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Abstract 

 

Retrogression-Reaging and Hot Forming of AA7075 

 

Thomas Alexander Ivanoff, M.S.E. 

The University of Texas at Austin, 2014 

 

Supervisor:  Eric M. Taleff 

 

 The retrogression-reaging (RRA) and hot forming behavior of AA7075 were 

studied. AA7075 is a high-strength alloy used in applications where weight is of 

particular importance, such as in automobiles. Like many of the high-strength aluminum 

alloys, AA7075 requires elevated temperature forming to achieve ductility comparable to 

steels at room temperature. Since AA7075 is a precipitation hardening alloy, heat 

treatments during forming and production need to be closely controlled to limit any loss 

of strength due to changes in the microstructure. Two new forming concepts are 

introduced to explore the feasibility of forming AA7075 in manners compatible with 

current automotive manufacturing processes. They are RRA forming and solution 

forming. These concepts seek to improve upon the room-temperature formability of 

AA7075-T6 and incorporate the paint-bake cycle (PBC) into the heat treatment process. 

The PBC is a mandatory heat treatment used to cure the paint applied to automobiles 

during production. Currently, the PBC is conducted at 180 °C for 30 minutes. 
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RRA behavior was studied with molten salt bath treatments between 200 and 

350 °C. The PBC was used in lieu of the standard 24 hour reaging treatment conducted at 

121 °C. It was determined that retrogression treating below 250 °C was acceptable for 

RRA forming, with retrogressing at 200 °C producing the hardest material after reaging 

by the PBC. The formability of AA7075-T6 during RRA forming was evaluated by 

tensile testing at 200 and 225 °C. Ductility of AA7075-T6 at RRA forming temperatures 

was double compared to those produced at room temperature. RRA forming was 

demonstrated to achieve this improved ductility and a final material hardness after the 

PBC of only slightly less than the peak-aged condition. In addition, solution forming 

behavior was studied at 480 °C. Solution forming can increase ductility compared to 

RRA forming, but it requires aging at 121 °C prior to the PBC to produce peak-aged 

hardness. 
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Chapter 1: Introduction 

 

1.1. Purpose of Study 

Improving fuel efficiency throughout the transportation industry is one of the 

most challenging and important problems currently facing auto manufacturers. The need 

to improve fuel efficiency arises from both stricter government regulations and rising fuel 

costs. Under current CAFE standards, combined fuel efficiency for an auto 

manufacturer’s line must achieve 35.5 mpg by 2016 and 54.5 mpg by 2025 [1]. The 

difficulty in achieving this is not in the technology to improve fuel efficiency, but rather 

how to do so without dramatically raising the cost of products or services. This can be 

accomplished, at least in part, through the utilization of light-weight structural materials. 

High-strength aluminum alloys have been used extensively in the aerospace industry for 

years, and auto manufacturers have recently shown interest in developing aluminum 

forming processes suitable for automobile components. Applications of particular interest 

include both external body panels and interior structural members for the body-in-white. 

Conventionally, high-strength steel sheet has been used for these applications. However, 

aluminum alloys can offer large weight reductions compared to steels while maintaining 

similar strengths. Aluminum alloys are 2/3 lighter than steel and can offer strength to 

density ratios over 3 times greater than high-strength steels [2-4].  



2 

 

In automotive applications, exterior body panels experience considerable bending 

loads during service. Luo developed a method to compare the bending strength of light-

weight metal alloys to steel using ASM performance indices, where m is mass, ρ is 

density, E is elastic modulus, and Y is tensile yield strength [5]. The cost associated with 

replacing steel with aluminum was not considered. 

     1 1 2
3

2 2 1

m E

m E





   (1.1) 

     1 1 2

2 2 1

m Y

m Y





   (1.2) 

These equations determine the mass savings that can be obtained by using high-

strength aluminum, subscript 1, over steel, subscript 2, for automotive applications. 

Equation 1.1 applies for structures of equivalent bending stiffness, while Equation 1.2 

applies for structures of equivalent bending strength. A ratio of less than one implies 

mass savings over steel. Bending stiffness and bending strength are important to auto 

manufactures because they determine the denting resistance of exterior body panels. 

Table 1.1 presents the material constants and mass ratios of high-strength and medium-

strength aluminum alloys compared to two steels.  
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Table 1.1: Material properties of aluminum alloys and steel used for the mass ratio calculations. 

Material 
Density 

(g/cm
3
) 

Yield 

Strength 

(MPa) 

Young's 

Modulus 

(GPa) 

Bending 

Stiffness 

Mass Ratio 

Bending 

Strength 

Mass Ratio 

AA7075-T6 

[2] 
2.81 503 71.7 0.515 0.227 

AA6061-T6 

[2] 
2.7 276 68.9 0.502 0.295 

HSLA Steel 

A715 [5] 
7.83 410 200 1.02 0.701 

Standard 

Low Carbon 

Steel [3] 

7.8 200 210 1 1 

 

The high-strength aluminum alloy, AA7075-T6, can produce mass savings of 48 

and 77 percent for structures of equivalent bending stiffness and bending strength, 

respectively. For exterior body panels, high-strength aluminum alloys can reduce 

component mass by half without a sacrifice in dent resistance. High-strength aluminum 

alloy structural components can possess bending strengths and tensile yield strengths 

equivalent to high-strength steels. This allows auto manufacturers to maintain the 

crashworthiness of vehicles, but with a greatly reduced mass. 

Several previous studies on the forming of medium-strength 5000-series 

aluminum alloys demonstrated increased ductility at elevated temperatures from the 

grain-boundary-sliding and solute-drag creep deformation mechanisms [7]. These alloys, 
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however, lack the ability to be age hardened to greater strength after forming. Thus, high-

strength 7000-series aluminum alloys are of interest for strengths superior to 5000-series 

aluminum alloys. In particular, the alloy AA7075, used for structural components in the 

aerospace industry, is of interest. The yield strength of AA7075 is comparable to high-

strength steels, it can be age hardened considerably, and it is commercially produced. In 

addition, the behavior of AA7075 is indicative of most 7000-series aluminum alloys. For 

these reasons, this study focuses on developing new forming processes for the auto 

industry using AA7075 sheet. 

Retrogression and reaging (RRA) treatments were first developed in 1974 by Cina 

[8]. RRA is a multi-step heat treatment consisting of two distinct steps: retrogression and 

reaging. The retrogression is a short-duration, high-temperature heat treatment followed 

by a rapid cooling. During the retrogression, it is thought that the strengthening 

microstructural precipitates within the aluminum matrix partially dissolve, or retrogress, 

back into solution. This step reduces part strength. Reaging is a low-temperature heat 

treatment performed after the retrogression. It is performed at the optimal temperature for 

precipitation and regrowth of the strengthening precipitates. Reaging returns the part 

strength to its initial value by reforming partially dissolved precipitates or precipitating 

new strengthening precipitates. 

Like all the aluminum alloys, AA7075 must be formed at elevated temperatures to 

achieve ductilities comparable to steels formed at room temperature [2-3, 9]. The high-

strength aluminum alloys, including AA7075, derive their strength from precipitation 



5 

 

hardening heat treatments, i.e. aging. Consequently, thermal history throughout the 

forming and manufacturing processes must be rigorously controlled to achieve the 

desired final part strength. In the auto industry, after forming, parts are assembled and 

painted. Currently, in order to cure the paint, manufacturers require components to 

endure a paint-bake cycle (PBC). The typical PBC is a 30 minute baking procedure at 

180 ºC [10]. RRA treatments may be useful for developing new forming procedures of 

AA7075. Forming AA7075 sheet during retrogression will increase ductility and 

decrease forming stresses during stamping. Following forming, the mandatory PBC can 

potentially be utilized as the reaging step to return the final part to the desired strength. 

Forming AA7075 within a RRA schedule may potentially improve ductility while 

maintaining the desired final part strength.  

Medium-strength, age hardening aluminum alloys will also be briefly addressed 

in this study. In particular, AA6061 is another alloy useful in studying RRA forming. 

AA6061 is representative of many medium-strength 6000 series aluminum alloys, and its 

peak aging temperature coincides with current PBC temperatures. AA6061 is artificially 

aged to peak strength at 160 to 180 ºC. AA6061 exhibits tensile elongations of 28 percent 

at 205 ºC and 60 percent at 260 ºC [2]. RRA behavior of AA6061 provides a comparison 

to AA7075. High-strength aluminum alloys, such as AA7075, can offer much greater 

weight savings than medium-strength aluminum alloys. Thus, the primary focus of this 

study is to investigate whether a RRA heat treatment combined with traditional auto 

manufacturing processes results in advantageous aging and forming behavior of AA7075. 
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1.2. Literature Review 

1.2.1. Aging and Microstructure 

AA7075 is a precipitation-hardening aluminum alloy that contains several 

alloying elements. The principle alloying additions are Zn, Mg, and Cu. In addition, 

minor amounts (less than 0.3 Wt. percent) of Ti, Mn, Cr, and Zr are commonly added to 

the alloy to benefit solidification, grain refinement, and various other purposes [2, 4, 11]. 

AA7075 is considered one of the strongest aluminum alloys commercially available. It is 

widely accepted that this alloy derives its strength from fine η'-phase and η-phase 

(MgZn) precipitates. Park and Ardell produced a generally accepted description of the 

precipitation sequence for AA7075 from the homogenized condition [12]. When aging 

occurs between 75 to 130 ºC two precursory precipitates form prior to the formation of η 

precipitates. Spherical G.P. zones initiate precipitation and are then followed by 

formation of the η'-phase [12]. If aging is conducted between 100 to 180 ºC, η' and η do 

not necessarily require prior G.P. zone formation to precipitate [12]. According to Park 

and Ardell, when over-aged below 190 ºC, the resulting microstructure is predominantly 

composed of η type precipitates [12]. Both the η' and η precipitates were determined to 

be plate like and hexagonal in structure [12]. In addition to the η-phase, the T-phase can 

form when aging occurs above 190 ºC. There are three commonly used tempers, or aging 

treatments, of AA7075. They are designated as the T6, T7, and Retrogression and 

Reaging (RRA) tempers [2]. Each of these tempers relies principally on controlling 

precipitation of the η'-phase and η-phase to varying extents. The T-phase produces large 
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cubic precipitates and was shown to reduce strength [12]. It is not desired for most 

tempers. The T6, T7, and RRA tempers will now be discussed in detail. 

The strongest aging condition of AA7075 is the T6 temper, denoted as AA7075-

T6. Because of its strength, the T6 temper is also referred to as the “peak-aged” 

condition. The standard procedure for its production after solution treatment is a single 

aging for 24 to 48 hours at 121 ºC [2]. The resulting microstructure consists primarily of 

finely distributed η' precipitates, lesser quantities of η precipitates, and any surviving G.P. 

zones [12].  The size and distribution of the η' and η precipitates critically influence the 

final strength. The orientation, composition, and size of these precipitates within the 

aluminum matrix were extensively characterized through TEM microscopy [12-16]. 

These studies verified that aging to the T6 temper primarily produces a dense and 

consistent distribution of fine η' precipitates [12]. The η-phase was also confirmed to 

exist, but to a much lesser extent than the η'-phase. It is generally accepted though, that 

the number density, distribution, and precipitate size of either precipitate has a greater 

impact on strength than the particular precipitate present [12]. Aging at 121 ºC beyond 48 

hours will begin to reduce the final strength because of continued growth of η precipitates 

and evolution of η' precipitates into larger η precipitates. According to Park and Ardell, 

the η-phase prefers precipitation along grain boundaries [12, 16]. This is particularly 

important to the development of the T7 temper. 

The T7 temper, also known as the “over-aged” condition, has a lower overall 

strength than the T6 temper. Over-aged sheet material is traditionally obtained by aging 
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for 6 to 8 hours at 107 ºC and then aging for 24 to 30 hours at 163 ºC [2]. Compared to 

the T6 temper, the T7 microstructure contains far fewer η' and η precipitates, with more η 

precipitates forming than η' precipitates. The η precipitates are generally larger in the T7 

condition than they are in the T6 temper [12]. Park and Ardell showed that after aging at 

100 ºC for 8 hours and 165 ºC for 24 hours, the resulting microstructure consists of large 

η precipitates along the grain boundaries and fewer smaller η precipitates lightly 

dispersed throughout the aluminum matrix [12]. The lack of η' precipitates and low 

quantity of total precipitates within the aluminum matrix is primarily responsible for the 

reduced strength of the T7 temper compared to the T6 temper [12]. Furthermore, studies 

suggest that over aging at temperatures above 190 ºC also permit the precipitation of the 

T-phase [12, 16]. The T-phase precipitates are generally much larger than η precipitates 

and are commonly believed to reduce strength even further.  

Retrogression and reaging (RRA) treatments of AA7075 were first patented in 

1974 by Baruch M. Cina [8]. A RRA treatment is a multi-step aging process. Typically 

the initial aging for RRA is similar if not identical to a peak aging (T6) treatment [8, 13-

20]. After the initial peak aging, a retrogression heat treatment is performed. The 

retrogression is a short-duration, high-temperature heat treatment. Following the 

retrogression, a reaging completes the RRA treatment. The reaging is usually performed 

at the same temperature as the peak aging treatment. Cina first characterized the 

retrogression times and temperatures useful for RRA treatments of AA7075 [8].  

According to Cina, retrogression can be successfully performed from 160 to 260 ºC. The 
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recommended retrogression times for 160 and 260 ºC are 30 minutes and 7 seconds, 

respectively [8].  

Danh, Rajan, and Wallace suggested that during recommended retrogression 

treatments the η' precipitates already present from peak aging undergo a partial 

dissolution [13-20]. Park and Ardell concluded that nearly 1/3 of the η' precipitates 

formed during peak aging either fully dissolve or partially dissolve during typical 

retrogression treatments [16]. In addition, it is believed that the larger η' precipitates 

present from peak aging that do not dissolve evolve into η precipitates. The existing η 

precipitates undergo slight coarsening [13-16, 20]. Park and Ardell demonstrated that the 

dissolution and evolution of the η' precipitates occurs during the earliest stages of 

retrogression [16]. Kanno and Araki came to the same conclusions as Park and Ardell 

[17]. They used TEM microscopy to show a combination of partial dissolution of η' 

precipitates formed during peak-aging and slight growth of the η precipitates formed 

during peak aging after retrogression treatments of AA7075 [17]. Longer retrogression 

times, beyond the recommended retrogression times, predominantly cause growth of η 

precipitates, with precipitates present along grain boundaries coarsening the most [13-

20]. The final microstructure following retrogression, regardless of retrogression time, 

contains far fewer precipitates than before. Though similar to a T7 tempered 

microstructure, the retrogressed structure is not equivalent. An over-aged sheet cannot be 

recovered to T6 strength without solution treating, whereas a properly retrogressed sheet 

can. This is generally thought to be because η' precipitates formed during peak aging only 
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partially dissolve during recommended retrogression treatments [13-20]. Reaging is 

conducted after the retrogression treatment is completed. The typical reaging procedure is 

conducted at 121 ºC for 24 to 48 hours [2, 8, 13-20]. Park and Ardell demonstrated that 

some η' precipitates form, essentially replacing those dissolved during retrogression and 

partially dissolved η' precipitates regrow during reaging [16]. 

The density and distribution of precipitates in the RRA microstructure are similar 

to those of the T6 microstructure. In both, η' precipitates are evenly and densely 

distributed throughout the grains. The RRA microstructure, however, contains large η 

precipitates along the grain boundaries. It is thought these are mainly precipitated and/or 

grown during retrogression and then undergo slight coarsening during reaging [16]. The 

final microstructure resulting from a RRA treatment is a combination of large η 

precipitates along the grain boundaries and a fine dispersion of smaller η' precipitates 

throughout the aluminum matrix [13-20]. RRA treatments, however, are very sensitive to 

alloy composition and the aging performed before RRA treatment. Because of this, RRA 

treatments depend strongly upon the material processing history. This is evident from the 

slight variation across the literature in the optimal retrogression parameters determined 

for maintaining peak strength after reaging.  
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1.2.2. Mechanical Behavior 

In the peak aged, or T6 temper, AA7075-T6 exhibits a hardness of 175 to 190 HV 

and tensile yield strength of 503 MPa (73 ksi) [2]. Park and Ardell suggested that the 

greatest gains in strength were a result of fine η' or η precipitates distributed throughout 

the aluminum matrix [12]. It is believed that the strength gains are more dependent on the 

number of precipitates present and precipitate size than on precipitate type [12]. In 

practice though, the η' precipitate forms more than the η precipitate during T6 aging.  

Later investigations have consistently supported this claim [2, 11, 14-15]. While 

AA7075-T6 is considerably stronger than many other aluminum alloys, it is also highly 

susceptible to stress corrosion cracking (SCC).  It is generally accepted that small η 

precipitates distributed along the grain boundaries are the primary cause of poor SCC 

behavior [12-15].  

In response, the T7 temper was developed as a way to reduce SCC susceptibility. 

Park found a crack velocity of 4 x 10
-4

 mm/hr for AA7075-T7 compared to 2 x 10
-2

 

mm/hr for AA7075-T6 during SCC experiments [13].The reduction in crack growth rate 

is accomplished primarily by the growth of η precipitates along grain boundaries [13-16, 

20, 21-25]. This reduces the number of η precipitates along grain boundaries. Wallace, 

Rajan, and Beddoes suggested that the large grain boundary precipitates provide crack 

retardation through crack-tip blunting mechanisms [14]. While over aging treatments 

improve SCC resistance, they also reduce overall strength compared to peak aging [2, 12, 

16, 21-25]. This is commonly attributed to the low quantity of η' precipitates present in 
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the over-aged microstructure. AA7075-T7 exhibits tensile yield strength of 435 MPa 

(63.1 ksi) and a hardness of 155 HV [2]. Over aging results in a 16 percent reduction in 

yield strength and a 13 percent reduction in hardness compared to peak-aged AA7075.  

In 1974 Cina proposed RRA treatments for AA7075-T6 as a way of reducing 

SCC susceptibility while still maintaining peak-aged strength [8]. Rajan et al. studied the 

SCC behavior of AA7075-RRA and confirmed that SCC susceptibility was reduced by 

RRA treatments while the strength remained comparable to the peak-aged condition [14]. 

Several studies since then have reaffirmed the conclusions by Rajan et al. [13, 15-17, 21-

24]. The final strength of AA7075-RRA is highly dependent upon the temperature and 

duration of the retrogression step. The change in hardness during retrogression of 

AA7075-T6 is shown in Figure 1.1. The typical hardness profiles for both low and high 

temperature retrogressions are shown as T1 and T2, respectively. Numerous studies have 

established that retrogressing beyond the recovery limits denoted in Figure 1.1 will 

prevent the strength lost during retrogression from being fully recovered during reaging 

[13-14]. Typical hardnesses are shown as a function of retrogression time in Figure 1.2. 
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Figure 1.1: Typical hardness profiles of low (T1) and high (T2) temperature retrogressions as a 

function of retrogression time. 
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Shorter retrogression times and lower retrogression temperatures typically result 

in a greater recovered strength and less SCC resistance compared to longer retrogression 

times and higher retrogression temperatures [13-24].  During longer and higher 

Figure 1.2: Typical hardness profiles of a retrogressed material (lower curve) and of a 

retrogressed material reaged at 121 ºC for 24 to 48 hours (upper curve) as functions of 

retrogression time. 
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temperature retrogression treatments, η' precipitates will dissolve to a greater extent than 

at lower temperatures and shorter times. In addition, the coarsening rate of η precipitates 

increases with time and temperature. The dissolution of η' precipitates adversely affects 

final strength, while growth of η precipitates along grain boundaries improves SCC 

resistance [13-24]. For AA7075, low-temperature retrogression treatments typically range 

from 160 to 180 ºC and last for 20 to 30 minutes. High-temperature retrogression 

treatments typically range from 230 to 240 ºC and last for 10 to 20 seconds [13-20]. The 

upper threshold for retrogression temperature is generally limited to 260 ºC. The short 

retrogression times necessary at these temperatures become impractical to obtain and 

control. 

In addition to artificial aging procedures, such as the tempers discussed above, 

natural aging has been shown to substantially affect certain aluminum alloys [10, 25]. 

Taleff et al. established this for several Al-Zn-Mg alloys similar to AA7075. Following 

exposure to a typical paint-bake cycle (PBC), several alloys regained 30 percent of their 

strength after 60 weeks of natural aging [10]. In contrast, several studies reported that a 

heat treatment similar to the PBC acts as a retrogression treatment for AA7075-T6. They 

did not report on subsequent natural aging of these specimens [13, 20]. Consequently, the 

natural aging behavior of AA7075 following the PBC was considered during the course 

of this study. 

AA7075-T6 exhibits low ductility at room temperature, causing difficulties for 

forming processes such as stamping. At room temperature AA7075-T6 exhibits tensile 
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elongation of 11 percent [2]. This is less than a third of the elongation of most steels used 

for stamping at room temperature [2-3]. It has been shown, however, that ductility of 

AA7075-T6 can be increased twofold by forming at elevated temperatures [26-28]. 

Sotirov et al. performed tensile tests at 200 and 230 ºC that produced tensile elongations 

of 25 and 32 percent, respectively [26]. Furthermore, Hui et al. showed an increase in 

ductility at 220 ºC but achieved tensile elongations of only 18 percent during tensile 

testing [27]. Tensile tests performed at temperatures near 300 ºC produced even greater 

elongations. The ASM Aluminum Specialty Handbook reports tensile elongations of 65 

percent at 265 ºC and 70 percent at 315 ºC [2]. McQueen reports that tensile elongation 

does not increase above 300 ºC [10]. Nevertheless, it appears that forming at elevated 

temperatures may allow for AA7075-T6 to be successfully used in stamping operations. 

Medium-strength aluminum alloys are currently used by the auto industry with 

cold forming processes. AA6016 and AA6111 have been previously used for exterior 

body panels [29-30]. AA6061 was reviewed in this study because it exhibits potentially 

useful behavior and is more readily available for future testing. AA6061-T6 achieves a 

tensile yield strength of 276 MPa (40 ksi) and a hardness of 107 HV. This is the peak-

aged condition for AA6061. Compared with AA7075-T6, this is a reduction of 54 percent 

in tensile yield strength and 58 percent in hardness. The recommended aging temperature 

for AA6061 is from 160 to 180 ºC. This currently coincides with the typical PBC 

temperatures used today [2, 10]. Because of this overlap, AA6061 may see appreciable 
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strength gains following the PBC. Indeed, Saga et al. reported a marked increase in 

hardness after a typical PBC for various pre-aging conditions of AA6061 [31]. 

 

1.3. New Forming Concepts 

Auto manufacturers encounter several difficulties when attempting to use 

conventional stamping techniques for forming high-strength aluminum alloys. Room 

temperature forming applications are limited by low ductility, and hot forming 

applications are restricted by the desired final part strength. Possibilities exist to create 

new forming concepts to overcome these difficulties. In particular, developing new 

forming concepts by combining hot forming and RRA heat treatments with current PBC 

demands is of interest. The new forming concepts suggested by this study are RRA 

forming and solution forming. 

 

1.3.1 RRA Forming 

RRA forming is a new multi-step heat treatment and forming concept designed to 

improve formability and maintain the peak-aged strength of high-strength aluminum 

alloys during auto manufacturing. The new concept integrates hot forming and the 

mandatory PBC into a RRA heat treatment. To begin, the sheet material is aged to the T6 

condition and then preheated for a controlled time before stamping. The heated sheet is 
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then stamped in either warm or cold dies. The hot stamping operation acts as a 

retrogression treatment. The material is quickly cooled to room-temperature in the dies 

either during or at the end of the forming procedure. After the forming/retrogression 

operation, the sheet must be reaged back to peak strength. The PBC is used as the reaging 

treatment in lieu of the optimal reaging treatment. AA7075 is a practical alloy to 

investigate for this study. AA7075 provides the strength and light-weighting desired by 

auto manufacturers, and RRA treatments of AA7075 have been studied in the past. 

Furthermore, RRA treatments can improve SCC resistance while maintaining the peak-

aged strength of AA7075. Two RRA forming concepts were proposed for this study. A 

processing map for each RRA forming concept is shown in Figure 1.3. 

AA7075-T6 can be successfully retrogressed at 200 to 250 ºC for times from 2 

minutes to 1 minute, respectively. The retrogression procedure includes the heat-up, 

forming, and cool-down operations. Two distinct reaging treatments for AA7075 were 

investigated during this study. The first, shown in Figure 1.3 (a), implements the PBC as 

the only reaging treatment. It was hypothesized that a proper retrogression could be 

paired with the PBC to mimic the effects of a traditional RRA treatment. The second 

option, shown in Figure 1.3 (b), is a two-step reaging treatment. After forming, an 

intermediate aging is performed at the optimal reaging temperature of 121 ºC for 3 to 24 

hours. Then reaging is completed by the PBC. This option was investigated to determine 

how the PBC affected partially reaged AA7075. RRA forming can potentially address the 
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current barriers to forming AA7075 by improving ductility during stamping and 

maximizing final part strength. 

 

 

 

 

Figure 1.3: RRA forming concept for AA7075-T6 with (a) single-stage reaging and (b) dual-

stage reaging. 

(a) 

(b) 
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AA6061 is another alloy that may benefit from RRA forming. Retrogression 

treatments for AA6061 are similar to those for AA7075, but the preferred aging 

temperature of AA6061 is from 160 to 180 ºC. Because this coincides with standard PBC 

temperatures, AA6061 is expected to respond favorably to the PBC. Saga et al. 

demonstrated that the PBC improves the hardness of AA6061 aged at 100 ºC for 300 

seconds from 45 to 90 HV [31]. Combined with improvements in ductility at elevated 

temperatures, AA6061 could potentially be used with RRA forming operations. 

 

1.3.2. Solution Forming 

Solution forming is a new forming concept designed to greatly improve ductility 

and incorporate the PBC into a peak-aging heat treatment. The process map for solution 

forming is shown in Figure 1.4.  

To begin, AA7075-O is heated to 480 ºC, the solution treatment temperature, and 

forming is performed. Cold dies are used for the stamping operation to provide rapid 

cooling. After forming is completed, the solution treated microstructure should still be 

intact. Next, a two-step aging treatment is performed. Initial aging is performed at 120 ºC 

for 3 to 24 hours, such that the material is slightly under-aged upon completion. The PBC 

is then used to complete the aging treatment. Aging with only the PBC would not likely 

be sufficient to reach peak-aged strength. It is suggested that aging at 120 ºC prior to the 

PBC can provide the appropriate pre-aging required to optimize the final part strength 
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[2]. Solution forming improves ductility compared to RRA forming, but requires higher 

temperatures and more aging treatments than the latter. 

 

 

 

 

1.3.3. Comparison and Evaluation 

There are several key differences between solution forming and RRA forming. 

They are in formability, operating cost and difficulty, and aging requirements. The 

ductility of AA7075 is greater at solution forming temperatures than at RRA forming 

temperatures [2]. This greater ductility allows more complex forming operations to be 

conducted with solution forming. Solutionizing requires heating to temperatures in excess 

Figure 1.4: Solution forming concept for AA7075. 
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of 480 ºC. RRA forming operations only require heating to 250 ºC, or slightly less. This 

is both cheaper and easier to achieve than solution forming temperatures. Another 

distinction is that solution forming is not constrained by the short retrogression times of 

RRA forming. This creates a larger processing window for solution forming that is easier 

to manage. However, RRA forming requires less aging after forming than solution 

forming to reach peak-aged strength. This is because in the retrogressed condition, 

AA7075, contains a greater quantity of formed or partially dissolved η' and η precipitates 

than the solution-treated condition. AA7075-O should be void of nearly all strengthening 

precipitates and requires a rigorous aging treatment to reach peak-aged strength. In 

summary, RRA forming offers less ductility and shorter processing windows, but is 

conducted at lower temperatures and requires less aging than solution forming.  

In order to further develop RRA forming and solution forming, the aging and 

forming behaviors of AA7075 were thoroughly evaluated. Hardness testing was used to 

assess the effects of various RRA heat treatments of AA7075-T6. These tests were then 

used to determine the heat treatment temperature and durations potentially useful for 

RRA forming. Tensile tests were performed at RRA forming and solution forming 

temperatures to evaluate the improvements in ductility obtainable from these new 

forming concepts. 
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Chapter 2: Experimental Procedures 

 

2.1. Overview 

The aging and forming behaviors of two AA7075-T6 sheet materials, generously 

provided by General Motors, are investigated. Both sheets were cold rolled to a final 

thickness of 2 mm and were received in the T6 condition [2]. One sheet was produced by 

ALCOA and the other by Austria Metall AG (AMAG). The nominal chemical 

composition of AA7075 is given in Table 2.1. The specific alloy compositions of the two 

AA7075-T6 materials tested were not provided. The two alloy sheets investigated in this 

study were subjected to the same heat treatments and tensile testing procedures. Samples 

for aging treatments were machined from the as-received material and subjected to 

multiple retrogression and reaging (RRA) treatments. Aging treatments were conducted, 

and hardness, an indirect measure of strength, was measured after the various RRA 

treatments. These data were used to determine the acceptable temperatures and times for 

RRA forming. Separate tensile coupons were machined from the as-received material for 

tensile testing. Tensile testing was conducted at temperatures of 18 ºC (room-

temperature), 200 and 225 ºC with rapid direct electrical resistance heating, and 300 and 

480 ºC with a resistance heating furnace. A constant cross-head velocity was used for all 

these tensile tests to provide an initial strain rate of 0.05 s
-1

. All tensile coupon 

geometries were designed and machined per ASTM E8 standards, and elevated 
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temperature testing was conducted per ASTM E21 standards [32-33]. The tensile coupon 

geometries used in this study are described in detail in section 2.3. Tensile testing was 

conducted to evaluate the ductility obtainable from forming AA7075 at the elevated 

temperatures proposed for the solution forming and RRA forming concepts. 

 

Table 2.1: Nominal AA7075 chemical composition in weight percent (wt. percent) [34]. 

Alloy Zn Mg Cu Cr Si Fe Mn Ti Al 

7075 5.1 - 6.1 2.1 - 2.9 1.2 - 2.0 0.18 - 0.28 < 0.4 < 0.5 < 0.3 < 0.2 bal. 

 

 

2.2. Aging Procedures 

A flow chart describing the five aging procedures investigated is presented in 

Figure 2.1. Path 1 kept material in the as-received condition and was used as a control. 

Path 2 produced retrogression treated material in order to characterize the hardness as a 

function of retrogression time for specific retrogression temperatures. It was of particular 

interest to locate the local minimum hardness produced by retrogression treating at short 

times. Reaging at 120 ºC from that local minimum hardness results in the greatest 

recovery in strength [16, 19-23]. Path 3 produced material reaged at 120 ºC for various 

times following retrogression treating. This treatment was completed to determine the 

effect of various 120 ºC reaging times on hardness. Path 4 produced paint-baked material 
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following retrogression treating. It was completed in order to determine if the paint-bake 

cycle (PBC) could replace a traditional reaging treatment at 120 ºC. Path 5 produced 

paint-baked material following retrogression treating and intermediate aging at 120 ºC for 

various times.  This was studied to determine if pre-aging at 120 ºC before the PBC 

increased part strength compared to paint baking alone.  

The specific temperatures and times investigated for the retrogression, reaging, 

and PBC steps are presented in Table 2.2. A total of 96 different heat treatment 

conditions were examined for each material. Specimens for RRA heat treatments, shown 

in Figure 2.2, were 3 cm long by 1 cm wide by 2 mm thick strips machined from the as-

received material. Retrogression treatments used a molten salt bath. The molten salt bath 

and small specimen size ensured that the retrogression temperature was reached in no 

more than a few seconds. A resistance tube furnace was used for both the 180 ºC PBC 

and the optional 120 ºC intermediate aging treatments. Specimens were immediately 

water quenched to room temperature following the completion of each heat treatment. 

During heat treatments, temperature was monitored with two type-K thermocouples. 

Micro-Vickers hardness tests were conducted after the completion of each heat treatment. 

Specimens were naturally aged for 3 to 7 days between heat treatments. Specimens from 

each processing path were examined throughout testing, as shown in Figure 2.1. Several 

aging treatments were repeated during this study. Tests that were repeated one additional 

time are marked with a superscript † in Table 2.1. The data were consistent between the 

repeated tests. In addition, 3 to 5 hardness measurements were usually made for each 
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specimen. At least 3 hardness measurements were always made for the first examination 

following the completion of a heat treatment. For subsequent monitoring of natural aging, 

3 or more measurements were taken only if the first measurement was not consistent with 

previous measurements. The uncertainty associated with hardness measurements was 

calculated to be ± 5 HV. This was calculated from the average of the standard deviations 

of tests where 3 or more hardness measurements were taken. The error was consistent 

between both sheet materials and between the different aging treatments. The largest 

standard deviation calculated from an individual examination was 13.8 HV, but this was 

caused by an individual outlier in the hardness measurements. 

 

  

Figure 2.1: Flow chart of the aging treatments investigated. Path  1 provides material in the as-

received condition. Path 2 provides material after retrogression treating; Path 3 provides 

material after retrogression treating and 120 ºC reaging; Path 4 provides material after 

retrogression treating and paint baking; Path 5 provides material after retrogression treating, 

120 ºC reaging, and paint baking. 
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Table 2.2: Heat treatment temperatures and times used for this study. Each section corresponds to 

heat treatments for a path shown in Figure 2.1. Tests that were repeated one additional time are 

marked with a superscript †. 

1 
Control – Material in the as 

receive condition     

       

2 
Retrogression 

Temp (°C) 

Retrogression 

time (s)     

       

 
200

†
 10

† 

    

  
30

†
 

    

  
90

†
 

    

  
150

†
 

    

 
225 10 

    

  
30 

    

  
90 

    

  
150 

    

 
250

†
 10

†
 

    

Figure 2.2: An example of the aging specimens used for studying heat treatments. 
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30

†
 

    

  
90

†
 

    

  
150

†
 

    

 
300 10 

    

  
30 

    

  
90 

    

  
150 

    

 
350 10 

    

  
30 

    

  
90 

    

  
150 

    

       

3 
Retrogression 

Temp (°C) 

Retrogression 

time (s) 

Reage 

Temp (°C) 

Reage 

time (hrs)   

       

 
200 10 120 3 

  

    
6 

  

    
12 

  

    
24 

  

  
30 120 3 

  

    
6 

  

    
12 

  

    
24 

  

  
90 120 3 

  

    
6 

  

    
12 

  

    
24 

  

  
150 120 3 

  

    
6 

  

    
12 

  

    
24 

  

 
225 10 120 3 

  

    
6 

  

    
12 

  

    
24 

  

  
30 120 3 

  

    
6 

  

Table 2.2 continued 
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12 

  

    
24 

  

  
90 120 3 

  

    
6 

  

    
12 

  

    
24 

  

  
150 120 3 

  

    
6 

  

    
12 

  

    
24 

  

 
250 10 120 3 

  

    
6 

  

    
12 

  

    
24 

  

  
30 120 3 

  

    
6 

  

    
12 

  

    
24 

  

  
90 120 3 

  

    
6 

  

    
12 

  

    
24 

  

  
150 120 3 

  

    
6 

  

    
12 

  

    
24 

  

 
300 10 120 24 

  

  
30 120 24 

  

  
90 120 24 

  

  
150 120 24 

  

 
350 10 120 24 

  

  
30 120 24 

  

  
90 120 24 

  

  
150 120 24 

  

       

       

       

Table 2.2 continued 
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4 
Retrogression 

Temp (°C) 

Retrogression 

time (s) 

Reage 

Temp (°C) 

Reage 

time (hrs) 

Paint Bake 

Temp (°C) 

Paint Bake 

time (min) 

       

 
200

†
 10

†
 none

†
 none

†
 180

†
 30

†
 

  
30

†
 none

†
 none

†
 180

†
 30

†
 

  
90

†
 none

†
 none

†
 180

†
 30

†
 

  
150

†
 none

†
 none

†
 180

†
 30

†
 

 
225 10 none none 180 30 

  
30 none none 180 30 

  
90 none none 180 30 

  
150 none none 180 30 

 
250

†
 10

†
 none

†
 none

†
 180

†
 30

†
 

  
30

†
 none

†
 none

†
 180

†
 30

†
 

  
90

†
 none

†
 none

†
 180

†
 30

†
 

  
150

†
 none

†
 none

†
 180

†
 30

†
 

 
300 10 none none 180 30 

  
30 none none 180 30 

  
90 none none 180 30 

  
150 none none 180 30 

 
350 10 none none 180 30 

  
30 none none 180 30 

  
90 none none 180 30 

  
150 none none 180 30 

       

5 
Retrogression 

Temp (°C) 

Retrogression 

time (s) 

Reage 

Temp (°C) 

Reage 

time (hrs) 

Paint Bake 

Temp (°C) 

Paint Bake 

time (min) 

       

 
200 10 120 3 180 30 

    
6 180 30 

    
12 180 30 

    
24 180 30 

  
30 120 3 180 30 

    
6 180 30 

    
12 180 30 

    
24 180 30 

  
90 120 3 180 30 

Table 2.2 continued 
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6 180 30 

    
12 180 30 

    
24 180 30 

  
150 120 3 180 30 

    
6 180 30 

    
12 180 30 

    
24 180 30 

 
225 10 120 3 180 30 

    
6 180 30 

    
12 180 30 

    
24 180 30 

  
30 120 3 180 30 

    
6 180 30 

    
12 180 30 

    
24 180 30 

  
90 120 3 180 30 

    
6 180 30 

    
12 180 30 

    
24 180 30 

  
150 120 3 180 30 

    
6 180 30 

    
12 180 30 

    
24 180 30 

 
250 10 120 3 180 30 

    
6 180 30 

    
12 180 30 

    
24 180 30 

  
30 120 3 180 30 

    
6 180 30 

    
12 180 30 

    
24 180 30 

  
90 120 3 180 30 

    
6 180 30 

    
12 180 30 

    
24 180 30 

  
150 120 3 180 30 

    
6 180 30 

Table 2.2 continued 
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12 180 30 

    
24 180 30 

 
300 10 120 24 180 30 

  
30 120 24 180 30 

  
90 120 24 180 30 

  
150 120 24 180 30 

 
350 10 120 24 180 30 

  
30 120 24 180 30 

  
90 120 24 180 30 

  
150 120 24 180 30 

 

Path 1, shown in Figure 2.1 and Table 2.1, retained material in the as-received 

condition for future testing. The other paths described were used to produce material in 

various conditions of interest for potential forming technologies. Path 1 was used to 

quantify the changes in hardness produced by the various aging treatments investigated.  

Path 2 produced material in the retrogressed state for further testing. Available 

literature suggests that retrogression treating at from 200 to 250 ºC for 10 to 150 seconds 

allows the peak-aged hardness to be recovered with an optimal reaging treatment. 

Consequently, samples were retrogressed at temperatures of 200, 225, and 250 ºC for 10, 

30, 90, and 150 seconds. These span the potentially useful retrogression conditions for 

AA7075. Retrogression treating at 300 and 350 ºC was performed to quantify the effects 

of retrogression treatments at temperatures above the limit to recover hardness during 

reaging. Retrogression time was measured from the moment the specimen was 

submerged in the molten salt bath. Specimens were immediately water quenched to room 

temperature upon completion of the retrogression. These specimens were used to 

Table 2.2 continued 
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determine the times and temperatures potentially useful for retrogression treatments of 

AA7075. 

Path 3 produced material in the retrogressed and reaged condition for further 

testing. Specimens were reaged at 120 ºC for 3, 6, 12, and 24 hours after retrogression 

treating. Specimens were immediately water quenched to room temperature upon 

completion of the reaging. This was performed to determine how reaging time affects the 

hardness recovered after retrogression treatments. Reaging was also used to determine if 

peak-aged hardness was recoverable for each of the retrogression treatments investigated. 

  Paths 4 and 5 produced material with a simulated paint-baked condition at the end 

of the prior aging treatments.  All retrogression treated specimens and specimens 

retrogressed and intermediately aged at 120 ºC were subjected to a simulated paint-bake 

cycle (PBC). Specimens were subjected to the PBC because it is a mandatory procedure 

in the automobile manufacturing process. Heat treating at 180 ºC for 30 minutes was used 

to simulate the typical PBC currently used by the automobile industry. The timing of the 

PBC was started the moment the specimens were loaded into the tube furnace. Specimens 

were immediately water quenched to room temperature upon completion of the PBC. 

These specimens were used to determine hardness after the PBC for various pre-aging 

conditions and whether or not the PBC could be used instead of an optimal reaging 

treatment. Part hardness after the PBC would need to be near the peak-aged hardness to 

consider RRA forming practical. 
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Natural aging was monitored for select specimens from the as-received and 

retrogressed conditions and for all specimens subjected to the PBC. Natural aging was 

conducted in a temperature-controlled environment maintained between 18 to 21 ºC. At 

least 3 hardness values were measured immediately following the completion of each 

heat treatment. A logarithmically increasing time span was adapted between subsequent 

hardness tests, as in the previous work by Taleff et al. [10]. Natural aging was monitored 

to measure any change in hardness over extended periods of time. This is important for 

ensuring parts behave as expected during service. Loss in hardness over time would be 

detrimental, whereas hardness gains may reduce artificial aging requirements.  

 

2.3. Tensile Testing Procedures 

Hardness data gathered from the aging treatments were used to determine the 

appropriate temperatures for evaluating RRA forming and solution forming behaviors. In 

order for a retrogression temperature to be considered suitable for RRA forming, peak-

aged hardness must be recoverable by reaging after a minimum retrogression time of 30 

seconds. RRA forming was explored at 200 and 225 ºC, and solution forming was 

explored at 300 and 480 ºC. The tensile testing procedures and test fixtures used are 

illustrated in Figure 2.3. Cold forming was simulated by tensile testing at room 

temperature. Solution forming was simulated by tensile testing in a three-zone resistance 
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tube furnace. RRA forming was simulated by tensile testing with rapid direct electrical 

resistance heating. The procedures for each of these tests are discussed in the following. 

 

 

 

 

Figure 2.3: This figure displays the test temperatures and testing equipment used to evaluate 

cold forming (left), solution forming (middle), and RRA forming (right). 
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2.3.1. Room-Temperature Tensile Testing 

Room-temperature tensile tests used specimens with a dog-bone geometry having 

a 70-mm gauge length and a 6-mm gauge width. A technical drawing of this tensile 

coupon geometry is presented in Figure 2.7. The rolling direction was oriented along the 

tensile direction. Tensile elongations were imposed by a computer controlled electro-

mechanical test frame capable of maintaining a constant displacement rate. Tests were 

conducted on the as-received AA7075-T6 and on solution-treated AA7075. Solutionizing 

was conducted at 480 ºC for 48 hours in a tube furnace. Specimens were immediately 

water quenched to room temperature upon completion of the solution treatment. Peak-

aged and solution-treated AA7075 were tensile tested at room-temperature to gauge the 

improvements in ductility gained by forming at retrogression and solution treatment 

temperatures. An extensometer was used to monitor elongation during testing. The 

extensometer could not be used in elevated-temperature tests. The test setup for room-

temperature tensile testing is shown in Figure 2.4. Reduction-in-area was measured at the 

point of fracture with calipers accurate to ± 0.001 inches after testing.  
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Figure 2.4: Room-temperature tensile test setup. 
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2.3.2. Solution Forming Temperature Tensile Testing 

Solution forming tests were conducted at 300 and 480 ºC in a resistance tube 

furnace. These tests were conducted to measure ductility of AA7075 at solution forming 

temperatures. Testing was conducted at 480 ºC because that is the typical solution 

treatment temperature of AA7075. Very little tensile data exist for AA7075 at 480 ºC. 

Data are more readily available for tensile tests conducted at 300 ºC. Therefore, testing 

was also conducted at 300 ºC to produce data that could be compared to the data 

available from literature. Testing at 300 ºC also provided a closer comparison to RRA 

forming temperatures. Solution forming tensile testing was performed with the same 

tensile coupon geometry used for room-temperature tensile tests. The rolling direction 

was oriented along the tensile direction. Each specimen was brought to the desired testing 

temperature within 15 to 20 minutes by a three-zone resistance tube furnace. The three-

zone furnace was used because rapid heating was not required. The furnace was 

controlled by a three-zone furnace controller that provided individual control of each 

heating zone during testing. The experimental setup for solution forming tensile testing is 

shown in Figure 2.5. Temperature was monitored during each test using two type-K 

thermocouples in contact with the specimen. Each specimen was immediately water 

quenched to room-temperature after test completion. Tensile elongations were imposed 

by a computer controlled servo-hydraulic test frame capable of maintaining a constant 

displacement rate. Tensile elongation was calculated from the crosshead displacement. 

The machine compliance was accounted for by adjusting the force and displacement data 
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after testing. This was accomplished by forcing the elastic loading portion of the data to 

match the known value of Young’s modulus at the respective testing temperature. The 

unrelaxed temperature dependent Young’s modulus for aluminum used for these 

corrections is described by Equation 1.  This equation is from a fit to the data of Köster, 

where Young’s modulus (E) is in MPa and temperature (T) is in Kelvin [35]. 

 

   2T03084.0T98.12630,77)MPa(E    (2.1) 

 

Reduction in area was measured at the point of fracture with calipers accurate to 

± 0.001 inches for each specimen tested.  
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2.3.3. RRA Forming Temperature Tensile Testing 

Tensile tests were performed at 200 and 225 ºC to evaluate RRA forming 

behavior. Typical retrogression treatments for AA7075 at temperatures above 200 ºC last 

for roughly 1 minute or less [8, 13-24]. Because of this, direct electrical resistance 

heating was used to heat the tensile coupons rapidly enough to appropriately simulate 

retrogression treatments during deformation. The electrical heating system was 

Figure 2.5: Solution forming tensile testing setup. 
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comprised of three parts: the power system, the control system, and the tensile testing 

fixtures. A schematic and a picture of the electrical heating system are shown in Figure 

2.6.  

The power system consisted of a Miller XMT 350 MPA welding power unit, 

which provided up to 350 amps at 1 to 2 volts. This unit was chosen because it was 

available and provided well regulated amperage at low voltage. The power system was 

remotely controlled by computer to automate the heating procedure. Automation was 

implemented in order to provide precise control of the temperature and heating rate 

during testing. The control system consisted of an Omega 0S0550 Series infrared 

pyrometer (IR), Dell computer, National Instruments data acquisition and output 

modules, and LabVIEW routine. This system controlled, monitored, and recorded the 

specimen temperature during each test. The IR pyrometer measured the infrared emission 

from the specimen, and temperature was inferred from that measurement. Each tensile 

coupon was painted flat black to provide a constant, known emissivity. Emissivity was 

taken to be 0.95. A PID algorithm was implemented in LabVIEW to control specimen 

temperature during testing. The amperage supplied by the welder was continually 

adjusted through a computerized interface based on a heating profile input by the user 

and the temperature determined from the IR pyrometer. The IR pyrometer was used in 

lieu of contact temperature measurement techniques because of the high currents required 

for direct electrical resistance heating. Various National Instruments DAQ boards were 

used to connect all of the components of the system to a single command computer. This 
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system did not monitor deformation, i.e. force and displacement. A separate computer 

controlled and recorded the deformation data obtained from tensile testing. Tensile 

elongations were imposed by a computer controlled electro-mechanical test frame 

capable of maintaining a constant displacement rate. The tensile testing fixtures consisted 

of the tensile grips and tensile coupons. The design of each of these is discussed in the 

following. 
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Figure 2.6: Schematic representation of the direct electrical resistance heating system (top) 

and photographs of the direct electrical resistance heating system (bottom). 
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Tensile coupons were designed specifically for rapid heating immediately prior to 

tensile testing. A one-dimensional finite difference transient temperature model was 

developed to aid in the design of an appropriate tensile coupon. The model was adapted 

from the work of Karunasena on electrical resistance heating of flat bar geometries [36-

37]. The heating rate and temperature profile of the tensile coupon are determined by the 

width and length of the gauge region. Temperature was assumed to be constant across the 

width and thickness of the coupon but vary along the length of the gauge region. 

Boundary conditions needed to be specified before the model could be run. This included 

specifying the ambient air temperature and the temperature of each end of the gauge 

region. The ambient air was held constant at 20 ºC. The initial temperature at each end of 

the gauge region was also taken to be 20 ºC, but was linearly increased to 100 ºC during 

the simulation. This was done because Karunasena observed a temperature increase at the 

ends of the bar [36]. The convective and radiative heat transfer coefficients used were 

first determined by a fit to the data of Karunasena. They were later refined by fitting to 

data obtained with the tensile coupons used in this study. A detailed description of the 

heat transfer model is provided in Appendix A. 

Using the model, two tensile coupon geometries were designed. The rolling 

direction was oriented perpendicular to the tensile direction. The technical drawings for 

these are provided in Figure 2.7. A long double-dog-bone geometry with an 11-cm gauge 

length and 5-mm gauge width was first designed. This specimen produced a heating rate 

of 15 ºC per second in the middle of the gauge region using the rapid heating system. The 
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resulting temperature profile provided a ± 5 ºC temperature variation across a 1-inch 

length at the center of the gauge region. The double-dog-bone geometry was chosen to 

concentrate the current and localize heating to the inner-most gauge region. Because the 

double dog-bone is an unusual geometry, a single-dog-bone geometry was also designed. 

The single-dog-bone geometry has a 15.3-cm gauge length and 5-mm gauge width. This 

geometry produces a slightly larger constant-temperature region in the gauge region and a 

quicker heating rate than the double-dog-bone geometry. The heating characteristics of 

both geometries are shown in Figure 2.8. The single-dog-bone-coupon was tested to 

verify the data from the double-dog-bone geometry. Test results were consistent between 

both of these geometries and with data from the available literature. The tensile coupons 

were given large grip faces to improve conduction between the tensile coupon and the 

specimen holder. Both geometries used in this study are significantly longer than 

traditional tensile coupons. This was required to provide a reasonably long constant-

temperature zone in the inner-most gauge region and to limit the conductive heat loss 

from the gauge region to the tensile grips. 
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Figure 2.7: Technical drawings of (a) the room-temperature tensile coupon, (b) the rapid 

heating double-dog-bone tensile coupon, and (c) the single-dog-bone tensile coupon. All 

dimensions are in millimeters. 

(a) 

(b) 

(c) 
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The rapid-heating system was tested with a static table-top testing rig, shown in 

Figure 2.9, prior to testing in the tensile testing frame. This was to test the control and 

power systems and to compare the actual heating profiles and heating rates produced by 

the tensile geometries with those predicted by the numerical model simulations. Both 

Figure 2.8: Heating rates and profiles for the double-dog-bone (left) and single-dog-bone 

(right) tensile coupons predicted by the heat transfer model. The heating rates and temperature 

profiles were calculated with a constant current of 250 amps. 
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geometries behaved similarly to the model predictions, and only minor adjustments were 

made to the heat transfer coefficients to more accurately match the experimental 

temperature profiles across the inner-most gauge length. The temperature determined by 

the IR pyrometer was verified at 100 and 500 ºC using two Omega temperature indicating 

lacquers. 

 

 

 

 

Figure 2.9: Static table-top testing rig. 
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New tensile grips were also designed for rapid heating tensile testing. The grips, 

shown in Figure 2.10, were designed to electrically isolate 500 amps at 5 volts, bear over 

2000 lbs, and provide proper axial alignment of the specimen within the testing frame. 

The specimen holders were machined from C110-H02 copper to provide ample electrical 

conduction to the tensile specimen. The wire leads from the power supply were bolted 

directly to the specimen holder. Care was taken to ensure that each wire and connection 

was robust enough to safely conduct 350 amps without excessive heating. Furthermore, 

the specimen holder was designed to provide a large enough thermal mass to avoid over-

heating of the grip assembly. Tensile specimens were shoulder loaded and held in place 

by a G-10 cover placed over the front of the specimen. A bolt through the assembly was 

used to secure the specimen and the G-10 cover to the specimen holder. G-10 phenolic 

composite was chosen to provide electrical isolation from the test frame because it 

combines a high dielectric strength with high tensile yield strength. G-10 phenolic is a 

glass-fiber and epoxy composite material with a dielectric strength of 800 V/mm and 

tensile yield strength of 310 MPa (45 ksi) [38]. Spacers were machined from a single 

block of G-10 material with the fibers oriented along the tensile direction. The spacer 

electrically isolated the specimen holder from the load cell. An adapter was machined 

from a solid three-inch diameter 303 stainless steel rod to connect the spacer with the 

load cell. 303 stainless steel was chosen because it combines sufficient strength and good 

machinability. The adapter, G-10 spacer, and specimen holder were secured to each other 

by four half-inch diameter 18-8 stainless steel bolts. Stainless steel was used for all bolts, 

nuts, and washers because the testing frame is located in a non-atmospherically 
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controlled environment. Technical drawings of the grip components are available in 

Appendix A. 

 

 

 
Figure 2.10: Tensile grips used for rapid heating tensile testing. 
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Rapid heating tensile testing was used to simulate forming operations at 

retrogression temperatures. Tensile specimens were brought to the appropriate testing 

temperature within 25 to 30 seconds by the rapid heating system. A predefined 

temperature profile was specified before the test began for automatic computer control of 

heating. Once the specimen reached the desired testing temperature, it was allowed to 

stabilize for 10 to 20 seconds before deformation was started. The power supply was shut 

off at the start of deformation testing so that the tensile coupon would not electrically arc 

at failure. Deformation testing typically lasted for 1.5 seconds, and the temperature 

remained nearly constant during deformation. No form of quenching or forced convection 

techniques were used to cool the tensile specimens. After failure, each tensile specimen 

was left to cool in the ambient room-temperature air. Cooling to room-temperature 

typically required 1 to 2 minutes.  

Reduction in area was measured at the point of fracture after each test with 

calipers accurate to ± 0.001 inches, and cross-head displacement was measured in real 

time during each test. Elastic expansion of the grips and the temperature variations along 

the specimen gauge length made monitoring tensile elongation difficult. The temperature 

variations caused strain localization at the center of the inner-most gauge region, where 

temperature was the highest. As a result, it was not possible to determined local tensile 

elongation from the cross-head displacement alone. In order to measure local strains, 

circular gauge marks with a 0.1-inch diameter were electrochemically etched onto each 

specimen. A video camera captured images of the etched specimens during each test. A 
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frame-by-frame analysis was completed afterwards to measure the elongation of the 

gauge marks. These data provided local tensile elongations and local strain rates. The 

video analysis process is depicted in Figure 2.11. 

 

 

 

 

In order to begin video analysis, the images associated with deformation had to be 

identified. It was assumed that the image captured immediately before the specimen 

fractured constituted the end of deformation testing. In reality, this is slightly inaccurate. 

Because the duration of deformation varied from test to test, different moments of testing 

were captured for each test. Consequently, the image assumed to be the end of 

Figure 2.11: Example of the video analysis procedure used to measure local strain during 

rapid heating tensile testing. 
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deformation testing was not captured at the same moment of final deformation for each 

test. The video camera recorded at a frame rate of 15 frames per second, resulting in a 

0.07 second gap between images. Because this gap was small compared to the total 

deformation time, the discrepancy between tests was believed to be negligible. Force and 

displacement data were used to calculate the duration of deformation for each test. This 

value was then used to locate the image associated with the start of deformation testing. 

Every three images between the first and last images of deformation testing captured 

were analyzed. In total, 5 to 7 frames were analyzed for each test. The time elapsed 

between each frame analyzed was 0.2 seconds.  

Analysis was completed by fitting ellipses to each gauge mark and measuring the 

major and minor axes of each ellipse. To accomplish this, the original image captured 

was converting to a binary image. This was so that each image could be interpreted by 

FIJI, an image analysis software program [39]. Each binary image was manually edited to 

ensure the shape of the gauge marks was completely preserved during the conversion. 

The original image was over-layed onto the binary image to aid in this procedure. Next, 

the elliptical fitting tool in FIJI was used to fit an ellipse to each gauge mark and measure 

the lengths of each major and minor axis. FIJI was used because it provided a systematic 

way of accurately and consistently fitting an ellipse to each gauge mark. Strain was 

calculated by measuring the elongation of each axis between images.  
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Note: Appendix A contains a more detailed description of the procedures used during this 

study. It also contains more information on the design and testing of the tensile grips and 

tensile coupons used for ERH testing. 
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Chapter 3: Experimental Results 

 

3.1. Hardness Data 

Hardness tests were used to evaluate AA7075-T6 after retrogression and reaging 

(RRA) heat treatments. The retrogression response was determined by the hardness as a 

function of retrogression time for multiple retrogression temperatures. It was of particular 

interest to locate the retrogression time associated with the local hardness minimum for 

each retrogression temperature. This information was then used to evaluate the 

retrogression times and retrogression temperatures potentially useful for RRA forming. 

Throughout this section, each figure will present plots for the two materials studied side-

by-side. The plot shown on the left is for the material from ALCOA, and the plot shown 

on the right is for the material from AMAG. 

 

3.1.1. Retrogression Treating Only 

The hardness data for each retrogression temperature investigated are presented as 

a function of retrogression time in Figure 3.1.  
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As shown in Figure 3.1, both materials exhibit two types of retrogression behavior. The 

low-temperature behavior consists of retrogression treatments performed at 250 ºC and 

below, for which a local minimum in hardness occurs during retrogression. The high-

temperature behavior consists of retrogression treatments performed at 300 and 350 ºC. 

The observed retrogression behavior is consistent with data from the available literature 

[8, 13-24]. 

Low-temperature retrogression treatments produced the typical hardness profile 

associated with retrogression treatments [8, 13-24]. Hardness is first reduced to a local 

minimum and then slightly recovers as retrogression time increases. After the slight 
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(a) ALCOA: retrogression treated. (b) AMAG: retrogression treated. 

Figure 3.1: Hardness is shown as a function of retrogression time for specimens retrogression 

treated at 200, 225, 250, 300, and 350 ºC. Data from ALCOA (a) specimens and AMAG (b) 

specimens are shown side-by-side. 
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increase, hardness then gradually descends with increasing retrogression time. The 

location and depth of the initial reduction in hardness is highly dependent upon 

retrogression temperature. Retrogression treatments performed at 250 ºC produced a 

quicker and more severe reduction in hardness than retrogression treatments performed at 

200 and 225 ºC. Retrogression treatments conducted at 200 ºC did not produce a 

significant increase in hardness after the local hardness minimum for the retrogression 

times investigated. It is expected that an increase in hardness would be observed if 

retrogression treatments at 200 ºC were performed for longer than 150 seconds. Overall, 

hardness decreased with increasing retrogression temperature. 

Recovered hardness after reaging is greatest when specimens are retrogressed to 

the local hardness minimum prior to reaging. Reaging after retrogression treating beyond 

the local hardness minimum is detrimental to final part hardness [8, 16]. Therefore, it was 

of particular interest to determine the retrogression time associated with the local 

hardness minimum for each retrogression temperature. These times are noted in Figure 

3.1 and listed in Table 3.1 for retrogression treatments performed at 250 ºC and below. 

The retrogression time necessary to reach the local hardness minimum decreased from 

105 ± 20 to 10 ± 5 seconds as retrogression temperature increased from 200 to 250 ºC. 

The uncertainty in the retrogression time to reach the local minimum hardness was 

determined from a visual inspection of each hardness profile as a function of 

retrogression time. 
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ALCOA 

Retrogression 

Temperature ( ºC ) 

Local Minimum 

Retrogression Time (s) 

Local Minimum 

Hardness (HV) 

200 90 ± 20 161 

225 30 ±10 157 

250 10 ± 5 147 

 

 
AMAG 

Retrogression 

Temperature ( ºC ) 

Local Minimum 

Retrogression Time (s) 

Local Minimum 

Hardness (HV) 

200 150 ± 20 167 

225 30 ± 10 162 

250 10 ± 5 155 

 

High-temperature retrogression treatments at 300 and 350 ºC did not produce the 

typical hardness curve associated with retrogression behavior. Contrary to low 

temperature retrogression treatments, there was no evidence of achieving a local hardness 

minimum or subsequent recovery in hardness as retrogression time increased. Instead, a 

rapid decrease in hardness was initially observed and hardness continued to decrease with 

increasing retrogression time. 

The hardness data obtained from each retrogression treatment were combined for 

both materials and used to create a “master” hardness profile as a function of 

Table 3.1: Local minimum hardness data and corresponding retrogression conditions for the 

(a) ALCOA and (b) AMAG materials. 

(a) 

(b) 
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temperature-normalized retrogression time. Hardness after retrogression treating is 

related to partial dissolution of η' precipitates. This depends on the distance zinc diffuses 

away from η' precipitates during retrogression. It was hypothesized that hardness could 

be represented as a function of the diffusion distance of zinc in aluminum. 

Equation 3.1 describes how the distance a diffusing species travels in a solid 

material depends on time and the diffusion coefficient of the diffusing species in the solid 

material. In this study, x  (m) is the diffusion distance of zinc in the solid aluminum 

matrix, D (m
2
/s) is the temperature dependent diffusion coefficient for zinc in aluminum, 

and t (s) is time. 

tD~x     (3.1) 

The diffusion coefficient of a solute is described by Equation 3.2, where Do (m
2
/s) 

is the frequency factor, Q (J/mol) is the activation energy, R (J/mol-K) is the universal 

gas constant, and T (K) is the retrogression temperature. 

Q
RT

oD D e


 
   (3.2) 

Equation 3.3 is obtained by combining Equation 3.1 with Equation 3.2 and can be 

used to relate the diffusion distance of zinc in aluminum to the retrogression temperature, 

T (K), and retrogression time, t (s). Because it was postulated that hardness, HV, depends 

on the diffusion distance of zinc in aluminum, hardness is assumed to be a function of 

retrogression temperature and retrogression time in the following manner, 
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 
Q

RTHV fn x fn t e
    

 
  (3.3) 

The activation energy for zinc diffusion in aluminum near η' precipitates was 

taken as 95 kJ/mol. This value is from Taleff et al. [10]. Smithell’s and Hisayuki et al. list 

the activation energy of zinc diffusion in Al-Zn-Mg alloys near 120 kJ/mol [40-41].  This 

value was determined from high-temperature diffusion measurements. The activation 

energy listed by Taleff et al. was determined from differential scanning calorimetry of 

Al-Zn-Mg alloys undergoing peak-aging. It was not determined by diffusion 

measurements. The value from Taleff et al. was used because it was a direct measurement 

of the dissolution of η' precipitates.  

Ignoring constant terms, Equation 3.3 presents hardness as a function of 

retrogression temperature (T) and retrogression time (t). The right side of Equation 3.3 

represents retrogression time compensated for retrogression temperature and is referred to 

as temperature-normalized retrogression time, t
*
. Hardness data are plotted against 

temperature-normalized retrogression time in Figure 3.2. A curve was drawn to the data 

in Figure 3.2 to highlight the shape of the hardness profile and enable hardness to be 

easily determined from retrogression temperature and retrogression time.  
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3.1.2. Retrogression Treating and Paint Baking 

Typically, reaging is performed at 120 ºC for 24 hours after retrogressing to 

complete a RRA heat treatment. However, for the RRA forming concept introduced in 

section 1.3, the mandatory paint-bake cycle (PBC) is used as a reaging treatment instead. 

Thus, the retrogressed specimens were subjected to a simulated PBC, and their responses 

Figure 3.2: The hardness profile for retrogression of AA7075 is shown plotted against 

temperature-normalized retrogression time. The points enclosed in a circle denote local 

minimum hardness. 
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were studied. The simulated PBC was conducted at 180 ºC for 30 minutes. The hardness 

data for specimens subjected to the PBC following retrogression treatments are shown as 

a function of retrogression time in Figure 3.3. 

      

 

 

 

 

The PBC produced a measurable increase in hardness in many of the specimens 

retrogressed at 250 ºC and below. Specimens retrogressed at 200 ºC for over 10 seconds 

reached at least 83 percent of peak-aged hardness following the PBC. Hardness was 

reduced in the specimen retrogressed at 200 ºC for 10 seconds. It is suspected the PBC 

caused further retrogression in this specimen. This was most likely a result of the 
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(a) ALCOA: retrogression treated and paint-

baked. 
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Figure 3.3: Hardness is shown as a function of retrogression time for specimens subjected to 

the simulated PBC following retrogression treatments at 200, 225, 250, 300, and 350 ºC. Data 

from ALCOA (a) specimens and AMAG (b) specimens are shown side-by-side. 
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specimen being under-retrogressed prior to paint baking. The PBC response for 

specimens retrogressed at 225 ºC depended upon the manufacturer. For these specimens, 

hardness increased following the PBC in the ALCOA specimens retrogressed for more 

than 10 seconds, while hardness did not increase or decrease following the PBC in the 

AMAG specimens for any retrogression time. Finally, the PBC increased hardness for 

specimens retrogressed at 250 ºC for 10 and 30 seconds, while specimens retrogressed for 

90 and 150 seconds were not influenced by the PBC.  

Overall, it was observed that the PBC generally improved hardness after low-

temperature retrogression treatments. Hardness following the PBC generally decreased as 

retrogression temperatures and retrogression times increased. 

For higher temperature retrogression treatments, the PBC had little effect on 

hardness for any of the retrogression times investigated. As expected, retrogression 

treating at temperatures above 300 ºC reduced hardness too severely to be recovered to 

peak-aged hardness by a reaging treatment. Because of this, these specimens were not 

considered for any of the multi-step heat treatments discussed later, but their natural 

aging behaviors were still monitored. 

 

3.1.3. Retrogression Treating and Intermediate Aging at 120 ºC 

Though the PBC was useful for reaging specimens retrogressed at low 

temperatures, none of the specimens fully recovered peak-aged hardness. Therefore, a 
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second RRA forming concept was introduced in section 1.3. It was suggested that an 

additional intermediate aging treatment performed after retrogression treating and before 

the PBC may improve the final hardness. Intermediate aging treatments were conducted 

at 120 ºC for 3, 6, 12, and 24 hours. It was of interest to determine if the final hardness, 

after the PBC, could be optimized by varying the intermediate aging time. Hardness is 

plotted against retrogression time for specimens retrogressed at 250 ºC and below and 

reaged at 120 ºC for various times in Figure 3.4. 

 

 

 

 

 

 

 

 

 

 



65 

 

      

 

 

 

 

 

0 30 60 90 120 150
140

150

160

170

180

190

Retrogression Time (s)

H
ar

d
n

es
s 

(H
V

1
0

)

200 

C

225 

C

250 

C

0 30 60 90 120 150
140

150

160

170

180

190

Retrogression Time (s)

H
ar

d
n

es
s 

(H
V

1
0

) 200 

C

225 

C

250 

C

0 30 60 90 120 150
140

150

160

170

180

190

Retrogression Time (s)

H
ar

d
n

es
s 

(H
V

1
0

)

200 

C

225 

C

250 

C

0 30 60 90 120 150
140

150

160

170

180

190

Retrogression Time (s)

H
ar

d
n

es
s 

(H
V

1
0

)

200 

C

225 

C

250 

C

ALCOA AMAG 

(a) ALCOA: retrogression treated and aged 

for 3 hours at 120 ºC. 

(b) AMAG: retrogression treated and aged 

for 3 hours at 120 ºC. 

(c) ALCOA: retrogression treated and aged 

for 6 hours at 120 ºC. 

(d) AMAG: retrogression treated and aged 

for 6 hours at 120 ºC. 

Figure 3.4: Hardness is shown as a function of retrogression time for specimens reaged at 

120 ºC for various times following retrogression treatments at 200, 225, and 250 ºC. Aging 

times from top to bottom are (a,b) 3, (c,d) 6, (e,f) 12, and (g,h) 24 hours. Data from ALCOA 

(left) specimens and AMAG (right) specimens are shown side-by-side. 
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All specimens retrogressed at 200 ºC obtained nearly peak-aged hardness (HV = 

180) following intermediate aging at 120 ºC  for each intermediate aging time, with the 

exclusion of the ALCOA specimen retrogressed for 150 seconds and intermediate aged 

for 3 hours. For specimens retrogressed at 225 ºC, only those retrogressed for less than 90 
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(e) ALCOA: retrogression treated and aged 

for 12 hours at 120 ºC. 

(f) AMAG: retrogression treated and aged 

for 12 hours at 120 ºC. 

(g) ALCOA: retrogression treated and aged 

for 24 hours at 120 ºC. 

(h) AMAG: retrogression treated and aged 

for 24 hours at 120 ºC. 

Figure 3.4 continued 



67 

 

seconds reached peak-aged hardness following intermediate aging. The intermediate 

aging treatment was less successful on specimens retrogressed at 250 ºC than for the 

lower retrogression temperatures. Peak-aged hardness was not recovered in any specimen 

retrogressed at 250 ºC  following intermediate aging, regardless of retrogression time or 

intermediate aging time. 

Overall, hardness decreased with increasing retrogression time and retrogression 

temperature for a constant intermediate aging time. Also, hardness increased with 

intermediate aging time for constant retrogression conditions. Intermediate aging for 24 

hours typically produced the hardest material for each retrogression condition. The 

recovered hardness after intermediate aging of specimens retrogressed at 250 ºC fell 

significantly below the recovered hardness after intermediate aging of the material 

retrogressed at 200 ºC and 225 ºC. 

 

3.1.4. Retrogression Treating, Intermediate Aging at 120 ºC, and Paint Baking 

Specimens were subjected to the simulated PBC (180 ºC for 30 min.) following 

the completion of 120 ºC intermediate aging after retrogression treating. Hardness is 

plotted against retrogression time for these specimens in Figure 3.5. 
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(a) ALCOA: retrogression treated, aged for 

3 hours at 120 ºC, and paint baked. 

(b) AMAG: retrogression treated, aged for 3 

hours at 120 ºC, and paint baked. 

(c) ALCOA: retrogression treated, aged for 

6 hours at 120 ºC, and paint baked. 

(d) AMAG: retrogression treated, aged for 6 

hours at 120 ºC, and paint baked. 

Figure 3.5: Hardness is shown as a function of retrogression time for specimens reaged at 

120 ºC for various times and then paint baked following retrogression treatments at 200, 225, 

and 250 ºC. Aging time from top to bottom are (a,b) 3, (c,d) 6, (e,f) 12, and (g,h) 24 hours. 

Data from ALCOA (left) specimens and AMAG (right) specimens are shown side-by-side. 

 



69 

 

 

 

 

 

 

The PBC lowered hardness in many of the specimens retrogressed and 

intermediate aged at 120 ºC. Hardness was maintained around 170 HV for all of the 

specimens retrogressed at 200 and 225 ºC, regardless of intermediate aging time. This is 

comparable to retrogression treating, followed by the PBC alone, without any 
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(e) ALCOA: retrogression treated, aged for 

12 hours at 120 ºC, and paint baked. 

(f) AMAG: retrogression treated, aged for 

12 hours at 120 ºC, and paint baked. 

(g) ALCOA: retrogression treated, aged for 

24 hours at 120 ºC, and paint baked. 

(h) AMAG: retrogression treated, aged for 

24 hours at 120 ºC, and paint baked. 

Figure 3.5 continued 
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intermediate aging. For the material retrogressed at 250 ºC, hardness decreased as 

retrogression time increased, regardless of the intermediate aging time.  

In conclusion, the PBC eliminated any hardness gains obtained from intermediate 

aging at 120 ºC after retrogression treating. Intermediate aging at 120 ºC after 

retrogression treating and before the PBC did not significantly improve final hardness 

compared to reaging with the PBC alone. 

 

3.1.5. Natural Aging Behavior 

The long term stability of the microstructures produced by the various heat 

treatments investigated is of interest. The natural aging behavior of each heat treatment 

was monitored after completion of the PBC to investigate microstructural stability. Any 

increase in hardness during natural aging at room-temperature would improve part 

performance, while a reduction in hardness would detract from part performance during 

service. Natural aging of 7000-series alloys is a topic of previous investigation. Taleff et 

al. measured a significant improvement in hardness of several Al-Zn-Mg alloys after 60 

weeks of natural aging [10]. In this study, each specimen was naturally aged for 30 weeks 

after a simulated PBC. Of all the heat treatments investigated, only specimens 

retrogressed at 350 ºC were affected by natural aging. The hardness data for specimens 

naturally aged after retrogression treating and paint baking are plotted against the 
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logarithm of natural aging time in Figure 3.6. The individual plots correspond to 

retrogression times of 10, 30, 90, and 150 seconds. 
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(a) ALCOA: retrogression treated for 10 

seconds, paint baked, and naturally aged. 

(b) AMAG: retrogression treated for 10 

seconds, paint baked, and naturally aged. 

(c) ALCOA: retrogression treated for 30 

seconds, paint baked, and naturally aged. 

(d) AMAG: retrogression treated for 30 

seconds, paint baked, and naturally aged. 

Figure 3.6: Hardness is shown as a function of natural aging time for paint baked specimens 

following retrogression treatments at 200, 225, 250, 300, and 350 ºC. Retrogression times 

from top to bottom are (a,b) 10, (c,d) 30, (e,f) 90, and (g,h) 150 seconds. Data from ALCOA 

(left) specimens and AMAG (right) specimens are shown side-by-side. 
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Hardness substantially increased in all specimens retrogressed at 350 ºC after only 

100 days of natural aging at room-temperature. The amount of hardness recovered 

increased with retrogression time and stabilized near 120 HV regardless of retrogression 

time. This result suggests that retrogressing at 350 ºC produced significant dissolution of 

precipitates, allowing new precipitates to form during natural aging from the solutes 
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(e) ALCOA: retrogression treated for 90 

seconds, paint baked, and naturally aged. 

(f) AMAG: retrogression treated for 90 

seconds, paint baked, and naturally aged. 

(g) ALCOA: retrogression treated for 150 

seconds, paint baked, and naturally aged. 

(h) AMAG: retrogression treated for 150 

seconds, paint baked, and naturally aged. 

Figure 3.6 continued 
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previously put into solution. Though hardness was greatly improved by natural aging, it 

did not approach 180 HV, the peak-aged hardness of AA7075. None of the other 

retrogression temperatures were affected by natural aging. While natural aging did not 

improve part performance for lower temperature retrogression treatments, no softening 

was observed either. This is significant because it means near peak-aged hardness can be 

maintained after paint baking. Further natural aging is recommended to confirm these 

initial measurements for longer natural aging times. 

 

3.2. Tensile Testing Data 

Tensile testing was performed to measure the ductility of AA7075 at multiple 

temperatures. Tests were conducted at room-temperature to model cold forming, 200 and 

225 ºC to model RRA forming, and 300 and 480 ºC to model solution forming.  

 

3.2.1. Room-Temperature Tensile Tests 

Room-temperature testing was performed on material in the T6 and solution-

treated conditions. The rolling direction was oriented along the tensile direction. These 

tests provided baseline measures of ductility to compare with expected improvements in 

ductility at retrogression and solution-treating temperatures. True stress is plotted against 

true strain for tests conducted at room temperature in Figure 3.7. The solution treated 
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material was more ductile than the peak-aged material, as expected. Furthermore, the 

total elongations and yield strengths observed in these tests were consistent with data 

available from the literature [2]. A shear fracture was observed for each specimen upon 

failure. 
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(a) ALCOA: Room-temperature true stress-

strain data. 

(b) ALCOA: Failed specimens. 

(c) AMAG: Room-temperature true stress-

strain data. 

(d) AMAG: Failed specimens. 

Figure 3.7: True stress is plotted against true strain for room-temperature tensile tests for (a) 

ALCOA and (c) AMAG material. Images of the failed tensile specimens (b,d) are shown for 

each tests. 



77 

 

3.2.2. Solution Forming Temperature Tensile Tests 

Tensile tests were performed at solution treatment temperatures to measure 

ductility. Tests were performed at 300 and 480 ºC. The rolling direction was oriented 

along the tensile direction. Solution forming conditions were expected to greatly increase 

ductility, but these also require the most complicated aging treatments to reach peak-aged 

strength after forming. True stress is plotted against true strain for tensile tests conducted 

at 300 and 480 ºC in Figure 3.8. Specimens tested at 300 ºC failed earlier than expected. 

This was a result of rapid necking. Failure was ultimately caused by cavitation after 

necking. As a result of the necking, the true stress and true strain calculations do not hold 

for the final phase of each test. Necking limited total elongation of these specimens to 22 

percent. Total elongation was much greater for tests at 480 ºC. Both materials elongated 

by over 70 percent and reached the elongation limit of the furnace and specimen size 

used for testing. A longer furnace might allow for even greater elongation at 480 ºC. 

Rapid necking was not observed in specimens tested at 480 ºC. Two specimens were 

tested at 480 ºC for each material. Each specimen failed by cavitation. Failures with and 

without necking were observed at 480 ºC in each material. 
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(a) ALCOA: Solution-temperature true 

stress-strain data. 

(b) ALCOA: Failed specimens. 

(c) AMAG: Solution-temperature true 

stress-strain data. 

(d) AMAG: Failed specimens. 

Figure 3.8: True stress is plotted against true strain for solution forming temperature tensile 

tests for (a) ALCOA and (c) AMAG material. Images of the failed tensile specimens (b,d) are 

shown for each tests. 



79 

 

3.2.3. RRA Forming Temperature Tensile Tests 

RRA forming behavior was evaluated with tensile tests performed at 200 and 

225 ºC with rapid electrical heating. These temperatures were chosen because they 

produced nearly peak-aged hardness after retrogression treating and reaging with the 

PBC. Specimens were tested in the T6 temper, and the rolling direction was oriented 

perpendicular to the tensile testing direction. Engineering stress is plotted against nominal 

(engineering) strain calculated from total cross-head displacement for these tests in 

Figure 3.9. True stress and true strain could not be calculated for rapid electrical heating 

tests because deformation was highly irregular along the gauge length. Engineering yield 

stresses at 200 and 225 ºC are consistent with data available from the literature [26-27]. 

Engineering yield stress was measured to be 320 MPa at 200 ºC and 290 MPa at 225 ºC. 

Because the testing temperature was only maintained for a small portion of the 

middlemost gauge region, strain was heavily localized to this region. As a result, total 

elongation measurements are not particularly meaningful. Local strain from the deformed 

region was subsequently determined from video analysis of each test and is reported in 

Table 3.2. Necking occurred before failure for each test conducted at RRA forming 

temperatures. Three to four tests were conducted at 200 and 225 ºC for each material. The 

tensile data and failure modes were consistent between the tests. 
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(a) ALCOA: Engineering stress is plotted 

against nominal strain for RRA-

temperature tests. 

(b) ALCOA: Failed specimens. 

(c) AMAG: Engineering stress is plotted 

against nominal strain for RRA-

temperature tests. 

(d) AMAG: Failed specimens. 

Figure 3.9: Engineering stress is plotted against nominal strain for rapid heating tensile tests 

for (a) ALCOA and (c) AMAG material. Images of the failed tensile specimens (b,d) are 

shown for each tests. 
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3.2.4. Ductility Measurements 

Reduction in area was measured in addition to tensile elongation for each test. 

Percent elongation and percent reduction in area are presented in Table 3.2, along with 

the material condition before testing and the tensile failure mode. At room temperature 

slight necking was observed. The specimens tested at 300 ºC exhibited rapid necking. 

Necking at 300 ºC was more severe than at room-temperature. The ALCOA specimen 

tested at 480 ºC did not neck during testing. For this reason, reduction in area at 300 ºC 

was greater than at 480 ºC for the ALCOA material. In general, both percent reduction in 

area and percent elongation increased with temperature. Images of each specimen before 

and after testing are available in Appendix B. 
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ALCOA 

Test 

Temperature ºC 

Material 

Condition 
% Elongation 

% Reduction 

In Area 

Failure 

Mode 

Elongation 

Measurement 

18 T6 10 20 Shear Strain Gauge 

18 Sol. treated 16 24 Shear Strain Gauge 

200 T6 52* 44 Neck, Shear Local Video 

225 T6 42* 48 Neck, Shear Local Video 

300 Sol. treated 23 73 
Neck, 

Cavitation 

Cross-head 

Dsip. 

480 Sol. treated 71 64 Cavitation 
Cross-head 

Dsip. 

 

AMAG 

Test 

Temperature ºC 

Material 

Condition 
% Elongation 

% Reduction 

In Area 

Failure 

Mode 

Elongation 

Measurement 

18 T6 9.2 30 Shear Strain Gauge 

18 Sol. treated 16 31 Shear Strain Gauge 

200 T6 37* 42 Neck, Shear Local Video 

225 T6 47* 47 Neck, Shear Local Video 

300 Sol. treated 22 75 
Neck, 

Cavitation 

Cross-head 

Dsip. 

480 Sol. treated 76 83 
Neck, 

Cavitation 

Cross-head 

Dsip. 

 

  

Table 3.2: Material condition prior to testing, percent elongation, percent reduction in area, 

and failure mode are presented for the (a) ALCOA material and the (b) AMAG material for 

each tensile testing temperature investigated. Elongation measurements denoted with a * were 

determined from effective local elongations. 

(a) 

(b) 
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Chapter 4: Discussion 

 

4.1. Retrogression-Treated Material 

Retrogression temperatures above 300 ºC are not suitable for RRA forming. 

Typical retrogression behavior was not observed for these conditions, and hardness was 

reduced too severely for practical RRA forming. However, retrogression between 200 

and 250 ºC was suitable for RRA forming. Typical retrogression behavior was observed, 

suggesting hardness reductions during retrogression could be recovered through an 

appropriate reaging treatment. 

Two 3-D contour plots of hardness after retrogression treating are shown as 

functions of retrogression time and retrogression temperature in Figures 4.1 and 4.2 for 

several retrogression conditions. Each hardness contour mesh was constructed by an 

interpolation of the data points obtained in this study, shown as black dots. Reduction in 

hardness during retrogression treatments depends more on retrogression temperature than 

retrogression time.  
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ALCOA 

Figure 4.1: Contour plot of hardness for retrogressed ALCOA specimens as a function of 

retrogression time and retrogression temperature. 
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Hardness loss depends on microstructural development during retrogression 

treating. The microstructural development for an individual retrogression temperature as 

retrogression time increases is described in the following discussion. According to Park 

and Ardell, during typical retrogression treatments, the initial reduction in hardness is 

primarily caused by the dissolution of η' precipitates. During these early retrogression 

AMAG 

Figure 4.2: Contour plot of hardness for retrogressed AMAG specimens as a function of 

retrogression time and retrogression temperature. 
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stages leading to the local minimum hardness, fine η' precipitates formed during peak-

aging prior to retrogression either fully or partially dissolve, and larger η' precipitates 

transform to η-phase precipitates. This reduces the total quantity of precipitates in the 

microstructure, which causes the material to soften. Meanwhile, η precipitates already 

present from peak aging prior to retrogression treating tend to coarsen [13-20]. The 

subsequent increase in hardness that follows the local minimum hardness is attributed to 

the precipitation of new η-type precipitates [14-16]. This increases the total number of 

precipitates in the microstructure, which causes hardness to recover. Further retrogression 

treating, beyond the slight increase in hardness following the local hardness minimum, 

promotes coarsening of the η precipitates already present in the microstructure. As larger 

η precipitates grow and consume smaller precipitates, the total number of precipitates 

decreases and hardness is reduced [13-24]. 

Data available from the literature demonstrated that hardness after reaging is 

maximized when reaging is performed on material retrogressed to the local minimum 

hardness [8, 13-24]. According to literature, this is because at the local minimum 

hardness, many η' precipitates only partially dissolve to an extent that permits hardness to 

be recovered by an appropriate reaging treatment. This is effective because the larger η 

precipitates have not yet undergone coarsening, and new η precipitates have not yet 

formed. 

Yield strength is important to the automobile industry. High hardness, which 

indicates high yield strength, allows automobile manufacturers to reduce component 
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weight and improve fuel efficiency. In addition, high hardness and yield strength can 

improve the crash worthiness and dent resistance of auto-body panels. To achieve the 

best hardness from reaging, it is necessary to determine the time associated with 

retrogressing to the local minimum hardness. These values are presented in Table 4.1 for 

specimens retrogressed at temperatures of 250 ºC and less. 

 

 

 
ALCOA 

Retrogression 

Temperature ( ºC ) 

Local Minimum 

Retrogression Time (s) 

Local Minimum 

Hardness (HV) 

200 90 ± 20 161 

225 30 ±10 157 

250 10 ± 5 147 

 

 
AMAG 

Retrogression 

Temperature ( ºC ) 

Local Minimum 

Retrogression Time (s) 

Local Minimum 

Hardness (HV) 

200 150 ± 20 167 

225 30 ± 10 162 

250 10 ± 5 155 

 

 

Table 4.1: Local minimum hardness data and corresponding retrogression conditions for the 

(a) ALCOA and (b) AMAG materials. 

(a) 

(b) 
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The local minimum retrogression time is useful in defining the processing 

window for RRA forming. Retrogressing at low temperatures allows material to stay at 

the retrogression temperature longer and still recover most hardness by an appropriate 

reaging afterward. This increases the time available for RRA heating and forming 

operations. Low-temperature operations are also easier and cheaper to implement than 

high-temperature operations. As shown in Table 4.1, retrogression treating at 200 and 

225 ºC permits heating and forming operations to last for 120 to 30 seconds, respectively. 

Whereas, retrogressing at 250 ºC is limited to a window of 10 seconds. Conducting 

heating and forming operations within 10 seconds is most likely not feasible, which limits 

the potential RRA forming temperatures to below 250 ºC.  

Using these data, a processing window for RRA forming is recommended at 

temperatures from 200 to 225 ºC and times from 120 to 30 seconds. Retrogression 

temperatures below 200 ºC may also be potentially useful for RRA forming. They were 

not investigated in this study because higher temperatures are of most interest for 

potential high ductilities. 

Hardness is plotted against temperature-normalized retrogression time in Figure 

4.3. The hardness data produce a useful master retrogression curve using the temperature-

normalized retrogression time, t
*
, given in Equation 4.1, where t is retrogression time (s), 

Q is the activation energy of zinc diffusion in aluminum (kJ/mol), R is the universal gas 

constant (J/mol-K), and T is retrogression temperature (K). Q was taken as 95 kJ/mol as 

discussed in section 3.1.1. Data for hardness after retrogression treating that were 
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produced by Park and Kanno et al. also normalized well in Figure 4.3. The local 

minimum hardness was observed, on average, at a temperature-normalized time of *

mint = 

3.5 x 10
-9

 ± 8 x 10
-10

 seconds. Uncertainty in *

mint was determined from the standard 

deviation of the data. It is a result of the uncertainty in determining the time associated 

with retrogressing to the local minimum hardness. Retrogression behavior appears to be a 

function of the distance zinc diffuses in aluminum during retrogression. This is likely 

why the local minimum hardness is well predicted by the retrogression temperature and 

retrogression time, using *

mint . 

 

Q
* RTt t e

   
 

   (4.1) 
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4.2. Retrogression-treated and Paint-baked Material 

The paint-bake cycle (PBC) was used to reage retrogression treated specimens. 

Hardness is plotted against retrogression time in Figure 4.4 for specimens subjected to 

paint baking after retrogression treating and for specimens subjected to retrogression 

treating only. Hardness was generally higher after the PBC. Only the AMAG specimen 

retrogression treated at 225 ºC produced a negligible PBC response. Peak-aged hardness 

was never fully recovered by reaging with the PBC. Though, for certain retrogression 
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Figure 4.3: Hardness is plotted as a function of temperature-normalized retrogression time. 
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conditions shown in Figure 4.4, hardness was recovered to within 5 percent of the peak-

aged condition (HV = 180). This is most likely a result of over-aging occurring during 

the PBC. The microstructure of peak-aged AA7075 consists of a fine even distribution of 

small η’ precipitates throughout the aluminum matrix. Over-aging treatments reduce the 

number of η’ precipitates compared to the peak-aged condition, which reduces hardness 

[2, 11-12]. Over-aging treatments designated by the T7 temper are accomplished by 

aging for 6 to 8 hours at 107 ºC and then aging for 24 to 30 hours at 163 ºC [2]. 

 

4.2.1. Microstructural Development during Paint Baking after Retrogressing to *

mint   

The reaging behavior of material retrogressed to the local minimum hardness is of 

particular interest. It is suspected that over-aging occurs during paint-baking in material 

previously retrogressed to the local minimum hardness. This is because current PBC 

temperatures (180 ºC) are greater than the recommended over-aging treatment 

temperature (163 ºC) and RRA reaging treatment temperature (121 ºC) [2].  

Reaging at the recommended temperature of 121 ºC for 24 hours after 

retrogression treating to *

mint  produces numerous fine η' precipitates. New η' precipitates 

replace those dissolved during retrogression and η' precipitates that were partially 

dissolved during retrogression are regrown. Compared to the recommended reaging, it is 

suspected that reaging with the PBC precipitates fewer η' precipitates. This is most likely 

a result of three effects. During the PBC more η precipitates form, existing η´ precipitates 
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that survived retrogression evolve into larger η precipitates, and existing η precipitates 

tend to coarsen. As a result, the microstructure produced by retrogression followed by the 

PBC contains fewer fine η' precipitates compared to the peak-aged condition. Because of 

this, hardness is lower in the specimens paint-baked after retrogression treating than in 

the peak-aged condition. However, the hardness of these specimens is greater than the 

hardness of over-aged AA7075, which is typically 155 HV [2]. This suggests that over-

aging during the PBC is not severe. Typical PBC times (30 mins.) are much shorter than 

over-aging times used for the T7 temper. Because of this, multiple specimens 

retrogressed to *

mint  produced nearly peak-aged hardness after the PBC. This suggests that 

some precipitation, regrowth, and stabilization of small η’-phases occurs during the PBC, 

but less than would during recommended reaging at 121 ºC. This assessment is based 

upon the data produced by Park and Ardell [12, 16]. 

Hardness was always improved by reaging with the PBC after retrogression to 

*

mint . It is believed that hardness is recovered during the PBC because η' precipitates 

which were partially dissolved during the retrogression treatment are regrown. However, 

hardness is not recovered to the peak-aged condition because aging at 180 ºC also causes 

larger η precipitates to form and existing η precipitates to coarsen. This is an unavoidable 

consequence of aging at high temperatures. As a result, the microstructure after 

retrogressing to the local minimum hardness and reaging by the PBC contains fewer fine 

η' precipitates than when reaging is performed at 121 ºC. 
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Figure 4.4: Hardness data are plotted against retrogression time for specimens paint baked after retrogression treating and specimens 

retrogression treated only. Retrogression temperatures of 200, 225, and 250 ºC are shown individually for (a,b,c) ALCOA and (d,e,f) 

AMAG materials. 
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As expected, specimens are hardest after reaging with the PBC when previously 

retrogressed to the local minimum hardness. The hardness of specimens paint-baked after 

retrogression treating to *

mint  at 250 ºC and below are presented in Table 4.2. 

 

 

 
ALCOA 

Retrogression 

Temperature ( ºC ) 
Retrogression Time (s) 

Hardness after 

Retro Only (HV) 

Hardness after 

PBC (HV) 

Change in 

Hardness 

from PBC 

(HV) 

200 90 ± 20 161 175 14 

225 30 ±10 157 174 17 

250 10 ± 5 147 168 21 

 

 
AMAG 

Retrogression 

Temperature ( ºC ) 
Retrogression Time (s) 

Hardness after 

Retro Only (HV) 

Hardness after 

PBC (HV) 

Change in 

Hardness 

from PBC 

(HV) 

200 150 ± 20 167 175 8 

225 30 ±10 162 163 1 

250 10 ± 5 155 171 16 

 

 

Table 4.2: Hardness data for specimens paint baked after retrogression treating to the local 

minimum hardness and corresponding retrogression conditions for the (a) ALCOA and (b) 

AMAG materials. 

(a) 

(b) 
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Retrogression treating to *

mint  at 200 and 225 ºC produced the hardest material 

after paint baking. This is good for RRA forming because the retrogression treatments 

that allow for the longest processing windows also yield the hardest material after paint 

baking. While the amount of hardness recovered by the PBC increased with retrogression 

temperature, the final hardness typically decreased as retrogression temperature 

increased. The AMAG specimen retrogressed at 225 ºC did not respond to the PBC. The 

reason for this is unclear because AMAG specimens retrogressed at 200 and 250 ºC each 

produced a positive PBC response. 

The ALCOA material was more sensitive to paint baking after retrogression to 

*

mint  than was the AMAG material. The ALCOA material produced a greater response to 

the PBC than the AMAG material for each retrogression temperature. This is most likely 

because hardness was reduced more in the ALCOA material than the AMAG material 

during retrogression treatments, as shown in Figures 4.1 and 4.2. Though, the final 

hardness after paint-baking was comparable between the two materials. 

In summary, the PBC was not capable of reaging specimens back to the peak-

aged condition after retrogression treating to the local hardness minimum. It is unlikely 

that peak-aged hardness can be obtained by reaging at the PBC temperatures currently 

used in the auto industry. However, the PBC can improve hardness to within 5 percent of 

the peak-aged hardness when retrogression treating is conducted at 225 ºC or below. In 

addition, hardness recovered after retrogressing increased with retrogression temperature 

when specimens were retrogressed to the local minimum hardness. However, hardness 
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after the PBC decreased as retrogression temperature increased. According to these 

results, the best RRA forming temperature for achieving the highest final hardness is 

200 ºC when reaging is by the PBC alone. 

 

4.3. Material Retrogression Treated, Intermediate Aged at 120 ºC, and Paint 

Baked  

Intermediate aging was performed before the PBC and after retrogression treating 

to determine if hardness after the PBC could be improved. Specimens were subjected to 

intermediate aging at 120 ºC for 24 hours after retrogression treating and prior to paint 

baking. Hardness data for these specimens and specimens reaged with the PBC only after 

retrogression treating are plotted against retrogression time in Figure 4.5. 

There was no substantial benefit from intermediate aging before the PBC 

compared to reaging with the PBC alone. Like reaging with the PBC alone, specimens 

subjected to intermediate aging were most likely over-aged. It is suspected that the PBC 

coarsens existing η precipitates and evolves existing η' precipitates into larger η 

precipitates. This decreases the total number of precipitates in the microstructure and 

reduces hardness. In conclusion, intermediate aging at 120 ºC before the PBC was not 

beneficial compared to reaging with the PBC alone. 

  



97 

 

 

 

0 30 60 90 120 150
130

140

150

160

170

180

Retrogression Time (s)

H
ar

d
n
es

s 
(H

V
1
0
)

200 

C

Retro+120+PBC

Retro+PBC

0 30 60 90 120 150
130

140

150

160

170

180

Retrogression Time (s)

H
ar

d
n
es

s 
(H

V
1
0
)

225 

C

Retro+120+PBC

Retro+PBC

0 30 60 90 120 150
130

140

150

160

170

180

Retrogression Time (s)

H
ar

d
n
es

s 
(H

V
1
0
)

250 

C

Retro+120+PBC

Retro+PBC

0 30 60 90 120 150
130

140

150

160

170

180

Retrogression Time (s)

H
ar

d
n
es

s 
(H

V
1
0
)

200 

C

Retro+120+PBC

Retro+PBC

0 30 60 90 120 150
130

140

150

160

170

180

Retrogression Time (s)

H
ar

d
n
es

s 
(H

V
1
0
)

225 

C

Retro+120+PBC

Retro+PBC

0 30 60 90 120 150
130

140

150

160

170

180

Retrogression Time (s)

H
ar

d
n
es

s 
(H

V
1
0
)

250 

C

Retro+120+PBC

Retro+PBC

Figure 4.5: Hardness data are plotted against retrogression time for retrogression treated specimens subsequently intermediate 

aged at 120 ºC for 24 hours and paint baked and specimens reaged with the PBC alone after retrogression treating. 

Retrogression temperatures of 200, 225, and 250 ºC are shown individually for (a,b,c) ALCOA and (d,e,f) AMAG materials. 
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4.4. RRA Forming Discussion 

RRA forming was introduced as a way to improve upon the room-temperature 

formability of AA7075-T6. RRA forming behavior was evaluated by tensile testing at 

200 and 225 ºC. These temperatures were chosen because retrogressing to *

mint  at 200 and 

225 ºC produced the hardest material after the PBC. Tensile tests conducted at these 

temperatures with rapid direct resistance heating indicate that formability is improved at 

elevated temperatures. Effective local elongation data are plotted against test temperature 

for uniaxial tensile tests in Figure 4.6. 

Forming AA7075-T6 at RRA temperatures greatly improved ductility compared 

to forming at room temperature. Effective local elongations produced at RRA 

temperatures were more than double those produced at room temperature. Percent 

elongations of 40 to 50 percent were measured. These are greater than the elongation 

measurements available from the literature, also presented in Figure 4.6. This is most 

likely a result of effective local elongation being monitored through video during this 

study, as opposed to with a contact extensometer or by monitoring crosshead 

displacement. The video analysis permitted effective local elongation measurements of 

local deformation after the onset of necking to be obtained. Data from the available 

literature were reported as total elongation, which does not account for local elongation 

after necking. Total elongation was not determined during this study for RRA forming 

tests because of the large temperature variation along the gauge length caused by rapid 

electrical heating. Reduction in area was also much greater at RRA forming temperatures 
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than at room temperature. Reduction in area is presented as a function of test temperature 

in Figure 4.7. In general, reduction in area and effective local elongation measurements at 

RRA forming temperatures were in good agreement. Reduction in area measurements 

were not reported in the available literature. Thus, no comparisons with literature data are 

possible. 

Specimens tested at 200 and 225 ºC failed by shear fracture after considerable 

necking. Necking at retrogression temperatures was much more severe than at room 

temperature. This may have been influenced by the steep temperature variation along the 

specimen gauge length. Regardless, ductility was still much greater than at room 

temperature. 
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RRA forming greatly improves the ductility of AA7075-T6 over room-

temperature forming techniques, such as cold stamping. Both effective local elongation 

and reduction in area measurements confirm that forming at retrogression treatment 

temperatures can double ductility compared to forming at room-temperature. Elongation 

measurements for several materials and various forming techniques are presented in 

Table 4.3. Ductilities of AA7075-T6 at RRA forming temperatures are comparable, if not 

greater than, the room-temperature ductility of many commonly used HSLA steels. 
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Though, ductilities from RRA forming of AA7075-T6 are less than the ductility from hot 

stamping of AA5083. Table 4.3 suggests that RRA forming may allow auto 

manufacturers to replace many room-temperature formed steel components with RRA-

formed AA7075 components without reducing part complexity.  

Press-quench forming (PQF) is a possible forming operation that could be used 

with RRA forming. AA7075-T6 would be rapidly heated to retrogression temperatures 

and then stamped in either cold or warm dies to quench the material back to room-

temperature during forming. The rapid quenching during forming preserves the 

retrogressed microstructure, allowing the mandatory PBC to improve final part hardness. 

Because cooling of the sheet by the dies requires close contact between the two, most 

cooling occurs after the sheet has been formed in the dies. Thus, the sheet is still hot 

when formed and retains the high ductility available at elevated temperature while it 

forms. 

In addition to improving ductility, yield strength was reduced in tensile tests 

conducted at RRA forming temperatures. At room temperature, AA7075-T6 exhibits a 

tensile yield strength of 530 MPa. This is reduced to 300 to 320 MPa at RRA forming 

temperatures. Because of this, forming AA7075-T6 sheet with RRA forming techniques 

would require less force than current cold stamping operations used in the auto industry.  
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Material Condition 

Before Forming 

Forming 

Technique 

Forming 

Temperature (°C) 
Elongation (%) 

Strain 

Rate 

Super-plastic grade 

AA5083 
SPF 500 ≥300 [7] 10

-3
 

AA5083 
Hot 

Stamping 
340 ~120 [42] 10

-1
 

AA7075-Sol. 
Solution 

Forming 
480 ≥70 20

-1
 

AA7075-T6 
RRA 

Forming 
200 to 225 ~40* 20

-1 

AA6061-T6 
RRA 

Forming 
205 28 [2] 20

-1
 

HSLA 260 
Cold 

Stamping 
18 ≥28 [43]  

 

 

4.5. Solution Forming Discussion 

Solution forming is another new forming concept designed to improve upon the 

room-temperature formability of AA7075-T6. Tensile testing was conducted at 300 and 

480 ºC to determine if formability could be improved at temperatures greater than RRA 

forming temperatures. Indeed, ductility at solution forming temperatures was much 

greater than at room-temperature and at RRA forming temperatures, as shown in Figures 

4.6 and 4.7. Elongations during tensile tests at 480 ºC were twice those of tensile tests 

conducted at 200 and 225 ºC. Elongation at 300 ºC was limited by the onset of rapid 

Table 4.3: Elongation data are presented for several materials and forming techniques used in 

the automotive industry. Elongations denoted with a superscript * are effective local 

measurements determined from video analysis. 
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necking, as was also the case at RRA forming temperatures. Reduction in area, however, 

was greater at 300 ºC than at RRA forming temperatures. In summary, the ductility of 

AA7075 is greatest at solution-forming temperatures.  

Failure from cavitation occurred with or without necking for all specimens tested 

at solution-forming temperatures. This suggests ductility is improved at solution-forming 

temperatures compared to RRA forming temperatures. Tensile yield strengths at solution-

forming temperatures were 143 and 32 MPa for 300 and 480 ºC, respectively. This is 

very low for AA7075. Because of this, forming stress will be substantially lower for 

solution-forming operations compared to cold stamping or RRA forming operations of 

AA7075. 

Solution forming of AA7075 produces ductilities greater than those of HSLA 

steel during cold stamping and AA7075 during RRA forming. The formability of 

AA7075 during solution forming is still less than the formability of AA5083 during 

superplastic forming and hot stamping. Furthermore, solution forming of AA7075 

requires a longer and more exhaustive aging treatment to reach the peak-aged condition 

after forming compared to RRA forming. Forming at higher temperatures is also more 

expensive to implement and operate. 
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Chapter 5: Conclusions and Future Work 

 

5.1. Conclusions 

5.1.1. Aging Behavior 

The retrogression and reaging (RRA) behavior of AA7075-T6 was studied. 

Retrogression treating below 250 ºC produced typical retrogression behavior. This 

allowed hardness to be recovered during reaging. In particular, retrogression treating to 

the local minimum hardness was shown to be the optimal retrogression treatment because 

it produced the hardest material after reaging. This is consistent with the available 

literature [8, 13-24]. After retrogression treating, reaging was performed with a simulated 

paint-bake cycle (PBC) conducted at 180 ºC for 30 minutes. Reaging with the PBC after 

retrogression treating to the local minimum hardness did not return material to the peak-

aged condition. However, nearly peak-aged hardness was produced by the PBC after 

retrogressing to the local minimum hardness for retrogression temperatures below 

250 ºC. It is believed that peak-aged hardness was not produced by the PBC because of 

slight over-aging compared to the standard reaging process conducted at 121 ºC. Adding 

intermediate aging at 120 ºC prior to the PBC and after retrogression did not improve 

hardness compared to reaging with the PBC alone.  
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5.1.2. Forming Behavior 

Two high-temperature forming concepts for AA7075 were studied. These were 

the RRA forming and solution forming concepts. Both forming concepts were evaluated 

with uniaxial tension tests. RRA forming was evaluated at 200 and 225 ºC, and solution 

forming was evaluated at 300 and 480 ºC. The ductility of AA7075 at each forming 

temperature improved upon the room-temperature ductility of AA7075-T6. Ductilities of 

AA7075-T6 at RRA temperatures were double those produced by room-temperature 

forming. While ductilities during solution forming were four times greater than the 

ductility of AA7075-T6 at room-temperature.  

RRA forming of AA7075-T6 produces ductilities comparable to the ductilites of 

many HSLA steels formed at room-temperature. In addition, nearly peak-aged hardness 

can be produced by the mandatory PBC after forming. This suggests that RRA-formed 

AA7075-T6 components could replace room-temperature formed HSLA steel 

components used in the auto industry. This would reduce overall vehicle mass and 

improve gas mileage. Press-quench forming (PQF) could be used with RRA forming of 

AA7075-T6. Material would be rapidly heated to the retrogression temperature and 

stamped in either warm or cold dies. During forming, the material would be quenched to 

room-temperature through contact with the dies. After forming, the RRA-formed 

AA7075 component would be reaged to near peak-aged hardness by the PBC. The PQF 

technique preserves the retrogressed microstructure after forming, allowing hardness to 

be recovered during the PBC.  
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Solution forming of AA7075 improves upon the ductility of AA7075 during RRA 

forming, but it requires more heat treating after forming to reach nearly peak-aged 

hardness. Ductility of AA7075 at 480 ºC is more than double the ductility of many HSLA 

steels at room-temperature. However, multiple-step aging treatments would be needed 

prior to the PBC to produce a nearly peak-aged hardness in the final part. 

 

5.2. Future Work 

 The forming behavior of AA7075-T6 during PQF operations should be 

investigated. This can be accomplished by controlling quench rates during tension tests 

that mimic RRA forming. This would provide information about the formability of 

AA7075 during simultaneous deformation and quenching.  

During this study RRA forming of AA7075-T6 was evaluated at an initial strain 

rate of 0.05 s
-1

. Tension tests that mimic RRA forming should be conducted at additional 

strain rates. Tests that cover strain rates ranging from 0.001 to 1 s
-1

 would provide the 

strain-rate sensitivity of AA7075-T6 at RRA forming temperatures. 

 The RRA behavior of AA7075-T6 between 180 and 200 ºC should be evaluated. 

Retrogression treatments at these lower temperatures could expand the potential 

processing window of RRA forming. Hardness may be improved after paint baking as 

retrogression treatment temperatures decrease. Ductilies are expected to be lower than 
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forming at temperatures above 200 ºC but still may be suitable for RRA forming of 

AA7075-T6. 

 The RRA forming behavior of 6000-series aluminum alloys should be 

investigated. The recommended peak-aging temperatures for these alloys are similar to 

the PBC temperatures currently used in the auto industry. Because of this, 6000-series 

aluminum alloys may also be suitable for RRA forming operations. 
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Appendix A: Experimental Design and Procedures 

 

A.1. Detailed Retrogression Treating Procedure 

Molten salt baths were used to perform retrogression treatments on the AA7075-

T6 material provided by General Motors. Retrogression treatments were performed on 

two separate occasions. The first retrogression treatments were performed on June 11
th

 

and June 12
th

 of 2013 and material was retrogressed at 200, 250, 300, and 350 °C. The 

second retrogression treatments were performed on July 23
rd

 of 2013 and material was 

retrogressed at 200, 225, and 250 °C. The same procedure was used for each 

retrogression treatment and is described below. 

Retrogression Treating Procedure: 

1. Small rectangular specimens were machined from the as-received material, and a 

small hole was drilled into the top of each specimen. 

 

 
Figure A.1: Aging Specimen. 
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2. Specimens undergoing the same retrogression treatment were strung onto a long 

nickel wire and aligned such that they could not contact each other during the 

retrogression treatment. 

 

 

3. The molten salt baths were set to the lowest treatment temperature and allowed 24 

hours to reach temperature. Two Inconel (Alloy 600) sheathed type-K 

thermocouples were submerged in the molten salt bath and an Omega HH501DK 

thermocouple readout was used to monitor temperature. 

Figure A.2: Aging specimens secured to the nickel wire. 
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4. Once at temperature, specimens were completely submerged in the molten salt 

bath and treated for 10, 30, 90, and 150 seconds. Retrogression treatment times 

were monitored with a stopwatch and computer-based timer. 

5. Specimens were immediately quenched to room-temperature in water upon 

removal from the molten salt bath. 

6. The molten salt baths were given 1 hour to stabilize at the next test temperature. 

Steps 4 and 5 were then repeated at the new test temperature. 

 

 

Figure A.3: Omega HH501DK hand-held thermocouple readout and metal sheathed type-K 

thermocouples. 
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A.2. Artificial and Natural Aging after Retrogression Treating 

Artificial and natural aging of the material retrogressed on June 11
th

 and June 12
th

 

of 2013: 

Two specimens were retrogressed at 200 °C and 250 °C for each retrogression time. 

 One sample was naturally aged without any other heat treating. 

 One was aged at 175C for 30 min to simulate a typical paint bake cycle (PBC) 

and then naturally aged. 

Three specimens were retrogressed at 300 °C and 350 °C for each retrogression time. 

 One sample was naturally aged without any other heat treating. 

 One was aged at 175C for 30 min to simulate a typical PBC and then naturally 

aged. 

 One was aged at 120 °C for 24 hours, aged at 175C for 30 min to simulate a 

typical PBC, and then naturally aged. 

Aging at 120 °C for 24 hours was performed on June 12
th

 of 2013. Aging at 175 °C for 

30 minutes was performed on June 18
th

 of 2013. 

Artificial and natural aging of the material retrogressed on July 23
rd

 of 2013: 

Five specimens were retrogressed at 200 °C, 225 °C, and 250 °C for each retrogression 

time. 

 One was aged at 175 °C for 30 min to simulate a typical PBC and naturally aged. 
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 Four were aged at 120 °C for 3, 6, 12, and 24 hours, respectively, aged at 175 °C 

for 30 min to simulate a typical PBC, and naturally aged. 

Aging at 120 °C was performed on July 24
th

 and 25
th

 of 2013. Aging at 175 °C for 30 

minutes was performed on July 30
th

 and 31
st
 of 2013. 

 

Specimen Preparation for Hardness Testing: 

1. Specimens were washed in a mixture of water and Simple Green
TM

 with an 

ultrasonic bath. 

2. Each side of the specimen was lightly ground with 800-grit and then 1200-grit 

silicon-carbide paper until a smooth and uniform surface finish was achieved. 

3. Specimens were washed again in a mixture of water and Simple Green
TM

 with an 

ultrasonic bath. 

4. Specimens were then tested with a Buehler Macro Hardness Tester, Model 1900-

2005. 
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A.3. Detailed Heat Transfer Model 

Nomenclature: 

θ – temperature (kelvin) 

θo – ambient temperature (kelvin) 

x – distance along bar (meters) 

Cp – specific heat (Joule/kilogram-Kelvin) 

d – density (kilogram/meter
3
) 

t – time (seconds) 

λ – thermal conductivity (Watts/meter-Kelvin)  

I – current (Amps) 

ρ – resistivity (ohm-meter) 

Figure A.4: Buehler Macro Hardness Tester, Model 1900-2005 used for hardness testing. 
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A – cross-sectional area (meter
2
) 

h – convective heat transfer coefficient (Watts/meter
2
-Kelvin) 

ε – radiative heat transfer coefficient (Watts/meter
2
-Kelvin

2
) 

ve – volume of finite difference element (meters
3
) 

i – time iteration 

n – distance iteration 

 

The heat transfer model used to aid in the design the rapid direct electrical heating 

tensile coupons was adapted from the work of Karunasena on electrical resistance heating 

of flat steel bars [36]. The governing equation used to derive the model was developed by 

a power balance performed across the length of the gauge region and is shown by 

Equation A.1. 

      
2

4 4

p o o2

d I
C d hA A

dt x x A

    
        
  

 ( A.1) 

Several assumptions were made to limit the complexity of the model. It was 

assumed that current was evenly distributed throughout the cross-section and power 

generation remained constant throughout the thickness and length of the gauge region. In 

addition, temperature was only allowed to vary along the length of the gauge region. 

Because the specimens being design were small, it is believed these assumptions are 

fairly accurate. Variation of resistivity and thermal conductivity with temperature was 

accounted for.  
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Equation A.1 was solved for temperature and discretized in terms of time, 

subscript i, and distance, subscript n, along the gauge region [36-37]. This took the form 

of Equation A.2 and is presented visually in Figure A.5.  

 ossRadiationLLossConvectionngJouleHeatiConduction
dvC

t

ep

n,1i 












 
 

 (A.2) 

      n,i1n,i1n,in,i1n,i1n,i1n,i1n,i 2
x

A
Conduction 










 

 

  xAIngJouleHeati n,i

2   

  i,n oConvectionLoss hA    

  4 4

i,n oRadiationLoss A     

 

 

 
Figure A.5: Visual representation of the heat transfer model. 
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Boundary conditions needed to be specified before the model could be run. This 

included specifying the ambient air temperature and the temperature of each end of the 

gauge region. The ambient air was held constant at 20 °C. The initial temperature at each 

end of the bar was also taken to be 20 °C, but was linearly increased to 100 °C during the 

simulation. This was done because Karunasena observed a temperatures increase at the 

end of the bar in his work [36]. The convection and radiation heat transfer coefficients 

were initially determined by fitting to data provided by Karunasena. They were later 

adjusted to more accurately match the behavior observed in this study. The geometry of 

the specimens made calculations of these values impractical. MATLAB was used to run 

each simulation of the one-dimensional finite difference model. The code used to run 

these simulations is presented below. 

 

function trans_heat_paper1 
% Heating model of Aluminum rectangular bars. 

% Volume multiplied in and conventional conduction, 

radiation and 

% convection heat transfer are accounted for. 

  

% Initial Temperature (K) 

T_initial = 293.15; 

  

% Properties 

% Density (kg/m^3) 

rho = 2810; 

% Specific heat (J/kg-K) 

cp = 1000; 

  

% Tensile °Coupon Dimensions  

L = 0.155; % bar length (m) 

W = 0.005; % bar width (m) 
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TH = 0.002; % bar thickness (m) 

SA = L*W; % Surface area m^2 

V = L*W*TH; % volume m^3 

CA = W*TH; % cross-sectional area m^2 

  

  

% °Current (Amps) 

A = 250; 

  

% °Current Density (Amps/m^2) 

J = A/CA; 

  

% Thermal Properties 

h = 280; % convection heat transfer coefficient W/m^2-K 

Radcof = 2.103E-7; % W/m^2-K^2 -- emissivity*stefan 

boltzman constant  

                   % -- emissivity = 0.09 

  

  

% Time and distance steps used to run the simultion 

dx = 0.00775; % distnace step (m) 

dt = 0.1; % time step (s) 

VE = W*TH*dx; % elemnet volume (m^3) 

SAE = W*dx; % elemnent surface area (m^2) 

  

% °Counting variables 

i = 1; % time 

n = 1; % distance 

j = 1; % initial condition counter 

v = 0; % intial temperature heating counter 

  

final_time = 60; % seconds 

final_dist = L;  

  

% step sizes 

time_step = final_time/dt; 

dist_step = final_dist/dx; 

  

    % loop for Initial conditions 

    while j <= dist_step; 

   

        % Initial °Conditions 

        T1(1,j) = T_initial; 
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        %counter to build conditions 

        j = j + 1; 

         

     

    end 

     

    % set other end of bar starting temperature 

    T1(1,dist_step+1) = T_initial; 

     

    % Iterative Loop for time 

    while i < time_step; 

         

        % Boundary °Conditions 

        T1(i+1,1) = T1(i,1) + (v)*(40/time_step); 

        T1(i+1,(dist_step+1)) = T1(i,(dist_step+1)) + 

(v)*(30/time_step); 

     

        % reset location on the the Al bar back to the 

begining  

        n = 2; 

         

        %iterative loop for distance along section 

        while n <= dist_step; 

             

            % °Constant used in calculations 

            °Cons = dt/(cp*rho*VE); 

  

            % Thermal conductivity for varying  temperature  

W/m-K 

            Lam1 = 0.17*T1(i,n) + 80; % heat cond. coeff at  

                                      % initial time and 

temp 

            Lam3 = 0.17*T1(i,n-1) + 80; % heat cond. coeff 

at  

                                        % location: 

(initial location - dx) 

            Lam4 = 0.17*T1(i,n+1) + 80; % heat cond. coeff 

at  

                                        % location: 

(initial location + dx) 

             

            % Electrical Resistivity with temp in ohm-m 

            resist = ((1.36E-10)*T1(i,n)) + 1.42E-8;   
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            % °Calculations for Temp at time (i), and  

            % distance (n) along the Al bar 

            °Conduction = (((((Lam4-Lam3))*CA)/(dx))*... 

                         ((((T1(i,n+1)-T1(i,n-1))))))+... 

                         (((Lam1*((T1(i,n+1)+... 

                         T1(i,n-1)-(2*T1(i,n)))))*CA)/dx); 

            JHeat = ((J^2)*resist*dx*CA); 

            HLoss = ((h)*(SAE)*((T1(i,n)-T_initial)))+... 

                    ((Radcof)*(SAE)*((T1(i,n)^4)-

(T_initial^4))); 

     

            T1(i+1,n) = °Cons*(Conduction+JHeat-

HLoss)+T1(i,n); 

         

            % move to next point along the bar 

            n = n + 1; 

     

        end 

  

        % time counter 

        i = i + 1; 

        v = 1; 

         

    end 

  

% initial conditions for surface plot 

distance(1) = 0; 

time(1) = 0; 

p = 1; 

q = 1; 

  

    while p < (time_step); 

         

        time(p+1) = p*dt; 

        p = p +1; 

         

    end 

 

     

    while q <= (dist_step); 

         

        distance(q+1) = q*dx; 

        q = q + 1; 
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    end 

 

  

% counting for plots 

B = (L/dx)/2; 

t_final = (final_time/dt)-1; 

  

  

% change temperature to degress celcius (C) 

T2 = T1 - 273.15; 

  

  

% Surface plot 

figure1 = figure; 

surf(distance,time(1:590),T2(1:590,:),'LineStyle',':','Edge

Color',... 

    [0.313725501298904 0.313725501298904 

0.313725501298904]);     

title('Finite Difference Temperature Span'); 

xlabel('Distance Along Bar(m)'); 

ylabel('Time (s)'); 

zlabel('Temperature (C)'); 

colorbar 

  

% temperature at L/2 vs time 

figure2 = figure; 

plot(time,T2(:,B)); 

title('Temperature at Mid-point'); 

xlabel('Time (s)'); 

ylabel('Temperature (C)'); 

  

% temperature at t_final across bar 

figure3 = figure; 

plot(distance,T2(t_final,:)); 

title('Temperature span at Steady State'); 

xlabel('Distance Along Bar (m)'); 

ylabel('Temperature (C)'); 
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A.4. Testing and Verification of the Rapid Heating System 

A table-top heating rig was built as a precursor to using electrical resistance 

heating during tensile testing. The table-top rig allowed for the heating system to be 

easily tested and calibrated prior to tensile testing. It was also used to measure the 

temperature profile produced by each tensile coupon. A 3-D model of the assembly is 

displayed in Figure A.6. Specimen lengths of 100 to 230 mm can be accommodated by 

the table-top rig. However, once the specimen is secured, length cannot be adjusted to 

account for thermal expansion. This was not expected to affect measurements during 

testing. 

 

 
Figure A.6: 3-D model of the table-top testing rig. 
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The design consists of seven components; one stationary base, two mobile 

platforms, two specimen holders, and two cover boards. The stationary base keeps the 

mobile platforms aligned and contains a slot for a refractory material to catch any melted 

material. The mobile platforms house the copper specimen holders. The cover boards are 

laid on top of the specimen and bolted through the base board to secure the tensile 

coupon in the specimen holder. The cover bolt holds the assembly together. The 

specimen holders were made of C110-H02 copper flat-bar. Copper provided the 

necessary electrical conduction between the specimen holder and the tensile coupon. The 

other components were constructed with G-10 phenolic composite, a fiberglass-epoxy 

laminate composite with excellent electrical insulation properties. Technical drawings of 

each component are presented in Figures A.7-A.10. 
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Figure A.7: Technical drawing of the G-10 stationary base. All dimensions in inches. 
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Figure A.8: Technical drawing of the copper specimen holder. All dimensions in inches. 
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Figure A.9: Technical drawing of the G-10 cover board. All dimensions in inches. 
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Figure A.10: Technical drawing of the G-10 mobile platform. All dimensions in inches. 
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A.5. Rapid Electrical Heating Tensile Grip Design 

Tensile grips were specifically designed for rapid electrical heating tensile tests. The 

critical design criteria are listed below: 

 Withstand loads of 2000 lbs. 

 Electrically isolate the specimen holders from the electro-mechanical test frame. 

 Facilitate easy loading and unloading of specimens. 

 Don’t heat up during testing. 

 Connect to the load cell. 

 

The grip assembly consisted of four components; a stainless steel adapter, a G-10 

spacer, a copper specimen holder, and a G-10 cover plate. A description of each 

component follows. 

The stainless steel adapter connected the grip assembly to the load cell. It slipped 

into a collar attached to the load cell and was pin loaded with a half inch diameter steel 

rod. The adapter was machined from a solid 3 inch diameter rod of 303 stainless steel. 

Stainless steel was used to prevent rusting. The spacer connected the stainless steel 

adapter with the specimen holder. The spacer was used to electrically isolate the 

specimen holder from the electro-mechanical test frame. It was machined from G-10 

phenolic. G-10 has a dielectric strength of 800 V/mm and a tensile strength of 45 ksi. The 

fibers in the composite were oriented parallel to the tensile direction to maximize 
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strength. The specimen holder was used to house the specimen grip face and provided a 

location to attach the power supply.  It was machined from C110-H02 copper to provide 

ample conduction between the power supply and the specimen. The specimen was held 

by its shoulders and was secured to the holder with the cover plate and specimen bolt. 

Stainless steel bolts, washers, and nuts were used to assemble the grips, attach the 

power lead, and hold the specimen in place. An exploded 3-D model of the grip assembly 

is shown in Figure A.11, followed by the technical drawings for each component shown 

in Figures A.12-A.15. Tolerance was ± 0.005 inches for all dimensions unless otherwise 

noted. 

 

Figure A.11: 3-D exploded assembly view of the direct resistance heating grips. 
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Figure A.12: Technical drawing of the 303 stainless steel adapter. All dimensions in inches. 



131 

 

 

 
Figure A.13: Technical drawing of the G-10 spacer. All dimensions in inches. 
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Figure A.14: Technical drawing of the copper specimen holder. All dimensions in inches. 
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Figure A.15: Technical drawing of the G-10 cover board. All dimensions in inches. 
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A.6. LabVIEW Control Program Design 

A LabVIEW program was used to control and monitor the rapid electric heating 

system. A screenshot of the program interface is shown in Figure A.16. Temperature 

determined from the IR is monitored and recorded every millisecond. A case structure 

was implemented to automate the heating and cool down procedure. It consists of three 

states.  

 The “Start Up” state opens first. This state allows the user to turn on all of the 

equipment, define the temperature profile for the test, and limits the output of the 

welder to 15 amps.  

 The next state is “Testing”. This is triggered by clicking the “start test” button. In 

this state the temperature profile begins to run, and the output from the welder is 

automatically adjusted to keep the temperature determined by the IR as close to 

the temperature profile. The welder output is controlled by a LabVIEW PID 

algorithm.  

 Once the profile is completed, the program enters the “Stopping” state. This state 

limits the output of the welder to 15 amps.
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Figure A.16: Screenshot of the LabVIEW interface control program user interface 
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A.7. Equipment Wiring 

System Wiring 

A National Instruments PCI 6221 board and SCC-2345 Series carrier were used to 

control the welder and monitor the IR sensor. Two SCC-FT01 modules were used to 

connect the SCC-2345 with the wires from each component. 

 

 

 

 

 

Figure A.17: National Instruments SCC-2345 carrier and SCC-FT01 modules used for data 

collection. 
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Welder Wiring – Miller XMT 350 MPA 

 The welder is controlled by LabVIEW through the “remote” receptacle on the 

front of the welder. 

 

 

 In the open end of the remote wire, connect terminal A to terminal B with a small 

wire. Connect terminal D to the ground terminal and terminal E to the positive 

Figure A.18: Photograph of the Miller XMT 350 MPA welder. 
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output terminal on the SCC-FT01 module. This module is plugged into an analog 

output channel on the SC-2345 carrier. 

 

 

 

Infrared Sensor Wiring – Omega 0S550 series infrared pyrometer 

 The IR sensor is wired to the corresponding LCD display box from Omega. 

 

 

Figure A.19: Photograph of the wire connections on the end of the welder remote control 

wire. 

Figure A.20: Photograph of the Omega 0S550 IR pyrometer and corresponding LCD display 

box. 
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 A 25 volt power supply is wired through a Digital I/O channel on a National 

Instruments USB 6525 DAQ to power the IR sensor. The USB 6525 digitally 

controls the power to the IR sensor. 

 The LCD display box outputs a 4 to 20 mA signal. This is signal is converted to 

temperature. The signal output is wired from the LCD display box to a SCC-FT01 

module. This module is plugged into an analog input channel on the SCC-2345 

carrier. The signal was run through a low pass RC filter prior to entering the SCC-

FT01 module. 

 The optimal distance between the lens on the IR sensor and the surface of the 

specimen is 15.2 mm. The diameter of the spot size is 3.9 mm at this spacing. The 

spot size is the area captured by the IR sensor. 

 

A.8. Room-Temperature Tensile Testing 

Testing was performed with a Series 1600 universal testing machine from 

Applied Test Systems (ATS). An Epsilon Tech 3542 axial extensometer was used to 

measure tensile elongation. 

 

Tensile coupon preparation: 

1. Specimens were milled from the as-received material. 
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2. Specimens were tested in the as-received condition and after solution treating. 

3. Specimens were solution treated at 480 °C for 30 minutes and immediately water 

quenched to room-temperature. Solution treating was completed with a Therm-

Pro Inc. TF-12C resistance tube furnace. 

 

 

 

Tensile testing procedure: 

1. The wedge loading grips were loaded in the electro-mechanical test frame. 

2. Specimens were aligned in the grips, and the grips were tightened. 

3. The extensometer was secured to the middle of the gauge region with rubber-

bands. A pin kept the displacement at zero during setup and was removed prior to 

testing. 

Figure A.21: Photograph of the tensile coupon used for room-temperature tensile tests. 
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4. The ATS software was used to define a constant cross-head speed for testing. 

5. The tensile test was performed. 

 

A.9. Solution Forming Tensile Testing 

Testing was performed with a MTS Systems 810 materials testing system. 

Figure A.22: Photograph of the room-temperature tensile testing setup. 
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Tensile coupon preparation: 

1. Specimens were milled from the as-received material. 

2. Specimens were solution treated at 480 °C for 30 minutes and immediately water 

quenched to room-temperature. Solution treating was completed with a Therm-

Pro Inc. TF-12C resistance tube furnace. 

 

 

 

Tensile testing procedure: 

1. The three-zone high temperature furnace was turned on. It usually took a few 

hours to reach the desired testing temperature. 

2. The MTS software was used to define a constant cross-head speed for testing. 

3. The specimen to be tested was loaded into the high-temperature shoulder loading 

grips. Thermocouples were attached to the top and bottom grips through a small 

hole machinced on the front of the grips. The thermocouples were forced to make 

contact with the specimen. Once the furnace reached the desired testing 

Figure A.23: Photograph of the tensile coupon used for solution-temperature tensile tests. 
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temperature, the grips were loaded into the MTS frame. A small pre-load is 

applied to the specimen to secure it in the grips and account for thermal 

expansion. 

 

 

4. Temperature was continuously adjusted to maintain a constant temperature in the 

testing region. Specimens were given 20 to 30 minutes to reach the testing 

temperature. 

5. The tensile test was performed. 

6. Upon sample failure, the specimens were immediately quenched to room-

temperature with water. 

 

Figure A.24: Photograph of the high temperature tensile grips. 
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A.10. RRA Forming Tensile Testing 

Testing was performed with an Applied Test Systems (ATS) Series 1600 universal 

testing machine. 

 

Tensile coupon preparation: 

1. Specimens were water-jetted from the as-received material. 

2. A 3/8 inch diameter hole was drilled through each grip face. This allowed the 

tensile coupons to be bolted to the specimen holder. 

Figure A.25: Photograph of the high temperature tensile testing setup. 
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3. Specimens were painted flat back on one side and electrochemically etched on the 

other. 

 

 

 

Tensile testing procedure: 

1. The rapid electrical heating grips were loaded into the ATS test frame. The power 

leads were attached to the specimen holders. 

 

 

Figure A.26: Front and back of the tensile coupons used for RRA temperature tensile tests. 

Figure A.27: Direct resistance heating tensile grips. 
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2. The specimen was loaded into the grips. 

3. The IR pyrometer was positioned 15.2 mm (measured from the specimen surface 

to the IR sensor lens) away from the specimen at the midpoint of the middle-most 

gauge region. A laser guide was used to check the alignment and removed prior to 

testing. 

4. The video camera used to record each test was positioned across from the IR on 

the other side of the specimen. It was powered on and focused on the middle of 

the back of the specimen. 

 

 

 

Figure A.28: Close-up photograph of the RRA temperature tensile test setup. 
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5. The welder mode was set to TIG by turning the knob on the front of the welder so 

that current output could be controlled remotely. The output scale knob on the 

front of the welder was rotated clockwise 3 times to set the peak current output to 

350 amps. 

6. The LabVIEW control program was opened and the appropriate temperature 

profile was set for the test. 

7. The ATS software was opened, and the data channels were zeroed. An 

appropriate pre-load was applied to the specimen to account for thermal 

expansion. The ATS software was used to define a constant cross-head speed for 

testing. 

8. A check was done to make sure everything was clear of the test environment and 

the rapid electric heating system was not grounded anywhere.  The video camera 

started to record and the welder was powered on. 

9. The LabVIEW control program was started by clicking the “start test” button.  

10. Once the specimen reached the testing temperature, the motion of the electro-

mechanical test frame was started. When the motor engaged, power to the welder 

was shut off. This was to prevent the sample from arcing upon failure. 

11. Specimens were allowed to air cool for 1 to 2 minutes and then removed from the 

grips. 
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Appendix B: Tensile Test Results 

B.1. RRA Forming Tensile Tests 

File name: ALCOA_200_0.05_RDA_S_1 

Material 
Tensile Test 

Temperature (ºC) 
Strain Rate (s

-1
) 

Rolling Direction 

Orientation 

ALCOA AA7075-T6 200 0.05 Along tensile direction 

 

Temperature profile: Stress-Strain Curve: 

 
Specimen Photographs: 
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File name: ALCOA_200_0.05_RDP_1 

Material 
Tensile Test 

Temperature (ºC) 
Strain Rate (s

-1
) 

Rolling Direction 

Orientation 

ALCOA AA7075-T6 200 0.05 
Perpendicular to tensile 

direction 

 

Temperature profile: Stress-Strain Curve: 

 
Specimen Photographs: 
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File name: ALCOA_200_0.05_RDP_2 

Material 
Tensile Test 

Temperature (ºC) 
Strain Rate (s

-1
) 

Rolling Direction 

Orientation 

ALCOA AA7075-T6 200 0.05 
Perpendicular to tensile 

direction 

 

Temperature profile: Stress-Strain Curve: 

 
Specimen Photographs: 
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File name: ALCOA_225_0.05_RDA_1 

Material 
Tensile Test 

Temperature (ºC) 
Strain Rate (s

-1
) 

Rolling Direction 

Orientation 

ALCOA AA7075-T6 225 0.05 Along tensile direction 

 

Temperature profile: Stress-Strain Curve: 

 
Specimen Photographs: 
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File name: ALCOA_225_0.05_RDA_S_1 

Material 
Tensile Test 

Temperature (ºC) 
Strain Rate (s

-1
) 

Rolling Direction 

Orientation 

ALCOA AA7075-T6 225 0.05 Along tensile direction 

 

Temperature profile: Stress-Strain Curve: 

 
Specimen Photographs: 
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File name: ALCOA_225_0.05_RDP_1 

Material 
Tensile Test 

Temperature (ºC) 
Strain Rate (s

-1
) 

Rolling Direction 

Orientation 

ALCOA AA7075-T6 225 0.05 
Perpendicular to tensile 

direction 

 

Temperature profile: Stress-Strain Curve: 

 
Specimen Photographs: 
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File name: ALCOA_225_0.05_RDP_2 

Material 
Tensile Test 

Temperature (ºC) 
Strain Rate (s

-1
) 

Rolling Direction 

Orientation 

ALCOA AA7075-T6 225 0.05 
Perpendicular to tensile 

direction 

 

Temperature profile: Stress-Strain Curve: 

 
Specimen Photographs: 
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File name: AMAG_200_0.05_RDA_S_1 

Material 
Tensile Test 

Temperature (ºC) 
Strain Rate (s

-1
) 

Rolling Direction 

Orientation 

AMAG AA7075-T6 200 0.05 Along tensile direction 

 

Temperature profile: Stress-Strain Curve: 

 
Specimen Photographs: 
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File name: AMAG_200_0.05_RDP_1 

Material 
Tensile Test 

Temperature (ºC) 
Strain Rate (s

-1
) 

Rolling Direction 

Orientation 

AMAG AA7075-T6 200 0.05 
Perpendicular to tensile 

direction 

 

Temperature profile: Stress-Strain Curve: 

 
Specimen Photographs: 
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File name: AMAG_200_0.05_RDP_2 

Material 
Tensile Test 

Temperature (ºC) 
Strain Rate (s

-1
) 

Rolling Direction 

Orientation 

AMAG AA7075-T6 200 0.05 
Perpendicular to tensile 

direction 

 

Temperature profile: Stress-Strain Curve: 

 
Specimen Photographs: 
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File name: AMAG_225_0.05_RDA_1 

Material 
Tensile Test 

Temperature (ºC) 
Strain Rate (s

-1
) 

Rolling Direction 

Orientation 

AMAG AA7075-T6 225 0.05 Along tensile direction 

 

Temperature profile: Stress-Strain Curve: 

 
Specimen Photographs: 
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File name: AMAG_225_0.05_RDA_S_1 

Material 
Tensile Test 

Temperature (ºC) 
Strain Rate (s

-1
) 

Rolling Direction 

Orientation 

AMAG AA7075-T6 225 0.05 Along tensile direction 

 

Temperature profile: Stress-Strain Curve: 

 
Specimen Photographs: 
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File name: AMAG_225_0.05_RDP_1 

Material 
Tensile Test 

Temperature (ºC) 
Strain Rate (s

-1
) 

Rolling Direction 

Orientation 

AMAG AA7075-T6 225 0.05 
Perpendicular to tensile 

direction 

 

Temperature profile: Stress-Strain Curve: 

 
Specimen Photographs: 
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File name: AMAG_225_0.05_RDP_2 

Material 
Tensile Test 

Temperature (ºC) 
Strain Rate (s

-1
) 

Rolling Direction 

Orientation 

AMAG AA7075-T6 225 0.05 
Perpendicular to tensile 

direction 

 

Temperature profile: Stress-Strain Curve: 

 
Specimen Photographs: 
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B.2. Solution Forming Tensile Tests 

File name: ALCOA_300_1 

Material 
Tensile Test Temperature 

(ºC) 

Strain Rate 

(s
-1

) 

Rolling Direction 

Orientation 

ALCOA AA7075-

Sol. Treated 
300 0.05 Along tensile direction 

 

Stress-Strain Curve:  

 
Specimen Photographs: 

Generic Specimen Before Test:  
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File name: ALCOA_480_1 

Material 
Tensile Test 

Temperature (ºC) 

Strain Rate 

(s
-1

) 

Rolling Direction 

Orientation 

ALCOA AA7075-

Sol. Treated 
480 0.05 Along tensile direction 

 

Stress-Strain Curve:  

 
Specimen Photographs: 

Generic Specimen Before Test:  

 

 

 

 

 

 

 

  

Specimen After Test:  
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File name: ALCOA_480_2 

Material 
Tensile Test 

Temperature (ºC) 
Strain Rate (s

-1
) 

Rolling Direction 

Orientation 

ALCOA AA7075-

Sol. Treated 
480 0.05 Along tensile direction 

 

Stress-Strain Curve:  

 
Specimen Photographs: 

Generic Specimen Before Test:  
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File name: AMAG_300_1 

Material 
Tensile Test Temperature 

(ºC) 

Strain Rate 

(s
-1

) 

Rolling Direction 

Orientation 

AMAG AA7075-

Sol. Treated 
300 0.05 

Along tensile 

direction 

 

Stress-Strain Curve:  

 
Specimen Photographs: 

Generic Specimen Before Test:  

 

 

 

 

 

 

 

 

 

  

Specimen After Test:  
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File name: AMAG_480_1 

Material 
Tensile Test 

Temperature (ºC) 

Strain Rate 

(s
-1

) 

Rolling Direction 

Orientation 

AMAG AA7075-

Sol. Treated 
480 0.05 Along tensile direction 

 

Stress-Strain Curve:  

 
Specimen Photographs: 

Generic Specimen Before Test:  
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File name: AMAG_480_2 

Material 
Tensile Test 

Temperature (ºC) 
Strain Rate (s

-1
) 

Rolling Direction 

Orientation 

AMAG AA7075-Sol. 

Treated 
480 0.05 Along tensile direction 

 

Stress-Strain Curve:  

 
Specimen Photographs: 

Generic Specimen Before Test:  
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B.3. Room-temperature Tensile Tests 

File name: ALCOA_RT_T6 

Material 
Tensile Test 

Temperature (ºC) 
Strain Rate (s

-1
) 

Rolling Direction 

Orientation 

ALCOA AA7075-T6 300 0.05 Along tensile direction 

 

Stress-Strain Curve:  

 
Specimen Photographs: 
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File name: ALCOA_RT_Sol 

Material 
Tensile Test 

Temperature (ºC) 
Strain Rate (s

-1
) 

Rolling Direction 

Orientation 

ALCOA AA7075-

Sol. Treated 
300 0.05 Along tensile direction 

 

Stress-Strain Curve:  

 
Specimen Photographs: 

Generic Specimen Before Test:  
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File name: AMAG_RT_T6 

Material 
Tensile Test 

Temperature (ºC) 
Strain Rate (s

-1
) 

Rolling Direction 

Orientation 

AMAG AA7075-T6 300 0.05 Along tensile direction 

 

Stress-Strain Curve:  

 
Specimen Photographs: 

Generic Specimen Before Test:  
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File name: AMAG_RT_Sol 

Material 
Tensile Test Temperature 

(ºC) 

Strain Rate 

(s
-1

) 

Rolling Direction 

Orientation 

AMAG AA7075-

Sol. Treated 
300 0.05 Along tensile direction 

 

Stress-Strain Curve:  

 
Specimen Photographs: 

Generic Specimen Before Test:  
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