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Optimization-based feedback control of nonlinear systems

subject to input constraints

by

Dimitrios Stylianos Parsinas Pylorof, Ph.D.

The University of Texas at Austin, 2018

Supervisor: Efstathios Bakolas

In this work, we are studying and solving feedback control problems for input

constrained nonlinear systems under the influence of uncertainty. Our results are de-

veloped by fusing fundamental Lyapunov stability concepts with tools and techniques

from the field of convex optimization that enable the derivation of computationally

efficient control laws accompanied by robust stabilization guarantees.

When a nonlinear control system is subject to input constraints, a critical as-

pect of the stabilization problem with simple control laws based on a particular Control

Lyapunov Function (CLF) is to characterize a subset of the state space starting from

where stabilization to the origin is guaranteed. We consider polynomial systems which

are affine in a control input constrained in a convex and compact polytope. We pro-

pose two alternative analysis methods that ultimately yield sufficient conditions for

asymptotic stabilization under such input constraints and provide an estimate of the

stabilization set for the system and the given CLF. Both methods relax the problem to

the solution of Sum-of-Squares programs, which nominally can be cast as Semidefinite

Programs that are solvable with interior point algorithms. Given a particular CLF,

it is also possible to sequentially optimize over its coefficients to the end of reshaping
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or enlarging the stabilization set, and thus, favorably altering the set of initial condi-

tions from where the control objectives can be attained. A class of constrained control

laws based on a particular CLF is shown to attain values equal to the minimizer of

a Quadratic Program (QP), which is guaranteed to remain feasible along any closed

loop trajectory emanating from the stabilization set. The input constraints are always

respected and the closed loop system is rendered asymptotically stable. Additionally,

such a QP is of a rather low dimension and can be solved efficiently, enabling the

embedded implementation of the proposed control laws even on resource-constrained

computational platforms.

For the case of systems subject to unknown, bounded uncertainties that enter

the dynamics in an affine way, the aforedescribed results are extended to provide robust

stabilization subject to input constraints. With the proposed methods, the min-max

conditions typically encountered in Lyapunov methods with Robust CLFs (RCLFs)

for such systems are handled in both the (R)CLF analysis and the feedback control

problem. Therefore, one can estimate a subset of the robust stabilization set with SOS

programming and, subsequently, calculate - online - the stabilizing control inputs using

state feedback to render the system robustly practically stable.

An often encountered challenge in nonlinear control design and implementation

is the large dimension of the underlying system, often resulting from the interconnec-

tion of multiple subsystems which interact with each other. The concept of Vector

(Control) Lyapunov functions allows studying or warranting the applicable stability

notion by focusing at the subsystem level and the respective subsystem-to-subsystem

interactions. We are leveraging the premise of VCLF methods with our results on the

robust stabilization problem to enable the solution of the input constrained robust sta-

bilization problem for large scale systems, either in a distributed or a decentralized way
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(or in a combination of both), depending on whether state information is exchanged

between interacting subsystems or not.

Lastly, we examine how uncertainty in the measurements of the system can

affect the stabilization problem under input constraints. We propose a control frame-

work with which one can steer a system to a neighborhood of the origin using only

imperfect state feedback. The latter is achieved by enforcing a causality relationship

between stabilizing the system from the point of view of an imperfect feedback control

law and stabilizing the actual system. Ultimately, we use control laws based, again,

on the minimizer of simple QPs, to provingly achieve the robust stabilization objective

in a subset of the measurement space which is characterized by solving a sequence of

SOS programming problems. For the case where only imperfect measurements either

of a subset of the state vector of the system or of a linear combination of state vector

components are available, we propose an extension of Lyapunov-based nonlinear ob-

server design results from the literature to account for uncertainty in the dynamics and

the measurement equation. The robust observer synthesis process takes place through

SOS programming and produces observers with explicit performance guarantees with

regards to the behavior of the state determination error.

The factors considered in this work are relevant to contemporary safety-critical

control applications; nonlinearity, input constraints, uncertainty, and the need for em-

beddability and low footprint implementation are ubiquitous in control problems across

fields ranging from robotics to industrial engineering, space exploration and cyber-

physical systems. The proposed methods aim to collectively provide a theoretically

sound, algorithmically implementable and practically useful framework to study and

tackle challenging control problems.
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Chapter 1

Introduction

1.1 Contemporary challenges in control theory, algorithms
and applications

Control theory and algorithms are nowadays at the backbone of most engineer-

ing systems, enabling (or hindering) their autonomous operation and decision making.

As system components become smaller in size, more complex and fragmented in na-

ture, and distributed over distant, heterogeneous and -possibly- adverse environments,

questions related to a control solution’s capabilities, robustness, and overall resilience

emerge. Nonlinearity in the underlying dynamics, uncertainty, and constraints on the

physically realizable control inputs make such questions critically important. Let us

consider some of these factors in additional detail.

Nonlinearity and constraints: The Lyapunov stability theory provides us with

a set of thorough tools, which one can use to address stability and control problems for

nonlinear systems. However, there still exist multiple open issues with significant real-

world implications. Here, we will examine one such fundamental problem pertaining

to stabilization under input constraints. It will not be an exaggeration to claim that

input constraints may be more relevant than even before in the controls field. First of

all, system components such as actuators of any kind tend to become smaller in size

and more capable, operating close to their physical limitations. Such limitations can

impose constraints on the available control authority, which, in turn, can prevent the

stabilization of the system from arbitrary initial conditions. Second, the widespread
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use of control systems everywhere around us with the goal to increase autonomy and

improve human lives and activities (as, for instance, in autonomous cars, biomedical

devices, safety-critical industrial control) means that a failure to stabilize a system,

which can be caused by the lack of enough control authority, can have detrimental

consequences.

Uncertainty: The aforedescribed issues become much more critical under the

influence of uncertainty. Typically, robust control methods would attempt to attenuate

the effect of uncertainty on the controlled system. However, this is not so trivial when

the control inputs are subject to constraints, highlighting the need for the control

designer to know, a priori, what the capabilities of a particular system are guaranteed

to be, given the input constraints and the uncertainty characterization.

Scale: An even more challenging factor that affects contemporary control

systems is the issue of scale. Systems nowadays can consist of tens, hundreds, thou-

sands, or even more components that interact with each other. Solving such a control

problem in a centralized way is typically impossible. One has to focus, instead, at

the subsystem level and implement control laws locally in such a way that the entire

system is stabilized, also. The large dimension and the complexity of such systems also

highlight the need for any control design methodologies and the resulting solutions to

be systematic and provably correct, since it may be impossible to a posteriori verify

(say, with experiments or simulation techniques) the correctness of a control solution

against all possible behaviors of the controlled system and its environment.

Embedded systems: Last but not least, contemporary control solutions are

often deployed on embedded platforms in the real world. Except for the obvious re-

quirements for robustness and resilience, it is often necessary for the control law to

be computationally lightweight, so that it is easily implementable and embeddable on

2



resource-constrained electronics. Embedded systems can be associated with additional

complicating factors. For instance, as sensors get smaller, the quality of their measure-

ments usually degrades. It may even be impossible to measure all quantities of interest

for control purposes.

All the previously discussed complicating factors can make control problems

rather hard to solve. Fortunately, contemporary progress in optimization methods and

their use in stability and control problems has offered a path to designing highly capa-

ble control solutions while taking into consideration a multitude of aspects, something

not possible if one was to solve such problems analytically. From fast-enough com-

putational libraries and platforms that enable the solution of optimization problems

online to the opposite end of the spectrum where one can design control laws offline

with explicit guarantees about their safety and performance, computational methods in

control offer exciting prospects and enable the development of gradually more robust,

better performing and, overall, more useful control solutions.

feedback control

0

0

CLF analysis

CLF optimizationDc X
D′cDc

uc1(x)

uc2(x)

U(x∗)

UXc

x∗

Figure 1.1: A conceptual illustration of the setting of the CLF-based stabilization problem under
input constraints. CLF analysis: finding Dc, a sublevel set of the CLF V contained within the
non-shaded part X of the state space; everywhere in Dc one can find an input to render V̇ < 0 along
the closed loop trajectories, which remain in Dc; CLF optimization: enlarging or reshaping Dc by
finding a new CLF; feedback control : closing the loop with a CLF-based, constrained control law.
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1.2 Background and prior work

1.2.1 Nonlinear control

Despite the advent of Lyapunov stability concepts, Control Lyapunov Functions

(CLFs) (Bacciotti and Rosier, 2005; Haddad and Chellaboina, 2008) and related meth-

ods such as backstepping (Krstić, Kanellakopoulos, and Kokotović, 1995; Freeman and

Kokotović, 1996) as some of the main tools in nonlinear control, the stabilization of

nonlinear systems remains a nontrivial feat. The ubiquitous presence of input con-

straints in the majority of physically meaningful systems can complicate such a control

problem even further. One can use fundamental tools such as the Artstein theorem

(Artstein, 1983), the Sontag formula (Sontag, 1989) and the pointwise min-norm ap-

proach (Freeman and Kokotović, 1996; Primbs, Nevistić, and Doyle, 2000) to design

a feedback control law based on a particular CLF, say V , and achieve global or local

asymptotic stabilization. However, if the control input is constrained to attain values

in a particular set, such a control law may fail to stabilize the system. Even if it

was possible to find a control input to render V̇ < 0 everywhere in the state space

in the unconstrained case, this may not be possible under input constraints, ruling

out global stabilization in the sense of Lyapunov (or altering the set from where local

stabilization was originally attainable in the absence of input constraints). Note that

there is more to the input constrained stabilization problem than merely finding the

set where there exists an input vector that satisfies the constraints and renders V̇ < 0;

a notion of invariance is also required, so that the controlled trajectories under an

input constrained CLF-based control law will remain in such a set, which we hereafter

call the stabilization set for a given system, input value set and CLF. The problem of

bounded CLF-based feedback and backstepping has been studied in Lin and Sontag

(1991); Freeman and Praly (1998). Note that the concepts of bounded and saturated
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control have important differences from the (polytopically) constrained case which we

will ultimately consider here, as the latter necessitates an explicit, quantitative ap-

proach when dealing with the possibly coupled constraints on the components of the

input vector.

Apart from input constraints, an often encountered difficulty in studying and

controlling dynamical systems is that it is practically impossible to obtain a perfect

model of the underlying dynamics. Even if one obtains a rather accurate, elaborate

dynamical model, it may not be practical to use such a model for purposes of control

design due to, for instance, its high dimension or the absence of a form amendable to

control design techniques. Moreover, the parameters of many systems may naturally

assume different values as time progresses in a way that significantly affects the under-

lying dynamics, or a system can also be affected by unknown, exogenous disturbances.

For such systems, the typical Lyapunov control paradigm holds in a worst-case way

with regards to the action of the unknown disturbances on the system, that is, by

dominating over the unknown disturbances, no matter what their value may be, in

which case we use the concept of a Robust CLF (RCLF) (Freeman and Kokotović,

1996; Krstić and Deng, 1998). The effect of uncertainty can be added on top of that of

input constraints and can jeopardize the efficacy of an RCLF-based control scheme. In

order to solve the robust stabilization problem in a provably correct (and thus, safe)

way, it is necessary (a) to be able to robustly steer the system to the origin with an

RCLF-based control law, under the influence of bounded uncertainty in the dynamics

and in the presence of input constraints, and (b) to know from which initial conditions

such a control law is guaranteed to be effective and achieve our stabilization objectives,

under any possible action of the disturbance on the system. Similarly to the nominal

case, it is critically important to recognize the necessity for a notion of invariance, in
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order for the controlled trajectory driven by an RCLF-based control law not to escape

from the set where such a control law is well-defined and effective, while the system

converges to the target equilibrium.

X

Xc

Xc
r

Xr

Drc

Dc

?

?
xA xB

xC

xD

Figure 1.2: A conceptual illustration of the setting of the RCLF-based robust stabilization problem for
uncertain systems under input constraints. All trajectories emanating from either xA and xB , both
of which belong to the robust stabilization set Drc, are attracted to an arbitrarily small neighborhood
of the origin, regardless of the particular action of w. Any such trajectories, driven under a simple
min-max RCLF-based control law under input constraints, remain in the part of the state space Xr
where a control law of this nature is feasible. Trajectories emanating from some point in Xc

r may
ultimately enter the robust stabilization set (as conceptually drawn for the case of xC) or not (as
shown for xD). To provably solve the robust stabilization problem with an RCLF-based control law
under constraints, it is critical to find a positively invariant set set Drc that is contained within Xr.

1.2.2 Convex optimization methods in nonlinear feedback control

Sum-of-squares (SOS) methods (Parrilo, 2000, 2013) have brought a small rev-

olution in the field of control, by providing the means to numerically solve many prob-

lems of interest involving nonnegative polynomials. The original polynomial nonnega-

tivity problem is rather hard to solve, however, one can use SOS techniques to relax it

to an LMI (Boyd, Ghaoui, Feron, and Balakrishnan, 1994) in auxiliary variables, for

which polynomial time algorithms exist (Vandenberghe and Boyd, 1996). Even if the

resulting LMIs scale badly (in fact, factorially) with the dimension of the polynomial

indeterminate, SOS methods have rendered the problem of polynomial nonnegativity
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practically decidable for many cases of interest. Multiple problems in stability and

stabilization of nonlinear systems have benefited from such methods, especially for re-

gion of attraction calculations (Chesi, 2004a,b; Papachristodoulou and Prajna, 2002;

Tan and Packard, 2008; Topcu, Packard, and Seiler, 2008; Kundu and Anghel, 2017).

Feedback control synthesis with SOS for nonlinear systems without input constraints

has been studied in Prajna, Parrilo, and Rantzer (2004b). The reader is referred, in-

dicatively, to Vaidya, Mehta, and Shanbhag (2010); Manchester and Slotine (2017) for

optimization-based synthesis methods that do not assume the knowledge of a particu-

lar CLF for the system. We also refer to Tedrake, Manchester, Tobenkin, and Roberts

(2010); Majumdar and Tedrake (2017) for SOS-based control design in motion plan-

ning problems. For additional contemporary results on region of attraction calculation

methods we refer to Henrion and Korda (2014); Wang, Lall, and West (2013), and the

survey by Chesi (2010).

The fact that a CLF-based control law, such as the min-norm control law (Free-

man and Kokotović, 1996), subject to polytopic input constraints can be associated

with the solution of a Quadratic Program (QP) was first identified by Curtis (2003),

to our knowledge. Such QPs are rather attractive, given their small dimension and the

fact that they are rapidly solvable even on resource constrained embedded computa-

tional platforms. The recursive feasibility aspect of such a QP has not been studied,

though. The latter implies that the QP associated with a control law could suddenly

become unfeasible, if the controlled trajectory escapes to parts of the state space where

no control input exists to render the time derivative of the CLF along the trajectory of

the system negative definite. CLF techniques are fused with Control Barrier functions

to study an automotive control system with state constraints and input saturation in

Ames, Xu, Grizzle, and Tabuada (2017); Xu, Grizzle, Tabuada, and Ames (2017b).
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The QP control scheme proposed therein essentially follows the min-norm paradigm

except for a relaxation parameter that allows the violation of the asymptotic stabiliza-

tion condition in the interest of prioritizing the satisfaction of state constraints.

1.2.3 Large-scale and networked systems

The tasks of designing, implementing and operating feedback control laws be-

come increasingly challenging as the scale of the underlying system increases. The

offline computational burden related to the derivation and verification of control laws

can become prohibitive and even render such problems practically intractable. More-

over, using feedback to produce a stabilizing control input in real time poses additional

challenges. For instance, any necessary data gathering, calculations, and actuation

processes typically have to fit in a limited time frame and are performed on embed-

ded computational platforms; the larger a system is, the more difficult it becomes to

effectively close such a feedback loop. The various components of a large-scale system

may not even be physically collocated, raising issues related to the communication be-

tween them and the possibility for them to collaborate (or not) in achieving the control

objectives.

Centralized control paradigms treating a system as a whole throughout the life

cycle of a control solution may, therefore, not be ideal for large-scale systems. It is often

preferable to address control-related questions by considering subsystems of the original

system and their interactions. Such control techniques fall under two paradigms: dis-

tributed and decentralized control. Distributed control laws operate at the subsystem

level and also take into consideration information from any other subsystems which

directly affect the local subsystem’s dynamics. Conversely, subsystem-level decentral-

ized control laws operate more independently, as they do not require any information
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from other subsystems.

Related techniques have been studied in the literature for more than half a

century. The introduction of the fundamental notion of vector Lyapunov functions

Bellman (1962); Matrosov (1962) helped extend Lyapunov stability concepts to large-

scale systems. Instead of studying the stability of a system as a whole, vector Lyapunov

function methods allow us to work with individual Lyapunov functions for each sub-

system and consider the effect of their interactions via appropriate techniques. The

reader is referred to Sandell, Varaiya, Athans, and Safonov (1978); Siljak (1978, 1991)

and the more modern study in Haddad and Nersesov (2011). Sum-of-Squares (SOS)

for calculating the region of attraction for a large-scale system have been presented in

Kundu and Anghel (2017). The control problem has also been studied analytically in

Karafyllis and Jiang (2013).

As any physically realizable control system can be expected to be subject to

input constraints and uncertainty, the same is true for large-scale systems, also. The

complexity of such systems emphasizes the need for a systematic framework to study

and solve the stabilization problem in a correct and safe way.

1.2.4 Unavailability of perfect, full state feedback

Feedback control solutions are often designed assuming that perfect knowledge

of the current state of the control system is available. This, however, is rarely the case

in any practical implementation of a control law; measurement devices are universally

affected by error sources and, thus, can only provide an imperfect measurement of

the system’s state vector, whereas in many systems only an incomplete state measure-

ment may be possible. Moreover, in the more contemporary setting of distributed,

networked, and cyberphysical systems, an emerging threat pertains to the possibility
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of measurements being maliciously manipulated by an adversarial entity, to the end of

destabilizing or, in general, harming the control system. All these issues motivate the

study of control problems with imperfect feedback and the design of observers, to the

end of output feedback control.

Control under imperfect feedback

The presence of disturbances in the measurements of the state that results in

imperfect state feedback is a known nontrivial problem in nonlinear stabilization (Free-

man, 1995; Freeman and Kokotović, 1996; Ledyaev and Sontag, 1998); even a small,

bounded measurement disturbance can have negative implications on the stability of

a closed loop system or even render globally stabilizing a nonlinear system impossi-

ble. This is contrasted to the case of a (stabilized) linear system, where a bounded

measurement disturbance will cause a bounded response. Such issues can hinder the

straightforward application of common Lyapunov techniques for nonlinear stabilization

in the case of imperfect state feedback, such as backstepping and CLF-based control

laws (Bacciotti and Rosier, 2005; Krstić et al., 1995; Haddad and Chellaboina, 2008).

Observer design

The observer design problem is motivated by the often encountered difficulty

to accurately measure the entire state vector of a dynamical system. Such information

may be necessary in order to apply feedback control techniques to the system or to

merely monitor the behavior of an otherwise controlled or autonomous system. Multi-

ple issues can hinder direct and accurate measurements of the state of vector. First of

all, any sensor device is inherently subject to errors of various kinds, which contribute

to the overall uncertainty of the respective measurements. Secondly, some physical

quantities can be rather difficult or even impractical to measure with applicable sen-
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sors. This is especially true in the context of modern embedded systems, where size,

weight, cost and power requirements may inhibit the measurement of the entire state

vector of the system. Similar situations can also arise in more contemporary settings,

such as cyberphysical systems and large-scale, interconnected systems with mutually

interacting agents.

Observers are dynamical systems which typically require knowledge of a sys-

tem’s measurements and the applied control inputs. The output of an observer is

expected to converge, in some sense, to the current state of the observed system.

The case where the system of interest is linear has been covered extensively in the

fundamental controls literature (Luenberger, 1964). The observer design problem for

the nonlinear case is significantly more complicated. We refer, indicatively, to ex-

tended Luenberger observers (Zeitz, 1987), high gain observers (Prasov and Khalil,

2013; Khalil, 2017; Farza, M’Saada, Triki, and Maatoug, 2011) and Lyapunov-based

observers (Tsinias, 1989, 1990; Kazantzis and Kravaris, 1998). Extended Luenberger

approaches essentially pursue a linearization-based approach and it should be men-

tioned that the knowledge of the input time derivatives is usually required. High gain

observers offer good performance and have attracted significant interest in the con-

temporary literature. Nevertheless, such observers are only applicable to systems of a

particular triangular structure and despite significant efforts to relax such restrictions

(see, indicatively, Farza et al. (2011) and the additional references given therein, as well

as Section 2.6 of Khalil (2017)), the results are still not directly applicable for the full

state observation of systems containing arbitrary nonlinearities in each component of

the dynamics (even a simple predator-prey system with dynamics ẋ1 = −x2−x1x2 +u,

ẋ2 = x1 + x1x2 cannot be brought to the necessary form in order to design a high-

gain observer while measuring y = x1). Lyapunov observers (Tsinias, 1989, 1990)
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offer an inherently nonlinear solution which is easy to design and handle, despite the

non-surprising necessity to provide (or, inevitably, guess) appropriate Lyapunov-like

functions. Also, such observers enable a rather easy characterization of the behavior

of the state determination error, as the latter typically exhibits some Lyapunov-like

stability notion.

1.3 Goals of this dissertation

In the present work, we consider a few fundamental stabilization problems for

input constrained polynomial systems, along the lines of the contemporary challenges

discussed in Section 1.1 and the topic areas presented in Section 1.2. We follow a

bottom-up approach by gradually and systematically building on our results, which

are ranging from a novel solution to the nominal stabilization problem for input con-

strained systems to decentralized control laws for uncertain networked systems and

control laws that use imperfect feedback. In each case considered, we focus on bring-

ing the problem formulation to forms amendable to convex optimization techniques,

such as SOS programming for offline control law analysis and design calculations and

quadratic programming for the online implementation of the various control laws. We

use the power of the respective optimization methods to our advantage, to the end of

developing solutions with previously unavailable traits especially with regards to stabi-

lization guarantees under constraints for the applicable stabilization notion in each case

considered. Ultimately, we hope to extend one’s toolbox for tackling some challeng-

ing control problems, by providing dependable, safe, and provably correct stabilization

results with relevance to difficulties often encountered in practical control applications.
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1.4 Contributions of this dissertation

The particular contributions of this dissertation per topic area (and chapter)

are described next.

1.4.1 Warranting asymptotic controllability under input constraints

In Chapter 3, we consider polynomial nonlinear control systems affine in the

control input, which, in turn, is constrained to attain values in a convex, compact

polytope. We assume the knowledge of a polynomial CLF for the system and we

focus on the impact of the input constraints on the stabilization set (in the sense

described in Section 1.2.1) of control laws stemming from the particular CLF. We

exploit the geometry of the input value set and the input affine form of the dynamics

to propose two alternative ways to efficiently characterize the subset of the state space

where input constrained asymptotic controllability can be guaranteed with a continuous

feedback control law based on the particular CLF. Sufficient conditions for the latter

are given in terms of semialgebraic set containments, which allow for the use of Sum-of-

Squares programming techniques that relax the problem to the solution of Semidefinite

Programming feasibility problems. We also propose a method that allows for the

(local) optimization over the CLF coefficients, to the end of reshaping or enlarging the

stabilization set for a particular system. Figure 1.1 provides a conceptual illustration

of the CLF analysis and optimization problems.

1.4.2 Feedback control through low-dimension Quadratic Programs

The set of admissible control laws is shown to consist of continuous selection

functions for a certain set-valued map, the existence and nonemptyness of which are

guaranteed by construction. In Chapter 4, such selection functions are shown to be
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pointwisely equal to the minimizer of a particular QP. This QP remains feasible along

the trajectories of the closed loop system, for any initial point in the pre-calculated

stabilization set. Moreover, the input vector can safely saturate on the boundary of

the input value set, if that is necessary either for stabilization or for performance

reasons. In the control approach proposed here, any performance considerations enter

as a performance objective in the QP and not as a hard constraint (as is the case

in the min-norm paradigm), effectively enlarging the stabilization set for the proposed

approach further away from the origin. We refer to the dimension of such QPs as “low”

with regards to alternative control methodologies also based on the online solution

of optimization problems such as nonlinear Model Predictive Control, where one is

typically faced with problems both of a much larger dimension and of a significantly

more complex nature than QPs, such as nonlinear programming.

1.4.3 Robustness to bounded uncertainty

In Chapter 5, we consider the robust stabilization problem for uncertain non-

linear systems with polynomial dynamics which are affine in the control input and the

unknown disturbance. The latter variables are assumed to be constrained in convex

and compact polytopes. Given the dynamics and a Robust Control Lyapunov Function

(RCLF), we calculate subsets of the state space starting from where robust stabiliza-

tion is guaranteed by means of a simple Lyapunov-based controller, regardless of the

possibly destabilizing action of the disturbance. This robust control analysis process

extends our results on nominal (that is, without uncertainty) input constrained sys-

tems to the more general class of uncertain nonlinear systems with unknown, bounded

disturbances. The proposed methods are based on solving sequences of Semidefinite

Programs (SDPs) resulting from the parsing of SOS constraints. Ultimately, one ob-

tains a sublevel set of the RCLF which we refer to as the robust stabilization set for
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the system; starting at any point in that set, any min-max, RCLF-based control law is

guaranteed to be able to steer the system to a neighborhood of the origin, regardless

of the value of the disturbance acting on the system along the closed loop trajectories.

We next derive such a control law based on the minimizer of an appropriately formu-

lated Quadratic Program (QP). Due to the perturbed dynamics, the underlying QP

would nominally belong to the challenging class of robust optimization problems. By

exploiting the structure of the control and disturbance value sets, we reduce the prob-

lem to a standard QP minimization problem which is easily embeddable given its low

dimension and associated computational complexity. Figure 1.2 provides a conceptual

illustration of the sets involved in this problem and the notion of invariance guaranteed

by our results.

1.4.4 Distributed and decentralized control of large-scale systems

In Chapter 6, we leverage the premise of vector Lyapunov function methods

for large-scale systems with our results on optimization-based robust control. Scalable

solutions to the distributed and decentralized control problems for uncertain, input

constrained large-scale nonlinear systems are developed, which aim to provide a notion

of practically quantifiable robustness and a capacity for rather efficient implementation

at the subsystem level. Input constraints and uncertainty are expected to significantly

dominate the behavior of such a system and, accordingly, they form the theme of our

work in this area. A set of SOS optimization problems, focusing at the subsystem level,

can certify whether a large-scale system is collectively robustly stabilizable from a set

of initial conditions, with either control technique. The proposed low-complexity QP-

based control laws for each subsystem assume a worst-case scenario with regards to the

uncertainty affecting the local dynamics, and either collaborate with the neighboring

subsystems by accessing their current state information in the distributed case, or
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assume a worst-case scenario for their neighboring subsystems in the decentralized

case. Both techniques isolate the potentially destabilizing effect of the uncertainty and

the interconnections on the dynamics, and collectively achieve the robust stabilization

objective.

1.4.5 Control with imperfect measurements

In Chapter 7, we develop technical results with which one can guarantee that

an input constrained CLF-based control law operating on imperfect state feedback will

provably stabilize the actual system. The operation of the proposed class of control

laws relies on warranting a causality relationship between apparently (that is, from the

point view of a control law having only imperfect knowledge of the state) and actually

stabilizing the system, that holds in a subset of the state space which is explicitly

quantifiable using the herein proposed SOS methods. The control law operating on

the imperfect feedback is implemented in a simple and efficient way through a QP

reminiscent of the one in our (perfect) state feedback case; nevertheless, thanks to

the preceding analysis, such a QP-based control law adheres to the aforedescribed

stabilization guarantees under imperfect feedback.

1.4.6 Robust nonlinear observer design

In Chapter 8, we are leveraging SOS methods and, in particular, our handling

of the robust stabilization problem (Chapter 5), to extend results from the literature

on Lyapunov-based observers for perfectly known systems with no uncertainty. We

propose a methodology to design robust Lyapunov-based observers for affine polyno-

mial systems with bounded uncertainty in the dynamics and the linear measurement

equation.
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1.5 Publications

The results presented in this dissertation have also appeared, in part, in the

following publications: (given in chronological order)

� D. Pylorof and E. Bakolas, “Nonlinear control under polytopic input constraints

with application to the attitude control problem,” in Proceedings of the 2015

American Control Conference, pp. 4555-4560, 2015 (the authors contributed equally).

� D. Pylorof, E. Bakolas, and R. P. Russell, “A Nonlinear Controller for Low

Thrust Stabilization of Spacecraft on CRTBP Orbits”, in Proceedings of the

26th AAS/AIAA Spaceflight Mechanics Meeting, pp. 489-505, 2016 (the authors

contributed equally).

� D. Pylorof and E. Bakolas, “Analysis and Synthesis of Nonlinear Controllers for

Input Constrained Systems Using Semidefinite Programming Optimization,” in

Proceedings of the 2016 American Control Conference, pp. 6959-6964, 2016 (the

authors contributed equally).

� D. Pylorof and E. Bakolas, “Robust Control of Input Constrained Nonlinear Sys-

tems Subject to Unknown Bounded Disturbances Based on Convex Optimiza-

tion,” in Proceedings of the 2017 American Control Conference, pp. 3700-3705,

2017 (the authors contributed equally).

� D. Pylorof and E. Bakolas, “Robust Distributed and Decentralized Control of

Large-Scale Nonlinear Systems with Input Constraints Based on SOS Optimiza-

tion,” in Proceedings of the 2018 American Control Conference, pp. 4658-4663,

2018 (the authors contributed equally).
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� D. Pylorof and E. Bakolas, “Stabilization of Input constrained nonlinear systems

with imperfect state feedback using Sum-of-Squares Programming,” in Proceed-

ings of the 57th IEEE Conference on Decision and Control, pagination pending,

2018 (the authors contributed equally).

� D. Pylorof and E. Bakolas, “Safe nonlinear control design for input constrained

polynomial systems using sum-of-squares programming,” journal submission, un-

der revision, 2018 (the authors contributed equally).

� D. Pylorof and E. Bakolas, “Robust nonlinear stabilization of uncertain polyno-

mial systems subject to input constraints using Sum-of-Squares programming,”

journal submission, under review, 2018 (the authors contributed equally).

1.6 Structure of this dissertation

Some fundamental results on optimization with Sum-of-Squares (SOS) polyno-

mials are reviewed in Chapter 2. The rest of the chapters follow the enumeration of

contributions given in Section 1.4. In Chapter 3 we consider the problems of analyzing

the stabilization set of a control law based on a given CLF and optimizing over the

CLF coefficients to reshape and / or enlarge the corresponding stabilization set. The

feedback control problem is solved online with QPs in Chapter 4. The problem of

robust stabilization of uncertain systems is studied in Chapter 5. The latter results

are extended to the case of large-scale systems in Chapter 6. Finally, the problems

of control with imperfect state feedback and robust observer design are considered in

Chapters 7 and 8, respectively. The dissertation is concluded with Chapter 9. Each

chapter contains numerical examples to illustrate the respective contributions and the

efficacy of the proposed methods.

18



1.7 Notation

The sets of integers, real numbers and n-dimensional real vectors are denoted,

respectively, by Z, R and Rn. Also, we use R≥0, R>0, R≤0, and Z>0 to denote nonneg-

ative real, positive real, nonpositive real, and positive integer numbers, respectively.

In is the n × n identity matrix. We denote element-wise inequalities between vec-

tors x, y ∈ Rn by x � b. Let P ⊆ Rn be a convex, compact polytope with vertices

η1, η2, . . . ηq ∈ P; we denote the index set of these vertices by QP := {1, 2, . . . , q} ⊆ Z>0.

Given any matrix M = MT ∈ Rn×n, its smallest eigenvalue is denoted by λmin(M). Bnε
and Bnε denote the closed and open, respectively, n-ball of radius ε > 0. The gradient

of a continuously differentiable function K : Rn → R is denoted by ∇K(x) and is taken

to be a row vector. Let p : Rn → R be a polynomial in x ∈ Rn; deg(p(x)) is the degree

of p(x), while p(x) ∈ Σ[x] means that p(x) belongs to a cone of nonnegative polyno-

mials with indeterminate x. A set-valued map ρ with domain A and codomain B is

denoted by ρ : A⇒ B. The interior of the set A is denoted by Int(A). The collection

of nonempty sets {Bi ⊆ A, i ∈ I} is said to form a partition of the set A if A = ∪i∈IBi

and Int(B`) ∩ Int(Bκ) = ∅ for `, κ ∈ I, with ` 6= κ. Ac denotes the complement of

a set A. Conv{x1, . . . , xκ} denotes the convex hull of the points x1, . . . , xκ ∈ Rn. Let

a ∈ R and b, c ∈ Rn; |a|, ‖b‖ and ‖c‖∞ denote the absolute value, 2-norm, and infinity

norm, respectively.

Additional notation is introduced in each chapter, if necessary.
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Chapter 2

Sum-of-Squares Programming preliminaries

The methods developed in this work involve optimization over nonnegative func-

tions, to either directly parameterize optimization variables of interest, such as Lya-

punov functions, or to appropriately parameterize auxiliary variables. To the end of

obtaining finite dimensional and computationally amendable representations of nonneg-

ative functions, we consider the approximation of the cone of nonnegative, multivariate

polynomials with some finite degree bound given by the set of sum-of-squares (SOS)

polynomials (Parrilo, 2000, 2013).

2.1 Sum-of-Squares polynomials

Definition 2.1.1. A multivariate polynomial p : Rn → R with deg(p(x)) ≤ 2d for

some d ∈ Z>0 is sum-of-squares (SOS) if it can be written as p(x) =
∑ni

i=1 q
2
i (x), where

qi : Rn → R are multivariate polynomials with deg(qi(x)) ≤ d for i = 1, . . . , ni. For

some implied (finite) upper degree bound 2d, the set of all such p(x) is denoted by

Σ[x].

For a given p(x) with deg(p(x)) ≤ 2d, the existence of a matrix Q = QT ∈

Rnd×nd with Q � 0 such that p(x) = zTn,d(x)Qzn,d(x), where nd = (n + d)!/(n!d!)

and the zn,d(x) contains all monomials of x ∈ Rn up to degree d, is necessary and

sufficient for p(x) ∈ Σ[x] to hold. In Parrilo (2000), the search for such a Q has

been shown to be equivalent to solving a Linear Matrix Inequality (LMI) in auxiliary
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variables (that is, rather than in the polynomial indeterminate x ∈ Rn), giving rise

to a Semidefinite Programming (SDP) feasibility problem (Vandenberghe and Boyd,

1996). Contemporary results in Ahmadi and Majumdar (2018); Kamyar and Peet

(2015) propose alternative parameterizations of subsets of the set of SOS polynomials

(and even subsets of the set of nonnegative polynomials that may not be SOS) which

result in linear and second order cone programs in auxiliary variables. These problems

have the potential to be smaller in size compared to the SDP-based approach, allowing,

thus, one to achieve a different balance between the size of the search space and the

associated computational effort.

In this work, we denote the sets of nonnegative functions under consideration

by Σ[x], and we associate Σ[x] with the set of SOS polynomials, the membership to

which can be decided by solving an SDP. Nevertheless, the methods proposed here are

agnostic to the particular parameterization employed for Σ[x] and the results hold for

any choice that ultimately associates p(x) ∈ Σ[x] with a set of convex constraints on

auxiliary decision variables.

2.2 The generalized S-procedure

The generalized S-procedure is a paradigm for showing the conditional satisfac-

tion of polynomial inequalities. It builds on results on nonnegative polynomials, and

can ultimately lead to a practically decidable sufficient condition for set containments

to hold. In particular, let fi : Rn → R, i = 0, . . . ,m, describe the semialgebraic1 sets

{x ∈ Rn : fi(x) ≥ 0}

1The term semialgebraic set is used to refer to a subset of Rn which consists of all x ∈ Rn
concurrently satisfying a finite number of equality and inequality constraints which are polynomials
with indeterminate x.
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and also let

F (x) := f0(x)−
m∑
i=1

si(x)fi(x),

where si : Rn → R≥0, for i = 1, . . . ,m. Then, F (x) ≥ 0 for all x ∈ Rn implies

∩mi=1 {x ∈ Rn : fi(x) ≥ 0} ⊆ {x ∈ Rn : f0(x) ≥ 0}. (2.1)

The nonnegativity of the si(x) terms and F (x) as a whole can be associated with

the existence of the respective SOS decompositions. Typically, one formulates f0(x)

and fi(x) for i = 1, . . . ,m meaningfully for a particular problem (noting that the

inequalities fi(x) ≥ 0 correspond to a set of conditions, whereas f0(x) ≥ 0 describes

some useful implication for the particular x) and then looks for si(x) ∈ Σ[x] such that

f0(x)−
m∑
i=1

si(x)fi(x) ∈ Σ[x]. (2.2)

The feasibility of the SDP problem which contains the LMI constraints associated with

the existence of all SOS decompositions involved in (2.2) implies, in turn, that the set

containment (2.1) holds. The generalized S-procedure is frequently used in the SOS

literature (see, indicatively, Parrilo (2000, 2013); Tan and Packard (2008); Topcu et al.

(2008); Prajna, Papachristodoulou, and Wu (2004a); Kundu and Anghel (2017)) and

can be regarded as an extension to the original S-procedure which applies to quadratic

problems (see Boyd et al. (1994)).

2.3 Related symbolic libraries and numerical solvers

SOS programming typically requires the use of a symbolic parser, in order to

automatically formulate the LMIs corresponding to the SOS constraints and transfer

them to an applicable solver. Three common options that are often cited in SOS-related

works in the literature are SOSTOOLS (Papachristodoulou, Anderson, Valmorbida,
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Prajna, Seiler, and Parrilo, 2013), YALMIP (Löfberg, 2009), and GloptiPoly 3 (Hen-

rion, Lasserre, and Loefberg, 2009). Applicable interior point solvers for SDPs are

MOSEK (MOSEK ApS, 2017), SeDuMi (Sturm, 1999), and SDPT3 (Tütüncü, Toh,

and Todd, 2003).

In this work, we utilize YALMIP and MOSEK. Few examples were also solved

with SeDuMi, in the interest of verifying, to a certain extent, the validity of the solu-

tions produced by MOSEK. The default values for all solver parameters were used.

23



Chapter 3

Controllability under input constraints

We now begin our study of the asymptotic stabilization problem with CLF-based

control laws under input constraints. The main question that we will be addressing

first is how to find a subset of the state space, which we call the stabilization set for

the system, where a simple CLF-based control law (that is, a control law satisfying the

input constraints that can render the time derivative of the particular CLF negative

definite everywhere in that set) can asymptotically stabilize the system. We will also

see how we can optimize that set, that is, either reshape it or simply enlarge it, by

optimizing over the coefficients of the CLF.

This chapter forms the foundation for the entire dissertation in two different

ways. First, the methods proposed here yield the stabilization set for a particular

system. Inside this set, there is a guarantee that one can stabilize the system with any

continuous control law based on the particular CLF, in the aforedescribed sense. This

enables the systematic development of rather simple control laws that are implemented

by solving a computationally lightweight QP, as will be shown in Chapter 4. Second,

the SOS-based methods proposed here to analyze the stabilization set for a given

system and CLF will be further augmented in Chapters 5, 6, and 7 to account for

input constrained control under uncertainty, the case of large-scale systems, and control

under imperfect feedback, respectively.
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3.1 System description

We consider nonlinear control systems of the form

ẋ = f(x) + g(x)u, x(0) = x0, (3.1)

where x ∈ Rn is the state vector at time t ≥ 0 with initial value x0 ∈ Rn, and

f : Rn → Rn, g : Rn → Rn×m are known polynomial functions of x, with f(0) =

0. The control input is u and it is assumed that u(t) ∈ U ⊆ Rm, for all t ≥ 0,

where U is a convex, compact polytope with vertices {v1, . . . , vq} ∈ U, 0 ∈ Int(U),

which is also parameterized by the intersection of halfspaces described by Au � b for

appropriate A ∈ Rp×m, b ∈ Rp. For notational convenience, we consider the index set

QU = {1, . . . , q} corresponding to the vertices {v1, . . . , vq} of U. Let uc : Dc → U be

a continuous feedback control law, where Dc ⊆ Rn is a compact set with 0 ∈ Int(Dc);

the solution of the closed loop system at time t ≥ 0 is denoted by φ(t;x0, uc). For φ to

be well defined, it must remain in Dc, that is, φ(t;x0, uc) ∈ Dc for all t ≥ 0.

3.2 Lyapunov stabilization under input constraints

Next, we introduce the concept of Control Lyapunov Functions (CLFs) for sys-

tems of the form (3.1) and discuss stabilization in the presence of input constraints.

First, consider the set V of candidate Control Lyapunov Functions (CLFs), consisting

of polynomial, positive definite and radially unbounded functions V : Rn → R≥0.

Definition 3.2.1. A function V ∈ V is a CLF for system (3.1) if there exists a set

X ⊆ Rn with 0 ∈ Int(X) and a positive definite polynomial function W : Rn → R≥0,

such that

inf
u∈U

ψ(x, u) ≤ −W (x), (3.2)

for all x ∈ X, where ψ(x, u) := ∇V (x)(f(x) + g(x)u).
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In our work, W (x) can be chosen to grow rather “slowly” with ‖x‖, to merely

provide that ψ(x, u) < 0 for x ∈ X \ {0}. That allows us to include in X parts of the

state space where convergence is slow, given the dynamics and the input constraints,

whereas performance considerations enter our formulation explicitely at a later point

in Chapter 4 (and not in the form of hard constraints). A significant difficulty arises

from the fact that the set X, which in view of Definition 3.2.1 can be defined as

X :=

{
x ∈ Rn : inf

u∈U
ψ(x, u) ≤ −W (x)

}
, (3.3)

is not necessarily invariant under (3.1) and a control law conforming to ψ(x, uc(x)) ≤

−W (x) for all x ∈ X. Such a controlled trajectory of (3.1) emanating from some point

in X may escape to Xc = Rn\X, where no u ∈ U exists to render ψ(x, u) < 0 and V will

start to grow, precluding stabilization in a Lyapunov sense. In pursuit of asymptotic

stabilization results within invariant sets which are easy to handle analytically and

computationally, we consider sublevel sets of the CLF, that is, ΩV,γ := {x ∈ Rn :

V (x) ≤ γ}, which will be required to be contained in X.

Lemma 3.2.1. Let V ∈ V be a CLF for (3.1). If γ > 0 is such that

ΩV,γ ⊆ X, (3.4)

there exists a continuous feedback control law uc : ΩV,γ → U such that the closed loop

system resulting by setting u = uc(x) in (3.1), with x0 ∈ ΩV,γ, is locally asymptotically

stable and ΩV,γ is a subset of the region of attraction.

Proof. By definition of X, inequality (3.2) holds for all x ∈ ΩV,γ ⊆ X. Let U : ΩV,γ ⇒ U

be the set-valued map that maps each x ∈ ΩV,γ to U(x) := {u ∈ U : ψ(x, u) ≤ −W (x)}.

Note that the set U(x) is nonempty, since (3.2) holds for all x ∈ ΩV,γ. Let uc : ΩV,γ → U

be any continuous selection function such that uc(x) ∈ U(x). The existence of such a
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selection is guaranteed following standard results on set-valued maps. In particular,

U : ΩV,γ ⇒ U is lower semicontinuous and it maps to the nonempty intersection of

closed halfspaces so, Michael’s theorem (Freeman and Kokotović, 1996, Theorem 2.18)

applies. For all x ∈ ΩV,γ \{0} along the trajectories of (3.1), V̇ = ψ(x, uc(x)) < 0 holds.

By standard Lyapunov arguments, the asymptotic stabilization result follows.

The existence of a CLF V for (3.1) such that ΩV,γ ⊆ X for some γ > 0 results in

the system (3.1) being called, in a Lyapunov sense, asymptotically controllable (Bac-

ciotti and Rosier, 2005). Note that the requirement 0 ∈ Int(X) serves not only as a

form of a local controllability assumption near the origin using a continuous feedback

control law, but also as a guarantee for the existence of some γ > 0 such that ΩV,γ ⊆ X.

3.3 Problem statements

We now provide formal problem statements for the problems of CLF analysis

and CLF optimization that we address in this chapter.

CLF analysis

Given a CLF V ∈ V for the system (3.1), the input value set U and some γ̄ ∈ R>0,
find γ̂ where

γ̂ := sup {γ ∈ (0, γ̄] : (3.4) holds} . (3.5)

Following Lemma 3.2.1, continuous feedback laws based on the particular CLF

that asymptotically stabilize the system (3.1) for any x0 ∈ Dc, where Dc := ΩV,γ̂, are

guaranteed to exist. We say that all such feedback control laws uc : Dc → U (based on

the same CLF) form a control law family parameterized by V , and define the respective

set U as

U := {uc : ψ(x, uc(x)) ≤ −W (x), ∀x ∈ Dc}, (3.6)
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while Dc is called the stabilization set of the particular family. U consists of continuous

selection functions for the set-valued map ũ : Dc ⇒ U which maps each x ∈ Dc to the

intersection of halfspaces described by

U(x) := {u ∈ U : ψ(x, u) ≤ −W (x)}. (3.7)

CLF optimization

The CLF optimization problem is concerned with adjusting a CLF via opti-

mizing over its coefficients, to obtain control laws with a stabilization set that satisfies

certain requirements which have been captured by forming a continuous shape function

P ∈ V .

Given the set of candidate CLFs V for the system (3.1), the shape function P , the
input value set U and some σ̄ ∈ R>0, find σ̂ and V̂ which solve

sup
σ∈(0,σ̄],V ∈V

σ, subject to ΩP,σ ⊆ ΩV,1 ⊆ X. (3.8)

Attempting to fit progressively larger sublevel sets of P inside the stabilization

set corresponding to a control law family via optimizing over a set of CLFs can result

in new control law families with stabilization sets conforming to the previously defined

requirements. Note that the sublevel set ΩV,1 corresponding to the stabilization set of

the control law family U has been normalized to γ̂ = 1 in order to avoid a redundancy

in the problem’s unknowns, which now include the CLF’s coefficients.

In the remainder of the chapter, we focus on the set containment (3.4), which

appears in both in the CLF analysis (3.5) and the CLF optimization (3.8) problems

and which is a sufficient condition for the system to be asymptotically controllable with

an input constrained CLF-based control law, for any x0 ∈ ΩV,γ ⊆ X.
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3.4 Partitioning the state space based on the input value set
geometry

The first method towards warranting (3.4) is based on a partition of the state

space into a finite number of non-overlapping sets, which accounts for the interplay

between the dynamics, the particular CLF and the shape of the input value set U.

In each such cell of the partition, the value of a particular vertex of U is expected to

cause the largest possible decrease rate to V , at least near the origin. This allows us to

characterize the stabilization action in that subset of the Rn using a numerical value of

u, which in turn enables the formulation of appropriate semialgebraic set containments

in Rn. We first consider the following fundamental result from linear programming,

which we use next to ultimately obtain a convenient characterization of the set X.

Proposition 3.4.1. (Bertsekas, 2009, Prop. 2.4.2) Let P ⊆ Rm be a convex, compact

polytope. Given α ∈ Rm, the linear function u 7→ αTu, where u ∈ P, attains its

minimum value at some vertex of P.

Lemma 3.4.2. Given i ∈ QU, let ψi(x) := ψ(x, vi) = ∇V (x)(f(x) + g(x)vi) and

Xi := {x ∈ Rn : ψi(x) ≤ −W (x)}. Then, ∪i∈QUXi = X holds.

Proof. For a fixed x ∈ Rn, the function u 7→ ψ(x, u) is linear in u ∈ U, where U is a

compact, convex polytope with vertices vi, i ∈ QU. Following Proposition 3.4.1 and

the definition of the set X, x ∈ X holds if and only if x ∈ Xi holds for some index

i ∈ QU (that is, for either one of multiple indices i). Therefore, ∪i∈QUXi ⊇ X. The fact

that ∪i∈QUXi ⊆ X follows from the definitions of the sets X and Xi, i ∈ QU, which, in

connection with the previous result, yields ∪i∈QUXi = X.

Following Lemma 3.4.2, inequality (3.2) is equivalent to

inf
i∈QU

ψi(x) ≤ −W (x),
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allowing us to convert the disjunction over all elements of U, introduced by the original

definition of X in (3.3), to a disjunction over a finite number of values corresponding

to the vertices vi of U, for i ∈ QU. Still, the disjunction over the vertex indices i ∈ QU

is not compatible with the S-procedure, which is based on a logical conjunction over

semialgebraic sets. To overcome the hardship, we consider holding i = ` locally fixed

and enforcing ψ(x, v`) ≤ −W (x), for all x inside a certain subset of Rn corresponding

to each `. These sets are obtained as follows.

Xc
1

X1 XP1

ΩV,γ1

v1

Xc
2

X2

XP2

ΩV,γ2 v2

Xc
3

X3
XP3

ΩV,γ3

v3

Figure 3.1: Illustration of the proposed partitioning scheme for each vertex vi of the input value set
U, i ∈ QU, for the system considered in the example problem of Section 3.7.1. The gray-shaded parts
of the state-space correspond to x ∈ Xc

i . The red hatched lines indicate the halfspaces determined by
(ηi − ηj)Tx ≤ 0, for j ∈ Q \ {i}. The color-filled sublevel sets of V correspond to the containment
described by XPi ∩ ΩV,γ ⊆ Xi, for i = 1, 2, 3. Since XPi ∩ ΩV,γ ⊆ Xi is required to hold concurrently
for all i ∈ QU, the maximal ΩV,γ corresponds to ΩV,γ1 , where γ1 = 0.311.

Proposition 3.4.3. Assume that g(0) 6= 0 and let ηi := ∇2V (0)g(0)vi, i ∈ QU. The

collection of sets

XPi := ∩j∈QU\{i}
{
x ∈ Rn : (ηi − ηj)Tx ≤ 0

}
, i ∈ QU,

forms a partition of Rn.

Proof. Note that the ηi vectors are well defined, as ∇2V (x) exists and is a continuous

function of x, since V is a polynomial and, therefore, smooth. First, we show that
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∪i∈QUXPi = Rn. Consider any x ∈ Rn \ {0} and let y = αx with α ∈ (0, 1]. Also,

consider the open ball Bnr ⊂ X for r > 0, the existence of which is provided by the

fact that 0 ∈ Int(X). For α such that y = αx ∈ Bnr and ‖y‖ is sufficiently small,

the Taylor expansion of ψi(y) around the origin yields ψi(y) = ηTi y + o(‖y‖), with

limy→0 o(‖y‖)/‖y‖ = 0. Since Bnr ⊂ X, note that y = αx ∈ X also holds. Let I ⊆ QU

denote the index set such that ψ`(αx) < 0 for all ` ∈ I and note that I 6= ∅, in view

of Lemma 3.4.2. Given our choice of α, ‖y‖ = α‖x‖ is small so ψi(y) < 0 implies

ηTi x ≤ 0 for all i ∈ I, while ηTi x ≥ 0 for all i ∈ QU \ I. Thus, there exists an i∗ ∈ I

such that ηTi∗x ≤ ηTi x for all i ∈ QU, which is equivalent to x ∈ XPi∗ . Consequently,

∪i∈QUXPi = Rn.

To show that Int(XPi) ∩ Int(XPj) = ∅ for any i, j ∈ QU with i 6= j, let us

assume, on the contrary, that x∗ ∈ Int(XPµ) ∩ Int(XPν ), for µ, ν ∈ QU with µ 6= ν. By

definition, ηTµx
∗ < ηTi x

∗ for all i ∈ QU\{µ} and ηTν x
∗ < ηTj x

∗ for all j ∈ QU\{ν}. These

inequalities imply that ηTµx
∗ < ηTν x

∗ and ηTν x
∗ < ηTµx

∗. At this point we have reached

a contradiction; therefore, Int(XPµ) ∩ Int(XPν ) = ∅ and the proof is complete.

Within each set XP` and at least near the origin, not only is the scalar quantity

ψ(x, vi) negative for i = `, but also ψ(x, v`) ≤ ψ(x, vj) ≤ ψ(x, u), for j ∈ QU and

u ∈ U. This indication of stronger control authority forms the rationale of the pro-

posed partition. Based on this partition, we now proceed to derive a semialgebraic set

containment which is sufficient to show (3.4).

Proposition 3.4.4. Suppose that

XPi ∩ ΩV,γ ⊆ Xi

holds for all i ∈ QU. Then ΩV,γ ⊆ X.
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Proof. By Lemma 3.4.2, we have Xi ⊆ X. According to Proposition 3.4.3, ∪i∈QUXPi =

Rn, while ΩV,γ ⊆ Rn. Therefore,

(∪i∈QUXPi) ∩ ΩV,γ = Rn ∩ ΩV,γ = ΩV,γ

and, ultimately, one obtains ΩV,γ ⊆ X.

Following the S-procedure, for a particular i ∈ QU (corresponding to the vertex

vi ∈ U), consider

− (ψi(x) +W (x)) + c[i](x)(V (x)− γ) +
∑

j∈QU\{i}

s
[i]
j (x)(ηi − ηj)Tx ∈ Σ[x], (3.9)

where c[i](x) ∈ Σ[x] and s
[i]
j (x) ∈ Σ[x], for every j ∈ QU \ {i}, are unknown. When

Σ[x] is parameterized as SOS, the inclusion (3.9) can be expressed as an LMI which

is convex in auxiliary variables that correspond to the unknown coefficients of all the

nonnegative polynomials involved. The existence of c[i](x) and all q − 1 polynomials

s
[i]
j (x) such that (3.9) holds is a sufficient condition, in turn, for XPi ∩ ΩV,γ ⊆ Xi to

hold for the particular i ∈ QU. Accordingly, the existence of all q polynomials c[i](x)

and all q × (q − 1), in total, s
[i]
j , corresponding to all q instances of (3.9) for i ∈ QU,

implies that XPi ∩ ΩV,γ ⊆ Xi holds for all i ∈ QU. Following Proposition 3.4.4, the set

containment (3.4), which implies asymptotic controllability in the presence of input

constraints, holds. For notational convenience, we associate the existence of all c[i](x)

and all s
[i]
j (x) for all q instances of (3.9) for i ∈ QU with the nonemptyness of the sets

attained by AI : R>0 ⇒ Σ[x]q×(q−1) × Σ[x]q, with

AI(γ) :=
{
s

[i]
j (x) ∈ Σ[x] ∀i ∈ QU, j ∈ QU \ {i},

c[i](x) ∈ Σ[x] ∀i ∈ QU : (3.9) holds ∀i ∈ QU
}
. (3.10)
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3.5 Employing a convex combination of the input value set
vertices using polynomial coefficients

One can notice in Figure 3.1 that there exists a part of Rn which does not belong

to X1 (as the partition-based scheme would anticipate to be case to determine that this

part of the state space also belongs to X), yet, it belongs to X2. This observation is not

necessarily system- or CLF- specific. The input affine form of the dynamics and the

polytopic form of U enable us to study and characterize the asymptotic controllabilty

of the system by considering just the vertices of U in a lossless way (refer to Lemma

3.4.2). Yet, in our pursuit of sufficient conditions in terms of semialgebraic set con-

tainments, associating vertices vi with each particular cell of the partition, based on

local indications of stronger control authority, can introduce some conservatism to the

solution as seen here. We now propose a method to show (3.4) that may result in larger

SOS problems but avoids associating partition cells with vertices of U based on local

information near the origin and, thus, cannot manifest the aforedescribed potential

pitfalls for states away from the origin.

Proposition 3.5.1. Let the polynomials aκ : Rn → R≥0, κ ∈ QU, be such that ζ(x) :=∑
κ∈QU

aκ(x) satisfies 0 < ζ(x) ≤ 1, for all x ∈ Rn. Also, let û(x) :=
∑

κ∈QU
aκ(x)vκ.

Then,

{x ∈ Rn : ψ(x, û(x)) ≤ −W (x)} ⊆ X. (3.11)

Proof. One can write û(x) =
∑

κ∈QU
βκ(x)ζ(x)vk, where βκ(x) := aκ(x)/ζ(x), κ ∈ QU.

By the definition of ζ(x), βκ(x) ≥ 0 and
∑

κ∈QU
βκ(x) = 1, for all x ∈ Rn. Therefore,

x 7→ û(x) maps each x ∈ Rn to U′ ⊆ Rm, where U′ := Conv{ζ(x)vκ, κ ∈ QU}. Note

that U′ results by uniformly shrinking U about 0 ∈ Int(U), therefore, U′ ⊆ U. Since

û : Rn → U′ ⊆ U and by the definition (3.3) of the set X, if x ∈ Rn is such that

ψ(x, û(x)) ≤ −W (x) holds, then x ∈ X also holds, implying (3.11).
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The -yet undetermined- aκ(x) allow us to parameterize X while avoiding the

disjunction found in the definition (3.3). By virtue of the S-procedure and Proposition

3.5.1, the existence of c(x) ∈ Σ[x] and aκ(x) ∈ Σ[x], κ ∈ QU, such that

−
(
ψ

(
x,
∑
κ∈QU

aκ(x)vκ

)
+W (x)

)
∈ Σ[x], (3.12a)

1−
∑
κ∈QU

aκ(x) ∈ Σ[x], (3.12b)

implies (3.4). In a similar vein to the partitioning approach, we associate the existence

of the involved nonnegative polynomial decompositions with the nonemptyness of the

set-valued map AII : R>0 ⇒ Σ[x]q × Σ[x], with

AII(γ) := {aκ(x) ∈ Σ[x] ∀κ ∈ QU, c(x) ∈ Σ[x] : (3.12a), (3.12b) hold} . (3.13)

Figure 3.2 illustrates the efficacy of the proposed method.

Xc

X

ΩV,1.455

ΩV,0.311

Figure 3.2: A -seemingly- non-conservative estimate of the maximal ΩV,γ ⊆ X for γ = 1.455, using
the approach of Section 3.5 to warrant (3.4) for Example 1. The calculations required searching for
degree 12 SOS polynomials (as opposed to degree 4 for the approach of Section 3.4, which, though,
yields the much smaller sublevel corresponding to γ = 0.311).
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3.6 SDP-based algorithms for CLF analysis and optimization

The analysis problem, is concerned with finding the largest positive number

γ̂ ∈ (0, γ̄], such that (3.4) holds. Following the preceding discussion and given γ > 0,

the nonemptyness of the sets attained by either AI(γ) or AII(γ), given, respectively by

(3.10) or (3.13), is sufficient for (3.4) to hold for the particular γ. The nonemptyness of

each of these sets corresponds to the existence of the respective nonnegative polynomial

decompositions in (3.9) or (3.12). Accordingly, the latter is equivalent to the feasibility

of the corresponding convex optimization problem, which is an SDP when nonnegative

polynomials are parameterized as SOS. A simple bisection scheme, as outlined next in

Algorithm 1, is used to asymptotically approximate γ̂ up to some relative tolerance

εtol. A�(γ) can refer to either AI(γ) or AII(γ), depending on the desired approach to

express the input constrained controllability condition (3.4).

Algorithm 1 Bisection-based analysis algorithm

Require: {γl, γ̄ ∈ R>0: γl < γ̄,A�(γl) 6= ∅}, εtol > 0
1: if A�(γ̄) 6= ∅ then return γ̂ ← γ̄ else γu ← γ̄
2: repeat
3: set γm ← (γl + γu)/2
4: if A�(γm) = ∅ then γu ← γm else γl ← γm
5: until (γu − γl)/γl ≤ εtol
6: return γ̂ ← γl

We now proceed to the solution of the CLF optimization problem, by assuming

that the analysis problem has been solved, in the sense that a γ̂ > 0 has been found

such that ΩV,γ̂ ⊆ X. Without loss of generality, we scale V and γ̂ in a way such that

γ̂ = 1. Given a shape function P (x), as described in Section 3.3, the CLF optimization

problem can be formulated as the search for the largest σ ∈ (0, σ̄] as well as the

corresponding CLF V and all other involved nonnegative polynomials, such that either
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(3.9) or (3.12a)-(3.12b) hold, for γ = 1 and all i ∈ QU, and

(1− V (x))− sP (x)(σ − P (x)) ∈ Σ[x], (3.14a)

V (x)− εxTx ∈ Σ[x], V (0) = 0, (3.14b)

where sP (x) ∈ Σ[x]. The existence of such an sP (x) so that (3.14a) holds implies

ΩP,σ ⊆ ΩV,1; the former, coupled with either (3.9) or (3.12a)-(3.12b) holding for γ = 1

and all i ∈ QU, imply the double containment ΩP,σ ⊆ ΩV,1 ⊆ X appearing in the

definition of the CLF optimization problem (3.8). Finally, we use (3.14b), with 0 <

ε � 1, to parameterize the set of candidate CLFs V as SOS polynomials. For the

case where (3.4) is warranted following the partitioning approach of Section 3.4, let

one consider the set-valued maps SAI
: R>0 × V ⇒ Σ[x]q×(q−1) × Σ[x]q × Σ[x] and

SBI
: R>0 × Σ[x]q × Σ[x]q×(q−1) ⇒ V × Σ[x], with

SAI
(σ, V ) :=

{
s

[i]
j (x) ∈ Σ[x] ∀i ∈ QU, j ∈ QU \ {i},

ci(x) ∈ Σ[x] ∀i ∈ QU, sp(x) ∈ Σ[x] :

(3.9) holds for γ = 1, ∀i ∈ QU, (3.14a) holds
}
,

and

SBI
(σ, {ci}, {s[i]

j }) := {V ∈ Σ[x], sP (x) ∈ Σ[x] :

(3.14a)− (3.14b) hold, (3.9) holds for γ = 1,∀i ∈ QU}.

The nonemptyness of the sets attained by SAI
and SBI

is equivalent to the feasi-

bility of the convex optimization problem involving the respective nonnegative polyno-

mial decompositions. Formulating set-valued maps similar to SAI
and SBI

that adhere

to the convex combination approach of Section 3.5 to warrant (3.4) is straightforward

and the prototyping is omitted for brevity reasons.
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Algorithm 2 Sequential CLF optimization algorithm

Require: σ0 > 0, V0 ∈ V , P ∈ V : ΩP,σ0 ⊆ ΩV0,1 ⊆ X
1: k ← 0, σ ← σ0

2: repeat
3: if SAI

(σ, Vk) 6= ∅ then
4: k ← k + 1
5: σk ← σ, Vk ← Vk−1

6: pick {s[i]
j }, {ci} ∈ SAI

(σ, Vk)
7: σ ← step+

8: else if SBI
(σ, {ci}, {s[i]

j }) 6= ∅ then
9: k ← k + 1

10: pick Vk ∈ SBI
(σ, {ci}, {s[i]

j }).
11: σk ← σ
12: σ ← step+

13: else
14: σ ← step∼
15: end if
16: until tf = TRUE
17: σ̂ ← σk, V̂ ← Vk
18: return σ̂, V̂ , {σi}ki=1, {Vi}ki=1

Starting with an initial σ = σ0 ∈ R>0 and a CLF V0 ∈ V such that (3.9) and

(3.14a) hold, the CLF optimization process is driven by the expansion of the volume of

the shape function sublevel set ΩP,σ and evolves sequentially by alternating between the

two different feasibility problems. A minimal working implementation of the proposed

solution is described by Algorithm 2. At every step, identified by the index k, a pair

(σk, Vk) satisfying ΩP,σk ⊆ ΩVk,1 ⊆ X is obtained. Depending on whether the problem

of SBI
(·, ·, ·) has been solved and optimization over the CLF space has taken place, Vk

will be a new CLF. To influence the execution of Algorithm 2, one can use step+ to

determine the increase strategy for σ (i.e. linear, geometric, etc.), step∼ to decrease

the σ increase rate if both problems are unfeasible, and tf to terminate the algorithm

(i.e. when σk = σ̄ or when an iteration or time limit has been reached). Figure 3.3

illustrates the evolution of the the sublevel sets ΩV`,1 during a typical execution of
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Algorithm 2 for one of the example problems considered at the end of this chapter.

ΩV82,1

ΩV0,1 = ΩV,γ̂

ΩP,σ82 = ΩP,1.1454

ΩP,σ0

Figure 3.3: Different stabilization sets computed via application of Algorithm 2 to the system consid-
ered in the example of Section 3.7.2, to reshape and enlarge the stabilization set corresponding to the
original CLF V (x) = 1.7x21 + 2x1x2 + x22. The (sub)level set illustrated with the dashed orange line
corresponds to ΩV,γ̂ , where γ̂ = 0.5217 has been calculated using Algorithm 1. The CLF optimiza-
tion is initialized by normalizing γ̂, and proceeds by progressively expanding the sublevel sets of the
shape function P (x) = 8x21 + x22, drawn with the yellow dashed line for the first and last iteration,
which results in the generation of new CLFs V` for the system with stabilization sets Dc = ΩV`,1, for
` = 1, . . . , 82.

3.7 Numerical examples

The following examples help illustrate the contributions and the efficacy of

methods proposed in this chapter. The necessary calculations have been performed

using YALMIP (Löfberg, 2009), to parse the SOS constraints into SDPs and MOSEK

(MOSEK ApS, 2017) to numerically solve the SDPs.
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3.7.1 Planar nonlinear system with a triangular input value set

We consider the following system

ẋ1 = x2 + (1− x2
1 − x2

2)x1 + u1,

ẋ2 = −x1 + (1 + x2
1 + x2

2)x2 + u2,

with u = [u1 u2]T constrained in the convex, compact polygon with vertices v1 = [2 3]T,

v2 = [1 − 2]T, v3 = [−4 1]T, and the CLF V (x) = 2.36x2
1 + 2.4x1x2 + 1.83x2

2 + 2.52x3
1 +

5.6001x2
1x2 + 5.7201x1x

2
2 + 2.34x3

2 + 2.05x4
1 + 2.04x3

1x2 + 3.75x2
1x

2
2 + 1.96x1x

3
2 + 1.61x4

2.

The reader should notice the coupling between u1 and u2 introduced by the triangular

shape of U.

Letting γ̄ = 2 and W (x) = 10−6xTx, the CLF analysis algorithm, when we

follow Section 3.4 to warrant the asymptotic controllability condition (3.4), yields γ̂ =

0.311. Searching for {c[i]} and {s[i]
j } SOS polynomials of degree no greater than 4, 6

and 8 yields similar results for γ̂. Following Section 3.5 results in the non-conservative

estimate γ̂ = 1.455, however, that required searching for degree 12 {c[i]} and {s[i]
j }.

Figures 3.1 and 3.2 illustrate the respective sublevel sets.

3.7.2 A system with multiple equilibria

The system described by

ẋ1 = −x3
1 − 0.5x2

1 + 0.5x1 + x2,

ẋ2 = x1 − 2x2 + u,

with −1 ≤ u ≤ 1.2, exhibits three equilibria: the origin is a saddle point, whereas the

other two equilibria are stable nodes. Without applying control, trajectories emanat-

ing from the vicinity of the origin are attracted by either of the two nodes. Figure
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3.3 illustrates the progression of the CLF optimization algorithm while searching for

unknown SOS polynomials of degree no greater than 8.

3.7.3 A third order competing species system

We consider the third order system

ẋ1 = x1 + x2
1 − x1x2 − x1x3 + u1,

ẋ2 = −0.1x2 + x1x2 − 0.9x2x3,

ẋ3 = −x1x3 + x2x3 − x2
3 + u2,

with u = [u1 u2]T ∈ U, where U is the convex, compact polygon with vertices v1 =

[−2 2]T, v2 = [−2 − 2]T, v3 = [1.7 − 1.8]T and v4 = [1.7 1.8]T. We choose the

quadratic CLF V (x) = xTx, W (x) = 10−6V (x), and we let γ̄ = 1. Algorithm 1,

following the approach of Section 3.4 and while searching for SOS multipliers of degree

no larger than 4, yields γ̂ = 0.7884. The approach of Section 3.5 yields γ̂ = 0.4569

while searching for SOS multipliers of degree no greater than 10. Figure 3.4 illustrates

the containment ΩV,γ̂ ⊆ X.

3.7.4 Second order system with finite escape time in the control-free case

We consider the system with dynamics

ẋ1 = x2,

ẋ2 = −0.5x2
1 − x2 + u,

with −2 ≤ u ≤ 4. If u ≡ 0, trajectories emanating from parts of the state space exhibit

a finite escape time. Cancelling the nonlinearity would allow the global stabilization

of the system, however, this is not an option under input constraints. The analysis

algorithm for the CLF V (x) = 1.7x2
1 + 2x1x2 + 1.7x2

2 and γ̄ = 20, following Section
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ΩV,0.7884

∂X

Figure 3.4: Illustration of the containment ΩV,γ̂ ⊆ X for the example of Section 3.7.3 for γ̂ = 0.7884.
The containment appears to be tight, that is, a larger sublevel set of V would have crossed the
boundary of X, denoted here with ∂X.

3.4 to warrant (3.4), yields the seemingly non-conservative estimate γ̂ = 12.8961 when

searching for the involved SOS multipliers of degree no greater than 4. Algorithm

2 with P (x) = 12x2
1 + x2

2, σ̄ = 25 and degree 6 SOS yields σ̂ = 21.6964 and the

corresponding new CLF (to the fourth significant digit)

V̂ (x) = 2.337× 10−3x6
1 + 3.431× 10−3x5

1x2 + 7.139× 10−3x4
1x

2
2 + 1.401× 10−3x3

1x
3
2

+ 0.001577x2
1x

4
2 + 9.066× 10−5x1x

5
2 + 2.752× 10−5x6

2 + 1.501× 10−3x5
1

− 2.528× 10−3x4
1x2 − 3.038× 10−3x3

1x
2
2 − 1.114× 10−3x2

1x
3
2 + 7.356× 10−5x1x

4
2

+ 6.621× 10−6x5
2 + 4.158× 10−3x4

1 + 5.275× 10−4x3
1x2 + 6.401× 10−4x2

1x
2
2

+ 2.063× 10−3x1x
3
2 + 1.406× 10−3x4

2 − 2.991× 10−3x3
1 − 9.636× 10−5x2

1x2

+ 9.195× 10−4x1x
2
2 − 2.093× 10−4x3

2 + 7.215× 10−3x2
1 + 1.087× 10−3x1x2

+ 2.833× 10−4x2
2.
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The involved (sub)level sets are illustrated in Figure 3.5.

ΩV̂ ,1

ΩV0,1 = ΩV,γ̂

ΩP,σ̂

Xc

X

Figure 3.5: CLF analysis and optimization algorithms for the example of Section 3.7.4. The CLF
analysis algorithm for the quadratic V yields the maximal sublevel set ΩV,γ̂ contained in X, while the

CLF optimization algorithm yields a new degree 6 CLF V̂ (x) with Dc = ΩV̂ ,1, effectively reshaping

and enlarging the stabilization set for the system towards larger values along the x2 axis (the dotted

line is used to draw the set X, say X̂, corresponding to V̂ ; observe that ΩV̂ ,1 ⊆ ΩP,σ̂ ⊆ X̂ holds).

3.8 Summary

We have developed sufficient conditions for controllability using a CLF-based

control law under input constraints. Using either of the two proposed methods, these

sufficient conditions are numerically verifiable by solving SOS programs. We have

also shown how to (locally) optimize over the coefficients of the given CLF in order

to adjust the corresponding stabilization set. The results enable the efficient online

implementation of constrained Lyapunov control laws, as well as the consideration of

additionial complicating factors in the dynamics of the control system.
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Chapter 4

Feedback control with Quadratic Programming

In view of the results of Chapter 3, the feedback control problem can be as-

sociated with obtaining a mapping uc ∈ U , where U , as defined in (3.6), contains all

asymptotically stabilizing control laws based on the CLF V , and can also be regarded

as the set of all continuous selection functions for the set-valued map U(x) given by

(3.7). Here we proceed to develop a systematic way to design such a control law uc(x).

The description of the class of systems under consideration is the same as in Chapter 3.

We also assume knowledge of the stabilization set (which one can obtain by following

the methods of Chapter 3) corresponding to the system under consideration, the input

value set U and the particular CLF V .

4.1 Assembling the QP

At any x ∈ Rn, let us consider the stabilization performance gap

H(x, u) := (ψ(x, u)− α(x))2 ,

where α(x) is a continuous, negative definite function capturing the desired decrease

rate of V along the closed loop trajectories. In pursuit of a pointwise feedback con-

troller, we expand H and drop terms which do not contain u, obtaining a performance

index quadratic in u where the state x appears as a parameter, that is,

J (u;x) = uTQ(x)u+ L(x)u,
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where, for all x ∈ Rn,

L(x) := 2 [∇V (x)f(x)− α(x)]∇V (x)g(x),

Q(x) := (∇V (x)g(x))T∇V (x)g(x).

By minimally shifting the spectrum of Q(x), we obtain J̃ (u;x) which is a strictly

convex function of u:

J̃ (u;x) := uT[Q(x) + µ(x)Im]u+ L(x)u, (4.1)

where

µ(x) := max
(

0, ε− λmin

(
gT(x) (∇V (x))T∇V (x)g(x)

))
,

for some given small ε > 0. Note that x 7→ λmin(Q(x)) is continuous, given the

continuity of the roots of the characteristic equation for Q(x) (Henriksen and Isbell,

1953) and the fact that all roots are real, since Q(x) = QT(x). Consequently, x 7→ µ(x)

is also continuous.

Proposition 4.1.1. For any given x ∈ ΩV,γ̂, let u∗(x) be the solution of the linearly

constrained Quadratic Program (QP) of minimizing (4.1), subject to u ∈ U(x), where

U(x) is given by (3.7). Then uc : ΩV,γ̂ → U, where uc(x) = u∗(x) for all x ∈ ΩV,γ̂, is

an asymptotically stabilizing, continuous control law for (3.1).

Proof. The domain U(x) of the QP is nonempty for all x ∈ ΩV,γ̂ ⊆ X. Therefore the

minimizer u∗(x) exists for all x ∈ ΩV,γ̂. Moreover, given that Q(x) +µ(x)Im is positive

definite for all x ∈ ΩV,γ̂, the QP problem is strictly convex and thus the minimizer

u∗(x) is unique. Also, the mapping x 7→ u∗(x) is continuous, since x 7→ J̃ (u;x) and

x 7→ U(x) are continuous and the matrix involved in the halfspace description of the

polytopic domain U(x) retains its rank, so, the results of Daniel (1973) hold. Thus,
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uc : ΩV,γ̂ → U with uc(x) = u∗(x) constitutes a well-defined, continuous selection for

U(x) and, as is shown in the proof of Lemma 3.2.1, it is a continuous, asymptotically

stabilizing control law for (3.1).

Remark 1. Calculating u∗(x) requires solving a QP of dimension equal to the con-

trol input dimension m, where the current state x appears as a parameter. Such a

QP is rapidly solvable on embedded computational platforms, enabling the use of the

proposed control law in real-time embedded control applications.

Remark 2. The QP remains feasible along the trajectory of the system, for any x0 ∈

ΩV,γ̂, thanks to the preceding analysis.

Remark 3. For the special case where the approach of Section 3.5 of Chapter 3 has

been used to warrant (3.4), one can identify that the polynomial û(x), as defined in

Proposition 3.5.1, is an asymptotically stabilizing control law for (3.1). It is possible,

therefore, to use û(x) to solve the control problem without considering the QP-based

approach of the present chapter. Nevertheless, this method would essentially lack the

tuning mechanism provided by the function α(x), introduced here to influence the

convergence rate of the system. Incorporating such a feature in û(x) would entail

considering additional constraints while looking for the polynomials aκ(x) appearing

in û(x) :=
∑

κ∈QU
aκ(x)vκ. Also, note that û(x) is smooth, and, as such, it may not

as easily reach the boundary of U and saturate along it, compared to the QP-based

control law which is only a continuous function of the state x, as mentioned before.

4.2 Numerical examples

For the following examples, we solved the QPs with the fast solver qpOASES

(Ferreau, Kirches, Potschka, Bock, and Diehl, 2014).
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4.2.1 Planar nonlinear system with a triangular input value set

We consider again the example system from Section 3.7.1, with dynamics

ẋ1 = x2 + (1− x2
1 − x2

2)x1 + u1,

ẋ2 = −x1 + (1 + x2
1 + x2

2)x2 + u2,

where u = [u1 u2]T is constrained in the convex, compact polygon with vertices v1 =

[2 3]T, v2 = [1 − 2]T, v3 = [−4 1]T, and the quartic CLF V (x) given by

V (x) = 2.36x2
1 + 2.4x1x2 + 1.83x2

2 + 2.52x3
1 + 5.6001x2

1x2 + 5.7201x1x
2
2

+ 2.34x3
2 + 2.05x4

1 + 2.04x3
1x2 + 3.75x2

1x
2
2 + 1.96x1x

3
2 + 1.61x4

2.

The state and input phase planes for four different initial conditions under the

proposed control law with α(x) = −V (x) and ε = 10−3 are illustrated in Figure 4.1.

ΩV,γ̂
U

Figure 4.1: Phase-planes for the state and input variables of the system considered in Example 1,
for four different initial conditions, timestamped according to ◦(t = 0), +(t = 0.3), ∗(t = 0.97),
�(t = 1.2), ♦(t = 2), ?(t = 3). Observe that the control input moves along the boundary of U without
loss of asymptotic stability.
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4.2.2 Second order system with finite escape time in the control-free case

Next, we consider again the example system from Section 3.7.4, with dynamics

ẋ1 = x2,

ẋ2 = −0.5x2
1 − x2 + u,

with −2 ≤ u ≤ 4 and the quadratic CLF V (x) = 1.7x2
1 + 2x1x2 + 1.7x2

2. We use

the particular example to illustrate the operation of the proposed control law, as well

as the differences between our general control methodology and the min-norm control

paradigm (see Freeman and Kokotović (1996); Primbs et al. (2000); Curtis (2003) and

also Ames et al. (2017); Xu et al. (2017b) for some contemporary applications). The

min-norm control paradigm dictates controlling the system at every x using an input

u that minimizes uTu while satisfying a constraint of the form ∇V (x)(f(x) + g(x)u) ≤

−W (x), where W (x) is a positive definite function. It is clear that −W (x) essentially

determines, at every x, the rate of convergence of the system to the origin, by enforcing

an upper bound on the rate of decrease of the CLF along the trajectories of the closed

loop system system. A question that arises naturally at this point and in agreement

with the theme of this dissertation is from where in the state space can a system be

provingly stabilized to the origin under the min-norm control law, when the control

input u is subject to constraints (say, of a polytopic form, that is, u ∈ U := {u ∈ RM :

Au � b}).

Using the methods of Section 3 to estimate the stabilization set for solutions

based on the min-norm control paradigm and, say, the quadratic CLF V (x), would

seemingly yield the same result, with some significant caveats, though, as explained

next. The function W : Rn → R≥0) is used in our formulation to merely write the

typical CLF asymptotic stabilization constraint (that is, infu∈U ψ(x, u) < 0, for x 6= 0)
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as a non-strict inequality as in (3.2), and can be taken to grow rather slowly with

‖x‖, for instance, W (x) = cxTx or W (x) = cV (x), with 0 < c � 1. This has no

practical effect on the stabilization performance of the closed loop system in terms

of the actual or desired convergence rate, as the latter enters the formulation of the

proposed control law through the function α : Rn → R≤0 appearing in the objective

(4.1) of the QP, and not as a hard constraint. One can choose α(x) with no effect on

the size of the stabilization set for the system; if the input constraints or the dynamics

prevent the system from attaining the desired performance indicated at every x by

α(x), then the proposed control law will still render the system asymptotically stable

while attempting, at every x, to minimize the performance gap. In min-norm control

formulations, stabilization performance enters the problem as a hard constraint and if

at some x ∈ Rn the convergence rate prescribed by −W (x) is not attainable under the

input constraints u ∈ U, that point x will not be part of the stabilization set.

The above lead us to the following observations:

� The stabilization set for a given system, U, CLF V (x) and W (x) may be the

same sublevel set of the CLF for both the herein proposed control law and the

min-norm paradigm, but in the latter case the convergence can be significantly

slower. The proposed methodology can use more control authority as it becomes

available, to match an originally unattainable convergence rate prescribed by

−W (x).

� Conversely, tuning a min-norm control law for faster convergence could signifi-

cantly shrink the stabilization set in order to satisfy, everywhere in the latter set,

the stricter stabilization constraint with the available control authority.

Figures 4.2 and 4.3 are used to illustrate these points on the present example.
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ΩV,13.1233

(a)

(b)

(d)
(c)

Figure 4.2: Stabilization sets for the system of Example 3 and the quadratic CLF V , for different
W (x) = cV (x), where c ∈ {10−6, 0.3, 0.8, 1.1, 1.2, 1.3}. The outermost sublevel set ΩV,13.1233 corre-
sponds to c = 10−6. The feasibility and performance of the proposed solution are essentially decoupled
and the control law can asymptotically stabilize the system from the maximal stabilization set, even
if the convergence rate is initially rather slow.

4.3 Summary

We presented a control law based on the minimizer of a QP that achieves the

asymptotic stabilization objectives under input constraints and does not lose its feasi-

bility along the closed loop trajectories of the system. An additional attractive feature

of the proposed control law, in line with QP-based control laws presented before in the

literature, are its low computational requirements which enable the embedded imple-

mentation of the proposed control solution.
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(a) x0 = [−2.5 − 0.38]T (b) x0 = [0 1.05]T

(c) x0 = [2 − 2.46]T (d) x0 = [0 − 2]T

Figure 4.3: Stabilization from 4 initial conditions (a), (b), (c), (d), under three cases (A,B,C) of
the the proposed control law with the performance parameter α�(x) = −c�V (x), and the min-norm
control law with the performance bound Wmn(x), for the system of Example 3 and the quadratic CLF
V . The performance parameters per initial point are as follows {(a): cA = 0.2, cB = 0.5, cC = 1,
Wmn(x) = 10−6V (x); (b): cA = 0.8, cB = 1.2, cC = 1.5, Wmn(x) = 1.1V (x); (c): cA = 0.8, cB = 1.1,
cC = 2, Wmn(x) = 0.8V (x); (d): cA = 0.8, cB = 1, cC = 1.5, Wmn(x) = 0.7V (x).
All phase-plane trajectories are illustrated in Figure 4.2. The dashed lines, wherever visible in the V̇
figures, correspond to the desired V̇ for the proposed solution (that is, α(x)) or the V̇ bound for the
min-norm control paradigm (that is, W (x)).

50



Chapter 5

Robust control of systems subject to bounded

uncertainty

We now extend the methods of Chapters 3 and 4 to address the robust stabi-

lization problem for uncertain polynomial systems.

5.1 System description

Let us consider uncertain nonlinear control systems with dynamics of the form

ẋ = f(x) + g1(x)u+ g2(x)w, x(0) = x0, (5.1)

where x ∈ Rn is the state vector at time t ≥ 0 with initial value x0 ∈ Rn, and u ∈ U is

the control input. It is assumed that u ∈ U ⊆ Rm, for all t ≥ 0, where U is a convex

and compact polytope defined by the convex hull of its vertices {v1, . . . , vq} ∈ U, or,

equivalently, by the intersection of halfspaces described by Au � b for appropriate A ∈

Rp×m, b ∈ Rp. In addition, we assume that 0 ∈ Int(U). The vector w ∈W ⊆ Rr is an

unknown disturbance signal, which attains values in the convex and compact polytope

W defined also by the convex hull of its vertices {z1, . . . , zp} ∈ W. One can use w to

account for both exogenous disturbances and modeling uncertainty in the dynamics.

For notational convenience, we consider the index sets QU = {1, . . . , q} ⊂ Z>0 and

QW = {1, . . . , p} ⊂ Z>0, corresponding to the vertices {v1, . . . , vq} and {z1, . . . , zp}

of U and W, respectively. It is assumed that f : Rn → Rn, g1 : Rn → Rn×m and

g2 : Rn → Rn×r are known polynomial functions of x, with f(0) = 0.
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We will consider control inputs that are piecewise continuous functions of time

t. Under such a control input history u(t) and a particular disturbance history w(t),

for t ∈ [0, τ), let φ(t;x0, u, w) denote the solution1 of (5.1) in the same time interval.

Given the possible discontinuities in the right hand side of (5.1), the solution φ is

regarded to exist in a non-classical sense (Bacciotti and Rosier, 2005; Clarke, Ledyaev,

and Stern, 1998; Clarke, Ledyaev, Sontag, and Subbotin, 1997). The reader is referred

to the relevant literature for more details and, in particular, to the fast-sampling-based

interpretation of solutions to systems with discontinuous dynamics given by Clarke

et al. (1997). We choose the latter interpretation because it is conceptually compatible

with cases where the control law is implemented through the online solution of an

optimization problem. In a similar vein to our work on nominal systems (that is,

systems without uncertainty) in Chapters 3 and 4, we focus on developing ways to

study from which states is a Lyapunov-based control law guaranteed to provide an

applicable notion of robust stabilization and how to implement such a robust, input

constrained control law through a computationally lightweight Quadratic Program.

5.2 Robust stabilization under disturbances and input con-
straints

For notational convenience and similarly to Chapter 3, we consider the set V

of positive definite, radially unbounded polynomial functions V : Rn → R≥0. Also, we

use ΩV,γ := {x ∈ Rn : V (x) ≤ γ} to refer to the γ-sublevel set of V ∈ V .

Definition 5.2.1. A function V ∈ V is a Robust Control Lyapunov Function (RCLF)

for system (5.1) if there exists a function W ∈ V and a set Xr ⊆ Rn, with 0 ∈ Int(Xr),

1Observe that here, in contrast to the nominal case of Chapter 3, the notation for the solution
reflects the dependence of the latter on the time history of the disturbance w.
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such that

inf
u∈U

sup
w∈W

ψ(x, u, w) ≤ −W (x) (5.2)

for all x ∈ Xr, where ψ : Rn × U×W→ R with ψ(x, u, w) := ∇V (x)(f(x) + g1(x)u+

g2(x)w).

In the relevant literature (Bacciotti and Rosier, 2005; Clarke et al., 1998, 1997),

such V and W are often called a Control Lyapunov pair. At this point, we emphasize

that condition (5.2) does not suffice, in general, to guarantee stabilizability when the

input u is subject to constraints. In fact, let us consider a trajectory starting from a

point x0 where (5.2) holds that is driven by a control law that guarantees ψ(x, u, w) ≤

−W (x) for all x along φ(t;x0, u, w) and all w ∈W, where t ∈ [0, t∗). There is nothing

that prevents such a trajectory to escape Xr and enter the set Xc = Rn \ Xr where

(5.2) does not hold. At such a point x∗ ∈ Xc
r and depending on the particular action

of the unknown disturbance w, the attainable rate of decrease of the RCLF V will be

less than what prescribed by W (x∗), while the value of V can even begin to increase,

subsequently, as a function of time. The fate of such a trajectory cannot be easily

determined, nor is it clear how to choose control inputs when the system’s state is in

Xc
r. Note that a different RCLF V would result in a different geometry for the problem

in terms of the corresponding set Xr, therefore, Lyapunov stabilization with some other

RCLF cannot be definitively precluded. Focusing on our problem with the given RCLF,

it is possible that the system returns to Xr under some particular control input and

a favorable action of w. Alternatively, the system may remain indefinitely in Xc
r or,

even worse, escape to infinity in finite time. The various possibilities are conceptually

illustrated in Figure 1.2, for the trajectory emanating from the point xD. To provably

achieve robust stabilization under input constraints, we proceed to warrant a sense of
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invariance within a subset of the set Xr, given by

Xr :=

{
x ∈ Rn : inf

u∈U
sup
w∈W

ψ(x, u, w) ≤ −W (x)

}
, (5.3)

and where a control law based on the particular RCLF is well-defined and effective for

any possible action of the disturbance w.

Next, we introduce the robust stabilization notion that we pursue in the present

chapter.

Definition 5.2.2. The uncertain system (5.1) is called robustly practically stabilizable

under input constraints, if for any ε > 0 there exists a control law urc(·; ε) : Drc → U

such that the closed loop trajectories satisfy lim supt→∞ φ(t;x0, urc(·; ε), w) ≤ ε, for and

any x0 ∈ Drc. The resulting closed loop system is called robustly practically stable,

whereas we refer to the set Drc as the robust stabilization set for (5.1).

The implication of Definition 5.2.2 is that such a control law can steer the

system to an ε−neighborhood of the origin, for any ε > 0, starting at any x0 ∈ Drc
and regardless of action of the disturbance w along the ensuing trajectory.

Lemma 5.2.1. Let V ∈ V be an RCLF for (5.1) and ε > 0 be given. If γ > 0 is

such that ΩV,γ ⊆ Xr, then the system is robustly practically stabilizable under input

constraints, in the sense of Definition 5.2.2, with Drc = ΩV,γ.

Proof. For any x ∈ ΩV,γ, consider the subset of the input value set U given by

Ur(x) :=

{
u ∈ U : sup

w∈W
ψ(x, u, w) ≤ −W (x)

}
(5.4)

and notice that it is nonempty, by the definition of the set Xr and given that ΩV,γ ⊆ Xr.

Consequently, no matter what the particular value of the disturbance w ∈W may be,

there exists u∗ ∈ U such that ψ(x, u∗, w) ≤ −W (x), for all (x,w) ∈ ΩV,γ×W. Take c ∈
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R>0 such that ΩV,c ⊆ Bnε and consider a control law urc(x; ε) attaining values in Ur(x),

for all x ∈ ΩV,γ \ ΩV,c and urc(x; ε) = 0, otherwise. Since ψ(x, urc(x; ε), w) ≤ −W (x)

holds for all (x,w) ∈ ΩV,γ ×W, it also holds along the trajectory φ(t;x0, urc)·; ε), w)

emanating from any x0 ∈ ΩV,γ, no matter what the action of w along φ is. Therefore,

by typical Lyapunov arguments, φ(t;x0, urc, w) ∈ ΩV,γ holds for all t ∈ [0,∞), so

the control law is well-defined. Consider the function ρ : Rn × V × R>0 → R≥0, with

ρ(x;V, c) := V (x)−c, if x /∈ ΩV,c, and ρ(x;V, c) = 0, otherwise. For any x0 ∈ ΩV,γ\ΩV,c,

ρ̇ = ψ(x, urc, w) ≤ −W (x) holds for all x ∈ ΩV,γ \ ΩV,c along the ensuing trajectory

φ(t;x0, urc, w), whereas minx ρ(x;V, c) = 0. Therefore, ρ(φ(t;x0, urc, w);V, c) → 0 as

t→∞ which concludes the proof.

Note that the function ρ(x;V, c) can be regarded as a measure of the generalized

distance of the point x from the sublevel set ΩV,c of the RCLF V . It is easy to see that

the results of Lemma 5.2.1 ensure that, regardless of the action of the disturbance w,

the value of the RCLF V will decrease monotonically along the controlled trajectories,

until the latter are ultimately confined in the sublevel set ΩV,c. Also, the controlled

trajectories will never escape the sublevel set ΩV,γ ⊆ Xr. This situation is conceptually

illustrated in Fig. 1.2. It is noteworthy that the presence of uncertainty in the dynamics

complicates the problem significantly. The geometry of the problem can be different

compared to the nominal disturbance-free case which we studied in Chapter 3, in terms

of the (simpler) set X = {x ∈ Rn : infu∈U ψ(x, u, 0) ≤ −W (x)} inside which a CLF-

based input constrained control law is guaranteed to be effective and, consequently,

in terms of the positive invariant (non-robust) stabilization set Dc corresponding to a

CLF sublevel set contained in X.

In the subsequent sections, we simplify the notation for the control laws of

interest by dropping the ε argument. Of course, the latter is integral to the underlying
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stabilization notion as will be seen again in Section 5.4 and the numerical examples

that follow in Section 5.5.

5.3 RCLF analysis with SOS

In this section, we develop two alternative methods that can be used to construct

sufficient conditions for the set containment ΩV,γ ⊆ Xr to hold that are numerically

verifiable. Both methods reduce the problem to the solution of convex feasibility prob-

lems - nominally Semidefinite Programs (SDPs) with Linear Matrix Inequality (LMI)

constraints, which result from the parsing of sum-of-squares (SOS) constraints.

5.3.1 Using the shape of the input value set to induce a partition of the
state space

At this point, we recall a fundamental result from linear programming.

Lemma 5.3.1. Let P ⊆ Rn be a convex, compact polytope. The function h(y) :=

cTy + d, where c ∈ Rn, d ∈ R are constants and y ∈ P, attains its minimum and

maximum values at vertices of P.

Proof. Neglecting the constant term d, the case for the minimum corresponds to Propo-

sition 2.4.2 in Bertsekas (2009). The same is true for the case of the maximum, by

negating c and applying the same result.

It is possible to use Lemma 5.3.1 to the end of obtaining a more convenient

parameterization of the set Xr.

Lemma 5.3.2. Let C ⊆ Xr be a compact set. For any x ∈ C,

inf
u∈U

sup
w∈W

ψ(x, u, w) ≤ −W (x)

56



is equivalent to

min
i∈QU

max
k∈QW

ψ(x, vi, zk) ≤ −W (x).

Proof. Recall that vi, zk, where i ∈ QU, k ∈ QW, are the vertices of the input and

disturbance value sets U and W, respectively. Also, note that the quantity ϑ(x, u, w) :=

ψ(x, u, w)−W (x) is affine in u and w for a fixed x. The equivalence follows by applying

Lemma 5.3.1 to ϑ(x, u, w) twice, that is, while regarding the latter to be a function

of u with parameter w and vice-versa. Note that the infimum and the supremum are

attained since ϑ(x, u, w) is jointly continuous in (x, u, w) and its arguments take values

over compact sets.

Let D be any compact subset of Rn; from Lemma 5.3.2, it readily follows that

Xr ∩ D =

{
x ∈ D : min

i∈QU
max
k∈QW

ψ(x, vi, zk) ≤ −W (x)

}
=
⋂
k∈QW

{
x ∈ D : min

i∈QU
ψ(x, vi, zk) ≤ −W (x)

}
. (5.5)

Expression (5.5) helps us in checking whether x ∈ Xr holds for a fixed point x ∈ D, as

it reduces the problem to studying the effect of the vertices of the respective value sets

on (u,w) 7→ ψ(x, u, w). Note that we can account for the effect of the disturbance by

requiring that mini ψ(x, vi, zk) ≤ −W (x) holds true for all k ∈ QW for the particular x.

Such a logical conjunction appears, at first sight, to be compatible with the S-procedure

which we briefly described before. However, taking the minimum of ψ(x, vi, zk) over

all input value set vertices vi cannot be readily accommodated in the same context

and hinders the derivation of sufficient conditions for ΩV,γ ⊆ Xr to hold in terms of

semialgebraic set containments.

The aforedescribed hardship is reminiscent of that encountered in the nominal

case, that is, without uncertainty, in Chapter 3. We are first going to circumvent the
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problem by partitioning the state space into non-overlapping cells which are associated

with each vertex vi of the input value set U. Essentially, we will be using the partition

introduced in Section 3.4, by appropriately “robustifying” the respective results to

make them amendable to the present uncertain context.

The pairing between cells of the partition and vertices of U is determined based

on which vertex vi tends to make ψ(x, vi, 0) decrease more for x near the origin x = 0.

In the ith cell of the partition, we hold u constant and equal to the corresponding

vertex, and we check whether ψ(x, vi, zk) ≤ −W (x) holds, for all k ∈ QW and for all

x in the intersection of the cell with the sublevel set of interest ΩV,γ. The latter can

be readily formulated as a semialgebraic set containment problem which one can solve

with typical SOS techniques. If all the corresponding SOS problems are feasible for all

i ∈ QU, then the set containment ΩV,γ ⊆ Xr holds.

Proposition 5.3.3. Let the sets {XPi , i ∈ QU} be defined as in Proposition 3.4.3. Sup-

pose that for each i ∈ QU,

XPi ∩ ΩV,γ ⊆ {x ∈ Rn : ψ(x, vi, zk) ≤ −W (x)} (5.6)

hold for all indices k ∈ QW. Then, ΩV,γ ⊆ X.

Proof. The fact that for a particular i ∈ QU, (5.6) holds for all indices k ∈ QW implies

that it also holds for k = arg maxk∈QW ψ(x, vi, zk); note that ψ is jointly continuous

and defined over compact sets, so the supremum is attained. As a result,

XPi ∩ ΩV,γ ⊆
{
x ∈ Rn : sup

w∈W
ψ(x, vi, w) ≤ −W (x)

}
(5.7)

holds for all i ∈ QU. By definition of the set Xr, for each i ∈ QU we have{
x ∈ Rn : sup

w∈W
ψ(x, vi, w) ≤ −W (x)

}
⊆ Xr. (5.8)
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Using (5.7) and (5.8), the fact that (5.6) holds for all i ∈ QU implies

∪i∈QU {XPi ∩ ΩV,γ} ⊆ Xr. (5.9)

Since the collection of sets {XPi , i ∈ QU} forms a partition of Rn from Propo-

sition 3.4.3, we have ∪i∈QUXPi = Rn. Note that, in addition, ΩV,γ ⊆ Rn. The two

latter facts imply ∪i∈QU {XPi ∩ ΩV,γ} = ΩV,γ, which, in conjunction with (5.9), proves

the Proposition.

We can now invoke the S-procedure in order to formulate sufficient conditions

for Proposition 5.3.3 to hold that are practically decidable. In particular, assume there

exist polynomials c[i,k](x) and s[i,j,k](x), for all (i, j, k) ∈ QU ×QU ×QW, such that

−ψ(x, vi, zk)−W (x)− c[i,k](x) (γ − V (x))

−
q∑

j=1,j 6=i

s[i,j,k](x)(ηj − ηi)Tx ∈ Σ[x], ∀(i, k) ∈ QU ×QW, (5.10a)

c[i,k](x) ∈ Σ[x], ∀(i, k) ∈ QU ×QW, (5.10b)

s[i,j,k](x) ∈ Σ[x], ∀(i, j, k) ∈ QU ×QU ×QW.
(5.10c)

When Σ[x] is parameterized as SOS, (5.10a)-(5.10c) can be expressed as LMIs in terms

of appropriate auxiliary variables, the feasibility of which can be determined in polyno-

mial time by solving an SDP. A feasible solution implies that (5.6) holds for all k ∈ QW,

and, by virtue of Proposition 5.3.3, ΩV,γ ⊆ Xr also holds.

5.3.2 Robust stabilizability via polynomial piecewise convex combinations

Our next approach towards showing ΩV,γ ⊆ Xr and, thus, guaranteeing that the

system is robustly practically stabilizable in the set ΩV,γ, is based on parameterizing the

action of the admissible, input constrained control laws with appropriate polynomial

functions.
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Proposition 5.3.4. Let I ⊂ Z>0 and consider the collection of semialgebraic sets

{P` ⊆ Rn, ` ∈ I}, where P` :=
{
x ∈ Rn : π

[`]
j (x) ≥ 0

}
and π

[`]
j : Rn → R are polynomial

functions, forming a partition of Rn. Also, for each ` ∈ I, let ξ
[`]
i : Rn → R≥0, i ∈ QU,

be polynomial functions such that 0 <
∑

i∈QU
ξ

[`]
i (x) ≤ 1 for all x ∈ Rn, and take

ũ[`]
rc(x) :=

∑
i∈QU

ξ
[`]
i (x)vi.

Then, if

ΩV,γ ∩ P` ⊆
{
x ∈ Rn : ψ

(
x, ũ[`]

rc(x), zk
)
≤ −W (x)

}
, ∀(k, `) ∈ QW × I, (5.11)

the set containment ΩV,γ ⊆ Xr holds.

Proof. As {P`, ` ∈ I} form a partition of Rn, it is easy to see that

∪`∈I {ΩV,γ ∩ P`} = ΩV,γ. (5.12)

Also,

∩k∈QW

{
x ∈ Rn : ψ

(
x, ũ[`]

rc(x), zk
)
≤ −W (x)

}
=

{
x ∈ Rn : sup

w∈W
ψ
(
x, ũ[`]

rc(x), w
)
≤ −W (x)

}
. (5.13)

One can write u
[`]
rc as

u[`]
rc(x) =

∑
i∈QU

ξ
[`]
i (x)∑

j∈QU
ξ

[`]
j (x)

(
vi
∑
j∈QU

ξ
[`]
j (x)

)
. (5.14)

For any fixed x ∈ Rn, note that ξ
[`]
i (x)/

∑
j∈QU

ξ
[`]
j (x) ≥ 0,∀i ∈ QU. Moreover, recalling

that
∑

i ∈QU
ξ

[`]
i (x) ≤ 1, 0 ∈ Int{U} and that U is defined by the convex hull of its

vertices {vi, i ∈ QU}, observe that vi
∑

j∈QU
ξ

[`]
j (x) ∈ U holds, therefore, the polytope

defined by the convex hull of the points
{
vi
∑

j∈QU
ξ

[`]
j (x), i ∈ QU

}
is contained within

U and the right hand side of (5.14) corresponds to a convex combination of the latter
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collection of points. Consequently, for each ` ∈ I and any x ∈ Rn, we have x 7→

u
[`]
rc(x) ∈ U. The latter fact, in conjunction with the definition of the set Xr, implies{

x ∈ Rn : sup
w∈W

ψ
(
x, ũ[`]

rc(x), w
)
≤ −W (x)

}
⊆ Xr. (5.15)

Using (5.12), (5.13) and (5.15), the set containment (5.11) implies ΩV,γ ⊆ Xr, conclud-

ing the proof.

With the help of the S-procedure and similarly to the case of Section 5.3.1, we

can develop, in terms of semialgebraic set containments, sufficient conditions for the

results of Proposition 5.3.4 to hold. Such semialgebraic set containments are, in turn,

verifiable numerically by solving SDPs (or another class of convex problems, depending

on the parameterization of Σ[x]). In the present case, we are looking for polynomials

ξ
[`]
i (x), s

[`]
j (x) and c[`](x), for all (`, i, j, k) ∈ I ×QU ×QU ×QW, such that

−ψ
(
x,
∑
i∈QU

ξ
[`]
i (x)vi, zk

)
−W (x)

−c[`](x)(γ − V (x))−
∑
j∈J (`)

s
[`]
j (x)π

[`]
j (x) ∈ Σ[x], ∀(`, k) ∈ I ×QW, (5.16a)

1−
∑
i∈QU

ξ
[`]
i (x) ∈ Σ[x], ∀` ∈ I, (5.16b)

ξ
[`]
i (x) ∈ Σ[x], ∀(i, `) ∈ QU × I, (5.16c)

s
[`]
j (x) ∈ Σ[x], ∀(j, `) ∈ QU × I. (5.16d)

The reader should note that the partition of the state space employed in Propo-

sition 5.3.4 has a different purpose compared to the partition of the state space used

in the method described in Section 5.3.1. Here, the partition allows us to search for

suitable nonnegative polynomials ξ
[`]
i (x) such that the previous results hold only within

the respective cell with index ` ∈ I and not throughout the entire Rn. We use the
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latter fact to our advantage, in order to make the proposed method of the present

section more flexible.

5.4 Solving the control law min-max problem with simple QPs

If ΩV,γ ⊆ Xr holds, any x ∈ ΩV,γ can be mapped to the set Ur(x) := {u ∈ U :

supw∈W ψ(x, u, w) ≤ −W (x)}, which is guaranteed to be nonempty by the definition

of Xr. In turn, any u ∈ Ur(x) is guaranteed to render ψ(x, u, w) ≤ −W (x), no matter

what the value of the disturbance w happens to be. We now address the question of

how to systematically choose such a u ∈ Ur(x) as a function of x, to ultimately achieve

our control objectives.

We proceed to formulate a Quadratic Program (QP), the solution of which will

be equal to the value of the sought-after robust control law at the particular x. The

domain of the QP will be given by Ur(x); note that the current state x appears as a

parameter in the formulation of the QP, the decision variable of which is the control

input u to be applied to the system. We begin by considering, in a similar vein to our

nominal control law of Chapter 4, a negative definite function α : Rn → R≤0 which is

assumed to correspond to the desired stabilization performance at every x, in terms

of the rate of decrease of the RCLF V along the trajectories of the system. Next, we

consider a measure of the stabilization performance gap H : Rn×U×W→ R at every

x and given the value of the exerted control input u and the (unknown) value of w ∈W

which happens to act on the system at that time, with

H(x, u, w) := (ψ(x, u, w)− α(x))2.

If terms which do not contain u are dropped from H, one obtains the perfor-
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mance index

J (u;x,w) = uTQ(x)u+ L(x,w)u,

where Q : Rn → Rm×m and L : Rn ×W→ Rm are given, respectively, by

Q(x) := gT1 (x) (∇V (x))T∇V (x)g1(x) + µ(x)Im,

L(x,w) := 2 [∇V (x) (f(x) + g2(x)w)− α(x)]∇V (x)g1(x),

and µ : Rn → R≥0 is used to shift the spectrum of gT1 (x) (∇V (x))T∇V (x)g1(x), if

necessary, and render the resulting matrix strictly positive definite by some prespecified

margin, that is,

µ(x) := max
(

0, ε− λmin

(
gT1 (x) (∇V (x))T∇V (x)g1(x)

))
,

for some given small ε > 0. Observe that the unknown quantity w appears in the

performance index J (u;x,w), as well as in what we could regard to be our sta-

bilization constraint embedded in the definition of Ur(x), that is, ∇V (x)g1(x)u ≤

−∇V (x)f(x) −∇V (x)g2(x)w −W (x). This is hindering our efforts if we were to try

and pose the control law design problem as a simple QP. Taking the uncertainty into

explicit consideration is a nontrivial feat in robust optimization. Often times, the

resulting problems called robust counterparts (Ben-Tal, Nemirovski, and Roos, 2002;

Ben-Tal, Ghaoui, and Nemirovski, 2009) assume forms which are more complicated

and difficult to solve online, such as Semidefinite Programs (Vandenberghe and Boyd,

1996). We continue by formulating a control law based on a robustly safe solution

of such an uncertain QP, which reduces to the solution of a simple and standard QP

without any uncertainty.

Proposition 5.4.1. Let U := {u ∈ Rm : Au � b}, for appropriate A ∈ Rp×m and
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b ∈ Rp. For any x ∈ ΩV,γ and w ∈W, let u∗(x,w) be the solution to the QP problem

min
u

J (u;x,w) ,

subject to ∇V (x)g1(x)u ≤ −∇V (x) (f(x) + g2(x)w)−W (x),

Au � b.

The mapping urc : ΩV,γ → U, with

urc(x) :=

{
u∗
(
x, zk(x)

)
if V (x) ≥ ξ,

0 otherwise,
(5.17)

for any ξ ∈ (0, γ), where k(x) := arg maxk∈QW∇V (x)g2(x)zk, is a robustly practically

stabilizing control law for the system (5.1), in the sense of Definition 5.2.2.

Proof. Let ε > 0. Then, take ξ ∈ (0, γ) such that ΩV,ξ ⊆ Bnε . The QP is feasible for

any x ∈ ΩV,γ and w ∈ W, since ΩV,γ ⊆ Xr and the set Ur(x), which is the domain of

the QP, is guaranteed by virtue of Lemma 5.2.1 to be nonempty. Additionally, since

Q(x) = QT(x) is positive definite for any x ∈ Rn, the solution of the QP is unique,

and thus, u∗
(
x, zk(x)

)
is well-defined. The control law under consideration is rendering

ψ(x, urc, w) ≤ −W (x) for any x ∈ ΩV,γ and any w ∈ W. For any x0 ∈ ΩV,γ and

following Lemma 5.2.1, the trajectory φ(t;x0, urc, w) will remain in ΩV,γ for all t ≥ 0,

which guarantees that the QP will remain feasible, and ultimately tends to ΩV,ξ, that

is, ρ(φ(t;x0, urc, w);V, ξ) → 0 as t → ∞, for ρ(·; ·, ·) as given in the Proof of Lemma

5.2.1. This completes the proof.

Remark 4. As we saw in Chapter 4, it is a known fact that the minimizer of a QP,

whose objective and constraint functions depend continuously on a parameter, is a

continuous function of the latter parameter under mild conditions (Daniel, 1973). In

the present case, the QP which we have associated with the proposed control law

depends continuously on the state x, but it also depends on k(x) which is defined in
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Proposition 5.4.1. Observe that x 7→ k(x) ∈ QW attains values from a discrete set that

depend on the part of the state space where the system happens to be. It is possible to

consider a partition of the state space (different than the one discussed in Section 5.3)

based on k(x), such that k(x) attains a new value as the system’s trajectory is crossing

from one cell of the partition to another. As long as the system’s trajectory remains in

one such cell of the partition, k(x) will be constant and the control law QP will depend

continuously only on the current state. Therefore, one can regard the resulting control

input to be a piecewise continuous function of time t.

Remark 5. In accordance with the notion of practical stabilization, the herein proposed

robust stabilization method is guaranteed to bring the controlled trajectory of the sys-

tem from any x0 ∈ ΩV,γ for γ > 0 such that ΩV,γ ⊆ Xr, to the prescribed neighborhood

of the origin corresponding to the RCLF sublevel set ΩV,ξ. The control law will prevent

the trajectory from escaping into Drc \ ΩV,ξ. This action of the control law can cause

rapid “activations” and “deactivations” of the control input, reminiscent of chattering,

which is typically undesirable. One can avoid this by taking an inner and an outer

target sublevel set, ΩV,ξ and ΩV,ξ, with ξ > ξ, and consider a variation of the control

law operating as follows. Initially, the system is steered to ΩV,ξ. No control is applied

next, unless the trajectory reaches the boundary of ΩV,ξ. When the latter happens,

the control law brings the system back to ΩV,ξ and the process is repeated accord-

ingly. Considering, also in the spirit of Clarke et al. (1997), that the feedback control

law calculations are performed and applied to the system at time instants tj, where

j ∈ Z≥0 and (tj− tj−1) for j ≥ 1 are rather small, we introduce the recursively-defined,

binary-valued function

Cj = C (x (tj) , Cj−1)
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with C0 = 1, where C : Rn × {0, 1} → {0, 1} is given by

C(x, η) :=

{
1 if V (x) ≥ ξ or

(
ξ ≤ V (x(x) < ξ and η = 1

)
,

0 otherwise.
(5.18)

The control law defined in Proposition 5.4.1 assumes the form urc : ΩV,γ ×{0, 1} → U,

with

urc (x(tj), Cj) :=

{
u∗
(
x (tj) , zk(x(tj))

)
if Cj = 1,

0 otherwise.
(5.19)

Remark 6. It is straightforward to see that the collection of polynomial functions{
u

[`]
rc, ` ∈ I

}
, introduced in Section 5.3.2, can be used to assemble a robustly practically

stabilizing control law for the system (that is, by taking urc(x) = ũ
[`]
rc(x) for ` ∈ I

such that x ∈ P`. The QP-based control approach of the present section offers two

advantages to using a control law based on
{
u

[`]
rc, ` ∈ I

}
. First, the QP-based control

law can be used regardless of which method (that is, of either Section 5.3.1 or 5.3.2) has

been used to show ΩV,γ ⊆ Xr. Second, the QP-based control law is easily tunable online

(via the function α), whereas performance considerations have not been factored into

the derivations of Section 5.3.2, given that our focus there was on the controllability

aspect of the input constrained robust control problem.

5.5 Numerical examples

Next, we illustrate the efficacy of the methods proposed in this chapter using

three example problems. For each of these, we use the two methods presented in Sec-

tion 5.3 to find an approximation of the the maximal γ such that ΩV,γ ⊆ Xr, hereafter

denoted by γ̂, using a simple bisection scheme. For particular realizations of the un-

known, bounded disturbance variable, we also propagate closed loop trajectories from

x0 in the respective robust stabilization set ΩV,γ̂, driven by the proposed QP-based,

min-max control law. The SOS constraints were handled with YALMIP (Löfberg,
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2009), the resulting SDP problems were numerically solved primarily with MOSEK

(MOSEK ApS, 2017) and also SeDuMi (Sturm, 1999), whereas the control law QPs

were solved with qpOASES (Ferreau et al., 2014).
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(a) Showing ΩV,γ̂ ⊆ Xr for the ex-
ample of Section 5.5.1.
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(b) Showing ΩV,γ̂ ⊆ Xr for the ex-
ample of Section 5.5.2.

Figure 5.1: Illustrations of the set containment ΩV,γ̂ ⊆ Xr for the example problems of Sections 5.5.1
and 5.5.2, which is sufficient for robust practical stabilization under input constraints. The dashed-
dotted line corresponds to the boundary of the set Xc

r. Observe that the containment happens to
be tight for both cases, that is, slightly larger sublevel sets of the respective RCLF would violate
ΩV,γ̂ ⊆ Xr.

5.5.1 Uncertain system with finite escape time in the control-free case

We first consider the following uncertain nonlinear system with dynamics

ẋ1 = x2,

ẋ2 = −x2
1(0.6 + w1)− x2 + u+ w2,

with −0.01 ≤ w1 ≤ 0.1, |w2| ≤ 0.2 and −2 ≤ u ≤ 4. The unknown disturbance

w1 can have a significant effect on the dynamics of the system, as the presence of

the quadratic term results in trajectories with a finite escape time when no control

is applied. We consider the RCLF V (x) = x4
1 + x4

2 + x2
1 + x2

2 + x1x2 and W (x) =

10−6V (x). Using the methods of Sections 5.3.1 and 5.3.2 within a bisection scheme in
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[10−3, 10] to approximate γ̂ yields 7.9868 and 7.9870, respectively, while searching for

SOS polynomials appearing in the expressions (5.10a)-(5.10c) and (5.16a)-(5.16d) of

degree no greater than 4. For the polynomial convex combination method of Section

5.3.2, we employed a partition of R2 into 8 cells, by equipartitioning each quadrant

in 2 parts. We take the robust stabilization set for the system to be Drc = ΩV,γ̂, for

γ̂ = 7.9870. The set containment ΩV,γ̂ ⊆ Xr is illustrated in Figure 5.1a.

Starting from x0 = [−1 − 1]T, we propagate a closed loop trajectory of the

system under the proposed control law for t ∈ [0, 15], with α(x) = −2.5V (x), ε = 0.1,

ξ = 10−3, ξ = 5 × 10−3. For our simulations, we take the disturbance to be time

varying, attaining the values

w1(t) =

{
0.1 if 0 ≤ t ≤ 3,

−0.01 sin 10t otherwise,
w2(t) =


0.2 if 0 ≤ t ≤ 4,

−0.2 if 4 < t ≤ 6,

−0.2 cos(t− 6) if t > 6.

The time histories of the control input u and the RCLF V are illustrated in Figure 5.2.
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V (x) γ̂ = 7.9870

ξ = 10−3 ξ = 5× 10−3

Figure 5.2: Numerical simulation results for the example of Section 5.5.1. Observe that the control
input u initially saturates at the upper bound without loss of robust practical stability. The closed
loop trajectory is ultimately confined in the sublevel set ΩV,ξ, in accordance with the underlying
robust practical stabilization notion. When no control is applied and the trajectory is about to exit
ΩV,ξ near t = 11.75, the control law is engaged and brings the system back to ΩV,ξ at t = 14.25. The
process is repeated accordingly.
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5.5.2 Uncertain predator - prey system

Next, we consider the uncertain predator - prey system

ẋ1 = −x2w1 − x1x2 + 0.1x1w2 + u+ w3,

ẋ2 = x1w4 + x1x2,

with −1.5 ≤ u ≤ 2.5 and w = [w1 w2 w3 w4]T ∈ W ⊆ R4 such that 0.8 ≤ w1 ≤ 1.1,

0.9 ≤ w2 ≤ 1.2, |w3| ≤ 0.1 and 0.9 ≤ w4 ≤ 1.1. The nominal form of the control-free

system, that is, with w2 = w3 = 0 and, say, w1 = w4 = 1, corresponds to the predator

(x2) - prey (x1) dynamics where the equilibrium at the origin represents a coexistence

condition between the two agents and is surrounded by periodic orbits. Of course, this

may not necessarily be the case under the uncertainty and the control action introduced

by u. One should notice here that the disturbance w4 is unmatched, that is, it enters

the system at a different equation than the control input u. We consider the RCLF

V (x) = x2
1 + x1x2 + x2

2 and W (x) = 10−6V (x). A simple bisection on γ in the interval

10−3, 10] using either of the two methods to show ΩV,γ ⊆ Xr with degree 4 unknown

SOS polynomials yields γ̂ = 0.5597. The respective set containment is illustrated in

Figure 5.1b.

A closed loop trajectory from x0 = [0.5 −0.6]T is propagated with the proposed

control law, using the same parameters as in Example 1 and the disturbance values

w1(t) = 0.81, w2(t) = 1 + 0.1 cos 4t, w3(t) = 0.1 sin 5t and w4(t) = 1.05, for all t ≥ 0.

The results are illustrated in Figure 5.3.
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Figure 5.3: The control input u and the value of the RCLF V as functions of time for the example of
Section 5.5.2.

5.5.3 Uncertain multi-species system

Finally, we consider the third order system

ẋ1 = x1 + x2
1 − x1x2 − x1x3 + u1 + w1,

ẋ2 = −0.7x2 + x1x2 + 0.9x2x3,

ẋ3 = −x1x3 + w2x3 − x2
3 + u2,

also encountered in a competing species context, with u = [u1 u2]T constrained in the

compact polytope with vertices z1 = [4 4]T, z2 = [4 0]T, z3 = [1 −2.2]T, z4 = [−2 −2]T

and z5 = [−3 3]T, |w1| ≤ 0.1 and |w2| ≤ 0.2. We consider the RCLF V (x) = xTx,

W (x) = 10−6V (x), and then proceed to find the maximal γ using a bisection scheme

in the interval [10−3, 10]. The partition-based method described in Section 5.3.1 yields

1.2376, while the method of Section 5.3.2 yields 1.0871 and 1.1828, while searching for

degree 4 and 6 unknown SOS polynomials, respectively, and considering a partition of

R3 into its 8 octants.

The numerical results for the closed loop trajectory from x0 = [0.6 − 0.75 0.5]T

under the proposed control law with the same parameters as before except for ξ = 10−4,

ξ = 10−3, are illustrated in Figure 5.4. The disturbances are taken to be w1(t) =
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0.1 sin t, for all t ≥ 0, and

w2(t) = w2(x(t)) =


−0.2 if x2(t) ≤ −0.2,

x2(t) if − 0.2 ≤ x2(t) ≤ 0.2,

0.2 otherwise.

Given the shape of the input value set U, there exists a coupling between the admissible

values of each input variable and it is not easy to tell from Figure 5.4 whether the

particular input time history satisfies the input constraint. This is indeed the case, as

one can see in Figure 5.5, where the time-parameterized input trajectory is drawn with

respect to the set U.

5.6 Summary

We developed a new solution to the Lyapunov-based robust stabilization prob-

lem while explicitly accounting for input constraints and uncertainty in the dynamics.

The proposed methods guarantee that a control law based on a given RCLF and im-

plemented online via a QP will robustly stabilize the system starting at any point in

the robust stabilization set, which we explicitly characterize using SOS programming

techniques.
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−1
0

u

u1 u2

0 1 2 3 4 5 6 7 8 9 10
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100

time t
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(l
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V (x) γ̂ = 1.1828

ξ = 10−4 ξ = 10−3

Figure 5.4: The control input u = [u1 u2]T and the value of the RCLF V as functions of time for the
example of Section 5.5.3.
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Figure 5.5: The input trajectory with respect to the input value set U for the example of Section 5.5.3.
The dashed line denotes a part of the boundary of the set U. As expected, the input constraints are
satisfied, while the system is robustly practically stable.
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Chapter 6

The case of large-scale, networked systems

Equipped with the technical results of the previous chapters, and, in particular,

the robust control methodology of Chapter 5, we can now commence our study of large-

scale or networked systems. As mentioned in Section 1.2.3, the typical characteristics

of such systems are (i) the large dimension of the state vector and (ii) some underlying

structure that can be used to decompose the original system into smaller, interacting

subsystems.

In agreement with the approaches commonly encountered in the relevant litera-

ture, the main premise of the distributed and decentralized robust control methodolo-

gies proposed herein is that the control input calculations and the actuation process

takes place locally, at the subsystem level. In the distributed case, the control laws

utilize their knowledge of the state of their neighborhood, whereas in the decentralized

case, the control laws are based on a worst-case assumption for the state of the subsys-

tems affecting them. Thanks to the underlying Lyapunov stabilization concepts, which

adhere to the Vector (Control) Lyapunov Function paradigm, the distributed and de-

centralized control laws can collectively achieve the robust stabilization objective for

the entire large-scale system.
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6.1 System description

We consider nonlinear control systems consisting of multiple individual subsys-

tems which interact with each other. Systems of this nature are often referred to in

the literature as large-scale or network systems. Let the dynamics of such a system S

be given by

ẋ = f(x) + g(x)u+ h(x)w, x(0) = x0, (6.1)

where x ∈ Rn is the state at time t ≥ 0, with initial value x0. The control input is

u, with u(t) ∈ U ⊆ Rm for all t ≥ 0, whereas w is an unknown, bounded disturbance

with w(t) ∈W ⊆ Rr for all t ≥ 0. We can use w to account for modeling uncertainties

and external disturbances. The sets U and W are convex, compact polytopes, with

0 ∈ Int(U), defined by their vertices {v` ∈ U, ` ∈ Q} and {zk ∈ W, k ∈ QW}, for

QU,QW ⊆ Z>0. Also, f : Rn → Rn, with f(0) = 0, g : Rn → Rn×m, and h : Rn → Rn×r

are polynomial functions of x.

Let Si denote the ith subsystem of S, with i ∈ S where S = {1, . . . , s}. The

state of Si at time t ≥ 0 is denoted by x[i] ∈ Rni , has initial value x
[i]
0 and is subject to

the dynamics described by

ẋ[i] = fi
(
x[i]
)

+ gi
(
x[i]
)
u[i] +

∑
j∈S\{i}

ζji
(
x[i], x[j]

)
+ hi

(
x[i]
)
w[i], (6.2)

where the u[i], U[i] ⊆ Rmi , w[i], W[i] ⊆ Rri , {v[i]
` ∈ U[i], ` ∈ QU[i]}, {z[i]

k ∈W[i], k ∈ QW[i]}

are defined in an analogous way for each subsystem Si. The mappings fi : Rni → Rni ,

gi : Rni → Rni×mi and hi : Rni → Rni×ri are polynomial functions of the subsystem’s

state x[i]. The influence of subsystem Sj on Si is captured through the polynomial

function ζji : Rni×Rnj → Rni ; the case of single terms involving states from more than

two subsystems is not covered here, in order to streamline the presentation, but it is

a straightforward extension of the proposed formulation. We assume that the state,
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control input and disturbance variables of S are the concatenation of the subsystem

components. The neighborhood Ni is a collection of the indices of subsystems with

which Si interacts, including i, that is,

Ni := {j ∈ S : ζji (·, ·) 6≡ 0} ∪ {i}.

We also consider Ñi := Ni \{i} (which excludes i). The collections of the state vectors

of all subsystems in Ni and Ñi are denoted by χ[i] ∈ ∏j∈Ni R
nj and χ̃[i] ∈ ∏j∈Ñi R

nj ,

respectively.

A mapping θ : Dc → U, where Dc ⊆ Rn is a compact set with 0 ∈ Int(Dc), is

called an admissible control law for the large-scale system S, if the solution of (6.1)

at time t ∈ [0,∞), denoted by φ(t;x0, θ(·), w(·)) or, simply, φc(t;x0), exists and, also,

φc(t;x0) ∈ Dc for t ∈ [0,∞). In a similar vein, {θ[i] : D[i]
c ×

∏
j∈H⊆S\{i}D

[j]
c → U[i], i ∈

S}, where D[i]
c ⊆ Rni , i ∈ S, are compact sets with 0 ∈ D[i]

c , is said to be a collection

of admissible subsystem-level control laws, if all corresponding solutions for t ∈ [0,∞)

of (6.2) for each i ∈ S, denoted by φ[i](t;x
[i]
0 , θ

[i](·), χ̃[i](·), w[i](·)) or, simply, φ
[i]
c (t;x

[i]
0 ),

exist and are contained within the respective D[i]
c .

Control schemes: centralized, decentralized & distributed

Our control objective for S is to robustly confine the closed loop trajectory

of (6.1) to an ε−neighborhood of x = 0, that is, lim supt→∞ ‖φc(t;x0)‖ ≤ ε, for a

given ε > 0, regardless of the action of the disturbance, using control inputs from the

input value set U. Given the aforedescribed structure of S, one can satisfy the control

objective with admissible feedback control laws that take one of the following forms:

i) centralized control laws of the form θ : Dc → U, which are designed for the

entire system (for instance, following the approach proposed in Chapter 5) and,

accordingly, require knowledge of the entire state vector x;

75



ii) decentralized control laws of the form θ[i] : D[i]
c → U[i] which operate using knowl-

edge of the subsystem’s state only and render lim supt→∞ ‖φ[i]
c (t;x

[i]
0 )‖ ≤ εi for

εi > 0 such that lim supt→∞ ‖φc(t;x0)‖ ≤ ε for the given ε;

iii) distributed control laws of the form θ[i] :
∏

j∈Ni D
[j]
c → U[i], which collectively

achieve the stabilization objective similarly to the decentralized control laws, but,

in contrast to the latter, they do so by using knowledge of the state of all their

neighboring subsystems.

For either the distributed or the decentralized case, we refer to each set D[i]
c

for the ith subsystem Si as the domain of the respective DiRCLF / DeRCLF -based,

subsystem-level control law, and to Dc :=
∏

i∈S D
[i]
c as the robust stabilization set for

the large-scale system S.

6.2 Distributed control

Proposition 6.2.1. Let Vi : Rni → R≥0, for i ∈ S, be polynomial, positive definite,

radially unbounded functions and denote the time derivative of Vi along the trajectories

of the ith subsystem by ψi : Rni × U[i] ×∏j∈Ñi R
nj ×W[i] → R, with

ψi
(
x[i], u[i], χ̃[i], w[i]

)
:=∇Vi

(
x[i]
) (
fi
(
x[i]
)

+ gi
(
x[i]
)
u[i]

+
∑

j∈S\{i}

ζji (x
[i], x[j])hi(x

[i])w[i]
)
. (6.3)

Also, let Wi : Rni → R≥0, for i ∈ S, be polynomial, positive definite, radially unbounded

functions and V = [V1(x[1]) . . . Vs(x
[s])]T and W(x) = [W1(x[1]) . . . Ws(x

[s])]T. Assume

there exists a set Dc ⊆ D with Dc :=
∏

i∈S D
[i]
c , where D[i]

c := ΩVi,γi ⊆ D[i], for some

γi > 0, i ∈ S, such that, for all x ∈ Dc,

min
u∈U

max
w∈W

V̇(x, u, w) ≤ −W(x). (6.4)
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Then, there exist feedback control laws θ[i] :
∏

j∈Ni D
[j]
c → U[i] such that, for any x0 ∈

Dc, the trajectory φc(t;x0) of the large-scale system S when driven by the feedback law

θ(x) := [(θ[1](χ[1]))T . . . (θ[s](χ[s]))T]T satisfies lim supt→∞ ‖φc(t;x0)‖ ≤ ε, for any given

ε > 0.

Proof. Since (6.4) holds for all x ∈ Dc, there exists u
[i]
∗ ∈ U[i] such that

ψi(x
[i], u[i]

∗ , χ̃
[i], w[i]) ≤ −Wi(x

[i]),

for all (x[i], χ̃[i], w[i]) ∈ D[i]
c ×

∏
j∈Ñi D

[j]
c ×W[i]. Let θ[i] :

∏
j∈Ni D

[j]
C → U[i] be a control

law which, at every χ[i], attains values equal to such a u
[i]
∗ . For any x

[i]
0 ∈ D[i]

c , ψi < 0

holds along the ensuing trajectory φ
[i]
c (t;x

[i]
0 ), for all t ≥ 0 (as long as φ

[i]
c (t;x

[i]
0 ) 6= 0).

Therefore, D[i]
c is positively invariant under the control law θ[i].

Let ε > 0 and let εi > 0, i ∈ S, be such that
∏

i∈S B
ni
εi
⊆ Bnε . Also, let

ξi := max{c > 0 : ΩVi,c ⊆ B
ni
εi
} and consider ρ = ρ(x[i];Vi, ξi), with ρ as defined in

Chapter 5. Note that ρ̇ = ψi(x
[i], θ[i](·), χ̃[i](·), w[i](·)) < 0 for all x[i] ∈ D[i]

c \ {0},

where D[i]
c ⊇ ΩVi,ξi , regardless of the values of χ[i] ∈ ∏j∈N ∗i

D[j]
c and w[i] ∈ W[i];

also min
x[i]∈D[i]

c
ρ = 0. Thus, ρ → 0 as t → ∞. Given the way the ξi and εi were

chosen for i ∈ S, the latter fact implies lim supt→∞ ‖φ[i]
c (t;x

[i]
0 )‖ ≤ εi, and, in turn,

lim supt→∞ ‖φc(t;x0)‖ ≤ ε.

If the conditions in Proposition 6.2.1 are satisfied, each Vi will be hereafter

called a Distributed RCLF (DiRCLF) for the respective subsystem Si, while V will be

called a Vector RCLF (VRCLF) for the large-scale system S.

Proposition 6.2.2. For each i ∈ S and all ` ∈ QU[i], let

X[i]
P`
∩ D[i]

c ⊆ X[i]
` , (6.5)
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where

X[i]
P`

:= ∩ν∈QU[i]\{`}
{x[i] ∈ Rni : (η

[i]
` − η[i]

ν )Tx[i] ≤ 0},

η
[i]
` := ∇2Vi(0)gi(0)v

[i]
` , D[i]

c = ΩVi,γi, and

X[i]
` :=

{
x[i] ∈ Rni : supk∈QW[i]

ψi(x
[i], v

[i]
` , χ̃

[i], z
[i]
k ) ≤ −Wi(x

[i]), for all χ̃[i] ∈∏j∈Ñi D
[j]
c

}
.

Then (6.4) holds.

Proof. By the fact that (6.5) holds for all ` ∈ QU[i] and the properties of the partition

of the state space Rn into the sets XPi for the centralized case as derived in Proposition

3.4.3 (which trivially carry over to each individual subsystem and its own state space

Rni), one obtains D[i]
c ⊆ ∪`∈QU[i]

X[i]
` . Next, pick any x[i] ∈ D[i]

c and note that, by the

definition of X[i]
` ,

min
`∈QU[i]

max
k∈QW[i]

ψi

(
x[i], v

[i]
` , χ̃

[i], z
[i]
k

)
≤ −Wi

(
x[i]
)
. (6.6)

Since ψi
(
x[i], u[i], χ̃[i], w[i]

)
is affine in both u[i] and w[i], it can only attain its minima and

maxima with respect to either of these two arguments on the vertices of the respective

polytopic value set. Consequently, (6.6) is equivalent to

min
u[i]∈U[i]

max
w[i]∈W[i]

ψi
(
x[i], u[i], χ̃[i], w[i]

)
≤ −Wi

(
x[i]
)
. (6.7)

It is easy to see that (6.7) corresponds to the ith component of (6.4); if (6.7) holds for

all i ∈ S, then (6.4) also holds.

The S-procedure with SOS polynomial multipliers can be used in order to ex-

press the containments in (6.5) via LMI constraints. In particular, for every subsystem
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index i ∈ S and all pairs (`, k) ∈ QU[i] ×QW[i] , consider the set containment

−ψi
(
x[i], v

[i]
` , χ̃

[i], z
[i]
k

)
−Wi

(
x[i]
)
−
∑
j∈Ni

c
[i,`,k]
j

(
χ[i]
) (
γj − Vj

(
x[j]
))

+
∑

ν∈QU[i]\{`}

s[i,`,k]
ν

(
χ[i]
) (
η

[i]
` − η[i]

ν

)T
x[i] ∈ Σ[χ[i]],

(6.8)

where c
[i,`,k]
j ∈ Σ[χ[i]] for j ∈ Ni and all (`, k) ∈ QU[i] × QW[i] , and s

[i,`,k]
ν ∈ Σ[χ[i]]

for ν ∈ QU[i] and all (`, k) ∈ QU[i] × QW[i] . If all the SOS polynomial decompositions

involved in (6.8) for i ∈ S exist, then (6.5) holds for all i ∈ S, and one can make use

of Propositions 6.2.1 and 6.2.2, and thus take D[i]
c = ΩVi,γi as the domain of each θ[i].

Subsystem-level distributed feedback control laws

Assume that Si is at some state x[i] ∈ D[i]
c and is provided with the values of

the states χ̃[i] of its neighboring subsystems. The stabilizing control inputs that can be

attained by each control law θ[i] are characterized through the affine inequalities de-

scribed by u[i] ∈ U[i] and maxw[i]∈W[i] ψi(x
[i], u[i], χ̃[i], w[i]) ≤ −Wi(x

[i]) (or, equivalently,

in terms of the vertices of W[i], maxk∈QW[i]
ψi(x

[i], u[i], χ̃[i], z
[i]
k ) ≤ −Wi(x

[i])). Note that

the compact polytope in Rmi described here is nonempty, thanks to the fact that (6.7)

holds. We proceed to derive distributed control laws in a manner parallel to the ap-

proach pursued for the case of centralized control design presented in Chapter 5. To

this end, let αi : D[i]
c → R≤0 and consider the QP of finding u[i] that minimizes

Ji
(
u[i];χ[i]

)
:=
(
u[i]
)T
Qi

(
x[i]
)
u[i] + Li

(
χ[i]
)
u[i],

subject to A[i]u[i] � b[i],

∇Vi(x[i])gi(x
[i])u[i] ≤ −∇Vi(x[i])f(x[i])− δi(x[i])−Wi(x

[i])−
∑

j∈S\{i}

∇Vi(x[i])ζji (x
[i], x[j]),
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where

Qi(x
[i]) :=

(
∇Vi(x[i])gi(x

[i])
)T∇Vi(x[i])gi(x

[i]),

Li(x
[i]) := 2

[
∇Vi(x[i])f(x[i]) +

∑
j∈S\{i}

∇Vi(x[i])ζji (x
[i], x[j])

+ δi(x
[i])− αi(x[i])

]
∇Vi(x[i])gi(x

[i]),

δi(x
[i]) := max

k∈QW[i]

∇Vi(x[i])hi(x
[i])z

[i]
k .

The individual control laws θ[i] which, at every (x[i], χ̃[i]) ∈ (D[i]
c \ ΩVi,ξi)×

∏
j∈Ñi D

[j]
c ,

where ξi := max{c > 0 : ΩVi,c ⊆ B
ni
εi
} and εi > 0 are such that

∏
i∈S B

ni
εi
⊆ Bnε , attain

values equal to the minimizers of these QPs, for each i ∈ S, robustly stabilize the large

scale system S in the sense described by Proposition 6.2.1. The recursive feasibility

of the QPs, that is, the guarantee that there exist solutions along any closed loop

trajectories of the individual subsystems for any x0 ∈ Dc, is provided by the preceding

analysis. The structure of the individual distributed control laws follows the discussion

of Section 6.1: neighboring states appear as parameters in the formulation of the QP

and their current numerical values are needed to calculate the control input.

6.3 Decentralized control

The decentralized control laws are designed under the assumption that they

cannot access any state information pertaining to their corresponding neighboring sub-

systems. Any such state vector elements of neighboring subsystems which enter the

dynamics of a particular subsystem have to be treated by a decentralized control law

as unknown quantities, with specified uncertainty bounds. Pursuing a QP-based con-

troller with even simple uncertainty characterizations either in the constraints or the

objective of the underlying QP is not a trivial feat; the reader is referred to Ben-Tal

et al. (2009) for a thorough treatment of the broader problem of robust conic optimiza-
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tion. For purposes of developing optimization-based control laws, it is reasonable to

expect that solving such an uncertain optimization problem will be analytically com-

plicated and more computationally demanding than what one can afford in a real time,

embedded control context.

The aforedescribed hardship is overcome by drawing inspiration from the similar

problem of robustly stabilizing (6.1) with a centralized control law with the techniques

proposed in Chapter 5, which we have already utilized, to some extent, at the subsystem

level for the distributed control case in Section 6.2. Assuming that any uncertainty or

external influence which is bounded in a polytope enters the dynamics in an affine way

allows for a rather efficient treatment both at the feedback control law level (since what

would be a hard to solve uncertain optimization problem can be solved as a regular

QP) and at the preceding analysis level (as any set containments are pursued in a space

having dimension equal to the subsystem dimension ni).

Sufficient conditions for decentralized stabilization with the proposed approach

are developed next.

Proposition 6.3.1. Let Vi, V, D[i]
c , Dc, Wi, W be defined as in Proposition 6.2.1 and

assume that, for all x ∈ Dc,∑
j∈Ñi

ζji (x
[i], x[j]) = λi(x

[i])µ[i], i ∈ S, (6.9)

where λi : Rni → Rni×κi is a polynomial function of x[i], µ[i] ∈ Mi and Mi ⊆ Rκi is

a convex, compact polytope with vertices β
[i]
σ ∈ Mi, where σ ∈ QMi

⊆ Z>0. Finally,

assume that

min
u∈U

max
(w,µ)∈W×M

˙̂
V(x, u, µ, w) ≤ −W(x), (6.10)

for all x ∈ Dc, where µ = [µT
1 . . . µT

s ]T, M :=
∏

i∈SMi, and
˙̂
V is element-wise equal

to the time derivative of the components of V along the trajectories of (6.2) subject to
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(6.9), as given by ψ̂i(x
[i], u[i], µ[i], w[i]) := ∇Vi(x[i])(fi(x

[i]) + gi(x
[i])u[i] + λi(x

[i])µ[i] +

hi(x
[i])w[i]). Then, there exist control laws θ̂[i] : D[i]

c → U[i], for each subsystem Si with

i ∈ S, such that the solution φc(t;x0) to the dynamics (6.1) of S under the control

law θ̂(x) := [(θ̂[1](x[1]))T . . . (θ̂[s](x[s]))T]T satisfies lim supt→∞ ‖φc(t;x0)‖ ≤ ε for any

x0 ∈ Dc and any given ε > 0.

Proof. Given (6.10), it is possible to find u
[i]
∗ such that ψ̂i(x

[i], u
[i]
∗ , µ[i], w[i]) ≤ −Wi(x

[i]),

regardless of the disturbance values w[i] ∈W[i] and the cumulative contributions µ[i] ∈

Mi from the subsystems Sj, j ∈ Ni, with which Si interacts. Let θ̂[i] : D[i]
c → U[i] be

a control law attaining, at every x[i] ∈ D[i]
c , values equal to such u

[i]
∗ . Note that the

same control law θ̂ also renders V̇i = ψi(x
[i], u

[i]
∗ , χ̃[i], w[i]) ≤ −Wi(x

[i]), where the time

derivatives are now computed along the actual trajectories of (6.2), which depend on

the state vector values of the neighboring subsystems that θ̂[i] does not have knowledge

of. The proof with regards to the invariance of each D[i]
c and the robust confinement

of the closed-loop trajectories of S then proceeds similarly to the proof of Proposition

6.2.2.

If the conditions in Proposition 6.3.1 are satisfied, each Vi will be hereafter

called a Decentralized RCLF (DeRCLF) for the respective subsystem Si, while V will

be called a Vector RCLF (VRCLF) for S.

Proposition 6.3.2. If, for every i ∈ S and for all ` ∈ QU[i],

X[i]
P`
∩ D[i]

c ⊆ X̂[i]
` , (6.11)

holds, where the sets X[i]
P`

, D[i]
c are defined as in Proposition 6.2.2 and

X̂[i]
` :=

{
x[i] ∈ Rni : max

(k,σ)∈QW[i]×QMi

ψ̂i(x
[i], v

[i]
` , β

[i]
σ , z

[i]
k ) ≤ −Wi(x

[i])

}
, (6.12)

then (6.10) holds.
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Proof. Similarly to the proof for Proposition 6.2.2, (6.11) implies D[i]
c ⊆ ∪`∈QU[i]

X̂[i]
` .

Consequently, for all x[i] ∈ D[i]
c ,

min
`∈QU[i]

max
(k,σ)∈QW[i]×QMî

ψi

(
x[i], v

[i]
` , β

[i]
σ , z

[i]
k

)
≤ −Wi

(
x[i]
)
. (6.13)

Noting that ψ̂i
(
x[i], u[i], µ[i], w[i]

)
is affine in u[i], µ[i] and w[i] and that (6.13) holds for

all i ∈ S, (6.10) also holds.

The S-procedure with SOS polynomial multipliers can be used in order to ex-

press the containments in (6.11) via LMI constraints. In particular, for every subsystem

index i ∈ S and all pairs (`, k, σ) ∈ QU[i] ×QW[i] ×QMi
consider

−ψ̂i
(
x[i], v

[i]
` , β

[i]
σ , z

[i]
k

)
−Wi

(
x[i]
)
− c[i,`,k,σ]

(
x[i]
) (
γi − Vi

(
x[i]
))

+
∑

ν∈QU[i]\{`}

s[i,`,k,σ]
ν

(
x[i]
) (
η

[i]
` − η[i]

ν

)T
x[i] ∈ Σ[x[i]]

where c[i,`,k,σ] ∈ Σ[x[i]] for all (`, k, σ) ∈ QU[i] × QW[i] × QMi
, and s

[i,`,k,σ]
ν ∈ Σ[x[i]] for

ν ∈ QU[i] and all (`, k, σ) ∈ QU[i]×QW[i]×QMi
. If all the SOS polynomial decompositions

involved in (6.8) for i ∈ S exist, then (6.5) holds for all i ∈ S, and one can make use of

Propositions 6.3.1 and 6.3.2 to ultimately take D[i]
c = ΩVi,γi as the domain of each θ̂[i].

Subsystem-level decentralized feedback control laws

Defining αi as in Section 6.2, we consider the QP of finding u[i] that minimizes

Ji
(
u[i];x[i]

)
:=
(
u[i]
)T
Qi

(
x[i]
)
u[i] + Li

(
x[i]
)
u[i],

subject to A[i]u[i] � b[i],

∇Vi
(
x[i]
)
gi
(
x[i]
)
u[i] ≤ −∇Vi

(
x[i]
)
fi
(
x[i]
)
− εi

(
x[i]
)
−Wi

(
x[i]
)
,
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where

Qi(x
[i]) :=

(
∇Vi(x[i])gi(x

[i])
)T∇Vi(x[i])gi(x

[i]),

Li
(
x[i]
)

:= 2
[
∇Vi

(
x[i]
)
fi
(
x[i]
)

+ εi(x)− αi
(
x[i]
)]
∇Vi(x[i])gi(x

[i]),

εi
(
x[i]
)

:= max
(k,σ)∈QW[i]×QMi

∇Vi
(
x[i]
)
hi
(
x[i]
)
z

[i]
k +∇Vi

(
x[i]
)
λi
(
x[i]
)
β[i]
σ .

Each decentralized control law θ̂[i] attains values equal to the minimizer of this QP, at

every x[i] ∈ Dc \ΩVi,ξi . These control laws collectively accomplish the same control ob-

jectives as the distributed control laws of Section 6.2, yet, they only require knowledge

of the current state of their local subsystem only and assume the worst-case scenario

with regards to any influence from other subsystems.

6.4 Remarks on the QP-based control laws

Remark 7. It is beneficial to ensure that the control law QPs are strictly convex, so

that their minimizer is unique. To this end and similarly to our approach in Chapters 4

and 5, one can solve either QP for Q̃i(x) = Qi(x) + cImi where c ∈ R≥0 with 0 < c� 1

is such that no eigenvalue of Q̃i(x) is smaller than a specified strictly positive number.

Remark 8. The robust stabilization methods proposed herein are guaranteed to bring

the trajectories of all subsystems to the prescribed neighborhoods around the origin,

which correspond to the DiRCLF / DeRCLF sublevel sets ΩVi,ξi . If some subsystem’s

trajectory is then about to exit this neighborhood, the respective control laws will

prevent this at once. This can cause a behavior reminiscent of chattering, which is

typically undesirable. Following the remedy proposed in Chapter 5 for the standalone

system case, one can define an inner and an outer target sublevel set, ΩVi,ξi
and ΩVi,ξ̄i

for each subsystem. Initially, each subsystem is brought to ΩVi,ξi
, and then no control

is applied unless the trajectory is about to exit ΩVi,ξ̄i . Then, the control law brings the
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system back to ΩVi,ξ̄i . The process is repeated accordingly. We illustrate this approach

in practice in Section 6.6.

6.5 Computational considerations and scalability

Following the technical results presented for distributed and decentralized con-

trol, it is useful to reflect on the issue of scalability, one of the main motivating factors

behind such control techniques. We approach the topic by estimating the computa-

tional requirements of the proposed methods, and looking at how these scale with the

size of the large-scale system S and its subsystems Si.

The QP associated with the centralized control law has m unknowns, where m

is the size of the input u ∈ U ⊆ Rm of the large-scale system S, and is subject to

1 + q constraints, where q is the number of affine inequalities in Rm used to describe

U. Such a QP can be solved in O(L2(q)q4) operations (Ye and Tse, 1989), where

q 7→ L(q) is a positive definite polynomial function weighting the size of the input to

the solution algorithm, in terms of bits. The underlying QPs for the distributed and

the decentralized control laws for each subsystem Si, i ∈ S, have mi unknowns and

1 + qi constraints. Accordingly, each of these can be solved in O(L2(qi)q
4
i ) operations1.

It is easy to see that the proposed solutions offer significant computational advantages

as they do not scale with the size of the large-scale system S. For example, using

a loose interpretation of the asymptotic bounds, one can infer that for a system S

consisting of 100 subsystems with 2 inputs each subject to box-like constraints the

1Note that these rough, worst case asymptotic estimates are ignoring any constant or linear time
operations needed to assemble the QPs, since these are not expected to dominate in the complexity
calculations, except, perhaps, for subsystems with dimensions ni � qi. Yet, even then, the subsystem-
level control solutions would still be orders of magnitude faster than a centralized controller. Finally,
applicable acceleration techniques (for instance, Nesterov and Nemirovski (2001)), as well as warm-
starts are expected to significantly lower the actual number of operations required, in all cases.
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relationship between qi = 4 and q = 400 can yield a multiple-orders-of-magnitude

difference in the respective computational costs, even if the calculations for all 100

controllers were performed on the same computational platform. Of course, the nature

of the distributed and decentralized solutions allows one to implement and operate each

subsystem-level controller locally, on relatively low-power and low-footprint embedded

systems. In practice, solution times in the milliseconds range can be expected on

modest embedded computers for some tens of unknowns in the QP.

An SDP with LMI constraints can be solved with polynomial time algorithms

Vandenberghe and Boyd (1996). Yet, the size of the LMIs that result from the parsing

of SOS constraints tends to grow exponentially as the dimension of either the underlying

state-space or neighborhood state-space increases (for the decentralized or distributed

case, respectively)2. SOS methods can be rendered practically intractable for systems

with more than 10 states. Contemporary results in Ahmadi and Majumdar (2018)

provide alternative SOS polynomial parameterizations based on affine and second order

cone constraints, which can scale better than LMI-based SOS and possibly allow one

to consider systems with some tens of states. For the methods developed herein,

any practical upper bound on the size of the underlying (sub)problems, imposed by

the particular SOS parameterization or hardware limitations, can be interpreted as

follows: for the distributed case, such a bound is expected to interfere with the way

the dimensions of the subsystem neighborhoods scale, while for the decentralized case,

any such limitation will have a milder impact and mainly relate to the size of the

individual subsystems. The total effort to analyze the large-scale system S for a given

set of γi values only scales linearly with the individual effort required per subsystem,

2In fact, a problem with a single SOS polynomial constraint with indeterminate x ∈ Rn grows with
the number of monomials of x, that is, (n+ d)!/(n!d!), where d is the degree of the polynomial.
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and can also be (almost trivially) parallelized.

Figure 6.1: Large-scale system considered in Section 6.6. Dashed lines denote interactions between
subsystems. Local interactions within subsystems are denoted with a dashed magenta arrow from
agent A to B, if that interaction is nominally harmful to B’s population (that is, the presence of A
causes B to decrease), or a green arrow, if it is beneficial (that is, the presence of A causes B to
increase).

6.6 Numerical example

We consider a large-scale system consisting of 8 interconnected subsystems with

a total number of 17 agents, subject to variations of controlled, uncertain Lotka-

Volterra type of dynamics, as conceptually illustrated in Figure 6.1. Such dynam-

ics admit various interpretations in different contexts such as in biological, ecological,

chemical and economic systems, as well as evolutionary game theory (Hofbauer and

Sigmund, 2003; Samuelson, 1971; Nicolis and Portnow, 1973).

Subsystems S1, S2 and S3 each consist of two agents with predator/prey dy-

namics, where each nominal equilibrium at the origin (in the absence of uncertainty

and interactions with other subsystems) corresponds to a coexistence point and is sur-

rounded by multiple periodic orbits. The individual dynamics result from shifting the

origin of the traditional predator/prey equations (ẋ = ax − bxy, ẏ = cxy − dy, where

x is the prey population, y is the predator population and a, b, c, d > 0) so that it
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corresponds to the (c/d, a/b) original equilibrium. This equilibrium is surrounded by

periodic orbits. Interactions between agents from different subsystems, uncertainty in

the coefficients (which both alter the nature of the dynamics) and control inputs are

incorporated as shown in the equations. We have

ẋ
[1]
1 = −x[1]

2 w
[1]
1 − x[1]

1 x
[1]
2 + 0.2x

[1]
1 x

[4]
1 + u[1],

ẋ
[1]
2 = x

[1]
1 w

[1]
2 + x

[1]
1 x

[1]
2 ,

ẋ
[2]
1 = −x[2]

2 w
[2]
1 − x[2]

1 x
[2]
2 ,

ẋ
[2]
2 = x

[2]
1 w

[2]
2 + x

[2]
1 x

[2]
2 + x

[2]
2 x

[1]
2 + u[2],

ẋ
[3]
1 = −x[3]

2 w
[3]
1 − x[3]

1 x
[3]
2 + x

[3]
2 x

[2]
2 + u

[3]
1 ,

ẋ
[3]
2 = x
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1 w

[3]
2 + x

[3]
1 x

[3]
2 + x

[3]
1 x

[2]
1 + x

[3]
1 x

[5]
2 + u

[3]
2 ,

with |u[1]| ≤ 1, |u[2]| ≤ 1.1, ‖u[3]‖∞ ≤ 1, 0.9 ≤ w
[1]
1 ≤ 1.1, 0.9 ≤ w

[1]
2 ≤ 1.1, 0.8 ≤ w

[2]
1 ≤

1.1, 0.9 ≤ w
[2]
2 ≤ 1.1, 0.9 ≤ w

[3]
1 ≤ 1.1, and 0.7 ≤ w

[3]
2 ≤ 1.1.

Each of S4 and S5 consists of two agents with predator/prey dynamics in which

the origin would nominally correspond to an extinction saddle point:

ẋ
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2 + u

[4]
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1 (x
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3 )3 + u[5],

ẋ
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[5]
1 x

[5]
2 − x[5]

2 ,

with ‖u[4]‖∞ ≤ 1, −1 ≤ u[5] ≤ 2, w[4] ∈ Conv{−(0.4, 0.4), (−0.5, 0.5), (0.4, 0.5), (0.4,−0.4)},

−0.08 ≤ w[5] ≤ 0.1.

Subsystems S6 and S7 consist of two cooperative3 agents each, subject to the

3Each agent’s population is benefited (that is, tends to increase) from the presence of the other.
The nominal equilibrium at the origin is unstable.
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dynamics described by:
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1 x
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2 + u
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with ‖u[6]‖∞ ≤ 1, ‖u[7]‖∞ ≤ 1.2, −0.04 ≤ w[6] ≤ 0.02, and −0.24 ≤ w[7] ≤ 0.3.

Finally, the subsystem S8 consists of three agents, which predominantly com-

pete4 with each other:

ẋ
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1 = x
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1 (1− x[8]

1 − x[8]
2 − x[8]

3 ) + u
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1 + w[8],

ẋ
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ẋ
[8]
3 = x

[8]
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2 + u
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with −0.4 ≤ w[8] ≤ 0.5 and u[8] ∈ Conv{−(2, 2), (−2, 2), (1.75, 1.8), (1.75,−1.8)}.

We choose Vi(x
[i]) = ‖x[i]‖2, Wi(x

[i]) = 10−7Vi(x
[i]), for all5 i ∈ S. Perform-

ing the proposed SOS-based calculations with YALMIP Löfberg (2009) and MOSEK

MOSEK ApS (2017) shows that these Vi are DiRCLFs for the system with domain

D[i]
c = ΩVi,γi for

γdistr = [0.505 0.4 0.8 0.71 0.3 0.25 0.35 0.58]T

and also DeRCLFs with a slightly smaller domain corresponding to

γdec = [0.505 0.35 0.75 0.71 0.2 0.25 0.35 0.58]T.

4All interactions are harmful to the population of all agents, except for the effect of agent 1 on
agent 2.

5In general, the proposed methods allow each Vi, i ∈ S, to be different.
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The fact that the robust stabilization set for the decentralized case ends up being

smaller compared to the distributed case is not surprising, due to increased conser-

vatism in the underlying uncertainty characterization as we saw in Section 6.3.
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Figure 6.2: Numerical results for the distributed control case.

The performance parameter is set to αi(x
[i]) = −0.2Vi(x

[i]), for all i ∈ S. The

technique discussed in Section 6.4 is also employed, with ξ
i

= 10−5 for i ∈ S, ξ̄i = 5×

10−4 for i = 1, . . . , 6 and ξ̄7 = 10−2. The closed loop system under both control schemes

is simulated from an initial point x0 close to the boundary of the decentralized con-

trol law robust stabilization set, with x0 = [0.3,−0.64,−0.38, 0.5,−0.75, 0.39,−0.68,
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Figure 6.3: Numerical results for the decentralized control case. Observe that the control action is
more aggressive compared to the distributed control case illustrated in Figure 6.2, as each decentralized
control law is operating on a worst-case assumption with regards to the state of its neighborhood.
The latter may not necessarily be the case, but the decentralized control laws have no way of learning
about this, in contrast to the distributed case.

0.48, 0.2,−0.4, 0.25, 0.4,−0.5,−0.2, 0.35,−0.58, 0.3]T. The bounded uncertainty w is

time varying. Figures 6.2 and 6.3 illustrate the results for the distributed and decen-

tralized control cases, respectively. One can see that both control schemes achieve the

robust stabilization control objective. All subsystems appear to converge faster under

the decentralized solution, given the underlying worst-case scenario assumed by each

individual control law with regards the current state of its neighborhood. The entire
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neighborhood is not necessarily in this worst-case state, yet, the decentralized robust

control laws are based on such an assumption. The distributed control laws, to the

contrary, are benefiting from each other’s stabilization efforts and progress, since the

respective information is communicated across each neighborhood.

6.7 Summary

In this chapter, we have addressed fundamental questions related to the stabi-

lization problem for input constrained, uncertain large-scale nonlinear systems. Our

results have been enabled by leveraging the power of vector Lyapunov functions with

convex optimization methods and techniques such as SOS programming and rapidly

solvable QPs. In particular, we address from where (that is, from which initial con-

ditions) and how is robust stabilization guaranteed with subsystem-level control laws.

The technical results are building directly on the contributions from Chapters 3, 4 and

5 and provide significant improvements in terms of the applicability of the proposed

methods.

We have developed our results and the numerical example by assuming that

the entire large scale system operates either in a distributed or a decentralized control

mode. This was done in order to streamline the notation and the presentation. It is

straightforward to also consider a more general case where each subsystem interacts

with both cooperative and uncooperative neighbors.
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Chapter 7

Control under imperfect state feedback

In this chapter, we turn our attention to the nominal case of the dynamics with

no uncertainty, as in Chapters 3 and 4, and we focus on solving the input constrained

stabilization problem using imperfect feedback. The solution is enabled by enforcing a

causality relationship between apparently (that is, from the point of view of a control

law with imperfect measurements) and actually stabilizing the system. The technical

results lead to SOS programs that we use to calculate the sets where such a causality

relationship holds, and an imperfect feedback control law based on a QP that can

provingly stabilize the system in the aforedescribed sense.

7.1 System description

We consider nonlinear control systems of the form

ẋ = f(x) + g(x)u, (7.1)

where x ∈ Rn is the state at time t ≥ 0 with initial value x(0) = x0, u : [0,∞)→ U ⊆

Rm is the control input, and f : Rn → Rn, g : Rn → Rn×m are known, polynomial

functions of the state x with f(0) = 0. We assume that the input value set U is a

convex, compact polytope, defined by its vertices {vi ∈ U, i ∈ QU}, where QU ⊆ Z>0,

and, equivalently, by the halfspace description Au � b, for appropriate A ∈ Rp×m,

b ∈ Rp. The solution of (7.1) for t ∈ [0, τ) is denoted by φ(t;x0, u(·)). The output of
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the system is

y := x+ ν, (7.2)

where ν : [0,∞) → Nx is a continuous measurement disturbance attaining values in

the compact set Nx ⊆ Rn, the description of which may depend continuously on the

current state x. In particular, Nx is assumed to possess a semialgebraic description,

which is discussed in detail in Section 7.3. Let X ⊆ Rn and consider the set-valued

map Y : Rn ×Nx ⇒ Rn given by

Y(X ,Nx) := {x+ ν : x ∈ X , ν ∈ Nx};

also, consider its inverse Y−1 : Rn ×Nx ⇒ Rn with

Y−1(X ,Nx) := {z : z + ν ∈ X , ν ∈ Nx}.

We use Y(·,Nx) to dilate its first argument, let it be a subset of Rn or a vector

x ∈ Rn, by the -possibly state dependent- uncertainty induced by (7.2). A conceptual

illustration is provided by Figure 7.1. Note that in the special case where Nx does

not depend on x, Y(·,Nx) and Y−1(·,Nx) operate similarly to the Minkowski sum and

difference, respectively.

Our control objective is introduced next.

Definition 7.1.1. The system (7.1) is stabilizable under input constraints using imper-

fect feedback if there exists a mapping uc(y), such that y 7→ uc(y) ∈ U for any y ∈ Dy
where Dy ⊂ Rn is a compact set, rendering the closed loop system stable, in the sense

that all trajectories φc(t) = φ(t;x0, uc) satisfy lim supt→∞ ‖φc(t)‖ ≤ ε, for some ε > 0

and any x0 ∈ Y−1(Dy,Nx).
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Figure 7.1: Illustration of the action of Y(·,Nx) and Y−1(·,Nx) for Nx := {ν ∈ R2 : ‖ν‖2 ≤ 0.1‖x‖2},
on the set Dc = ΩV,0.5 for V (x) = (0.3x31−x2)2+x42, and the points xA = [−0.4 0.1]T, xB = [0 0.605]T,
xC = [1.5948 0.65]T, yA = [−2.0704 − 1]T, and yB = [1 − 1]T. If the system is actually at xA, xB ,
xC , or anywhere in the set Dc, it may appear to be anywhere in the respective sets drawn with the
dashed line. Conversely, if the system appears to be at either yA or yB , it may actually be anywhere
in the respective shaded region.

7.2 A causality relationship between apparently and actually
stabilizing the system

For notational convenience, we consider the set V of candidate Control Lyapunov

Functions consisting of polynomial, positive definite, radially unbounded V : Rn → R.

We denote the sublevel sets of V ∈ V by ΩV,γ := {z ∈ Rn : V (z) ≤ γ} and its time

derivative along the trajectories of (7.1) given by ψ(x, u) := ∇V (x)(f(x)+g(x)u). Also,

similarly to Chapters 3, 5, and 6, we consider a measure of the generalized distance

ρ(x;V, γ) of a point x ∈ Rn from the sublevel set ΩV,γ, as weighed by V ∈ V , with

ρ(x;V, γ) = V (x)− γ, if x /∈ ΩV,γ, or ρ(x;V, γ) = 0, otherwise.

Definition 7.2.1. The function V ∈ V is an Imperfect Feedback Control Lyapunov

Function (IF-CLF) for (7.1) if there exist polynomial, positive definite functionsW1,W2 :
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Rn → R≥0, and (nonempty) sets X ⊆ Rn and

Y := {y ∈ Y(X ,Nx) : infu∈U ψ(y, u) ≤ −W1(y)},

such that ψ(x, u) ≤ −W2(x) holds for all x ∈ X and u ∈ U(y) := {u ∈ U : ψ(y, u) ≤

−W1(y)}, where y ∈ Y(x,Nx).

As we saw in the previous chapters, even under perfect state feedback, input

constraints can complicate the stabilization problem significantly. Using a control law

x 7→ uc(x) ∈ U that renders ψ(x0, uc(x0)) ≤ −W (x) at some x0 ∈ Rn (where V ∈ V is

here a Control Lyapunov Function and W : Rn → R≥0 is a positive definite polynomial

function) and -at least initially- along the ensuing trajectory does not necessarily imply

that this trajectory under uc(·) will not reach parts of the state space where no u ∈ U

exist to render ψ(x, u) ≤ −W (x), or even ψ(x, u) < 0. In other words, the set

X := {x ∈ Rn : infu∈U ψ(x, u) ≤ −W (x)}

is not necessarily positively invariant under a control law uc such that ψ(x, uc(x)) ≤

−W (x) holds for all x ∈ X. In our work on the perfect state feedback case, we address

this issue by showing that the set containment ΩV,γ ⊆ X is sufficient to guarantee the

input constrained controllability of the system, so that the origin is asymptotically

stable in a Lyapunov sense under an input constrained control law uc : ΩV,γ → U

based on the CLF V , that is, conforming to ψ(x, uc(x)) ≤ −W (x) along all controlled

trajectories emanating from x0 ∈ ΩV,γ.

The IF-CLF concept introduced by Definition 7.2.1 is aligned with the afore-

mentioned considerations related to input constrained stabilization and the intended

architecture of the control scheme under development. There are two critical aspects

that enable the proposed approach. First, according to Definition 7.2.1, V is an IF-CLF
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for the system if there exist y in the measurement space Y where using some u∗ ∈ U

to render ψ(y, u∗) ≤ −W1(y) also renders ψ(x, u∗) ≤ −W2(x), for any x ∈ Y−1(y,Nx)

where the system may actually be. This causality relationship allows the development

of a control law, based on the imperfect feedback y, with the objective of warranting

stabilization in a way apparent to itself, that is, by rendering ψ(y, u) ≤ −W1(y). The

second critical aspect is related to a notion of invariance which is warranted by the

following result.

Proposition 7.2.1. Let V be an IF-CLF for (7.1) and γ, γ̂, γ ∈ R>0, with γ ≥ γ̂ ≥

γ > 0, be such that

ΩV,γ \ ΩV,γ ⊆ Y, (7.3a)

Y(ΩV,γ̂,Nx) ⊆ ΩV,γ (7.3b)

hold. Then, there exists an imperfect feedback control law uc : Dy → U, where Dy :=

ΩV,γ̂, such that the closed loop system is stable, in the sense of Definition 7.1.1.

Proof. Let ũ : ΩV,γ̂ \ ΩV,γ → U be any selection function for the set-valued map that

maps every y ∈ ΩV,γ̂ \ ΩV,γ to the set U(y); note that U(y) is nonempty, by virtue of

(7.3a) and Definition 7.2.1. Then, take uc(y) := ũ(y), if y ∈ ΩV,γ̂ \ ΩV,γ, or uc(y) := 0,

if y ∈ ΩV,γ. Since V is an IF-CLF for (7.1) and (7.3a) holds, all u ∈ U(y) render both

ψ(y, u) ≤ −W1(y), for all y ∈ ΩV,γ̂\ΩV,γ, and ψ(x, u) ≤ −W2(x), for all x ∈ Y−1(y,Nx).

Under the control law uc and following typical Lyapunov arguments, these two facts

along with (7.3b) imply that (i) any trajectory emanating from x0 ∈ Rn such that

Y(x0,Nx) ⊆ ΩV,γ̂ will appear to remain in ΩV,γ, and, additionally, (ii) ρ̇(x;V, γ∗) ≤

−W2(x) < 0 holds for all x ∈ Y−1(ΩV,γ \ ΩV,γ,Nx) \ {0}, where γ∗ := sup{γ : ΩV,γ ⊆

Y−1(ΩV,γ,Nx)}. Therefore, if the system at t = 0 appears to be at y0 ∈ Dy, implying

that x0 ∈ Y−1(y0,Nx), the function ρ(φ(t;x0, uc);V, γ
∗) is decrescent with regards to
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time t, and, ultimately, ρ(φ(t;x0, uc);V, γ
∗) → 0, as t → ∞. We then conclude that

the system (7.1), when driven by the input constrained, imperfect feedback control law

uc, is stable, in the sense of Definition 7.1.1, with ε = inf{σ > 0 : Bnσ ⊇ ΩV,γ∗}.
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Rn

Rm

Ũ(x∗) U
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Y−1(y∗,Nx)

y∗

Rn
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U?

(b)

y∗

Y−1(y∗,Nx)

Rn

Rm

U

Ωγ̂\Ωγ⊆Y

U(y∗)

(c)

Figure 7.2: (a) In the perfect feedback case, considered in the previous chapters, every x∗ ∈ ΩV,γ ⊆ X is

mapped to the set Ũ(x∗) := {u ∈ U : ψ(x∗, u) ≤ −W (x∗)}, which is guaranteed to be nonempty. Any

u∗ ∈ Ũ(x∗) renders ψ(x∗, u∗) ≤ −W (x∗). The set ΩV,γ is positively invariant, by typical Lyapunov
arguments. Continuous, input constrained feedback control laws can be found by considering any
continuous selection function for the set-valued map that maps each x∗ to Ũ(x∗). (b) Under imperfect
feedback, choosing a u in order to render ψ(y∗, u), where y∗ is the apparent state of the system, may
not necessarily render ψ(x, u) < 0, for the actual state x ∈ Y−1(y∗,Nx); in fact, there may not even
be such a u ∈ U. The system cannot be provably stabilized without explicitly considering the effect
of the imperfect feedback. (c) The conditions in Proposition 7.2.1 enable the characterization of an
invariant set where choosing any u that renders ψ(y∗, u) ≤ −W1(y) guarantees that ψ(x, u) < 0 will
hold for the actual state x ∈ Y−1(y∗,Nx).

Figure 7.1 illustrates the concepts discussed in this section. The set Dy con-

sidered in Proposition 7.2.1 will be hereafter called an imperfect feedback stabilization
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set for the particular system (7.1) and IF-CLF V . A computational approach based

on SOS programming to certify whether the various conditions involved in Proposition

7.2.1 hold is presented next.

7.3 Analysis for imperfect state feedback stabilizability

According to Proposition 7.2.1, the set containments (7.3a) and (7.3b) are suf-

ficient for the system to be stabilizable with an input constrained control law that uses

imperfect feedback. Nevertheless, given the definition of the set Y, showing these con-

tainments is nontrivial, even if the description of the measurement disturbance value

set Nx happens to be relatively simple (as would be the case for an additive bias term,

for instance). In this section, we develop techniques to algorithmically verify whether

(7.3a) and (7.3b) hold using SOS programming and the S-procedure paradigm.

We first consider a semialgebraic parameterization of Nx. Let D[j] := ∩κji=1{x ∈

Rn : p
[j]
i (x) ≤ 0} ⊆ Rn, where p

[j]
i : Rn → R are polynomial functions for i =

1, . . . , κj and each j = 1, . . . , J , be semialgebraic sets such that ∪Jj=1D[j] = Rn and

Int(D[`]) ∩ Int(D[µ]) = ∅, for any `, µ ∈ {1, . . . , J} with ` 6= µ. The collection of sets

{D[j]}Ji=1 constitutes a partition of the state space Rn, which we employ in order to

account for the possibility that the description of the dependence of the measurement

disturbance value set Nx on the state of the system x, in turn, depends on the partition

cell D[j] of the state space Rn where the system is at time t. In particular, we assume

that Nx is given by

Nx :=


∩λ1i=1{ν ∈ Rn : ω

[1]
i (ν;x) ≤ 0}, if x ∈ D[1],

...

∩λJi=1{ν ∈ Rn : ω
[J ]
i (ν;x) ≤ 0}, if x ∈ D[J ],

where ω
[j]
i : Rn×Rn → R, for i = 1, . . . , λj and each j = 1, . . . , J , are polynomial func-
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tions. Using appropriate choices for {D[j]}Ji=1 and Nx, one can account, for instance,

for measurement uncertainty that is proportional to the distance of the measured state

from the origin but does not vanish, as well as other cases of practical significance.

Sufficient conditions to show (7.3a) and (7.3b) are now developed by means of

a three-part strategy.

Part I: ΩV,γ \ ΩV,γ ⊆ Y

The first part pertains to the existence of u ∈ U so that ψ(y, u) ≤ −W1(y), for

all y ∈ ΩV,γ \ΩV,γ; in other words, we attempt to show the containment ΩV,γ \ΩV,γ ⊆ Y

without accounting, for now, for the requirements and conditions imposed on V and

Y by the IF-CLF definition. To the end of formulating relevant sufficient conditions

using the S-procedure, we first consider the following result.

Proposition 7.3.1. Let ηi := ∇2V (0)g(0)vi and, for i ∈ QU, consider the sets Yi :=

{y ∈ Rn : ψ(y, vi) ≤ −W1(y)} and YPi := ∩j∈QU\{i}{y ∈ Rn : (ηi − ηj)
Ty ≤ 0}. If

YPi ∩ ΩV,γ ⊆ Yi holds for all i ∈ QU, then ΩV,γ ⊆ Y.

We have proved this proposition, as Proposition 3.4.3, in the state space (that

is, with x appearing instead of y). The proof, which employs the characterization of

controllability under input constraints based on a partition of the state space induced by

the vertices of the input value set U, carries over to the present case in the measurement

space. The peculiarities of the imperfect feedback problem are explicitly taken into

consideration in Sections 7.1-7.2, and enter the analysis framework through parts II

and III.

Following the S-procedure paradigm and by virtue of Proposition 7.3.1, the
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existence of c[i](y) ∈ Σ[y], i ∈ QU, and s
[i]
j (y) ∈ Σ[y], for j ∈ QU \ {i}, such that

− ψ(y, vi)−W1(y)− c[i](y)(γ − V (y)) +
∑

j∈QU\{i}

s
[i]
j (y)(ηi − ηj)Ty ∈ Σ[y] (7.4)

holds for all i ∈ QU implies ΩV,γ ⊆ Y.

Part II: additional requirements for Y

We now enforce the causality relationship embedded in the IF-CLF definition.

Let z = [xT uT νT]T ∈ Rn+m+n. The existence, for each j = 1, . . . , J (indicating

the respective partition cell involved in the parameterization of Nx), of polynomials

s
[j]
A (z), s

[j]

V
(z), s

[j]
V (z) ∈ Σ[z], and s

[j]
u,k(z) ∈ Σ[z], for k = 1, . . . , p, s

[j]
ω,i(z) ∈ Σ[z], for

i = 1, . . . , λj, and s
[j]
D,µ(z) ∈ Σ[z], for µ = 1, . . . , κj, such that

−ψ(x, u)−W2(x) +

λj∑
i=1

s
[j]
ω,i(z)ω

[j]
i (ν, x)−

p∑
k=1

s
[j]
u,k(z)êTk (b− Au)

−s[j]
A (z)(−ψ(x+ ν, u)−W1(x+ ν))− s[j]

V (z)(V (x+ ν)− γ)

−s[j]

V
(z)(γ − V (x+ ν)) +

κj∑
µ=1

s
[j]
D,µ(z)pµ(x) ∈ Σ[z] (7.5)

holds, implies, in turn, that ψ(x, u) ≤ −W2(x), for all x ∈ Y−1(y,Nx), and u ∈ U such

that ψ(y, u) ≤ −W1(y).

Part III: Y(ΩV,γ̂,Nx) ⊆ ΩV,γ

Finally, let ξ = [xT νT]T ∈ Rn+n and assume that, for each j = 1, . . . , J ,

there exist s
[j]

Ṽ
(ξ) ∈ Σ[ξ] and s

[j]
ω̃,i(ξ) ∈ Σ[ξ], for i = 1, . . . , λj, and s

[j]

D̃,µ
(ξ) ∈ Σ[ξ], for

µ = 1, . . . , κj, such that

γ̄ − V (x+ ν)− s[j]

Ṽ
(ξ)(γ̂ − V (x)) +

λj∑
i=1

s
[j]
ω̃,i(ξ)ω

[j]
i (ν, x) +

κj∑
µ=1

s
[j]
D,µ(ξ)pµ(x) ∈ Σ[ξ]. (7.6)

This implies the set containment (7.3b).
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Cumulative sufficient conditions

The existence of all nonnegative polynomials so that all instances of (7.4), (7.5)

and (7.6) are satisfied is sufficient for the set containments (7.3a) and (7.3b) to hold

for the particular V , W1, W2, γ, γ̂ and γ. When the set of nonnegative polynomials

Σ[·] is parameterized as SOS, every instance of (7.4), (7.5) and (7.6) is equivalent, in

turn, to LMIs in auxiliary variables, the satisfaction of which can be determined by

the solution of the corresponding SDP feasibility problems.

Since W2(x), which determines the actual minimum rate of convergence of the

closed loop system (in terms of the decrease rate of the IF-CLF along the actual

trajectories), appears affinely in (7.5), one can parameterize it as an unknown, by

letting W2(x) − εxTx ∈ Σ[x], for 0 < ε � 1. The rest of the parameters of interest,

that is, V , W1, γ, γ̂ and γ have to be provided as constants, since they are multiplied

with nonnegative polynomials which correspond to unknowns of the problem in the S-

procedure paradigm, when the SOS constraints are parsed into LMIs. In absence of a

more elaborate guess, a convenient parameterization of W1(y), such as W1(y) = cV (y)

for c ∈ R>0, can help add more structure to the search space and the problem, in

general, and one may be able to perform a bisection along either of c, γ, γ̂, or γ, with

the rest remaining constant.

7.4 A QP-based control law operating on imperfect state feed-
back

At any point y ∈ ΩV,γ̂ \ ΩV,γ, for γ̂, γ such that the conditions of Proposition

7.2.1 are satisfied, the mapping y 7→ U(y) := {u ∈ U : ψ(y, u) ≤ −W1(y)} provides a

parameterization of the stabilizing control laws for a system with imperfect feedback

stabilization set Dy = ΩV,γ̂. Following Proposition 7.2.1, the conditions of which are
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verifiable using the computational analysis method developed in Section 7.3, the set

U(y) is nonempty. We next show a way to obtain a particular imperfect feedback

control law, that is, a mapping from any y ∈ Dy to a u ∈ U(y).

Consider, at every y ∈ Dy, a measure of the apparent (that is, from the point

of view of a control law having knowledge only of y) stabilization performance gap H,

in terms of the apparent decrease rate of the IF-CLF with regards to a reference value

given by the negative definite, continuous function α : Rn → R≤0, with H(u; y) :=

(ψ(y, u) − α(y))2. Dropping terms which do not contain u leads to an expression

quadratic in u with the current measured state y appearing as a parameter,

J (u; y) = uT[Q(y) + µ(y)Im]u+ L(y)u, (7.7)

where L(y) := 2∇V (y)g(y)[∇V (y)f(y) −α(y)], Q(y) := (∇V (y)g(y))T∇V (y)g(y), and

µ(y) is used to minimally shift the spectrum of Q(y), so that the smallest eigenvalue

of the resulting matrix exceeds a given strictly positive threshold and, thus, Q(y) +

µ(y)Im � 0 for any y ∈ Rn.

Proposition 7.4.1. Assume that V , γ̂ and γ are such that Proposition 7.2.1 holds.

For any y ∈ ΩV,γ̂ \ΩV,γ, consider the linearly constrained quadratic program of using u

to minimize J (u; y), given by (7.7), subject to

∇V (y)g(y)u ≤ −∇V (y)f(y)−W1(y), (7.8a)

Au � b, (7.8b)

and denote its solution by u∗(y). The control law uc : ΩV,γ̂ → U, with

uc(y) :=

{
u∗(y) if y ∈ ΩV,γ̂ \ ΩV,γ,

0 otherwise,

renders the closed loop system stable, in the sense of Definition 7.1.1.
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Proof. For any y ∈ ΩV,γ̂\ΩV,γ, the minimizer u∗(y) of the QP exists and is unique; to see

that, note that the domain of the QP, described by (7.8a) and (7.8b), or, equivalently,

by U(y), is nonempty, whereas J (u; y) is a strictly convex function of u. Therefore,

the control law is well defined. Since the minimizer u∗(y) satisfies u∗(y) ∈ U and

ψ(y, u∗) ≤ −W1(y), by virtue of Definition 7.2.1 and Proposition 7.2.1, ψ(x, u∗(y)) ≤

−W2(x) holds, for any x ∈ Y−1(ΩV,γ̂ \ ΩV,γ,Nx). Therefore, the closed loop system

under the proposed control law is stable.

The proposed control law is an adaptation of the control law we proposed for

the perfect state feedback case in Chapter 4. At first sight, the control law assumes

a similar form for the herein considered imperfect feedback, input constrained case;

however, all stabilization guarantees in the present context stem from the fact that V

is an IF-CLF and the conditions that W1, γ̂ and γ provably satisfy, given the successful

completion of the methods of Section 7.3.

When the (measured) trajectory enters ΩV,γ, no control is applied, and the

trajectory then appears to be about to exit ΩV,γ, chattering may occur in order for the

control law keep the trajectory confined in ΩV,γ and in agreement with the pursued

stability notion. One can avoid chattering with simple techniques, similarly to our

approach in Chapter 5.

7.5 Numerical example

We consider the nonlinear system

ẋ1 = x2, ẋ2 = −0.5x2
1 − x2 + u,

with −2 ≤ u ≤ 4, and measurements y = x+ν with ‖ν‖ ≤ 0.0548‖x‖, if ‖x‖ ≥ 0.7071,

or ‖ν‖ ≤ 0.0387, if ‖x‖ < 0.7071. The perfect state feedback variant of this system has
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been one of the example cases used in the preceding chapters given its aggressive dy-

namics. Uncontrolled trajectories can exhibit a finite escape time, whereas the limited

control authority that results from the constrained input precludes global stabilization

even with state feedback. It is thus critical to explicitly characterize a subset of the

measurement space from where input constrained stabilization is guaranteed with a

IF-CLF-based control law.
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Figure 7.3: Closed loop trajectories on the phase plane, with regards to the sublevel sets of interest
ΩV,γ , ΩV,γ̂ , and ΩV,γ , for γ = 7, γ̂ = 6, and γ = 0.3, respectively.

Assuming that the unknown nonnegative polynomial multipliers appearing in

(7.4), (7.5) and (7.6) are SOS of degree no greater than 8, parsing the SOS constraints

into SDP feasibility problems with YALMIP (Löfberg, 2009) and numerically solving

the latter with MOSEK (MOSEK ApS, 2017) shows that V (x) = 1.7x2
1 +2x1x2 +1.7x2

2

is an IF-CLF for the system, with γ = 7, γ̂ = 6, γ = 0.3 and W1(y) = 0.83V (y). Three

closed loop trajectories are propagated until the measured state reaches ΩV,γ, under

a time-varying ν ∈ Nx and using the proposed control law, from xA = [0 − 1.8]T,
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xB = [−1.8 0]T and xC = [2.21 − 1.8]T, for αA(y) = −1.1V (y), αB(y) = −0.9V (y)

and αC(y) = −V (y), respectively. The trajectories are illustrated on the phase-plane

in Figure 7.3, while the time histories of the control inputs and the IF-CLF values are

given, respectively, in Figures 7.4 and 7.5.
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Figure 7.4: Control input u as a function of time t for each of the initial conditions.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

2

4

6

t

IF
-C

L
F
V

V (y), case A

V (x), case A

V (y), case B

V (x), case B

V (y), case C

V (x), case C

Figure 7.5: The apparent values of the IF-CLF, that is, V (y), are oscillatory and not monotonically
decreasing as functions of time under the effect of the measurement disturbances. The values of the
IF-CLF V are monotonically decreasing along the actual trajectories of the system, as expected from
the proposed imperfect feedback control law.

One can observe that the results are in agreement with the imperfect feedback

stabilization notion provided by the proposed control solution.
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7.6 Summary

Alongside input constraints, measurement disturbances that result in an imper-

fect state feedback signal are ubiquitous in control systems and can negatively affect

a system’s closed loop performance or, even worse, destabilize it. In this chapter,

we presented a solution framework based on convex optimization and, in particular,

sum-of-squares techniques, to analyze and implement imperfect feedback QP-based

control laws that can provably stabilize nonlinear polynomial systems subject to input

constraints.
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Chapter 8

Robust observer design

Equipped with our technical results on the robust stabilization problem from

Chapter 5, we now propose a simple method to design robust Lyapunov-based nonlinear

observers. Our work extends earlier results from the literature (Tsinias, 1989, 1990)

to the class of systems with uncertainty in the dynamics and the (linear) measure-

ments. On a slightly different note compared to the previous chapters, we will use SOS

methods to synthesize offline a robust dynamical observer. Our solution retains the

attractive features of Lyapunov observers (easy design, straightforward performance

characterization, possibly wider applicability than other nonlinear observers), while

the use of SOS programming allows us to simplify the design even further by avoiding

analytical calculations even in the much harder case of uncertain systems.

8.1 System description

We consider nonlinear, uncertain control systems with dynamics given by

ẋ = f(x) + g1(x)u+ g2(x)w, x(0) = x0, (8.1)

and uncertain measurements of the form

y = Hx+ ν, (8.2)

where x ∈ Rn is the state vector at time t ≥ 0 with initial value x0 ∈ Rn, u is

the control input attaining values in the compact, convex polytope U ⊆ Rm, w and

108



ν are unknown but bounded modeling and measurement, respectively, disturbances,

attaining values in the compact, convex polytopes W ⊆ Rr and N ⊆ Rk, described

by their vertices zk ∈ W, for k ∈ QW, and β` ∈ N , for ` ∈ QN . The mappings

f : Rn → Rn, g1 : Rn → Rn×m and g2 : Rn → Rn×r are known, polynomial functions

of the state x, while H ∈ Rk×n is a known, constant matrix, with k ≤ n. One can use

w to account for modeling uncertainty in the dynamics or exogenous disturbances and

ν for measurement irregularities such as errors and bias. We assume that u, w and

ν are, in general, functions of time t, attaining values in the respective compact sets,

and can contain discontinuities. The solution of (8.1) at time t ∈ [0, τ) for some τ > 0

is denoted by φx(t) = φx(t;x0, u, w) and is assumed to exist in the sense described in

Chapter 5. For the observer design problem to be well posed, we assume that φx(t)

exists for all t ∈ [0,∞) and, in fact, φx(t) ∈ Dx for all t ∈ [0,∞), where Dx ⊆ Rn is a

compact set.

In the spirit of Tsinias (1989), let η ∈ Rn be the state of the sought-after

observer at time t ≥ 0, with dynamics given by

η̇ = fo(η, u) +R(η, u)y, η(0) = η0, (8.3)

where u is the input of the observed system (8.1), y is the measured output given by

(8.2), and R : Rn × U → Rn×k is a matrix-valued polynomial function. Note that in

contrast to Tsinias (1989), where the matrix R was only a function of u, here we allow

R to depend on the state of the observer, also.

At any time t ≥ 0, the state determination error is e := x − η. The goal of

our robust observer design process is to find fo(η, u) and R(η, u) so that e ultimately

converges to a neighborhood of e = 0, regardless of the effect of the measurement

disturbance ν and the action of the disturbance w in the system’s dynamics. In absence
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of uncertainty (that is, when w = 0 and ν = 0), the origin e = 0 is required to be an

equilibrium of the error dynamics. This fact allows us to determine the form of the

function fo, that is,

fo(η, u) := f(η) + g1(η)u−R(η, u)Hη (8.4)

Using (8.1), (8.2), and (8.3), the state determination error dynamics can be

written as

ė = f(e+ η)− f(η) + (g1(e+ η)− g1(η))u+ g2(e+ η)w−R(η, u)He−R(η, u)ν. (8.5)

The solution of (8.5) at time t ∈ [0, τ) for some τ > 0 is denoted by φe(t; e0, φx, ν),

where e0 = x0 − η0, and is assumed to exist in the previously described sense, given

the possibility for discontinuities in u, w and ν.

8.2 Lyapunov analysis for robust state observation

For notational convenience and similarly to the previous chapters, we consider

the set V of all polynomial functions V : Rn → R≥0 such that V (0) = 0, V (x) > 0 for

all x 6= 0, and lim‖x‖→∞ V (x) =∞.

Proposition 8.2.1. Let Vε ∈ V and denote its time derivative along the trajectories

of (8.5) by ψe(e, η, u, w, ν). Also, let Vo,Wε ∈ V. Assume R(η, u) is such that

sup
(w,ν)∈W×N

ψe(e, η, u, w, ν) ≤ −Wε(e), (8.6)

holds for all e such that ε ≤ Vε(e) ≤ ε and all η such that Vo(η) ≤ ξ, for some ε, ε, ξ ∈ R

with ε > ε ≥ 0 and ξ > 0. Then, for any e0 such that ε ≤ Vε(e0) ≤ ε, the ensuing state

determination error trajectories satisfy

lim sup
t→∞

‖φe(t; e0, φx, ν)‖ ≤ ε̂, (8.7)

for ε̂ = {minσ : ΩVε,ε ⊆ Bnσ}.
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Proof. It suffices to see that Vε(e) and Wε(e) serve as a Lyapunov pair for the state

determination error dynamics (8.5) and that the latter system is robustly stable. In

particular, for any e0 such that ε ≤ Vε(e0) ≤ ε, by typical Lyapunov arguments and

similarly to the proof of Lemma 5.2.1, the function ρ (φe (t; e0, φx, ν) ;Vε, ε) is decreasing

monotonically and, also ρ→ 0 as t→∞, ultimately implying (8.7).

It is easy to notice that Proposition 8.2.1 exhibits some parallelism to our main

result for the robust stabilization problem (that is, Lemma 5.2.1). This is not surpris-

ing, given the often documented connections between state observation and control.

In both cases, we are guaranteeing an applicable stability notion for the underlying

dynamics, which is the system’s dynamics (5.1) in the robust stabilization case and

the state determination error dynamics (8.5) in the observer case. Given the presence

of persisting (that is, non-vanishing) disturbances in both the observed system’s dy-

namics and its measurements, and the design philosophy of the proposed observer, the

underlying stability notion is robust stability (as opposed to robust practical stability

for the control case), that is, one can expect to converge to a neighborhood of e = 0,

however, there can be a lower bound on the size of that neighborhood.

As we mentioned in Section 1.2.4 of the Introduction, one of the attractive

features of Lyapunov observers is the ease with which one can characterize the behavior

of the state determination error e. This is also true in our proposed robust observer

for uncertain systems. Using typical comparison principle results (see, for instance,

Theorem 4.16 in Haddad and Chellaboina (2008)), it is straightforward to derive a

worst-case (with regards to the exact but unknown e0 and the action of the disturbances

w, ν) bound for e.

Lemma 8.2.2. Let Wε(e) = cVε(e), where c ∈ R>0 and assume that the conditions

of Proposition 8.2.1 hold. For any initial state determination error e0 such that ε ≤
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Vε(e0) ≤ ε, the state determination error trajectories φe(t; e0, φx, ν) satisfy

Vε (φe(t; e0, φx, ν)) ≤
{
εe−ct, t ∈ [0, t∗),

ε, t ∈ [t∗,∞),
(8.8)

where

t∗ = c−1 log (ε/ε). (8.9)

Proof. By virtue of Proposition 8.2.1, for any e ∈ Rn such that ε ≤ Vε(e) ≤ ε and any

η such that Vo(η) ≤ ξ, u ∈ U, w ∈W and ν ∈ N ,

V̇e = ψ(e, η, u, w, ν) ≤ −cVε(e).

Consequently, for all t ∈ [0, t∗), for some t∗ > 0, the state determination error trajec-

tories satisfy

Vε (φe(t; e0, φx, ν)) ≤ V (e0)× exp(−ct)

≤ ε× exp(−ct).

In a worst-case scenario with regards to the effect of the uncertainty on the system,

an upper bound τ ∗ on the time t∗ satisfies ε = ε × exp(−cτ ∗), which yields (8.9). By

virtue of Proposition 8.2.1, once the trajectory φe(t; e0, φx, ν) enters the sublevel set

ΩVε,ε it remains there for all subsequent t, implying (8.8).

Remark 9. We will hereafter refer to the set ΩVε,ε, for ε satisfying the conditions given

in Proposition 8.2.1, as the region of attraction for the proposed observer.

8.3 Robust Lyapunov observer synthesis with SOS

In the observer design problem, it is of obvious interest to find the matrix R(η, u)

which determines the observer’s dynamics. While searching for R(η, u), it can also be

112



of interest to maximize ε and ξ, while minimizing ε, in order to enlarge the observer’s

region of attraction while shrinking the neighborhood of the origin where the state

determination error is guaranteed to converge over time. An additional consideration

is to accelerate the convergence rate of the observer. An intuitive way to achieve

that is by tuning the function Wε(e) determining the worst-case convergence rate,

which is particularly straightforward especially in the case where we let Wε(e) = cVε(e)

and we try to maximize c ∈ R>0. All these considerations can directly enter our

proposed methodology, which is based the generalized S-procedure. First, we consider

the following useful result.

Lemma 8.3.1. For any given e such that ε ≤ Vε(e) ≤ ε, η such that Vo(η) ≤ ξ and

u ∈ U,

max
(κ,`)∈QW×QN

ψe(e, η, u, zκ, β`) ≤ −Wε(e) (8.10)

is equivalent to (8.6).

Proof. The function ψe(e, η, u, zκ, β`) is jointly continuous in its arguments, which take

vales in compact sets. Therefore, its supremum is attained. Additionally, ψe is affine

in w and ν, where the latter attain values in the convex, compact polytopes W and N ,

respectively, so Lemma 5.3.1 holds and leads to the claimed equivalence.

Similarly to our approach in Section 5.3, we can guarantee that (8.10) holds

for some given e, η, and u by requiring that ψe(e, η, u, zκ, β`) ≤ −Wε(e) holds for all

disturbance value set vertices (κ, `) ∈ QW ×QN . The latter observation enables us

to invoke the S-procedure to the end of deriving sufficient conditions for the results

of Proposition 8.2.1 to hold. In particular, let ζ := [ηT eT uT]T ∈ Rn+n+m. The
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sufficient conditions assume the form

−ψe(e, η, u, zk, β`)−Wε(e)− s[κ,`]
z (ζ)(ξ − Vo(η))

−
p∑
i=1

s[κ,`,i]
u (ζ)êTi (b− Au)

−s[κ,`]
ε (ζ)(ε− Vε(e))

−s[κ,`]
ε (ζ)(Vε(e)− ε) ∈ Σ[ζ], ∀(κ, `) ∈ QW ×QN , (8.11)

s
[κ,`]
z (ζ) ∈ Σ[ζ], ∀(κ, `) ∈ QW ×QN , (8.12)

s
[κ,`]
ε (ζ) ∈ Σ[ζ], ∀(κ, `) ∈ QW ×QN , (8.13)

s[κ,`]
ε (ζ) ∈ Σ[ζ], ∀(κ, `) ∈ QW ×QN , (8.14)

s[κ,`,i]
u (ζ) ∈ Σ[ζ], ∀(κ, `, i) ∈ QW ×QN × [1, . . . , p]. (8.15)

Remark 10. The satisfaction of the conditions appearing in Proposition 8.2.1, which

is numerically verifiable by solving the corresponding SOS program, is sufficient for

robust observability of the system in the herein described sense and with an observer

that is synthesized via the same process. We do not provide separate observability

conditions (as, for instance, is done in the nominal case presented in Tsinias (1989))

since our overall approach is less analytical and more numerical than the latter results,

and its success, which implies the pursued observability notion, depends on the solution

of the underlying SOS program.

Remark 11. The scenario which we will consider next involves taking Wε(e) = cVε(e)

and attempting to maximize c, while keeping all other parameters constant. This

would correspond to an attempt to synthesize an observer with the fastest convergence

rate under the given uncertainty margins. Alternatively, one can also try to perform

bisections to enlarge either of the sublevel set bounds appearing in Proposition 8.2.1.
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Figure 8.1: The state determination error e is initially within the sublevel set ΩVε,ε and it rapidly
converges to ΩVε,ε, where it subsequently remains.

8.4 Numerical example

We consider the following uncertain predator - prey dynamics, given by

ẋ1 = −x1x2 − x2 + u+ w,

ẋ2 = x1 + x1x2,

where, in the absence of the control input u and the uncertainty w, the equilibrium

at the origin corresponds to a coexistence condition between the prey (x1) and the

predator (x2) populations. We let u and w be subject to −1 ≤ u ≤ 1 and −0.02 ≤

w ≤ 0.01. The measurements of the system are given by y = x1 + ν, where ν is a

measurement disturbance satisfying −0.01 ≤ ν ≤ 0.02. We take Vε(e) = eTPe and

Vo = ηTPη, for

P =

[
2 1
1 2

]
For ε = 4, ε = 0.04 and z = 0.9, we parameterize the worst-case performance

bound for the state determination error dynamics as Wε(e) = cVε(e) for c > 0, and

we use the proposed SOS method in order to synthesize the robust Lyapunov observer

while maximizing the performance parameter c. Searching for the involved unknown
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SOS polynomials of degree no greater than 4 for the terms in R(η, u) and no greater

than 2 for the rest of the rest of the unknowns in the S-procedure expression with

YALMIP (Löfberg, 2009) and MOSEK (MOSEK ApS, 2017) yields c = 0.0087 and

R(η, u) =



8.02× 10−7u4 − 4.62× 10−5u3η1 + 1.86× 10−6u3η2 + 2.0710−5u3

+0.0189u2η2
1 + 0.0257u2η1η2 − 0.0145u2η1 + 0.0258u2η2

2

+0.001u2η2 + 0.00526u2 + 0.0408uη3
1

+0.231uη2
1η2 + 0.266uη2

1 + 0.0724uη1η
2
2 + 0.27uη1η2

−0.248uη1 − 0.252uη3
2 + 0.557uη2

2 + 0.16uη2

+0.0959u+ 10.7η4
1 + 3.63η3

1η2 − 5.88η3
1 + 13.5η2

1η
2
2

+8.6η2
1η2 − 2.29η2

1 − 3.73η1η
3
2 + 1.78η1η

2
2

+2.71η1η2 − 6.49η1 + 15.1η4
2 − 5.53η3

2 + 4.53η2
2

+3.2η2 + 13.8

−4.01× 10−7u4 + 2.31× 10−5u3η1 − 9.29× 10−7u3η2 − 1.03× 10−5u3

−0.00943u2η2
1 − 0.0129u2η1η2 + 0.00724u2η1 − 0.0129u2η2

2

−5.07× 10−4u2η2 − 0.00259u2 − 0.0204uη3
1 − 0.115uη2

1η2

−0.131uη2
1 − 0.0362uη1η

2
2 − 0.133uη1η2 + 0.117uη1

+0.126uη3
2 − 0.262uη2

2 − 0.0812uη2 − 0.0468u− 5.37η4
1

−1.81η3
1η2 + 2.92η3

1 − 6.77η2
1η

2
2 − 4.52η2

1η2

+1.27η2
1 + 1.87η1η

3
2 − 0.271η1η

2
2 − 1.39η1η2

+2.24η1 − 7.57η4
2 + 2.41η3

2 − 1.62η2
2 − 1.36η2 − 6.53



.

We now perform a numerical simulation to illustrate the efficacy of the proposed

robust observer. The system is initially at x0 = [0 0.6]T, whereas the observer is at

z0 = [0 0]T (as if it has no “knowledge” of the presence of predators in the predator

- prey “ecosystem”). As mentioned before, only imperfect measurements of the prey

population are available. We take w(t) = 0.005 sin (5t+ 0.5), for all t ≥ 0 and we also

assume that the control input is u(t) = 0.01 sin t, for all t ≥ 0 and is known to the

observer. The trajectories of the system and the observer are illustrated in Figure 8.2,

whereas the value of Vε(e) as a function of time is illustrated in Figure 8.1.
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Figure 8.2: The oscillations around the origin are characteristic of the predator - prey dynamics. The
observer quickly converges to the prescribed neighborhood of the true state of the system.

8.5 Summary

We proposed a design methodology for robust Lyapunov-based observers appli-

cable to uncertain systems. The observer synthesis process takes place by means of

solving an SOS program and is accompanied by explicitly quantified robustness and

performance bounds. The literature on observers is significantly rich, given both the

interest in the problem and the difficulties often encountered, few of which we briefly

mentioned in Section 1.2.4 and in the present chapter. We do not regard our new

results presented here to be an exhaustive treatment of the observer design problem,

but, rather, a convenient application of the optimization-based design philosophy for
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Lyapunov stability problems that we pursue in this work. Our results extend the ca-

pabilities of Lyapunov observers and, also, exhibit two interesting traits which we will

be exploring in our future work:

� The output of the observer, η, as well as the error bound from Lemma 8.3.1, can

be readily combined with our imperfect feedback, input constrained control law

from Chapter 7 to solve an output feedback control problem.

� Using the concept of Vector Lyapunov Functions, the proposed design method-

ology for the observation of a standalone system can be extended to the case of

networked systems, either in a distributed or a decentralized way, in parallel to

our results in Chapter 6.
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Chapter 9

Discussion, future work, and conclusion

9.1 Summary

In this dissertation, we have been motivated from the rather simple fact that all

practically meaningful control systems are subject to input constraints and the obvious

question of how to design control laws for such systems (in particular, for polynomial

systems subject to input constraints and uncertainty). We focused on the importance

of characterizing a set starting from where such a system is guaranteed to be asymp-

totically stabilizable with a simple Lyapunov-based control law. Such guarantees have

been enabled by relaxing the respective problems to semialgebraic set containments

that can be solved with SOS techniques. The proposed constrained control laws are

implemented online by solving small QPs.

Our results on the nominal case were progressively extended to the cases of

uncertain systems, large-scale systems, and systems with imperfect feedback. Finally,

we used some of our tools for the robust control problem to design a robust Lyapunov-

based observer.

9.2 Directions for future work

The work presented in this dissertation and the underlying optimization-based

solution strategies can be used as building blocks to tackle various Lyapunov-based

control problems. It may also be useful to consider additional techniques found in the
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SOS literature (such as handling systems with rational or nonpolynomial dynamics),

as well as the alternatives to computationally-heavy SDP-based SOS (which are fully

compatible with our work, as all herein proposed methods are actually agnostic to the

underlying convex parameterization of Σ[x]).

We briefly discuss two broader topics of particular interest: safe learning and

large-scale networked control systems design.

The price to pay for robustness in a Lyapunov-based nonlinear control context

under input constraints is increased conservatism with regards to the size of the robust

stabilization set for the system. Since such a control law operates by making a worst-

case assumption for the state of the system, the larger the uncertainty value set is, the

smaller the robust stabilization set estimate will ultimately be. This is true for both

standalone and networked systems. It is reasonable to wonder whether we can use the

control input u to not only stabilize the system but to also infer any dynamics “hidden”

in the uncertain term w. Such a feat can be connected to online system identification

and relevant techniques that have been appearing in the literature for many decades.

Contemporary results on learning theory (Smola and Schölkopf, 1998; Engel, Mannor,

and Meir, 2004) provide us with additional tools to approximate any uncertainties in

the dynamics. A critical aspect of such a problem is how to use the control input in

such a way that (i) stability is maintained and (ii) useful information is extracted from

the system’s response. The former has been covered extensively in this dissertation,

in the challenging case where the input is subject to constraints, also. It is envisioned

that the latter part will be explored in our future work.

In a networked systems context, the capabilities of the entire system (for in-

stance, in terms of its robust stabilization set, speed of convergence, etc.) can depend

significantly on the individual subsystems. To be more specific and relevant to our
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work, the actuators and sensors used in one subsystem can directly affect its neighbors

and vice-versa. A question that arises here naturally is how to distribute actuators

and measurement devices across multiple subsystems, so that some specific objectives

are met. This problem entails some binary decisions (that is, a particular actuator

can be part of only one subsystem), for each of which the underlying convex problems

we developed before determine whether the Lyapunov stabilization problem is feasible.

Such a combination of optimization with integer and real variables, the latter of which

are subject to convex constraints, has been recently considered in the Satisfiability

Modulo Convex Programming framework (Shoukry, Nuzzo, Sangiovanni-Vincentelli,

Seshia, Pappas, and Tabuada, 2018), which we plan to utilize in networked system

design problems.

9.3 Conclusion

Not all contemporary problems in control and the broader fields of robotics,

automation, and autonomy can be reduced to the nonlinear stabilization problem for a

continuous time system. There is often more that needs to be done than just steering a

system to a target equilibrium, (possibly) in the presence of various complicating factors

such as the ones we considered in this dissertation. Path planning, trajectory generation

and tracking, optimality, discrete or hybrid dynamics, control-oriented modeling of the

underlying system, hierarchical design, collaboration between (sub)systems, high-level

specifications, and many other aspects that it is impossible to completely enumerate,

can also be of importance in many application areas. As one tries to focus on the big

(and complicated) picture, it is natural to wonder where do robust control methods,

such as the ones presented herein, fit in there.

We conclude this chapter and the dissertation with a three-part answer:
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� Regardless of how complex a physical or cyberphysical system is and how many

layers of abstraction it entails, it is often the case that at least some parts of the

system interact with laws of physics or other phenomena best described, to some

extent, by ordinary differential equations of forms amendable to nonlinear control

techniques. This is the point, also, where a lot of uncertainty can enter the prob-

lem, in terms of mismodeled parameters or effects from the system’s environment

that cannot be precisely modeled or predicted. In the case of a robotic vehicle, for

instance, the motion of the vehicle with regards to the ground is governed by well

known rigid body dynamics equations. However, many of the involved physical

parameters appearing therein can be uncertain. Significant actuation constraints

can typically enter the problem formulation, also. Similar arguments are true for

myriad other engineering systems, such as aircraft, spacecraft, robotic manipula-

tors, process control systems, etc. Regardless of the high-level capabilities of any

such system, an insufficiently capable and safe control law at the level where the

system interfaces with the physical world can be detrimental to the entire system

and its mission.

� The guaranteed robustness margins, which one can explicitly quantify with the

proposed methods for the classes of systems we considered here, can be used as an

interface with outer control loops focusing on progressively higher-level behavior

and goals, as it typically the case in hierarchical control systems.

� Stabilization problems may ultimately be more common than what we, as con-

trol researchers and engineers, may tend to think. They can also show up in

critically important areas, which do not seem to be related to “traditional” con-

trol problems, at least at first sight. We indicatively refer to four examples,

from the fields of communications (Papachristodoulou and Peet, 2008), social
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networks (Proskurnikov and Tempo, 2017), applied mathematics (Karafyllis and

Krstic, 2017) and cybersecurity (Xu, Lu, and Li, 2017a): following appropriate

modeling, it has been shown that the flow of data over data links, the spread of

opinions between elements of the society, the nonlinear programming problem,

and the behavior of devices in a network can be cast as either nonlinear stability

or stabilization problems.

Regardless of one’s interest in one specific field versus another, or the choice of pre-

ferred mathematical tools, it is fair to argue that nonlinear feedback control, enabled

by Lyapunov methods almost 130 years ago, developed further with analytical means

in the past 30-40 years, and solidified with the power brought by optimization-based

methods such as Sum-of-Squares and other techniques more recently, will be a integral

part of control systems for the foreseeable future. Ongoing work on relevant prob-

lems will be beneficial to the end of promoting the development of safe and capable

autonomous systems in a wide variety of application domains.
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Primbs, J. A., Nevistić, V., Doyle, J. C., 2000. A receding horizon generalization of

pointwise min-norm controllers. IEEE Transactions on Automatic Control 45 (5),

898–909.

Proskurnikov, A. V., Tempo, R., 2017. A tutorial on modeling and analysis of dynamic

social networks. part I. Annual Reviews in Control 43, 65 – 79.

Samuelson, P. A., 1971. Generalized predator-prey oscillations in ecological and eco-

nomic equilibrium. Proceedings of the National Academy of Sciences of the United

States of America 68 (5), 980–983.

Sandell, Jr., N. R., Varaiya, P., Athans, M., Safonov, M. G., 1978. Survey of decen-

tralized control methods for large scale systems. IEEE Transactions on Automatic

Control 23 (2), 108–128.

Shoukry, Y., Nuzzo, P., Sangiovanni-Vincentelli, A. L., Seshia, S. A., Pappas, G. J.,

Tabuada, P., 2018. SMC: Satisfiability Modulo Convex programming. Proceedings

of the IEEE 106 (9), 1655–1679.

Siljak, D. D., 1978. Large-scale Dynamic Systems. Elsevier North Holland, New York.

Siljak, D. D., 1991. Decentralized Control of Complex Systems. Academic Press, San

Diego, CA.

Smola, A. J., Schölkopf, B., 1998. Learning with kernels. MIT Press, Boston, MA.

Sontag, E. D., 1989. A ‘universal’ construction of Artstein’s theorem on nonlinear

stabilization. Systems and Control Letters 13 (2), 117 – 123.

Sturm, J., 1999. Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-

metric cones. Optimization Methods and Software 11–12, 625–653.

130



Tan, W., Packard, A., 2008. Stability region analysis using polynomial and composite

polynomial Lyapunov functions and sum-of-squares programming. IEEE Transac-

tions on Automatic Control 53 (2), 565–571.

Tedrake, R., Manchester, I. R., Tobenkin, M., Roberts, J. W., 2010. LQR-trees:

Feedback motion planning via sums-of-squares verification. International Journal

of Robotics Research 29 (8), 1038–1052.

Topcu, U., Packard, A., Seiler, P., 2008. Local stability analysis using simulations and

sum-of-squares programming. Automatica 44 (10), 2669–2675.

Tsinias, J., 1989. Observer design for nonlinear systems. Systems and Control Letters

13 (2), 135–142.

Tsinias, J., 1990. Further results on the observer design problem. Systems and Control

Letters 14 (5), 411–418.
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