
Copyright

by

Warren Andrew Hunt

2008

The Dissertation Committee for Warren Andrew Hunt
certifies that this is the approved version of the following dissertation:

Data Structures and Algorithms for Real-Time Ray

Tracing at the University of Texas at Austin

Committee:

William Mark, Supervisor

Donald Fussell

Okan Arikan

Gregory Plaxton

Peter Shirley

Data Structures and Algorithms for Real-Time Ray

Tracing at the University of Texas at Austin

by

Warren Andrew Hunt, B.S., B.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2008

Dedicated to the real-time ray tracing community.

Acknowledgments

I wish to thank the multitudes of people who have helped me along

the way. In particular, I would like to thank my lab-mates: Peter Djeu,

Sean Keeley, Gilbert Bernstein and Paul Navratil for their discussions and

feedback on the topics of geometry and ray tracing and Jim Hurley and Intel

for supporting my work with encouragement, a job and a fellowship.

v

Data Structures and Algorithms for Real-Time Ray

Tracing at the University of Texas at Austin

Publication No.

Warren Andrew Hunt, Ph.D.

The University of Texas at Austin, 2008

Supervisor: William Mark

Modern rendering systems require fast and efficient acceleration struc-

tures in order to compute visibility in real time. I present several novel data

structures and algorithms for computing visibility with high performance. In

particular, I present two algorithms for improving heuristic based accelera-

tion structure build. These algorithms, when used in a demand driven way,

have been shown to improve build performance by up to two orders of magni-

tude. Additionally, I introduce ray tracing in perspective transformed space.

I demonstrate that ray tracing in this space can significantly improve visibil-

ity performance for near-common origin rays such as eye and shadow rays. I

use these data structures and algorithms to support a key hypothesis of this

dissertation: “There is no silver bullet for solving the visibility problem; many

different acceleration structures will be required to achieve the highest perfor-

vi

mance.” Specialized acceleration structures provide significantly better perfor-

mance than generic ones and building many specialized structures requires high

performance build techniques. Additionally, I present an optimization-based

taxonomy for classifying acceleration structures and algorithms in order to

identify which optimizations provide the largest improvement in performance.

This taxonomy also provides context for the algorithms I present. Finally, I

present several novel cost metrics (and a correction to an existing cost met-

ric) to improve visibility performance when using metric based acceleration

structures.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xii

List of Figures xv

Chapter 1. Introduction 1

1.1 Working Hypotheses . 4

1.2 Familiarization . 5

1.2.1 Recursive Ray Tracing 5

1.2.2 Distribution Ray Tracing 6

1.2.3 Acceleration Structures 7

1.3 Overview of Contribution . 8

Chapter 2. Background and Related Work 11

2.1 Cost Metrics Background . 13

2.2 Coherent Ray Tracing Background 15

2.3 Specialized Structures Background 16

2.4 Fast-Build Background . 17

2.5 Z-Buffer Visibility . 19

2.6 Other Perspective Transformed Visibility 20

2.7 Overview . 21

Chapter 3. Visibility 22

3.1 A Taxonomy for Visibility Algorithms 23

3.1.1 Evaluation of the Basis 27

3.2 Overview . 31

viii

Chapter 4. Cost Metrics for Acceleration Structures 33

4.1 The SAM . 33

4.2 Details of the Visibility Join 35

4.3 Cost Metrics for Memory Usage 39

4.3.1 Additional Considerations 42

4.3.2 The Metrics . 43

4.4 Total Cost Metrics . 44

4.5 Metrics Continued: Corrections to the Surface Area Metric . . 46

4.6 Corrections to the Surface Area Metric with Respect to Mailboxing 47

4.6.1 The Mailboxing Optimization 48

4.6.2 Mailboxing and The SAM 49

4.7 The Perspective Surface Area Metric 51

4.7.1 Brief Introduction to Perspective Space 52

4.7.2 Adaptive Perspective Space Acceleration Structures . . 53

4.7.3 Derivation of the PSAH 55

4.8 Concluding Remarks . 63

Chapter 5. Specialized Acceleration Structures 65

5.1 Geometry Specialized Acceleration Structures 67

5.1.1 Object-Space Structures 68

5.1.2 Topology-Specialized Structures 69

5.2 Ray-Specialized Acceleration Structures 70

5.2.1 Face Culling . 72

5.2.2 Perspective Space . 73

5.2.2.1 The Perspective Singularity 74

5.3 Fast Build . 75

5.4 SAM Scan . 76

5.4.1 Evaluating the Cost Function: Sorting vs. Scanning . . 77

5.4.2 Approximating the Cost Function With a Few Samples . 80

5.4.3 Adaptively Choosing Sample Locations 82

5.4.3.1 Error Bounds 82

5.4.3.2 The Adaptive Sampling Algorithm 89

ix

5.4.4 Error Bounds . 91

5.4.4.1 Linear Approximation 91

5.4.4.2 Uniformly Spaced Linear Approximation 92

5.4.4.3 Adaptive Linear Approximation 93

5.4.4.4 Bounds for the Scan-Based Cost Function . . . 94

5.4.5 Comparison to Related Work 95

5.4.5.1 Streaming Construction 96

5.4.5.2 Sampling the Cost Function 96

5.4.5.3 Reconstruction 97

5.4.5.4 Specialization at the Leaves 97

5.4.5.5 Overall Results 97

5.5 Build From Hierarchy . 98

5.5.1 Building Acceleration Structures for Dynamic Scenes . . 99

5.5.2 Using Hierarchy to Accelerate Acceleration Structure Build100

5.5.3 Building Acceleration Structures from Input Hierarchies 103

5.5.4 Build Complexity . 105

5.5.5 Analysis of Lazy Build from Hierarchy 106

5.5.6 The Effects of Fast Scan 108

5.5.7 High Quality SAM-Based Structures 109

5.5.8 Quality Analysis of the Algorithm 112

5.6 Concluding Remarks . 114

Chapter 6. Implementation and Results 116

6.1 Correction to the SAM for Mailboxing 117

6.1.1 BVHs, KD-Trees and Mailboxing 118

6.1.1.1 Simple Case . 119

6.1.1.2 Perturbed Case 120

6.1.1.3 Perturbed Case with Mailboxing 121

6.1.2 Verification Results . 124

6.2 The Perspective Grid . 126

6.2.1 System Design . 126

6.2.1.1 Eye Rays . 126

x

6.2.1.2 Hard Shadow Rays 128

6.2.1.3 Soft Shadow Rays 130

6.2.2 Results . 131

6.2.2.1 Overall Performance 135

6.2.3 Comparison to other ray tracing systems 137

6.2.4 Comparison to z-buffer systems 140

6.2.5 Perspective Grid vs. Regular Grid 142

6.3 The Perspective Surface Area Metric 142

6.4 Fast Scan . 150

6.5 Build from Hierarchy . 154

6.6 Concluding Remarks . 157

Chapter 7. Conclusions 164

Appendices 168

Appendix A. Classification 169

A.1 Classification . 170

A.1.1 PBRT (kd-tree Ray Tracing) 170

A.1.2 Lazy BVH Packet Tracing 171

A.1.3 Grid Ray Tracing . 173

A.1.4 Perspective Grid Ray Tracing 174

A.1.5 Z-Buffer Rendering (Rasterization) 175

A.1.6 Tiled Rasterization . 176

A.1.7 Irregular Z-Buffer . 177

A.2 Optimizing Ray Tracing into Rasterization 178

Appendix B. Scenes 181

Bibliography 184

Index 196

Vita 197

xi

List of Tables

6.1 Improvements due to the modified SAM. Results for Plant,
Sibenik and TT use PBRT in its default configuration on a 2.66
Ghz Core2. Bunny and Fairy Forest results use an interactive
kd-tree ray tracer and scene/camera files from [35] on a 2.2Ghz
Core2 (Merome). (Model source/details are covered in the sec-
ond appendix.) Results were run at 1920x1200 in single ray
mode using inverse mailboxing with a 16-entry cache. Columns
show improvements in number of intersections and runtime as
well as the increase in number of traversal steps made by rays
using the modified structure. 125

6.2 Performance of the perspective grid rendering system for var-
ious scenes and for various quality settings, all at 1920x1200
resolution. The results include the time for per-frame build of
the acceleration structure. The top nine rows use one core of a
2.66 GHz Xeon X5355, 1333MHz FSB. Hard shadows use one
eye ray and one hard shadow ray per pixel. Hard shadows use
a 200x200x1 perspective grid, except FairyForest (800x800x1)
and Conference (600x600x1). The bottom three rows show par-
allel performance on eight of the same cores. All phases of the
system except acceleration-structure build parallelize well, but
since build is not yet parallelized it becomes the bottleneck in
the parallel scenario. 133

6.3 This table uses the same performance setup as the previous
table. Soft shadows use one eye ray and eight Monte Carlo soft
shadow rays per pixel and a 200x200x4 perspective grid. . . . 134

6.4 Comparison of dynamic scene performance, all in frames/sec
at 1024x1024 resolution. My system is running on one core
of a 2.66 GHz Xeon 5355; Other results are taken from recent
publications with different hardware, but adjusted in this table
to estimate performance on a single 2.66 GHz Xeon 5355. Notes:
(1) Adjustment for processor differences is an estimate; see text.
(2) The BVH algorithm is restricted to certain types of dynamic
scenes because it computes its acceleration structure topology
off-line (taking an adjusted 2.16 sec for Fairy) and only updates
the bounds each frame. (3) The BVH render times include basic
texture mapping; others do not. 140

xii

6.5 Comparison of static scene performance, all in frames/sec at
1024x1024 resolution. Results for my system include the time
for acceleration structure build (since it is view dependent),
while results for other systems exclude build time. My system
is running on one core of a 2.66 GHz Xeon 5355. Other results
are taken from recent publications with different hardware, but
adjusted to estimate performance on the 2.66 GHz Xeon 5355. 141

6.6 Comparison of my system’s performance for eye rays vs. pub-
lished results for Pixomatic, a high performance software z-
buffer renderer. Notes: (1) Pixomatic is performing texture
mapping but my system is not; see text for details. (2) Pixo-
matic results are adjusted upward to account for hardware dif-
ferences. 141

6.7 When tracing soft shadow rays, the perspective grid requires
fewer grid traversal steps than a regular 3D grid. These results
are measured using my system with the Courtyard scene at
1920x1200 resolution. 142

6.8 Static performance Results. 146

6.9 First half of dynamic performance results. Table is continued
on next page along with a descriptive caption. 147

6.10 (Second half of Table 6.9.) Comparison of performance: perspective-
space kd-tree vs. traditional world-space kd-tree. “traditional
/ SAH sort” is a traditional kd-tree built using the SAH with
sort-based selection at every step. “traditional / SAH scan”
is a traditional kd-tree built using the SAH with a scan-based
selection at every step [38]. “perspective / PSAM scan” is a
perspective-space kd-tree built using the perspective-space cost
metric with a scan-based selection at every step. All results are
at 1920x1200 resolution on a single core of a mobile 2.2 Ghz Intel
Core 2 Duo (Merom). ratio is the ratio of the perspective-space
results to the traditional scan-based results. Build time results
include all build times (if more than one structure is used). All
acceleration structures specialized to a light or camera use face
culling. 148

6.11 Comparison of different build heuristics for a perspective-space
kd-tree. Median-split uses the median split of the longest
axis. SAH uses the traditional SAM, but in perspective space.
PSAM uses this dissertation’s new perspective-space PSAM.
All results are at 1920x1200 resolution on a single core of a
mobile 2.2 Ghz Intel Core 2 Duo (Merom). 150

6.12 Fast scan build performance measurements (Part 1), using one
core of a 2.4 GHz Intel Core 2 Duo processor (“Conroe”), with
4MB of L2 cache. Models are discussed in detail in the second
appendix. 152

xiii

6.13 Fast scan build performance measurements (Part 2), using one
core of a 2.4 GHz Intel Core 2 Duo processor (“Conroe”), with
4MB of L2 cache. Models are discussed in detail in the second
appendix. 153

6.14 Build times for a k-d tree with various fast-build capabilities
enabled and disabled. Results are presented for two viewpoints
of the Courtyard 64 scene. These results were taken from the
Razor system on a single core of an Intel Core 2 Duo 2.667 GHz
machine. The next table contains information about a different
scene. 155

6.15 Build times for a k-d tree with various fast-build capabilities
enabled and disabled. Results are presented for two viewpoints
of the Conference scene. These results were taken from the
Razor system on a single core of an Intel Core 2 Duo 2.667
GHz machine. The previous table contains information about
a different scene. 156

B.1 Table of scenes used. Scenes with N/A polygon counts were
not used in any high performance results. Scenes with no image
were not used for rendering results. 182

xiv

List of Figures

4.1 A cross section of rays with a “uniform” distribution in direction
(by the assumptions). These rays are not uniformly distributed
in angle, but this is the common distribution for eye rays. This
style of uniformity also translates into perspective space nicely. 54

4.2 Given a fixed direction (indicated) the shadowed region is the
set of origins that will intersect the box. The area of the shad-
owed region is computed in Equations (4.27)- (4.29). 59

4.3 A cross section of a box being projected onto a plane. This
figure is designed to give intuition into equation (4.28). The
planes of the box perpendicular to the z = 0 plane have areas
scaled by the tangent of the direction vector. 60

5.1 The split plane is placed at the minimum of a piecewise quadratic
function that interpolates the sample points. Note that we have
vertically displaced the approximation function from the actual
function so that the details of both can be seen. The upper curve
is the actual cost function. The lower curve is the quadratic ap-
proximation. Vertical lines are sample points. 81

5.2 The initial samples as shown on CL − CR 83

5.3 Use a comb sample along range of CL − CR to find segments
with large error. 84

5.4 Sample evenly in the segments with large error. 85

5.5 Approximate CL, CR and cost. 86

5.6 The actual cost function, notice the minimum is slightly off from
the predicted value. 87

5.7 Monotonicity guarantees that the function does not leave the
box. The area between the function and its linear approxima-
tion cannot be more than 1

2
the area of the box. 92

5.8 The use of hierarchy can greatly reduce the number of split can-
didates provided to a builder. If the hierarchy fits the geometry
well, then the provided splits are often among the best anyway.
Vertical dashed lines in these diagrams represent split candidates.102

xv

5.9 Using hierarchy in conjunction with lazy build can allow a
builder to completely ignore large regions of space if no rays
enter that space. 102

6.1 A simple case involving two objects (boxes) abutted. 119

6.2 A perturbed case involving two objects (trapezoids) abutted. . 121

6.3 A perturbed case involving two objects (trapezoids) abutted
with one kd-tree split. 122

6.4 A perturbed case involving two objects (trapezoids) abutted
with two kd-tree splits. 122

6.5 Soft shadows rendered by the system (Courtyard scene). . . . 132

6.6 The Stanford Bunny rendered with depth of field and Fairy
Forest rendered with soft shadows both using a perspective kd-
tree. The Fairy Forest scene is approximately 6.3 x 1.6 x 6.3
units in size. The light “radius” for the result is 0.1. 144

6.7 Close-ups of depth of field and soft shadow images. Top: Fairy
Forest scene with depth-of-field. Middle: Fairy Forest scene
with soft shadows. Bottom: Bunny scene with depth-of-field. . 149

6.8 The Courtyard Scene (character models c©2003-2006 Digital
Extremes, used with permission.) Models are presented in de-
tail in the second appendix. 160

6.9 Scene (Courtyard 64) used for gathering experimental results
for the build from hierarchy algorithm. In the near viewpoint
shown at left, 9392 primitives are visible. In the far viewpoint
shown at right, 89040 primitives are visible. It has 541023 prim-
itives total. 161

6.10 Scene (Conference Room) used for gathering experimental re-
sults for the build from hierarchy algorithm. In the near view-
point shown at left, 13031 primitives are visible. In the far
viewpoint shown at right, 156437 primitives are visible. It has
494706 primitives total. 161

6.11 Performance of build-from-hierarchy as a function of n, the
number of primitives. Lazy is disabled, and scan is enabled.
We vary n by adding additional occluded geometry to the scene. 162

6.12 Performance of lazy build from hierarchy as a function of v, the
number of visible primitives. Top: full graph, Bottom: zoom-in
graph for small v. 163

B.1 From left to right: Courtyard, Fairy Forest, Stanford Bunny,
Dragon-Bunny, Conference and ERW6. 181

xvi

B.2 Courtyard 64 . 181

B.3 Conference Room (high resolution) 182

B.4 From left to right: Plants, Sibenik, TT 183

xvii

Chapter 1

Introduction

Virtual environments have greatly changed the face of many fields such

as entertainment and medicine over the past 20 years. The most stimulat-

ing/meaningful interactions with such environments are visual. Visual inter-

actions with virtual environments can both inform and entertain. The field

of computer graphics studies ways to enhance such virtual environments and

their visual interface. Rendering is the study of producing visual output from

the description of a virtual environment. My research is dedicated to the study

of efficient methods of computing a particular piece of the rendering process

known as visibility.

Visibility refers to two related problems, stated as follows:

1. “Given a scene (virtual environment), a point in space and a direction

(a ray), what scene object does the ray intersect first?”

2. “Given a scene and two points, is any scene object directly between the

two points?”

The second query is less general and can be phrased in terms of the first.

However, it also requests less information, asking “if” rather than “what”.

1

This distinction has important implications in terms of performance. These

queries can be integrated to form more complicated queries such as:

“Given a scene, a point and a solid angle, what are all of the scene

objects intersected by some ray originating at the point with some angle from

the given solid angle?”

Millions of such queries are required to compute a single image of a

virtual environment for a modern game, medical visualization or simulation.

If real-time frame-rates are required for immersive play or real-time feedback,

potentially hundreds of millions or even billions of such queries will be required

per second. Due to the sheer number of these operations, computing them effi-

ciently is extremely important for real-time performance. Many optimizations

are employed in every modern rendering system to make these queries more

efficient. I present several new acceleration structures and algorithms for more

efficiently solving specific cases of the visibility problem. In this context, ac-

celeration structures are organizational structures that reduce the number of

ray-object intersection tests. Rays traverse these structures in order to find

objects they are likely to intersect and avoid objects they are unlikely to inter-

sect. Ray tracing and acceleration structures are covered in the familiarization

section of this chapter.

Efficient acceleration structures and rendering algorithms are required

to achieve real-time performance using a ray tracer. However, these data

structures shouldn’t add a prohibitive amount of (traversal) overhead. Accel-

eration structures must be fast to build in order to support dynamic virtual

2

environments (where the structure needs to change between frames).

Classically, ray tracing was an offline procedure and acceleration struc-

ture build was also an offline procedure. Given modern hardware and algo-

rithms ray tracing can now be performed in real time [58]. However, accelera-

tion structure build (circa 2006) cannot and thus ray tracing cannot support

dynamic environments. Faster building of acceleration structures for dynamic

scenes was unanimously voted to be the most important problem at the in-

teractive ray tracing course at Siggraph ’05. In response, I present several

algorithms for improving build times for traditional acceleration structures for

ray tracing. Combinations of these improvements have been shown to improve

build performance by as much as two orders of magnitude in certain cases.

Because performance is often the central theme of real-time rendering,

I additionally present a systematic evaluation of many of the optimizations

commonly used in rendering systems in order to discuss their relative merits

and divine which are most effective. In order to do so, I present a taxonomy for

classifying acceleration structures and rendering algorithms according to their

optimizations. Using the taxonomy I show explicitly that z-buffer rendering

(the high-performance algorithm commonly used in games and implemented

in hardware by nVidia, ATI and others) is a special case of ray tracing and

I provide an “algorithmic pathway” between traditional z-buffering and tra-

ditional ray tracing. This path highlights novel acceleration structures and

rendering algorithms with many of the properties of both ray tracing and z-

buffering. In particular, this taxonomy highlights the perspective transform as

3

the primary constituent in the high performance of the z-buffer algorithm. I

demonstrate acceleration structures for ray tracing primary visibility and true

shadows with performance comparable to z-buffering. These structures also

have the potential to produce real-time soft-shadow, depth of field and motion

blur effects. I provide results for a software system which achieves real-time

frame rates for primary visibility and hard shadows on a modern CPU at high

resolution.

In order to better understand the performance of acceleration struc-

tures, I discuss cost metrics used to build “good” acceleration structures. I

present several new cost metrics that make better assumptions about the pro-

cess they are accelerating. I also discuss cost metrics that take into account

different hardware features such as memory usage. Lastly, I present a correc-

tion to the most commonly used cost metric (the surface area metric) in order

to take into account the effects of another common optimization (mailboxing).

1.1 Working Hypotheses

Most of my research is premised on the following assumptions:

1. There is no silver bullet for real-time rendering. Visibility queries are

diverse in both assumptions and results.

2. Visibility queries can be classified into groups according to properties

of those queries. The highest performance for a given group of queries

4

will be obtained by an acceleration structure and rendering algorithm

specifically tailored to that group.

3. The reduction in traversal and intersection costs using specialized accel-

eration structures outweighs the additional cost of building those spe-

cialized structures. (I demonstrate this to be true a majority of the time,

even without advanced fast-build techniques.)

I hypothesize that the combination of many specialized acceleration

structures and rendering algorithms into a single system will provide the high-

est overall performance. I cannot divine the ultimate rendering system, but I

provide evidence to support this hypothesis in this dissertation.

1.2 Familiarization

Before discussing my contributions to the field of real-time ray trac-

ing, I’m going to take a short diversion to provide some background for an

introduction to the field itself.

1.2.1 Recursive Ray Tracing

Recursive ray tracing was introduced around 1980 by Kay [46] and

Turner Whitted [75]. The algorithm roughly reflects the reality of light trans-

port: rays are bounced around a scene in a similar manner to the way light

bounces around in the real world. Whitted’s ray tracing algorithm launched

one ray from the origin of a virtual pinhole camera for each pixel in the output

5

image. The directions of the rays are determined by the locations of the pixels

on the image plane. When these camera rays intersect objects in the scene

they interact with those objects. Rays intersecting diffuse objects obtain a

color for the pixel they corresponded to. Rays intersecting reflective or re-

fractive objects spawn new rays traveling in the directions determined by the

laws governing reflection and refraction. These reflective and refractive rays

may strike diffuse objects and obtain a color or recursively interact with other

reflective or refractive objects. This simple recursive algorithm introduced the

world to ray tracing.

1.2.2 Distribution Ray Tracing

In 1984, Cook introduced distribution ray tracing [18]. Distribution

ray tracing is a stochastic algorithm that uses multiple rays to enable the ren-

dering of “fuzzy” effects. These effects include soft shadows caused by area

lights, depth of field caused by non idealized cameras, motion blur and glossy

reflections and refractions. Distribution ray tracing uses multiple rays to inte-

grate visibility queries over an area or time using a Monte-Carlo approach. For

example, the partial coverage of an area light may be determined by sampling

a stochastically selected set of points on the surface of the light (each with

a ray). Distribution ray tracing is capable of producing substantially more

convincing images and is the basis of current ray tracing technology used in

offline applications. In addition to producing extremely high quality images,

distribution ray tracing is known for being extremely expensive. In practice,

6

a high resolution distribution ray traced image can use many billions of rays.

1.2.3 Acceleration Structures

Although these ray tracing algorithms are capable of producing very

convincing images, they cannot do so quickly. If every ray is tested for inter-

section against every object in a scene, the amount of work required to render

a scene with large amount of geometry is prohibitively high. To avoid perform-

ing so many intersection tests, ray tracers employ acceleration structures. One

of the earliest acceleration structures is the uniform grid [16]. Using a grid,

objects are sorted into the spatial cells as a pre-processing step. Rays then step

through the grid cells and only intersect geometry found in those cells. Other

acceleration structures include binary space partitioning [22] (BSP) trees (in-

cluding kd-trees [9] and oct-trees [42]) which recursively partition space and

bounding volume hierarchies [25, 61] (BVHs) which recursively aggregate scene

objects.

All acceleration structures can significantly reduce the number of ray-

object intersection tests performed per ray. However, these structures add

their own overhead. Acceleration structures must be constructed and tra-

versed. Much of high-performance ray tracing research is dedicated to finding

“good” acceleration structures (that effectively reduce the number of intersec-

tion tests) and building and traversing those structures quickly.

7

1.3 Overview of Contribution

The contributions in this dissertation relate to data structures and al-

gorithms for high-performance ray tracing. The contributions include novel

acceleration structure build algorithms, novel applications of spatial trans-

forms to improve rendering performance and new and corrected cost metrics

to improve the effectiveness of acceleration structures. I use these data struc-

tures and algorithms to support my working hypothesis from the previous

section.

In addition to supporting these hypotheses, I intend for a primary con-

tribution of this dissertation to be a conceptual framework for classifying ac-

celeration structures and rendering algorithms. This framework will be used

to justify (or condemn) optimizations commonly used in modern rendering

systems. I hope that this taxonomy and discussion provides the community a

better understanding of the science of building such structures and algorithms

and why these systems behave the way they do, leading to more principled

designs in the future. In addition, the taxonomy illuminates a continuum of

algorithms between ray tracing and z-buffering. I intend for this continuum to

help generate better high-performance ray tracing structures and more seam-

lessly integrate rasterization and ray tracing.

I present two novel algorithms for improving the performance of heuris-

tic based kd-tree build. Heuristics are commonly employed during the kd-tree

build process. For any particular scene, an extremely large number of valid

acceleration structures exist. A build algorithm uses heuristics to choose an

8

acceleration structure that is expected to provide high traversal performance.

These heuristics help choose scene partitions that more effectively reduce the

number of ray-object intersection tests performed per ray but add overhead

in the process. One optimization uses sampling and reconstruction to closely

approximate the standard heuristic (a cost function). The other uses addi-

tional (commonly available) outside information to reduce build times from

O(n log n) to O(n). These two algorithms, used in conjunction in a demand

driven way, are shown to yield up to two orders of magnitude speed improve-

ment for kd-tree build over large scenes. In this case demand driven refers

to the acceleration structure build. In the system I describe, the acceleration

structure is only constructed as needed.

Additionally, I introduce methods for using the perspective transform

to accelerate ray tracing for collections of rays with common or nearly-common

origin. Using acceleration structures under the perspective transform, I demon-

strate primary and hard-shadow performance many times faster than other

dynamic ray tracing techniques and even competitive with a software imple-

mentation of the z-buffer algorithm. These structures are key to my argument

that specialized acceleration structures will achieve the highest performance

for ray tracing.

Finally, I provide a discussion with regard to the nature of the visibility

problem and how to use cost metrics to capture this nature. I present sev-

eral new cost metrics, including one that makes substantially more accurate

assumptions under the perspective transform. I also provide a correction to

9

the most commonly used cost metric to account for a specific optimization

(mailboxing) that changes its character.

10

Chapter 2

Background and Related Work

Acceleration of visibility queries is a very well studied problem [20]. To

make sense of the plethora of solutions that exist, it is important to understand

the visibility problem at a high level. A simple way to view the visibility

problem is as a cross product (or database “join”) between two collections:

one collection (of size m) of samples (rays, beams etc.) and one collection

(of size n) of scene objects (triangles, implicit surfaces, etc.). It should be

noted that this cross product is more general than required in practice. Recall

that visibilities are split into two categories. Visibility queries of the first

kind (“Given a scene, a point in space and a direction, what scene object does

the ray intersect first?”) only require the closest intersection test and visibility

queries of the second kind only require the existence of an intersection. Because

of these particulars, the visibility problem doesn’t exactly resemble a “join”.

Without an acceleration structure the visibility join consists of m × n

operations. The use of an acceleration structure culls many non-intersecting

pairs of the join. For queries of the first kind all sample-object pairs that don’t

result in the closest intersection may be culled without changing the result of

the query. This culling can substantially improve the performance of the join.

11

If accelerated perfectly each sample (e.g., ray) is only tested for intersection

against at most one scene object (resulting in ≤ m intersections). In practice

perfect acceleration is almost impossible to achieve but O(m) intersections is

common.

As mentioned in the familiarization section, the most common accel-

eration structures are grids, BSP-trees and BVHs. These structures fall into

two categories: those that use aggregation and those that use partitioning.

Aggregation based acceleration structures group samples or objects into

bundles [61]. These aggregations are conservatively tested for intersection with

each other in the hopes that they do not intersect. If they do not, no element

in either aggregate could have intersected any element in the other aggregate.

The most traditional aggregation based acceleration structure is a bounding

volume hierarchy (BVH). Using a BVH, individual rays (samples) are tested

against geometry aggregates (represented by bounding volumes).

Partitioning-based acceleration structures partition space (not neces-

sarily 3-space) into non-overlapping regions using surfaces (usually axis-aligned

hyper planes)[16, 22]. Only samples and objects that exist in the same parti-

tion may intersect. The classic partitioning schemes are grids and BSP trees

(including kd-trees and oct-trees). Spatial partitioning structures are broken

into two categories: uniform and hierarchical. Uniform structures implicitly

divide space into a collection of partitions (often grid-cells). Hierarchical struc-

tures recursively subdivide space. Hierarchical structures are more general

than uniform structures. Any spatial partition defined by a uniform scheme

12

can be defined by a hierarchical one. Uniform spatial structures, on the other

hand, have an implicitly defined topology that makes their creation and man-

agement much simpler. Between the two types there exists a trade-off between

generality and simplicity.

Aggregation and partitioning structures have notably different proper-

ties in some respects. The most noticeable difference is the type of redundancy

inherent to the structure. Partitioning structures have the property that each

point in space exists in exactly one partition but admit scene objects to oc-

cur in multiple partitions. Object aggregation hierarchies, on the other, hand

have the property that each scene object exists at exactly one point in the

hierarchy, but any given point in space could occur within multiple points in

the hierarchy.

Although once a point of contention amongst the community, it is now

clear that neither type of acceleration structure is strictly superior to the other.

I will discuss the technical merits of each type in a later section. It should be

noted that even though aggregation schemes typically focus on object hierar-

chies, some research has been done into sample aggregation [59].

2.1 Cost Metrics Background

Many different acceleration structures of each type exist for any given

scene. These different structures, however, are not equally effective. To evalu-

ate the effectiveness of a particular structure, researchers have developed cost

metrics for acceleration structures. These metrics traditionally attempt to pre-

13

dict the number of intersections performed during ray tracing. Cost metrics

may be used as part of a heuristic for improving acceleration structure quality

during the build process.

The most commonly used cost metric is the surface area metric, (SAM) [25].

The SAM estimates the number of intersection tests performed by a ray

traversing the structure using the following formula:

Cost(s) = Costleft(s)Pleft(s) + Costright(s)Pright(s)

Essentially, the expected cost of a particular partition is estimated to be

the sum of the costs of the cells formed by the partition s. The expected cost

of each cell is equal to the probability that a ray strikes that cell multiplied by

the work performed by a ray striking that cell. These costs and probabilities

are computed using some arguably inaccurate assumptions (studied in depth

by Havran [29]). The heuristic based build process using this metric is known

as the surface area heuristic (SAH) [25]. The SAH is a greedy, top-down

algorithm that recursively chooses the best scene partition according to the

SAM. In a later chapter of this dissertation, I present several changes to the

SAH build process in order to improve build performance. I also present several

novel cost metrics for hierarchical structures. The SAM isn’t particularly

effective when used to predict the amount of work performed in a uniform

acceleration structure so additional metrics have been proposed for uniform

acceleration structures by Ize [40].

14

2.2 Coherent Ray Tracing Background

Reductions in the cost of acceleration structure traversal combined with

advances in CPU technology have recently [58] allowed for interactive render-

ing of static scenes using ray tracing on a single desktop machine (interactive

performance had been demonstrated previously on a cluster [50]). Starting

with Wald [72] and continued with Reshetov [57] and others [8, 70] an opti-

mization known as packet tracing was the primary optimization developed to

improve ray-tracing performance on modern CPU architectures.

Packet tracing [72] improves performance by traversing a group of rays

through an acceleration structure at the same time. Packet tracing improves

cache performance, the ratio of mathematical operations to branch operations

and allows for efficient use of SIMD instructions. These features utilize key per-

formance features of modern microprocessors to good effect. The fundamental

feature exploited by this optimization is known as coherence. Geometrically,

coherent rays have similar spatial extent and tend to intersect the same spatial

partitions or geometric aggregates. Algorithmically, coherence is a combina-

tion of spatial locality in memory and instruction repetition (enabling the use

of SIMD). Ray packets are primarily an optimization that improves machine

utilization without reducing the amount of actual computation.

Packet-based ray tracing has also been improved by using an additional

aggregation-based acceleration structure. Packets of rays may be represented

by a conservative mathematical object such as a ray interval [11] or a bounding

frustum [58]. By using a conservative representation of the packet, the entire

15

packet may be tested for intersection against an object or an object aggregate

in one step. If the result of this intersection is negative then it is safe to

assume that no rays within the packet could have intersected the object or

object aggregation. Using conservative mathematical representations for ray-

packets can reduce traversal and intersection overheads (in many cases) by

replacing many individual ray tests with a single ray-packet test.

2.3 Specialized Structures Background

In addition to the general purpose acceleration structures discussed up

until this point, many rendering systems use specialized acceleration struc-

tures. Specialized acceleration structures are acceleration structures that are

specifically constructed with certain assumptions in mind. These assumptions

can range from known scene or sample alignment to known temporal coherence

properties of scene objects to known scene structure. Specialized acceleration

structures are employed because they are often cheaper to build and traverse

than their more general cousins and because they can enable additional opti-

mizations.

The most common kinds of specialized acceleration structures are object-

local acceleration structures. A rendering system may use many different

object-local structures, each specialized for a particular object in the scene.

These object-local structures use coordinate frames unique to the object they

accelerate. By using local coordinate frames these acceleration structures im-

plicitly consider the alignment of the objects they accelerate. This alignment

16

allows axis-aligned planes to more closely match the object’s natural align-

ment which tends to significantly reduce the number of intersection tests per-

formed by a ray passing near the object. In addition, object-local acceleration

structures may be instanced. When using instancing, objects that occur mul-

tiple times in a scene are only stored once (along with their local acceleration

structure) in memory. Instanced objects are stored as a reference along with a

transform from the global coordinate frame into the specific object-local frame.

When used effectively, instancing can reduce the amount of memory required

to render a scene by orders of magnitude. The plants scene on the cover of

PBRT [54] uses instancing to great effect.

Additionally, specialized acceleration structures can be used to align

collections of rays (rather than objects) with a particular coordinate frame.

The z-buffer [13], zz-buffer [62] and perspective grid algorithms introduced

in this dissertation use the perspective transform in order to align rays to a

coordinate axis. Under this transform, diverging rays with a common ori-

gin become parallel, axis-aligned rays. This alignment greatly simplifies ray

traversal and is responsible for much of the performance in the algorithms

that use the perspective transform. I will discuss the perspective transform in

significant detail in a later section.

2.4 Fast-Build Background

In addition to adding traversal overhead to rendering, acceleration

structures add overhead for their construction. Reducing the overhead as-

17

sociated with the construction of acceleration structures became a focus of

much research in the past few years, driven by the requirement of scenes (and

thus acceleration structures) to change between frames. Simple, fast-to-build

acceleration structures such as the grid [70] and median split BVHs [48] pre-

sented an initial solution to the problem of dynamic scenes. However, these

structures lacked the traversal efficiency of many of the more advanced, metric-

based structures. The need to trace large numbers of rays for high-fidelity

scenes spurred research related to making metric-based acceleration structure

builds fast. Work published concurrently by the author [38] and by others [55]

provided fast approximations for the SAM in order to improve the build per-

formance of the SAH algorithm for kd-trees. The work presented in my paper

is discussed in a later section of this dissertation. These ideas have subse-

quently been extended to BVH builders by Wald [67]. Approximations for the

SAM reduce the overall computation required to build SAM based acceleration

structures, thus improving performance.

Another common approach for improving acceleration structure build

performance is to build acceleration structures lazily [19, 48] or to use a sim-

pler acceleration structure (such as a uniform BVH) for small groups of ob-

jects [19, 57]. In this context, lazy-build algorithms are another term for

demand-driven build algorithms. In contrast, non-lazy algorithms eagerly do

work that may not be used in the result of a computation. This includes build-

ing an acceleration structure for a part of a scene that no samples pass through

(perhaps another room not visible to the user). Lazy acceleration structure

18

build algorithms only build parts of the acceleration structure that are required

to complete a rendering. Demand is provided by samples (rays) entering a par-

tition or aggregation that has not yet been refined. Refinement (build) occurs

only when demand arises. Many systems, such as those presented in papers

by Djeu [19] and Reshetov [57] lazily build specialized acceleration structures.

Yet another approach for reducing build times is to use a pre-existing

acceleration structure to build another one. Doing so can be as simple as

updating all of the bounds in a BVH (to account for moving geometry) [48,

68, 79] or can involve a more detailed transcription process as described in

my build from hierarchy publication [37]. I will discuss using a pre-existing

acceleration structure to build a new (similar) acceleration structure in linear

time in a later section of this dissertation.

2.5 Z-Buffer Visibility

Classical z-buffer rendering [13] (rasterization) is the most widely used

3D rendering technique. This technique is implemented in hardware by nVidia

and ATI (among others) sold for use by high performance graphics applications

and games. Z-buffer rendering is a highly-optimized special case solution of the

general point-to-point visibility problem. Specifically, it is optimized for large

numbers of regularly spaced queries with common origin, as is often the case

for primary visibility. As I will discuss later, the performance of the z-buffer

algorithm is almost entirely derived by its use of the perspective transform.

Tiled rasterization [21] is a variant of the classical z-buffer algorithm where

19

image tiles are rendered independently. This independence requires geometry

to be sorted and stored in separate bins.

As opposed to common ray tracing implementations, the z-buffer al-

gorithm by itself is inefficient for high depth complexity scenes. The depth

complexity of a sample is the number of scene objects it would intersect if it

did not stop at the first. Specifically, the z-buffer does not use a sufficiently

advanced sorting process to avoid testing all objects against a ray even when

it only cares about the first. Thus the z-buffer algorithm behaves very much

like a database “join.” Because of this, most video games use an additional

acceleration structure to cull the majority of scene objects that will not cause

first intersections for any samples [66] (via view frustum culling, portals or

other methods).

2.6 Other Perspective Transformed Visibility

In addition to the classic acceleration structures and the z-buffer, sev-

eral other acceleration sturctures have been proposed over the years. One is

the zz-buffer [62]. The zz-buffer uses a 2D uniform grid under the perspec-

tive transform (something I will discuss in detail later) to reduce the visibility

problem to two dimensions. In two dimensions, the zz-buffer stores all geom-

etry that overlaps each tile. Only rays and objects that land in the same tile

are tested for intersection. The algorithm handles off-axis rays by conserva-

tively enlarging bounding volumes of all objects such that off-axis rays must

only check objects in the tile in which they start. This approach doesn’t scale

20

well with largely off-angle rays as the conservative bounds end up covering a

significant number of screen-space tiles. The zz-buffer has also unfortunately

been all but forgotten in the ray tracing community and has not been used in

any real-time ray tracing implementations.

Although it is not apparent from any publication, the VFX voxel tool [45]

is rumored to use perspective space grids for volume rendering applications in

movies.

2.7 Overview

This chapter focused on providing context for the data structures and

algorithms contributed in my dissertation. As discussed, my research focuses

on the visibility problem. In this chapter, I provided an introduction into the

common techniques for solving the visibility problem, techniques which I build

upon and extend. In particular I introduced acceleration structures for ray

tracing and provided some intuition as to how they are used to reduce work

required to compute visibility. I also introduced cost metrics and discussed

their use in producing high quality acceleration structures. Several of the

contributions in this dissertation relate specifically to cost metrics. Lastly

I introduced perspective based acceleration structures and their advantages

for common-origin ray tracing. I use the perspective transform in several of

my ray-specialized data structures. To summarize, this chapter introduced

concepts that I build upon throughout this dissertation.

21

Chapter 3

Visibility

This chapter begins the contributions of my dissertation. The remain-

der of the document will focus on the different the data structures and al-

gorithms I developed over the course of my graduate studies and their con-

tributions to the field of real-time visibility. To begin, I will describe the

visibility problem at a high level. I will work from generality toward specifics,

introducing my contributions as they become appropriate.

As mentioned before, visibility queries come in two forms:

1. “Given a scene and a ray, what scene object does the ray intersect first?”

2. “Given a scene and two points, is any scene object directly between the

two points?”

From here forward, I will assume that rays terminate when they inter-

sect an object. Rays intersecting semi-transparent objects spawn secondary

rays in the same manner as they would when intersecting a refractive object.

Using this assumption, rays never continue through objects, thus removing the

need for a query considering objects other than the first.

22

As mentioned previously, the second query is less general and can be

phrased in terms of the first. However, there are several important distinctions

between the two that lead to very different characteristics. Specifically, the

second query is unordered, has finite spatial extent and only requests a Boolean

valued result. These properties allow for a significant number of optimizations

for visibility queries of the second kind. Opaque shadow computations use this

type of query.

3.1 A Taxonomy for Visibility Algorithms

Many different data structures and algorithms exist to accelerate the

visibility problem. Understanding which structure and algorithm is best un-

der which situation is a non-trivial exercise. In order to better understand

different acceleration structures, I present a taxonomy based on common opti-

mizations used by acceleration structures. This section outlines a collection of

optimizations. The collection will form a basis with which I classify common

acceleration structures and algorithms used in existing rendering systems as

well as new structures I present in this dissertation. I intend for this classifica-

tion to provide clarity of understanding regarding the character of acceleration

structures. The bases of the taxonomy are commonly employed optimizations

for visibility algorithms.

I will initially list and discuss the dimensions (optimizations) along

which I will classify visibility acceleration structures and algorithms. It should

be noted that any given rendering system can use multiple acceleration struc-

23

tures and traversal algorithms (even within one hierarchy). Therefore, this

taxonomy cannot necessarily classify an entire rendering system but rather

specific components of it.

Here I list the set of optimizations I have chosen as a basis. I chose

these particular optimizations to be a balance between completeness and man-

ageability. This set is by no means a complete list of possible optimizations.

• Organizational Strategy (partitioning/aggregation) - Acceleration struc-

tures use either partitioning or aggregation to accelerate the join. These

were discussed in detail earlier.

• Change of Basis (many) - Many acceleration structures use a change of

basis to improve performance. These changes of basis include object

space transformations and perspective projection. I consider a locally

transformed acceleration structure to be distinct from a global acceler-

ation structure that happens to point to it. Using this distinction, each

acceleration structure uses one frame of reference.

• Depth (hierarchical/uniform) - Hierarchical acceleration structures can

provide a greater amount of adaptivity than uniform structures can.

However, hierarchical structures are often substantially more compli-

cated to build and traverse. Much information about a uniform acceler-

ation structure is implicit and does not need to be explicitly stored or

computed, resulting on simpler structures.

24

• Adaptivity (adaptive/non-adaptive) Data-driven data structures are of-

ten substantially more flexible than static algorithms. Taking cost met-

rics (such as the SAM) into account when building or traversing an

acceleration structure can improve performance by providing the ability

to tune the acceleration structure to specific rays and scene objects at

run time. For example, a SAM based kd-tree is often significantly more

effective than a median based kd-tree or oct-tree.

• Laziness (none/fine/coarse) - Demand driven (lazy) evaluation can im-

prove performance in many cases. Laziness can occur at many different

granularities. Fine-grained laziness does the minimal amount of work

necessary to perform a task but can incur noticeable overhead for keep-

ing track of what work has been done. Coarse-grained laziness eagerly

computes parts of a result in order to reduce overhead.

• Streaming (samples/objects/neither) - Streaming is an optimization which

elides storing either samples or scene objects (or both) in an acceleration

structure. Instead, one collection is sorted and stored first, and then the

other collection is sorted (often implicitly) and tested for intersection

but never stored. Ray tracing typically streams rays and rasterization

typically streams scene objects.

• Temporal Coherence (static/rebuild/refit) - Sometimes scene objects and

samples change over time. Not all acceleration structures support such

changes. Acceleration structures can support dynamic scenes and sam-

25

ples by rebuilding new acceleration structures each frame to account for

this change. Alternately, acceleration structures can maintain a fixed

topology aggregation hierarchy over time but refit the bounds of the

aggregations to match changing objects.

As mentioned, this list is not intended to be a comprehensive list of

all optimizations used in modern acceleration structures but rather to provide

a basis within which we may classify common acceleration structures. In

Appendix 1 I classify several common acceleration structures according to

these optimizations. The ability to discuss the z-buffer algorithm cleanly in

the context of a ray tracing taxonomy speaks to the power of this basis.

Another common optimization for visibility that I haven’t listed in my

taxonomy is approximation. Many visibility algorithms improve performance

by solving a simplified problem. A classic example is shadow mapping, which

reinterprets scene geometry as a collection of quads perpendicular to the view

of a light. Another is geometric level of detail (simplification). I did not include

approximation in the taxonomy because it isn’t a true optimization in the sense

of improving performance without changing the result of a computation.

By classifying data structures (and implicitly or explicitly their traver-

sal algorithms) according to this taxonomy, we may correlate higher perfor-

mance with specific optimizations and discover which provide the largest im-

provement in performance. Additionally we may derive new algorithms by

combining these optimizations in ways that have not been previously explored.

26

This taxonomy provides significant context for the novel algorithms and struc-

tures I discuss later. It also highlights the source of the z-buffer algorithm’s

high performance and brings to light acceleration structures that allow for

similar performance in the context of ray tracing.

3.1.1 Evaluation of the Basis

Having defined the taxonomy, I will now discuss the relative impact of

each optimization. This discussion is intended to help provide insight into how

the various optimizations effect rendering algorithms.

• Organizational Strategy (partitioning/aggregation) The organization

strategy is arguably the least useful axis of this taxonomy. Despite at

times almost religious fervor amongst the community about which strat-

egy is superior, circa 2008 the community has acknowledged that neither

is vastly superior. A good implementation of either will outperform an

average implementation of the other.

• Change of Basis (many) - This optimization, on the other hand, is prob-

ably the most extreme axis of the basis. Changing the basis in which vis-

ibility is computed can have drastic implications in terms of performance

(order of magnitude). The z-buffer gets its performance from a change of

basis, as do all of my perspective space structures. Additionally, object

space transforms can be used to avoid large amounts of memory usage

(instancing) and avoid per-frame rebuilds for static objects undergoing

ridged body transformations.

27

• Depth (hierarchical/uniform) - Uniform acceleration structures can have

significant benefits in terms of both build and traversal performance.

The z-buffer and perspective grid algorithms use this optimization to

avoid traversal all together, greatly improving rendering performance.

However, uniform structures in the general case have adaptivity problems

and in general make poorer acceleration structures (the degree to which

lack of adaptivity hurts is strongly scene-dependent and can range from

negligible to unbounded).

• Adaptivity (adaptive/non-adaptive) Heuristic based algorithms get a

lot of praise in the ray tracing community. Very few people argue in

favor of simple (e.g. spatial median) split algorithms anymore. This

stance is primarily due to the fact that algorithms like those presented

in this dissertation have recently made heuristic-based algorithms “fast

enough” that people have stopped bothering with inferior structures. It

should be mentioned however that these data-driven algorithms are not

always significantly better than simple ones. Over dense meshes for in-

stance, median split does almost as well as the surface area heuristic. The

perspective surface area metric [35] presented later in this dissertation

demonstrates a significant improvement using adaptivity.

• Laziness (none/fine/coarse) Laziness is another optimization with po-

tentially huge performance implications. My build algorithms in the

Razor [19, 37] system demonstrate an order of magnitude improvement

28

in build performance due to laziness in many cases. It should be noted

that laziness is a build optimization, not a rendering optimization. How-

ever, if acceleration structure build is less expensive, a system can spend

time building more specialized or higher-quality structures, impacting

rendering performance.

• Streaming (samples/objects/neither) - Streaming has no impact on the

amount of computation performed when computing a visibility query.

This optimization, however, does have an impact on the memory foot-

print of an algorithm which can in turn affect the cache performance

of the specific hardware used. I discuss streaming in more detail in the

cost metrics section of this dissertation. Streaming may become more

important when costs of shading are added to the costs of visibility. It

is important to note that streaming is not where the z-buffer algorithm

gets much of its performance.

• Temporal Coherence (static/rebuild/refit) - Temporal coherence is sim-

ilar to laziness in that it can potentially have a huge impact on build

performance. As mentioned earlier, this improvement in build perfor-

mance can be translated into rendering performance via better accelera-

tion structures. The Build from Hierarchy [37] section of this dissertation

uses temporal coherence (in the form of a scene graph) to improve build

performance. (The scene graph in that system uses a refitting approach.)

29

This evaluation of the optimizations underscores the research directions

I have taken over the course of my graduate studies as well as my working

hypothesis.

When designing a visibility engine, the most effective (and potentially

most complicated) optimization to take is the change of basis. It has the

largest ramifications on rendering performance but can add significant build

overhead. In general, when I refer to “specialized acceleration structures” I’m

referring to a change of basis. In the Specialized chapter of this dissertation I

demonstrate that change of basis is a cost-effective optimization even without

the use of laziness or temporal coherence. When using lots of specialized

acceleration structures, laziness and temporal coherence become high-priority

optimizations. I also demonstrate these two optimizations to be extremely

effective in the fast build section of this dissertation.

Using uniform acceleration structures can be a significant boon if rays or

geometry are uniformly dense through the scene (as is the case for eye rays).

However, hierarchical structures are important when scene or ray densities

vary greatly. It is my belief that both uniform and hierarchical acceleration

structures will be used at different resolutions within the same scene in order

to obtain the highest performance. In this way, uniform structures are a

specialization for more uniform geometry.

The adaptivity and organizational strategy optimizations are less em-

phasized in this evaluation. The effects of these optimizations are often sig-

nificantly smaller than the others. Although they may have impact on the

30

performance, they are aspects of a system which are not usually difficult to

change and decisions about them can often be late bound late during a system

design.

Streaming as an optimization has either a huge or insignificant impact

on performance, depending on the hardware being used. Streaming doesn’t

change the amount of mathematical computation but can have significant im-

pact on the rendering performance of systems with constrained caches and/or

memory bandwidth. I will discuss the impact of streaming in some more detail

during my discussion of cost metrics. This process only gets more complicated

when surface shading, multi-resolution, subdivision and displacement mapping

are introduced. Solving memory-related problems for rendering is an extremely

complicated issue and is, as of yet, poorly understood. To make matters worse,

the hardware used for rendering is evolving rapidly at the moment (fall 2008)

making this goal a moving target. In fact, algorithmic innovations with re-

spect to streaming may even affect hardware design. Memory scheduling for

rendering is already the topic of doctorial dissertations, and I believe it will

continue to be in the future.

3.2 Overview

This chapter has discussed the visibility problem in more detail than

the introduction did. In particular, I introduced a taxonomy for classifying

visibility algorithms. This taxonomy is powerful enough to classify both ray

tracing and z-buffering. Classifications are provided in the second appendix.

31

The taxonomy provides context by which to analyze rendering acceleration

structures according to the optimizations they make. In addition to present-

ing the taxonomy, I have discussed the optimizations in the taxonomy in order

to provide intuition as to the relative importance of each when designing new

acceleration structures. Insight provided by this analysis motivates the per-

spective space acceleration structures presented in the specialization section

of this dissertation.

32

Chapter 4

Cost Metrics for Acceleration Structures

Having introduced the visibility problem and discussed approaches for

solving it and optimizations to those solutions, I will now proceed with a dis-

cussion covering cost metrics for acceleration structures. For those less familiar

with acceleration structures, understanding cost metrics can illuminate many

of the properties of the aggregation and partitioning approaches to accelerat-

ing visibility queries. As introduced previously, cost metrics are formulas that

attempt to estimate the expected amount of computation required to compute

visibility using a specific data structure and algorithm. Cost metrics have been

well studied in the field of ray tracing [23, 25, 29].

4.1 The SAM

The most common cost metric for acceleration structures is the sur-

face area metric (SAM). The surface area metric estimates the number of

ray/object intersections an “average” ray will make when traversing the accel-

eration structure. The result of this approximation is equivalent to measuring

the cost of the join in terms of the per-sample cost. At the macroscopic level,

it is only reasonable to measure per-sample costs, because the number of sam-

33

ples is unknown until run-time. (However, other assumptions can be made for

known sets of rays, such as eye-rays.) The surface area, as I will present it,

assumes a binary acceleration hierarchy. Each node in the hierarchy represents

a volume (axis-aligned box) of space. Internal hierarchy nodes have two chil-

dren, each representing a different volume. In a kd-tree a split plane defines

the two child volumes implicitly. In a BVH the child volumes are explicit. I

will refer to the two child volumes as ‘left’ and ‘right’.

Here is the formula for the SAM:

cost(s) = PL(s)CL(s) + PR(s)CR(s) (4.1)

• PL and PR are the probabilities of a ray striking the left and right children

respectively. These probabilities are conditional on a ray striking the

volume defined at the node being evaluated. They are computed using

ratios of surface areas between the children and the parent.

• CL and CR are the (usually approximated) costs of a ray intersecting

the left and right partitions respectively. When evaluating an already

constructed tree, these costs are obtained via a recursive invocation of

the cost function. During a top-down (SAH) build process they are

estimated to be the number of primitives overlapping each side.

The surface area metric works in the following way: the cost (expected

number of ray-object intersection tests) for a ray striking a node in the hier-

archy is equal to the probability of striking each child multiplied by the cost

34

of striking those children. Acceleration structure leaves have cost (expected

number of ray-object intersection tests) equal to the number of objects they

contain. The probability of a ray striking a child is estimated to be the ratio

of the surface area of that child to the surface area of its parent.

The SAM makes several unrealistic assumptions. In order to compute

intersection probabilities via ratios of surface areas, rays are assumed to have

a uniform stochastic distribution of directions. Additionally, the costs of each

child are assumed to be independent (this implies rays are assumed not to

stop when they intersect an object). Some work has been done to address

these deficiencies [29] but more accurate assumptions are either expensive to

compute or reduce the flexibility of the acceleration structure and are therefore

not often used. My work addresses some of these assumptions.

4.2 Details of the Visibility Join

Having outlined the most common cost metric, I will now present sev-

eral details of visibility joins that have an effect on cost metrics. I will begin by

discussing asymmetries between the two halves of the join. These asymmetries

will have implications on the design of data structures and on the cost metrics

for those structures.

A cross product between any two sets is an inherently unordered oper-

ation. A visibility join could treat samples and scene objects symmetrically.

However, each group has several unique features that introduce asymmetries

in practical solutions to the visibility join. I assert that the properties that

35

cause these asymmetries have been understudied to date and more careful un-

derstanding can lead to improved acceleration structure performance. Here I

present a discussion of these properties and their effects on cost metrics for

acceleration structures.

Samples have the following properties that scene objects do not:

1. Samples often have infinite (or large finite) spatial extent in one direction

and small or no spatial extent in perpendicular directions.

2. Samples typically follow the flow of information in a rendering system.

(Rendering results are more commonly associated with samples than

with geometry and ultimately an image is produced from samples. Reyes

style shading [17] is different in that it also deposits information on the

geometry.)

3. Samples are often ordered from one end to the other. For example, eye

rays are traced away from the eye. This property affects access patterns

in the geometry among other things.

4. Samples are largely unknown at the beginning of the rendering process.

This property forces pre-computed acceleration structures to be object-

centric. Scene geometry can also be unknown during pre-processing and

generated on the fly with subdivision and displacement. However, dy-

namic geometry tends to remain spatially localized, unlike secondary

samples.

36

5. Some collections (eye, hard shadow) of samples are extremely well or-

ganized, originating at a single point or from a small volume. This

organization is often far more uniform than any scene geometry. The

z-buffer algorithm takes advantage of this uniformity.

6. Samples are extremely abundant. Commonly, 108 −1010 unique samples

(rays) per second are required to produce high-fidelity images at real time

rates. This property induces a large focus on per-sample performance in

rendering.

Scene objects have the following properties that samples do not:

1. Scene objects are often very spatially localized. Localization often allows

scene objects to be easily bound into aggregations with reasonable spatial

extent. (Subdivided geometry often exhibits even higher locality and a

very high degree of uniformity.)

2. Scene information is highly compressed. Often large amounts of scene

information are decoupled from visibility. Texture mapping, for example,

removes much of the high-frequency information from a scene leaving a

relatively low-frequency representation. Also, the level of information in

a scene may easily be varied using subdivision and other level-of-detail

schemes. Scene objects may also be simplified by bounding boxes or

other proxies.

37

3. Scene objects are often organized for other purposes. Game engines typi-

cally track objects in a scene graph for purposes of view-frustum culling,

animation updates and collision detection, among other things. This

pre-organization can be helpful when building acceleration structures.

4. Scene objects have a very high level of temporal coherence. A scene

typically changes very little from frame to frame and much of the ge-

ometry may remain completely unchanged over an extended period of

time. This property allows geometry-centric acceleration structures to

be re-used between frames.

The sample and scene object properties I listed all have implications

on acceleration structures and rendering algorithm design. I will reference

these properties in my following discussion of cost metrics for acceleration

structures. They have an impact on the streaming optimization from the tax-

onomy I presented earlier and are the primarily influence on storage and flow

of information within a system. They are therefore important when building

a system that takes advantage of specific memory architecture. The impli-

cations of these features are far reaching. As I mentioned previously, entire

dissertations have focused on memory issues relating to the visibility problem.

Classical ray tracing was designed with many of these properties (most

likely implicitly) in mind. Recursive ray tracing (with a hierarchical accelera-

tion structure) is designed to efficiently handle large numbers of lazily created

samples. It is also capable of avoiding a large (circa 1985) memory footprint

38

by avoiding a frame buffer because it doesn’t store per-sample information.

Ray tracing also takes advantage of many of the properties of scene objects

including spatial locality, representation of objects using simplified structures

(bounding boxes) and perfect temporal coherence in non-dynamic ray tracing

systems.

Classical z-buffering was also designed with some of these properties

(implicitly) in mind. Specifically, the z-buffer algorithm hinges on the per-

fect regularity of the primary samples. Rendering systems using z-buffering

also typically use large amounts of geometric compression based primarily on

texture-mapping. Additionally, z-buffer engines typically use geometric aggre-

gation (bounding boxes) to cull entire objects that do not intersect the view

frustum.

4.3 Cost Metrics for Memory Usage

The visibility join has no inherent order. Samples and objects can be

aggregated or sorted in any order. Ray tracing systems tend to aggregate or

sort scene objects into an acceleration structure and traverse rays across that

structure. Z-buffering, on the other hand, implicitly sorts all of the samples

first and streams the scene objects across the samples. Here I will present

several cost metrics for determining expected memory usage for various accel-

eration structures. These metrics can help researchers design data structures

to achieve high cache utilization in cache-constrained systems.

Although the join is unordered in nature, ordering matters with respect

39

to memory footprint and access patterns. This dependency is caused by an

optimization for the join that is so common that it usually isn’t recognized

as an optimization. When sorting two sets in order to perform a join, only

one set needs to be stored in sorted form. (Both sets are always sorted even

though this may not be obvious. E.g. ray traversal is a sorting procedure that

doesn’t store the results.)

First I will give an example of an algorithm that stores both samples

and geometry. Given a grid structure, a scene and a set of rays:

1. Sort all of the scene geometry into the grid cells.

2. Sort all of the samples into the grid cells.

3. Visit each grid-cell and compute intersections for all samples and geom-

etry in each cell (storing the nearest intersection along each ray).

This approach is, however, likely to be inefficient for a number of rea-

sons. For this discussion I will focus on problems related to memory footprint.

An example of an algorithm that stores geometry and streams samples

is traditional ray tracing. Geometry is sorted into and stored in an acceleration

structure. Rays are streamed across this acceleration structure (traversal is a

sorting process typically terminated upon first intersection) but not stored at

the leaves. Instead the rays perform intersections and keep the results locally

(in registers or on the stack).

40

An example of an algorithm that stores samples and streams geometry

is z-buffering. Z-buffering implicitly sorts and stores samples in a grid. Objects

are also implicitly sorted (rasterized) into the grid but thrown away after

intersection tests are performed. Intersection results are stored in a per-ray

data structure (the z-buffer).

Given a collection of samples and scene objects and a collection of spa-

tial partitions (e.g. grid or BSP tree), it is possible to make an informed

decision about which collection to sort and store first: scene objects or sam-

ples. The choice of collection doesn’t affect the expected amount of intersection

work performed to compute the join but can have a profound effect on mem-

ory performance. If both collections fit into cache, the order doesn’t matter

very much. However, if only one fits into cache, storing that collection and

streaming the other avoids cache misses. If neither fits in cache, one of several

things must be true to achieve optimal memory performance:

• Samples and scene objects both get coarsely sorted into bins and stored.

These bins are recursively processed until one collection fits in cache.

• The collection of objects or samples being streamed is already coherent

(i.e. partially sorted) in a way that makes hardware caching of the

sorted structures effective. Ray tracing often has this property: rays that

originate near one another tend to intersect the same objects, making

effective use of hardware caching for both acceleration structure nodes

and geometry.

41

• The join is sparse. When the join is sparse, each object or sample is

only used a small number of times. This property implies that caching

of any sort isn’t going to be effective and “optimal” memory perfor-

mance is poor. The z-buffer operates in this domain by assuming low

depth complexity (each sample is only compared to a small amount of

geometry).

4.3.1 Additional Considerations

Image information is associated with samples (not with geometry). If

samples are sorted first, enough space must be allocated to store the results

of the intersections (depth, color, etc.) along with or in place of the stored

samples. In a z-buffer system, this storage is the depth (z) buffer and the frame

buffer. In the same manner, when samples are streamed, the results must be

streamed as output in order not to pollute the cache (the cache is assumed

to be in use by the geometry). This property affects memory bandwidth

requirements of the system.

Some system design characteristics can place restrictions on what can

be streamed. In a recursive ray tracer with only one acceleration structure

we have no choice but to sort scene objects first because we don’t know all of

the samples initially. We may however choose to stream scene objects across

subsets of samples, an approach taken by packet tracing. Only by gathering

collections of rays is it reasonable to stream geometry. Z-buffering uses this

approach by implicitly gathering all of the eye rays in advance.

42

Additionally, the use of uniform acceleration structures, scene objects

or samples can reduce the storage requirements for a particular collection of

samples or scene objects substantially. For instance, the z-buffer algorithm

uses a regular grid of samples that are stored implicitly and recomputed on

the fly. This greatly reduces the required storage for rays.

4.3.2 The Metrics

Cost metrics can provide an estimate for the cache footprint of and

bandwidth required by a particular visibility algorithm. Unfortunately, mem-

ory usage cost metrics generally fall into two categories: trivial and unpre-

dictable. Unpredictable cost metrics vary heavily on the inputs to the join.

For example: the number of nodes in a heuristic terminated kd-tree is im-

possible to predict for most scenes. This number can be bounded, but the

bound isn’t useful because the worst case is very bad. I will present several

trivial memory usage metrics and demonstrate the benefits of even such trivial

metrics on rendering performance. Throughout this section m will represent

the number of samples and n the number of scene objects.

The standard BVH requires (2n− 1) ∗ 32+Kn bytes of storage includ-

ing (2n− 1) internal nodes at 32 bytes each and Kn storage for the geometry

itself. If we assume we have enough local storage for the BVH and that it

is already loaded into that storage, using a BVH requires 6m bytes of out-

put bandwidth (assuming 3 channels of half-float color output). This output

bandwidth measurement assumes that display memory exists outside of the

43

local storage.

Alternatively, the z-buffer uses 10m (1 float depth field and 3 half-float

color fields) storage and Kn+6m bytes of memory bandwidth (Kn to stream

the geometry and 6m to flush the frame buffer). These measurements also

assume that the depth and color buffers fit into the local storage and have

already been loaded. The perspective grid behaves like a z-buffer when used

to store parallel rays. These metrics are simple but provide an elegant tradeoff

between memory bandwidth and cache requirements.

By using these metrics, acceleration structures can be designed to fit

specifically into available cache. For example the tile sizes for the perspective

grid acceleration structure (discussed in a later chapter) were chosen using

these metrics to fit into available cache. By using these metrics, specialized

acceleration structures can be chosen to fit into cache, ensuring low latency

and high bandwidth access.

4.4 Total Cost Metrics

In addition to cost metrics for memory utilization we may extend cost

metrics to include the total cost associated with a particular node. The total

cost for a node is the cost of building the node plus the combined cost of

traversing (through the node) all rays that intersect the node. Accumulating

the total cost across all nodes doesn’t result in a different amount of work

than the traditional per-ray prediction (SAM value) added to the build cost

of the structure but does clarify the distribution of that work. Specifically,

44

nodes high in an acceleration structure have significantly higher cost than do

lower nodes. Depending on the build algorithm, some of this work can come

from the build process, but much of it comes from traversal. The upper levels

of a hierarchy are touched significantly more often than lower levels. Most

obviously, in the majority of traversal algorithms, the root node gets touched

by every ray (or packet) that touches the acceleration structure.

This section does not contain explicit formulae for two reasons. First,

it is difficult to predict the number of rays striking a specific node to even a

moderate degree of accuracy. Second, the large variety in build costs due to

different algorithms makes predicting build costs very difficult and ever chang-

ing. Hardware details such as cache sizes and behaviors further complicates

cost prediction. Regardless, I believe the following discussion has pedagogical

benefits.

The relative cost of traversal is extremely high for upper levels of the

acceleration structure. Any amount of additional per-ray overhead associated

with a particular acceleration structure is magnified at these points in the

hierarchy. As an example, I will discuss the difference between a kd-tree and

a BVH. Kd-trees tend to have more nodes than BVHs but do (many times)

less work per node. The overhead of more nodes increases memory usage and

adds additional unpredictable branches to the traversal process. Interestingly,

these differences seem to mostly cancel each other out and the two acceleration

structures perform similarly well in the average case. However, in the upper

levels of a hierarchy, a kd-tree traversal algorithm will perform significantly

45

less math than a BVH will over the top portion (e.g. the top 10 levels) of

the acceleration structure. BVHs tend to perform better at the lower levels

of an acceleration structure, due largely to the fact they avoid the “integral

duplication” problem described in the next section and fixed (lower) number of

tree nodes. This analysis largely suggests that kd-trees are a more appropriate

coarse acceleration structure than BVHs.

It should be noted that 10 levels of a BVH can potentially produce a

more refined acceleration structure than 10 levels of a kd-tree because it uses

6 times as many planes. However, half of the planes in an traditional BVH are

duplicated between each child-parent pair, significantly reducing the number

of unique planes in a BVH. The result is that a BVH does 6 times the work

of a kd-tree and can have at most 3 times as many unique planes. For large

numbers of rays, the work/refinement ratio still favors the kd-tree at the top

of a hierarchy.

4.5 Metrics Continued: Corrections to the Surface Area
Metric

In addition to the prior discussion of cost metrics, I present a correction

to the original surface area metric in order to account for a specific optimization

(mailboxing) and a new metric with more accurate assumptions for specialized

acceleration structures. The latter is rederived from the ground up using new

assumptions about ray distribution for an acceleration structure.

46

4.6 Corrections to the Surface Area Metric with Re-
spect to Mailboxing

The work presented in this section draws primarily from my work pub-

lished at the IEEE Conference on Interactive Ray Tracing 2008 [34].

As mentioned previously, the surface area heuristic is the de-facto stan-

dard algorithm for producing high-quality adaptive acceleration structures.

This algorithm is used to produce acceleration structures for both high-quality

and real-time ray tracing applications. Hhigh-quality acceleration structures

minimize the per-ray cost of ray tracing, reducing overall render times. With

recent advances in acceleration structure build algorithms, these per-ray costs

are continuing to dominate time spent ray tracing, even for real-time applica-

tions. Given the importance of per-ray costs in ray tracing, improvements to

the surface area heuristic are widely beneficial.

In particular, it is well known that the surface area metric (SAM) makes

several unrealistic assumptions. These assumptions include assuming uniform

distribution of ray direction and assuming that rays skewer (pierce geometry

without intersection) the scene. Havran’s thesis [29] describes a more general

cost metric which corrects for several of the inadequacies of the initial metric.

However no previous work addresses the interaction between the surface area

metric and another common ray tracing acceleration algorithm, mailboxing.

This section addresses the interaction between mailboxing and the surface area

metric. I provide a corrected cost metric for use in systems using mailboxing.

Additionally, I provide an example of how this correction fixes a problem with

47

kd-trees. Finally, I show that this simple correction to the surface area metric

can lead to noticeable performance improvements in ray tracing systems that

use mailboxing.

4.6.1 The Mailboxing Optimization

Mailboxing [29] is a ray tracing optimization specific to spatial parti-

tioning acceleration structures. Due to the fact that an object can potentially

fall onto both sides of a spatial partition, a ray that intersects both sides of

the partition can potentially attempt to intersect the same object multiple

times. These additional intersection tests are entirely redundant. Mailbox-

ing is a method of tracking intersections in order to remove these redundant

computations.

Traditionally, mailboxing is implemented by adding a “mailbox” to

each object in a scene. This mailbox is a small allocation of memory that

stores the ID of the last ray that tested against the object. If a ray visits an

object more than once, its ID is already present in that object’s mailbox and

no redundant intersection is performed. In a packet-based ray tracer, a packet

ID is stored instead of a ray ID, and whole packets are checked at the same

time. Therefore, the overhead of mailboxing is amortized across the packet.

Wald [70] describes significant performance advantages for mailboxing using

packets and the coherent grid traversal algorithm.

However, classical mailboxing suffers from poor cache performance on

modern architectures and has at points been evaluated and considered more

48

harmful than helpful [30]. Even moderate-sized scenes can have several megabytes

of mailboxes that can be accessed in a non-coherent order, causing huge prob-

lems for hardware caches.

To address these memory-related concerns, variations of classical mail-

boxing have been developed to mitigate the problem of having a large read/write

data structure. Hashed mailboxing [8] keeps a small hash table of the last sev-

eral intersections in order to reduce storage requirements. Hashed mailboxing

has been shown to have performance benefits comparable to those of clas-

sical mailboxing while using only a small fraction of its memory. Recently,

Shevtsov [51] introduced inverse mailboxing, which uses a significantly smaller

amount of memory than even hashed mailboxing. Inverse mailboxing keeps a

cache of recently visited object IDs for the current ray packet (as opposed to

keeping recently visited ray IDs for each object). The cache is conservative and

doesn’t necessarily eliminate all redundant intersection tests but in practice

eliminates many, even with a small 8-entry cache. The paper shows that in-

verse mailboxing approach provides performance improvements in a real-time

ray tracer proving that mailboxing has potential to be a useful optimization

in modern systems.

4.6.2 Mailboxing and The SAM

Since it conditionally removes some of the intersection tests performed

during traversal, mailboxing has an effect on the number of expected inter-

section tests performed when traversing an acceleration structure (and thus

49

the cost of the structure). This reduction should be reflected in the metrics

used to pick scene partitions. Specifically, rays that traverse both sides of a

partition should not be considered to intersect duplicated geometry more than

once. Taking this reduction into account changes the SAM to the following:

cost(split) = CS + CLPL + CRPR − CL∧RPL∧R (4.2)

• CL∧R is the amount of work that is duplicated on both sides of the

partition. Using the common recursive cost estimate (number of objects

on each side) this value is the number of objects that overlap both sides

of the partition.

• PL∧R is the probability that a ray traverses both sides of the partition. A

ray strikes both sides of the partition only if it strikes the partition divid-

ing the two child cells. Since this partition is a convex object contained

within the parent cell, the probability of hitting it may be computed as

a ratio of surface areas just like PL and PR.

This simple modification to the SAM corrects for mailboxing in the

context of SAH based kd-trees. It has an impact on the construction of kd-

trees relative to BVHs. In the implementation chapter I describe its effect

in a common geometric scenario and discuss why the new kd-tree has lower

cost. In short, the analysis shows that the additional work induced by object

duplication is addressed by the mailboxing optimization, but without a change

to the cost metric, the potential benefits of mailboxing aren’t fully realized.

50

4.7 The Perspective Surface Area Metric

As mentioned previously, the surface area metric makes several unre-

alistic assumptions. These assumptions are even less realistic in other spaces.

Many of the ray-specialized acceleration structures I describe in this disser-

tation use perspective space. The surface area heuristic doesn’t build very

effective hierarchies in perspective space because of its assumptions about ray

distribution. These poor assumptions are exacerbated under the perspective

transform. In this section I will re-derive a new metric, which I will refer to as

the Perspective Surface Area Metric (or PSAM for short). I will demonstrate

that the PSAM provides higher-quality acceleration structures in perspective

space. Additionally, if an acceleration structure is being constructed per frame

per light (as is the case for my results using perspective structures), more ac-

curate assumptions can be made.

The assumption of uniform ray direction is, in some cases, a reasonable

assumption. In the past, acceleration structure build was an offline process.

Acceleration structures were built once and then potentially reused for many

different camera positions. This scenario provided a wide range of potential

rays to be traced using a given acceleration structure. More accurate assump-

tions, however, provide higher-quality acceleration structures for given sets of

rays. This problem was studied in detail in Havran’s dissertation [29], and

many modifications were provided to address these issues. However, at the

time, per frame rebuild was considered to be too costly to be practical and

many of the proposed improvements have not been used for general-purpose

51

ray tracing.

Recently, in order to support dynamic scenes, researchers have success-

fully made acceleration structure build an online process. Dynamic ray trac-

ing systems rebuilt or refit an acceleration structure (or in some cases many

structures) each frame [19, 48, 57, 68, 79]. This per frame rebuild allows for

restrictions to be placed on the acceleration structure such as known camera

or light locations. The PSAM will make use of these assumptions.

4.7.1 Brief Introduction to Perspective Space

I define perspective space as world space transformed by the perspective

transform. The perspective transform is defined by the following equations:

x′ = x/z (4.3)

y′ = y/z (4.4)

z′ = −1/z (4.5)

The perspective transform is a non-affine transform that map lines to

lines (precisely, it is a projective transform). Since this transformation maps

lines to lines, it maps rays to rays and polygons to polygons. Additionally,

ray tracing in perspective space is identical to ray tracing in world space. An

acceleration structure built in perspective space can be traversed by rays in

perspective space using all of the same algorithms that one would use in world

space. Even ray-triangle intersection can be performed in perspective space,

although barycentric coordinates must be corrected prior to shading.

52

4.7.2 Adaptive Perspective Space Acceleration Structures

The oft erroneous assumption of uniform incoming ray direction made

by the SAM allows the probability of intersecting a child node to be computed

as a ratio of node surface areas. These node surfaces are usually axis-aligned

boxes, whose areas are inexpensive to compute. To use this metric in per-

spective space, the node faces must be transformed back into regular space

before computing their surface areas. These transformed faces are in general

not axis-aligned and their areas are thus more expensive to compute. Alter-

natively, if we changed the assumption to be: “incoming ray directions are

uniformly distributed in perspective space”, then we could use surface areas

computed in perspective space from axis-aligned boxes. However, the assump-

tion of uniform incoming ray direction in perspective space is likely to be even

less accurate than the assumption of uniform incoming ray direction in world

space. Either way, the assumption of uniform incoming ray distribution in

any space is unreasonable when the acceleration structure is used for just one

frame with either one light or one camera.

I opt for a first principles re-derivation of a heuristic for perspective

space acceleration structures. First I abandon the assumption of a directionally

uniform incoming ray distribution in favor of a distribution more appropriate

for cameras and area lights. Second, I compute the probability of hitting a

node in perspective space.

The new metric (the perspective surface area metric) more accurately

models the distribution of rays that use a perspective space acceleration struc-

53

ture. The metric assumes that ray origins (or destinations) have a uniform

distribution on the surface of an axis-aligned quad (which will be referred to

as the aperture). The metric also assumes a uniform distribution of ray di-

rections leaving one side of the aperture. More specifically I define a uniform

directional distribution as meaning that if we place a plane at a certain dis-

tance from the origin, the spacing of ray intersections on the plane will be

uniform. This distribution is equivalent to the equal spacing of pixel centers

on an image plane. Figure 4.1 illustrates this distribution.

Figure 4.1: A cross section of rays with a “uniform” distribution in direction
(by the assumptions). These rays are not uniformly distributed in angle, but
this is the common distribution for eye rays. This style of uniformity also
translates into perspective space nicely.

The assumption that ray origins are uniformly distributed is almost al-

ways accurate given common sampling patterns associated with Monte-Carlo

integration. The assumption that outgoing ray directions are uniformly dis-

tributed is somewhat less accurate, but I use it anyway for two reasons. First,

it is impossible (or at least very difficult) to know the distribution of secondary

rays within a scene a priori. I do not propose solving that problem here. The

54

second and perhaps more comforting reason is that the probabilities computed

by the PSAM using this assumption are ratios. Given that we are computing

ratios, as long as the distribution of rays in the direction of the parent box is

locally close to uniform, the effects of variation in ray density will cancel out

and the computed ratios will be close to accurate.

Before I begin the derivation of the PSAM, I would like to outline some

properties that it intuitively should have. First, if the area of the aperture is

zero (i.e. the light is a point light) then the probability of a ray striking a box

should be proportional to the projected area of the front face of the box. That

is, the probability of striking the box should be proportional to the area of the

box when projected into two-space. Second, moving twice as far away from

a light should have the same effect as shrinking the light by one half in each

dimension (following the rule that asymptotically, light falls off quadratically

with increasing distance). In other words, area lights should appear smaller

the farther away from them you get. In the limit, partitions that are far from

an area light should be the same as partitions from a point light.

4.7.3 Derivation of the PSAH

For the new cost metric I use the same form as the traditional SAM:

costtraversal = cnode +
∑

children

PchildCchild (4.6)

The cost estimates will remain the same, simply the number of objects

overlapping each child. This section will be dedicated to deriving new prob-

55

ability terms using the assumptions described earlier. The probability of a

ray striking a child box given that it struck the parent box is the ratio of the

number of rays (out of all possible rays) that strike the child box divided by

the number of rays that strike the parent. The number of rays that strike a

box may be formulated as an integral over all rays of the Boolean intersection

function for a ray/box pair. The probability of striking a child box is the ratio

of these integrals.

p(child) =

∫
Rays

hit(child, ray)dray
∫

Rays
hit(parent, ray)dray

(4.7)

In order to more accurately define these integrals, I formalize several of

the assumptions about the distribution of rays that use a PSAM based accel-

eration structure. Rays are assumed to launch from a rectangular aperture A

and are assumed to have a uniform distribution of slope. Rays will take the

following form:

ray := (o, d) (4.8)

o ∈ [−Ax, Ax] × [−Ay, Ay] × [0] (4.9)

d ∈ (−∞,∞) × (−∞,∞) × [1] (4.10)

Where o is the ray origin taken from a uniform distribution on a rect-

angle at z = 0 and d is a direction taken from a uniform distribution of

intersections with a plane at z = 1. See figure 4.1 for a two-dimensional cross

56

section of this distribution in direction.

x = dxt + ox (4.11)

y = dxt + oy (4.12)

z = t (4.13)

Then we transform these equations into perspective space:

x′ = x/z = (dxt + ox)/t (4.14)

y′ = y/z = (dyt + oy)/t (4.15)

z′ = −1/z = −1/t (4.16)

By defining a new parametric variable for the ray, t′ = 1/t, we can

rewrite the perspective equations as:

x′ = oxt
′ + dx (4.17)

y′ = oyt
′ + dy (4.18)

z′ = −t′ (4.19)

Notice that the roles of values for o and d have been reversed in per-

spective space. By introducing new variables o′ = d and d′ = o representing

the ray origin and direction in perspective space we get:

x′ = d′
x′t′ + o′x′ (4.20)

y′ = d′
y′t′ + o′y′ (4.21)

z′ = −t′ (4.22)

57

And from the swap of o and d and their initial distributions we also

obtain the following distribution for o′ and d′:

ray′ := (o′, d′) (4.23)

o′ ∈ (−∞,∞) × (−∞,∞) × [0] (4.24)

d′ ∈ [−Ax, Ax] × [−Ay, Ay] × [−1] (4.25)

A common confusion regarding the above transform is that many read-

ers think about transforming an origin and a direction separately. Thinking

about rays in this manner leads to questions regarding limits or infinity be-

cause the origin in “normal” space has oz = 0. Rather, I would recommend

thinking about rays as line-equations put through a perspective transform.

We may now more accurately specify the intersection integral over all rays in

perspective space:

∫ Ax

−Ax

∫ Ay

−Ay

∫ ∞

−∞

∫ ∞

−∞
hit(box′, ray′)do′y′do′x′dd′

y′dd′
x′ (4.26)

In perspective space, if we fix a ray direction (from [−Ax, Ax]×[−Ay , Ay]×

[−1]) and assume a uniform distribution of origins, the number of rays that

strike a box is equal to the area of that box projected onto the z′ = 0 plane in

the direction of the ray. See figure 4.2. This area may be computed by sum-

ming the projected areas of the three visible faces from the fixed direction.

See Figure 4.3 for reference with regard to the following equations. Given a

58

Figure 4.2: Given a fixed direction (indicated) the shadowed region is the
set of origins that will intersect the box. The area of the shadowed region is
computed in Equations (4.27)- (4.29).

59

Figure 4.3: A cross section of a box being projected onto a plane. This figure
is designed to give intuition into equation (4.28). The planes of the box per-
pendicular to the z = 0 plane have areas scaled by the tangent of the direction
vector.

60

fixed ray direction we have:

area =

∫ ∞

−∞

∫ ∞

−∞
hit(box′, ray′)do′y′do′x′ (4.27)

= ∆x′∆y′+| tan θy′z′|∆x′∆z′+| tan θx′z′ |∆y′∆z′ (4.28)

= ∆x′∆y′ + |d′
y′|∆x′∆z′ + |d′

x′|∆y′∆z′ (4.29)

Where ∆x′, ∆y′ and ∆z′ are the dimensions of an axis-aligned box in

perspective space. Substituting this formula into the original integral we get:

∫ Ax

−Ax

∫ Ay

−Ay

(
∆x′∆y′ + |d′

y′|∆x′∆z′ + |d′
x′|∆y′∆z′

)
dd′

y′dd′
x′ (4.30)

=4

∫ Ax

0

∫ Ay

0

(
∆x′∆y′+d′

y′∆x′∆z′+d′
x′∆y′∆z′

)
dd′

y′dd′
x′ (4.31)

=4

∫ Ax

0

(
Ay∆x′∆y′+

A2
y

2
∆x′∆z′+Ayd

′
x′∆y′∆z′

)
dd′

x′ (4.32)

=4
(
AxAy∆x′∆y′ +

AxA
2
y

2
∆x′∆z′ +

A2
xAy

2
∆y′∆z′

)
(4.33)

=AxAy(∆x′∆y′ +
Ay

2
∆x′∆z′ +

Ax

2
∆y′∆z′) (4.34)

Due to the fact that probability is a ratio of these integrals, the division

will cause common factors to cancel. Thus we may scale the computed integral

to:

G(box, A) = ∆x′∆y′ +
Ay

2
∆x′∆z′ +

Ax

2
∆y′∆z′ (4.35)

This expression is similar to the traditional SAM except that it contains

scaled aperture terms. With it we may compute the probability of striking each

61

child box and thus the cost of a partition:

costtraversal = cnode +
∑

children

G(child, A)

G(parent, A)
Cchild (4.36)

With a solution in hand, let’s look back at the intuitive properties

we required in an appropriate cost. First, if the area of the aperture is zero

(e.g. a light is a point light) than the probability of striking a box should be

proportional to the projected area of the front rectangle of the box. Second,

if we move twice as far away from a light, it should have the same effect as

shrinking the light by one half in each dimension. Both properties are clearly

provided by the solution formula. Setting A = (0, 0) removes the ∆z′ terms

and yields ∆x′∆y′. Increasing znear and zfar by a factor of two decreases z′near

and z′far by a factor of two and thus ∆z′ by a factor of two. Since ∆z′ always

occurs multiplied with Ax or Ay, scaling z has the same effect as dividing A

by two. Due to these effects, parts of the scene with large z values will not

choose splits in z′ nearly as often as those in x and y because those terms will

dominate the cost function.

This cost function has the useful practical properties that it is simple

to compute, is linear in x′, y′ and z′ and requires very little algorithmic change

from the original SAM to adopt. The perspective transform and the PSAM

provide a significant improvement over the origins SAM and world space. As

the implementation chapter will discuss, near common origin ray tracing is

approximately 30% faster in using perspective space and the PSAM than it is

in world space using the SAM. For large collections of rays, this improvement

62

in rendering performance usually outweighs the additional cost of building a

specialized acceleration structure. The results in the implementation chapter

also demonstrate that the PSAM is twice as effective as the original SAM in

perspective space, justifying all of the effort required to derive the new cost

metric for perspective space.

4.8 Concluding Remarks

I have spent this chapter discussing cost metrics for acceleration struc-

tures. Cost metrics (typically) estimate the cost of traversing an acceleration

structure. They are used in build algorithms (e.g. surface area heuristic) to

make locally optimal decisions by providing a basis of comparison for candidate

scene partitions.

In this chapter, I first provided background and discussed properties

of the visibility problem that are relevant to the design of cost metrics. After

introducing the topic, I presented cost metrics for memory bandwidth and

footprint and discussed metrics to measure combined build and traverse cost.

I also discussed a correction to the surface area metric to account for the

mailboxing optimization. Lastly, I also presented a new cost metric for ac-

celeration structures under the perspective transform. This transform, along

with the assumption that a post-transform structure only accelerates one light

or camera, changes enough assumptions to warrant a new cost metric. In the

implementation chapter I will show that the new metric is twice as effective

as the SAM in perspective space.

63

Cost metrics are an important aspect of acceleration structure research.

Acceleration structures created using cost metrics are often significantly faster

to traverse. Additionally, cost metrics provide useful incites when designing

acceleration structures by measuring potential workloads. The metrics and

corrections I presented in this chapter contribute to the understanding and

effectiveness of acceleration structures.

64

Chapter 5

Specialized Acceleration Structures

Given the arguments for specialized acceleration structures (change of

basis and temporal coherence) presented in the taxonomy section, it should

not be surprising that all rendering systems used in video games use multiple

acceleration structures. A z-buffer is used for visibility and “shadow” queries.

BSP trees or something similar are commonly used to store static scene geom-

etry and object hierarchies are used to manage dynamic models and collision

detection. To further my hypothesis about specialized acceleration structures,

I assert that all of the following cases are best handled each with their own

specialized acceleration structure:

• Static scene geometry/objects - Highly optimized acceleration structures

can be created off-line for static geometry. Static geometry exists in all

flavors from buildings to objects that don’t change form, such as a sword

or a table.

• Dynamic objects with static topology - Most non-static objects fall un-

der this category. Skinned characters and other deformable objects are

common examples. Acceleration structures (BVHs) with static topology

can often effectively accelerate these objects without ever being rebuilt.

65

Although the trend in games is to make the world more and more dy-

namic, many objects are fundamentally static (landscape and buildings

are two common examples).

• Dynamic collections - Characters and particles often have large dynamic

ranges of movement within a scene and can require fully dynamic accel-

eration structures. However, the number of dynamic objects that need

to be tracked in such a structure is often orders of magnitude smaller

than the number of primitives making up those objects.

• Coherent Visibility Queries - Large numbers of coherent visibility queries

are often best accelerated with their own acceleration structure. The z-

buffer is a classic example of such an acceleration structure. The perspec-

tive space acceleration structures I present also fall into this category.

• Global Illumination - Acceleration structures for global illumination may

look very different than they do for high-frequency visibility.

This list should help reiterate the point that there is no single best

acceleration structure. Many different structures are needed for the diverse

array of geometry and queries. Although the idea is not new [6], at this moment

the idea of using multiple acceleration structures in the context of real-time

ray tracing is not widely practiced. A common concern when using multiple

specialized acceleration structures is the cost of building and maintaining such

structures. One should note that many of these cases don’t in fact require a

66

structure rebuild. Static geometry requires no update at all and structures

(BVHs) with static topology only require a bounds update (an operation that

is known to be fast). In this section I demonstrate several algorithms that

show that fully dynamic builds can also be fast. In addition I demonstrate

that using multiple (high-quality/cost) specialized acceleration structures for

primary visibility and shadows can outperform general-purpose acceleration

structures.

It should be noted that multiple acceleration structures can interact in

different nontrivial ways. Games often use a BSP tree or portal system to cull

geometry before feeding it to a z-buffer. Such a system used in conjunction

with z-buffering is an example of two acceleration structures being used in

tandem. Some acceleration structures are simply the leaves of other structures.

For example, PBRT uses object space acceleration structures that occur at the

leaves of a world-space structure. I will demonstrate an algorithm that uses

one acceleration structure as input to improve build performance for another

acceleration structure.

5.1 Geometry Specialized Acceleration Structures

One of the most common specializations for acceleration structures is

geometric. Geometry-specialized acceleration structures are constructed with

a specific set of geometry in mind. These structures can take advantage of spe-

cific features of the geometry in order to improve build or render performance.

These features include object alignment and temporal coherence.

67

5.1.1 Object-Space Structures

Object-space acceleration structures are geometry-specialized structures.

Many of them are constructed, each over a single object (or small group

of objects). These structures use a coordinate basis in which the object is

“aligned” [54]. Some objects don’t have natural alignment, but the majority

does. A quick look around a room will reveal a host of objects with a specific

natural alignment (a book, a chair, even people). By constructing an accel-

eration structure in the basis of the object, axis-aligned bounding boxes and

spatial partitions more closely match the contour of the object being accel-

erated. By having a specific structure for each object in the scene, visibility

queries for each object are performed (more efficiently) in their own space. Ob-

ject space acceleration structures are typically supported by inserting them in

their entirety into a world-space acceleration structure as a leaf. In this way,

acceleration structures are layered on top of one another, where the leaves of

one structure are the roots of others.

Interestingly, the majority of acceleration structures have some object

alignment because artists tend to produce scenes that are aligned in some way

to coordinate axes. Most predominately, the ground in a scene is oriented per-

pendicular to a specific (usually y) axis. Although few realize it, this property

actually greatly improves rendering performance for many scenes. A large dif-

ference in performance can be observed by simply rotating a scene and camera.

The difference can be a large factor and is due solely to geometry-scene align-

ment. The improvement in performance comes from extremely tight bounds

68

on objects when aligned to the coordinate axes. Imagine a scene with a floor

plane implemented as a single pair of triangles. This plane is aligned perpen-

dicular to one coordinate axis of the scene and has extremely tight axis-aligned

bounds. Rays must break a triangle’s bounding box before intersecting that

triangle. However, since these bounds are very tight, only rays that pass very

close to the floor will tested for intersection against it. Alternatively, consider

the same situation but with the scene alignment such that the long edges of

the triangle are aligned to the vector (1, 1, 1). In this case, the axis-aligned

bounding volume for each triangle is extremely large. Rays that don’t pass

near the floor will still be tested for intersection against the floor plane be-

cause of these bad bounds stemming from scene misalignment. I encourage

people to perform this experiment themselves to make it clear that object-

specific alignment is important for high performance when axis-aligned planes

are used.

5.1.2 Topology-Specialized Structures

Object-aligned acceleration structures are not the only kind of geometry-

specialization in acceleration structures. Topology-specialized acceleration

structures are specialized to a specific geometric topology. This topology is

assumed not to change over the life of the acceleration structure. These struc-

tures are typically aggregation-based structures (BVHs), because refitting a

BVH to a dynamic (constant topology) object is an extremely simple proce-

dure. Partitioning-based acceleration structures can also work in this domain

69

as demonstrated by the fuzzy-kd-tree [27]. Topology-specific structures are an

easy way to maintain a high-quality acceleration structure without the need

to rebuild it each frame.

A special case of topology-specialized structures are implicit topology

structures. Dynamically created geometry (most commonly subdivision sur-

faces) is often created with an implicit topology. This topology can be imposed

onto an acceleration structure without any difficult work. Specifically, build-

ing high-quality BVHs over Catmull-Clark diced grids can take advantage of

the implicit layout of the grid when building a topology-specific acceleration

structure for the grid. The Razor project [19] (on which I worked) uses this

approach for accelerating subdivision grids. In fact, these grids are simple

enough to create that the Razor system sometimes discards them after use

and rebuilds them if necessary without a noticeable impact on performance.

5.2 Ray-Specialized Acceleration Structures

In addition to specializing acceleration structures for geometry, they

can be specialized for large groups of rays. A major contribution of this dis-

sertation is the introduction and analysis of two ray-specialized acceleration

structures, the perspective grid and the perspective kd-tree (using the per-

spective surface area metric). Ray specialization is in fact very similar to

geometric specialization. The idea is to perform a transform such that rays

align themselves along a coordinate axis. By aligning rays to a specific axis,

ray traversal is restricted primarily to one dimension, allowing a number of

70

optimizations. It is important to note that no transform is likely to arrange

all of the rays in a scene along a particular axis. Therefore, ray-specialized ac-

celeration structures are often constructed on collections of rays with common

properties. Examples of large numbers of rays with common properties are

primary rays (eye and depth of field rays) or shadow rays (hard and soft). It

is not uncommon to have over one million primary rays with the same origin.

Since each collection has a different transform, each requires its own

acceleration structure. Therefore, a system using ray-specialized acceleration

structures will use at least one structure for primary visibility and likely an

additional structure for each light source in the scene. Despite the apparent

cost of building and maintaining such a large number of acceleration structures,

In the implementation chapter I demonstrate that the improvement in traversal

performance more than makes up for the additional build cost. This result

shouldn’t be surprising to anyone familiar with shadows and visibility using

z-buffer hardware. In such a system each light has a different shadow map and

the camera also has its own depth buffer.

Not all ray-specialized acceleration structures specialize on the scale

of millions of rays. Reshetov [57] introduces an algorithm for faster packet

intersection via frustum culling. This frustum is an ephemeral ray-specialized

acceleration structure built to quickly cull geometry against a packet before

performing intersection tests.

71

5.2.1 Face Culling

A specific feature of ray-specialized acceleration structures is that rays

using the structure have a known specific distribution of directions. When us-

ing manifold geometry and a ray-specialized acceleration structure, geometric

faces can be sorted into front-facing and back-facing. Rays cannot intersect

with back-facing faces without first intersecting a front facing face. Thus for

primary visibility, all back-facing faces may be ignored without changing the

result of the visibility query. Face culling can be effectively used to reduce the

number of objects stored in an acceleration structure (by about half). This

optimization is very commonly used in z-buffer renders.

In the case of shadow rays, front-facing and back-facing faces produce

identical silhouettes (and thus the same shadows). This silhouette property is

obvious when one realizes that the silhouette is defined by the boundary be-

tween the two sets. When tracing shadow rays, culling the front-facing faces

(with respect to the light) produces the identical effect of back-face culling.

The front-facing version, however, culls faces from which shadow-rays are

“launched” and therefore largely addresses the “shadow acne” problem. The

shadow acne problem is an artifact of floating-point imprecision that causes

the ray to intersect the surface from which it was launched. Front-face culling

is similar to “second depth testing” as described by Wang [73, 77]. Addition-

ally, rays that would originate on a back-facing face may be culled immediately

without any tracing overhead.

72

5.2.2 Perspective Space

The specific transform I use for ray specialization is the perspective

transform. The perspective transform is a non-affine transform that maps

lines to lines (technically it is a projective transform). The perspective trans-

form has the interesting property that rays sharing a common origin rays

(hence-forth referred to a common-origin rays) in world space are parallel (and

axis-aligned) in perspective space. Additionally, near-common-origin rays are

mapped to nearly parallel (nearly axis-aligned) rays.

The perspective transform can be simply described using the following

three formulas:

x′ = x/z (5.1)

y′ = y/z (5.2)

z′ = −1/z (5.3)

Alternatively we could use z′ = 1/z. I use the presented formula be-

cause it preserves both ordering in z and the handedness of the coordinate

system. Handedness can be important when implementing back-face culling.

Building and traversing acceleration structures in perspective space

is no more complicated than building and traversing acceleration structures

in world space. To use the perspective space transform to accelerate near

common-origin ray tracing, one must simply transform all rays and geome-

try into perspective space (using the provided formulas) and use the same

73

structures and algorithms that would be used in world space. In short, us-

ing the perspective transform to build specialized acceleration structures is

conceptually no more complicated than using an object space transform for

object-specialization. Geometry must be transformed into the proper space

before building the structure and rays must be transformed into the proper

space before being traversed. The benefit in the case of perspective space is

the alignment of the rays (rather than the geometry) with the coordinate axes

of the acceleration structure.

It should be noted that ray specialization and object specialization

are fundamentally at odds with one another. Aligning a single axis-aligned

structure with a specific object and a specific collection of rays is an over-

constrained problem. Therefore, for each collection of objects or rays, a specific

alignment must be chosen. Ray alignment provides better performance than

object alignment for near common-origin rays. It should be noted that all

results in the implementation section comparing perspective space structures

to world space structures align the coordinate axes to the dominate scene axes

in world space. If this were not the case, the perspective aligned structures

would perform relatively better.

5.2.2.1 The Perspective Singularity

Although the perspective transform has many useful properties such as

mapping lines to lines, it has one challenging property that must be addressed.

The perspective transform divides by z and thus has a singularity at z = 0.

74

This problem is well known in raster-graphics systems and a standard solution

exists: clipping. Perspective space may be clipped such that no points lie

on z = 0. The clipping methods commonly used are to clip to a near-plane

(everything behind a plane close to the camera is culled) or to clip the world

to the camera’s view frustum.

It should be noted that because of the perspective singularity, perspec-

tive structures only deal with half (or otherwise partial) spaces. To use per-

spective space structures for lights or cameras with viewing angles greater than

180 degrees, it is necessary to use multiple different perspective space struc-

tures. A solution to this problem with six back-to-back structures is known

as cube mapping. A practical concern with respect to acceleration structures

is that this increases the number of acceleration structures by a factor of six.

However, this increase in the number of acceleration structures shouldn’t in-

crease the overall build cost, because very little geometry is duplicated between

the structures.

The implementation and results section of this dissertation contains the

details about my implementation of ray-specialized acceleration structures, in-

cluding the perspective grid and the perspective kd-tree as well, as comparisons

to related work.

5.3 Fast Build

Specialized acceleration structures, by their nature, are not typically

used for general visibility queries. Therefore a system that uses specialized ac-

75

celeration structure must typically use many of them. These numerous acceler-

ation structures need to be constructed and maintained. This section describes

two methods for building high-quality acceleration structures quickly. As men-

tioned previously, many specialized acceleration structures don’t need to be

rebuilt. Structures with static topologies only require a simple refit. Static

structures don’t need to be modified at all. However, fully dynamic structures

such as those used to manage characters or particles with arbitrary movement

may need to be rebuilt every frame. I present two algorithms for improving

rebuild SAH based kd-trees that have the net effect of reducing build time by

two orders of magnitude when compared to the traditional sort based SAH

build while only sacrificing a very small amount of rendering performance.

5.4 SAM Scan

In this section I present an algorithm for quickly choosing kd-tree split

planes that are close to optimal with respect to the SAM criteria. The ap-

proach approximates the SAH cost function across the spatial domain with a

piecewise quadratic function with bounded error and picks minima from this

approximation. The algorithm takes full advantage of SIMD operations (e.g.

SSE) and has favorable memory access patterns. In practice the algorithm is

faster than sorting-based SAH build algorithms with the same asymptotic time

complexity and is competitive with non-SAH build algorithms which produce

lower-quality trees. The resulting trees are almost as good as those produced

by a sorting-based SAH builder as measured by ray tracing time. For a test

76

scene with 180k polygons, the system builds a high-quality kd-tree in 0.26

seconds (on a 2.66Ghz Core2) that only degrades ray tracing time by 3.6%

when compared to a full-quality tree. For many applications, a rendering sys-

tem must perform at real-time frame rates and support fully dynamic scenes.

If optimized kd-tree construction were sufficiently fast, fast kd-tree-based ray

tracing algorithms such as MLRTA [58] could be leveraged for these appli-

cations. The algorithm assumes the kd-tree is constructed from a “soup” of

axis-aligned bounding boxes (AABBs). Each AABB may contain one or more

triangles or any other desired leaf geometry.

The analysis and implementation focus on kd-trees, and the most im-

mediate contribution is the demonstration that SAH-optimized kd-trees are

a viable acceleration structure for dynamic scenes. However, the technique

described here is directly applicable to the construction of other high-quality

acceleration structures. Wald [67] extends these ideas to build bounding vol-

ume hierarchies. The most important conclusion drawn from this algorithm is

that acceleration structures for interactive ray tracers can and should be built

using a good approximation to the SAH.

5.4.1 Evaluating the Cost Function: Sorting vs. Scanning

Acceleration structure build algorithms use the surface area metric to

choose a low-cost scene partition. To accomplish this task, the algorithm

typically evaluates the cost function for several candidate partitions. In the

case of a kd-tree this partition is defined by a split plane. To evaluate the cost

77

function for a particular plane we must know:

1. The location of the split plane (which allows us to compute the surface

areas of the left and right nodes, and thus the probability of hitting

them)

2. The number of primitives to the left of the split plane

3. The number of primitives to the right of the split plane

Tasks 2 and 3 are expensive. There are two basic algorithms for deter-

mining these values. We will assume m primitives (assumed to be axis-aligned

bounding boxes (AABBs)) at a particular node and that we wish to evaluate

the cost function at q different locations along a single axis of that node.

Sorting Approach: The sorting approach consists of two phases. In

the first phase, the primitives are sorted along the axis, at a cost of O(m log m)

for m primitives. In the second phase, the cost function can be evaluated for

any number of desired locations with only a single pass over the sorted data

at a cost of O(m). For the kd-tree as a whole, the cost of this approach

is O(n log2 n) for n total primitives. However, by preserving and reusing

the results of the top-level O(n log n) sort, the total cost can be reduced to

O(n log n) [69].

Scanning Approach: The scanning approach evaluates the cost func-

tion at just a single location. In its simplest form, the algorithm must be

repeated to evaluate the cost function at more than one location. For each

78

location, the algorithm loops over all of the primitives and tests each primi-

tive to determine if it lies below and/or above the location and increments the

appropriate counter(s). Thus to determine the number of objects on each side

of a location, this operation requires O(m) work. For q locations, the cost is

O(qm). If q is a constant (e.g. eight), then the overall work is still O(m) to

evaluate a set of split candidates. With an O(m) cost per node, the total cost

of producing an acceleration structure is O(n log n).

From asymptotic analysis, the costs of the two approaches appear to be

equivalent. Additionally, since the sorting approach evaluates the cost function

at more places, it would initially appear to be the better approach. However,

there are several practical advantages of the scanning approach. First, it is

very simple and thus the constant factors in its cost can be very small, espe-

cially when the implementation is well-tuned. Second, the scanning approach

defers more work to the leaf nodes. Deferring work to the leaf nodes has

two advantages. First it may be the case that we do not need to build all of

the leaf nodes. If a system builds the acceleration structure lazily (e.g. the

systems described by Lauterbach [48] and Djeu [19]) then it can skip a large

amount of work. In contrast, the sorting approach still requires O(n log n)

work at the top level of the hierarchy. Additionally, the scanning approach

performs well at higher levels of the hierarchy where the data set does not fit

into cache and the sorting approach is less efficient. I present substantially

improved performance when using a scan based builder in conjunction with

other optimizations such as lazy build and build from hierarchy (described in

79

the next section).

5.4.2 Approximating the Cost Function With a Few Samples

The scanning approach to evaluating the cost function outperforms the

sorting approach if the number of locations at which the cost function is eval-

uated is small. Fortunately, a small number of locations is generally sufficient

to build a high-quality kd-tree. For example, Hurley et al. [39] found that

there was very little benefit to using more than 32 candidate split locations.

The SAH traditionally only chooses split planes lying on the locations

at which the cost function as been evaluated [25]. I show that it is possible

to use a small number of evaluations of the cost function to generate an ap-

proximation of the true cost function. The final split plane is then positioned

at the minimum of the approximated cost function. Thus the location of the

final split plane is not restricted to a fixed number of locations. Figure 5.1

illustrates this idea.

A good approximation to the surface area metric must meet two cri-

teria. First it must significantly reduce the time required to build the accel-

eration structure. I assess this criterion using execution time measurements

for the algorithm. Second, it should not significantly reduce the quality of the

acceleration structure.

I assess the quality of the acceleration structure in three ways: first I

measure the increase in ray tracing time that results from using our approxi-

mate tree instead of one built using the fully-accurate SAM. Second, I measure

80

Figure 5.1: The split plane is placed at the minimum of a piecewise quadratic
function that interpolates the sample points. Note that we have vertically
displaced the approximation function from the actual function so that the
details of both can be seen. The upper curve is the actual cost function. The
lower curve is the quadratic approximation. Vertical lines are sample points.

81

the degradation in tree quality according to the SAM. Finally, I address the

tree quality mathematically, by analyzing the behavior of the SAM and deriv-

ing analytical bounds on the error that results from evaluating it at a fixed

number of locations.

5.4.3 Adaptively Choosing Sample Locations

Previous approaches that approximate the cost function have chosen

uniformly-spaced samples (shown in Figure 5.2). Here we show that it is

possible to achieve a better approximation to the cost function by adaptively

choosing sample locations. This approach has been independently suggested

(but not implemented) by Popov et al. [55].

Figures 5.2 - 5.4 illustrate how we choose samples adaptively. In the first

phase 50% of our sample budget is used to uniformly sample the function. In

the second phase the remaining 50% of our sample budget is used to adaptively

sample the function in locations where there is the greatest uncertainty about

the behavior of the function.

5.4.3.1 Error Bounds

For the purpose of discussing error bounds, it is useful to distinguish

between the greedy SAM cost and the true SAM cost. The true cost recursively

considers cost at all child nodes but can only be evaluated for a node after its

entire subtree has been constructed. In contrast, the greedy SAM cost does

not use recursion to evaluate the cost and ignores the effects of deeper tree

82

Figure 5.2: The initial samples as shown on CL − CR

83

Figure 5.3: Use a comb sample along range of CL −CR to find segments with
large error.

structure.

It should be clear that the scan approximation is very effective in cases

where the greedy cost function is smoothly varying as is typical near the top of

the acceleration structure. In such smoothly-varying cases, the approximate

cost function used by the algorithm closely matches the greedy cost function

at all points. Thus, the greedy cost of the split plane chosen by the algorithm

is very close to the greedy cost of the optimal split plane.

It is less obvious how well the algorithm performs in cases where the

greedy cost function has discontinuities. For example, if a portion of the scene

84

Figure 5.4: Sample evenly in the segments with large error.

85

Figure 5.5: Approximate CL, CR and cost.

contains an axis-aligned wall with many polygons, the cost function can have

a large discontinuity. This effect is visible in the example diagrams. In such

cases, the greedy cost of the split plane chosen by the approximation may differ

significantly from the greedy cost of the optimal split plane (specifically by as

much as half of the range of the cost function). A step function has a large

high frequency component (up to infinite) so any discrete sampling strategy

suffers this deficiency.

However, it turns out that in such cases the greedy SAM cost does not

correspond well to the true SAM cost if the next child splits are chosen well.

86

Figure 5.6: The actual cost function, notice the minimum is slightly off from
the predicted value.

87

The algorithm chooses the child splits well for reasons that I will explain next.

As a result, the degradation in the true SAM cost caused by the approximation

is typically small even for a cost function with discontinuities.

A key property of the algorithm is that the samples chosen rapidly

converge towards a discontinuity. This property is due to the fact that adap-

tive samples are placed in locations of high error. Discontinuities produce

regions of high error in the approximation and attract adaptive samples. Be-

tween adaptive samples and the recursive splitting process, discontinuities are

isolated quickly. In fact, the larger the discontinuity is, the more rapid the

convergence (more adaptive samples near the discontinuity). The net effect

of this convergence is that after a few splits the discontinuity is isolated into

a small volume. Since the true SAM cost recursively considers splits and the

algorithm converges rapidly, the true SAM cost penalty for non-optimal split

locations near a discontinuity is generally small, even when the greedy SAM

cost penalty for the approximate split is large.

Mathematically, the convergence property of the algorithm is expressed

as a guaranteed bound on the product of the cost error with the split-plane

position error. Specifically, if there is a large bound on the error in the cost,

there is a small bound on the error of the location of the split plane and vice-

versa. This result falls out directly from the fact that the proof provides error

bounds in terms of the product of the domain and the range of the function

being approximated. Thus, for very large bounds on the cost error, as occur

near a discontinuity in the cost function, the algorithm will choose a split plane

88

close to the discontinuity. After a few splits the discontinuity will be isolated

into a small volume and thus contribute very little to the true SAM cost.

5.4.3.2 The Adaptive Sampling Algorithm

As discussed, the algorithm approximates the SAM by sampling it at

a fixed number of locations. Instead of sampling the cost function itself, we

sample all four varying inputs to the cost function (CL, CR, SAL, and SAR).

By linearly interpolating each input, we are able to generate a quadratic ap-

proximation to the cost function between each pair of sample points.

It would be possible to stop after this step and choose a split plane at

the minimum of the piecewise-quadratic approximation to the cost function.

However, if the cost function is ill-behaved, the error bounds on the segment(s)

that potentially contains the minimum may be loose. That is, there may be

considerable uncertainty as to the actual behavior of the cost function in the

vicinity of the minimum and thus the choice of the location of the minimum

may be poor.

Figure 5.2 illustrates this situation. Note that in the referenced figure,

rather than plotting the cost function we plot CL − CR. This function (as

explained later) is useful as a tool for error analysis due to the fact that

bounds on CL − CR simultaneously bound CL and CR, which in turn bounds

the cost function. In Figure 5.2 there is a large amount of uncertainty about

the behavior of CL − CR in the last segment.

To improve the error bounds, a second set of q samples is taken, with

89

the locations for the second set of samples chosen adaptively based on the

information from the first set. The sample locations are chosen using a simple

algorithm illustrated graphically in Figures 5.2–5.6. The algorithm places

additional samples in those segments for which there is a large change in

CL − CR within the segment. A simple but effective mechanism for choosing

these new sample locations is to create n bins over the range CL−CR and then

place an additional sample within each segment for each time that CL − CR

crosses a bin boundary within the segment. This process is equivalent to

taking q additional samples regularly along the range of CL −CR (illustrated

in Figure 5.3).

Once it has been decided how many of the additional samples are allo-

cated to each of the original segments, these additional samples are positioned

such that they are evenly spaced within their respective segments (Figure 5.4).

The end result of the two sampling steps is a piecewise quadratic approxima-

tion to the cost function using 2q samples. As shown in the next subsection,

the product of the cost function and the position error has a (1/q2) bound be-

tween adjacent pairs of samples within this adaptive sampling technique. This

bound is important because it governs the rate of convergence for iterations of

the sampling process. In this context, scans within children may be considered

iterations. To choose the split plane location for the node, the algorithm con-

siders the local minima of each of the 2q−1 piecewise quadratic segments and

places the split plane at the overall minimum. As with any kd-tree builder, if

the estimated cost of splitting at the location is greater than the cost of not

90

splitting, then no split is made and a leaf node is formed.

Implementation and results from this algorithm are discussed in the

results section near the end of this dissertation. I have not demonstrated the

practical benefit or necessity of using the quadratic interpolation of the surface

area metric samples instead of a linear one, but it adds only a small constant

amount of additional work and is certainly required to guarantee the provided

error bounds.

5.4.4 Error Bounds

In order to bound the error of the scan approximation to the SAH

cost function, I first bound the error of each of its components. The focus

of most of this subsection is to provide error bounds for the piecewise linear

approximations of the monotone functions CL and CR.

5.4.4.1 Linear Approximation

For an arbitrary integrable function f and an approximation f̃ , we may

define the error of the approximation over domain (a, b) to be
∫ b

a
|f − f̃ |. If

f is a monotone function and f̃ is a linear approximation of f over (a, b)

with f(a) = f̃(a) and f(b) = f̃(b), the maximum error of the approximation is

|b−a||f(b)−f(a)|
2

. I do not provide proof of this simple theorem here, but Figure 5.7

should provide some intuition as to why it is true. I refer to this bound as the

linear approximation bound (of a monotonic function).

91

Figure 5.7: Monotonicity guarantees that the function does not leave the box.
The area between the function and its linear approximation cannot be more
than 1

2
the area of the box.

5.4.4.2 Uniformly Spaced Linear Approximation

A uniformly spaced piecewise linear approximation provides a bet-

ter error bound for monotone functions. When approximating a monotone

function f , we may take n evenly spaced points xi, i ∈ [0, n) s.t. x0 = a

and xn−1 = b. Let f̃ be the piecewise linear approximation of f such that

∀x ∈ [0, n)f(x) = f̃(x) and f̃ is linear between all xi, xi+1 pairs. The following

bound holds given the assumptions: f is an integrable monotone function,

92

n ≥ 2 and (a, b) is a non-empty range.

error(f̃) =

∫ b

a

|f − f̃ |

=
n∑

i=1

∫ xi

xi−1

|f − f̃ |

{the linear approximation bound}

≤
n∑

i=1

|xi − xi−1||f(xi) − f(xi−1)|
2

{f is monotone}

≤ |
n∑

i=1

|xi − xi−1|(f(xi) − f(xi−1))

2
|

{xi − xi−1 =
b − a

n − 1
}

=
(b − a)

2(n − 1)
|

n∑

i=1

(f(xi) − f(xi−1))|

{f(xi)is a telescoping sum}

=
(b − a)|f(b) − f(a)|

2(n − 1)

This bound improves over the linear approximation bound by a factor

proportional to 1
n
. I will refer to it as the evenly spaced piecewise linear

approximation bound (of a monotone function).

5.4.4.3 Adaptive Linear Approximation

Although the evenly spaced piecewise linear approximation provides an

improved error bound for f̃ , it provides no information about the locality of

error. Each segment (xi, xi+1) contains some fraction αi of the overall error

93

in our piecewise linear approximation but we have no guarantee that any

one segment doesn’t contain most or all of the error. By adding at most

n additional samples (using my adaptive method), we may ensure that each

segment contains proportional to 1
n

of the overall error.

Using the piecewise linear approximation bounds, adding ⌊nαi⌋ evenly

spaced points to a segment reduces its error proportional to (⌊nαi⌋ + 1)−1

(using the evenly spaced linear approximation over with that segment). It

should be noted that two additional samples are available in each segment: the

endpoints. These additional samples are responsible for the addition, rather

than the subtraction, of 1 in this reduction of error. Error for the ith segment

was initially αi
(xi+1−xi)|f(xi+1)−f(xi)|

2(n−1)
. After the additional samples it becomes

αi
(xi+1−xi)|f(xi+1)−f(xi)|

2(n−1)(⌊nαi⌋+1)
. This quantity is proportional to (xi+1−xi)|f(xi+1)−f(xi)|

2n2

and provides us with an error bound on each segment proportional to 1
n2 . I refer

to this bound combined with the evenly spaced linear approximation bound

as the adaptive linear approximation bound. The inequality
∑n

i=1⌊nαi⌋ ≤
∑n

i=1 nαi = n demonstrates that this process requires at most n additional

samples to guarantee the error bound.

5.4.4.4 Bounds for the Scan-Based Cost Function

Recall the SAH cost function:

cost(x) = CI + CLPL(x) + CRPR(x)

Because CL and CR are monotone, we may sample them adaptively and

achieve the adaptive linear approximation bound. The quantities CI , PL(x)

94

and PR(x) are computable directly and have no error. The error bounds for

the cost function are derived here.

error(cost(x)) = error(CI) + error(CL)PL(x) + error(CR)PR(x)

{PL, PR ∈ [0, 1], error(CI) = 0}

≤ error(CL) + error(CR)

Because CL and −CR are both monotone increasing, so is their sum.

Also, since the range of CL − CR is equal to the sum of the ranges of CL and

CR, any bound for CL − CR is also a bound for CL and for CR. Using the

adaptive bound for CL − CR we can show that the error between any two

samples over CL −CR is of the order (b−a)(|CL(b)−CL(a)|+|CR(b)−CR(a)|)
n2 . The same

bound holds for the error between any two samples on CL and −CR. Adding

the error bounds for CL and −CR together increases overall error by a factor

of two and does not change the order of the error. The quantities PL and PR

are ≤ 1 and multiplication with them does not change the order of the error

either. Therefore, the error between any two points in cost(x) is also order of

(b−a)(|CL(b)−CL(a)|+|CR(b)−CR(a)|)
n2 .

5.4.5 Comparison to Related Work

A similar SAM scanning technique was developed concurrently by Popov [55].

While both algorithms improve kd-tree build performance by approximating

95

the SAM in a machine-friendly way, several major differences exist between

the two algorithms. In this subsection I will break the algorithms apart and

analyze the differences between them, including the motivations that lead to

these differences.

5.4.5.1 Streaming Construction

Both approaches use a streaming construction approach. The algo-

rithms stream geometry across a collection of previously selected candidate

split locations. Streaming greatly improves memory performance and is one of

the key reasons for the high performance of both approaches. In addition to

streaming geometry, Popov’s paper builds kd-trees in breadth-first order at the

top of the tree and switches to depth-first near the leaves. This breadth-first

order enables globally linear memory access when choosing multiple splits. My

system builds in depth first order.

5.4.5.2 Sampling the Cost Function

The two approaches use a significantly different sampling methodology.

As described above, my approach takes two sets of relatively few (8) samples

and the second set is adaptively chosen. Every sample is tested against every

object during my scan (this is inexpensive due to the use of SIMD and the

fact that the samples stay in registers). Popov’s paper takes relatively many

samples (1024). These samples are always uniformly spaced in order to avoid

having to test each sample individually against an object. The bounds of the

96

object are used to directly calculate the index of the first and last samples

affected by the object. Counters for each sample only store the number of

objects that begin or end near that sample. The left and right counts for

each sample are reconstructed via a final scan and accumulate over all of the

samples.

5.4.5.3 Reconstruction

The two papers also use different reconstruction approaches. My algo-

rithm linearly interpolates the left and right counts and exactly evaluates the

probabilities, resulting in a quadratic interpolation of the final cost function.

Popov’s approach linearly interpolates the cost function directly.

5.4.5.4 Specialization at the Leaves

Each algorithm also handles lower levels of the kd-tree differently than

it does higher levels. My approach uses a machine friendly brute force O(n2)

scanning algorithm to evaluate leaves. Popov’s approach uses a machine

friendly radix sort in a traditional sort-based kd-tree building approach at

the leaves.

5.4.5.5 Overall Results

Overall, my implementation of the scan algorithm is approximately

twice as fast as Popov’s implementation for his algorithm for a given scene.

The speed advantage is likely mostly due to the extremely tight inner loop in

97

my scan approach (only one read from memory and no writes). Also, the brute

force scan is likely to be faster than any sort for very small nodes. Overall

however, the algorithms are based on similar principles and have a similar

overall performance.

5.5 Build From Hierarchy

In the previous section, I described an algorithm for approximating the

surface area metric in order to improve kd-tree build performance. In this sec-

tion, I show how to use structural information about a scene such as the infor-

mation contained in a scene graph to build SAM-based acceleration structures

more efficiently. I present a build algorithm that uses structural information to

build acceleration structures more quickly. I also provide asymptotic analyses

for both standard and lazy variants of my build algorithm. In particular I show

bounds of O(n) work for full kd-tree builds over n primitives and O(v + log n)

for lazy kd-tree builds over v visible primitives. In the implementation and

results chapter I provide experimental results showing that these asymptotic

properties translate into practical speedups. I also show that under certain

(realistic) assumptions on the scene structure, the method produces provably

good acceleration structures. Finally, I provide experimental results demon-

strating that the acceleration structures have nearly indistinguishable quality

to those produced using a traditional SAH build.

Most existing SAH-based tree construction algorithms assume that in-

put data is essentially a “soup” of polygons or axis-aligned bounding boxes

98

(AABBs). No global scene structure is assumed or taken advantage of in build-

ing the tree. However, real scenes have a great deal of structure. This structure

is generally encoded as a scene graph representing the natural boundaries be-

tween and the relationships among the objects in a scene. A scene graph is

a hierarchical collection of objects. Rigid body motions in the scene are rep-

resented by transformations between local coordinate frames associated with

the objects represented in the scene. Natural clusters of geometry in the scene

are found within objects. Thus, the information available in scene graphs is

quite pertinent to the heuristics used for ray tracing acceleration.

While some batch ray tracers (e.g. Pixar’s PRMan) have exploited

scene graph information, the Razor interactive ray tracer [19] is the first to my

knowledge to exploit such information in an interactive or real-time system.

Razor incorporates a fast SAH-based kd-tree build scheme based on an input

scene graph and the use of the scan-based surface area metric approximation

scheme presented in the previous section [38]. Use of an input scene graph

enables Razor to use a lazy build scheme to further accelerate the kd-tree

builder.

5.5.1 Building Acceleration Structures for Dynamic Scenes

In batch ray tracing systems, acceleration structure construction is of-

ten considered to be a “free” preprocessing step. However, as interactive ray

tracing has become practical, it has become important to consider fast tech-

niques for building and updating acceleration structures.

99

For scenes containing deformable motion, three broad strategies have

recently emerged [71]. The first strategy is to choose an acceleration structure

such as a regular grid that is especially simple to build [70]. The second

strategy is to use high-performance algorithms to build a high-quality structure

such as a metric-based kd-tree [19] or BVH [67]. The third strategy is to

incrementally update the acceleration structure each frame [48, 79]. We focus

on the second strategy in this dissertation. The analysis assumes a preexisting

hierarchy as the starting point for the build. This starting point can come

from an input scene graph or a previous frame’s acceleration structure. In the

latter case the distinction between rebuilding and updating the acceleration

structure becomes blurry.

5.5.2 Using Hierarchy to Accelerate Acceleration Structure Build

The traditional SAH build algorithm assumes that the structure is be-

ing built “from scratch.” Good acceleration structures perform two roles in

accelerating ray tracing. First, they help eliminate wasted work testing for

intersections between objects and rays that are not close by. Second, they

allow the ordering of intersection tests along a ray. This ordering essentially

amounts to sorting the scene geometry and accounts for the Θ(n log n) com-

plexity of acceleration structure build. However in practice, a great deal of

structural information about the scene geometry is usually known at the time

of the structure build. Such information could be obtained from a scene graph

or a previously-constructed acceleration structure. When this structural in-

100

formation is sufficient to amount to a “pre-sort” of the scene geometry, using

it can allow a new acceleration structure to be built in linear time rather than

O(n log n) time.

I now sketch the approach for building an acceleration structure over n

primitives in O(n) time. Linear time complexity is achieved by doing constant

work to determine each split plane during acceleration structure build. Con-

stant time work per node is achieved by only examining a constant-size subset

of scene objects when determining each split plane. Sorting a constant-size

set takes constant time guaranteeing constant work per node. The algorithm

obtains this constant number of objects via careful refinement of the provided

scene-graph. The approach is also guaranteed (under reasonable assumptions)

to produce a “good” acceleration structure. The primary assumption required

is that each of these constant-size subsets of objects has a normal enough spa-

tial distribution that a “good” acceleration structure exists for it (the details

of this assumption are covered in a later subsection). In this case I show that

the algorithm will produce a structure of quality comparable to the quality

of a structure built using a full build. Thus with an appropriate input struc-

ture, my algorithm will produce an acceleration structure guaranteed to be

high-quality and do so in linear time.

In the remainder of this section I will formalize the algorithm and the

intuitions I have provided. A detailed discussion of the definition of a “good”

acceleration structure is presented at the end of this section and in my prior

publication [37]. First I will define more precisely the structural requirements

101

Figure 5.8: The use of hierarchy can greatly reduce the number of split can-
didates provided to a builder. If the hierarchy fits the geometry well, then
the provided splits are often among the best anyway. Vertical dashed lines in
these diagrams represent split candidates.

Figure 5.9: Using hierarchy in conjunction with lazy build can allow a builder
to completely ignore large regions of space if no rays enter that space.

102

on the input that will allow us to produce good acceleration structures on

output. I will show a bit more formally why this process takes linear time. I

will then examine various strategies for enhancing this basic scheme in order

to provide better structure quality and safeguard against failed assumptions.

Finally, I provide experimental confirmation of our formal analyses.

5.5.3 Building Acceleration Structures from Input Hierarchies

In this section I describe an algorithm for constructing a metric-based

acceleration structure from an existing hierarchy. In a subsection, I demon-

strate that the algorithm will produce a “good” acceleration structure accord-

ing to a criterion I define and demonstrate practical results supporting this

claim. I also show that, under reasonable assumptions, the algorithm works

in O(n) time for a scene with n primitives.

The algorithm is based on the traditional SAH build algorithm. At

each step a split plane is chosen and present geometry is sifted into two bins

based on their positions relative to the split plane. How this geometry is

sifted can be different depending on whether we are constructing a kd-tree or

a BVH. The algorithm uses groups of objects (represented by higher nodes in

the scene graph) in place of individual objects in order to reduce the amount

of geometry considered when choosing a split plane. We may pick a threshold

a such that the algorithm only considers O(a) objects when determining a

split plane. In practice this number can be any number > 1. Smaller numbers

result in faster build times but increase the dependence on the quality of

103

the input structure. If a very high-quality input structure is available and

performance is a concern, a can be as low as 10. Fifty candidates seem sufficient

in practice in most cases. In the Razor system, build takes such a small portion

of the overall time that 500 is used to ensure high-quality output trees. The

algorithm, using 500 objects for determining split planes, produces trees of

virtually indistinguishable quality when compared to trees produced with the

full sort in practice.

Note that the number of objects selected should be at least a if possible

in order to have a sufficient number of split candidates from which to choose a

good split plane. We can collect these objects by refining the input hierarchy

nodes one at a time in a top-down order until we have at least a nodes. In

some sense it doesn’t matter how we choose the nodes to refine, but using a

FIFO queue (breadth-first traversal) works well. If we have a binary hierarchy

we can always obtain exactly a objects. Otherwise we will obtain at most

a+FI−1 = O(a+FI) where FI is the maximum fan-out of the input hierarchy.

The one exception to this rule is if there are simply not enough objects once

all nodes have been refined.

Split planes are chosen according to the SAM as is normally done using

the SAH. Split candidates are the bounding planes of the refined hierarchy

nodes. The cost in the SAM is still estimated using the number of primitives

overlapping each side of the split plane. To compute this estimate quickly,

each input hierarchy node should know how much geometry it contains. If

the SAM dictates that splitting the node produces a higher-cost tree than not

104

splitting the node, then my algorithm does not split the node (in the same

manner that the automatic termination criterion works for the SAH.)

By reducing the amount of geometry considered to be a constant the

work done at each node to determine each split plane is bounded to a con-

stant (a significant improvement over previous approaches). It should again

be noted that an acceleration structure created with this approach will not ex-

actly match an acceleration structure created using with the traditional SAH.

Different geometry leads to different decisions made by the SAH builder. It

should also be noted that changing the input geometry can change the point

at which the algorithm chooses to terminate the build process and produce a

leaf. However, given a reasonable input hierarchy, the algorithm will produce

good-quality results. I demonstrate high-quality results in the implementation

section of this document.

5.5.4 Build Complexity

I now turn attention to the asymptotic analysis of the performance of

an SAH build from an input hierarchy using my method. The analysis will

require the assumption that the SAH will produce an O(log a + FI) depth

tree over any log a + FI depth refinement (log a + FI size subtree) from the

input hierarchy. This assumption, which will guarantee that our algorithm

will produce O(n) tree nodes, is an extension of the assumption that the scene

geometry has the property that the SAH will produce an O(log n) tree over

it. The extension is a local criterion over each a + FI size subtree. The global

105

version of this assumption is also made in previous work in which an O(n log n)

bound is derived [69] and holds true for non-contrived scenes in practice.

Observation: Given the assumption above, building an SAH based ac-

celeration structure from a hierarchy is O(n) for n geometric primitives.

Proof: Each node in the tree is built considering x : x < a+FI hierarchy

nodes to determine the split plane. Sorting O(a+FI) candidates takes O((a+

FI) log(a + FI)) = C time. Since the completed tree has O(n) nodes by

assumption and we did C work for each node, the total work for the entire

tree is CO(n) = O(n).

It should be noted that any SAH build is Ω(n) because we have to

touch each object at least once in order to add it to the kd-tree. Therefore

SAH build from hierarchy is Θ(n). Not surprisingly, a linear upper bound on

build is tight.

5.5.5 Analysis of Lazy Build from Hierarchy

Laziness (demand driven evaluation) is an optimization that can elim-

inate large amounts of work in systems where only part of the input data is

required to produce an output. In the context of ray tracing it can be lever-

aged to avoid a large amount of unnecessary work. In future systems with

large scenes, only a small fraction of which are visible from a single viewpoint,

the advantage of building acceleration structures for only the visible portion

of a scene will grow. The Razor [19] system uses laziness as an optimization.

It only builds visible (or nearly visible) portions of the acceleration structure

106

at each frame. The algorithm lazily builds the acceleration structure by inter-

leaving acceleration structure build with ray traversal such that kd-tree nodes

are only built once they are needed by a traversing ray. In terms of the input

hierarchy, only volumes that a ray penetrates will be used in the acceleration

structure build.

Before beginning the analysis of the build from hierarchy algorithm

using the lazy optimization, it is important to understand the interaction

between laziness and various acceleration structure build methods. Neither

the traditional build algorithm nor the O(n logn) [69] algorithm can make

use of laziness. Both algorithms require a costly O(n logn) sort up front.

Scanning/binning approaches [38, 55] discussed earlier in this chapter reduce

the upfront cost to O(n) but still touch all of the geometry upfront. In fact

any build (even median split) that doesn’t use an input hierarchy will sift all

n objects across the first split plane after choosing the first split. In order

to build a truly SAH-based acceleration structure, an approach in which the

initial split and sift are sub-linear in the number of nodes is necessary. The

build from hierarchy approach does just that.

For the analysis of the lazy variant of the build from hierarchy algo-

rithm, I will introduce a new variable v : v < n, the number of visible triangles.

Laziness only provides a substantial advantage when v ≪ n, so I will make

that assumption for this analysis. Other assumptions will differ only slightly

from the analysis in the previous (non-lazy) section. Primarily, I assume that

the SAH will produce a log v depth tree over the set of visible primitives. This

107

assumption is essentially the same assumption as before, but restricted to the

visible subset of the geometry. The implication of this assumption is that the

SAH will produce a tree with O(v) nodes.

Observation: Given the assumptions of this section and the previous

sections, building an SAH-based acceleration structure using the lazy variant

of build from hierarchy is O(v + log n)

Proof: Each node in the tree considers x : x < a + FI hierarchy nodes

when determining a split plane. Sorting O(a + FI) candidates takes O((a +

FI) log(a + FI)) = C time. Since the completed tree is assumed to have

O(v) nodes and we did C work for each, the total work is CO(v) = O(v).

Additionally, we must have descended in our input hierarchy to a depth of

log n in order to access any geometry that makes it into our kd-tree, resulting

in a final bound of O(v + log n).

It should be noted that lazy SAH build is Ω(v + log n). We still have

to touch each visible object in order to add it to the tree and assume that

we can only touch geometry through some sort of hierarchy or other log n

depth structure. Therefore, lazy SAH build from hierarchy is Θ(v + log n).

As a practical matter, we expect log n ≪ v implying that from a practical

standpoint lazy build from hierarchy is linear in v.

5.5.6 The Effects of Fast Scan

Previous approaches to building high-performance acceleration struc-

tures, such as those presented earlier in this chapter, show that significant

108

improvements in performance can be made by approximating the SAM in-

stead of computing it directly. These approaches combine effectively with

build from hierarchy. Simply, we may scan our a candidate objects in order

to find a minimum instead of sorting them. This change doesn’t affect the

asymptotic performance of the build algorithm (as noted above, the bound is

already tight), but it does improve the constant factors. Specifically it im-

proves the value C, the amount of work done to compute each split plane from

O((a+FI) log(a+FI)) to O(a+FI). This improvement can be quite noticeable

if either a or FI is relatively large. The scan provides a convenient “perfor-

mance safety net” in the case that assumptions about fan-out are broken in a

real world example. The experimental results presented in the implementation

chapter show that the effects of the fast scan approximation combine nicely

with both laziness and build from hierarchy.

5.5.7 High Quality SAM-Based Structures

The SAM has long been the most commonly used basis for heuristics

used to build high-quality acceleration structures. The SAM is commonly used

because it captures the expected cost of traversing a ray through an acceler-

ation structure given the assumption that the ray direction was drawn from

a uniform distribution in ray space. Minimizing the SAM cost of a structure

minimizes the expected cost of traversing a ray through that structure. The

SAH however, is a heuristic in the sense that it is not guaranteed to produce a

structure that globally minimizes the SAM cost for an acceleration structure.

109

The global minimum is generally unknown for any given structure, because

it is intractable to compute. Given the SAM, it is very simple to determine

which of two trees has lower expected cost, but without a global minimum cost

it is difficult to determine if a given tree is “good.” When comparing trees

built from hierarchy and trees produced by the traditional SAH, we require

some notion of “good.” In this section I define such a notion so that I can

later show that the algorithm produces “good” trees.

When a ray reaches a leaf in an acceleration structure, it is tested

against all of the primitives present in that leaf. To limit the work done at a

leaf, we would like the leaves of a “good” acceleration structure to contain at

most a constant c number of primitives. Not only should a good acceleration

structure have limited size leaves, but the fan-out of every node in the hierarchy

should also be bounded by a constant F . Finally, in a “good” structure, the

bounding volumes of the children of any internal node should have at least

some fraction p smaller surface areas than their parent. Therefore, for each

child, the probability of a ray intersecting a child given that it intersected

the parent is bounded. Not all scene geometry can guarantee these properties

(thus permitting the existence of a “good” acceleration structure) but most

do in practice.

I will now derive the cost of a “good” structure. The cost of intersecting

a leaf node is at most c. Let the average conditional probability of intersecting

a child be p. Using these two costs, we may compute the cost of the nodes

with children that are leaves to be c(Fp). Similarly, the cost of nodes with

110

grandchildren that are leaves is c(Fp)(Fp). By induction, it is easy to show

that the SAM cost of the root node is CSAM = c(Fp)logF n = cn1+logF p for a

structure over n primitives. Since p < 1 the log portion of this expression is

negative, and the resulting equation is sub-linear in n.

It is unlikely that p is the same for all sets of children, and thus this

derivation is only accurate in an ideal case. However, the SAM may be directly

evaluated for a particular hierarchy. We can invert the formula from the

previous paragraph to obtain a useful “average” value of p for the entire tree.

We will refer to this “average” p as q := (CSAM

cn
)

1
logF n . The new quantity q is an

abstract measure of tree quality that is independent of n (in specific contrast

to the CSAM cost which is dependant on n). Even though we use n to compute

the value of q, it should be noted that q is an average conditional probability

independent of n. Lower q values for a tree represent higher quality trees. I

will use q values to compare trees with very different sizes and costs.

Inverting the formula for q gives us the SAM cost in terms of q: CSAM =

cn1+logF q. It is important to understand that q is a quality not a cost. CSAM is a

cost and will relate directly to the amount of work performed when traversing

the acceleration structure. On the other hand, q is a quality metric that

describes how “good” a tree is, independent of its size. Tree quality has a

valid range of 0 < q ≤ c
−1

logF n ≤ 1 due to the fact that the SAM cost function

is bounded by 0 < CSAM ≤ n. I will define a tree as “good” if the quality

is q : q ≤ Q for a provided quality threshold Q. It should be noted that this

notion of “good” does not require trees to have low fan-out.

111

5.5.8 Quality Analysis of the Algorithm

Given a definition for a “good” acceleration structure, I will now show

that the build from hierarchy algorithm will produce “good” acceleration struc-

tures from appropriate input structures and assumptions about the scene.

A local strategy for achieving linear-time build using constant-size can-

didate sets at each step is not guaranteed to produce a high-quality accelera-

tion structure. We must rely on the properties of an input hierarchy to make

guarantees about the resulting structure. Given a scene, we would like to show

that the build from hierarchy algorithm produces an acceleration structure of

comparable quality to a structure produced by the SAH. Specifically, for an in-

put quality threshold Q : Q ≤ 1, we would like to show that if the SAH would

build a tree of quality q : q ≤ Q, then my build from hierarchy algorithm will

also produce a tree of quality q′ : q′ ≤ Q.

To prove this property, I will rely on the following assumptions about

the input hierarchy and scene geometry:

1. The input hierarchy must have SAM quality of q′′ : q′′ ≤ Q. This assump-

tion asserts that the input hierarchy is a “rough sort” of the geometry.

Without this assumption, it is impossible to construct a high-quality tree

in linear time. It should be noted that scene graphs commonly have this

property in practice, as do acceleration structures constructed with the

SAH for previous frames.

2. A q′′ : q′′ ≤ Q quality acceleration structure exists for every x : x <

112

a + FI collection of candidate objects for each node in the hierarchy

and the SAH will find one such structure. This assumption asserts that

all x : x < a + FI size collections of candidates acquired by refining

the scene-graph BVH are well enough behaved that some high-quality

structure can be constructed over them. This assumption prevents the

occurrence of arbitrarily bad geometry and holds for scenes in practice.

Observation 1: If the SAH will produce a binary tree of quality q for

some q ≤ Q then the build from hierarchy algorithm will also produce a tree

of quality q′ : q′ ≤ Q given assumptions 1 and 2 above.

Proof: The proof will proceed in two parts. First I show that for

all x : x < a + FI collections of refined geometry the algorithm produces a

high-quality acceleration structure. We assumed that a full SAH build over

each x-size collection will produce a high-quality structure. However, the

algorithm does not build each x-size tree independently in one step. It may

use additional candidates when choosing deeper splits in the x-size tree. It

is obvious however that increasing the number of candidates when choosing a

split plane can only decrease the SAM cost (by greed). Therefore the build

from hierarchy algorithm produces a high-quality acceleration structure for all

x-size subsets of the output structure.

Second, given that the algorithm produces a high-quality tree over all

x-size subsections of the geometry, each x-size section has quality q : q ≤ Q

for some q and the given bound Q. Therefore, in the binary output tree,

113

every x-size leaf structure has cost 2x1+log2 q. The cost of the second tier x-size

structures is:

2x1+log2 qx1+log2 q′ , q′ ≤ Q (5.4)

= 2x1+log2 q+1+log2 q′ (5.5)

= 2x2+log2(qq′) (5.6)

= 2x2+2 log2

√
qq′ (5.7)

= 2(x2)1+log2

√
qq′ (5.8)

(5.9)

Let q′′ =
√

qq′ ≤ Q (geometric mean). Therefore the algorithm pro-

duces high-quality trees for x2 size subtrees. By induction to a height of logx n,

the algorithm produces high-quality n-size output trees.

5.6 Concluding Remarks

In this chapter I have discussed specialized acceleration structures and

high-performance build algorithms. Specialized acceleration structures are

structures that make specific assumptions in order to provide some benefit

(usually performance-related) but give up some amount of generality. Af-

ter introducing specialized acceleration structures I show how the perspective

transform can be used to produce significantly faster structures for eye and

shadow rays. I show that the additional overhead of producing these accelera-

tion structures is outweighed by the improvement in performance they provide.

Results are presented in the chapter titled Implementation and Results.

114

In addition to discussing specialized acceleration structures I describe

two build algorithms for kd-trees. Fast build algorithms are required to build

specialized acceleration structures quickly enough to make them useful. Ad-

ditional motivation for fast build algorithms is to allow dynamic scenes in

ray tracing. In fact, this was my initial motivation. If a scene changes be-

tween frames, acceleration structures must also change to reflect these changes.

Therefore, supporting dynamic scenes forces acceleration structure build to be

an online process. The algorithms I presented in this chapter provided an over-

all reduction in kd-tree build time of one to two orders of magnitude, making

interactive kd-tree build a reality. Online build was voted to be the most

important problem in real-time ray tracing at the Siggraph’05 real-time ray

tracing course. Due to work by me and others it is no longer a large concern.

115

Chapter 6

Implementation and Results

Having spent the majority of this document describing algorithms, I

now turn to a discussion of system design and performance results associated

with those algorithms. This section is dedicated to experimental validation

of the presented algorithms. Results presented in this section were primarily

gathered from three different systems.

The Razor [19] system was built in collaboration with Gordon Stoll, Bill

Mark, Peter Djeu, Rui Wong and Ikrima Elhassan. My primary contribution

to this system was the kd-tree build, including the fast scan and build from

hierarchy algorithms. Results I present for those two algorithms were gathered

in this system.

Results relating to the perspective grid acceleration structure were ob-

tained using a system I developed independently from other projects. This

system was designed to have extremely high performance with the primary

intent of demonstrating the performance potential of a ray tracing system for

primary visibility and hard shadows.

Comparisons and results relating to the perspective surface area metric

were gathered from a third system. This system was designed primarily to be

116

simple, with performance as a secondary factor. It was carefully designed to

allow identical build, traversal and intersection code to be used to generate

images in both world space and perspective space.

The same system used to gather perspective surface area metric results

was used to gather results for the mailbox corrected surface area metric. Ad-

ditionally, I used PBRT [54] to further experimentally validate the mailboxing

correction.

6.1 Correction to the SAM for Mailboxing

Analysis using the Original SAM (referred to as the OSAM) can bring

to light fundamental differences between kd-trees and axis aligned BVHs. In

particular, BVHs have substantially nicer behavior with respect to duplication.

The crux of the difference is that object duplication in spatial data structures

is discrete. If an object is referenced multiple times by a partitioning accel-

eration structure, the duplication factor is an integer. On the other hand,

when space is duplicated in an aggregation acceleration structure, the volume

of duplication is real-valued. The resulting fact is that an order ǫ overlap in a

kd-tree causes an entire object to be duplicated instead of an order ǫ volume

of space. The mailboxing optimization partially addresses this problem in kd-

trees. However, without a modification to the SAM, this optimization isn’t as

effective as it could be.

117

6.1.1 BVHs, KD-Trees and Mailboxing

In this subsection, I present an example that highlights the previously

described difference in behavior between BVHs and kd-trees. I will examine

how mailboxing changes the behavior of kd-trees when using the modified

heuristic presented in the chapter about cost metrics. For this section we will

set Cs (the cost of traversing a node) to zero. Under this assumption, the SAM

cost is equivalent to the expected number of intersection tests performed by

a ray during traversal. Thus, this section describes how the modified metric

behaves when considering only the expected number of intersection tests. It

should also be noted that Cs is very small in a kd-tree (when compared to ray-

triangle intersection or to BVH node traversal), especially when ray packets

are used to amortize loading and branching penalties.

This section is divided into three different cases. In each case, the kd-

tree will exhibit different behavior. The cases are ordered to provide intuition

as to how my correction to the SAM for mailboxing changes the behavior of the

SAH. These examples are in two dimensions (making the figures clearer), but

the generalization to three dimensions should be obvious. Since the examples

are in two dimensions, the SAM will use perimeters as surface areas. Also,

because surface areas are only used in ratios (to compute probabilities), the

examples use 1
2

of the perimeter to make the math simpler (the factors of two

cancel in the ratio).

118

6.1.1.1 Simple Case

The first case is the simple case of two axis-aligned boxes that are

abutted. See Figure 6.1. A BVH constructed over these boxes is simply the

boxes themselves and a parent box. The cost of such a structure using the

traditional cost model is:

cost = CLPL + CRPR (6.1)

= 1
1 + 1

2 + 1
+ 1

1 + 1

2 + 1
(6.2)

=
4

3
(6.3)

A kd-tree will have one splitting plane and identical cost to the BVH

(probabilities and costs are identical).

Figure 6.1: A simple case involving two objects (boxes) abutted.

119

6.1.1.2 Perturbed Case

An interesting thing happens when we slightly alter the boxes by skew-

ing the divider between them. See Figure 6.2. In the case of the BVH there is

a slight overlap between the two child bounding volumes and a small amount

of space becomes duplicated. The cost of this structure using the traditional

cost model is:

cost = CLPL + CRPR (6.4)

= 1
1 + (1 + ∆)

2 + 1
+ 1

1 + (1 + ∆)

2 + 1
(6.5)

=
4 + 2∆

3
(6.6)

This cost is very similar to the cost for the non-perturbed case. The

difference between the two costs is O(∆) as we would expect. In the case of a

kd-tree (see Figure 6.3), something very different happens. An object becomes

duplicated across the partition and the cost of the structure jumps to:

cost = CLPL + CRPR (6.7)

= 1
1 + (1 − ∆)

2 + 1
+ 2

1 + (1 + ∆)

2 + 1
(6.8)

=
6 + ∆

3
(6.9)

This cost is actually greater than the cost of not splitting at all. (The

cost of not splitting is 2). The OSAM will not allow this split to be performed.

A small perturbation of the original example produced a small perturbation

in the cost of the BVH but a large change in the cost of the kd-tree. Since

120

volume is a real quantity, we can overlap a very small amount of it, thus small

changes in our input may result in small changes in our output. However, the

quantity of overlapped objects is a discrete quantity and cannot change by a

“small” amount. The minimum overlap in the number of objects is one. In

this case one, is a large fraction of the total objects present. Due to this effect,

rays traversing a BVH perform fewer (or the same number of) intersection

tests than do rays traversing a kd-tree over dense geometry.

Figure 6.2: A perturbed case involving two objects (trapezoids) abutted.

6.1.1.3 Perturbed Case with Mailboxing

In the third case we revisit the perturbed case but with the addition

of mailboxing and my modified surface area metric. Using these changes, the

121

Figure 6.3: A perturbed case involving two objects (trapezoids) abutted with
one kd-tree split.

Figure 6.4: A perturbed case involving two objects (trapezoids) abutted with
two kd-tree splits.

122

cost of the kd-tree split is:

cost = CLPL + CRPR − CL∧RPL∧R (6.10)

= 1
1 + (1 − ∆)

1 + 2
+ 2

1 + (1 + ∆)

1 + 2
− 1

1 + 0

1 + 2
(6.11)

=
5 + ∆

3
(6.12)

For values of ∆ less than one, the cost is in fact less than the cost of not

splitting the node. The modified SAH will make this split, even though the

OSAH would not. The cost is still higher than that of the BVH, but the kd-

tree has the opportunity to make another split. If this second split is allowed,

the cost of the right child is reduced to (see Figure 6.4):

CR = CL′PL′ + CR′PR′ − CL′∧R′PL′∧R′ (6.13)

= 2
1 + 2∆

1 + (1 + ∆)
+ 1

1 + (1 − ∆)

1 + (1 + ∆)
− 1

1 + 0

1 + (1 + ∆)
(6.14)

=
3 + 3∆

1 + (1 + ∆)
(6.15)

For small ∆, the cost of splitting the right child is also less than the

cost of not splitting it. We may substitute our new value of CR into equation

(6.10) for the parent box. By canceling terms we get:

cost = CLPL + CRPR − CL∧RPL∧R (6.16)

= 1
1 + (1 − ∆)

1 + 2
+

3 + 3∆

1 + 2
− 1

1 + 0

1 + 2
(6.17)

=
4 + 2∆

3
(6.18)

Using mailboxing and our new surface area metric, the kd-tree has

achieved the same cost as the BVH. A ray is expected to perform the same

123

number of intersection tests in both structures. By using the modified SAM, we

construct a higher quality kd-tree. Since the modified SAM allows additional

splits that the OSAM does not, it provides additional opportunities to use

the mailboxing optimization, thus making mailboxing more effective. This

example demonstrates that the corrected metric can make a difference in the

number of expected intersection tests performed during kd-tree traversal by

providing new opportunities for partitioning.

6.1.2 Verification Results

I implemented this correction in PBRT [54] and in an interactive ray

tracer. Over a variety of scenes the modified metric reduced the number of

ray-primitive intersections by approximately 30%. The exception to this im-

provement is the Stanford bunny which only improved by approximately 20%.

The Stanford bunny contains uniformly finely tessellated triangles. These tri-

angles do not span many cells, thus reducing the need for and effectiveness of

mailboxing. See Table 6.1. Additionally, the modification improves end-to-end

runtime by a few percent. Importantly, it increases the number of traversal

steps by only a small amount, providing a favorable tradeoff between traversal

steps and intersection tests in the results. These results demonstrate that the

correction provides a practical improvement, providing noticeable benefits to

both the number of intersections performed as well as overall runtime, while

only increasing the number of traversal steps by a small amount.

124

Scene Intersection Tests
Original Modified Change

Plants 1,263.7 M 872.9 M -31%
Sibenik 257.3 M 188.4 M -27%
TT 76.6 M 53.7 M -30%
Bunny 14.76 M 11.66 M -21%
Fiary Forest 29.43 M 21.60 M -27%

Scene Time
Original Modified Change

Plants 716.8 s 682.5 s -4.8%
Sibenik 219.6 s 211.9 s -3.5%
TT 102.7 s 101.4 s -1.3%
Bunny 1.768 s 1.684 s -4.8%
Fiary Forest 3.359 s 3.006 s -10.2%

Scene Ray Traversal Steps
Original Modified Change

Plants 14.18 B 14.70 B +3.67%
Sibenik 1.934 B 2.006 B +3.72%
TT 856 M 922 M +7.71%
Bunny 43.63 M 46.69 M +7.01%
Fiary Forest 96.10 M 99.54 M +3.58%

Table 6.1: Improvements due to the modified SAM. Results for Plant, Sibenik
and TT use PBRT in its default configuration on a 2.66 Ghz Core2. Bunny
and Fairy Forest results use an interactive kd-tree ray tracer and scene/camera
files from [35] on a 2.2Ghz Core2 (Merome). (Model source/details are covered
in the second appendix.) Results were run at 1920x1200 in single ray mode
using inverse mailboxing with a 16-entry cache. Columns show improvements
in number of intersections and runtime as well as the increase in number of
traversal steps made by rays using the modified structure.

125

6.2 The Perspective Grid

This section describes system implementation details for the perspec-

tive grid ray tracer I developed. My system is used to obtain the performance

results also presented in this section.

6.2.1 System Design

As in a standard Whitted ray tracer, the overall flow of control in the

system is driven by the tracing of eye rays, which in turn trigger the tracing of

shadow rays. Throughout this section I will discuss how to use the perspective

grid to achieve high performance for different sets of rays using my system as

an example.

6.2.1.1 Eye Rays

Eye rays are exceptionally well behaved: they share a common origin,

their directions are evenly distributed and can be computed from a formula

rather than stored, and these rays can easily be grouped in any desired way.

Thus, the acceleration structure and traversal algorithm may be highly opti-

mized for these conditions. With these optimizations, the algorithm for eye

rays can be considered to be either a degenerate (no splits in z) version of

the perspective grid technique or a modified tiled z-buffer renderer of the sort-

middle variety [53] with additional capabilities such as the ability to render

non-polygonal geometry.

The implementation of the acceleration structure for eye rays is a per-

126

spective grid with no splits in the z dimension. In the current implementation

the grid uses a resolution such that each cell is approximately 100x100 pix-

els. This grid resolution ensures that the color and depth values for ray hit

points associated with a cell fit into the processor’s L2 cache. For high depth-

complexity scenes, the third dimension of the grid could be restored. The

system does not preprocess scene objects for faster intersection. It should be

noted that by keeping each cell in the processor’s L2 cache, the perspective

grid system avoids reading/writing to main memory during the inner render-

ing loop. This optimization prevents the limited bandwidth to main memory

on current generation CPUs from being a bottleneck.

After building the acceleration structure, the system processes one grid

cell at a time, along with all of the geometry and eye rays that intersect that

cell. Within each cell, intersection tests are performed as they would be in a z-

buffer rasterizer and in particular are performed in unsorted object order rather

than ray order. For each object, the system finds all rays that intersect the

perspective-aligned bounding box of that object and intersects the rays with

that object. This intersection is computationally efficient because primary

rays may be found/computed via a formula. Rays are processed in packets of

4 using the x86 4-wide SIMD instructions. A per tile distance buffer is checked

and conditionally updated for each intersection test. A floating-point color

buffer is also updated with a color computed with a simple shading model

(dot product of normal with light vector). These intersection and shading

algorithms are very similar to the ones used by a tiled z-buffer renderer.

127

After shadows/shading, simple tone mapping based on min/max in-

tensity from the entire previous frame is performed for all rays in a grid cell,

converting 32-bit float per component color down to 8-bit per component color

before being written to system memory. As the Results section will show, the

performance of this algorithm is much faster than traditional ray tracers and

comparable to that of software z-buffer renderers.

6.2.1.2 Hard Shadow Rays

After processing the geometry in a grid cell to find all intersection

points, the system casts shadow rays for all hit points found in that cell.

However, if the intersection point is on a back-facing polygon (with respect to

the light), it is assumed to be in shadow without tracing the shadow ray.

Hard shadow rays are almost as well behaved as light rays. However,

ray directions must be stored explicitly since they are not regularly spaced.

Also, intersection testing is done in ray order since shadow rays are generated

on the fly from eye rays. Thus, the system’s processing of hard shadow rays

is much more like traditional ray tracing than the processing of eye rays.

The system uses one perspective grid per light. These grids also have

no splits in the z dimension. Thus, as with eye rays, each hard shadow ray

traverses exactly one grid cell. In the current implementation, the hard shadow

perspective grid is 200x200 cells, much finer than that used for eye rays. The

perspective grid acceleration structure for each light is built at the start of the

frame. Only back-facing objects (with respect to the light) are transformed

128

and added to the grid. The system assumes that models are closed.

There are several advantages to culling the front-facing triangles [73,

77]. At each grid cell, the system stores the distance between the light and the

closest geometric primitive in the cell. Using the distance to the closest back-

facing triangle is more aggressive than the distance to the closest front-facing

triangle (as would be the case if we were back-face culling). This form of hier-

archical culling skips all intersection tests for up to 90% of the non-shadowed

rays. Using front-face culling also has the advantage that rays launched from

the surface of a front face cannot self-intersect, eliminating shadow acne [78].

When rendering a scene with many lights and lots of geometry, it is

clear that the use of multiple acceleration structures will consume more mem-

ory than a single acceleration structure would. In cases where memory con-

sumption is a problem, it could be addressed in a variety of ways, including

building the acceleration structures on demand or by only maintaining one

hard shadow acceleration structure at a time. This second approach requires

either storing primary hit locations before casting any shadow rays or re-

casting primary visibility rays for each light (which is particularly inexpensive

using the perspective grid).

As the results section will show, the performance of this algorithm is

much faster than traditional ray tracers. Traditional z-buffer renderers can-

not support this visibility query at all. Shadow mapping [76] can be used

to approximate the result, but causes significant artifacts. The Irregular z-

buffer [4, 43] can support this visibility query with high performance and with-

129

out artifacts, but it uses an object-order system organization which integrates

poorly with other ray tracing queries.

6.2.1.3 Soft Shadow Rays

Soft shadow rays (Figure 6.5) require a full 3D traversal of the per-

spective grid acceleration structure and thus provide the best example of the

fact that a perspective grid is a true 3D acceleration structure, capable of

supporting traversal by any ray. Here I provide details about the specific im-

plementation details I use for the perspective grid when tracing soft shadow

rays. Recall that the perspective grid is a truly 3D uniform grid acceleration

structure.

The acceleration structure is a 3D perspective grid (200 x 200 x 4).

There are fewer splits in the third dimension, as suggested by the theoretical

analysis provided in the Surface Area Heuristic section. As before, each light

has its own perspective grid acceleration structure. The acceleration structure

is built at the start of the frame, ignoring fully front-facing triangles (i.e. front

facing from all points on the light).

As with hard shadow rays, the soft shadow rays are processed in batches

of approximately 100x100 driven by the eye rays, but there are now 8 shadow

rays per eye hit point. Rays are traversed in 4-wide packets for SIMD efficiency,

with the packets consisting of four shadow rays from a single eye ray hit point.

This choice of packet construction guarantees that shadow packets are always

as coherent as the area light allows. The traverser is a slice-based ray packet

130

traverser for the grid acceleration structure, following the grid packet technique

described by Wald [70].

As the results section will show, traversing the perspective grid is sub-

stantially cheaper than traversing a standard 3D grid. As expected, perfor-

mance is best for small lights and degrades as the light becomes larger because

the shadow rays are less well aligned to the primary projective axis. An image

demonstrating soft shadows rendered using the perspective grid is provided in

Figure 6.5.

6.2.2 Results

This section presents results gathered from the system I have built

to implement the perspective grid algorithms and compares these results to

alternative approaches. First, I will present the performance of the system

on various scenes for eye rays, hard shadows, and soft shadows. Second, I

will compare the system’s performance to that of other interactive ray tracing

systems and software z-buffer renderers. Third, I present operation counts

showing that soft shadow rays traversed through a perspective grid require

fewer traversal steps than the same rays traversed through a world space grid.

131

Figure 6.5: Soft shadows rendered by the system (Courtyard scene).

132

End to End Runtime Results for My System
Scene Polys Primary Hard Shadows

FPS build Mray/s FPS build Mray/s
Courtyard 31k 30 5% 68 8 10% 36
FairyForest020 174k 17 17% 39 6 33% 27
Bunny-69k 69k 44 18% 100 11 27% 50
Bunny-16k 16k 81 7% 185 24 21% 109
Bunny-4k 4k 120 3% 274 31 13% 141
Bunny-1k 1k 154 1% 351 37 10% 169
Dragon-Bunny 252k 17 25% 39 4 50% 18
Conference 282k 16 33% 36 5 45% 23
ERW6 1k 56 1% 128 15 3% 68
Subset of the 8-Cores in Parallel Performance Table (Secondary Result)
Courtyard 31k 150 27% 342 34 41% 155
FairyForest020 174k 55 56% 125 14 78% 64
Bunny-16k 16k 339 31% 773 71 62% 324

Table 6.2: Performance of the perspective grid rendering system for various
scenes and for various quality settings, all at 1920x1200 resolution. The results
include the time for per-frame build of the acceleration structure. The top nine
rows use one core of a 2.66 GHz Xeon X5355, 1333MHz FSB. Hard shadows
use one eye ray and one hard shadow ray per pixel. Hard shadows use a
200x200x1 perspective grid, except FairyForest (800x800x1) and Conference
(600x600x1). The bottom three rows show parallel performance on eight of
the same cores. All phases of the system except acceleration-structure build
parallelize well, but since build is not yet parallelized it becomes the bottleneck
in the parallel scenario.

133

End to End Runtime Results for My System
Scene Polys Soft Shadows

FPS build Mray/s
Courtyard 31k 0.26 0% 5.3
FairyForest020 174k 0.11 1% 2.3
Bunny-69k 69k 0.41 1% 8.4
Bunny-16k 16k 0.57 0% 11.7
Bunny-4k 4k 0.65 0% 13.3
Bunny-1k 1k 0.72 0% 14.8
Dragon-Bunny 252k 0.30 4% 6.2
Conference 282k 0.19 1% 3.9
ERW6 1k 0.19 0% 3.9
Subset of the 8-Cores in Parallel Performance Table (Secondary Result)
Courtyard 31k 2.0 2% 41
FairyForest020 174k 0.51 4% 15
Bunny-16k 16k 4.2 3% 86

Table 6.3: This table uses the same performance setup as the previous table.
Soft shadows use one eye ray and eight Monte Carlo soft shadow rays per pixel
and a 200x200x4 perspective grid.

I demonstrate performance many times faster than other dynamic ray

tracing systems across a range of scenes. For several scenes I also demonstrate

performance of greater than 100 million rays per second for primary visibility

on a single core. Additionally, I achieve real-time performance (over 30fps)

at 1920x1200 for hard shadows on a game-like scene (courtyard) using eight

cores. Finally, the eye ray performance approximately matches that of modern

software z-buffer renderers. To the best of my knowledge, no other real-time

ray tracing system has these capabilities.

134

6.2.2.1 Overall Performance

Tables 6.2 and 6.3 shows measured system performance for a variety

of models on a single CPU core. The perspective grid system is focused on

measuring visibility performance and so I exclude expensive local shading op-

erations that would make the results more difficult to interpret. In particular,

I do not implement texture mapping because modern CPUs lack the mem-

ory bandwidth and specialized hardware needed for high-performance texture

mapping. I do implement per-pixel diffuse shading of interpolated artificial col-

ors to demonstrate that the technique supports interpolated vertex parameters

efficiently. The system can interpolate normals similarly, but this capability is

disabled by default because many of the scenes lack correct per vertex normals.

I report performance for regular eye rays (Table 6.2), hard shadows with reg-

ular eye rays (Table 6.2), and soft shadows with regular eye rays (Table 6.3).

Several conclusions can be drawn from these results.

First, hard shadow rays are not as fast as eye rays by the metric of

ray-segments per second but still perform very well compared to other ray

tracing systems. See Table 6.4 for a comparison between dynamic ray tracing

systems.

Second, soft shadow rays perform substantially slower than hard shadow

rays by the metric of ray segments per sec. There are a couple of reasons for

the performance degradation: Most soft shadow rays are not perfectly parallel

to the z axis, and so they must make traversal steps in x and y as well as

z. The mere fact that the traversal algorithm supports stepping in x, y, and

135

z makes it significantly slower than the special case algorithm used for hard

shadow rays, even if it is used to trace rays parallel to the z axis which do not

step. Also, as the size of the light increases, the performance of the perspec-

tive grid for soft shadows reduces very rapidly. This is primarily due to the

large number of “horizontal” steps through the high resolution grid. Addition-

ally, the perspective grid suffers from the ailment of all uniform acceleration

structures known as the “teapot in a stadium” problem. The PSAH presented

in the cost metrics chapter of this dissertation addresses soft shadows using

adaptive perspective space acceleration structures [35].

Table 6.2 also reports the fraction of the frame time that was spent on

building the acceleration structure(s), and these results show some interesting

trends. First, the acceleration structure build is somewhat more costly for

hard shadows than for primary rays because as discussed earlier the acceler-

ation structure used for shadow rays is more complex than that for primary

rays. Second, for models of 100k+ polygons, build cost is a significant frac-

tion (0.10-0.50) of the total frame time for eye rays and hard shadows, but

not for soft shadows. Since grid acceleration structures are typically less effi-

cient for traversal than adaptive data structures such as kd-trees, these results

suggest that soft shadows would benefit from the additional computation re-

quired to build an adaptive acceleration structure such as a perspective kd-tree

or perspective bounding-volume hierarchy. Adaptive perspective space build

algorithms are explored in the next section of this chapter and in my IEEE

RT08 paper[35].

136

To achieve real-time frame rates on the models used in typical inter-

active applications, the techniques used in this paper would need to be par-

allelized for multi-core architectures. I have already parallelized the traversal

algorithm, and as expected we observe good scaling (around 90% of linear

with 8 cores). Parallelizing the construction of the perspective grid accelera-

tion structures is still future work, but I believe that a combination of ideas

from traditional z-buffer parallelization [53], regular-grid parallelization [41]

and on-demand parallel build of acceleration structures from hierarchy [37]

can be successfully applied to this problem. I provide results for some scenes

using eight cores.

6.2.3 Comparison to other ray tracing systems

In this subsection I compare the performance of the perspective grid

system, against the performance of other recent high-performance ray tracing

systems for eye rays and hard shadow rays. Table 6.4 compares the perfor-

mance of the system against other systems that support dynamic and semi-

dynamic scenes. Table 6.5 provides a similar comparison for static scenes (i.e.

excluding acceleration structure build time for comparison systems but not

mine). I make a good faith effort to make fair comparisons, but for a va-

riety of reasons – especially incomplete data in previous publications – it is

difficult to make such comparisons completely precise or exhaustive. In both

of these tables, I adjust previously published results measured on Pentium 4

(3.2 GHz) systems and Opteron (2.6 GHz) systems upward by a conservative

137

factor of 1.5x to estimate their equivalent performance on the 2.66 GHz Core2

system that I use. This adjustment allows each system to be evaluated on the

platform for which it was optimized. The viewpoints used for gathering my

results have been visually matched to be as close as possible to the ones used

in the publications I compare to. I also use the same resolution as the previous

results, 1024x1024.

I first compare my system to Wald’s grid system which uses an ordinary

grid acceleration structure [70] and thus supports arbitrary dynamic scenes

like my system. My system is faster than the grid system by a factor of 2.2x

for eye+hard shadow rays on the one model (Fairy Forest) for which I can

compare. For eye rays, my system is even faster, by over 4.6x in all cases for

which data is available. More precisely, when comparing my system including

build time against the original grid paper excluding build time, my system is

4.6x to 5.0x faster. With build time excluded for both systems, my system is

5.1x to 7.9x faster.

I also compare my system to Wald’s bounding volume hierarchy sys-

tem [67], which can be considered to be semi-dynamic because the topology

of its optimized bounding volume hierarchy is precomputed in a slow prepro-

cessing step. Only the bounds in the hierarchy are updated each frame. My

system is always faster than the BVH system for eye rays, with conservative

speedup ranging from 1.37x to 2.83x. My system is faster than the BVH sys-

tem in most cases for eye+shadow rays, with speedup ranging from 0.94x (i.e

slight slowdown) to 2.36x. The largest speedups are seen with the Fairy Forest

138

model, which is the only truly animated model and thus is the most reasonable

point of comparison.

Finally, in Table 6.5 I compare my system to MLRTA [58], a high per-

formance ray tracer for static scenes which uses a highly optimized pre-built

acceleration structure. With my system rebuilding its lightweight acceleration

structure every frame, it matches or outperforms MLRTA. Therefore, my per-

spective grid system demonstrates that dynamic ray tracing can be as fast as

the fastest current static ray tracing systems.

Unfortunately, I cannot compare my system to any other high perfor-

mance rendering systems on the Courtyard scene which I believe to be the best

proxy for modern game scenes. My system performs especially well on this

scene for a variety of reasons, including the scene’s relatively uniform polygon

size.

Overall, the perspective grid acceleration structure provides z-buffer

like performance with some additional ray tracing flexibility. The results

demonstrate that this structure enables performance for eye and shadow rays

that is significantly higher than other fully dynamic ray tracing acceleration

structures. It also demonstrates competitive soft shadow performance despite

suffering from the problems of uniform structures. These results demonstrate

that the perspective grid is a very appropriate acceleration structure for near

point origin visibility queries.

139

Eye + Hard
Eye Rays Shadow Rays

Scene Polys Us grid BVH Us grid BVH
ERW6 1K 106 – ∼64 36 – ∼23
Fairy 174K 26 – ∼9.2 7.6 ∼3.4 ∼3.2
Conf 282K 22 – ∼16 6.8 – ∼7.2

Table 6.4: Comparison of dynamic scene performance, all in frames/sec at
1024x1024 resolution. My system is running on one core of a 2.66 GHz Xeon
5355; Other results are taken from recent publications with different hardware,
but adjusted in this table to estimate performance on a single 2.66 GHz Xeon
5355. Notes: (1) Adjustment for processor differences is an estimate; see text.
(2) The BVH algorithm is restricted to certain types of dynamic scenes because
it computes its acceleration structure topology off-line (taking an adjusted 2.16
sec for Fairy) and only updates the bounds each frame. (3) The BVH render
times include basic texture mapping; others do not.

6.2.4 Comparison to z-buffer systems

When my system is only tracing eye rays, its functionality and algo-

rithms for visibility are similar to those of a tiled z-buffer renderer. Thus, it

is appropriate to compare my system’s performance to an optimized software

z-buffer renderer. In Table 6.6, I compare to Pixomatic 2.0 [3], which is sold

commercially by RAD software for use as a fallback renderer in PCs lacking

fast graphics hardware. RAD software reports performance results for their

system on a 3.3 GHz Pentium-4 [56], and I adjust these results upward by a

factor of 1.5x to estimate performance on the 2.66 GHz Xeon X5355.

I measure performance using the 69.5K bunny model under conditions

that are as similar as possible to those used by RAD given the different natures

of the two systems. It is important to note that Pixomatic is configured to

140

Eye Rays
Scene Polys Us MLRTA grid BVH
ERW6 1K 106 ∼ 76 ∼ 21 ∼ 49
Fairy 174K 26 – – ∼ 12
Conf 282K 22 ∼ 23 ∼ 4.8 ∼ 14

Table 6.5: Comparison of static scene performance, all in frames/sec at
1024x1024 resolution. Results for my system include the time for acceleration
structure build (since it is view dependent), while results for other systems ex-
clude build time. My system is running on one core of a 2.66 GHz Xeon 5355.
Other results are taken from recent publications with different hardware, but
adjusted to estimate performance on the 2.66 GHz Xeon 5355.

My System Pixomatic (x1.5)
Triangle Rate 8.32 ∼7.92
Transform & Project Rate 32.1 ∼35.0

Table 6.6: Comparison of my system’s performance for eye rays vs. published
results for Pixomatic, a high performance software z-buffer renderer. Notes:
(1) Pixomatic is performing texture mapping but my system is not; see text
for details. (2) Pixomatic results are adjusted upward to account for hardware
differences.

perform texture mapping while my system is not. However the effects of

this difference should be small because the triangle rate in both systems is

measured with only 5% of the window covered, and the transform and project

rate is measured with the model off-screen. Thus, although these results must

be interpreted with caution, I believe they do show that the performance of

my system for eye rays is comparable to that of a high performance software

z-buffer renderer.

141

Regular 3D Grid Perspective 3D Grid
Grid Size 54x54x54 200x200x4
Traversal Steps/Ray 52.0 12.7

Table 6.7: When tracing soft shadow rays, the perspective grid requires fewer
grid traversal steps than a regular 3D grid. These results are measured using
my system with the Courtyard scene at 1920x1200 resolution.

6.2.5 Perspective Grid vs. Regular Grid

Although execution time is the ultimate metric for most real-time ren-

dering algorithms, more specific measurements can provide deeper algorithmic

insights. To assess the effectiveness of the perspective grid acceleration struc-

ture as compared to an ordinary grid, in Table 6.7 I compare the number

of traversal steps used when rendering soft shadows for the Courtyard scene

at 1920x1200. The total number of cells in each grid is essentially the same

but the results show that the perspective 3D grid requires less than 1/3 the

number of traversal steps required by the regular 3D grid. I have not im-

plemented a high-performance world-space grid traversal algorithm and thus

cannot directly compare the performance between my own regular and per-

spective grids. See my comparisons to Wald’s highly optimized grid algorithm

in the previous section.

6.3 The Perspective Surface Area Metric

Having discussed the perspective grid and its performance, this section

presents and discusses the implementation and results related to the perspec-

142

tive surface area metric. I implemented a ray tracing system to evaluate the

effectiveness of adaptive perspective space acceleration structures. The ray

tracer is a simple, SIMD(4)-wide packet ray tracer [72] using a kd-tree as the

acceleration structure. The primary goal of the implementation is to determine

the effectiveness of building and using adaptive perspective space acceleration

structures versus “regular”-space structures. Great care was taken to ensure

that identical build code (except for heuristic evaluation), traversal code and

intersection code was used in both regular and perspective space for the fairest

comparison.

Geometry is transformed into perspective space and clipped during

the frame-setup phase, before being handed to the build algorithm for the

acceleration structure. This frame setup cost is counted in the Build Time

column in Table 6.10. Rays are transformed into perspective space before being

traversed. Shadow rays that use a different perspective space than primary

rays are transformed between the perspective spaces in a similar method to

that used in z-buffer shadow mapping.

The results in Table 6.10 and Table 6.11 compare the performance of the

regular kd-tree versus a perspective kd-tree in two common scenes (bunny69k

and fairy-forest) from the viewpoints illustrated in Figure 6.6. Results are

provided for eye rays, hard shadow rays, soft shadow rays, and depth-of-field

eye rays. Figure 6.7 provides details about the soft shadow and depth-of-field

images. The fairy forest model is approximately 6.3 x 1.6 x 6.3 units in size.

Depth of field in the fairy forest scene is computed using an aperture “radius”

143

Figure 6.6: The Stanford Bunny rendered with depth of field and Fairy Forest
rendered with soft shadows both using a perspective kd-tree. The Fairy Forest
scene is approximately 6.3 x 1.6 x 6.3 units in size. The light “radius” for the
result is 0.1.

of 0.01 and a focal distance of 0.91. Soft shadows in the fairy forest scene are

computed using a light with “radius” 0.1. For the bunny image, the model

is approximately 0.15 x 0.15 x 0.12 units in size, the focal depth is 1.98 and

the aperture “radius” is 0.1. In all cases an aperture or light of radius x is

a 2x x 2x quad. Back-face culling in the perspective space structure reduces

build time by approximately 50% in each perspective case. On average, the

perspective space acceleration structures, along with the PSAH reduce render

times by 20-40% over the traditional SAH and regular space structures. The

results demonstrate that even for such a simple case as eye rays, the improve-

ment in trace performance makes up for the additional build time providing

end-to-end runtime performance in perspective space similar to render time

(excluding build) in regular space. More noticeably, the perspective space ac-

celeration structures reduce the number of intersection tests by about 40%

on average. This result demonstrates that the perspective space acceleration

structure is of much higher “quality,” i.e. it reduces the number of intersection

144

tests performed.

If the area light is scaled to be very large, the benefits from the per-

spective transform shrink accordingly. Particularly, if an object is closer to a

light than several times the radius of that light, the transform is less likely to

help. The results demonstrate the effectiveness of the transform for common

scenarios with a reasonably confined light source at reasonable distances. For

scenes with very large light sources I would argue against using ray tracing

at all. Ray tracing is an inherently high frequency operation and extremely

soft lighting is inherently low frequency result. Ray tracing solutions to low

frequency computations tend to be either extremely expensive to compute or

have very high levels of error (usually in the form of noise). Many, more appro-

priate algorithms exist for computing low frequency lighting. Low frequency

algorithms are not a focus of this dissertation.

When the number of rays traced is large, perspective space accelera-

tion structures more than compensate for their build cost by improving trace

performance. Thus, each area light in a scene should use its own perspective

based acceleration structure in order to maximize overall system performance.

Memory concerns related to having multiple acceleration structures and large

scenes may be addressed by only maintaining one such structure at a time as

is described in my IEEE RT08 paper [36] and in this dissertation.

In Table 6.11, I compare the performance of different build heuristics

in perspective space. The table demonstrates that the PSAM is a signifi-

cantly more effective cost-estimation metric than either the traditional SAM

145

Fairy Forest Scene (Static Counts)
Acceleration structure Intersections kd-tree steps

Eye Rays
(1) traditional / SAH sort 9.369 M 23.15 M
(2) traditional / SAH scan 9.530 M 24.77 M
(3) perspective / PSAM scan 5.482 M 14.49 M
ratio: (3)/(2) 58% 58%

Depth of Field x16
(1) traditional / SAH sort 148.0 M 369.6 M
(2) traditional / SAH scan 150.6 M 395.5 M
(3) perspective / PSAM scan 92.60 M 314.7 M
ratio: (3)/(2) 61% 80%

Hard Shadows
(1) traditional / SAH sort 21.05 M 46.13 M
(2) traditional / SAH scan 21.39 M 49.78 M
(3) perspective / PSAM scan 12.29 M 39.33 M
ratio: (3)/(2) 57% 80%

Soft Shadows x16
(1) traditional / SAH sort 346.4 M 558.9 M
(2) traditional / SAH scan 347.7 M 601.6 M
(3) perspective / PSAM scan 204.7 M 540.4 M
ratio: (3)/(2) 59% 90%

Bunny69K Scene (Static Counts)
Acceleration structure Intersections kd-tree steps

Eye Rays
(1) traditional / SAH sort 2.838 M 10.43 M
(2) traditional / SAH scan 2.888 M 11.10 M
(3) perspective / PSAM scan 1.515 M 5.981 M
ratio (3)/(2) 52% 54%

Depth of Field x16
(1) traditional / SAH sort 81.19 M 255.1 M
(2) traditional / SAH scan 83.15 M 272.4 M
(3) perspective / PSAM scan 46.29 M 141.1 M
ratio: (3)/(2) 56% 52%

Table 6.8: Static performance Results.

146

Fairy Forest Scene Performance
Acceleration structure Build Time Render Time Total Time

Eye Rays
(1) traditional / SAH sort 7.21 s 1.16 s 8.37 s
(2) traditional / SAH scan 0.76 s 1.22 s 1.99 s
(3) perspective / PSAM scan 0.58 s 0.71 s 1.29 s
ratio: (3)/(2) 75% 58% 65%

Depth of Field x16
(1) traditional / SAH sort 7.24 s 18.5 s 25.8 s
(2) traditional / SAH scan 0.78 s 19.1 s 19.9 s
(3) perspective / PSAM scan 0.58 s 14.5 s 15.1 s
ratio: (3)/(2) 74% 76% 76%

Hard Shadows
(1) traditional / SAH sort 7.28 s 2.13 s 9.41 s
(2) traditional / SAH scan 0.80 s 2.34 s 3.15 s
(3) perspective / PSAM scan 1.15 s 1.86 s 3.01 s
ratio: (3)/(2) 143% 79% 96%

Soft Shadows x16
(1) traditional / SAH sort 7.83 s 35.5 s 43.3 s
(2) traditional / SAH scan 0.79 s 34.4 s 35.3 s
(3) perspective / PSAM scan 1.19 s 24.3 s 25.5 s
ratio: (3)/(2) 138% 71% 72%

Table 6.9: First half of dynamic performance results. Table is continued on
next page along with a descriptive caption.

147

Bunny69K Scene Performance
Acceleration structure Build Time Render Time Total Time

Eye Rays
(1) traditional / SAH sort 2.17 s 0.492 s 2.62 s
(2) traditional / SAH scan 0.26 s 0.532 s 0.79 s
(3) perspective / PSAM scan 0.15 s 0.272 s 0.43 s
ratio (3)/(2) 59% 51% 54%

Depth of Field x16
(1) traditional / SAH sort 2.09 s 12.7 s 14.8 s
(2) traditional / SAH scan 0.25 s 13.3 s 13.5 s
(3) perspective / PSAM scan 0.15 s 7.8 s 8.0 s
ratio: (3)/(2) 62% 66% 59%

Table 6.10: (Second half of Table 6.9.) Comparison of performance:
perspective-space kd-tree vs. traditional world-space kd-tree. “traditional /
SAH sort” is a traditional kd-tree built using the SAH with sort-based selec-
tion at every step. “traditional / SAH scan” is a traditional kd-tree built
using the SAH with a scan-based selection at every step [38]. “perspective
/ PSAM scan” is a perspective-space kd-tree built using the perspective-
space cost metric with a scan-based selection at every step. All results are at
1920x1200 resolution on a single core of a mobile 2.2 Ghz Intel Core 2 Duo
(Merom). ratio is the ratio of the perspective-space results to the traditional
scan-based results. Build time results include all build times (if more than one
structure is used). All acceleration structures specialized to a light or camera
use face culling.

148

Figure 6.7: Close-ups of depth of field and soft shadow images. Top: Fairy
Forest scene with depth-of-field. Middle: Fairy Forest scene with soft shadows.
Bottom: Bunny scene with depth-of-field.

149

Fairy Forest Scene
Build heuristic Build Intersections kd-tree steps Render Total

Eye Rays
Median split 0.209 s 63.85 M 48.76 M 4.16 s 4.38 s
SAH 0.449 s 11.46 M 31.64 M 1.43 s 1.88 s
PSAM 0.581 s 5.482 M 14.49 M 0.71 s 1.29 s

Depth of Field x16
Median split 0.208 s 999.1 M 794.4 M 65.8 s 66.0 s
SAH 0.472 s 177.2 M 519.5 M 23.3 s 23.8 s
PSAM 0.580 s 92.60 M 314.7 M 14.5 s 15.1 s

Table 6.11: Comparison of different build heuristics for a perspective-space
kd-tree. Median-split uses the median split of the longest axis. SAH uses
the traditional SAM, but in perspective space. PSAM uses this dissertation’s
new perspective-space PSAM. All results are at 1920x1200 resolution on a
single core of a mobile 2.2 Ghz Intel Core 2 Duo (Merom).

in perspective space or median split of longest axis in perspective space.

6.4 Fast Scan

In this section I discuss the implementation and results for the fast

scan approximation to the SAM introduced in the specialization chapter. This

discussion contains both technical details and results. I implemented a SIMD-

vectorized (SSE2) version of the kd-tree building algorithm as a stand alone

package and evaluated it both for build performance and tree quality. I then

implemented the same algorithm within the Razor system [19] in order to

evaluate the practical effect of the tree quality on render time. The results in

Table 6.13 demonstrate that the algorithm’s kd-tree build performance is com-

petitive with other interactive acceleration structure builds (circa 2006) and

150

that the quality of the resulting kd-trees is almost as high as those produced

by a sorting method.

Although the Razor system normally uses a lazy kd-tree builder, it

was modified to force a full (non-lazy) kd-tree build to make the measure-

ments presented here. Rendering time was measured with the system config-

ured to use large numbers of both primary (4x super-sampling) and secondary

(area light sources) rays. Because Razor has some fixed per-ray overhead for

multi-resolution ray tracing, a non-multiresolution ray tracer would likely see

somewhat larger percentage changes in rendering times than those shown in

Table 6.13.

Several of the results in Table 6.13 are outliers deserving further dis-

cussion. First, the courtyard scene has an especially low SAH cost (i.e. high

tree quality). The primary cause of the low cost is the fact that the scene is

largely axis-aligned. Second, the soda hall scene has high SAH cost (i.e. low

tree quality) and a fast build time. I believe this behavior is caused by the

large wall polygons in the scene which cause the SAH to terminate earlier, pro-

ducing larger leaf nodes. Finally, Table 6.13 is missing rendering time results

for the armadillo and soda hall scenes due to memory consumption issues in

Razor. All of the results presented are for builds from an AABB “soup.”

The algorithm switches to exact evaluation of the SAH for nodes below

a certain size (36 primitives). This cutoff was chosen to lie at the point where

the cost of O(m2) brute-force search has approximately equal cost to the O(m)

two-pass adaptive sampling algorithm.

151

Scene
Hand Bunny Armadillo

Geometric Information
Quads 7,510 0 0
Triangles 835 69,451 345,944
Total Polygons 8,345 69,451 345,944

Build Time in Seconds
All Axes 0.024 0.25 1.41
Hybrid 0.022 0.23 1.14
One Axis 0.012 0.11 0.69

Build speed in polygons/second
All Axes 348,000 278,000 245,000
Hybrid 379,000 302,000 303,000
One Axis 695,000 631,000 501,000

Tree Quality, Measured as SAH Cost
All Axes 70.0 76.0 63.8
Hybrid 70.0 76.0 73.3
One Axis 72.0 95.0 84.6

Increase in Render Time Over Sort Based Tree
All Axes 0.33% 1.63% -
Hybrid 0.89% 1.63% -
One Axis 7.90% 7.72% -

Table 6.12: Fast scan build performance measurements (Part 1), using one
core of a 2.4 GHz Intel Core 2 Duo processor (“Conroe”), with 4MB of L2
cache. Models are discussed in detail in the second appendix.

152

Scene
Fairy Forest Courtyard Soda Hall

Geometric Information
Quads 78,201 141,657 0
Triangles 17,715 37,574 1,510,775
Total Polygons 95,916 179,231 1,510,775

Build Time in Seconds
All Axes 0.30 0.69 5.14
Hybrid 0.27 0.63 4.50
One Axis 0.14 0.26 1.59

Build speed in polygons/second
All Axes 320,000 260,000 294,000
Hybrid 355,000 284,000 336,000
One Axis 685,000 689,000 950,000

Tree Quality, Measured as SAH Cost
All Axes 53.6 39.3 452
Hybrid 59.6 39.9 450
One Axis 69.0 43.7 489

Increase in Render Time Over Sort Based Tree
All Axes 3.19% 3.31% -
Hybrid 3.77% 3.60% -
One Axis 4.35% 3.60% -

Table 6.13: Fast scan build performance measurements (Part 2), using one
core of a 2.4 GHz Intel Core 2 Duo processor (“Conroe”), with 4MB of L2
cache. Models are discussed in detail in the second appendix.

153

6.5 Build from Hierarchy

This section presents the experimental results for the build from hi-

erarchy algorithm. The results were gathered using the Razor system and

demonstrate that the build from hierarchy algorithm can greatly improve build

performance and that the measured asymptotic behavior fits with the theoret-

ical results. It should be noted that the Razor implementation of acceleration

structure build can be slower than other build implementations. The slowness

in Razor’s build implementation is related to the complexity of the multi-

resolution tree and its associated overhead. This overhead does not affect the

relative performance improvements provided by build from hierarchy. It also

causes builds to be slightly faster for the smaller visible scene even though the

lazy part of the build system is off.

For these results I use a “Courtyard 64” 6.9 scene that has a scene

graph hierarchy. It does not, however, have a particularly good hierarchy.

For example: the fan-out at several leaf nodes is 1568. Any reasonable scene

graph should provide hierarchy as good or better than the one I use. I also

use the conference scene 6.10 which has a very similar quality hierarchy to the

courtyard 64 scene.

Tables 6.14 and 6.15 show that build from hierarchy, lazy build and

scan-based SAM evaluation each contribute to improved build performance.

In particular, the combination of lazy build and build from hierarchy is much

more effective than either in isolation when the number of visible primitives

is much smaller than the total number of primitives. For the v = 9392 view

154

crtyrd near crtyrd near crtyrd far crtyrd far
(n=541023) (n=541023)

(v=9392) (v=89040)

Lazy Scan Hier build time trace time build time trace time

+ + + 0.116 s 1.302 s 1.608 s 1.388 s
+ + - 0.896 s 1.305 s 1.873 s 1.399 s
+ - + 0.401 s 1.287 s 3.985 s 1.361 s
+ - - 3.214 s 1.285 s 9.651 s 1.366 s
- + + 3.843 s 1.303 s 3.956 s 1.389 s
- + - 4.089 s 1.298 s 4.205 s 1.397 s
- - + 6.620 s 1.290 s 6.734 s 1.369 s
- - - 12.270 s 1.283 s 12.385 s 1.368 s

Table 6.14: Build times for a k-d tree with various fast-build capabilities en-
abled and disabled. Results are presented for two viewpoints of the Court-
yard 64 scene. These results were taken from the Razor system on a single
core of an Intel Core 2 Duo 2.667 GHz machine. The next table contains
information about a different scene.

there is a 7.7x speedup when using lazy+scan+hierarchy as compared to just

lazy+scan. These results experimentally confirm the theoretical result that an

O(v + log n) build is significantly faster than an O(n) build.

In contrast, the difference between O(n) build from hierarchy+scan and

the O(n log n) build from scan is less significant. This smaller difference is due

to the slow growth of log n. Thus the most important practical implication of

my analysis is that the use of lazy build and build from hierarchy, rather than

either technique in isolation.

Tables 6.14 and 6.15 also show how traversal performance varies as my

various techniques are applied. There is essentially no difference in traversal

performance when build from hierarchy is used instead of build from polygon

155

conf near conf near conf far conf far
(n=494706) (n=494706)
(v=13031) (v=156437)

Lazy Scan Hier build time trace time build time trace time

+ + + 0.129 s 1.631s s 0.674 s 2.150 s
+ + - 0.825 s 2.464s s 1.208 s 3.529 s
+ - + 0.403 s 1.577s s 2.095 s 2.031 s
+ - - 3.397 s 1.673s s 5.898 s 2.099 s
- + + 1.190 s 1.629s s 1.378 s 2.152 s
- + - 1.403 s 2.465s s 1.650 s 3.507 s
- - + 5.507 s 1.580s s 5.668 s 2.032 s
- - - 10.792 s 1.673s s 10.995 s 2.096 s

Table 6.15: Build times for a k-d tree with various fast-build capabilities en-
abled and disabled. Results are presented for two viewpoints of the Conference
scene. These results were taken from the Razor system on a single core of an
Intel Core 2 Duo 2.667 GHz machine. The previous table contains information
about a different scene.

“soup” for the courtyard scene. Scan-based build slightly reduces trace per-

formance as compared to a sort-based build but never by more than 2% in

that scene. In the conference scene, hierarchy provides a tracing speed im-

provement in all configurations. The improvement stems from the fact that a

good hierarchy can overcome the shortsightedness of the greedy SAH in order

to produce better (more informed) trees. Most noticeable is the fact that with

the near camera position, the hierarchy-based builder produces a tree that is

more than 5% faster to trace than the greedy full SAH. In this scene, the scan

algorithm produces noticeably poor trees without hierarchy. This is due to the

scan only considering one axis for its top level splits (using the Hybrid method

from the scan section).

156

Figure 6.11 shows how build time grows with increasing n when build

from hierarchy is used without lazy build but with fast scan. The earlier

theoretical results predict O(n) behavior under this configuration and the ex-

perimental results match this prediction almost perfectly.

Figure 6.12 shows how build time grows with increasing v when build

from hierarchy is combined with both lazy build and fast scan. The earlier

theoretical results predict O(v) behavior under this configuration. The exper-

imental results roughly match this predicted behavior, but there are clearly

some other effects present as well. It should be noted that it is difficult to

measure the effect of varying v precisely, because it is not possible to change

v without also indirectly changing other variables in the system. In this case,

I varied v by choosing different viewpoints within the same model. However,

different viewpoints do not behave exactly the same way even if they have the

same amount of visible geometry. I also suspect that memory hierarchy effects

are causing nonlinear behavior in some regions of the curve. Despite these

issues it is clear that build time grows approximately linearly with v over large

portions of the curve, as expected.

6.6 Concluding Remarks

This chapter presents implementation details and results for the various

acceleration structures and algorithms I have presented in previous chapters.

In addition I present a technical discussion demonstrating the improved ef-

fectiveness of SAH build using the correction to the surface area metric for

157

mailboxing. In short summary: my system using the perspective grid demon-

strates higher frame rates for primary visibility and hard shadows than other

fully dynamic ray tracing systems (up to 5x measured). In fact, I demonstrate

that the perspective grid acceleration structure provides performance compa-

rable to software rasterization. The perspective surface area metric is twice

as effective as the original surface area metric in perspective space. In most

cases, the additional cost for building perspective based acceleration struc-

tures is shown to be less than the savings provided by the faster traversal of

those structures. Finally, when used in conjunction and with laziness, the two

improved kd-tree build algorithms are shown to provide up to two orders of

magnitude speed improvement over the traditional sort based build algorithm.

158

For the practical reader, I will now summarize the benefits of the various

algorithms presented in this section. This list is intended to provide a concise

summary of the numeric results found in this chapter.

• The correction to the SAH for mailboxing reduces intersection tests by

about 30% and reduces rendering time by about 5%.

• The perspective grid system is 1x-5x faster than other dynamic ray trac-

ing systems for eye rays. This range is wide in order to conservatively

accommodate the widely different systems and architectures I compare

to.

• The perspective grid system is 1x-2.5x faster than other dynamic ray

tracing systems for eye and hard shadow rays.

• A perspective space kd-tree using the PSAH is 20%-40% faster than a

world space kd-tree using the SAH for DoF and soft-shadow rays.

• In perspective space, the PSAH produces kd-trees that are 70%-100%

faster than those produced by the SAH.

• The scan algorithm for building kd-trees is 3x-10x faster than the sort

based build algorithm.

• The combined scan algorithm, build from hierarchy algorithm and lazy

build is 20x-100x faster than the sort based build algorithm.

159

Figure 6.8: The Courtyard Scene (character models c©2003-2006 Digital Ex-
tremes, used with permission.) Models are presented in detail in the second
appendix.

160

Figure 6.9: Scene (Courtyard 64) used for gathering experimental results for
the build from hierarchy algorithm. In the near viewpoint shown at left, 9392
primitives are visible. In the far viewpoint shown at right, 89040 primitives
are visible. It has 541023 primitives total.

Figure 6.10: Scene (Conference Room) used for gathering experimental results
for the build from hierarchy algorithm. In the near viewpoint shown at left,
13031 primitives are visible. In the far viewpoint shown at right, 156437
primitives are visible. It has 494706 primitives total.

161

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100000 200000 300000 400000 500000 600000

B
u
i
l
d

t
i
m
e

(
s
e
c
)

Number of primitives (n)

Build with hierarchy

Figure 6.11: Performance of build-from-hierarchy as a function of n, the num-
ber of primitives. Lazy is disabled, and scan is enabled. We vary n by adding
additional occluded geometry to the scene.

162

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

B
u
i
l
d

t
i
m
e

(
s
e
c
)

Number of visible primitives (v)

Build with lazy and hierarchy

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5000 10000 15000 20000 25000 30000

B
u
i
l
d

t
i
m
e

(
s
e
c
)

Number of visible primitives (v)

Build with lazy and hierarchy (zoom-in graph)

Figure 6.12: Performance of lazy build from hierarchy as a function of v, the
number of visible primitives. Top: full graph, Bottom: zoom-in graph for
small v.

163

Chapter 7

Conclusions

In this dissertation, I presented several data structures and algorithms

for high-performance ray tracing. The work focuses on improving perfor-

mance of visibility queries. I hypothesize that no single best acceleration

structure exists and that structures specialized to specific cases will provide

better performance. I supported this hypothesis by the design and implemen-

tation of specialized acceleration structures using the perspective transform.

I also demonstrated performance improvements for algorithms in support of

specialized acceleration structures such as high-performance build algorithms

and better cost functions.

I demonstrated that these specialized acceleration structures can pro-

vide significantly better performance (lower time to image) than state-of-the-

art general-purpose acceleration structures for the same workload (eye and

shadow rays). I show that, in fact, these specialized acceleration structures

provide a large enough reduction in traversal and intersection cost to more

than make up for the additional work required to build them. I provide a high

performance implementation of these data structures that demonstrates that

theoretical benefits translate into practical runtime improvements.

164

In addition to supporting these hypotheses, I contributed a conceptual

framework for classifying acceleration structures and rendering algorithms.

This framework was used to justify optimizations commonly used in modern

rendering systems as well as the ones I introduced. I hope this taxonomy and

discussion provides a better understanding of the science of building accelera-

tion structures some insight into why they behave the way they do.

In addition to the conceptual framework, I developed several novel cost

metrics for acceleration structures. In general, cost metrics are formulae that

evaluate the effectiveness of acceleration structures. The cost metrics I pre-

sented make better assumptions than do the traditional surface area metric.

In particular, I derived a cost metric for perspective space acceleration struc-

tures. Since these structures are built separately for each light and camera

in a scene, they can make unique assumptions about the rays that use them.

I show that the new metric reduces run time in half when compared to the

traditional surface area metric for perspective space structures. I also dis-

cuss cost metrics for costs other than traversal, including memory usage and

the total work performed for a particular node in a hierarchical acceleration

structure. Finally I present a simple correction to the surface area metrics

to account for the mailboxing optimization. Mailboxing eliminates redundant

intersection tests performed in partitioning based acceleration structures and

in doing so affects traversal costs. This one-line correction accounts for the

effects of mailboxing and provides a 30% reduction in intersection tests and

a modest 5% improvement in time to image. As a byproduct, this correction

165

makes mailboxing a more effective optimization.

Finally, I present two novel build algorithms for surface area metric

(SAM) based acceleration structures. These algorithms were initially moti-

vated by the need to support dynamic scenes using ray tracing. In a dynamic

scene, acceleration structures must be updated or rebuilt in order to support

changing geometry over time. Acceleration structure build has until recently

been considered an offline process and did not allow changes to the geome-

try. At the Siggraph’05 course, faster acceleration structure build was voted

the most important problem in interactive ray tracing. The first of these two

algorithms I presented was an algorithm to quickly and effectively approxi-

mate the surface area metric. Traditionally, the SAM is evaluated over a large

number of candidates in order to find the lowest-cost split. Evaluating many

candidates efficiently requires sorting the candidates which can be very time

consuming. My algorithm samples the SAM in an adaptive manner in order

to produce a low-error, piecewise quadratic approximation from which a min-

imum can be obtained. An implementation shows that this machine-friendly

algorithm can build high quality kd-trees as much as an order of magnitude

faster than the previous state-of-the-art. The second algorithm I presented

uses an input hierarchy to avoid handling geometric primitives independently.

By considering objects in aggregate, the build considers many fewer objects

when choosing split planes thus reducing build costs. In addition to reduc-

ing actual build times, this algorithm reduces asymptotic build time over n

primitives from O(n log n) to O(n). Additionally, this algorithm improves the

166

effectiveness of demand-driven build algorithms. I demonstrated up to two or-

ders of magnitude speed improvement over the previous state-of-the-art using

all of the build optimizations I presented.

As mentioned previously, the work in this dissertation is focused on

designing new data structures and algorithms for real-time ray tracing. In ad-

dition, I presented results with both theoretical and practical benefits. Much

of this research has been dedicated to improving runtime performing for high

quality rendering with applications ranging from video gaming to medical

imaging. This work has also been driven by the hypothesis that no single

structure or algorithm will achieve the highest performance for real-time visi-

bility. I believe this dissertation effectively supports this hypothesis.

167

Appendices

168

Appendix A

Classification

In this appendix I classify several common rendering algorithms ac-

cording to the taxonomy I presented in the visibility chapter. I will then use

these classifications to present an optimization path that connects ray tracing

to rasterization. This path provides background for the research direction I

took with the perspective based acceleration structures. Specifically, the path

contains the perspective grid acceleration structure and algorithm. I will begin

by classifying algorithms. Recall that the taxonomy has a seven dimensional

basis.

169

A.1 Classification

A.1.1 PBRT (kd-tree Ray Tracing)

PBRT uses ray tracing and (by default) a kd-tree based acceleration

structure. In fact, it often uses many different kd-trees, one for each different

object in the scene.

• Acceleration Strategy (partitioning/aggregation) : spatial partitioning

(kd-tree)

• Change of Basis (many) : uses object space transforms for object spe-

cialization

• Depth (hierarchical/flat) : hierarchical (kd-tree)

• Adaptivity (adaptive/non-adaptive) : uses the SAH

• Laziness (none/fine/coarse) : none

• Streaming (samples/objects/neither) : stream samples (rays)

• Temporal Coherence (static/rebuild/refit) : rebuild (the system build an

acceleration structure before rendering a frame)

170

A.1.2 Lazy BVH Packet Tracing

This section classifies the rendering system from Lauterbach’s RT-

Deform System[48]. RT-Deform exemplifies wide packet BVH tracing. It uses

64 ray packets over a lazily constructed BVH. Packet BVH tracing actually

uses two acceleration structures according to the taxonomy, one for the BVH

traversal and one for packet intersection.

First the BVH:

• Acceleration Strategy (partitioning/aggregation) : aggregation

• Change of Basis (many) : none

• Depth (hierarchical/flat) : hierarchical

• Adaptivity (adaptive/non-adaptive) : none/SAH (depending on config-

uration)

• Laziness (none/fine/coarse) : fine (acceleration structure nodes are re-

fined on demand)

• Streaming (samples/objects/neither) : sample streaming (packets are

streamed)

• Temporal Coherence (static/rebuild/refit) : rebuild/refit (the system

uses a heuristic to choose when to rebuild the hierarchy as opposed to

just refitting the BVH)

171

Ray packets are an acceleration approach that reduces the number of

samples that traverse an acceleration structure. By grouping samples into

aggregations, fewer samples (sample aggregations in this case) traverse the

upper levels of a hierarchy. Additionally, this aggregation can be used to

perform early exit “all miss” tests for the packet. If the aggregation misses an

object, then all samples contained in that packet must miss the object.

• Acceleration Strategy (partitioning/aggregation) : aggregation (interval

aggregation for early exit)

• Change of Basis (many) : none

• Depth (hierarchical/flat) : flat

• Adaptivity (adaptive/non-adaptive) : none

• Laziness (none/fine/coarse) : none

• Streaming (samples/objects/neither) : streams geometry across the packet

• Temporal Coherence (static/rebuild/refit) : refit (intervals are tightened

as the packet thins out)

172

A.1.3 Grid Ray Tracing

Perhaps the simply acceleration structure for ray tracing is the uniform

grid. The grid is a partitioning acceleration structure that bins samples and

objects according to their spatial extent.

• Acceleration Strategy (partitioning/aggregation) : partitioning

• Change of Basis (many) : none

• Depth (hierarchical/flat) : flat

• Adaptivity (adaptive/non-adaptive) : none/grid heuristics [40]

• Laziness (none/fine/coarse) : none

• Streaming (samples/objects/neither) : samples

• Temporal Coherence (static/rebuild/refit) : rebuild

173

A.1.4 Perspective Grid Ray Tracing

The perspective grid is a variant of the uniform grid acceleration struc-

ture but uses the perspective transform to align samples to a common axis.

The perspective grid structure is presented in a previous chapter of this dis-

sertation.

• Acceleration Strategy (partitioning/aggregation) : partitioning

• Change of Basis (many) : perspective transform

• Depth (hierarchical/flat) : flat

• Adaptivity : none

• Laziness (none/fine/coarse) : none

• Streaming (samples/objects/neither) : samples

• Temporal Coherence (static/rebuild/refit) : rebuild

174

A.1.5 Z-Buffer Rendering (Rasterization)

Z-buffering is the traditional algorithm used for high performance ap-

plications. A different z-buffer must be used for each point light or camera in

a scene and the algorithm doesn’t easily support non-point origin samples.

• Acceleration Strategy (partitioning/aggregation) : spatial partitioning

(perpendicular to the viewing direction in perspective space)

• Change of Basis (many) : uses the perspective transform to align samples

to a common axis

• Depth (hierarchical/flat) : flat (uses a grid to cover the samples in per-

spective space)

• Adaptivity (adaptive/non-adaptive) : none

• Laziness (none/fine/coarse) : none

• Streaming (samples/objects/neither) : streams objects

• Temporal Coherence (static/rebuild/refit) : rebuild (the z-buffer is re-

built each frame)

175

A.1.6 Tiled Rasterization

Tiled rasterization is a variant of traditional rasterization (z-buffering)

that uses two hierarchically organized acceleration structures. It uses a low

resolution perspective grid to bin geometry into “tiles” and then uses a high

resolution z-buffer to render the tiles individually. In this setup the z-buffer can

be considered a separate acceleration structure at the leaves of the perspective

grid. I elide the specific classification for tiled rasterization because each of

the two structures it uses have been previously classified (z-buffering and the

perspective grid).

176

A.1.7 Irregular Z-Buffer

The irregular z-buffer is a primary and hard shadow visibility algorithm

(similar to the perspective grid) concurrently published by Johnson [43] and

Aila [4]. The algorithm is very similar to the perspective grid except that

it stores samples and streams geometry, thus retaining behavior similar to

the normal z-buffer but with the expanded capability of handling arbitrary

common origin samples.

• Acceleration Strategy (partitioning/aggregation) : partitioning

• Change of Basis (many) : perspective transform

• Depth (hierarchical/flat) : flat

• Adaptivity (adaptive/non-adaptive) : none

• Laziness (none/fine/coarse) : none

• Streaming (samples/objects/neither) : objects

• Temporal Coherence (static/rebuild/refit) : rebuild

177

A.2 Optimizing Ray Tracing into Rasterization

Having classified several common visibility data structures and algo-

rithms, I will now describe an optimization path between ray tracing and

z-buffering that is made more obvious by this taxonomy. This path will con-

tain the perspective grid structure as a step. The existence of such a path was

a major source of motivation for the development of that algorithm. For the

discussion, I will assume that both the ray tracing and the z-buffer algorithm

will traverse the same rays. Because of restrictions on imposed by z-buffering,

this implies uniformly distributed eye rays.

I will begin with traditional uniform grid ray tracing and arrive at z-

buffering via a sequence of simple changes. The uniform grid acceleration

structure was classified in the following way:

• Acceleration Strategy (partitioning/aggregation) : partitioning

• Change of Basis (many) : none

• Depth (hierarchical/flat) : flat

• Adaptivity (adaptive/non-adaptive) : none/grid heuristics [40]

• Laziness (none/fine/coarse) : none

• Streaming (samples/objects/neither) : samples

• Temporal Coherence (static/rebuild/refit) : rebuild

178

The first major change to this algorithm in the direction of z-buffering

is to transform space using the perspective transform. The perspective trans-

form also implies some amount of clipping to avoid the perspective singularity

problem. The resulting structure is a uniform grid in perspective space (the

perspective grid structure). This transform is the most distinct optimization

on the path between ray tracing and rasterization.

Post transform, all eye rays are parallel and axis-aligned. In particu-

lar, they are aligned to the z-axis. This alignment suggests a change in the

resolution of the uniform grid. It is possible to set the grid resolution equal

to the ray (screen) resolution in the x and y dimensions and set the resolution

in the z dimension to one. Making this modification doesn’t change the data

structure per se but does have the consequence that each ray has its own grid

cell.

Once we have a structure with exactly one grid cell per ray, traversal

of that structure is trivial. For each ray, the algorithm looks up the cell

that ray maps to and tests it for intersection with each of the triangles in

that cell. One additional simple transform completes the path to z-buffering:

loop interchange. Instead of storing geometry and streaming samples, we may

store samples and stream geometry. Since the samples map one to one with

the grid cells, the grid may be stored implicitly via a formula and the ray-

object intersections may be stored as the depth along the ray at which the

intersection occurs. In perspective space this depth is stored as z′ = −1/z.

An observer may also note that z-buffering uses 2-d triangle intersection

179

or scan conversion to render triangles. Two dimensional triangle intersection

isn’t actually an acceleration structure optimization; it’s an optimization for

triangle intersection. Although improved triangle intersection an obvious step

on the path to high performance, it isn’t relevant to this analysis. Thus, after

all, z-buffering and ray tracing are in fact very closely related. In addition to

the obvious loop interchange distinction, the only substantive difference is a

simple geometric transform.

180

Appendix B

Scenes

In this appendix I present all of the scenes I reference throughout my

dissertation in one place. Here you will find renderings of every scene used for

any rendering performance result. I also provide the source of each model and

its complexity in the form of polygon count.

Figure B.1: From left to right: Courtyard, Fairy Forest, Stanford Bunny,
Dragon-Bunny, Conference and ERW6.

Figure B.2: Courtyard 64

181

Scene Title Polygon Count Source
Courtyard 34K University of Texas at Austin
Courtyardx64 178k University of Texas at Austin
Fairy Forest 174K Daz Studios
Stanford Bunny 69K Stanford Scanning Repository
Bunny Dragon 252K UNC (composite of Stanford models)
Conference 282K University of Utah
ERW6 1k University of Utah
Hand 8K University of Utah (poser)
Armadillo 345K Stanford Scanning Repository
Soda Hall 1,511K Stanford
Plants N/A PBRT
Sibenik N/A PBRT
TT N/A PBRT

Table B.1: Table of scenes used. Scenes with N/A polygon counts were not
used in any high performance results. Scenes with no image were not used for
rendering results.

Figure B.3: Conference Room (high resolution)

182

Figure B.4: From left to right: Plants, Sibenik, TT

183

Bibliography

[1] Stanford 3D repository, http://graphics.stanford.edu/data/3Dscanrep/.

[2] Utah 3D animation repository, http://www.sci.utah.edu/˜wald/animrep.

[3] Michael Abrash, Optimizing Pixomatic for x86 processsors: Part I, Dr.

Dobbs Journal (2004).

[4] Timo Aila and Samuli Laine, Alias-free shadow maps, Proceedings of

Eurographics Symposium on Rendering 2004, Eurographics Association,

2004, pp. 161–166.

[5] Tomas Akenine-Mller and Timo Aila, Conservative and tiled rasterization

using a modified triangle set-up, journal of graphics tools 10 (2005), no. 3,

1–8.

[6] James Arvo, Ray tracing with meta-hierarchies, In Advanced Topics in

Ray Tracing, SIGGRAPH Course Notes, ACM Press, 1990, pp. 56–62.

[7] James Arvo and David Kirk, A survey of ray tracing acceleration tech-

niques, An Introduction to Ray Tracing (Andrew S. Glassner, ed.), Aca-

demic Press, San Diego, CA, 1989.

[8] Carsten Benthin, Realtime ray tracing on current cpu architectures, Ph.D.

thesis, Saarland University, Saarbrucken, Germany, January 2006.

184

[9] Jon Louis Bentley, Multidimensional binary search trees used for associa-

tive searching, Commun. ACM 18 (1975), no. 9, 509–517.

[10] J. Bigler, A. Stephens, and S. G. Parker, Design for parallel interactive ray

tracing systems, IEEE Symp. on Interactive Ray Tracing 2006, September

2006, pp. 187–196.

[11] Solomon Boulos, Ingo Wald, and Peter Shirley, Geometric and Arithmetic

Culling Methods for Entire Ray Packets, Tech. Report UUCS-06-010,

2006.

[12] Loren Carpenter, The A-buffer, an antialiased hidden surface method,

SIGGRAPH Comput. Graph. 18 (1984), no. 3, 103–108.

[13] Edwin Catmull, A subdivision algorithm for computer display of curved

surfaces, Ph.D. thesis, Dept. of CS, U. of Utah, December 1974.

[14] , A hidden-surface algorithm with anti-aliasing, SIGGRAPH ’78:

Proceedings of the 5th annual conference on Computer graphics and in-

teractive techniques (New York, NY, USA), ACM, 1978, pp. 6–11.

[15] Milton Chen, Gordon Stoll, Homan Igehy, Kekoa Proudfoot, and Pat

Hanrahan, Simple models of the impact of overlap in bucket rendering,

Proc. ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware,

1998.

185

[16] John Cleary, Brian Wyvill, Graham Birtwistle, and Reddy Vatti, A Par-

allel Ray Tracing Computer, Proc. XI Association of Simula Users Con-

ference. Paris (1983), 77–80.

[17] Robert L. Cook, Loren Carpenter, and Edwin Catmull, The REYES im-

age rendering architecture, SIGGRAPH 87 21 (1987), no. 4, 95–102.

[18] Robert L. Cook, Thomas Porter, and Loren Carpenter, Distributed ray

tracing, Computer Graphics (SIGGRAPH ’84 Proceedings), vol. 18, July

1984, pp. 137–45.

[19] Peter Djeu, Warren Hunt, Rui Wang, Ikrima Elhassan, Gordon Stoll, and

William R. Mark, Razor: An architecture for dynamic multiresolution

ray tracing, Tech. report, University of Texas at Austin Dep. of Comp.

Science, Conditionally accepted to ACM Transactions on Graphics.

[20] Frado Durand, Visibility, problems, techniques, and applications, Course

Notes of ACM SIGGRAPH 2000, 2000.

[21] H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather, D. Ellsworth,

S. Molnar, G. Turk, and L. Israel, A heterogeneous multiprocessor graphics

system using processor-enhanced memories, Computer Graphics (Proc. of

SIGGRAPH ’89) 23 (1989), no. 3, 79–88.

[22] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor, On visible surface

generation by a priori tree structures, SIGGRAPH ’80: Proceedings of the

186

7th annual conference on Computer graphics and interactive techniques

(New York, NY, USA), ACM, 1980, pp. 124–133.

[23] Donald Fussell and K. R. Subramanian, Fast ray tracing using k-d trees,

Tech. report, The University Of Texas at Austin, 1988.

[24] Andrew Glassner, Space subdivision for fast ray tracing, IEEE Computer

Graphics and Applications 4 (1984), no. 10, 15–22.

[25] Jeffrey Goldsmith and John Salmon, Automatic creation of object hier-

archies for ray tracing, IEEE Computer Graphics and Applications 7

(1987), no. 5, 14–20.

[26] Ned Greene, Michael Kass, and Gavin Miller, Hierarchical Z-buffer vis-

ibility, SIGGRAPH ’93: Proceedings of the 20th annual conference on

Computer graphics and interactive techniques (New York, NY, USA),

ACM, 1993, pp. 231–238.

[27] Johannes Günther, Heiko Friedrich, Ingo Wald, Hans-Peter Seidel, and

Philipp Slusallek, Ray tracing animated scenes using motion decomposi-

tion, Computer Graphics Forum 25 (2006), no. 3, 517–525, (Proceedings

of Eurographics).

[28] Eric Haines and Donald P. Greenberg, The light buffer: A shadow-testing

accelerator, IEEE Computer Graphics and Applications 6 (1986), no. 9,

6–16.

187

[29] Vlastimil Havran, Heuristic ray shooting algorithms, Ph.D. thesis, Czech

Technical University, Nov. 2000.

[30] , Mailboxing, yea or nay?, Ray Tracing News 15 (2002), no. 1.

[31] Vlastimil Havran and Jiŕı Bittner, On improving KD trees for ray shoot-

ing, Proceedings of WSCG, 2002, pp. 209–216.

[32] Paul S. Heckbert and Pat Hanrahan, Beam tracing polygonal objects, SIG-

GRAPH ’84: Proceedings of the 11th annual conference on Computer

graphics and interactive techniques (New York, NY, USA), ACM, 1984,

pp. 119–127.

[33] Emile Hsieh, Vladimir Pentkovski, and Thomas Piazza, ZR: a 3D API

transparent technology for chunk rendering, MICRO 34: Proceedings of

the 34th annual ACM/IEEE international symposium on Microarchitec-

ture (Washington, DC, USA), IEEE Computer Society, 2001, pp. 284–291.

[34] Warren Hunt, Corrections to the surface area metric with respect to mail-

boxing, IEEE Symposium on Interactive Ray Tracing 2008, IEEE, 2008.

[35] Warren Hunt and William Mark, Adaptive acceleration structures in per-

spective space, IEEE Symposium on Interactive Ray Tracing 2008, IEEE,

2008.

[36] , Ray-specialized acceleration structures for ray tracing, IEEE Sym-

posium on Interactive Ray Tracing 2008, IEEE, 2008.

188

[37] Warren Hunt, William Mark, and Don Fussell, Fast and lazy build of

acceleration structures from scene hierarchies, 2007 IEEE Symposium on

Interactive Ray Tracing, IEEE, Sept. 2007, pp. 47–54.

[38] Warren Hunt, William Mark, and Gordon Stoll, Fast kd-tree construction

with an adaptive error-bounded heuristic, Proceedings of the 2006 IEEE

Symposium on Interactive Ray Tracing, 2006, pp. 81–88.

[39] James T. Hurley, Alexander Kapustin, Alexander Reshetov, and Alexei

Soupikov, Fast ray tracing for modern general purpose CPU, Proceedings

of GraphiCon, 2002.

[40] Thiago Ize, Ingo Wald, and Steven G. Parker, Grid creation strategies for

efficient ray tracing, Proceedings of the 2007 IEEE/Eurographics Sym-

posium on Interactive Ray Tracing, 2007, pp. 27–32.

[41] Thiago Ize, Ingo Wald, Chelsea Robertson, and Steven G. Parker, An

evaluation of parallel grid construction for ray tracing dynamic scenes,

Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing,

2006, pp. 47–55.

[42] Chris L. Jackins and Steven L. Tanimoto, Oct-trees and their use in rep-

resenting three-dimensional objects, Computer Graphics and Image Pro-

cessing 14 (1980), no. 3, 249–270.

[43] Gregory S. Johnson, Juhyun Lee, Christopher A. Burns, and William R.

Mark, The irregular Z-buffer: Hardware acceleration for irregular data

189

structures, ACM Trans. Graph. 24 (2005), no. 4, 1462–1482.

[44] Norman P. Jouppi and Chun-Fa Chang, Z3: an economical hardware

technique for high-quality antialiasing and transparency, HWWS ’99: Pro-

ceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graph-

ics hardware (New York, NY, USA), ACM, 1999, pp. 85–93.

[45] Alan Kapler, Evolution of a vfx voxel tool, SIGGRAPH ’02: ACM SIG-

GRAPH 2002 conference abstracts and applications (New York, NY,

USA), ACM, 2002, pp. 179–179.

[46] Douglas Scott Kay and Donald Greenberg, Transparency for computer

synthesized images, SIGGRAPH ’79: Proceedings of the 6th annual con-

ference on Computer graphics and interactive techniques (New York, NY,

USA), ACM, 1979, pp. 158–164.

[47] Samuli Laine, Timo Aila, Ulf Assarsson, Jaakko Lehtinen, and Tomas

Akenine-Möller, Soft shadow volumes for ray tracing, ACM Transactions

on Graphics 24 (2005), no. 3, 1156–1165.

[48] Christian Lauterbach, Sung-Eui Yoon, David Tuft, and Dinesh Manocha,

RT-DEFORM: Interactive ray tracing of dynamic scenes using BVHs,

Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing,

2006, pp. 39–45.

[49] J. David MacDonald and Kellogg S. Booth, Heuristics for ray tracing

using space subdivision, Visual Computer 6 (1990), no. 6, 153–65.

190

[50] William Martin, Erik Reinhard, Peter Shirley, Steven Parker, and William

Thompson, Temporally coherent interactive ray tracing, Journal of Graph-

ics Tools 2 (2001), 41–48.

[51] Alexei Soupikov Maxim Shevtsov and Alexander Kapustin, Ray-triangle

intersection algorithm for modern cpu architectures, Proceedings of Inter-

national Conference on Computer Graphics & Vision, 2007.

[52] Gene S. Miller and C. Robert Hoffman, Illumination and reflection maps:

Simulated objects in simulated and real environments, 1984.

[53] Steve Molnar, Michael Cox, David Ellsworth, and Henry Fuchs, A sorting

classification of parallel rendering, IEEE computer graphics and applica-

tions (1994), no. 4, 23–32.

[54] Matt Pharr and Greg Humpreys, Physically based rendering: From theory

to implementation, Morgan Kaufmann, 2004.

[55] Stefan Popov, Johannes Günther, Hans-Peter Seidel, and Philipp Slusallek,

Experiences with streaming construction of SAH kd-trees, Proceedings of

the 2006 IEEE Symposium on Interactive Ray Tracing, 2006.

[56] RAD Game Tools, Pixomatic SDK Features, visited Jan 18, 2008.

[57] Alexander Reshetov, Faster ray packets - triangle intersection through

vertex culling, 2007 IEEE Symposium on Interactive Ray Tracing, IEEE,

Sept. 2007, pp. 105–112.

191

[58] Alexander Reshetov, Alexei Soupikov, and Jim Hurley, Multi-level ray

tracing algorithm, SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers (New

York, NY, USA), ACM, 2005, pp. 1176–1185.

[59] David Roger, Ulf Assarsson, and Nicolas Holzschuch, Whitted ray-tracing

for dynamic scenes using a ray-space hierarchy on the gpu, Rendering

Techniques 2007 (Proceedings of the Eurographics Symposium on Ren-

dering) (Jan Kautz and Sumanta Pattanaik, eds.), Eurographics and

ACM/SIGGRAPH, the Eurographics Association, June 2007, pp. 99–110.

[60] Steve Rubin and Turner Whitted, A 3D representation for fast rendering

of complex scenes, Proceedings of SIGGRAPH, 1980, pp. 110–116.

[61] Steven Rubin and Turner Whitted, A 3-dimensional representation for

fast rendering of complex scenes, SIGGRAPH ’80: Proceedings of the 7th

annual conference on Computer graphics and interactive techniques (New

York, NY, USA), ACM, 1980, pp. 110–116.

[62] David Salesin and Jorge Stolfi, The ZZ-buffer: A simple and efficient

rendering algorithm with reliable antialiasing, Proceedings of the PIXIM

’89 Conference (Hermes Editions, Paris, France), 1989, pp. 451–66.

[63] , Rendering CSG models with a ZZ-buffer, SIGGRAPH Comput.

Graph. 24 (1990), no. 4, 67–76.

[64] Andreas Schilling and Wolfgang Strasser, EXACT: algorithm and hard-

ware architecture for an improved A-buffer, SIGGRAPH ’93: Proceedings

192

of the 20th annual conference on Computer graphics and interactive tech-

niques (New York, NY, USA), ACM, 1993, pp. 85–91.

[65] Jonathan Shade, Steven Gortler, Li wei He, and Richard Szeliski, Layered

depth images, SIGGRAPH ’98: Proceedings of the 25th annual conference

on Computer graphics and interactive techniques (New York, NY, USA),

ACM, 1998, pp. 231–242.

[66] Oliver Dvel Stefan Zerbst, 3d game engine programming, Thomson Course

Technology, 2004.

[67] Ingo Wald, Solomon Boulos, and Peter Shirley, Ray tracing deformable

scenes using dynamic bounding volume hierarchies, ACM Transactions on

Graphics 26 (2007), no. 1, 1–18.

[68] , Ray tracing deformable scenes using dynamic bounding volume

hierarchies, ACM Trans. Graph. 26 (2007), no. 1, 6.

[69] Ingo Wald and Vlastimil Havran, On building fast kd-trees for ray trac-

ing, and on doing that in O(N log N), Proceedings of the 2006 IEEE

Symposium on Interactive Ray Tracing, 2006, pp. 61–70.

[70] Ingo Wald, Thiago Ize, Andrew Kensler, Aaron Knoll, and Steven G.

Parker, Ray tracing animated scenes using coherent grid traversal, ACM

Transactions on Graphics 25 (2006), no. 3, 485–493, (Proceedings of ACM

SIGGRAPH).

193

[71] Ingo Wald, William R. Mark, Johannes Günther, Solomon Boulos, Thiago

Ize, Warren Hunt, Steven G. Parker, and Peter Shirley, State of the art in

ray tracing animated scenes, Eurographics 2007 State of the Art Reports,

Eurographics Association, 2007.

[72] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner, In-

teractive rendering with coherent ray tracing, Proc. of Eurographics 2001,

2001.

[73] Yulan Wang and Steven Molnar, Second-depth shadow mapping, Tech.

report, Chapel Hill, NC, USA, 1994.

[74] Hank Weghorst, Gary Hooper, and Donald P. Greenberg, Improved com-

putational methods for ray tracing, ACM Trans. Graph. 3 (1984), no. 1,

52–69.

[75] Turner Whitted, An improved illumination model for shaded display, Com-

munications of the ACM 23 (1980), no. 6, 343–349.

[76] Lance Williams, Casting curved shadows on curved surfaces, SIGGRAPH

Comput. Graph. 12 (1978), no. 3, 270–274.

[77] Andrew Woo, The shadow depth map revisited, (1992), 338–342.

[78] Andrew Woo, Andrew Pearce, and Marc Ouellette, It’s really not a ren-

dering bug, you see ..., IEEE Comput. Graph. Appl. 16 (1996), no. 5,

21–25.

194

[79] Sung-Eui Yoon, Sean Curtis, and Dinesh Manocha, Ray tracing dynamic

scenes using selective restructuring, SIGGRAPH ’07: ACM SIGGRAPH

2007 sketches (New York, NY, USA), ACM, 2007, p. 55.

195

Index

Abstract, vi

Acknowledgments, v

Appendices, 168

Background and Related Work, 11

Bibliography, 195

Classification, 169

Conclusions, 164

Cost Metrics for Acceleration Struc-

tures, 33

Dedication, iv

Implementation and Results, 116

Introduction, 1

Scenes, 181

Specialized Acceleration Structures,

65

Visibility, 22

196

Vita

Warren Andrew Hunt was born in Austin, Texas on 10 March 1983,

the son of Dr. Warren A. Hunt Jr. and Irene R. Hunt. He recieved a Bachelor

of Science degree in Computer Science and another in Computational and

Applied Mathematics from Carnegie Mellon University in 2004. He began his

graduate studies at the University of Texas at Austin in fall of that year.

Permanent address: 2106 Ringtail Ridge
Austin, Texas 78746

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special

version of Donald Knuth’s TEX Program.

197

