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Modeling the System-Level Impacts of InformationProvision in Transportation Networks: an AdaptiveSystem-Optimum ApproachNatalia Ruiz Juri, Ph.D.The University of Texas at Austin, 2009Supervisor: S. Travis WallerTra�c information, now available through a number of di�erent sources,is re-shaping the way planners, operators and users think about thetransportation network. It provides a powerful tool to mitigate the negativeimpacts of uncertainty, and an invaluable resource to manage and operate thenetwork in real-time. More information also invites to think about traditionaltransportation problems from a di�erent perspective, searching for a betterutilization of the improved knowledge of the network state.This dissertation is concerned with modeling and evaluating the system-level impacts of providing information to network users, assuming that the datais utilized to guide an Adaptive System-Optimum (ASO) routing behavior.Within this context, it studies the optimal deployment of sensors for thesupport of ASO strategies, and it introduces a novel SO assignment approach,the Information-Based System Optimum (IBSO) assignment paradigm.The proposed sensor deployment model explicitly captures the impact ofsensors' location on the expected cost of ASO assignment strategies. Undersuch strategies, a-priori routing decisions may be adjusted based on real-timeinformation.The IBSO assignment paradigm leads to optimal �ow patterns which takeinto account the ability of vehicles to collect information as they travel. Theapproach regards a subset of the system's assets as probes, which may facevii



higher expected costs than regular vehicles in the search for information. Thecollected data is utilized to adjust routing decisions in real time, improvingthe expected system performance. The proposed problem captures the system-level impact of adaptive route choices on stochastic networks.The models developed in this work are rigorously formulated, andtheir properties analyzed to support the generation of specialized solutionmethodologies based on state-space partitioning and Tabu Search principles.Solution techniques are tested under a variety of scenarios, and implementedto the solution of several case studies. The magnitude and nature of theinformation impacts observed in this study illustrate problem characteristicswith important theoretical, methodological and practical implications.The �ndings presented in this dissertation allow envisioning a number ofpractical applications which may promote a more e�cient utilization of novelsensing and communication technologies, allowing the full realization of theirpotential.
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Chapter 1IntroductionThanks to technological advances in the �elds of remote sensing andcommunications, large amounts of transportation data have become availablein the last 15 years (Sisiopiku [2000], Varshney [2003, 2005], Biesecker [2000]).Increasing proportions of such data are now accessible to network users inreal-time, directly or as route recommendations from in-vehicle devices orDynamic Message Signs.The new available information invites to think about traditionaltransportation problems from a di�erent perspective, searching for a moreadvantageous utilization of the improved real-time knowledge of the networkstate.This dissertation introduces a novel system-optimum assignment approachwhich takes into account the ability of assets to collect information asthey travel. The Information-Based System Optimum (IBSO) assignmentparadigm captures the system-level impact of adaptive route choices onstochastic networks. The distinctive characteristic of the new approachis given by the utilization of some system assets as probes, which collectthe information based on which the assignment of the remaining assets isadjusted.Methodologically, this dissertation is concerned with modeling andevaluating the system level impacts of providing information to networkusers, assuming that the data is utilized to guide adaptive system-optimum1



routing strategies. Within this context it also studies the optimal deploymentof sensors for the support of adaptive-system optimum decisions. Bothcontributions represent fundamentally new approaches to the collection andutilization of information in transportation networks.Existing literature on adaptive routing typically considers that theinformation based on which routing decisions are adjusted is either limitedto the costs individually experienced by each asset, or exogenously providedfrom arbitrary sources. The �rst case gives rise to models of shortestpath with recourse (e.g. Polychronopoulos and Tsitsiklis [1996], Miller-Hooks and Mahmassani [2000], Waller and Ziliaskopoulos [2002]), while thesecond approach underlies studies concerned with in-vehicle route-guidanceprovision (e.g. Papageorgiou and Messmer [1991], Boyce et al. [1995], Frieszet al. [1989]). Under an IBSO assignment paradigm information is both,endogenously generated, and systemic. This leads to framework whichcaptures the system-level impacts of information, and at the same timemodels its collection within a system optimum context.The optimal sensor deployment approach proposed in this dissertation(Section 4) considers exogenous information sources, but it explicitly studiesthe impact of the location of the source on the e�ectiveness of the routeguidance strategies. The model identi�es the optimal location of a �xednumber of static sensors in a network with stochastic arc costs, in such waythat the expected cost faced by a set of optimally routed assets is minimized.The information provided by the sensors translates into a set of perceivedstates, based on which adaptive routing decisions are made. Section 1.1.3exempli�es a possible scenario for the application of the proposed approach.Under the IBSO assignment paradigm presented in Section 6, a subset ofsystem assets are designated as probes, and used to collect the informationused to adjust the assignment decisions for the remaining assets. Theselection of the paths followed by the probes takes into account the valueof the information collected along them in addition to the correspondingexpected cost. As a consequence, assets utilized as probes may face higherexpected costs than regular system assets, which are optimally routed2



under every possible state revealed by the probes. A multitude of problemvariations are possible based on the assumptions regarding the characteristicsof the network, the information distribution scheme, and the timing of thedeployment of probes and regular assets. Section 1.1 presents a taxonomyto classify the variations, along with the set of assumptions governing theproblems studied in this dissertation, and Sections 1.1.2 and 1.1.1 illustratepossible applications.The problems addressed in this work are formulated as stochasticprograms (Sections 4.2 and 6.3), which allows explicitly modeling uncertainty,information provision and utilization. Problem solutions have a deterministiccomponent, given by the sensor/probe deployment strategies, and an adaptiveelement. The later is given by the strategies which de�ne the routes tobe followed by the non-probe system assets under each possible scenario,typically represented using hyperpaths (Nguyen and Pallottino [1989]).The solution methodology is based on the fact that, in virtue ofthe assumptions presented in Section 2.7, the models may be solved byenumerating all feasible sensor/probe deployment strategies, and computingthe corresponding expected costs under information. Such approach posestwo main challenges: the large number of perceived states which need to beconsidered during the evaluation of a feasible deployment strategy, and theexistence of a combinatorial number of strategies. The proposed solutiontechnique deals with the �rst issue using state-partitioning principles, whilethe combinatorial problem is addressed heuristically, by implementing anadaptive memory Tabu search procedure. Both methodologies were tailoredto account for the characteristics of the problem under study, and theirperformance tested under several scenarios. The �nal methods constitute aninteresting framework for the study of similar problems.The models proposed by this work are implemented to the study of severalnumerical examples. The analysis of the results from a quantitative andqualitative perspective, presented in Sections 5.3 and 6.6, illustrate interestingproblem characteristics with important theoretical and methodologicalimplications. 3



The presented models are not designed to solve any speci�c application, buta number of possible implementations are possible for the di�erent variationssummarized in Chapter 2. The following section exempli�es some potentialpractical implementations, while Section 1.2 summarizes the goals, objectivesand contribution of this dissertation.1.1 Motivating examplesThis section presents some simple examples of scenarios under which thestrategies and methodologies proposed by this work would be advantageous.These cases motivate the present research, by illustrating the potential bene�tsof peer-based dynamic and targeted information collection and utilization, andalso to facilitate the understanding of some of the problem properties andvariations de�ned on later chapters.1.1.1 Evacuation of damaged areas after a naturaldisasterConsider the evacuation of an area a�ected by a natural disaster, such as�ooding. Assume that the network presented in Figure 1.1 represents thecorresponding road system, which has been damaged by the event. Supposethat, based on their previous experience, emergency managers are able toestimate the probability of di�erent damage levels on the network links, whichde�ne the corresponding link traversal costs. Assume that the objective ofthe rescue operation is to transport people a�ected by the natural disaster,currently concentrated in node C, to a safer location in node G. The evacuationneeds to be �nalized in the shortest possible time, given the danger of a sequel,and it is accomplished using 4 vehicles, which are enough to transport all theevacuees. A naive routing strategy would assign all the assets to paths CDFGor CDEG, which exhibit the least expected cost, equal to 7 time units.Nevertheless, it is possible to improve upon this strategy by making use ofwireless communications capabilities and a staggered decision making process.4



For example, two of the assets may be assigned to paths CDFG and CDEGat the onset, and then routes for remaining vehicles decided based on their�ndings. Under this strategy, the expected cost to be paid by assets routedon the second stage becomes 5.5 units, and the expected total system cost isreduced from 28 to 25 time units. Taking into account that under the proposeddeployment strategy assets assigned during the second stage must wait untilthe latest of the �rst two vehicles reaches destination, the expected arrivaltime of the last vehicle is 12 time units.Notice that this strategy involves assigning probes to paths exhibitinghigher expected costs than the minimum expected cost path. However, thepossible gains derived from the information found by the probes outweigh theadditional cost, in terms of expected travel time, necessary to pay for suchdata.
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Figure 1.1: Example network1.1.2 Deployment of military assets in a hostileenvironmentConsider a set of military vehicles consisting of tanks and ambulances, whichneed to be deployed through a hostile territory. Let the network in Figure 1.1represent the set of paths traversing the area, and assume that the randomlink costs are a function of its length and condition, as well as of the risk ofbeing attacked while traveling on the link. Also consider that the tanks, moreresilient to enemy attack and adverse road conditions, are used as probes anddeployed during a �rst stage. The ambulances are vulnerable, and thereforerouted during the latest stage. 5



Let the objective of the assignment be the displacement of the assets fromtheir current location in node C, to a new settlement in node D. Even thoughit is desirable to accomplish the relocation in the shortest possible time, amajor concern is to ensure that the time spent on the road by ambulances isminimized, in order to reduce their exposure, and the risk to the transportedpatients. Taking such goals into account, the deployment strategy presented inthe previous example may be improved upon, by exploiting the fact that somepaths have links in common. In view of the later, greater information bene�tsfor the vehicles deployed in later stages can be achieved if each probe vehiclewaits for the previous one to reach its destination before entering the network.Such strategy allows probes to utilize the information gathered by others. Theexpected cost faced by the ambulances under this strategy is reduced from 5.5to 5.25 time units, at the cost of a higher arrival time for the last unit (17.4).The corresponding system expected cost becomes 24 time units.1.1.3 Optimal deployment of sensors for decision-makingsupportConsider that the network in Figure 1.1 represents the transportation systemof a region susceptible to �ooding. Assume that link travel times are a directfunction of the water level on a link, which follows a discrete probabilitydistribution. Suppose that city planners are able to deploy a �xed numberof sensors able to measure the actual water level on a link. The objectiveunderlying the sensor placement is to guarantee the fastest possible deploymentof help to �ood victims, which usually seek for refuge in shelters and hospitalslocated in node D. Emergency vehicles typically depart from the �re stationlocated at node A. Assuming that there is only one sensor available, the clearchoice for its placement is link BC. Notice that locating the sensor on link CDwould provide a more accurate estimate of average level of water in the system,which is desirable from a monitoring perspective. However, such informationis worthless for the speci�c objective under consideration, because it has noimpact on the decision making process, which is certain to involve link CD in6



the assignment. By using the information provided by the sensor, the expectedtotal system cost drops from 4.5 to 4 time units.1.2 Goals and objectivesThis dissertation aims to contribute to a better understanding of the system-level e�ects of providing tra�c information to network users, thus fostering thedevelopment of methodologies capable of strategically exploiting such impactsto bene�t the system. Its goal is to introduce new routing paradigms bene�tingfrom the increasing availability of real-time data, ultimately leading to a moree�cient utilization of available resources, and a full realization of the potentialbene�ts of novel technologies. Speci�c objectives include:
• Study existing approaches to evaluating the system-level impacts ofinformation provision to network users.
• Propose a novel sensor deployment criteria based on the impacts ofinformation on adaptive routing decisions.
• De�ne a new assignment paradigm capable of bene�ting from emergingsources of real-time tra�c data.
• Introduce a framework for the study of the novel approach, proposing ataxonomy to classify problem variations.
• Formulate a mathematical model re�ecting the proposed concepts.
• Analyze properties and distinctive characteristics of the new model.
• Develop and implement specialized solution methodologies.
• Identify possible extensions and applications of the proposed frameworkbased on the analysis of problem properties and numerical results.This work contributes to the literature on the evaluation of informationimpacts, by presenting methodologies able to capture and measure the e�ects7



of providing information to network users. It also advances the researchconcerned with the optimal deployment of sensors, by proposing modelswhich explicitly consider the impact of sensor placement on the performanceof adaptive strategies based on the information they provide.The proposed Information-Based System Optimum assignment paradigm isa fundamentally new approach that allows exploitation of tra�c informationfrom wholly new perspectives. The analysis of numerical results andtheoretical problem properties suggests that the paradigm has the potentialto improve system performance. The models proposed in this work constitutean initial step towards enhancing information collection and utilizationstrategies. Based on the �ndings presented here, a number of applicationsmay be envisioned, for which e�cient solution would ensure more e�cientutilization of current and future sensing and communication technologies,fostering the full realization of their potential bene�ts.
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Chapter 2Conceptual Framework, ProblemVariations and AssumptionsThis dissertation is concerned with modeling and evaluating the system levelimpacts of providing information to network users, assuming that the datais utilized to guide adaptive system-optimum routing strategies. Within thiscontext it studies both, the optimal deployment of sensors for the supportof adaptive-system optimum decisions, and the design of optimal assignmentstrategies which consider the collection of information by system assets.Adaptive decisions are such that they may be modi�ed based on availableinformation, whether it originates from static sensors or it is provided byother assets in the system. The system-optimum approach implies theimplementation of a routing criterion which minimizes the total cost facedby the system, at the price of allowing some assets to face higher costs thanothers (She� [1985]).In the context of this work, the system costs are de�ned by the summationof the expected costs paid by individual assets. The use of expectation ismotivated by the stochastic nature of the problem, in virtue of which theactual cost at a link is learnt only after making the decision to utilize it. Evenwhen the expected cost of a path is minimum, the conditions experienced bythe assets traversing it may be worse than the realized costs in other paths. Thelater explains the advantage of using probes to verify the state at one or more9



routes before making the assignment decision for the remaining vehicles, whichis the concept underlying the Information Based System Optimum (IBSO)assignment paradigm.Section 6.2 explains some unique characteristics of the IBSO assignmentapproach, and contrasts it to traditional system-optimum assignment. Theproblem involves deciding the routes to be followed by a set of assets,including probes, which travel between given origins and destinations.Routing decisions are made a-priori, but they may be staggered in order toallow for the utilization of the information retrieved by the probes. Giventhe stochastic nature of the problem, solutions are given in the form ofstrategies, rather than as a speci�c set of routes. Strategies describe theoptimal assignment under each possible scenario, and may be representedusing hyperpaths.The approach taken in this dissertation to study the optimal deploymentof sensors assumes that the collected data is used to optimize system-optimumrouting decisions, and explicitly models the impact of the sensor location onthe resulting system performance.The general problem description provided in this section makes itclear that there is a multitude of possible variations depending on theassumptions regarding various problem parameters, which ultimately de�newhat information is available and which assets may bene�t from it. Thefollowing sections describe these parameters, identifying axes along which theproblem variations may be compared, and de�ning the scope of the presentwork.2.1 System assets and routing strategiesOne of the main features of the IBSO assignment problem is the considerationof two types of assets. An arbitrary set of assets is utilized as probes, alsodenotes equipped assets, which are capable of collecting and communicatinginformation about the system state as they travel. The data revealed by probesmay be used to adjust the assignment decisions concerning other vehicles.10



The non-probe assets, denoted regular vehicles or non-equipped assets,experience link cost realizations on their trips, but their �ndings do not havean impact on routing choices.All assets are assigned to routes connecting an origin-destination pairseeking to optimize a common system-level objective. Given the capabilityof probe vehicles to resolve the system uncertainty by collecting information,may be routed on di�erent (and more expensive) paths than the regular assets.In this dissertation all routes are assumed to be selected a-priori, i.e.before assets leave the origin. The adaptive component is given by theadjustment of route decisions based on the available information, whichis possible assuming a serial deployment process described in section 2.4.Possible problem variations include allowing the re-optimization of routesat intermediate nodes based on information retrieved by probes after thedeparture of regular assets (system-level-information-based recourse).Another approach is to allow regular assets to re-route themselves basedon the costs they experience, following an online shortest path approach(e.g.Waller et al. [2001]). If �ow dependant link costs are considered, thelater would not be consistent with a system optimum approach, but asystem-optimum with recourse paradigm (Unnikrishnan [2008]) may be useto centrally de�ne assets routes.2.2 Network characteristicsSystem assets are assigned into a directed, uncapacitated network withstochastic link cost functions. Link costs follow discrete probabilitydistributions, de�ned by a �nite number of states, which are uncorrelatedacross links. Additionally, the considered network is static, which impliesthat link cost probability distributions are constant in time. It is assumedthat probe vehicles learn the cost of a link upon traversing it, and that suchcost becomes deterministic for the purpose of assigning the remaining assets,as well as invariant. The later means that additional probes visiting thesame link would experience the same cost. Costs functions are assumed to11



Figure 2.1: Classi�cation of information collection strategiesbe independent of the corresponding �ow and, without loss of generality,integer-valued (Ahuja et al. [1993]).Some network nodes act as origins and/or destinations, which are the entryand exit points of the assets into the system. Problem formulations presentedin this proposal consider a single origin and destination pair.2.3 Information collection and distributionFor most of the problems proposed in this dissertation, information isdynamically collected, in the sense that it is retrieved by mobile assetstraveling through the network. Chapter 4 presents the only problem versioninvolving static information collection, where the same is redeemed by sensorsplaced on �xed network links. In both cases, links from which informationis collected are considered to be �measured�. Figure 2.1 depicts possibleassumptions regarding information collection. Information is collected bysystem assets, even though further extensions may consider the utilization ofexogenous agents to generate network-state data.In the context of this problem, the direct impact of measuring a link isgiven by a change on the corresponding cost, from its expected value to thevalue observed under each possible realization in its probability distribution.The combination of the realizations observed at every measured link originatesa �perceived� network state, based on which adaptive routing decisions may12



be performed.Equipped and non-equipped assets learn the realization of an arc costupon traversing it, but the uncertainty regarding a link cost from a systemperspective is only resolved when a link is traversed by a probe, and upon thesame arrives to an information retrieval node. These are the only nodesfrom which probes can make information available to the system. Similarly,information distribution nodes are de�ned as those nodes at which regularassets may be re-routed. The approaches proposed in this dissertation considersingle information retrieval and distribution nodes, given by the origin anddestination of the assets route. This represents the a-priori routing strategydescribed in 2.1. Problem instances allowing recourse actions require thede�nition of several information distribution nodes.2.4 Deployment strategiesDeployment strategies de�ne the structure of the decision making process.Two main approaches are possible depending on whether probes remain in thesystem after regular assets are deployed. Parallel deployment strategies(Figure 2.2) assume that both types of assets are assigned into the networksimultaneously. Under serial strategies non-equipped assets enter the networkonly after the probe vehicles have reached their destination. A serial approachhas the potential to result in lower system expected costs, given that theassignment decision for regular assets is supported by all the informationwhich the probes may retrieve. However, if the total time spanned by thedeployment is a concern, parallel strategies may be more appropriate. Noticethat, while serial deployment is compatible with a-priori routing schemes, someof the alternatives within parallel deployment are meaningless if system-level-information-based recourse (Section 2.1) is not allowed, at least for the non-equipped assets.Serial deployment strategies can be further categorized as simultaneous orsequential based on the ability of probes to take advantage of the �ndingsof other equipped assets. Under a simultaneous assignment paradigm, all13



Figure 2.2: Deployment strategiesequipped assets enter the system at the same time, and collect informationindependently of the �ndings of other probes. The sequential probeassignment approach assumes the equipped assets are released into thesystem in batches, and the routes of probes in later batches are decided basedupon the information collected at earlier stages. The sequential assignmentoption may lead to a more e�cient use of the information at the cost ofprolonging the total deployment time. Additionally, sequential strategiesentail the introduction of a temporal dimension, in order to ensure consistencybetween the time at which batches are deployed into the system (releasetime) and the corresponding availability of information. If link costs do notrepresent travel times, additional variables are required to maintain suchconsistency.Under parallel deployment strategies, it is possible to release all the assetsinto the system at once, or to accomplish the deployment in batches consistingof non-equipped assets and probes. The proportion of each type of assetper batch may be �xed exogenously, or considered a problem variable. Anadditional parameter to de�ne in this context is the location and number ofinformation retrieval and distribution nodes (Section 2.3). The assumptionof unique retrieval and distribution points at the origin and destination ofeach route may be excessively restrictive. Depending on the release time14



of the di�erent batches, it may actually prevent some batches from takingany advantage of the information collected by other probes. A more �exibleapproach is to let all the nodes be information retrieval nodes, allowing everybatch to bene�t from all the information acquired before its release time. Inaddition to this, cases involving a single batch consisting of all the assets in thesystem demand for extra information distribution nodes, and entail allowingfor system-level-information-based recourse.2.5 Objective functionFor the purpose of this dissertation, the system objective is to minimize thesummation of the expected cost paid by each asset. Notice that thisassumption minimizes the time spent by the assets in the network rather thanthe expected duration of the deployment operation. The optimal solution toproblems with this objective may tolerate considerably longer routes for probevehicles, which is compensated by the availability of more valuable informationconcerning the system state at the moment of assigning the remaining assets.This objective function is reasonable for problems such as the ones presentedSection 1.1.2, in which the main concern is the time spent en-route. Forproblem instances such as the one presented in Section 1.1.1, in which thetotal time involved in the deployment process is of importance, it may bedesirable to re-de�ne the corresponding objective function and incorporatinga temporal dimension. If the link costs are not expressed in time units, itmay demand for the de�nition of new variables, and lead to multi-objectiveproblems. Otherwise, the objective function may be adjusted by adding theexpected arrival time of the last probe to the cost summation de�ned earlier.2.6 Decision variablesFor the IBSO assignment problem, the decision variables include the routeto be followed by the probes and the assignments strategy for regular assetsunder each possible perceived scenario. Notice that in virtue of the assumption15



of �ow-independent and uncapacitated link costs, all system assets may beassigned to the same path, and therefore the solution involves a single pathper state. The set of the di�erent solutions under each network state is denotedhyperpath (Nguyen and Pallottino [1989]). For the optimal sensor deploymentproblem, the decision variables are given by the set of links to be measured, andthe corresponding hyperpaths. Future extensions may incorporate additionaldegrees of freedom, including an endogenous selection of the number of assetsto be used as probes, or the release time of each batch in parallel deploymentcases under a sequential release strategy.2.7 SummaryThis section described the features of adaptive system optimum routingstrategies, and presented the possible assumptions de�ning an instanceof the IBSO assignment problem. The characteristics presented in thischapter constitute the axes along which problem variations may be de�nedand compared. The number of variants resulting from combining di�erentassumptions regarding problem parameters is certainly very large. In orderto bound the scope of this work, the analyzed version will di�er only onthe deployment and routing strategies, as categorized in Figure 2.2. For theremaining parameters, Table 2.1 presents the assumptions which will be heldthroughout this work, unless otherwise noted.
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Table 2.1: AssumptionsNetwork Directed, static, uncapacitated,single OD pairLink costs Integer, non-negative, �owindependentCost probability distribution Discrete. Realization learnt afteruse by probes.Information retrieval node DestinationInformation distribution node Origin
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Chapter 3Literature Review: Evaluating theImpacts of Tra�c InformationProvision on the Performance ofTransportation NetworksThanks to technological advances in the �elds of remote sensing andcommunications, large amounts of transportation data have become availablein the last 15 years (Sisiopiku [2000], Varshney [2003, 2005], Biesecker [2000]).This data typically includes vehicle counts and speeds at speci�c locations,as well as point-to-point travel time measurements from �probe� vehiclesequipped with wireless devices such as toll-tags, GPS, and even cellularphones. The existing intelligent transportation system infrastructure allowscollecting, processing, and distributing information from some of these sourcesin almost real time.The generated information is typically made available to both, networkmanagers and drivers. For network operators, the ability to closely monitor thesystem performance has an enormous value. The collected data contributesto a better understanding of the behavior of transportation networks, andprovides a means to develop more e�cient congestion management andnetwork operation strategies. 18



Evaluating the e�ects of providing information to drivers is considerablymore complex. The availability of real-time data is likely to a�ect the route anddeparture time choice of system users, especially under congested or atypicalsituations. However, the aggregate impact of individual choices on the systembehavior is not easy to predict, particularly given the di�culty of assessingthe reaction of drivers to information.This literature review presents existing approaches to model the utilizationof information by drivers in transportation networks (Section 3.1) and thecorresponding system-level impacts (3.2). These models provide useful toolsto evaluate information collection and distribution strategies (Section 3.3),which is critical in view of the large costs that such tasks may involve. Theymay also serve as the basis to analyze novel approaches to the utilizationof information in transportation problems, and therefore understanding theirstrengths, limitations and corresponding implementation challenges is of theutmost importance.3.1 Modeling the utilization of informationThis section focuses on models which are able to represent the adaptivebehavior of drivers in the face of information. The methodologies studiedhere typically assume that all drivers optimally use the available informationto improve their travel cost (or expected travel cost). In reality, drivers'reaction to information is a more complex process which depends on theirpreferences, perceptions, past experience, and attitude, among others. Thestudy of such behavior escapes the scope of this work, but it is an active �eldof research, typically accomplished via interactive simulation experimentsand surveys (Mahmassani and Chen [1991], Polak and Jones [1993], Adlerand McNally [1994]Mahmassani and Tong [1986], Koustopoulos et al. [1993]).Another assumption common to most of the models discussed in this sectionis that link costs are random, re�ecting the uncertainty capacity whichcharacterizes transportation network links (Unnikrishnan [2008]). In thiscontext, information is represented as the total or partial resolution of19



uncertainty accrued by learning the cost realization on one or more links.The methodologies analyzed in this section may be classi�ed accordingto multiple characteristics. Figure 3.1 presents the approach selected forthis study, which is based on the type of information provision that themodels may be used to represent. It is important to notice that many ofthe reviewed models were not developed to meet the requirements of a speci�ctechnology, but to capture realistic behaviors which were beyond the capabilityof past approaches. The proposed classi�cation scheme is designed to �t theframework of this dissertation, and the corresponding categories are intendedto describe possible model application within the context of this study. Theproposed classi�cation is not meant to de�ne the entire range of possibleimplementations of the discussed research e�orts.For the purpose of this study, self-collected information corresponds tothe information that vehicles learn as they travel through the network, eitherby reaching a node or by traversing a link. It may include information displayedon dynamic message signs, as long as such data is concerned only with the stateof adjacent links. The models included in this category are mostly variationsof the traditional shortest path problem, born from the need to explicitlymodel link cost uncertainty, adaptive drivers behavior, and dynamic networkproperties.System-level information may originate at any location in the network,and is typically collected and distributed using the Intelligent TransportationSystem (ITS) infrastructure, even though novel approaches explore thefeasibility of propagating system-level data through vehicle-to-vehiclecommunications (Section 3.3). It may be accessed through the Internet, or bymeans of an in-vehicle navigation device. Most of the models in this sectionwere developed to study the provision of dynamic route-guidance to drivers.3.1.1 Models based on self-collected informationThe models in this section explicitly account for the uncertain nature ofthe link costs, and capture the adaptive behavior of drivers. On stochastic20



Figure 3.1: Approaches to modeling and evaluating individual-levelinformation impactsnetworks one may not �nd a path which is the shortest under all possiblecost realizations. A common practice is to de�ne optimality based on pathsexpected cost, regarding the least expected cost (LEC) path as the �shortestpath�, which can be found using deterministic shortest path algorithms whenthe link cost functions are linear (Eiger et al. [1985]). For many transportationapplications, this is a very sensible choice which re�ects driver's decision-making process under uncertainty (Von Neumann and Morgenstern [1944]).However, for some implementations, particularly those involving short-termdecision making, modeling uncertainty becomes crucial.Online optimization relaxes the assumption that the entire optimal pathmust be chosen before arc costs realizations are learnt. Drivers select an a-priory route, but are allowed to adapt their decision as they travel based onthe cost realizations they observe. Furthermore, the formulations are suchthat the a-priori route selection takes into account the information which maybecome available on the selected path, and the corresponding alternatives. Thechanges to the a-priori route selection are usually referred to as �recourse�, andare typically assumed to be governed by a cost minimizing process.The optimal solution to this type of models is given in the form of ahyperpath, which is an acyclic graph representing the optimal route given21



di�erent link (nodes) costs realizations (Nguyen and Pallottino [1989]). Theexpected cost of following an optimal hyperpaths is a lower bound on theexpected cost of any a-priori path. The major challenge posed by the solutionof these problems is that, in the general case, they may involve the enumerationof all existing hyperpaths, which is very large and grows exponentially withthe problem size. However, some e�cient methodologies have been developedfor speci�c link correlation structures and network topologies.Models may di�er in a multitude assumptions, including the point atwhich the driver learns a link's cost realization (origin or destination node),the permanency of such cost realization (it may be di�erent each time anode is visited or become deterministic after the �rst pass), and the type ofcorrelation among link cost probability distribution functions (independent,arbitrary correlations, or speci�c structures). Some models also accountfor dynamic network properties, assigning di�erent probability distributionfunctions depending on the arrival time at a node. Gao and Chabini [2006]present the �rst somewhat unifying framework to analyze online shortest pathproblems on networks with discrete and non negative arc costs, and proposesvery general optimality conditions.Hall [1986] introduces a dynamic programming algorithm to �nd theshortest hyperpaths on a network with stochastic arc costs on whichdrivers are allowed recourse actions based on their experienced costs. Hismethodology assumes that the least expected cost path is acyclic, and it mayrequire evaluating all possible paths.Psaraftis and Tsitsiklis [1993] study the problem on acyclic networks whicharcs exhibit a Markovian temporal dependency (i.e. the arc cost at state t-1is a function of the arc cost realization at t) but are uncorrelated space-wise.In the proposed models, waiting at nodes is allowed. The authors presentthree polynomial algorithms to �nd optimal adaptive routes, based on dynamicprogramming principles.Bander and White [2002] study a problem variation including path terminalcosts, which depend on the corresponding arrival time. The methodologyassumes discrete arc cost probability distributions and positive arc costs, and22



may be solved heuristically.Polychronopoulos and Tsitsiklis [1996] consider the online shortest pathproblem on networks with discrete arc cost probability distributions undertwo possible conditions: independent and correlated arcs cost. For thecorrelated case, they de�ne a state set, which contains all the possible networkrealizations. This work introduces a dynamic programming algorithm whichrecursively reduces the cardinality of the information set. The rationalebehind such approach is that drivers may �discard� some of the possiblenetwork realizations as they acquire new information. The authors proposeexponential solution methodologies and bounded heuristic approaches.Waller and Ziliaskopoulos [2002] examines a similar problem, but assumesarc costs probability distributions with limited space dependencies, which leadto a polynomially solvable problem. The authors consider that each visit toa node results in a new random trial, and therefore the shortest path couldinclude cycles (Andreatta and Romeo [1988]). As a result, the proposed labelcorrecting algorithm may theoretically lead to in�nite cycling. However, thiscontribution proves that there is a bound to the maximum improvement (interms of expected cost) that can be derived from cycling, and provides anheuristic bound on the algorithm performance based on the desired level ofprecision in the solution.Miller-Hooks and Mahmassani [2000] present an algorithm to computeleast-expected cost paths in stochastic dynamic networks, on whichthe cost functions are not only random but also time dependant. Thelabel-correcting methodology provides an exact problem solution in networkswith independent arc costs, assuming that no waiting is allowed at nodes. Thealgorithm is exponential in theory, but it is showed to perform considerablybetter in practice. The proposed implementation is possible thanks to theadditive nature of the expected costs, guaranteed by the characteristicsimposed on the probability distribution functions. De Leone and Pretolani[1998] and Pretolani [1998] analyze the same problem, developing solutionmethodologies based on auction algorithms and time-expanded networks,respectively. Such methodologies work in linear time with respect to the23



corresponding network size, which may however be very large.Models accounting for the adaptive behavior of drivers when presentedwith information are the building blocks for formulations able to represent theaggregated behavior of the system under the provision of information. Existingmethodologies are insightful and �exible, and they may be adjusted to modelthey availability of new sources of information.3.1.2 Models based on system-level informationNew technologies, such as GPS and in-vehicle guidance systems, allowassuming that a large set of system-level information is available at di�erentpoints during the trip (even continuously), and that optimal route choicesmay be made based on it. Most of the online routing models accountingfor centralized information were motivated by the emergence of in-vehicleguidance systems capable of accounting for real-time tra�c information. Asa result, they focus on generating route recommendations which are providedto drivers instead of the corresponding raw data.Some of the models presented in this section are designed to provideonly pre-departure information, which may have an e�ect on both, routechoice and departure time selection. Providing pre-trip information alsopresents a better opportunity to seek for a system performance balancingsystem optimum and user equilibrium objectives. Jahn et al. [2005] proposea system-optimum approach with user constraints towards such end. Themethodology generates optimal routing strategies which improve uponthe solution of a user equilibrium problem (She� [1985]) while limitingthe magnitude of the cost di�erences that characterize system optimumassignment strategies. Notice that the approaches presented here do notnecessarily model uncertainty through a random distribution of link costs.Some of the presented models approach the problem from a dynamic tra�cassignment perspective (discussed in Section 6.1), in virtue of which traveltime realizations are the result of a simulation process.
24



3.1.2.1 Pre-trip information provisionNot many route-guidance implementations are limited to pre-tripinformation provision. The algorithm provided by Miller-Hooks andMahmassani [2000] may be applied for such purpose, given that it identi�esthe least expected cost path on a stochastic and dynamic network onwhich arc travel times are represented by discrete probability distributions.She implements a modi�ed label correcting algorithm to identify all thepaths with a positive probability of being the shortest from all origins toa single destination. These non dominated, or Pareto-optimal, paths arethen compared to select the optimal route. Since all the paths in a networkcould be Pareto-optimal, this algorithm has a non-polynomial worst casecomplexity. However, it was found to perform more e�ciently experimentally.Sen et al. [2001] propose a slightly more complex approach which considersnot only the expected cost of a path, but its variability, as given by thecorresponding variance. They propose a mean-variance model, formulated asa convex quadratic problem which can be solved e�ciently using interior pointmethods. The authors test the proposed models in toy networks, and discussthe availability of real data for practical implementations. Their �ndingssuggest that the mean-variance approach is particularly appropriated for gridnetworks, on which turning movements may have a considerable impact on thereliability of travel times.Chen et al. [2005] propose a route guidance methodology which combinesreliable a-priori path selection with dynamic route guidance based on real-time data. The two-folded approach is intended to reduce the computationalburden involved in en-route shortest path re-computations. Users are providedwith a set of alternative a-priori paths instead of a single route, seeking to limitthe e�ects of concentration (Lee [1994]). The path set is generated based onhistoric data implementing a criterion which reduces the probability of jointpath failure, thus minimizing the number of re-optimization instances. Thelater are accomplished implementing the A* algorithm (P.Hart et al. [1968],Klunder and Post [2006]), which bene�ts from the a priori path informationand performs very e�ciently. 25



The methodologies in this section are useful to estimate the general changesin the route choice patterns that the provision of information may introduce.However, accounting for the adaptive behavior of drivers when presented withinformation is important in the search for further realism, and crucial for theevaluation of some congestion management and tra�c operation strategies.3.1.2.2 Dynamic route guidanceDynamic route guidance strategies have been studied from many di�erentperspectives, which Pavlis and Papageorgiou [1999] classify into iterativestrategies and feedback strategies. The �st group includes those modelswhich consider the impact of the guidance action on the experienced traveltimes and perform iterations until �equilibrium� �ows are found, accordingto some pre-speci�ed control objective. These methodologies, which oftenseek to attain dynamic tra�c assignment optimality conditions, are typicallymore demanding from a computational perspective (Papageorgiou [1990],Papageorgiou and Messmer [1991], Charbonnier et al. [1991], Messmerand Papageorgiou [1994], Mahamassani and Peeta [1994].). Feedbackstrategies provide recommendations based on instantaneous tra�c conditions,disregarding tra�c dynamics and evolution. Strategies in both categories maybe approached as a control theory problem, given that ultimately they can berepresented by the corresponding split ratios at decision nodes (Papageorgiouand Messmer [1991], Boyce et al. [1995], Friesz et al. [1989]). Schmitt and Jula[2006] suggest additional classi�cations of these methodologies, distinguishingbetween centralized and decentralized approaches, and deterministic andstochastic models, among others.Pavlis and Papageorgiou [1999] compare the performance of feedback anditerative strategies utilizing a simple tra�c model. Their experience suggeststhat, even though iterative strategies are a more accurate representation ofreality, feedback strategies may produce comparable results under speci�cconditions typically present in mesh networks. This is appealing becausefeedback strategies are considerably easier to implement e�ciently as a setof decentralized control laws. 26



An example of an iterative strategy approach is the work by Boyce et al.[1995], who apply optimal control theory to model the optimality conditionsof the dynamic user-optimum assignment problem. They arrive at a discretenon linear program formulation, which may be solved at each node basedon instantaneous information. A variation of Frank-Wolfe's (Frank and Wolfe[1956]) algorithm for time-expanded networks is implemented towards this end.Kaufman et al. [1998] approach a similar problem from the system optimumperspective, and solve it as a mixed integer program on a time expandednetwork.Feedback strategies are often reduced to the solution of a re-optimizationproblem at each decision node. Appendix B discusses some e�cient algorithmsdesigned to re-optimize shortest paths after link costs are updated. Fu [2001]presents an approach to re optimize the online shortest path, which theyimplement using dynamic programming. The label correcting algorithm theypresent is shown to perform no worse than the version typically used tocompute shortest paths.The study of dynamic route guidance strategies is an active area of research,given its practical applications and the role that the corresponding models playin understanding the aggregated behavior of networks under uncertainty.3.2 Evaluating the system-level impacts ofinformation utilizationPreliminary attempts to evaluate the e�ects of real-time information provisionon transportation networks focused on analyzing the potential bene�ts anddisadvantages of such strategy from a somewhat qualitative perspective.Fujii and Kitamura [2000] conduct a survey to analyze the impact of tra�cinformation on the decision making process of drivers using a speci�cfreeway, subject to closures. They study whether or not driver's estimationof route travel time, typically based on their previous experience, may bealtered by providing information. Their results do not exhibit any statistically27



signi�cant trend. However, Srinivasan and Mahamassani [2002]'s �ndingssuggest that real-time data provision has a strong impact on drivers route anddeparture time choice under changing tra�c conditions using an interactivetra�c simulator. Kitamura and Nakayama [2007] analyze the same subjectfrom a theoretical perspective, modeling it as a minority game. Their �ndingssuggest that the provision of information, even when accurate, can not a�ectthe system behavior in the long term. According to the model proposed inthis work, drivers always re-organize themselves in identical ways, reaching thesame equilibrium point regardless of the availability of predictive information.Yoshii and Kuwahara [2000] analyze the possibility introducing negativesystem-level impacts, such as increased delays or travel times, by providinginformation along a major arterial street. His results, which are consistentwith previous �ndings by Moritsu [1991], indicate that such impacts arepossible, particularly in underutilized networks. Similarly, research analyzingthe provision of in-vehicle guidance information (Mahmassani and Chen[1991], Oh and Jayakrishnan [2002], Watling and Van Vuren [1993], Arnott[1991]) suggests that the system performance may deteriorate for market-penetration levels higher than 20%-40% are achieved, due to overreactionand concentration e�ects. Ben-Akiva et al. [1991] classify and analyze both,positive and negative impacts of information, and proposes an analyticaldemand and route choice model for their analysis.The advent of route-guidance systems motivated the development andimplementation of complex models, capable of providing rigorous performancemeasures. These models (Figure 3.2) have been used to understand theconditions under which adaptive route guidance is bene�cial, and to identifythe potential negative impacts of information provision on the systemperformance.The models used to evaluate the impacts of information in transportationnetworks fall within two main categories: Simulation methodologies andequilibrium models.Simulation models are appealing given their �exibility. They allowthe incorporation of complex assumptions regarding driver's reaction to28



Figure 3.2: Approaches to modeling and evaluating system-level informationimpactsinformation and information distribution schemes. They are adequate tocapture �reactive� behavior, re�ecting the changes in local conditions whichresult from the provision of information under a speci�c incident, or as aresponse to a tra�c management technique. However, simulation is notcapable of modeling the system-level changes introduced by the consistentprovision of information to drivers, which are likely to involve route changes.Equilibrium approaches aim to provide analytical expressionsdescribing the aggregated behavior of a system in which drivers behaveaccording to the models presented in 3.1.2. This approach provides anideal framework for the study of system level information impacts, becauseit is able to capture the reaction of drivers to both, information and thebehavior of other system users. However, the existence and uniqueness ofan equilibrium solution under the adaptive behavior described earlier is notnecessarily guaranteed under general conditions. Unnikrishnan [2008] usesa variational inequality approach to prove the existence and uniqueness ofan equilibrium solution in stochastic networks with random capacities, inwhich drivers learn the cost probability distribution of a link when they reachits origin node. Marcotte et al. [2004] extends an equilibrium formulationoriginally developed for transit networks with hard capacities to the case oftra�c assignment on static networks. Using a shortest hyper path approachand variational inequalities, this work proves the existence of an equilibriumsolution and provides solution algorithms. Hamdouch et al. [2004] present thedynamic version of the problem. Gao [2005] suggests a policy-based dynamic29



tra�c equilibrium approach, but does not provide analytical expressions.Even though equilibrium with recourse models have not been deployedin large networks, they provide an appealing, theoretically sound approachto the assignment problem under uncertainty, which may be used to betterunderstand the behavior of networks under information.Dynamic Tra�c Assignment Models incorporate the time dimensionwithin the user-equilibrium (or system optimum) assignment paradigm,seeking for a more realistic description of the day-to-day network behavior(Peeta and Ziliaskopoulos [2002], Merchant and Nemhauser [1978], Frieszet al. [1989], Ho [1980], Jayakrishnan et al. [1994]). These formulations requireattaining the corresponding optimality conditions at every time instant. Mostimplementations are simulation-based, and the existence of an equilibriumsolution has not been analytically proved. However, DTA provides a versatileand coherent framework, capable of capturing the system-level impacts of amultitude of tra�c management strategies. The availability of several DTAsoftware packages has motivated its increased utilization by researchers andpractitioners.Yoshii [1996] uses simulation to study the impacts of real time tra�cguidance based on instantaneous and predicted information, �nding positivee�ects in terms of congestion reduction for a range of information accuracy,which increased along with the percentage of guided vehicles. Yang andKoutsopoulos [1996] implement microsimulation to assess of the impacts ofroute guidance, arriving at similar conclusions.Mahmassani and Jayakrishnan [1991] utilize DTA to analyze the e�ects ofreal-time in vehicle information provision, �nding that the largest bene�ts forthe system occur if vehicles changed their a priori routes only in the face ofgains larger than 20%.Yang et al. [2003] analyze optimal information provision strategiesusing a bi-level mathematical program, which in the �rst level models theoptimization criteria corresponding to di�erent players, such as privateinformation provides, network managers, and system users. In the secondlevel a Dynamic Tra�c Assignment simulation is conducted to measure30



the impacts of the strategies speci�ed in the upper level. The model isimplemented to the analysis of the impacts of optimal market penetrationlevels, information acquisition costs, and information reliability on a smallnetwork. The results suggest that, under congested situations, the provisionof information is desirable has bene�cial system impacts.L.Engelson [2000] studies the impact of coordinating information fromdi�erent sources on the network performance. The model presented in thiswork simulates driver's reaction to di�erent sources of information, includingin-vehicle guidance systems, radio messages, and variable message signs. Inthe context of their study, information coordination occurs when the routerecommendations based on a particular source of information is made takinginto account driver's reaction to other information source/s. Assuming a user-equilibrium type of behavior, they analyzed the total system travel time fordi�erent coordination levels among information sources, �nding bene�cial butrelatively low impacts on small, uncongested networks. However, the measuredimpacts became more noticeable for increasing travel demand and marketpenetration levels of the route-guidance system.DTA models provide a very powerful tool to analyze a number of tra�cmanagement strategies, as well as the expected behavior of the network undera variety of conditions. However, the corresponding formulations are lesstransparent, which makes them less appealing as a tool to analyze theoreticaladvantages and properties of novel approaches to the utilization of information.3.3 Optimizing information collection anddistributionThe collection and distribution of information conditions its availability, andthus its utilization and the corresponding impacts on the system performance.Most of the research e�orts in the �eld of information collection are focused onimproving the capability of system managers and operators to measure systemparameters and monitor its performance. Active areas of research include the31



prediction of travel time based on sensor speed measurements or vehicle counts(e.g Ruiz Juri et al. [2007], Foo et al. [2006]), and the estimation of origin-destination demand based on sensor counts (e.g. Bianco et al. [2001], A.Ehlertet al. [2006], Fei et al. [2007]). These works are very valuable, and provide thebasis to generate good knowledge base for the planning, management andoperation of networks.The collection of information from static sensors, as well as the utilizationof wireless location technologies to generate tra�c data from probe vehiclesof di�erent types are analyzed in Sections 4.1 and 6.1, respectively. Existingmethodologies to collect information utilizing �xed and mobile sensors havebeen typically focused on monitoring the system state, and rarely optimizedbased on their impact on system performance. The approach proposed int thisdissertation for the deployment of sensors explicitly considers the utilizationof information for routing purposes, which has the potential to improve theperformance of assignment problems in a number of speci�c applications.Furthermore, the information-based system optimum approach presented inthis work provides insights into the design of probe deployment strategies,which has not been studied in the context of transportation problems.The distribution of information may be accomplished in multiple ways,ranging from general radio broadcasts to the provision of speci�c routerecommendations by in-vehicle route guidance systems or Dynamic MessageSigns, discussed in the previous section. Few of the existing models analyzethe impact of the location of the DMS on the system performance underinformation, which would be of great interest.The reminder of this section discusses an alternative approach to generatingand distributing information, given by the zero-infrastructure paradigm, whichaims to generate and propagate tra�c data by taking advantage of vehicle-to-vehicle communication capabilities. Research e�orts in this emerging�eld depart from the assumption that vehicles can communicate informationthey collect on their paths to other vehicles when their paths cross. Vehiclesmay exchange information with peers traveling in the same direction or onthe opposite lane, and they may re-broadcast the information they receive.32



The later is denoted relay communication, and although slower than directcommunication, is e�ective even at low tra�c densities (Ziliaskopoulos andZhang [2003]). A number of practical implementation issues, involvinghardware and software design, and information transmission protocols, poseconsiderable challenges to the implementation of the vehicle -to-vehicle vision.Crucial in an e�ective implementation of this paradigm are the level of marketpenetration of equipped vehicles and the range of the wireless communicationcapabilities, which combined with the prevalent tra�c density de�ne how fastand far information can travel. Other important problem variables parametersare the maximum number of vehicles which may communicate simultaneously,the frequency of the information broadcasts, and the time period during whichthe information is stored and broadcasted. Shladover et al. [2007] conduct asimulation study to analyze the impact of market penetration, tra�c densityand wireless range on the speed at which messages are propagated. Theyconclude that low market penetration levels may lead to very slow messagepropagation speeds, which may discourage the usage of the system at itsinitial stages. Yang and Recker [2005] use microsimulation to study thepropagation of incident data via vehicle-to-vehicle communications, and reachsimilar conclusions. They suggest the integration of vehicle to vehicle systemswith vehicle to infrastructure communication in order to attain larger bene�ts.They also remark the importance of developing methodologies which vehiclescan utilize to estimate the system state based on distributed data. The lateris of the utmost importance, and may be challenging, given that the systemperformance under vehicle-to-vehicle information propagation may di�erconsiderably from the traditional equilibrium assumptions (Ziliaskopoulosand Zhang [2003]) . Jin and Recker [2006] propose an analytical stochasticmodel to study the probability that a message is propagated further thana given threshold. Their analysis of various scenarios, including incidents,suggests that 7 kilometers is the maximum distance a message may travel.The later is consistent with the results from simulation studies conductedby Yang [2003]. Jerbi et al. [2007] analyze the estimation of tra�c densitiesbased on the data propagated by vehicles, and introduce a methodology33



which leads to fast and accurate estimations of the desired parameters. Wang[2007] proposes closed formulations for estimating the expected value andvariance of the propagation distance using the relay methodology, assumingthat equipped vehicles arrive into a freeway segment according to a Poissonprocess.The vehicle-to-vehicles information propagation approach is of the utmostinterest, and while the technology is still under development, it is crucial todevelop routing procedures able to take advantage of the information capturedin this novel way.3.4 SummaryThe availability of new sources of real-time information invites to think abouttraditional transportation and network problems from new perspectives.In order to develop and evaluate innovative methodologies, it is crucial tounderstand the impacts of information at the individual and system level.The review conducted in this section summarizes existing approaches tomodeling the utilization of information by drivers and the correspondinge�ects on the transportation network.At the individual level, the literature provides models capable of re�ectingthe use of self-collected and system-level information. The �st type ofmethodologies captures the adaptive behavior of drivers in the face of thedi�erent cost realizations they may observe in a stochastic network. Theproposed modeling frameworks and solution techniques, including dynamicprogramming and heuristic approaches, constitute �exible frameworks withinwhich new information provision strategies may be incorporated and analyzed.The development of models of the optimal individual response to system-level information was mainly motivated by the advent of route-guidancesystems. Even though these models provide routes at the individual level,they re�ect a decision made based on the system state, and present anopportunity to incorporate system-optimality considerations in the routechoice process. Among the existing approaches, the control-theory-based34



implementations of iterative models are a promising approach to producetheoretically sound and deployable solutions.The system-level impacts of information are basically a consequence ofthe changes that the data availability introduce into the routing decisions ofdrivers. The most accurate models in the literature build on the methodologiesused to describe the individual level behavior, and can be classi�ed in todeterministic and stochastic. Dynamic Tra�c Assignment (DTA) modelsincorporate the time dimension into the concept of user equilibrium (or systemoptimum), implementing time-dependant shortest path algorithms in the routechoice process. These models are a very powerful tool to analyze a number oftra�c management strategies, as well as the expected behavior of the networkunder a variety of conditions. However, the corresponding formulations arenot transparent, particularly given the use of simulation. This makes themless appealing as a tool to analyze theoretical advantages and properties ofnovel approaches to the utilization of information.Stochastic equilibrium models are based on the concept of adaptivebehavior (recourse), and lead to formulations in which the existence anduniqueness of an equilibrium solution may be proved. Even though thesemethods have not been deployed in large networks, they provide an appealingtheoretically sound approach to the analyzed problem, which may be usedto better understand the behavior of networks under information. Theparadigm of information-based system optimum assignment presented in thisdissertation is inspired by models of equilibrium with recourse. However, theexplicit consideration of the information collected by assets as they travelthrough the network leads to fundamentally new formulations.Finally, the review of existing works in the area of information collectionand distribution suggests that major contributions are still possible inthat �eld, particularly if new paradigms for the utilization of informationare designed. The models discussed above provide an ideal framework tostudy optimal information collection and distribution strategies for routingpurposes, which has not been accomplished before in the literature. Theoptimal sensor deployment models presented in this dissertation provide an35



initial approach to such problem.
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Chapter 4Deployment of Static Sensors forthe Support of AdaptiveSystem-Optimum RoutingStrategies: FrameworkInformation is one of the most powerful tools available to mitigate thenegative impacts of uncertainty on transportation networks and otherstochastic systems. It may be used to enhance the utilization of existinginfrastructure, alleviate congestion, and improve safety. Furthermore, thecombined consideration of uncertainty and information in decision-supportmodels is critical to generate e�cient and robust solutions.From a decision-making perspective, the value of information highlydepends on what information is available (based on spatial and temporalconsiderations), and how it is utilized. This chapter considers theimplementation of information to the support of adaptive system-optimumrouting decisions, and focuses on identifying optimal data collection strategiestowards this end.In the context of stochastic networks, adaptive system optimum assignmentdecisions are such that they may be adjusted based on observed network states.Chapter 3 discussed how the concept of adaptive routing has been implemented37



in the literature to develop route-guidance strategies based on system-levelinformation. Most of the analyzed e�orts are centered on the utilization ofinformation to improve the system behavior, but disregarded the e�ect of thespatio-temporal characteristics of the data on the quality of the solutions.Conversely, models which focus on the collection of data, reviewed in Section4.1, rarely consider the utilization of information for routing purposes.This chapter proposes a model to design data collection paradigm whichoptimizes the performance of adaptive SO assignment strategies. Theapproach identi�es the links of a network with stochastic arc costs on whichsensors should be placed in order to minimize the system expected costunder information. The direct impact of monitoring a link is modeled asthe resolution of the corresponding cost uncertainty, in virtue of which a setof perceived network states may be generated. For each of these states it ispossible to �nd the optimal SO assignment solution, consisting of the set ofpaths on which the system's assets are routed. The solution to the optimalsensor deployment problem speci�es sensors location along with an hyperpathdescribing the optimal SO solution under every perceived state. The proposedmodels have multiple potential applications, including the routing of specialassets, such as emergency response vehicles, or the design of route guidancestrategies under extreme circumstances (e.g. an evacuation procedure) inwhich drivers may be compelled to take routes which do not necessarilymaximize their own bene�t. Furthermore, the models introduced here may beapplied to the optimization of networks representing other systems susceptibleto a cooperative behavior.The optimal sensor deployment model is formulated in Section 4.2. Section4.3 discusses the expressions for the marginal value of information derivedfrom the proposed formulation, and Section 4.4 analyzes other interestingmodel properties. These suggest that the novel models are able to capturethe non linear impacts of information on the system performance, andcontribute to an improved understanding of the problem characteristics.In view of the combinatorial nature of the proposed formulations, theirsolution poses considerable challenges. Section 4.5 discusses several possible38



solution approaches and brie�y introduces the methodology adopted for thisapplication, which is presented in detail in Chapter 5.4.1 Optimal sensor deployment on stochasticnetworks: a literature reviewFor transportation applications, the study of optimal sensor placementstrategies has been traditionally focused on improving the system-monitoringcapability for purposes such as the estimation of origin-destination tripmatrices (Teodorovic et al. [2002], Ran et al. [2006]) or the collection ofIntelligent Transportation Systems (ITS) data (e.g. Sherali et al. [2006]).This section discusses some of the existing approaches to the optimization ofstatic tra�c sensor location, while Section 6.1 is concerned with the dynamiccollection of such data utilizing appropriately equipped vehicles as probes.Most of the works reviewed in this section aim to optimize the deploymentof sensors in order to better monitor/predict a system parameter, such asthe OD trip table, or a performance-related measure, such as system traveltime. Modeling the impacts of information on the quality of the measuresor predictions may be complex, and model formulations typically adopt asimpli�ed approach, approximating the desired parameter by measures ofspatial coverage (Teodorovic et al. [2002]), captured tra�c volumes (Sheraliet al. [2006], Bianco et al. [2001]), variability of the measured links, or acombination of the former. Very few works take a step further to analyzethe impacts of the improved monitoring/prediction capabilities on the systemperformance.Thomas [1999] studies the impact of di�erent sensor location strategies inthe accuracy of travel time predictions on arterial streets using CORSIM,an established micro simulator. Properties such as link travel time andspeed are inferred using simple regression models based on a single detectorreading. The approach simulates tra�c and compares the model �t fordi�erent positions of a sensor within a link. This work extends the research39



by Sisiopiku et al. [1994], focused on �nding correlations between variousdetector readings and link performance measures.Ruiz Juri et al. [2007] propose a statistical/simulation-based approachto evaluate the e�ect of sensor location on travel time prediction accuracy.This work explicitly models the impact of speci�c sensor con�gurations onthe accuracy of the travel time predictions obtained through a methodologythat uses cell-transmission based simulation to propagate the tra�c countsmeasured (and predicted) at freeway entry points.Sherali et al. [2006] analyze the location of Automatic Vehicle Identi�cation(AVI) readers in order to improve travel time predictions. Similarly to Yangand Miller-Hooks [2002], they consider that the bene�ts derived from placinga sensor on a particular link are a function of the demand and travel timevariability a�ecting all the OD pairs which utilize that link. They assume thateach OD pair is connected by a single route, and assign link-dependent AVIreader installation costs. They formulate the problem as a discrete quadraticprogram, which maximizes the bene�ts of information, constrained by themaximum number of available readers and a monetary budget. Their exactsolution methodology is based on a reformulation-linearization technique,previously introduced in Sherali and Adams [1990], and the incorporation ofsemi de�nite cuts, as described in Sherali and Fraticelli [2002].Bianco et al. [2001] propose a heuristic model to study optimal tra�c sensorplacement for link �ow estimation. The approach minimizes the number ofsensors necessary to identify the �ows on every link, assuming that the turningpercentages at network nodes are exogenously provided. The ultimate goal ofthis work is the improvement of OD matrix estimations, and the authorsprove that their methodology leads to bounded estimation errors.For a similar purpose, Ran et al. [2006] introduce a bi-level model which�rst deploys sensors on the arcs more likely to capture changes in the demandpattern. The remaining detectors are deployed seeking to maximize spatialcoverage. The approach implicitly assumes that measuring those links which�ows are more responsive to demand changes leads to more accurate ODmatrices estimation. 40



Teodorovic et al. [2002] study the optimal location of AVI detectors for ODmatrix estimation. The genetic algorithm approach proposed in this e�ortmaximizes a function combining OD coverage and the total number of AVIreadings.Yang and Miller-Hooks [2002] introduce a model to locate sensors in astochastic time-varying network in such way that the bene�ts of informationare maximized. The bene�ts of information are measured in terms of thenumber of users for which the travel time uncertainty is reduced, whichis approximated by the product of tra�c �ow and travel time variance onevery link. The problem is formulated as a dependent maximum set coveringproblem, which the authors prove to be NP hard. The dependency is aconsequence of explicitly consideration the indirect bene�ts experienced bydrivers using links adjacent to those which are measured. The methodologyis implemented using a heuristic approach, and used to �nd optimal sensorlocations on a stochastic, time-varying version of Texas highway network.The authors test the system performance under the information providedby optimally located sensors using an adaptive routing algorithm, describedin Miller-Hooks and Mahmassani [2000], Miller-Hooks [2001]. The adaptiverouting strategies generated by the algorithm were optimal in most cases,even when a fairly low percentage (30%) of the most-likely used links wasinstrumented.The presented review suggests that most of the existing research e�ortsdealing with optimal sensor placement focus on improving system-monitoringcapability. Yang and Miller-Hooks [2002] propose one of the few approachesconsidering the impact of sensors location on the system performance.However, their methodology optimizes an approximate measure of thebene�ts of information, rather than modeling the impacts of information onrouting behavior. The approach introduced in this chapter explicitly modelsadaptive routing behavior based on information corresponding to speci�cnetwork links, thus capturing the complex relationship between sensorslocation and system performance. The novel model has the potential toimprove our understanding of the nature of information impacts, leading to41



more e�cient information distribution and utilization schemes.4.2 Problem formulationThe problem discussed in this section �nds the deployment of K sensors on anetwork with stochastic arc costs such that the cost of performing an adaptivesystem-optimum assignment of v assets is minimized. Sensors capture thecost realization on the links they measure, generating a set of �perceived�network states. The System Optimum (SO) assignment solutions areadjusted for each of these states, thus reducing the total system expected costfaced by the system assets with respect to a no-information scenario. Theproblem solution consists of the set of links on which sensors are deployed,and a hyperpath describing the SO solution under each perceived networkstate.Link costs are de�ned by discrete probability distributions, and theyare assumed to be independent of the corresponding �ows. If a link is notmonitored by a sensor, it is assigned a deterministic cost equal to the expectedcost of the corresponding probability distribution. The e�ect of placing asensor on a speci�c link is modeled as a change in the corresponding costunder possible state. Each possible combination of observed states acrossmonitored links generates a �perceived� network state, under which the coston some links remain uncertain.The problem lends itself to be formulated as a two level stochastic program,which �rst level represents the sensor deployment decision, performed underuncertainty. The second level models the optimal routing of the v assets,given the perceived network state measured by the sensors, which informationpartially resolves the system uncertainty. Given the absence of restrictions onlink capacities, and in virtue of the assumed linear cost structure, the optimalroute for all system assets under every perceived state is equivalent to thecorresponding shortest path. The later, in combination with the fact that thesensor deployment cost is neglected, allows to solve the second level programassuming v = 1. 42



Consider a network G(N,A), where N and A represent the sets of nodesand arcs, respectively. De�ne |A| = m, |N | = n, and let ij s.t. i, j ∈ N, i 6= jbe the links in A, characterized by an in�nite capacity and random weights c̃ij .Assume that the latter are independent of the corresponding link �ows, andthat they follow a discrete probability distribution consisting of a �nite numberof states sij ∈ Sij, with probability of occurrence ps :
∑

s∈Sij
ps = 1 ∀ ij ∈ A.For notational simplicity, the subscript in sijwill be suppressed whenever it canbe inferred from the context. Let r ≥ |Skl| ∀kl ∈ A represent the maximumnumber of states observed across all links. De�ne csijthe cost realizationcorresponding to state s ∈ Sij , and denote µij =

∑
s ps · csij the expectedcost of a link ij ∈ A. Network states are a result of the corresponding linkstates, and are represented using m − dimensional vectors, w ∈ W. Let

swij be the state on link ij corresponding to network state w, and cwij =

c
swij
ij the corresponding link cost. Under the assumption of independent anduncorrelated link cost functions, the probability of a network state can becomputed as pw =

∏
ij∈A pswij

. Notice that under the previous assumption, thecardinality of W is|W| =
∏

ij∈A |Sij|, and it grows exponentially with m.Equations 4.4 to 4.7 present Formulation #1, which is a bi-levelstochastic program. First and second stage decision variables are binary, andthey represent, the placement of sensors on a link (xij) and the use of a linkby an asset (yij), respectively.
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min
x
E[f(x, c̃)] (4.1)

∑

ij∈A

xij = K (4.2)
xij ∈ {0, 1} (4.3)

f(x, c̃) =
∑

ij∈A

yij · (c̃ij · xij + µij · (1 − xij)) (4.4)
∑

ij∈A

yij +
∑

ji∈A

yji = bj ∀ j ∈ N (4.5)
ykl ∈ {0, 1} (4.6)

bl =





−1 if j is the destination
1 if j is the destination
0 otherwise (4.7)The second level objective function (4.4) represents the summation of thecosts paid by the vehicles along the path de�ned by yij, which is equal tothe cost realization in those links equipped with sensors, and to the linkexpected cost for the remaining links. Equation 4.5 is the �ow conservationconstraint, which forces the yijvariables to lay on a path connecting an originand destination. The number of sensors to be placed is �xed by equation 4.2,which will be referred to as the cardinality constraint. Notice that if K = 0,

xij = 0∀ij ∈ A, and the problem reduces to a shortest path computation on anetwork with links cost equal to µij . This re�ects the fact that, in the absenceof further information, the optimal routing strategy is to assign all vehicles tothe least-expected cost path. We denote such path L0, and its correspondingcost ρ0.The former formulation can be collapsed into a single level program , withan objective given by equation 4.8, and subject to cardinality constraints(4.2), integrality constraints (4.3, 4.6) and �ow conservation constraints44



∑
i∈N y

w
ij +

∑
i∈N y

w
ji = bj ∀ j, w. An additional super index is introduced for�ow variables, to distinguish them across network states.

min
∑

w∈W

pw ·
∑

ij∈A

yw
ij · (cwij · xij + µij · (1 − xij)) (4.8)Notice that the objective function is non linear and integer, and that thenumber of �ow conservation constraints is n× rm, which grows exponentiallywithm. The one-level program may be regarded as a pseudo-boolean problem.In the general case, such problems belong to the NP-hard set, and thereforeare not likely to be polynomially solvable Boros and Hammer [2002]. For arigorous de�nition of the NP-hard set the reader may refer to Ahuja et al.[1993] and Korte and Vygen [2000].Equations 4.9 to 4.14 introduce Formulation #2, which is based on thede�nition of perceived network states, and presented for the special case of

z = 1. It exploits the fact that, form a decision making perspective, onlythe states at the links equipped with sensors are relevant, which reduces thenumber of states and variables to be considered. This formulation providesthe basis for the solution methodology presented later.
min

x

∑

ij∈A

xij · Ec̃ij
[fij(c̃)] (4.9)

∑

ij∈A

xij = 1 (4.10)
xij ∈ {0, 1} (4.11)

fij(c̃) = min
yij

(yij
ij · cij +

∑

kl∈A,kl 6=ij

yij
kl · µkl) (4.12)

∑

kl∈A

yij
kl +

∑

lk∈A

yij
lk = bl ∀ l ∈ N, ij ∈ A (4.13)

yij
kl ∈ {0, 1} (4.14)The second level objective function in this context is computed for eachpossible state of every link ij ∈ A, demanding for an increased number of45



second level variables. The new super-index indicates the sensor providing theinformation based on which the variable is evaluated.Similarly to the previous case, the formulation can be collapsed into thesingle level program presented in equations 4.15 to 4.18.
min

∑

ij∈A

∑

s∈Sij

ps · yij,s
ij · csij +

∑

kl∈A,kl 6=ik

yij
kl · µkl (4.15)

∑

ij∈A

xij = 1 (4.16)
∑

kl∈A

yij,s
kl −

∑

lk∈A

yij,s
lk = bl · xij ∀ l ∈ N, ij ∈ A, s ∈ Sij (4.17)

xij , y
kl,s
ij ∈ {0, 1} ∀ l ∈ N, ij ∈ A, s ∈ Sij (4.18)For the deployment of a single sensor, the total number of variables andequations in this problem is n×m×r, smaller than n×rm for all values of 1 ≤

r < m. However, the number of variables grows rapidly for an arbitrary valueof z. In e�ect, the consideration of multiple sensors demands to enumerateall the possible ways in which their locations can be selected, as given by thenumber of combinations of z elements out of m, Cz
m = m!

z!(m−z)!
.For the case of multiple sensors, the formulation retains the same structure.Denote θ ∈ Θ each possible combination of z elements out of m, and let

δij
θ be the link-combination incidence coe�cient, equal to one if link ij is incombination θ, and to zero otherwise. Equation 4.19 presents the objectivefunction for such formulation, which is subject to the same constraints as theprevious one if the �rst level decision variables xij are replaced with xθ. Eachstate s ∈ Sθ is a combination of the state observed at links ij ∈ θ.

min
∑

θ∈θ

∑

s∈Sθ

∑

ij∈A

yij,s
ij · (csij · δij

θ + µkl · (1 − δij
θ )) (4.19)The formulations presented in this section correspond to very large integer46



programs. Section 4.5.1 discusses possible approaches for their e�cientsolution. These models are useful to understand the problem structure andproperties, which are analyzed in the following sections.4.3 The marginal value of informationUsing �nite di�erences on equation 4.8, one may analyze the marginal impactof information on the system performance according to equation 4.20.
∆f(x, yw(x))

∆xkl
=

∆f(x, yw(x))

∆xkl
·yw

kl(xkl)+
∑

ij∈A

∆f(x, yw(x))

yw
ij (xkl)

·xkl ·
∆yw

ij (xkl)

∆xkl(4.20)The later represents a combination of well known derivation rules (productrule and chain rule), which takes into account that yw
kl (the optimal regularasset assignment for a given information set) is a function of the sensordeployment strategy xkl. The marginal cost, given by Equations 4.21 and4.22, de�nes the change in the objective function obtained by placing a sensoron link kl, assuming that the link was previously unmeasured.

∆f(x, yw(x))

∆xkl

=
∑

w∈W

pw · yw
kl · cwkl +

∑

w∈W

pw ·
∑

ij∈A

∆yw
ij

∆xkl

· cwij · x0
ij

+
∑

w∈W

pw ·
∑

ij∈A

∆yw
ij

∆xkl
· µij −

∑

w∈W

pw · ∆yw
ij

∆xkl
· µij

−
∑

w∈W

pw · ∆yw
ij

∆xkl
· µij · x0

ij (yw
kl · (cwkl − µkl)) (4.21)

∆f(x, yw(x))

∆xkl
=
∑

w∈W

pw ·
(
yw

kl · (cwkl − µkl) +
∆yw

kl

∆xkl
· µij

)

+
∑

w∈W

pw ·
(
∑

ij 6=kl

∆yw
ij

∆xkl
·
(
cwij · x0

ij + µij(1 − x0
ij)
)
) (4.22)
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The �rst two terms in equation 4.22 represents the impact directly relatedto the utilization of the link under analysis (local-level impacts of information),if it occurs. The second term captures the impacts resulting from changesin the routing strategy given the new available information (network-levelimpacts of information). ∆yw

ij

∆xkl
implicitly represent these changes, and are equalto zero if the new routing strategy does not a�ect yw

ij , to 1 for those links whichare incorporated to the optimal path under w after placing a sensor in xij , andto -1 if link ij is removed from the optimal solution given the new informationset. The variables x0
ij represent the value of xij before the incorporation of asensor on kl. We assume that at most one sensor may be placed at each link,and therefore x0

kl = 0.Notice that the local-level impacts of information may fall within threedi�erent categories:
• Measuring impact (cwkl − µkl): This type of impact is achieved when link
kl was part of the optimal routing strategy under state w before beingmonitored, and remains in the corresponding shortest path given the newavailable information (yw

kl=1 and ∆yw

ij

∆xkl
=0). It re�ects an actual changein the expected costs given the new information.

• Incorporation impact cwkl: This impact is attained when link kl entersthe optimal solution under w only after it is assigned a sensor (yw
kl=1and ∆yw

ij

∆xkl
=1). It simply represents the costs paid by the system assetsfor utilizing the link.

• Removal impact −µkl: This impact is a measure of the change in thesystem cost produce by removing link kl from the optimal solution under
w after placing a new sensor on such link (yw

kl=0 and ∆yw

ij

∆xkl
=-1). It isactually a re�ection of the change in the routing strategy brought aboutby the newly available information.Using the former de�nitions, and given the fact that yw

ij is optimally chosen,we may prove that equation 4.23is always true, and therefore the marginal48



impact of information is always negative (or zero), meaning that it leads to areduction of the system expected cost.
∆f(xkl, y

w
kl(xkl))

∆xkl
≤ 0 (4.23)Proof: Let L−xkl

w be the shortest path under state w before placing asensor on link kl, and consider two cases for such link: kl ∈ L−xkl
w (Case I) and

kl /∈ L−xkl
w (Case IT) .For Case I, notice �rst that for all states w ∈ W

−, where W
−is the setof states such that cwij < µij, the optimal routing strategy will not change asa consequence of the new information (the reader may refer to Section 5.1.3.1for a proof of this fact). As a result ∆yw

ij

∆xkl
= 0 ∀ij ∈ W, which implies that thenetwork-level impacts of information are null, while the local-level impacts,

cwkl − µkl < 0, are negative.For the remaining states cwij ≥ µij, and the new routing strategy L+xkl
wmay be di�erent from the original one. However, in virtue of the optimalityconditions of a shortest path (Ahuja et al. [1993]), Equation 4.24 must holdfor every w ∈ W.

∑

ij∈L
−xkl
w

yw
ij · (cwij ·xij +µij(1−xij)) ≥

∑

ij∈L
+xkl
w

yw
ij · (cwij ·xij +µij(1−xij)) (4.24)The left hand size of Equation 4.24 represents the cost on L−xkl

w , which is afeasible path, and therefore must be greater or equal that the cost along L+xkl
w .The elements which are common to both paths may be removed from 4.24, insuch way that the left hand side represents the cost of the links removed fromthe optimal solution, and the right hand side contains the cost of the linksincorporated to the optimal solution. Notice that in Equation 4.22, ∆yw

ij

∆xkl
= −1for the links in the left hand side, ∆yw

ij

∆xkl
= 1 for the links on the right handside, and ∆yw

ij

∆xkl
= 0 for the remaining links. As a consequence, Equation 4.24is reduced to pw ·∑ij∈A

∆yw

ij

∆xkl
· (cwij · xij + µij(1 − xij)) ≤ 0 for w ∈ W

+, andtherefore ∆f(xkl,y
w

kl
(xkl))

∆xkl
≤ 0. 49



For Case 2, a similar approach is applicable. In this instance, kl doesnot belong to L−xkl
w , and the optimal routing strategy remains unchanged forstates w ∈ W

+. Under such conditions yw
kl = 0, ∆yw

ij

∆xkl
= 0, and the local andnetwork-level impacts of information are zero. For states w ∈ W

−, the samereasoning described above leads to the conclusion that pw ·∑ij∈A

∆yw

ij

∆xkl
· (cwij ·

xij + µij(1 − xij)) ≤ 0, which implies ∆f(xkl,y
w

kl
(xkl))

∆xkl
≤ 0 under Case II andcompletes the proof.The marginal costs described in this section suggest that the bene�ts ofinformation are accrued when it is possible to take advantage of the fact that

cwij < µ in a large number of states, in states with a higher probability ofoccurrence, or in states exhibiting signi�cant gains cwij − µij . The feasibilityof utilizing the measured links under such conditions depends on the networktopology and on the realized/expected cost on the remaining links.Notice that the computation of the marginal value of information implicitlyinvolves calculating properties of shortest paths on random networks, such asthe probability of a link belonging to the shortest path. These properties arevery hard to compute, which suggests that the exact solution of the modelsformulated here cannot be obtained e�ciently. Alexopoulous (Alexopoulos[1997]) proves that the evaluation of several of the properties implicitlyinvolved in a marginal cost computation is an #P Hard problem, theequivalent of a NP hard problem for counting problems. Appendix C providessome additional information on this topic.4.4 Problem propertiesThis section discusses the problem properties, derived from its mathematicalformulation or based on the results of numerical experiments. They illustrateinteresting behaviors, which re�ect the non-linear impacts of informationprovision on the system performance.
• The expected cost under information is always smaller or equal than thea-priory expected cost, regardless of the actual cost realizations measured50



by the sensors. This is a direct consequence of Equation 4.23, proved inthe previous section, in view of which the value of information is alwaysnon positive.
• Let E[f ∗(K)] = f ∗

K denote the value of an optimal deployment strategyassigning z sensors to the network. Then f ∗
K ≥ fperf , where fperf isthe value of the objective function under perfect information. The laterde�nes the case where the decision maker is aware of the state of theentire network a-priory, and is able to make the optimal decision underany network state. Notice that computing such value may require theenumeration of an exponential number of states.Proof: The availability of perfect information can be visualized as thedeployment of sensors in all network links, including the z optimal links under

f ∗
z . Given that the marginal value of information is non-positive (Equation4.23), fperf ≤ . . . ≤ f ∗

z+2 ≤ f ∗
z+1 ≤ f ∗

z .
• Let θz and θz+1 be the optimal sets of monitored links when z and z+ 1assets are available, respectively. The relationship θz ⊂ θz+1 does notnecessary hold. The following example illustrates this property, whichre�ects the non-linear nature of the information impacts.In Example Network I (Figure 4.1), the default shortest expected cost hasa value of 10 units. When a single sensor is deployed, the optimal solution hasa cost of 9.5 units, obtained by placing the corresponding detector on link a .Placing the sensor in links b or c would report no bene�t to the system, giventhat information from such links not reveal a path cost lower than 10 unitsunder any state. However, when two sensors are available, the simultaneousmonitoring of links b and c may detect a path cost realization of only 6 units,which has a 25% probability of occurrence. The former is actually the optimaldeployment strategy, leading to a system expected cost of 8.75 units. Anystrategy measuring either b or c in combination with other link would notbe able to make use of its information, which is worthless if the state at thecomplementary link remains unknown.51



Figure 4.1: Example Network I
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• The value of information is not strictly increasing, and it is possible to�nd cases in which f ∗
K+1 = f ∗

K , but ∃ a > 1 : f ∗
K+a < f ∗

K .Example Network II (Figure 4.2) presents one of such instances. Similarlyto what we observed on the previous example, the information collected fromspeci�c sets of links may be complementary, as a result of their relative locationand corresponding probability distributions. When this is the case, the bene�tsof information collection may not be accrued unless all links in the set aremeasured. In Figure 4.2, a single sensor is optimally located on link a , whichleads to a system expected cost under information of 11 units, smaller thanthe default value of 12 units. An additional sensor placed on either of theremaining links would not lead to any further bene�ts, given that the cost onlink d is always lower than the expected cost of b+c, provided that only oneof them is monitored. As a consequence, the new sensor would not be able tounveil an alternative path cheaper than 16 units under any state. However, iftwo additional sensors are available, the joint monitoring of links b and c canbene�t the system, leading to an expected cost under information of 10.875units.
• The value δmax(ij) =

∑
w∈W− pw · (cwij − µij), where W

−is the set ofstates w such that cwij < µij, de�nes the maximum bene�t which maybe accrued by collecting information from link ij. This bound can beattained only when the optimal routing solution under every networkstate w ∈ W
− utilizes link ij, and provided that the cost of the shortestpath connecting i and j when no information is available is greater orequal than µij , and when the optimal solution under every state w ∈ W

−uses link ij.Proof : Consider two cases, Case I, under which ij ∈ L0, where L0 is theshortest path when no information is provided, and Case II, such that ij /∈ L0.Let Fs−i and Fs−j be the shortest paths connecting the origin to node i, andnode j to the destination under state w, respectively. We denote Lw theshortest path under state w, and cw(Lw) the corresponding cost. The bene�t53



Figure 4.2: Example Network II
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of collecting information from link ij is given by ∆ρ =
∑

w∈W(ij) ∆wρ =
∑

w∈W(ij) c
w(Lw) ·pw−ρ0, where W(ij) is the set of perceived states revealedby a sensor placed on ij. Given that ρ0 may be written as∑w∈W(ij) ρ

0 · pw, itsu�ces to prove that cw(Lw)−ρ0 ≥ cwij −µij ∀ w ∈ W
−(ij). Notice that when

∆wρ ≥ 0 information does not provide a bene�t from the perspective of thesystem expected cost, and therefore the corresponding state can be excludedform the bound computation (which leads to a looser bound).For Case II, if ij is part of the optimal solution under w, Equations 4.25and 4.26 must hold as a consequence of the shortest path de�nition.
cw(Fs−i) + cwij + cw(Fs−i) ≤ cw(L0) (4.25)
c0(Fs−i) + µij + c0(Fs−i) ≥ ρ0 (4.26)Additionally, cw(L0) = ρ0, given that the only link on which the costchanges is ij /∈ L0, thus cw(Fs−i) + cwij + cw(Fs−i) ≤ ρ0 ≤ c0(Fs−i) + µij +

c0(Fs−i), which implies ∆ρ ≥ cwij − µij .If ij is not part of the optimal solution under w, L0 = Lw and ∆wρ = 0.For Case I, if ijis part of the optimal solution it is straightforward to seethat ∆ρ = cwij − µij. If ij is not in the optimal solution under w, ∆wρ ≥ 0given that Lw is some path which cost has not changed (it does not include
ij), and therefore cw(Lw) ≥ ρ0. .If multiple links are considered simultaneously, similar considerations leadto the conclusion that kl ∈ K, δ(K) =

∑
kl∈K δmax(kl) is a loose upper boundon the potential bene�ts of information.

• There exists a value K∗ ≤ m such that f ∗
K = f ∗

K∗ = fperf∀ K > K∗.This value is a network property for any given origin-destination pair,and provides a bound to the maximum value of information for thecorresponding case. In Example Network III (Figure 4.3 ) K∗ = 1, andthe minimum system expected cost under information is 6.5. Noticethat such value can be achieved by placing only one sensor on link55



Figure 4.3: Example Network IIIa , or by monitoring links b and c simultaneously. This illustratesthe importance of implementing appropriate models to optimally utilizeavailable resources. Additionally, the identi�cation of the minimumnumber of links that should be measured in order to attain fperf maypose an interesting topic for further research.4.5 Possible solution approachesThe formulations introduced in previous sections are integer, and thereforecombinatorial in nature. Furthermore, the integrality condition cannot berelaxed for the deployment variable. Mathematically, the later is a consequenceof the properties of the constraint matrix, which is not totally unimodular.Intuitively, it is easy to see that if the sensor assignment variable is allowedto take fractional values, then an optimal solution would deploy a fraction ofa sensor on every network link, thus achieving bene�ts similar to those underperfect information.Mathematical programming techniques, discussed in Section 4.5.1, may beapplicable to the problem solution, even though they are likely to be e�ective56



for relatively small problem instances.The methodology developed for the applications analyzed in thisdissertation is based on simpler network optimization concepts, ultimatelyleading to a heuristic implementation. The approach is the �exible toaccommodate minor changes in the problem formulation, which mayinvolve a complete re-structuring from a mathematical programmingperspective. Additionally, the exact variant is directly linked to the heuristicimplementation, which is very convenient from a practical perspective.The following sections discuss possible mathematical programmingapproaches to the problem solution, and brie�y introduce the methodologyadopted for the purpose of this work, which is described and analyzed inChapter 5.4.5.1 Exact solution approachA possible exact solution approach is to consider formulation given byEquation 4.8 as a constrained 0-1 quadratic program. Adams and Sherali(Adams and Sherali [1986]) analyze linearization methodologies to solvesimilar problems, and Faye and Roupin (A.Faye and Roupin [2007]) introducea �convexi�cation� procedure which transforms the objective function in orderto allow the e�cient application of Lagrangian dual approaches.Another promising way to address the optimal sensor deployment problemsolution is to regard it as an uncapacitated network design problem withuncertain arc costs and budget constraints, and solve it by implementingBenders decomposition. Section 4.5.1.2 brie�y discusses such technique, whileSection 4.5.1.1 presents some basic concepts on stochastic network design.4.5.1.1 Stochastic network design problemsThe deterministic version of the network design problem involves choosingthe arcs to be included on a network among a pre-de�ned set of candidates,in such way that a given origin-destination (OD) �ow demand can besatis�ed at a minimum total cost. In the general case, such cost is composed57



by a �xed portion, representing the link installation costs, and a variableportion which depends on the actual �ow on each arc. The main problemconstraints guarantee �ow conservation, in such way that the speci�ed ODdemands are satis�ed. Additional restrictions to the way in which networkarcs may be selected include topological considerations and maximumbudget constraints. Costa [2005] provide a fairly comprehensive summary ofdeterministic network design problem variations, formulations and solutionapproaches. The network design problem is NP-hard, and exact solutionmethodologies, which have exponential worse case complexity, include Bendersdecompositions, Lagrangean relaxation (e.g. Holmberg and Hellstrand [1998])and dual ascent methods (e.g. Balakrishnan et al. [1989]). In many cases, theexact methodologies are used as the basis for a heuristic approach, in orderto solve realistically sized networks.Uncertainty is incorporated to network design problems searching formore realistic models, at the cost of increasing the complexity of the problemsolution. In a stochastic context, the problem objective may be de�nedfrom di�erent perspectives, and while some authors propose models whichminimize the expected cost of the network design problem, others seek to�nd �robust� solutions, which attain a minimum performance level under allpossible scenarios. Three possible types of uncertainty have been considered,alone or combined, in the existing literature (Costa [2005]): uncertaindemands, capacities and arc costs. Not many papers in the literature dealwith uncertain arc costs, which is the problem more closely related to thetopic of this chapter. Among these, Gutierrez et al. [1996], apply Bendersdecomposition to a �xed charge network design problem with uncertainarc costs. Their objective is to �nd a solution such that the routing costdoesn't exceed a threshold value under any scenario. They use a multi-masterapproach, solving separate master problems for each scenario. Additionally,the authors limit the number of sub problems to be solved at each iterationby carefully analyzing the dual values of each solution, and they add cuts toall the master problems simultaneously.Following a similar approach, the optimal sensor deployment problem58



discussed in this chapter may be formulated as an uncapacitated networkdesign problem with uncertain arc costs and budget constraints. In suchproblem, two types of arcs may be installed between each pair of nodes:one exhibiting �xed costs equal to the expected cost, and one with costsdescribed by a discrete probability distribution. The total number of arcswith stochastic costs is limited by sensors availability, which translates intoa budget constraint, and only one type of arc may be installed between twonodes. The solution of such formulation may be approached using Bendersdecomposition, described in the next section.4.5.1.2 Benders decompositionBenders decomposition (Benders [1962]) is a mathematical programmingtechnique used to solve mixed integer problems more e�ciently by exploitingspecial characteristics of their structure. This methodology is appropriatefor problems which decompose into a number of simpler sub-problems for�xed values of a subset of the decision variables. When applied to two-stagestochastic programs the methodology is often called �L-shaped method�.Consider a problem with a decomposable structure such as the onepresented by 4.27, where x are the continuous decision variables, y areinteger decision variables, c and d are the corresponding cost coe�cients, andmatrices A, B and D represent the problem constraintsminx,ycx+ dy

Ax+By ≥ b

Dy ≥ e

x ≥ 0 y integer (4.27)For �xed values of y ∈ Y , the problem can be expressed by equation 4.28miny {dy + minx {cx : Ax ≥ b−By}} (4.28)59



The second term can be dualized and, given that it's linear, added to theobjective function as displayed in equation 4.29. In this equations u are thedual variables corresponding to the set of constraints Ax ≥ b− By, and Y isthe feasible space for y, as de�ned by the original constraints.miny∈Y {dy + maxu≥0 {u(b−By) : uA ≤ c}} (4.29)The solution space of the sub problem, assumed to be nonempty, can berepresented in terms of its extreme directions, given by rq(b − By) ≤ 0 ∀q =

1, 2, ...Q. Similarly, the objective function can be expressed as a function ofthe corresponding extreme points. The main disadvantage of the later that itleads to a formulation with a very large number of constraints, given by allthe extreme directions of the solution space. Nevertheless, such formulationlends itself for an iterative solution approach, in which the extreme directionsare added progressively by alternating between the solution of relatively easysub problems, which provide the dual variables, and a relaxed version ofthe original problem. Notice that the procedure maintains dual feasibilityat all times, and provides the information to generate/update upper and lowerbounds for the optimal solution to the original problem which are used tode�ne convergence.The ability to solve the sub problems e�ciently is vital for a successfulapplication of Benders approach. Nevertheless, most of the computationale�ort is typically devoted to the solution of the master problem (Magnantiand Wong [1981]), particularly as the number of added constraints becomeslarger. Some existing approaches tackle this problem by reducing the numberof active constraints (typically called cuts) at each iteration (e.g. Marín andJaramillo [2008]), by carefully selecting the cuts to add in the search for tighterbounds (e.g. Magnanti and Wong [1981]), and even by allowing a sub-optimalsolution to the master problem (e.g. Burkard and Bonniger [1983]).Even though Benders decomposition may, in the worst case, involve solvingthe full mathematical problem, it has been found to perform very e�ciently forparticular types of problems, including network design (Geo�rion and Graves[1974], Magnanti et al. [1986]). An additional advantage of this methodology60



is that the continuous provision of upper and lower bounds allows de�ningsub-optimal termination criteria when appropriate.Implementing Benders decomposition to the stochastic network-designversion of the problem considered in this chapter would involve the solution ofa sub-problem for each perceived network state at every iteration. Perceivedstates are de�ned based on the sensor deployment strategy obtained from thesolution of the relaxed master problem, and the corresponding sub problemis a shortest path problem, which provides the dual variables necessary toincorporate new constraints (cuts) to the master problem. It is interesting tonotice that, form an implementation perspective, the methodology would notbe very di�erent form the solution approach presented in Chapter 5.4.5.2 Implemented heuristic solution approachThe solution methodology, described and implemented in chapter 5, is basedon the observation that the problem posed in 4.2 may be solved by completeenumeration, computing the shortest path between origin and destination foreach possible network state. This would involve m × r computations forthe deployment of a single sensor, and a combinatorial number of operationsin the general case, where the set of possible strategies is given by Cm
z =

n!
(m−n)!n!

, and the number of shortest path computations is in the order of
rz. Shortest path computations can be executed very e�ciently, applyingvarious implementations of the well-known Dijkstra's algorithm (Ahuja et al.[1993]). Moreover, if we consider a single OD pair case, even faster algorithms,such as A* (Klunder and Post [2006]) may be implemented. In medium sizenetwork the number of computations required within a complete enumerationframework easily reaches the order of billions. This limits the applicabilityof the exact approach and motivates the methodologies developed in thenext chapter, which heuristically reduce the number of strategies to evaluateutilizing a Tabu search approach. The evaluation of each strategy is e�cientlyachieved by implementing a state-space partitioning technique, in virtue ofwhich it is not necessary to compute the shortest path under every perceived61



network state. The integrated approach is �exible, and numerical resultssuggest it is e�ective for the solution of a range of problems, even though theexact evaluation of feasible strategies may limits its applicability, particularlyon poorly connected networks.4.6 SummaryThis chapter formulates and discusses the optimal deployment of staticsensors for the support of adaptive System-Optimum (SO) routing strategies.The proposed model selects the location of a �xed number of static sensors,
z, leading to the minimum system expected cost under information. Thisapproach di�ers from existing e�orts in the literature, which typically analyzethe collection of information from the perspective of improving the capabilityto monitor system parameters or performance measures. The novel paradigmexplicitly considers the impacts of system-level information on routingdecisions. Unlike most of the existing research on the �eld, the proposedapproach takes into account the relationship between the location from whichinformation is collected and the resulting system performance.In the context of this chapter, the local-level impact of informationprovision is modeled as a change on the cost at the monitored links, whichleads to a set of perceived network states. Under an adaptive routingparadigm, SO assignment decisions may be adjusted for each perceived states,leading to an improved expected performance.Section 4.2 presents three alternative mathematical formulations of theproposed problem. Even though these formulations are combinatorial innature, they are useful to understand the problem properties, and can beutilized as the basis for e�cient solution methodologies. They also provide ameans to derive a theoretical expression for the marginal value of information(Section 4.3), which is proved to be always positive under the adoptedassumptions. The marginal cost formulation is a valuable tool to understandthe models behavior, and to interpret problem properties, presented in Section4.4. The observed properties illustrate interesting model's behavior, and62



re�ect the non-linear nature of the impacts of information. For example, theincorporation of additional sensors may not improve the system expectedcost. Conversely, �synergic� e�ects can be observed, in virtue of which thebene�ts obtained by jointly monitoring of subset of links is greater than theimprovements accrued by placing a single sensor in any link in the set.The exact problem solution is discussed in Section 4.5, which summarizespossible mathematical programming approaches, including Bendersdecomposition and quadratic programming techniques, that may meapplicable. However, these approaches are likely to be e�ective only onrelatively small problem instances, which motivates the choice of a solutionmethodology based on network optimization methods (Chapter 5). Theapproach lends itself to a heuristic implementation, and can easily incorporatechanges in the problem assumptions and formulations.The problem described in this section is of interest from a variety ofperspectives. Section 7.1 discuses some of its potential applications, whichrange from the deployment of sensors during rescue operations, to data�ltering for online routing purposes. Section 7.1 also presents desirable modelextensions, including sequential deployment strategies and more complexobjective accounting for the robustness of the solution.

63



Chapter 5Deployment of Static Sensors forthe Support of AdaptiveSystem-Optimum RoutingStrategies: Methodology andImplementationsThe optimal solution to the problem presented in this chapter entails �ndinga strategy to deploy s sensors on a stochastic network with m edges suchthat the expected system cost under information provision is minimized. Adistribution/deployment strategy is speci�ed by the set of links chosen to placesensors. As a consequence of the binary, non-convex, nature of the expectedsystem cost function , the identi�cation of an optimal solution may demandthe evaluation of the Cs
m possible deployment strategies, a number that growsexponentially with the number of sensors and the network size. Furthermore,each of these evaluations implicitly involves the computation of propertiesof paths in stochastic networks, as discussed in Section 4.3, which has beenproved to be very challenging (Appendix C).From a naive approach, the evaluation of a strategy may require computing64



a shortest path for every perceived network state given a particular deploymentstrategy. Despite the availability of very e�cient methods for the calculationof shortest paths (Ahuja et al. [1993]), the computational e�ort required byproblems involving large networks, numerous states and multiple sensors mayeasily become prohibitive, particularly if a solution is needed within a shorttime frame.The methodology presented in this chapter takes a two-folded approachto reduce the number of calculations needed to provide an optimal, ornear optimal solution, which separately addresses the two major challengesidenti�ed above. The number of shortest path calculations required toevaluate a feasible solution is reduced by developing and implementing astate-space partitioning methodology which incorporates some shortest pathre-optimization concepts. In order to limit the total number of strategies tobe evaluated a Tabu search heuristic methodology is tailored to the problemunder study.The state partitioning approach, described in Section 5.1, has theadditional advantage of providing a �exible framework which canaccommodate the solution of more complex problem variants, such asthose involving �ow-dependent or time-dependent arc costs. Tabu searchis a meta heuristic procedure, which does not guarantee he optimality ofthe solution at convergence. However, the implementation developed forthis application, described in Section and tested in Section 5.2, consistentlyprovided solutions extremely close to the optimal value. This chapterprovides a detailed description of the two components of the proposedsolution methodology, which can be used alone or in combination to e�cientlysolve the problem described in Chapter 4. Sections 5.1.5 and 5.1.5 presentthe numerical tests conducted to assess the performance of the solutionmethodology, which is implemented in Section 5.3 to the analysis of theimpacts of sensors location on the performance of adaptive SO routingstrategies.
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5.1 Evaluating a sensor deployment strategy: astate-space partitioning approachFor the optimization problem described in Chapter 4, the evaluation ofany speci�c sensor placement strategy involves determining the systemexpected cost given the information provided by the deployed sensors. Inthe context of this problem, information translates into the identi�cation ofdi�erent cost realizations at monitored links, which combined generate a setof perceived network states. The adaptive routing paradigm allows adjustingthe assignment strategies under each perceived state, leading to an improvedexpected system performance.A naive approach to compute the system expected cost in this setting isto calculate the optimal routing strategy for any possible perceived networkstate. However, the problem characteristics allow reducing the total numberoptimization problems to be solved by implementing a state-space partitioningapproach. The procedure is based on the principles presented by Alexopoulos[1997] for the evaluation of properties related to shortest paths on networkswith discrete random arc costs. He studied measures such as the probabilityof a given path being the shortest, or those of the shortest path not exceedinga threshold value, proving that their computation constitutes an #P-hardproblem (for de�nitions and examples of #P-Hard problems, the reader mayrefer to Valiant [1979a]).The problems analyzed in Alexopoulos [1997] ultimately entail identifyingwhich network states �contribute� to the computed measure. The latertypically involves comparing the value of a given path under a speci�c stateto a threshold value. The fundamental concept behind this approach is thata single shortest path computation can be used to classify entire ranges ofnetwork states, de�ning whether or not they should be considered in thecomputation of the analyzed measure. By avoiding the evaluation of a newshortest path problem under each possible state, the technique greatly reducesthe computational e�ort.The solution methodology presented by Alexopoulous iteratively partitions66



the network state-space, generating bounds for the studied property whichimprove at each iteration, leading to the exact solution. The e�cacy of theprocedure depends on the strategy used to subdivide the state-space aftereach shortest path evaluation, which determines the total number of runs to beperformed. The proposed partitioning scheme allowed the solution of problemsinvolving more than 87 × 109 possible states by evaluating only ∼ 12, 000shortest paths. Furthermore, the nature of the algorithm is such that no morethan 11 partitions had to be stored simultaneously at any point.The methodology discussed above is not directly applicable to the problemdiscussed in this chapter, mainly due to the more complex nature of theproperty we seek to evaluate. Computing the expected cost of an adaptivesystem optimum assignment strategy requires knowing the exact cost onthe shortest path under each perceived network state, as opposed to onlydetermining whether such value exceeds or not a given threshold. Eventhough this naturally increases the number of necessary evaluations, it is stillpossible to take advantage of simple shortest path properties to reduce thecomputational burden. Section 5.2.1 presents a state-partitioning schemebased on the same fundamental principles proposed in Alexopoulos [1997],which can be used to e�ciently compute the system expected cost underinformation. Numerical tests conducted on a variety of networks of di�erentsizes and statistical properties (Section 5.1.5) suggest that the proposedmethodology is robust, and that it may �nd the expected cost of an adaptiveSO strategy by evaluating less than 10% of the perceived network states.5.1.1 Methodological frameworkThis section introduces a state partitioning framework to �nd ZK, the expectedcost of an adaptive system-optimal network assignment problem under theinformation provided by a pre-de�ned set of K sensors placed on links k ∈ K.Even though in the worst case the problem solution may entail �nding theshortest path under each possible network scenario, the methodology presentedhere performs much more e�ciently in practice (Section 5.1.5). The notation67



introduced to describe the algorithm is slightly di�erent from the nomenclatureintroduced in the previous chapter, and is de�ned below.The problem considers a directed network G(N,M), with nodes i ∈ N , andedges j ∈ M. We de�ne |M| = M and |N | = N . Links may be designatedalso using the indices of the corresponding origin and destination nodes (e.g.
ij is the link connecting nodes i and j). The arc costs are random, followingdiscrete probability distributions ξjconsisting of Sj states sj ∈ Sj . Each stateis de�ned by its cost εj

sj and the corresponding probability, pj
sj , in view ofwhich µj =

∑
sj∈S| ε

j
sj ×pj

sj is the link expected cost. For every link we assume
εj
1 < εj

2 < ... < εj
s. Notice that the cardinality of the sets ξjcan vary acrosslinks.Any particular combination of link cost realizations originates a networkstate x ∈ X . These can be de�ned by m-tuples x = {sj(x)} , j ∈ M,specifying the state realized at link j under network state x. The correspondinglink cost and probabilities are given by εk

sk(x) and pk
sk(x), respectively. Fornotational convenience, the later may be denoted by ck(x) and pk(x), or ckxand pk

x. Indices sj(x) can adopt any value in the range {1, 2, ..., Sk
}, in virtueof which there are T =

∏
j∈M Sj possible network states, with a probability ofoccurrence given by equation 5.1.

r(x) =
∏

j∈M

pj(x) (5.1)A path L is a set of links, and its cost under any state is givenby the summation of the cost realizations at the corresponding links
cx(L) =

∑
j∈L c

j(x).A partition of the m-dimensional state space X based on links k ∈ Kis a subset X1 ⊆ X of the states in such space, de�ned by two m-tuples
α(X1) =

{
ak(X1)

}and β(X1) =
{
bk(X1)

}, where ak and bk indicate the indexcorresponding to the �rst and last link state included in X1. We will extendthe de�nition of r(x) to represent the probability of a subset as indicated inequation 5.2. If the subset contains a single element, ak = bk = sk ∀ k ∈ K,and equations and 5.1 and 5.2 are equivalent.68



r(X1) =
∏

k∈K




sk=bk(X1)∑

sk=ak(X1)

pk
sk


 (5.2)We denote by K ≤M the number of available sensors, which are deployedaccording to an exogenously determined strategy t. Binary variable gj(t)is used to identify the links on which sensors are placed under a particularstrategy, by setting it to one if a sensor is located on link j under strategy t,and to zero otherwise. Strategy t can be de�ned by the set of links k ∈ K(t),such that gk(t) = 1. For notational simplicity, K will be used instead of K(t)when the value of t is obvious given the context. For all links w /∈ K weassume cw(x) = ϕw under any state x. In view of the former, the networkstates which can be perceived given the information provided by strategy tdi�er only on the cost realization at the measured links. The set of perceivednetwork states consists of K-tuples x̃ ∈ P, such that x̃ =

{
ck(x)

}
, k ∈ K,and r(x̃) =

∏
k∈K p

k(x̃). The total number of perceived states is given by
P =

∏
k∈K S

k.The cost at the shortest path connecting nodes o and d under a general orperceived scenario is ρx
od. The shortest path computed under a no-informationprovision scenario x0 = {µj} ∀ j ∈ M is the shortest expected cost path,with cost ρ0

od. The set L0
od contains all the links included in the shortest path.For the examples and descriptions presented in this section, a single origin-destination pair will be considered, and therefore the sub index od will beomitted.The system expected cost under information set K is ZK, and it includesthe contributions of all the states x̃ ∈ P (Equation 5.3) to the system expectedcost, zK(x̃). In the general case, the evaluation of ZK would involve thecomputation of ρx̃ for all the possible perceived states.
ZK =

∑

x̃∈P

ρx̃ × r(x̃) =
∑

x̃∈P

zK(x̃) (5.3)The state partitioning approach proposed here aims to identify non-overlapping subsets Pv ⊆ P such that their contributions can be calculated69



based on a single shortest path computation, thereby reducing thecomputational e�ort. The value of ZK is then obtained according to5.4, where W ⊆ P is the subset of states w̃ which do not belong to anypartition Pv, and V is the set of all existing partitions.
ZK =

∑

v∈V

zK(Pv) +
∑

w̃∈W

zK(w̃) (5.4)5.1.2 State-space generation: Visualizing the state spaceas a treesThe order in which the states within a state space are considered plays afundamental role in the e�ciency of any state space partitioning technique.Such order in�uences the total number of partitions to be generated, the totalnumber of evaluations required, and the number of partitions which need tobe stored simultaneously. For the implementation discussed in this paper, thestate ordering is given by the state generation methodology, which is presentedin this Section. The methodology was designed based on the �ndings presentedin Alexopoulos [1997], and tailored to �t our goal of minimizing the numberof shortest path computations required to evaluate the objective function. .In order to ease the interpretation of the state generation procedure andthe various state-space partitioning rules introduced in later sections, one mayregard the state space as a set of trees, and the state space partitioning processas a tree-pruning procedure.Assume that index k, such that 1 < k < K, is used to identify thelinks in K, and consider S1 trees of depth K. In these trees, each node atlevel l = (1, 2, ..., K − 1) has sl+1 children , indexed by w = (1, 2, ..., sl+1).Additionally, assume that link costs are such that εj
1 < εj

2 < ... < εj
s. Figure5.1 presents Example 1, which illustrates the tree representation of the statespace generated by 4 links. It is easy to see that the number of leaves in suchtrees is equal to the cardinality of the set P (32 in our example), and that thecorresponding branches represent all possible states. In Figure 5.1 the coloredbranch represents state x̃ = {1, 1, 3, 1}.70
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Figure 5.1: Tree representation of a perceived state spaceFinding the system expected cost is equivalent to identifying, for everytree leave, the shortest path under the corresponding state along withits probability. The methodology proposed here generates the states in
P according to the pseudo code described by Algorithm 1, which is amodi�cation of the methodology presented by Rosen [1991].Algorithm 1 State Generation Pseudo Codefor 1 ≤ l ≤ K do

sk = 1 ∀ k ∈ K, k 6= l
sl = 2max_indexk = Sk ∀ k ∈ Kmin_indexk = 1 ∀ k ∈ K, k 6= lmin_indexl = 2end_�ag=0while (end_�ag=0) do
p = lwhile (sp = Sp and p ≥ 0) do
p = p− 1if (p > 0) then
sp = sp + 1for (p+ 1 ≤ k ≤ K) do
sk = min_indexkelseend_�ag=1This is equivalent to moving through the trees by �levels� starting at depth1, and considering the nodes in a level from left to right, as depicted in Figure5.2. Each level represents a link k ∈ K, and the values of w at the considerednode indicates the link state index corresponding to a particular state. For71
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l = 4 States evaluated on current levelStates not evaluatedStates evaluated on previous levelsFigure 5.2: Tree interpretation of the state generation procedurelinks k : k > l the link state index is set to one, in such way that the statesgenerated at level l di�er from the ones generated at previous levels only bythe cost at link k = l.Table 5.1 presents the order in which the states corresponding to Example1 are generated, which may be regarded as lexicographic up to the lth indexfor every level l. Notice that state x̃ = {1, 1, 1, 1} is generated as part of theinitialization process, and that at level l the lowest value for sl is 2, accountingfor the fact that states x̃ : sl = 1 have been generated on previous levels. Alsonotice that algorithm 1 can be used to generate the states within a partition
Pv by setting vectors max_index and min_index equal to α(Pv) and β(Pv)respectively. 72



l = 1 l = 2 l = 3 l = 4

{1, 1, 1, 1} {1, 2, 1, 1} {1, 1, 2, 1} {1, 1, 1, 2}
{2, 1, 1, 1} {2, 2, 1, 1} {1, 1, 3, 1} {1, 1, 2, 2}

{1, 1, 4, 1} {1, 1, 3, 2}
{1, 2, 2, 1} {1, 1, 4, 2}
{1, 2, 3, 1} {1, 2, 1, 2}
{1, 2, 4, 1} {1, 2, 2, 2}
{2, 1, 2, 1} {1, 2, 3, 2}
{2, 1, 3, 1} {1, 2, 4, 2}
{2, 1, 4, 1} {2, 1, 1, 2}
{2, 2, 2, 1} {2, 1, 2, 2}
{2, 2, 3, 1} {2, 1, 3, 2}
{2, 2, 4, 1} {2, 1, 4, 2}

{2, 2, 1, 2}
{2, 2, 2, 2}
{2, 2, 3, 2}
{2, 2, 4, 2}Table 5.1: State space for Example 15.1.3 State-space partitioning: Partitioning rulesThe naive approach to the system expected cost computation is equivalent togenerating and evaluating all the tree leaves (i.e. computing ρx̃ for all x̃ ∈ P).The goal of the proposed state partitioning methodology is to take advantageof some problem properties in order to evaluate several leaves based on a singleshortest path computation, thus reducing the computational e�ort. This leadsto a subdivision of the state space, which distinguishes between subsets ofstates (represented by tree branches) which have already been evaluated andsets which require further consideration. Each of these sets (or partitions) isanalyzed by generating and evaluating the corresponding states, and it maybe sub-partitioned.The circumstances under which more than one leave can be evaluatedsimultaneously are identi�ed using partition rules. These may be slightlydi�erent depending on whether the considered sensor deployment strategy73



t involves none (Type I), some (Type II), or all (Type III) the linksin the shortest path. The following sections describe the partitioningrules corresponding to each strategy type, and present the algorithmicimplementations. Section 5.1.4 presents the �nal algorithm, and discussessome speci�c implementation issues.5.1.3.1 Strategies Type IFor strategies of Type I, on which all sensors are placed outside the shortestexpected cost path (L0∩K = ∅), a very e�cient state partitioning scheme canbe de�ned, closely related to the one proposed in Alexopoulos [1997]. Giventhat there no sensors is placed on the shortest expected cost path, the perceivedcost at L0 does not change based on the sensor information. In virtue of this
ρ0 becomes a deterministic upper bound on the optimal cost correspondingto any perceived network realization, which constitutes the basis of the �rstpartitioning rule, based on the following facts:

• Fact 1: The shortest path value corresponding to any perceived networkstate x̃ ∈ X will be lower than ρ0
od only if for at least one k ∈ K it is truethat ck(x̃) < µk. In other words, ρx̃ < ρ0 ⇒ ck(x) < µk for at least onelink k ∈ K. This is a necessary, although not su�cient condition.Proof: Equation 5.5, where Lod ∈ L are all paths connecting the origin anddestination, re�ects the optimality condition de�ning a shortest path. Giventhat cost changes are possible only on those links in K, the cost on L0 is equalto ρ0

od under every state x̃. If ρx̃ < ρ0 the path used to achieve ρx̃ is Lx̃ 6= L0.Such path was not optimal before the cost change, and therefore its cost musthad been greater to, or equal than, ρ0. In view of the former, ρx̃ < ρ0 impliesthat the cost at some link in Lx̃ has decreased, thus Lx̃ contains at least onelink k ∈ K for which ck(x̃) ≤ µk which completest the proof.
ρ0

od =
∑

j∈L0

µj ≤ c0(Lod)∀Lod ∈ Lod (5.5)
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Corollary: The contribution to ZKof states states ỹ such that ck(ỹ) >
ϕk ∀ k ∈ K may be computed according to equations 5.6 and 5.7, withoutperforming a shortest path evaluation. In these equations Y1 = {ỹ} denotesthe set of all links ỹ.

zK(Y) = ρ0 × r(Y1) (5.6)
r(Y1) =

∏

k∈K




s=b(X )∑

s=ϕk

pk
s



 (5.7)
• Fact 2: If ρx̃ = ρ0 for a perceived network state x̃ ∈ P, then ρx̃ =

ρ0 ∀ ỹ ∈ Y2 : sk(ỹ) ≥ sk(x̃) ∀ k ∈ K.Proof: Given that ρx̃ = ρ0, L0 is valid as a shortest path under x̃, in virtue ofwhich equation 5.5 is valid. Given that state indices are ordered in increasingorder of their corresponding costs, the assumption sk(ỹ) ≥ sk(x̃) is equivalentto ck(ỹ) ≥ ck(x̃) which, following the same reasoning described for Fact 1,implies that cỹ(L) ≥ cx̃(L) ≥ cx̃(L0) ∀ L ∈ L.Corollary: If the shortest path value under a perceived network state x̃ ∈
X is ρx̃ = ρ0, equations 5.8 and 5.9 can be used to compute the contributionto ZK of all states ỹ such that sk(ỹ) ≥ sk(x̃) ∀k ∈ K.

zK(Y2) = ρ0 × r(Y2) (5.8)
r(Y2) =

∏

k∈K




s=b(X )∑

s=sk(x̃)

pk
s


 (5.9)In virtue of these facts, we can de�ne the following partitioning rule fordeployment strategies of Type 1:Partitioning Rule 1LetX be a K-dimensional space describing the perceivednetwork state-space based on the information provided by K75



sensors, or a subset of such space. Let t be a sensor deploymentstrategy such that L0 ∩ K(t) = ∅. If ρx̃ ≥ ρ0 for a state x̃ ∈ Pgenerated under level l, the contribution to ZK of all states
ỹ ∈ Y2⇔sk(ỹ) ≥ sk(x̃) ∀k ∈ K is given by equation 5.8, and thestates in P which require further evaluation belong to one of 2lpossible partitions Pv(d, x̃) de�ned by equations 5.10 to 5.13 forevery value of 1 ≤ d ≤ l.
α
(
X I(d, x̃)

)
=

{
s1(x̃), s2(x̃), . . . , sd−1(x̃), ad(X ), . . . , aK(X )

} (5.10)
β
(
X I(d, x̃)

)
=

{
b1(X ), b2(X ), ..., bd−1(X ), sd(x̃) − 1, bd+1(X ), ..., bK(X )

} (5.11)
α
(
X II(d, x̃)

)
=

{
s1(x̃), s2(x̃), ..., sd−1(x̃), ad(X ), ..., aK(X )

} (5.12)
β
(
X II(d, x̃)

)
=

{
s1(x̃), s2(x̃), ..., sd−1(x̃), sd(x̃) − 1, bd+1(X ), ..., bK(X )

} (5.13)
r(X ) =

∏

k∈K




t=bk(X )∑

t=sk(x̃)

pk
t


 (5.14)Notice that in order to avoid duplicating a state evaluation, the �rst state tobe considered in partitions X I(d, x̃) is such that sd−1 = ad−1 +1. Additionally,notice that depending on the characteristics of the set P it may not be possibleto generate X I(d, x̃) and II2(d, x̃). This is the case when sd(x̃) = ad, or when

sj = Sj ∀ j : 1 < j < d− 1.Figure 5.3 represents Partitioning Rule 1 within the tree-representationcontext. It is easy to see that the implementation of this rule is equivalent topruning the state space trees by eliminating the children of all the nodes at the
lth level of set P for which w > sl. It follows a description of the algorithmicdetails of the implementation of this rule.Algorithmic implementation The algorithmic implementation will bedescribed based on the tree-pruning representation of the state partitioningprocess, which has a more intuitive interpretation. Figure 5.4 summarizes the76
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procedure, exempli�ed in Figure 5.5. The algorithm works by levels, and itmaintains two sets of partitions, Q(l) and R(l), which contain all the states of
P that may require evaluation. The partitions in Q(l) are active, in the sensethat the corresponding states, based on level l, still need to be generated andevaluated if appropriate. The set R(l) encompasses partitions for which the
l− based states have already been generated, thus do not to be considered atthe current level. At every iteration, the �rst partition P0 ∈ Q(l) is selected,and the corresponding states generated and evaluated according to algorithm1. Based on Partitioning Rule 1, when a state x̃ ∈ P0 : ρx̃ ≥ ρ0 is found, thealgorithm performs a partitioning operation, which includes:1. Identifying the subsets of states ỹ: sk(ỹ) ≥ sk(x̃) ∀ k ∈ K and computingtheir contribution to ZK (equation 5.14)2. Creating partitions Pv∈ Q(l) as de�ned by Equations 5.10 and 5.113. Updating the remaining partitions inQ(l) using Equations 5.15 and 5.16,and adjusting the system expected cost (Equations 5.17 through 5.19)4. Generating partitions in R(l) using Equations 5.12 and 5.135. Removing P0 from Q(l)If the last state x̃ ∈ P0 is reached without partitioning the set, P0 is movedtoR(l), and after all the partitions in the active set are processed the algorithmmoves to the next level, and R(l) becomes the active set. The procedure endswhen both sets of partitions are empty. The third step in the process isessentially equivalent to step 2, but it involves additional veri�cations, giventhat the condition ρx̃ > ρ0 does not necessarily have an impact in all theexisting partitions in Q(l). Equations 5.15 and 5.16 describe the updatedpartitions.

α(P∗
v (d)) = {aux1(x̃), aux2(x̃), ..., auxd−1(x̃), ad(P0), ..., a

K(P0) (5.15)78
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β(P∗
v (d)) =

{
b1(P0), b

2(P0), ..., b
d−1(P0), aux

d(x̃) − 1, bd+1(P0), ..., b
K(P0)

}(5.16)The auxiliary array aux is computed according to algorithm 2, and onlythose partitions such that bk(Pv) ≥ ak(Pv) ∀k ∈ K are modi�ed.Algorithm 2 De�nition of aux in state-space partitioning algorithmfor all (k ∈ K) doif (sk(x̃) > bk(P0)) then
auxk = bk(P0)else
auxk = sk(x̃)if (sk(x̃) < ak(P0)) then
auxk = ak(P0)else
auxk = sk(x̃)If a partition is updated, the system expected cost is adjusted usingEquations 5.17 through 5.19.

r(P∗
v (d)) =

∏

k∈K




g=bk(Pv)∑

g=auxk

pk
v


 (5.17)

zK(P∗
v (d)) = ρ0 × r(P∗

v (d)) (5.18)
ZK = ZK + zK(P∗

v (d)) (5.19)5.1.3.2 Strategies Type IIThe partitioning rule for deployment strategies Type II presents the samestructure as Partitioning Rule 1. However, for this case L0 ⊇ K, and therefore
ρ0 can no longer be considered an upper bound on the shortest path cost underdi�erent perceived network states. An alternate bound is given by the shortestpath cost on a network from which all links k ∈ K are removed. Let τ and
LK denote such cost and the corresponding path, respectively. Based on this80
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new condition and on shortest path properties, the following facts are used toderive an appropriate partitioning rule for strategies Type II:
• Fact 3: For states x̃ ∈ X such that ck(x̃) < µk ∀ k ∈ K, the shortestpath cost ρx̃ is given by the cost perceived at L0.Proof: Assume that the default optimal cost is ρ0 on path L0, and that theminimum expected cost under state x̃ occurs on path L′ 6= L0, such that

cx̃(L
′) < cx̃(L0). Given that costs change only for links in K, the costs under x̃may be re written as cx̃(L′) = c0(L

′)+
∑

k∈K(ckx̃ −µk) (Assuming that K ⊆ L′,which provides a lower bound on the value of cx̃(L′)) and cx̃(L0) = ρ0 +
∑

k∈K(ckx̃ −µk). In view of our starting assumption, c0(L′) +
∑

k∈K(ckx̃ −µk) <

ρ0 +
∑

k∈K(ckx̃ − µk). The former implies that c0(L′) < ρ0, which contradictsthe assumption the ρ0 is optimal and completes the proof.Corollary: If a state x̃ ∈ X is such that ck(x̃) ≤ µk ∀ k ∈ K, the shortestpath cost is de�ned by Equations 5.22, which does not require an additionalshortest path evaluation.
ρx̃ = ρ0 −

∑

k∈K

(
µk − ck(x̃)

) (5.20)
• Fact 4: If ρx̃ = τ for a perceived network state x̃ ∈ X , then ρỹ = τ ∀ ỹ :

sk(ỹ) ≥ sk(x̃) ∀k ∈ K. The proof of this fact is equivalent to that ofFact 2.Corollary: If the shortest path value under a perceived network state is
ρx̃ = τ , equations 5.21 and 5.9 can be used to compute the contribution to ZKof all states ỹ ∈ Y2 such that sk(ỹ) ≥ sk(x̃) ∀k ∈ K.

zK(Y2) = τ × r(Y2) (5.21)In view of the former, we de�ne the following partitioning rule andcorresponding algorithmic implementation:
82



Partitioning Rule 2Let X be a K-dimensional space describing the perceivednetwork state space based on the information provided by Ksensors, or a subset of such space. Let t be a sensor deploymentstrategy such that L0 ⊇ K(t), and let τ be the value of the shortestpath on a network from which all links k ∈ K(t) are removed. If
ρx̃ = τ for a state x̃ ∈ X generated under level l, the contributionto ZK of all states ỹ ∈ Y2⇔sk(ỹ) ≥ sk(x̃) ∀ k ∈ K is given byequations 5.21 and 5.9. The states in X which require furtherevaluation belong to one of 2l possible partitions Pv de�ned byequations 5.10 to 5.13.The intuitive interpretation of this strategy is similar to the one provided forPartition Rule 1. Notice that, depending on the characteristics of the network,it may not be possible to �nd τ . When this is the case, the state-space cannotbe partitioned based on the shortest path value. However, some problemproperties can be utilized to reduce the number of shortest path evaluations,described in Section 5.1.3.4.Algorithmic Implementation The implementation of Partition Rule2 is almost identical to the one described in Section 5.1.3.1, the only di�erencebeing the conditions which trigger a partitioning operation. In addition tostate-space partitioning, the subroutine used to evaluate deployment strategiesof Type II takes advantage of Fact 3 to reduce the number of shortest pathevaluations. Algorithm 3 summarizes the approach.5.1.3.3 Strategies Type IIIThe partitioning rule adopted for deployment strategies Type III is identicalto that one described for strategies of Type II. The strategy evaluationsubroutine, described by 4 also makes use of the following fact:

• Fact 4: For states x̃ ∈ X such that ck(x̃) ≤ µk ∀ k ∈ K ∩ L0 and83



Algorithm 3 Evaluation Subroutine for Strategies Type IIfor (1 < l < K) dofor all (Pv ∈ Q(l)) dowhile (Algorithm 1 returns state x̃) doCompute r(x̃) (Equation 5.2)if (sk(x̃) ≤ ϕk ∀ k ∈ K) then
ρx̃ = ρ0 −∑k∈K

(
µk − ck(x̃)

)

zK(x̃) = ρx̃ × r(x̃)elseRun shortest path and compute ρx̃if (ρx̃ = τ) thenRun partition subroutine (Figure 5.4)Move to next Pvelse
zK(x̃) = ρx̃ × r(x̃)

ck(x̃) ≥ µk ∀ k ∈ K ∧ k /∈ L0the shortest path cost ρx̃ is given by thecost perceived at L0.Proof: Assume that the default optimal cost is ρ0 on path L0, and thatthe mini mu expected cost under state x̃ occurs on path L′ 6= L0, such that
cx̃(L

′) < cx̃(L0). Given that costs change only for links in K, the costs under
x̃ may be re written as cx̃(L′) = c0(L

′)+
∑

k∈K∩L0(ckx̃−µk)+
∑

k∈K∩L0(ckx̃−µk)(Assuming that (K ∩ L0) ⊆ L′, which provides a lower bound on the valueof cx̃(L′)) and cx̃(L0) = ρ0 +
∑

k∈K∩L0(ckx̃ − µk). In virtue of our startingassumption, c0(L′)+
∑

k∈K∩L0(ckx̃−µk) < ρ0. Notice that the second term in theright hand side in this equation is non-negative under the conditions speci�edfor Fact 4, in view of which c0(L
′) < ρ0, which contradicts the assumptionregarding the optimality of ρ0 and completes the proof.Corollary: If a state x̃ ∈ X is such that ck(x̃) ≤ µk ∀ k ∈ K ∩ L0 and

ck(x̃) ≥ µk ∀ k ∈ K ∧ k /∈ L0, the shortest path cost is de�ned by equation5.22, which does not require an additional shortest path evaluation.
ρx̃ = ρ0 −

∑

k∈K∩L0

(
µk − ck(x̃)

) (5.22)
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Algorithm 4 Evaluation Subroutine for Strategies Type IIIfor (1 < l < K) dofor all (Pv ∈ Q(l)) dowhile (Algorithm 1 returns state x̃) doCompute r(x̃) (Equation 5.2)if (sk(x̃) ≤ ϕk ∀ k ∈ K ∩ L0 and sk(x̃) ≥ ϕk ∀ k ∈ K ∧ k /∈ L0)then
ρx̃ = ρ0 −∑k∈K

(
ϕk − ck(x̃)

)

zK(x̃) = ρx̃ × r(x̃)elseRun shortest path and compute ρx̃if (ρx̃ = τ) thenRun partition subroutine (Figure 5.4)Move to next Pvelse
zK(x̃) = ρx̃ × r(x̃)5.1.3.4 Partitioning rule for temporary state space subdivisionThe partition rules described above are equivalent to a tree-pruning operationwhich permanently removes a portion of the state-space trees. The followingfact allows identifying sections of the tree which may be temporarilydisregarded during the analysis of a particular level, even though thecorresponding nodes cannot be eliminated from the tree.

• Fact 5: De�ne Lx̃as the shortest path under state x̃ ∈ X , and let w ∈ Kbe any of the equipped links under strategy t. If w /∈ Lx̃ then for allstates ỹ ∈ Y3 ⇐⇒ cw(ỹ) ≥ cw(x̃) ∧ ck(ỹ) = ck(x̃) ∀k ∈ K, k 6= w it istrue that w /∈ Lỹ.Proof: Let link w connect nodes i and j, and Fs−i and Fj−t be the optimalsub paths connecting the origin to node i, and node j to the destination understate x̃. If w /∈ Lx̃, cx̃(Fs−i) + cwx̃ + cx̃(Fj−t) > ρx̃. Under the conditionsestablished by Fact 5, ρx̃ is the cost of a feasible path for all states in Y3, andthe left hand side of the last equation, which represents the cost of the shortestpath using link ij, remains larger than ρx̃. In view of the later, no path using85



link w may be the shortest under the states contained in Y3, which completesthe proof.Corollary: If under state x̃ ∈ Pv, Pv ∈ Q(l) link w ∈ K is found notto belong to the shortest path, the corresponding shortest path value ρx̃ canbe extrapolated to all states ỹ ∈ Y3 ⇐⇒ sk(ỹ) = sk(x̃) ∀k ∈ K, k 6= w, and
sw(ỹ) ≥ sw(x̃). The contribution of such states to the total system expectedcost under strategy t is given by Equations 5.23 and 5.24.

zK(Y3) = ρx̃ × r(Y3) (5.23)
r(Y3) =

(
∏

k∈K,k 6=w

pk(x̃)

)
×




s=bw(Pv)∑

s=sw(x̃)

pw
sk



 (5.24)Fact 5 may be used as the basis for a number of di�erent partitioningrules. The one presented below was developed taking into account practicalimplementation considerations. The criterion utilized to design this rule wasto take advantage of Fact 5 in order to reduce the number of shortest pathcomputations without greatly increasing the data storage requirements, or thecomplexity of the necessary data structures. The rule was also developed to�t within the framework imposed by the selected state generation procedure(Algorithm 1).Partition Rule 4:Let Pv ⊆ Q(l) be a K-dimensional space describing a partitionof the state space de�ned by the information provided by K sensors
k ∈ K. Assume that states are generated according to algorithm 1.If during the evaluation of state x̃ ∈ Pv ∃w ∈ K : w < l, w /∈ Lx̃,then all states ỹ : sk(ỹ) = sk(x̃) ∀k ∈ K, k 6= w and sw(ỹ) ≥
sw(x̃) can be evaluated in a single step according to 5.23 and 5.24.This leads to a subdivision of the remaining states in Q(l) into atmost 3 sets Tv(x̃, w, l), such that α (Tv(x̃, w, l)) =

{
ak(Pv)

}, and
β (Tv(x̃, w, l)) is de�ned according to Figure 5.6. The �rst state86



to be considered in each of these partitions is x̃0, described in thesame �gure.
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bl+1(Pv) . . . bK(Pv)Figure 5.6: Temporary sub partitions based on x̃ when ∃ w ∈ K : w /∈ Lx̃In Figure 5.6 expressions sl − − and sl + + are used to identify theindices corresponding to the states immediately before and immediately after
x̃ (according to the state generation process presented in Algorithm 1), for therange w+1 < k < l. Notice that such states may not exist , in which case thecorresponding partition is not created. Partitions Tv(x̃, w, l) are inserted into
Q(l) in the position previously occupied by Pv in the order in which they aregenerated.The algorithmic implementation can accommodate cases on which morethan one link wi ∈ W : W ⊆ K is not part of the shortest path under x̃. Thecorresponding probabilities are given by Equation 5.25.
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radj(Tv(x̃, wi, l)) =

s=bw1 (Pv)∑

s=sw1 (x̃)



pwi

s ×
∏

k∈K, k 6=wi

pk
sk(x̃)


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+
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
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


s=bw(Pv)∑

s=sw(x̃)+1

pwj

s )


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∏

k∈K, k 6=wi

pk
sk(x̃)



 (5.25)The implementation also accounts for the fact that during the evaluationof the states in Tv(x̃, w, l) it is possible to �nd new states x̃′ : w /∈ Lx̃′. Let

W = {w1, w2, ..., wW} be the subset of all links in K which do not belong tothe shortest path, and assume that the sub indices preserve the link orderingfollowed when de�ning the tree levels. De�ne x̃∗(wj) =
{
swj+1, swj+2, ..., sl

} asthe portion of the array x̃ which contains the link state indices correspondingto k : wj + 1 ≤ k ≤ l, and notice that this segment is enough to generate allpartitions Tv(x̃, wj, l). The proposed algorithm maintains a list of such arraysfor each level 1 ≤ d < l, denoted X∗(wj), and utilizes it to create temporarypartitions Tv(x̃
∗(wj), wj, l) when swj is increased by algorithm 1. For notationalsimplicity, well denote the elements in X∗(wk) using x̃∗i whenever wj can beinferred from the context.We will denote klast(x̃) the index increased in order to generate x̃. Lists

X∗(wj) are reset every time a new state is generated for all l > j > klast.Each time a shortest path evaluation is accomplished, the algorithmidenti�es all the links which are not part of the shortest path, extrapolatesthe shortest path value to the corresponding states, and saves x∗(wj) forall links j : j < l by inserting it into the appropriate position in X∗(wj).The state generation algorithm is slightly modi�ed with respect its originalversion in order to verify if the set x∗(klast(x̃)) is empty for every new state
x̃. If this is not the case, temporary sub partitions are generated, which skipthose states already evaluated based on the fact that klast(x̃) was not part ofthe shortest path. Each of the temporary partitions is processed followingthe standard procedure, with a slight modi�cation in the implementation ofPartitioning Rule 4. Within a temporary partition Tv(x̃, wj, l) only those linkslinks k such that k ≤ wj are considered for the application of Partitioning88



Rule 4. This is a heuristic simpli�cation, seeking to reduce the amount ofinformation that needs to be stored in order to keep track of the states alreadyevaluated. Figure 5.7 illustrates the underlying concept within the contextof a tree representation of the state-space. The corresponding algorithmicimplementation (Algorithm 5) acts as the framework in which the remainingsubroutines are inserted. Section 5.1.4 presents the pseudo code and discusessome implementation considerations. Numerical analyses on two test networkare presented in Section 5.1.4.5.1.4 State-space partitioning algorithm: SummaryAlgorithm 5 describes the implementation of Partitioning Rules 1 through 4to the evaluation of sensor deployment strategies. The procedure is slightlydi�erent depending on whether or not the strategy involves placing sensorson links belonging to the shortest path under no information, L0. StrategiesType I are such that none of the monitored links belongs to L0, while strategiesType II and III place all or some of the sensors on L0, respectively. For allstrategies the algorithm starts working on a state space which includes allpossible cost realizations on the measured links. These realizations de�ne theperceived network states, and lead to di�erent shortest expected cost values
ρx̃. The contribution to the expected shortest path cost of each realization isgiven by ρx̃ × r(x̃), where r(x̃) is the corresponding probability. Under somecircumstances the same value of ρx̃ can be applied to a number of perceivedstates, which leads to a subdivision of the state space. For strategies Type Ithis is possible for states x̃ : ρx̃ = ρ0. Under strategies Type II and III, thestate-space is partitioned if ρx̃ = τ , where τ is the value of the shortest path ona network from which all the equipped links are removed. The algorithm alsotakes advantage of other problem properties in order to reduce the number ofshortest path computations (Sections 5.1.3.2, 5.1.3.3 and 5.1.3.4).The state space can be visualized as a set of trees (Section 5.1.2), and thestate generation procedure used in this algorithm is equivalent to growing thetrees from top to bottom, generating at every level (associated with a particular89
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Algorithm 5 State Space Partitioning Algorithm
α0 = (1, 1, ....1)
β0 = (S1, S2, ...., SK)if t is of Type I then
Ref = ρ0else
Ref = τfor all (l ∈ K) dowhile (Q(l) 6= ∅) dowhile (Algorithm 1 returns state x̃ ) doif evaluation is necessary (Algorithm 3 or 4) thenFind Lx̃ and ρx̃Compute r(x̃)if (ρx̃ < Ref) thenif (X∗(klast(x̃)) 6= ∅ & flag ≥ klast) (if temporary partitionsare necessary) thenfor all (x̃∗ ∈ X∗(klast(x̃))) doGenerate Tj(x̃

∗, klast(x̃), l) and insert them inQ(l)Generate T2(x̃
∗, klast(x̃), l) insert it at the top of Q(l)Generate T3(x̃
∗, klast(x̃), l) and insert it inQ(l)

flag = klast(x̃)
X∗(klast(x̃)) = ∅Move to the �rst element x̃ ∈ Q(l)elsefor all (w : w ∈ K : w < klast, w /∈ Lx̃) doStore x̃∗(w) in X∗(w)Compute radj(x̃) (equation 5.25)
z(x̃) = radj(x̃) × ρx̃elsePartition (Algorithms 3, 4, and Figure 5.4)Update Q(l) and R(l)Compute z(x̃)Move to the �rst element of Q(l)elseMove to next x̃ in Pv

Q(l) = R(l)
R(l) = ∅ 91



link) a branch for each possible cost realization. The tree con�guration variesdepending on the order on which the links are sorted (i.e. which link is assignedto each level). Even though the total number of leaves (and therefore states tobe evaluated) is constant, the e�ectiveness of the partitioning procedure clearlydepends on the tree structure. The numerical experiments presented in 5.1.5suggest that the methodology is more e�cient when links are considered inincreasing order of their number of states, resolving ties based on links costrange ∆εj (Equation 5.26). These results are consistent with the theoreticalapproach presented in Alexopoulos [1997]. Additionally, for strategies TypeIII it is advantageous to assign the links in L0
⋂K to the highest levels (closerto the top).

∆εj = εj
Sj − εj

1 (5.26)The algorithm was designed to evaluate sensor deployment strategies whenthe underlying objective function involves routing assets between one originand one destination. It can be utilized to assess cases on which more than oneorigin-destination (O-D) pair exist, by de�ning ρx̃
ALL =

∑
od∈O

ρx̃
od ×hod, where

Ois the set of all the considered O-D pairs, and hodis an optional variable usedto assign di�erent weights to the O-D pairs. In this case Lx̃
od is replaced by

T x̃ : j ∈ T x̃ ⇔ ∃ od ∈ O : j ∈ Lx̃
od. Even though the worst case complexity forthis algorithm is exponential (all the states may be generated and evaluated)the results displayed below suggest a much better performance in practice.5.1.5 Numerical testingThe algorithm described in Section 5.1.4 was tested on one of the examplenetworks presented in Alexopoulos [1997]. Example Network 1 has 10 nodesand 23 links which costs are described by discrete probability distributionswith 2 to 5 states (Table 5.2 and Figure5.8). The algorithm was implementedin C++, and two di�erent versions were developed. The �rst one utilizes thedata structures described in Section 5.1, and it incorporates Partitioning Rules1 through 3, according to Algorithm 3. This version was utilized for most of92



Figure 5.8: Network I topologythe numerical tests included in this work. The second version, denoted �treeimplementation�, explicitly utilizes the tree representation described in Section5.1.2. Trees are stored as lists of nodes, and additional arrays are used toindicate the starting node of each level, and to implement the state partitions.Even though the tree version allows for an easier implementation of complexpartitioning rules, such as partitioning rule 4, it often requires data structuresof the size of the state-space, which limits its applicability.In order to test the state space partitioning algorithm, all possiblesensor deployment strategies of size n=[1, 5] were evaluated in Network I.The large number of such strategies (CN
n ) allowed to assess the algorithmperformance, which was measured in terms of the reduction in the number ofshortest path computations required to evaluate a sensor deployment plan.The running time was not used as an indicator of performance given thatthe software implementation was not designed focusing on computationale�ciency. Furthermore, di�erent approaches were taken to implement naïveapproaches and state-space partitioning methodologies, seeking to exploreavailable coding resources such as the Boost Graph Library. As a consequenceof this approach, the running times are likely to underestimate the potentialof the state-space partitioning methodologies. Future research will designsoftware tools allowing for a valid running time comparison.We denote N t

eval the number of network states for which a shortest path93



Link εj
1 pj

1 εj
2 pj

2 εj
3 pj

3 εj
4 pj

4 εj
5 pj

51 70 0.2 73 0.5 94 0.32 25 0.5 35 0.4 82 0.13 42 0.2 48 0.3 61 0.54 26 0.1 31 0.2 55 0.4 88 0.2 90 0.15 58 0.3 70 0.3 95 0.46 15 0.4 73 0.67 65 0.4 74 0.5 75 0.18 59 0.6 72 0.3 98 0.19 21 0.3 32 0.2 85 0.3 98 0.210 89 0.7 96 0.311 32 0.2 48 0.2 67 0.612 63 0.5 99 0.513 66 0.8 85 0.1 98 0.114 6 0.1 15 0.4 39 0.3 58 0.215 2 0.4 48 0.616 61 0.2 63 0.3 85 0.517 16 0.2 18 0.3 40 0.3 52 0.218 3 0.1 30 0.4 50 0.519 16 0.1 34 0.5 71 0.420 90 0.5 96 0.521 21 0.3 46 0.4 85 0.322 17 0.1 49 0.4 53 0.4 65 0.123 6 0.1 12 0.1 54 0.3 66 0.5Table 5.2: Link cost probability distribution for Network I
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computation was performed in order to evaluate strategy t. The total numberof states generated by the algorithm is given by N t
eval, and N t

max representsthe number of possible states under strategy t. The algorithm savings aremeasured by the reduction in the total number of shortest path evaluations
∆N t = N t

max − N t
eval, or its percent expression ∆N t = N t

max − N t
eval. Thenumber of partitions generated during an evaluation is #P . Partitions arestored using two arrays of size n, and we de�ne #Psim as the maximumnumber of partitions simultaneously stored during an evaluation. The subpartitions de�ned in Section 5.1.3.4 are also stored as sets of two arrays ofvarying size, and are included in the computation of #Psim. A small numberof simultaneous partitions is desirable in order to reduce memory requirements(the actual number of shortest path evaluations is not a linear function of theperformed partitions). Additionally, handling the sub partitions, particularlythe ones generated based on Rule 4, can be computationally expensive,slowing down the overall process. The later justi�es the selection of relativelysimple partitioning rules for the present application (5.1.3.4). Nevertheless,for problems such that the evaluation of a single state is relatively complex,e.g. network assignment, additional bene�ts could be derived from re�nedsub partitioning schemes.Tables 5.3 and 5.4 summarize the observed algorithmic performance forthe basic implementation (Including Partitioning Rules I through III). In thistable Neval is the average value of N t

eval across all the strategies t involvingthe same number of sensors. Similarly, Neval% denotes the average value whenthe number of shortest path evaluations is expressed as a percentage of themaximum number of states Neval% = 1
T

∑
t∈T

Nt
eval

Nt
max

.On Network I less than 20% of all possible states were evaluated forstrategies of Type I, and an even smaller percentage of the possible statesrequired evaluations for K=3 and K=4 (9% and 8% respectively). Thecorresponding results for strategies of Type II and III are less impressive,which is likely to be a consequence of the lack of alternative paths connectingthe selected origin and destination in when the measured links are removed.As a result, the bound on the shortest path cost, τ , cannot be computed,95



2 Sensors 3 SensorsType III Type I Type II Type III Type I Type II# 60 190 3 630 1440 1
N t

max 9.3 9.57 9 28.64 29.45 27
N t

gen 8.75 1.34 8.67 26.8 2.7 25.0
N t

eval% 73 15 88 84.1 8.6 88.9
#P 1.00 0.10 1.00 1.11 0.21 2.00Table 5.3: Algorithmic performance in Network I (a)(Basic implementation)4 Sensors 6 SensorsType III Type I Type III Type I# 4010 4845 62187 38760

N t
max 88.03 90.28 822.96 838.39

N t
gen 88.03 90.28 791.99 106.30

N t
eval% 89.87% 7.70% 95.20% 10.50%
#P 1.16 0.38 1.25 0.98Table 5.4: Algorithmic performance in Network I (b) (Basic implementation)limiting the applicability of Partitioning Rules 1 through 3. When used toanalyze a larger network (Network II, described in the following section),the basic implementation exhibited a much better performance on strategiesof Type II and III (Table 5.5) than on Network I. This suggests that thescarceness of alternative paths is only a concern when the number of deployedsensors is a high percentage of the total number of links, or in networks withpoor connectivity. Furthermore, Partitioning Rule 4 can be used to mitigatethe e�ect of such conditions.Tables 5.6 and 5.7 present the results obtained by applying the treeversion, which includes partitioning rule 4, to the analysis of sensordeployment strategies in Network I and II, respectively. Figure 5.9 comparesthese results with the ones presented in Tables 5.3 and 5.5.The tree implementation was observed to deliver a better performancethan the basic version described above, particularly for the evaluation ofstrategies of Type III in Network I. For Network II, the performance of both96



2 Sensors 3 SensorsType III Type I Type II Type III Type I Type II# 117 741 3 2340 9139 1
N t

max 7.18 9.46 5.33 21.78 29.03 12
N t

gen 4.43 1.19 4.00 12.48 1.94 6
N t

eval% 39% 13% 75% 45% 7% 0.5
#P 1.00 0.06 1.00 1.17 0.14 2Table 5.5: Algorithmic performance in Network II (Basic implementation)

Neval%Type III Type I Type II2 57.7% 14.1% 81.5%3 34.1% 6.6% 85.2%4 17.1% 3.3% 81.1%5 9.6% 1.8%6 6.2% 1.2%Table 5.6: Algorithmic performance in Network I (Tree implementation)
Neval%Type III Type I Type II2 32.2% 14.1% 32.4%3 23.4% 5.5% 41.7%4 11.0% 2.5% 35.0%Table 5.7: Algorithmic performance in Network II (Tree implementation)
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Neval(%) Type I (Basic)Type I (Tree)Type III (Basic)Type III (Tree)
Figure 5.9: Comparison of partitioning strategiesimplementations is comparable across all strategies.The presented results also suggest that even though the total numberof shortest path computations increases with K, the algorithm performanceremains stable in terms of the percentage of evaluated states, except on thosecases for which the total number of sensors a�ects network connectivity.Table 5.9 illustrates the impact of the order in which in K are consideredon the algorithm performance for strategies of size 5 on Network I. The up(down) arrows in this table are used to indicate that the corresponding quantityincreases (decreases) for increasing values of l. The best performance wasachieved when links j were sorted in increasing order of Sk, breaking tiesbased on an ascending value of ∆εj (equation 5.26). This sorting strategypresents the advantage of considering links with a smaller range of possiblecosts at early stages. Such links are more likely to lay outside (or inside) theshortest path regardless of their value, which is used as the basis to prune thestate-space trees. By performing the pruning operations at higher levels (lowervalue of l), the number of states to be considered in further levels is reduced.Similarly, given that the number of tree branches initialized at each level l isa function of Sk for all k < l, it is desirable to postpone the consideration oflinks with a large number of states to the later stages of the algorithm, in order98



Criteria ∆S(%)
↑ ∆εj 5.21
↓ ∆εj 6.11
↑ Sj 5.17
↓ Sj 5.96

↑ ∆εj ↑ Sj 5.21
↑ Sj ↑ ∆εj 5.08Random 5.39Table 5.8: Impact of the link-sorting criteria on the algorithmic performance(Network I, K = 5)to take advantage of previous pruning and avoid unnecessary evaluations. Itis interesting to notice that the algorithm performance does not deteriorategreatly when the links are considered in a random order, which may be adesirable alternative for speci�c implementations, including those involving avery large number of sensors.Additional experiments were conducted to assess the performance ofthe methodology for di�erent link cost probability distributions functions:A uniform distribution (Table A.3) was constructed by assigning equalprobabilities to all states described on table 5.2. Two strongly asymmetricdistributions were generated by which assigning 70% of the probabilities tothe most (Right-skewed) and least (Left-skewed ) expensive cost realizations(Tables A.4 and A.5 respectively). The remaining variations (Tables A.6 andA.7) analyze the impact of the total number of states on the algorithmicperformance. The results suggest that the methodology is slightly sensitive tothe characteristics of the probability distribution, but consistently leads to avery signi�cant reduction of the total number of shortest path computations.Uniform distributions, and those tilted to the right, require a larger numberof computations than others, given that they present more link states whichare below the average, thus may require a shortest path evaluation.
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Distribution Neval(%) Neval(%)TI Neval(%)TIIIUniform 5.3 2.09 8.92Left-skewed 4.66 1.65 7.15Right-skewed 6.35 3.98 8.21Two States 17.99 1.82 9.6Five States 1.68 0.92 2.28Table 5.9: Impact of the link probability distribution on the algorithmicPerformance (Network I, K = 5)5.1.6 SummaryThis section introduced a state-space partitioning algorithm which reduces thenumber of shortest path computations required to evaluate the performanceof di�erent sensor deployment strategies on the expected cost of an adaptive-system optimum assignment procedure. The technique takes advantage ofproblem characteristics to develop partitioning rules and evaluation criteria.These are used to �nd the shortest path value corresponding to several statesbased on a single evaluation, or on previously computed values. Most of theserules are rooted on shortest path properties, and incorporate some conceptsof shortest path re-optimization. They involve comparing the shortest pathvalue under a given state to a threshold value, and also verifying whetherthe measured links are part of the optimal solution under a particular costrealization. Unlike the cases studied by Alexopoulos [1997], who introducedsome of the seminal concepts implemented in this section, the computationof the system expected cost under an adaptive system optimum paradigmentails knowing the exact value of the shortest path for every perceived state,increasing the number of required evaluations. The procedure is specializedfor three di�erent sensor deployment strategy types in order to exploit theproblem characteristics. Strategies are distinguished based on whether or notsome, all or none of the monitored links belong to the shortest path under noinformation, L0. Such condition a�ects the selection of the above mentionedthreshold value, leading to slightly di�erent partitioning rules and evaluation100



criteria. Section 5.1.2 presents a way to visualize the state space generationprocedure as a tree growing process, and the corresponding partitioningrules as tree-pruning operations. The proposed representation is useful tounderstand how the methodology works, and can be utilized in the design ofmore complex partitioning rules in future extensions.Section 5.1.5 analyzes the performance of two di�erent implementation ofthe developed algorithm in C++. Both sets of results exhibit major reductionsin the total number shortest path evaluations required to assess the systemperformance resulting for a speci�c sensor deployment plan. On average,strategies were appraised by computing the shortest paths corresponding toonly 10% of the possible states. The performance varied across strategy types,and the proportion of evaluated states ranged between 2% and 35% in a wellconnected network. For poorly connected networks, or in cases involving ahigh number of deployed sensors relative to the network size, evaluations ofup to 85% of the possible states were necessary. The later is a consequenceof the impossibility of computing the threshold value necessary to partitionthe state-space, but it does not indicate a deterioration of the procedureperformance as a function of the state space size. Furthermore, the conductedexperiments suggest a stable performance for increasingly large state spaces.The results also indicate that the, even though the algorithm is a�ected by thecharacteristics of the link cost probability distribution, the observed impactsare not major. Distributions assigning lower probabilities to states with lowcosts were found to require a larger number of evaluations, as a consequence ofthe increased number of link states with cost below the corresponding expectedvalue.The methodology presented in this section is e�ective in reducing thecomputational e�ort involved in evaluation the expected cost of adaptivesystem optimum strategies under di�erent sensor deployment patterns. This isa critical in the search for optimal sensor deployment strategies, given that theproposed methodology may involves evaluating a very large number of possiblestrategies. The next section describes a Tabu heuristic approach designed toreduce the number of sensor deployment plans to be considered.101



5.2 Selecting an optimal sensor deploymentstrategy: a Tabu heuristic approachGiven the integer, non-convex nature of the models introduced in Chapter4, �nding an optimal sensor deployment strategy may entail evaluating everypossible solution. Even though the procedure presented in Section 5.1 reducesthe computational burden of each of these evaluations, the number of possiblestrategies grows rapidly with the network size and the number of sensors, thus�nding the exact solution may easily become prohibitive. The Tabu searchprocedure described in this section provides an alternative solution approachwhich, despite not guaranteeing the optimality of the solution, was found toprovide very good results in practice in considerably low computational times.Tabu search is a popular meta heuristic technique for the solutionof combinatorial optimization problems (Glover [1977]). Extensions andre�nements to the original approach have been used to solve a variety ofproblems, including integer and mixed integer programs (F.Glover [1989]).The methodology is clearly suitable for the solution of the problem addressedin this chapter, which can be modeled as a binary quadratic program (Chapter4). Tabu search typically starts form a feasible solution (trial solution), andselects a �move� s which transforms the existing solution t into a new solution(s(t) = t′) by changing the value of one or more of the problem variables. Amove can be de�ned as a mapping on a subset of the solution space. Thefundamental concept underlying Tabu search is that, by dynamically choosingsubsets of forbidden (Tabu) moves, one may generate a search process whichbalances intensi�cation and diversi�cation, thoroughly exploring the solutionspace without falling into local optima. The set of allowed moves is de�nedas the neighborhood of a trial solution. Banned moves are stored in one (ormore) Tabu lists, which are dynamically updated. An evaluation function isutilized to select the �best� move in the set of feasible moves, which is typicallythe one leading to the greatest improvement (or the least disimprovement) ofthe objective function. An additional advantage of Tabu search is that its102



implementation can be tailored to the characteristics of the problem understudy by changing the way in which the Tabu list is created and managed, thede�nition of moves, and the speci�cation of the evaluation function, amongothers (see F.Glover [1990] for examples).In order to �nd the sensor deployment strategy which optimizes theperformance of adaptive system optimum routing strategies we implement aTabu search heuristic which utilizes adaptive memory structures similar tothe ones proposed by Glover et al. [1998] for the solution of binary quadraticproblems. These store the recency and frequency information used to guidethe solution search, basically keeping track of the values assigned to variablesin recent iterations. Adaptive memory structures have been proved to be verye�ective in the solution of problems classi�ed as hard in the literature (Gloveret al. [1998], Pardalos and Rodgers [1990]). Unlike the problems analyzed inGlover et al. [1998], the selection of an optimal sensor deployment strategyis constrained, given the �xed number of sensors which need to be deployed.This is re�ected in the de�nition of �moves� presented in the followingsection. Additionally, some of the concepts presented by Ahuja et al. [2002]in their study of local search algorithms for very large neighborhoods wereimplemented in the search for a more e�cient performance. The followingsections describe the proposed Tabu search implementation (Section 5.2.1),and the corresponding numerical tests (Section 5.2.2).5.2.1 Algorithm descriptionLet Γ be the K-dimensional solution space containing all feasible sensordeployment strategies t involving placing K sensors on links k ∈ K(t), anddenote ZK(t) the corresponding system expected cost under the informationprovided by such sensors (the notation Z(K) is occasionally used in thisdiscussion). Our problem can be stated in a simpli�ed manner using equation5.27
Min ZK(t) : t ∈ Γ (5.27)103



where the value of ZK(t) can be appraised using the methodology describedin Section 5.1. Our decision variables, t, consist of binary M-tuples t =

{gt(1), gt(2).....gt(M)}, where g(j) = 1 if j ∈ K(t)and g(j) = 0 otherwise,and M = |M| is the cardinality of the set of network links.We de�ne a f -distance move mf(t, t′) between trial solutions t and t′ asthe swap of f elements currently in K(t) for elements k′currently not in K(t).A swap is accomplished by setting gt′(k) = 0 for the exiting elements, and
gt′(k′) = 1 for the elements �entering� the solution. Notice that this de�nitionof move always maintains a feasible problem solution, and that the cardinalityof K(t) remains constant. The swap moves are implemented in a compoundedfashion (Ahuja et al. [2002], Congram et al. [2002]), which selects entering andexiting links independently from each other. Links exiting K(t) are also chosenbased on their individual impact on the objective function.The value of f is the �depth� of the move, and the proposed algorithmimplements a variable depth search scheme (Ahuja et al. [2002]), under which fchanges cyclically between an upper and a lower bound (u and l, respectively),in an attempt to balance intensi�cation and diversi�cation. Small values of
f permit a thorough search within a speci�c region of the solution space.Large values of the variable are used to escape from local optima. Eachvalue of f de�nes a mode ηi, characterized by the corresponding depth f ηiand a span value n(f ηi), which represents the number of moves of depth fµito be performed. The total number of modes, I, as well as the number ofcycles through such modes, C, are problem parameters. Algorithm 8, whichsummarizes the Tabu procedure, also describes the cyclic variations of f basedon critical events, de�ned below.Two adaptive memory structures (or Tabu lists) per link are used toguide the search process: a recency list Rj with elements Rj [l], and a frequencylist F j, both of which are updated after a �critical event� is encountered(Algorithm 6). A critical event is a move mf(t, t′) such that ZK(t′) > ZK(t)(i.e. causes a deterioration in in the objective function value). The Tabu listskeep track of the elements in K(t) which are part of the solution before suchevent, and therefore can be considered part of a local optima. The recency104



list has a �nite length of sr which re�ects the desired short memory span.It is managed as a circular list, in such way that elements are added to thebottom of the list and removed from its top. At any iteration T , equation5.28 can be used to �nd Tabu_R(j), the number of times that a link j hasbeen part of a critical solution in the last sr moves. Even though the size of Ris typically adjusted heuristically, practical experiments (Glover et al. [1998])suggest that values between 3 and 12 lead to e�cient implementations for avariety of applications.Tabu_R(j) =

d=T∑

d=T−sr

gd(j) =

l=sr∑

l=1

Rj[l] (5.28)The frequency list (Tabu_F(j)) records the participation of links j incritical solutions throughout the execution of the algorithm. The frequency listcan be stored as an M-dimensional array which elements re�ect the numberof times a link has been part of a critical solution since the beginning of thealgorithm (Equation 5.29).F_count(j) =

d=T∑

d=1

gd(j) =

l=sr∑

l=1

F j[l] (5.29)Algorithm 6 Updating the Tabu Lists at Critical Eventsfor all j ∈ M doPush back gj(t) into RjR_count(j) = R_count(j) + gj(t) −Rj [1]F_count(j) = F_count(j) + gj(t)Remove Rj [1]At each iteration an optimal move is identi�ed, which entails selecting thelinks leaving and entering the solution in such way that the objective functiondecreases the most (or increases the least). This is accomplished by evaluating
ZK(t′) for each possible move, and selecting the strategy rendering the lowestobjective function value.Within the decomposed swap movement framework implemented here, a105



move mf(t, t′) is accomplished in two independent steps, denoted DELETEand ADD. At both stages, evaluations are conducted in order to assessthe impacts of the considered action on the objective function. The Tabulists are used to adjust the results of the corresponding evaluations throughfactors which reduce the attractiveness of links identi�ed as part of localoptimal solutions. Such links are therefore less likely to be reincorporated to(or maintained in) the considered solution in the short term, which fostersdiversi�cation in the search process.The links to be deleted are selected individually from K(t) based on theimpact that their removal has on the current objective function value. Thelater is given by ∆k(equation 5.30), which is computed accounting for recencyand frequency information. The links exhibiting the f lowest values of ∆kare removed from K(t), and the resulting subset is denoted K′(t) = K(t) −
(k1, k2....kf). . A random factor R (discussed below) is used to randomizethe selection process within certain limits, given that the impact measured by
∆kdoes not exactly re�ect the aggregate impact of removing a subset of links.

∆k = ZK′

(t) − zR(k) − zF (k) (5.30)
zR(k) = Tabu_R(k) × a (5.31)
zF (k) = Tabu_F(k) × b (5.32)In Equations 5.31 and 5.32, a and b are penalty factors, heuristicallydetermined. For this application, a = maxj(δmax(j)), where δmax(j)(equation5.33) represents the maximum possible reduction in the total system expectedcost introduced by placing a sensor on link j, and is an upper bound on thebene�ts of obtaining information about the state of link j (Section 4.4). Thevalue of b is de�ned as a function of the number of iterations, following the
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experience described in Alexopoulos [1997]. For this application b = 1
103× iter

.
δmax(j) =

∑

s: εj
s<ϕj

(
ϕj − εj

s

)
× pj

s (5.33)During the ADD stage, f links j ∈ K′
(t) are chosen simultaneously toenter the new solution, based on the improvement they cause on the objectivefunction. The neighborhood of a solution t, N(t), is therefore de�ned asthe set of all possible f -tuples formed by links currently not in K(t). Suchneighborhood may be very large, and the proposed implementation evaluatesonly a subset of N(t), a fairly common practice in local search algorithms forvery large neighborhoods (Ahuja et al. [2002]). In order to generate the reducedneighborhood, candidate links are sorted based on their δT

max(j) value (adjustedto account for recency and frequency information according to Equation 5.34),and Algorithm 7 is used to systematically generate a percentage G of thepossible f -tuples (or combinations).
δT
max(j) = δmax(j)zR(k) + zF (k) (5.34)This percentage varies between a lower bound Gl, which guarantees aminimum exploration of the neighborhood, and an upper bound Gu, selectedin order to avoid an excessive computational burden. The actual size of thereduced neighborhood G can be smaller than its upper bound if an objectivefunction value lower than the prevalent optimal solution is found beforeperforming Gu evaluations.The procedure designed to generate the reduced neighborhood (Algorithm7), despite incorporating a random element, is systematic, in such way that if

G = 100% all the possible combinations are generated without repetition.In the corresponding algorithm, A = 1
Gl de�nes the number of combinationsto �skip� (based on the lexicographic order described earlier) if only Gl

f−tuples were to be generated. Array v[i] contains the link indicescorresponding to the generated f -tuple, and array max[i] and min[i] representthe maximum and minimum value that the index my adopt at each position.107



Algorithm 7 Generation of a randomized reduced f - swap neighborhooda = max[f ] − v[f ]
v[f ] = max[f ] − (A− a) − 1r_count=0
v → aux_vwhile (a<A) do
j = fwhile (v[j] = max[j]) do
j −−if (j≥0) then
v[j] + +for (j + 1 ≤ k ≤ f) do
v[k] = v[k − 1] + 1else if (r_count<A) thenr_count++aux_v → vwhile (v[j] = max[j]) do
j −−

v[j] + +for (j + 1 ≤ k ≤ f) do
v[k] = v[k − 1] + 1a = Afor (0 ≤ i ≤ f) do

v[i] = v[i] +R

108



Figure 5.10: Generation of a reduced neighborhoodThese arrays are initialized setting min[i] = i and max[i] = |K(t)| − (f − i).
R is a random number, di�erent for every ADD operation, used to avoidconsidering the same reduced neighborhood in all iterations. The maximumand minimum values of R (Ru and Rl) are problem parameters. Figure5.10depicts the order in which 6 combinations would be generated for a moveof depth 3 on a network with |K′| = 5 and Gl = 30%, when 7 neighborhoodevaluations are desired.During the ADD operation, f -tuples in the reduced neighborhood aregenerated and added to K′(t), generating a k-tuple K′′(t) which is evaluatedusing the methodology described in the previous section. The correspondingobjective function value is adjusted according to equation 5.35, and theneighborhood member v[i] leading to the lowest value of ∆v de�nes theoptimal move for the corresponding iteration.

∆v = ZK′′

(t) +

i=f∑

i=0

(zR(v[i]) + zF (v[i])) (5.35)Algorithm 8 describes the integration of all the previously describedelements into a Tabu Search heuristic, which parameters were tested andadjusted through the numerical experiments described in the following section.
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Algorithm 8 Managing the search depth and span
Z∗ = Z(0), iter=0while (cycle<C) do
i = 1, dir=1while (move_count≤ n(f ηi)) doiter++Perform move mf(ηi)(t, t′)if (Z(t′) < Z∗) then

Z∗ = Z(t)move_count++else if (Z(t′) > Z(t)) thenCritical_Event=1Update Tabu_Fif (dir=1) thenmove_count=n(fµi)elsemove_count++Update Tabu_Rif (dir=1) then
i+ +else
i−−if (i = I) then
dir = −1else if (i = 1) thendir = 1if (i = 1) thencycle++
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5.2.2 Numerical testingThe tests performed in this section are conducted on two medium-sizednetworks, Network I (previously introduced in Figure 5.8 and Table 5.2), andNetwork 2 (Figure A.1 and Table A.2). The later accounts for 15 nodes and42 arcs, and it was also utilized in Alexopoulos [1997].The tests measured the performance of the Tabu methodology in termsof the number of strategy evaluations conducted before reaching an optimalsolution (Section 5.2.2.2). Test results were also used to adjust the parametersdescribed in Section 5.2.1, as described in Section 5.2.2.1. In order toassess the algorithmic performance, optimal solutions were obtained usingthe procedure described in Section 5.1 to evaluate all possible K sensorsdeployment strategies in Networks I and II. Due to practical considerations,the value of K ranged between 1 and 5 for Network I, and between 1 and 6for Network II.5.2.2.1 Parameter selectionThis section discusses the selection of the various parameters utilized in theTabu search heuristic introduced in Section 5.2.1. Most of the values weredetermined based on the literature, and adjusted to �t the requirements of theanalyzed problem.Appropriate values of I (the number of modes ηi), and the correspondingdepths f ηiand spans n(f ηi), were identi�ed by trial and error, and set to thevalues displayed in Table 5.10. These values have an impact on the numberof evaluations conducted per cycle, and it was found that a large number ofmodes tends to delay the convergence process. In principle, it would su�ceto utilize two modes, one with f = 1, aimed to intensify the search aroundnear-optimal locations, and a second mode intended to diversify the searchprocedure by swapping most of the elements in the current solution. However,the problem properties discussed in Chapter 4.2 indicate that some of thebene�cial impacts of information are attained only when speci�c sets of linksare measured simultaneously. Swap movements of higher depths were included111



to facilitate a faster identi�cation of such combinations. The number of moveswithin each mode was adjusted to avoid an excessive number of evaluationsper cycle. The bene�ts of the Tabu search methodology are achieved only ifthere is a balanced distribution of intensi�cation and diversi�cation moves,which requires cycling between modes relatively fast.K f η1 n(f η1) f η2 n(f η2) f η3 n(f η3)1 1 1 - - - -2 1 5 2 1 - -3 1 5 3 1 - -4 1 5 4 1 - -5 1 5 3 2 5 16 1 5 4 2 6 1Table 5.10: Parameters f ηi and n(f ηi)The maximum number of cycles, C, is set to 20 based on the resultsdisplayed in the following section (Table 5.11). An additional convergencecriterion considers the number of moves accomplished since the lastimprovement in the objective function, and the total number of performedevaluations. For a wide variety of cases the algorithm was found to convergeafter a number of evaluations equivalent to 5% (or less) of the possiblecombinations. The additional convergence criterion terminates the program ifthe number of evaluated strategies is larger than 20% of the possible strategies,or if the solution has not improved in the last 50 moves. In the later case,
Y =

∑i=I
i=1 n(fµi) moves of depth 1 are evaluated before terminating, basedon some of the results discussed below.The length of the short term memory structure, Tabu_R, was set to �veiterations. On the networks considered in this study, lengths shorter than 3iterations typically led to excessive cycling, and values higher than 8 delayedthe convergence process. The results suggest that, even though the Tabulist should be long enough to guarantee that locally optimal variables do notreenter the solution within the same mode, allowing the reincorporation ofsuch variables at the diversi�cation stage of the same cycle may be bene�cial112



for the convergence process.Penalty values were chosen as described in the previous sections, andperformed adequately. The parameter controlling the size of the reducedneighborhood, G, was assigned values between 50% and 80% of the
f−neighborhood size. If the lower bound is reduced below 30%, the algorithmperformance becomes more unstable. As a consequence, more evaluationsare necessary to guarantee convergence, even though fewer strategies areevaluated per cycle.The randomization parameter R is allowed to take values between 0 and
0.3 × |K′(t)|, where |K′(t)| is the number of candidate links. This, combinedwith the sorting scheme used for the links in K′(t), gives a slightly higherpriority to strategies including links with large values of δmax(j).Although most of the parameters were found to be adequate for variousnetwork sizes, some of them, such as Gu and R, may need to be adjustedfor very large networks, in order to avoid an excessive number of evaluations.Similarly, the number an properties of swap modes is directly related to theproblem characteristics, and should be adjusted appropriately.5.2.2.2 Performance evaluationThe algorithm performance was measured in terms of the number of strategiesevaluated before convergence, which represents the gains with respect to anaive approach under which all possible strategies of a given size need to beevaluated. Table 5.11 shows the results obtained on Network I for di�erentnumbers of deployed sensors. Given that the algorithm incorporates a randomelement, thirty runs were conducted for each case, in order to test the stabilityof the algorithm (the �rst row shows the average values across thirty runsconducted using di�erent random seeds). The results, which suggest a stablealgorithm performance for the selected values of R (Section 5.2.2.1), are veryimpressive for sensor deployment strategies of size 3 and larger. In most ofthese cases, the optimal value was found during the �rst 2 cycles (C ≤ 2).Furthermore, the number of evaluated strategies E as a percentage of thetotal number of existing combinations Emax is very small in the majority113



of the numerical tests. It ranges from an average of 23% the in 3 sensorcase, to only 3% for the 5 sensors case. For the 2 sensor case, the totalnumber of strategy evaluations at convergence is equal, or even larger, thanthe evaluations performed under an optimal naive approach. The later re�ectsthe fact that there is a minimum number of evaluations that the algorithmneeds to perform in order to solve any problem. Such number is conditionedby C, mode parameters f ηi and n(f ηi), and the criteria used to de�ne theneighborhood size. For large problems, the minimum required evaluationsare a very small fraction of the solution space, and they have no impact onthe algorithm performs. The solution space corresponding to the problem of�nding the optimal sensor deployment strategy of size 2 in Network I is small,and the minimum number of computations performed by the proposed Tabusearch procedure may exceed those involved in an optimal approach. Thisis not a concern, given that small problems can be easily solved using exactmethodologies.Figures 5.12 and 5.12 detail the convergence process as a function of thenumber of strategy evaluations for a representative model run in networks I andII respectively. In Figures 5.13 and 5.14 the same information is displayed, butthe number of strategy evaluations is expressed as a percentage the possiblenumber of strategies. In both sets of Figures, the error is given by equation5.36 Error =
Z∗ − Z(t)

Z∗
· 100 (5.36)The �rst two �gures suggest that the algorithm typically gets very close tothe optimal solution in a relatively small number of iterations. For strategiesinvolving a larger numbers of sensors, and for most strategies in the largernetwork, relatively long plateaus may be observed at low error values. Theseoccur when the algorithm has identi�ed most of the links in the optimalsolution, but an insu�cient number of intensi�cation moves prevents it from�nding the exact optimal solution. In order to improve convergence, the movedepth f is set to 1 when a plateau is detected, regardless of the prevalentmode. The adjusted move depth is maintained during a number of moves114



K = 2 K = 3 K = 4 K = 5

C Emax
E

Emax
C Emax

E
Emax

C Emax
E

Emax
C Emax

E
EmaxA 0 351 1.39 1 380 0.21 0 288 0.03 2 910 0.031 1 521 2.06 0 185 0.16 0 255 0.03 1 404 0.012 0 133 0.53 1 280 0.44 0 280 0.03 0 262 0.013 0 113 0.45 3 785 0.20 1 303 0.03 1 387 0.014 0 106 0.42 1 350 0.28 1 423 0.05 10 2984 0.095 0 106 0.42 2 496 0.19 0 257 0.03 11 3650 0.116 0 196 0.77 1 329 0.14 0 256 0.03 1 334 0.017 1 497 1.96 0 253 0.20 0 280 0.03 1 482 0.018 1 423 1.67 1 351 0.17 1 329 0.04 6 1870 0.069 0 154 0.61 1 300 0.23 0 231 0.03 0 262 0.0110 0 136 0.54 1 401 0.47 0 256 0.03 6 2062 0.0611 0 157 0.62 3 831 0.28 0 297 0.03 0 266 0.0112 1 399 1.58 1 492 0.12 0 233 0.03 1 434 0.0113 2 606 2.40 0 209 0.16 0 281 0.03 0 308 0.0114 2 863 3.41 1 281 0.32 1 305 0.03 3 1102 0.0315 1 466 1.84 2 564 0.36 0 329 0.04 0 242 0.0116 2 661 2.61 2 641 0.22 0 346 0.04 1 497 0.0117 0 318 1.26 1 397 0.23 0 257 0.03 1 362 0.0118 0 233 0.92 1 400 0.22 0 257 0.03 0 333 0.0119 0 207 0.82 1 396 0.13 0 225 0.03 1 405 0.0120 0 301 1.19 0 233 0.13 0 233 0.03 1 500 0.0121 0 346 1.37 0 228 0.29 1 423 0.05 0 327 0.0122 1 470 1.86 2 518 0.28 0 257 0.03 15 4606 0.1423 0 129 0.51 2 493 0.12 1 327 0.04 1 382 0.0124 0 207 0.82 0 209 0.14 0 273 0.03 3 1246 0.0425 0 204 0.81 0 252 0.17 0 280 0.03 3 1124 0.0326 2 808 3.19 1 305 0.14 0 255 0.03 1 411 0.0127 1 584 2.31 1 256 0.12 0 257 0.03 0 261 0.0128 2 617 2.44 0 209 0.23 0 351 0.04 0 238 0.0129 0 305 1.21 1 415 0.19 0 321 0.04 4 1298 0.0430 0 281 1.11 1 329 0.18 0 280 0.03 0 261 0.01Table 5.11: Algorithm convergence in Network 1 for di�erent random seeds115



Figure 5.11: Algorithm convergence in Network I

Figure 5.12: Algorithm convergence in Network II
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Figure 5.13: Algorithm convergence in Network I (Percent error)equivalent to one or two cycles, after which the algorithm is terminated unlessthe optimal solution improves. This approach e�ectively led to the optimalsolution in most analyzed cases.The tables displaying the algorithm performance as a function of thepercentage of total strategies evaluated suggest that in most cases thealgorithm attains a solution within 1% of the optimal value after a numberof evaluations equivalent to, at most, 10% of the possible strategies. Theperformance does not deteriorate with the network size, or in cases consideringlarger deployment strategies. However, as the number of required evaluationsbecomes larger, the e�ort involved in each of these computations becomesmore relevant. The state partitioning algorithm presented in previous Sectionsalleviates the computational burden to a certain extent, but for very largesensor deployment strategies, heuristic procedures may be necessary in orderto obtain solutions within a limited time frame.
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Figure 5.14: Algorithm convergence in Network II (Percent error)5.2.3 SummaryThis section introduced an adaptive memory Tabu search procedure for thesolution of the optimal sensor deployment problem under information. Theproposed algorithm considerable reduces the computational e�ort required to�nd near-optimal solutions, enabling the quick optimization of relatively largeproblems. The search procedure explores the solution space by moving froman existing solution to a new one within a prede�ned neighborhood. Movesare accomplished by swapping a speci�c number of elements between theexisting solution and the neighborhood. The number of exchanged elements(move depth) varies cyclically throughout the search process, which resultsin alternating intensi�cation and diversi�cation phases that e�ciently coverthe solution space. The variation pattern is designed to take into account theproblem characteristics, capturing the potential synergies behind the selectionof speci�c combinations of links.Identifying incoming links entails evaluating of all the candidate sets inthe neighborhood. Given the potentially large size of such neighborhood, arandomized reduced neighborhood which includes a speci�c percentage of the118



potential candidates is utilized. The procedure implemented to generate suchneighborhood accounts for a random component which avoids generatingalways the same subset of candidate solutions, but at the same time issystematic, preventing the duplication of candidate combinations. Thealgorithm terminates when a pre speci�ed number of swap length cycles hasbeen accomplished. Additional convergence criteria are utilized to re�ne thevalue of the solution near termination, increasing the chances of �nding theexact optimal value.The search process is guided using adaptive memory structures, or Tabulists. These lists store recency and frequency information, re�ecting how manytimes a particular link has been found to belong to a locally optimal solutionin the short and long term. They are used to foster diversi�cation, by avoidingthe repeated re-incorporation of links which neighborhoods have already beenexplored.Numerical tests conducted in two medium-size networks for several valuesof K, the number of deployed sensors, suggest a very satisfactory algorithmicperformance. Optimal solutions were achieved by evaluating in average only20% of the possible strategies in smaller cases (up to 103 candidate solutions),and only 3% of the candidate solutions for larger cases, with more thanone hundred thousand candidate strategies. The results suggest that thealgorithm is robust with respect to both, the network and the strategy size.However, when many sensors are considered, the methodology utilized toappraise each candidate solution plays a critical role, and heuristic approachesmay be necessary to complement the state partitioning technique introducedin the previous section.
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5.3 Implementation: Analyzing the impactsof sensor location on the performance ofadaptive system-optimum routing strategiesIn this section we implement the methodology described earlier to �nd theoptimal deployment strategy of di�erent numbers of sensors on two testnetworks, and discuss the results from various perspectives. In addition tothe problems solved during the numerical tests conducted earlier, additionalproblems were solved utilizing the heuristic approach. These include thedeployment of 5 and 6 sensors on Network II, and the deployment of 10sensors on a modi�ed version of network I with a smaller number of possiblestates per link (Table A.6).The results displayed in Table 5.16 illustrate the bene�cial impact ofdeploying an increasingly large number of sensors in Networks I and II. Forthese particular examples, the provision of information regarding the stateof only 6 links leads to reductions in the system expected cost of 3% and12%, respectively. The higher gains observed in Network II are likely to be aconsequence of its large size and better connectivity, which translates into theavailability of more alternative paths.The practical value of the observed improvements clearly depends on whatthe link costs represent. Furthermore, the results corresponding to di�erentnetworks and probability distributions are likely to vary widely in terms of theabsolute gain, which motivates the qualitative type of analysis conducted inthe remaining of this section. The proposed approach focuses on the propertiesof the solutions, which can be generalized and used to analyze the value of thenovel models for future practical implementations.Table 5.12 exhibits the marginal gain associated to the incorporation ofeach additional sensor, given by ∆G(i) = G(i)−G(i−1)
G(i−1)

. It is interesting to noticethat this value does not exhibit a linearly decreasing trend. This illustratesproblem properties already discussed in Section 4.4, which re�ects the non-linear nature of the impacts of information. While the incorporation of a120



Network I Network IIK ZK∗
G(%) ∆G(%) ZK∗

G(%) ∆G(%)0 152.5 - - 64.5 - -1 151.79 0.47 0.47 61.77 4.23 4.232 150.22 1.49 1.03 61.06 5.33 1.093 148.94 2.34 0.84 60.52 6.17 0.844 148.27 2.77 0.44 59.79 7.30 1.135 148.02 2.93 0.16 59.40 7.91 0.616 147.66 3.18 0.24 56.83 11.89 3.98Table 5.12: Impacts of information: Reductions in system expected costnew sensor generally leads to an improvement in the system expected cost,the utilization of the provided information may be limited by the lack ofmeasurements in complementary links. In other words, one may learn thatlink i exhibits a cost considerably lower than expected, but such informationhas no value if the costs on the remaining links on the path leading to iremain unknown. Eventually, the incorporation of enough additional sensorsallows monitoring the network in such way that the potential bene�ts of theinformation collected at each individual link are fully realized. Once this isachieved, the marginal value of incorporating a new sensor is likely to stabilize,and may become zero.Table 5.13 indicates the probabilities of optimally routed system assetsfacing expected costs above (O) and below (U) the expected cost under noinformation provision, ρ0. Notice that the reported value is not the probabilityof actually paying a cost higher or lower than ρ0, given that some link costrealizations remain unknown at the moment of making the correspondingrouting decisions. However, the approximate values presented here providesome intuition regarding the characteristics of the solutions produced by themodels. Even though in most of the cases the probabilities of facing expectedcosts lower than ρ0 seems to increase with the number of deployed sensors,this needs not to be the case. For example, the value of U for the 6 sensorscase in Network 2 is considerably lower than the corresponding value when121



Network I Network IIK O U O U0 0.54 0.46 0.57 0.432 0.64 0.36 0.82 0.183 0.61 0.39 0.79 0.214 0.60 0.40 0.83 0.175 0.60 0.40 0.88 0.126 0.62 0.38 0.55 0.45Table 5.13: Impacts of information: Probabilities of facing expected costsabove and below the LEConly 5 sensors are deployed. This re�ects the fact that the reduction in systemexpected cost is a result of monitoring paths which have a positive probabilityof exhibiting a lower cost than expected. There is an inherent tradeo� betweenthe magnitude of the possible gains, and the probability of attaining them. Themodel we propose is equally likely to select a path with high probabilities ofleading to a moderate gain, than to choose a route which has insigni�cantchances of providing exceptional savings. Clearly, for some applications itmay be relevant to avoid facing costs higher than a threshold value, and theobjective function should be reformulated appropriately.Figure 5.15displays the optimal location of, 1, 3 and 6 sensors on NetworkII. It also depicts all the paths which may be utilized during the correspondingasset routing under information. When one only sensor is available, theoptimal solution places it on a link in L0, in such way that assets may bere-routed into the second best path if L0 exhibits a higher cost than expected.As more sensors become available, other alternative paths are measured. It isinteresting to notice that when 6 sensors are deployed, none of them is placedalong L0, and all the resources are devoted to identifying paths exhibitinglower costs than ρ0.The observed deployment and routing patterns suggest that information is�rst utilized to overcome the e�ects of high costs realizations on L0. However,if enough resources and alternative paths are available, sensors are used tounveil path cost realization which may be considerably lower than ρ∗. The122



Figure 5.15: Optimal deployment of one, three and six sensors on Network II123



Figure 5.16: Optimal sensor deployment strategies and link utilization patternsresults also indicate that the deployment pattern depends on the cost variance(or standard deviation) on L0. On Network I, for which σ = 31, 5 (comparedto only 16.5 on Network 2), most of the strategies involve placing at least onesensor on L0. Figure 5.16 summarizes sensor deployment and path utilizationpatterns for Networks I and II, and strategy sizes ranging from 0 to 6.Based on the former observations, two naive deployment strategies basedon link variance were tested, and their results are presented in Table 5.14 and5.15. The �rst of these strategies deploys the available sensors on the linkswith the highest variance. The resulting system expected, denoted ρ∗(σ2
ALL),is considerably higher than the optimal values produced by our models (Theloss is given by L =

ρ∗(σ2
ALL)−Z∗

Z∗ ). The second strategy, which �rst deployssensors on the highest variance links in L0, leads to solutions ρ∗(σ2
L) closer tothe optimal values. This is most likely a consequence of measuring links in L0,which allows avoiding costs much higher than expected value if alternate pathswith lower expected costs are available. The observed behavior suggested that�blind� sensor deployment strategies, which do not consider the impacts of theprovided information, are less e�ective, and may have virtually no bene�ts forthe system. 124



Network I
σall σLK ρ∗ G% L% ρ∗ G% L%0 152.5 0.00 -100 152.5 0.00 -1001 152.5 0.00 -100 151.1 0.93 -37.42 151.8 0.45 -80.6 151.1 0.93 -60.03 150.7 1.18 -57.3 150.9 1.02 -63.04 150.7 1.19 -59.5 151.0 1.02 -65.15 150.7 1.19 -62.5 148.8 2.44 -23.3Table 5.14: Results for maximum variance-based deployment strategies

Network II
σall σLK ρ∗ G% L% ρ∗ G% L%0 64.5 0.00 -100 64.50 0.00 -1001 64.5 0.00 -100 61.39 4.82 -9.52 64.5 0.00 -100 61.39 4.82 -21.93 64.5 0.00 -100 61.39 4.82 -34.04 64.5 0.00 -100 61.39 4.82 -39.15 64.5 0.00 -100 60.89 5.68 -52.2Table 5.15: Results for maximum variance-based deployment strategies
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The results described in this section suggest that the models proposedin Chapter 4 can be used to improve the system performance and optimizethe collection and utilization of information. Even though the absolute gainsmay vary widely depending on the characteristics of a particular network,the numerical analyses conducted for this application show the advantagesof taking into account the utilization of information in the design of thecorresponding data collection strategies. Naive approaches are suboptimal,and may result in resource investments which do not have any bene�cial impacton the system. The analysis of optimal information collection patterns and thecorresponding asset routing strategies also provides insights into the impacts ofinformation in the utilization of a stochastic network. The models identify thenetwork links which are critical in the connection of an origin-destination pair,which may be used as the basis to analyze the network performance under morecomplex behavioral assumptions. Furthermore, given that the availability ofmore information eventually leads to the utilization of a larger set of paths,the models can be used to study the design of information provision patternsfostering a more e�cient network utilization.5.4 SummaryThis chapter presents, tests, and implements a methodology to �nd the sensordeployment pattern which optimizes the performance of adaptive systemoptimum routing strategies on a network with random arc costs. The modelssolved in this chapter identify sensor deployment strategies which accountfor the posterior utilization of the collected information. The correspondingdecision variables are the links to be monitored, which de�ne the set ofperceived network states based on which adaptive routing decisions are made,and the routing strategies. In virtue of the integer nature of these variables,which represent a model constraint that cannot be relaxed (Section 4.2), theproblem is combinatorial, and its solution requires the complete enumerationof all feasible sensor deployment strategies. The evaluation of each of thesestrategies, is also computationally challenging, involving in principle the126



computation of a shortest path for each perceived network state. The numberof such states may be very large, depending on the available sensors and thecharacteristics of the link cost probability distributions.The solution method is based on the fact that, given the assumptionspresented in Section 4.2, the models may be solved by enumerating all feasiblesensor/probe deployment strategies, and computing the correspondingexpected costs under information. Such approach poses two main challenges:the large number of perceived states which need to be considered duringthe evaluation of a feasible deployment strategy, and the existence of acombinatorial number of strategies. The proposed solution technique dealswith the �rst issue using state-partitioning principles, while the combinatorialproblem is addressed heuristically, by implementing an adaptive memoryTabu search procedure.The state-space partitioning algorithm, introduced in Section 5.1, isguided by rules developed speci�cally for the problems under study. Theseare used to reduce the number of shortest path computations required to�nd an optimal solution, mostly by appropriately selecting threshold valuesfor the corresponding cost. Numerical experiments suggest that, in wellconnected networks, the algorithm may reduce the computational e�ort by upto 95%. The adaptive memory Tabu search procedure, presented in Section5.2 explores the combinatorial solution space guided by short and long termmemory structures. In the examples studied in Section 5.2.2 it found theoptimal solution by evaluating between 3% and 20% of all the candidatesolutions.The performance of the proposed methodology is very satisfactory, and theresults suggest that the e�ectiveness of the heuristic approach is not a�ectedby the network size or the number of deployed sensors. However, the exactapproach chosen to evaluate each feasible strategy may not be appropriatein cases involving many sensors, or in networks where the probabilitydistribution functions exhibit a large number of states. A possible way ofovercoming this problem may be the design of more complex partitioningrules, which may further reduce the number of shortest path computations127



per strategy evaluation. Additionally, shortest path re-optimization methodsmay be used to reduce the computational burden introduced by the largenumber of necessary evaluations. Appendix B provides a summary of suchmethodologies, which utilize the information provided by the solution of ashortest path problem to reduce the e�ort involved in re-solving the problemgiven some changes on the network costs.The integrated methodology was implemented to the analysis of twomedium sized networks, introduced in Alexopoulos [1997]. The results suggestthat optimized sensor deployment strategies lead to improved adaptive systemoptimum decisions, leading to expected cost reductions ranging between 2%and 4%. The practical implication of the observed gains depends on theconsidered application. Furthermore, the magnitude of the results is likelyto vary widely depending on the characteristics of the system under study.Nevertheless, the observed trends in the results are promising, and theproposed approach is up to 50% more e�cient than methodologies which donot explicitly model the usage of information.The analysis of the optimal information collection patterns and thecorresponding asset routing strategies conducted in Section 5.3 providesinteresting insights into the impacts of information on network utilization.The models identify the network links and paths which are critical in theconnection of the considered origin-destination pair, which may be used asthe basis to analyze the network performance under more complex behavioralassumptions. Furthermore, given that the availability of more informationeventually leads to the utilization of a larger set of paths, the models cancontribute to the study of information provision patterns allowing moree�cient network utilization. The variations analyzed in this work involve asingle origin destination pairs, a priori routing strategies, �ow-independentlink costs, and time invariant probability distributions. Further work in thearea may relax these assumptions, in the search for a more �exible modelwhich can be adapted to solve a variety of real world problems.
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Chapter 6Information Based SystemOptimum AssignmentThe widespread adoption of wireless location technologies provides new meansto automatically collect and distribute real time information from mobileassets, which measure the system state while they travel through the network.In transportation networks, tra�c data collected from, and distributed to,moving vehicles has an enormous potential to improve the system performanceby alleviating the negative impacts of uncertainty.The availability of advanced technologies encourages the design ofinnovative approaches to traditional transportation problems, capable ofexploiting the new sources of information. This chapter introduces a novelsystem-optimum network assignment paradigm which models the utilizationof real time data to adjust system-optimum routing decisions, and takesadvantage of the capability of assets to collect information as they travelthrough the network.Vehicles traveling through a stochastic transportation network experiencethe realized state of each link they traverse, and therefore generate dataabout the network state. Thanks to the widespread adoption of GeographicInformation Systems and other location-based technologies, the experiencedcost data can be automatically collected, and eventually utilized for multiplepurposes such as travel time prediction and network monitoring. In this129



context, the vehicles become probes, which sample the conditions throughoutthe network, with the potential to provide better coverage at a lower cost thattraditional �xed tra�c sensors (Cayford and Yim [2006.], W.L. et al. [2005]).The Information-Based System Optimum (IBSO) assignment paradigmpresented in this chapter shares the �cooperative� routing concept underlyingtraditional System Optimum (SO) assignment models, in virtue of whichsome assets may face higher costs than others in the search for an optimizedsystem utilization. In the presence of uncertainty and information provision,one may consider that the impacts of an asset on the system cost aretwo-folded, including not only the cost the pay to traverse the network,but the information they collect along the way. As a result, some assetsmay be assigned to a higher-cost path than others in order to collectinformation which bene�ts the entire system. Such approach has a numberof potential applications, including the cooperative deployment of emergencyvehicles, military assets, and commercial vehicles. Furthermore, analyzingthe properties and behavior of models incorporating the new paradigm maycontribute to a better understanding of the impacts of information on theperformance of transportation systems.The approach proposed in this chapter is fundamentally new. Theutilization of data provided by probe vehicles has been studied in theliterature, and is discussed in Section 6.1. However, existing methodologiesare centered on exogenously generated data, and they do not considerthe possibility of selecting the routes along which information is collected.Furthermore, most of the existing models are not capable of measuring thee�ect of speci�c information collection strategies on the bene�ts derived fromthe corresponding data.The mathematical model proposed in this chapter (Sections 6.2 and6.3) captures the impact of di�erent information collection patterns on theperformance of adaptive system optimum routing strategies. By allowingthe utilization of some of the system assets as probes, it implicitly capturesthe trade-o�s between the cost and value of information, which is of theutmost interest for practical purposes. It also presents other interesting130



properties, which are discussed in Section 6.4. The model is implementedto the analyses of several example problems (Section 6.6), and the resultanalyses suggests that the proposed approach may take advantage of newdata sources to improve the system performance. The methodology used tosolve the problem is an adaptation of the techniques presented in Chapter5. The numerical experiments conducted using this approach also illustratesthe problem behavior and properties, providing insightful information forthe future design of practical application models and more e�cient solutionprocedures.6.1 Literature Review: Using probe vehicledata in transportation networksVehicles traveling through a stochastic transportation network experience therealized state of each link they traverse, and therefore collect informationabout the network state. Thanks to the widespread adoption of GeographicInformation Systems and other location-based technologies, the experiencedcost data can be automatically collected, and eventually utilized for multiplepurposes such as travel time prediction and network monitoring. In thiscontext, the vehicles become probes, which sample the conditions throughoutthe network, with the potential to provide better coverage at a lower cost thattraditional �xed tra�c sensors (Cayford and Yim [2006.], W.L. et al. [2005]).Kim and Ra.Cayford [2000] study the utilization of cell phone and GPS data fortra�c monitoring, and concluding that systems providing a location accuracyof 20 meters or less are adequate for such purpose. The data available in theSan Francisco Bay Area at the time this e�ort was conducted was enough tocovered 99% of the major freeways and arterials.A number of studies have been conducted in order to analyze thepotential utilization of wireless location information for system monitoringpurposes. Most of the methodologies consider that probe vehicles provide arepresentative sample of the tra�c conditions experienced on the network,131



and apply statistical techniques to compute the average value of the conditionof interest, typically speed. Performance is generally assessed in terms ofsystem coverage and estimation accuracy (Fontaine and Smith [2005]), andmodel parameters include sample size and frequency of the sampling. W.L.et al. [2005] study the sample size necessary to produce good estimates oftravel time and congestion accounting for the practical limitations imposedby wireless networks and various transportation network parameters. Theyindicate the need to adjust sample size and frequency based on tra�cconditions and vehicle characteristics.Fontaine and Smith [2005] analyze the e�ect of network characteristicsand sampling methodologies on the quality of the speed estimations generatedusing wireless location technologies. They implement a simulation-basedapproach, and their �ndings highlight the importance of the map-matchingprocedure used to identify the actual location of a vehicle in the network.The authors also remark the need for estimation models able to adapt to thenetwork conditions by adapting the sample size, as well as the temporal andspatial characteristics of the sampling procedure. Kwon et al. [2007] comparethe performance of probe-based data and loop detectors information in thegeneration of congestion information, and develop a methodology whichproduces reliable estimations of the conditions in urban freeways when 4 to6 days of good probe data is available. Their �ndings suggest that this is ase�cient as estimating congestion based on loop detectors spaced half a mile.Commercial and public transportation vehicles are typically equippedwith GIS devices (Automatic Vehicle Locators-AVL), and several authors(e.g. Chakroborty and Kikuchi [2004], Cathey and Dailey [2002], Dailey andCathey [2006], Tantiyanugulchai and Bertini [2003]) analyze the utilizationof the information they provide for travel time prediction. In this approach,a fundamental issue is the relationship between the probe speed and theaverage system speed. Chakroborty and Kikuchi [2004] conduct studiescomparing bus travel time to the travel time experienced by passenger cars.The corresponding �ndings suggest that the di�erence between the twomagnitudes is relatively stable, and therefore mathematical expressions can132



be developed to derive the average speed of passenger cars based on busprobe data. Tantiyanugulchai and Bertini [2003] study the same problem inPortland, Oregon, �nding that the average speed of a regular vehicle is 1.3that of the probe bus speed. Dailey and Cathey [2006] analyzes the utilizationof buses in the Seattle area to monitor tra�c conditions and improve tra�cmanagement strategies, developing a methodology which estimates congestionand travel speeds with an accuracy comparable to that obtained from staticsensors.Moore II et al. [2001] study the utilization of patrol cars in California toproduce travel time estimates. Their �ndings suggest that, in general, thespeed of patrol cars is not a good approximation of the prevalent speeds onthe freeway sections they traverse, and that the covariance of both magnitudesis somewhat erratic, complicating the utilization of the corresponding data.An upcoming approach to employ passenger cars as probes is based oncell phone location data (Cayford and Johnson [2003], Cayford and Yim[2006.], Bar-Gera [2007], Foo et al. [2006], Jin et al. [2007]). Cayford and Yim[2006.] makes use of the technology developed to track emergency cell phonecalls in order to monitor the transportation network state in Tampa, Florida,generating average speed data for 98% of all the major freeways in the areaunder study with relatively low estimation errors (5-10 mph). Bar-Gera [2007]describes a similar application in Israel, concluding that the predictions basedon cell phone data had a comparable accuracy to those based on dual loopdetector information. From a di�erent perspective, Davies et al. [2006] explorethe utilization of GIS data from passenger for updating and correcting roadmaps, �nding that the methodology is promising and provides reasonablyaccurate results for roads with relatively dense GPS readings.The review conducted in this section suggests that there are multiplesources of online transportation data, and work is being conducted towardsthe e�cient utilization of the corresponding information for system monitoringpurposes. However, there's virtually no research analyzing the utilization ofprobe-vehicle data for route guidance purposes. Furthermore, the e�ects ofthe speci�c routes followed by the probes on the quality and usefulness of133



the corresponding information have not been explored. The later is of greatinterest from two perspectives: �rstly, the actual route followed by some of theprobes, such as buses and commercial vehicles, may be optimized in order togenerate the largest possible system bene�ts. Additionally, understanding theimpacts of di�erent information collection patterns allows identifying criticaldata sources, eventually reducing the amount of information that needs to beprocessed for speci�c purposes.6.2 The Information-Based System Optimumassignment paradigmThis section conceptually describes the Information Based System Optimum(IBSO) paradigm introduced in this chapter, which shares some commonelements with the traditional system-optimum assignment (SO) problem.The later �nds the optimal �ow patterns satisfying given origin-destination(OD) demands on a network where link costs are a convex function of thecorresponding �ow. Optimality is de�ned as the minimization of the totalsystem cost, which is equal to the summation of the cost paid by eachindividual vehicle. She� [1985] provides a rigorous mathematical formulationof this problem. One of the most notable characteristics of an SO assignmentstrategy is that the selection of optimal routes takes into account both, thecost faced by an asset when utilizing a path, and the impact that its presenceon the path the has on the cost paid by the remaining assets which utilize it .This property, re�ected in the problem's optimality conditions She� [1985],is the one that guarantees that an optimized system-level performance isachieved, at the cost of allowing some assets to face higher costs than others.Moreover, the path �ow patterns in an optimal SO solution are such that itwould be possible for some vehicles to switch to a di�erent path and incur in alesser cost. However, that �sel�sh� behavior would have a negative impact onthe assets already assigned into the alternative path, and worsen the systemperformance. 134



The Information Based System Optimum (IBSO) assignment shares SO's�unsel�sh� routing perspective. In the presence of uncertainty and informationprovision, one may consider that the impacts of an asset on the system costare two-folded, including not only the cost the pay to traverse the network,but the information they collect along the way. As a result, some assets maybe assigned to a higher-cost path than others in order to collect informationwhich bene�ts the entire system.Within a stochastic context, the cost on links and paths is expressed interms of expectations. In the absence of additional information (and assumingthat link costs are �ow-independent), the shortest expected cost path is areasonable routing alternative which minimizes the system expected cost.However, such path is not necessary the least expensive under every possiblenetwork realization and the system may bene�t from learning the actual coston one or more paths. The basic concept underlying the IBSO assignmentparadigm is that a subset of system assets may be regarded as probes whichcan measure and communicate path cost realizations. Probes may be assignedto routes exhibiting a higher expected cost, in an attempt to �nd lower costrealizations than may bene�t the entire system. However, the assets utilizedas probes are part of the system, and therefore the additional cost paid tocollect information should be compensated by the bene�ts experienced bythe remaining assets. The change in system-expected cost introduced by theutilization of an additional asset as a probe re�ects the trade-o�s between thevalue of information and the cost paid to acquire it.From a modeling perspective, the collection of information is modeled asa cost change on the links traversed by probes. The bene�ts of informationare accrued by implementing an adaptive assignment scheme, which allowsmodifying optimal routing strategies based on the cost realizations measuredby the probes.The concept of IBSO assignment may lead to the formulation of amultitude of problems, depending on the assumptions regarding informationcollection and utilization patterns, and the characteristics of the consideredsystem (Section 2). The instance analyzed in this chapter adopts a Serial and135



Sequential (SS) probe deployment approach, which implies that all the assetsutilized as probes enter the system together, and the routing decision for theregular assets is not made until the corresponding information is retrieved.Notice that minimizing the system expected cost is not the only desirableobjective function. For applications such that cost reliability is highly valued,formulations minimizing the variability of the experienced cost with respectto a �xed target, or incorporating a maximum admissible cost under anyscenario may be more appropriate, and will be the subject of further research.6.3 Problem formulationThis section discusses the mathematical formulation of the Information-BasedSystem-Optimum (IBSO) assignment problem under a Serial and Sequential(SS) probe deployment strategy. This problem involves �nding the optimalroutes to be followed by the system assets assuming that a subset of these areutilized as probes, which enter the network �rst and monitor the conditionson the links they traverse. Non-probe assets, also referred to as regular assets,are optimally routed based on the information retrieved by the probes oncethe latter reach their destination. The process is two-tiered, and all the probesare deployed simultaneously into the network, in virtue of which they can nottake advantage of the information collected by their peers.The problem formulated in this section lends itself to be modeled as abi-level stochastic program which is able to capture the underlying sequentialdecision making process. The proposed model follows a path-based approach,in virtue of which the objective function and corresponding marginal costs areeasier to interpret and analyze. The later is fundamental in order to developa better understanding of the problem properties and behavior. The notationutilized in this chapter is slightly di�erent to the one introduced in Chapter5, and it is described below. Let G(N,M) represent a network with a set of
N nodes i ∈ N and the corresponding set of M arcs ij ∈ M, characterizedby an in�nite capacity and random weights c̃ij. Assume that the latter areindependent of the corresponding link �ows, and that they follow a discrete136



probability distribution consisting of a �nite number of states sij ∈ Sij, withprobability of occurrence psij
s.t.

∑
s∈Sij

ps = 1 ∀ ij ∈ A. For notationalsimplicity, the subscript in sijwill be suppressed whenever it can be inferredfrom the context. Additionally, a single index may be used to denote a linkwhen its origin and destination are not relevant.Let r ≥ |Skl| ∀ kl ∈ A represent the maximum number of states observedacross all links. De�ne csij as the cost realization corresponding to state s ∈ Sij ,and denote µij =
∑

s ps · csij the expected cost of a link ij ∈ A. Network statesare a result of the corresponding link states, and are represented using m −dimensional vectors, w ∈ W. Let swij be the state on link ij under state w, and
cwij = c

swij
ij the corresponding link cost. Under the assumption of independentand uncorrelated link cost functions, the probability of a network state can becomputed as pw =

∏
ij∈A pswij

. Notice that under the previous assumption, thecardinality of W is|W| =
∏

ij∈A |Sij|, and it grows exponentially with M .Denote K the total number of assets to be utilized as probes, and Ps−tthe set of all paths P h connecting origin-destination pair s− t, each of whichcan be considered as a subset of M (P h ⊆ A). The cardinality of P (thesub index will be omitted given the assumption of a unique OD pair) dependson the network topology, and grows as an exponential function of M in acomplete network. Let κ̃P h =
∑

ij∈P hi c̃ij be the cost of a path, computed asthe summation of the costs of its links, and denote κw
P h =

∑
ij∈P c

w
ij the pathcost realization corresponding to network state w. The expected cost of a pathcan be computed as ψP j =

∑
ij∈h µij. Binary decision variables fP h and gP hare used to represent the utilization of path P h by probe vehicles and regularassets, respectively. There is a direct correspondence between these variablesand the link �ow variables introduced in Chapter 5, given by equations 6.1and 6.2, where δh

ij are link-path incidence parameters, equal to one if link ij isin path P h and to zero otherwise.
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xij =
∑

P h∈H

fP h · δP h

ij ∀ ij ∈ A (6.1)
yij =

∑

P h∈H

gP h · δP h

ij ∀ ij ∈ A (6.2)Equations 6.3 to 6.9 present the bi-level formulation for a problem instanceutilizing one asset as probe in a system with T regular assets.
minE[z(f, c̃)] (6.3)
∑

P h∈H

fP h = 1 (6.4)
fP h ∈ {0, 1} (6.5)

z(x, c̃) = min
∑

P h∈H

fP h · κ̃P h (6.6)
+
∑

P h∈H

fP h · T · gP h ·
(
∑

ij∈A

δP h

ij · (c̃ij ·
∑

P i∈H

δP i

ij · fP i + µij · (1 −
∑

P i∈H

δP i

ij · fP i))

)(6.7)
∑

P h∈H

gP h = 1 (6.8)
gP h ∈ {0, 1} (6.9)The second-stage problem is solved for each possible network state w ∈ Wand, under the assumption of uncapacitated links and �ow-independent linkcosts, it can be reduced to a shortest path problem. For �xed values of fP hthe�rst term of the lower-level objective function is constant, and the same appliesto the expression c̃ij ·∑P i∈H δ

P i

ij ·fP i +µij · (1−
∑

P i∈H δ
P i

ij ·fP i), which de�nesthe cost of link conditional on the available information c̃ij|I . The latterrepresents the cost of a link given the information I obtained by the probeasset. The conditional cost of link ij is equal to the corresponding expectedcost, unless ij belongs to any of the paths monitored by the probe asset. The138



e�ect of information is therefore modeled by replacing the estimator of anuncertain arc cost (µij) by the cost realization learnt by the probe vehicles.The conditional cost of a path is de�ned by κP h|I =
∑

ij∈A δ
P h

ij · c̃ij |I .The previous formulation may be reduced to a single level problem byexpanding the expected cost expression. The new objective function isprovided in equation 6.10, and introduces and additional index on the �owvariables corresponding to the non-equipped assets, in order to keep track ofnetwork state to which they correspond. The one stage problem is subject toequations 6.4, 6.5 ,6.9, and ∑P h∈H g
w
P h = 1, gw

P h ∈ {0, 1, } ∀P h ∈ H, w ∈ W.
min

∑

w∈W

pw ·
∑

P h∈H

{fP h · κw
P h + T · gw

P h · κw
P h|I} (6.10)The objective function presented in equation 6.10 may be transformed byalgebraic manipulations into Equation 6.11, which provides a more compactexpression of the problem. In such equation, ϕP h is the expected cost paid bythe probe, and λP h =

∑
w∈W pw ·∑P h∈H T · gw

P h · κw
P h|I is the expected costfaced by the regular assets when information is collected on path P h.

ZK = ϕPh
+ T · λP h (6.11)Notice that this formulation is valid under the assumption that K = 1,in virtue of which ∑P h∈H δ

P h

ij ∈ {0, 1}. In order to handle the general case
K ≥ 1, a valid alternative is to to replace ∑h δ

h
ij · fh with variables dij suchthat dij ≤

∑
h δ

h
ij · fh ∀ ij ∈ A, dij > fh · δh

ij ∀ h ∈ H , and dij ∈ {0, 1}.Another option is to create an aggregate decision variable Kj(K) whichrepresents a combination of K paths in P. Such combinations represent afeasible deployment strategies for the assets utilized as probes, and belong tothe set K which contains all the possible combinations of K elements out of
|P|. Let vKj be a new �rst level decision variable, representing the assignmentof assets used as probes to the paths combined by Kj . Also, de�ne the link-strategy incidence parameter φq

ij to be equal to one if link ij belongs to anyof the paths included in Kj , and to zero otherwise. The formulation obtained139



replacing fP h and δP h

ij in equation 6.6 by vKj and φq
ij , respectively, is valid forany value of K. Equation 6.11 may be reformulated as ZK =

∑
P h∈Kj

ϕP h

+

T · λKj
, where the �rst term represents the costs paid by all probes, and thesecond term is the expected cost faced by the regular assets given all availableinformation.The former approach clearly involves a very large number of variables,proportional not only to the number of states, but to the number of paths andstrategies.Similarly to what was observed in 4.2, the proposed mathematicalformulations are insightful, but unlikely to be used directly for the solutionprocedure.6.3.1 The marginal value of informationUsing �nite di�erences, one may compute the marginal impact on the systemcost of utilizing a new asset as a probe assigned to path P 1. The correspondingvalue may be considered as the marginal bene�t of collecting information frompath P 1, and it is given by equation 6.14, derived from Equation 6.10 aspresented in Equations 6.12 and 6.13. Given that gw

P h is a function of fP h,equation 6.10 may be regarded as the product of two functions of the samevariable, and the product rule is applied.
∆z(fP j , gw

P j (fP j )

∆fP 1

=
∆z(fP h , gw

P j (fP h)

∆fP 1

· gw
P j (fP j ) +

∑

P j∈P

∆z(fP j , gw

P j (fP h)

∆gw

P j

· z · ∆gw

P j (fP j )

∆fP 1(6.12)

140



∆z(fP h , gw
P h(fP h)

∆fP 1
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∆fP 1
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∑

w∈W

pw · κw
P 1 +

∑

w∈W

pw ·
∑

ij∈M

δP 1

ij ·
(
µij + T ·

∑

P i∈P

gw
P j · δP j

ij · (cwij − µij)

)
+

−
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w∈W

pw·
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P j

∆fP 1

·
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(
cwij ·
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P k∈P
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ij f
0
P k − µij(1 −

∑

P k∈P

δP k

ij f
0
P k)

))(6.14)In Equation 6.14, ∆gw

Pj

∆f
P1

represents the adjustments to the routing strategyof non-probe assets performed based on the availability of information frompath P 1. It is equal to 0 for all values of k when monitoring of P 1 does notlead to any change in the routing decision under w. Otherwise, it is equal to 1for the new optimal path Lw, and to -1 for Lw−, the path which was optimalbefore collecting information from path P 1. Equation 6.14 may be simpli�edby considering that gw
P j = 1 only for the optimal path under w (Lw). Also,in order to ease the interpretation of the marginal cost expression, assumethat a single asset, which was previously not part of the system, is utilizedas a probe. The later implies that that f 0

P k = 0 ∀ k ∈ P. For each state w,the corresponding term in Equation 6.14 may be reduced to the expressiondisplayed in Equation 6.15, where Λ = 1 if ∆gw

Lw

∆f
P1

= 1, and Λ = 0 otherwise.141



∑

ij∈M

δP 1

ij ·
(
cwij + δL

w

ij · T ·
(

(cwij − µij) +
∆gw

Lw

∆fP 1

· µij

)
− δL

w−

ij · T · µij

)

+
∑

ij∈M,ij /∈P 1

Λ ·
((
δL

w

ij − δL
w−

ij

)
· µij

) (6.15)The �rst summation in Equation 6.15 represents the change in thesystem cost directly related to the utilization of path P 1 (local-levelinformation impacts). The second term measures the network-level impactof the information collected along P 1, which is a result of the adjustmentsintroduced into the routing decisions concerning regular assets.The local-level marginal costs are determined by large by the costexperienced on links which belong to Lw ∩ P 1, which are such that
δL

w

ij · δP 1

ij = 1. If none of the links on P 1 belongs to Lw, the local-levelmarginal impact is simply the cost faced by the probe.When Lw ∩ P 1 6= ∅, the local-level marginal impact may take three typesof values on each link in P 1:
• Measuring Impact (cwij + T · (cwij − µij)

): This value is achieved whenlink ij was part of the optimal solution under w before deploying a probeon P 1, and it remains on the shortest path given the new information(
∆gw

Lw

∆f
P1

= 0, δL
w

ij = 0, δL
w−

ij = 0
). It re�ects the di�erence between theexpected cost and the observed realization at the corresponding link,which is a gain (or loss) experienced by all the regular assets in thesystem.

• Incorporation Impact (
cwij + T · cwij

): This impact re�ects thecontribution to the marginal cost of links which were not partof the optimal route under state w before P 1 was monitored(
∆gw

Lw

∆f
P1

= 1, δL
w

ij = 1, δL
w−

ij = 0
). It re�ects the cost faced by allthe assets utilizing the link.

• Removal Impact (cij − T · µij): This impact is a measure of the changein the system cost resulting from removing links in E ∩ P 1 from142



the optimal solution under w given the information collected on P 1
(

∆gw

Lw

∆f
P1

= 1, δL
w

ij = 0, δL
w−

ij = 1
). It is actually a re�ection of thechange in the routing strategy brought about by the newly availableinformation.Notice that Equation 6.15 may have a positive value, and therefore theutilization of an additional asset as a probe may increase the system expectedcost. An example of this a a case such that P 1 is not utilized under anyperceived state w, and the corresponding information does not lead to changesin the routing strategies of regular assets (∆gw

Lw

∆f
P1

= 0 ∀w ∈ W

), which leadsto a marginal cost equal to ϕ =
∑

ij∈P1 µij , the expected cost faced by theprobe. Similar results are obtained if we derive the marginal costs assumingthat the asset utilized as a probe was formerly a regular asset. Under suchcase, the second term is multiplied by T − 1, and a third term, equal to −ρ0is added to Equation 6.15. Under such setting, the marginal cost may still bepositive, with a value of ϕ − ρ0 = ∆ϕ, which represents the additional costfaced by the probe with respect to being routed on the default shortest path.The marginal cost formulations presented in this section are useful tounderstand how information a�ects the system performance, and contribute toa better understanding of the problem properties. Notice that the de�nitionsintroduced above suggest that, in order for information to be valuable for thesystem, it must leads to changes into the routing strategies of regular assets.6.4 Problem propertiesThe problem properties present some similarities to those observed in Section4.4, given that the utilization of assets as probes ultimately translates into theavailability of information form a subset of links. In virtue of this, the �rstand third properties enunciated in Section 4.4 are valid for the subset of links
ij ∈ K∗. The following properties are speci�c to the collection of informationalong paths.

• Property 1: The marginal bene�t obtained from utilizing an additional143



asset as a probe routed on path P hmay be negative. This was proved inSection 6.3.1.
• De�nition 1: A strategy Kj consisting of K paths i ∈ Kj is consideredto be e�cient if there exists a �nite value of T = T

Kj
v such that ZKj =

∑
i∈Kj

ϕi +λKj
·TKj

v ≤ S, where S = ρ0 · (T +K) is the system expectedcost under a traditional SO assignment given the problem assumptions.If λj < ρ0, TKj
v has a �nite value given by equation 6.16. Such valuerepresents the minimum number of non-probe assets which justi�es theadditional expected cost faced by probes when these are assigned to thepaths in Ki.

TKj
v ≥

K · (ρ0 −∑i∈Kj
ϕi)

(ρ0 − λKj
)

(6.16)
• Property 2: Let K

K be the set of all e�cient strategies of size K. Theoptimal strategy when T → ∞ is KE ∈ K
K : λKE

≤ λKj
∀ Kj ∈ K

K ,the strategy exhibiting the lowest value of λKj
.Proof: We show that for every pair-wise comparison of e�cient strategiesthe one with the lowest value of λKj

leads to the minimum system expectedcost as T → ∞. Let a and b be a pair of strategies such that λa ≤ λb.If ∑i∈Ka
ϕi ≤ ∑

i∈Kb
ϕi, it is clear that a is optimal regardless of the valueof T . Otherwise, equation 6.17 provides the range of values of T such that

ZKb ≤ ZKa . Notice that this equation bounds T from above, and thereforeand therefore a is optimal as T → ∞.
T ≤

∑
i∈Ka

ϕi −
∑

i∈Kb
ϕi

λb − λa
(6.17)Corollary: For every network and strategy size, there exists a value Tcritsuch that the optimal solution to the IBSO assignment problem of K probes,

K∗, is equal to KE . Notice that ∑i∈Kj
ϕi ≥

∑
i∈KE

ϕi ∀ Kj ∈ K, Tcrit = TKE
v .In the general case, Tcrit ≥ TKE

v , and it must satisfy equation 6.18 for everye�cient strategy Kj. The former implies that KE is not necessarily optimalfor every value of T > TKE

v . 144



Tcrit ≥
∑

i∈KE
ϕi −

∑
i∈Kj

ϕi

λKj
− λE

∀ Kj ∈ K (6.18)
• Property 3: Let ∆ZK∗

= S − ZK∗ denote the bene�ts of informationcorresponding to the optimal IBSO assignment utilizing K probes. Themarginal bene�ts of information corresponding to a unit increase in Tgrow at a constant rate equal to ρ0 − λ∗, given by equation 6.19.
∆(∆ZK∗

)

∆T
=

∆ (ρ0(K + T ) − (
∑

i ϕi + λ∗ · T ))

∆T
(6.19)

• Property 4: Let ∆ZK∗
% = S−ZK∗

S
denote the bene�ts of informationas a fraction of the total system expected cost resulting from the IBSOassignment of K probes. The marginal percent bene�ts of informationcorresponding to a unit increase in T grow at a diminishing rate given byequation 6.21, obtained from equation 6.20 applying the product rule.Notice that the �rst term in the numerator of equation 6.21 is greateror equal than K, given that ϕi ≥ ρ0 ∀ i. The second term is at most aslarge as K, because K∗ is e�cient, and therefore λ∗ ≤ ρ0.

∆(∆ZK∗
%)

∆T
=

∆ ((ρ0(K + T ) − (
∑

i ϕi + λ∗ · T )) · ρ0(K + T )−1)

∆T
(6.20)

∆(∆ZK∗
%)

∆T
=

∑
i ϕi

ρ0 −K · λ∗

ρ0

(T +K)2 (6.21)
• Property 5: A path PN such that cmin(PN) > cmax(P

j) for some P j ∈
P is not utilized by regular assets or probes under an IBSO assignmentparadigm. In this de�nition, cmin(P j) is the minimum possible cost onpath P j, attained when the cost realizations on all the correspondinglinks are equal to the lowest value in their probability distribution.Similarly, cmax(P

j) denotes the maximum cost which may be observedon path P j. 145



Proof: In order to prove that PN is never utilized by non-probe assets itis enough to consider that regular assets are optimally routed under everyperceived state. Given the problem assumptions, the later means that theyare assigned to the shortest path under information, which satis�es ρx̃ ≤
cs(x̃)(P

j) ∀ P j ∈ P, a condition that PN would never satisfy by de�nition.To show that assets utilized as probes are never optimally routed on PN ,notice that there must exist at least one sub path Fk−l ⊂ PN
s−t : cmin(Fk−l) >

cmax(J
j
k−l) ∀ J i ∈ Pk−l. Collecting information along such sub-path wouldnever lead to its utilization by the regular assets, based on the same reasoningwe used to prove the �rst part of this property. Furthermore, E[c(Fk−l)] >

E[c(J i
k−l)] ∀ J i ∈ Pk−l, which means that the sub path is not considered forthe routing of regular assets in the absence of information. The combination ofthe last two facts implies that monitoring Fk−l does not introduce changes inthe routes followed by regular assets under any circumstance, and therefore hasno value for the system (Section 6.3.1). Any path PA = P J −{Fk−l}+ {Jk−l}provides at least as much information as PN at a lower cost, and is thereforepreferred in an optimal solution.6.5 Solution approachThe solution of the IBSO assignment problem under a SS probe deploymentstrategy involving K probes entails �nding the K-dimensional set of paths

Kj ∈ K which minimizes the system expected cost under information ZKj =
∑

i∈Kj
ϕi + λj · T . Each set Kj represent a feasible probe deployment strategyunder which probes i face expected costs given by ϕi. The cost realizationsat all links visited by probes de�ne a set of perceived network states, basedon which the adaptive routing decisions for the remaining T system assetsare made. The set of paths to be followed by the regular assets under everyperceived state, along with the corresponding probabilities, de�nes the optimalhyperpath H, which has an expected cost of λKi

. The solution to an IBSOassignment problem is given by K∗ and the corresponding hyperpath H∗.For every strategy one can identify the subset of links i ∈ I which are146



visited by at least one probe. De�ne I = |I| as the number of links fromwhich information is collected. The set of perceived network states understrategy Kj, XKj
consists of all I-tuples x̃ = (s1(x̃), s2(x̃), ..., sI(x̃)), in which

sk(x̃) indicates the link state experienced at link k under x̃. The cardinalityof XKj
is X =

∏
k∈Kj

Sk, and the probabilities of its elements are given by
r(x̃) =

∏
k∈Kj

pk(x̃). The system cost faced by the non-probe system assetsunder any perceived state is ρx̃, the cost of the corresponding shortest pathgiven the available information. In virtue of this λj =
∑

x̃∈XKj
px̃ · ρx̃The problem solution poses similar challenges to those identi�ed in Chapter4. Except for the incorporation of �ow conservation constraints into the upperlevel problem and the removal of the corresponding budget constraints, themathematical formulation presented in Section 6.3 is identical the one proposedfor the optimal deployment of sensors following IBSO principles.Notice that, from the perspective of the problem solution, the distinctivecharacteristic of the model discussed in this chapter is the requirementto select sets of paths to be monitored, instead of individual links. Thesolution approach adopted for the numerical implementations makes use ofan exogenously provided path set to transform the IBSO assignment probleminto a large instance of the optimal sensor deployment problem presented inChapter 4.The discussion presented in Section 4.5.1 regarding possible exact solutionmethodologies is valid in the context of the present problem, as well asthe methodological framework presented in Chapter 5, which is adjustedand implemented to the solution of the problems presented in Section6.6. Section 6.5.1 explains the corresponding procedure, as well as someproblem characteristics which prevent a more e�cient implementation of thestate-partitioning approach. The Tabu search heuristic proposed in Section5.2 can also be adapted to the solution of the IBSO assignment problem, andsection 6.5.2 describes the necessary adjustments.The procedure presented in this section was adequate for the solution of theproblem instances presented in section 6.6, which provide very valuable insightsinto the problem characteristics and behavior. Based on these results, more147



e�cient exact and heuristic approaches may be developed in future extensions.6.5.1 Implementing a state-space partitioning approachThe problem presented in this chapter can be solved as an instance of theoptimal sensor deployment problem for the support of adaptive systemoptimum routing decisions, provided that the set of all paths Ps−t connectingthe analyzed origin-destination pair is available. When this is the case, thesolution of a problem involving the utilization of K assets as probes reducesto �nding the combination of K paths leading to the lowest system expectedcost. Each of these combinations K may be transformed into a set of links
I ⊂ M utilizing Algorithm 9.Algorithm 9 Generating set I
Vj = 0 ∀ j ∈ M

I = ∅for all (Pi ∈ K ) dofor all (j ∈ Pi) doif (Vj = 0) then
Vj = 1
I = I + {j}A link-path incidence matrix could be utilized for the same purpose, butin the present implementation paths are stored as a list of links, and thereforeAlgorithm 9 provides a more convenient approach. Section 6.5.1.1 describesthe procedure used to generate P. Notice that di�erent combinations Ki maylead to the same set I, as exempli�ed in �gure 6.1. This may be of interest inthe design of heuristic solution methodologies.Once the set I is available, the methodology presented in Chapter 5 canbe implemented without any further changes to compute λi, given whichthe computation of ZKi is straightforward. Notice however that the sizeof corresponding problem instance, de�ned by the number of links coveredby the probes, is likely to be very large. The perceived state-space growsexponentially as K increases, and the numerical implementations presented in148
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P1 ∈ K
P2 ∈ KFigure 6.1: Example of duplicated I setssection 6.6 suggest that the proposed state partitioning approach may not besu�cient to solve very large problem instances e�ciently.A possible approach to overcome the above mentioned problem is theimplementation of Monte Carlo sampling-based heuristics (Alexopoulos[1997]). More specialized techniques may be devised by considering thatone of the main reasons for the observed performance deterioration is theabsence of a deterministic threshold value τ for the shortest expected costpath (Section 5.1.3.2). Given that the deployment of probes may cover aconsiderable portion of the network, the lack of a �nite τ is a likely scenario,and the heuristic generation of a surrogate value may improve the algorithmicperformance. Furthermore, depending on how such value is computed, it maybe possible to place a bound on the associated error, limiting its impact onthe overall solution.Notice also that the problem characteristics do not allow for a path-cost based implementation of the state-partitioning principles. Suchapproach reduces the number of path states to be accounted for based onthe consideration that path costs may take a limited number of values. Bycollapsing all states exhibiting the same cost into a single super-state, the totalnumber of relevant path states to evaluate may be drastically reduced (Wallerand Ziliaskopoulos [2002]).Figure 6.2 exempli�es the reasons preventing the implementation of suchapproach in the context of the present problem. In the proposed network,path 2 can take a value of 14 under two possible states, x̃ = 1 and x̃ = 2. The149



shortest expected costs paths corresponding to these states are ρ1 = 14 and
ρ2 = 11, respectively, which are di�erent from each other. If both states arecollapsed into a single one, it is not possible to implement the methodologydeveloped in earlier chapters to partition the state-space, given that thereis not a single optimal value to compare to the thresholds which de�ne thepartitioning rules.6.5.1.1 Path set generationFor generic directed networks, the enumeration of all s − t paths belongs tothe class of #P-Complete problems (Valiant [1979b]), which are countingproblems for which there is not a known polynomial time solution algorithm.While the number of such paths may be estimated using Monte Carlosampling (Roberts and Kroese [2007]), the actual generation of s− t paths forpractical implementations is typically accomplished by computing k-shortestpaths according to a pre-speci�ed criterion. The unrestricted variant of thek-shortest path problem allows paths to share an unlimited number of links,and can be solved in O(kn3) using Lalwler's algorithm (Lawler [1976]). Othermethodologies impose constraints on the characteristics of the generatedpaths, such as an upper bound on the number of shared links across paths(van der Zijpp and Catalano [2005]), or on the maximum admissible length(M.Carlyle and K.Wood [2005]). These constraints are typically selectedbased on the intended use of the generated paths.While the formerly described techniques are appealing from the perspectiveof a heuristic solution, the approach taken to solve the examples presented inSection 6.6 required the generation of all s−t paths. In the absence of negativecost cycles, only acyclic paths are of interest. Even though there is s �nitenumber of such paths, it is typically very large, and it grows exponentiallywith the network size (Korte and Vygen [2000]). In an attempt to reduce thenumber of paths to consider, a domination criterion was introduced into thepath generation process.The concept of path domination has been utilized by several authors inthe implementation of algorithms which implicitly involve path enumeration150
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(e.g. Miller-Hooks and Mahmassani [1998], Miller-Hooks and Yang [2005]). Adomination criterion is basically a set of rules in virtue of which s − t pathscan be compared, and eventually discarded, based on conditions speci�c to thecorresponding optimization problem.For the IBSO assignment property, equation 6.22 presents the criteriautilized to decide whether an s − i path P is dominated, and therefore maybe disregarded.
∃ Pj ∈ P : lP1

s−i > L
Pj

s−i (6.22)In this equation, lP1

s−t and L
Pj

s−t represent the maximum and minimumpossible cost on paths P1 and Pj, respectively, obtained by adding themaximum (minimum) cost realization at every link in the correspondingpaths. P is the set of all paths connecting s and i.This rule is valid in virtue of Property 5 (Section 6.4) which establishesthat a path lPs−i which satis�es equation 6.22 is never used by system assets,and therefore may be disregarded during the problem solution. Notice thatif lPi−j represent all the sub-paths in a path lks−t connecting s − t, then lPs−tis non-dominated if and only if all lPi−j are non-dominated. In virtue of thisfact, proved below, Algorithm 10 is used to generate the set of all acyclicnon-dominated paths in networks with random discrete arc costs.The proof of the former fact is accomplished in two parts. First we showthat if all the sub-paths Fij ⊂ P are non dominated, then P is non dominated.Let Fs−i and Fi−t be two of such sub-paths. If they are non-dominated, itmeans that all sub paths Gs−iand Gi−t are such that cmax(Gi−t) ≥ cmin(Fi−t)and cmax(Gs−i) ≥ cmin(Fs−i). In virtue of this, Equation holds for path Gs−t =

Gs−i +Gi−t6.23, which implies that P is non dominated.
cmax(Gs−t) = cmax(Gs−t) + cmax(Gs−t) ≥ cmin(Fs−i) + cmin(Fi−t) = cmin(P )(6.23)For the second part of the proof, assume that there exists a sub path Fsiwhich is dominated by path Gs−i. This implies that for some s − i path it152



is true that cmax(Gs−i) > cmin(Fs−i). In virtue of this the maximum costof the path Gs−t = Gs−i + Fi−j is cmin(Gs−t) = cmax(Gs−i) + cmax(Fi−t) >

cmax(Fs−i) + cmax(Fi−t) = cmax(P ) which contradicts the initial assumptionthat P is non dominated and completes the proof.The algorithm works based on the same principles guiding a typical label-correcting procedure (Ahuja et al. [2002]), and has has an exponential worstcase complexity. Notice that in acyclic networks the set of directed paths canbe found in O(m) utilizing the same algorithm which provides the topologicalorder ( Ahuja et al. [2002]).Algorithm 10 Non Dominated Path Generation
T = {s}
Ui = Vi = 0 ∀ i ∈ Nwhile (T 6= ∅) doSelect i ∈ Tfor all (ij ∈ M) dofor all (dk ∈ Di : k > Ui) doif (j /∈ dk) then {Check Cycle}if (ldk

s−i + cijmin ≤ Ldm

s−j ∀ dm ∈ Dj) then {Check Domination}if (Vj = 1) then
Uj = Size(Dj)Add dk + ij to DjCheck new dominated paths in Dj

T = T + {j}
T = T − {i}
V (i) = 1For every node i ∈ N, a di�erent label dk ∈ Di is used to store each of thenon-dominated acyclic s − i paths. The list T stores all the network nodeswhich successors need to be re-labeled, and it is initialized with the originnode. At every iteration, all labels in Dj , which represent a possible way toreach i from s, are used to add a new label to the sets Djcorresponding toall nodes emanating form i, provided that no cycle is generated and that thecorresponding path is non-dominated. When a new label is added to a node,the same is incorporated to T in order to update the labels of its successors.Variable Ui is used to keep track of the labels in Di which have already been153



used to generate new paths. Vi allows to use a dequeue implementation (Ahujaet al. [2002]) for the management of T. At termination, the set Dt is list ofall acyclic non-dominated s− t paths. This is guaranteed because nodes enter
T when a new way to reach them has been found, and are removed from Tafter updating the possible ways to reach their successors. If T is empty, thenit means that all possible ways to reach every node have been enumerated.Notice that the set of non-dominated paths depends on the maximum andminimum values at the network links. These change during the evaluation ofa probe deployment strategy. Given that µj ≥ min(cj), the paths found tobe dominated implementing Algorithm 10 remain dominated. However, givenequation 6.22, additional paths may become dominated, which may be usedas the basis for path-based heuristic procedures in further implementations.6.5.2 Possible adjustments to the Tabu search procedureThe Tabu search procedure introduced in Section 5.2 can be implementedto the solution of the presented problem following a similar procedure to thatdescribed in Section 6.5.1, and assuming that the set of non-dominated networkpaths is available. The methodology can be easily adjusted to select sets ofpaths instead of links, while the corresponding penalties and adaptive memorystructures may still be de�ned on a link basis (Equations 6.24 to 6.26).Tabu_R(Pk) =

∑

j∈Pk

Tabu_R(j) (6.24)Tabu_F(Pk) =
∑

j∈Pk

Tabu_F(j) (6.25)
δmax(Pk) =

∑

j∈Pk

δmax(j) (6.26)The procedure was tested on the networks analyzed in the followingsection, but given characteristics of the considered problem instances itdid not lead to faster solutions and therefore was not implemented to thenumerical analyses. In the presented framework the Tabu methodology154



is intended to reduce the number of strategies to be evaluated, which aregiven by combinations of K paths for a K-probe IBSO assignment problem.However, the algorithm provides signi�cant advantages when the totalnumber of strategies to be evaluated is high (typically in the order of 105and above). For smaller instances, the number of evaluations necessary toidentify a good solution is usually comparable to the number of evaluationsrequired by an exact solution approach. For the cases analyzed in Section 6.6the total number of combinations is relatively small (∼ 104) and thereforeit was not necessary to implement the Tabu methodology. Larger probleminstances (in terms of the number of assets utilized as probes) were notconsidered due to the computational e�ort involved in evaluating each ofthe corresponding strategies. Section 5.1.6 discussed the limitations of thestate-partitioning approach under this circumstances. The insights providedby the exact problem solution may be used to devise more e�cient Tabusearch procedures.6.6 Implementation: Assessing the performanceof Information-Based System Optimumassignment strategiesThis section presents a detailed analysis of the performance of Information-Based System Optimum (IBSO) assignment strategies on two di�erentexample networks, assuming a Serial-Sequential (SS) probe deploymentapproach. The methodology described in Section 6.4 was implemented tothe analysis of Networks I and II, already introduced in Section 5. Section6.6.1 brie�y discusses the performance of the solution approach, and suggestsdesirable extensions and re�nements. The results are discussed in thefollowing sections, which analyzes the impacts of IBSO assignment underSS probe deployment from di�erent perspectives. One of the principalperformance measures utilized in this section is the di�erence between thesystem expected cost under a K-probes IBSO assignment strategy (ZK) and155



S, the expected cost of a traditional System Optimum (SO) deployment.Such di�erence is denoted ∆ZK , and ∆ZK% = S−ZK

S
is the correspondingpercent value. Section 6.6.4 analyzes these parameters as a function of T , thenumber of system assets which are not utilized as probes.Another important characteristic of an IBSO assignment discussed in thischapter is the di�erence between the expected costs faced by the probes (ϕi)and λ, the cost faced by each of the remaining system assets. The parameter

ε = ϕmax

λ
− 1, where ϕmax = maxiϕi, measures such di�erence, and is anindication of the value of information and the �unfairness� of the deploymentstrategy. The later is also re�ected by ∆ϕmax = ϕmax

ρ0 − 1, which representsthe deterioration in the expected cost faced by the probes with respect toa SO assignment. Conversely, ∆λ = 1 − λ
ρ0 measures the improvement withrespect to a SO approach experienced by the remaining system assets. In bothcases, ρ0 is the value of the shortest expected cost path when no information isprovided, which is the cost paid by all assets under a SO deployment under theproblem assumptions. A comparable value under IBSO assignment is ν = ZK

W
,where W = T +K is the total number of assets in the system.Section 6.6.3.1 discuses some qualitative aspects of the routes utilized underan IBSO deployment approach, comparing them to the optimal paths resultingfrom SO assignment, and to the solutions obtained in Chapter 5. Noticethat the solution to an IBSO problem consists of the set of routes to befollowed by the assets utilized as probes, and of the optimal routing solutionsfor the remaining assets under each perceived network state, given by thecorresponding hyperpath.Similarly to what we observed in Chapter 5, the numeric value of theperformance measures described above is likely to vary widely for di�erentnetworks depending on their topology, cost structure and correspondingprobability distributions. The goal of this section is to improve our intuitiveunderstanding of the nature of the e�ects of an IBSO assignment approach,and how it leads to a di�erent system behavior than a SO deploymentstrategy. This is critical in order to identify practical implementations whichwould bene�t the most from the proposed approach, and to develop re�ned156



models able to maximize the bene�ts of information availability.6.6.1 Algorithmic performanceTables 6.1 and 6.2 summarize the algorithmic performance on Networks I andII for di�erent numbers of probe vehicles. The networks account for 46 and187 non dominated acyclic paths, respectively. Path lengths range between 3and 8 links in Network 1, and between 3 and 13 links in Network II, whichleads to considerably large problem instances, with state-spaces cardinalitieseasily reaching the order of 106.Notice that the total numbers of acyclic paths on Networks I and II are 68and 720, respectively. The utilization implementation of the path-dominationcriteria presented in Section 6.5.1.1 allowed to reduced the number of pathsto be considered .Performance measures are analyzed by deployment strategy type, whichare de�ned in Section 5.2.1 based on the overlap between the correspondingprobe routes Pi and the shortest expected cost path when no informationis provided, L0. The reported values are the average performance across allthe possible strategies in each category given by |KT |, where K
T is set of allstrategies of type T = I, II, III. Notice that strategies are de�ned in terms ofpaths, and therefore strategies Type II, which include exclusively links in L0,are only possible in one-probe cases.Performance is measured based on the percentage of total states evaluated,

%eval = Evaluations
|XKi |

, where |XKi| is the state space containing all possible statesperceived under probe deployment strategy Ki ∈ K.The results exhibit similar trends to those observed in Section 5.1.5,suggesting a much better performance on Network II in virtue of itstopological characteristics. The performance is similar for the two strategysizes considered for Network II, which indicates the same type of stablebehavior noticed in the earlier numerical analyses. This is very encouraging,given the considerably large size of XKi. The maximum number ofsimultaneous partitions P is fairly low, but higher than the corresponding157



1 Probe 2 ProbesType III Type I Type II Type III Type I Type II
|KT | 28 17 1 899 136 -
|XKi| 1325.1 3386.5 27 224009.6 204692.1 -

%evalXKi 89% 33.3% 88.9% 89.7% 42.9% -P 0.5 1.9 1 2.0 3.4 -Table 6.1: State-space partitioning algorithm performance in Network I1 ProbeType III Type I Type II
|KT | 86 100 1
|XKi| 2283.5 2088.2 12

%evalXKi 50.0% 13.2% 50.0%P 2.0 1.8 2Table 6.2: State-Space partitioning algorithm performance in Network IIvalues for smaller state-spaces.Even though the algorithmic performance is satisfactory for the analyzedcases, it is important to notice that the number of possible perceived statesgrows extremely fast as larger deployment strategies are considered. Undersuch circumstances, the number of evaluations required by the proposedapproach may be prohibitive, even if it represents a small percentage of thestate-space size. Heuristic approaches based on Monte Carlo sampling, suchas those presented in Alexopoulos [1997], may be a feasible approach toovercome this problem. Other bounded-heuristic procedures may be devisedbased on the problem properties, as discussed in Section 7.3.6.6.2 System expected costThe system expected cost under an IBSO approach is given by the summationof the expected cost faced by the assets utilized as probes and the costfaced by the remaining system assets. Tables 6.6 and 6.4 present di�erentmeasures related to the system expected cost under IBSO assignment for158



1 Probe 2 Probes
Tcrit = 14 Tcrit = 19

T = 1 T = 35 T = 550 T = 1 T = 15 T = 20

S 304.4 5479.2 83862.2 456.6 2587.4 3348.4
Z 303.3 5440.5 82796.4 492.8 2526.6 3227.8

∆Z% 0.4% 0.7% 1.3% -8% 2% 4%
v 151.6 151.1 150.3 164.3 148.6 146.7
ϕi 152.2 193.5 286.4 345.7 415.8 468.6

ϕmax 152.2 193.5 286.4 152.2 217.1 275.1
λ 151.1 149.9 149.7 147.3 140.7 138.0

∆ϕ 0% 27.1% 88.2% 127% 173% 208%
ε 7% 29.1% 91.3% 135% 195% 240%Table 6.3: Results summary for Network INetworks I and II respectively, and for di�erent values of T . For Network Itwo di�erent strategy sizes are considered. Additionally, Table 6.5 presentssimilar information for Network I under the two-state probability distributioncase described in ().The reductions in system expected cost with respect to a SO assignmentapproach, ∆Z%, range between −8% and 6% in Network I. Even thoughthe value of such impacts depends on the considered implementation, thequalitative analysis of the behavior of ∆Z% provides very interesting insights.The �rst important observation is that the number of assets not used asprobes, T , plays a fundamental role on the magnitude, and even the direction,of the perceived impacts. This is expected, given that the additional costpaid by the probes in order to collect information is compensated only by thegains experienced by the remaining assets in the system. The negative valueobserved under the 2-probe deployment strategy for Network I when T = 1re�ects the fact that TKi

v > 1 for all strategies Kiof size 2 (Section 6.4), andtherefore utilizing 2 vehicles as probes does not bene�t the system. Noticethat the negative impact on the system is a result of forcing the model toselect di�erent routes for every utilized probe. The actual optimal strategywould route both probes on the same path selected for the strategy of size 1.159



1 Probe
Tcrit = 4

T = 1 T = 15

S 129 1032
Z 125.9 968.1

∆Z% 2% 6%
v 63.0 60.50
ϕi 64.5 71.2
ϕmax 64.5 71.2
λ 61.4 59.8

∆ϕ 0% 4%
ε 5% 19%Table 6.4: Results summary for Network IISection 6.6.4 will further discuss the e�ect of T on the system expected cost.The expected cost paid by the probes ϕiis always equal or higher than thecost faced by the remaining system assets. The later are optimally routedbased on the �ndings of the probes, and therefore they never face higherexpected costs (nevertheless, the actual costs paid by these assets may behigher than expected, depending on the realizations observed at those linkswhich remain uncertain). The observed values of ∆ϕ range between 0%, whenthe probe is assigned to L0, and 208%. Larger values occur when T is higher,and therefore more assets may bene�t from the �nding of those utilized asprobes. The values of ε, which range between 5% and 240%, re�ect the samebehavior. This may have important practical implications, given that probesare paying considerably higher costs than the remaining assets. For certainimplementations, decision makers may want to limit either ε or ∆ϕ, dependingon whether they intend to limit the total cost faced by the probes or theinequity between system assets.The results suggest that average expected cost per asset v decreases afunction of the number of deployed probes as long as T > Tcrit. However, thismay not be the case for lower values of T . In Modi�ed Network I for example,the utilization of three assets as probes when T = 15 yields lower bene�ts160



1 Probe 2 Probes 3 Probes
Tcrit = 14 Tcrit = 19 Tcrit = 45

T = 15 T = 15 T = 15

S 2672 2839 3006
Z 2490.4 2525.7 2741.9

∆Z% 6.80% 11.0% 8.9%
v 156 149 152
ϕi 186 366 587

ϕmax 186 186 221
λ 151.3 144.0 143.7

∆ϕ 11.4% 119.2% 251.5%
ε 23.1% 156.7% 311.6%Table 6.5: Results summary for Modi�ed Network Ithan the implementation of a 2 probe strategy (9% and 11%, respectively).One may consider that the value of ∆ϕ for K = 1 is an indicator of thevalue of information for the considered system, given that it represents themaximum additional cost that the system can a�ord to paid in order to collectinformation.The results in Network II support the trends described in the previousparagraphs. It is interesting to notice that for this network the value of ∆Z%,which ranges between 2% and 6% is comparable to the results reported forNetwork I, and is achieved at a much lower cost, with ϕi ranging between 0%and 4%. This illustrates the degree of dependence of the costs and bene�ts ofinformation on network characteristics, and motivates the search for modelstailored to di�erent applications.Some additional tests were conducted in order to assess the e�ects ofselecting a suboptimal strategy for a given value of T . In Network I for T = 1and K = 1, the system cost obtained by deploying the probe asset on theoptimal path corresponding to T = 15 is 38 % higher than the optimal systemexpected cost, and actually higher than S. However, if the optimal strategyfor T = 1 is utilized for larger values of T the impacts are less extreme, rangingbetween 1% and 5% for T = 15 and T = 100, respectively. These results are161



also important from a methodological perspective, and they may be used toguide heuristic solution approaches tailored to each particular implementation6.6.3 Optimal routing strategiesFigure 6.3 displays the optimal probe routes (P) for K = 1 and values of
T above and below Tcrit, along with the links included in the correspondinghyperpaths (H). Figure 6.4 presents the same information for Network II.Notice the paths corresponding to di�erent values of T do not necessarilyoverlap, suggesting that completely di�erent routing strategies may beappropriate based on the system size.It is also interesting to observe that the links in H cover a considerableportion of Network I, and a very speci�c section of Network II. This suggeststhat the use of information leads to a larger utilization of the availableresources. Some paths or network sections which are not part of a solutionunder uncertainty may be utilized under an IBSO deployment strategy. Theformer suggests an alternative utilization of the presented models to promotea more e�cient network utilization. The proposed framework can be usedto identify which information is be relevant in order to �activate� speci�cnetwork links, giving them a positive probability of being used.Figure 6.5 displays the results corresponding to a two probe deploymentstrategy on Network I, which exhibit similar trends. Similarly to what weobserved in Chapter 5, the optimal solution for a strategy of size 2 does notnecessarily include the optimal probe route identi�ed for K = 1.The displayed results also show a trend to include the shortest expectedcost path L0 in the set of optimal probe routes for low values of T , even thoughit is usually not part of the optimal strategy for T ≥ Tcrit.6.6.3.1 Comparing probe routes to the optimal location of staticsensorsThe comparison of the links in P∗ and the optimal links to be monitored basedon the models presented in Chapter 5 leads to some interesting observations.162
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The overlap between the results obtained from the two solution approaches(in terms of measured links) seems to be highly dependent on the networkcharacteristics. For Network I, only 3 of the links monitored under an optimal6-sensor deployment strategy are part of the optimal probe path under aone-probe IBSO assignment approach. In Network II, all the links coveredby the probe route are also monitored based on the models for static sensordeployment previously discussed.In general, the observed di�erences in terms of covered links re�ects thefact the models analyzed in this chapter associate a cost to the acquisition ofinformation, whereas the data collected with sensors deployed according to themodels in Chapter 5 is �free� from the system perspective. The vehicles usedas probes need to reach the links with the most valuable information, whichmay impose additional costs that are not compensated by the correspondingbene�ts, even for large values of T . This clearly depends on the networktopology and costs distributions. In Network II the assets are able to coverthe most bene�cial links at a relatively low cost, while in Network I only thosecritical links closer to the origin and destination are monitored using probes.The impacts of considering the cost of information are re�ected on thecorresponding values of λ. These can be compared to the system expectedcost under a k-sensor deployment strategy, where k corresponds to the lengthof the path utilized by the probe. In the case of Network II, both values areequal, re�ecting that the maximum bene�ts attainable by monitoring four linksare achieved by deploying one probe. For Network I, λ is 1.1% higher than thecost experienced by the system under a 5 sensor deployment strategy. Noticethat models presented in Chapter 5 to �nd the optimal deployment strategy of
K sensors provide a lower bound to the system bene�ts obtained by deployinga probe along a path of length K. Under the former assumption, the modeldescribed in this chapter may be regarded as a more constrained version ofthe models in Chapter 5, which forces to deploy available sensors along a pathconnecting origin and destination.

166



PSfrag replacements T

∆
Z

K=1K=2

Figure 6.6: Bene�ts of information for optimal probe routing strategies onNetwork 16.6.4 Impacts of the system size on the attainablebene�ts of informationThe analysis conducted in section 6.6.2 illustrates the importance of the systemsize on the maximum bene�ts which may be attained by implementing IBSOdeployment strategies. This is a direct consequence of properties 1 and 2,presented in Section 6.4. Figures 6.6 presents the bene�ts of information as afunction of T in Network I for strategies of size 1 and 2.As expected based on property 3, the bene�ts of information increase at alinear rate as a function of T . The rate of increase, which is a direct function ofthe cost paid by the non- probe assets, changes based on the optimal routingstrategy at T . The maximum rate is achieved at Tcrit (Section 6.4). Figure 6.7illustrates the fact that, as T → ∞ the strategy providing the highest increaserate dominates the remaining ones, even when this may not be the case forreduced values of the variable. This behavior is of interest and it may be crucialin the identi�cation of solution methodologies tailored to speci�c applications.For implementations involving a large number of assets, the cost paid by the167
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Figure 6.9: Percent bene�ts of information for optimal probe routing strategieson modi�ed Network 1shortest expected cost path L0 (Strategy 7) is a feasible option (i.e. leadsto a value of Z ≤ S) for any value of T (T 7
v = 0). In e�ect, given that routinga probe on this path does not impose on it any additional cost with respect toa SO assignment solution, the information collected along L0 is available for�free�, and its utilization cannot harm the system performance. Conversely,some paths are not feasible under any value of T (T i

v = ∞). This re�ectsthe fact that the information collected from such paths does not lead to anybene�t for the system (λKi
≥ ρ0), and therefore the additional cost paid tocollect it is never compensated.It is also interesting to notice that Tcrit ≥ TKmin

v , where Kmin denotes thestrategy leading to the lowest value of λKi
. In this example strategy 20, whichpresents the lowest value of λKi

, is feasible for T ≥ 13 but it does not becomeoptimal until T = Tcrit = 16. This result re�ects property 2, and implies thateven for large values of T neglecting of the cost faced by the assets utilized asprobes may lead to a suboptimal (but nonetheless acceptable) solution.170



λ
∑

i ϕi Tcrit λ
∑
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crit for all feasible one-probe strategies on Network I
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6.7 SummaryThis chapter introduces the concept if Information Based System Optimum(IBSO) assignment, proposes a mathematical formulation capturing the novelparadigm, and presents numerical results illustrating the problem propertiesand main methodological challenges.The IBSO assignment problem extends the basic principles of cooperativeassignment observed in a traditional System Optimum approach in order toaccount for the collection and utilization of information in stochastic networks(Section 6.2). It considers the utilization of a subset of system assets asprobes, used to collect information regarding the cost realizations throughoutthe network. Probes may face higher expected costs than the remaining assets,but in an optimal assignment these are compensated by the bene�ts accruedby the system. The new modeling framework has an enormous potential toreduce the negative impacts of uncertainty on the solution of a number ofproblems on stochastic networks.The problem presents interesting properties, describe in Section 6.4. Someof these actually may be used to de�ne parameters to characterize a system,such as the minimum number of assets required to justify the utilization ofa given number of probes. The mathematical models described in Section6.3 are able capture the tradeo�s between the value of information andthe additional cost faced by the probes in order to collect it. Their exactsolution is challenging, given their combinatorial nature (Section 6.5). Asolution methodology based on state-space partitioning was implemented tothe analysis of several problem instances (Section 6.6). The procedure has anexponential complexity, and a it requires the enumeration of all possible pathsconnecting the analyzed origin-destination path. A path domination criterionwas de�ned and implemented in order to alleviate the computational e�ort.The qualitative analysis of the numerical results illustrates the problemproperties and provides valuable insights into the potential modelingimprovements and practical applications. Expected cost reductions rangingbetween 2% and 6% were measured on the analyzed systems. More172



importantly, the new assignment paradigm was found to lead to considerablydi�erent routing decisions than a naive approach, which actually depends notonly on the network characteristics but on the system size. The marginalbene�ts of information grow at a constant rate with the system size, whilethe gains expressed as a fraction of the system cost exhibit a decreasingrate of marginal growth. For a su�ciently large system, the cost faced bythe probes was found to be irrelevant, which is expected, and the optimalprobe assignment strategy is that leading to the lower system expected cost.However, in many potential applications (Section 7.2) the system size ismay be relatively small, and modeling the cost of information acquisitionbecomes crucial. The results suggest that the provision of information leadsto a more e�cient utilization of the system, given that paths which werenot considered under the expected-cost based routing may become appealinggiven the information revealed by the probes. This suggests an alternativeimplementation of the proposed models to understand what informationwould be necessary in order to promote the utilization of speci�c networklinks.The model discussed in this chapter provides a �exible tool to measureand understand the bene�ts of information in the context of adaptive systemoptimum assignment strategies. Based on the �ndings presented here,practical implementations may be devised, along with the correspondinge�cient solution methodologies. This is an important step towards a moree�cient utilization of information in the optimization of transportationsystems.
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Chapter 7Conclusions, Applications, andExtensionsTra�c information, now available through a number of sources, is re-shapingthe way planners, operators and users think about the transportation network.It provides a powerful tool to mitigate the negative impacts of uncertainty, andan invaluable resource to manage incidents and other causes of non-recurrentcongestion. Information also invites to think about traditional transportationproblems from a di�erent perspective which may take advantage of theimproved understanding of the network state.This dissertation proposes a novel system-optimum assignment paradigmwhich takes into account the ability of assets to collect information asthey travel through the network. It also presents a methodology to designinformation collection strategies based on the impacts of such data onsystem-optimum routing decisions, an approach not considered in the existingliterature. Specialized exact and heuristic solution techniques were developedbased on the problem properties, and implemented to the analysis of severalexample problems. The conducted numerical analyses suggest that themodels introduced in this work provide a means to utilize information forimproving system performance. The results illustrate interesting problemproperties, which point to possible practical implementations, and haveimportant methodological implications. Furthermore, some of the studied174



properties de�ne network parameters which may be used to characterizethe susceptibility of systems under uncertainty to bene�t from informationprovision. The models proposed in this work constitute an initial step towardsenhancing information collection and utilization strategies. Based on the�ndings presented here, a number of applications may be envisioned, whiche�cient solution could promote a more e�ective utilization of existing andupcoming technologies, fostering the full realization of their potential bene�ts.The following sections summarize and integrate the research conducted forthis dissertation, and suggest further research directions.7.1 Optimal sensor deployment for system-optimum adaptive routing supportThe optimal sensor deployment model presented in this work contributes tothe existing literature on e�cient collection of information from static sensors.The review conducted in Chapter 3 suggests that major improvements arestill possible on such �eld, particularly if new paradigms for the utilizationof information become available. Existing approaches in the area focus onimproving system-monitoring capabilities, but hardly consider the impacts ofthe collected information on the system performance, or in adaptive routingdecisions.The deployment model proposed in Chapter 4 identi�es the optimallocation of a �xed number of static sensors in a network with stochastic arccosts, in such way that the expected cost faced by a set of optimally routedassets is minimized. The information provided by the sensors generates aset of perceived network states, based on which the optimal paths to befollowed by the system assets may be adapted. Such routes correspond to theshortest expected cost path under each information set given the problemassumptions. The model is suitable for a number of interesting applications,ranging from the deployment of sensors during rescue operations, to data�ltering for online routing purposes The bi-level stochastic program used175



to formulate the problem (Section 4.2) provides valuable insights into theproblem properties, and is used to derive an expression for the marginal valueof information, which is proved to be always non negative.Numerical analyses, conducted implementing the specialized methodologydescribed in Section 7.3, illustrate how the utilization of information to adjustsystem optimum routing strategies may improve the system perform ace.Gains of up to 4% with respect to a no-information scenario were measured.The absolute value of the accrued bene�ts is likely to vary widely dependingon the characteristics of speci�c networks, and the practical value of theobserved improvements depends on the considered application. However, itis important to notice the solution obtained using the novel approach was upto 50% more e�ective than a deployment strategy based only on maximumlink variance, which is promising. The qualitative analysis of the solutionsalso reveals interesting problem characteristics, such as a �synergic� behavior,in virtue of which the bene�ts obtained by jointly monitoring a group of linksmay be greater than the improvements accrued by placing sensors on anysubset of such group. Additionally, the consideration of the links involvedin the optimal hyperpaths suggests that the availability of more informationeventually leads to the utilization of a larger set of paths. The latter points toan alternative application of the proposed models, which may be implementedto identify information provision patterns that promote the usage of speci�cnetwork links.There are many potential applications for the methodologies presented inthis section. The deployed sensors need not be tra�c sensors, but may bespecial instruments used to measure the terrain conditions in areas a�ected bya natural disaster, such as earthquakes or �oods. The devises can be optimallyplaced after the occurrence of a speci�c incident in order to identify feasibleroutes for the emergency vehicles or the evacuation of victims.Another application may be envisioned if one considers that the solutionof the optimal sensor deployment strategies identi�es the set of links whichprovide contain the most valuable information. The methodology may beused to improve the utilization of data from sensors already deployed. By176



identifying those sensors which information is more relevant for a particularrouting decision, the models can be used to reduce the amount of data thatneeds to be processed in order to generate adaptive routing strategies, allowingfor faster and more e�ective solutions. Finally, other potential applicationsinvolve problems such that network links represent the duration of the di�erentsteps of a process or group of integrated processes, which may be accomplishedin various ways, represented by paths. The placement of a sensor is equivalentto monitoring the duration of the corresponding process, and the proposedmodels may be used to identify which steps play a more fundamental role onthe system behavior7.2 IBSO AssignmentThe concept of Information-Based System-Optimum (IBSO) assignmentintroduced in Chapter 6 is inspired by the equilibrium approaches discussedin the literature review, which aim to capture the system-level impacts ofindividual adaptive behavior on stochastic networks. However, the IBSOparadigm is fundamentally new, given the assumption that the informationused to adjust the system's routing decisions is collected by a �xed subsetof the assigned assets, which are utilized as probes. The selection of thepaths followed by the probes takes into account the value of the informationcollected along them in addition to the corresponding expected cost. As aconsequence, assets utilized as probes may face higher expected costs thanregular system assets, which are optimally routed under every possible staterevealed by the probes.The problem is formulated as a bi-level stochastic program, which assumes�ow-independent link costs and a serial-sequential probe deployment approach,such that all the probes enter the system together and before the regularassets. The proposed model is such that the marginal value associated to theutilization of additional assets as probes may be negative. The later re�ects thefact that the cost involved in acquiring information may not be compensatedby the system-level bene�ts. The problem presents interesting properties,177



some of which may be used to de�ne parameters that characterize the systemunder study, such as the minimum number of regular assets which justi�es theutilization of s probes as assets. De�ning this type of properties contributesto a better understanding of speci�c instances of the studied problem and theunderlying network. They allow measuring how susceptible a network/problemis to bene�t from information, how costly it is to achieve a minimum level ofimprovement, what is the maximum gain that may be expected from utilizingsome assets as probes, among other important characteristics. Theoreticalproperties may also have important methodological implications. For example,the fact that the bene�ts of information grow linearly with the system sizesuggests that, for a su�ciently large system, the cost faced by the probes maybe disregarded in the search for an optimal solution.A variation of the methodology developed to solve the optimal sensordeployment problem was used to conduct numerical experiments assessing theperformance of the IBSO assignment approach. The qualitative analysis of thecorresponding results illustrates the problem properties, and provides valuableindications regarding desirable methodological improvements and potentialpractical applications. The measured expected cost reductions, with respect toa no-information scenario, ranged between 2% and 6%. More importantly, thenew assignment paradigm was found to lead to considerably di�erent routingdecisions than a naive approach. The selected paths depend on both, thenetwork characteristics and the system size. Additionally, similarly to whatwe observed on the hyperpaths utilized under an optimal sensor deploymentstrategy, the provision of information leads to the utilization of paths which arenot considered under a deterministic routing approach. The rate of increase ofthe bene�ts of information, when these are expressed as a fraction of the defaultsystem expected cost, is a decreasing function of the system size. This maybe used to de�ne optimal �eet sizes for applications in which the system maybe subdivided and the number of probes to be utilized is a decision variable.The IBSO assignment paradigm has many potential applicationsparticularly if we consider the multiple problem variation de�ned in Chapter2. The deployment of �eets of emergency vehicles on post-disaster scenarios178



was described in the introduction. The models may also be used to assistthe design of bus routes, which are already used as probes in some citiesChakroborty and Kikuchi [2004], Cathey and Dailey [2002], Dailey andCathey [2006], Tantiyanugulchai and Bertini [2003]) . Even though there area multitude of factors determining transit routes, the proposed models may beused to select among a pre-selected set of alternate paths. The same principlemay be applied in other contexts, such as the routing of delivery trucks andeven taxi cabs. Most of these applications require incorporating one or moreof the extensions proposed in Section 7.4. This is likely to increment thecomplexity of the solution procedure, but it is a promising step towards amore e�ective utilization of available resources.7.3 Solution methodologiesThe methodological approach used to solve all the numerical examplespresented in this dissertation was developed for the solution of the proposedoptimal sensor deployment problem. In order to implement the technique tothe analysis of IBSO assignment problems, the paths followed by the assetsutilized as probes under an IBSO deployment were regarded as sets of sensorsdeployed on consecutive links. Such approach requires to enumerating allacyclic paths connecting the analyzed origin-destination pair. The later wasaccomplished implementing a customized path domination criterion whichreduced the number of paths to consider by up 74%.The model formulations are combinatorial in nature, and exact solutionapproaches are not likely to be e�ective for large networks. Section 4.5suggests some mathematical programming approaches, including Bendersdecomposition and quadratic programming techniques, which may beapplicable to the solution of this problem and deserve further consideration.This work implements a methodology based on network optimization methods,taking advantage of the simplifying model assumptions. Such approach lendsitself to heuristic implementation, and can easily incorporate changes to theproblem assumptions and formulations.179



The solution method is based on the fact that, in virtue of the assumptionspresented in Chapter 2, the models may be solved by enumerating all feasiblesensor/probe deployment strategies, and computing the correspondingexpected costs under information. Such approach poses two main challenges:the potentially huge number of perceived states which need to be consideredduring the evaluation of a feasible deployment strategy, and the existenceof a combinatorial number of such strategies. The proposed solutiontechnique deals with the �rst issue using state-partitioning principles, whilethe combinatorial aspect of the problem is addressed heuristically, byimplementing an adaptive memory Tabu search procedure.The state-space partitioning algorithm, introduced in Section 5.1, isguided by rules developed speci�cally for the problems under study. Theseare used to reduce the number of shortest path computations required to�nd an optimal solution, mostly by appropriately selecting threshold valuesfor the corresponding cost. Numerical experiments suggest that, in wellconnected networks, the algorithm may reduce the computational e�ort by upto 95%. The adaptive memory Tabu search procedure, presented in Section5.2 explores the combinatorial solution space guided by short and long termmemory structures. In the examples studied in Section 5.2.2.2 it found theoptimal solution by evaluating between 3% and 20% of all the candidatesolutions.The performance of the combined methodology is very satisfactory, and theresults suggest that the heuristic e�ciency, in terms of percentage of evaluatedstrategies is not a�ected by the network size or the number of deployed sensors.However, the state partitioning technique may not be su�cient to deal withcases involving a very large number of sensors, particularly if they covermost of the paths connecting the analyzed origin-destination pair. The latercomplicates the identi�cation of threshold values, reducing the e�ectivenessof the methodology. A possible approach to overcome this problem is thedesign of more complex partitioning rules which further reduce the numberof required evaluations, or/and to implement shortest path re-optimizationmethods (reviewed in Appendix B) may be implemented to improve the180



performance of the technique. Eventually, the problem size may require theutilization of heuristic methods. Possible approaches to their developmentinclude Monte Carlo sampling (e.g. Alexopoulos [1997]), and the utilizationof surrogate values for the threshold shortest path value, which may allowthe computation of error bounds. Finally, it is important to notice that thesolution of IBSO assignment problems may bene�t from approaches leadingto an implicit path-enumeration, which is likely to be the subject of furtherextensions.7.4 Extensions and future research directionsThe problem variations analyzed in this work involve a single origindestination pair, �ow-independent link costs, time-invariant link-costprobability distributions, and the a-priori selection of regular assets routeson the IBSO assignment problem. These assumptions allowed for relativelysimple model formulations, which were very useful to better understandproblem characteristics and behavior. However, practical implementationsare likely to bene�t from more complex approaches. The following table(Table 7.1) lists some of the more desirable extensions. Notice that thee�cient solution of the suggested extended problems may require majormethodological changes.The consideration of multiple origin-destination pairs is a relatively easymodeling extension which would allow considering more general routing cases.It is not expected to greatly complicate the solution procedure, given that theone-to-all and all-to-all shortest path problem variations may also be solvede�ciently (Ahuja et al. [2002]). The partitioning rules proposed in this workare applicable to the extended case, but adjustments may be desirable in thesearch for e�ciency. Some preliminary tests on this problem version suggeststhat as the number of OD pairs becomes closer to the total number of possiblepairs, the optimal assignment strategies resemble the maximum-variance baseddeployments.Flow dependant link costs are a requirement if the models are applied to181



Table 7.1: Possible problem extensionsdesign tra�c routing strategies, even though they may not be necessary forother problem applications. The incorporation of a time dimension may leadto more realistic models for tra�c-related implementations, and is necessaryunder some of the alternative objective functions and probe deploymentstrategies proposed below.The explicit incorporation of a robustness component in the objectivefunction may be valuable for applications very sensitive to the experiencedtime. Notice that the variance of the solution may also be limited byincorporating constraints into the maximum path length. The formulationmay be fully oriented to minimize the total deployment time, including thatof assets and probes. This would lead to a very restricted problem under theassumptions considered in this work, but may provide interesting results ifsequential probe deployment strategies are considered.Finally, the strategy used for the deployment of probes on IBSO assignmentproblems may follow any of the variations suggested in Chapter 2, and therouting paradigm selected for both, regular assets and probes, may be allowedto be adaptive based on self-collected information or/and time dependant.The models discussed in this dissertation provide a �exible tool to measureand understand the bene�ts of information in the context of system optimum182



assignment under information. Based on our �ndings, and consideringthe possible extensions described in this section, a number of practicalimplementations can be devised, which may contribute towards a moree�ective utilization of information in the optimization of transportationsystems and related areas.
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Appendix AAdditional Data and Results forChapter 4
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Link εj
1 pj

1 εj
2 pj

2 εj
3 pj

3 εj
4 pj

41 16 0.6 25 0.3 36 0.12 21 0.5 24 0.2 25 0.2 39 0.13 11 0.4 13 0.4 26 0.24 11 0.7 30 0.35 13 0.6 37 0.2 39 0.26 24 0.5 28 0.3 31 0.27 11 0.6 20 0.3 24 0.18 23 0.4 30 0.3 34 0.39 14 0.5 23 0.4 34 0.110 22 0.7 30 0.311 35 0.6 40 0.412 16 0.5 25 0.4 37 0.113 15 0.3 17 0.3 19 0.3 26 0.114 27 0.4 33 0.3 40 0.315 28 0.4 35 0.3 37 0.2 40 0.116 25 0.7 32 0.317 18 0.7 24 0.318 18 0.5 25 0.3 29 0.219 11 0.5 31 0.4 37 0.120 21 0.5 23 0.521 12 0.5 23 0.3 31 0.2Table A.1: Network 2: Link cost probability distribution (a)
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Link εj
1 pj

1 εj
2 pj

2 εj
3 pj

3 εj
4 pj

422 12 0.3 15 0.3 22 0.2 24 0.223 19 0.6 23 0.2 37 0.224 13 0.4 23 0.3 34 0.325 14 0.6 34 0.2 39 0.226 13 0.8 31 0.1 32 0.127 14 0.3 15 0.3 27 0.2 32 0.228 10 0.6 17 0.3 20 0.129 16 0.3 18 0.3 36 0.2 39 0.230 19 0.4 24 0.3 29 0.331 12 0.4 13 0.3 25 0.2 32 0.132 15 0.4 19 0.3 25 0.333 14 0.3 20 0.3 25 0.2 32 0.234 23 0.9 34 0.135 18 0.3 19 0.3 20 0.3 33 0.136 10 0.5 19 0.4 39 0.137 13 0.6 31 0.3 35 0.138 15 0.5 36 0.3 39 0.239 16 0.7 22 0.340 10 0.3 13 0.3 18 0.3 34 0.141 12 0.9 31 0.142 14 0.5 19 0.3 32 0.2Table A.2: Network 2: Link cost probability distribution (b)
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Link εj
1 pj

1 εj
2 pj

2 εj
3 pj

3 εj
4 pj

4 εj
5 pj

51 70 0.33 73 0.33 94 0.342 25 0.33 35 0.33 82 0.343 42 0.33 48 0.33 61 0.344 26 0.2 31 0.2 55 0.2 88 0.2 90 0.25 58 0.33 70 0.33 95 0.346 15 0.5 73 0.57 65 0.33 74 0.33 75 0.348 59 0.33 72 0.33 98 0.349 21 0.25 32 0.25 85 0.25 98 0.2510 89 0.5 96 0.511 32 0.33 48 0.33 67 0.3412 63 0.5 99 0.513 66 0.33 85 0.33 98 0.3414 6 0.25 15 0.25 39 0.25 58 0.2515 2 0.5 48 0.516 61 0.33 63 0.33 85 0.3417 16 0.2 18 0.2 40 0.2 52 0.218 3 0.33 30 0.33 50 0.3419 16 0.33 34 0.33 71 0.3420 90 0.5 96 0.521 21 0.33 46 0.33 85 0.3422 17 0.25 49 0.25 53 0.25 65 0.2523 6 0.25 12 0.25 54 0.25 66 0.25Table A.3: Network I: Uniform link cost probability distribution
188



Link εj
1 pj

1 εj
2 pj

2 εj
3 pj

3 εj
4 pj

4 εj
5 pj

51 70 0.15 73 0.15 94 0.72 25 0.15 35 0.15 82 0.73 42 0.15 48 0.15 61 0.74 26 0.075 31 0.075 55 0.075 88 0.075 90 0.75 58 0.15 70 0.15 95 0.76 15 0.3 73 0.77 65 0.15 74 0.15 75 0.78 59 0.15 72 0.15 98 0.79 21 0.1 32 0.1 85 0.1 98 0.710 89 0.3 96 0.711 32 0.15 48 0.33 67 0.712 63 0.3 99 0.713 66 0.15 85 0.15 98 0.714 6 0.1 15 0.1 39 0.1 58 0.715 2 0.3 48 0.716 61 0.15 63 0.15 85 0.717 16 0.1 18 0.1 40 0.1 52 0.718 3 0.15 30 0.15 50 0.719 16 0.15 34 0.15 71 0.720 90 0.3 96 0.721 21 0.15 46 0.15 85 0.722 17 0.1 49 0.1 53 0.1 65 0.723 6 0.1 12 0.1 54 0.1 66 0.7Table A.4: Network I: Right-skewed link cost probability distribution
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Link εj
1 pj

1 εj
2 pj

2 εj
3 pj

3 εj
4 pj

4 εj
5 pj

51 70 0.7 73 0.15 94 0.152 25 0.7 35 0.15 82 0.153 42 0.7 48 0.15 61 0.154 26 0.7 31 0.075 55 0.075 88 0.075 90 0.0755 58 0.7 70 0.15 95 0.156 15 0.7 73 0.37 65 0.7 74 0.15 75 0.158 59 0.7 72 0.15 98 0.159 21 0.7 32 0.1 85 0.1 98 0.110 89 0.7 96 0.311 32 0.7 48 0.15 67 0.1512 63 0.7 99 0.313 66 0.7 85 0.15 98 0.1514 6 0.7 15 0.1 39 0.1 58 0.115 2 0.7 48 0.316 61 0.7 63 0.15 85 0.1517 16 0.7 18 0.1 40 0.1 52 0.118 3 0.7 30 0.15 50 0.1519 16 0.7 34 0.15 71 0.1520 90 0.7 96 0.321 21 0.7 46 0.15 85 0.1522 17 0.7 49 0.1 53 0.1 65 0.123 6 0.7 12 0.1 54 0.1 66 0.1Table A.5: Network I: Left-skewed link cost probability distribution
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Figure A.1: Network II topology
Link εj

1 pj
1 εj

2 pj
2 Link εj

1 pj
1 εj

2 pj
21 70 0.5 94 0.5 13 66 0.5 98 0.52 25 0.5 82 0.5 14 6 0.5 58 0.53 42 0.5 61 0.5 15 2 0.5 48 0.54 26 0.5 90 0.5 16 61 0.5 85 0.55 58 0.5 95 0.5 17 16 0.5 52 0.56 15 0.5 73 0.5 18 3 0.5 50 0.57 65 0.5 75 0.5 19 16 0.5 71 0.58 59 0.5 98 0.5 20 90 0.5 96 0.59 21 0.5 98 0.5 21 21 0.5 85 0.510 89 0.5 96 0.5 22 17 0.5 65 0.511 32 0.5 67 0.5 23 6 0.5 66 0.512 63 0.5 99 0.5Table A.6: Network I: Two-states link cost probability distribution
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Link εj
1 pj

1 εj
2 pj

2 εj
3 pj

3 εj
4 pj

4 εj
5 pj

51 65 0.2 70 0.2 73 0.2 94 0.2 99 0.22 20 0.2 25 0.2 35 0.2 82 0.2 86 0.23 38 0.2 42 0.2 48 0.2 61 0.2 65 0.24 28 0.2 31 0.2 55 0.2 88 0.2 90 0.25 55 0.2 58 0.2 70 0.2 95 0.2 99 0.26 10 0.2 12 0.2 15 0.2 73 0.2 78 0.27 60 0.2 65 0.2 74 0.2 75 0.2 78 0.28 55 0.2 59 0.2 72 0.2 98 0.2 99 0.29 18 0.2 21 0.2 32 0.2 85 0.2 98 0.210 78 0.2 85 0.2 89 0.2 96 0.2 98 0.211 8 0.2 32 0.2 48 0.2 67 0.2 69 0.212 55 0.2 60 0.2 63 0.2 99 0.2 100 0.213 63 0.2 66 0.2 85 0.2 98 0.2 99 0.214 3 0.2 6 0.2 15 0.2 39 0.2 58 0.215 0 0.2 1 0.2 2 0.2 48 0.2 52 0.216 55 0.2 61 0.2 63 0.2 85 0.2 89 0.217 13 0.2 16 0.2 18 0.2 40 0.2 52 0.218 1 0.2 3 0.2 30 0.2 50 0.2 55 0.219 12 0.2 16 0.2 34 0.2 71 0.2 75 0.220 80 0.2 85 0.2 90 0.2 96 0.2 99 0.221 18 0.2 21 0.2 46 0.2 85 0.2 88 0.222 15 0.2 17 0.2 49 0.2 53 0.2 65 0.223 3 0.2 6 0.2 12 0.2 54 0.2 66 0.2Table A.7: Network I: Five-states link cost probability distribution
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Appendix BShortest Path Re-OptimizationThe exact solution of the problem described in this Chapter 4 involves �ndinga large number of shortest paths between every origin/destination pair inthe network, corresponding to all perceived scenarios. The only di�erenceamong such scenarios is the cost on the instrumented links, and therefore themodel may bene�t from the implementation of shortest path re-optimizationtechniques.Short es path re-optimization methodologies �nd the new shortest path ona network after the cost of one or more arcs changes, based on previous shortestpath computations. Under some conditions, these techniques are theoreticallymore e�cient than recomputing the shortest path from scratch. Moreover,speedups of up to �ve orders of magnitude have been found in practicalexperiments conducted no randomly generated networks (Demetrescu et al.[2004]) and on real transportation systems(Demetrescu et al. [2004],Buriolet al. [2003]) .Several algorithms are available in the literature, appropriate for di�erenthypotheses regarding the number of links which cost changes simultaneously,the direction of such adjustments, and the admissible values for the linkweights. The �rst e�orts (Dionne [1978], Rodionov [1968], Murchland [1970],Goto and Sangiovanni-Vincentelli [1978], Frigioni et al. [2000]) proposedmethodologies that may be used to update the shortest path tree when asingle arc cost is either incremented or reduced. Other authors (Gallo [1980],193



Gallo and Pallottino [1982], Nguyen et al. [2002]) present e�cient solutiontechniques for problems in which the cost in exactly one link is reduced, whichare also appropriate for situations in which the root node of the shortestpath is modi�ed. Fujishige [1981] presents an algorithm to analyze the caseof a cost reduction on a set of arcs incident to a common node. More recentapproaches (Ramalingam and Reps [1996], Pallotino and Scutella [2003], King[1999]) are fully dynamic, in the sense that can be utilized to analyze costreductions and/or increments on any subset of arcs, as well as arc insertionsand/or deletions. These approaches, which are suitable for the solution ofthe optimal sensor deployment problem, are brie�y discussed in the followingparagraphs. Recent work by Miller-Hooks and Yang [2005], which extendsgeneral shortest path re-optimization algorithms to the case of time-varyingnetworks, escapes the scope of this thesis and it is not discussed.King [1999] proposes a fully dynamic re-optimization algorithm whichworks on graphs with small integer weights. The methodology maintainsa pair of shortest paths of length ≤ dgoing in and out of each node, and�stitches� them together in order to obtain shortest paths of larger length.By choosing an appropriate value of d, the algorithm can perform updates in
O(n2.5

√
C log n), where C is the maximum arc weight. The required storagespace is in the order of O(n2.5

√
C).Ramalingam and Reps [1996] present one of the most popular algorithmsto solve the one-to-all shortest path re optimization problem in networks withstrictly positive real-valued arc weights. Their approach has a worst casecomplexity of O(ma +na log na), where maand na are set of the arcs and nodesa�ected by the costs changes, respectively.C.Demetrescu and Italiano [2001] present a fully dynamic shortestpath algorithm designed to maintain all-to-all shortest paths in directednetworks with real-valued edge weights. Their methodologies depart froma matrix viewpoint of the shortest path problem, in virtue of which theoptimal distances on a directed graph can be obtained by performing speci�coperations on the weights matrix. The proposed algorithms have a betterworst case complexity than recomputing the shortest path from the beginning194



and are able to accommodate cost changes of any magnitude.In a later paper Demetrescu and Italiano [2003] propose a new approach,valid for directed graphs with non negative arc weights. The algorithm relieson e�ciently maintaining a sets of paths with speci�c properties, from whichthe shortest paths can be obtained in O(1). The authors introduce the conceptof potentially uniform paths, which consist of proper sub paths that are eithershortest paths or historical shortest paths. The later are paths which werethe shortest before a network update, and whose arcs were not a�ected by thecorresponding changes. By bounding the maximum number of new potentiallyuniform paths after each network update in a sequence, the authors are ableto compute the worst case complexity of their procedure, which is in the orderof O(n2 log n). This is achieved by reducing the number of historical shortestpaths generated after each network modi�cation, by appropriately �smoothing�the sequence of changes which conform a network update.Pallotino and Scutella [2003] present a framework for the one to all shortestpath re optimization problem on networks with integer-valued link weightsbased on the reduced cost of the network arcs. Reduced costs are obtainedfrom a linear programming formulation of the shortest path problem as c̄ij =

πj − πi − cij, where cij is the non negative cost associated with arc ij, and
πi is the optimal node potential of node i, equal in value to the dual variableassociated to node i. When an optimal solution to the problem is found, thereduced costs must satisfy the feasibility and optimality conditions displayedin B.1 and B.2 respectively, where T ∗

r denotes the shortest path tree rooted atnode r.
c̄ij ≥ 0∀ij ∈ A (B.1)
c̄ij = 0∀ij ∈ T ∗

r (B.2)When the cost on one or more arcs changes, T ∗
r may no longer be optimal,which translates into violated optimality and/or feasibility conditions. Thealgorithm proposed by Pallotino and Scutella [2003] deals separately with such195



violations. In a �rst stage, it updates the tree with respect to the arcs in
K+ = {ij : c̄ij > 0, ij ∈ T ∗

r } by means of a dual-based tree-hanging procedurepreviously presented by Pallottino and Scutella [1997]. The origin-based subtree obtained by removing the tree arcs with c̄ij > 0, which is clearly part of theupdated shortest path, is progressively extended by appropriately increasingthe potential of the remaining nodes in such way the complementary slacknessconditions are met by the updated tree arcs, while maintaining dual feasibility.The main contribution of this work is the analysis of a set of properties invirtue of which entire sub trees can be added to the updated tree in a singlestep. Furthermore, it provides the conditions under which several sub treescan be incorporated simultaneously, which improves the practical performanceof the algorithm with respect to previous dual ascent procedures (Florian et al.[1981], Gallo and Pallottino [1982]). The running time of the dual phase isnever worse than the best strongly polynomial implementation of Dijkstra'sshortest path algorithm (Dijkstra [1959]) O(m + n log n). Furthermore, thecomplexity can be also bounded based on the size of the initial sub tree nr,and on the maximum path cost change after the perturbations, Cd.The second stage takes as an input a reduced graph G− consisting on thepreviously updated tree plus all the arcs in K− = {ij : c̄ij < 0, ij ∈ T ∗
r }. Theprocedure implemented in this step restores feasibility by updating the nodepotentials in such way that c̄ij ≥ 0 ∀ij ∈ A after all the cost reductions areimplemented. This is accomplished in phases, each of which considers a �starpath� sub graph of G−. The structure of such sub graphs is such that, whenthe corresponding cost changes are implemented, the node potentials can beupdated using a label setting algorithm. The authors provide a methodologyto detect a star paths in O(m), which leads to a worst case complexity of forthe primal phase of O(hm + hn log n), where the second term represents thecomplexity of the label setting algorithm, and h is the maximum number ofphases, bounded by the magnitude of the maximum cost change.The conducted review suggests that there are a number of shortest pathre optimization algorithms available in the literature which may be used toimprove the performance of the methodologies considered in this dissertation.196



Appendix CComputing Paths Properties onStochastic NetworksWhen the inherent uncertainty regarding network parameters is explicitlyconsidered, the di�culty of �nding network properties, and even of solvingthe simplest optimization problems, may grow exponentially. The problemsanalyzed in this dissertation implicitly involve the identi�cation of shortestpaths properties on stochastic networks, including the probability of a pathbeing the shortest, and the probabilities that a link belongs to the shortestpath under information. The following paragraphs provide a brief overview ofprevious studies which illustrate the challenges involved in such computations.Finding the Least Expected Cost (LEC) path is a relatively easy task whenthe link cost functions are linear. In virtue of the de�nition of the expected costof a sum of random variables, it is valid to replace arc probability distributionsby their expected costs, and run a deterministic shortest path algorithm onthe resulting network (Eiger et al. [1985]).The computation of path properties on stochastic networks has been provedto be substantially more di�cult that the identi�cation of the LEC path.The main reason for this is that computing stochastic path properties usuallyentails generating the corresponding Probability Distribution Functions(PDFs) based on links PDFs. This can easily become mathematicallyintractable in networks with more than a few links, particularly when links197



PDFs are either continuous or discrete with a large support. For this reason,most of the papers on this �eld present heuristics to approximate the desiredproperties.Frank [1968] analyzes the PDF of the shortest path length on a networkwith continuous arc costs. He provides a closed-form optimal solution entailingthe computation of an r-dimensional integral, were r can be as large as thetotal number of links on the network. He also proposes an approach toperform non parametrical analysis based on random sampling, and implementsa Monte Carlo simulation scheme to show that the shortest path length PDF isapproximately normal when the link costs are uniform, normal or exponential.Sigal et al. [1980] study the problem of �nding the probability of a pathbeing shorter than every other path. They derive closed form solutions forthe case of continuous link cost distribution functions, and present a cutsetsolution approach which may entail enumerating all possible cuts. The authorssuggest several heuristic techniques to solve the proposed problem.Using a framework closer to the one adopted for this work, Alexopoulos[1997] focuses his research on shortest path and minimum spanning treeproblems on networks with stochastic arc costs described by independentdiscrete probability distribution functions. He shows that computingproperties such as the expected length of the shortest path, the probability ofa path being the shortest, and the probability of an arc belonging to a shortestpath, are #P-hard problems, and proposes a state partitioning approach toapproximate the solution. The underlying concept of his approach is that thedesired path properties can be computed without explicitly considering allnetwork states. Based on the assumption that the link states are sorted inan increasing order of costs, it is possible to de�ne boundaries, limiting thecombinations of link states which need to be considered for the computationof a particular property. The procedure is exponential in the worst case,but some practical applications suggest a better performance. Furthermore,Monte Carlo simulation may be implemented to e�ciently approximate theproblem solution in large networks.Kim et al. [2005] use a state space reduction approach to identify those links198



which do not need to be considered during shortest path computations. Theystudy online vehicle routing problems on non-stationary stochastic networkswith two states per arc, which exhibit Markovian dependencies across timeintervals. The authors provide algorithms for both, the a-priori eliminationof irrelevant arcs, and the dynamic identi�cations of such arcs as the vehiclemoves through the network.This brief review suggests that, even though the computation of theproperties required to evaluate sensor deployment strategies for IBSOassignment is challenging, there is a wide variety of promising approacheswhich can allow for a relatively e�cient solution of the problem.
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