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Modeling the System-Level Impacts of Information
Provision in Transportation Networks: an Adaptive
System-Optimum Approach

Natalia Ruiz Juri, Ph.D.

The University of Texas at Austin, 2009

Supervisor: S. Travis Waller

Traffic information, now available through a number of different sources,
is re-shaping the way planners, operators and users think about the
transportation network. It provides a powerful tool to mitigate the negative
impacts of uncertainty, and an invaluable resource to manage and operate the
network in real-time. More information also invites to think about traditional
transportation problems from a different perspective, searching for a better
utilization of the improved knowledge of the network state.

This dissertation is concerned with modeling and evaluating the system-
level impacts of providing information to network users, assuming that the data
is utilized to guide an Adaptive System-Optimum (ASO) routing behavior.
Within this context, it studies the optimal deployment of sensors for the
support of ASO strategies, and it introduces a novel SO assignment approach,
the Information-Based System Optimum (IBSO) assignment paradigm.

The proposed sensor deployment model explicitly captures the impact of
sensors’ location on the expected cost of ASO assignment strategies. Under
such strategies, a-priori routing decisions may be adjusted based on real-time
information.

The IBSO assignment paradigm leads to optimal flow patterns which take
into account the ability of vehicles to collect information as they travel. The

approach regards a subset of the system’s assets as probes, which may face

vil



higher expected costs than regular vehicles in the search for information. The
collected data is utilized to adjust routing decisions in real time, improving
the expected system performance. The proposed problem captures the system-
level impact of adaptive route choices on stochastic networks.

The models developed in this work are rigorously formulated, and
their properties analyzed to support the generation of specialized solution
methodologies based on state-space partitioning and Tabu Search principles.
Solution techniques are tested under a variety of scenarios, and implemented
to the solution of several case studies. The magnitude and nature of the
information impacts observed in this study illustrate problem characteristics
with important theoretical, methodological and practical implications.
The findings presented in this dissertation allow envisioning a number of
practical applications which may promote a more efficient utilization of novel
sensing and communication technologies, allowing the full realization of their

potential.
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Chapter 1
Introduction

Thanks to technological advances in the fields of remote sensing and
communications, large amounts of transportation data have become available
in the last 15 years (Sisiopiku [2000], Varshney [2003, 2005|, Biesecker [2000]).
Increasing proportions of such data are now accessible to network users in
real-time, directly or as route recommendations from in-vehicle devices or
Dynamic Message Signs.

The new available information invites to think about traditional
transportation problems from a different perspective, searching for a more
advantageous utilization of the improved real-time knowledge of the network
state.

This dissertation introduces a novel system-optimum assignment approach
which takes into account the ability of assets to collect information as
they travel. The Information-Based System Optimum (IBSO) assignment
paradigm captures the system-level impact of adaptive route choices on
stochastic networks. The distinctive characteristic of the new approach
is given by the utilization of some system assets as probes, which collect
the information based on which the assignment of the remaining assets is
adjusted.

Methodologically, this dissertation is concerned with modeling and
evaluating the system level impacts of providing information to network

users, assuming that the data is utilized to guide adaptive system-optimum



routing strategies. Within this context it also studies the optimal deployment
of sensors for the support of adaptive-system optimum decisions. Both
contributions represent fundamentally new approaches to the collection and
utilization of information in transportation networks.

Existing literature on adaptive routing typically considers that the
information based on which routing decisions are adjusted is either limited
to the costs individually experienced by each asset, or exogenously provided
from arbitrary sources. The first case gives rise to models of shortest
path with recourse (e.g. Polychronopoulos and Tsitsiklis [1996], Miller-
Hooks and Mahmassani [2000], Waller and Ziliaskopoulos [2002|), while the
second approach underlies studies concerned with in-vehicle route-guidance
provision (e.g. Papageorgiou and Messmer [1991], Boyce et al. [1995], Friesz
et al. [1989]). Under an IBSO assignment paradigm information is both,
endogenously generated, and systemic. This leads to framework which
captures the system-level impacts of information, and at the same time
models its collection within a system optimum context.

The optimal sensor deployment approach proposed in this dissertation
(Section 4) considers exogenous information sources, but it explicitly studies
the impact of the location of the source on the effectiveness of the route
guidance strategies. The model identifies the optimal location of a fixed
number of static sensors in a network with stochastic arc costs, in such way
that the expected cost faced by a set of optimally routed assets is minimized.
The information provided by the sensors translates into a set of perceived
states, based on which adaptive routing decisions are made. Section 1.1.3
exemplifies a possible scenario for the application of the proposed approach.

Under the IBSO assignment paradigm presented in Section 6, a subset of
system assets are designated as probes, and used to collect the information
used to adjust the assignment decisions for the remaining assets. The
selection of the paths followed by the probes takes into account the value
of the information collected along them in addition to the corresponding
expected cost. As a consequence, assets utilized as probes may face higher

expected costs than regular system assets, which are optimally routed



under every possible state revealed by the probes. A multitude of problem
variations are possible based on the assumptions regarding the characteristics
of the network, the information distribution scheme, and the timing of the
deployment of probes and regular assets. Section 1.1 presents a taxonomy
to classify the variations, along with the set of assumptions governing the
problems studied in this dissertation, and Sections 1.1.2 and 1.1.1 illustrate
possible applications.

The problems addressed in this work are formulated as stochastic
programs (Sections 4.2 and 6.3), which allows explicitly modeling uncertainty,
information provision and utilization. Problem solutions have a deterministic
component, given by the sensor/probe deployment strategies, and an adaptive
element. The later is given by the strategies which define the routes to
be followed by the non-probe system assets under each possible scenario,
typically represented using hyperpaths (Nguyen and Pallottino [1989]).

The solution methodology is based on the fact that, in virtue of
the assumptions presented in Section 2.7, the models may be solved by
enumerating all feasible sensor/probe deployment strategies, and computing
the corresponding expected costs under information. Such approach poses
two main challenges: the large number of perceived states which need to be
considered during the evaluation of a feasible deployment strategy, and the
existence of a combinatorial number of strategies. The proposed solution
technique deals with the first issue using state-partitioning principles, while
the combinatorial problem is addressed heuristically, by implementing an
adaptive memory Tabu search procedure. Both methodologies were tailored
to account for the characteristics of the problem under study, and their
performance tested under several scenarios. The final methods constitute an
interesting framework for the study of similar problems.

The models proposed by this work are implemented to the study of several
numerical examples. The analysis of the results from a quantitative and
qualitative perspective, presented in Sections 5.3 and 6.6, illustrate interesting
problem characteristics with important theoretical and methodological

implications.



The presented models are not designed to solve any specific application, but
a number of possible implementations are possible for the different variations
summarized in Chapter 2. The following section exemplifies some potential
practical implementations, while Section 1.2 summarizes the goals, objectives

and contribution of this dissertation.

1.1 Motivating examples

This section presents some simple examples of scenarios under which the
strategies and methodologies proposed by this work would be advantageous.
These cases motivate the present research, by illustrating the potential benefits
of peer-based dynamic and targeted information collection and utilization, and
also to facilitate the understanding of some of the problem properties and

variations defined on later chapters.

1.1.1 Evacuation of damaged areas after a natural

disaster

Consider the evacuation of an area affected by a natural disaster, such as
flooding. Assume that the network presented in Figure 1.1 represents the
corresponding road system, which has been damaged by the event. Suppose
that, based on their previous experience, emergency managers are able to
estimate the probability of different damage levels on the network links, which
define the corresponding link traversal costs. Assume that the objective of
the rescue operation is to transport people affected by the natural disaster,
currently concentrated in node C, to a safer location in node G. The evacuation
needs to be finalized in the shortest possible time, given the danger of a sequel,
and it is accomplished using 4 vehicles, which are enough to transport all the
evacuees. A naive routing strategy would assign all the assets to paths CDFG
or CDEG, which exhibit the least expected cost, equal to 7 time units.
Nevertheless, it is possible to improve upon this strategy by making use of

wireless communications capabilities and a staggered decision making process.



For example, two of the assets may be assigned to paths CDFG and CDEG
at the onset, and then routes for remaining vehicles decided based on their
findings. Under this strategy, the expected cost to be paid by assets routed
on the second stage becomes 5.5 units, and the expected total system cost is
reduced from 28 to 25 time units. Taking into account that under the proposed
deployment strategy assets assigned during the second stage must wait until
the latest of the first two vehicles reaches destination, the expected arrival
time of the last vehicle is 12 time units.

Notice that this strategy involves assigning probes to paths exhibiting
higher expected costs than the minimum expected cost path. However, the
possible gains derived from the information found by the probes outweigh the
additional cost, in terms of expected travel time, necessary to pay for such
data.

cos{ probability

2L >® . W&

2(1) - 5(1)

Figure 1.1: Example network

1.1.2 Deployment of military assets in a hostile

environment

Consider a set of military vehicles consisting of tanks and ambulances, which
need to be deployed through a hostile territory. Let the network in Figure 1.1
represent the set of paths traversing the area, and assume that the random
link costs are a function of its length and condition, as well as of the risk of
being attacked while traveling on the link. Also consider that the tanks, more
resilient to enemy attack and adverse road conditions, are used as probes and
deployed during a first stage. The ambulances are vulnerable, and therefore

routed during the latest stage.



Let the objective of the assignment be the displacement of the assets from
their current location in node C, to a new settlement in node D. Even though
it is desirable to accomplish the relocation in the shortest possible time, a
major concern is to ensure that the time spent on the road by ambulances is
minimized, in order to reduce their exposure, and the risk to the transported
patients. Taking such goals into account, the deployment strategy presented in
the previous example may be improved upon, by exploiting the fact that some
paths have links in common. In view of the later, greater information benefits
for the vehicles deployed in later stages can be achieved if each probe vehicle
waits for the previous one to reach its destination before entering the network.
Such strategy allows probes to utilize the information gathered by others. The
expected cost faced by the ambulances under this strategy is reduced from 5.5
to 5.25 time units, at the cost of a higher arrival time for the last unit (17.4).

The corresponding system expected cost becomes 24 time units.

1.1.3 Optimal deployment of sensors for decision-making

support

Consider that the network in Figure 1.1 represents the transportation system
of a region susceptible to flooding. Assume that link travel times are a direct
function of the water level on a link, which follows a discrete probability
distribution. Suppose that city planners are able to deploy a fixed number
of sensors able to measure the actual water level on a link. The objective
underlying the sensor placement is to guarantee the fastest possible deployment
of help to flood victims, which usually seek for refuge in shelters and hospitals
located in node D. Emergency vehicles typically depart from the fire station
located at node A. Assuming that there is only one sensor available, the clear
choice for its placement is link BC. Notice that locating the sensor on link CD
would provide a more accurate estimate of average level of water in the system,
which is desirable from a monitoring perspective. However, such information
is worthless for the specific objective under consideration, because it has no

impact on the decision making process, which is certain to involve link CD in



the assignment. By using the information provided by the sensor, the expected

total system cost drops from 4.5 to 4 time units.

1.2 Goals and objectives

This dissertation aims to contribute to a better understanding of the system-
level effects of providing traffic information to network users, thus fostering the
development of methodologies capable of strategically exploiting such impacts
to benefit the system. Its goal is to introduce new routing paradigms benefiting
from the increasing availability of real-time data, ultimately leading to a more
efficient utilization of available resources, and a full realization of the potential

benefits of novel technologies. Specific objectives include:

e Study existing approaches to evaluating the system-level impacts of

information provision to network users.

e Propose a novel sensor deployment criteria based on the impacts of

information on adaptive routing decisions.

e Define a new assignment paradigm capable of benefiting from emerging

sources of real-time traffic data.

e Introduce a framework for the study of the novel approach, proposing a

taxonomy to classify problem variations.
e Formulate a mathematical model reflecting the proposed concepts.
e Analyze properties and distinctive characteristics of the new model.
e Develop and implement specialized solution methodologies.

e Identify possible extensions and applications of the proposed framework

based on the analysis of problem properties and numerical results.

This work contributes to the literature on the evaluation of information

impacts, by presenting methodologies able to capture and measure the effects



of providing information to network users. It also advances the research
concerned with the optimal deployment of sensors, by proposing models
which explicitly consider the impact of sensor placement on the performance
of adaptive strategies based on the information they provide.

The proposed Information-Based System Optimum assignment paradigm is
a fundamentally new approach that allows exploitation of traffic information
from wholly new perspectives. The analysis of numerical results and
theoretical problem properties suggests that the paradigm has the potential
to improve system performance. The models proposed in this work constitute
an initial step towards enhancing information collection and utilization
strategies. Based on the findings presented here, a number of applications
may be envisioned, for which efficient solution would ensure more efficient
utilization of current and future sensing and communication technologies,

fostering the full realization of their potential benefits.



Chapter 2

Conceptual Framework, Problem

Variations and Assumptions

This dissertation is concerned with modeling and evaluating the system level
impacts of providing information to network users, assuming that the data
is utilized to guide adaptive system-optimum routing strategies. Within this
context it studies both, the optimal deployment of sensors for the support
of adaptive-system optimum decisions, and the design of optimal assignment
strategies which consider the collection of information by system assets.

Adaptive decisions are such that they may be modified based on available
information, whether it originates from static sensors or it is provided by
other assets in the system. The system-optimum approach implies the
implementation of a routing criterion which minimizes the total cost faced
by the system, at the price of allowing some assets to face higher costs than
others (Sheffi [1985]).

In the context of this work, the system costs are defined by the summation
of the expected costs paid by individual assets. The use of expectation is
motivated by the stochastic nature of the problem, in virtue of which the
actual cost at a link is learnt only after making the decision to utilize it. Even
when the expected cost of a path is minimum, the conditions experienced by
the assets traversing it may be worse than the realized costs in other paths. The

later explains the advantage of using probes to verify the state at one or more



routes before making the assignment decision for the remaining vehicles, which
is the concept underlying the Information Based System Optimum (IBSO)
assignment paradigm.

Section 6.2 explains some unique characteristics of the IBSO assignment
approach, and contrasts it to traditional system-optimum assignment. The
problem involves deciding the routes to be followed by a set of assets,
including probes, which travel between given origins and destinations.
Routing decisions are made a-priori, but they may be staggered in order to
allow for the utilization of the information retrieved by the probes. Given
the stochastic nature of the problem, solutions are given in the form of
strategies, rather than as a specific set of routes. Strategies describe the
optimal assignment under each possible scenario, and may be represented
using hyperpaths.

The approach taken in this dissertation to study the optimal deployment
of sensors assumes that the collected data is used to optimize system-optimum
routing decisions, and explicitly models the impact of the sensor location on
the resulting system performance.

The general problem description provided in this section makes it
clear that there is a multitude of possible variations depending on the
assumptions regarding various problem parameters, which ultimately define
what information is available and which assets may benefit from it. The
following sections describe these parameters, identifying axes along which the
problem variations may be compared, and defining the scope of the present

work.

2.1 System assets and routing strategies

One of the main features of the IBSO assignment problem is the consideration
of two types of assets. An arbitrary set of assets is utilized as probes, also
denotes equipped assets, which are capable of collecting and communicating
information about the system state as they travel. The data revealed by probes

may be used to adjust the assignment decisions concerning other vehicles.

10



The non-probe assets, denoted regular vehicles or non-equipped assets,
experience link cost realizations on their trips, but their findings do not have
an impact on routing choices.

All assets are assigned to routes connecting an origin-destination pair
seeking to optimize a common system-level objective. Given the capability
of probe vehicles to resolve the system uncertainty by collecting information,
may be routed on different (and more expensive) paths than the regular assets.

In this dissertation all routes are assumed to be selected a-priori, i.e.
before assets leave the origin. The adaptive component is given by the
adjustment of route decisions based on the available information, which
is possible assuming a serial deployment process described in section 2.4.
Possible problem variations include allowing the re-optimization of routes
at intermediate nodes based on information retrieved by probes after the
departure of regular assets (system-level-information-based recourse).
Another approach is to allow regular assets to re-route themselves based
on the costs they experience, following an online shortest path approach
(e.g.Waller et al. |2001]). If flow dependant link costs are considered, the
later would not be consistent with a system optimum approach, but a
system-optimum with recourse paradigm (Unnikrishnan [2008]) may be use

to centrally define assets routes.

2.2 Network characteristics

System assets are assigned into a directed, uncapacitated network with
stochastic link cost functions. Link costs follow discrete probability
distributions, defined by a finite number of states, which are uncorrelated
across links. Additionally, the considered network is static, which implies
that link cost probability distributions are constant in time. It is assumed
that probe vehicles learn the cost of a link upon traversing it, and that such
cost becomes deterministic for the purpose of assigning the remaining assets,
as well as invariant. The later means that additional probes visiting the

same link would experience the same cost. Costs functions are assumed to
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Figure 2.1: Classification of information collection strategies

be independent of the corresponding flow and, without loss of generality,
integer-valued (Ahuja et al. [1993]).

Some network nodes act as origins and /or destinations, which are the entry
and exit points of the assets into the system. Problem formulations presented

in this proposal consider a single origin and destination pair.

2.3 Information collection and distribution

For most of the problems proposed in this dissertation, information is
dynamically collected, in the sense that it is retrieved by mobile assets
traveling through the network. Chapter 4 presents the only problem version
involving static information collection, where the same is redeemed by sensors
placed on fixed network links. In both cases, links from which information
is collected are considered to be “measured”. Figure 2.1 depicts possible
assumptions regarding information collection. Information is collected by
system assets, even though further extensions may consider the utilization of
exogenous agents to generate network-state data.

In the context of this problem, the direct impact of measuring a link is
given by a change on the corresponding cost, from its expected value to the
value observed under each possible realization in its probability distribution.
The combination of the realizations observed at every measured link originates

a “perceived” network state, based on which adaptive routing decisions may
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be performed.

Equipped and non-equipped assets learn the realization of an arc cost
upon traversing it, but the uncertainty regarding a link cost from a system
perspective is only resolved when a link is traversed by a probe, and upon the
same arrives to an information retrieval node. These are the only nodes
from which probes can make information available to the system. Similarly,
information distribution nodes are defined as those nodes at which regular
assets may be re-routed. The approaches proposed in this dissertation consider
single information retrieval and distribution nodes, given by the origin and
destination of the assets route. This represents the a-priori routing strategy
described in 2.1. Problem instances allowing recourse actions require the

definition of several information distribution nodes.

2.4 Deployment strategies

Deployment strategies define the structure of the decision making process.
Two main approaches are possible depending on whether probes remain in the
system after regular assets are deployed. Parallel deployment strategies
(Figure 2.2) assume that both types of assets are assigned into the network
simultaneously. Under serial strategies non-equipped assets enter the network
only after the probe vehicles have reached their destination. A serial approach
has the potential to result in lower system expected costs, given that the
assignment decision for regular assets is supported by all the information
which the probes may retrieve. However, if the total time spanned by the
deployment is a concern, parallel strategies may be more appropriate. Notice
that, while serial deployment is compatible with a-priori routing schemes, some
of the alternatives within parallel deployment are meaningless if system-level-
information-based recourse (Section 2.1) is not allowed, at least for the non-
equipped assets.

Serial deployment strategies can be further categorized as simultaneous or
sequential based on the ability of probes to take advantage of the findings

of other equipped assets. Under a simultaneous assignment paradigm, all
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equipped assets enter the system at the same time, and collect information
independently of the findings of other probes. The sequential probe
assignment approach assumes the equipped assets are released into the
system in batches, and the routes of probes in later batches are decided based
upon the information collected at earlier stages. The sequential assignment
option may lead to a more efficient use of the information at the cost of
prolonging the total deployment time. Additionally, sequential strategies
entail the introduction of a temporal dimension, in order to ensure consistency
between the time at which batches are deployed into the system (release
time) and the corresponding availability of information. If link costs do not
represent travel times, additional variables are required to maintain such
consistency.

Under parallel deployment strategies, it is possible to release all the assets
into the system at once, or to accomplish the deployment in batches consisting
of non-equipped assets and probes. The proportion of each type of asset
per batch may be fixed exogenously, or considered a problem variable. An
additional parameter to define in this context is the location and number of
information retrieval and distribution nodes (Section 2.3). The assumption
of unique retrieval and distribution points at the origin and destination of

each route may be excessively restrictive. Depending on the release time
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of the different batches, it may actually prevent some batches from taking
any advantage of the information collected by other probes. A more flexible
approach is to let all the nodes be information retrieval nodes, allowing every
batch to benefit from all the information acquired before its release time. In
addition to this, cases involving a single batch consisting of all the assets in the
system demand for extra information distribution nodes, and entail allowing

for system-level-information-based recourse.

2.5 Objective function

For the purpose of this dissertation, the system objective is to minimize the
summation of the expected cost paid by each asset. Notice that this
assumption minimizes the time spent by the assets in the network rather than
the expected duration of the deployment operation. The optimal solution to
problems with this objective may tolerate considerably longer routes for probe
vehicles, which is compensated by the availability of more valuable information
concerning the system state at the moment of assigning the remaining assets.
This objective function is reasonable for problems such as the ones presented
Section 1.1.2, in which the main concern is the time spent en-route. For
problem instances such as the one presented in Section 1.1.1, in which the
total time involved in the deployment process is of importance, it may be
desirable to re-define the corresponding objective function and incorporating
a temporal dimension. If the link costs are not expressed in time units, it
may demand for the definition of new variables, and lead to multi-objective
problems. Otherwise, the objective function may be adjusted by adding the

expected arrival time of the last probe to the cost summation defined earlier.

2.6 Decision variables

For the IBSO assignment problem, the decision variables include the route
to be followed by the probes and the assignments strategy for regular assets

under each possible perceived scenario. Notice that in virtue of the assumption
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of flow-independent and uncapacitated link costs, all system assets may be
assigned to the same path, and therefore the solution involves a single path
per state. The set of the different solutions under each network state is denoted
hyperpath (Nguyen and Pallottino [1989]). For the optimal sensor deployment
problem, the decision variables are given by the set of links to be measured, and
the corresponding hyperpaths. Future extensions may incorporate additional
degrees of freedom, including an endogenous selection of the number of assets
to be used as probes, or the release time of each batch in parallel deployment

cases under a sequential release strategy.

2.7 Summary

This section described the features of adaptive system optimum routing
strategies, and presented the possible assumptions defining an instance
of the IBSO assignment problem. The characteristics presented in this
chapter constitute the axes along which problem variations may be defined
and compared. The number of variants resulting from combining different
assumptions regarding problem parameters is certainly very large. In order
to bound the scope of this work, the analyzed version will differ only on
the deployment and routing strategies, as categorized in Figure 2.2. For the
remaining parameters, Table 2.1 presents the assumptions which will be held

throughout this work, unless otherwise noted.
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Table 2.1: Assumptions

Network Directed, static, uncapacitated,
single OD pair

Link costs Integer, non-negative, flow
independent

Cost probability distribution Discrete. Realization learnt after
use by probes.

Information retrieval node Destination

Information distribution node Origin
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Chapter 3

Literature Review: Evaluating the
Impacts of Traffic Information
Provision on the Performance of

Transportation Networks

Thanks to technological advances in the fields of remote sensing and
communications, large amounts of transportation data have become available
in the last 15 years (Sisiopiku [2000], Varshney [2003, 2005|, Biesecker [2000]).
This data typically includes vehicle counts and speeds at specific locations,
as well as point-to-point travel time measurements from “probe” vehicles
equipped with wireless devices such as toll-tags, GPS, and even cellular
phones. The existing intelligent transportation system infrastructure allows
collecting, processing, and distributing information from some of these sources
in almost real time.

The generated information is typically made available to both, network
managers and drivers. For network operators, the ability to closely monitor the
system performance has an enormous value. The collected data contributes
to a better understanding of the behavior of transportation networks, and
provides a means to develop more efficient congestion management and

network operation strategies.
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Evaluating the effects of providing information to drivers is considerably
more complex. The availability of real-time data is likely to affect the route and
departure time choice of system users, especially under congested or atypical
situations. However, the aggregate impact of individual choices on the system
behavior is not easy to predict, particularly given the difficulty of assessing
the reaction of drivers to information.

This literature review presents existing approaches to model the utilization
of information by drivers in transportation networks (Section 3.1) and the
corresponding system-level impacts (3.2). These models provide useful tools
to evaluate information collection and distribution strategies (Section 3.3),
which is critical in view of the large costs that such tasks may involve. They
may also serve as the basis to analyze novel approaches to the utilization
of information in transportation problems, and therefore understanding their
strengths, limitations and corresponding implementation challenges is of the

utmost importance.

3.1 Modeling the utilization of information

This section focuses on models which are able to represent the adaptive
behavior of drivers in the face of information. The methodologies studied
here typically assume that all drivers optimally use the available information
to improve their travel cost (or expected travel cost). In reality, drivers’
reaction to information is a more complex process which depends on their
preferences, perceptions, past experience, and attitude, among others. The
study of such behavior escapes the scope of this work, but it is an active field
of research, typically accomplished via interactive simulation experiments
and surveys (Mahmassani and Chen [1991|, Polak and Jones [1993], Adler
and McNally [1994]Mahmassani and Tong [1986], Koustopoulos et al. [1993]).
Another assumption common to most of the models discussed in this section
is that link costs are random, reflecting the uncertainty capacity which
characterizes transportation network links (Unnikrishnan [2008]). In this

context, information is represented as the total or partial resolution of
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uncertainty accrued by learning the cost realization on one or more links.

The methodologies analyzed in this section may be classified according
to multiple characteristics. Figure 3.1 presents the approach selected for
this study, which is based on the type of information provision that the
models may be used to represent. It is important to notice that many of
the reviewed models were not developed to meet the requirements of a specific
technology, but to capture realistic behaviors which were beyond the capability
of past approaches. The proposed classification scheme is designed to fit the
framework of this dissertation, and the corresponding categories are intended
to describe possible model application within the context of this study. The
proposed classification is not meant to define the entire range of possible
implementations of the discussed research efforts.

For the purpose of this study, self-collected information corresponds to
the information that vehicles learn as they travel through the network, either
by reaching a node or by traversing a link. It may include information displayed
on dynamic message signs, as long as such data is concerned only with the state
of adjacent links. The models included in this category are mostly variations
of the traditional shortest path problem, born from the need to explicitly
model link cost uncertainty, adaptive drivers behavior, and dynamic network
properties.

System-level information may originate at any location in the network,
and is typically collected and distributed using the Intelligent Transportation
System (ITS) infrastructure, even though novel approaches explore the
feasibility of propagating system-level data through vehicle-to-vehicle
communications (Section 3.3). It may be accessed through the Internet, or by
means of an in-vehicle navigation device. Most of the models in this section

were developed to study the provision of dynamic route-guidance to drivers.

3.1.1 Models based on self-collected information

The models in this section explicitly account for the uncertain nature of

the link costs, and capture the adaptive behavior of drivers. On stochastic
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Figure 3.1: Approaches to modeling and evaluating individual-level
information impacts

networks one may not find a path which is the shortest under all possible
cost realizations. A common practice is to define optimality based on paths
expected cost, regarding the least expected cost (LEC) path as the “shortest
path”; which can be found using deterministic shortest path algorithms when
the link cost functions are linear (Eiger et al. [1985]). For many transportation
applications, this is a very sensible choice which reflects driver’s decision-
making process under uncertainty (Von Neumann and Morgenstern [1944]).
However, for some implementations, particularly those involving short-term
decision making, modeling uncertainty becomes crucial.

Online optimization relaxes the assumption that the entire optimal path
must be chosen before arc costs realizations are learnt. Drivers select an a-
priory route, but are allowed to adapt their decision as they travel based on
the cost realizations they observe. Furthermore, the formulations are such
that the a-priori route selection takes into account the information which may
become available on the selected path, and the corresponding alternatives. The
changes to the a-priori route selection are usually referred to as “recourse”, and
are typically assumed to be governed by a cost minimizing process.

The optimal solution to this type of models is given in the form of a

hyperpath, which is an acyclic graph representing the optimal route given
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different link (nodes) costs realizations (Nguyen and Pallottino [1989]). The
expected cost of following an optimal hyperpaths is a lower bound on the
expected cost of any a-priori path. The major challenge posed by the solution
of these problems is that, in the general case, they may involve the enumeration
of all existing hyperpaths, which is very large and grows exponentially with
the problem size. However, some efficient methodologies have been developed
for specific link correlation structures and network topologies.

Models may differ in a multitude assumptions, including the point at
which the driver learns a link’s cost realization (origin or destination node),
the permanency of such cost realization (it may be different each time a
node is visited or become deterministic after the first pass), and the type of
correlation among link cost probability distribution functions (independent,
arbitrary correlations, or specific structures). Some models also account
for dynamic network properties, assigning different probability distribution
functions depending on the arrival time at a node. Gao and Chabini [2006]
present the first somewhat unifying framework to analyze online shortest path
problems on networks with discrete and non negative arc costs, and proposes
very general optimality conditions.

Hall [1986] introduces a dynamic programming algorithm to find the
shortest hyperpaths on a network with stochastic arc costs on which
drivers are allowed recourse actions based on their experienced costs. His
methodology assumes that the least expected cost path is acyclic, and it may
require evaluating all possible paths.

Psaraftis and Tsitsiklis [1993] study the problem on acyclic networks which
arcs exhibit a Markovian temporal dependency (i.e. the arc cost at state t-1
is a function of the arc cost realization at t) but are uncorrelated space-wise.
In the proposed models, waiting at nodes is allowed. The authors present
three polynomial algorithms to find optimal adaptive routes, based on dynamic
programming principles.

Bander and White |[2002| study a problem variation including path terminal
costs, which depend on the corresponding arrival time. The methodology

assumes discrete arc cost probability distributions and positive arc costs, and
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may be solved heuristically.

Polychronopoulos and Tsitsiklis [1996] consider the online shortest path
problem on networks with discrete arc cost probability distributions under
two possible conditions: independent and correlated arcs cost. For the
correlated case, they define a state set, which contains all the possible network
realizations. This work introduces a dynamic programming algorithm which
recursively reduces the cardinality of the information set. The rationale
behind such approach is that drivers may “discard” some of the possible
network realizations as they acquire new information. The authors propose
exponential solution methodologies and bounded heuristic approaches.

Waller and Ziliaskopoulos [2002| examines a similar problem, but assumes
arc costs probability distributions with limited space dependencies, which lead
to a polynomially solvable problem. The authors consider that each visit to
a node results in a new random trial, and therefore the shortest path could
include cycles (Andreatta and Romeo [1988]). As a result, the proposed label
correcting algorithm may theoretically lead to infinite cycling. However, this
contribution proves that there is a bound to the maximum improvement (in
terms of expected cost) that can be derived from cycling, and provides an
heuristic bound on the algorithm performance based on the desired level of
precision in the solution.

Miller-Hooks and Mahmassani [2000] present an algorithm to compute
least-expected cost paths in stochastic dynamic networks, on which
the cost functions are not only random but also time dependant. The
label-correcting methodology provides an exact problem solution in networks
with independent arc costs, assuming that no waiting is allowed at nodes. The
algorithm is exponential in theory, but it is showed to perform considerably
better in practice. The proposed implementation is possible thanks to the
additive nature of the expected costs, guaranteed by the characteristics
imposed on the probability distribution functions. De Leone and Pretolani
[1998| and Pretolani [1998| analyze the same problem, developing solution
methodologies based on auction algorithms and time-expanded networks,

respectively. Such methodologies work in linear time with respect to the
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corresponding network size, which may however be very large.

Models accounting for the adaptive behavior of drivers when presented
with information are the building blocks for formulations able to represent the
aggregated behavior of the system under the provision of information. Existing
methodologies are insightful and flexible, and they may be adjusted to model

they availability of new sources of information.

3.1.2 Models based on system-level information

New technologies, such as GPS and in-vehicle guidance systems, allow
assuming that a large set of system-level information is available at different
points during the trip (even continuously), and that optimal route choices
may be made based on it. Most of the online routing models accounting
for centralized information were motivated by the emergence of in-vehicle
guidance systems capable of accounting for real-time traffic information. As
a result, they focus on generating route recommendations which are provided
to drivers instead of the corresponding raw data.

Some of the models presented in this section are designed to provide
only pre-departure information, which may have an effect on both, route
choice and departure time selection. Providing pre-trip information also
presents a better opportunity to seek for a system performance balancing
system optimum and user equilibrium objectives. Jahn et al. [2005] propose
a system-optimum approach with user constraints towards such end. The
methodology generates optimal routing strategies which improve upon
the solution of a user equilibrium problem (Sheffi [1985]) while limiting
the magnitude of the cost differences that characterize system optimum
assignment strategies. Notice that the approaches presented here do not
necessarily model uncertainty through a random distribution of link costs.
Some of the presented models approach the problem from a dynamic traffic
assignment perspective (discussed in Section 6.1), in virtue of which travel

time realizations are the result of a simulation process.
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3.1.2.1 Pre-trip information provision

Not many route-guidance implementations are limited to pre-trip
information provision. The algorithm provided by Miller-Hooks and
Mahmassani [2000] may be applied for such purpose, given that it identifies
the least expected cost path on a stochastic and dynamic network on
which arc travel times are represented by discrete probability distributions.
She implements a modified label correcting algorithm to identify all the
paths with a positive probability of being the shortest from all origins to
a single destination. These non dominated, or Pareto-optimal, paths are
then compared to select the optimal route. Since all the paths in a network
could be Pareto-optimal, this algorithm has a non-polynomial worst case
complexity. However, it was found to perform more efficiently experimentally.

Sen et al. [2001] propose a slightly more complex approach which considers
not only the expected cost of a path, but its variability, as given by the
corresponding variance. They propose a mean-variance model, formulated as
a convex quadratic problem which can be solved efficiently using interior point
methods. The authors test the proposed models in toy networks, and discuss
the availability of real data for practical implementations. Their findings
suggest that the mean-variance approach is particularly appropriated for grid
networks, on which turning movements may have a considerable impact on the
reliability of travel times.

Chen et al. [2005] propose a route guidance methodology which combines
reliable a-priori path selection with dynamic route guidance based on real-
time data. The two-folded approach is intended to reduce the computational
burden involved in en-route shortest path re-computations. Users are provided
with a set of alternative a-priori paths instead of a single route, seeking to limit
the effects of concentration (Lee [1994]). The path set is generated based on
historic data implementing a criterion which reduces the probability of joint
path failure, thus minimizing the number of re-optimization instances. The
later are accomplished implementing the A* algorithm (P.Hart et al. [1968],
Klunder and Post [2006|), which benefits from the a priori path information

and performs very efficiently.
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The methodologies in this section are useful to estimate the general changes
in the route choice patterns that the provision of information may introduce.
However, accounting for the adaptive behavior of drivers when presented with
information is important in the search for further realism, and crucial for the

evaluation of some congestion management and traffic operation strategies.

3.1.2.2 Dynamic route guidance

Dynamic route guidance strategies have been studied from many different
perspectives, which Pavlis and Papageorgiou [1999] classify into iterative
strategies and feedback strategies. The fist group includes those models
which consider the impact of the guidance action on the experienced travel
times and perform iterations until “equilibrium” flows are found, according
to some pre-specified control objective. These methodologies, which often
seek to attain dynamic traffic assignment optimality conditions, are typically
more demanding from a computational perspective (Papageorgiou [1990],
Papageorgiou and Messmer [1991], Charbonnier et al. [1991], Messmer
and Papageorgiou [1994|, Mahamassani and Peeta [1994].).  Feedback
strategies provide recommendations based on instantaneous traffic conditions,
disregarding traffic dynamics and evolution. Strategies in both categories may
be approached as a control theory problem, given that ultimately they can be
represented by the corresponding split ratios at decision nodes (Papageorgiou
and Messmer [1991], Boyce et al. [1995], Friesz et al. [1989]). Schmitt and Jula
[2006] suggest additional classifications of these methodologies, distinguishing
between centralized and decentralized approaches, and deterministic and
stochastic models, among others.

Pavlis and Papageorgiou [1999] compare the performance of feedback and
iterative strategies utilizing a simple traffic model. Their experience suggests
that, even though iterative strategies are a more accurate representation of
reality, feedback strategies may produce comparable results under specific
conditions typically present in mesh networks. This is appealing because
feedback strategies are considerably easier to implement efficiently as a set

of decentralized control laws.

26



An example of an iterative strategy approach is the work by Boyce et al.
[1995|, who apply optimal control theory to model the optimality conditions
of the dynamic user-optimum assignment problem. They arrive at a discrete
non linear program formulation, which may be solved at each node based
on instantaneous information. A variation of Frank-Wolfe’s (Frank and Wolfe
[1956]) algorithm for time-expanded networks is implemented towards this end.
Kaufman et al. [1998] approach a similar problem from the system optimum
perspective, and solve it as a mixed integer program on a time expanded
network.

Feedback strategies are often reduced to the solution of a re-optimization
problem at each decision node. Appendix B discusses some efficient algorithms
designed to re-optimize shortest paths after link costs are updated. Fu [2001]
presents an approach to re optimize the online shortest path, which they
implement using dynamic programming. The label correcting algorithm they
present is shown to perform no worse than the version typically used to
compute shortest paths.

The study of dynamic route guidance strategies is an active area of research,
given its practical applications and the role that the corresponding models play

in understanding the aggregated behavior of networks under uncertainty.

3.2 Evaluating the system-level impacts of

information utilization

Preliminary attempts to evaluate the effects of real-time information provision
on transportation networks focused on analyzing the potential benefits and
disadvantages of such strategy from a somewhat qualitative perspective.
Fujii and Kitamura [2000] conduct a survey to analyze the impact of traffic
information on the decision making process of drivers using a specific
freeway, subject to closures. They study whether or not driver’s estimation
of route travel time, typically based on their previous experience, may be

altered by providing information. Their results do not exhibit any statistically
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significant trend. However, Srinivasan and Mahamassani [2002|’s findings
suggest that real-time data provision has a strong impact on drivers route and
departure time choice under changing traffic conditions using an interactive
traffic simulator. Kitamura and Nakayama [2007| analyze the same subject
from a theoretical perspective, modeling it as a minority game. Their findings
suggest that the provision of information, even when accurate, can not affect
the system behavior in the long term. According to the model proposed in
this work, drivers always re-organize themselves in identical ways, reaching the
same equilibrium point regardless of the availability of predictive information.

Yoshii and Kuwahara [2000| analyze the possibility introducing negative
system-level impacts, such as increased delays or travel times, by providing
information along a major arterial street. His results, which are consistent
with previous findings by Moritsu [1991], indicate that such impacts are
possible, particularly in underutilized networks. Similarly, research analyzing
the provision of in-vehicle guidance information (Mahmassani and Chen
[1991], Oh and Jayakrishnan [2002|, Watling and Van Vuren [1993], Arnott
[1991]) suggests that the system performance may deteriorate for market-
penetration levels higher than 20%-40% are achieved, due to overreaction
and concentration effects. Ben-Akiva et al. [1991] classify and analyze both,
positive and negative impacts of information, and proposes an analytical
demand and route choice model for their analysis.

The advent of route-guidance systems motivated the development and
implementation of complex models, capable of providing rigorous performance
measures. These models (Figure 3.2) have been used to understand the
conditions under which adaptive route guidance is beneficial, and to identify
the potential negative impacts of information provision on the system
performance.

The models used to evaluate the impacts of information in transportation
networks fall within two main categories: Simulation methodologies and
equilibrium models.

Simulation models are appealing given their flexibility. They allow

the incorporation of complex assumptions regarding driver’s reaction to
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Figure 3.2: Approaches to modeling and evaluating system-level information
impacts

information and information distribution schemes. They are adequate to
capture “reactive” behavior, reflecting the changes in local conditions which
result from the provision of information under a specific incident, or as a
response to a traffic management technique. However, simulation is not
capable of modeling the system-level changes introduced by the consistent
provision of information to drivers, which are likely to involve route changes.

Equilibrium approaches aim to provide analytical expressions
describing the aggregated behavior of a system in which drivers behave
according to the models presented in 3.1.2. This approach provides an
ideal framework for the study of system level information impacts, because
it is able to capture the reaction of drivers to both, information and the
behavior of other system users. However, the existence and uniqueness of
an equilibrium solution under the adaptive behavior described earlier is not
necessarily guaranteed under general conditions. Unnikrishnan [2008] uses
a variational inequality approach to prove the existence and uniqueness of
an equilibrium solution in stochastic networks with random capacities, in
which drivers learn the cost probability distribution of a link when they reach
its origin node. Marcotte et al. [2004] extends an equilibrium formulation
originally developed for transit networks with hard capacities to the case of
traffic assignment on static networks. Using a shortest hyper path approach
and variational inequalities, this work proves the existence of an equilibrium
solution and provides solution algorithms. Hamdouch et al. [2004] present the

dynamic version of the problem. Gao [2005] suggests a policy-based dynamic
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traffic equilibrium approach, but does not provide analytical expressions.

Even though equilibrium with recourse models have not been deployed
in large networks, they provide an appealing, theoretically sound approach
to the assignment problem under uncertainty, which may be used to better
understand the behavior of networks under information.

Dynamic Traffic Assignment Models incorporate the time dimension
within the user-equilibrium (or system optimum) assignment paradigm,
seeking for a more realistic description of the day-to-day network behavior
(Peeta and Ziliaskopoulos [2002], Merchant and Nemhauser [1978|, Friesz
et al. [1989], Ho [1980]|, Jayakrishnan et al. [1994]). These formulations require
attaining the corresponding optimality conditions at every time instant. Most
implementations are simulation-based, and the existence of an equilibrium
solution has not been analytically proved. However, DTA provides a versatile
and coherent framework, capable of capturing the system-level impacts of a
multitude of traffic management strategies. The availability of several DTA
software packages has motivated its increased utilization by researchers and
practitioners.

Yoshii [1996] uses simulation to study the impacts of real time traffic
guidance based on instantaneous and predicted information, finding positive
effects in terms of congestion reduction for a range of information accuracy,
which increased along with the percentage of guided vehicles. Yang and
Koutsopoulos [1996] implement microsimulation to assess of the impacts of
route guidance, arriving at similar conclusions.

Mahmassani and Jayakrishnan [1991] utilize DTA to analyze the effects of
real-time in vehicle information provision, finding that the largest benefits for
the system occur if vehicles changed their a priori routes only in the face of
gains larger than 20%.

Yang et al. [2003] analyze optimal information provision strategies
using a bi-level mathematical program, which in the first level models the
optimization criteria corresponding to different players, such as private
information provides, network managers, and system users. In the second

level a Dynamic Traffic Assignment simulation is conducted to measure

30



the impacts of the strategies specified in the upper level. The model is
implemented to the analysis of the impacts of optimal market penetration
levels, information acquisition costs, and information reliability on a small
network. The results suggest that, under congested situations, the provision
of information is desirable has beneficial system impacts.

L.Engelson [2000] studies the impact of coordinating information from
different sources on the network performance. The model presented in this
work simulates driver’s reaction to different sources of information, including
in-vehicle guidance systems, radio messages, and variable message signs. In
the context of their study, information coordination occurs when the route
recommendations based on a particular source of information is made taking
into account driver’s reaction to other information source/s. Assuming a user-
equilibrium type of behavior, they analyzed the total system travel time for
different coordination levels among information sources, finding beneficial but
relatively low impacts on small, uncongested networks. However, the measured
impacts became more noticeable for increasing travel demand and market
penetration levels of the route-guidance system.

DTA models provide a very powerful tool to analyze a number of traffic
management strategies, as well as the expected behavior of the network under
a variety of conditions. However, the corresponding formulations are less
transparent, which makes them less appealing as a tool to analyze theoretical

advantages and properties of novel approaches to the utilization of information.

3.3 Optimizing information collection and

distribution

The collection and distribution of information conditions its availability, and
thus its utilization and the corresponding impacts on the system performance.
Most of the research efforts in the field of information collection are focused on
improving the capability of system managers and operators to measure system

parameters and monitor its performance. Active areas of research include the
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prediction of travel time based on sensor speed measurements or vehicle counts
(e.g Ruiz Juri et al. [2007], Foo et al. [2006]), and the estimation of origin-
destination demand based on sensor counts (e.g. Bianco et al. [2001], A.Ehlert
et al. |2006], Fei et al. [2007]). These works are very valuable, and provide the
basis to generate good knowledge base for the planning, management and
operation of networks.

The collection of information from static sensors, as well as the utilization
of wireless location technologies to generate traffic data from probe vehicles
of different types are analyzed in Sections 4.1 and 6.1, respectively. Existing
methodologies to collect information utilizing fixed and mobile sensors have
been typically focused on monitoring the system state, and rarely optimized
based on their impact on system performance. The approach proposed int this
dissertation for the deployment of sensors explicitly considers the utilization
of information for routing purposes, which has the potential to improve the
performance of assignment problems in a number of specific applications.
Furthermore, the information-based system optimum approach presented in
this work provides insights into the design of probe deployment strategies,
which has not been studied in the context of transportation problems.

The distribution of information may be accomplished in multiple ways,
ranging from general radio broadcasts to the provision of specific route
recommendations by in-vehicle route guidance systems or Dynamic Message
Signs, discussed in the previous section. Few of the existing models analyze
the impact of the location of the DMS on the system performance under
information, which would be of great interest.

The reminder of this section discusses an alternative approach to generating
and distributing information, given by the zero-infrastructure paradigm, which
aims to generate and propagate traffic data by taking advantage of vehicle-
to-vehicle communication capabilities. Research efforts in this emerging
field depart from the assumption that vehicles can communicate information
they collect on their paths to other vehicles when their paths cross. Vehicles
may exchange information with peers traveling in the same direction or on

the opposite lane, and they may re-broadcast the information they receive.
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The later is denoted relay communication, and although slower than direct
communication, is effective even at low traffic densities (Ziliaskopoulos and
Zhang |[2003|). A number of practical implementation issues, involving
hardware and software design, and information transmission protocols, pose
considerable challenges to the implementation of the vehicle -to-vehicle vision.
Crucial in an effective implementation of this paradigm are the level of market
penetration of equipped vehicles and the range of the wireless communication
capabilities, which combined with the prevalent traffic density define how fast
and far information can travel. Other important problem variables parameters
are the maximum number of vehicles which may communicate simultaneously,
the frequency of the information broadcasts, and the time period during which
the information is stored and broadcasted. Shladover et al. [2007] conduct a
simulation study to analyze the impact of market penetration, traffic density
and wireless range on the speed at which messages are propagated. They
conclude that low market penetration levels may lead to very slow message
propagation speeds, which may discourage the usage of the system at its
initial stages. Yang and Recker [2005| use microsimulation to study the
propagation of incident data via vehicle-to-vehicle communications, and reach
similar conclusions. They suggest the integration of vehicle to vehicle systems
with vehicle to infrastructure communication in order to attain larger benefits.
They also remark the importance of developing methodologies which vehicles
can utilize to estimate the system state based on distributed data. The later
is of the utmost importance, and may be challenging, given that the system
performance under vehicle-to-vehicle information propagation may differ
considerably from the traditional equilibrium assumptions (Ziliaskopoulos
and Zhang |2003]) . Jin and Recker [2006] propose an analytical stochastic
model to study the probability that a message is propagated further than
a given threshold. Their analysis of various scenarios, including incidents,
suggests that 7 kilometers is the maximum distance a message may travel.
The later is consistent with the results from simulation studies conducted
by Yang [2003]. Jerbi et al. [2007]| analyze the estimation of traffic densities
based on the data propagated by vehicles, and introduce a methodology
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which leads to fast and accurate estimations of the desired parameters. Wang
[2007] proposes closed formulations for estimating the expected value and
variance of the propagation distance using the relay methodology, assuming
that equipped vehicles arrive into a freeway segment according to a Poisson
process.

The vehicle-to-vehicles information propagation approach is of the utmost
interest, and while the technology is still under development, it is crucial to
develop routing procedures able to take advantage of the information captured

in this novel way.

3.4 Summary

The availability of new sources of real-time information invites to think about
traditional transportation and network problems from new perspectives.
In order to develop and evaluate innovative methodologies, it is crucial to
understand the impacts of information at the individual and system level.
The review conducted in this section summarizes existing approaches to
modeling the utilization of information by drivers and the corresponding
effects on the transportation network.

At the individual level, the literature provides models capable of reflecting
the use of self-collected and system-level information. The fist type of
methodologies captures the adaptive behavior of drivers in the face of the
different cost realizations they may observe in a stochastic network. The
proposed modeling frameworks and solution techniques, including dynamic
programming and heuristic approaches, constitute flexible frameworks within
which new information provision strategies may be incorporated and analyzed.

The development of models of the optimal individual response to system-
level information was mainly motivated by the advent of route-guidance
systems. Even though these models provide routes at the individual level,
they reflect a decision made based on the system state, and present an
opportunity to incorporate system-optimality considerations in the route

choice process. Among the existing approaches, the control-theory-based
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implementations of iterative models are a promising approach to produce
theoretically sound and deployable solutions.

The system-level impacts of information are basically a consequence of
the changes that the data availability introduce into the routing decisions of
drivers. The most accurate models in the literature build on the methodologies
used to describe the individual level behavior, and can be classified in to
deterministic and stochastic. Dynamic Traffic Assignment (DTA) models
incorporate the time dimension into the concept of user equilibrium (or system
optimum), implementing time-dependant shortest path algorithms in the route
choice process. These models are a very powerful tool to analyze a number of
traffic management strategies, as well as the expected behavior of the network
under a variety of conditions. However, the corresponding formulations are
not transparent, particularly given the use of simulation. This makes them
less appealing as a tool to analyze theoretical advantages and properties of
novel approaches to the utilization of information.

Stochastic equilibrium models are based on the concept of adaptive
behavior (recourse), and lead to formulations in which the existence and
uniqueness of an equilibrium solution may be proved. Even though these
methods have not been deployed in large networks, they provide an appealing
theoretically sound approach to the analyzed problem, which may be used
to better understand the behavior of networks under information. The
paradigm of information-based system optimum assignment presented in this
dissertation is inspired by models of equilibrium with recourse. However, the
explicit consideration of the information collected by assets as they travel
through the network leads to fundamentally new formulations.

Finally, the review of existing works in the area of information collection
and distribution suggests that major contributions are still possible in
that field, particularly if new paradigms for the utilization of information
are designed. The models discussed above provide an ideal framework to
study optimal information collection and distribution strategies for routing
purposes, which has not been accomplished before in the literature. The

optimal sensor deployment models presented in this dissertation provide an
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initial approach to such problem.
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Chapter 4

Deployment of Static Sensors for
the Support of Adaptive
System-Optimum Routing

Strategies: Framework

Information is one of the most powerful tools available to mitigate the
negative impacts of uncertainty on transportation networks and other
stochastic systems. It may be used to enhance the utilization of existing
infrastructure, alleviate congestion, and improve safety. Furthermore, the
combined consideration of uncertainty and information in decision-support
models is critical to generate efficient and robust solutions.

From a decision-making perspective, the value of information highly
depends on what information is available (based on spatial and temporal
considerations), and how it is utilized. This chapter considers the
implementation of information to the support of adaptive system-optimum
routing decisions, and focuses on identifying optimal data collection strategies
towards this end.

In the context of stochastic networks, adaptive system optimum assignment
decisions are such that they may be adjusted based on observed network states.

Chapter 3 discussed how the concept of adaptive routing has been implemented
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in the literature to develop route-guidance strategies based on system-level
information. Most of the analyzed efforts are centered on the utilization of
information to improve the system behavior, but disregarded the effect of the
spatio-temporal characteristics of the data on the quality of the solutions.
Conversely, models which focus on the collection of data, reviewed in Section
4.1, rarely consider the utilization of information for routing purposes.

This chapter proposes a model to design data collection paradigm which
optimizes the performance of adaptive SO assignment strategies. The
approach identifies the links of a network with stochastic arc costs on which
sensors should be placed in order to minimize the system expected cost
under information. The direct impact of monitoring a link is modeled as
the resolution of the corresponding cost uncertainty, in virtue of which a set
of perceived network states may be generated. For each of these states it is
possible to find the optimal SO assignment solution, consisting of the set of
paths on which the system’s assets are routed. The solution to the optimal
sensor deployment problem specifies sensors location along with an hyperpath
describing the optimal SO solution under every perceived state. The proposed
models have multiple potential applications, including the routing of special
assets, such as emergency response vehicles, or the design of route guidance
strategies under extreme circumstances (e.g. an evacuation procedure) in
which drivers may be compelled to take routes which do not necessarily
maximize their own benefit. Furthermore, the models introduced here may be
applied to the optimization of networks representing other systems susceptible
to a cooperative behavior.

The optimal sensor deployment model is formulated in Section 4.2. Section
4.3 discusses the expressions for the marginal value of information derived
from the proposed formulation, and Section 4.4 analyzes other interesting
model properties. These suggest that the novel models are able to capture
the non linear impacts of information on the system performance, and
contribute to an improved understanding of the problem characteristics.
In view of the combinatorial nature of the proposed formulations, their

solution poses considerable challenges. Section 4.5 discusses several possible
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solution approaches and briefly introduces the methodology adopted for this

application, which is presented in detail in Chapter 5.

4.1 Optimal sensor deployment on stochastic

networks: a literature review

For transportation applications, the study of optimal sensor placement
strategies has been traditionally focused on improving the system-monitoring
capability for purposes such as the estimation of origin-destination trip
matrices (Teodorovic et al. [2002], Ran et al. [2006]) or the collection of
Intelligent Transportation Systems (ITS) data (e.g. Sherali et al. [2006]).
This section discusses some of the existing approaches to the optimization of
static traffic sensor location, while Section 6.1 is concerned with the dynamic
collection of such data utilizing appropriately equipped vehicles as probes.

Most of the works reviewed in this section aim to optimize the deployment
of sensors in order to better monitor/predict a system parameter, such as
the OD trip table, or a performance-related measure, such as system travel
time. Modeling the impacts of information on the quality of the measures
or predictions may be complex, and model formulations typically adopt a
simplified approach, approximating the desired parameter by measures of
spatial coverage (Teodorovic et al. [2002]), captured traffic volumes (Sherali
et al. [2006], Bianco et al. [2001]), variability of the measured links, or a
combination of the former. Very few works take a step further to analyze
the impacts of the improved monitoring/prediction capabilities on the system
performance.

Thomas [1999] studies the impact of different sensor location strategies in
the accuracy of travel time predictions on arterial streets using CORSIM,
an established micro simulator. Properties such as link travel time and
speed are inferred using simple regression models based on a single detector
reading. The approach simulates traffic and compares the model fit for

different positions of a sensor within a link. This work extends the research
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by Sisiopiku et al. [1994], focused on finding correlations between various
detector readings and link performance measures.

Ruiz Juri et al. [2007| propose a statistical/simulation-based approach
to evaluate the effect of sensor location on travel time prediction accuracy.
This work explicitly models the impact of specific sensor configurations on
the accuracy of the travel time predictions obtained through a methodology
that uses cell-transmission based simulation to propagate the traffic counts
measured (and predicted) at freeway entry points.

Sherali et al. [2006] analyze the location of Automatic Vehicle Identification
(AVI) readers in order to improve travel time predictions. Similarly to Yang
and Miller-Hooks [2002], they consider that the benefits derived from placing
a sensor on a particular link are a function of the demand and travel time
variability affecting all the OD pairs which utilize that link. They assume that
each OD pair is connected by a single route, and assign link-dependent AVI
reader installation costs. They formulate the problem as a discrete quadratic
program, which maximizes the benefits of information, constrained by the
maximum number of available readers and a monetary budget. Their exact
solution methodology is based on a reformulation-linearization technique,
previously introduced in Sherali and Adams [1990], and the incorporation of
semi definite cuts, as described in Sherali and Fraticelli [2002].

Bianco et al. [2001] propose a heuristic model to study optimal traffic sensor
placement for link flow estimation. The approach minimizes the number of
sensors necessary to identify the flows on every link, assuming that the turning
percentages at network nodes are exogenously provided. The ultimate goal of
this work is the improvement of OD matrix estimations, and the authors
prove that their methodology leads to bounded estimation errors.

For a similar purpose, Ran et al. [2006] introduce a bi-level model which
first deploys sensors on the arcs more likely to capture changes in the demand
pattern. The remaining detectors are deployed seeking to maximize spatial
coverage. The approach implicitly assumes that measuring those links which
flows are more responsive to demand changes leads to more accurate OD

matrices estimation.
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Teodorovic et al. [2002] study the optimal location of AVI detectors for OD
matrix estimation. The genetic algorithm approach proposed in this effort
maximizes a function combining OD coverage and the total number of AVI
readings.

Yang and Miller-Hooks [2002] introduce a model to locate sensors in a
stochastic time-varying network in such way that the benefits of information
are maximized. The benefits of information are measured in terms of the
number of users for which the travel time uncertainty is reduced, which
is approximated by the product of traffic low and travel time variance on
every link. The problem is formulated as a dependent maximum set covering
problem, which the authors prove to be NP hard. The dependency is a
consequence of explicitly consideration the indirect benefits experienced by
drivers using links adjacent to those which are measured. The methodology
is implemented using a heuristic approach, and used to find optimal sensor
locations on a stochastic, time-varying version of Texas highway network.
The authors test the system performance under the information provided
by optimally located sensors using an adaptive routing algorithm, described
in Miller-Hooks and Mahmassani [2000], Miller-Hooks [2001]. The adaptive
routing strategies generated by the algorithm were optimal in most cases,
even when a fairly low percentage (30%) of the most-likely used links was
instrumented.

The presented review suggests that most of the existing research efforts
dealing with optimal sensor placement focus on improving system-monitoring
capability. Yang and Miller-Hooks [2002| propose one of the few approaches
considering the impact of sensors location on the system performance.
However, their methodology optimizes an approximate measure of the
benefits of information, rather than modeling the impacts of information on
routing behavior. The approach introduced in this chapter explicitly models
adaptive routing behavior based on information corresponding to specific
network links, thus capturing the complex relationship between sensors
location and system performance. The novel model has the potential to

improve our understanding of the nature of information impacts, leading to
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more efficient information distribution and utilization schemes.

4.2 Problem formulation

The problem discussed in this section finds the deployment of K sensors on a
network with stochastic arc costs such that the cost of performing an adaptive
system-optimum assignment of v assets is minimized. Sensors capture the
cost realization on the links they measure, generating a set of “perceived”
network states. The System Optimum (SO) assignment solutions are
adjusted for each of these states, thus reducing the total system expected cost
faced by the system assets with respect to a no-information scenario. The
problem solution consists of the set of links on which sensors are deployed,
and a hyperpath describing the SO solution under each perceived network
state.

Link costs are defined by discrete probability distributions, and they
are assumed to be independent of the corresponding flows. If a link is not
monitored by a sensor, it is assigned a deterministic cost equal to the expected
cost of the corresponding probability distribution. The effect of placing a
sensor on a specific link is modeled as a change in the corresponding cost
under possible state. Each possible combination of observed states across
monitored links generates a “perceived” network state, under which the cost
on some links remain uncertain.

The problem lends itself to be formulated as a two level stochastic program,
which first level represents the sensor deployment decision, performed under
uncertainty. The second level models the optimal routing of the v assets,
given the perceived network state measured by the sensors, which information
partially resolves the system uncertainty. Given the absence of restrictions on
link capacities, and in virtue of the assumed linear cost structure, the optimal
route for all system assets under every perceived state is equivalent to the
corresponding shortest path. The later, in combination with the fact that the
sensor deployment cost is neglected, allows to solve the second level program

assuming v = 1.
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Consider a network G(N, A), where N and A represent the sets of nodes
and arcs, respectively. Define |A| =m, |[N| =n, and let ij s.t. i, j € N, i # j
be the links in A, characterized by an infinite capacity and random weights ¢;;.
Assume that the latter are independent of the corresponding link flows, and
that they follow a discrete probability distribution consisting of a finite number
of states s;; € S;;, with probability of occurrence p : Zsesﬁ ps =1V 15 € A
For notational simplicity, the subscript in s;;will be suppressed whenever it can
be inferred from the context. Let r > |Sy| Ykl € A represent the maximum
number of states observed across all links. Define ¢j;the cost realization
corresponding to state s € S;;, and denote p;; = > ps - c;; the expected
cost of a link ij € A. Network states are a result of the corresponding link

states, and are represented using m — dimensional vectors, w € W. Let
w
&
¢;; the corresponding link cost. Under the assumption of independent and

s;; be the state on link ¢j corresponding to network state w, and ¢j =
uncorrelated link cost functions, the probability of a network state can be
computed as py = HijeA Psy- Notice that under the previous assumption, the
cardinality of W is|W| =[]

Equations 4.4 to 4.7 present Formulation #1, which is a bi-level

iica |5i;], and it grows exponentially with m.

stochastic program. First and second stage decision variables are binary, and
they represent, the placement of sensors on a link (z;;) and the use of a link

by an asset (y;;), respectively.
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mxz'nE[f(x, c)] (4.1)
Sy - K (4.2)

ijeA
FO6€) =Dy (G- iy + iy - (1= ) (4.4)
ijeA
ijeEA Ji€A
Ykl € {0, 1} (4.6)

—1 if j is the destination
=141 if j is the destination (4.7)
0 otherwise

The second level objective function (4.4) represents the summation of the
costs paid by the vehicles along the path defined by y;;, which is equal to
the cost realization in those links equipped with sensors, and to the link
expected cost for the remaining links. Equation 4.5 is the flow conservation
constraint, which forces the y;;variables to lay on a path connecting an origin
and destination. The number of sensors to be placed is fixed by equation 4.2,
which will be referred to as the cardinality constraint. Notice that if K = 0,
x;; = 0Vij € A, and the problem reduces to a shortest path computation on a
network with links cost equal to p;;. This reflects the fact that, in the absence
of further information, the optimal routing strategy is to assign all vehicles to
the least-expected cost path. We denote such path £°, and its corresponding
cost p°.

The former formulation can be collapsed into a single level program , with
an objective given by equation 4.8, and subject to cardinality constraints

(4.2), integrality constraints (4.3, 4.6) and flow conservation constraints
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D oien Y T 2 ien Y = b Vj, w. An additional super index is introduced for

flow variables, to distinguish them across network states.

min Y pw- Yyl (6 4 ey - (1 2i7) (4.8)

wEW ijeA

Notice that the objective function is non linear and integer, and that the
number of flow conservation constraints is n X v, which grows exponentially
with m. The one-level program may be regarded as a pseudo-boolean problem.
In the general case, such problems belong to the NP-hard set, and therefore
are not likely to be polynomially solvable Boros and Hammer [2002]. For a
rigorous definition of the NP-hard set the reader may refer to Ahuja et al.
[1993] and Korte and Vygen [2000].

Equations 4.9 to 4.14 introduce Formulation #2, which is based on the
definition of perceived network states, and presented for the special case of
z = 1. It exploits the fact that, form a decision making perspective, only
the states at the links equipped with sensors are relevant, which reduces the
number of states and variables to be considered. This formulation provides

the basis for the solution methodology presented later.

ijeA
Z zi; =1 (4.10)
ijeA
zi; € {0, 1} (4.11)
fij(€) = m}ﬂn(yfﬁ et Y Y i) (4.12)
Y klEA kl#ij
ij i .
ZykﬁrZylk—szeN, ij €A (4.13)
kleA lkeA
yi € {01} (4.14)

The second level objective function in this context is computed for each

possible state of every link ¢j € A, demanding for an increased number of
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second level variables. The new super-index indicates the sensor providing the
information based on which the variable is evaluated.
Similarly to the previous case, the formulation can be collapsed into the

single level program presented in equations 4.15 to 4.18.

min Z Z Ds - yfjs et Z y;g]l * Mkl (4.15)

ijEA sES;; ElC A kl£ik
D wy=1 (4.16)
ijeA
- 5 = by -a; VIE N, ij € A, s €Sy
Z Yl Z Yik 1 Tij b ; ij (4.17)
kleA lkeA
zij, v € {0,1}VIE N, ij € A, s € Sy (4.18)

For the deployment of a single sensor, the total number of variables and
equations in this problem is n x m x r, smaller than n x r™ for all values of 1 <
r < m. However, the number of variables grows rapidly for an arbitrary value
of z. In effect, the consideration of multiple sensors demands to enumerate

all the possible ways in which their locations can be selected, as given by the

m/!
zl(m—2z)!"

For the case of multiple sensors, the formulation retains the same structure.

number of combinations of z elements out of m, C?, =

Denote € € © each possible combination of z elements out of m, and let
52j be the link-combination incidence coefficient, equal to one if link 5 is in
combination ¢, and to zero otherwise. Equation 4.19 presents the objective
function for such formulation, which is subject to the same constraints as the
previous one if the first level decision variables x;; are replaced with xy. Each

state s € Sy is a combination of the state observed at links ij € 6.

minz Z Z yfgs - (¢ -5? + pua - (1 — 5;?)) (4.19)

0€0 s€SpijeA

The formulations presented in this section correspond to very large integer
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programs. Section 4.5.1 discusses possible approaches for their efficient
solution. These models are useful to understand the problem structure and

properties, which are analyzed in the following sections.

4.3 The marginal value of information

Using finite differences on equation 4.8, one may analyze the marginal impact

of information on the system performance according to equation 4.20.

Rew Azy vl )+ 2 yw (xkz) T A

(4.20)

ijeA

The later represents a combination of well known derivation rules (product
rule and chain rule), which takes into account that y)y (the optimal regular
asset assignment for a given information set) is a function of the sensor
deployment strategy xp;. The marginal cost, given by Equations 4.21 and
4.22, defines the change in the objective function obtained by placing a sensor

on link &/, assuming that the link was previously unmeasured.

Af(x Ayw
— Pw - y cpy Pw - j
AIM Z Kl Cr v;w WXE; AIM g
Ayz Ay
+ D b L puij = pr' iy
weW ijEA
Ay w (W
- Z Pw - A:E] Hij - ?j (vt - (i — ) (4.21)
weW
Af(x w oW Ay
AIM V;pr (ykl (k= twr) + Aty Hij
Ay} w 0 0
+ Z DPw - Z N (Cij g+ (1 — 5%)) (4.22)
wew ikl ok
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The first two terms in equation 4.22 represents the impact directly related
to the utilization of the link under analysis (local-level impacts of information),
if it occurs. The second term captures the impacts resulting from changes
in the routing strategy given the new available information (network-level

2

. . . AyY .
impacts of information). v implicitly represent these changes, and are equal

to zero if the new routing strategy does not affect y;7, to 1 for those links which
are incorporated to the optimal path under w after placing a sensor in z;;, and
to -1 if link 47 is removed from the optimal solution given the new information
set. The variables x?j represent the value of x;; before the incorporation of a
sensor on kl. We assume that at most one sensor may be placed at each link,
and therefore ¥, = 0.

Notice that the local-level impacts of information may fall within three

different categories:

e Measuring impact (¢} — ug): This type of impact is achieved when link
kl was part of the optimal routing strategy under state w before being
monitored, and remains in the corresponding shortest path given the new
available information (yy=1 and %:0). It reflects an actual change

in the expected costs given the new information.

e Incorporation impact ¢jj: This impact is attained when link kl enters

the optimal solution under w only after it is assigned a sensor (yy—1
AyY . .
and Ai:lzl). It simply represents the costs paid by the system assets

for utilizing the link.

e Removal impact —puy;: This impact is a measure of the change in the

system cost produce by removing link &/ from the optimal solution under
Ay¥: .

Aol —1). It is

actually a reflection of the change in the routing strategy brought about

w after placing a new sensor on such link (y}—0 and

by the newly available information.

Using the former definitions, and given the fact that y;} is optimally chosen,

we may prove that equation 4.23is always true, and therefore the marginal
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impact of information is always negative (or zero), meaning that it leads to a

reduction of the system expected cost.

Af(xr, ypy(xm))
< 4.2
Al’kl =0 ( 3)

Proof: Let L,"* be the shortest path under state w before placing a

sensor on link kl, and consider two cases for such link: kl € L_** (Case I) and
kl ¢ L+ (Case IT) .

For Case I, notice first that for all states w € W~ where W ™is the set
of states such that ¢} < p;;, the optimal routing strategy will not change as
a consequence of the new information (the reader may refer to Section 5.1.3.1

5 = (¥ij € W, which implies that the
network-level impacts of information are null, while the local-level impacts,

for a proof of this fact). As a result

cy — e < 0, are negative.

For the remaining states ¢j; > p;;, and the new routing strategy Lizw
may be different from the original one. However, in virtue of the optimality
conditions of a shortest path (Ahuja et al. [1993]), Equation 4.24 must hold
for every w € W.

S oy w (=) =Yyl (e @y (L= ) (4.24)

ijE€Ly k! ijELgM

The left hand size of Equation 4.24 represents the cost on L ", which is a
feasible path, and therefore must be greater or equal that the cost along L{®x.
The elements which are common to both paths may be removed from 4.24, in
such way that the left hand side represents the cost of the links removed from

the optimal solution, and the right hand side contains the cost of the links

. . . . . . Ay¥
incorporated to the optimal solution. Notice that in Equation 4.22, Azfl = -1
. . . Ay¥ . .

for the links in the left hand side, Az;ﬂl = 1 for the links on the right hand
. Ay¥ . . .

side, and Az” = 0 for the remaining links. As a consequence, Equation 4.24

Kl Ay

is reduced t0 pw + 3 i ag + (€ - @iy + pig(1 —x5)) < 0 for w € W, and
therefore 2f@uvii@)

A:vkl

49



For Case 2, a similar approach is applicable. In this instance, kl does
not belong to L**, and the optimal routing strategy remains unchanged for

Ay¥
, —Ai” = 0, and the local and
kl

network-level impacts of information are zero. For states w € W, the same

states w € WT. Under such conditions yy = 0

. . . AyW
reasoning described above leads to the conclusion that py, - ZMGA Azfl (e
zij + pij(1 — z5)) < 0, which implies M%EW < 0 under Case II and

completes the proof.
The marginal costs described in this section suggest that the benefits of

information are accrued when it is possible to take advantage of the fact that
w
ij
occurrence, or in states exhibiting significant gains ¢j; — ;5. The feasibility

c¥ < p in a large number of states, in states with a higher probability of
of utilizing the measured links under such conditions depends on the network
topology and on the realized /expected cost on the remaining links.

Notice that the computation of the marginal value of information implicitly
involves calculating properties of shortest paths on random networks, such as
the probability of a link belonging to the shortest path. These properties are
very hard to compute, which suggests that the exact solution of the models
formulated here cannot be obtained efficiently. Alexopoulous (Alexopoulos
[1997|) proves that the evaluation of several of the properties implicitly
involved in a marginal cost computation is an #P Hard problem, the
equivalent of a NP hard problem for counting problems. Appendix C provides

some additional information on this topic.

4.4 Problem properties

This section discusses the problem properties, derived from its mathematical
formulation or based on the results of numerical experiments. They illustrate
interesting behaviors, which reflect the non-linear impacts of information

provision on the system performance.

e The expected cost under information is always smaller or equal than the

a-priory expected cost, regardless of the actual cost realizations measured
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by the sensors. This is a direct consequence of Equation 4.23, proved in
the previous section, in view of which the value of information is always

non positive.

o Let E[f*(K)| = f} denote the value of an optimal deployment strategy
assigning z sensors to the network. Then fr > fuerf, Where fyep is
the value of the objective function under perfect information. The later
defines the case where the decision maker is aware of the state of the
entire network a-priory, and is able to make the optimal decision under
any network state. Notice that computing such value may require the

enumeration of an exponential number of states.

Proof: The availability of perfect information can be visualized as the
deployment of sensors in all network links, including the z optimal links under

f¥. Given that the marginal value of information is non-positive (Equation
423)7 fperf S s S f,:+2 S f,:—i-l S .f;

e Let 0, and 6., be the optimal sets of monitored links when z and z+ 1
assets are available, respectively. The relationship 6, C 6,,; does not
necessary hold. The following example illustrates this property, which

reflects the non-linear nature of the information impacts.

In Example Network I (Figure 4.1), the default shortest expected cost has
a value of 10 units. When a single sensor is deployed, the optimal solution has
a cost of 9.5 units, obtained by placing the corresponding detector on link a.
Placing the sensor in links b or ¢ would report no benefit to the system, given
that information from such links not reveal a path cost lower than 10 units
under any state. However, when two sensors are available, the simultaneous
monitoring of links b and ¢ may detect a path cost realization of only 6 units,
which has a 25% probability of occurrence. The former is actually the optimal
deployment strategy, leading to a system expected cost of 8.75 units. Any
strategy measuring either b or ¢ in combination with other link would not
be able to make use of its information, which is worthless if the state at the

complementary link remains unknown.

ol



2(0.5)

4(0.5)
w=J Monitored link for z=1
m=l) Monitored link for z=2

* Shortest Expected Cost Path

1 (0.5) | Cost & probability under specific state
IIl Link Name
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e The value of information is not strictly increasing, and it is possible to
find cases in which fz , = ff, but 3a>1: fr. < fk.

Example Network II (Figure 4.2) presents one of such instances. Similarly
to what we observed on the previous example, the information collected from
specific sets of links may be complementary, as a result of their relative location
and corresponding probability distributions. When this is the case, the benefits
of information collection may not be accrued unless all links in the set are
measured. In Figure 4.2, a single sensor is optimally located on link a, which
leads to a system expected cost under information of 11 units, smaller than
the default value of 12 units. An additional sensor placed on either of the
remaining links would not lead to any further benefits, given that the cost on
link d is always lower than the expected cost of b+c, provided that only one
of them is monitored. As a consequence, the new sensor would not be able to
unveil an alternative path cheaper than 16 units under any state. However, if
two additional sensors are available, the joint monitoring of links b and ¢ can
benefit the system, leading to an expected cost under information of 10.875

units.

e The value 0,02(ij) = Do ew- Pw * (€] — f1i7), where WTis the set of
states w such that ¢j < p;;, defines the maximum benefit which may
be accrued by collecting information from link ¢j5. This bound can be
attained only when the optimal routing solution under every network
state w € W utilizes link 77, and provided that the cost of the shortest
path connecting ¢« and j when no information is available is greater or
equal than p,;, and when the optimal solution under every state w € W~

uses link 77.

Proof: Consider two cases, Case I, under which ij € £° where £° is the
shortest path when no information is provided, and Case II, such that ij ¢ L£°.
Let F,_; and F;_; be the shortest paths connecting the origin to node 4, and
node j to the destination under state w, respectively. We denote L% the

shortest path under state w, and ¢¥(LY) the corresponding cost. The benefit
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of collecting information from link ij is given by Ap = Zwew(m A%p =
> wew(ij) € (LY) - Dw — p°, where W (ij) is the set of perceived states revealed
by a sensor placed on ij. Given that p° may be written as Zwew(ij) PP P, it
suffices to prove that ¢ (L%) —p® > ¢ff —pu;; V' w € W™ (ij). Notice that when
A% p > 0 information does not provide a benefit from the perspective of the
system expected cost, and therefore the corresponding state can be excluded
form the bound computation (which leads to a looser bound).

For Case 11, if 45 is part of the optimal solution under w, Equations 4.25

and 4.26 must hold as a consequence of the shortest path definition.

™ (Foi) + ¢+ (Foy) < (LY (4.25)

A(Fosi) + pij + (Foy) > p° (4.26)

Additionally, ¢"(L£%) = p° given that the only link on which the cost
changes is ij ¢ L, thus ¢V (F,_;) + ¢}f + ¥(Fomi) < p° < P(Fomi) + iy +
A(F,_;), which implies Ap > cr = Mij -

If i is not part of the optimal solution under w, £° = £ and A%p = 0.

For Case I, if ijis part of the optimal solution it is straightforward to see
that Ap = ¢} — pij. If ij is not in the optimal solution under w, A%p > 0
given that £V is some path which cost has not changed (it does not include
ij), and therefore ¢™(L%) > p¥. .

If multiple links are considered simultaneously, similar considerations lead
to the conclusion that kl € K, 0(K) = >_,,cic Omax (Kl) is a loose upper bound

on the potential benefits of information.

e There exists a value K* < m such that fi; = fi. = fperfV K > K*.
This value is a network property for any given origin-destination pair,
and provides a bound to the maximum value of information for the
corresponding case. In Example Network III (Figure 4.3 ) K* = 1, and
the minimum system expected cost under information is 6.5. Notice

that such value can be achieved by placing only one sensor on link
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a, or by monitoring links b and ¢ simultaneously. This illustrates
the importance of implementing appropriate models to optimally utilize
available resources. Additionally, the identification of the minimum
number of links that should be measured in order to attain f,.,; may

pose an interesting topic for further research.

4.5 Possible solution approaches

The formulations introduced in previous sections are integer, and therefore
combinatorial in nature. Furthermore, the integrality condition cannot be
relaxed for the deployment variable. Mathematically, the later is a consequence
of the properties of the constraint matrix, which is not totally unimodular.
Intuitively, it is easy to see that if the sensor assignment variable is allowed
to take fractional values, then an optimal solution would deploy a fraction of
a sensor on every network link, thus achieving benefits similar to those under
perfect information.

Mathematical programming techniques, discussed in Section 4.5.1, may be

applicable to the problem solution, even though they are likely to be effective
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for relatively small problem instances.

The methodology developed for the applications analyzed in this
dissertation is based on simpler network optimization concepts, ultimately
leading to a heuristic implementation. The approach is the flexible to
accommodate minor changes in the problem formulation, which may
involve a complete re-structuring from a mathematical programming
perspective. Additionally, the exact variant is directly linked to the heuristic
implementation, which is very convenient from a practical perspective.

The following sections discuss possible mathematical programming
approaches to the problem solution, and briefly introduce the methodology
adopted for the purpose of this work, which is described and analyzed in
Chapter 5.

4.5.1 Exact solution approach

A possible exact solution approach is to consider formulation given by
Equation 4.8 as a constrained 0-1 quadratic program. Adams and Sherali
(Adams and Sherali [1986]) analyze linearization methodologies to solve
similar problems, and Faye and Roupin (A.Faye and Roupin [2007]) introduce
a “convexification” procedure which transforms the objective function in order
to allow the efficient application of Lagrangian dual approaches.

Another promising way to address the optimal sensor deployment problem
solution is to regard it as an uncapacitated network design problem with
uncertain arc costs and budget constraints, and solve it by implementing
Benders decomposition. Section 4.5.1.2 briefly discusses such technique, while

Section 4.5.1.1 presents some basic concepts on stochastic network design.

4.5.1.1 Stochastic network design problems

The deterministic version of the network design problem involves choosing
the arcs to be included on a network among a pre-defined set of candidates,
in such way that a given origin-destination (OD) flow demand can be

satisfied at a minimum total cost. In the general case, such cost is composed
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by a fixed portion, representing the link installation costs, and a variable
portion which depends on the actual flow on each arc. The main problem
constraints guarantee flow conservation, in such way that the specified OD
demands are satisfied. Additional restrictions to the way in which network
arcs may be selected include topological considerations and maximum
budget constraints. Costa [2005] provide a fairly comprehensive summary of
deterministic network design problem variations, formulations and solution
approaches. The network design problem is NP-hard, and exact solution
methodologies, which have exponential worse case complexity, include Benders
decompositions, Lagrangean relaxation (e.g. Holmberg and Hellstrand [1998])
and dual ascent methods (e.g. Balakrishnan et al. [1989]). In many cases, the
exact methodologies are used as the basis for a heuristic approach, in order
to solve realistically sized networks.

Uncertainty is incorporated to network design problems searching for
more realistic models, at the cost of increasing the complexity of the problem
solution. In a stochastic context, the problem objective may be defined
from different perspectives, and while some authors propose models which
minimize the expected cost of the network design problem, others seek to
find “robust” solutions, which attain a minimum performance level under all
possible scenarios. Three possible types of uncertainty have been considered,
alone or combined, in the existing literature (Costa [2005]): uncertain
demands, capacities and arc costs. Not many papers in the literature deal
with uncertain arc costs, which is the problem more closely related to the
topic of this chapter. Among these, Gutierrez et al. [1996], apply Benders
decomposition to a fixed charge network design problem with uncertain
arc costs. Their objective is to find a solution such that the routing cost
doesn’t exceed a threshold value under any scenario. They use a multi-master
approach, solving separate master problems for each scenario. Additionally,
the authors limit the number of sub problems to be solved at each iteration
by carefully analyzing the dual values of each solution, and they add cuts to
all the master problems simultaneously.

Following a similar approach, the optimal sensor deployment problem
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discussed in this chapter may be formulated as an uncapacitated network
design problem with uncertain arc costs and budget constraints. In such
problem, two types of arcs may be installed between each pair of nodes:
one exhibiting fixed costs equal to the expected cost, and one with costs
described by a discrete probability distribution. The total number of arcs
with stochastic costs is limited by sensors availability, which translates into
a budget constraint, and only one type of arc may be installed between two
nodes. The solution of such formulation may be approached using Benders

decomposition, described in the next section.

4.5.1.2 Benders decomposition

Benders decomposition (Benders [1962]) is a mathematical programming
technique used to solve mixed integer problems more efficiently by exploiting
special characteristics of their structure. This methodology is appropriate
for problems which decompose into a number of simpler sub-problems for
fixed values of a subset of the decision variables. When applied to two-stage
stochastic programs the methodology is often called “L-shaped method”.
Consider a problem with a decomposable structure such as the one
presented by 4.27, where x are the continuous decision variables, y are
integer decision variables, ¢ and d are the corresponding cost coefficients, and

matrices A, B and D represent the problem constraints

min, ,cx + dy

Ax + By >b
Dy >e (4.27)
x>0 yinteger

For fixed values of y € Y, the problem can be expressed by equation 4.28

min, {dy + min, {cx: Az >b— By}} (4.28)
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The second term can be dualized and, given that it’s linear, added to the
objective function as displayed in equation 4.29. In this equations u are the
dual variables corresponding to the set of constraints Az > b — By, and Y is

the feasible space for y, as defined by the original constraints.

mingey {dy + max,>o {u(b — By) : uA < c}} (4.29)

The solution space of the sub problem, assumed to be nonempty, can be
represented in terms of its extreme directions, given by r%(b — By) < 0 Vg =
1,2,...Q). Similarly, the objective function can be expressed as a function of
the corresponding extreme points. The main disadvantage of the later that it
leads to a formulation with a very large number of constraints, given by all
the extreme directions of the solution space. Nevertheless, such formulation
lends itself for an iterative solution approach, in which the extreme directions
are added progressively by alternating between the solution of relatively easy
sub problems, which provide the dual variables, and a relaxed version of
the original problem. Notice that the procedure maintains dual feasibility
at all times, and provides the information to generate /update upper and lower
bounds for the optimal solution to the original problem which are used to
define convergence.

The ability to solve the sub problems efficiently is vital for a successful
application of Benders approach. Nevertheless, most of the computational
effort is typically devoted to the solution of the master problem (Magnanti
and Wong [1981]), particularly as the number of added constraints becomes
larger. Some existing approaches tackle this problem by reducing the number
of active constraints (typically called cuts) at each iteration (e.g. Marin and
Jaramillo [2008]), by carefully selecting the cuts to add in the search for tighter
bounds (e.g. Magnanti and Wong [1981]), and even by allowing a sub-optimal
solution to the master problem (e.g. Burkard and Bonniger |1983]).

Even though Benders decomposition may, in the worst case, involve solving
the full mathematical problem, it has been found to perform very efficiently for
particular types of problems, including network design (Geoffrion and Graves
[1974], Magnanti et al. [1986]). An additional advantage of this methodology
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is that the continuous provision of upper and lower bounds allows defining
sub-optimal termination criteria when appropriate.

Implementing Benders decomposition to the stochastic network-design
version of the problem considered in this chapter would involve the solution of
a sub-problem for each perceived network state at every iteration. Perceived
states are defined based on the sensor deployment strategy obtained from the
solution of the relaxed master problem, and the corresponding sub problem
is a shortest path problem, which provides the dual variables necessary to
incorporate new constraints (cuts) to the master problem. It is interesting to
notice that, form an implementation perspective, the methodology would not

be very different form the solution approach presented in Chapter 5.

4.5.2 Implemented heuristic solution approach

The solution methodology, described and implemented in chapter 5, is based
on the observation that the problem posed in 4.2 may be solved by complete
enumeration, computing the shortest path between origin and destination for
each possible network state. This would involve m x r computations for
the deployment of a single sensor, and a combinatorial number of operations

in the general case, where the set of possible strategies is given by C" =
!
(m—nn)!n!’

r?. Shortest path computations can be executed very efficiently, applying

and the number of shortest path computations is in the order of

various implementations of the well-known Dijkstra’s algorithm (Ahuja et al.
[1993]). Moreover, if we consider a single OD pair case, even faster algorithms,
such as A* (Klunder and Post [2006]) may be implemented. In medium size
network the number of computations required within a complete enumeration
framework easily reaches the order of billions. This limits the applicability
of the exact approach and motivates the methodologies developed in the
next chapter, which heuristically reduce the number of strategies to evaluate
utilizing a Tabu search approach. The evaluation of each strategy is efficiently
achieved by implementing a state-space partitioning technique, in virtue of

which it is not necessary to compute the shortest path under every perceived
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network state. The integrated approach is flexible, and numerical results
suggest it is effective for the solution of a range of problems, even though the
exact evaluation of feasible strategies may limits its applicability, particularly

on poorly connected networks.

4.6 Summary

This chapter formulates and discusses the optimal deployment of static
sensors for the support of adaptive System-Optimum (SO) routing strategies.
The proposed model selects the location of a fixed number of static sensors,
z, leading to the minimum system expected cost under information. This
approach differs from existing efforts in the literature, which typically analyze
the collection of information from the perspective of improving the capability
to monitor system parameters or performance measures. The novel paradigm
explicitly considers the impacts of system-level information on routing
decisions. Unlike most of the existing research on the field, the proposed
approach takes into account the relationship between the location from which
information is collected and the resulting system performance.

In the context of this chapter, the local-level impact of information
provision is modeled as a change on the cost at the monitored links, which
leads to a set of perceived network states. Under an adaptive routing
paradigm, SO assignment decisions may be adjusted for each perceived states,
leading to an improved expected performance.

Section 4.2 presents three alternative mathematical formulations of the
proposed problem. Even though these formulations are combinatorial in
nature, they are useful to understand the problem properties, and can be
utilized as the basis for efficient solution methodologies. They also provide a
means to derive a theoretical expression for the marginal value of information
(Section 4.3), which is proved to be always positive under the adopted
assumptions. The marginal cost formulation is a valuable tool to understand
the models behavior, and to interpret problem properties, presented in Section

4.4. The observed properties illustrate interesting model’s behavior, and
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reflect the non-linear nature of the impacts of information. For example, the
incorporation of additional sensors may not improve the system expected
cost. Conversely, “synergic” effects can be observed, in virtue of which the
benefits obtained by jointly monitoring of subset of links is greater than the
improvements accrued by placing a single sensor in any link in the set.

The exact problem solution is discussed in Section 4.5, which summarizes
possible mathematical programming approaches, including Benders
decomposition and quadratic programming techniques, that may me
applicable. However, these approaches are likely to be effective only on
relatively small problem instances, which motivates the choice of a solution
methodology based on network optimization methods (Chapter 5). The
approach lends itself to a heuristic implementation, and can easily incorporate
changes in the problem assumptions and formulations.

The problem described in this section is of interest from a variety of
perspectives. Section 7.1 discuses some of its potential applications, which
range from the deployment of sensors during rescue operations, to data
filtering for online routing purposes. Section 7.1 also presents desirable model
extensions, including sequential deployment strategies and more complex

objective accounting for the robustness of the solution.
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Chapter 5

Deployment of Static Sensors for
the Support of Adaptive
System-Optimum Routing
Strategies: Methodology and

Implementations

The optimal solution to the problem presented in this chapter entails finding
a strategy to deploy s sensors on a stochastic network with m edges such
that the expected system cost under information provision is minimized. A
distribution /deployment strategy is specified by the set of links chosen to place
sensors. As a consequence of the binary, non-convex, nature of the expected
system cost function , the identification of an optimal solution may demand
the evaluation of the C? possible deployment strategies, a number that grows
exponentially with the number of sensors and the network size. Furthermore,
each of these evaluations implicitly involves the computation of properties
of paths in stochastic networks, as discussed in Section 4.3, which has been
proved to be very challenging (Appendix C).

From a naive approach, the evaluation of a strategy may require computing
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a shortest path for every perceived network state given a particular deployment
strategy. Despite the availability of very efficient methods for the calculation
of shortest paths (Ahuja et al. [1993]), the computational effort required by
problems involving large networks, numerous states and multiple sensors may
easily become prohibitive, particularly if a solution is needed within a short
time frame.

The methodology presented in this chapter takes a two-folded approach
to reduce the number of calculations needed to provide an optimal, or
near optimal solution, which separately addresses the two major challenges
identified above. The number of shortest path calculations required to
evaluate a feasible solution is reduced by developing and implementing a
state-space partitioning methodology which incorporates some shortest path
re-optimization concepts. In order to limit the total number of strategies to
be evaluated a Tabu search heuristic methodology is tailored to the problem
under study.

The state partitioning approach, described in Section 5.1, has the
additional advantage of providing a flexible framework which can
accommodate the solution of more complex problem variants, such as
those involving flow-dependent or time-dependent arc costs. Tabu search
is a meta heuristic procedure, which does not guarantee he optimality of
the solution at convergence. However, the implementation developed for
this application, described in Section and tested in Section 5.2, consistently
provided solutions extremely close to the optimal value. This chapter
provides a detailed description of the two components of the proposed
solution methodology, which can be used alone or in combination to efficiently
solve the problem described in Chapter 4. Sections 5.1.5 and 5.1.5 present
the numerical tests conducted to assess the performance of the solution
methodology, which is implemented in Section 5.3 to the analysis of the
impacts of sensors location on the performance of adaptive SO routing

strategies.
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5.1 Evaluating a sensor deployment strategy: a

state-space partitioning approach

For the optimization problem described in Chapter 4, the evaluation of
any specific sensor placement strategy involves determining the system
expected cost given the information provided by the deployed sensors. In
the context of this problem, information translates into the identification of
different cost realizations at monitored links, which combined generate a set
of perceived network states. The adaptive routing paradigm allows adjusting
the assignment strategies under each perceived state, leading to an improved
expected system performance.

A naive approach to compute the system expected cost in this setting is
to calculate the optimal routing strategy for any possible perceived network
state. However, the problem characteristics allow reducing the total number
optimization problems to be solved by implementing a state-space partitioning
approach. The procedure is based on the principles presented by Alexopoulos
[1997| for the evaluation of properties related to shortest paths on networks
with discrete random arc costs. He studied measures such as the probability
of a given path being the shortest, or those of the shortest path not exceeding
a threshold value, proving that their computation constitutes an #P-hard
problem (for definitions and examples of #P-Hard problems, the reader may
refer to Valiant [1979a)).

The problems analyzed in Alexopoulos [1997| ultimately entail identifying
which network states “contribute” to the computed measure. The later
typically involves comparing the value of a given path under a specific state
to a threshold value. The fundamental concept behind this approach is that
a single shortest path computation can be used to classify entire ranges of
network states, defining whether or not they should be considered in the
computation of the analyzed measure. By avoiding the evaluation of a new
shortest path problem under each possible state, the technique greatly reduces
the computational effort.

The solution methodology presented by Alexopoulous iteratively partitions
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the network state-space, generating bounds for the studied property which
improve at each iteration, leading to the exact solution. The efficacy of the
procedure depends on the strategy used to subdivide the state-space after
each shortest path evaluation, which determines the total number of runs to be
performed. The proposed partitioning scheme allowed the solution of problems
involving more than 87 x 10° possible states by evaluating only ~ 12,000
shortest paths. Furthermore, the nature of the algorithm is such that no more
than 11 partitions had to be stored simultaneously at any point.

The methodology discussed above is not directly applicable to the problem
discussed in this chapter, mainly due to the more complex nature of the
property we seek to evaluate. Computing the expected cost of an adaptive
system optimum assignment strategy requires knowing the exact cost on
the shortest path under each perceived network state, as opposed to only
determining whether such value exceeds or not a given threshold. Even
though this naturally increases the number of necessary evaluations, it is still
possible to take advantage of simple shortest path properties to reduce the
computational burden. Section 5.2.1 presents a state-partitioning scheme
based on the same fundamental principles proposed in Alexopoulos [1997],
which can be used to efficiently compute the system expected cost under
information. Numerical tests conducted on a variety of networks of different
sizes and statistical properties (Section 5.1.5) suggest that the proposed
methodology is robust, and that it may find the expected cost of an adaptive
SO strategy by evaluating less than 10% of the perceived network states.

5.1.1 Methodological framework

This section introduces a state partitioning framework to find Z*, the expected
cost of an adaptive system-optimal network assignment problem under the
information provided by a pre-defined set of K sensors placed on links k& € .
Even though in the worst case the problem solution may entail finding the
shortest path under each possible network scenario, the methodology presented

here performs much more efficiently in practice (Section 5.1.5). The notation
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introduced to describe the algorithm is slightly different from the nomenclature
introduced in the previous chapter, and is defined below.

The problem considers a directed network G(N, M), with nodes i € N, and
edges 7 € M. We define [M| = M and |N| = N. Links may be designated
also using the indices of the corresponding origin and destination nodes (e.g.
ij is the link connecting nodes i and j). The arc costs are random, following
discrete probability distributions &/consisting of S7 states s/ € §7. Each state

is defined by its cost 5§ ; and the corresponding probability, pz ;, in view of
which 7 =37 ;g 513- xpzj is the link expected cost. For every link we assume
gl < g} < .. < &l. Notice that the cardinality of the sets &/can vary across
links.

Any particular combination of link cost realizations originates a network
state * € X. These can be defined by m-tuples z = {s/(z)}, 7 € M,
specifying the state realized at link j under network state x. The corresponding
link cost and probabilities are given by 5’;k(m) and p’;k(w), respectively. For
notational convenience, the later may be denoted by c*(x) and p*(z), or ¢
and p”. Indices s/(x) can adopt any value in the range {1, 2,y Sk}, in virtue
of which there are T' = HjeM S7 possible network states, with a probability of

occurrence given by equation 5.1.

ra) = [[ @) -1)
jEM

A path L is a set of links, and its cost under any state is given
by the summation of the cost realizations at the corresponding links
(L) = Fye,, ().

A partition of the m-dimensional state space X based on links k£ € K
is a subset A} C X of the states in such space, defined by two m-tuples
a(Xy) = {af (X)) }and B(X;) = {b¥(X1)}, where a* and b* indicate the index
corresponding to the first and last link state included in &;. We will extend
the definition of r(z) to represent the probability of a subset as indicated in
equation 5.2. If the subset contains a single element, a* = b* = s* V k € K,

and equations and 5.1 and 5.2 are equivalent.
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r) =111 > »h (5.2)

ke \ sk=ak(Xxy)

We denote by K < M the number of available sensors, which are deployed
according to an exogenously determined strategy t. Binary variable g¢7(t)
is used to identify the links on which sensors are placed under a particular
strategy, by setting it to one if a sensor is located on link j under strategy t,
and to zero otherwise. Strategy t can be defined by the set of links k € K(t),
such that ¢g*(t) = 1. For notational simplicity, K will be used instead of K(t)
when the value of ¢ is obvious given the context. For all links w ¢ K we
assume c”(z) = ¢ under any state x. In view of the former, the network
states which can be perceived given the information provided by strategy ¢
differ only on the cost realization at the measured links. The set of perceived
network states consists of K-tuples z € P, such that ¥ = {Ck(ZE)}, ke I,
and 7(Z) = [[,ccp™(@). The total number of perceived states is given by
P = erlc S,

The cost at the shortest path connecting nodes o and d under a general or
perceived scenario is p?,. The shortest path computed under a no-information
provision scenario z° = {u/} V j € M is the shortest expected cost path,
with cost p2;. The set L9, contains all the links included in the shortest path.
For the examples and descriptions presented in this section, a single origin-
destination pair will be considered, and therefore the sub index od will be
omitted.

The system expected cost under information set K is Z*, and it includes
the contributions of all the states © € P (Equation 5.3) to the system expected
cost, 2X(Z). In the general case, the evaluation of Z* would involve the

computation of p* for all the possible perceived states.

A pr xr(T) =Y ) (5.3)

zeP zeP
The state partitioning approach proposed here aims to identify non-

overlapping subsets P, C P such that their contributions can be calculated
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based on a single shortest path computation, thereby reducing the
computational effort. The value of ZX is then obtained according to
5.4, where W C P is the subset of states w which do not belong to any

partition P,, and V is the set of all existing partitions.

Z8 =3 "MP)+ ) Kw) (5.4)

veY weWw

5.1.2 State-space generation: Visualizing the state space

as a trees

The order in which the states within a state space are considered plays a
fundamental role in the efficiency of any state space partitioning technique.
Such order influences the total number of partitions to be generated, the total
number of evaluations required, and the number of partitions which need to
be stored simultaneously. For the implementation discussed in this paper, the
state ordering is given by the state generation methodology, which is presented
in this Section. The methodology was designed based on the findings presented
in Alexopoulos [1997], and tailored to fit our goal of minimizing the number
of shortest path computations required to evaluate the objective function. .

In order to ease the interpretation of the state generation procedure and
the various state-space partitioning rules introduced in later sections, one may
regard the state space as a set of trees, and the state space partitioning process
as a tree-pruning procedure.

Assume that index k, such that 1 < k£ < K, is used to identify the
links in K, and consider S! trees of depth K. In these trees, each node at
level | = (1,2,..., K — 1) has s'*! children , indexed by w = (1,2, ..., s*1).
Additionally, assume that link costs are such that £ < &} < ... < i, Figure
5.1 presents Example 1, which illustrates the tree representation of the state
space generated by 4 links. It is easy to see that the number of leaves in such
trees is equal to the cardinality of the set P (32 in our example), and that the
corresponding branches represent all possible states. In Figure 5.1 the colored

branch represents state = = {1, 1,3, 1}.
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Figure 5.1: Tree representation of a perceived state space

Finding the system expected cost is equivalent to identifying, for every
tree leave, the shortest path under the corresponding state along with
its probability. The methodology proposed here generates the states in
P according to the pseudo code described by Algorithm 1, which is a
modification of the methodology presented by Rosen [1991].

Algorithm 1 State Generation Pseudo Code
for 1<[< K do
sf=1Vkek, k#1
st =2
max_index” =S¥V k € K
min_index* =1V ke K, k#1

min_index' =2

end flag=0
while (end flag=0) do
p=1
while (s =S” and p > 0) do
p=p—1
if (p>0) then
sP=sP+1

for (p+1<k<K) do
s¥ = min_index®
else

end flag=1

This is equivalent to moving through the trees by “levels” starting at depth
1, and considering the nodes in a level from left to right, as depicted in Figure
5.2. Each level represents a link k£ € IC, and the values of w at the considered

node indicates the link state index corresponding to a particular state. For
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Figure 5.2: Tree interpretation of the state generation procedure

links k£ : k > [ the link state index is set to one, in such way that the states
generated at level [ differ from the ones generated at previous levels only by
the cost at link k = [.

Table 5.1 presents the order in which the states corresponding to Example
1 are generated, which may be regarded as lexicographic up to the {** index
for every level [. Notice that state £ = {1,1,1, 1} is generated as part of the
initialization process, and that at level [ the lowest value for s! is 2, accounting
for the fact that states Z : s' = 1 have been generated on previous levels. Also
notice that algorithm 1 can be used to generate the states within a partition
P, by setting vectors max_index and min_index equal to a(P,) and G5(P,)

respectively.
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=1 =2 =3 =4

{1,1,1,1} {1,2,1,1} {1,1,2,1} {1,1,1,2}
{2,1,1,1} {2,2,1,1} {1,1,3,1} {1,1,2,2}
{1,1,4,1} {1,1,3,2}

{1,2,2,1} {1,1,4,2}

{1,2,3,1} {1,2,1,2}

{1,2,4,1} {1,2,2,2}

{2,1,2,1} {1,2,3,2}

{2,1,3,1} {1,2,4,2}

{2,1,4,1} {2,1,1,2}

{2,2,2,1} {2,1,2,2}

{2,2,3,1} {2,1,3,2}

(2,2,4,1} {2,1,4,2}

{2,2,1,2}

{2,2,2,2}

{2,2,3,2}

{2,2,4,2}

Table 5.1: State space for Example 1

5.1.3 State-space partitioning: Partitioning rules

The naive approach to the system expected cost computation is equivalent to
generating and evaluating all the tree leaves (i.e. computing p® for all 7 € P).
The goal of the proposed state partitioning methodology is to take advantage
of some problem properties in order to evaluate several leaves based on a single
shortest path computation, thus reducing the computational effort. This leads
to a subdivision of the state space, which distinguishes between subsets of
states (represented by tree branches) which have already been evaluated and
sets which require further consideration. Each of these sets (or partitions) is
analyzed by generating and evaluating the corresponding states, and it may
be sub-partitioned.

The circumstances under which more than one leave can be evaluated
simultaneously are identified using partition rules. These may be slightly

different depending on whether the considered sensor deployment strategy
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t involves none (Type I), some (Type II), or all (Type III) the links
in the shortest path. The following sections describe the partitioning
rules corresponding to each strategy type, and present the algorithmic
implementations. Section 5.1.4 presents the final algorithm, and discusses

some specific implementation issues.

5.1.3.1 Strategies Type I

For strategies of Type I, on which all sensors are placed outside the shortest
expected cost path (LN = 0), a very efficient state partitioning scheme can
be defined, closely related to the one proposed in Alexopoulos [1997]|. Given
that there no sensors is placed on the shortest expected cost path, the perceived
cost at £° does not change based on the sensor information. In virtue of this
p° becomes a deterministic upper bound on the optimal cost corresponding
to any perceived network realization, which constitutes the basis of the first

partitioning rule, based on the following facts:

e Fact 1: The shortest path value corresponding to any perceived network
state T € X’ will be lower than p°, only if for at least one k € K it is true
that c*(Z) < p*. In other words, p* < p° = c*(x) < u* for at least one

link k£ € KC. This is a necessary, although not sufficient condition.

Proof: Equation 5.5, where L,; € L are all paths connecting the origin and
destination, reflects the optimality condition defining a shortest path. Given
that cost changes are possible only on those links in K, the cost on £ is equal
to p%, under every state 7. If p® < p° the path used to achieve p® is £Z # LO.
Such path was not optimal before the cost change, and therefore its cost must
had been greater to, or equal than, p°. In view of the former, p* < p° implies
that the cost at some link in £® has decreased, thus £* contains at least one
link k € K for which ¢*(Z) < p* which completest the proof.

Poa = Z 17 < co(Loa)VLoa € Liog (5.5)

jeLo
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Corollary: The contribution to Z¥of states states y such that c*(7) >
©F ¥ k € K may be computed according to equations 5.6 and 5.7, without
performing a shortest path evaluation. In these equations V' = {y} denotes
the set of all links .

KY) =" x (V) (5.6)
s=b(X)
rY =TI ( > » (5.7)

e Fact 2: If p° = p° for a perceived network state & € P, then p® =
PVyed? sk >sF@)VEkeK.

Proof: Given that p* = p°, £° is valid as a shortest path under z, in virtue of
which equation 5.5 is valid. Given that state indices are ordered in increasing
order of their corresponding costs, the assumption s*() > s*() is equivalent
to c*(y) > *(Z) which, following the same reasoning described for Fact 1,
implies that ¢z(L) > cz(L) > ¢z(L°) V L € L.

Corollary: If the shortest path value under a perceived network state z €

X is p* = p°, equations 5.8 and 5.9 can be used to compute the contribution
to ZX of all states § such that s*(y) > s*(z) Vk € K.

K%)= x () (5.8)

s=b(X

)
rOM =111 > » (5.9)

kel \ s=sk(7)
In virtue of these facts, we can define the following partitioning rule for

deployment strategies of Type 1:

Partitioning Rule 1

LetX be a K-dimensional space describing the perceived

network state-space based on the information provided by K
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sensors, or a subset of such space. Let ¢t be a sensor deployment
strategy such that £° N KC(t) = 0. If p* > p° for a state T € P
generated under level [, the contribution to ZX of all states
7 € Viesk(y) > s¥(7) Vk € K is given by equation 5.8, and the
states in P which require further evaluation belong to one of 2[
possible partitions P,(d, ) defined by equations 5.10 to 5.13 for
every value of 1 < d <.

a(X(d,z) = {51(5),52(&3),...,sd_l(i),ad(X),...,aK(X)} (5.10)
B(xX1(d,z) = {b"(X),0*(X),...,b" 1 (X),s @) — 1,64 (X),..., b5 (X))} (5.11)
a(X(d,7) = {s'@),5°@), ,s7H@), a(X), (X))} (5.12)
B(xX"(d,7)) = {s'@),s*@),....s" (@), s () — 1,67 (X),..,b" (X))} (5.13)

t=bF (X

)
r) =11 > » (5.14)

kel \ t=sk(z)

Notice that in order to avoid duplicating a state evaluation, the first state to
be considered in partitions X! (d, ¥) is such that s*~! = a?~! + 1. Additionally,
notice that depending on the characteristics of the set P it may not be possible
to generate X7(d,7) and I1%(d, 7). This is the case when s%(Z) = a¢, or when
T=8Vj:1l<j<d—1.

Figure 5.3 represents Partitioning Rule 1 within the tree-representation
context. It is easy to see that the implementation of this rule is equivalent to
pruning the state space trees by eliminating the children of all the nodes at the
I level of set P for which w > s'. It follows a description of the algorithmic

details of the implementation of this rule.
Algorithmic implementation The algorithmic implementation will be

described based on the tree-pruning representation of the state partitioning

process, which has a more intuitive interpretation. Figure 5.4 summarizes the
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Figure 5.3: Tree-pruning interpretation of Partitioning Rule I

7



procedure, exemplified in Figure 5.5. The algorithm works by levels, and it
maintains two sets of partitions, Q(/) and R([), which contain all the states of
P that may require evaluation. The partitions in Q(/) are active, in the sense
that the corresponding states, based on level [, still need to be generated and
evaluated if appropriate. The set R(l) encompasses partitions for which the
[ — based states have already been generated, thus do not to be considered at
the current level. At every iteration, the first partition Py € Q(I) is selected,
and the corresponding states generated and evaluated according to algorithm
1. Based on Partitioning Rule 1, when a state € Py : p* > p° is found, the

algorithm performs a partitioning operation, which includes:

1. Identifying the subsets of states §: s*() > s*(Z) V k € K and computing
their contribution to Z* (equation 5.14)

2. Creating partitions P,€ Q(l) as defined by Equations 5.10 and 5.11

3. Updating the remaining partitions in Q(!) using Equations 5.15 and 5.16,
and adjusting the system expected cost (Equations 5.17 through 5.19)

4. Generating partitions in R (/) using Equations 5.12 and 5.13

5. Removing Py from Q(I)

If the last state € Py is reached without partitioning the set, Py is moved
to R (1), and after all the partitions in the active set are processed the algorithm
moves to the next level, and R(I) becomes the active set. The procedure ends
when both sets of partitions are empty. The third step in the process is
essentially equivalent to step 2, but it involves additional verifications, given
that the condition p® > p° does not necessarily have an impact in all the
existing partitions in Q(l). Equations 5.15 and 5.16 describe the updated

partitions.

(P (d)) = {auz' (Z), aur*(Z), ..., auz® 1 (Z), a*(Py), ..., a™ (Py) (5.15)
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Figure 5.4: Evaluation subroutine for strategies Type I
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B(Pi(d)) = {b"(Po), b*(Po), ... b (Po), auz®(z) — 1,6™(Py), ..., 6" (Py) }
(5.16)
The auxiliary array aux is computed according to algorithm 2, and only
those partitions such that b*(P,) > a*(P,) Vk € K are modified.

Algorithm 2 Definition of auz in state-space partitioning algorithm
for all (k€ K) do
if (s*(z) > b*(Py)) then
aux® = b*(Py)
else
auz® = s*(7)
if (s"(7) < a*(Py)) then
aux® = a*(Py)
else
aux® = s*(7)

If a partition is updated, the system expected cost is adjusted using
Equations 5.17 through 5.19.

g=b"(Py)

r(Pr@) =111 Y. » (5.17)

ke g:auxk

K(P(d)) = p° x r(P;(d)) (5.18)
75 = 7K 4 2P (d)) (5.19)

5.1.3.2 Strategies Type II

The partitioning rule for deployment strategies Type II presents the same
structure as Partitioning Rule 1. However, for this case £° D K, and therefore
pY can no longer be considered an upper bound on the shortest path cost under
different perceived network states. An alternate bound is given by the shortest
path cost on a network from which all links & € K are removed. Let 7 and

LK denote such cost and the corresponding path, respectively. Based on this
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a) Example of state space at the beginning of level | =3

a(Py) ={1,1,2,1}
/B(PO) = {172)472}
a(P) ={1,3,1,1}
5 B(Py) ={1,4,3,2}
F=1{1,1,3,1}

o r(P2) = (M3 +p3) x (93 +p3) x pl
:f .\‘\ Z(Pz) = T(Po) X po

o (Pi2,7)) ={1,2,1,1}
- B(P3(2,7)) ={1,2,2,2}

PL(2,7) = Py

d) Generate states in R({)

o (P1(3,7)) ={1,1,1,1}
. B (P({I(?’)%)) = {1’ 1)2’2}

a(Pr(2,1)) ={1,3,1,1}
B(P(2,1)) ={1,4,2,2}
o r(Pi(2,1)) = p§ x (p3 +p3) X pi

PH(3,%) = PsPL(2,7) = P» P

Figure 5.5: Basic state space partitioning procedure when p® = p°
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new condition and on shortest path properties, the following facts are used to

derive an appropriate partitioning rule for strategies Type 1I:

e Fact 3: For states 7 € X such that cf(2) < p* V k € K, the shortest
path cost p® is given by the cost perceived at £°.

Proof: Assume that the default optimal cost is p° on path £°, and that the
minimum expected cost under state Z occurs on path L' # L£° such that
cz(L') < cz(L°). Given that costs change only for links in &, the costs under
may be re written as ¢z(L') = co(L) + >, cxc(ck — p¥) (Assuming that K C L',
which provides a lower bound on the value of cz(L')) and cz(L£°%) = p° +
> perc(ch—pF). In view of our starting assumption, co(L') + >, oo (ch — pF) <
P° + > pex(ch — pF). The former implies that co(L’') < p°, which contradicts
the assumption the p° is optimal and completes the proof.

Corollary: If a state T € X is such that c*(Z) < p* V k € K, the shortest
path cost is defined by Equations 5.22, which does not require an additional

shortest path evaluation.
pr=p"=> (b= @) (5.20)
kek

e Fact 4: If p® = 7 for a perceived network state 7 € X, then p¥ =7V 7 :
s*(y) > s*(¥) Yk € K. The proof of this fact is equivalent to that of
Fact 2.

Corollary: 1If the shortest path value under a perceived network state is
0% = 7, equations 5.21 and 5.9 can be used to compute the contribution to Z*
of all states 7 € V2 such that s*(y) > s*(7) Vk € K.

V) =7 x r(Y?) (5.21)

In view of the former, we define the following partitioning rule and

corresponding algorithmic implementation:
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Partitioning Rule 2

Let X be a K-dimensional space describing the perceived
network state space based on the information provided by K
sensors, or a subset of such space. Let ¢ be a sensor deployment
strategy such that £° D K(t), and let 7 be the value of the shortest
path on a network from which all links k£ € KC(t) are removed. If
p® = 7 for a state T € X’ generated under level [, the contribution
to ZX of all states § € V?&s*(y) > s5(2) V k € K is given by
equations 5.21 and 5.9. The states in X which require further
evaluation belong to one of 2/ possible partitions P, defined by
equations 5.10 to 5.13.

The intuitive interpretation of this strategy is similar to the one provided for
Partition Rule 1. Notice that, depending on the characteristics of the network,
it may not be possible to find 7. When this is the case, the state-space cannot
be partitioned based on the shortest path value. However, some problem
properties can be utilized to reduce the number of shortest path evaluations,
described in Section 5.1.3.4.

Algorithmic Implementation The implementation of Partition Rule
2 is almost identical to the one described in Section 5.1.3.1, the only difference
being the conditions which trigger a partitioning operation. In addition to
state-space partitioning, the subroutine used to evaluate deployment strategies
of Type II takes advantage of Fact 3 to reduce the number of shortest path

evaluations. Algorithm 3 summarizes the approach.

5.1.3.3 Strategies Type III

The partitioning rule adopted for deployment strategies Type III is identical
to that one described for strategies of Type II. The strategy evaluation

subroutine, described by 4 also makes use of the following fact:

e Fact 4: For states T € X such that *(Z) < p* vV k € KN L and
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Algorithm 3 Evaluation Subroutine for Strategies Type II
for (1<i< K) do
for all (P, € Q(l)) do
while (Algorithm 1 returns state ) do
Compute r(Z) (Equation 5.2)
if (s*(2)<¢p"VEkeK) then
pr=p" = Yex (W = (@)
MT) = p¥ x r(T)
else
Run shortest path and compute p*
if (p*=17) then
Run partition subroutine (Figure 5.4)
Move to next P,
else
KT) = p® x r(T)

@) > pF VvV k€ KAk ¢ Lhe shortest path cost p® is given by the

cost perceived at L°.

Proof: Assume that the default optimal cost is p® on path £°, and that
the mini mu expected cost under state Z occurs on path L' # £°, such that
cz(L') < cz(L£). Given that costs change only for links in K, the costs under
T may be re written as cz(L') = co(L') + > cenpo (= pF) + 37, cempo (¢ — 1)
(Assuming that (XN £°) C L', which provides a lower bound on the value
of cz(L')) and cz(LY) = p° + Y cxneo(ch — p¥). In virtue of our starting
assumption, co(L')+>, cgrzo(ci—p*) < p°. Notice that the second term in the
right hand side in this equation is non-negative under the conditions specified
for Fact 4, in view of which co(L') < p%, which contradicts the assumption
regarding the optimality of p” and completes the proof.

Corollary: If a state T € X is such that ¢*(Z) < p* V k € KN L° and
K@) >pPVEke KAk ¢ LY the shortest path cost is defined by equation

5.22, which does not require an additional shortest path evaluation.

== Y (- @) (5.22)

kekncO
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Algorithm 4 Evaluation Subroutine for Strategies Type III
for (1<i< K) do
for all (P, € Q(l)) do
while (Algorithm 1 returns state ) do
Compute r(Z) (Equation 5.2)
if (@) <¢*VkeKNL and s5(7) > " VEk e KAk ¢ L0
then
PT =" = e (#" = (@)
@) = p¥ x r(T)
else
Run shortest path and compute p®
if (p*=7) then
Run partition subroutine (Figure 5.4)
Move to next P,
else
M@) = p¥ x r(T)

5.1.3.4 Partitioning rule for temporary state space subdivision

The partition rules described above are equivalent to a tree-pruning operation
which permanently removes a portion of the state-space trees. The following
fact allows identifying sections of the tree which may be temporarily
disregarded during the analysis of a particular level, even though the

corresponding nodes cannot be eliminated from the tree.

e Fact 5: Define £%as the shortest path under state 7 € X, and let w € K
be any of the equipped links under strategy t. If w ¢ L® then for all
states § € V? <= c*(y) > (@) A k() = &(T) Vk € K, k # w it is
true that w ¢ LY.

Proof: Let link w connect nodes ¢ and j, and F,_; and F;_; be the optimal
sub paths connecting the origin to node 7, and node j to the destination under
state 7. If w ¢ L% cz(Fi_i) + ¢ + cz(F;—;) > p®. Under the conditions
established by Fact 5, p® is the cost of a feasible path for all states in J3, and
the left hand side of the last equation, which represents the cost of the shortest

path using link ij, remains larger than p®. In view of the later, no path using
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link w may be the shortest under the states contained in )3, which completes
the proof.

Corollary: If under state z € P,, P, € Q(I) link w € K is found not
to belong to the shortest path, the corresponding shortest path value p* can
be extrapolated to all states § € V? < s*(y) = s*() Vk € K, k # w, and
s*(y) > s“(x). The contribution of such states to the total system expected
cost under strategy t is given by Equations 5.23 and 5.24.

K%)= p" xr(V?) (5.23)

s=b"(Py)
7“(373)=< 1T p’“(@)x > o4 (5.24)

keK k#w s=sv (%)

Fact 5 may be used as the basis for a number of different partitioning
rules. The one presented below was developed taking into account practical
implementation considerations. The criterion utilized to design this rule was
to take advantage of Fact 5 in order to reduce the number of shortest path
computations without greatly increasing the data storage requirements, or the
complexity of the necessary data structures. The rule was also developed to

fit within the framework imposed by the selected state generation procedure
(Algorithm 1).

Partition Rule 4:

Let P, C Q(l) be a K-dimensional space describing a partition
of the state space defined by the information provided by K sensors
k € IC. Assume that states are generated according to algorithm 1.
If during the evaluation of state 7 € P, 3w € K : w < I, w ¢ L?,
then all states 7 : s*(y) = s*(7) Vk € K, k # w and s¥(y) >
s¥(7) can be evaluated in a single step according to 5.23 and 5.24.
This leads to a subdivision of the remaining states in Q(I) into at
most 3 sets 7,(Z,w, ), such that o (7,(Z,w,1)) = {a*(P,)}, and
B (7T,(z,w,l)) is defined according to Figure 5.6. The first state
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to be considered in each of these partitions is 2°, described in the

same figure.
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Figure 5.6: Temporary sub partitions based on  when 3w e K: w¢ L?

In Figure 5.6 expressions s’ — — and s' + + are used to identify the

indices corresponding to the states immediately before and immediately after

7 (according to the state generation process presented in Algorithm 1), for the

range w+ 1 < k < [. Notice that such states may not exist , in which case the
corresponding partition is not created. Partitions 7,(z, w,[) are inserted into

Q(l) in the position previously occupied by P, in the order in which they are

generated.

The algorithmic implementation can accommodate cases on which more
than one link w; € W : W C K is not part of the shortest path under . The

corresponding probabilities are given by Equation 5.25.
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s=b"1(Py)
Tad] (ZJ (57 Wi, l)) = Z p;ui X H p];k(i)

s=sW1(7T) ke, k#w;

s=b" (P,)
+ Z { ( Z pﬁuj)) X H p?k(a)} (5.25)
w;eW, j>i | \s=sw(@)+1 ke, ktw;

The implementation also accounts for the fact that during the evaluation
of the states in 7,(Z,w, 1) it is possible to find new states @ : w ¢ L¥. Let
W = {wy,wy, ..., ww} be the subset of all links in & which do not belong to
the shortest path, and assume that the sub indices preserve the link ordering
followed when defining the tree levels. Define *(w;) = {s*™, s%it2 . s'} as
the portion of the array = which contains the link state indices corresponding
to k: w; +1 <k <, and notice that this segment is enough to generate all
partitions 7,(Z, w;, ). The proposed algorithm maintains a list of such arrays
for each level 1 < d < [, denoted X*(w;), and utilizes it to create temporary
partitions 7, (z*(w;), w;, ) when s“7 is increased by algorithm 1. For notational
simplicity, well denote the elements in X*(wy) using 7 whenever w; can be
inferred from the context.

We will denote k'**(Z) the index increased in order to generate 7. Lists
X*(w;) are reset every time a new state is generated for all [ > j > k',

Each time a shortest path evaluation is accomplished, the algorithm
identifies all the links which are not part of the shortest path, extrapolates
the shortest path value to the corresponding states, and saves x*(w;) for
all links 7 : j < [ by inserting it into the appropriate position in X*(w;).
The state generation algorithm is slightly modified with respect its original
version in order to verify if the set *(k'e*!(Z)) is empty for every new state
x. If this is not the case, temporary sub partitions are generated, which skip
those states already evaluated based on the fact that k'***(Z) was not part of
the shortest path. Each of the temporary partitions is processed following
the standard procedure, with a slight modification in the implementation of
Partitioning Rule 4. Within a temporary partition 7, (7, w;, () only those links

links k& such that & < w; are considered for the application of Partitioning
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Rule 4. This is a heuristic simplification, seeking to reduce the amount of
information that needs to be stored in order to keep track of the states already
evaluated. Figure 5.7 illustrates the underlying concept within the context
of a tree representation of the state-space. The corresponding algorithmic
implementation (Algorithm 5) acts as the framework in which the remaining
subroutines are inserted. Section 5.1.4 presents the pseudo code and discuses
some implementation considerations. Numerical analyses on two test network

are presented in Section 5.1.4.

5.1.4 State-space partitioning algorithm: Summary

Algorithm 5 describes the implementation of Partitioning Rules 1 through 4
to the evaluation of sensor deployment strategies. The procedure is slightly
different depending on whether or not the strategy involves placing sensors
on links belonging to the shortest path under no information, £°. Strategies
Type I are such that none of the monitored links belongs to £°, while strategies
Type II and III place all or some of the sensors on £°, respectively. For all
strategies the algorithm starts working on a state space which includes all
possible cost realizations on the measured links. These realizations define the
perceived network states, and lead to different shortest expected cost values
p®. The contribution to the expected shortest path cost of each realization is
given by p® x r(Z), where r(Z) is the corresponding probability. Under some
circumstances the same value of p” can be applied to a number of perceived
states, which leads to a subdivision of the state space. For strategies Type I
this is possible for states 7 : p® = p°. Under strategies Type II and III, the
state-space is partitioned if p* = 7, where 7 is the value of the shortest path on
a network from which all the equipped links are removed. The algorithm also
takes advantage of other problem properties in order to reduce the number of
shortest path computations (Sections 5.1.3.2, 5.1.3.3 and 5.1.3.4).

The state space can be visualized as a set of trees (Section 5.1.2), and the
state generation procedure used in this algorithm is equivalent to growing the

trees from top to bottom, generating at every level (associated with a particular
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a)Links 2 and 3 ¢ L®' under state 7;. Lists X*(2) and X*(3) are created.

14»@

To(Z, w1, 1)
X*(ws) = {1,2,1}

X*(wy) = {2,1)

b)Generating state Z, leads to a subpartition based on X*(3).
Additionally link 2 ¢ L*2.

W2 =
=i @
.
N
T (2, w1,1)

X*(we) ={2,3,1}
X (w1) = {2,131 {3,1}
c)Generating state T3 leads to a subpartition based on X*(2). List X*(3) is emptied.

\ b,

WOVeN

B o o
To(@, w2, 1) Tp(Z,ws,1)

o Evaluated state

tate 7 : Jw € K Aw ¢ L*
tate not requiring evaluation

Figure 5.7: Partitioning Rule 4
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Algorithm 5 State Space Partitioning Algorithm

a=(1,1,...1)
B0 = (S, 8%, ..., 8K)
if tisof Type I then

Ref = p
else
Ref =71

for all (1€ K) do
while (Q(l) #0) do
while (Algorithm 1 returns state ) do
if evaluation is necessary (Algorithm 3 or 4) then
Find £* and p*
Compute ()
if (p® < Ref) then
if (X*(K'*t(Z)) # 0 & flag > k'*t) (if temporary partitions
are necessary) then
for all (7* € X*(k'*!(7))) do
Generate 7; (x k'est(7),1) and insert them in Q(/)
Generate 7o(7* kl‘“t(x), [) insert it at the top of Q(I)
Generate T3(7*, k'**!(7),1) and insert it inQ(1)
flag — k,last(x)
X*(Klest (7)) = 0
Move to the first element = € Q()
else
for all (w: weK:w<klt w¢L®) do
Store z*(w) in X*(w)
Compute 7*¥(Z) (equation 5.25)
2(T) = r¥(F) x p*
else
Partition (Algorithms 3, 4, and Figure 5.4)
Update Q(I) and R(l)
Compute z(7)
Move to the first element of Q(1)

else
Move to next = in P,
Q(l) = R(1)
R(I) =10
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link) a branch for each possible cost realization. The tree configuration varies
depending on the order on which the links are sorted (i.e. which link is assigned
to each level). Even though the total number of leaves (and therefore states to
be evaluated) is constant, the effectiveness of the partitioning procedure clearly
depends on the tree structure. The numerical experiments presented in 5.1.5
suggest that the methodology is more efficient when links are considered in
increasing order of their number of states, resolving ties based on links cost
range Ae’ (Equation 5.26). These results are consistent with the theoretical
approach presented in Alexopoulos [1997]. Additionally, for strategies Type
I11 it is advantageous to assign the links in £° (K to the highest levels (closer
to the top).

Ael =l — el (5.26)

The algorithm was designed to evaluate sensor deployment strategies when
the underlying objective function involves routing assets between one origin
and one destination. It can be utilized to assess cases on which more than one

origin-destination (O-D) pair exist, by defining p%,;, =Y. p%, X hog, where

Qis the set of all the considered O-D pairs, and hgis an opoZiE(()Qnal variable used
to assign different weights to the O-D pairs. In this case L%, is replaced by
T?: j€T® < Jod € O: j € L%, Even though the worst case complexity for
this algorithm is exponential (all the states may be generated and evaluated)

the results displayed below suggest a much better performance in practice.

5.1.5 Numerical testing

The algorithm described in Section 5.1.4 was tested on one of the example
networks presented in Alexopoulos [1997|. Example Network 1 has 10 nodes
and 23 links which costs are described by discrete probability distributions
with 2 to 5 states (Table 5.2 and Figure5.8). The algorithm was implemented
in C++, and two different versions were developed. The first one utilizes the
data structures described in Section 5.1, and it incorporates Partitioning Rules

1 through 3, according to Algorithm 3. This version was utilized for most of
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Figure 5.8: Network [ topology

the numerical tests included in this work. The second version, denoted “tree
implementation”, explicitly utilizes the tree representation described in Section
5.1.2. Trees are stored as lists of nodes, and additional arrays are used to
indicate the starting node of each level, and to implement the state partitions.
Even though the tree version allows for an easier implementation of complex
partitioning rules, such as partitioning rule 4, it often requires data structures
of the size of the state-space, which limits its applicability.

In order to test the state space partitioning algorithm, all possible
sensor deployment strategies of size n—[1, 5| were evaluated in Network I.
The large number of such strategies (CV) allowed to assess the algorithm
performance, which was measured in terms of the reduction in the number of
shortest path computations required to evaluate a sensor deployment plan.
The running time was not used as an indicator of performance given that
the software implementation was not designed focusing on computational
efficiency. Furthermore, different approaches were taken to implement naive
approaches and state-space partitioning methodologies, seeking to explore
available coding resources such as the Boost Graph Library. As a consequence
of this approach, the running times are likely to underestimate the potential
of the state-space partitioning methodologies. Future research will design
software tools allowing for a valid running time comparison.

We denote N! , the number of network states for which a shortest path
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Link & pj e p) g vk g o & opl
1 70 0.2 73 05 94 0.3

2 25 05 35 04 82 0.1

3 42 02 48 0.3 61 0.5

4 2 01 31 02 55 04 88 02 90 0.1
5 58 03 70 0.8 95 0.4

6 15 04 73 06

T 65 04 T4 05 75 0.1

8 59 06 72 08 98 0.1

9 21 03 32 02 8 08 98 0.2
10 89 0.7 96 0.3

11 32 02 48 02 67 0.6

12 63 0.5 99 0.5

13 66 0.8 85 01 98 0.1

14 6 01 15 04 39 0.3 58 0.2
15 2 04 48 0.6

16 61 02 63 0.3 85 0.5

17 16 0.2 18 0.3 40 0.3 52 0.2
18 3 01 30 04 50 0.5

19 16 01 34 05 71 04

20 90 0.5 96 0.5

21 21 0.5 46 04 8 0.8

22 17 0.1 49 04 53 04 65 0.1
23 6 01 12 01 54 0.8 66 0.5

Table 5.2: Link cost probability distribution for Network I
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computation was performed in order to evaluate strategy t. The total number
and N!

the number of possible states under strategy ¢. The algorithm savings are

of states generated by the algorithm is given by N!

evals represents

xT

measured by the reduction in the total number of shortest path evaluations
AN' = N! —~— N! The

mazx eval’

number of partitions generated during an evaluation is #P. Partitions are

or its percent expression AN* = N! —~— Nt ..
stored using two arrays of size n, and we define #P;,, as the maximum
number of partitions simultaneously stored during an evaluation. The sub
partitions defined in Section 5.1.3.4 are also stored as sets of two arrays of
varying size, and are included in the computation of #Py;,,. A small number
of simultaneous partitions is desirable in order to reduce memory requirements
(the actual number of shortest path evaluations is not a linear function of the
performed partitions). Additionally, handling the sub partitions, particularly
the ones generated based on Rule 4, can be computationally expensive,
slowing down the overall process. The later justifies the selection of relatively
simple partitioning rules for the present application (5.1.3.4). Nevertheless,
for problems such that the evaluation of a single state is relatively complex,
e.g. network assignment, additional benefits could be derived from refined
sub partitioning schemes.

Tables 5.3 and 5.4 summarize the observed algorithmic performance for
the basic implementation (Including Partitioning Rules I through III). In this
table N.,q is the average value of N! , across all the strategies ¢ involving
the same number of sensors. Similarly, N.,% denotes the average value when

the number of shortest path evaluations is expressed as a percentage of the
1 Nfa'ual

T ZuteT Nt

max

maximum number of states m =

On Network I less than 20% of all possible states were evaluated for
strategies of Type I, and an even smaller percentage of the possible states
required evaluations for K=3 and K=4 (9% and 8% respectively). The
corresponding results for strategies of Type II and III are less impressive,
which is likely to be a consequence of the lack of alternative paths connecting
the selected origin and destination in when the measured links are removed.

As a result, the bound on the shortest path cost, 7, cannot be computed,
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2 Sensors 3 Sensors
Type III Typel Type Il Type III Type I Type Il

4 60 190 3 630 1440 1
Ni_. 0.3 9.57 9 28.64  29.45 27
N 875 134 8.67 26.8 2.7 25.0

N % T3 15 88 84.1 8.6 88.9
4P 1.00 0.10  1.00 1.11 021  2.00

Table 5.3: Algorithmic performance in Network I (a)(Basic implementation)

4 Sensors 6 Sensors
Type III Type I Type III  Type I
# 4010 4845 62187 38760
Nt 88.03 90.28 822.96  838.39
N, 88.03 90.28 791.99  106.30
Nt % 89.8T%  1.70% 95.20%  10.50%
#P 1.16 0.38 1.25 0.98

Table 5.4: Algorithmic performance in Network I (b) (Basic implementation)

limiting the applicability of Partitioning Rules 1 through 3. When used to
analyze a larger network (Network II, described in the following section),
the basic implementation exhibited a much better performance on strategies
of Type II and III (Table 5.5) than on Network I. This suggests that the
scarceness of alternative paths is only a concern when the number of deployed
sensors is a high percentage of the total number of links, or in networks with
poor connectivity. Furthermore, Partitioning Rule 4 can be used to mitigate
the effect of such conditions.

Tables 5.6 and 5.7 present the results obtained by applying the tree
version, which includes partitioning rule 4, to the analysis of sensor
deployment strategies in Network I and II, respectively. Figure 5.9 compares
these results with the ones presented in Tables 5.3 and 5.5.

The tree implementation was observed to deliver a better performance
than the basic version described above, particularly for the evaluation of

strategies of Type III in Network I. For Network II, the performance of both
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2 Sensors 3 Sensors
Type III Typel Type Il Type III Type I Type Il

4 117 741 3 2340 9139 1
N... 718 946  5.33 21.78  29.03 12
N 443 119 4.00 1248  1.94 6

NO% o 39% 13% 5% 45% % 0.5

4P 1.00 0.06  1.00 1.17 0.14 2

Table 5.5: Algorithmic performance in Network II (Basic implementation)

Neval%
Type III Typel Typelll

2 57.7% 141%  81.5%
3 34.1% 6.6% 85.2%
4 17.1% 3.3% 81.1%
Y 9.6% 1.8%
6 6.2% 1.2%

Table 5.6: Algorithmic performance in Network I (Tree implementation)

Nevar %o
Type III  Type I Type II
2 32.2% 14.1%  32.4%
3 23.4% 5.5% 41.7%
4 11.0% 2.5% 35.0%

Table 5.7: Algorithmic performance in Network II (Tree implementation)
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100% 7 Ngpar(%) .
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0% _-___..-—-_.
BO% A /.
70% 1 L —— Type I (Basic)
S0 Type I (Tree)
@ — Type III (Basic)
50%
Type IIT (Tree)
40% A
L=
30% A
20% A a
10% QF—"'_'-—-__(- °
- ' -
0% . . . = K
1 2 3 4

Figure 5.9: Comparison of partitioning strategies

implementations is comparable across all strategies.

The presented results also suggest that even though the total number
of shortest path computations increases with K, the algorithm performance
remains stable in terms of the percentage of evaluated states, except on those
cases for which the total number of sensors affects network connectivity.

Table 5.9 illustrates the impact of the order in which in K are considered
on the algorithm performance for strategies of size 5 on Network [. The up
(down) arrows in this table are used to indicate that the corresponding quantity
increases (decreases) for increasing values of I. The best performance was
achieved when links j were sorted in increasing order of S*, breaking ties
based on an ascending value of Ae’ (equation 5.26). This sorting strategy
presents the advantage of considering links with a smaller range of possible
costs at early stages. Such links are more likely to lay outside (or inside) the
shortest path regardless of their value, which is used as the basis to prune the
state-space trees. By performing the pruning operations at higher levels (lower
value of ), the number of states to be considered in further levels is reduced.
Similarly, given that the number of tree branches initialized at each level [ is
a function of Sy for all £ < [, it is desirable to postpone the consideration of

links with a large number of states to the later stages of the algorithm, in order

98



Criteria AS

(o)
T Aed 5.21
| Al 6.11
159 5.17
|59 5.96

T Agd 157 5.21
1891 Al 5.08
Random 5.39

Table 5.8: Impact of the link-sorting criteria on the algorithmic performance
(Network I, K = 5)

to take advantage of previous pruning and avoid unnecessary evaluations. It
is interesting to notice that the algorithm performance does not deteriorate
greatly when the links are considered in a random order, which may be a
desirable alternative for specific implementations, including those involving a
very large number of sensors.

Additional experiments were conducted to assess the performance of
the methodology for different link cost probability distributions functions:
A uniform distribution (Table A.3) was constructed by assigning equal
probabilities to all states described on table 5.2. Two strongly asymmetric
distributions were generated by which assigning 70% of the probabilities to
the most (Right-skewed) and least (Left-skewed ) expensive cost realizations
(Tables A.4 and A.5 respectively). The remaining variations (Tables A.6 and
A.7) analyze the impact of the total number of states on the algorithmic
performance. The results suggest that the methodology is slightly sensitive to
the characteristics of the probability distribution, but consistently leads to a
very significant reduction of the total number of shortest path computations.
Uniform distributions, and those tilted to the right, require a larger number
of computations than others, given that they present more link states which

are below the average, thus may require a shortest path evaluation.
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Distribution  Noag(%) erat(%)  Nevar (%)

TI TIII

Uniform 5.3 2.09 8.92
Left-skewed 4.66 1.65 7.15
Right-skewed 6.35 3.98 8.21
Two States 17.99 1.82 9.6
Five States 1.68 0.92 2.28

Table 5.9: Impact of the link probability distribution on the algorithmic
Performance (Network I, K = 5)

5.1.6 Summary

This section introduced a state-space partitioning algorithm which reduces the
number of shortest path computations required to evaluate the performance
of different sensor deployment strategies on the expected cost of an adaptive-
system optimum assignment procedure. The technique takes advantage of
problem characteristics to develop partitioning rules and evaluation criteria.
These are used to find the shortest path value corresponding to several states
based on a single evaluation, or on previously computed values. Most of these
rules are rooted on shortest path properties, and incorporate some concepts
of shortest path re-optimization. They involve comparing the shortest path
value under a given state to a threshold value, and also verifying whether
the measured links are part of the optimal solution under a particular cost
realization. Unlike the cases studied by Alexopoulos [1997], who introduced
some of the seminal concepts implemented in this section, the computation
of the system expected cost under an adaptive system optimum paradigm
entails knowing the exact value of the shortest path for every perceived state,
increasing the number of required evaluations. The procedure is specialized
for three different sensor deployment strategy types in order to exploit the
problem characteristics. Strategies are distinguished based on whether or not
some, all or none of the monitored links belong to the shortest path under no
information, £°. Such condition affects the selection of the above mentioned

threshold value, leading to slightly different partitioning rules and evaluation
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criteria. Section 5.1.2 presents a way to visualize the state space generation
procedure as a tree growing process, and the corresponding partitioning
rules as tree-pruning operations. The proposed representation is useful to
understand how the methodology works, and can be utilized in the design of
more complex partitioning rules in future extensions.

Section 5.1.5 analyzes the performance of two different implementation of
the developed algorithm in C++-. Both sets of results exhibit major reductions
in the total number shortest path evaluations required to assess the system
performance resulting for a specific sensor deployment plan. On average,
strategies were appraised by computing the shortest paths corresponding to
only 10% of the possible states. The performance varied across strategy types,
and the proportion of evaluated states ranged between 2% and 35% in a well
connected network. For poorly connected networks, or in cases involving a
high number of deployed sensors relative to the network size, evaluations of
up to 85% of the possible states were necessary. The later is a consequence
of the impossibility of computing the threshold value necessary to partition
the state-space, but it does not indicate a deterioration of the procedure
performance as a function of the state space size. Furthermore, the conducted
experiments suggest a stable performance for increasingly large state spaces.
The results also indicate that the, even though the algorithm is affected by the
characteristics of the link cost probability distribution, the observed impacts
are not major. Distributions assigning lower probabilities to states with low
costs were found to require a larger number of evaluations, as a consequence of
the increased number of link states with cost below the corresponding expected
value.

The methodology presented in this section is effective in reducing the
computational effort involved in evaluation the expected cost of adaptive
system optimum strategies under different sensor deployment patterns. This is
a critical in the search for optimal sensor deployment strategies, given that the
proposed methodology may involves evaluating a very large number of possible
strategies. The next section describes a Tabu heuristic approach designed to

reduce the number of sensor deployment plans to be considered.
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5.2 Selecting an optimal sensor deployment

strategy: a Tabu heuristic approach

Given the integer, non-convex nature of the models introduced in Chapter
4, finding an optimal sensor deployment strategy may entail evaluating every
possible solution. Even though the procedure presented in Section 5.1 reduces
the computational burden of each of these evaluations, the number of possible
strategies grows rapidly with the network size and the number of sensors, thus
finding the exact solution may easily become prohibitive. The Tabu search
procedure described in this section provides an alternative solution approach
which, despite not guaranteeing the optimality of the solution, was found to
provide very good results in practice in considerably low computational times.

Tabu search is a popular meta heuristic technique for the solution
of combinatorial optimization problems (Glover [1977]). Extensions and
refinements to the original approach have been used to solve a variety of
problems, including integer and mixed integer programs (F.Glover [1989]).
The methodology is clearly suitable for the solution of the problem addressed
in this chapter, which can be modeled as a binary quadratic program (Chapter
4).

Tabu search typically starts form a feasible solution (trial solution), and
selects a “move” s which transforms the existing solution ¢ into a new solution
(s(t) = t') by changing the value of one or more of the problem variables. A
move can be defined as a mapping on a subset of the solution space. The
fundamental concept underlying Tabu search is that, by dynamically choosing
subsets of forbidden (Tabu) moves, one may generate a search process which
balances intensification and diversification, thoroughly exploring the solution
space without falling into local optima. The set of allowed moves is defined
as the neighborhood of a trial solution. Banned moves are stored in one (or
more) Tabu lists, which are dynamically updated. An evaluation function is
utilized to select the “best” move in the set of feasible moves, which is typically
the one leading to the greatest improvement (or the least disimprovement) of

the objective function. An additional advantage of Tabu search is that its
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implementation can be tailored to the characteristics of the problem under
study by changing the way in which the Tabu list is created and managed, the
definition of moves, and the specification of the evaluation function, among
others (see F.Glover [1990] for examples).

In order to find the sensor deployment strategy which optimizes the
performance of adaptive system optimum routing strategies we implement a
Tabu search heuristic which utilizes adaptive memory structures similar to
the ones proposed by Glover et al. [1998] for the solution of binary quadratic
problems. These store the recency and frequency information used to guide
the solution search, basically keeping track of the values assigned to variables
in recent iterations. Adaptive memory structures have been proved to be very
effective in the solution of problems classified as hard in the literature (Glover
et al. [1998|, Pardalos and Rodgers [1990]). Unlike the problems analyzed in
Glover et al. [1998], the selection of an optimal sensor deployment strategy
is constrained, given the fixed number of sensors which need to be deployed.
This is reflected in the definition of “moves” presented in the following
section. Additionally, some of the concepts presented by Ahuja et al. [2002]
in their study of local search algorithms for very large neighborhoods were
implemented in the search for a more efficient performance. The following
sections describe the proposed Tabu search implementation (Section 5.2.1),

and the corresponding numerical tests (Section 5.2.2).

5.2.1 Algorithm description

Let I' be the K-dimensional solution space containing all feasible sensor
deployment strategies ¢ involving placing K sensors on links & € K(¢), and
denote ZX(t) the corresponding system expected cost under the information
provided by such sensors (the notation Z(K) is occasionally used in this
discussion). Our problem can be stated in a simplified manner using equation
5.27

Min ZF(t): teT (5.27)
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where the value of ZX(t) can be appraised using the methodology described
in Section 5.1. Our decision variables, ¢, consist of binary M-tuples t =
{9'(1),¢"(2).....¢" (M)}, where g(j) = 1 if j € K(t)and g(j) = 0 otherwise,
and M = | M| is the cardinality of the set of network links.

We define a f-distance move m/(t,#') between trial solutions ¢ and ¢’ as
the swap of f elements currently in KC(¢) for elements &’currently not in IC(t).
A swap is accomplished by setting ¢* (k) = 0 for the exiting elements, and
g" (k') = 1 for the elements “entering” the solution. Notice that this definition
of move always maintains a feasible problem solution, and that the cardinality
of K(t) remains constant. The swap moves are implemented in a compounded
fashion (Ahuja et al. [2002|, Congram et al. [2002]), which selects entering and
exiting links independently from each other. Links exiting IC(¢) are also chosen
based on their individual impact on the objective function.

The value of f is the “depth” of the move, and the proposed algorithm
implements a variable depth search scheme (Ahuja et al. [2002]), under which f
changes cyclically between an upper and a lower bound (u and [, respectively),
in an attempt to balance intensification and diversification. Small values of
f permit a thorough search within a specific region of the solution space.
Large values of the variable are used to escape from local optima. Each
value of f defines a mode 7;, characterized by the corresponding depth f
and a span value n(f™), which represents the number of moves of depth f#i
to be performed. The total number of modes, I, as well as the number of
cycles through such modes, C, are problem parameters. Algorithm 8, which
summarizes the Tabu procedure, also describes the cyclic variations of f based
on critical events, defined below.

Two adaptive memory structures (or Tabu lists) per link are used to
guide the search process: a recency list B/ with elements R’[[], and a frequency
list F7, both of which are updated after a “critical event” is encountered
(Algorithm 6). A critical event is a move m/(¢,#') such that Z*(¥') > Z*(t)
(i.e. causes a deterioration in in the objective function value). The Tabu lists
keep track of the elements in /C(t) which are part of the solution before such

event, and therefore can be considered part of a local optima. The recency
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list has a finite length of sr which reflects the desired short memory span.
It is managed as a circular list, in such way that elements are added to the
bottom of the list and removed from its top. At any iteration 7T, equation
5.28 can be used to find Tabu_R(j), the number of times that a link j has
been part of a critical solution in the last sr moves. Even though the size of R
is typically adjusted heuristically, practical experiments (Glover et al. [1998])
suggest that values between 3 and 12 lead to efficient implementations for a

variety of applications.

i
S

l=sr

Tabu_R(j)= Y ¢'()=> Rl (5.28)
=1

d=T—sr
The frequency list (Tabu F(j)) records the participation of links j in
critical solutions throughout the execution of the algorithm. The frequency list
can be stored as an M-dimensional array which elements reflect the number
of times a link has been part of a critical solution since the beginning of the
algorithm (Equation 5.29).

d=T l=sr
F_count(j) = Y _g%(j) =Y F[] (5.29)

Algorithm 6 Updating the Tabu Lists at Critical Events
for allj e M do
Push back ¢’ (t) into R
R_count(j) = R_count(j) + ¢’ (t) — R/[1]
F_count(j) =F count(j) + ¢ (t)
Remove R/[1]

At each iteration an optimal move is identified, which entails selecting the
links leaving and entering the solution in such way that the objective function
decreases the most (or increases the least). This is accomplished by evaluating
ZX(t) for each possible move, and selecting the strategy rendering the lowest
objective function value.

Within the decomposed swap movement framework implemented here, a
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move m/(t,t') is accomplished in two independent steps, denoted DELETE
and ADD. At both stages, evaluations are conducted in order to assess
the impacts of the considered action on the objective function. The Tabu
lists are used to adjust the results of the corresponding evaluations through
factors which reduce the attractiveness of links identified as part of local
optimal solutions. Such links are therefore less likely to be reincorporated to
(or maintained in) the considered solution in the short term, which fosters
diversification in the search process.

The links to be deleted are selected individually from KC(t) based on the
impact that their removal has on the current objective function value. The
later is given by A (equation 5.30), which is computed accounting for recency
and frequency information. The links exhibiting the f lowest values of Ay
are removed from /C(t), and the resulting subset is denoted K'(t) = K(t) —
(k1,ko....kg). . A random factor R (discussed below) is used to randomize
the selection process within certain limits, given that the impact measured by

Aprdoes not exactly reflect the aggregate impact of removing a subset of links.

Ak = Z’C,(t) - ZR(]{Z) - ZF(]{Z) (530)
zr(k) = Tabu_R(k) x a (5.31)
zp(k) = Tabu_ F(k) x b (5.32)

In Equations 5.31 and 5.32, a and b are penalty factors, heuristically
determined. For this application, a = max;(0maes (7)), where 6,4, (7)(equation
5.33) represents the maximum possible reduction in the total system expected
cost introduced by placing a sensor on link j, and is an upper bound on the
benefits of obtaining information about the state of link j (Section 4.4). The

value of b is defined as a function of the number of iterations, following the
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1

experience described in Alexopoulos [1997]. For this application b = g

Omaz(§) = Y (&' —€l) x 1) (5.33)

st el<pi

During the ADD stage, f links j € K'(t) are chosen simultaneously to
enter the new solution, based on the improvement they cause on the objective
function. The neighborhood of a solution t, N(t), is therefore defined as
the set of all possible f-tuples formed by links currently not in K(¢). Such
neighborhood may be very large, and the proposed implementation evaluates
only a subset of N(t), a fairly common practice in local search algorithms for
very large neighborhoods (Ahuja et al. [2002|). In order to generate the reduced
neighborhood, candidate links are sorted based on their 2 () value (adjusted
to account for recency and frequency information according to Equation 5.34),
and Algorithm 7 is used to systematically generate a percentage G of the

possible f-tuples (or combinations).

Ormas(7) = Omaa(7)2R (k) + 27 (k) (5.34)

This percentage varies between a lower bound G!, which guarantees a
minimum exploration of the neighborhood, and an upper bound G*, selected
in order to avoid an excessive computational burden. The actual size of the
reduced neighborhood G can be smaller than its upper bound if an objective
function value lower than the prevalent optimal solution is found before
performing G* evaluations.

The procedure designed to generate the reduced neighborhood (Algorithm
7), despite incorporating a random element, is systematic, in such way that if
G = 100% all the possible combinations are generated without repetition.

In the corresponding algorithm, A = é defines the number of combinations
to “skip” (based on the lexicographic order described earlier) if only G!
f—tuples were to be generated.  Array o[i] contains the link indices
corresponding to the generated f-tuple, and array max[i] and min[i| represent

the maximum and minimum value that the index my adopt at each position.

107



Algorithm 7 Generation of a randomized reduced f- swap neighborhood

a = max|f] — v[f]

v[f] = max[f] — (A —a) -1
r_count=0

U — aux_ v

while (a<A) do

j=1f
While (v[j] = max[j]) do
if](jz()) then

v[j] + +

for (j+1<k<f) do

v[k] = vk — 1]+ 1
else if (r_count<A) then

r _count+-+

aux_v — v

while (v[j] = max[j]) do
j - —

olj] + +

for (j+1<k<f) do
vlk] =vlk—1]+1
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Possible Combinations

v[1] v[2] w[3] Order

2 3 1

1 2 i | 4

1 2 3 7

1 3 4

1 3 3 2

1 i | 5 ]

2 3 4

2 3 5

2 1 3 3

3 i | 5 6

Figure 5.10: Generation of a reduced neighborhood

These arrays are initialized setting min[i] = i and max[i| = |[K(t)| — (f — 7).
R is a random number, different for every ADD operation, used to avoid
considering the same reduced neighborhood in all iterations. The maximum
and minimum values of R (R" and R') are problem parameters. Figure
5.10depicts the order in which 6 combinations would be generated for a move
of depth 3 on a network with |[K'| = 5 and G' = 30%, when 7 neighborhood
evaluations are desired.

During the ADD operation, f-tuples in the reduced neighborhood are
generated and added to K'(t), generating a k-tuple K”(t) which is evaluated
using the methodology described in the previous section. The corresponding
objective function value is adjusted according to equation 5.35, and the
neighborhood member v[i] leading to the lowest value of A, defines the

optimal move for the corresponding iteration.

i=f
Ay =25 (0) + 3 (2n(wli) + 26 (v]i]) (5.35)

i=0
Algorithm 8 describes the integration of all the previously described
elements into a Tabu Search heuristic, which parameters were tested and

adjusted through the numerical experiments described in the following section.
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Algorithm 8 Managing the search depth and span

Z* = 7(0), iter=0
while (cycle<C) do
i=1, dir=1
while (move count< n(f")) do
iter++
Perform move m/ ) (¢, ¢)
if (Z(t') < Z*) then
Z*=Z(t)
move__count-+-+
else if (Z(¢') > Z(t)) then
Critical Event=1
Update Tabu F
if (dir=1) then
move _count=n( f*)
else
move __count-+-+
Update Tabu_R
if (dir=1) then
i+
else
7; _
if (¢=1) then
dir = —1
else if (i =1) then
dir=1
if (i=1) then
cycle++
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5.2.2 Numerical testing

The tests performed in this section are conducted on two medium-sized
networks, Network I (previously introduced in Figure 5.8 and Table 5.2), and
Network 2 (Figure A.1 and Table A.2). The later accounts for 15 nodes and
42 arcs, and it was also utilized in Alexopoulos [1997].

The tests measured the performance of the Tabu methodology in terms
of the number of strategy evaluations conducted before reaching an optimal
solution (Section 5.2.2.2). Test results were also used to adjust the parameters
described in Section 5.2.1, as described in Section 5.2.2.1. In order to
assess the algorithmic performance, optimal solutions were obtained using
the procedure described in Section 5.1 to evaluate all possible K sensors
deployment strategies in Networks I and II. Due to practical considerations,
the value of K ranged between 1 and 5 for Network I, and between 1 and 6
for Network II.

5.2.2.1 Parameter selection

This section discusses the selection of the various parameters utilized in the
Tabu search heuristic introduced in Section 5.2.1. Most of the values were
determined based on the literature, and adjusted to fit the requirements of the
analyzed problem.

Appropriate values of I (the number of modes 7;), and the corresponding
depths f7and spans n(f"), were identified by trial and error, and set to the
values displayed in Table 5.10. These values have an impact on the number
of evaluations conducted per cycle, and it was found that a large number of
modes tends to delay the convergence process. In principle, it would suffice
to utilize two modes, one with f = 1, aimed to intensify the search around
near-optimal locations, and a second mode intended to diversify the search
procedure by swapping most of the elements in the current solution. However,
the problem properties discussed in Chapter 4.2 indicate that some of the
beneficial impacts of information are attained only when specific sets of links

are measured simultaneously. Swap movements of higher depths were included
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to facilitate a faster identification of such combinations. The number of moves
within each mode was adjusted to avoid an excessive number of evaluations
per cycle. The benefits of the Tabu search methodology are achieved only if
there is a balanced distribution of intensification and diversification moves,

which requires cycling between modes relatively fast.

K ™ n(f™) f™ a(f=) f* n(f")
11

5 1
1

S U i W N
T g W —
Ot Ot Ot Ot Ot =
= W = W N
NN H —

Table 5.10: Parameters [ and n(f™)

The maximum number of cycles, C, is set to 20 based on the results
displayed in the following section (Table 5.11). An additional convergence
criterion considers the number of moves accomplished since the last
improvement in the objective function, and the total number of performed
evaluations. For a wide variety of cases the algorithm was found to converge
after a number of evaluations equivalent to 5% (or less) of the possible
combinations. The additional convergence criterion terminates the program if
the number of evaluated strategies is larger than 20% of the possible strategies,
or if the solution has not improved in the last 50 moves. In the later case,
Y = S2=In(f™) moves of depth 1 are evaluated before terminating, based
on some of the results discussed below.

The length of the short term memory structure, Tabu R, was set to five
iterations. On the networks considered in this study, lengths shorter than 3
iterations typically led to excessive cycling, and values higher than 8 delayed
the convergence process. The results suggest that, even though the Tabu
list should be long enough to guarantee that locally optimal variables do not
reenter the solution within the same mode, allowing the reincorporation of

such variables at the diversification stage of the same cycle may be beneficial
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for the convergence process.

Penalty values were chosen as described in the previous sections, and
performed adequately. The parameter controlling the size of the reduced
neighborhood, G, was assigned values between 50% and 80% of the
f—neighborhood size. If the lower bound is reduced below 30%, the algorithm
performance becomes more unstable. As a consequence, more evaluations
are necessary to guarantee convergence, even though fewer strategies are
evaluated per cycle.

The randomization parameter R is allowed to take values between 0 and
0.3 x |K'(t)], where |[K'(t)| is the number of candidate links. This, combined
with the sorting scheme used for the links in K'(¢), gives a slightly higher
priority to strategies including links with large values of 6,4, (7)-

Although most of the parameters were found to be adequate for various
network sizes, some of them, such as G" and R, may need to be adjusted
for very large networks, in order to avoid an excessive number of evaluations.
Similarly, the number an properties of swap modes is directly related to the

problem characteristics, and should be adjusted appropriately.

5.2.2.2 Performance evaluation

The algorithm performance was measured in terms of the number of strategies
evaluated before convergence, which represents the gains with respect to a
naive approach under which all possible strategies of a given size need to be
evaluated. Table 5.11 shows the results obtained on Network I for different
numbers of deployed sensors. Given that the algorithm incorporates a random
element, thirty runs were conducted for each case, in order to test the stability
of the algorithm (the first row shows the average values across thirty runs
conducted using different random seeds). The results, which suggest a stable
algorithm performance for the selected values of R (Section 5.2.2.1), are very
impressive for sensor deployment strategies of size 3 and larger. In most of
these cases, the optimal value was found during the first 2 cycles (C' < 2).
Furthermore, the number of evaluated strategies E as a percentage of the

total number of existing combinations FE,,., is very small in the majority
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of the numerical tests. It ranges from an average of 23% the in 3 sensor
case, to only 3% for the 5 sensors case. For the 2 sensor case, the total
number of strategy evaluations at convergence is equal, or even larger, than
the evaluations performed under an optimal naive approach. The later reflects
the fact that there is a minimum number of evaluations that the algorithm
needs to perform in order to solve any problem. Such number is conditioned
by C, mode parameters f” and n(f™), and the criteria used to define the
neighborhood size. For large problems, the minimum required evaluations
are a very small fraction of the solution space, and they have no impact on
the algorithm performs. The solution space corresponding to the problem of
finding the optimal sensor deployment strategy of size 2 in Network I is small,
and the minimum number of computations performed by the proposed Tabu
search procedure may exceed those involved in an optimal approach. This
is not a concern, given that small problems can be easily solved using exact
methodologies.

Figures 5.12 and 5.12 detail the convergence process as a function of the
number of strategy evaluations for a representative model run in networks I and
IT respectively. In Figures 5.13 and 5.14 the same information is displayed, but
the number of strategy evaluations is expressed as a percentage the possible
number of strategies. In both sets of Figures, the error is given by equation
5.36

w .100 (5.36)

Error =

The first two figures suggest that the algorithm typically gets very close to
the optimal solution in a relatively small number of iterations. For strategies
involving a larger numbers of sensors, and for most strategies in the larger
network, relatively long plateaus may be observed at low error values. These
occur when the algorithm has identified most of the links in the optimal
solution, but an insufficient number of intensification moves prevents it from
finding the exact optimal solution. In order to improve convergence, the move
depth f is set to 1 when a plateau is detected, regardless of the prevalent

mode. The adjusted move depth is maintained during a number of moves
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30

K=2 K=3 K =4 K=5
C Bowe 72—  C Fpuw 22— C Fpuw 22 C B 72—
0 351 139 1 380 021 0 288 0.03 2 910 0.03
1 521 206 0 185 0.16 0 255 0.03 1 404 0.01
0 133 053 1 280 044 0 280 0.03 0 262 001
0 113 045 3 78 020 1 303 0.3 1 387 0.0l
0 106 042 1 350 028 1 423 0.05 10 2984 0.09
0 106 042 2 496 0.19 0 257 0.03 113650 0.11
0 196 077 1 329 0.14 0 256 0.03 1 334 001
1 497 196 0 253 0.20 0 280 0.03 1 482 0.01
1 423 167 1 351 0.7 1 329 0.04 6 1870 0.06
0 154 061 1 300 023 0 231 0.03 0 262 001
0 136 054 1 401 047 0 256 0.03 6 2062 0.06
0 157 0.62 3 831 028 0 297 0.03 0 266 0.01
1 399 158 1 492 0.12 0 233 0.03 1 434 0.0l
2 606 240 0 209 0.16 0 281 0.03 0 308 0.01
2 83 341 1 281 032 1 305 0.03 3 1102 0.03
1 466 1.84 2 564 0.36 0 329 0.04 0 242 0.01
2 661 261 2 641 0.22 0 346 0.04 1 497 0.01
0 318 126 1 397 023 0 257 0.03 1 362 0.01
0 233 092 1 400 022 0 257 0.03 0 333 001
0 207 082 1 396 0.3 0 225 0.03 1 405 0.01
0 301 119 0 233 013 0 233 0.03 1 500 0.01
0 346 137 0 228 029 1 423 0.05 0 327 001
1 470 1.86 2 518 0.28 0 257 0.03 15 4606 0.14
0 129 051 2 493 0.12 1 327 0.04 1 382 0.01
0 207 082 0 209 0.14 0 273 0.03 3 1246 0.04
0 204 081 0 252 017 0 280 0.03 3 1124 0.03
2 88 319 1 305 0.14 0 255 0.03 1 411 0.01
1 584 231 1 256 0.12 0 257 0.03 0 261 001
2 617 244 0 209 023 0 351 0.04 0 238 001
0 305 121 1 415 0.19 0 321 0.04 4 1298 0.04
0 281 111 1 329 0.8 0 280 0.03 0 261 001

Table 5.11: Algorithm convergence in Network 1 for different random seeds
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Figure 5.13: Algorithm convergence in Network I (Percent error)

equivalent to one or two cycles, after which the algorithm is terminated unless
the optimal solution improves. This approach effectively led to the optimal
solution in most analyzed cases.

The tables displaying the algorithm performance as a function of the
percentage of total strategies evaluated suggest that in most cases the
algorithm attains a solution within 1% of the optimal value after a number
of evaluations equivalent to, at most, 10% of the possible strategies. The
performance does not deteriorate with the network size, or in cases considering
larger deployment strategies. However, as the number of required evaluations
becomes larger, the effort involved in each of these computations becomes
more relevant. The state partitioning algorithm presented in previous Sections
alleviates the computational burden to a certain extent, but for very large
sensor deployment strategies, heuristic procedures may be necessary in order

to obtain solutions within a limited time frame.
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Figure 5.14: Algorithm convergence in Network II (Percent error)

5.2.3 Summary

This section introduced an adaptive memory Tabu search procedure for the
solution of the optimal sensor deployment problem under information. The
proposed algorithm considerable reduces the computational effort required to
find near-optimal solutions, enabling the quick optimization of relatively large
problems. The search procedure explores the solution space by moving from
an existing solution to a new one within a predefined neighborhood. Moves
are accomplished by swapping a specific number of elements between the
existing solution and the neighborhood. The number of exchanged elements
(move depth) varies cyclically throughout the search process, which results
in alternating intensification and diversification phases that efficiently cover
the solution space. The variation pattern is designed to take into account the
problem characteristics, capturing the potential synergies behind the selection
of specific combinations of links.

Identifying incoming links entails evaluating of all the candidate sets in
the neighborhood. Given the potentially large size of such neighborhood, a

randomized reduced neighborhood which includes a specific percentage of the
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potential candidates is utilized. The procedure implemented to generate such
neighborhood accounts for a random component which avoids generating
always the same subset of candidate solutions, but at the same time is
systematic, preventing the duplication of candidate combinations. The
algorithm terminates when a pre specified number of swap length cycles has
been accomplished. Additional convergence criteria are utilized to refine the
value of the solution near termination, increasing the chances of finding the
exact optimal value.

The search process is guided using adaptive memory structures, or Tabu
lists. These lists store recency and frequency information, reflecting how many
times a particular link has been found to belong to a locally optimal solution
in the short and long term. They are used to foster diversification, by avoiding
the repeated re-incorporation of links which neighborhoods have already been
explored.

Numerical tests conducted in two medium-size networks for several values
of K, the number of deployed sensors, suggest a very satisfactory algorithmic
performance. Optimal solutions were achieved by evaluating in average only
20% of the possible strategies in smaller cases (up to 10° candidate solutions),
and only 3% of the candidate solutions for larger cases, with more than
one hundred thousand candidate strategies. The results suggest that the
algorithm is robust with respect to both, the network and the strategy size.
However, when many sensors are considered, the methodology utilized to
appraise each candidate solution plays a critical role, and heuristic approaches
may be necessary to complement the state partitioning technique introduced

in the previous section.
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5.3 Implementation: Analyzing the impacts
of sensor location on the performance of

adaptive system-optimum routing strategies

In this section we implement the methodology described earlier to find the
optimal deployment strategy of different numbers of sensors on two test
networks, and discuss the results from various perspectives. In addition to
the problems solved during the numerical tests conducted earlier, additional
problems were solved utilizing the heuristic approach. These include the
deployment of 5 and 6 sensors on Network II, and the deployment of 10
sensors on a modified version of network I with a smaller number of possible
states per link (Table A.6).

The results displayed in Table 5.16 illustrate the beneficial impact of
deploying an increasingly large number of sensors in Networks I and II. For
these particular examples, the provision of information regarding the state
of only 6 links leads to reductions in the system expected cost of 3% and
12%, respectively. The higher gains observed in Network II are likely to be a
consequence of its large size and better connectivity, which translates into the
availability of more alternative paths.

The practical value of the observed improvements clearly depends on what
the link costs represent. Furthermore, the results corresponding to different
networks and probability distributions are likely to vary widely in terms of the
absolute gain, which motivates the qualitative type of analysis conducted in
the remaining of this section. The proposed approach focuses on the properties
of the solutions, which can be generalized and used to analyze the value of the
novel models for future practical implementations.

Table 5.12 exhibits the marginal gain associated to the incorporation of
each additional sensor, given by AG(i) = %

that this value does not exhibit a linearly decreasing trend. This illustrates

. It is interesting to notice

problem properties already discussed in Section 4.4, which reflects the non-

linear nature of the impacts of information. While the incorporation of a
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Network I Network II

K 25  G%) AG%) 75 G%)  AG%)
0 152.5 - - 64.5 - -

1 151.79 0.47 0.47 61.77 4.23 4.23
2 150.22 1.49 1.03 61.06 5.33 1.09
3 148.94 2.34 0.84 60.52 6.17 0.84
4  148.27 2.77 0.44 59.79 7.30 1.13
5 148.02 2.93 0.16 59.40 7.91 0.61
6 147.66 3.18 0.24 56.83 11.89 3.98

Table 5.12: Impacts of information: Reductions in system expected cost

new sensor generally leads to an improvement in the system expected cost,
the utilization of the provided information may be limited by the lack of
measurements in complementary links. In other words, one may learn that
link ¢ exhibits a cost considerably lower than expected, but such information
has no value if the costs on the remaining links on the path leading to
remain unknown. Eventually, the incorporation of enough additional sensors
allows monitoring the network in such way that the potential benefits of the
information collected at each individual link are fully realized. Once this is
achieved, the marginal value of incorporating a new sensor is likely to stabilize,
and may become zero.

Table 5.13 indicates the probabilities of optimally routed system assets
facing expected costs above (O) and below (U) the expected cost under no
information provision, p°. Notice that the reported value is not the probability
of actually paying a cost higher or lower than p°, given that some link cost
realizations remain unknown at the moment of making the corresponding
routing decisions. However, the approximate values presented here provide
some intuition regarding the characteristics of the solutions produced by the
models. Even though in most of the cases the probabilities of facing expected
costs lower than p° seems to increase with the number of deployed sensors,
this needs not to be the case. For example, the value of U for the 6 sensors

case in Network 2 is considerably lower than the corresponding value when
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Network 1 Network 11

K O U O U

0 0.54 0.46 0.57 0.43
2 0.64 0.36 0.82 0.18
3 061 0.39 0.79 0.21
4 0.60 0.40 0.83 0.17
5 0.60 0.40 0.88 0.12
6 0.62 0.38 0.55 0.45

Table 5.13: Impacts of information: Probabilities of facing expected costs
above and below the LEC

only 5 sensors are deployed. This reflects the fact that the reduction in system
expected cost is a result of monitoring paths which have a positive probability
of exhibiting a lower cost than expected. There is an inherent tradeoff between
the magnitude of the possible gains, and the probability of attaining them. The
model we propose is equally likely to select a path with high probabilities of
leading to a moderate gain, than to choose a route which has insignificant
chances of providing exceptional savings. Clearly, for some applications it
may be relevant to avoid facing costs higher than a threshold value, and the
objective function should be reformulated appropriately.

Figure 5.15displays the optimal location of, 1, 3 and 6 sensors on Network
IT. It also depicts all the paths which may be utilized during the corresponding
asset routing under information. When one only sensor is available, the
optimal solution places it on a link in £°, in such way that assets may be
re-routed into the second best path if £° exhibits a higher cost than expected.
As more sensors become available, other alternative paths are measured. It is
interesting to notice that when 6 sensors are deployed, none of them is placed
along £°, and all the resources are devoted to identifying paths exhibiting
lower costs than p°.

The observed deployment and routing patterns suggest that information is
first utilized to overcome the effects of high costs realizations on £°. However,
if enough resources and alternative paths are available, sensors are used to

unveil path cost realization which may be considerably lower than p*. The
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Figure 5.15: Optimal deployment of one, three and six sensors on Network II
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Figure 5.16: Optimal sensor deployment strategies and link utilization patterns

results also indicate that the deployment pattern depends on the cost variance
(or standard deviation) on £°. On Network I, for which o = 31,5 (compared
to only 16.5 on Network 2), most of the strategies involve placing at least one
sensor on £°. Figure 5.16 summarizes sensor deployment and path utilization
patterns for Networks I and II, and strategy sizes ranging from 0 to 6.

Based on the former observations, two naive deployment strategies based
on link variance were tested, and their results are presented in Table 5.14 and
5.15. The first of these strategies deploys the available sensors on the links
with the highest variance. The resulting system expected, denoted p*(0%;;),
is considerably higher than the optimal values produced by our models (The

p*(oiLL)—Z*)
zZ* '

sensors on the highest variance links in £°, leads to solutions p*(c%) closer to

loss is given by L = The second strategy, which first deploys
the optimal values. This is most likely a consequence of measuring links in £,
which allows avoiding costs much higher than expected value if alternate paths
with lower expected costs are available. The observed behavior suggested that
“blind” sensor deployment strategies, which do not consider the impacts of the
provided information, are less effective, and may have virtually no benefits for

the system.
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Network I
Oall or
- G% L% o G% L%
152.5 0.00 -100 152.5 0.00 -100
152.5 0.00 -100 151.1  0.93 -374
151.8 0.45 -80.6 151.1  0.93 -60.0
150.7 1.18 -57.3 1509 1.02 -63.0
150.7  1.19 -59.5 151.0 1.02 -65.1
150.7 1.19 -62.5 148.8  2.44 -23.3

TR W N RO

Table 5.14: Results for maximum variance-based deployment strategies

Network II
Oall oL
i G% L% o G% L%
64.5 0.00 -100 64.50  0.00 -100
64.5 0.00 -100 61.39 4.82 -9.5
64.5 0.00 -100 61.39 4.82 -21.9
64.5 0.00 -100 61.39 4.82 -34.0
64.5 0.00 -100 61.39 4.82 -39.1
64.5 0.00 -100 60.89  5.68 -52.2

TR W= O X

Table 5.15: Results for maximum variance-based deployment strategies
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The results described in this section suggest that the models proposed
in Chapter 4 can be used to improve the system performance and optimize
the collection and utilization of information. Even though the absolute gains
may vary widely depending on the characteristics of a particular network,
the numerical analyses conducted for this application show the advantages
of taking into account the utilization of information in the design of the
corresponding data collection strategies. Naive approaches are suboptimal,
and may result in resource investments which do not have any beneficial impact
on the system. The analysis of optimal information collection patterns and the
corresponding asset routing strategies also provides insights into the impacts of
information in the utilization of a stochastic network. The models identify the
network links which are critical in the connection of an origin-destination pair,
which may be used as the basis to analyze the network performance under more
complex behavioral assumptions. Furthermore, given that the availability of
more information eventually leads to the utilization of a larger set of paths,
the models can be used to study the design of information provision patterns

fostering a more efficient network utilization.

5.4 Summary

This chapter presents, tests, and implements a methodology to find the sensor
deployment pattern which optimizes the performance of adaptive system
optimum routing strategies on a network with random arc costs. The models
solved in this chapter identify sensor deployment strategies which account
for the posterior utilization of the collected information. The corresponding
decision variables are the links to be monitored, which define the set of
perceived network states based on which adaptive routing decisions are made,
and the routing strategies. In virtue of the integer nature of these variables,
which represent a model constraint that cannot be relaxed (Section 4.2), the
problem is combinatorial, and its solution requires the complete enumeration
of all feasible sensor deployment strategies. The evaluation of each of these

strategies, is also computationally challenging, involving in principle the
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computation of a shortest path for each perceived network state. The number
of such states may be very large, depending on the available sensors and the
characteristics of the link cost probability distributions.

The solution method is based on the fact that, given the assumptions
presented in Section 4.2, the models may be solved by enumerating all feasible
sensor/probe deployment strategies, and computing the corresponding
expected costs under information. Such approach poses two main challenges:
the large number of perceived states which need to be considered during
the evaluation of a feasible deployment strategy, and the existence of a
combinatorial number of strategies. The proposed solution technique deals
with the first issue using state-partitioning principles, while the combinatorial
problem is addressed heuristically, by implementing an adaptive memory
Tabu search procedure.

The state-space partitioning algorithm, introduced in Section 5.1, is
guided by rules developed specifically for the problems under study. These
are used to reduce the number of shortest path computations required to
find an optimal solution, mostly by appropriately selecting threshold values
for the corresponding cost. Numerical experiments suggest that, in well
connected networks, the algorithm may reduce the computational effort by up
to 95%. The adaptive memory Tabu search procedure, presented in Section
5.2 explores the combinatorial solution space guided by short and long term
memory structures. In the examples studied in Section 5.2.2 it found the
optimal solution by evaluating between 3% and 20% of all the candidate
solutions.

The performance of the proposed methodology is very satisfactory, and the
results suggest that the effectiveness of the heuristic approach is not affected
by the network size or the number of deployed sensors. However, the exact
approach chosen to evaluate each feasible strategy may not be appropriate
in cases involving many sensors, or in networks where the probability
distribution functions exhibit a large number of states. A possible way of
overcoming this problem may be the design of more complex partitioning

rules, which may further reduce the number of shortest path computations
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per strategy evaluation. Additionally, shortest path re-optimization methods
may be used to reduce the computational burden introduced by the large
number of necessary evaluations. Appendix B provides a summary of such
methodologies, which utilize the information provided by the solution of a
shortest path problem to reduce the effort involved in re-solving the problem
given some changes on the network costs.

The integrated methodology was implemented to the analysis of two
medium sized networks, introduced in Alexopoulos [1997]. The results suggest
that optimized sensor deployment strategies lead to improved adaptive system
optimum decisions, leading to expected cost reductions ranging between 2%
and 4%. The practical implication of the observed gains depends on the
considered application. Furthermore, the magnitude of the results is likely
to vary widely depending on the characteristics of the system under study.
Nevertheless, the observed trends in the results are promising, and the
proposed approach is up to 50% more efficient than methodologies which do
not explicitly model the usage of information.

The analysis of the optimal information collection patterns and the
corresponding asset routing strategies conducted in Section 5.3 provides
interesting insights into the impacts of information on network utilization.
The models identify the network links and paths which are critical in the
connection of the considered origin-destination pair, which may be used as
the basis to analyze the network performance under more complex behavioral
assumptions. Furthermore, given that the availability of more information
eventually leads to the utilization of a larger set of paths, the models can
contribute to the study of information provision patterns allowing more
efficient network utilization. The variations analyzed in this work involve a
single origin destination pairs, a priori routing strategies, flow-independent
link costs, and time invariant probability distributions. Further work in the
area may relax these assumptions, in the search for a more flexible model

which can be adapted to solve a variety of real world problems.
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Chapter 6

Information Based System

Optimum Assignment

The widespread adoption of wireless location technologies provides new means
to automatically collect and distribute real time information from mobile
assets, which measure the system state while they travel through the network.
In transportation networks, traffic data collected from, and distributed to,
moving vehicles has an enormous potential to improve the system performance
by alleviating the negative impacts of uncertainty.

The availability of advanced technologies encourages the design of
innovative approaches to traditional transportation problems, capable of
exploiting the new sources of information. This chapter introduces a novel
system-optimum network assignment paradigm which models the utilization
of real time data to adjust system-optimum routing decisions, and takes
advantage of the capability of assets to collect information as they travel
through the network.

Vehicles traveling through a stochastic transportation network experience
the realized state of each link they traverse, and therefore generate data
about the network state. Thanks to the widespread adoption of Geographic
Information Systems and other location-based technologies, the experienced
cost data can be automatically collected, and eventually utilized for multiple

purposes such as travel time prediction and network monitoring. In this
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context, the vehicles become probes, which sample the conditions throughout
the network, with the potential to provide better coverage at a lower cost that
traditional fixed traffic sensors (Cayford and Yim [2006.], W.L. et al. [2005]).

The Information-Based System Optimum (IBSO) assignment paradigm
presented in this chapter shares the “cooperative” routing concept underlying
traditional System Optimum (SO) assignment models, in virtue of which
some assets may face higher costs than others in the search for an optimized
system utilization. In the presence of uncertainty and information provision,
one may consider that the impacts of an asset on the system cost are
two-folded, including not only the cost the pay to traverse the network,
but the information they collect along the way. As a result, some assets
may be assigned to a higher-cost path than others in order to collect
information which benefits the entire system. Such approach has a number
of potential applications, including the cooperative deployment of emergency
vehicles, military assets, and commercial vehicles. Furthermore, analyzing
the properties and behavior of models incorporating the new paradigm may
contribute to a better understanding of the impacts of information on the
performance of transportation systems.

The approach proposed in this chapter is fundamentally new. The
utilization of data provided by probe vehicles has been studied in the
literature, and is discussed in Section 6.1. However, existing methodologies
are centered on exogenously generated data, and they do not consider
the possibility of selecting the routes along which information is collected.
Furthermore, most of the existing models are not capable of measuring the
effect of specific information collection strategies on the benefits derived from
the corresponding data.

The mathematical model proposed in this chapter (Sections 6.2 and
6.3) captures the impact of different information collection patterns on the
performance of adaptive system optimum routing strategies. By allowing
the utilization of some of the system assets as probes, it implicitly captures
the trade-offs between the cost and value of information, which is of the

utmost interest for practical purposes. It also presents other interesting
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properties, which are discussed in Section 6.4. The model is implemented
to the analyses of several example problems (Section 6.6), and the result
analyses suggests that the proposed approach may take advantage of new
data sources to improve the system performance. The methodology used to
solve the problem is an adaptation of the techniques presented in Chapter
5. The numerical experiments conducted using this approach also illustrates
the problem behavior and properties, providing insightful information for
the future design of practical application models and more efficient solution

procedures.

6.1 Literature Review: Using probe vehicle

data in transportation networks

Vehicles traveling through a stochastic transportation network experience the
realized state of each link they traverse, and therefore collect information
about the network state. Thanks to the widespread adoption of Geographic
Information Systems and other location-based technologies, the experienced
cost data can be automatically collected, and eventually utilized for multiple
purposes such as travel time prediction and network monitoring. In this
context, the vehicles become probes, which sample the conditions throughout
the network, with the potential to provide better coverage at a lower cost that
traditional fixed traffic sensors (Cayford and Yim [2006.], W.L. et al. [2005]).
Kim and Ra.Cayford [2000] study the utilization of cell phone and GPS data for
traffic monitoring, and concluding that systems providing a location accuracy
of 20 meters or less are adequate for such purpose. The data available in the
San Francisco Bay Area at the time this effort was conducted was enough to
covered 99% of the major freeways and arterials.

A number of studies have been conducted in order to analyze the
potential utilization of wireless location information for system monitoring
purposes. Most of the methodologies consider that probe vehicles provide a

representative sample of the traffic conditions experienced on the network,
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and apply statistical techniques to compute the average value of the condition
of interest, typically speed. Performance is generally assessed in terms of
system coverage and estimation accuracy (Fontaine and Smith [2005]), and
model parameters include sample size and frequency of the sampling. W.L.
et al. [2005] study the sample size necessary to produce good estimates of
travel time and congestion accounting for the practical limitations imposed
by wireless networks and various transportation network parameters. They
indicate the need to adjust sample size and frequency based on traffic
conditions and vehicle characteristics.

Fontaine and Smith [2005| analyze the effect of network characteristics
and sampling methodologies on the quality of the speed estimations generated
using wireless location technologies. They implement a simulation-based
approach, and their findings highlight the importance of the map-matching
procedure used to identify the actual location of a vehicle in the network.
The authors also remark the need for estimation models able to adapt to the
network conditions by adapting the sample size, as well as the temporal and
spatial characteristics of the sampling procedure. Kwon et al. [2007| compare
the performance of probe-based data and loop detectors information in the
generation of congestion information, and develop a methodology which
produces reliable estimations of the conditions in urban freeways when 4 to
6 days of good probe data is available. Their findings suggest that this is as
efficient as estimating congestion based on loop detectors spaced half a mile.

Commercial and public transportation vehicles are typically equipped
with GIS devices (Automatic Vehicle Locators-AVL), and several authors
(e.g. Chakroborty and Kikuchi [2004]|, Cathey and Dailey [2002], Dailey and
Cathey [2006], Tantiyanugulchai and Bertini [2003]) analyze the utilization
of the information they provide for travel time prediction. In this approach,
a fundamental issue is the relationship between the probe speed and the
average system speed. Chakroborty and Kikuchi [2004] conduct studies
comparing bus travel time to the travel time experienced by passenger cars.
The corresponding findings suggest that the difference between the two

magnitudes is relatively stable, and therefore mathematical expressions can
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be developed to derive the average speed of passenger cars based on bus
probe data. Tantiyanugulchai and Bertini [2003]| study the same problem in
Portland, Oregon, finding that the average speed of a regular vehicle is 1.3
that of the probe bus speed. Dailey and Cathey [2006] analyzes the utilization
of buses in the Seattle area to monitor traffic conditions and improve traffic
management strategies, developing a methodology which estimates congestion
and travel speeds with an accuracy comparable to that obtained from static
Sensors.

Moore II et al. [2001] study the utilization of patrol cars in California to
produce travel time estimates. Their findings suggest that, in general, the
speed of patrol cars is not a good approximation of the prevalent speeds on
the freeway sections they traverse, and that the covariance of both magnitudes
is somewhat erratic, complicating the utilization of the corresponding data.

An upcoming approach to employ passenger cars as probes is based on
cell phone location data (Cayford and Johnson [2003], Cayford and Yim
[2006.], Bar-Gera [2007], Foo et al. [2006], Jin et al. [2007]). Cayford and Yim
[2006.] makes use of the technology developed to track emergency cell phone
calls in order to monitor the transportation network state in Tampa, Florida,
generating average speed data for 98% of all the major freeways in the area
under study with relatively low estimation errors (5-10 mph). Bar-Gera [2007]
describes a similar application in Israel, concluding that the predictions based
on cell phone data had a comparable accuracy to those based on dual loop
detector information. From a different perspective, Davies et al. [2006| explore
the utilization of GIS data from passenger for updating and correcting road
maps, finding that the methodology is promising and provides reasonably
accurate results for roads with relatively dense GPS readings.

The review conducted in this section suggests that there are multiple
sources of online transportation data, and work is being conducted towards
the efficient utilization of the corresponding information for system monitoring
purposes. However, there’s virtually no research analyzing the utilization of
probe-vehicle data for route guidance purposes. Furthermore, the effects of

the specific routes followed by the probes on the quality and usefulness of

133



the corresponding information have not been explored. The later is of great
interest from two perspectives: firstly, the actual route followed by some of the
probes, such as buses and commercial vehicles, may be optimized in order to
generate the largest possible system benefits. Additionally, understanding the
impacts of different information collection patterns allows identifying critical
data sources, eventually reducing the amount of information that needs to be

processed for specific purposes.

6.2 The Information-Based System Optimum

assignment paradigm

This section conceptually describes the Information Based System Optimum
(IBSO) paradigm introduced in this chapter, which shares some common
elements with the traditional system-optimum assignment (SO) problem.
The later finds the optimal flow patterns satisfying given origin-destination
(OD) demands on a network where link costs are a convex function of the
corresponding flow. Optimality is defined as the minimization of the total
system cost, which is equal to the summation of the cost paid by each
individual vehicle. Sheffi [1985] provides a rigorous mathematical formulation
of this problem. One of the most notable characteristics of an SO assignment
strategy is that the selection of optimal routes takes into account both, the
cost faced by an asset when utilizing a path, and the impact that its presence
on the path the has on the cost paid by the remaining assets which utilize it .
This property, reflected in the problem’s optimality conditions Sheffi [1985],
is the one that guarantees that an optimized system-level performance is
achieved, at the cost of allowing some assets to face higher costs than others.
Moreover, the path flow patterns in an optimal SO solution are such that it
would be possible for some vehicles to switch to a different path and incur in a
lesser cost. However, that “selfish” behavior would have a negative impact on
the assets already assigned into the alternative path, and worsen the system

performance.
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The Information Based System Optimum (IBSO) assignment shares SO’s
“unselfish” routing perspective. In the presence of uncertainty and information
provision, one may consider that the impacts of an asset on the system cost
are two-folded, including not only the cost the pay to traverse the network,
but the information they collect along the way. As a result, some assets may
be assigned to a higher-cost path than others in order to collect information
which benefits the entire system.

Within a stochastic context, the cost on links and paths is expressed in
terms of expectations. In the absence of additional information (and assuming
that link costs are flow-independent), the shortest expected cost path is a
reasonable routing alternative which minimizes the system expected cost.
However, such path is not necessary the least expensive under every possible
network realization and the system may benefit from learning the actual cost
on one or more paths. The basic concept underlying the IBSO assignment
paradigm is that a subset of system assets may be regarded as probes which
can measure and communicate path cost realizations. Probes may be assigned
to routes exhibiting a higher expected cost, in an attempt to find lower cost
realizations than may benefit the entire system. However, the assets utilized
as probes are part of the system, and therefore the additional cost paid to
collect information should be compensated by the benefits experienced by
the remaining assets. The change in system-expected cost introduced by the
utilization of an additional asset as a probe reflects the trade-offs between the
value of information and the cost paid to acquire it.

From a modeling perspective, the collection of information is modeled as
a cost change on the links traversed by probes. The benefits of information
are accrued by implementing an adaptive assignment scheme, which allows
modifying optimal routing strategies based on the cost realizations measured
by the probes.

The concept of IBSO assignment may lead to the formulation of a
multitude of problems, depending on the assumptions regarding information
collection and utilization patterns, and the characteristics of the considered

system (Section 2). The instance analyzed in this chapter adopts a Serial and
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Sequential (SS) probe deployment approach, which implies that all the assets
utilized as probes enter the system together, and the routing decision for the
regular assets is not made until the corresponding information is retrieved.
Notice that minimizing the system expected cost is not the only desirable
objective function. For applications such that cost reliability is highly valued,
formulations minimizing the variability of the experienced cost with respect
to a fixed target, or incorporating a maximum admissible cost under any

scenario may be more appropriate, and will be the subject of further research.

6.3 Problem formulation

This section discusses the mathematical formulation of the Information-Based
System-Optimum (IBSO) assignment problem under a Serial and Sequential
(SS) probe deployment strategy. This problem involves finding the optimal
routes to be followed by the system assets assuming that a subset of these are
utilized as probes, which enter the network first and monitor the conditions
on the links they traverse. Non-probe assets, also referred to as regular assets,
are optimally routed based on the information retrieved by the probes once
the latter reach their destination. The process is two-tiered, and all the probes
are deployed simultaneously into the network, in virtue of which they can not
take advantage of the information collected by their peers.

The problem formulated in this section lends itself to be modeled as a
bi-level stochastic program which is able to capture the underlying sequential
decision making process. The proposed model follows a path-based approach,
in virtue of which the objective function and corresponding marginal costs are
easier to interpret and analyze. The later is fundamental in order to develop
a better understanding of the problem properties and behavior. The notation
utilized in this chapter is slightly different to the one introduced in Chapter
5, and it is described below. Let G(N, M) represent a network with a set of
N nodes ¢ € N and the corresponding set of M arcs 15 € M, characterized
by an infinite capacity and random weights ¢;;. Assume that the latter are

independent of the corresponding link flows, and that they follow a discrete
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probability distribution consisting of a finite number of states s;; € 5;;, with
probability of occurrence p, s.t. Zsesij ps = 1 Vij € A. For notational
simplicity, the subscript in s;;will be suppressed whenever it can be inferred
from the context. Additionally, a single index may be used to denote a link
when its origin and destination are not relevant.

Let 7 > |Sk| V kl € A represent the maximum number of states observed
across all links. Define ¢j; as the cost realization corresponding to state s € Sy,
and denote p;; = Y ps - ci; the expected cost of a link ij € A. Network states
are a result of the corresponding link states, and are represented using m —

dimensional vectors, w € W. Let s}7 be the state on link ij under state w, and
w
ij
and uncorrelated link cost functions, the probability of a network state can be

= c:;jthe corresponding link cost. Under the assumption of independent

computed as p,, = HijeA Psy- Notice that under the previous assumption, the
cardinality of W is|lW| =[]

Denote K the total number of assets to be utilized as probes, and P,_,;

iiea |5ij], and it grows exponentially with M.

the set of all paths P" connecting origin-destination pair s — ¢, each of which
can be considered as a subset of M (P" C A). The cardinality of P (the
sub index will be omitted given the assumption of a unique OD pair) depends
on the network topology, and grows as an exponential function of M in a
complete network. Let kpn = Zijephi ¢i; be the cost of a path, computed as
jep Cij the path
cost realization corresponding to network state w. The expected cost of a path

the summation of the costs of its links, and denote 3, = >

can be computed as Yp; = Zijeh ;. Binary decision variables fprn and gpn
are used to represent the utilization of path P" by probe vehicles and regular
assets, respectively. There is a direct correspondence between these variables
and the link flow variables introduced in Chapter 5, given by equations 6.1
and 6.2, where 55; are link-path incidence parameters, equal to one if link 75 is

in path P" and to zero otherwise.
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rig= Y fen 0L VijeA (6.1)
PheH
yii= 3 gen 0 Vij€A (6.2)

PhecH

Equations 6.3 to 6.9 present the bi-level formulation for a problem instance

utilizing one asset as probe in a system with 7" regular assets.

min E[z(f,¢)] (6.3)
> fer=1 (6.4)

PheH
fen €40,1} (6.5)
2(x,€) = min Z fpn - Kpn (6.6)

pPheH
+ Z Jpr T -gpn- <Z55h'(5ij' Z 55 fpi 4 g (1= Z 55i'fpi))>
PhcH ijEA PicH PicH

(6.7)
> gm=1 (6.8)

PheH
gph € {07 1} (69)

The second-stage problem is solved for each possible network state w € W
and, under the assumption of uncapacitated links and flow-independent link
costs, it can be reduced to a shortest path problem. For fixed values of fpnthe
first term of the lower-level objective function is constant, and the same applies
to the expression ¢;;- ) picy 55 fpi (1= picy 55 - fpi), which defines
the cost of link conditional on the available information ¢;;|z. The latter
represents the cost of a link given the information Z obtained by the probe
asset. The conditional cost of link 5 is equal to the corresponding expected

cost, unless ¢ belongs to any of the paths monitored by the probe asset. The
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effect of information is therefore modeled by replacing the estimator of an
uncertain arc cost (4;;) by the cost realization learnt by the probe vehicles.

The conditional cost of a path is defined by kpr|z =} ic4 55h - CijlT-

The previous formulation may be reduced to a single level problem by
expanding the expected cost expression. The new objective function is
provided in equation 6.10, and introduces and additional index on the flow
variables corresponding to the non-equipped assets, in order to keep track of
network state to which they correspond. The one stage problem is subject to

equations 6.4, 6.5 ,6.9, and > pn g 9o =1, g8 € {0,1,} VP" € H, w € W.

min Z % - Z {fpr-kpn +T - gpn - kpu|T} (6.10)

wewW PhrecH

The objective function presented in equation 6.10 may be transformed by
algebraic manipulations into Equation 6.11, which provides a more compact
expression of the problem. In such equation, ¢pr is the expected cost paid by
the probe, and Apn = > cw PV - D preg L - 9pn - Kpa|Z is the expected cost

faced by the regular assets when information is collected on path P".

75 = pp, +T - Apn (6.11)

Notice that this formulation is valid under the assumption that K = 1,
in virtue of which o gy 5£h € {0,1}. In order to handle the general case
K > 1, a valid alternative is to to replace ), (5;; - fn with variables d;; such
that d;; < Zhéihj ~faVij €A, dij > fi -5%Vh € H, and d;; € {0,1}.

Another option is to create an aggregate decision variable K7(K) which
represents a combination of K paths in P. Such combinations represent a
feasible deployment strategies for the assets utilized as probes, and belong to
the set K which contains all the possible combinations of K elements out of
|P|. Let vx; be a new first level decision variable, representing the assignment
of assets used as probes to the paths combined by K7. Also, define the link-
strategy incidence parameter gb?j to be equal to one if link ¢j belongs to any

of the paths included in K7, and to zero otherwise. The formulation obtained
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q
ij )
any value of K. Equation 6.11 may be reformulated as Z* = the,cj P +

replacing fpr and 55h in equation 6.6 by vi; and ¢;. , respectively, is valid for
T - Ak,;, where the first term represents the costs paid by all probes, and the
second term is the expected cost faced by the regular assets given all available
information.

The former approach clearly involves a very large number of variables,
proportional not only to the number of states, but to the number of paths and
strategies.

Similarly to what was observed in 4.2, the proposed mathematical
formulations are insightful, but unlikely to be used directly for the solution

procedure.

6.3.1 The marginal value of information

Using finite differences, one may compute the marginal impact on the system
cost of utilizing a new asset as a probe assigned to path P'. The corresponding
value may be considered as the marginal benefit of collecting information from
path P!, and it is given by equation 6.14, derived from Equation 6.10 as
presented in Equations 6.12 and 6.13. Given that g3, is a function of fps,
equation 6.10 may be regarded as the product of two functions of the same

variable, and the product rule is applied.

Az(fpi gy (fpi) _ Az(fpr, gp; (fpr)
Afp Afpr

Az(fpi,gp; (fpr) .. Agp;(fpi)
Agy; Afpr
(6.12)

9B (fri)+ Y

PieP
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Az(fpr, gpn (fpr) w W w Agy; j
PAfIi L ZZp 'KJP1+T'ZP -Z(Af;-25£-(c 2(5 fpk

weWw weWw PiecP ij€M PkeP

i 1 Agy; i
DI AEDS <9¥j' > o5 '03'55)+T' )RR (A}qf;'Z% Hiy

weWw PicP ijeM weWw PieP ij€EM

Ag¥. i k
~T- > V> (Afcij-Z (55 IR fzgk)

weEW PieP ij €M PkeP

weW PicP ijeEM

_ZPW'Z(QPJ > o8 iy o

(6.13)

Do rp+ > - 2551'</~%j+T' Zggf'(sf;j'(cg_“ij))jL

wewW weW ijeEM PicP
Sy (M S (g S o)
WEW  picp Prijem PkeP PkeP

(6.14)

In Equation 6.14, AfPJ represents the adjustments to the routing strategy
of non-probe assets performed based on the availability of information from
path P'. It is equal to 0 for all values of & when monitoring of P! does not
lead to any change in the routing decision under w. Otherwise, it is equal to 1
for the new optimal path £%, and to -1 for LY ~, the path which was optimal
before collecting information from path P!. Equation 6.14 may be simplified
by considering that g}, = 1 only for the optimal path under w (£%). Also,
in order to ease the interpretation of the marginal cost expression, assume
that a single asset, which was previously not part of the system, is utilized
as a probe. The later implies that that fgk =0V k € P. For each state w,
the corresponding term in Equation 6.14 may be reduced to the expression

displayed in Equation 6.15, where A = 1 if Agﬁ‘” =1, and A = 0 otherwise.
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w w W Agww w—
Z 551 "\ Cij +5i§ T (Cij — i) + . " Hij _55’ ARy
Afpl

ijeEM
+ Y A (05 -05T) ) (619)

ij€M,ij¢ Pl

The first summation in Equation 6.15 represents the change in the
system cost directly related to the utilization of path P! (local-level
information impacts). The second term measures the network-level impact
of the information collected along P!, which is a result of the adjustments
introduced into the routing decisions concerning regular assets.

The local-level marginal costs are determined by large by the cost
experienced on links which belong to £% N P!, which are such that
05" - 551 = 1. If none of the links on P! belongs to L%, the local-level
marginal impact is simply the cost faced by the probe.

When £% N P! # (), the local-level marginal impact may take three types

of values on each link in P

e Measuring Impact (¢} +7 - (¢} — pi;)): This value is achieved when
link ij was part of the optimal solution under w before deploying a probe
on P!, and it remains on the shortest path given the new information
<ii?w =0, 65" =0, 65" = O). It reflects the difference between the

pl J )
expected cost and the observed realization at the corresponding link,

which is a gain (or loss) experienced by all the regular assets in the

system.

e Incorporation Impact (Cg—l—T-cg): This impact reflects the
contribution to the marginal cost of links which were not part

of the optimal route under state w before P! was monitored

<i%:”1” =1, 05" =1, 0" = O). It reflects the cost faced by all

the assets utilizing the link.

e Removal Impact (¢;; — T - p1;;): This impact is a measure of the change

in the system cost resulting from removing links in £ N P! from
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the optimal solution under w given the information collected on P!

(ii}vw =1, 65" =0, 65" = 1). It is actually a reflection of the
1 ij ij

change in the routing strategy brought about by the newly available

information.

Notice that Equation 6.15 may have a positive value, and therefore the
utilization of an additional asset as a probe may increase the system expected
cost. An example of this a a case such that P! is not utilized under any

perceived state w, and the corresponding information does not lead to changes

in the routing strategies of regular assets (2?”1” =0Vwe W), which leads
P

to a marginal cost equal to ¢ = ) .._p, 1tij, the expected cost faced by the

ijep
probe. Similar results are obtained i; we derive the marginal costs assuming
that the asset utilized as a probe was formerly a regular asset. Under such
case, the second term is multiplied by 7' — 1, and a third term, equal to —p°
is added to Equation 6.15. Under such setting, the marginal cost may still be
positive, with a value of ¢ — p® = A¢p, which represents the additional cost
faced by the probe with respect to being routed on the default shortest path.

The marginal cost formulations presented in this section are useful to
understand how information affects the system performance, and contribute to
a better understanding of the problem properties. Notice that the definitions
introduced above suggest that, in order for information to be valuable for the

system, it must leads to changes into the routing strategies of regular assets.

6.4 Problem properties

The problem properties present some similarities to those observed in Section
4.4, given that the utilization of assets as probes ultimately translates into the
availability of information form a subset of links. In virtue of this, the first
and third properties enunciated in Section 4.4 are valid for the subset of links
17 € K*. The following properties are specific to the collection of information

along paths.

e Property 1: The marginal benefit obtained from utilizing an additional
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asset as a probe routed on path P"may be negative. This was proved in
Section 6.3.1.

e Definition 1: A strategy K, consisting of K paths i € K; is considered
to be efficient if there exists a finite value of T = T)? such that 25 =
Zie,cj ©i+ Ak, TX7 < S, where S = p° - (T + K) is the system expected
cost under a traditional SO assignment given the problem assumptions.
If A, < p T has a finite value given by equation 6.16. Such value
represents the minimum number of non-probe assets which justifies the
additional expected cost faced by probes when these are assigned to the
paths in ;.

7K > K- - ik, P
v (pO - )\’Cj>

e Property 2: Let KX be the set of all efficient strategies of size K. The
optimal strategy when T — oo is Kg € K¥ : Ay < Ak, VK € KX,

(6.16)

the strategy exhibiting the lowest value of Ax;.

Proof: We show that for every pair-wise comparison of efficient strategies
the one with the lowest value of A, leads to the minimum system expected
cost as T' — oo. Let a and b be a pair of strategies such that A\, < \,.
I ek, ©i < Dick, Pi» it is clear that a is optimal regardless of the value
of T'. Otherwise, equation 6.17 provides the range of values of 7" such that
Zke < 7ZKa_ Notice that this equation bounds 7" from above, and therefore

and therefore a is optimal as T' — oc.

T < Zie’Ca Pi — Zielcb Pi
o )\b - )\a

Corollary: For every network and strategy size, there exists a value T,

(6.17)

such that the optimal solution to the IBSO assignment problem of K probes,
K*, is equal to Kg. Notice that Zie,cj i 2> Y e, 01 VI €K, Ty = TrE,
In the general case, T,.; > TJCE, and it must satisfy equation 6.18 for every
efficient strategy K;. The former implies that Kg is not necessarily optimal

for every value of T > TX".

144



ZieICE Yi — Zielcj ¥i

Tcri 2
' Ak, — AE

VK eK (6.18)

e Property 3: Let AZX = S — ZX" denote the benefits of information
corresponding to the optimal IBSO assignment utilizing K probes. The
marginal benefits of information corresponding to a unit increase in T’
grow at a constant rate equal to p° — \,, given by equation 6.19.

AAZY) APE+T)— (i + A T))

AT AT (6.19)

e Property 4: Let AZN % = % denote the benefits of information
as a fraction of the total system expected cost resulting from the IBSO
assignment of K probes. The marginal percent benefits of information
corresponding to a unit increase in 7" grow at a diminishing rate given by
equation 6.21, obtained from equation 6.20 applying the product rule.
Notice that the first term in the numerator of equation 6.21 is greater
or equal than K, given that ¢; > p° V i. The second term is at most as

large as K, because K* is efficient, and therefore A\, < p°.

AAZET)  A(PEA+T) = (it A T)) - (K +T)7

— 2
AT AT (6.20)
K* 2i%i A
A(AZR %) _ 2 (6.21)

AT (T +K)°

e Property 5: A path PV such that ¢, (PY) > ¢naz(P?) for some P7 €
P is not utilized by regular assets or probes under an IBSO assignment
paradigm. In this definition, ¢,;,(P?) is the minimum possible cost on
path P7, attained when the cost realizations on all the corresponding
links are equal to the lowest value in their probability distribution.
Similarly, ¢az(P?) denotes the maximum cost which may be observed
on path P7.

145



Proof: In order to prove that PV is never utilized by non-probe assets it
is enough to consider that regular assets are optimally routed under every
perceived state. Given the problem assumptions, the later means that they
are assigned to the shortest path under information, which satisfies p* <
sz (P?) ¥V P! € P, a condition that P" would never satisfy by definition.
To show that assets utilized as probes are never optimally routed on P,
notice that there must exist at least one sub path Fj,_; C st\ft : Coin(Fl—y) >
cmax(J,z_l) V Ji € Py_;. Collecting information along such sub-path would
never lead to its utilization by the regular assets, based on the same reasoning
we used to prove the first part of this property. Furthermore, E[c(Fj_;)] >
Ele(Ji_))] V J* € Py, which means that the sub path is not considered for
the routing of regular assets in the absence of information. The combination of
the last two facts implies that monitoring Fj_; does not introduce changes in
the routes followed by regular assets under any circumstance, and therefore has
no value for the system (Section 6.3.1). Any path P4 = P/ —{F, ;} + {Jp i}
provides at least as much information as PV at a lower cost, and is therefore

preferred in an optimal solution.

6.5 Solution approach

The solution of the IBSO assignment problem under a SS probe deployment
strategy involving K probes entails finding the K-dimensional set of paths
K; € K which minimizes the system expected cost under information Z%i =
Zie,cj ©; + Aj - T. Each set IC; represent a feasible probe deployment strategy
under which probes i face expected costs given by ¢;. The cost realizations
at all links visited by probes define a set of perceived network states, based
on which the adaptive routing decisions for the remaining 7 system assets
are made. The set of paths to be followed by the regular assets under every
perceived state, along with the corresponding probabilities, defines the optimal
hyperpath H, which has an expected cost of Ag,. The solution to an IBSO
assignment problem is given by K* and the corresponding hyperpath H*.

For every strategy one can identify the subset of links ¢« € Z which are
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visited by at least one probe. Define I = |Z| as the number of links from
which information is collected. The set of perceived network states under
strategy KC;, X, consists of all I-tuples T = (s*(¥), s*(Z), ..., s'(¥)), in which
s¥(Z) indicates the link state experienced at link k& under . The cardinality
of X, is X = er,cj Sk and the probabilities of its elements are given by
r(7) = Tliex, p*(Z). The system cost faced by the non-probe system assets
under any perceived state is p®, the cost of the corresponding shortest path
given the available information. In virtue of this \; = ) - X, Pt pt

The problem solution poses similar challenges to those identified in Chapter
4. Except for the incorporation of flow conservation constraints into the upper
level problem and the removal of the corresponding budget constraints, the
mathematical formulation presented in Section 6.3 is identical the one proposed
for the optimal deployment of sensors following IBSO principles.

Notice that, from the perspective of the problem solution, the distinctive
characteristic of the model discussed in this chapter is the requirement
to select sets of paths to be monitored, instead of individual links. The
solution approach adopted for the numerical implementations makes use of
an exogenously provided path set to transform the IBSO assignment problem
into a large instance of the optimal sensor deployment problem presented in
Chapter 4.

The discussion presented in Section 4.5.1 regarding possible exact solution
methodologies is valid in the context of the present problem, as well as
the methodological framework presented in Chapter 5, which is adjusted
and implemented to the solution of the problems presented in Section
6.6. Section 6.5.1 explains the corresponding procedure, as well as some
problem characteristics which prevent a more efficient implementation of the
state-partitioning approach. The Tabu search heuristic proposed in Section
5.2 can also be adapted to the solution of the IBSO assignment problem, and
section 6.5.2 describes the necessary adjustments.

The procedure presented in this section was adequate for the solution of the
problem instances presented in section 6.6, which provide very valuable insights

into the problem characteristics and behavior. Based on these results, more
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efficient exact and heuristic approaches may be developed in future extensions.

6.5.1 Implementing a state-space partitioning approach

The problem presented in this chapter can be solved as an instance of the
optimal sensor deployment problem for the support of adaptive system
optimum routing decisions, provided that the set of all paths P,_; connecting
the analyzed origin-destination pair is available. When this is the case, the
solution of a problem involving the utilization of K assets as probes reduces
to finding the combination of K paths leading to the lowest system expected
cost. Each of these combinations K may be transformed into a set of links
Z C M utilizing Algorithm 9.

Algorithm 9 Generating set Z
Vi=0VjeM
=10
for all (P, €K ) do
for all (j € P) do
if (V; =0) then
Vi=1
IT=T+{j}

A link-path incidence matrix could be utilized for the same purpose, but
in the present implementation paths are stored as a list of links, and therefore
Algorithm 9 provides a more convenient approach. Section 6.5.1.1 describes
the procedure used to generate P. Notice that different combinations /C; may
lead to the same set I, as exemplified in figure 6.1. This may be of interest in
the design of heuristic solution methodologies.

Once the set [ is available, the methodology presented in Chapter 5 can
be implemented without any further changes to compute )\;, given which
the computation of Z% is straightforward. Notice however that the size
of corresponding problem instance, defined by the number of links covered
by the probes, is likely to be very large. The perceived state-space grows

exponentially as K increases, and the numerical implementations presented in
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Figure 6.1: Example of duplicated Z sets

section 6.6 suggest that the proposed state partitioning approach may not be
sufficient to solve very large problem instances efficiently.

A possible approach to overcome the above mentioned problem is the
implementation of Monte Carlo sampling-based heuristics (Alexopoulos
[1997|). More specialized techniques may be devised by considering that
one of the main reasons for the observed performance deterioration is the
absence of a deterministic threshold value 7 for the shortest expected cost
path (Section 5.1.3.2). Given that the deployment of probes may cover a
considerable portion of the network, the lack of a finite 7 is a likely scenario,
and the heuristic generation of a surrogate value may improve the algorithmic
performance. Furthermore, depending on how such value is computed, it may
be possible to place a bound on the associated error, limiting its impact on
the overall solution.

Notice also that the problem characteristics do not allow for a path-
cost based implementation of the state-partitioning principles. Such
approach reduces the number of path states to be accounted for based on
the consideration that path costs may take a limited number of values. By
collapsing all states exhibiting the same cost into a single super-state, the total
number of relevant path states to evaluate may be drastically reduced (Waller
and Ziliaskopoulos [2002]).

Figure 6.2 exemplifies the reasons preventing the implementation of such
approach in the context of the present problem. In the proposed network,

path 2 can take a value of 14 under two possible states, = 1 and = 2. The
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shortest expected costs paths corresponding to these states are p' = 14 and
p? = 11, respectively, which are different from each other. If both states are
collapsed into a single one, it is not possible to implement the methodology
developed in earlier chapters to partition the state-space, given that there
is not a single optimal value to compare to the thresholds which define the

partitioning rules.

6.5.1.1 Path set generation

For generic directed networks, the enumeration of all s — ¢ paths belongs to
the class of #P-Complete problems (Valiant [1979b|), which are counting
problems for which there is not a known polynomial time solution algorithm.
While the number of such paths may be estimated using Monte Carlo
sampling (Roberts and Kroese [2007]), the actual generation of s —¢ paths for
practical implementations is typically accomplished by computing k-shortest
paths according to a pre-specified criterion. The unrestricted variant of the
k-shortest path problem allows paths to share an unlimited number of links,
and can be solved in O(kn®) using Lalwler’s algorithm (Lawler [1976]). Other
methodologies impose constraints on the characteristics of the generated
paths, such as an upper bound on the number of shared links across paths
(van der Zijpp and Catalano [2005]), or on the maximum admissible length
(M.Carlyle and K.Wood [2005]). These constraints are typically selected
based on the intended use of the generated paths.

While the formerly described techniques are appealing from the perspective
of a heuristic solution, the approach taken to solve the examples presented in
Section 6.6 required the generation of all s—¢ paths. In the absence of negative
cost cycles, only acyclic paths are of interest. Even though there is s finite
number of such paths, it is typically very large, and it grows exponentially
with the network size (Korte and Vygen [2000]). In an attempt to reduce the
number of paths to consider, a domination criterion was introduced into the
path generation process.

The concept of path domination has been utilized by several authors in

the implementation of algorithms which implicitly involve path enumeration
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(e.g. Miller-Hooks and Mahmassani [1998|, Miller-Hooks and Yang [2005]). A
domination criterion is basically a set of rules in virtue of which s — ¢ paths
can be compared, and eventually discarded, based on conditions specific to the
corresponding optimization problem.

For the IBSO assignment property, equation 6.22 presents the criteria
utilized to decide whether an s — ¢ path P is dominated, and therefore may

be disregarded.

ApeP: 1, > 10, (6.22)

In this equation, I, and Lfi , represent the maximum and minimum
possible cost on paths P, and P;, respectively, obtained by adding the
maximum (minimum) cost realization at every link in the corresponding
paths. P is the set of all paths connecting s and 7.

This rule is valid in virtue of Property 5 (Section 6.4) which establishes
that a path [, which satisfies equation 6.22 is never used by system assets,
and therefore may be disregarded during the problem solution. Notice that

if [ ; represent all the sub-paths in a path I% , connecting s — ¢, then I,

P
i~j

fact, proved below, Algorithm 10 is used to generate the set of all acyclic

is non-dominated if and only if all [;_ . are non-dominated. In virtue of this
non-dominated paths in networks with random discrete arc costs.

The proof of the former fact is accomplished in two parts. First we show
that if all the sub-paths F;; C P are non dominated, then P is non dominated.
Let F,;_; and F;_; be two of such sub-paths. If they are non-dominated, it
means that all sub paths G,_;and G;_; are such that ¢ (Gi—t) > Conin(Fi—t)
and Cpae (Gs—i) = Cmin(Fs—;). In virtue of this, Equation holds for path Gs_; =
Gs_i + G;_46.23, which implies that P is non dominated.

Cmax(Gs—t) - Cma:c(Gs—t) + Cma:c(Gs—t) Z Cmin(Fs—i) + Cmin(ﬂ—t) - Cmm(P)
(6.23)
For the second part of the proof, assume that there exists a sub path Fj;

which is dominated by path Gs_;. This implies that for some s — ¢ path it
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is true that ¢pue(Gs—i) > Cmin(Fs—;). In virtue of this the maximum cost
of the path G,y = Gs_i + Fij 1S Crnin(Gs—t) = Cmaw(Gs—i) + Cmaz(Fizt) >
Cmaz(Fs—i) + Cmaz(Fi—t) = Cmae(P) which contradicts the initial assumption
that P is non dominated and completes the proof.

The algorithm works based on the same principles guiding a typical label-
correcting procedure (Ahuja et al. [2002]), and has has an exponential worst
case complexity. Notice that in acyclic networks the set of directed paths can
be found in O(m) utilizing the same algorithm which provides the topological
order ( Ahuja et al. [2002]).

Algorithm 10 Non Dominated Path Generation

T = {s}
Ui=Vi=0VieN
while (T #0) do

Select : € T

for all (ij € M) do

for all (dk eD,;: k> Uz) do
if (j ¢ dx) then {Check Cycle}
if (%, +c7,, < L% Vd, € D;) then {Check Domination}

if (V;=1) then
U; = Size(D;)
Add dj, +ij to D;
Check new dominated paths in D;
T =T+ {j}
T=T-{i}
Vi)=1

For every node ¢ € N, a different label d;, € D, is used to store each of the
non-dominated acyclic s — ¢ paths. The list T stores all the network nodes
which successors need to be re-labeled, and it is initialized with the origin
node. At every iteration, all labels in D;, which represent a possible way to
reach ¢ from s, are used to add a new label to the sets Djcorresponding to
all nodes emanating form ¢, provided that no cycle is generated and that the
corresponding path is non-dominated. When a new label is added to a node,
the same is incorporated to T in order to update the labels of its successors.

Variable U; is used to keep track of the labels in D; which have already been
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used to generate new paths. V; allows to use a dequeue implementation (Ahuja
et al. [2002]) for the management of T. At termination, the set D, is list of
all acyclic non-dominated s — ¢ paths. This is guaranteed because nodes enter
T when a new way to reach them has been found, and are removed from T
after updating the possible ways to reach their successors. If T is empty, then
it means that all possible ways to reach every node have been enumerated.
Notice that the set of non-dominated paths depends on the maximum and
minimum values at the network links. These change during the evaluation of
a probe deployment strategy. Given that p; > min(c?), the paths found to
be dominated implementing Algorithm 10 remain dominated. However, given
equation 6.22, additional paths may become dominated, which may be used

as the basis for path-based heuristic procedures in further implementations.

6.5.2 Possible adjustments to the Tabu search procedure

The Tabu search procedure introduced in Section 5.2 can be implemented
to the solution of the presented problem following a similar procedure to that
described in Section 6.5.1, and assuming that the set of non-dominated network
paths is available. The methodology can be easily adjusted to select sets of
paths instead of links, while the corresponding penalties and adaptive memory

structures may still be defined on a link basis (Equations 6.24 to 6.26).

Tabu_R(P;) = Y Tabu_R(j) (6.24)
Tabu_F(P;) = ) Tabu_F(j) (6.25)

5mam(Pk) = Z 6max(.]) (626)

JEP
The procedure was tested on the networks analyzed in the following
section, but given characteristics of the considered problem instances it
did not lead to faster solutions and therefore was not implemented to the

numerical analyses. In the presented framework the Tabu methodology
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is intended to reduce the number of strategies to be evaluated, which are
given by combinations of K paths for a K-probe IBSO assignment problem.
However, the algorithm provides significant advantages when the total
number of strategies to be evaluated is high (typically in the order of 10°
and above). For smaller instances, the number of evaluations necessary to
identify a good solution is usually comparable to the number of evaluations
required by an exact solution approach. For the cases analyzed in Section 6.6
the total number of combinations is relatively small (~ 10?) and therefore
it was not necessary to implement the Tabu methodology. Larger problem
instances (in terms of the number of assets utilized as probes) were not
considered due to the computational effort involved in evaluating each of
the corresponding strategies. Section 5.1.6 discussed the limitations of the
state-partitioning approach under this circumstances. The insights provided
by the exact problem solution may be used to devise more efficient Tabu

search procedures.

6.6 Implementation: Assessing the performance
of Information-Based System Optimum

assignment strategies

This section presents a detailed analysis of the performance of Information-
Based System Optimum (IBSO) assignment strategies on two different
example networks, assuming a Serial-Sequential (SS) probe deployment
approach. The methodology described in Section 6.4 was implemented to
the analysis of Networks I and II, already introduced in Section 5. Section
6.6.1 briefly discusses the performance of the solution approach, and suggests
desirable extensions and refinements. The results are discussed in the
following sections, which analyzes the impacts of IBSO assignment under
SS probe deployment from different perspectives. One of the principal
performance measures utilized in this section is the difference between the

system expected cost under a K-probes IBSO assignment strategy (Z%) and
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S, the expected cost of a traditional System Optimum (SO) deployment.
Such difference is denoted AZ¥, and AZEXY% = % is the corresponding
percent value. Section 6.6.4 analyzes these parameters as a function of T, the
number of system assets which are not utilized as probes.

Another important characteristic of an IBSO assignment discussed in this
chapter is the difference between the expected costs faced by the probes (¢;)
and A, the cost faced by each of the remaining system assets. The parameter
g = fmez _ 1 where ¢, = max;p;, measures such difference, and is an

)
indication of the value of information and the “unfairness” of the deployment

strategy. The later is also reflected by Ay, = “0’;0‘” — 1, which represents
the deterioration in the expected cost faced by the probes with respect to
a SO assignment. Conversely, AN = 1 — p% measures the improvement with
respect to a SO approach experienced by the remaining system assets. In both
cases, p” is the value of the shortest expected cost path when no information is
provided, which is the cost paid by all assets under a SO deployment under the

ZK
W

problem assumptions. A comparable value under IBSO assignment is v =
where W =T + K is the total number of assets in the system.

Section 6.6.3.1 discuses some qualitative aspects of the routes utilized under
an IBSO deployment approach, comparing them to the optimal paths resulting
from SO assignment, and to the solutions obtained in Chapter 5. Notice
that the solution to an IBSO problem consists of the set of routes to be
followed by the assets utilized as probes, and of the optimal routing solutions
for the remaining assets under each perceived network state, given by the
corresponding hyperpath.

Similarly to what we observed in Chapter 5, the numeric value of the
performance measures described above is likely to vary widely for different
networks depending on their topology, cost structure and corresponding
probability distributions. The goal of this section is to improve our intuitive
understanding of the nature of the effects of an IBSO assignment approach,
and how it leads to a different system behavior than a SO deployment
strategy. This is critical in order to identify practical implementations which

would benefit the most from the proposed approach, and to develop refined
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models able to maximize the benefits of information availability.

6.6.1 Algorithmic performance

Tables 6.1 and 6.2 summarize the algorithmic performance on Networks I and
IT for different numbers of probe vehicles. The networks account for 46 and
187 non dominated acyclic paths, respectively. Path lengths range between 3
and 8 links in Network 1, and between 3 and 13 links in Network II, which
leads to considerably large problem instances, with state-spaces cardinalities
easily reaching the order of 10°.

Notice that the total numbers of acyclic paths on Networks I and II are 68
and 720, respectively. The utilization implementation of the path-domination
criteria presented in Section 6.5.1.1 allowed to reduced the number of paths
to be considered .

Performance measures are analyzed by deployment strategy type, which
are defined in Section 5.2.1 based on the overlap between the corresponding
probe routes P; and the shortest expected cost path when no information
is provided, £°. The reported values are the average performance across all
the possible strategies in each category given by |K”|, where K is set of all
strategies of type T" = I, II, III. Notice that strategies are defined in terms of
paths, and therefore strategies Type II, which include exclusively links in £°,
are only possible in one-probe cases.

Performance is measured based on the percentage of total states evaluated,

__ Evaluations K
%eval = W, where |X ¢

perceived under probe deployment strategy IC; € K.

is the state space containing all possible states

The results exhibit similar trends to those observed in Section 5.1.5,
suggesting a much better performance on Network II in virtue of its
topological characteristics. The performance is similar for the two strategy
sizes considered for Network II, which indicates the same type of stable
behavior noticed in the earlier numerical analyses. This is very encouraging,
given the considerably large size of X%, The maximum number of

simultaneous partitions P is fairly low, but higher than the corresponding
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1 Probe 2 Probes
Type III Typel Type II Type I1I Type I Type Il

K| 28 17 1 899 136 -

| Ak 1325.1 3386.5 27  224009.6 204692.1 -
Pocvar XX 89% 33.3%  88.9% 89.7% 42.9% -
P 0.5 1.9 1 2.0 3.4 -

Table 6.1: State-space partitioning algorithm performance in Network I

1 Probe
Type III Type I Typell
K| 86 100 1
|k 2283.5 2088.2 12
Poevar XX 50.0% 13.2%  50.0%
P 2.0 1.8 2

Table 6.2: State-Space partitioning algorithm performance in Network II

values for smaller state-spaces.

Even though the algorithmic performance is satisfactory for the analyzed
cases, it is important to notice that the number of possible perceived states
grows extremely fast as larger deployment strategies are considered. Under
such circumstances, the number of evaluations required by the proposed
approach may be prohibitive, even if it represents a small percentage of the
state-space size. Heuristic approaches based on Monte Carlo sampling, such
as those presented in Alexopoulos [1997], may be a feasible approach to
overcome this problem. Other bounded-heuristic procedures may be devised

based on the problem properties, as discussed in Section 7.3.

6.6.2 System expected cost

The system expected cost under an IBSO approach is given by the summation
of the expected cost faced by the assets utilized as probes and the cost
faced by the remaining system assets. Tables 6.6 and 6.4 present different

measures related to the system expected cost under IBSO assignment for
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1 Probe 2 Probes

Tery = 14 Ter =19
T=1 T=35 T=550 T=1 T=15 T =20
S 3044 5479.2  83862.2 456.6  2587.4  3348.4
Z 303.3 5440.5 82796.4 492.8 2526.6 3227.8

AZ%  0.4% 0.7% 1.3% -8% 2% 4%
v 151.6  151.1 150.3 164.3  148.6 146.7
w; 1522 193.5 286.4 345.7 4158 468.6
Pmaz  152.2 193.5 286.4 152.2 2171 275.1
A 151.1  149.9 149.7 147.3  140.7 138.0
Ap 0% 27.1% 88.2% 127%  173% 208%
e ™ 29.1% 91.3% 135%  195% 240%

Table 6.3: Results summary for Network [

Networks I and II respectively, and for different values of T'. For Network I
two different strategy sizes are considered. Additionally, Table 6.5 presents
similar information for Network I under the two-state probability distribution
case described in ().

The reductions in system expected cost with respect to a SO assignment
approach, AZ%, range between —8% and 6% in Network I. Even though
the value of such impacts depends on the considered implementation, the
qualitative analysis of the behavior of AZ% provides very interesting insights.
The first important observation is that the number of assets not used as
probes, T', plays a fundamental role on the magnitude, and even the direction,
of the perceived impacts. This is expected, given that the additional cost
paid by the probes in order to collect information is compensated only by the
gains experienced by the remaining assets in the system. The negative value
observed under the 2-probe deployment strategy for Network I when 7" = 1
reflects the fact that T > 1 for all strategies KC;of size 2 (Section 6.4), and
therefore utilizing 2 vehicles as probes does not benefit the system. Notice
that the negative impact on the system is a result of forcing the model to
select different routes for every utilized probe. The actual optimal strategy

would route both probes on the same path selected for the strategy of size 1.
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1 Probe
Terip = 4
T=1 T=15
S 129 1032
Z 125.9 968.1
AZ% 2% 6%
v 63.0 60.50
oy 64.5 71.2
Omaz  64.5 71.2
A 61.4 59.8
Ay 0% 4%
€ 5% 19%

Table 6.4: Results summary for Network II

Section 6.6.4 will further discuss the effect of 7" on the system expected cost.

The expected cost paid by the probes ;is always equal or higher than the
cost faced by the remaining system assets. The later are optimally routed
based on the findings of the probes, and therefore they never face higher
expected costs (nevertheless, the actual costs paid by these assets may be
higher than expected, depending on the realizations observed at those links
which remain uncertain). The observed values of Ay range between 0%, when
the probe is assigned to £°, and 208%. Larger values occur when 7 is higher,
and therefore more assets may benefit from the finding of those utilized as
probes. The values of e, which range between 5% and 240%, reflect the same
behavior. This may have important practical implications, given that probes
are paying considerably higher costs than the remaining assets. For certain
implementations, decision makers may want to limit either € or Ap, depending
on whether they intend to limit the total cost faced by the probes or the
inequity between system assets.

The results suggest that average expected cost per asset v decreases a
function of the number of deployed probes as long as T" > T..;;. However, this
may not be the case for lower values of 7. In Modified Network I for example,

the utilization of three assets as probes when T = 15 yields lower benefits
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1 Probe 2 Probes 3 Probes
Tcrit =14 Tcm't =19 Tcrit =45

T =15 T=15 T=15

S 2672 2839 3006

Z  2490.4 2525.7 2741.9
AZ%  6.80% 11.0% 8.9%
v 156 149 152
©; 186 366 587
Pmaz 186 186 221
A 1513 144.0 143.7

Ap  11.4% 119.2% 251.5%

e 23.1% 156.7% 311.6%

Table 6.5: Results summary for Modified Network I

than the implementation of a 2 probe strategy (9% and 11%, respectively).
One may consider that the value of Ay for K = 1 is an indicator of the
value of information for the considered system, given that it represents the
maximum additional cost that the system can afford to paid in order to collect
information.

The results in Network II support the trends described in the previous
paragraphs. It is interesting to notice that for this network the value of AZ%,
which ranges between 2% and 6% is comparable to the results reported for
Network I, and is achieved at a much lower cost, with ¢; ranging between 0%
and 4%. This illustrates the degree of dependence of the costs and benefits of
information on network characteristics, and motivates the search for models
tailored to different applications.

Some additional tests were conducted in order to assess the effects of
selecting a suboptimal strategy for a given value of T. In Network I for 7" =1
and K = 1, the system cost obtained by deploying the probe asset on the
optimal path corresponding to T" = 15 is 38 % higher than the optimal system
expected cost, and actually higher than S. However, if the optimal strategy
for T' = 1 is utilized for larger values of T" the impacts are less extreme, ranging
between 1% and 5% for T = 15 and T' = 100, respectively. These results are
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also important from a methodological perspective, and they may be used to

guide heuristic solution approaches tailored to each particular implementation

6.6.3 Optimal routing strategies

Figure 6.3 displays the optimal probe routes (P) for K = 1 and values of
T above and below T..;, along with the links included in the corresponding
hyperpaths (H). Figure 6.4 presents the same information for Network II.

Notice the paths corresponding to different values of 1" do not necessarily
overlap, suggesting that completely different routing strategies may be
appropriate based on the system size.

It is also interesting to observe that the links in H cover a considerable
portion of Network I, and a very specific section of Network II. This suggests
that the use of information leads to a larger utilization of the available
resources. Some paths or network sections which are not part of a solution
under uncertainty may be utilized under an IBSO deployment strategy. The
former suggests an alternative utilization of the presented models to promote
a more efficient network utilization. The proposed framework can be used
to identify which information is be relevant in order to “activate” specific
network links, giving them a positive probability of being used.

Figure 6.5 displays the results corresponding to a two probe deployment
strategy on Network I, which exhibit similar trends. Similarly to what we
observed in Chapter 5, the optimal solution for a strategy of size 2 does not
necessarily include the optimal probe route identified for K = 1.

The displayed results also show a trend to include the shortest expected
cost path £% in the set of optimal probe routes for low values of T', even though

it is usually not part of the optimal strategy for 7' > T,.;;.

6.6.3.1 Comparing probe routes to the optimal location of static

Sensors

The comparison of the links in P* and the optimal links to be monitored based

on the models presented in Chapter 5 leads to some interesting observations.
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Figure 6.3: Optimal routing strategies using one probe in Network I (7., =
15)
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Figure 6.4: Optimal routing strategies using one probe in Network IT (7., = 4)
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Figure 6.5: Optimal routing strategies using two probes in Network I (T}, =
20)
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The overlap between the results obtained from the two solution approaches
(in terms of measured links) seems to be highly dependent on the network
characteristics. For Network I, only 3 of the links monitored under an optimal
6-sensor deployment strategy are part of the optimal probe path under a
one-probe IBSO assignment approach. In Network II, all the links covered
by the probe route are also monitored based on the models for static sensor
deployment previously discussed.

In general, the observed differences in terms of covered links reflects the
fact the models analyzed in this chapter associate a cost to the acquisition of
information, whereas the data collected with sensors deployed according to the
models in Chapter 5 is “free” from the system perspective. The vehicles used
as probes need to reach the links with the most valuable information, which
may impose additional costs that are not compensated by the corresponding
benefits, even for large values of 7. This clearly depends on the network
topology and costs distributions. In Network II the assets are able to cover
the most beneficial links at a relatively low cost, while in Network I only those
critical links closer to the origin and destination are monitored using probes.

The impacts of considering the cost of information are reflected on the
corresponding values of A. These can be compared to the system expected
cost under a k-sensor deployment strategy, where k corresponds to the length
of the path utilized by the probe. In the case of Network II, both values are
equal, reflecting that the maximum benefits attainable by monitoring four links
are achieved by deploying one probe. For Network I, A is 1.1% higher than the
cost experienced by the system under a 5 sensor deployment strategy. Notice
that models presented in Chapter 5 to find the optimal deployment strategy of
K sensors provide a lower bound to the system benefits obtained by deploying
a probe along a path of length K. Under the former assumption, the model
described in this chapter may be regarded as a more constrained version of
the models in Chapter 5, which forces to deploy available sensors along a path

connecting origin and destination.
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Figure 6.6: Benefits of information for optimal probe routing strategies on
Network 1

6.6.4 Impacts of the system size on the attainable

benefits of information

The analysis conducted in section 6.6.2 illustrates the importance of the system
size on the maximum benefits which may be attained by implementing IBSO
deployment strategies. This is a direct consequence of properties 1 and 2,
presented in Section 6.4. Figures 6.6 presents the benefits of information as a
function of 7" in Network [ for strategies of size 1 and 2.

As expected based on property 3, the benefits of information increase at a
linear rate as a function of 7. The rate of increase, which is a direct function of
the cost paid by the non- probe assets, changes based on the optimal routing
strategy at 7. The maximum rate is achieved at T,.;; (Section 6.4). Figure 6.7
illustrates the fact that, as T" — oo the strategy providing the highest increase
rate dominates the remaining ones, even when this may not be the case for
reduced values of the variable. This behavior is of interest and it may be crucial
in the identification of solution methodologies tailored to specific applications.

For implementations involving a large number of assets, the cost paid by the
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probes may be neglected, and the solution methodology may be focused on
finding the strategy leading to the minimum A. However, for applications that
account for small values of T" the cost paid by the assets utilized as probes
plays a fundamental role, and € can be considered as an indicator of the value
of information in the corresponding network.

Figures 6.8 and 6.9 present the value of AZ% as a function of T for
Networks I and Modified Network I (Table A.6), respectively. In this figures
it is possible to observe the discontinuities introduced by the changes in A,
and the diminishing marginal value of information, reflected in the progressive
flattening of the corresponding curves. Additionally, the plots suggest that for
sufficiently large values of T" strategies utilizing a larger number of probes lead
to larger benefits.

To complement the previous plots, table 6.6 displays the value of T! for
every 1-probe deployment strategy considered for Network I, which correspond

to all the non-dominated acyclic paths in such network. Notice that the
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shortest expected cost path £° (Strategy 7) is a feasible option (i.e. leads
to a value of Z < S) for any value of T' (T = 0). In effect, given that routing
a probe on this path does not impose on it any additional cost with respect to
a SO assignment solution, the information collected along L£° is available for
“free”, and its utilization cannot harm the system performance. Conversely,
some paths are not feasible under any value of T (T = oo). This reflects
the fact that the information collected from such paths does not lead to any
benefit for the system (Mg, > p”), and therefore the additional cost paid to
collect it is never compensated.

It is also interesting to notice that T..; > Tfmm, where ™" denotes the
strategy leading to the lowest value of A\g,. In this example strategy 20, which
presents the lowest value of Ak, is feasible for 7" > 13 but it does not become
optimal until 7" = T.,;; = 16. This result reflects property 2, and implies that
even for large values of T" neglecting of the cost faced by the assets utilized as

probes may lead to a suboptimal (but nonetheless acceptable) solution.

170



A Zz Pi T
1 152.2 217.1 00
2 150.9 222.9 03
3 151.6 299.3 241
4 152.2 266.0 00
5 151.8 271.8 292
6 152.2 348.2 00
7 151.1 152.2 0
8 152.2 228.6 00
9 152.2 239.3 00
10 150.3 245.1 48
11 1514 321.5 218
12  152.2 231.7 00
13 151.0 237.5 69
14 152.2 313.9 00
15 152.2 288.2 00
16 151.1 294.0 126
17 152.2 370.4 o0
18 151.7 289.7 295
19 151.1 198.7 41
20 152.2 275.1 00
21 151.8 336.2 449
22 151.3 195.4 49
23 149.9 193.5 18

Table 6.6: T

crit

for all feasible one-probe strategies on Network I
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24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

A Zz Pi T
150.5 269.9 67
150.8 280.6 90
149.7 286.4 5%}
150.5 362.8 124
150.8 273.0 84
149.9 278.8 o4
150.5 355.2 119
150.8 329.5 124
150.0 335.3 83
150.5 411.7 153
150.5 201.5 29
150.9 277.9 99
150.4 236.2 47
150.9 312.6 122
151.4 323.3 207
150.3 329.1 91
151.0 405.5 203
151.4 315.7 198
150.4 321.5 92
151.0 397.9 197
150.5 378.0 133
149.9 240.0 39
150.4 316.4 94




6.7 Summary

This chapter introduces the concept if Information Based System Optimum
(IBSO) assignment, proposes a mathematical formulation capturing the novel
paradigm, and presents numerical results illustrating the problem properties
and main methodological challenges.

The IBSO assignment problem extends the basic principles of cooperative
assignment observed in a traditional System Optimum approach in order to
account for the collection and utilization of information in stochastic networks
(Section 6.2). It considers the utilization of a subset of system assets as
probes, used to collect information regarding the cost realizations throughout
the network. Probes may face higher expected costs than the remaining assets,
but in an optimal assignment these are compensated by the benefits accrued
by the system. The new modeling framework has an enormous potential to
reduce the negative impacts of uncertainty on the solution of a number of
problems on stochastic networks.

The problem presents interesting properties, describe in Section 6.4. Some
of these actually may be used to define parameters to characterize a system,
such as the minimum number of assets required to justify the utilization of
a given number of probes. The mathematical models described in Section
6.3 are able capture the tradeoffs between the value of information and
the additional cost faced by the probes in order to collect it. Their exact
solution is challenging, given their combinatorial nature (Section 6.5). A
solution methodology based on state-space partitioning was implemented to
the analysis of several problem instances (Section 6.6). The procedure has an
exponential complexity, and a it requires the enumeration of all possible paths
connecting the analyzed origin-destination path. A path domination criterion
was defined and implemented in order to alleviate the computational effort.

The qualitative analysis of the numerical results illustrates the problem
properties and provides valuable insights into the potential modeling
improvements and practical applications. Expected cost reductions ranging

between 2% and 6% were measured on the analyzed systems.  More
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importantly, the new assignment paradigm was found to lead to considerably
different routing decisions than a naive approach, which actually depends not
only on the network characteristics but on the system size. The marginal
benefits of information grow at a constant rate with the system size, while
the gains expressed as a fraction of the system cost exhibit a decreasing
rate of marginal growth. For a sufficiently large system, the cost faced by
the probes was found to be irrelevant, which is expected, and the optimal
probe assignment strategy is that leading to the lower system expected cost.
However, in many potential applications (Section 7.2) the system size is
may be relatively small, and modeling the cost of information acquisition
becomes crucial. The results suggest that the provision of information leads
to a more efficient utilization of the system, given that paths which were
not considered under the expected-cost based routing may become appealing
given the information revealed by the probes. This suggests an alternative
implementation of the proposed models to understand what information
would be necessary in order to promote the utilization of specific network
links.

The model discussed in this chapter provides a flexible tool to measure
and understand the benefits of information in the context of adaptive system
optimum assignment strategies. Based on the findings presented here,
practical implementations may be devised, along with the corresponding
efficient solution methodologies. This is an important step towards a more
efficient utilization of information in the optimization of transportation

systems.
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Chapter 7

Conclusions, Applications, and

Extensions

Traffic information, now available through a number of sources, is re-shaping
the way planners, operators and users think about the transportation network.
It provides a powerful tool to mitigate the negative impacts of uncertainty, and
an invaluable resource to manage incidents and other causes of non-recurrent
congestion. Information also invites to think about traditional transportation
problems from a different perspective which may take advantage of the
improved understanding of the network state.

This dissertation proposes a novel system-optimum assignment paradigm
which takes into account the ability of assets to collect information as
they travel through the network. It also presents a methodology to design
information collection strategies based on the impacts of such data on
system-optimum routing decisions, an approach not considered in the existing
literature. Specialized exact and heuristic solution techniques were developed
based on the problem properties, and implemented to the analysis of several
example problems. The conducted numerical analyses suggest that the
models introduced in this work provide a means to utilize information for
improving system performance. The results illustrate interesting problem
properties, which point to possible practical implementations, and have

important methodological implications. Furthermore, some of the studied
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properties define network parameters which may be used to characterize
the susceptibility of systems under uncertainty to benefit from information
provision. The models proposed in this work constitute an initial step towards
enhancing information collection and utilization strategies. Based on the
findings presented here, a number of applications may be envisioned, which
efficient solution could promote a more effective utilization of existing and
upcoming technologies, fostering the full realization of their potential benefits.
The following sections summarize and integrate the research conducted for

this dissertation, and suggest further research directions.

7.1 Optimal sensor deployment for system-

optimum adaptive routing support

The optimal sensor deployment model presented in this work contributes to
the existing literature on efficient collection of information from static sensors.
The review conducted in Chapter 3 suggests that major improvements are
still possible on such field, particularly if new paradigms for the utilization
of information become available. FExisting approaches in the area focus on
improving system-monitoring capabilities, but hardly consider the impacts of
the collected information on the system performance, or in adaptive routing
decisions.

The deployment model proposed in Chapter 4 identifies the optimal
location of a fixed number of static sensors in a network with stochastic arc
costs, in such way that the expected cost faced by a set of optimally routed
assets is minimized. The information provided by the sensors generates a
set of perceived network states, based on which the optimal paths to be
followed by the system assets may be adapted. Such routes correspond to the
shortest expected cost path under each information set given the problem
assumptions. The model is suitable for a number of interesting applications,
ranging from the deployment of sensors during rescue operations, to data

filtering for online routing purposes The bi-level stochastic program used
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to formulate the problem (Section 4.2) provides valuable insights into the
problem properties, and is used to derive an expression for the marginal value
of information, which is proved to be always non negative.

Numerical analyses, conducted implementing the specialized methodology
described in Section 7.3, illustrate how the utilization of information to adjust
system optimum routing strategies may improve the system perform ace.
Gains of up to 4% with respect to a no-information scenario were measured.
The absolute value of the accrued benefits is likely to vary widely depending
on the characteristics of specific networks, and the practical value of the
observed improvements depends on the considered application. However, it
is important to notice the solution obtained using the novel approach was up
to 50% more effective than a deployment strategy based only on maximum
link variance, which is promising. The qualitative analysis of the solutions
also reveals interesting problem characteristics, such as a “synergic” behavior,
in virtue of which the benefits obtained by jointly monitoring a group of links
may be greater than the improvements accrued by placing sensors on any
subset of such group. Additionally, the consideration of the links involved
in the optimal hyperpaths suggests that the availability of more information
eventually leads to the utilization of a larger set of paths. The latter points to
an alternative application of the proposed models, which may be implemented
to identify information provision patterns that promote the usage of specific
network links.

There are many potential applications for the methodologies presented in
this section. The deployed sensors need not be traffic sensors, but may be
special instruments used to measure the terrain conditions in areas affected by
a natural disaster, such as earthquakes or floods. The devises can be optimally
placed after the occurrence of a specific incident in order to identify feasible
routes for the emergency vehicles or the evacuation of victims.

Another application may be envisioned if one considers that the solution
of the optimal sensor deployment strategies identifies the set of links which
provide contain the most valuable information. The methodology may be

used to improve the utilization of data from sensors already deployed. By
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identifying those sensors which information is more relevant for a particular
routing decision, the models can be used to reduce the amount of data that
needs to be processed in order to generate adaptive routing strategies, allowing
for faster and more effective solutions. Finally, other potential applications
involve problems such that network links represent the duration of the different
steps of a process or group of integrated processes, which may be accomplished
in various ways, represented by paths. The placement of a sensor is equivalent
to monitoring the duration of the corresponding process, and the proposed
models may be used to identify which steps play a more fundamental role on

the system behavior

7.2 IBSO Assignment

The concept of Information-Based System-Optimum (IBSO) assignment
introduced in Chapter 6 is inspired by the equilibrium approaches discussed
in the literature review, which aim to capture the system-level impacts of
individual adaptive behavior on stochastic networks. However, the IBSO
paradigm is fundamentally new, given the assumption that the information
used to adjust the system’s routing decisions is collected by a fixed subset
of the assigned assets, which are utilized as probes. The selection of the
paths followed by the probes takes into account the value of the information
collected along them in addition to the corresponding expected cost. As a
consequence, assets utilized as probes may face higher expected costs than
regular system assets, which are optimally routed under every possible state
revealed by the probes.

The problem is formulated as a bi-level stochastic program, which assumes
flow-independent link costs and a serial-sequential probe deployment approach,
such that all the probes enter the system together and before the regular
assets. The proposed model is such that the marginal value associated to the
utilization of additional assets as probes may be negative. The later reflects the
fact that the cost involved in acquiring information may not be compensated

by the system-level benefits. The problem presents interesting properties,

177



some of which may be used to define parameters that characterize the system
under study, such as the minimum number of regular assets which justifies the
utilization of s probes as assets. Defining this type of properties contributes
to a better understanding of specific instances of the studied problem and the
underlying network. They allow measuring how susceptible a network /problem
is to benefit from information, how costly it is to achieve a minimum level of
improvement, what is the maximum gain that may be expected from utilizing
some assets as probes, among other important characteristics. Theoretical
properties may also have important methodological implications. For example,
the fact that the benefits of information grow linearly with the system size
suggests that, for a sufficiently large system, the cost faced by the probes may
be disregarded in the search for an optimal solution.

A variation of the methodology developed to solve the optimal sensor
deployment problem was used to conduct numerical experiments assessing the
performance of the IBSO assignment approach. The qualitative analysis of the
corresponding results illustrates the problem properties, and provides valuable
indications regarding desirable methodological improvements and potential
practical applications. The measured expected cost reductions, with respect to
a no-information scenario, ranged between 2% and 6%. More importantly, the
new assignment paradigm was found to lead to considerably different routing
decisions than a naive approach. The selected paths depend on both, the
network characteristics and the system size. Additionally, similarly to what
we observed on the hyperpaths utilized under an optimal sensor deployment
strategy, the provision of information leads to the utilization of paths which are
not considered under a deterministic routing approach. The rate of increase of
the benefits of information, when these are expressed as a fraction of the default
system expected cost, is a decreasing function of the system size. This may
be used to define optimal fleet sizes for applications in which the system may
be subdivided and the number of probes to be utilized is a decision variable.

The IBSO assignment paradigm has many potential applications
particularly if we consider the multiple problem variation defined in Chapter

2. The deployment of fleets of emergency vehicles on post-disaster scenarios
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was described in the introduction. The models may also be used to assist
the design of bus routes, which are already used as probes in some cities
Chakroborty and Kikuchi [2004|, Cathey and Dailey [2002|, Dailey and
Cathey [2006], Tantiyanugulchai and Bertini [2003]) . Even though there are
a multitude of factors determining transit routes, the proposed models may be
used to select among a pre-selected set of alternate paths. The same principle
may be applied in other contexts, such as the routing of delivery trucks and
even taxi cabs. Most of these applications require incorporating one or more
of the extensions proposed in Section 7.4. This is likely to increment the
complexity of the solution procedure, but it is a promising step towards a

more effective utilization of available resources.

7.3 Solution methodologies

The methodological approach used to solve all the numerical examples
presented in this dissertation was developed for the solution of the proposed
optimal sensor deployment problem. In order to implement the technique to
the analysis of IBSO assignment problems, the paths followed by the assets
utilized as probes under an IBSO deployment were regarded as sets of sensors
deployed on consecutive links. Such approach requires to enumerating all
acyclic paths connecting the analyzed origin-destination pair. The later was
accomplished implementing a customized path domination criterion which
reduced the number of paths to consider by up 74%.

The model formulations are combinatorial in nature, and exact solution
approaches are not likely to be effective for large networks. Section 4.5
suggests some mathematical programming approaches, including Benders
decomposition and quadratic programming techniques, which may be
applicable to the solution of this problem and deserve further consideration.
This work implements a methodology based on network optimization methods,
taking advantage of the simplifying model assumptions. Such approach lends
itself to heuristic implementation, and can easily incorporate changes to the

problem assumptions and formulations.
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The solution method is based on the fact that, in virtue of the assumptions
presented in Chapter 2, the models may be solved by enumerating all feasible
sensor/probe deployment strategies, and computing the corresponding
expected costs under information. Such approach poses two main challenges:
the potentially huge number of perceived states which need to be considered
during the evaluation of a feasible deployment strategy, and the existence
of a combinatorial number of such strategies. = The proposed solution
technique deals with the first issue using state-partitioning principles, while
the combinatorial aspect of the problem is addressed heuristically, by
implementing an adaptive memory Tabu search procedure.

The state-space partitioning algorithm, introduced in Section 5.1, is
guided by rules developed specifically for the problems under study. These
are used to reduce the number of shortest path computations required to
find an optimal solution, mostly by appropriately selecting threshold values
for the corresponding cost. Numerical experiments suggest that, in well
connected networks, the algorithm may reduce the computational effort by up
to 95%. The adaptive memory Tabu search procedure, presented in Section
5.2 explores the combinatorial solution space guided by short and long term
memory structures. In the examples studied in Section 5.2.2.2 it found the
optimal solution by evaluating between 3% and 20% of all the candidate
solutions.

The performance of the combined methodology is very satisfactory, and the
results suggest that the heuristic efficiency, in terms of percentage of evaluated
strategies is not affected by the network size or the number of deployed sensors.
However, the state partitioning technique may not be sufficient to deal with
cases involving a very large number of sensors, particularly if they cover
most of the paths connecting the analyzed origin-destination pair. The later
complicates the identification of threshold values, reducing the effectiveness
of the methodology. A possible approach to overcome this problem is the
design of more complex partitioning rules which further reduce the number
of required evaluations, or/and to implement shortest path re-optimization

methods (reviewed in Appendix B) may be implemented to improve the
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performance of the technique. Eventually, the problem size may require the
utilization of heuristic methods. Possible approaches to their development
include Monte Carlo sampling (e.g. Alexopoulos [1997]), and the utilization
of surrogate values for the threshold shortest path value, which may allow
the computation of error bounds. Finally, it is important to notice that the
solution of IBSO assignment problems may benefit from approaches leading
to an implicit path-enumeration, which is likely to be the subject of further

extensions.

7.4 Extensions and future research directions

The problem variations analyzed in this work involve a single origin
destination pair, flow-independent link costs, time-invariant link-cost
probability distributions, and the a-priori selection of regular assets routes
on the IBSO assignment problem. These assumptions allowed for relatively
simple model formulations, which were very useful to better understand
problem characteristics and behavior. However, practical implementations
are likely to benefit from more complex approaches. The following table
(Table 7.1) lists some of the more desirable extensions. Notice that the
efficient solution of the suggested extended problems may require major
methodological changes.

The consideration of multiple origin-destination pairs is a relatively easy
modeling extension which would allow considering more general routing cases.
It is not expected to greatly complicate the solution procedure, given that the
one-to-all and all-to-all shortest path problem variations may also be solved
efficiently (Ahuja et al. [2002]). The partitioning rules proposed in this work
are applicable to the extended case, but adjustments may be desirable in the
search for efficiency. Some preliminary tests on this problem version suggests
that as the number of OD pairs becomes closer to the total number of possible
pairs, the optimal assignment strategies resemble the maximum-variance based
deployments.

Flow dependant link costs are a requirement if the models are applied to
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OD Pairs
Time-dependent link costs
Flow-dependent link costs

Include measure of variance
Minimize total deployment time

» Time-dependant shortest path
Shortest path with recourse

Table 7.1: Possible problem extensions

design traffic routing strategies, even though they may not be necessary for
other problem applications. The incorporation of a time dimension may lead
to more realistic models for traffic-related implementations, and is necessary
under some of the alternative objective functions and probe deployment
strategies proposed below.

The explicit incorporation of a robustness component in the objective
function may be valuable for applications very sensitive to the experienced
time. Notice that the variance of the solution may also be limited by
incorporating constraints into the maximum path length. The formulation
may be fully oriented to minimize the total deployment time, including that
of assets and probes. This would lead to a very restricted problem under the
assumptions considered in this work, but may provide interesting results if
sequential probe deployment strategies are considered.

Finally, the strategy used for the deployment of probes on IBSO assignment
problems may follow any of the variations suggested in Chapter 2, and the
routing paradigm selected for both, regular assets and probes, may be allowed
to be adaptive based on self-collected information or/and time dependant.

The models discussed in this dissertation provide a flexible tool to measure

and understand the benefits of information in the context of system optimum

182



assignment under information. Based on our findings, and considering
the possible extensions described in this section, a number of practical
implementations can be devised, which may contribute towards a more
effective utilization of information in the optimization of transportation

systems and related areas.
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Appendix A

Additional Data and Results for
Chapter 4
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Link < pl & pb & p & oy
116 0.6 25 0.3 36 0.1
2 21 05 24 02 25 0.2 39 0.1
3 11 04 13 04 26 0.2
4 11 07 30 0.3
5 13 0.6 37T 02 39 0.2
6 24 05 28 0.3 31 0.2
7 11 06 20 0.8 24 0.1
8 23 04 30 03 34 0.3
9 14 05 23 04 34 0.1
10 22 0.7 30 0.3
11 35 0.6 40 0.4
12 16 0.5 25 04 37 0.1
13 15 09 17 08 19 0.3 26 0.1
14 27 04 33 0.3 40 0.3
15 28 04 35 0.8 37 02 40 0.1
16 25 0.7 32 0.3
17 18 0.7 24 0.3
18 18 0.5 25 0.8 29 0.2
19 11 05 31 04 37 0.1
20 21 0.5 23 0.5

21 12 0.5 23 0.3 31 0.2

Table A.1: Network 2: Link cost probability distribution (a)
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Link < pl & pb & p & oy
22 12 0.3 15 0.3 22 02 24 0.2
23 19 0.6 23 0.2 37T 0.2
24 13 04 23 0.3 34 0.3
25 14 0.6 34 0.2 39 0.2
26 13 0.8 31 0.1 32 0.1
27 14 0.3 15 0.3 27T 0.2 32 0.2
28 10 0.6 17 0.3 20 0.1
20 16 0.3 18 0.3 36 0.2 39 0.2
30 19 04 24 0.3 29 0.3
31 12 04 13 0.3 25 02 32 0.1
32 15 04 19 0.8 25 0.3
33 14 03 20 0.3 25 02 32 02
34 23 0.9 34 0.1
35 18 0.3 19 0.3 20 0.3 33 0.1
36 10 05 19 04 39 0.1
37 13 0.6 31 0.3 35 0.

38 15 05 36 0.3 39 0.2

39 16 0.7 22 0.3

40 10 0.3 13 03 18 0.3 34 0.1
41 12 09 31 0.1

42 14 05 19 0.3 32 0.2

Table A.2: Network 2: Link cost probability distribution (b)
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70 033 73 033 94 0.3

25 0.3% 35 0.33 82 0.3

42 0.383 48 0.33 61 0.34

26 0.2 31 0.2 55 0.2 88 0.2 90 0.2
58 0.33 70 0.33 95 0.3

15 0.5 73 0.5

65 0.33 T4 0.33 75 0.3

59 0.3% T2 0.33 98 0.34

21 0.25 32 025 8 025 98 0.25
89 0.5 9% 0.5

32 0.3%5 48 0.33 67 0.3

63 0.5 99 0.5

66 0.33 8 0.33 98 0.3

6 025 15 025 39 025 58 0.25
2 0.5 48 0.5

61 0.33 63 033 85 0.3

16 0.2 18 0.2 40 0.2 52 0.2
3 033 30 0.33 50 0.34

16 0.33 34 0.533 71 0.34

90 0.5 9% 0.5

21 0.3%5 46 0.33 85 0.3

17 0.25 49 0.25 53 0.25 65 0.25
6 025 12 0.25 54 0.25 66 0.25

Table A.3: Network I: Uniform link cost probability distribution
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Link < pJ & pb & pb & p & pl
170 015 73 015 94 0.7

2 2% 015 35 0.15 8 0.7

3 42 015 48 0.15 61 0.7

4 26 0.075 31 0.075 55 0.075 88 0.075 90 0.7
5 58 0.15 70 0.15 95 0.7

6 15 0.3 73 0.7

7 65 0.15 T4 015 75 0.7

8 59 0.15 T2 0.15 98 0.7

9 21 01 32 01 8 01 98 0.7
10 89 0.3 96 0.7

11 32 0.15 48 0.3%5 67 0.7

12 63 0.3 99 0.7

13 66 0.15 8 0.15 98 0.7

14 6 01 15 01 39 01 58 0.7
15 2 0.3 48 0.7

16 61 0.15 63 0.15 8 0.7

17 16 01 18 0.1 40 0.4 52 0.7
18 3 015 30 0.15 50 0.7

19 16 0.15 34 0.15 71 0.7

20 90 0.3 96 0.7

21 21 0.15 46 0.15 85 0.7

22 17 0.1 49 0.1 53 01 65 0.7

23 6 0.1 12 0.1 o4 0.1 66 0.7

Table A.4: Network I: Right-skewed link cost probability distribution

189



Link < p/ & pb & p & pl & pl
170 07 73 015 94 0.15
2 2% 0.7 35 015 8 0.15
3 42 07 48 0.15 61 0.15
4 26 0.7 31 0.075 55 0.075 88 0.075 90 0.075
5 58 0.7 70 0.15 95 0.15
6 15 0.7 73 0.3
7 65 0.7 T4 015 75 0.15
8 59 0.7 T2 015 98 0.15
9 21 07 32 01 8 01 98 0.1
10 89 0.7 96 0.3
11 32 0.7 48 0.15 67 0.15
12 63 0.7 99 0.3
13 66 0.7 85 0.15 98 0.15
14 6 07 15 01 39 01 58 0.1
15 2 0.7 48 0.3
16 61 0.7 63 0.15 85 0.15
17 16 07 18 0.4 40 0.1 52 0.1
18 3 0.7 30 0.15 50 0.15
19 16 0.7 34 0.15 71 0.15
20 90 0.7 96 0.3
21 21 0.7 46 0.15 85 0.15
22 17 0.7 49 01 53 0.1 65 0.1

23 6 0.7 12 0.1 o4 0.1 66 0.1

Table A.5: Network I: Left-skewed link cost probability distribution
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Figure A.1: Network II topology

Link el pl g
1 70 0.5 94 0.5
2 25 0.5 82 0.5
3 42 0.5 61 0.5
4 260 0.5 90 0.5
5 58 0.5 95 0.5
6 15 0.5 73 0.5
7 65 0.5 0.5
8 59 0.5 98 0.5
9 21 0.5 98 0.5

10 89 0.5 9% 0.5
11 32 0.5 67 0.5
12 63 0.9 99 0.5

Link
13
14
15
16
17
18
19
20
21
22
23

J

J

J

& & D
66 0.5 98 0.5
6 0.5 58 0.5
2 0.5 48 0.5
61 0.5 8 0.5
16 0.5 52 0.5
3 0.5 50 0.5
16 0.5 71 0.5
90 0.5 9% 0.5
21 0.5 8 0.5
17 0.5 65 0.5
6 0.5 66 0.5

Table A.6: Network I: Two-states link cost probability distribution
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Link & pi & p) & pb & p g opl
1 65 0.2 70 0.2 73 02 94 0.2 99 0.2
2 20 02 2 02 35 02 82 02 8 0.2
3 38 02 42 0.2 48 0.2 61 02 65 0.2
4 28 02 31 02 55 0.2 8 02 90 0.2
5 55 02 58 0.2 70 0.2 95 0.2 99 0.2
6 10 02 12 02 15 0.2 73 02 78 0.2
7 60 02 65 02 T4 02 T5 0.2 78 0.2
8 55 02 59 02 T2 02 98 0.2 99 0.2
9 18 02 21 0.2 32 02 8 02 93 0.2
10 78 02 8 0.2 8 02 96 02 98 0.2
11 8 02 32 02 48 02 67 02 69 0.2
12 55 02 60 0.2 63 0.2 99 0.2 100 0.2
13 63 02 66 0.2 8 02 98 02 99 0.2
14 3 02 6 02 15 02 39 02 58 0.2
15 0 02 1 02 2 02 48 02 52 0.2
16 55 02 61 0.2 63 0.2 85 02 89 0.2
17 13 02 16 0.2 18 0.2 40 02 52 0.2
18 1 02 3 02 30 02 50 02 55 0.2
19 12 02 16 0.2 34 02 71 02 75 0.2
20 80 0.2 85 0.2 90 0.2 9 0.2 99 0.2
21 18 0.2 21 02 46 0.2 85 0.2 88 0.2
22 15 0.2 17 0.2 49 0.2 53 0.2 65 0.2

23 3 0.2 6 0.2 12 0.2 54 0.2 66 0.2

Table A.7: Network I: Five-states link cost probability distribution
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Appendix B

Shortest Path Re-Optimization

The exact solution of the problem described in this Chapter 4 involves finding
a large number of shortest paths between every origin/destination pair in
the network, corresponding to all perceived scenarios. The only difference
among such scenarios is the cost on the instrumented links, and therefore the
model may benefit from the implementation of shortest path re-optimization
techniques.

Short es path re-optimization methodologies find the new shortest path on
a network after the cost of one or more arcs changes, based on previous shortest
path computations. Under some conditions, these techniques are theoretically
more efficient than recomputing the shortest path from scratch. Moreover,
speedups of up to five orders of magnitude have been found in practical
experiments conducted no randomly generated networks (Demetrescu et al.
[2004]) and on real transportation systems(Demetrescu et al. [2004],Buriol
et al. [2003]) .

Several algorithms are available in the literature, appropriate for different
hypotheses regarding the number of links which cost changes simultaneously,
the direction of such adjustments, and the admissible values for the link
weights. The first efforts (Dionne [1978|, Rodionov [1968], Murchland [1970],
Goto and Sangiovanni-Vincentelli [1978|, Frigioni et al. [2000]) proposed
methodologies that may be used to update the shortest path tree when a

single arc cost is either incremented or reduced. Other authors (Gallo [1980],
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Gallo and Pallottino [1982]|, Nguyen et al. [2002|) present efficient solution
techniques for problems in which the cost in exactly one link is reduced, which
are also appropriate for situations in which the root node of the shortest
path is modified. Fujishige [1981] presents an algorithm to analyze the case
of a cost reduction on a set of arcs incident to a common node. More recent
approaches (Ramalingam and Reps [1996], Pallotino and Scutella [2003], King
[1999]) are fully dynamic, in the sense that can be utilized to analyze cost
reductions and/or increments on any subset of arcs, as well as arc insertions
and/or deletions. These approaches, which are suitable for the solution of
the optimal sensor deployment problem, are briefly discussed in the following
paragraphs. Recent work by Miller-Hooks and Yang [2005|, which extends
general shortest path re-optimization algorithms to the case of time-varying
networks, escapes the scope of this thesis and it is not discussed.

King [1999] proposes a fully dynamic re-optimization algorithm which
works on graphs with small integer weights. The methodology maintains
a pair of shortest paths of length < dgoing in and out of each node, and
“stitches” them together in order to obtain shortest paths of larger length.
By choosing an appropriate value of d, the algorithm can perform updates in
O(n*5y/Clogn), where C is the maximum arc weight. The required storage
space is in the order of O(n?5v/C).

Ramalingam and Reps [1996] present one of the most popular algorithms
to solve the one-to-all shortest path re optimization problem in networks with
strictly positive real-valued arc weights. Their approach has a worst case
complexity of O(m,+ng, logn,), where mg,and n, are set of the arcs and nodes
affected by the costs changes, respectively.

C.Demetrescu and Italiano [2001] present a fully dynamic shortest
path algorithm designed to maintain all-to-all shortest paths in directed
networks with real-valued edge weights. Their methodologies depart from
a matrix viewpoint of the shortest path problem, in virtue of which the
optimal distances on a directed graph can be obtained by performing specific
operations on the weights matrix. The proposed algorithms have a better

worst case complexity than recomputing the shortest path from the beginning
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and are able to accommodate cost changes of any magnitude.

In a later paper Demetrescu and Italiano [2003] propose a new approach,
valid for directed graphs with non negative arc weights. The algorithm relies
on efficiently maintaining a sets of paths with specific properties, from which
the shortest paths can be obtained in O(1). The authors introduce the concept
of potentially uniform paths, which consist of proper sub paths that are either
shortest paths or historical shortest paths. The later are paths which were
the shortest before a network update, and whose arcs were not affected by the
corresponding changes. By bounding the maximum number of new potentially
uniform paths after each network update in a sequence, the authors are able
to compute the worst case complexity of their procedure, which is in the order
of O(n%logn). This is achieved by reducing the number of historical shortest
paths generated after each network modification, by appropriately “smoothing”
the sequence of changes which conform a network update.

Pallotino and Scutella [2003| present a framework for the one to all shortest
path re optimization problem on networks with integer-valued link weights
based on the reduced cost of the network arcs. Reduced costs are obtained
from a linear programming formulation of the shortest path problem as ¢;; =
Tj — ™ — Cij, where ¢;; is the non negative cost associated with arc 75, and
m; is the optimal node potential of node 7, equal in value to the dual variable
associated to node 7. When an optimal solution to the problem is found, the
reduced costs must satisfy the feasibility and optimality conditions displayed
in B.1 and B.2 respectively, where T'" denotes the shortest path tree rooted at

node r.
Gij > 0Vig € A (B.1)
cij =0ig €T (B.2)

When the cost on one or more arcs changes, 7" may no longer be optimal,
which translates into violated optimality and/or feasibility conditions. The

algorithm proposed by Pallotino and Scutella [2003| deals separately with such
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violations. In a first stage, it updates the tree with respect to the arcs in
Kt ={ij:¢;>0,ij € T} by means of a dual-based tree-hanging procedure
previously presented by Pallottino and Scutella [1997]. The origin-based sub
tree obtained by removing the tree arcs with ¢;; > 0, which is clearly part of the
updated shortest path, is progressively extended by appropriately increasing
the potential of the remaining nodes in such way the complementary slackness
conditions are met by the updated tree arcs, while maintaining dual feasibility.
The main contribution of this work is the analysis of a set of properties in
virtue of which entire sub trees can be added to the updated tree in a single
step. Furthermore, it provides the conditions under which several sub trees
can be incorporated simultaneously, which improves the practical performance
of the algorithm with respect to previous dual ascent procedures (Florian et al.
[1981], Gallo and Pallottino [1982]). The running time of the dual phase is
never worse than the best strongly polynomial implementation of Dijkstra’s
shortest path algorithm (Dijkstra [1959]) O(m + nlogn). Furthermore, the
complexity can be also bounded based on the size of the initial sub tree n,,
and on the maximum path cost change after the perturbations, C,.

The second stage takes as an input a reduced graph G~ consisting on the
previously updated tree plus all the arcs in K~ = {ij : ¢;; < 0,ij € T,*}. The
procedure implemented in this step restores feasibility by updating the node
potentials in such way that ¢;; > 0 Vij € A after all the cost reductions are
implemented. This is accomplished in phases, each of which considers a “star
path” sub graph of G~. The structure of such sub graphs is such that, when
the corresponding cost changes are implemented, the node potentials can be
updated using a label setting algorithm. The authors provide a methodology
to detect a star paths in O(m), which leads to a worst case complexity of for
the primal phase of O(hm + hnlogn), where the second term represents the
complexity of the label setting algorithm, and A is the maximum number of
phases, bounded by the magnitude of the maximum cost change.

The conducted review suggests that there are a number of shortest path
re optimization algorithms available in the literature which may be used to

improve the performance of the methodologies considered in this dissertation.
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Appendix C

Computing Paths Properties on
Stochastic Networks

When the inherent uncertainty regarding network parameters is explicitly
considered, the difficulty of finding network properties, and even of solving
the simplest optimization problems, may grow exponentially. The problems
analyzed in this dissertation implicitly involve the identification of shortest
paths properties on stochastic networks, including the probability of a path
being the shortest, and the probabilities that a link belongs to the shortest
path under information. The following paragraphs provide a brief overview of
previous studies which illustrate the challenges involved in such computations.

Finding the Least Expected Cost (LEC) path is a relatively easy task when
the link cost functions are linear. In virtue of the definition of the expected cost
of a sum of random variables, it is valid to replace arc probability distributions
by their expected costs, and run a deterministic shortest path algorithm on
the resulting network (Eiger et al. [1985]).

The computation of path properties on stochastic networks has been proved
to be substantially more difficult that the identification of the LEC path.
The main reason for this is that computing stochastic path properties usually
entails generating the corresponding Probability Distribution Functions
(PDFs) based on links PDFs. This can easily become mathematically

intractable in networks with more than a few links, particularly when links
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PDFs are either continuous or discrete with a large support. For this reason,
most of the papers on this field present heuristics to approximate the desired
properties.

Frank [1968] analyzes the PDF of the shortest path length on a network
with continuous arc costs. He provides a closed-form optimal solution entailing
the computation of an r-dimensional integral, were r can be as large as the
total number of links on the network. He also proposes an approach to
perform non parametrical analysis based on random sampling, and implements
a Monte Carlo simulation scheme to show that the shortest path length PDF is
approximately normal when the link costs are uniform, normal or exponential.

Sigal et al. [1980] study the problem of finding the probability of a path
being shorter than every other path. They derive closed form solutions for
the case of continuous link cost distribution functions, and present a cutset
solution approach which may entail enumerating all possible cuts. The authors
suggest several heuristic techniques to solve the proposed problem.

Using a framework closer to the one adopted for this work, Alexopoulos
[1997| focuses his research on shortest path and minimum spanning tree
problems on networks with stochastic arc costs described by independent
discrete probability distribution functions.  He shows that computing
properties such as the expected length of the shortest path, the probability of
a path being the shortest, and the probability of an arc belonging to a shortest
path, are #P-hard problems, and proposes a state partitioning approach to
approximate the solution. The underlying concept of his approach is that the
desired path properties can be computed without explicitly considering all
network states. Based on the assumption that the link states are sorted in
an increasing order of costs, it is possible to define boundaries, limiting the
combinations of link states which need to be considered for the computation
of a particular property. The procedure is exponential in the worst case,
but some practical applications suggest a better performance. Furthermore,
Monte Carlo simulation may be implemented to efficiently approximate the
problem solution in large networks.

Kim et al. [2005] use a state space reduction approach to identify those links
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which do not need to be considered during shortest path computations. They
study online vehicle routing problems on non-stationary stochastic networks
with two states per arc, which exhibit Markovian dependencies across time
intervals. The authors provide algorithms for both, the a-priori elimination
of irrelevant arcs, and the dynamic identifications of such arcs as the vehicle
moves through the network.

This brief review suggests that, even though the computation of the
properties required to evaluate sensor deployment strategies for IBSO
assignment is challenging, there is a wide variety of promising approaches

which can allow for a relatively efficient solution of the problem.
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