivity (supporting

a singlebump) with periodic boundaries, called singlebump periodic [12, 15,

38, 46, 89, 116], Figure 3.1B, (3) local connectivity (multibump) with periodic
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boundaries, called multibump periodic [16], Figure 3.1C. (Note that we have

left out the fourth variation, i.e., global connectivity with aperiodic bound-

aries. In this case, in the limit when the population activity pattern expresses

a single bump, the bump inevitably gets stuck at the network edge, preventing

the network from performing path integration over large spaces as well as the

ability to generate the multiple firing fields characteristic of grid cells.)

These aforementioned models, termed recurrent network models be-

cause they rely on interactions between grid cells, are distinct from the other

major class of grid cell models in which grid cells are the result of the sum-

mation of inputs that are already spatially tuned, termed feedforward models

[18, 68, 78, 114], Figure 3.1D-E. Whereas in recurrent models, in which path

integration occurs within the grid cell layer, in feedforward models, path inte-

gration occurs upstream of grid cells. For example, in [78], individual networks

upstream from grid cells, each encoding the animal’s displacement along par-

ticular directions in movement space as a single bump of activity persisting on

a ring of connected neurons (essentially a 1D singlebump periodic network),

conspire to drive the hexagonal spatial responses of grid cells (Figure 3.1D).

We would like to experimentally discriminate amongst the aforemen-

tioned models, using an approach that is experimentally feasible. In theory,

one should be able to deduce the underlying structure by either taking an

activity snapshot of the entire population activity, or by measuring the full

cell-to-cell connectivity (i.e., its connectome). However, the lack of topogra-

phy in the grid cell network precludes learning much from snapshots of the
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activity, because the population activity, in brain space, will appear salt-and-

pepper-like, even if the population activity is patterned in topological space).

On the other hand, trying to measure every connection in the network is en-

tirely infeasible given the current techniques available. In the next section,

we describe a novel method for discriminating these networks using available

experimental techniques.
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Figure 3.1: Mechanistically distinct models not distinguished by exist-
ing data. (A-C) Recurrent 2D pattern-forming models: Population activity
(gray; darker indicates more activity) and the corresponding synaptic weights
from a single representative cell (blue regions centered on the cell of origin;
horizontal lines (E) indicate excitatory projections; vertical lines (I) indicate
inhibitory projections), both in brain space. (A) Aperiodic network. (B) Sin-
glebump periodic network. The boundaries of the network are sheared into a
rhombus so that the spatial tuning curves of individual cells in the population
are hexagonal grid-like. (C) Multibump periodic network. (D-E) Feedforward
networks. (D) Grid cells are generated by selectively summing inputs from
cells belonging to “ring attractor” networks, i.e., periodically-connected 1D
network of neurons that have singlebump-like population activities, drawn as
the ellipses in the figure [18, 78, 114]. Each network integrates animal velocity
along a particular direction in movement space, so that cells exhibit stripe-like
responses in movement space oriented orthogonal to this axis (see three boxes
at left). (E) Grid cells are generated by selectively summing inputs from place
cells (which fire at single locations in the environment, examples of which are
shown in left two boxes) to make grid-like responses in movement space (right
box) [68].
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3.2.2 A perturbation-based probe of circuit architecture

The conceptual idea that we propose for differentiating between mod-

els of grid cells depends on multiple grid cell recordings (i.e., measuring their

spatial tuning curves as the animal moves about space) before and after a

sustained perturbation of the network. The idea derives from previous obser-

vations (Chapter 2) in which perturbing the dynamics of an aperiodic network,

e.g. by increasing the strength of the inhibition in the network connectivity or

increasing the neural time-constant, leads to increases in the period of popu-

lation activity pattern (Figure 2.7B, third row, columns 3 and 4, Figure A.7B,

third row, columns 2 and 3, and Figure B.2). This effect, not predicted by

linear stability analysis, exists in simulations [16, 116]; an analytical under-

standing of such effects will be the goal of Chapter 4. Experimentally, mod-

ifying the strength of inhibition can be induced via the application of drugs,

e.g., benzodiazepines that modulate the efficacy with which inhibition is com-

municated between two cells [94], while modifying the time constant, as we

argue later, can be induced by cooling the tissue, and thus slowing down the

temperature-dependent chemical reactions that subserve the neural dynamics

[64, 80, 108].

What is the gain of such a perturbation-based approach? As we will

see, perturbing the underlying dynamics of the system (in brain space) leads

to predictable and characteristic shifts in the phase relationships between the

spatial tuning curves (in movement space) of pairs of cells that reflect the

“quantization” of the population activity pattern.
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For the following, we assume a 1D network. However, the method

we describe is completely generalizable to 2D. Let roman subscripts (e.g., i

and j) refer to individual cells. If cells are arranged in topological space

(i.e., based on their connectedness), then i refers to the ith cell’s location

(in neuron body-length units) within the population activity pattern. Recall

that the population activity pattern is defined as a snapshot of the activity

pattern of the network, in brain/topological space. In topological space, let

the population activity pattern be periodic with period λpop (again in neuron

body-length units), Figure 3.2A, blue curve.

We will define the network state before/after a perturbation as the

pre/post-perturbation state. The size of the perturbation, or the perturba-

tion stretch factor, is defined as α = |λpop,post/λpop,pre − 1|, where λpop,pre and

λpop,post are the wavelengths of the pre- and post-perturbation population ac-

tivity patterns, respectively (Figure 3.2A). For example, as depicted in Fig-

ure 3.2, a perturbation that induces a stretching of the pattern wavelength

from λpop,pre = 250 neurons to λpop,post = 290 neurons is characterized by the

stretch factor α = 0.16.

The ith cell’s firing phase within the periodic population activity pat-

tern, defined as the cell’s population phase, is φipop = ((i − 1) mod λpop)/λpop

(with the arbitrary choice, made without loss of generality, that neuron 1 has

phase 0) (Figure 3.2B, blue curve).

After a perturbation, cells one wavelength apart in the population pat-

tern (see the locations of circle, square, and triangle symbols in Figure 3.2A)
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and thus firing at the same population phase (Figure 3.2B, blue), will expe-

rience a shift in their population phases (Figure 3.2A-B, compare red curve

with blue curve). Defining this shift to be one quantum, ε (Figure 3.2B), then

the shift in phase between cells originally separated by exactly K wavelengths

will be K quanta, or Kε, where ε = α
α+1

(Figure 3.2B).

For each cell in the population, plotting the pre-perturbation phase

against the post-perturbation phase (red vs. blue curves in Figure 3.2B) shows

that the data is quantized and lies on a series of parallel manifolds, Figure 3.2C.

This quantization is captured via the following transformation: First, the data

is down shifted along the y-axis, so that these curves become extenuations of

the other curves:

∆φipop =

{
φipop,pre − (1 + α)(φipop,post − 1), if φipop,pre < (1 + α)φipop,post
φipop,pre − (1 + α)φipop,post, otherwise,

(3.1)

(We have assumed that the true stretch factor, α, is known – later, we will

show how α can be inferred from the data.) The phase shifts are then mapped

to the [0, 1] interval via the modulo operation

∆φipop = ∆φipop mod 1, (3.2)

followed by reflecting about the midpoint of the interval

∆φipop = min{∆φipop, 1−∆φipop}. (3.3)

The distribution of these phase shift values, Figure 3.2D, has three special

properties: (1) The distribution is quantized, due to the fact that population
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activity pattern itself is quantized. (2) The number of peaks in the distribution

is exactly equal to the number of bumps in the population activity pattern (this

holds only for sufficiently small perturbations, such that αM < 0.5, where M

is the number of bumps in the pre-perturbation population activity pattern –

see Figure B.3 for explanation). (3) The peak separation in the distribution

is exactly equal to the stretch factor, α.

However, the construction of this distribution relies on experimentally

difficult-to-access quantities, namely the population activity pattern phase for

each cell. The utility of our proposed strategy arises because the distribution of

shifts in the population phase across cells in topological space is mirrored in the

distribution of shifts in the relative phase of spatial tuning (or relative phase)

across cells in movement space (Figure 3.2E-F). Let dij represent the offset,

in meters, of the peak closest to the origin in the cross-correlation of the two

spatial tuning curves, and let λ be the spatial tuning period (in meters) of the

two cells. The relative phase is defined as δij = (dij mod λ)/λ. The relative

phase shift is computed as the population phase shift was, using equations

Equations 3.1-3.3.

Cell pairs with zero relative phase in their spatial tuning pre-perturbation

(because they have the same population phase) will exhibit post-perturbation

shifts in relative phase that, like the shifts in the population phases, will be

quantized, and for small changes in population period will be proportional to

the number of bumps separating them, Figure 3.2F. We define this distribution

to be the distribution of relative phase shifts, or DRPS.
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In 2D, relative phase is a vector measured along the two principal axes

of the hexagonal spatial tuning grid (see section “2D relative phase” in Ap-

pendix B). As in 1D, DRPS’s for each component of δij can be computed.

The total number of bumps in the population activity pattern can be read out

as the product of the number of peaks in the two single-component DRPS’s

(Figure B.4). For the rest of the chapter, statements that are made regarding

the DRPS computed in 1D also hold for the component DRPS’s computed in

2D.

The transformations described in Equations 3.1-3.3 require knowledge

of the stretch factor, α, a quantity that is not directly observable. However,

it can be inferred from the data, because the desired α value is the one that

makes the distribution the most peak-y. This is equivalent to projecting the

data onto its orthogonal axis, Figure 3.2C. Peak-y-ness is quantified as the

Pearson’s correlation coefficient between the DRPS and a comb-like function

defined over the same interval. The comb function is a series of delta-functions

laid out with a spacing equal to α. The desired α stretch factor is the one that

maximizes this correlation.
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Figure 3.2: Perturbation and phase shift analysis can reveal detailed
features of population patterning. (A) 1D population activity, pre-
(blue) and post-perturbation, for a %16 increase the wavelength of the pat-
tern (α = 0.16;λpop,pre = 250 neurons), with pattern expansion is centered
at the left network edge. Circle, square, and triangle: locations of cells that
are separated by integer numbers of wavelengths. (B) Population phase, pre-
(blue) and post- (red) perturbation. (C) Post-perturbation phase vs. pre-
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upper right. (D) Distribution of shifts in population phase (n=1000). (E-
F) Shift distributions for population phase (experimentally inaccessible) carry
over to shift distributions for spatial tuning phase (experimentally observable).
(E) The circle, square, and triangle cells, which original have identical spatial
tuning (blue curves), now exhibit shifted spatial tuning curves (red curves).
The shift in spatial phase for a pair is proportional to the number of activity
bumps between them in the original population activity pattern. (F) Distri-
bution of relative phase shifts (DRPS) (n = (1000 choose 2) relative phase
samples because relative phase is computed pairwise).
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3.2.3 Discriminating amongst recurrent architectures

Simulations of the grid cell models (in this case, their 1D equivalents)

reveal that the effects of such a perturbation will differ across recurrent network

architectures, with consequently different predictions for the DRPS.

In an aperiodic network, incremental perturbation results in incremen-

tal expansion of the population activity pattern (Figure 3.3A, red, and Fig-

ure B.2). Thus, the peak spacing of the DRPS will expand gradually and

linearly with perturbation strength (Figure 3.3B-C, red and Figure B.2).

In a multibump periodic network (network with local connectivity and

periodic boundary conditions, Figure 3.1B), the number of bumps in the pop-

ulation activity pattern is constrained to be an integer. Thus, incrementally

increasing the perturbation strength should result first in no change to the

population activity period, and then a sudden change when the network can

accommodate an additional bump (or an additional row of bumps in 2D, as-

suming the pattern does not rotate as a result of the perturbation; see Dis-

cussion) (Figure 3.3A, purple). The fine structure of the DRPS will still be

peak-y. However, counting peaks to estimate the number of bumps in the

underlying population activity pattern will result in serious underestimation,

as the effective stretch factor, α, will be much larger than 1/(2M) (Figure B.3

and e.g. Figure 3.3B, compare peaks in the solid and dashed lines for small

and large perturbations, respectively)

In the singlebump periodic network (Figure 3.1C), the same perturba-
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tions that alter the population activity pattern period in the other recurrent

networks (Figure 3.1A-B) are ineffective in inducing a corresponding change

(Figure 3.3A, blue). This is because the periodic connectivity completely fixes

the period of the pattern. Thus, the perturbation will not affect the rela-

tive phase relationships between cells, and the DRPS is predicted to remain

narrow, unimodal, and peaked at zero (Figure 3.3B-C, blue).
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3.2.4 Discriminating feedforward from recurrent architectures

We’ve described how the three types of recurrent networks can be dis-

criminated from one another based on the response of the DRPS to perturba-

tions of increasing strength. If grid cells inherit their spatial tuning through

feedforward summation [18, 78, 114] of spatial inputs as in the case of the feed-

forward models, Figure 3.1D-E, then perturbing the within only the grid cell

layer will not affect the dynamics upstream, and thus not affect the grid cell

responses. As a result, the DRPS should be narrow and centered at zero.

However, this response of the DRPS is identical to the multibump pe-

riodic network (Figure 3.3C, green line). How, then, can these two types of

networks be discriminated?

In all recurrent model networks (Figure 3.1A-C), such perturbations in-

duce a change in the efficacy with which the velocity inputs shift the population

activity pattern over time, and thus change the periods of the spatial tuning

curves (Figure 3.3D and Figure B.6). By contrast, in feedforward models the

computations that subserve path integration occur upstream of the grid cells;

thus the spatial tuning period should remain unchanged with perturbation

(Figure 3.3D, green line). Thus, feedforward networks can be discriminated

from recurrent networks, and particularly from singlebump periodic networks,

based on whether or not the perturbation induces changes to the period of the

spatial tuning curves.
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3.2.5 Experimental feasibility of proposed method

We consider two key data limitations. First, it is not yet experimentally

feasible to record from all cells in a grid cell network (GCN). Even a 100-cell

sample would constitute a 1-10 % subsampling of the estimated size of a GCN.

With present estimates that <20 % of cells in a local patch in MEC are grid

cells [106], the yield would be a meager 20 grid cells. Is this sufficient to

observe the predicted quantal structure in a phase shift distribution, if it were

present? Fortunately, the proposed method is tolerant to severe sub-sampling

of the population: a tiny random fraction of the population (10/1600 cells) can

capture the essential structure of the full DRPS (or for each of the component

DRPS’s in 2D, as shown in Figure 3.4A).

Second, spatial tuning curves are estimated from neural responses dur-

ing a random, finite exploration trajectory by the animal in which cells respond

variably. Hence, spatial tuning parameters, including phase, are only known

with a degree of uncertainty. In tests that depend only on the peak separa-

tion of the DRPS (e.g. Figure 3.3), this phase uncertainty is not a serious

limitation.

However, more detailed questions about the number of bumps in the

population activity pattern in an aperiodic network depend on estimating the

number of peaks in the DRPS (or the component DRPS’s in 2D), and here

phase estimation uncertainty can be problematic: phase uncertainty will merge

together peaks in the DRPS, Figure B.7. In the range of small perturbation

strengths, the DRPS inter-peak spacing (in the aperiodic network) increases
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with the stretch factor. Thus, the larger the perturbation, the more distin-

guishable the peaks are at a fixed phase error, Figure 3.4B and Figure B.7.

Yet increasing the stretch factor is not without a tradeoff: The two-for-one

relationship between number of peaks in the DRPS and the number of bumps

in the population activity pattern per linear dimension holds when the total

induced shift in phase is small for all bumps (as before, when α < 1
2M

, with

M now equal to the larger of the number of bumps along the two principal

axes of the population activity pattern), Figure 3.4B. At larger stretch fac-

tors, the number of peaks in the DRPS is smaller than the number of bumps

along the corresponding dimension of the pattern, and the discrepancy can be

substantial.

Fortunately, the DRPS is computed from the relative phases between

cells, which remain stable in a fixed network [125] (here “fixed” refers to the

network while a given perturbation strength is stably maintained). This sta-

bility makes it possible to gain progressively better estimates of relative phase

over time even if there is substantial drift in the spatial responses of cells, by

computing the relative phase over short snapshots of the trajectory then aver-

aging together the relative phase estimates from different snapshots across a

progressively longer trajectory (similar to the methods used in [125] and [9]).

To distinguish M = 5 bumps per linear dimension based on peak-

counting in the DRPS would require a stretch factor of no greater than α =

1/(2M) = 0.1, and phase noise must be reduced to at least 0.02 (Figure B.7).

Distinguishing 7 bumps would require α ≤ 0.07 and a phase noise of smaller
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than about 0.01. Based on grid cell and trajectory data (accessed through

http://www.ntnu.edu/kavli/research/grid-cell-data), this would require an ap-

proximately 10- and 50-minute recording, respectively (Figure 3.4C).

The proposed method therefore has high tolerance to subsampling and

a more limited tolerance to phase uncertainty. It will require longer-than-

usual but still realistic amounts of neural recordings to obtain adequately

small error in relative phase estimation to test predictions that differentiate

between models.
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3.2.6 A decision tree for experimental design

We lay out a decision tree with an experimental workflow for discrimi-

nating between disparate networks, all of which exhibit 2D continuous attrac-

tor dynamics (Figure 3.5).
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Figure 3.5: Decision tree for experimentally discriminating circuit
mechanisms. For each of three circuit perturbations of increasing strength,
both spatial tuning period and relative phase shifts are measured. Recurrent
networks are discriminated from feedforward and feedforward-recurrent net-
works by the effects of the perturbation on spatial tuning period (first open
triangle). Different recurrent networks can be discriminated based on how
the peak spacing of the DRPS (α) varies with perturbation strength (second
open triangle). The number of bumps in the multi-bump population activity
patterns can be inferred by counting the peaks in the DRPS (third open trian-
gle), though, for the multibump periodic, only a lower bound on the number
of bumps can be established (dotted line).
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The demands from experiment are to be able to stably induce a per-

turbation in one GCN, and to do so at 2-3 strengths. In all the cases, the

term perturbation refers to a small change that leaves the network dynamics

qualitatively unchanged while affecting its quantitative properties. The data

to be collected are simultaneous recordings from several grid cells as the ani-

mal explores a familiar enclosure with no proximal spatial cues over about 20

minutes or more.

First, before applying perturbations, characterize the spatial tuning

(periods) of the neurons, as well as cell-cell relationships (the relative phase).

Next, apply a series of 2-3 perturbations of increasing strength. At each per-

turbation strength, characterize the spatial tuning of cells and cell-cell rela-

tionships. A change in the amplitude of the cells’ response across the different

perturbations signals that the perturbation is having an effect.

If further there is no change in the spatial tuning period, it follows

that the perturbations produced no change in the population activity pattern

and velocity responsiveness, thus the network must be feedforward, Figure 3.5

(green). Verify that cell-cell relationships remain unchanged across perturba-

tions, as predicted for feedforward networks.

If there is a change in the spatial tuning period, characterize the cell-

cell relationships in each perturbation condition. Plot the DRPS from each

perturbed condition relative to the pre-perturbation condition, and obtain its

peak spacing. If the peak spacing increases steadily and linearly with pertur-

bation strength, that implies an aperiodic recurrent architecture, Figure 3.5
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(red). If the DRPS peak spacing exhibits a step change, it is consistent with

a multibump periodic recurrent network, Figure 3.5 (purple). A DRPS that

remains narrowly peaked around zero, with no change in the peak spacing

with perturbation strength, is consistent with a singlebump periodic network,

Figure 3.5 (blue).

Finally, if the network is either aperiodic or multibump periodic, the

underlying population activity pattern has multiple bumps. The number of

peaks in the DRPS for each dimension of relative phase bounds from below

the quantity 2M , where M is the number of bumps in the population activity

pattern along that dimension. When the stretch factor α times the number of

bumps is smaller than 1/2, and if the DRPS is quantal, the number of DRPS

peaks equals the number of population activity bumps along the corresponding

dimension.

3.2.7 Relating network parameters to experimental parameters

Changes in the strength of recurrent inhibition in our model can be

mapped into changes in the gain of inhibitory synaptic conductances in the

biological system, which can be induced, experimentally, by locally infusing

allosteric modulators (e.g. benzodiazipines [94]; personal communication with

C. Barry).

Changes in the time-constant of our model neurons can be mapped

to changes in the excitatory post-synaptic potential (EPSP) time-constant in

the biological system. Experimentally, the EPSP time-constant is sensitive to
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temperature through the Arrhenius effect and can be lengthened by cooling

[64, 80, 108].

While it is straightforward how to translate a perturbation of the in-

hibitory synaptic conductances of the biological system to changes in the in-

hibitory weights or our simplified model, it is much less so for the temperature

perturbation. Therefore, to assess what to expect experimentally from a tem-

perature perturbation and how to correctly include temperature effects in sim-

pler neural models, we performed network simulations with cortical Hodgkin-

Huxley neurons [90] while implementing documented temperature-dependent

changes in all ionic and synaptic conductances (Methods, Appendix B, and

Figure B.5). The effect of cooling on conductance amplitudes is to shrink

the population period in an aperiodic network, but its effect on conductance

time-constants is to expand the period. The net effect of cooling is an ex-

pansion because temperature changes have larger effects on conductance time-

constants (larger Q10 factors) than amplitudes (smaller Q10 factors) [57, 108].

We therefore conclude that changes in temperature are reasonable to associate

with changes in the time-constant of simple neuron models.

3.3 Discussion

3.3.1 Assumptions

The predictions made here assume that the network activity pattern

in 2D is stable against rotations. Rotations of the population activity pattern

would induce large changes in the DRPS, obscuring the predicted effects of
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pattern period expansion in any recurrent network. The singlebump periodic

network is not subject to rotations, but multibump periodic and aperiodic net-

works may be. In experimental data, the relative phase relationships between

grid cells are indeed very stable across time and environments [125], suggesting

that the population activity undergoes no rotation. It is unclear what features

of the circuit stabilize the population activity pattern against rotation; it is

possible that slight directional anisotropies in the outgoing connectivity of

neurons pin its orientation.

The simplifying observation, that spatial responses may be used to es-

timate the DRPS, depends on other inputs not being able to overrule the new

post-perturbation cell-cell relationships. For instance, external sensory inputs

or hippocampal place cells that become associated with particular configura-

tions of grid cells may keep resetting the grid networks to express old relative

phase relationships. To avoid this possibility, it may be important to assess

post-perturbation cell-cell relationships only in novel environments, for which

there are no previously learned associations between external cues, place cell

responses, and grid cell activity.

Finally, it is important to note that if in feedforward models one were

to include feedback from the grid cell layer back to the spatially tuned inputs

(as in [18]), the network would effectively become a type of recurrent circuit,

and perturbing the grid cell layer may result in changes in grid period and

cell-cell relationships.
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3.3.2 Prior probabilities of different grid cell models being correct

From theoretical arguments, we believe the candidate grid cell mecha-

nisms are not equally probable. In particular, the multibump periodic model

is difficult to justify from the viewpoint of grid cell development. In [116] and

Chapter 2, we see that activity-dependent rules acting on spatially informa-

tive feedforward inputs can lead to the formation of a network capable of path

integration and with grid cell-like tuning. The network, post-development,

has aperiodic structure. Under certain conditions, if network weights con-

tinue to undergo plasticity after the network has matured enough to expresses

population activity patterning, the network can become a singlebump peri-

odic network as neurons with the same spatial phase become wired together

(Figure B.8). In fact, the addition of relatively weak coupling between neu-

rons in nearest-neighbor activity bumps, or hotspots, in the activity pattern

is sufficient to convert an aperiodic network into what is, functionally if not

topologically, a singlebump periodic network (Figure B.8).

Thus, it is possible to imagine mechanisms for the development of the

singlebump periodic and fully aperiodic networks. By contrast, a multibump

periodic network involves local connectivity which does not depend on a neu-

ron’s spatial phase, but at the same time requires some mechanism for neurons

at one end of the network to link with those at the opposite end in way that

depends on spatial phase, Figure B.1. It is more difficult to imagine a plau-

sible mechanism that can satisfy both constraints. By the same argument, in

feedforward models, one would expect the 1D patterned inputs to grid cells to
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involve singlebump periodic or aperiodic 1D networks.

3.3.3 Circuit inference through perturbation and sparse activity
records: outlook and alternatives

It is interesting to compare the potential of our suggested approach with

that of single synapse-level circuit reconstruction (a connectomics approach).

A high-quality full-circuit connectome (i.e., the full network connectivity) can

specify the topology of the network structure. In other words, it should be

possible to reveal whether the circuit is intrinsically “local” (as in the aperiodic

network of Figure 1A) [116], multibump periodic (with local center-surround-

like connectivity and periodic boundary conditions as in Figure 1B), or single-

bump periodic (with center-surround-like connectivity of a width that spans

the entire network together with periodic boundary conditions). It may even

be possible to infer the locality of structure in the aperiodic network from an

unsigned connectome.

Network topology is, however, one ingredient in circuit mechanism:

Determining whether the signed connections lead to population activity pat-

terning still requires a large amount of inference (for instance, converting the

connections into weights and inserting the matrix into an appropriate dynam-

ical model). Even with further inference steps, whether the network actually

performs certain functions like velocity-to-position integration or only inherits

them is not answerable based on connectomics data. For instance, a net-

work with lateral interactions between cells may generate position-dependent
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responses de novo through integration (Figure 1A-C), or may act only to fur-

ther pattern inputs that are already spatially tuned (Figure 1D-E) [18, 68, 78].

Despite these functional differences, both types of networks have similar con-

nectivity and topologies.

On the other hand, single neuron-resolution records of activity within a

GCN can be fruitfully used to understand the dimensionality and relationships

of neural responses, but without perturbation, inferring actual connectivity

and thus mechanisms from activity is problematic [59, 93]. Hence, activity

records do not distinguish between different recurrent models. In short, while

connectomics and large-scale recording can provide troves of useful informa-

tion, they are not sufficient for discriminating between models; as we have

shown here, they may also not be immediately necessary.

As we have seen, with a perturbation approach it is possible to localize

where integration occurs: if the perturbed area is performing integration, the

spatial tuning period is predicted to change. Generally speaking, perturbation

modulates the effect of connectivity on dynamics, and the proposed readout is

neural activity. This closed-loop approach allows for detailed tests of mecha-

nistic neural models, whose very goal is to relate architecture and dynamics, in

a way not easily rivaled by non-perturbative probes of connectivity or activity.

3.4 Methods

Figure 3.1 is schematic. Figure 3.2 is generated from ideal (imposed)

periodic patterns but without dynamical neural network simulations. There-
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fore, α is known exactly. In Figures 3.2, 3.4A,B, B.3, B.4, and B.7 relative

phase is computed for convenience (to save the computational cost of generat-

ing spatial tuning curves, then deriving relative phases) from the population

phases (thus, by setting δij = φipop−φjpop). Figures 3.3, B.2, B.6, which distin-

guish between different recurrent architectures, are based on dynamical neural

network simulations using the mature grid cell network described in Appendix

B. Briefly, the model is a network of excitatory and inhibitory neurons (except

in B.8 – see figure caption for details), with linear-nonlinear Poisson (LNP)

spiking dynamics [16, 116]. For Figure B.5, we use Hodgkin-Huxley dynamics.

Structured lateral interactions between neurons lead to pattern formation in

the neural population. relative phases are explicitly computed from spatial

tuning curves of cells, which are obtained from spike responses to 2-minute

long simulated quasi-random trajectories. Velocity inputs drive shifts of the

population activity pattern, resulting in spatially periodic tuning. Only cells

from the simulation with good spatial tuning are included in the analysis of

relative phase shifts: for fully and multibump periodic networks, this means

all cells in the network, while for aperiodic networks this means cells in the

central 3/4 of the network. Since the inhibitory and excitatory populations

share similar population activity patterning and spatial tuning in these sim-

ulations, we made the arbitrary choice to display the inhibitory population.

Perturbations are applied directly to network parameters τs and γinh (see Ap-

pendix B), as a result changing the measured spatial tuning curves, and thus

leading to shifts in relative phase when compared across perturbations. The
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stretch factor, α, is computed from the data as described in the subsection

above.
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Chapter 4

Derivation of the constraints governing the

population activity pattern phenotype

4.1 Introduction

The last chapter introduced the notion that the period of the population

pattern could be controlled by certain parameters of the network dynamics.

In this chapter, we seek to understand this dependency, in particular, what

selects or constrains the pattern phenotype. We start by analyzing the solution

via linear stability analysis, followed by an alternative approach that takes

into consideration the neural nonlinearity in order to derive self-consistency

constraints on the pattern properties, and finally compare these analytical

results with results from simulation.

4.2 Linear stability analysis

Our starting point is the equation for deterministic rate-based neurons

in the continuum limit, given by:

ds(x, t)

dt
+
s(x, t)

τs
= f



∞∫

−∞

γW (x− x′)s(x′, t)dx′ +B(x)


 , (4.1)
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where s describes the firing rate of the cell at location x in brain space at time

t, τs is the neuron time constant, B(x) is input external to the system, and

f is a rectification nonlinearity: f(u) = u if u > 0, else f(u) = 0. We will

assume for now that the external is spatially uniform such that B(x) = B.

The coupling function, W (x− x′), describes the synaptic weight between cells

located at positions x and x′ in topological space and is translation invariant

and symmetric. We will be varying two parameters: the prefactor γ, which

controls the strength of the weights, and the time constant τs (similar to the

last chapter).

The steady-state homogeneous solution, s0, to this equation is given by

s0 =
τsB

1− τsγW
, (4.2)

where W =
∞∫
−∞

W (x − x′)dx′, and we have assumed that f(γWs0 + B) =

γWs0 +B (i.e., γWs0 +B > 0). Consider a spatially dependent perturbation,

ε(x, t), to the steady state solution. Substitution of s(x, t) = s0 + ε(x, t) yields

d

dt
(s0 + ε(x, t)) +

s0 + ε(x, t)

τs
= f



∞∫

−∞

γW (x− x′)(s0 + ε(x′, t))dx′ +B


(4.3)

= f


γWs0 +B +

∞∫

−∞

γW (x− x′)ε(x′, t)


(4.4)

≈ f
(
γWs0 +B

)
+ f ′(γWs0 +B)

∞∫

−∞

γW (x− x′)ε(x′, t),(4.5)

where in the last line we have Taylor-expanded f about γWs0 +B. Canceling
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terms yields an equation for the dynamics of the perturbation:

dε(x, t)

dt
+
ε(x, t)

τs
= f ′(γWs0 +B)

∞∫

−∞

γW (x− x′)ε(x′, t)dx′. (4.6)

Substituting the form ε(x, t) ∼ eαt+ikx, which is a single-mode perturbation,

yields

α +
1

τs
= f ′(γWs0 +B)

∞∫

−∞

γW (x− x′)e−ik(x−x′)dx′ (4.7)

= f ′(γWs0 +B)γW̃ (k) (4.8)

= γW̃ (k), (4.9)

where we have used the definition of the Fourier transform of W (x− x′),

W̃ (k) =

∞∫

−∞

W (x− x′)e−ik(x−x′)dx′, (4.10)

and in the last line we have used the fact that γWs0+B > 0, so that f ′(γWs0+

B) = 1.

The condition for the unstable growth of the perturbation away from

the homogenous solution is that the growth rate, Re(α), be larger than zero.

Using the fact that Re(W̃ (k)) = W̃ (k) when W (x− x′) is real and symmetric

yields the following constraint for instability:

W̃ (k) >
1

τsγ
. (4.11)

The system is unstable to perturbations if there exists a mode of the synaptic

weight function for which this condition is satisfied. The largest such mode is
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defined as the critical mode, and determines the frequency of the pattern at

the onset of instability.

For the special case in which the synaptic weight function is a difference-

of-Gaussians (Figure 4.1A), namely

W (x) = αEe
−x2/2σ2

E − αIe−x
2/2σ2

I , (4.12)

which has the following Fourier transform (Figure 4.1B)

W̃ (k) =
√

2παEσEe
−σ2

Ek
2/2 −

√
2παIσIe

−σ2
Ik

2/2, (4.13)

the critical mode predicted by linear stability analysis is given by the mode

for which dW̃ (k)/dk = 0 (Figure 4.1B):

k∗2 =
2

σ2
E − σ2

I

log

(
αEσ

3
E

αIσ3
I

)
. (4.14)

Note that the particular parameters of interest, namely τs and γ, control only

the threshold at which this mode goes critical, but not the critical mode itself.

Thus, this does not explain the numerical observation that the wavelength

of the solution does depend on these parameters (see Figure B.2). Next, we

consider the effects of the nonlinearity.

4.3 Analysis of nonlinear solution

We know from numerical simulations that the steady state solution of

the dynamics tends towards a rectified sinusoid, Figure 4.1C. Assume that

the pattern is symmetric about and maximal at the origin. Let the period of

118



the pattern be a, and the point where the solution first crosses zero be x0,

Figure 4.1C.
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Figure 4.1: (A) Difference-of-Gaussians weight profile, Equation 4.12. αE =
16, αI = 16, σE = 4, σI = 8. (B) Power spectral density of profile in (A), with
black line indicating critical mode. (C) Converged of the network dynamics
using synaptic weights in (A) shows that the network activity is roughly a
rectified sinusoid, with single-bump portion shown at bottom. (D) Power
spectral density of the pattern in (C).
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Accordingly, we will assume, in the presence of the nonlinearity, a

steady-state solution of the form

s(x) =

[
∞∑

l=−∞
sl cos(klx)

]

+

. (4.15)

where k = 2π
a

. For the particular difference-of-Gaussian profile shown in Fig-

ure 4.1A, the power spectrum of the converged steady-state solution suggests

the inclusion of 2 modes, Figure 4.1D. In steady state, the solution obeys the

following equation:

s(x)

τs
= f



∞∫

−∞

γW (x− x′)s(x′)dx′ +B


 . (4.16)

The integral can be broken into intervals of length a:

∞∫

−∞

W (x− x′)s(x′)dx′ =
∞∑

n=−∞

a(n+ 1
2

)∫

a(n− 1
2

)

W (x− x′)s(x′)dx′ (4.17)

=
∞∑

n=−∞

a
2∫

−a
2

W (x− x′ + na)s(x′ − na)dx′ (4.18)

=
∞∑

n=−∞

a
2∫

−a
2

W (x− x′ + na)s(x′)dx′. (4.19)

where, in the second to last line, we have used the change of variables, x′ ←

x′ − na, and in the last line, we have used the fact that s(x, t) is spatially

periodic, with period a, so that s(x) = s(x− na) for all n. Rewriting W (x) in

its Fourier basis as

W (x) =
1

2π

∞∫

−∞

W̃ (k)eikxdk, (4.20)
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and using the Poisson summation formula,
∞∑

n=−∞

eikna =
2π

a

∞∑

l=−∞

δ(k − 2πl/a), (4.21)

yields

∞∑

n=−∞

a
2∫

−a
2

γW (x− x′ + na)s(x′)dx′ =
1

2π

∞∑

n=−∞

a
2∫

−a
2

∞∫

−∞

γW̃ (k)s(x′)eik(x−x′+na)dkdx′

(4.22)

=
1

a

∞∑

l=−∞

a
2∫

−a
2

∞∫

−∞

γW̃ (k)s(x′)eik(x−x′)δ(k − 2πl/a)dkdx′

(4.23)

=
1

a

∞∑

l=−∞

a
2∫

−a
2

γW̃ (2πl/a)s(x′)e
2πil
a

(x−x′)dx′

(4.24)

=
∞∑

l=−∞

γW̃ (2πl/a)e
2πilx
a

1

a

a
2∫

−a
2

s(x′)e
−2πilx′

a dx′

(4.25)

=
∞∑

l=−∞

γW̃ (2πl/a)ŝle
2πilx
a ,

(4.26)

where ŝl is the Fourier series coefficient of s(x),

ŝl =
1

a

a
2∫

−a
2

s(x)e
−2πilx
a dx. (4.27)

Thus, the steady-state equation has the form (replacing ν = 2π
a

)

s(x)

τs
= f

(
∞∑

l=−∞

γW̃ (νl)ŝle
ilνx +B

)
. (4.28)
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Over the interval [−x0, x0] where s(x) is positive, the Fourier coefficients be-

come

ŝl =
1

a

a
2∫

−a
2

[
∞∑

l′=−∞

sl′ cos(l′νx)

]

+

eilνxdx (4.29)

=
1

a

x0∫

−x0

(
∞∑

l′=−∞

sl′ cos(l′νx)

)
eilνxdx (4.30)

=
∞∑

l′=−∞

sl′

a

x0∫

−x0

cos(l′νx) cos(lνx)dx (4.31)

=
∞∑

l′=−∞

Mll′sl′ , (4.32)

where

Mll′ =
1

a

x0∫

−x0

cos(l′νx) cos(lνx)dx (4.33)

=

{
sin(ν(l−l′)x0)
νa(l−l′) + sin(ν(l+l′)x0)

νa(l+l′)
l 6= l′

x0ν
2π

+ sin(2lνx0)
2lνa

l = l′,−l′.
(4.34)

Thus, over the interval [−x0, x0], and using the ansatz for the steady-state

solution in Equation 4.15, the steady-state equation 4.28 becomes

1

τs

∞∑

m=−∞

sme
imνx =

∞∑

l=−∞

γW̃ (νl)ŝle
ilνx +B (4.35)

=
∞∑

l=−∞

γW̃ (νl)

(
∞∑

l′=−∞

Mll′sl′

)
eilνx +B. (4.36)

Matching components on the left and right sides, we generate a system of
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equations for the steady-state solution coefficients, sl,:

sl
τs

=
∞∑

l′=−∞

γW̃ (νl)Mll′sl′ +Bδl0 (4.37)

⇒
∞∑

l′=−∞

(
1

τs
δll′ − γW̃ (νl)Mll′

)
sl′ = Bδl0 (4.38)

⇒
∞∑

l′=−∞

Nll′sl′ = Bδl0 (4.39)

⇒sl = BOl0, (4.40)

where O is the inverse of N such that ON = 1. We can derive an additional

equation that constrains the relationship between a and x0, by enforcing that

the solution goes to zero at x0:

∞∑

l=−∞

sle
ilνx0 = 0 (4.41)

⇒
∞∑

l=−∞

Ol0e
ilνx0 = 0. (4.42)

For the difference-of-Gaussians weights used above, Equation 4.12, the solid

lines in Figure 4.2A-B shows the manifold of solutions corresponding to the

constraint in Equation 4.41, for different values of the parameter τs (holding

γ fixed). Note that there are multiple branches in the solution space for each

value of τs, and that for larger values of τs, the range of periods the solution

can take increases.
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Figure 4.2: (A) Comparison of analytical and numeric solutions for different
boundary conditions. Solid lines: manifolds of analytic solutions, for different
values of τs: 30 ms (red), 60 ms (blue), 60 ms (green). The converged numer-
ical solutions for the periodic and aperiodic networks are shown as the blue
asterisks (20 trials) and red circles (20 trials), respectively. Initial conditions
span a large range of x0’s and a’s (not shown). The black vertical line indicates
the wavelength predicted from linear stability analysis. (B) Close-up of (A)
(dotted box in (A)), showing local structure of manifold. The vertical black
line is same as in (A). The dotted lines are predicted wavelengths based on
the constraint that the number of bumps in the periodic network is an inte-
ger. (C) Envelopes used to generate data for aperiodic network in (D). (D)
Bifurcation diagram showing converged pattern wavelengths for the aperiodic
network as a function of the external input envelope shaping parameter, n (see
Equation 4.44), for τs=30 ms, color-coded as in (C). The data for each n-value
corresponds to the converged pattern wavelengths for 20 trials (trials initial-
ized as in (A)). Black triangles are from a simulation with periodic boundaries
and are the same data as on red curve in (A), here placed next to aperiodic
simulations for comparison. (E) Bifurcation diagram for aperiodic network for
different values of τs. (Red circles are the same data as shown in (D))
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4.4 Numerical results

The discretized rate-equations have the form

dsi
dt

+
si
τs

= f

(
N∑

j

γWijsj +Bi

)
. (4.43)

We will consider both periodic and aperiodic network structures. For the

aperiodic network, neurons are arranged on a 1D line, with the ith neuron

located at position xi, which ranges from −N/2 to N/2. The total size of the

network is N. The synaptic weight matrix is given by Wij = W (xi−xj), where

W (x) is the difference-of-Gaussians function used above, Equation 4.12. For

the periodic network, the neurons are arranged on a ring, so that the neurons

at −N/2 and N/2 are identified.

Likewise, the external input, Bi, has a form that also depends on the

boundary conditions of the network:

Bi =

{
B periodic b.c.s
B(e−(xi/(N/2))n − e−1)/(1− e−1) aperiodic b.c.s,

(4.44)

where the parameter n controls the slope of the spatially modulated external

inputs.

We numerically integrate Equation 4.43 for fixed network parameters

and boundary conditions, and plot, for different initial conditions, the con-

verged numerical solutions in Figure 4.2.

4.4.1 Periodic boundary conditions

Under periodic boundary conditions, because of the wide range of ini-

tial conditions, the numerical solutions are spaced out along the manifold at
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intervals that correspond to constraining the number of bumps in the pat-

tern to be an integer (Figure 4.2A-B, blue x’s). In other words, the following

relationship must hold:

amm = L, (4.45)

where am andm are the wavelength and number of bumps in a pattern, and L is

the size of the network. Using this constraint, one can predict the wavelengths

of the other allowable solutions (dotted vertical lines in Figure 4.2B, which

indicate am for m = {1, 2, 3, ...}. Moreover, the solutions are aligned across

different values of τs (Figure 4.2B), and are therefore independent of τs.

4.4.2 Aperiodic boundary conditions

For aperiodic boundary conditions, in the special case of the external

input, B(x), in the form of a Gaussian, the numerical solutions converge to a

single point on the manifold (Figure 4.2A-B, red circles). Consistent with our

expectations from the last chapter, the wavelength of the solution increases as

a function of τs (Figure 4.2A-B).

We can also vary the sharpness of the external input envelope. For

increasingly rectangular envelopes (Figure 4.2C), the single unique solution in

the case of the Gaussian input bifurcates into a multiplicity of solutions (Fig-

ure 4.2D). In the limit as n→∞, the aperiodic network behaves as a periodic

network: the solutions are spaced in a way consistent with Equation 4.45 (the

reason for the gradual expansion of the solution set is because the system size

is effectively changing, due to the bulk interaction with the boundaries).
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In Figure 4.2E, we see that for the hard, rectangular envelopes, the

converged solution set across different values of τs are more or less equivalent.

As the envelope becomes smoother, this solution overlap begins to diverge, so

that for smooth, Gaussian envelopes, the solution is unique and depends on

τs.

4.5 Discussion

In this chapter we have derived analytically the solution manifold that

constrains the relationship between the pattern period and the width of the

individual bumps in the pattern, assuming a 1D spatially-infinite continuum of

neurons with translation invariant center-surround coupling. We have shown

how this solution manifold depends on certain network parameters like the

neuron time constant. In particular, for larger values of the time constant,

the solution range along the period dimension increases. Numerically, for a

finite system size, under both periodic and aperiodic boundary conditions,

we have shown that the solutions converge to points along the manifold pre-

dicted by the analytics. In particular, for the network with periodic boundary

conditions, the solutions are predictably spaced and correspond to different

patterns with whole numbers of bumps. Moreover, the family of solution pe-

riods are independent of the neuron time constant. For aperiodic boundary

conditions, the convergence of the solutions depends entirely on the shape of

the external input, ranging from unique solutions in the case of smooth, ta-

pering, Gaussian-like profiles to a multiplicity of solutions in the case of hard,
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rectangular profiles. Intriguingly, in this latter case, the dispersion of solu-

tions approaches the predictable spacing of a network with periodic boundary

conditions, implying that in this limit, by this metric, the two networks are

dynamically identical and thus similarly uninfluenced to changing the neuron

time constant. Contrast this with the dynamics under a smooth tapering pro-

file, where the unique solution, as a function of period, is very sensitive to the

neuron time constant.

4.5.1 Implications for discriminating networks experimentally

In Chapter 3, we introduced the notion that the available experimental

data on grid cells was consistent with a diversity of circuit designs. For multi-

bump patterning networks, we distinguished between periodic and aperiodic

boundary conditions, and showed how the two could be experimentally dis-

criminated (from each other, and from a third category – singlebump periodic

nets) based on how the population patterns responded to linearly increasing

certain network parameters (like the neuron time constant). In that work,

in simulations of the aperiodic network, we used smoothly-tapered Gaussian-

like excitation profiles. Based on the insights from this chapter, namely that

aperiodic networks with smooth boundaries are not representative of aperi-

odic networks in general (because aperiodic networks with hard boundaries

behave like periodic networks), we now revise the three experimentally dis-

criminable (based on the methods of Chapter 3) circuit architectures to read:

1) multibump aperiodic networks with smooth boundaries, 2) multibump pe-
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riodic networks or aperiodic networks with hard boundaries, 3) singlebump

periodic networks.

4.5.2 Future work

In this chapter, we set out to understand analytically the selection rule

for the period of the pattern in the case of the aperiodic network, motivated

from observations in Chapter 3. However, our approach reduces the problem

to the interval over which the pattern is periodic. Thus, while the method

yields solutions consistent with the numerics, we are unable to incorporate

analytically the specific boundary profiles that may offer the extra constraints

that narrow the analytic solutions to those obtained numerically. To do this

may require a reformulation of the problem, which we leave for future work.
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Chapter 5

Developmental plausibility and dynamical

stability: determining the most plausible grid

cell circuit architectures

A running theme of this thesis has been to try understand the circuit

that underlies the grid cell response. In Chapter 3, we proposed an experi-

mental strategy to distinguish between circuit architectures that are currently

consistent with the available data: multibump periodic networks, multibump

aperiodic networks with “hard” and “soft” boundaries, and single-bump peri-

odic networks. In what follows, we consider the biological plausibility of each

circuit, evaluated on the basis of the work presented in this thesis and its

precursors.

One criterion for the biological plausibility of a circuit model is the

plausibility of the required circuit architecture. Grid cells are not hardwired

from birth [71, 119]; our model of grid cell development, laid out in Chapter 2,

suggests that the topology of the space explored by the animal over the course

of development constrains the architectural topology of the developing net-

work. This implies that certain circuit models, constructed without reference

to developmental constraints, may be more or less plausible.
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A second criterion for biological plausibility is that the circuit dynam-

ics should exhibit the same range of states as found experimentally, and be

similarly stable. The grid cell code is believed to represent animal position

by integrating self-motion cues. This representation is encoded in the grid

cell population activity pattern phase, which depends on the pattern orien-

tation and period. Detailed statistical analyses of experiments in which the

spatial periods of grid cells change upon exposure to novel environments and

distorted familiar environments has revealed that the spatial phase relation-

ships between cell pairs do not change [3, 125]. This invariance implies that

the underlying population pattern has not changed in orientation or period

despite the changes in spatial tuning.

These findings are consistent with our expectations: to maintain an

accurate representation of position, the orientation and period of the pattern

remain fixed over time in a trial and on repeated visits to the same environment

(i.e., across trials). In assessing circuit plausibility, it is important that the

model circuit possess the same types of stability seen in experiment.

With these constraints in mind, we now discuss the plausibility of the

three circuit designs in question.

5.1 Mutlibump periodic networks

• Developmental plausibility: In Chapter 2, Figure B.1, we argue that

multibump periodic networks are developmentally implausible. This is

based on the the necessity of precision long-range coupling of neurons
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separated by multiple wavelengths of the population pattern (i.e., neu-

rons whose location prefs during development are well separated). Thus,

a developmental scheme for such networks is not known and the plausi-

bility that such networks can form through exploration and plasticity is

strongly doubtful.

• Dynamical stability: In both Chapters 3 and 4, it was shown that

the population patterns of multibump periodic networks, across trials,

have multiple discrete solutions in period. Simulations (unpublished)

of 2D networks suggests that this is also the case for orientation of the

pattern. This form of dynamical instability is inconsistent with the data

[125]. Over the course of singe-trials, however, both the period and

orientation are stable [16]. Thus, while the single-trial stability of these

models is consistent with the data, their biological plausibility depends

on whether the system is able to select the correct period and orientation

across trials. If such stabilization occurs, it would likely involve feedback

from the hippocampus or lateral entorhinal cortex.

We have argued that multibump periodic networks are developmentally

implausible, and across trials are dynamically unstable.

5.2 Multibump aperiodic networks

We consider multibump aperiodic networks with “hard” and “soft”

boundaries separately.
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5.2.1 “Hard” boundaries

• Developmental plausibility: The developmentally most-probable circuit

architecture, according to Chapter 2, is one with a planar topology, i.e.,

with aperiodic boundary conditions. This is because the network in-

herits its topology from the topology of the space in which the animal

explores during development, and 2D space in an open or boxed-in arena

is not periodic. Thus, the resulting network is also expected to be ape-

riodic. Multibump aperiodic networks with hard boundaries (without

smoothly tapered input envelopes, which would require an additional

learning mechanism to form) are developmentally plausible.

• Dynamical stability: Across trials, a given multibump aperiodic network

architecture with hard boundaries can support multiple discrete solutions

(in terms of period; Chapter 3), similar to multibump periodic networks.

The question of across-trial stability of orientation is unclear, as this

likely depends on the network boundary structure. For sufficiently square

boundaries, the orientation is likely to take multiple discrete solutions,

as in the multibump periodic networ. Over single trials, the period is

stable, and is likely to be so for orientation. However, the multiplicity of

solutions for both period and orientation, and potential variation across

trials, puts into question the biological plausibility of such models.

We have argued that multibump aperiodic networks with hard bound-

aries are developmentally plausible, but suffer from non-uniqueness of the ac-
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tivity period and orientation across trials.

5.2.2 “Soft” boundaries

• Developmental plausibility: In Chapter 2, it was assumed that dur-

ing development the activity away from the network center tapered off

smoothly. The biological plausibility of such an assumption is unclear.

While cells called “border” cells are found in the vicinity of grid cells and

are activated when the animal visits a particular environmental border,

it is unclear if they are synaptically connected to grid cells. If so, as we

argue in the discussion section of Chapter 2, such cells might provide the

necessary inhibition to promote tapering of the activities near the edges,

although there is an important distinction between the network edge and

the edge of an explored environment. Thus, modeling the development of

aperiodic networks with soft boundaries require more assumptions than

do aperiodic networks with hard boundaries; however, the model is still

aperiodic and roughly plausible.

• Dynamical stability: Dynamically, the period of the population pattern

is stable within and across trials (Chapter 3). However, as was shown in

[16], the orientation of the pattern tends to rotate slowly over the course

of a trial. This is because the solution space in terms of orientation is

continuous: all pattern orientations are allowed. This non-uniqueness of

orientation within single trials is also problematic across trials. Unless

there is some mechanism in place to uniquely select and stabilize the
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orientation, such networks are not plausible.

We have argued that multibump aperiodic networks with soft bound-

aries are developmentally plausible (yet, slightly less so than aperiodic net-

works with hard boundaries), yet dynamically unstable given their tendency

to rotate over the course of single trials.

5.3 Single-bump periodic network

• Developmental plausibility: In the appendix of Chapter 2, Figure A.4,

we showed that further activity-dependent learning applied to a fully

“mature” network can convert a multibump aperiodic network into ef-

fectively a single-bump periodic network. This occurs via the emergent

coupling of co-active cells across single and multiple wavelengths of the

population pattern. Therefore, single-bump periodic networks of this

sort are developmentally plausible. We refer to this as the developmen-

tal single-bump periodic network, and distinguish it from the hardwired

single-bump periodic networks considered in Chapter 3, a la [46]. In

the latter case, it is as yet unclear developmentally how such a network

should arise.

• Dynamical stability: As we showed in Chapter 4, both hardwired and

developmental single-bump periodic networks are stable in period, both

within and across trials. For the hardwired single-bump periodic net-

work, in which there is only one bump in the network pattern, orien-
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tation is not defined. For the case of the developmental single-bump

periodic network, there are many bumps in the population pattern, even

though each “domain” is periodically connected. Thus, orientation is

well defined. While it is not clear to what extent the orientation varies

within and across trials, it is likely to depend on the shape of the network

boundary. In sum, both networks are stable in period, but the stability

of the orientation is much less clear (or not even defined) and requires

further investigation.

We have argued that single-bump periodic networks are developmen-

tally plausible, dynamically stable in period, but in terms of orientation not

well understood.

5.4 Conclusions

In summary, the multibump aperiodic and the single-bump periodic

networks are the most developmentally plausible models of grid cell activity.

The multibump aperiodic networks with soft boundaries and the single-bump

periodic networks exhibit dynamics with a unique stable pattern period, for

maximal consistency with the data. Periodic networks and aperiodic networks

with hard boundaries are more stable in pattern orientation within a trial than

are aperiodic networks with soft boundaries. However, in terms of trial-to-trial

variability of orientation, all networks are likely unstable. Assuming some

mechanism to stabilize orientation, the most biologically plausible networks,
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developmentally and in terms of the uniqueness of the period, are the single-

bump periodic and multibump aperiodic networks with soft boundaries.
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Appendix A

A model of grid cell development through

spatial exploration and spike time-dependent

plasticity

A.1 Scores and measures

Network velocity response: The GCN velocity response quantifies the transla-

tion velocity of the population pattern, vpop (neuron/s), as a function of input

animal velocity, vrat (m/s) (see Figure A.2D, inset). Animal velocity is held

constant for 10 seconds as the location of one of the peaks in the population

pattern is tracked; animal velocity is incremented in steps (increments of 0.05

m/s). Within a step, the mean velocity of the population pattern is calculated

over the 10-second window, after filtering the population pattern trajectory

with a 2-second moving average filter. We fit a line to the plot of GCN velocity

to animal velocity, for all data points with vpop >0.1. Velocity sensitivity is

the slope of this curve; the velocity pinning threshold is the x-intercept of this

line.

Estimation of translation invariance: Translation invariance is measured as

the inverse of the normalized local standard deviation of an off-diagonal row

of the weight matrix (in this case, the middle half of the 5th off-diagonal of
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the WII matrix). Normalization is by the mean value.

Estimation of spatial tuning: The spatial tuning curve of a neuron is measured

by first building a histogram of locations when the cell spikes (bin size = 1

cm). This histogram is then normalized (divided bin-by-bin) by the time spent

in that spatial bin. The normalized histogram is smoothed by convolving with

a boxcar filter (width = 5 bins).

Estimation of spatial tuning period and blob size: To measure period: For each

cell, the power spectrum of the cell’s spatial tuning curve for a single trial

is computed. The period is taken to be the wavelength at which the power

spectrum has the largest peak. To measure blob size: a Gaussian is fit to the

central peak (i.e., the points between the troughs immediately to the left and

right of the central peak) in the auto-correlogram of the cell’s spatial tuning

curve. The blob size is taken as the standard deviation of this Gaussian.

1D spatial gridness score: There is no clear 1D version of the commonly used

2D gridness score (see e.g. [95]). We developed a 1D gridness measure for spa-

tial tuning. (Generalizing our 1D gridness score to 2D yields results that are

similar to those derived from the common 2D gridness score, as in [95] (data

not shown)). For each cell, we compute the power spectrum of its normalized

spatial tuning curve (normalization involves mean subtraction and division by

the standard deviation). The power spectrum is rescaled by 2/L2, where L is

the number of bins in the tuning curve (1 cm bin size yields L = 100). The

spatial gridness is taken to be the power of the largest frequency component

in the power spectrum. This normalization yields a gridness score of 1 if the
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the spatial tuning curve is a perfect sinusoid.

2D spatial gridness score: We use the same gridness score for 2D spatial tuning

as used in [95]. Given the autocorrelogram of a cell’s spatial tuning curve, we

define an annular region with inner and outer radii, Ri and Ro (Ri and Ro

are chosen by hand such that the annulus only contains the 6 peaks closest to

the origin, excluding the peak at the center). Then, the Pearson correlation

coefficient is computed between this map and the same map rotated by an

angle φ = i
180

degrees, where i is an integer that increments from 1 to 180; this

defines a vector of correlation coefficients, ρ(φ). The gridness score is defined

as

gridness = min{ρ(60◦), ρ(120◦)} −max{ρ(30◦), ρ(90◦), ρ(150◦)}. (A.1)

Inter-trial stability score: For each cell, the Pearson correlation coefficient

is computed between the spatial tuning curves associated with two different

trials. Trials begin with the same initial populaton phase, and involve two

separate trajectories selected from a larger random trajectory (see below on

the generation of a the random trajectory) to have similar starting locations

(with a difference no greater than 1 cm).

If ni is the spike rate density in the ith bin of the cell’s spatial tun-

ing curve for a given trial, then the cell’s inter-trial stability, ρITS, measured
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between trials t1 and t2 is given by

ρITS =

∑L
i=1(n

(t1)
i − n(t1))(n

(t2)
i − n(t2))√∑L

i=1(n
(t1)
i − n(t1))2

√∑L
i=1(n

(t2)
i − n(t2))2

(A.2)

where L is the number of bins in the spatial tuning curve and n is the mean

spike rate density in a given trial.

Spatial coherence: For each cell, the Pearson correlation coefficient is measured

between the normalized spatial tuning curve and the same spatial tuning curve,

but whose ith element is replaced by the mean of the 8 nearest elements

(excluding itself). Formally, if ni is the spike rate density in the ith bin of

the cell’s spatial tuning curve, then coherence, ρcoh, is given by

ρcoh =

∑L
i=1(ni − r)(mi −m)√∑L

i=1(ni − n)2

√∑L
i=1(mi −m)2

(A.3)

where L is the number of bins in the spatial tuning curve and

mi =
1

M

M
2∑

j=−M
2

j 6=0

ni+j, (A.4)

and M is the number of bins included in the average.

Population activity gridness and period: Similar to the spatial gridness, the

population activity gridness is taken to be the power of the largest frequency

component of the power spectrum measured from a normalized snapshot of

the population activity (normalized = mean subtracted, followed by division

by standard deviation) The power spectrum is rescaled by the factor 2/L2,

where L is the number of bins in the population activity vector from which the
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power spectrum was computed. The population activity vector is shortened

to include only the middle one-half of the population, so that for the EL

population, L is 100. From the power spectrum, the population activity period

is taken to be the wavelength at which the power spectrum has the largest

peak.

Spatial phase and relative phase: The phase of a cell is the normalized offset in

the central peak from zero in the the cross-correlation of the spatial response

of the cell of interest and a reference spatial response (the reference is the

first-trial spatial tuning of a particular cell in the same GCN; it is held fixed

across trials). If d is the offset in the central peak of the cross-correlation, the

spatial phase of the αth cell in a given trial is defined as

φα =
d

λ
mod 1, (A.5)

where λ is the cell’s spatial tuning curve period (see above) measured from

that trial, and φα ∈ [0, 1). The relative spatial phase between cells α and β in

a given trial is given by

δαβ = (φα − φβ) mod 1. (A.6)

For any phase φ, phase magnitude is defined as |φ| = min{φ, 1 − φ}, where

|φ| ∈ [0, 0.5). If φt1 and φt2 are phases measured in two separate trials, then

the change in phase is defined as

∆t(φ) = (φt1 − φt2) mod 1. (A.7)
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To compute the development of relative spatial phase as in Figure 2.5E, at each

developmental time point, and for each trial at that time point, the relative

phase δαβ∗ is computed for each cell α with respect to a fixed reference cell β∗,

and then averaged over all trials.

Pairwise temporal correlation coefficient: The pairwise temporal correlation

coefficient is the Pearson’s correlation coefficient measured between spike trains

for a pair of cells, after first convolving each spike train with with a Gaussian

kernel (σ = 15 ms for the 1D GCN and σ = 270 ms for the 2D GCN).

Direction tuning: First, spikes are binned according to the animal’s heading

direction (in 1D, there are two directions and thus two bins, left and right; the

binning is over [0◦, 360◦), with bin size ∆ = 6◦) and then normalized (divided

bin-by-bin) by the time spent in that bin. This gives a directional spike rate

density. The mean direction vector is

ρdir =

∑360
θ=0 rθe

ıθ

∑360
θ=0 rθ

. (A.8)

where rθ is the spiking rate in the bin defined by [θ, θ + ∆]. The mean vector

length, i.e., the direction tuning strength, is given by |ρdir|.

Speed tuning: To compute the speed tuning of a given cell, spikes are binned by

animal speed and running direction. Separate bins are assigned for the same

speed if along different directions (the preferred and anti-preferred directions);

bin = 0.1 m/s. Within each bin, we then compute the mean number of spikes.

We then compute the slopes and intercepts of the resulting mean spike rate

per bin versus speed bin plots, for each direction. For the speed tuning of
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Figure A.6, in the manner of [118], firing rates are binned according to the

absolute value of the animal’s velocity, i.e., the preferred and anti-preferred

directions are combined. The rest is the same as above.

A.2 Generating spike trains with CV < 1.

To generate stochastic spikes with a lower CV given by CV = 1/
√
M

(with M an integer greater than 1), we use the following procedure, unmod-

ified, from [16]: First subdivide each time interval dt into M sub-intervals of

length dt/M . In each of these finer time-steps [t, t + dt), generate k spikes

according to an inhomogeneous Poisson process with instantaneous rate λ =

Mr(t):

P (k|λ) =
e−λdt(λdt)k

k!
. (A.9)

Finally, go through the spikes in order of emission, counting them and retaining

only every Mth spike. This procedure generates a spike train with rate r and

CV = 1/
√
M .

A.3 Generating a quasi-random 1D exploration trajec-
tory.

The quasi-random trajectory is generated as follows. Starting from an

initial location, a trajectory segment is drawn by picking a velocity and a time

interval from uniform distributions on the intervals [-1,1] m/s and [0,0.02] sec-

onds, respectively, and integrating them to obtain position coordinates over
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the interval. If any part of this segment would extend outside the enclosure

(i.e., outside the [0,1]-meter interval), a different velocity and time interval are

picked, until one is found that respects the enclosure confines. At the end of

that segment, another is picked, and so on. A 4-hour duration trajectory is

assembled in this way. The resulting trajectory is smoothed with a moving

average filter of width 1s (2000 bins). Because smoothing leads to possible

expansion of the trajectory outside the bounds of the enclosure, the smoothed

trajectory is globally rescaled so that the minimum and maximum are con-

tained within [0,1] m. This process determines animal location ~x(t), and by

its derivative, the velocity ~v(t) (see Figure A.1). The exploration speeds in

this 1D trajectory are consistent with recorded animal exploration speeds in

2D.

Because of the steps taken to ensure that the trajectory remains within

the enclosure, it is technically quasi-random rather than random. For simplic-

ity, we refer to it as random in the main text and elsewhere.

The quasi-random 10-second trajectories used for GCN testing in Fig-

ures 2.4, and 2.5, and 2.6, were extracted from the longer developmental tra-

jectory such that, within 10 seconds, the animal begins within the same spatial

interval, [x0, x0 + δx], where x0 = 0.1 and δx = 0.01) and touches both bound-

aries. Also, the trajectories are selected to be non-overlapping. The 60-second

trajectories used in Figure 2.5 are just the extensions of the set of 10-second

trajectories taken from the developmental trajectory. The 2-minute long tra-

jectory used in Figure 2.6 is taken to be the first 2 minutes of the developmental
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training trajectory.

A.4 1D hardwired model with translation-invariant weights.

The weights going from population P ′ to P , and from cells i and j, are

described as follows (see Figure A.2):

W PP ′(i, j) = αAPP
′
(i, j)Θ(µ(i− γj))Θ(|i− γj| − δ)×

[
exp

[−(i− γj −∆)2

2σ2

]
+ β exp

[−(i− γj + ∆)2

2σ2

]]
,

(A.10)

where γ = NP
NP ′

(NP is the size of population P ), Θ is the Heaviside function

(Θ(x) = 0 for x < 0 and is 1 otherwise), and A is an envelope function that

tapers the weights, where APP
′
(i, j) = APi A

P ′
j ,

APi =





1 rPi < ηNP

exp

[
−a0

(
rPi −ηNP
(1−η)NP

)2
]

otherwise
(A.11)

and rPi = |i− NP
2
|, η = 0.28, and a0 = 60. The resulting weights are translation

invariant (minus the tapering at the boundaries).

EL → I: α = 52; β = 0; ∆ = -1; σ = 2; µ = 0; δ = -1;

ER → I: α = 52; β = 0; ∆ = 1; σ = 2; µ = 0; δ = -1;

I → EL: α = -9; β = 0; ∆ = 4; σ = 5; µ = 1; δ = 3;

I → ER: α = -9; β = 0; ∆ = -4; σ = 5; µ = -1; δ = 3;

I → I: α = -60; β = 1; ∆ = 2; σ = 3; µ = 0; δ = 3;

In Figure A.3, the weight parameters are as follows:

EL → I: α = 4.6; β = 0; ∆ = -1; σ = 4; µ = 0; δ = -1;
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ER → I: α = 4.6; β = 0; ∆ = 1; σ = 4; µ = 0; δ = -1;

I → EL: α = -7.5; β = 0; ∆ = 4; σ = 5; µ = 1; δ = 3;

I → ER: α = -7.5; β = 0; ∆ = -4; σ = 5; µ = -1; δ = 3;

I → I: α = -2.2; β = 1; ∆ = 2; σ = 3; µ = 0; δ = 3;

EL → EL: α = 13; β = 0; ∆ = -2; σ = 2; µ = 0; δ = -1;

ER → ER: α = 13; β = 0; ∆ = 2; σ = 2; µ = 0; δ = -1;

EL → ER: α = 13; β = 0; ∆ = 0; σ = 2; µ = 0; δ = -1;

ER → EL: α = 13; β = 0; ∆ = 0; σ = 2; µ = 0; δ = -1;

A.5 Rescaling the learning rate of inhibition or the in-
hibitory strength.

The scale of learning rate of inhibition, γ, (Figure 2.7) modifies the

learning rates of the inhibitory learning rates: γII → γγII and γEI → γγEI .

Similarly, the strength of inhibition (Figure A.7) modifies the inhibitory synap-

tic weights: W II → γW II and WEI → γWEI .

A.6 Development of periodic GCN.

If plasticity is enabled during the activation phase post pattern-formation,

then neurons with similar phases should become coupled. If neurons across

the GCN with a similar spatial tuning phase are wired up, and if this happens

for neurons of all spatial phases, then the GCN topology is equivalent to a

single-bump network with periodic boundary conditions (a ring network in 1D
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or a single-bump twisted-torus network in 2D).

However, as discussed in the text, enabling plasticity during the ac-

tivation phase is problematic because of the positive feedback loop between

recurrent-driven activity and potentiation of the recurrent connections them-

selves. The tendency is that at whichever specific population pattern phase

the recurrent activity-based plasticity is turned on, weights become strength-

ened and that specific population pattern becomes a discrete fixed-point of the

network dynamics; the tendency is toward a degradation of the translation-

invariance across phases of the population pattern.

To minimize and overcome this effect, we assume a sharply reduced

learning rate for the recurrent synapses during this phase and incorporate

neural spike frequency adaptation dynamics, which force the network pattern

to flow rather than remain pinned at specific phases. The total synaptic current

IPi (t) is modified as follows:

IPi (t) = APi α
P,vel(v, t)(gP,reci (t) + gP,loci (t) + gP,adapti (t) + g0) + APi g

0′ , (A.12)

where gP,adapti (t) = αadapta
P
i (t) and

daPi (t)

dt
+
aPi (t)

τadapt
=
∑

b

δ(t− tPi,b). (A.13)

For the results shown in Figure A.4, αadapt = 4 and τadapt = 120 ms, and

η = 7.5 × 10−5 s−1. All other parameters and equations remain unchanged

from those specified in the Methods.
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A.7 Revealing low-dimensional local connectivity in the
weight matrix: Sorting by simulated annealing.

We define a cost function on neural indices and weights, that imposes

a penalty when cells that share are strong connection are assigned distant

indices. Minimizing the cost function with respect to neural indices provides

a sorting order for cells. We use this ordering to visualize structure in the

randomized connectivity matrix of Figure A.2. The cost function is given by:

E =
∑

i,j

W 2
ij(i− j)2. (A.14)

To minimize the cost function, we employ simulated annealing [67]. First,

index the N cells and construct a synaptic matrix from this ordering. In

each step of the algorithm, the indices of two cells chosen at random are

swapped, and the difference in the cost before and after the swap is evaluated.

If ∆E ≤ 0, i.e., the cost has decreased, the swap is accepted; if ∆E > 0, the

swap is accepted with probability P (∆E) given by the Boltzmann distribution:

P (∆E) = e−∆E/T , (A.15)

where T is a control parameter. T is initially large (T0 = 1 × 105) and is

lowered in stages such that Tn = 0.9nT0 in the nth stage. Transition to the

next stage is made after 1× 104 flips have been accepted in the present stage.

The process is terminated when the number of steps within any given stage

reaches a maximum value, 1× 105, before 1× 104 flips have been accepted.

A.8 Supplemental figures
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Figure A.1: Supplemental figures associated with Figure 2.1. (A-C)
Statistics of the (quasi)random 1D trajectories generated for development. (A)
Histogram of visited locations in 1-meter enclosure for the entire training
trajectory (4 hours). (B) Histogram of instantaneous animal velocities for
training trajectory (mean speed, vrat = 0.36). (C) Mean speed as a func-
tion of position within enclosure, computed from training trajectory. (D-H)
Development with non-uniform location-specific inputs. (D) Snapshots of the
location-specific input during training. Both the width and amplitudes of the
location-specific inputs are varied, across locations. The three vertical black
lines mark landmark locations. The standard deviations of location-specific
inputs are proportional to the distance from the nearest landmark. (E) Snap-
shot of the excitatory L and R population activities from the mature GCN,
after training. (F) Synaptic weights of the mature GCN. The curve above the
I-to-I matrix shows the off-diagonal, which reveals the non-uniformity in the
weights. (G) Path integration performance: Red curve: neural representation
of location over an 8-second animal trajectory (black curve), from the GCN
trained on non-uniform location-specific inputs, as in (D). Gray curve: neu-
ral representation of location by mature GCN from main text (trained with
uniform visual inputs). The red and gray curves represent integrated location
in GCN coordinates; to find scale-factors to convert each curve into location
coordinates, we simply performed a least-squares linear regression (with zero
y-intercept) on the first second of each curve onto the actual location (black
curve). (H) Squared error, measured point-by-point, between the normalized
GCN trajectories in (G) and the true animal trajectory. (I-L) GCN devel-
opment with time-reversed plasticity windows: Hebbian STDP in I-to-E and
anti-Hebbian STDP in E-to-I synapses. (I) Time-reversed plasticity kernels
(relative to Figure 2.1D) used for development. All other parameters identical
to 1D model parameters from main text. (J) Top: E-to-I (left) and I-to-E
(right) synaptic weight profiles in the mature GCN (at T = 4 hours). Note
reversal of weight asymmetries as compared to Figure 2.2A-B, row 4 in main
text. Bottom: I-to-I synaptic weight profile (left) and full connectivity matrix
(right). (K) Snapshot of the E (top) and I (bottom) population activity pat-
terns in the mature GCN in the activation phase. (L) Sample spatial tuning
curve from a single neuron in the E population, measured over a 10-second
trajectory (see Appendix A).

154



-360

200

27 -9

0

80

0

80

0

80
800

neuron

ne
ur

on

8008002000

neuronneuron

I   IE     IL

E     IR

A

I   EL I   ER

synaptic w
eight

G H I

0

40
neuron

ne
ur

on

40
0 40

neuron
0 40

neuron
0

DC E

0.1

0

ve
l. 

pi
nn

in
g 

th
re

sh
ol

d 
(m

/s
) 

weight factor

B

0.20 4 6 8 10

x10
-2

0 1 2
0

1

2

T
   

  (
hr

)
pa

tt

ve
l. 

pi
nn

in
g 

th
re

sh
ol

d 
(m

/s
) 

20

30

10

0
0 2

0 0.3
0

6

0.1
T     (hr)pattη

7

0

14

12 16 20

0.15

0.5

(o
ff-

di
ag

. s
td

.)
-1

(off-diag. std.)-1

1

80
801

neuron

-30-10

604020

30

neuron
604020

neuron
15010050

0

15

0

-5

0

-15

I   I

IE
L

IE R

E RI
E

LII E
L

IE R

E RI
E

LI

I   I
I   I

hardwired

I   I

801

ne
ur

on

neuronsy
na

pt
ic

 w
ei

gh
t

F

0 0 0

155



Figure A.2: Supplemental figures associated with Figure 2.2. (A)
Synaptic weight matrices corresponding to the 1D GCN and figures in the
main text, learned under conditions in which the visual cues are uniform (con-
trast with Figure A.1). Top: Slices from the weight matrices, taken at the
locations of the color-coded arrows. (B-F) Tradeoffs in translation invariance
and learning time. (B) The population patterning time, Tpatt (see Figure 2.5),
increases as the learning rate parameter, η, decreases. (C) Translation in-
variance (assessed by the inverse standard deviation of the off-diagonal weight
band of the GCNat Tpatt; see Appendix A) increases as Tpatt increases. (D) The
pinning threshold (defined as the maximum animal speed that fails to elicit a
translation of the population activity pattern, and given by the threshold in
the GCN’s velocity response as a function of input animal speed, arrow in in-
set; see Appendix A), drops with increasing translation invariance. Black line:
linear fit to results (Pearson’s correlation: r = -0.75 (p<0.01)). (E) In a hard-
wired network with weights based on the mature GCN but with hand-imposed
translation invariance (at least down to the the discreteness of single neurons;
see (F) and Appendix A), the pinning threshold grows as the synaptic weights
are scaled up in size. Weight factor is a multiplicative scaling; a 1 corresponds
to weights of same strength as in the mature GCNof Figure 2.2. (F) Hardwired
GCN with translation-invariant weights used in (E). Left three panels, dot-
ted lines: Cross-sections of the E-to-I (first panel), I-to-E (second panel), and
I-to-I (third panel) synaptic weight profiles in the hardwired network. Solid
lines: the mature 1D GCN weights profiles from the main text. Rightmost two
panels: weight matrices of the mature (left) and hardwired (right) GCNs. The
hardwired network is translation-invariant (down to the resolution of single-
neuron discreteness) by construction, but otherwise is matched to the mature
GCN. (G-I) Discovery of simple architectures in weight matrix data from a
non-topographic GCN. (G) I-to-I synaptic weight matrix organized according
to inherited preferred location. To each element of the matrix, independent
white noise samples (drawn from a normal distribution N(0, a2), where a is
0.5 times the standard deviation of the distribution of weights in the I-to-I
synaptic matrix) have been added. A cross section of the matrix is plotted
above. (H) I-to-I synaptic weight matrix as it would appear if the inherited
location preferences were unknown, as expected from a connectomics dataset
generated from a network that is not topographically organized. (I) Matrix
in B reordered via simulated annealing, sorted by synaptic weight size (see
Appendix A). Interpretation of results in (B-E): The learning time Tpatt can
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be shortened with larger learning rate (B), but at a fixed weight threshold
the result is less translation invariance (C) and more pinning during veloc-
ity integration (D). If the network weights continue growing after the weight
threshold for pattern formation is crossed, to increase translation invariance,
this can also hurt integration even if the final weights are translation-invariant
(E), simply because stronger weights than necessary tend to enhance pinning.
These observations illustrate the tradeoff between a fast approach to network
patterning and the final quality of integration in the network, and suggest
that it is optimal for the learning rate to be low enough so that at threshold
for pattern formation, enough traversals have been performed for translation
invariance.
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Figure A.3: Supplemental figures associated with Figure 2.3. (A-D) E-
to-E connectivity enables grid-like spatial tuning in the E population with little
tuning in the I population (compare with Figure 2.3). (A) E-to-I (top left), I-to-
E (top right), E-to-E (bottom left), and I-to-I (bottom right) synaptic weight
profiles in a modified version of the mature GCN of the main manuscript (see
Appendix A). (B) Snapshot of the E (red and blue) and I (gray) population
activity patterns. (C) Sample spatial tuning curves from non-edge neurons of
the E (blue) and I (gray) populations, measured over a 10-second trajectory.
(D) The number of connections between cell pairs as a function of the mag-
nitude of the relative phase between the cells, |δαβ|, for the E-to-I (top left),
I-to-E (top right), E-to-E (bottom left), and I-to-I (bottom right) weights.
A synapse whose strength is >= 5% of the largest strength for that synapse
type counts as a connection. The distribution of spatial phases of the E cells
that project to any I cell is broad and I cells display weak or no spatial tun-

158



ing, consistent with the findings in [14]. (E-F) Parametric quantification of
integration performance in the mature GCN. (E) Diffusivity or the diffusion
coefficient (i.e. the slope of the mean squared displacement of the population
pattern trajectory, measured as the center of one of the activity bumps over
time, as a function of temporal displacement) of the population pattern at
zero input velocity, as a function of GCN size (N = 480 is the size of the
GCN in the main text). Diffusivity characterizes how much (squared) error
integration error is introduced by ongoing noise in the GCN per unit time.
(F) Diffusion coefficient as a function of the coefficient of variance (CV) of the
spiking process (see Methods and Appendix A).

159



0

80

neuron

-60-12

80400

40

neuron
80400

neuron
2001000

0

20

0

-6

0

-30

I   IE RI
E

LII E
L

IE R I   I

800

ne
ur

on

neuron

sy
na

pt
ic

 w
ei

gh
t

Figure A.4: Supplemental figures associated with Figure 2.4. Devel-
opment of a GCN with periodic connectivity. Beginning with the mature 1D
GCN, we allow synaptic modification to occur through the same STDP rules
by releasing the restriction on plasticity during the activation phase. Dur-
ing this period, the learning rate is sharply diminished, and we have added
adaptation to the neural dynamics (see Appendix A for details). These mod-
ifications are all applied at T = 4 hours in the original simulations. With
these modifications, at T = 5 hours, cells with similar spatial phases all wire
together, and the GCN becomes topologically periodic: E-to-I (first panel),
I-to-E (second panel), and I-to-I (third panel) synaptic weight profiles, and
the full I-to-I synaptic weight matrix (fourth panel).
Notes: This kind of learning is unstable because of strong positive feedback
that results from the expression of recurrent weights during their activity-
dependent plasticity. The instability creates biases in the previously symmet-
ric or previously balanced weight profiles, driving pattern flow in the absence
of velocity inputs. The added neural adaptation also works against faithful
integration. Thus, it remains to be seen whether GCNs with periodic structure
are plausible.
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Figure A.5: Supplemental figures associated with Figure 2.5. (A-D)
Developmental scores for the entire E population. (A) Spatial gridness, (B)
inter-trial stability, (C) spatial coherence, and (D) relative phase, δαβ∗ (β∗

indicates fixed reference cell, which is marked by the dark horizontal line in
the figure, see Appendix A), as a function of cell number in the E population
(y-axis) and development time (x-axis). Each element in a matrix is the score
for a particular cell at a particular development time point, averaged over
10 trials (trials are 10-second, random trajectories; the same set of random
trajectories are used to test the GCN at each developmental time point). (E-F)
Developmental scores obtained from a small number of trials and neurons have
poorer resolution in assessing the onset of pattern formation. The development
of (E) spatial gridness and (F) spatial coherence, averaged across randomly
chosen cells in the E population (n = 15; drawn from the pool of cells with
gridness score > 0.5) and over n = 4 trials. Vertical lines at same times as in
Figure 2.5A. Compare with Figure 2.5.
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Figure A.6: Supplemental figures associated with Figure 2.6. (A-F)
The development of pairwise correlations between excitatory neurons in 1D
and 2D GCNs. The distribution of pairwise correlations in: left column: the
1D GCN; middle column: the 2D GCN with 4 different directionally tuned
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populations; right column: the 2D GCN with omnidirectional tuning prefer-
ences. (A-C) In vivo correlations, in the presence of velocity inputs. (A) The
immature 1D GCN (top) exhibits strong correlations and anticorrelations in
the form of two sharp peaks, because of the common, dominant velocity in-
puts to the two populations. The mature 1D GCN (bottom; T = 4 hours)
has gained a clear uniform component. (B) The immature 2D GCN with 4
directional populations exhibits three peaks (top): strong velocity-driven cor-
relations within-population, strong anticorrelations between opposing direc-
tion populations, and zero correlations for orthogonal direction populations.
The mature GCN (bottom) has gained a uniform component. (C) The imma-
ture 2D GCN with arbitrary direction preference in individual neurons already
exhibits a uniform component (top), because of the evenly distributed velocity-
driven direction preferences. In the mature GCN(bottom; after completion of
the training trajectory), the velocity-driven components have shrunk and the
uniform component has grown, but the gain in the uniform component in this
GCN is quantitative rather than qualitative. (D-F) The same correlations as
in (A-C), but in a simulated in vitro condition, in which the velocity inputs
are removed. Here, the velocity-induced correlations have vanished, and all
immature GCNs simply display a peak at zero (top plots). Similarly, all the
mature GCNs display a uniform component related to pattern formation, that
is uncomplicated by velocity correlations (bottom plots). The uniform compo-
nent does not extend as far toward ±1 as in the in vivo conditions, because in
the absence of velocity drive, the pattern can only translate based on random
fluctuations, and does not uniformly translate over all phases. [Correlation dis-
tributions are computed from a 2-minute long trajectory in which the animal
executes movements (in vivo) (in 2D, the trajectory is experimentally derived,
see Methods; in 1D, the trajectory is random, see Appendix A), or over trajec-
tory segments where speed is lower than a threshold (boxed insets), or when
the velocity input is zero (in vitro). Correlations in (A,D) are measured be-
tween E cells whose 1D spatial gridness scores in the mature GCN is greater
than 0.5 (see Appendix A); correlations in (B,E) are measured between E cells
whose 2D spatial gridness score (see Appendix A) in the mature GCN exceeds
0; correlations in (C,F) are measured between cells drawn randomly from the
E population.] (G-H) Mean direction tuning score as a measure is not inde-
pendent of the statistics of the trajectory used to assess it. (G) Distribution of
velocities for three different 2-minute 1D trajectories. (H) The distribution of
direction tuning scores measured in the mature GCN for the three trajectories
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in (G) changes substantially with trajectory. Direction tuning scores should
therefore only be compared across experiments with caution. (I-K) Modulation
of firing rate by animal speed, as computed in [118]. (I) Sample speed tuning
curves, binned according the animal’s speed (movement in the preferred and
anti-preferred directions are conflated), for different cells in the E population,
color-coded according to the cell’s direction preference. Contrast with Fig-
ure 2.6C (see Appendix A). Cells and trajectory used to generate spike trains
same as in Figure 2.6C. (J) Snapshots of the distribution of the slopes (left
column) and intercepts (right column) of the regression lines used to fit speed
tuning curves for the cells in the E population. Computed from same cells and
trajectory as in Figure 2.6D. (K) Development of the mean of the speed tuning
slope (top) and intercepts (bottom). Interpretation of results in (K): In [118],
it is reported that the mean slopes and intercepts decrease with development.
This is true of our data if considered from point Tpatt onwards; after Tpatt,
spatial tuning is still evolving to become grid-like, and the mean slope and
intercept do decrease with development (Figure 2.5B-D).
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Figure A.7: Supplemental figures associated with Figure 2.7. (A) Sam-
ple spatial tuning curves for GCNs developed with different parameters, color-
coded according to Figure 2.7. (B-D) Rapid rescaling of grid cell tuning: possi-
ble mechanisms. (B) Columns: The effects of varying individual parameters in
the mature GCN. The gain of the velocity input (βvel; column 1), the biophys-
ical time-constant of neurons (τs; column 2), and the strength of inhibition (γ;
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column 3) are varied individually (see Methods). (C) Systematic variation in
properties of the GCN in response to changing parameters in the mature GCN.
Rows: Mean grid period; inverse GCN velocity sensitivity (see Appendix A);
population pattern period; average direction tuning score; average of the mag-
nitudes of slopes (solid lines) and intercepts (dotted lines) of the regression
lines that fit the speed tuning data; mean gridness score. (D) Relationship
between blob size and grid period, as different parameters are individually
varied.
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Figure A.8: Supplemental figures associated with Figure 2.8. (A-C)
2D GCN with randomly assigned, omnidirectional direction preferences. (A)
Direction preferences of the four excitatory populations (a distinction that is
not meaningful now that a population does not correspond to a specific direc-
tion preference; we preserve a partitioning of cells into four groups simply to
keep figures maximally similar for comparison). Each cell in each population
is assigned a direction preference randomly drawn from the uniform distribu-
tion over the interval [−π, π). (B) Snapshot of the population activities of the
excitatory (top) and inhibitory (bottom) GCNs after training. Training tra-
jectory and parameters identical to 2D GCN simulation details in Appendix
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A. (C) Left: 30-second animal trajectory. Right: GCN estimate of location.
Same parameters and training trajectory as described in Methods, except that
βvel = 3.5, γII = 8.3, γEI = 0.25, and γIE = 20.8. (D-E) Development of di-
rection and speed tuning statistics in the 2D grid cell GCN. Statistics in the
immature (at T = 0 s; top) and mature GCN (at the end of learning – see
Methods; bottom) of Figure 2.8 from the main manuscript. Scores obtained
from a 2-minute long trajectory in which the animal executes movements ac-
cording to a recorded trajectory from a randomly foraging rat (see Methods).
Data shown for cells with gridness score> 0 in the mature GCN (see Appendix
A). (D) Direction score distribution. (E) Speed tuning. Top: Speed tuning
curves sampled from the population of cells in (D) (speed is binned along the
axis of the cell’s preferred direction); the distribution of slopes (bottom left)
and intercepts (bottom right) include all of the cells in (D). (F-H) Systematic
orienting of the 2D population activity pattern in the mature GCN. (F) Snap-
shot of the inhibitory population activity pattern. (G) Power spectrum of the
population activity pattern in (F). (H) Distribution of angles (measured with
respect to the horizontal) of the two non-central peaks closest to the positive
x-axis in the power spectrum, over several trials (n = 10) and over time within
each trial (n=10 per trial). In each trial, the GCN activity is seeded with ran-
dom initial conditions; as the population activity quickly becomes patterned,
the GCN is driven by a random 10-second trajectory segment from a recorded
animal trajectory (as in Figure 2.8). Angles are sampled every 0.5 seconds for
the last 5 seconds of each trial). The distribution shows that de novo patterns
form with a narrow range of orientations, and the patterns, once formed, rotate
at most within a narrow range. The square-like GCN edges induce a partic-
ular orientation in the population pattern, directed away from the horizontal
(≈ ±15◦). Intriguingly, grid cell responses in square environments, reported in
[103]), tend to align to the square environment with approximately the same
orientation (≈ 7− 18 degrees). We wonder whether inhibitory border cells ac-
tivated in the physical environment [104] somehow impose constraints on the
allowable orientations in the population pattern by associating environmen-
tal boundaries with network edges, and thus impose a systematic orienting
of the grid fields. (I-K) 2D GCN in animal confined to a narrow (1D) corri-
dor during development. (I) Snapshot of the population activities of the 2D
GCN after development in a confined 1D environment (for example, a long,
narrow track in which the external 2D world is not visible, where the animal
can only move along a single line on the track, with textures and landmarks
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to distinguish different parts of the track). The training trajectory consists of
a sweep from left to right and back at speed vrat = 1 m/s. (J) During random
motion in an open 2D environment (30-second trajectory), the GCN is able to
accurately integrate and thus track displacements along only one dimension
of the animal’s 2D trajectory. This dimension corresponds to displacements
of the population activity pattern along its one extended dimension. Black
line (top): x-coordinate of animal displacement. Red line (bottom): center
of one of the activity bumps in bottom panel of (I). (K) Smoothed rate map
of one cell during random navigation of the full 2D space (5 minutes). Note
the banded structure of the spatial response. Same parameters and training
trajectory as described in Methods, except that βvel = 3.5, η = 0.12, γII = 4,
γEI = 0.25, and γIE = 21.6.
Interpretation of results in (I-K): This result shows that if a GCN or a sub-
population within a GCN receives only 1D velocity inputs (even if the animal
actually explores 2D space), that subpopulation will form stripe cells (resem-
bling those seen in [70]). Raising an animal on non-Euclidean surfaces, for
instance on a sphere (e.g. as done in [69]), should distort the relationship
between velocity, time, and distance travelled and should lead to correspond-
ing conformal distortions in GCN wiring and population patterning. These
conformal distortions, as well as others that might arise from other unusual
conditions during development (e.g. other non-Euclidean surfaces and radial-
arm mazes), can result in complex changes in spatial tuning on flat 2D surfaces,
that can be directly queried in our developmental model.
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Appendix B

Cortical microcircuit determination through

perturbation and sparse sampling in grid cells

B.1 Neural network simulations.

Below, we describe the two different neural dynamics models used in

the paper: the linear-nonlinear-Poisson (LNP) model and the Hodgkin-Huxley

conductance model.

Roman subscripts (e.g. i, j) refer to individual cells within population

P . The population index P can take the values {I, ER, EL}. Integration in

all simulations is by the Euler method with time-step dt.

B.1.1 Linear-Nonlinear-Poisson dynamics (all figures except Fig-
ure B.5).

The LNP model we use is identical to that used in [116]. Given a time-

dependent summed input GP
i to the (P, i)th cell, the instantaneous firing rate

of the cell is

rPi = f(GP
i ), (B.1)

with the neural transfer function f given by

f(x) =

{
0 x ≤ 0
x x > 0.

(B.2)

170



Based on this time-varying firing rate, neurons fire spikes according to an

inhomogeneous (sub-Poisson) point process with a coefficient of variance of

CV = 0.5 (see [16] and [116] for details on generating a sub-Poisson point

process).

The time-dependent activation sPi of synapses from the (P, i)th cell is

given by

dsPi
dt

+
sPi
τsyn

=
∑

b

δ(t− tPi,b), (B.3)

where tPi,b specifies the time of the bth spike of the cell and the sum is over all

spikes of the cell.

The total input GP
i (t) into the (P, i)th cell is given by

GP
i = APi α

P,vel(gP,reci + g0) + APi g
0′ , (B.4)

where g0 (g0=50 for the E and I populations) and g0′ (g0′=15 for the E pop-

ulation; g0′=0 for the I population) are small, positive, constant bias terms

common to all cells, gP,reci are the recurrent inputs, αP,vel are the velocity in-

puts, and APi is an envelope that either suppresses activity near the network

boundaries for the aperiodic network, or is flat and equal to unity for the

periodic networks (see below). The recurrent input is

gP,reci =
∑

P ′

NP ′∑

j=1

W PP ′

ij sP
′

j , (B.5)

where W PP ′
ij are the recurrent weights and δ is the Kronecker delta function.

The form of the envelope function, APi , depends on the boundary conditions
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of the network. For aperiodic networks, the envelope shape is a 1D version as

that given by [16]:

AP,aperi =





1 rPi < κNP

exp

[
−a0

(
rPi −κNP
(1−κ)NP

)2
]

otherwise
(B.6)

where NP is the size of the network, rPi = |i − NP
2
|, κ = 0.3 determines the

range over which tapering occurs, and a0 = 30 controls the steepness of the

tapering. For periodic networks, the envelope is flat:

AP,peri = 1 (B.7)

All cells in the P th population (with preferred direction given by the unit

vector êP ) receive a common velocity input:

αP,vel = 1 + βvel~v · êP , (B.8)

where ~v is instantaneous velocity of the animal and βvel sets the gain of the

velocity input; êP = (0,0), (0,1), (0,-1) for the I, ER, EL populations, respec-

tively. The velocity input, unless otherwise noted, is based on a 2-minute

quasi-random trajectory derived with an algorithm identical to that described

in [116]. Over the course of these trajectories, the stochastic dynamics leads

to drift in the path-integrated estimate of animal location if uncorrected. To

minimize this drift, the pattern phase is reset whenever the animal is in the

vicinity of one of the 5 ‘landmarks’ evenly spaced throughout the environ-

ment. During each encounter with a landmark, the pattern phase is corrected

via strong feedforward inputs that impose a snapshot of the pattern at its
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“correct” phase; “correct” pattern snapshots are captured from the popula-

tion pattern during the animal’s initial encounter with each of the landmarks.

Temperature/neuromodulation of LNP dynamics. Temperature-dependent mod-

ulations are modelled as a simple rescaling of the synaptic activation time con-

stant, τsyn. Modulations of network inhibition are modelled as a gain change

in the efficacy of the synaptic weights projecting from inhibitory neurons, i.e.,

W PI ← γinhW
PI , where γinh is the strength of inhibition.

B.1.2 Hodgkin-Huxley dynamics (only used in Figure B.5).

The model we use is identical to the reduced Hodgkin-Huxley “regular

spiking (RS)” model of cortical neurons, as described in [90], supplemented

with synaptic dynamics. The dynamics of the membrane potential of the

(P, i)th neuron is given as

Cm
dV P

i

dt
= −IPi , (B.9)

where IPi is the summed input current and Cm is the capacitance of the mem-

brane. The summed input current is given as

IPi = +αP,velAPi

(
IP,reci − Iapp

)
, (B.10)

where the first term represents currents related to the ionic membrane con-

ductances and the second and third terms represents synaptic and external

conductances, respectively, gated by velocity inputs, αP,vel, and an envelope
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function, APi . The ionic current has the following form:

IP,ioni = gL(V P
i − V L)+gKn

4(V P
i − V K)+

gMq(V
P
i − V K) + gNam

3h(V P
i − V Na),

(B.11)

where the g’s are the maximum conductance values and the V ’s the reversal

potentials of the leak conductance (L), fast (K) and slow (M) potassium con-

ductances, and the sodium conductance (Na). The dynamics and parameter

settings of the gating variables n,m, q, h are described in [90] (note that we

have replaced the “p” gating variable of [90] with “q”). The synaptic current

based on recurrent connections within network is

IP,reci = η
∑

P ′

NP ′∑

j

W PP ′

ij sP
′

j (V P
i − V

P
), (B.12)

where sP
′

j is the synaptic activation of the (P ′, j) neuron (which has the same

dynamics as described above in equation (3) – here, we define the time of a

spike elicited by the jth neuron, tspkj , as when the voltage moves from below

0 mV to above it in a single-time step, within the interval (t, t + ∆t)), η is a

synaptic scaling factor shared by all synaptic weights, and V is the synapse-

specific reversal potential (V
E

=0 mV and V
I
=-80 mV).

Temperature/neuromodulation of HH dynamics. To simulate temperature-

dependent modifications, we used separate Q10 factors to modulate the time

constant (Qτ
10 = 3) and amplitudes (Qa

10 = 1.3) of the ionic/synaptic conduc-

tances [57, 64]. At temperature T (◦C), the conductance amplitudes g(T ) and
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time constants τ(T ) have the following form:

g(T )← g(T0)(Qa
10)

T−T0
10 (B.13)

τ(T )← τ(T0)/(Qτ
10)

T−T0
10 . (B.14)

The conductance amplitude modulation was applied specifically to gL, gK , gM ,

gNa,W
PP ′
ij . The conductance time constant modulation was applied to the

gating variable time constants τn, τq, τm, τh (for gating variable x, the time

constant τx is defined as τx = 1/(αx + βx), where αx and βx are the rate

constants governing the gating variable’s dynamics – see [90]) and the synaptic

time constant τsyn. For temperature perturbations of the ionic conductances

only, gL, gK , gM , gNa, τn, τq, τm, τh change with temperature, while W PP ′
ij and

τsyn =16 ms are held constant. For temperature perturbations of the synaptic

conductances only, W PP ′
ij and τsyn change with temperature, while the ionic

conductance properties are held fixed.

The effects of specific neuromodulators targeting the inhibitory synapses

was modelled in exactly the same as for the LNP model.

B.1.3 Synaptic weights for network of excitatory and inhibitory
neurons (all figures except Figure B.8).

The detailed synaptic weights used in the simulations are based on the

developmentally-inspired hardwired weights with aperiodic boundary condi-

tions described in the Appendix A and the SI of [116], and therefore can be

viewed as the plausible culmination of a developmental process. Compared to

the LNP-based model used in [16], we chose to implement the model in [116]
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because it is more realistic, incorporating separate populations of excitatory

and inhibitory cells; however, both models give qualitatively similar results.

(Note that while the description of the weights below is different than that

specified in [116] in order to enable flexibility in setting the network boundary

conditions, the weights used for the aperiodic network are identical to those

specified in [116].) The weights from population P ′ to P , between cells i and

j, are described as follows:

W PP ′

ij =
η

ρ
APP

′

ij Θ(c0 − δρ) [Θ(−µx) + Θ(µ(x− µNP/2))]×
[
exp

( −c2
−

2(σρ)2

)
+ ε exp

( −c2
+

2(σρ)2

)]
,

(B.15)

where x = i−γj, γ = NP
NP ′

(NP is the size of population P ), Θ is the Heaviside

function (Θ(x) = 0 for x < 0 and is 1 otherwise), c0 = ψ(x) and c± =

ψ(x ± ∆ρ) where ψ(x) = min (Np − |x mod Np|, |x mod Np|), and APP
′

ij =

APi A
P ′
j , where APi = AP,aperi for aperiodic networks and APi = AP,peri for periodic

networks (see above for definition of AP,peri and AP,aperi ). ρ is a scale factor that

controls the width of the synaptic weights, and therefore the number of bumps

expressed in the pattern, whereas η is a synaptic scaling factor that modulates

only the amplitudes.

(A note on terminology: the partially periodic network has an over-

all topology that resembles the periodic network of [16]. In our usage in the

present work, periodic refers to a fully periodic network, in which the period-

icity of connections matches that of activity pattern, whereas in the partially

periodic network, the bulk of connectivity does not reflect the periodicity of

the population activity pattern.)
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B.1.4 Simulation parameters

Aperiodic network with LNP dynamics.

P = EL, ER, I; NEL = NER = 400 neurons; NI = 160 neurons; CV = 0.5; dt =

0.5 ms; τsyn = 30 ms*; βvel = 2; APi = AP,aperi ; ρ = 2.2. γinh = 1*;

EL → I (i.e., W IEL): η = 21; ε = 0; ∆ = -1; σ = 2; µ = 0; δ = 0;

ER → I: η = 21; ε = 0; ∆ = 1; σ = 2; µ = 0; δ = 0;

I → EL: η = 8; ε = 0; ∆ = 4; σ = 5; µ = -1; δ = 3;

I → ER: η = 8; ε = 0; ∆ = -4; σ = 5; µ = 1; δ = 3;

I → I: η = 24; ε = 1; ∆ = 2; σ = 3; µ = 0; δ = 3;

(* indicates that parameters can change through perturbation)

Partially periodic network with LNP dynamics.

Same parameters as aperiodic network, except that APi = AP,peri , and ρ = 2.2.

Fully periodic network with LNP dynamics.

Same parameters as aperiodic network, except that APi = AP,peri , and ρ = 22.

Aperiodic network with HH dynamics.

All ionic conductance parameters are identical to those described in [90] for

the RS model; as noted there, the parameters are set to values corresponding

to a temperature of T0 = 36◦C. NEL = NER = 400 neurons; NI = 160 neurons;

dt = 0.025 ms; τsyn = 15 ms*; βvel = 0.8; Cm = 1 µF/cm2; gL = 0.1 ms/cm2*;

gK = 5 ms/cm2*; gM = 0.07 ms/cm2*; gNa = 50 ms/cm2*; V L = -70 mV;

V K = -90 mV; V Na = 50 mV; Iapp = = 3 µA/cm2; η = 0.0015; APi = AP,aperi ;
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ρ = 2.2. γinh = 1*; Synaptic weights are identical to those described for the

aperiodic network with LNP dynamics up to a constant, η. (* indicates that

parameters can change through perturbation)

B.2 Scores and Measures

Bootstrap resampling and phase uncertainty. Given an original spike map of

M total spikes (with locations) from one cell, we created a new spike map of

N (N < M) total spikes, by picking spikes (with their corresponding location

coordinates) from the original map one at a time, at random, and with replace-

ment. The same was done for a second, simultaneously recorded cell. From

these sampled spike trains for a pair of cells, we estimated relative phase (by

computing the location of the peak closest to the origin in the cross-correlation

of the spatial maps of the two cells, as in [125]). The procedure was performed

100 times, generating 100 bootstrapped relative phase estimates per cell pair.

Phase uncertainty was measured as the mean of the magnitudes of the boot-

strapped relative phase estimates.

Spatial tuning curves. For a given cell and trajectory, we build a histogram

of spike counts at each location (bin size = 1 cm), then normalize the count

in each bin by the amount of time spent in it. The normalized histogram

is smoothed by convolution with a boxcar filter (width = 5 bins) to yield a

spatial tuning curve.
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Spatial tuning period. The spatial tuning period is measured as the inverse

of the spatial frequency with the highest peak in the power spectrum of the

spatial tuning curve (excluding the peak at 0 frequency).

Population period. Given the last 500 snapshots (frames) of the population

pattern from a given trial, the population period is measured as followed: For

each frame, measure the inverse of the frequency with the highest peak in the

power spectrum (as with the spatial tuning period) of the population pattern.

The population period is the average of these estimates.

Velocity response. Velocity response is measured as the translation speed (neu-

rons/sec) of the network pattern to fixed input velocity, computed by tracking

the displacement of the pattern for 10 seconds, smoothing the resulting trajec-

tory with an 4-second moving average filter, and then measuring the average

speed of the middle-half of the trajectory.

2D relative phase. The displacement vector ~d is converted into a 2D phase ~δ

according to ~δ = f(dproj1 /λ1 mod 1, dproj2 /λ2 mod 1), where ~dproj = (dproj1 , dproj2 )

is the oblique projection of ~d onto the principal vectors λ1ê1 and λ2ê2, and

f(~x) =





(x1 − 1, x2 − 1) if x1 ≥ 0.5 and x2 ≥ 0.5
(x1 − 1, x2) if x1 ≥ 0.5 and x2 < 0.5
(x1, x2 − 1) if x1 < 0.5 and x2 ≥ 0.5
(x1, x2) if x1 < 0.5 and x2 < 0.5.

(B.16)
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B.3 Supplemental figures
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ur
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Figure B.1: The a priori theoretical implausibility of partially peri-
odic networks. Population activity in the cortical sheet (yellow-black blobs),
with schematic of connectivity (green). Note that in the bulk of the sheet,
connectivity is local and not determined by the periodic activity in the sheet.
However, the imposition of periodic boundary conditions requires that some
neurons connect with others on the far edge of the sheet. Even if neurons are
not topographically organized, the connectivity requires that a planar corti-
cal sheet is somehow intrinsically connected as a torus. Activity-dependent
weight changes that are based on the expression of periodic activity patterns
could produce a torus-like connectivity, but then if the sheet is not topograph-
ically ordered it is likely that neurons in various bumps will connect to each
other, producing a fully periodic rather than partially periodic network (see
also Figure B.8).
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Figure B.2: Dynamical simulations of the aperiodic network with LNP
dynamics: gradual change in population period and peak-to-peak
spacing of the DRPS with perturbation strength. Change in population
pattern period as the inhibition strength (filled circles) or the time-constant
(open circles) are scaled up by the factor β (inhibition strength γinh = βγ∗inh
with γ∗inh = 1; time-constant τsyn = βτ ∗syn, with τ ∗syn = 30 ms) in the 1D
aperiodic grid cell neural network (see Methods for simulation details and
Appendix B for definition of population period).
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Figure B.3: When the 2:1 relationship between number of peaks in the
DRPS and the number of bumps in the population pattern breaks
down. Top: Schematic of the phase in a population pattern, pre- (blue) and
post- (red) perturbation, for a large 1D network with many bumps. If the
post-perturbation pattern is aligned to the first bump of the original pattern,
the Mth bump is shifted by an amount λpop,preαM away from the correspond-
ing bump in the original pattern. When this shift equals λpop,pre/2, i.e. the
perturbed bump is maximally out of phase with the original pattern, there
can be no additional (farther out) quantal peaks in the DRPS. Thus, the
number of DRPS peaks equals the number of bumps in the pattern only when
λpop,preαM < λpop,pre/2, or equivalently, when Mα < 1/2. Bottom: Black
curve: Difference in the pre- and scaled (by α) post-perturbation phases of
cells. At right, the DRPS is aligned vertically with the y-axis of the phase
shift plot, so that the origin of the DRPS peaks is more readily apparent. It is
clear that once the two patterns reach counter-phase, the locations of DRPS
peaks simply repeat. Thus, M∗ = 1/(2α) bumps can accurately be discrimi-
nated (per linear dimension of the pattern) for a given stretch factor α; when
M > M∗, the inference process suffers from systematic underestimation.
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Figure B.4: The DRPS in two dimensions. (A) Schematic of 2D popula-
tion activity pre- (blue) and post- (red) perturbation (not a dynamical neural
network simulation). For illustration, the pattern is depicted topographically
and pattern expansion is from bottom left. Subsequent predictions are inde-
pendent of both choices. Dotted lines: The two principal axes of the pattern.
(B) Population phase of each cell, depicted as an arrow (2D phase is a vec-
tor). (C) Two relative phase shift histograms computed separately for the
two components of the vector phase, along the two principal axes of the lat-
tice (gray: raw data; black: smoothed with 2-bin Gaussian). The DRPS
for each phase component resembles the 1D DRPS. Data for each histogram:
n = (3200 choose 2); bins = 200. Parameters: ~λpop,pre = λpop,pre(ê1 + ê2),

λpop,pre = 20 neurons, ~λpop,post = (1 + α)~λpop,pre, α = 0.1, ê1 = (cos θ, sin θ),
θ = 23◦, ê2 = ê1 + 60◦, network size: 80× 40 neurons.
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Figure B.5: Dynamical simulations of the aperiodic network with HH
dynamics: gradual change in population period. (A-D) Population pe-
riod as a function of perturbation strength (see Appendix B for description
of HH dynamics and perturbation details). (A) Population period increases
gradually with strength of inhibition. Each point is the population period av-
eraged over 10 trials (with error bars equal to the standard deviation). Each
trial is 1 second long, in which for the first third of the trial the population pat-
tern is flowed with velocity input equal to 0.3 m/s, and for the remaining time
allowed to relax with no velocity input (see Appendix B for definition of popu-
lation period). (B) Population period increases as the temperature is stepped
down from 36◦C to 26◦C. (C) Temperature perturbation of only the ionic
conductances leads to decreasing population period with decreasing tempera-
ture. (D) Temperature perturbation of only the synaptic conductances leads
to increasing population period with decreasing temperature. The net result
of (C-D) is that the population period increases with decreasing temperature
(B). (E-G) Temperature dependencies of single-cell properties, color-coded as
a function of temperature. (E) Firing rate as a function of input current, (F)
action potential shape, and (G) impulse response (i.e., subthreshold response
of membrane potential to current pulse), with log-log plot in inset. (H) EPSP
shape as a function of temperature. Though there is a slight decrease in am-
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plitude of the EPSP with temperature (as shown by the log-log plot of the
same data in the inset), it is small compared to the effect on the EPSP time
constant.
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Figure B.6: Changes in spatial tuning period in dynamical neural net-
work simulations are due to changes in both the population period
and the velocity response of the network. (A) Spatial tuning periods
(λix for different perturbation strengths indexed by i) of cells in the different
recurrent networks, as the strength of inhibition is varied (data as in 3D). (B)
The underlying period (λipop) of the population patterns in the same networks
for the corresponding strengths of inhibition. (C) The velocity response (vipop)
of the networks, or efficacy with which a unit input velocity shifts the phase of
the population pattern, as a function of inhibition strength. See Methods for
simulation details, and Appendix B for definition of scores. It is clear that the
spatial tuning period (A) is more strongly influenced by the velocity response
(C) than by the population period (B).
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Figure B.7: Effects of uncertainty in phase estimation. (A) Copied from
Figure 4B. First and second columns: DRPS (200 bins) for different numbers
of population pattern bumps along the first principal axis of the pattern and
for different amounts of phase noise (noise is sampled i.i.d. from a gaussian
distribution, N(0, σ2

phase), and added to each component of the relative phase

vector, ~δij; “phase noise” is the same as σphase). Third column: Same as
the second column, except for a larger stretch factor, α = 0.2. Note that
the peak-to-peak separation has increased so that the individual peaks are
discernible. However, for the 5 bump network in the second row, inferring
the number of bumps in the underlying population pattern would lead to an
underestimate, since M ×α = 5×0.2 > 1/2. (B) Solid lines: Periodicity score
(a measure of how well separated and equidistant are the peaks in the DRPS,
and ranges between 0 and 1; see Appendix B) as a function of phase noise for
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2-bump network in (A), for different values of the stretch factor, α (solid lines).
Periodicity is measured for the DRPS along the first principal axis. Dashed
lines: Same as solid lines, except computed by randomly shuffling the phase
vectors post-perturbation. (C) Stretch factor, α, as a function of threshold
phase noise (defined as the phase noise where the DRPS is indistinguishable
from the DRPS when the phase vectors in the post-perturbation condition are
reassigned randomly, i.e., the value of the phase noise when the colored curves
in (B) cross the respective colored dashed lines).
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Figure B.8: Weakly coupling neurons in different activity bumps in an
aperiodic network results in behavior identical to single-bump fully
periodic networks. (A) The population pattern in the aperiodic network
network exhibits a regime of continuous stretching (black curve) with increas-
ing inhibition strength (γinh). The ordinate axis is the stretch-factor alpha,
which quantifies the deviation of the period post-perturbation from that pre-
perturbation, normalized by the pre-perturbation period (See Appendix B for
definition of population period). However, adding even very weak synaptic
connections between neurons in adjacent activity bumps in the aperiodic net-
work (B) transforms the network into one that will not stretch at all (cyan
curve), like the single-bump fully periodic network. The two constructions (the
single bump network and the aperiodic network with the addition of between-
bump connections) would be mathematically the same if there were strong
coupling between all neurons of the same activity phase in the network; this
numerical result shows that the addition of very small weights that reflect the
periodicity of the population activity (but are nevertheless largely local within
the network in the sense that only neighboring bump neurons are connected,
not neurons in remote bumps) already transforms the aperiodic network into
an effectively fully periodic, single-bump network. Simulation details: The
network connectivity is as a hybrid of the aperiodic network in [16] with the
fully periodic network of [38] (note that, while the model of [38] does not
have explicit periodic boundary conditions, the multimodality of the synaptic
weights couples adjacent activity bumps so that the network acts as a single-
bump, fully periodic network). The dynamics are LNP-based (see Appendix
B) and driven with inputs simulating animal motion at constant speed (v =
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0.3 m/s) for 10 seconds. There are only two populations (call them R and
L), distinct in their directional preferences (êP = (0,1), (0,-1) for the R and L
populations, respectively) and output synaptic asymmetries (see below). The
shifted output weight profiles are sinusoids with gaussian envelopes, the latter
which constrain the non-locality of the projections. For a narrow gaussian
envelope, the weights resemble the purely local, center-surround profiles of
[16], whereas for wide gaussian envelopes, the weights resemble the non-local,
multimodal projections of [38]. The weights going from population P ′ to P

and from cells i and j, are given by W PP ′
ij = η

C
exp

(
−x2
2σ2

)
(cos(ax)− 1), where

x = i − j + ∆ (∆ = ±1 for P ′ = R(+) and P ′ = L(+)), η is a scaling factor

that modulates the amplitude of the weights, C =
√

2πσ2
(

exp
(
−σ2a2

2

)
− 1
)

is a normalization factor, σ determines the width of the gaussian envelope,
and a determines the period of the underlying sinusoid.

Parameters. NR = NL = 200 neurons; CV = 0.5; dt = 0.5 ms; τsyn = 30 ms;

g0 = 50; g0′ = 0; βvel = 1; APi = AP,aperi ; a = 2π/20; η = 200; σ = 4→12;
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