
Copyright

by

Amit Partani

2007



The Dissertation Committee for Amit Partani

certifies that this is the approved version of the following dissertation:

Adaptive Jackknife Estimators for Stochastic

Programming

Committee:

David P. Morton, Supervisor

Jonathan F. Bard

John J. Hasenbein

Elmira Popova

Thomas Sager



Adaptive Jackknife Estimators for Stochastic

Programming

by

Amit Partani, B.Tech.; MSE

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2007



Dedicated to my parents and beautiful wife Aditi



Acknowledgments

I first like to thank the Almighty for such a wonderful time I had during my PhD.

The biggest source of motivation for me are my parents, my wife Aditi, my kins Arun

and Anju. I thank their endless support and belief in me. I would not have done

so much without the great effort that my parents put in me. I thank my wonderful

supervisor Dr. Morton without whom my thesis would have lacked purpose. He has

always been helpful and understanding. I am grateful to the wonderful faculty at

UT for the knowledge that I have gained from them. A special thanks to Vishv Jeet

for being a great colleague and all the motivational talks that he gave to me. Next

comes a big list of my friends with whom I enjoyed every second of my time at UT

specially Titash, Balaji, Burak, Ankur, Rohin, Mohit, Anubhav, Kranthi and many

more. I thank everyone who has directly or indirectly been part of my life during

my PhD.

Amit Partani

The University of Texas at Austin

December 2007

v



Adaptive Jackknife Estimators for Stochastic

Programming

Publication No.

Amit Partani, Ph.D.

The University of Texas at Austin, 2007

Supervisor: David P. Morton

Stochastic programming facilitates decision making under uncertainty. It is usually

impractical or impossible to find the optimal solution to a stochastic program, and

approximations are required. Sampling-based approximations are simple and attrac-

tive, but the standard point estimate of the optimal value of a stochastic program

contains bias due to the interaction of optimization and the Monte Carlo approxi-

mation. We provide a method to reduce this bias, and hence provide a better, i.e.,

tighter, confidence interval on the optimal value and on a candidate solution’s opti-

mality gap. Our method requires less restrictive assumptions on the structure of the

bias than previously-available estimators. Our estimators adapt to problem-specific

properties, and we provide a family of estimators, which allows flexibility in choos-

ing the level of aggressiveness for bias reduction. We establish desirable statistical
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properties of our estimators and empirically compare them with known techniques

on test problems from the literature.
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Introduction and Motivation
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1.1 Introduction

We consider the problem of estimating the optimal value of a stochastic program.

Estimates of the optimal value play a key role in assessing the quality of a candidate

solution to a stochastic program, and sometimes the optimal value itself is of primary

interest. The standard Monte Carlo estimate of the optimal value is biased, and

this bias can hamper our ability to develop sufficiently tight interval estimates of

a candidate solution’s optimality gap and the stochastic program’s optimal value.

Standard bias correction procedures, such as the jackknife, can be difficult to apply

because they require knowing the asymptotic form of the bias, and as we describe,

this is not typically known in a stochastic program. So, we develop a class of

adaptive jackknife estimators. They are adaptive in that they estimate the rate at

which the bias shrinks to zero.

Mathematical programming models to capture optimization under uncer-

tainty were pioneered by Dantzig [12] and Beale [4]. They proposed incorporating

randomness in what have come to be known as stochastic programs with recourse.

Since then the field of stochastic programming has added many dimensions. A well-

known example of a stochastic program is the newsvendor problem with uncertain

demand. The vendor does not know the demand before hand and must decide how

many newspapers to buy. After this decision is made, the demand is realized and

a loss in revenue or salvage cost is incurred in the case of excess demand or de-

mand shortfall, respectively. The problem is to decide how many newspapers to

buy to maximize the expected profit. Problems ranging from maximum-likelihood

estimation to optimal portfolio selection can be viewed as stochastic programs. See

Wallace & Ziemba [56] for a variety of applications where we can model the under-

lying problem using stochastic programming.

A wide class of stochastic programming problems involves making a decision

at time 0 based on certain constraints. At time 1 we realize additional information
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and re-optimize the system.

Let x ∈ X ⊆ ℜdx be a feasible first stage decision and its constraint set, ξ̃ be a dξ-

dimensional random vector defined on probability space
(

Ξ,F ,P
)

and f : X ×Ξ →
ℜ be the cost function associated with decision x and a realization of the random

vector ξ̃. Then a stochastic program can be formulated as

z∗ = min
x∈X

Ef(x, ξ̃), (1.1)

where E is the expectation operator. We will assume the following throughout this

dissertation that:

(A1). X is closed, nonempty, and compact.

(A2). f(x, ·) is continuous on Ξ ∀x ∈ X, and f(·, ξ) is lower semicontinuous on X

∀ξ ∈ Ξ.

(A3). E sup
x∈X

[f(x, ξ)]2 < ∞.

Many variants of this problem can be formulated by

• replacing the expectation operator by some other real-valued operator on

f(x, ξ̃) or

• imposing special structure on f(x, ξ̃) and X.

A special case of (1.1) is the two-stage stochastic linear program (SLP), where the

constraint set X is a polyhedron and

f(x, ξ̃) = cx + min
y≥0

q̃y

s.t. D̃y = B̃x + d̃, (1.2)

where ξ̃ = (q̃, D̃, B̃, d̃) is the random vector. Extensive research has been done

on numerical solution procedures for such SLPs. As the number of realizations
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of ξ̃ grows large, or when ξ̃ does not have finite support, or the problem deviates

from linearity then these algorithms may not apply. For a case where dξ = 8,

and the components of ξ̃ are independent with 4 realizations each, we need to solve

48 = 65, 536 second stage problems (1.2) simply to evaluate Ef(x, ξ̃) for fixed x ∈ X.

(Solving (1.1) with f defined in (1.2) is obviously more difficult.) Their sheer size

demands special attention be paid to these kind of problems. To summarize, the

potential difficulties associated with a stochastic program are:

• it can be computationally expensive to calculate f(x, ξ̃) for a given decision x

and realization ξ̃ of the uncertainties;

• even if f(x, ξ̃) can be computed easily, many times it is impossible or imprac-

tical to calculate Ef(x, ξ̃) exactly; and,

• available solution techniques require evaluating the objective function at many

feasible points.

A sampling-based approximation of the “true” problem (1.1) may be an appropriate

way to attempt to overcome the above difficulties. Let ξ̃1, . . . , ξ̃n be a sample from

the underlying probability distribution and f̂(x, ξ̃1, . . . , ξ̃n) be the sampling-based

estimator of Ef(x, ξ̃). Then, the sampling approximation problem can be stated as,

z∗n = min
x∈X

f̂(x, ξ̃1, . . . , ξ̃n). (1.3)

Let (x∗
n, z

∗
n) and (x∗, z∗) denote a pair of optimal solution and optimal value to

the sampling approximation problem (1.3) and the true problem (1.1), respectively.

Assumptions (A1)-(A3) ensure that model (1.1) has a finite optimal solution which

is achieved on X. We assume f̂(·, , ξ̃1, . . . , ξ̃n) is lower semicontinuous so that this

holds for model (1.3) too. Then, the issues which need to be addressed include:

1. What is the limiting behavior of x∗
n and z∗n as the sample size grows, relative

to their counterparts in the true problem?
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2. How should the approximation problem be solved?

3. How should solutions obtained from the approximation problem be validated?

As we review in the next section, the first two issues have been studied extensively.

We plan to address the third issue, i.e., solution validation. The optimal value

z∗n of problem (1.3) provides a statistical estimate of the true optimal value z∗.

However, this estimate is usually biased. We define the bias caused by the sampling

approximation as,

b(z∗n) = Ez∗n − z∗. (1.4)

Often in estimation, when bias arises, it shrinks to zero as O(n−1). We show that

for b(·) while O(n−1) is possible, other rates are also possible. As in other areas of

optimization, lower bounds in stochastic programming (for minimization problems)

prove useful in validating the quality of a candidate solution. If Ef̂(x, ξ̃1, . . . , ξ̃n) =

Ef(x, ξ̃) ∀x ∈ X then Ez∗n ≤ z∗, i.e., z∗n is a lower bound estimator. However, we

show that the bias of z∗n can significantly degrade our ability to assess the quality

of a candidate solution. Therefore, we develop techniques to reduce this bias. Our

approach is rooted in jackknife estimators. Desirable asymptotic properties of our

estimators are shown, and tested on some standard problems.

1.2 Background

We provide background on some existing results for sampling approximation meth-

ods in stochastic programming. There is a significant literature on these type of

results, and it is not our purpose to give a comprehensive review. See, for example,

the chapters of Shapiro [52] and Pflug [39].
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1.2.1 Limiting properties of (x∗
n
, z∗

n
)

Even if f̂(·, ξ̃1, . . . , ξ̃n) → Ef(·, ξ̃) pointwise w.p.1. (with probability 1), the con-

vergence z∗n → z∗ is not guaranteed. For example, consider the problem where

f(x, ξ̃) = ξ̃x,X = ℜ, and ξ̃ ∼ N(0, 1). Let ξ̃1, . . . , ξ̃n be an i.i.d. (independent and

identically distributed) sample of ξ̃ and define f̂(x, ξ̃1, . . . , ξ̃n) = ( 1
n

∑n
i=1 ξ̃i)x. It is

easy to see that f̂ converges to Ef for any fixed x, however z∗n = −∞, w.p.1., for all

n and thus does not converge to z∗ = 0. Hence, further conditions must be imposed

to guarantee the convergence of (x∗
n, z

∗
n). Below, we give a consistency result of [52]

when the sample ξ̃1, . . . , ξ̃n is i.i.d. as ξ̃.

Theorem 1 (Consistency, Theorem 10 [52]). Consider problems (1.1) and (1.3).

Let the sample ξ̃1, . . . , ξ̃n be i.i.d. as ξ̃, f̂(x, ξ̃1, . . . , ξ̃n) be the sample mean estimator

of f(x, x̃i) and z∗n be the optimal value of (1.3). Suppose there exists a measurable

function K : Ξ → ℜ+ such that E([K(ξ̃)]2) is finite and |f(x1, ξ) − f(x2, ξ)| ≤
K(ξ)||x1−x2||, for all x1, x2 ∈ X and ξ ∈ Ξ. If (A1)-(A3) holds, then, limn→∞ z∗n =

z∗ w.p.1.

Various conditions under which (x∗
n, z∗n) converge, in some sense, to true

optimal points can be found in [18] and [52]. Shapiro [51] establishes central-limit-

theorem (CLT) results for the optimal value z∗n; these require stronger hypotheses

than what we have assumed above. Under even stronger assumptions King and

Rockafellar [31] provide CLT results for the optimal solution x∗
n. Large deviations

theory leads to exponential rates of convergence of x∗
n to x∗ for certain classes of

problems; see [29, 32, 53].
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1.2.2 Solution techniques for sampling approximation prob-

lems

Many natural estimates f̂(x, ξ̃1, . . . , ξ̃n) take the form EPnf(x, ξ̃) for a discrete ap-

proximating distribution Pn. For example, if f̂(x, ξ̃1, . . . , ξ̃n) = 1
n

∑n
i=1 f(x, ξ̃i) and

the sampling is i.i.d., then Pn is simply the discrete empirical distribution, which

puts weight 1
n

on each point ξ̃i, i = 1, . . . , n. Once ξ̃1, . . . , ξ̃n have been generated

we may view (1.3) as a stochastic program with a possibly modest number of real-

izations. For example, if f takes form (1.2) and X is polyhedral then (1.3) can be

recast as a large-scale linear program, and we can attempt to solve it directly using

commercially-available linear programming algorithms. Or, we can employ special

purpose algorithms such as the L-shaped method [55] or enhancements of this de-

composition algorithm [7, 46, 47]. If the first stage decisions x and/or the second

stage decisions y are subject to integrality restrictions we can attempt to solve (1.3)

as a large-scale mixed integer program or via special purpose algorithms. See, for

example, the survey of Louveaux and Schultz [33]. In this type of approach we use

the computational machinery which has been developed (independently of sampling

based methods) over the last several decades to solve instances of (1.1) in which

there are a modest number of realizations. Birge [6] and Kall and Mayer [28] survey

the state-of-the art algorithms for solving (1.1) or its sampling approximation (1.3),

given ξ̃1, . . . , ξ̃n.

There is another approach that we will not explicitly discuss, which involves internal-

sampling algorithms, i.e., algorithms in which Monte Carlo sampling is used within

the algorithm to estimate function values and (sub)gradients. Examples of this ap-

proach include the classic adaptations of steepest descent by Robbins and Monro

[45] and Kiefer and Wolfowitz [30] as well as modern adaptations of the L-shaped

method by Higle and Sen [26] and by Dantzig, Glynn and Infanger [13, 14]. The

latter set of methods can gain computational advantage by intelligent integration of
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optimization and sampling.

1.2.3 Validation of candidate solutions via optimality gap

estimation

Given the consistency results and solution techniques for sampling-based approx-

imations it becomes necessary to assess the quality of a candidate solution which

is obtained with a finite sample size. The issue we face has analogs in other ar-

eas of optimization. In integer and nonlinear programming relaxation-based lower

bounds (for minimization problems) are used to help bound the optimality gap of

a candidate solution. Lower bounds obtained by relaxing integrality restrictions

or complicating constraints in such settings are deterministically valid. Sometimes

deterministically-valid lower bounds can be used in stochastic programs, e.g., via

Jensen’s inequality, but they require special structures and can be difficult to tighten.

Let x̂ ∈ X be a given solution whose quality we wish to assess. We define

quality in terms of the optimality gap, µx̂ = Ef(x̂, ξ̃) − z∗. The candidate solution

could be obtained by solving a sampling-based problem of form (1.3). Or, x̂ ∈
X could be obtained by running an internal-sampling algorithm. Or, it could be

obtained by solving the expected-value problem, i.e., the single scenario problem

with that scenario defined by Eξ̃ or some variant thereof [36]. The procedures we

describe do not depend on the method by which x̂ is found, although if it is found by

a sampling-based algorithm, the sampling done in our estimation of the optimality

gap will be independent of that done for obtaining x̂. Our aim is to estimate the

optimality gap, Ef(x̂, ξ̃) − z∗, but we do not know z∗, and so we replace it with a

lower bound provided by the following theorem [34, 35].

Theorem 2 (Lower Bound). 1. Let ξ̃1, . . . , ξ̃n satisfy

Ef̂(x, ξ̃1, . . . , ξ̃n) = Ef(x, ξ̃) ∀x ∈ X. (1.5)
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Then z∗n as defined in (1.3) satisfies Ez∗n ≤ z∗.

2. Let ξ̃1, . . . , ξ̃n be i.i.d. as ξ̃, and let f̂(x, ξ̃1, . . . , ξ̃n) = 1
n

∑n
i=1 f(x, ξ̃i). Then,

Ez∗n ≤ Ez∗n+1 ≤ z∗.

Given that f̂ is an unbiased estimator for a fixed value of x, the result in

part 1 of Theorem 2 follows by sub-optimality of x∗ in the sampling problem, and

the bound may be viewed as a relaxation arising from exchanging the order of

optimization and expectation. Part 2 of the theorem shows that under the standard

sample mean estimator the bound tightens in expectation as the sample size n grows.

These results hold quite generally, without requiring special structure of f,X or ξ̃

beyond existence of the associated expectations. We know from Theorem 1 that

consistency of z∗n follows under somewhat stronger assumptions. By Theorem 2 and

x̂ ∈ X we have that Ef(x̂, ξ̃)−Ez∗n ≥ µx̂, and an estimate for this upper bound on

the optimality gap is

Gn(x̂) = f̂(x̂, ξ̃1, . . . , ξ̃n) − min
x∈X

f̂(x, ξ̃1, . . . , ξ̃n), (1.6)

where ξ̃1, . . . , ξ̃n satisfy (1.5). Note that both terms on the right-hand side of (1.6)

use the same set of n observations, and as a result Gn(x̂) ≥ 0 due to suboptimality of

x̂ with respect to this sample. This is desirable property since we seek to bound µx̂ ≥
0. Since the distribution of Gn(x̂) is not known (in general, it can be non-normal),

a confidence interval (CI) for µx̂ can be constructed by forming i.i.d. replications of

Gn(x̂) and using the standard central limit theorem. Confidence intervals based on

single and multiple replication procedures are proposed by Bayraksan and Morton

[3] and Mak et al. [34], respectively. We provide below the multiple replication

procedure (MRP) given by Mak et al.

Multiple Replication Procedure (MRPo)
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Input: sample size n, replications m, confidence level (1 − α), candidate solution

x̂ ∈ X

Output: approximate (1 − α)-level CI on the optimality gap, µx̂

1. For i = 1, . . . ,m

• Generate a random sample ξ̃1, . . . , ξ̃n satisfying (1.5)

• Let zi∗
n = minx∈X f̂(x, ξ̃1, . . . , ξ̃n)

• Let Gi
n = f̂(x̂, ξ̃1, . . . , ξ̃n) − zi∗

n

2. Let

Ḡm =
1

m

m
∑

i=1

Gi
n and s2

m =
1

m − 1

m
∑

i=1

(Gi
n − Ḡm)2

3. Form CI for µx̂ as,
[

0, Ḡm +
tm−1,αsm√

m

]

The samples generated in step 1 are independent in each of the m iterations, al-

though the ξ̃1, . . . , ξ̃n within an iteration need not be independent. In step 3 of the

MRP we use tm−1,α, which is the (1−α)-quantile of a t random variable with m− 1

degrees of freedom, i.e., P (−tm−1,α ≤ Tm−1) = 1− α. By the standard central limit

theorem we infer that when m is sufficiently large

P (Ef(x̂, ξ̃) ≤ z∗ + ǫ̃G) ≥ 1 − α, (1.7)

where ǫ̃G = Ḡm + tm−1,αsm/
√

m. So, if the (random) CI width ǫ̃G is sufficiently

small we infer x̂ is a high quality solution with (approximate) probability 1 − α.

1.3 Motivation for reducing bias

Associated with the CI constructed by the MRP of the previous section is statement

(1.7) regarding the quality of the given candidate solution x̂. Tighter confidence
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interval widths ǫ̃G allow us to make better assessments. This CI can be decomposed

into three parts.

1. Suboptimality of the candidate solution, Ef(x̂, ξ̃) − z∗

2. Bias induced by using the lower bound, z∗ − Ez∗n = −b(z∗n)

3. Variance induced by sampling

The purpose of constructing the CI is to obtain an interval estimate of the first

part, i.e., the optimality gap. Though it is desirable to find techniques which give

better candidate solutions, i.e., solutions with smaller optimality gaps, the scope of

this research is to focus on obtaining precise interval estimates for a given candidate

solution. A number of authors have investigated techniques for reducing variance in

Monte Carlo estimators for stochastic programming [2, 13, 15, 16, 24, 27, 38], i.e., to

help reduce the contribution of issue 3. As we show later, the bias term sometimes

dominates the width of the MRP confidence interval. So, our motivation lies in

addressing issue 2, i.e., to reduce the bias. Of course, there is typically a trade-off

between bias and sampling error, and we will investigate it via the mean square

error. Taken together, Theorem 1 regarding consistency and Theorem 2 regarding

bias suggest that the optimal value z∗n of the sampling problem (1.3) converges to

z∗ from below. Often statistical estimation bias shrinks to zero as O(n−1) as the

sample size n grows. (In particular, this is true when the estimator may be viewed as

a smooth nonlinear function of a sample mean.) However, we show in the following

example that in our setting bias can shrink to zero at rate O(n−p), where p can take

on any value from 1/2 to ∞.

Example 1. Consider the following instance of (1.1):

z∗ = min
x

(

Ef(x, ξ̃) = E
{

ξ̃x + |x|δ
})

, (1.8)
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where δ > 1 and ξ̃ ∼ N(0, 1), i.e., ξ̃ is a standard normal random variable. Clearly,

z∗ = 0 and x∗ = 0. However, if ξ̃1, . . . , ξ̃n are i.i.d. as ξ̃ and f̂ is the sample mean

we obtain (1.3) as:

z∗n = min
x

(

f̂(x, ξ̃1, . . . , ξ̃n) = ξ̄nx + |x|δ
)

, (1.9)

where ξ̄n is a sample mean of n i.i.d. standard normals. Problem (1.9) has optimal

solution and value

x∗
n = (−1)I{ξ̄n>0}

( |ξ̄n|
δ

)
1

δ−1

z∗n = −(δ − 1)

( |ξ̄n|
δ

)
δ

δ−1

∼ −δ−
δ

δ−1 (δ − 1) |N(0, 1)|n−p,

where I{·} is the indicator function and p = δ
2(δ−1)

. Taking expectations we obtain

b(z∗n) = Ez∗n = −an−p, where a > 0 is a constant independent of n. As δ → ∞,

p ↓ 1/2 and as δ ↓ 1, p → ∞.

Example 1 shows that for a stochastic program of form (1.8), we can obtain

a bias of O(n−p) for any p ∈ (1/2,∞). p = 1/2 and ∞ can be obtained using

i.i.d samples in examples z∗ = min
x∈[−1,1]

(

Ef(x, ξ̃) = E[ξ̃x]
)

, where ξ̃ ∼ N(0, 1), and

z∗ = min
x∈[0,1]

(

Ef(x, ξ̃) = E[ξ̃x]
)

, where ξ̃ ∼ N(1, 1).

If the bias takes form b(·) = −an−p for p ∈ [1/2,∞) then it would be natural

to seek in a bias reduction technique an estimator that either: (i) effectively increases

p, e.g., the new estimator has bias of form O(n−(p+1)) or (ii) effectively shrinks the

value of a. Typically one would prefer the former, i.e., an estimator that increases

the rate at which the bias shrinks in n. However, in our case attempting to reduce

the order of the bias can be too aggressive because we do not simply seek a better

point estimate of z∗. Instead when using our estimator in a procedure for producing

a confidence interval on the optimality gap we are averse to destroying the lower-
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bounding property of that estimator. We will return to this issue later.

1.4 Outline

Biased estimators arise frequently in statistics and simulation. Anderson et al. [1]

describe a number of techniques for reducing bias. Jackknife and bootstrap estimates

are widely used; see, e.g., [50]. There has been little work on bias reduction in

stochastic programming, although exceptions include [11, 21].

In Chapter 2 we discuss the generalized jackknife estimator, which can be

used to reduce O(n−p) bias when p is known. The examples above show O(n−p)

bias can arise for a range of values of p when using z∗n to estimate z∗. Unfortunately

for a specific stochastic program we are unlikely to know the associated form of the

bias. So, we propose a class of adaptive p-estimation jackknife estimators, which

assume bias of the form O(n−p) but does not require a priori specification of p. We

compare the performance of these estimators on a simple asset allocation problem.

Unfortunately, these adaptive p-estimation estimators may fail to have basic

properties like consistency. So, in Chapter 3 we lay the foundation for an adaptive

estimator with properties that the p-estimation adaptive estimator can fail to ex-

hibit. We provide consistency results and characterize bias properties of the new

adaptive estimator. We also argue that under some mild conditions, the new adap-

tive estimator will preserve the conservative nature of naive estimators.

In Chapter 4 we develop three families of adaptive estimators, which allows

one to choose more, or less, estimators as needed. We show that the most aggres-

sive family completely eliminates bias under certain conditions. We then provide a

number of properties that our estimators satisfy and discuss conditions when they

outperform generalized jackknife estimators. We present numerical results to com-

pare the family of estimators with the naive estimator and generalized jackknife

estimator. We conclude and provide future research directions in Chapter 5.
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1.5 Numerical performance measures

We use the following measures to compare the various estimators that we consider.

Let θ be the parameter we wish to estimate and let the naive estimator, as in MRPo,

provide an estimator θ̂, which is a statistical upper bound on θ. To compare the

statistical estimators that we consider in the following chapters we use the measures

listed below.

1. Mean Square Error (MSE): E(θ̂ − θ)2

2. Mean Square Error Positive (MSE+): E[(θ̂ − θ)+]2

3. Mean Square Error Negative (MSE− = MSE - MSE+): E[(θ̂ − θ)−]2

4. Probability (Estimator < θ): P (θ̂ − θ)

5. Confidence Interval Widths

6. Schruben Coverage Plots

Usually a bias correction procedure leads to an increase in variance of the estimator

and hence we consider MSE as a performance measure. However, as mentioned

before, the naive estimators as used in MRPo are statistical upper bounds on the true

optimality gap. We would like to preserve this property and hence we also consider

MSE− as a performance measure. MSE− measures the squared deviations of the

estimators on the “wrong” side of true parameter. P (θ̂− θ) examines the frequency

with which the estimators fall on the “wrong” side of the parameter in consideration.

Schruben coverage plots compare the desired coverage from confidence intervals with

the actual coverage that are obtained (see [48]). Our first four measures concern the

point estimators and the last two measures involve the interval estimators.

Throughout this dissertation we will perform numerical experiments to assess

the relative performance of the estimators we consider. Unless specified otherwise,
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these experiments were conducted using C code that employs callable libraries in

CPLEX 9.0 and run on a computer with a 1.8GHz Xeon processor and 1GB of

RAM.
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Chapter 2

Generalized Jackknife Estimator
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2.1 Generalized jackknife estimator

2.1.1 Introduction

The jackknife estimator was introduced by Quenouille [42, 43], with early work due

to Durbin and Quenouille [19, 20, 44]. Tukey named the jackknife estimator and

broadened its scope [54]. Since then it has been widely used in application areas

including demographic and biological studies and used to improve tools in regression

and simulation [5, 8, 17, 23, 40, 41]. Along with the bootstrap, it is one of the most

commonly used resampling plans. The idea behind the jackknife estimator is to

obtain two biased but highly correlated estimators of an unknown parameter and

to try to remove or decrease the bias by subtracting one estimator from the other,

using an appropriate proportionality constant to adjust the estimator towards the

parameter of interest. The most widely-used form of the jackknife estimator assumes

bias shrinks to zero as O(n−1), but the generalized jackknife estimator allows for

the bias to take different forms; see Gray and Schucany [22] and Shao and Tu [50].

Let θ be the parameter of interest. Let θ̂1 and θ̂2 be two biased estimators of θ. The

generalized jackknife estimator is defined as,

JG =
θ̂1 − Rθ̂2

1 − R
, (2.1)

where R does not depend on the sample observations. The degree (if any) of bias

reduction depends on appropriate choices of the estimators θ̂1 and θ̂2 and on R. We

now turn to a specific forms of (2.1) developed by Quenouille [44].

2.1.2 Delete-1 estimator

Let θ̂n be the naive estimator based on a “full” sample of size n. Let θ̂i
n−1 be the

same estimator based on the same sample but with the ith observation deleted,

and define φ̂n−1 = 1
n

∑n
i=1 θ̂i

n−1. Let φ̄n−1 and θ̄n be the average of φ̂n−1 and θ̂n,
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respectively, over m i.i.d. replications. Choose θ1 = θ̄n, θ2 = φ̄n−1, and R =
(

n−1
n

)q
,

where q is representative of how fast the bias in θ̂n shrinks to zero. (We return to the

issue of choosing q in detail below.) Substituting into (2.1), we obtain the jackknife

estimator of Quenouille,

JQ
q =

nqθ̄n − (n − 1)qφ̄n−1

nq − (n − 1)q
. (2.2)

The estimators θ̂1 and θ̂2 used by this method are highly correlated, have similar

bias structure and if q is chosen well then the bias of JQ
q can be smaller than that

of the original estimator θ̂n. This estimator is called a delete-1 estimator.

We now demonstrate the effectiveness of the jackknife estimator (2.2), on

some simple examples, with m = 1.

Example 2. Let Y be a random variable with finite variance σ2, and let Y 1, . . . , Y n

be i.i.d. as Y . We want to estimate the variance and σ2 = E(Y − EY )2 motivates

use of θ̂n=
1
n

∑n
i=1

(

Y i − Ȳn

)2
, where Ȳn is the sample mean. We know θ̂n is a biased

estimator of σ2 with Eθ̂n=σ2
(

1 − 1
n

)

. We choose q = 1 and apply the jackknife esti-

mator (2.2). After some algebraic simplifications, we obtain the jackknife estimator

as JQ
1 = 1

n−1

∑n
i=1

(

Y i − Ȳn

)2
, which we know is an unbiased estimator of σ2.

Example 3. Let Y be a Bernoulli random variable with success probability α, and

let Y 1, . . . , Y n be i.i.d. as Y . We want to estimate α2. A natural estimator is

θ̂n =
(
∑n

i=1
Y i

n

)2

. This estimator is biased as Eθ̂n = α2 + 1
n
(α−α2). Choosing q = 1

and applying (2.2) we get JQ
1 =

(
∑n

i=1
Y i)(

∑n
i=1

Y i−1)
n(n−1)

, which is an unbiased estimator

of α2.

Example 4. Let Y be a uniform random variable with support (0, α), and let

Y 1, . . . , Y n be i.i.d. as Y . We want to estimate α, and a natural estimator is

θ̂n = Y(n) = max {Y 1, . . . , Y n}. However, it is biased as Eθ̂n = α −
(

1
n+1

)

α.

We again choose q = 1 in (2.2) and obtain JQ
1 = Y(n) +

(

n−1
n

) (

Y(n) − Y(n−1)

)

with
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EJQ
1 = α

(

1 − 1
n(n+1)

)

. Though we are not able to remove the bias completely, we

have increased the rate at which the bias shrinks to zero from O(n−1) to O(n−2).

Example 5. Let Y ∼ N(0, σ2), and let Y 1, . . . , Y n be i.i.d. as Y . We want to

estimate (EY )4. A natural estimator is θ̂n =
(

1
n

∑n
i=1 Y i

)4
. If we choose q = 1

and apply (2.2), we obtain EJQ
1 = − 3σ4

n(n−1)
. Here by applying the usual jackknife

estimator, i.e., with q = 1, we have actually increased the bias in magnitude and

reversed the sign of the bias. If we choose q = 2 then EJQ
2 = 0.

For Examples 2 and 3, the standard jackknife estimators, JQ
1 , i.e., (2.2) with

q = 1, completely eliminate bias. In Example 4 the bias is not eliminated, but

the rate at which the jackknife estimate shrinks to zero is improved. However, in

Example 5, JQ
1 reverses the sign of the bias and increases its magnitude. Hence,

there is a danger of worsening the bias if we do not choose q appropriately. (In

Example 5, choosing q = 2 in (2.2) completely eliminates the bias.) In all four

of these examples we know the form of b(θ̂n) a priori, but of course, this may not

be the case in general. We discuss results in the next subsection, which relate the

amount of bias reduction to the value of q we choose.

2.1.3 Delete-half estimator

Usually when solving a sampling approximation problem we use a moderate-to-large

sample size, n. As a result, the optimal value may change little when we delete just

one observation, e.g., z∗100 ≈ z∗99. It may be preferable to delete more than one

observation at a time. Computationally, it may also be preferable to delete multiple

observations, particularly when the effort to solve (1.3) grows faster than linearly

in n, as is often the case. So, our generalized jackknife estimator uses a batching

scheme with two disjoint batches of size n/2, where n is even. Let θ̂1
n/2 be the

original estimator using the first half of the (randomly ordered) full sample n and

θ̂2
n/2 be the original estimator using the second half. Define φ̂n/2 = 1

2
(θ̂1

n/2 + θ̂2
n/2) and
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let φ̄n/2 be the average of φ̂n/2 over m i.i.d. replications. The generalized jackknife

estimator using this batching scheme can now be written as

JB
q =

nqθ̄n − (n/2)qφ̄n/2

nq − (n/2)q
. (2.3)

There are n!
2(n/2!)2

different such partitions of a sample of size n. However, we will

choose only one such partition as indicated above. We return to this issue later.

2.1.4 Limiting behavior of generalized jackknife estimator

We seek to understand how the asymptotic bias of the delete-1 and delete-half

estimators compare with that of the original estimator θ̂n. To compare the bias

of the generalized jackknife estimator (2.2) to that of the original estimator θ̂n, we

define

ρQ = lim
n→∞

EJQ
q − θ

Eθ̂n − θ
.

Here, ρQ is a measure of how fast the bias in JQ
q shrinks to zero compared to that of

θ̂n. For Examples 2-4, when we consider JQ
1 , we obtain ρQ = 0, but for Example 5

we obtain ρQ = −1. If we instead consider JQ
2 for Example 5 then we obtain ρQ = 0.

We now state results from Gray and Schucany [22], which relate the choice of q to

ρQ.

Theorem 3 (Theorem 3.4 [22]). Assume the bias of the original estimator θ̂n is of

the form an−p + o(n−p) and a 6= 0. Then,

1. if p ≤ q then 0 ≤ ρQ < 1, with ρQ = 0 when q = p;

2. if p/2 ≤ q < p, then −1 ≤ ρQ < 0, with ρQ = −1 when q = p/2; and,

3. if q < p/2 then ρQ < −1.

Theorem 3 provides valuable guidance for choosing q in (2.2). Part 1 of the

theorem says we should select q = p so that bias of JQ
q shrinks to zero at a faster
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rate than that of θ̂n. Of course, doing so requires knowing p. With a choice of q > p,

JQ
q guarantees a reduction in the magnitude of asymptotic bias without changing

its order or sign. Parts 2-3 of the theorem indicate the effect of choosing q too

small, presumably because p is unknown. A choice of q < p reverses the sign of

the bias in JQ
q . If we select q < p/2 we increase the magnitude of the asymptotic

bias. This suggests erring on the side of selecting q too large rather than too small,

particularly because we wish to preserve the lower bounding property of z∗n, i.e., we

want to avoid reversing the sign of the bias. That said, as q grows large for fixed n,

JQ
q approaches θ̂n, and the bias reduction benefits of jackknifing are lost. Below we

extend this analysis to the delete-half estimator, defining the asymptotic bias ratio

of the delete-half estimator with respect to the original estimator as,

ρB = lim
n→∞

EJB
q − θ

Eθ̂n − θ
.

Theorem 4. Assume the bias of the original estimator θ̂n is of the form an−p +

o(n−p) and a 6= 0. Then,

1. if p ≤ q then 0 ≤ ρB < 1, with ρB = 0 when q = p;

2. if log2
2p+1

2
≤ q < p, then −1 ≤ ρB < 0, with ρB = −1 when q = log2

2p+1
2

;

and,

3. if q < log2
2p+1

2
then ρB < −1.

Proof. From (2.3), EJB
q = θ + 2q−2p

2q−1
an−p + o(n−p). Hence, ρB = 2q−2p

2q−1
, and the

results in each of the three parts follow.

Theorem 4 gives similar guidance as that of Theorem 3, when choosing q

in the delete-half estimator. Specifically, if q is above a particular threshold given

by the first part of the theorem, then bias reduction is ensured (but the reduction
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becomes weaker as q grows). And, choosing q too small can reverse the sign of the

bias, and, when it is sufficiently small, even increase its magnitude.

Note that log2
2p+1

2
> p

2
∀p > 0. Comparing the thresholds in Theorems 3

and 4 we see that this indicates the range of q for which the bias increases (with sign

reversal) in the delete-half estimator is larger than that of the delete-1 estimator.

This suggests that when choosing q in the delete-half estimator there is even more

reason to exercise caution, in the sense of avoiding selection of a q that is too small.

2.1.5 Application to stochastic programming and potential

issues

We now describe a multiple replication procedure to form a confidence interval on

the optimality gap of a stochastic program using the jackknife estimator by the

method of Quenouille. As indicated above, we should choose q close to p, but

hedging to a larger value of q. Unfortunately, we are unlikely to know p a priori.

So, a procedure by which we can estimate p would be valuable, and we pursue

this in the following section. For now, however, we assume that an appropriate

value for q has been selected. Below we state a multiple replication procedure for

forming a confidence interval on the optimality gap using the delete-half estimator,

(2.3), taking the value of q as input. A multiple replication procedure for delete-1

estimator can be produced along the same lines.

Multiple Replication Procedure with Delete-half Estimator (MRPq)

Input: sample size n (even), replications m, confidence level (1 − α), jackknife

parameter q, candidate solution x̂ ∈ X

Output: approximate (1 − α)-level confidence interval on the optimality gap, µx̂

1. For i = 1, . . . ,m

• Generate a random sample ξ̃1, . . . , ξ̃n which satisfies the unbiased condi-

tion (1.5), and also satisfies this condition when any of the observations
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are deleted

• Let zi∗
n = min

x∈X
f̂(x, ξ̃1, . . . , ξ̃n) and θ̂i

n = f̂(x̂, ξ̃1, . . . , ξ̃n) − zi∗
n

• Let zi1∗
n/2 = min

x∈X
f̂(x, ξ̃1, . . . , ξ̃n/2) and θ̂i1

n/2 = f̂(x̂, ξ̃1, . . . , ξ̃n/2) − zi1∗
n

• Let zi2∗
n/2 = min

x∈X
f̂(x, ξ̃n/2+1, . . . , ξ̃n) and θ̂i2

n/2 = f̂(x̂, ξ̃n/2+1, . . . , ξ̃n) − zi2∗
n/2

• Let φ̂i
n/2 =

θ̂i1
n/2

+θ̂i2
n/2

2

2. Let θ̄n = 1
m

θ̂i
n and φ̄n/2 = 1

m
φ̂i

n/2

3. Let

JB
q =

nqθ̄n − (n/2)qφ̄n/2

nq − (n/2)q
and s2

m =
1

m − 1

m
∑

i=1

(

nqθ̂i
n − (n/2)qφ̂i

n/2

nq − (n/2)q
− JB

q

)2

4. Form CI for µx̂ as,
[

0, JB
q +

tm−1,αsm√
m

]

The validity of the confidence interval produced in step 3 of the procedure follows

from the standard central limit theorem because the ξ̃1, . . . , ξ̃n produced in each of

the m replications in step 1 are independent. Hence, the observations θ̂i
n (and φ̂i

n/2),

i = 1, . . . ,m, are i.i.d.

2.2 A p-estimation adaptive procedure

2.2.1 Motivation

The generalized jackknife estimator (2.3) can work well in situations where we have

some prior knowledge regarding the nature of the bias, e.g., that b(θ̂n) = O(n−p).

As described in the previous section, if we know p, and choose q appropriately, we

can remove the leading term in the bias. However, the JB
q (and JQ

q ) estimators are

less effective when we do not know the order of the bias a priori. We now describe
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an adaptive jackknife estimator which does not require knowing the order of the

bias. Instead, both the order of the bias and the parameter of interest are found by

the method. To motivate our procedure, assume θ̂n has bias of the form an−p, and

consider the following system of equations,

Eθ̂n−1 = θ + a(n − 1)−p (2.4a)

Eθ̂n = θ + an−p. (2.4b)

Viewing θ and a as unknowns we can solve this system of linear equations to obtain

θ =
npEθ̂n − (n − 1)pEθ̂n−1

np − (n − 1)p
. (2.5)

We may view the derivation of θ in (2.5) from the equations in (2.4) as motivating

the jackknife estimator (2.2) under the assumption that bias is O(n−p) and p is

known. An analogous derivation with θ̂n and θ̂n/2 leads to (2.3). However, since we

do not know p, we can write a similar set of three equations to be solved for three

unknowns, i.e., θ, p and a. The result will motivate the definition of our adaptive

jackknife estimator.

Again assume the bias in the original estimator θ̂n is of the form an−p. Assume that

n is a multiple of 4 and let θ̂n/4, θ̂n/2 and θ̂n be the original estimators based on the

respective sample sizes of n/4, n/2 and n. Then we can write the following set of

equations

Eθ̂n/4 = θ + a(n/4)−p (2.6a)

Eθ̂n/2 = θ + a(n/2)−p (2.6b)

Eθ̂n = θ + an−p. (2.6c)
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Solving the system of nonlinear equations in (2.6) yields

θ =
Eθ̂nEθ̂n/4 −

(

Eθ̂n/2

)2

Eθ̂n + Eθ̂n/4 − 2Eθ̂n/2

(2.7a)

p = log2

(

Eθ̂n/4 − Eθ̂n/2

Eθ̂n/2 − Eθ̂n

)

. (2.7b)

The expressions in (2.7) are nonlinear functions of population means. To obtain an

estimator motivated by the above development, we assume that m i.i.d. replications

are performed.

2.2.2 p-estimation procedure

Our estimate of p replaces the expectations on the right-hand sides of (2.7) with

sample means. We do this in the following manner: Given a sample ξ̃1, . . . , ξ̃n (n

is a multiple of 4), we partition the sample into two subsamples of size n/2 and, in

turn, partition those subsamples into four subsamples of size n/4. We then form a

single observation of θ̂n based on the full sample, φ̂n/2 as the average of two i.i.d.

estimates of form θ̂n/2, and φ̂n/4 as the average of four i.i.d. estimates of form θ̂n/4.

Averaging over m i.i.d. replications we form estimators we denote θ̄n, φ̄n/2, and φ̄n/4.

There are some implementations issues for doing so, which we return to in Chapter

3. These sample-mean estimators replace their population counterparts in (2.7) to

yield

θ̂A =
θ̄nφ̄n/4 −

(

φ̄n/2

)2

(

φ̄n/4 − φ̄n/2

)

−
(

φ̄n/2 − θ̄n

) (2.8a)

pA = log2

(

φ̄n/4 − φ̄n/2

φ̄n/2 − θ̄n

)

, (2.8b)

which are nonlinear functions, pA = f(Θn), θ̂A = g(Θn), of the three sample means

Θn = (φ̄n/4, φ̄n/2, θ̄n). Let Σ̂ denote the standard sample covariance estimator of Θn.
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Assume that E(θ̂n) 6= Eθ̂n/2 6= Eθ̂n/4. We require this assumption to apply the delta

theroem (see, e.g., Casella and Berger [10]) in order to estimate the variance s2
p of pA.

This assumption is satisfied, for example, when the bias of θ̂n is a strictly decreasing

function of n. We return to this issue in Section 3.4. Under this assumption, using

a first-order Taylor series expansion, we can estimate the variance of pA as

s2
p = ∇T f(Θn) Σ̂∇f(Θn).

We could form an adaptive jackknife procedure by simply using q = pA in

MRPq. We do not do so in an attempt to preserve the upper bound property of the

estimators, i.e., we seek a conservative procedure. We instead let

q = max{pA,
1

2
} + tm−1,1−βsp, (2.9)

where 0 ≤ β ≤ 1. We know from Theorem 4 that our bias reduction is less aggressive

for larger values of q and so as β goes to zero, and the corresponding t quantile grows,

our procedure becomes more conservative. With β at our disposal we examine the

performance of a family of adaptive jackknife estimators in the next section. Of

course, the freedom to choose a parameter such as β can be disconcerting to some.

In this case, we recommend choosing β = 1
2
− α

2
. This choice deflates the value of β

relative to α, takes the correct value as α approaches one and only allows choosing

q ≥ pA. Under relatively mild conditions (see, e.g., [52]), we know b(z∗n) = O(n−p)

for p ≥ 1/2, and hence we include the max operator in (2.9). We also note that sp

already includes the “m−1/2” factor since Σ̂ is the sample covariance of a vector of

sample means.
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2.2.3 Numerical comparison

We now compare the performance of the naive estimator from MRPo, the standard

jackknife estimatorJB
1 and the p-estimation adaptive estimator JB

q with q chosen

according to (2.9). We do this comparison on an asset allocation problem on ex-

change traded funds from [37]. This single-period model has 14 assets representing

Exchange-Traded Funds, i.e., funds designed to track indices such as the S&P 500,

Russell 3000, and indices from industrial sectors like biotechnology and banking.

We maximize expected utility using a so-called power utility function augmented

by a penalty term that (mildly) discourages deviations from the investor’s current

portfolio. We assume the return distribution is multivariate normal and estimate

the return’s mean and covariance based on five years of monthly data from 1999 to

2004. Under the normal-distribution assumptions we can solve the problem exactly,

and this allows us to assess the performance of our procedures, e.g., compute em-

pirical coverage probabilities and values of the bias. We refer the reader to [37] for

further details.

Figure 2.1 shows the confidence interval on µx̂ generated by MRPo using

m = 40, α = 0.95, and varying n from 25 to 50 to 100. We obtained x̂ by solving an

instance of (1.3) with n = 400 i.i.d. samples, and we obtained the existing investor’s

portfolio, xt, by solving a separate instance with n = 400 i.i.d. samples. The figure

is based on averaging the output of MRPo over N = 2000 runs. The CI width is

partitioned into the three factors discussed in Section 1.3, namely the optimality gap,

the sampling error and the bias. Here, the bias estimate is formed by subtracting

the known optimality gap from the average of the N = 2000 point estimates Ḡm(x̂).

We note that z∗ = 1.0015. So, the x̂ we are using is suboptimal by about 0.02%, and

with n = 100 we are forming a 0.95-level CI on that optimality gap whose width is

roughly 0.1% of z∗. We can clearly see from the figure that bias dominates the CI

width. This motivates use of the bias reduction techniques we have proposed.
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Figure 2.1: CI width versus sample size for MRPo.

We assess the performance of three optimality-gap point and interval esti-

mators, denoted as follows: (i) Do, the point estimate and interval estimate of the

MRPo in Section 1.2.3 in which we do not attempt to reduce bias; (ii) JB
1 , the

standard jackknife estimator with MRPq of Section 2.1.5 with q = 1; and, (iii) Dβ,

the adaptive p-estimation estimator in which we choose q via (2.9) and use this in

MRPq. For Dβ we consider β ranging from 0.3 down to 0.01. Throughout we use

n = 100 and m = 40.

We begin by forming an empirical estimate of the mean-square error (MSE)

of each estimator. We did so using N = 2000 i.i.d. runs of each procedure (i)-

(iii) above. The estimated MSE of Do and JB
1 were 4.5 × 10−7, and 3.5 × 10−8,

respectively. Figure 2.2(a) shows the MSE of Dβ for various values of β, and also

includes those of Do and JB
1 for reference. Figures 2.2(b)-(d) show the negative

and positive part of MSE and the probability the gap point estimate is below µx̂.

Because of the nature of our point and interval estimators, we prefer estimators
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Figure 2.2: Empirical mean-square error (MSE), its negative and positive parts, and the
probability the point estimate is below µx̂.

in which MSE− and this probability are small. Restated, in choosing between two

estimators, we may prefer an estimator with slightly larger MSE if these other two

measures are smaller. The first observation is that all our jackknife estimators

significantly reduce MSE. The standard jackknife estimator performs very well with

respect to MSE. This is not surprising considering the estimates of p we obtained

via pA over the N = 2000 replications were 0.80 with a standard error of 0.30. So,

q = 1 is arguably a reasonably conservative choice. That said, Figures 2.2(b)-(d)

suggest that as β goes down the MSE−, and probability of having an invalid upper

bound point estimate, improve significantly while the relative increase in MSE+ is

modest.

Figure 2.3 shows the empirical coverage function of the interval estimators
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Figure 2.3: Coverage function plots are shown for the interval estimator without
bias correction, the standard jackknife, the adaptive p-estimation estimators for
β = 0.20, 0.10 and 0.05, and Dα, which adjusts the value of β according to β = 1

2
− α

2

in the p-estimation estimator.

produced by our procedures, i.e., the Schruben coverage plots [48]. The original

procedure, i.e., without bias reduction, produces an interval estimator with 100%

coverage regardless of the value of α. (Of course, as α shrinks to zero this no longer

holds but the smallest α in the plot is 0.05.) Using β = 0.20 yields an adaptive

p-estimation estimator that has undercoverage for large values of α. The interval

estimator of the standard jackknife and those associated with smaller values of

β = 0.10, 0.05 and Dα (which is based on the β = 1
2
− α

2
formula discussed earlier)

all appear to perform well with respect to coverage.
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2.3 Summary

The first half of this chapter is dedicated to application of generalized jackknife

estimators in stochastic programming. We argued in Chapter 1 that the order

of the bias is not known a priori and can be anything from 1/2 to ∞. During

the second half of this chapter we present a new adaptive p-estimation jackknife

estimator. The p-estimation scheme starts by estimating the order of bias and then

uses the generalized jackknife procedure with the estimated order of bias as input.

We compared the performance of the naive estimator of MRPo, JB
1 in MRPq and

the p-estimation stage estimator on a static asset allocation model.

Our family of adaptive p-estimation jackknife estimators is parameterized

by β. The simple asset allocation model has normally-distributed returns so that

we could solve it exactly and compute the true optimality gap to better assess

the performance of our estimators. In our simplest procedure, we do not attempt to

reduce bias, and in this case the bias dominates the width of our confidence intervals.

All of the jackknife estimators we consider significantly decrease mean-square error

by reducing bias. When one seeks a conservative point estimate for use in a one-

sided confidence interval our adaptive p-estimation jackknife with β = 0.05-0.10

provides significant improvement over neglecting bias entirely and may provide an

attractive alternative to the standard jackknife.
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Chapter 3

Adaptive Jackknife Estimator
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The expressions for the p-estimation adaptive estimators in the previous chap-

ter are nonlinear functions of the underlying estimators. The denominator in (2.8a)

involves the difference of two small numbers. As a result these estimators can be

poorly behaved, and even basic results like consistency can fail to hold. Still, the

above derivation is instructive and motivates the scheme we pursue below.

3.1 An adaptive jackknife estimator

We seek an adaptive jackknife estimator that does not require a priori knowledge

of p. We begin by revisiting (2.6a) and (2.6b) and solving to obtain

an−p =
(Eθ̂n/2 − θ)2

Eθ̂n/4 − θ
. (3.1)

Of course, θ is unknown, but we can view our best estimate as being θ ≈ Eθ̂n.

Substituting this into (3.1), we obtain

an−p ≈ (Eθ̂n/2 − Eθ̂n)2

Eθ̂n/4 − Eθ̂n

. (3.2)

By (2.6c) the expression in (3.2) is an estimate of θ̂n’s bias, i.e.,

θ ≈ Eθ̂n − r(Eθ̂n/2 − Eθ̂n), (3.3)

with

r =
Eθ̂n/2 − Eθ̂n

Eθ̂n/4 − Eθ̂n

=
1

1 + 2p
, (3.4)

where the final equality again assumes (2.6) holds. Note that since p ≥ 0, r ≤
1/2. We now describe an adaptive jackknife estimator motivated by the above

development. Above we assume that (2.6) holds but we will relax this in what

follows. The following procedure is developed for a general underlying estimator θ̂n
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whose bias is of the form O(n−p).

Adaptive jackknife procedure (AJP)

Input: sample size n which is a multiple of 4, replications m

Output: An adaptive estimator JA of θ

1. For i = 1, . . . ,m

• Generate a sample of size n indexed by N

• Let N j, j = 1, . . . , 4, partition N , with |N j| = n/4, j = 1, . . . , 4

• Let θ̂i
n be the underlying estimator based on the full sample N

• Let θ̂i1
n/2, θ̂

i2
n/2 be the underlying estimators using N1

⋃

N2 and N3
⋃

N4,

respectively

• Let θ̂ij
n/4, j = 1, . . . , 4, denote the estimators based on the respective N j,

j = 1, . . . , 4

• Let φ̂i
n/4 =

1

4

4
∑

j=1

θ̂ij
n/4 and φ̂i

n/2 =
1

2

2
∑

j=1

θ̂ij
n/2

2. Let φ̄n/4 =
1

m

m
∑

i=1

φ̂i
n/4, φ̄n/2 =

1

m

m
∑

i=1

φ̂i
n/2, and θ̄n =

1

m

m
∑

i=1

θ̂i
n

3. Define adaptive jackknife estimators,

JA = θ̄n − r̂(φ̄n/2 − θ̄n) (3.5a)

r̂ =
φ̄n/2 − θ̄n

φ̄n/4 − θ̄n

. (3.5b)

Note that the adaptive jackknife estimator in AJP was obtained by replacing Eθ̂n

with θ̄n, Eθ̂n/2 with φ̄n/2 and Eθ̂n/4 with φ̄n/4 in equations (3.3) and (3.4). Fig-

ure 3.1 depicts the adaptive jackknife estimator and its common random number

scheme. We use the convention that if θ̄n = φ̄n/2 = φ̄n/4, then JA = θ̄n. We justify

this shortly, at least under certain conditions, by an inequality we will establish in
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Figure 3.1: Common random number scheme.

Theorem 5 below. We call the jackknife estimator JA adaptive because it does not

require a priori knowledge of p. It only assumes bias is of the form O(n−p) for some

p.

3.2 Properties of the adaptive jackknife estimator

This section characterizes the adaptive jackknife estimator. We begin with an as-

sumption that holds for the optimality gap estimator, i.e., when θ̂n = Gn(x̂), the

focus of this research.

(A4). Let N = {1, . . . , n} index a sample of size n. Let N ′ ⊂ N and let N̄ ′ and

N ′ \ N̄ ′ partition N ′ with n′ = |N ′| ≥ 2, n̄′ = |N̄ ′|, and 1 ≤ n̄′ ≤ n′. Let θ̂n′, θ̂n̄′ and

θ̂n′−n̄′ be estimators defined on samples indexed by N ′, N̄ ′ and N ′ \ N̄ ′, respectively.

Then

θ̂n′ ≤ 1

n′

(

n̄′θ̂n̄′ + (n′ − n̄′)θ̂n′−n̄′

)

. (3.6)

When θ̂n is a nonlinear function of a sample mean, (A4) holds provided

the nonlinear function is convex. If that function is linear then (A4) holds with

equality. In the context of stochastic programming, if we optimize sample means,

i.e., f̂(x, ξ̃1, . . . , ξ̃n)= 1
|N |
∑

i∈N f(x, ξ̃i) ≡ f̂N(x) and z∗n = minx∈X f̂N(x), then (A4)

holds for the gap estimator Gn(x̂) = f̂N(x̂) − z∗n. (A4) does not hold for z∗n itself,

rather it holds for −z∗n. And, it holds for the optimal value of a maximization

problem, i.e., for maxx∈X f̂N(x).
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Theorem 5. Let φ̂n/4 and φ̂n/2 be as defined in AJP. If (A4) holds, then φ̄n/4 ≥
φ̄n/2 ≥ θ̄n, w.p.1, which further implies 0 ≤ r̂ ≤ 1.

Proof. φ̄n/4 and φ̄n/2 and θ̄n are defined as sample means of m i.i.d. replicates of

φ̂n/4 and φ̂n/2 and θ̂n, respectively, and it suffices to show φ̂n/4 ≥ φ̂n/2 ≥ θ̂n w.p.1.

(A4) implies that θ̂1
n/2 ≤ 2

n

(

n
4
θ̂1

n/4 + n
4
θ̂2

n/4

)

, θ̂2
n/2 ≤ 2

n

(

n
4
θ̂3

n/4 + n
4
θ̂4

n/4

)

and θ̂n ≤
1
n

(

n
2
θ̂1

n/2 + n
2
θ̂2

n/2

)

. Combining these inequalities completes the proof.

The next theorem provides consistency of the adaptive estimator, JA.

Theorem 6. Assume that the original estimator θ̂n is strongly consistent. Let JA

and r̂ be as defined in AJP. If (A4) holds then lim
n→∞

JA = θ, w.p.1.

Proof. Consistency of θ̂n implies lim
n→∞

φ̄n/4 = lim
n→∞

φ̄n/2 = lim
n→∞

θ̄n = θ, w.p1. From

the proof of Theorem 5, we have φ̄n/2 − θ̄n ≥ 0, w.p.1, and 0 ≤ r̂ ≤ 1, w.p.1. Com-

bining the facts we have that 0 ≤ lim
n→∞

r̂(φ̄n/2 − θ̄n) ≤ lim
n→∞

(φ̄n/2 − θ̄n) = 0, w.p.1,

implies that lim
n→∞

JA = θ, w.p.1.

We now compare the bias in the adaptive estimator, JA, to that of the naive

estimator, θ̂n, and delete-half estimator, JB
1 .

Theorem 7. Let JA and r̂ be as defined in AJP and JB
q be as defined in (2.3). If

(A4) holds then for all q ≤ 1, JB
q ≤ JA ≤ θ̄n w.p.1 and b(JB

q ) ≤ b(JA) ≤ b(θ̂n).

Proof. From Theorem 5, we have φ̄n/2 − θ̄n ≥ 0, w.p.1, and 0 ≤ r̂ ≤ 1, w.p.1.

Combining these facts implies θ̄n − (φ̄n/2 − θ̄n) ≤ JA ≤ θ̄n w.p.1. By definition

JB
q =

nq θ̄n−(n/2)qφ̄n/2

nq−(n/2)q = θ̄n − (φ̄n/2−θ̄n)

2q−1
. This implies JB

q ≤ JA ≤ θ̄n w.p.1 if q ≤ 1.

Taking expectation and subtracting θ from the last inequality we have b(JB
q ) ≤

b(JA) ≤ b(θ̄n) = b(θ̂n).

As indicated above, the choice of q = 1 is an often natural and hence popular

choice for the generalized jackknife, but sometimes this choice is too aggressive and

can reverse the sign of the bias and even increase its magnitude. Theorem 7 shows
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that the adaptive jackknife estimator is less aggressive than JB
q for q ≤ 1. This

suggests that JA may be appropriate in some settings when the standard jackknife

is too aggressive.

The estimator JA is a nonlinear function of sample means, and hence EJA

is, in general, not equal to the right-hand side of (3.3), i.e., the expression of JA

with the estimators replaced by their population means. However, as the number

of replications m grows large this equality does hold and it is instructive to analyze

this approximation of EJA, i.e.,

EJA ≈ Eθ̂n − Eθ̂n/2 − Eθ̂n

Eθ̂n/4 − Eθ̂n

(Eθ̂n/2 − Eθ̂n).

Now, assuming Eθ̂n = θ + an−p + o(n−p) holds, we obtain

EJA ≈ θ + an−p 2

2p + 1
+ o(n−p). (3.7)

This suggests that JA will effectively reduce the coefficient a in the bias term and

its ability to do so depends on p. Furthermore when m and n are large enough so

that the above approximations are reasonable, and b(θ̂n) = O(n−p), this analysis

suggests that JA will not reverse the sign of the bias regardless of p’s value.

3.3 Family of adaptive estimators

In this section we extend JA by introducing a family of adaptive estimators which

allow us to select the level of aggression when attempting to reduce bias. With γ
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being a positive integer, we define the family of adaptive estimators as

JA1
γ = θ̄n − (

γ
∑

k=1

r̂k)(φ̄n/2 − θ̄n) (3.8a)

JA1
∞ =







θ̄n − r̂
1−r̂

(φ̄n/2 − θ̄n) if r̂ < 1

θ̄n if r̂ = 1.
(3.8b)

Theorem 8. Assume that the original estimator θ̂n is strongly consistent. Let γ be

a positive integer and let JA1
γ and r̂ be as defined in AJP, except that (3.8a) replaces

(3.5a). If (A4) holds then lim
n→∞

JA1
γ = θ, w.p.1.

The proof of Theorem 8 is similar to that of Theorem 6 and hence is omitted.

Also note that JA1
γ1

≤ JA1
γ2

, w.p.1 for any positive integers γ1 ≥ γ2, i.e., as γ grows

we are more aggressive in reducing bias.

We can repeat the type of analysis we carried out at the end of Section 3.2.

As the number of replications grow, we can approximate the expected value of JA1
γ

as

EJA1
γ ≈ Eθ̂n − Eθ̂n/2 − Eθ̂n

Eθ̂n/4 − Eθ̂n/2

(

1 −
(

Eθ̂n/2 − Eθ̂n

Eθ̂n/4 − Eθ̂n

)γ)

(Eθ̂n/2 − Eθ̂n)

Now assuming Eθ̂n = θ + an−p + o(n−p) holds, we obtain

EJA1
γ ≈ θ + an−p

(

1 −
(

1 − 1

2p

)(

1 − 1

(2p + 1)γ

))

+ o(n−p). (3.9)

Of course, when γ = 1 in (3.9) we recover (3.7) from the end of Section 3.2.

The last member of this family, i.e., JA
∞, also follows (3.9) with γ = ∞ assuming

b(θ̂n) is a strict decreasing function of n. Note that (3.9) again suggests that as γ

grows bias reduction is more aggressive. However, it also suggests that the entire

family inherits the same properties we described for the γ = 1 case at the end of

Section 3.2. Namely, JA
γ effectively reduces the coefficient a in the bias term but
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does not change its sign. Having a family of these estimators gives us flexibility in

choosing the aggressiveness with which we seek to reduce the bias. Our selection of

γ can also depend on other parameters. The sample size n needs to be large enough

so that b(θ̂n) = O(n−p) holds for n, n/2 and n/4. Given this expression (3.9) holds

provided the number of replications is sufficiently large, we have found that when m

is larger it improves the performance of more aggressive members of the JA
γ family.

3.4 Interval estimator

Our development so far has concentrated on an adaptive jackknife point estimate.

We now discuss confidence interval construction. The estimator JA1
γ in (3.8a) is a

nonlinear function of a vector-valued sample mean and so we can repeat the type of

analysis we performed in Section 2.2.2. Specifically, θ̄ = (φ̄n/4, φ̄n/2, θ̄n) is a three-

vector whose components are sample means formed from m i.i.d. observations of

θ̂ = (φ̂n/4, φ̂n/2, θ̂n), whose components are defined in AJP. Assuming finite second

moments of θ̂n, we have that θ̄ satisfies the following multivariate central limit

theorem,
√

m
(

θ̄ − Eθ̂
)

⇒ N(0, C),

where C is θ̂’s covariance matrix. Now, JA1
γ = gγ(θ̄), where

gγ(θ1, θ2, θ3) = θ3 −
γ
∑

k=1

(

θ2 − θ3

θ1 − θ3

)k

(θ2 − θ3). (3.10)

Here, gγ : H → ℜ, where we can restrict the domain of gγ to H = {(θ1, θ2, θ3) :

θ1 ≥ θ2 ≥ θ3} by (A4). Assume that E(θ̂n) 6= Eθ̂n/2 6= Eθ̂n/4. Note that gγ is

twice continuously differentiable in a sufficiently small neighborhood of Eθ̂ under

this assumption. Hence, we can apply the delta theorem (see, e.g., Casella and
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Berger [10]) to conclude

√
m
(

JA1
γ − gγ(Eθ̂)

)

⇒ N(0, β2), (3.11)

provided β2 = ∇T gγ(Eθ̂)C∇gγ(Eθ̂) > 0. Thus the variance of the adaptive jack-

knife estimator can be estimated by β̂2 = ∇T gγ(θ̄)Ĉ∇gγ(θ̄), where Ĉ is the sample

covariance matrix from the replications of θ̂. Using the same type of Taylor series

expansion that proves the delta theorem, we can correct for the bias introduced

in JA1
γ due to it being a nonlinear function of sample means. Specifically, we can

replace JA1
γ in (3.11) with

gγ(θ̄) −
1

2m

3
∑

i=1

3
∑

j=1

∂2gγ

∂θi∂θj

(θ̄)Ĉij. (3.12)

When doing so, (3.11) still holds and we reduce bias due to JA1
γ being a nonlin-

ear function of underlying estimators. This is justified under the assumption that

E(θ̂n) 6= Eθ̂n/2 6= Eθ̂n/4. In the numerical results we present in Section 3.6.5, the

magnitude of the correction term, i.e., the second term in (3.12) is relatively small

in all but one experiment. This empirical observation suggests that the approxima-

tion that JA1
γ reduces the “a coefficient” in the bias term may be justified in these

cases. Since the bias correction term from (3.12) is relatively small in all but one

experiment, we simply use JA1
γ = gγ(θ̄). We return to this issue later.

3.5 Multiple replication procedure

We now extend the multiple replication procedure (MRP) for assessing solution

quality in a stochastic program to incorporate the adaptive jackknife estimators we

have developed above.

Multiple Replication Procedure with JA1
γ (MRPA)
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Input: sample size n (multiple of 4), replications m, confidence level (1 − α),

candidate solution x̂ ∈ X, positive integer γ

Output: approximate (1 − α)-level CI on optimality gap, µx̂

1. For i = 1, . . . ,m.

• Generate a random sample ξ̃1, . . . , ξ̃n, indexed by N , which satisfies the

unbiased condition (1.5), and also satisfies this condition when any of the

observations are deleted

• Let N j, j = {1, 2, 3, 4} partion N , with |N j| = n/4, j = {1, 2, 3, 4}

• Let θ̂i
n = f̂(x̂, N) − min

x∈X
f̂(x,N)

• Let θ̂i1
n/2 = f̂(x̂, N1

⋃

N2) − min
x∈X

f̂(x,N1
⋃

N2)

• Let θ̂i2
n/2 = f̂(x̂, N3

⋃

N4) − min
x∈X

f̂(x,N3
⋃

N4)

• Let θ̂ij
n/4 = f̂(x̂, N j) − min

x∈X
f̂(x,N j), j = {1, 2, 3, 4}

• Let φ̂i
n/2 = 1

2

∑2
j=1 θ̂ij

n/2 and φ̂i
n/4 =

1

4

4
∑

j=1

θ̂ij
n/4

2. Form θ̄ =

(

1

m

m
∑

i=1

φ̂i
n/4,

1

m

m
∑

i=1

φ̂i
n/2,

1

m

m
∑

i=1

θ̂i
n

)

3. Let Ĉ be the sample covariance matrix of (φ̂i
n/4, φ̂

i
n/2, θ̂

i
n), i = 1, . . . ,m

4. Form JA1
γ = gγ(θ̄), and s2 = ∇T gγ(θ̄)Ĉ∇gγ(θ̄), with gγ as defined in (3.10)

5. (1 − α) CI on µx̂ is,
[

0, JA1
γ +

tm−1,αs√
m

]

3.6 Numerical results

In this section, we compare the quality of point and interval estimators obtained

by using the original, standard jackknife and adaptive jackknife estimators. We
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consider seven test problems in all. These include four two-stage SLPs from the

literature, an asset allocation problem model from [37], an instance of Example 1

from Section 1.3 with δ = 4/3, and an American-style option pricing problem from

[9]. In the first six cases we form point and interval estimates on the optimality

gap, but for the pricing problem we instead estimate the option’s price, i.e., the

optimal value z∗. We can solve six of these seven problems exactly, i.e., there is no

need to employ sampling. Our purpose in examining these problems is to assess the

estimators’ relative performance when we can see, e.g., whether an interval estimator

for µx̂ covers the true value of µx̂. We choose α = 0.05, i.e., we form approximate

95% confidence intervals. We use m = 30 replications in all our experiments. Each

experiment is repeated 1000 times and averaged values over these 1000 runs are

reported for all of the performance measures.

3.6.1 Estimators and performance measures

In computing the relative performance of various estimators, we need to choose the

parameter q for the generalized jackknife of Chapter 2 and the parameter γ for the

adaptive jackknife estimator of this chapter. In the former case, we choose q = 1 as

this is the most popular choice in the literature, and because (we assume) we do not

know the values of p for our test problems. For this standard jackknife estimator

we consider the delete-half estimator, i.e., JB
1 . For the adaptive jackknife estimator

JA1
γ , we will consider the first and last members of our family, i.e., JA1

1 and JA1
∞ , as

well as JA1
γ for intermediate values of γ. In addition of course, we will report results

for the original estimator θ̄n.

Typically, when reducing bias one increases sampling error and this occurs

with our estimators, too. The standard way to measure this trade-off is via mean-

square error (MSE). However, as we have already discussed, because of the one-sided

nature of optimality gap estimator, we prefer to err on the side of not reversing the
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sign of the bias. So, we also examine the negative and positive parts of MSE, which

we denote MSE− and MSE+, as well as the probability that the gap point estimate

is below µx̂, Pr=P(estimator < µx̂) (or, P(estimator > z∗) when estimating the

optimal value). While we prefer estimates with a smaller MSE, we are particularly

concerned about controlling the values of MSE− and Pr, i.e., we prefer to keep these

values small.

To compare the interval estimators, we examine Schruben coverage plots [48]

of the interval estimators and average 95% confidence interval widths. We again

prefer to err on the conservative side, i.e., we wish to reduce the confidence interval

widths without having under coverage.

3.6.2 Asset allocation model

Here we present numerical results on the simple asset allocation model that we

considered in Section 2.2.3. Figure 3.2 compares our point estimators via MSE,

MSE−, MSE+ and Pr. The figure plots these four measures with the horizontal axis

denoting the aggressiveness, γ, of the adaptive family. We can see that both the

standard jackknife and adaptive estimators reduce MSE significantly, but increase

MSE− and Pr relative to the original estimator of the MRP (Section 1.2.3). The

standard jackknife estimator outperforms the adaptive jackknife estimators with

respect to reducing MSE, but the associated values of MSE− and Pr are substantially

higher.

We next compare the Schruben coverage plots of the interval estimators in

Figure 3.3(a). This figure shows that the original interval estimator is very con-

servative with nearly 100% coverage for the full range of α-values. The adaptive

estimators JA1
1 and JA1

∞ are slightly less conservative but still quite conservative.

The standard jackknife estimator performs very well on this problem. Figure 3.3(b)

presents the average 95% CI width of the interval estimators, with n = 120,m = 30,
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Figure 3.2: Point estimate comparison for asset allocation.

averaged over 2000 repetitions of the experiment. As earlier, we separate the con-

tribution of the sampling error and the point estimate. For the original estimator,

we can see that the point estimate’s bias dominates the CI width. As the figure

shows, JB
1 peforms very well, virtually eliminating the bias, albiet with an increase

in sampling error. JA1
1 and JA1

∞ also reduce bias but not to the degree of JB
1 .

As we indicated above, the asset allocation model appears to have bias that

shrinks with O(n−1), i.e., p = 1 in our notation. In this case the choice of q = 1 is

ideal for the generalized jackknife. Figure 3.3(b) shows the bias of JA1
1 is reduced

to about two-thirds of that of θ̄n and the bias of JA1
∞ is half that of θ̄n. This is

consistent with the predictions of equation (3.9) with p = 1, and γ = 1 and γ = ∞
in these respective cases.
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Figure 3.3: Schruben coverage plot in Figure 3.3(a) and CI width plot in Figure
3.3(b) for asset allocation, with µx̂ = 1.884 × 10−4.

3.6.3 Example 1

The previous example shows the effectiveness when of the generalized jackknife

estimator, JB
q , when we choose q appropriately. Now, we consider an instance of

Example 1 from Section 1.3 in which we choose δ = 4/3, which implies the bias is

of the form O(n−2). Figure 3.4 plots our four performance measures for comparing

point estimates. We can see that adaptive estimators reduce MSE significantly

without significant increase in MSE− and Pr. However, the standard jackknife

estimator, does not decrease MSE significantly, but does increase MSE− and Pr

dramatically. Here we use n = 80 and, as above, m = 30 and we average results

of 2000 experiments. This illustrates the poor behavior of the generalized jackknife

estimator when q is not chosen appropriately.

We next compare the Schruben coverage plots of the interval estimators in

Figure 3.5(a). As before, the original estimator is very conservative. The adaptive

estimators are conservative, but less so than for the asset allocation model. Finally,

the interval estimates for the standard jackknife, JB
1 , show substantial undercover-

age. Figure 3.5(b) shows that the adaptive jackknife estimators tighten the average

CI width again with a growth in sampling error. The standard jackknife’s failure is

clear as its point estimate has reversed the sign of the bias. The bias reduction of
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Figure 3.4: Point estimate comparison for Example 1.

JA1
1 and JA1

∞ in Figure 3.5(b) are again consistent with that predicated by equation

(3.9), given that p = 2.

Example 1 illustrates the potential dangers associated with using a q in the

generalized jackknife estimators that is too aggressive, in this case q = 1 < p = 2.

The adaptive jackknife estimators are designed not to reverse the sign of the bias, at

least when bias is of the form O(n−p) for any p, i.e., without requiring any knowledge

of p. Indeed, the adaptive estimators perform well on Example 1. The |x|δ term that

appears in Example 1’s objective is similar to terms frequently used in optimization

modeling to penalize deviations from a target. Depending on the effective value of

δ, and the corresponding p, we may have p > 1. This example suggests adaptive

estimators may outperform standard jackknifing in such cases. This example also

shows that even when bias shrinks to zero as quickly as O(n−2), and sampling error

as O(n−1/2), bias can still constitute the primary contribution to the CI width.

This occurs, in part, because of the variance reduction provided in the various MRP
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Figure 3.5: Schruben coverage plot in Figure 3.5(a) and CI width plot in Figure
3.5(b) for Example 1, with µx̂ = 0.

schemes by using common random numbers (CRN).

3.6.4 American-style options pricing

An American option can be exercised at any time up to its expiration date. We

consider a similar option, known as a Bermudan option, in which the opportunity to

exercise is limited to certain pre-specified dates. (In some cases concerning periodic

dividend payments, it is only optimal to exercise at certain dates and the American

option becomes a Bermudan option.) We consider an instance of a Bermudan option

from [9] in which the (single) underlying asset has an initial price of 110, a strike

price of 110, a riskless interest rate of 5%, a dividend rate of 10% and the asset’s price

moves according to geometric Brownian motion (GBM) with a drift of -0.05 (riskless

interest rate less dividend rate) and a volatility of 0.2. The option has three exercise

opportunities at T/3, 2T/3, and T , where the option horizon is T = 1. Under the

GBM assumption, the price of the option can be computed exactly as z∗ = 11.341.

In finance, it is the option’s price as opposed to the optimal exercise strategy, that

is of foremost importance and so we seek to estimate z∗ rather than an optimality

gap. This option pricing problem is a multistage stochastic optimization model,

but we can still employ our adaptive jackknife estimators. We build an empirical
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Figure 3.6: Point estimate comparison for pricing Bermudan call option.

(sampled) scenario tree with n branches at each node. This is used to form the

original estimator θ̂n. The estimators φ̄n/2 and φ̄n/4 are obtained from the same tree

with (A4) maintained at every node on the tree.

Note that here we have a maximization problem and we estimate z∗. We

use n = 48 so that the empirical trees (under a full sample) have 483 nodes. The

CIs we form here are one-sided, e.g., we are confident at level 95% that z∗ is no

larger than θ̄n + tm−1,αsm/
√

m. Clearly, this is an incomplete analysis for pricing

an option. In Broadie and Glasserman [9], they couple this type of one-sided CI

with a lower-limit interval estimate, where the point estimate essentially comes from

analyzing the performance of an exercise policy. We limit our discussion here to the

one-sided upper-limit, and only indicate that a full analysis of the option’s price

would require the lower-limit, too.

Figure 3.6 plots our four performance measures. Here, we can see that again

the adaptive jackknife estimators outperform the standard jackknife estimator. The
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3.7(b) for pricing Bermudan call option, with optimal price=11.341. In Figure
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improvement in MSE of the adaptive jackknife estimators over JB
1 is modest but

the differences in MSE− and Pr are significant.

We next compare the Schruben coverage plots of the interval estimators in

Figure 3.7(a). The standard jackknife again exhibits undercoverage (although less

dramatically than in Example 1), and the adaptive estimators perform well. Figure

3.7(b) illustrates CI widths. Here, our CI statement for the MRP procedure of

Section 1.2.3 is P (z∗ ≤ θ̄n + tm−1,αsm/
√

m) ≈ 1 − α, and Figure 3.7(b) plots the

magnitude of θ̄n, relative to z∗, as well as the sampling errors. Notably, the sampling

errors are substantially larger relative to bias in Figure 3.7(b) compared to those

we have examined for optimality gap estimation. This is largely due to the variance

reduction achieved by using CRNs when forming the difference f̂(x̂, ξ̃1, . . . , ξ̃n) −
minx∈X f̂(x, ξ̃1, . . . , ξ̃n) in the latter case. Restricting attention to bias we see that

the adaptive estimators reduce bias significantly without tending to over-correct,

but the standard jackknife estimator does reverse the sign of the bias.
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3.6.5 Two-stage stochastic linear programs

Table 3.1 lists the results for three standard test problems from the stochastic pro-

gramming literature, namely, APL1P, PGP2 and CEP1 (see [25].) These three SLPs

are small with a modest number of scenarios, i.e., they can be solved exactly. For

each problem we carry out optimality gap estimation using x̂ = x∗, where x∗ is an

optimal solution to (1.1). Thus, the averaged point estimates we report consist (in

expectation) solely of bias. The results for APL1P and PGP2 are roughly similar

to that of the asset allocation problem. However, CEP1 presents a case where all

the jackknife estimators fail to reduce MSE. This happens because the bias in the

optimality gap (equivalently in z∗n) does not appear to shrink to zero as O(n−p). For

some stochastic programs this bias can shrink to zero at a rate faster than O(n−p)

for any finite p. In our experiments with CEP1, θ̄30 and θ̄60 had significant bias, but

θ̄120 took value zero in 90% of the repetitions. Of course, when the bias shrinks to

zero this quickly, one might argue that bias-correcting estimators are not necessary.

Still, this example suggests that even though the adaptive estimators appear con-

servative in the other cases we have examined (i.e., not over-correcting bias), this is

not universally true.

Note that since the adaptive estimators are formed as a nonlinear function of

sample means, we could use a second-order Taylor series bias correction as described

in Section 3.4. The last two columns in Table 3.1 show the bias corrected values of

MSE and point estimates of adaptive estimators. The bias correction for APL1P

and PGP2 is relatively small, however, for CEP1 it is a large percentage of the

point estimate. We conjecture that the Taylor series bias correction may serve as

an indicator as to whether the adaptive estimators are in danger of failing, but we

do not pursue this issue further here.
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Table 3.1: Stochastic linear programs with sample size, n = 120
MSE MSE+ MSE− Pr Pt. Est. Samp. Err. Coverage Bias corrected

MSE Pt. Est.
APL1P, µx̂ = 0, z∗ = 24, 642.32

θ̂n 1529.62 1529.62 0.00 0.000 37.73 16.46 1.000
JA1

1 787.06 787.00 0.06 0.004 25.54 19.05 1.000 808.14 25.97
JA1
∞ 547.99 533.21 14.78 0.097 18.04 25.00 1.000 595.16 19.80

JB
1 196.07 146.76 49.31 0.402 3.91 22.08 0.977

PGP2, µx̂ = 0, z∗ = 447.32

θ̂n 8.89 8.89 0.00 0.000 2.93 0.95 1.000
JA1

1 3.70 3.70 0.00 0.010 1.79 1.18 1.000 3.75 1.80
JA1
∞ 1.69 1.50 0.19 0.183 0.81 1.70 0.992 1.80 0.88

JB
1 0.84 0.70 0.14 0.287 0.43 1.37 0.976

CEP1, µx̂ = 0, z∗ = 355, 164.46

θ̂n 34.18 34.18 0.00 0.000 1.22 1.92 1.000
JA1

1 110.66 22.60 88.06 0.697 -4.04 11.65 1.000 83.52 -2.51
JA1
∞ 457.88 20.82 437.06 0.705 -7.39 21.64 1.000 125.58 -1.99

JB
1 697.26 9.58 687.68 0.775 -17.47 24.03 0.937
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3.6.6 Computational time comparison

We now analyze the computational effort required to achieve similar confidence

interval widths, using adaptive jackknife estimators JA1
γ and using θ̂n. We choose a

larger two-stage SLP from the stochastic programming literature, SSN [49] as well

as the Bermudan option pricing problem for this analysis. For SSN we compare the

performance of estimators, JA1
1 and JA1

∞ based on a sample size of n = 8000 against

to that of the naive estimator with double the sample size, n = 16000. For the

Bermudan option pricing problem we compare the estimators JA1
1 and JA1

∞ , based on

a sample size of n = 240, against the naive estimator with a sample size of n = 300.

We use the regularized decomposition (RD) as implemented by Ruszczyński and

Świetanowski [47] to solve instances of SSN. The RD algorithm couples a multi-cut

Benders’ decomposition with a quadratic proximal term for two-stage SLPs. All

problem instances are solved from scratch, i.e., we do not exploit any warm starts.

The results are listed in Table 3.2. For SSN, JA1
∞ provides an improvement in CI

width that is 70% of what we can obtain by doubling the sample size in the naive

estimator, with similar computational effort. However, there is significant potential

for accelerating the computation time of the adaptive estimators by reusing cut

information when solving the seven related instances of SSN (one with sample size

n, two with sample size n/2 and four with sample size n/4) required for obtaining

one estimate of JA1
γ . Moreover, if general purpose commercial solvers are used to

solve problem instances, then increasing (doubling) the sample size may not be a

viable option. The results we have presented are preliminary and further work is

required to develop efficient procedures for re-using cut information when estimating

JA1
γ . For Bermudan options pricing, it is clear that the adaptive estimators require

significantly less time to provide similar CI width estimates obtained by increasing

the sample size in the naive estimator.
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Table 3.2: Computational time comparison.
SSN Bermudan option pricing

θ̂8000 JA1
1 JA1

∞ θ̂16000 θ̂240 JA1
1 JA1

∞ θ̂300

Point Estimate 0.502 0.473 0.454 0.453 11.3671 11.3524 11.3462 11.3699
Sampling Error 0.029 0.031 0.036 0.020 0.1760 0.1777 0.1787 0.1599

CI Width 0.531 0.503 0.489 0.473 11.5431 11.5301 11.5249 11.5298
% ∆(CI width) – 5.160 7.840 10.910 – 0.113 0.160 0.115

MSE 0.0126 0.0123 0.0123 0.0107
MSE+ 0.0089 0.0074 0.0069 0.0080
MSE− 0.0037 0.0048 0.0054 0.0028
Time 49 hrs 121 hrs 121 hrs 114 hrs 5 min 5 min 5 min 10 min
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3.7 Summary

We have developed a new adaptive jackknife estimator in this chapter, and we

provided conditions when consistency in the underlying estimator is inherited by

the adaptive jackknife estimator. We further developed results comparing the bias

of the standard jackknife estimator with that of our adaptive estimator. We then

presented a family of adaptive estimators in which more aggressive bias reduction can

be obtained by choosing larger values of the aggressiveness parameter γ. We argued

that using generalized jackknife estimators (e.g., with the most popular choice of q =

1) may backfire and that our adpative estimators provide an attractive alternative

for bias reduction, at least when bias is of form O(n−p). The numerical results

we obtained on a range of problems were encouraging. The adaptive estimators

performed well in cases where the bias is of the form O(n−p), and outperformed

generalized jackknife estimators when the associated choice of q was too aggressive.

The adaptive estimator JA1
γ uses a particular functional form hγ(r̂) =

∑γ
k=1 r̂k as a

multiplier in the expression JA1
γ = θ̄n − hγ(r̂)(φ̄n/2 − θ̄n). As we will see in the next

chapter, other functional forms for hγ(r̂) are possible.
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Chapter 4

Families of Adaptive Jackknife

Estimators, with Enhancements
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In Chapter 3 we argued that adaptive jackknife estimators can provide an

attractive alternative to the generalized jackknife estimators for bias reduction. The

adaptive family that we described in Chapter 3 can be used to reduce bias with little

danger of reversing the sign of the bias. We now describe two families of adaptive

jackknife estimators that can be used for more aggressive bias reduction. We also

describe how the common random number scheme described in the AJP can be

enhanced to improve bias reduction. At the end of the chapter, we provide some

recommendation on selecting from our families of adaptive estimators, including

selection of the associated parameters that we describe shortly.

4.1 Two more families of adaptive jackknife es-

timator

In Chapter 3 we developed a family of adaptive jackknife estimators, JA1
γ , in (3.8)

that have form JA1
γ = θ̄n − hγ(r̂)(φ̄n/2 − θ̄n), where hγ(r̂) =

∑γ
k=1 r̂k, and where r̂ is

defined in (3.5). In this chapter we introduce two more families, JA2
γ and JA3

γ , with

different choices of hγ(r̂). Our motivation is the following: At the close of Section

3.2 we argued that as the number of replications m grows large the bias of JA1
1 is of

the form 2
2p+1

an−p + o(n−p), and that more generally (see Section 3.3) the bias of

JA1
γ has form

a

(

1 −
(

1 − 1

2p

)(

1 − 1

(2p + 1)γ

))

n−p + o(n−p).

To make this concrete, if p = 1 and we choose γ = 1 we will have effectively replaced

the “a” in θ̄n’s bias formula by 2
3
a, or if we choose γ = ∞, by 1

2
a. If instead the

underlying estimator has p = 2 these respective values are 2
5
a and 1

4
a. Finally, if

p = 1/2 the respective values are about 0.83a and 0.71a. So, we are motivated

to choose functional forms hγ(r̂) that can improve upon those reductions in the
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effective value of a. At the same time, we still wish to be conservative in the sense

that we do not want to over-correct, i.e., change the sign of the bias. Using two

different forms of hγ(r̂) we now propose the following two new adaptive jackknife

families:

JA2
γ = θ̄n −

(

γ
∑

k=1

kr̂k

)

(φ̄n/2 − θ̄n) (4.1a)

JA2
∞ =







θ̄n − r̂
(1−r̂)2

(φ̄n/2 − θ̄n) if r̂ < 1

θ̄n if r̂ = 1
(4.1b)

JA3
γ = θ̄n −

(

γ
∑

k=1

1

2
(2r̂)k

)

(φ̄n/2 − θ̄n) (4.2a)

JA3
∞ =







φ̄n/4θ̄n−φ̄2

n/2

(φ̄n/4−φ̄n/2)−(φ̄n/2−θ̄n)
if r̂ < 1

θ̄n if r̂ = 1.
(4.2b)

In Theorem 6 we established consistency of JA1
1 and we extended that to JA1

γ in

Theorem 8. The key to these proofs is that hγ(r̂) =
∑γ

k=1 r̂k is bounded w.p.1.

That property is ensured by assumption (A4). Theorem 9 below extends these

consistency results to JA2
γ and JA3

γ . Its proof hinges on boundedness of hγ(r̂), as

illustrated in the proof of Theorem 6, and is hence omitted.

Theorem 9. Assume that the original estimator θ̂n is consistent. Let γ be a positive

integer. Let JA2
γ , JA3

γ and r̂ be as defined in AJP, except that (4.1a) and (4.2a),

respectively, replace (3.5a). If (A4) holds, then, lim
n→∞

JA2
γ = θ, w.p.1, and JA3

γ = θ,

w.p.1.

We now mimic the analysis at the end of Section 3.3 to understand the

asymptotic form of the bias. In particular, assuming Eθ̂n = θ + an−p + o(n−p)
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and letting the number of the replications, m, grow large we obtain

EJA2
γ ≈ θ + an−p

(

1 −
(

1 − 1

4p

)(

1 − 1 + (γ + 1)2p

(2p + 1)γ+1

))

+ o(n−p) (4.3a)

EJA3
γ ≈ θ + an−p

(

2

2p + 1

)γ

+ o(n−p). (4.3b)

We now consider how the asymptotic bias in (4.3) behaves. First, note from (3.8),

(4.1) and (4.2) that JA1
1 = JA2

1 = JA3
1 , i.e., these three estimators are idenctical and

hence so is the nature of their bias reduction. However, for JA2
γ we see from (4.3a)

that as γ grows large the “a” in the bias formula of original estimator is replaced

by 1
2
a, 1

4
a and 1

16
a in the respective cases of p = 1/2, 1, and 2, and in the sense is

more aggressive than the most aggressive member of the JA1
γ family. From (4.3b)

we see that as γ grows large that the leading order term of the bias is eliminated.

Note that for any p > 0 and positive γ the coefficient multiplying an−p lies in (0,1)

and hence may provide bias reduction without reversing its sign.

As already indicated, JA1
1 = JA2

1 = JA3
1 . For and r̂ > 0, when γ = 2 we have

JA1
2 ≥ JA2

2 = JA3
2 , and when γ > 2 we have JA1

γ > JA2
γ > JA3

γ . This indicates as we

move from family 1 to family 2 to family 3 we are more aggressive in reducing bias

for a fixed value of γ. And, within a family we are more aggressive in reducing bias

as γ grows. In fact, as lim
γ→∞

JA3
γ = JA3

∞ as defined in (4.2b), and we see that this has

the same form as θ̂A defined in (2.8a), which arose by solving the nonlinear system

of three equations in three unknowns given by (2.6). We know from Chapter 2 that

even basic properties like consistency can therefore fail to hold for JA3
∞ . This further

suggests that even though JA3
γ is consistent when γ is finite (Theorem 9) that JA3

γ

may be poorly behaved when γ is large.

We now further pursue what happens as γ grows large in the adaptive esti-

mators. It is reasonable anticipate that b(θ̂n) shrinks to zero at least as quickly as

O(n−p) for p = 1/2. Said another way, if b(θ̂n) = O(n−p) for p < 1/2 then
√

n(θ̂n−θ)

will explode, and so if our naive estimator satisfies a CLT with scaling factor
√

n
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then b(θ̂n) must satisfy the above condition. From equation (3.4) we know that for

p ≥ 1/2 we have r ≤ 1
1+

√
2
≈ 0.41 as long as bias shrinks to zero (i.e., p > 0) we

have r ≤ 1/2. Of course, when we estimate r via r̂, it is possible r̂ > 1/2 and all we

are assured under (A4) is that 0 ≤ r̂ ≤ 1 from Theorem 5. Still, if r̂ is to estimate

r well, we should anticipate r̂ ≤ 1/2. Now consider hγ(r̂) for three families, which

we denote hAi
γ (r̂), i = 1, 2, 3. In all cases as r̂ grows hAi

γ (r̂) grows and the term

we subtract from θ̄n to form the adaptive estimator grows, i.e., bias reduction is

more aggressive. For all three families as r̂ → 1 we have, hAi
γ (r̂) → ∞ with hAi

γ (r̂)’s

growth being faster as we move from family 1 to family 2 to family 3. In such cases

the associated estimates will fail. Now compare hA2
2 (r̂) = hA3

2 (r̂) = r̂ + 2r̂2 and

consider the most aggressive member of family 1, hA1
∞ (r̂) = r̂

1−r̂
. The range of values

for which JA2
2 = JA3

2 is more aggressive in reducing bias than JA1
∞ is r̂ + 2r̂2 > r̂

1−r̂
,

i.e., r̂ < 1/2. This suggests (given our above discussion) that when r̂ is well be-

haved, i.e., less than 1/2, JA2
2 = JA3

2 should outperform JA1
∞ . And, when r̂ is poorly

behaved and near 1 that JA1
∞ could fail. This suggests there is merit in investing

the performance of families 2 and 3, particularly when γ is small. However, because

hAi
γ (r̂) grows large more quickly when r̂ is large and this effect is more pronounced

with the more aggressive families, it suggests we may need to exercise caution, i.e.,

not choose γ too large. We will investigate this in our computation results, but first

we discuss another “parameter” that has been implicit in the development of our

estimators so far.

4.2 Generalized partition factor, k

In forming the system of nonlinear equations (2.6) that motivated our development

of adaptive jackknife estimators, we partitioned a sample of size n into two sub-

samples of size n/2 and further partitioned those into further subsamples of size

n/4. (See Figure 3.1.) Instead we could have partitioned the original sample into
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three subsamples of size n/3 and repeated that to obtain 9 subsamples of size n/9.

Pursuing this generalization with integer k ≥ 2 leads to the following variant of

(2.6)

Eθ̂n/k2 = θ + a
( n

k2

)−p

(4.4a)

Eθ̂n/k = θ + a
(n

k

)−p

(4.4b)

Eθ̂n = θ + an−p, (4.4c)

We can now mimic the development of JA1
1 in Section 3.1 except that equations

(2.6) are replaced by (4.4) and we can corresspondingly modify AJP to include the

generalized partition scheme. Below we present AJPk, which generalized AJP to

use integer partition factor k ≥ 2.

Adaptive jackknife procedure with generalized partitions (AJPk) Input:

partition factor k, sample size n which is a multiple of k2, replications m

Output: An adaptive estimator JA of θ

1. For i = 1, . . . ,m

• Generate a sample of size n indexed by N

• Let N j, j = 1, . . . , k2, partition N , with |N j| = n/k2, j = 1, . . . , k2

• Let θ̂i
n be the underlying estimator based on the full sample N

• Let θ̂ij
n/k, j = 1, . . . , k, be the underlying estimators using

jk
⋃

t=(j−1)k+1

N t,

j = 1, . . . , k, respectively

• Let θ̂ij
n/k2 , j = 1, . . . , k2, be the underlying estimators using N j, j =

1, . . . , k2, respectively

• Let φ̂i
n/k2 =

1

k2

k2

∑

j=1

θ̂ij
n/k2 and φ̂i

n/k =
1

k

k
∑

j=1

θ̂ij
n/k
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2. Let φ̄n/k2 =
1

m

m
∑

i=1

φ̂i
n/k2 , φ̄n/k =

1

m

m
∑

i=1

φ̂i
n/k, and θ̄n =

1

m

m
∑

i=1

θ̂i
n

3. Define adaptive jackknife estimators,

JA1
1 (k) = θ̄n − r̂(φ̄n/k − θ̄n) (4.5a)

r̂(k) =
φ̄n/k − θ̄n

φ̄n/k2 − θ̄n

(4.5b)

AJPk defines JA1
1 (k), i.e., extends JA1

1 ≡ JA1
1 (2) to use a general partition

factor k = 2, 3, . . . . The extensions to handle JA1
γ (k) with γ ≥ 1 as well as JA2

γ (k)

and JA3
γ (k) are straight forward. In Sections 3.2 and 3.3 we established a consis-

tency result for (what we now label) JA1
γ (2). This result relies on two hypotheses:

consistency of the original estimator θ̂n and (A4). Assuming (A4) holds, we can

apply it recursively to obtain k = 3, or k = 4, etc., terms on the right-hand side

of (3.6). This observation is key to establishing consistency of JA1
γ (k), JA2

γ (k) and

JA3
γ (k). In Chapter 3 we also showed there is a relationship between the bias of:

The original estimator θ̂n, the generalized jackknife estimator with parameter q ≤ 1

and JA1
1 (2). The following theorem summarizes the above discussion on consistency

to our new families.

Theorem 10. Assume that the original estimator θ̂n is strongly consistent. Let

γ ≥ 1 and k ≥ 2 be integers and let JA1
γ (k), JA2

γ (k), and JA3
γ (k) be defined through

AJPk’s extension of (3.8a), (4.1a) and (4.2a), respectively. If (A4) holds then

lim
n→∞

JA1
γ (k) = lim

n→∞
JA2

γ (k) = lim
n→∞

JA3
γ (k) = θ, w.p.1.

Assuming Eθ̂n = θ + an−p + o(n−p) holds, under the generalized partition

factor k, as the number of the replications, m, increases, we have

EJA1
1 (k) ≈ θ + an−p 2

kp + 1
+ o(n−p). (4.6)
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We can similarly extend the expression for EJA1
γ (k) from that of EJA1

γ (2) in (3.9) as

well as EJA2
γ (k) and EJA3

γ (k) from (4.3a) and (4.3b). (4.6) suggests that increasing

the partition factor k may reduce the bias. However, in what follows we restrict

ourselves to k ∈ {2, 3, 4} for the following two reasons: (i) The total number of

stochastic programs we must solve in every replication grows quadratically in k, as

1 + k + k2; and (ii) As we increase k, the smallest stochastic programs have sample

size n
k2 and if k is too large the sample size may not be large enough so that the bias

is effectively of form O(n−p). We discuss these issues in more detail in the Section

4.4.

4.3 Rotation policies

In Sections 3.1 and 3.2 we motivated the use of common random number (CRN)

streams in forming θ̄n, φ̄n/2, and φ̄n/4 in AJP by the desirable property it yielded in

Theorem 5, which in turn was key to establishing consistency of JA1
γ (2) in Theorems

6 and 8. CRN streams also have the benefit of reducing variance. We now describe

what we call the rotation policy (RP) that can help further reduce variance.

Rotation Policy. We return to the development of φ̂n/2 in the AJP of Section 3.1.

Let θ̂ij
n/2 be the underlying estimator based on samples in partition N i ∪ N j, i < j,

i, j ∈ {1, 2, 3, 4}. Redefine φ̂n/2 as

φ̂n/2 =
1

6

3
∑

i=1

4
∑

j=i+1

θ̂ij
n/2. (4.7)

In understanding the rotation policy, it helps to refer to Figure 3.1. The

estimator φ̂n/2 in the original AJP of Section 3.1 is based on averaging what we now

label θ̂12
n/2 and θ̂34

n/2, i.e., the former is based on N1 ∪ N2, the first n/2 observations

and the latter is based on N3 ∪ N4, the last n/2 observations. In the RP we form
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



4

2



 = 6 observations of θ̂n/2 by using all combinations of different subsamples of

size n/4. So, relative to AJP under the original non-rotation policy, we now must

solve 4 additional stochastic programs with sample size n/2. The expression for

φ̂n/2 in (4.7) has the same expectation as that of the original AJP and so the bias

of JA1
γ (2) in unchanged under RP, i.e., Theorem 7 still holds. Furthermore, we can

extend Theorem 5 to establish that φ̄n/4 ≥ φ̄n/2 ≥ θ̄n, w.p.1, when φ̄n/2 is formed

using RP, and as a result we also obtain consistency of JA1
γ (2) under RP. We can

also extend RP so that it applies to JA1
γ (k) with k ≥ 2, and instead of forming

and averaging k observations of θ̂n/k to form φ̂n/k we form and average





k2

k





observations of θ̂n/k. This again suggests we should keep k moderate in size. The

RP further extends, to JA2
γ (k) and JA3

γ (k) in a straightforward way.

4.4 Numerical results

In this section we present numerical results to compare bias reduction capabilities

of θ̄n, JB
1 , JA1

γ (k), JA2
γ (k), and JA3

γ for k = 2, 3, 4. We also present numerical

results after incorporating Latin hypercube sampling for variance reduction in our

underlying estimators. In this section we point out shortcomings of the adaptive

estimators, and using the enhancements we also suggest changes to overcome these

shortcomings. We begin with the sample size n = 144 and number of replications,

m = 30. We present results which are based on an average of 1000 repititions of the

estimators. We choose α = 0.05, i.e., we form approximate 95% confidence intervals.

We use a subset of the test problems described in Chapter 3.
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Figure 4.1: MSE plots without bias correction for asset allocation model.

4.4.1 Asset allocation model

Figure 4.1 contains the MSE plots without any bias correction (see equation (3.12))

for the asset allocation model. (Throughout when we refer to MSE it represents

MSE of the estimator without bias correction unless otherwise specified.) Figure

4.2 contains MSE plots with bias correction. In Section 3.6.5, we suggested that the

magnitude of the bias correction term in point estimate may indicate whether use

of the adaptive estimator is appropriate. Figures 4.3 and 4.4 contain the point esti-

mate plots for asset allocation model without and with bias correction respectively.

From Figures 4.1-4.4 we see that for k = 2 with larger values of γ, there are sig-

nificant differences in point estimates of JA3
γ (2) and its MSE with and without bias

correction. The MSE for JA3
γ and k = 2 is exploding as we increase γ, suggesting

failure of this adaptive jackknife estimator.

A potential cause for this behavior may be larger variance in the underlying
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Figure 4.2: MSE plots with bias correction for asset allocation model.

estimators. To help reduce the variance of the estimator with k = 2, we investigate

the application of the rotation policy, RP. Note that for values of k = 3 (or 4), the

estimators φ̄n/k and φ̄n/k2 are formed by averaging 3 (or 4) and 9 (or 16) underlying

estimators, hence they have reduced variance compared to the estimator with k = 2.

This explains the relative stability of the estimators shown in Figures 4.1-4.4 for

larger values of k. Figure 4.5 presents MSE plots using RP for k = 2. We see that

RP has helped stabilize JA3
γ (k), i.e., MSE plots, with and without bias correction,

after using RP are very close. With use of RP, not only do the MSE plots become

stable, but families 2 and 3 almost attain the same MSE as JB
1 . For the asset

allocation model, p ≈ 1, and hence, JB
1 almost completely removes the bias. In

what follows, we do not use RP unless otherwise specified.

We now refer to the MSE plots in Figure 4.1 for further analysis. Putting

aside JA3
γ (2) for large values of γ, the other combinations of k, γ and family type
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Figure 4.3: Point estimate plots for asset allocation problem without bias correction;
µx̂ = 1.884 × 10−4.

appear well behaved. We can see that the three adaptive jackknife families and the

standard jackknife jackknife estimator reduce MSE significantly as compared to the

naive estimator θ̄n.

For any fixed γ, the MSE decreases within all the families as we increase k.

This is consistent with our discussion in Section 4.2 suggesting that increasing the

partition factor k may reduce bias.

For k = 2 and 3, the MSE of JA1
γ and JA2

γ decreases as we increase γ, however

for JA3
γ , the MSE first decreases and then increases after γ ≈ 2 − 3. As we increase

k to 4, JA1
γ still shows a decrease in MSE as we increase γ, but JA2

γ and JA3
γ ’s MSE

grows after γ = 2. We conjecture the cause of this behavior is due to the following:

For a sample size of n = 144, the smallest stochastic programs we solve (i.e., for

forming θ̂n/k2) have sample sizes of 36, 16 and 9 for k = 2, 3 and 4, respectively.

Estimators obtained with these smaller sample sizes may deviate from the O(n−p)
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Figure 4.4: Point estimate plots for asset allocation problem with bias correction;
µx̂ = 1.884 × 10−4.
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Figure 4.5: MSE plots for asset allocation model with RP and k = 2.

nature of bias, and this may explain the increase of MSE for higher values of γ and

k = 4 for JA2
γ and JA3

γ . To obtain the asymptotic results we presented in (3.9) and

(4.3) one should have a large enough sample size, n such that the O(n−p) form of the

bias approximately holds for problems with sample size n/k2. The effect of smaller
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sample sizes is amplified when we increase the aggressiveness, either by increasing

γ in a family or moving from family 1 to family 2 to family 3. We now increase n

to 576 so that when forming θ̂n/k2 we have sample sizes of 144, 64 and 36 for k =

2, 3 and 4, respectively. Figure 4.6 has the corressponding MSE plots. We see that

for k = 3 and 4, as we increase γ, JA2
γ and JA3

γ have relatively less increase in MSE,

compared to that of Figure 4.1.
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Figure 4.6: MSE plots without bias correction for asset allocation model with n =
576.

Though JA1
γ is expected to be the least aggressive of three adaptive families,

it seems to work well, at least when k is large. JA1
γ (4) has MSE similar to that of

JB
1 . As mentioned before, p for the asset allocation model is close to 1, and hence

the standard jackknife estimator with q = 1 eliminates most of the bias. We achieve

similar results with JA1
γ (4) without any a priori assumption on p.

Figure 4.7 provides MSE− plots for asset allocation model. We see that more

aggressiveness in the adaptive estimators leads to an increase in MSE−, as expected.
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Figure 4.7: MSE− plots for asset allocation model.

JA1
γ (k) has MSE− comparable to that of JB

1 for all values of k. Figure 4.8 contains

the Pr plots for asset allocation model. As we increase the aggressiveness of bias

reduction, either by increasing k or increasing γ, Pr increases for all the families.

Figure 4.9 contains CI width plots. If we compare the point estimate plots in Figure

4.3 with that of the CI width plots, we find that the biggest contributor to the CI

width is sampling error for families 2 and 3.

Figures 4.10 and 4.11 contain the Schruben coverage plots with sample sizes,

n = 144 and 576, respectively. We compare Schruben coverage provided by estima-

tors: θ̄n, JA1
1 (k) (= JA2

1 (k) = JA3
1 (k)), JA2

2 (k) (= JA3
2 (k)), JA1

12 (k), JA2
12 (k), JA3

12 (k)

and JB
1 . For the plots with n = 144, the coverage becomes tighter as we move from

family 1 to family 2 to family 3. However, for k = 3 and k = 4, family 2 and 3

with high values of γ (γ = 12) tend to give undercoverage. A reason for this might

be that the estimators θ̂n/k2 for k = 3 or 4 may not have bias which is of the form
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Figure 4.8: Pr plots for asset allocation model.

O(n−p) because of very small sample sizes involved. This undercoverage effect is

considerably less pronounced when we increase the sample size to 576. Note that

the coverage provided by JA2
2 (k) is similar to but a bit tighter than that of JA1

12 (k),

which agrees with our discussion in Section 4.1.

4.4.2 Example 1

In this section we again consider Example 1 from Section 1.3 with p = 2. Example

1 exhibits bias of the form O(n−p) for any value of n. Figures 4.12-4.16 contain the

MSE, MSE−, Pr, CI width and Schruben coverage plots, respectively, for Example

1.

We see that for k = 2 and large values of γ, the MSE of JA3
γ (2) is exploding.

The plots of JA2
γ (k) and JA3

γ (k) for k = 3 and 4 are well-behaved. This is consistent

with our observation in the previous section. We can see that other than the com-
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Figure 4.9: CI width plots for asset allocation model with µx̂ = 1.884 × 10−4.

bination of k = 2, large γ and family 3, all other combinations of k, γ and adaptive

family type reduce the MSE without much increase in MSE− (see Figure 4.13) or

Pr (see Figure 4.14). The Schruben coverage plots for the adaptive estimators are

much tighter than that of the naive estimator. The adaptive estimators do not

provide undercoverage in any case, but JB
1 gives significant undercoverage in all the

cases. Using RP again circumvents the undesirable behavior of family 3 adaptive

estimators with large γ and k = 2, which is consistent with our conjecture in Section

4.4.1.

4.4.3 Incorporating variance reduction techniques

So far we have formed the underlying estimator θ̂n using i.i.d. sampling. When θ̂n =

Gn(x̂) = 1
n

∑n
i=1 f(x̂, ξ̃i) − minx∈X

1
n

∑n
i=1 f(x, ξ̃i), we have used common random

number streams, ξ̃1, . . . , ξ̃n, to reduce variance, but that stream has been i.i.d. In
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Figure 4.10: Schruben coverage plots for asset allocation model.

this section we discuss how we can apply other sampling strategies in selecting

ξ̃1, . . . , ξ̃n within the context of our adaptive jackknife estimation procedures. We

begin with a more general discussion and then apply Latin hypercube sampling in

particular.

Suppose we select ξ̃1, . . . , ξ̃n in a non-i.i.d. manner in an attempt to reduce

the variance of θ̂n. We choose the partition factor k = 2 to simplify the discussion.

In order to form adaptive jackknife estimators we partition the original sample, with

index set N , into k2 = 4 subsamples indexed by N j with |N j| = n/4, j = 1, . . . , 4.

With these subsamples we can form θ̂n/4, j = 1, . . . , 4 and under RP the estimators

θ̂ij
n/2, i < j, i, j = 1, . . . , 4. In this setting we require the following:

(i) Each estimator θ̂j
n/4, θ̂ij

n/2 and θ̂n is strongly consistent as n → ∞;

(ii) Each estimator θ̂j
n/4, θ̂ij

n/2 and θ̂n should have bias satisfying (2.4), at least

within the addition of o(n−p) terms; and,
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Figure 4.11: Schruben coverage plots for asset allocation model with increase sample
size, n = 576.

(iii) (A4) holds, in turn, with N ′ = N and N̄ ′ = N i ∪ N j, i < j, i, j = 1, . . . , 4,

and with N ′ = N i ∪ N j and N̄ ′ = N i, i < j, i, j = 1, . . . , 4.

The non-i.i.d. sampling scheme should satisfy (i)-(iii) and, of course, should reduce

variance.

We now apply Latin hypercude sampling (LHS) to a two-stage stochastic

program. LHS (essentially) requires that the components of ξ̃ be independent. LHS

carries out stratified sampling on each of the components of ξ̃ separately and then

randomly shuffles their order when combining to form observations of the vector

ξ̃. If we were to employ LHS to form ξ̃1, . . . , ξ̃n and then construct subsamples

of size n/4 then, in general, we could not expect θ̂n/4 and θ̂n/2 to even satisfy the

consistency condition (i) above. Instead we apply LHS four times to form four

independent subsamples indexed by N j with |N j| = n/4, j = 1, . . . , 4. Then, under

mild conditions on the underlying stochastic program (see Chapter 1) consistency
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Figure 4.12: MSE plots for Example 1.

holds as required by (i). Condition (1.5) holds for each of the subsamples N j,

j = 1, . . . , 4, N i ∪ N j, i < j, i, j = 1, . . . , 4, and N = N1 ∪ . . . ∪ N4 and hence the

variant of (A4) described above in (iii) holds.

We now apply LHS to PGP2. This test problem has a three-dimensional

random vector ξ̃ with independent components, and from Table 3.1 we see that,

percentage-wise, PGP2 has the largest contribution of sampling error to its CI width

for the naive estimator θ̄n. For the same reasons discussed in Section 4.4.1 for asset

allocation model, we choose n = 576. Figures 4.17-4.21 contain the MSE, MSE−,

Pr, CI width and Schruben coverage plots, respectively, for PGP2 with LHS. We

performed Latin hypercube sampling on each successive sample of size 576/k2 for

k = 2, 3, 4.

Figures 5.6-5.10 in Appendix contain the MSE, MSE−, Pr, CI width and

Schruben coverage plots, respectively, for PGP2 without LHS and sample size n =

74



0 2 4 6 8 10 12
0

0.5

1

1.5
x 10

−7

aggressiveness(γ)

MSE− for k=2

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

x 10
−8

aggressiveness(γ)

MSE− for k=3

0 2 4 6 8 10 12
0

1

2

3

4
x 10

−8

aggressiveness(γ)

MSE− for k=4

θ
n

JA1

JA2

JA3

JB
1

Figure 4.13: MSE− plots for Example 1.

576. From figures 4.17 and 5.6 we see that MSE of the underlying estimator θ̄n

decreased from 0.8 to 0.7 after using LHS for variance reduction. We see that not

only the underlying estimator, but the adaptive estimators too get a benefit in MSE

by applying LHS. We see almost no change in Schruben coverage plots of all the

estimators after applying LHS. The behavior of adaptive estimators with or without

use of LHS is similar to the asset allocation model and Example 1. We can see

that it may be possible to successfully combine variance reduction techniques and

adaptive jackknife estimators.

4.5 Recommendations and summary

In this chapter we introduced two new families of adaptive jackknife estimators.

If the sample size n and γ are chosen wisely, then adaptive families 2 and 3 may

provide increased bias reduction over family 1. That said, we observed that family
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Figure 4.14: Pr plots for Example 1.

1 is a conservative choice that works well in almost all cases. We also introduced

the concept of generalized partition factor, k. Larger values of the partition factor

k may lead to more aggressive bias reduction, but we must ensure the sample size n

is sufficiently large. Use of the rotation policy, RP, may help stabilize the adaptive

estimators. We also investigated how variance reduction techniques can be incor-

porated in our adaptive procedure. Our empirical results suggest that our adaptive

estimators can significantly reduce bias withour any a priori knowledge of the order

of the bias, p. Moreover, the aggressiveness parameter γ, the partition factor k and

three adaptive families provide flexibility in formulating a bias reduction strategy.

In this chapter we analyzed three test problems: The asset allocation model,

Example 1, and PGP2. Chapter 3 include four additional test problems: Bermudan

option pricing, APL1P, CEP1. The three problems we considered here are represen-

tative of the other results. Appendix A includes results for all of the test problems
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Figure 4.15: CI width plots for Example 1 with µ̂x = 0.

except for CEP1. (For CEP1 even the least aggressive family could not be applied

and so we do not apply the more aggressive estimators of family 2 and 3.) We next

provide some recommendations for using adaptive estimators.

• Family 1 of the adaptive estimators is the least aggressive but appears to

perform reliably for all values of k and even with smaller sample sizes, n.

When p is near 1, the standard jackknife estimator JB
1 works well. Family 1

with k = 4 seems to work as well as standard jackknife, JB
1 when p is near 1.

• Family 2 seems to work well for all values of γ when k = 2 or 3. However, if

k = 4, we recommend using values of γ close to 1.

• Family 3 with k = 3 and 4 significantly reduces MSE, but one has to be careful

that n is large enough so that the estimators with sample size n/k2 satisfy the

required O(n−p) form of the bias. If using family 3: a) Value of γ should be
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Figure 4.16: Schruben coverage plots for Example 1.

chosen close to 1, and b) k should be chosen as 3 or 4.

• Use of the rotation policy, RP stabilizes the adaptive estimators, especially for

the combination of k = 2 and family 3.

• For almost complete bias reduction, we recommend using the combination of

family 3, values of γ close to 4 or 5, RP and k = 4.
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Figure 4.17: MSE plots for PGP2 with Latin hypercube sampling.
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Figure 4.18: MSE− plots for PGP2 with Latin hypercube sampling.
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Figure 4.19: Pr plots for PGP2 with Latin hypercube sampling.
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Figure 4.20: CI width plots for PGP2 with Latin hypercube sampling with µ̂x = 0.
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Figure 4.21: Schruben coverage plots for PGP2 with Latin hypercube sampling.
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Chapter 5

Conclusions and Future Research
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5.1 Conclusions

Many important problems involve decision making under uncertainty. Stochastic

programming is a powerful tool for modeling these problems. Usually, it is impossi-

ble to solve a stochastic program exactly. Sampling-based approximations provide

an attractive approach to estimate the true optimal solution and value of a stochas-

tic program. However, the estimates of the latter are biased under quite general

conditions. A point estimate or a confidence interval estimator of the optimality

gap or the optimal value can be obtained by using a multiple replication procedure.

To assess the quality of an available candidate solution or estimate the true optimal

value, it is desirable to have the bias as low as possible. This dissertation aimed to

address bias reduction procedures in stochastic programming.

In Chapter 2 we discussed an available technique for bias reduction from the

literature known as generalized jackknife estimators. Generalized jackknife estima-

tors work well when the order of the bias is known a priori. We discussed how

generalized jackknife estimators can be used in stochastic programming to reduce

bias in estimators obtained by sampling-based approximations. Unfortunately, prior

information about the order of the bias is unavailable for most problems. Example

1 from Chapter 2 showed that bias can shrink to zero as O(n−p) where p can be

anything from 1/2 to ∞. Incorrect estimates for the order of the bias may lead to

over-correction when using generalized jackknife estimators. We then presented a

p-estimation procedure in which the order of the bias, p, is estimated adaptively

prior to applying a generalized jackknife estimator.

When estimating an optimality gap or optimal value of a stochastic program

we prefer to err on the conservative side, i.e., prevent over-correction. This motivated

our development of adaptive jackknife estimators, which do not require a priori

knowledge of the order of the bias. In Chapter 3 we started with development of

our most basic adaptive jackknife estimator. We then presented results regarding
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consistency of this estimator and also argued that for a “well-defined” problem,

the adaptive estimators eliminate the possibility of over-correction. We extended

the development from a single adaptive jackknife estimator to a family of adaptive

estimators, parameterized by a positive integer γ. The members of the adaptive

family provide more aggressive bias reduction as γ grows.

In Chapter 4, we presented two more families of adaptive estimators. The

aggressiveness of bias reduction grows as we move from family 1 to family 2 to family

3. We also argued that the limiting member of family 3 may completely remove the

leading term in the bias in the underlying estimator. We introduced the concept

of a generalized partition factor, k, for adaptive jackknife estimators. Larger values

of k provide more aggressive bias reduction. We also introduced the concept of a

rotation policy, which may help reduce the variance in adaptive estimators, which in

turn provides smoother bias reduction using adaptive estimators. Finally, we showed

that the adaptive estimators can be combined with variance reduction techniques,

i.e., the bias reduction can be achieved on top of variance reduction techniques.

At the end of each of the Chapters 2-4, we compared the performance of

the adaptive estimators with the traditional generalized jackknife estimator and

the underlying estimator. We used several performance measures including MSE,

MSE−, CI widths and Schruben coverage plots on a variety of problems. The results

were encouraging and supported our development of adaptive estimators. In Chapter

4, we identified the cases when adaptive estimators might fail and provided remedies.

Finally, at the end of Chapter 4, we provided some recommendations on the

parameter settings for the adaptive estimators. The numerical results we obtained

were consistent with our recommendations. To summarize, in this dissertation we

developed the concept of adaptive jackknife estimators for bias reduction. The

adaptive estimators do not require a priori knowledge about the order of the bias in

the underlying estimators. The adaptive estimators that we developed are param-

eterized by family type, partition factor k, and aggressiveness parameter γ. These
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parameters give flexibility in designing a bias reduction procedure.

5.2 Future research

The concept of adaptive bias-reducing estimators opens a new line of research. The

key to use of adaptive estimators is satisfying assumption (A4), or its variants, which

ensures a form of convexity of the estimators in the sample size. The use of adaptive

jackknife estimators may be applied to areas other than stochastic programming.

One future research direction is to identify problems where we can guarantee variants

of (A4) and apply the adaptive jackknife estimators. An example of such problem

is when the estimator is a convex function of sample means. We can show that in

such a case (A4) is satisfied.

We also plan to compare the performance of adaptive jackknife estimators

with other bias reduction strategies, e.g., bootstrap and the Taylor series approach.

Using the adaptive jackknife estimator requires estimation of a group of underlying

estimators on a sample and its subsets. The computational efficiency of the adaptive

procedure can be significantly improved with intelligent re-estimation schemes. In

the context of two-stage stochastic programs, these re-estimations can be done effi-

ciently using a variant of Benders’ decomposition scheme, and this is one promising

future research direction.

Another challenge concerns indentifying when bias shrinks to zero more quickly

than O(n−p) because in such cases even our adaptive estimators are too aggressive.

One might argue that in such cases there is limited need for reducing bias. Still, a

systematic way to identify such situations would be valuable. In Section 3.6.5 we

pointed to one possible approach to this problem.
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In this Appendix we provide the numerical results for the test problems

APL1P, PGP2, and pricing Bermudan call option. We present numerical results to

compare bias reduction capabilities of θ̄n, JB
1 , JA1

γ (k), JA2
γ (k), and JA3

γ for k = 2, 3, 4.

We present results which are based on an average of 1000 repititions of the estima-

tors. We choose number of replications, m = 30, and α = 0.05, i.e., we form

approximate 95% confidence intervals. For use sample size, n = 144, 576, 144 for

APL1P, PGP2, and pricing Bermudan call option, respectively. The numerical re-

sults reported without bias correction (see equation (3.12)), without RP and without

LHS.

Figures 5.1-5.5, 5.6-5.10, and 5.11-5.15 contain MSE, MSE−, Pr, CI width

and Schruben coverage plots for APL1P, PGP2 and pricing Bermudan call option,

respectively. We can see that numerical results presented in Figures 5.1-5.15 are

consistent with what we presented in Section 4.4, and hence are not discussed fur-

ther.
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Figure 5.1: MSE plots for APL1P.
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Figure 5.2: MSE− plots for APL1P.
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Figure 5.3: Pr plots for APL1P.

0 2 4 6 8 10 12
20

30

40

50

60

70

aggressiveness(γ)

CI width for k=2

0 2 4 6 8 10 12
20

30

40

50

60

70

aggressiveness(γ)

CI width for k=3

0 2 4 6 8 10 12
20

30

40

50

60

70

aggressiveness(γ)

CI width for k=4

θ
n

JA1

JA2

JA3

JB
1

Figure 5.4: CI width plots for APL1P with µ̂x = 0.
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Figure 5.5: Schruben coverage plots for APL1P.

0 2 4 6 8 10 12

2

4

6

8

10

12

aggressiveness(γ)

MSE k=2

 

 

0 2 4 6 8 10 12
0.2

0.4

0.6

0.8

1

aggressiveness(γ)

MSE k=3

 

 

0 2 4 6 8 10 12
0.2

0.4

0.6

0.8

1

aggressiveness(γ)

MSE k=4

 

 

θ
n

JA1

JA2

JA3

JB
1

Figure 5.6: MSE plots for PGP2.
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Figure 5.7: MSE− plots for PGP2.
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Figure 5.8: Pr plots for PGP2.
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Figure 5.9: CI width plots for PGP2 with µ̂x = 0.
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Figure 5.10: Schruben coverage plots for PGP2.
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Figure 5.11: MSE plots for pricing Bermudan call option.
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Figure 5.12: MSE− plots for pricing Bermudan call option.
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Figure 5.13: Pr plots for pricing Bermudan call option.
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Figure 5.14: CI width plots for pricing Bermudan call option with optimal price =
11.341.
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Figure 5.15: Schruben coverage plots for pricing Bermudan call option.
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[18] J. Dupačová and R.J.-B. Wets. Asymptotic behavior of statistical estimators

and of optimal solutions of stochastic optimization problems. The Annals of

Statistics, 16:1517–1549, 1988.

[19] J. Durbin. Sampling theory for estimates based on fewer individuals than the

number of selected. Bulletin of the International Statistical Institute, 36:113–

119, 1958.

[20] J. Durbin. A note on the application of Quenouille’s method of bias reduction

to the estimation of ratios. Biometrika, 46:477–480, 1959.

[21] M.B. Freimer, D.J. Thomas, and J.T. Linderoth. Reducing bias in stochas-

tic linear programs with sampling methods. Technical report, Industrial and

Systems Engineering, Lehigh University, 2005.

[22] H.L. Gray and W.R. Schucany. The Generalized Jackknife Statistic. Marcel

Dekker, Inc., New York, 1972.

[23] J. Hahn and W. Newey. Jackknife and analytical bias reduction for nonlinear

panel models. Econometrica, 72:1295–1319, 2004.

[24] J.L. Higle. Variance reduction and objective function evaluation in stochastic

linear programs. INFORMS Journal on Computing, 10:236–247, 1998.

[25] J.L. Higle and S. Sen. Stochastic decomposition: An algorithm for two-stage

linear programs with recourse. Mathematics of Operations Research, 16:650–

669, 1991.

[26] J.L. Higle and S. Sen. Stochastic Decomposition: A Statistical Method for Large

99



Scale Stochastic Linear Programming. Kluwer Academic Publishers, Dordrecht,

1996.

[27] G. Infanger. Monte Carlo (importance) sampling within a Benders’ decompo-

sition algorithm for stochastic linear programs. Annals of Operations Research,

39:69–95, 1992.

[28] P. Kall and J. Mayer. Stochastic Linear Programming: Models, Theory and

Computation. Springer, New York, 2005.

[29] Y.M. Kaniovski, A.J. King, and R.J.-B.Wets. Probabilistic bounds (via large

deviations) for the solutions of stochastic programming problems. Annals of

Operations Research, 56:189–208, 1995.

[30] J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regres-

sion function. Annals of Mathematical Statistics, 23:462–466, 1952.

[31] A.J. King and R.T. Rockafellar. Asymptotic theory for solutions in statistical

estimation and stochastic programming. Mathematics of Operations Research,

18:148–162, 1993.

[32] A.J. Kleywegt, A. Shapiro, and T. Homem-de-Mello. The sample average ap-

proximation method for stochastic discrete optimization. SIAM Journal on

Optimization, 12:479–502, 2002.

[33] F.V. Louveaux and R. Schultz. Stochastic integer programming. In
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[47] A. Ruszczyński and A. Świetanowski. Accelerating the regularized decompo-

sition method for two stage stochastic linear problems. European Journal of

Operational Research, 101:328–342, 1997.

[48] L. Schruben. Coverage function of interval estimators of simulation response.

Management Science, 26:18–27, 1980.

[49] S. Sen, R.D. Doverspike, and S. Cosares. Network planning with random de-

mand. Telecommunication Systems, 3:11–30, 1994.

[50] J. Shao and D. Tu. The Jackknife and Bootstrap. Springer-Verlag, New York,

1995.

[51] A. Shapiro. Asymptotic analysis of stochastic programs. Annals of Operations

Research, 30:169–186, 1991.

[52] A. Shapiro. Monte Carlo sampling methods. In A. Ruszczyński and A. Shapiro,
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