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Towards predictive modeling of ductile failure 

Andrew Jeffrey Gross, Ph.D. 

The University of Texas at Austin, 2015 

Supervisor: Krishnaswamy Ravi-Chandar 

The ability to predict ductile failure is considered by an experimental examination 

of the failure process, validation exercises to assess predictive ability, and development 

of a coupled experimental-numerical strategy to enhance model development. 

In situ loading of a polycrystalline metal inside a scanning electron microscope is 

performed on Al 6061-T6 that reveals matrix-dominated response for both deformation 

and failure. Highly localized deformation fields are found to exist within each grain as 

slip accumulates preferentially on a small fraction of crystallographic planes. No 

evidence of damage or material softening is found, implying that a strain-to-failure model 

is adequate for modeling fracture in this and similar material. 

This modeling insight is validated through blind predictive simulations performed 

in response to the 2012 and 2014 Sandia Fracture Challenges. Constitutive and failure 

models are calibrated and then embedded in highly refined finite element simulations to 

perform blind predictions of the failure behavior of the challenge geometries. 

Comparison of prediction to experiment shows that a well-calibrated model that captures 

the essential elastic-plastic constitutive behavior is necessary to capture confidently the 

response for structures with complex stress states, and is a prerequisite for a precise 

prediction of material failure.  
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The validation exercises exposed the need to calibrate sophisticated plasticity 

models without a large experimental effort. To answer this need, a coupled experimental 

and numerical method is developed for characterizing the elastic-plastic constitutive 

properties of ductile materials using local deformation field information to enrich 

calibration data. The method is applied to a tensile test specimen and the material’s 

constitutive model, whose parameters are unknown a priori, is determined through an 

optimization process that compares these experimental measurements with iterative finite 

element simulations. The final parameters produce a simulation that tracks the local 

experimental displacement field to within a couple percent of error. Simultaneously, the 

percent error in the simulation for the load carried by the specimen throughout the test is 

less than one percent. The enriched calibration data is found to be sufficient to constrain 

model parameters describing anisotropy that could not be constrained by the global data 

alone. 
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Chapter 1: Introduction  

Avoidance of fracture is one of the most basic requirements for engineering 

structures. For this reason most structures are stressed to a fraction of what can be 

endured by the material prior to failure, however, some applications require a structure to 

be pushed closer to the limit of failure. Such a situation is encountered in aerospace 

structures, nuclear power generation, and sheet metal forming. Further yet, some 

structures must be designed to undergo failure while in service, such as an automobile 

chassis during collision. Finally, failure can be put to constructive use, as it is in the 

cutting operations by which many machining processes operate. In all of these cases the 

ability to predict the conditions under which failure will initiate and how it will proceed 

is extremely valuable. 

Current engineering practice is only able to produce reasonable fracture 

predictions for certain materials under particular loading conditions. Brittle materials 

under tensile loading are best understood, but as material ductility increases and loading 

conditions deviate from tensile, the ability to predict failure tends to degrade. Increasing 

predictive ability for the failure of ductile, polycrystalline metals is of particular 

importance as these materials are ubiquitous in engineered structures and current design 

paradigms are too conservative to keep up with the increasing demand for structural 

efficiency. In particular, failure places engineering limits that are not transparent to 

designers, and accurate modeling of failure will also allow for better design of failure 

tolerant structures, less trial and error in manufacturing, and increased collision 

protection. 

Part of the difficulty in predicting ductile failure is that many materials with a rich 

variety of microstructures exhibit this behavior and a common mechanism between 
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different materials may have differing levels of importance. As a result, the nature of 

failure must be studied on a material by material basis to establish an appropriate 

approach to modeling. Furthermore, a consensus has not yet been reached on the relative 

importance of many mechanisms, and thus an appropriate modeling approach for even 

the most commonly used and studied materials is not agreed upon. Many different 

perspectives and models exist to describe ductile failure due to the complexity of the 

microstructure in these materials, the variety of mechanisms that occur, the difficulty of 

observing the initiation and evolution of failure, and then interpreting these observations. 

The most common observation made of ductile failure is post-mortem microscopy 

of the fracture surface. The topography of a fracture surface is craterous and often almost 

completely covered by adjacent dimples as shown in Figure 1.1. The opposing fracture 

surface is populated by a complimentary set of such dimples. Thus, it can unambiguously 

be inferred that immediately before such a dimple on the surface was created, a void in 

the material existed. An individual surface dimple is the result of a void that ruptures, by 

merging with a neighboring void. This observation has led to the conclusion that ductile 

failure occurs through the nucleation, growth, and coalescence of voids, as depicted in 

Figure 1.2. Although this is undoubtedly the process just preceding material separation, 

post-mortem analysis cannot reveal the evolution of this process and whether it plays an 

important role in deformation. It is possible that other mechanisms dominate the 

progression towards ductile failure, and that modeling the nucleation, growth, and 

coalescence of voids is not necessary to predict ductile failure.  

Another difficulty affecting predictive ability for the failure of ductile metals is 

that accurately predicting large deformation plasticity is a prerequisite. This subject in 

and of itself is the focus of extensive research; however, modeling techniques for many 

materials at the polycrystalline aggregate level are much better established than for 
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failure. The difficulty in plasticity prediction then lies in the effort required for proper 

calibration of an appropriate model.  

The work in this dissertation is aimed at increasing the predictive ability for 

ductile failure. This is pursued by three distinct aspects relating to ductile failure to 

provide a broad perspective covering the mechanisms of failure, appropriate modeling of 

these mechanisms in predictive exercises, and improvements to model calibration. 

Chapter 2 investigates failure for a common material, Aluminum 6061-T6, through in situ 

shear dominated loading inside a scanning electron microscope. The goal of these 

experiments is to directly observe the evolution of the microstructure as the material 

approaches failure. These observations are then consolidated into a recommended 

modeling approach which is applied to perform two complete and independent 

predictions of ductile failure in Chapters 3 and 4. These predictions were made in 

response to both of the Sandia Fracture Challenges, exercises in which Sandia National 

Laboratories poses a problem of ductile fracture with an a priori unknown solution and 

collects predictions from an international group of teams. Only after predictions are 

collected, is the challenge problem “solved” experimentally, making this a truly blind 

prediction. The results of these exercises motivate the work in Chapter 5, where the use 

of full field deformation measurements of a tensile specimen are integrated with iterative 

finite element simulations in order to extract a plasticity model.  
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Figure 1.1: The dimpled fracture surface of Ti-6Al-4V. 
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Figure 1.2: Depiction of the (a) initial microstructure with sites of preferable void 

nucleation, (b) void growth at a subset of nucleation sites, (c) the 

coalescence of voids, and (d) the material after fracture. 
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Chapter 2: Deformation and Failure of Al 6061-T6 at Low Triaxiality  

 

2.1 INTRODUCTION 

Extensive uncertainty has existed for decades about the nature of failure in 

polycrystalline metals under states of predominantly shear deformation. Understanding 

the failure of these materials began with observations correlating hydrostatic stress with 

ductility, such as that performed by Bridgman (1952). Orowan (1948), Tipper (1949) and 

Puttick (1960) observed that voids nucleate from second phase particles, then grow and 

coalesce to cause failure under conditions of positive triaxiality. Subsequent analysis by 

McClintock (1968) as well as Rice and Tracey (1969) showed void growth to be 

exponentially related to triaxiality. This led to the development of continuum damage 

models for these materials such as the Gurson–Tvergaard–Needleman (GTN) model, 

based on modeling the underlying void growth mechanics. However, in a state of 

continuing shear deformation, where triaxiality vanishes, this model does not allow for 

void growth, thus precluding its only measure of damage and failure from departing from 

its initial value. Modifications, to allow for shear failure have since been proposed 

(Nahshon and Hutchinson, 2008), but still carry the assumption that void mechanics drive 

damage and eventual failure. 

Separately, several experimental investigations motivated by the work of Bao and 

Wierzbicki (2004) have been performed in the last decade that seem to indicate 

significant loss of ductility under shear dominated deformation as opposed to 

deformation at a higher level of triaxiality. This loss in ductility is thought to occur by a 

change in mechanism on the microscale from necking of inter-void ligaments to their 

shearing. In recent papers, Ghahremaninezhad and Ravi-Chandar (2012, 2013) and 
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Haltom et al. (2013) have observed that remarkably large deformations in Al 6061-T6 are 

not accompanied by damage in the form of voids. Critically, these measurements used the 

deformation of grain boundaries to estimate the strain. This is in contrast to more 

common methods of measurement, that systematically under-estimate the strain. The 

impact of this more accurate measurement on the calibration of failure models is 

considerable. The effect is demonstrated in Figure 2.1, where three strain to failure 

models for Al 6061-T6 calibrated by independent investigations are shown. The most 

conventional approach is the calibration by Leseur et al. (2001), measuring the strain-to-

failure by macroscale techniques to calibrate a Johnson-Cook (1985) failure model. Also 

plotted is a projection of the modified Mohr-Coulomb failure model calibrated by Beese 

et al. (2010), where the failure strain in shear was measured with digital image 

correlation. The final curve is a modified Johnson-Cook failure model produced by 

Ghahremaninezhad and Ravi-Chandar (2012), where it can be seen that use of the grain-

based measurements to calibrate a (lower-bound) strain-to-failure has a profound increase 

on the failure strain compared to the other two methods.  

The purpose of the current work is to determine the mechanisms relating to shear 

deformation and failure of Al 6061-T6 sheet through in situ loading in a scanning 

electron microscope. The presence of any mechanism leading to a loss in ductility should 

become apparent with these observations, as well as the strain range over which such 

mechanisms occur. Of course these observations are only applicable for the material 

under investigation; however, this is a well-studied alloy, thus maximizing room for 

comparison to other investigations. 
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2.2 EXPERIMENTAL DESIGN FOR MICROSCOPIC OBSERVATIONS 

2.2.1 Design of a Shear-Dominant Specimen  

In order to investigate the deformation and failure mechanisms under low 

triaxiality or shear-dominated loading a suitable test specimen had to be designed. The 

main constraint on specimen design is that the remote loading applied is to be extension 

or compression and along the axis of the specimen, a limitation that arises from the test 

machine available for use in the Scanning Electron Microscope (SEM). Thus, applying 

shear through torsion or with a Marciniak-type specimen, such as that used by Yin et al. 

(2015), would require extensive effort into the design and development of experimental 

fixturing and was not pursued. Within this constraint, the specimen was designed so as to 

be as near to zero triaxiality as possible and achieve a maximum amount of straining in 

the shear-dominated region prior to being disturbed by a change in stress path or failure 

in the specimen from outside of the shearing region (i.e. from a tensile region that may 

exist near free surfaces).  

The specimen geometry shown in Figure 2.2 was selected for this investigation. 

This specimen is similar to that used by Peirs et al. (2012); however, the slot geometry 

just behind the notch radii are altered to have straight notch flanks that are aligned with 

the opposing notch flank. This alteration permits the application of larger deformations 

while maintaining low levels of triaxiality in the region of highest deformation, although 

some small positive component of triaxiality persists as the deformation increases. In 

order to keep the specimen fabrication simple, further optimization of this geometry was 

not pursued. If the inner notch flanks are offset farther from the specimen center a 

decrease in triaxiality (bringing it into the negative regime) will occur between the 

notches and offsetting the other way has the effect of increasing triaxiality. Through 

manipulation of this offset, the specimen can be used to examine shear-dominated 
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loading with varying levels of tension or compression. Both the case of zero offset to 

cause vanishingly small average triaxiality and a small offset to produce slightly negative 

triaxiality have been tested and qualitatively show the same overall behavior. In this 

dissertation, only the case of zero offset – the design that comes closest to pure shear 

loading while avoiding positive triaxiality – is considered.  

Since the main objective of these experiments is to acquire high resolution images 

across the entire load bearing ligament, the smallest gauge section for the specimen is 

sought to ensure that the number of images required is reasonably small as to be obtained 

during pauses in applied load during the test. The minimum size of the specimen is also 

constrained by the desire to have enough grains in the shearing plane in order to justify 

modeling the structure as a continuum, thereby bypassing the need for modeling the 

specific incarnation of the microstructure for each individual specimen tested. To achieve 

these opposing objectives, the minimum cross sectional area of the specimen was 

selected to be 400 m in the plane of observation, and about 2200 m through the 

thickness direction. Making use of the mean grain size measurements made by 

Ghahremaninezhad and Ravi-Chandar (2012) we estimate that approximately 1500 grains 

occupy the minimum cross section. It is anticipated that the crystallographic orientation 

of these grains are nearly random, as FCC metals typically do not develop a strong 

texture during rolling. This grain count is deemed sufficient based on the results of Barbe 

et al. (2001) and Kanit et al. (2003). Barbe et al. show that the plastic deformation of a 

representative volume element of 200 randomly oriented grains is sufficient for 

homogenization. Based on the results of Kanit et al. the current grain count is near the 

lower bound for which homogenization of the elastic properties is appropriate. Since 

plastic properties depend on the same underlying crystallographic symmetries, this count 

is assumed appropriate for slip dominated behavior as well. 
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The response of this specimen has been simulated using the Abaqus/Explicit FEM 

package to assess its suitability in achieving a state of nearly vanishing triaxiality during 

large deformations. A highly refined mesh containing ~200000 linear elements with 

reduced integration (C3D8R) has been used, as can be seen in Figure 2.2. The elastic-

plastic properties used by Ghahremaninezhad and Ravi-Chandar (2012) have been 

adopted and no failure or damage models are included. The spatial variation of equivalent 

plastic strain and triaxiality at various levels of deformation are shown in Figure 2.3 as 

well as the deformation at the notch tips. A band of plastic deformation that is 

concentrated between the two notch flanks forms initially, and continues to localize over 

a smaller region as the deformation progresses. As a result, the strain gradient within 

individual grains is anticipated to be large for this specimen. Note also that the plastic 

strain as well as triaxiality are not uniform across the line connecting the two notches, but 

varies significantly; in particular, the triaxiality is close to zero in the central portion 

between the notches, but is clearly nonzero near the notches, reaching a maximum of 

about 0.4. As the loading is increased the notches are seen to deform into cusp like 

features, just from the plastic deformation of the specimen. Thereafter, a process similar 

to that observed by Ghahremaninezhad and Ravi-Chandar (2013) for Arcan geometry 

specimens occurs, where material points that are initially outboard of the cusp in the 

negative triaxiality region move inboard, eventually passing across the cusp into the 

positive triaxiality region. The triaxiality field has an extremely large gradient near the 

cusp, along the path that these points follow. Figure 2.4 shows the equivalent plastic 

strain variation with triaxiality for three points in the model (identified in Figure 2.3a), 

one in the center of the gauge section and two on the notch surface. Extensive straining at 

the center of the gauge section occurs with vanishingly small average triaxiality, with 

most of the straining occurring in a triaxiality range of -0.01 to 0.006. The switch from 
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negative to positive triaxiality is seen for points on the notch surface, and occurs as they 

cross the cusp, with some variation in the deformation history depending on when they 

cross. Specifically, points that traverse the cusp at later states of deformation experience 

higher triaxiality and more straining than prior points that have passed. Finally, note that 

the deformation state becomes highly three dimensional in the region of the cusps after 

they form. The results of the finite element analysis indicate that this specimen is suitable 

for the purpose at hand: to examine the deformation and failure mechanisms under low 

triaxiality, if attention is focused on the regions between the two notches. 

 

2.2.2 Specimen Preparation  

Specimens based on the geometry discussed above were fabricated from a 2.54 

mm thick sheet of 6061-T6 aluminum; these specimens were cut from the same rolled 

sheet stock used in the experiments of Ghahremaninezhad and Ravi-Chandar (2011, 

2012), and hence the grain size statistics (mean grain size in the plane of the sheet of 

around 39 μm) and specimen material response given in these references are appropriate 

for the material used in the present work. The notches were cut with wire EDM; in order 

to prevent damage to the specimens during handling, shims of appropriate thickness were 

placed between the opposing notch faces. One surface of the specimen was then 

mechanically polished to a mirror finish, removing ~ 300 μm of material, and the shims 

were removed; this polishing provides an initially flat surface that is best-suited to reveal 

the deformation of the material. In addition to allowing clear identification of features 

such as inclusions and voids within the matrix material, the initially flat polished surface 

will develop topographic features that are correlated to plastic deformation.  
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The digital image correlation (DIC) method has been used with SEM images by 

other investigators, such as Sutton et al. (2006) and Carroll et al. (2013) for determination 

of strain fields, but is not pursued in this work. This technique is useful for automated 

acquisition of displacement and strain fields; however, in places where there are strong 

gradients in the strain field, the measured strain can be strongly affected by image 

resolution and achieving correlation to provide any measurement at all becomes a 

challenge. Furthermore, in order to use this method, the native surface of the specimen 

would have to be masked with a high contrast random speckle pattern. Unfortunately this 

would obscure, or even completely hide the mechanisms that are of primary interest in 

this work. Nevertheless, the strain field is interest in this work and will be obtained as an 

average over a larger gage length by manually identifying physical points on the 

specimen at different locations and tracking them through the different stages of loading. 

Averaging in the strain field is unavoidable with any image analysis technique for this 

work, since deformation appears to occur in discrete slip steps at the current spatial 

resolution.  

 

2.3 EXPERIMENTAL RESULTS 

2.3.1 Global Response of the Specimen 

The specimen was loaded in a MTII/Fullam SEM tester with a 1000 lb load frame 

(with 1000 lb load cell) at a displacement rate of 0.023 mm/min. The load elongation 

curve is shown in Figure 2.5, indicating an initial elastic response, followed by a plastic 

response, peak load and eventual failure. The five disturbances observed on the otherwise 

smooth load-elongation curve correspond to displacement levels at which loading was 

paused so that high resolution images could be taken. The wandering of the load during 
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this time period is likely due to preferential heating of the specimen and load frame: the 

test frame and specimen enter the vacuum chamber of the SEM at room temperature, but 

the motor dissipates a significant amount of energy as heat during stretching. During 

pauses in the loading, the specimen heats at a faster rate than the load frame, as the only 

heat sink in this setup is the connection between the load frame and microscope stage. As 

a result, the specimen has a larger thermal expansion than the load frame and the load 

decreases while the crosshead is paused. This process has not been verified with thermal 

measurements, but is deduced from the load elongation behavior and knowledge that 

approximately 40° C increase in temperature occurs by the end of the test. 

Scanning electron microscopic images were acquired during the loading process 

at one second time intervals in order to assemble a video of the entire deformation 

history. This video is available as Supplementary Material SM1 for this dissertation (note 

that there is one change in magnification shortly after the video begins). Since these 

images cover the entire region between the two notches, the images are at a relatively low 

magnification (578 nm/pixel). The events observed in this video generally follow the 

predictions of finite element analysis, indicating the progressive deformation of the notch 

tip region, and the formation of a cusp like feature prior to any new surface generation 

(fracture). The video also shows that failure initiated from the cusp like features that 

develop from the EDM cut notches, where a higher state of triaxiality than pure shear 

exists. Initiation and arrest of at least two cracks from the left cusp are seen prior to the 

final crack that completely severs the specimen. Additionally, it is observed that the final 

cracking event does not occur through the region of highest shear deformation. The 

failure of this specimen is clearly not a failure under low triaxiality condition, but one 

that is driven by the cracks that form at the two notches and propagate towards each 

other, with the region between the cracks experiencing significant plastic deformation 



 14 

under low triaxiality. Therefore, a notched specimen could not be used for the 

determination of the strain-to-failure under low triaxiality conditions. However, the 

central portions of this specimen do sustain significant shear strains; the high-resolution 

images obtained at the different stages of loading provide information on the deformation 

mechanisms that operate during the development of large strains as discussed below.  

 

2.3.2 Measurement of the Local Strain Variation in the Specimen 

Prior to loading, and during the first four pauses in loading, a series of images was 

taken at higher resolution (145 nm/pixel) and stitched together to elucidate the details of 

deformation during testing. These images are printed with significantly reduced 

resolution in Figure 2.6, but the full resolution images are available as Supplementary 

Material SM2a-e. Each global level of deformation at which these high-resolution images 

were taken will henceforth be referred to as stages D0-D4, with stage D0 referring to the 

initial state, stage D1 the first level of deformation, stage D2 the second, and so forth. 

Figure 2.6a shows the microstructure at stage D0. Note that some regions on the 

specimen appear stained – a light colored region near the right notch, and some dark 

splotches near the left notch. These regions of discoloration are just surface stains from 

specimen preparation and are not a part of the microstructure; they do not influence the 

material behavior. Aside from discoloration, the most dominant feature in this image is 

the population of second phase particles embedded in the aluminum matrix. Image 

analysis of multiple optical micrographs of the region identified that about 2% of the 

surface area is occupied by these particles. There also exists a very small initial void 

population with some voids near the interface between matrix and inclusion, but the 
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majority occurring in isolation. Most particles are seen to be intact and bonded to the 

matrix.  

The positions of about 90 particles were tracked manually at stages D0-D4 and 

used as Lagrangian markers to determine the displacement and strain field. While the 

displacement fields are then readily calculated based on particle positions, the 

determination of strain requires care. First, as we will see later, substantial deformation 

gradients and even discontinuities exist within each grain, and thus the identification of 

strain from the displacement data should be considered as an average measure over the 

gage length. Second, the strains are calculated using this discretization of the 

displacement field, Delaunay triangulation, and isoparametric interpolation with a linear 

basis function. If the connectivity of the Delaunay triangulation of the points was 

performed obtained in the first image is maintained through all stages of deformation, the 

mesh becomes extremely distorted in regions of high shearing deformation, requiring 

rearrangement of the nodal connectivity to maintain triangles of a suitable aspect ratio; 

the average strain at each particle is then obtained as discussed below. The median area 

of a triangle in the mesh is about 59 μm2 with a standard deviation of about 128 μm2. 

This yields an average gage length of about 14.8 μm, which is significantly smaller than 

the grain size (39 μm) in this material.  

The Hencky strain was computed for each triangle in order to produce an estimate 

of the strain in its interior. The equivalent plastic strain of each element was calculated by 

adding the equivalent plastic strain increment between subsequent stages of deformation 

to the equivalent plastic strain at the prior stage of deformation. If an element with the 

same connectivity did not exist at the prior stage of deformation, then the prior equivalent 

plastic strain was taken as the mean of the three nodal strains for each element. Nodal 

strains were computed by taking a weighted average of the strain computed for all the 
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connected elements. Weights were apportioned based on the distance between the node 

and the centroid of each connected elements. Due to the averaging used to transfer 

between element and nodal quantities, some smoothing of the equivalent plastic strain 

field occurs in the remeshing process. 

The equivalent plastic strain field at each level of deformation is overlaid on the 

SEM images in Figure 2.7. Figure 2.7a shows an example of the triangulation that is 

performed at each level of deformation. At all stages of deformation, the equivalent 

plastic strain field is seen to be extremely heterogeneous. Heterogeneity is to be expected 

at this length scale (for an example of the heterogeneity at the higher spatial resolution 

afforded by DIC see Kammers and Daly, 2013), nonetheless certain trends from the 

continuum finite element simulation are visible. Namely, that the shear strain is 

concentrated in between the notch flanks and continues to localize to a smaller region as 

deformation increases. 

Each of the following paragraphs will outline the behavior of a particular feature 

of the microstructure throughout its deformation history, saving the distillation of the 

variety of behaviors observed for the following discussion section. When estimates of the 

strain are available at the location of interest, values are given in the figure caption. 

 

2.3.3 Discrete Deformation of the Matrix 

Figure 2.8 shows a higher resolution snapshot of the deformation occurring in the 

vicinity of a single grain located at the point A in Figure 2.6; the normal direction of the 

shearing plane is nearly vertical in all of these images. The first image (Figure 2.8a) 

shows a representative picture of the initial microstructure prior to loading; since this 

corresponds to the initial polished flat surface of the specimen, there is very little contrast 
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in the image. The second image corresponding to stage D1, shows some new contrast 

features that are in the form of parallel lines, but with different orientations in different 

regions of the image; these are formed by discrete slip events along crystallographic slip 

planes in different grains that result in out-of-plane displacements, and their formation 

can be understood by the following argument. Even though the average shear 

deformation applied to the specimen should result in no out-of-plane displacement, local 

variations in the grain level deformation are responsible for out-of-plane displacements; 

the initially flat polished surface develops topographic features that are correlated to 

plastic deformation in each grain. Since this deformation is concentrated as slip on 

crystallographic planes that is constrained to occur on a finite number of slip systems, 

some component of this slip will occur in a direction normal to the polished surface. The 

surface elevation change from each slip event cannot exceed the length of one Burgers 

vector (a few angstroms), and therefore individual slip events can only be detected using 

extremely high resolution techniques such as atomic force microscopy. Comparatively 

lower resolution instruments, such as the scanning electron microscope (SEM) used in 

this work, do not directly image activity on the lattice scale; therefore, it can be argued 

that the observed parallel lines are due to deformation caused by the accumulation of 

many slip events, on the subgrain, but super lattice level. This implies that even at the 

grain level, plastic deformation is due to the accumulation of slip events on discrete 

planes. Such discrete slip will be identified in the next section through tracking of the 

motion of a particle after fracture. Here, the term slip trace will be used to describe the 

surface step that is produced by the concentration of activity by a particular slip system 

onto a single, or tightly bundled group of crystallographic planes. Additionally, the grain 

boundaries have become visible due to differences in the orientation of the parallel slip 

traces in each grain and out of plane sliding along the boundaries themselves. The 
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boundary of the grain labeled A in Figure 2.6 is identified by the red dash-dot line in 

Figure 2.8b. The slip traces are more visible in Figure 2.8c, an image corresponding to 

stage D2. It is seen that in some grains the first activated slip system is well aligned with 

the direction of global shearing, whereas in other grains, such as the central one in this 

image set, it is not well aligned. Additionally, deformation is clearly visible by the 

change in shape of the central grain between the first and second levels of deformation. 

At stage D3, pictured in Figure 2.8d, slip traces from the second activated slip system 

become just as visible as those from the first. When a second slip system is activated in a 

grain, it is always well aligned with the global shearing direction. In the fourth and final 

level of deformation (stage D4, Figure 2.8e), slip traces corresponding to the second 

activated slip system dominate the image. The central grain is seen to be heavily 

deformed from its initial shape. Tracking the second phase particles that are at the 

boundary and within this grain, and using the triangulation described above, the strain in 

this grain can be estimated to be about 2.2. Additionally, the surface topography in the 

grain clearly reveals the discreteness of the displacement field. Slip traces that were once 

smooth, nearly vertical lines, become broken up and exhibit sharp corners where 

intersected by slip traces running in the horizontal direction. The horizontal slip traces 

remain smooth curves because appreciable slip on the first system does not occur once 

slip traces on the second system become visible. Similar observations were made in other 

parts of this specimen as well as in two other specimens in repeated tests. The material 

between the two notch regions displays the slip behavior just described and deforms 

under low triaxiality conditions. The question of whether this material exhibits distributed 

damage under shear loading and what microstructural aspects lead to final failure/fracture 

remain to be examined. This will be accomplished through careful examination of the 
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changes in microstructural features such as voids, second phase particles, slip planes, and 

grain boundaries through the deformation of the entire specimen.  

 

2.3.4 Fracture and Debonding of the Second Phase Particles 

Figure 2.9 tracks the behavior of a single particle throughout the deformation; the 

location of this particle is identified as P1 in Figure 2.6. At stage D1 (Figure 2.9b), slip 

traces on the first activated system are seen to be misaligned with the direction of global 

shearing. One slip trace appears to terminate at the particle, perhaps because the particle 

provides a barrier for slip. At stage D2 (Figure 2.9c), slip on the second activated system 

is visible and the particle cracks; additional slip on the first system is also visible on 

previously established slip planes. At stage D3 (Figure 2.9d), a slip trace that was faintly 

visible in stage D2 is now clearly perceptible at the location of particle fracture. Between 

the stages D2 and D3, the upper and lower fragments of the cracked particle are separated 

by a plane of active slip and a void develops between them. In Stage D4 (Figure 2.9e), 

the two particle fragments continue to move farther apart in the presence of extreme 

plastic deformation. The void between the two fragments shears but does not appear to 

exhibit any growth. The discrete nature of slip, even on the super lattice scale, is 

indicated by the red dashed line shown in the figure; it is clear that similar discontinuous 

slip events occur at each of the parallel slip traces and it is this discontinuous nature of 

deformation that renders any strain measurement made at this spatial resolution as an 

averaged or homogenized strain measure, as discussed in Section 2.3.2.  

Figure 2.10 tracks another particle throughout the deformation, where again it 

appears as though a slip trace may be perturbed by the presence of a particle; the location 

of this particle is identified as P2 in Figure 2.6. Whether or not the slip trace is affected, it 
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is clear at stage D2 that the particle cracks where the slip trace intersects it. The final 

image corresponds to stage D4 of deformation (stage D3 has been omitted due to its 

similarity to stage D4), where the void resulting from cracking has opened up. In most 

ways this is quite similar to what happened to the particle P1 described above, but a 

couple differences are seen. Particle P1 was cracked by the slip on the second system 

(implying at a later loading stage), whereas particle cracking in the current grain has 

occurred with only one active slip system (at an earlier loading stage). Furthermore, due 

to the orientation of slip within this particular grain, the void nucleated from the crack 

opens, rather than shears. If further deformation had continued, it is likely that a second 

slip system would have been activated in a similar orientation to the global shear 

direction, and that void shearing similar to what was observed in Figure 2.9 would have 

ensued. 

One final case of particle cracking is to be highlighted, as detailed in Figure 2.11; 

the location of this particle is identified as P3 in Figure 2.6. Again, cracking is seen at the 

intersection of a slip trace and a particle. Here, the clear difference with the prior case is 

the size of the particle. In the current case, the particle is much smaller, indicating that 

even small particles can crack, although they are certainly less likely to do so (e.g. the 

small particle near the left edge of the same Figure 2.does not crack). Also, this particle 

does not seem to impede the formation of the slip trace. Whereas large particles appear to 

provide a bit of constraint to slip in their neighborhood (as inferred from the 

disappearance or deflection of slip traces in their immediate vicinity), the amount of 

constraint provided by a small particle is not observable at this scale. 

While there are ample examples of particle cracking, there are also numerous 

cases where particles do not crack. Figure 2.12 shows a rather large particle in an area of 

moderate plastic deformation; the location of this particle is identified as P4 in Figure 2.6. 
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At stage D1 (Figure 2.12b), two slip traces straddle the particle. Additional slip planes 

appear to terminate at the boundary of the particle. Further slip along the same planes 

occurs, but even at the final level of deformation shown in Figure 2.12c the particle 

remains intact and bonded to the matrix. In this case slip traces are not seen to intersect 

the particle, and the particle appears to have arrested two slip traces to its left. 

Particle debonding is also observed to occur during deformation, as depicted in 

Figure 2.13; the location of this particle is identified as P5 in Figure 2.6. Here, the matrix 

deformation causes the distance between two nearby particles to increase. In order to 

accommodate this increase, interface debonding is observed to have occurred at one of 

the particles by stage D1. As the global deformation increases to stage D2, both the 

length of the debond and its opening increase. Under continued deformation to the fourth 

level (the third level has been omitted due to similarity to the fourth), the opening of the 

debond is seen to increase, however the length actually appears to decrease slightly as the 

particle partially re-embeds itself into the matrix material.  

Another case of debonding is shown in Figure 2.14; the location of this particle is 

identified as P6 in Figure 2.6. Here, a particle that appears to emerge from the subsurface 

between stages D0 and D2 indicates the action of out of plane deformation. The particle 

separates from the matrix at a location where it has high curvature. At stage D1 there 

appears to be a void adjacent to the one formed by debonding, and linking of the voids 

occurs at the second level of deformation. This sequence of events is possible, but since 

nothing is seen to nucleate the second void, it seems more likely that in this case 

involving out of plane deformation, that the two voids, are in fact a single cavity that is 

bridged on the surface. The debonding seen here is slightly atypical, as the interface area 

of debonding on the particle is minimal, and the particle appears to tear the matrix as it 

flows past the pointed particle tip. It is interesting to note that despite significant evidence 
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of plastic deformation in the surrounding matrix, this particle remains intact throughout 

the deformation; however, this is not always the case. 

The particle shown in Figure 2.15 demonstrates that particle cracking and 

debonding need not happen mutually exclusively; the location of this particle is identified 

as P7 in Figure 2.6. The initially intact and well-bonded particle is partially debonded 

from the matrix at its top before stage D1. By stage D2, the length of the interface debond 

is static as there is nothing to be gained by driving the interface crack around the 

particle’s corners, but opening of the void is seen. To accommodate additional 

deformation, the particle cracks again, this time across the middle, and the crack faces 

move apart while maintaining parallelism. By stage D3 the void from debonding, at the 

top, has saturated in size, but undergoes mild deformation. One of the particle fragments 

cracks again, with both of the voids initiated from cracking continuing to grow, and 

separation between the fragments increasing. By stage D4 the distance between particle 

fragments continues to increase, however, the voids in between fragments do not grow in 

area, and are actually seen to partially collapse, with opposing faces coming into contact 

with one another through shearing of the matrix. One of the particle fragments is 

unaccounted for in this image. Perhaps it retreated to the subsurface, or the matrix may 

have flowed over it. 

The most complex behavior observed involving particles is shown in Figure 2.16, 

where a strong interaction exists between two neighboring particles labeled ‘L’ and ‘R’; 

the location of these particles is identified as P8 in Figure 2.6. The image at stage D1 is 

omitted, as there is little change from stage D0. At stage D2 (Figure 2.16b) a strong slip 

trace is visible between two corners of these particles, but its intensity diminishes outside 

the inter-particle ligament. Also, it is seen that cusp formation of the notch face is 

occurring on the surface just to the left of this particle pair. At stage D3 the cusp has been 
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established directly to the left of these particles. Extensive deformation has brought the 

corners of the two particles that were once nearly horizontally displaced to each other to 

be nearly vertically aligned and nearly in contact, again indicating discrete/discontinous 

slip. In order to accommodate this deformation, cracking along the slip trace occurs in a 

deformation pattern akin to mode II cracking (deformation is dominated by sliding 

displacement between crack faces). Indeed, the part of the crack to the left of particle R 

and below particle L has a modest opening displacement (in addition to the larger sliding 

displacement) and a length that is nearly identical to that of the slip trace observed at the 

second level of deformation. Finally, at stage D4 a large crack that is nucleated by the 

cusp appears to link up to the crack that was initiated between the particles. It is likely 

that this linking is coincidental, as the crack is initiated from the free surface, and its 

location set by the position of the cusp. A more convincing case of crack growth 

influenced by damage and following a voided path would be to see a crack turn slightly 

to meander from void to void. We reiterate that in the vicinity of the cusp the stress state 

differs significantly from that of pure shear, but still sliding deformation appears to occur 

in this neighborhood.  

 

2.3.5 Deformation of the Pre-exsting Voids 

We now turn our attention to voids that preexist in the initial state; but before 

beginning this task, we emphasize that the initial volume fraction of voids is extremely 

small – 0.06% – suggesting that preexisting voids are indeed a rare occurrence. Figure 

2.17 tracks the history of an isolated void in a region of moderate deformation; the 

location of this void is identified as V1 in Figure 2.6. The diameter of this void is about 

0.8 m. At stage D1 slip traces corresponding to the first activated system are seen, with 
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one trace running just to the side of the void. At stage D2, slip traces corresponding to the 

second activated slip system are visible, and again a slip trace runs near the void, just 

above but not through it. During stages D3 and D4, we see continued slip on the second 

slip system. The interesting feature of this image sequence is that no deformation of the 

void can be perceived at least on the scale of the image, despite continued deformation in 

the surrounding matrix. In fact, this behavior of preexisting voids appearing completely 

unperturbed by deformation in the surrounding matrix was commonly observed in this 

material.  

Some voids, such as the ones shown in Figure 2.18 do deform in the presence of 

matrix deformation; the location of this pair of voids is identified as V2 in Figure 2.6. The 

diameters of these voids are about 1.1 m and 1.0 m respectively. These two particular 

voids are closer in vicinity to each other than average and appear to occur in different 

grains, as indicated by the different pattern of slip traces observed in different regions. 

Even by stage D1 some shearing of the voids is seen. As more slip develops the voids 

shear further, however, the deformation is quite small and pales in comparison to what is 

experienced by voids that are nucleated near second phase particles, which despite 

sizable deformation, remain quite small. Just a couple of voids located near the cusps are 

seen to undergo substantial deformation. One such void, located near the left cusp is 

shown in Figure 2.19; the location of this void is identified as V3 in Figure 2.6. The 

diameter of this void is about 1.4 m. This void experiences minimal distortion during 

the first three levels of deformation. The fourth level of deformation shows particularly 

large deformation in the matrix that results in shearing of the void and its near complete 

closing. Figure 2.20 shows a void very near to the right cusp; the location of this void is 

identified as V4 in Figure 2.6. The diameter of this void is about 2.5 m. This void shears 

and partially collapses as it passes from the negative triaxiality side of the cusp to the 
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positive side. It is interesting to note that deformation under a similar stress state, in the 

vicinity of this void, caused many particles to fragment and/or debond, triggering cavity 

growth. Yet growth of the void itself does not occur, instead the void is seen to partially 

close up from the shearing deformation.  

 

2.3.6 Summary of Observations on Deformation, Debonding, Fracture, and Voids 

There are a few important observations that are summarized here in order to 

capture the essence of the results from the in situ tests performed.  

 First, plastic deformation occurs in a microscopically discrete manner from the 

very early stages of plastic deformation. Evidence of such discrete plastic 

deformation is seen from out-of-plane deformation impinging on the polished 

surface, even in the early stages of deformation (for example in Figure 2.6b, 

corresponding to stage D1). Many grains located between the two notch flanks of 

the specimen exhibit a pattern of surface steps, associated with the first activated 

slip system of each grain. Slip that is visible from surface steps appears to 

concentrate on a small subset of the crystallographic planes in each grain. This 

leads to a displacement field that is somewhat discrete with jumps across each of 

the slip traces. The spacing of the steps is apparently regular within a given grain 

– somewhere in the range of 2 to 10 m – but varies widely between different 

grains. The first activated slip system in some of these grains is oriented in a 

similar manner to the global shearing deformation, while in other grains it is not. 

Therefore shearing of the grains occurs through accumulation of discrete slip on 

these planes in different orientations. As the applied deformation increases to 

stage D2 and beyond, slip on planes and grain boundaries identified in the 
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previous loading step continue to accumulate deformation, and additional slip 

systems are activated in order to accommodate greater strain levels. The discrete 

accumulation of deformation along differently oriented crystallographic slip 

traces is the primary deformation mechanism as large shear strains on the order of 

~ 2eq  are developed in the regions between the two notches. It is expected that 

this will generate a continued strain-hardening response for the plastic matrix.  

 Second, loading from stage D1 through D4 brings about some interaction between 

the plastic deformation and the larger scale defects such as second phase particles. 

Most particles remain intact and completely bonded to the matrix in grains where 

only one slip system is active, while a minority of particles debond or crack, 

generating a void. Particle cracking becomes more likely in grains with two active 

slip planes. Particles that crack tend to do so shortly after the activation of the first 

or second slip system. The result is that particle cracking events are most likely to 

occur during narrow slices of deformation history, whereas continuation of a 

particular deformation pattern is unlikely to initiate new particle cracks. Thus, it 

appears that second phase particles simply break, debond, and/or rotate with the 

matrix in order to accommodate or facilitate the shearing deformation, instead of 

acting as sources of damage for the material under shear-dominant loading. The 

fact that as the deformation progresses to stages D3 and D4, the size of voids 

initiated from particle debonding and cracking saturates (quite often voids even 

shrink as a result of matrix flow into these regions) provides strong evidence that 

the second phase particles do not play a significant role in the deformation and 

failure under shear loading. Rather, the material shows a matrix-dominated 

response, which is demonstrated to be strain-hardening in the next section.  
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 Third, the few voids that are present in the initial microstructure have minimal 

shape change, and appear to have little if any influence on the surrounding 

deformation. A couple of large preexisting voids that are near the cusps at the 

ends of the notch collapse or shear significantly, as stage D4 is approached 

indicating that these voids do not grow, but close. This behavior is particularly 

interesting, since it occurs when the shear deformation in these regions is 

accompanied by a state of positive triaxiality. Therefore, neither the naturally 

present voids, nor the ones nucleated by particle debonding play a role in the 

eventual failure of the specimen. 

 Finally, while the specimen fails under the “shear loading” applied to the 

specimen, the sequence of events clearly indicates that damage and/or failure does 

not occur in the regions with low triaxiality; the central regions of the specimen 

that are deformed at nearly zero triaxiality strain to equivalent plastic strains on 

the order of 2.5 without exhibiting any signs of damage, but only shearing 

discretely along different slip planes.  

The observations reported here are from the surface of the specimen. So, one 

natural question that arises is whether such deformations are possible in the interior of the 

specimen. Direct examination of this question would require that these experiments be 

performed in an X-ray tomography system, but even in this case the resolution may not 

be adequate to resolve some of the features, particularly that associated with discrete 

plastic slip. However, one can infer that this must occur both from micromechanical 

arguments and post-mortem examinations of cross-sectional microscopy. The surface 

topography evolution during deformation simply indicates that in order for a two-

dimensional shear deformation to occur in a grain whose crystallographic directions are 

randomly oriented with respect to the shearing direction, (i) slip must occur through 
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resolved slip along crystallographic directions resulting in three-dimensional deformation 

at the grain level and (ii) slip occurs in clusters of slip planes with nearly uniform 

spacing. It is evident that the first part must be true in the interior as well since this is the 

only way of accommodating random grain orientations. Evidence for clustering of slip 

can be found in images of grain boundaries from cross-sectional microscopy. Grain 

boundaries in the initial microstructure that appeared as linear features at the microscopic 

scale deform into tortuous lines that arise from the discreteness of the slip processes.  

Whether the behavior of particles and preexisting voids on the specimen surface is 

similar to that in the specimen interior also needs to be considered. The stress state in the 

interior is slightly different, but the deformation of the surrounding matrix is much the 

same. Whether different mechanisms occur in the subsurface will depend on how 

sensitive particles and voids are to the slight increase of negative triaxiality, and a slightly 

larger Lode parameter that is present in the interior. If the response of particles and voids 

is dominated by the deformation of the surrounding matrix then behavior in the interior 

will be quite similar to that observed on the surface. Further consideration of these 

aspects requires x-ray tomography and other nondestructive tools to provide more 

detailed picture of the sequence of events. 

 

2.4 DISCUSSION 

The fact that crack initiation at the notches occurs prior to reaching the peak load 

is an important feature of the load elongation behavior of this specimen. This provides 

direct evidence that no softening behavior of the material could be occurring prior to this 

point. It is necessary that the flow stress be an increasing function of the strain up to and 

past stage D3 because the global load is increasing even while cracks propagate from the 
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notches, thereby decreasing the cross sectional area over which the load is distributed. 

The peak load corresponds to the balance point at which the stiffness increase of the 

specimen from the hardening of the material is equal to the stiffness decrease of the 

specimen from a loss in ligament area from crack extension (or more generally structural 

stiffness due to crack extension). It is clear that the decrease in load carrying capacity of 

the specimen is not from intrinsic properties of the material, but rather the specifics of the 

crack growth for this particular specimen.  

Beyond the peak load, while the global load carried by the specimen is 

decreasing, there can be no direct evidence of increasing flow stress of the material. 

However, all of the mechanisms that perhaps have the capability to decrease the intrinsic 

load carrying capability of the material that were observed (that is void growth, particle 

cracking and debonding) have halted past stage D3. The halting of these mechanisms 

after peak load may be simply coincidental, but allows for a strong inference to be made: 

the possibility of material softening can all but be ruled out. There are no observed 

mechanisms to decrease the intrinsic load carrying capability of the material and the 

decrease of specimen load can be well explained by the growth of cracks.  

Focusing on the behavior of the material itself, while it is interesting to see the 

variety of mechanisms that occur – lattice slip, brittle fracture of inclusions, interface 

debonding, and void deformation – it is more important to understand the interactions 

between these mechanisms and what roles they play in the deformation in order to enable 

constitutive modeling. The concentration of slip events on a small subset of seemingly 

identical crystallographic planes is seen to be a characteristic response of the matrix. 

Discrete plastic displacements are expected at the lattice scale due to dislocation motion, 

but a discrete displacement field is seen in the present work even at the mesoscale 

between lattice and grain scales. In some grains the spacing between these active planes 
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is similar to the size of second phase particles, with the particles sometimes falling in-

between active planes and at other locations active planes intersecting the particles. Quite 

intuitively, cracking of a second phase particle is often correlated with the intersection of 

one of these active planes. Not all cracked particles have clear evidence of intersection 

with a highly active slip plane, however not all highly active slip planes are visible as 

only the out of plane component of slip can be viewed with the SEM imaging.  

Considerable attention has been paid to voids and particles in the discussions in 

this chapter, not because of their importance, but in an effort to emphasize their relative 

unimportance. It is the plastic behavior of the matrix material which is found to dominate 

the response. No indication of termination for plastic slip is observed in these images 

obtained as the matrix simply continues to slip to accommodate deformation. The slip is 

eventually halted simply due to a lack of driving force when cracks that occur outside of 

the region where shear dominates propagate across the specimen. Interestingly, when the 

cracks do propagate, they do not propagate through the area of most intense shearing; in 

fact, cracks propagating into material that has extensive prior shear deformation are seen 

to be arrested. It is not clear if this is due to an intrinsic property of the sheared material, 

or simply just a result of this particular specimen configuration. Either way, it suggests 

that the intensely sheared material has in no way been damaged, or made more likely to 

fail than it was prior to deformation. 

The modeling implications from these observations are fairly simple. Firstly, the 

need for well-calibrated plasticity models into the range of extremely high strains cannot 

be overstated. This modeling should not include the possibility for material softening; 

rather the simpler case of a strain-hardening plastic model is more true to reality, but 

needs to be calibrated to very large strain levels. The scale and purpose of the model will 

have an effect on how plasticity should be handled. In order to illustrate this, we show in 
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Figure 2.6 the deformation of a line computed using FEM with the flow theory of 

plasticity and Hill’s 1948 yield criterion overlaid on the experimental images. The FEM 

deformation appears to match the overall experimental displacement field quite well at all 

stages of deformation shown. Calculating strains on the scale of individual grains seems 

to be the lower limit for this modeling technique, as the subgrain details of slip being 

concentrated on a small subset of planes, are beyond the capability of this modeling 

approach. The actual deformation stair-steps along the same smoothly curving trajectory 

that the model produces. Even modern day crystal plasticity models typically do not 

capture the behavior of slip concentration that is seen to be prevalent in the plastic flow. 

Capturing this behavior may prove to be essential for the modeling of failure, and is 

certainly a requirement to model the cracking of particles. Perhaps most importantly, the 

experimental observations show that for a large range of strain, modeling of voids or any 

other damage mechanism is completely unnecessary for this material under shear 

dominant loading. Even more, these modeling techniques may introduce a nonphysical 

reduction in flow stress while adding extensive complexity in the calibration of model 

parameters.  

 

2.5 CONCLUSION 

Experiments were performed inside a scanning electron microscope to explore the 

details of the deformation and possible damage or failure mechanisms of Al 6061-T6 

under shear dominated loading. Monotonically increasing stress-strain behavior on the 

continuum scale is directly observed up to a strain of at least 1.1 and strongly implied for 

strains in excess of this value. Through high resolution microscopy and particle tracking, 

it is shown that  
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 Plastic deformation occurs through the accumulation of discrete slip on slip 

planes that are spaced between 2 – 10 m apart within each grain. Average plastic 

strains on the order of 2 were observed in the interior of the specimen where the 

triaxiality is nearly zero. 

 No evidence for homogenizable damage of the sort required for commonly used 

continuum damage models was found. In particular, second phase particles broke, 

debonded or rotated, but these processes occurred while the specimen still 

exhibited a hardening response.  

 Voids present in the initial microstructure have a minimal influence on the 

deformation and failure of this material. Voids from particle cracking and 

decohesion are found to be more active, but serve as a deformation mechanism 

rather than relating to damage or failure. These processes terminate after the 

initial stages of deformation of the material. 

 It was not possible to generate failure under shear in this specimen, because high-

triaxiality dominated failure generated from the notches interrupted further 

progression of shear deformation.  
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Figure 2.1: Strain to failure as a function of triaxiality from three independent 

investigations for Al 6061-T6. The use of grain level strain measurements 

has a profound effect on the failure strain.   
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Figure 2.2: Specimen design to create shear dominated deformation between the 

notches when extension is applied with wedge grips at the specimen ends. 

The mesh discretization used for FEM is also pictured, to show the very fine 

mesh used in the vicinity where the notch collapses into a cusp like feature. 
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Figure 2.3: Predicted strain and triaxiality variation on the specimen’s surface at three 

levels of deformation. Note how plastic deformation causes the initially 

rounded notches to deform into sharp features, and the strong gradient in 

triaxiality around these features. The triaxiality in the heavily strained region 

away from the notches is maintained close to zero. 
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Figure 2.4: Equivalent plastic strain variation with triaxiality in the specimen from finite 

element analysis. The center of the specimen undergoes extensive straining 

with nearly vanishing triaxiality. Some points on the notch surface pass 

across the cusp tip, while experiencing a rapid increase in both strain and 

triaxiality. The curve labeled “Cusp 1” corresponds to an element that 

passes over the cusp tip at a lower level of deformation than the element 

corresponding to the curve labeled “Cusp 2.”  
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Figure 2.5: The load elongation curve for the specimen. The small disturbances in load 

seen are the displacement levels where the loading was paused to take high 

resolution images. The load drift during imaging is likely caused from 

thermal loading. 
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Figure 2.6: SEM images of the deformation in the sheared region of the specimen in the 

a) unstrained state and the b) first c) second d) third and e) fourth levels of 

deformation. The red line shows the displacement predicted by the FEM 

simulation, which shows reasonable agreement to the experimental result.  



 39 

 

Figure 2.7:  The equivalent plastic strain field at stages D1-D4, determined by tracking 

approximately 90 particles. (a) Initial positions of the identified points and 

an example of the Delaunay triangulation that was performed at each stage 

of deformation. The color map for each Figure 2.has a maximum of (b) 0.35, 

(c) 0.8, (d) 1.7, and (e) 3. 
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Figure 2.8: Snapshots focusing on the plastic deformation of a grain taken at D0-D4. 

The equivalent plastic strain in the vicinity of the central grain is estimated 

to be b) 0.13, c) 0.50, d) 1.1 and e) 2.2. The grain boundary is made clearly 

visible by out of plane grain boundary sliding and is traced by the red 

dashed line. Extreme deformation and extensive slip is seen on multiple slip 

systems without any indication of voiding, cracking, or damage within the 

grain.  
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Figure 2.9: Snapshots of a particle cracking taken at D0-D4. The equivalent plastic 

strain in the vicinity of the particle is estimated to be b) 0.16, c) 0.32, d) 0.77 

and e) 1.3. The particle is seen to have cracked by D2, after the second slip 

system has been activated. The crack has opened up a void visible in D3, 

however, no void growth occurs between D3 and D4 and deformation 

between the particle fragments occurs by slip along the red dashed line.  
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Figure 2.10: Snapshots of a particle cracking taken at D0-D2 and D4. The equivalent 

plastic strain in the vicinity of the particle is estimated to be b) 0.16, c) 0.39, 

d) .53, and e) 0.55. Particle cracking is seen to have occurred by D1, where 

a concentration of activity on the first activated slip system intersects the 

particle. The crack opens a void that grows up until D3, but does not grow 

between D3 and D4.  
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Figure 2.11: Snapshots of a small particle cracking taken at D0-D4. The small particle in 

the center of the image is seen to be cracked in D3 where intersected by a 

slip trace. All other small particles remain intact; indicating that even small 

particles can crack, but only if they happen to be intersected by a slip line.   
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Figure 2.12: Snapshots of a particle that remains intact taken at D0, D1, and D4. The 

equivalent plastic strain in the vicinity of the particle is estimated to be b) 

0.21 and c) 0.50. A rather large particle is found in between slip lines in D1. 

Despite continued deformation of the surrounding matrix material, the 

particle remains intact and bonded at D4.  
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Figure 2.13: Snapshots of a particle pair with debonding taken at D0-D2 and D4. 

Interaction between particles is likely, as the lower particle is seen to be 

partially debonded by D1 to accommodate the growing separation between 

its neighbor. The debonded length grows by D2, however, by D4 the particle 

seems to have partially re-embedded into the matrix, as the debonded length 

is slightly shorter. 
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Figure 2.14: Snapshots of a particle tearing the matrix taken at D0-D4. The equivalent 

plastic strain in the vicinity of the particle is estimated to be b) 0.22, c) 0.44, 

d) 1 and e) 1.1. Out of plane deformation is clearly occurring, causing the 

particle to emerge from the subsurface. This particle may have smaller flaws 

than most others, allowing it to remain intact despite large concentrations of 

slip activity intersecting it. Atypical debonding is seen where matrix 

material that flows past the sharp tip is seen to tear.   



 47 

 

Figure 2.15: Snapshots of a particle debonding and then cracking taken at D0-D4. The 

equivalent plastic strain in the vicinity of the particle is estimated to be b) 

0.15, c) 0.30, d) 1.5 and e) 2.2. A combination of particle debonding 

(initiated prior to D1), and cracking (seen twice, once at D2 and again at 

D3). The nucleated voids initially grow, however, the one in between 

particle fragments is seen to partially collapse between D3 and D4.  
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Figure 2.16: Snapshots of a strongly interacting particle pair taken at D0 and D1-D4. A 

concentration of plastic deformation is seen in between the two central 

particles in D2. This slip opens up a crack visible in D3. In D4 a crack 

initiated from the cusp links up to the interior crack, seemingly by 

coincidence.   
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Figure 2.17: Snapshots of a void at D0-D4. The equivalent plastic strain in the vicinity of 

the void is estimated to be b) 0.15, c) 0.37, d) 0.66 and e) 0.87. The void is 

seen to be completely unperturbed by the surrounding plastic deformation 

occurring on multiple slip systems.  
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Figure 2.18: Snapshots of a void pair deforming taken at D0-D4. These voids are seen to 

deform modestly in response to extensive deformation of the surrounding 

matrix.  
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Figure 2.19: Snapshots of a void taken at D0-D4. The equivalent plastic strain in the 

vicinity of the void is estimated to be b) 0.17, c) 0.37, d) 0.98 and e) 1.6. 

The central void is seen to show little deformation, at least up to D3. In D4, 

a crack exists not far to the left of the void and the extreme loading causes 

considerable shearing of the void.   
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Figure 2.20: Snapshots of a void taken at D0-D3. A large void near the initial notch is 

seen to be unperturbed by a state of positive triaxiality during D1 and D2. 

As it passes over the cusp to the side with negative triaxiality, the void is 

seen to be partially collapsed in D3.  
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Chapter 3: Prediction of Ductile Failure in 15-5 PH Stainless Steel 

Using a Local Strain-to-Failure Criterion  

 

3.1 INTRODUCTION 

The details of the 2012 Sandia Fracture Challenge (we refer to this challenge as 

the 2012 SFC) and the outcomes are fully described by Boyce et al., (2014). The main 

goal of this Challenge was to explore the ability of computational models to predict the 

onset of ductile failure in a particular structural configuration; such predictions are to be 

based on calibration of the constitutive and failure properties of the material through a 

common set of tests and then through independent analysis of the structure, but without 

prior knowledge of the experimental outcome in order to provide a true indication of 

predictability. The 2012 SFC also laid out quantities-of-interest (QoIs) that must be 

compared between the predictions and experiments. Specifically, three QoIs were 

identified:  

(i) What is the force and crack opening displacement (COD) at which a crack first 

initiates? 

(ii) What is the path of crack propagation? 

(iii) If the crack does propagate to either holes B, C, or D, at what force and COD does 

the crack re-initiate out of the first hole? 

In addition, the load-COD response data was also requested, not as a primary QoI, but as 

a collection of the response that could be useful in interpreting the QoIs. In response to 

this Challenge, we developed a computational model, generated a prediction, and 

submitted it to Sandia National Laboratories (SNL); the predictions were performed 

without knowledge of the experimental outcome. The details of calibrating the 

constitutive and failure models and the prediction of the Challenge problem’s response 
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are documented in this chapter in Sections 3.2 and 3.3. In an attempt to resolve or 

reconcile the different experimentally observed crack paths, we performed additional 

experiments on the same lot of specimens that SNL tested. The results of these 

experiments are reported in Section 3.4. Following up on the experimental results, 

additional computations were performed in order to identify the underlying reasons for 

multiple crack paths observed in the experiments; these computations, described in 

Section 3.5, indicate that geometric defects in the specimen contributed significantly to 

crack path selection. We conclude in Section 3.6 with a summary of the results of this 

investigation and a discussion of the prospects for ductile failure modeling. 

 

3.2 CONSTITUTIVE AND FAILURE MODELS 

To predict the response of structural materials, the elastic and plastic constitutive 

properties as well as the failure criteria of the material under consideration are needed. 

For the 15-5 PH stainless steel, the elastic-plastic behavior can be represented through a 

standard plasticity model. The details of the calibration of such a plasticity model are 

given in Section 3.2.1. Based on recent work (Ghahremaninezhad and Ravi-Chandar, 

2012, 2013), we conjectured that ductile failure will arise rather abruptly and therefore it 

is essential to characterize the plastic deformation prior to the onset of failure accurately. 

To model the sudden change in material behavior during the failure process, a modified 

Johnson-Cook failure criterion was developed and calibrated as indicated in Section 

3.2.2.  

The ABAQUS finite element software is used for all modeling reported in this 

work. All models use explicit time stepping, since this is a requirement in the software to 

perform element deletion. Non-uniform mass scaling (where the scaled density is 
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proportional to volume of each element, so that all elements initially have the same stable 

time step) is used to increase the stable time step enough to make quasi-static simulations 

feasible on a desktop computer. Three-dimensional continuum linear elements with 

reduced integration (C3D8R) are used in all models for their computational efficiency 

and suitability for modeling structural instabilities.  

 

3.2.1 Calibration of constitutive model 

The elastic modulus of the 15-5 PH stainless steel under consideration is obtained 

by fitting the initial linear response and is found to be: E = 199 GPa. In the absence of 

reported experimental data, the Poisson’s ratio was taken to be 0.3; the error associated 

with this is expected to be negligible since the response of the structure will be dominated 

by its plastic behavior. The plastic constitutive properties are determined through a 

calibration procedure that compares the results of iterative simulations to the 

experimental results provided by SNL (shown in Figure 3.1). Plastic deformation is 

assumed to be governed by the flow theory of plasticity with isotropic hardening. The 

slight anisotropy in the initial yield observed from tensile test results reported (see Boyce 

et al. 2014) in the longitudinal and transverse directions of the sheet is incorporated with 

the use of Hill’s yield criterion (Hill, 1948). These tensile tests indicated that yield occurs 

at a stress 1.5% lower in the transverse direction than in the longitudinal direction. In the 

absence of data corresponding to the yield behavior in the thickness direction, normal 

anisotropy is assumed. The resulting yield criterion is given by: 

     
2 22 2 2 2 2

02 2 2y z z x x y yz xz xyF G H L M N                   (3.1) 
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where 
0  is the yield stress and the parameters characteristic of the anisotropy are given 

in Table 3.1. In order to determine the strain hardening behavior, the experimentally 

recorded engineering stress and engineering strain reported by Boyce et al. (2014) are 

used directly for small strain levels. The engineering stress-strain curve for this material 

exhibits a local maximum at the end of the elastic regime, and is followed by a short 

plateau in stress (Figure 3.1). This feature indicates an instability in the experiment; 

however no mention of this instability or inhomogeneous deformation prior to necking 

was included with the test results distributed by SNL. From an examination of the full 

data, it is evident that tensile test results cannot be used directly beyond a logarithmic 

strain of ~6% because of the inhomogeneity of the deformation that is expected to occur 

beyond the Considère strain; the images of the failed specimens that were provided 

clearly indicate that localized necking and additional (nonhomogeneous) strains occurred 

within the neck. Therefore, the strain-hardening behavior for larger strain levels must be 

found through an inverse analysis.  

For the inverse analysis, the material behavior up to a logarithmic plastic strain of 

0.055 is taken directly from the experimental measurement since the deformation is 

expected to be homogeneous over the gage length of the specimen. Beyond this strain, 

the material is assumed to be well-described by a general power law of the form:  

  4

1 2 3

C
pC C C     (3.2) 

where p  is the equivalent plastic strain, with material constants 1 4C C  to be 

determined through the calibration procedure. 1C  continuity is enforced between the 

inferred and directly observed stress-strain behavior, placing two constraints on the four 

unknown constitutive parameters. The remaining two coefficients of the power law are 
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then found through iterative finite element simulations of the tensile test with different 

trial coefficients.  

A MATLAB code was developed to perform the required iterative finite element 

simulations automatically. This code was used to generate a different trial material for 

each iteration by specifying the two unconstrained coefficients of the power law. Then 

the resulting stress-strain behavior is used in an ABAQUS simulation of the tensile test to 

generate the resulting force-elongation (or nominal stress vs nominal strain) curve. 

Comparison of the simulated force-elongation curve with that provided by the 

experimental measurement results in a calculation of the error associated with each trial 

material. Once the error has been calculated for a set of trial material models, a genetic 

algorithm is used to choose a set of new trial coefficients and the process is repeated with 

the goal of minimizing the error. For this code, the nominal strain in the simulation is 

defined as the change in length over initial length across a 25.4 millimeter span centered 

on the neck; this strain measure mimics the extensometer reading recorded from the 

experiments. The error for each trial material is defined as the sum of the squared 

differences in the net load between its simulation result the experiment at 201 nominal 

strain values. 

This code was first used with a coarse mesh model to quickly approximate the 

trial coefficients. After convergence of the stress-strain behavior, a fine mesh model was 

used to finalize the material parameters. To lower the computational cost both models 

used the three available symmetries in the loading and geometry. The load was applied 

by an axial displacement on the end of the specimen and varied quadratically over the 

simulation time. The coarse mesh consisted of 2500 uniformly sized elements that are 

nearly cubic in shape, with a dimension of 381 µm per side. The fine mesh model had 

9520 elements of varying size, the smallest of which were placed at the center of the 
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necking region with a size of 51 x 227 x 20 µm. The elements were oriented such that the 

large deformation would reduce their aspect ratio throughout the simulation. After final 

convergence of this optimization scheme an accurate simulation of the global response of 

the tensile test was obtained as shown in Figure 3.1. The simulation was terminated based 

on a criterion discussed in Section 3.2.2. The estimated strain-hardening behavior of the 

material far beyond the Considère strain is shown in Figure 3.2; note that while the direct 

measurement of the strain-hardening response terminated at a strain level of 0.055, the 

inverse procedure extends the calibration to logarithmic strain levels of about 1.3. 

Another comparison between the simulation and experiment can be obtained by 

considering the deformed shape of the necked region; this is shown in Figure 3.3 to 

suggest that the simulated response is reasonably close to the observed deformation, 

deviating the most in the region of highest strain. The strain-hardening response indicated 

in Figure 3.2 is used in all further simulations reported in this paper; the calibrated model 

parameters 1 4C C  are given in Table 3.1. We note in closing that the calibration has 

been performed with only global measures introduced in the optimization procedure. The 

use of local measures, such as the details of the deformation field development during 

necking, may provide additional constraints on the constitutive characterization and 

calibration that can be used to model additional features of anisotropy both in yield and 

strain hardening. Nevertheless, given the limited experimental dataset, the calibration 

given in Figure 3.2 and Table 3.2 was the most detailed anisotropic model possible. 

 

3.2.2 Calibration of failure model 

Ductile failure is most often described by the nucleation, growth, and coalescence 

of voids across a broad range of strains until failure occurs; micromechanical models 
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such as the Gurson-Tvergaard-Needleman models have been developed and are 

commonly used in failure predictions. However, based on recent work 

(Ghahremaninezhad and Ravi-Chandar, 2012, 2013), and an examination of the 

microstructure images provided by SNL, we conjectured that damage will begin at much 

later stages in the deformation of the material with large scale void growth occurring only 

near the brink of final failure and then progress rapidly. The sudden appearance of 

damage just prior to failure means that stiffness degradation of the material due to 

damage can be adequately approximated as a complete loss of stiffness once damage has 

occurred. Then, all behavior up to failure is completely described by the constitutive 

relations and a simple equivalent plastic strain-to-failure model suffices to incorporate 

material fracture. With this in mind, a very simple, modified version of the Johnson-Cook 

model is used to represent damage. When an element in the finite-element simulations 

reaches this damage initiation criterion, as implemented through the cumulative damage 

approach within ABAQUS, its stiffness is set to zero. 

The Johnson-Cook failure model (Johnson and Cook, 1985) is commonly used in 

many applications; for isothermal conditions at small strain rates, it is postulated that the 

maximum equivalent plastic strain, 
f , that can be attained at a given level of stress 

triaxiality can be expressed as:  

   * *

1 2 3expf D D D     (3.3) 

where the triaxiality parameter * /m e    is the ratio of the mean stress, / 3m kk  , 

to the effective stress, 
3

2
e ij ijs s  , and 

1

3
ij ij kk ijs      is the deviatoric stress.  

1 3D D  are material constants to be determined through calibration experiments. Since 

the underlying motivation for such a failure model is the rapid growth of voids in a 
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localized region, the exponential dependence of the failure strain on triaxiality may be 

motivated by the void growth analysis of McClintock (1968) and Rice and Tracey (1968). 

In the present work, while we use failure criterion in the form of Eq. (3), a significant and 

crucial departure occurs in the calibration of the model: while the traditional calibration 

of the Johnson-Cook failure model is obtained through macroscopic measurements of 

strains at gage lengths that correspond to specimen dimensions, we recognize that the 

local strains at the level of a few grains prior to final failure could be quite high. In 

previous studies on Al 6061-T6, Ghahremaninezhad and Ravi-Chandar (2012, 2013) 

showed that while the Johnson-Cook model calibrated through macroscopic 

measurements (for example as given in Lesuer et al. 2001), indicated quite low strain-to-

failure, local measurements based on grain level measurements on a scale of about 20 m 

indicated significantly greater local strains. Since the 15-5 PH stainless steel is a very fine 

grained material, with average grain size ~ 4.7 m, we estimated that the local strain to 

failure could be quite large.  

For calibration of the failure criterion, we have two kinds of experimental results 

provided by the SNL Structural Mechanics Laboratory. Therefore, two restrictions can be 

placed on the coefficients 1 3D D  from the experiments; the first constraint is obtained 

from the tensile test and the second constraint arises from the fracture test performed on 

the compact tension (C(T)) specimen. In our calibration procedure, the optimized strain-

hardening response found in Section 3.0 is used in a simulation of the full tensile 

specimen. This simulation is continued until the nominal strain across the 25.4 mm gage 

length reaches the average rupture strain reported from the two tensile experiments tested 

in the longitudinal direction of the sheet. Then the equivalent plastic strain and triaxiality 

at the central element, the location where both quantities reach their maxima, are taken to 

be those corresponding to failure, resulting in a constraint on the failure model. Thus, 
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information about the failure of the material is deduced without implementing the failure 

model in simulations. Simulating the uniaxial tension experiment with the optimized 

strain-hardening response using the above conditions for failure resulted in a stress 

triaxiality of ~0.9 at the center of the neck and a local equivalent plastic strain of ~ 1.3 

just before failure. Performing the tension test simulation with inclusion of this failure 

criterion is merely used as a check and yields the simulation result shown in Figure 3.1.  

The second constraint placed on the failure model is obtained from matching the 

global load-displacement response of the C(T) specimen, since this is the only dataset 

provided by SNL for comparison. From this response, it is evident that the specimen 

exhibited slow stable crack growth; modeling this requires the inclusion of the failure 

model in simulations. However, calibration of the failure model is the objective of the 

simulations; therefore, these simulations are run iteratively, varying failure parameters of 

the modified Johnson-Cook model within the constraint found from modeling the rupture 

of the tensile specimen with the goal of replicating the load-COD response of the C(T) 

specimen. It is noted that parameter 1D  in Eq.(3) is the most significant parameter in this 

process, since it has the greatest influence at high triaxialities, and least at low 

triaxialities. Seven iterations were performed with different damage parameters selected 

by the investigator; automation was not pursued due to the large computational cost of 

this simulation. During this calibration process, it was determined that inclusion of the 

through-thickness curvature of the fatigue precrack is critical to successfully simulate the 

crack growth response of the C(T) specimen. The crack profile resulting from the fatigue 

precracking procedure was approximated using the specification for precrack length 

measurement in ASTM E399, as the details of the exact shape were not available. Figure 

3.4 shows the details of the mesh and the geometry of the crack tip region; this view is 

sectioned along the prospective crack plane. Figure 3.5 is additionally sectioned on the 



 62 

specimen midplane. The curvature of the precrack is visible in Figure 3.5a corresponding 

to a loading stage prior to crack extension; the characteristic shape of the plastic zone can 

be identified easily in this figure. Figures 3.5(b) and 3.5(c) show the growth of the crack; 

the initial parabolic shape of the crack front is seen to lead to a significantly tunneled 

crack front as crack extension continues. At the crack tip high triaxialities are developed, 

with the level of triaxiality being sensitive to the mesh size. Additionally, the equivalent 

plastic strain is mesh dependent near the crack tip. For these two reasons, once the failure 

model is calibrated it is tied to the mesh size used in modeling the C(T) specimen. For 

this work, elements with planar dimensions of 31.75 x 31.75 µm were used in all areas 

where fracture is a possibility; this is roughly 10 times the grain size in the material. 

Since data on crack extension was not provided, comparison between simulations and 

experiments can be performed only with respect to the load-COD variation as indicated 

in Figure 3.6. The agreement between the simulation and experimental load-COD 

variation shown in Figure 3.6 is considered to be adequate for obtaining an estimate for 

the strain-to-failure corresponding to the triaxiality state at the crack tip. This is mainly 

because we anticipated that the triaxialities in the Challenge geometry are likely to be 

significantly lower during the crack initiation stages. From this calibration procedure, we 

took the strain-to-failure at a triaxiality of ~1.9 to be ~0.26.  

After exhausting the experimental results provided, one degree of freedom in the 

failure model is left unconstrained. Since the failure strain at low triaxialities is not 

provided by any given experimental results, an approximation is made based on prior 

knowledge of other materials. Considering that it is very difficult to damage most 

materials under pure shear1 (with low triaxiality), we set  * 0 3.9f    . The final 

                                                 
1 A number of experimental investigations have indicated that it is quite difficult to 

trigger failure under pure shear; in recent work Ghahremaninezhad and Ravi-Chandar 
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failure model parameters 1 3D D  are listed in Table 3.1. The modified Johnson-Cook 

failure model for the 15-5 PH stainless steel is shown in Figure 3.7. The variation of the 

triaxiality and equivalent plastic strain for the critical element in the uniaxial tension test 

and a characteristic element in the C(T) test are also indicated in Figure 3.7. While we 

have calibrated a modified Johnson-Cook model for the purposes of this Challenge 

problem, we note that the experimental information provided is insufficient to 

characterize the failure criterion completely; additional experiments corresponding to low 

triaxiality conditions as well as additional measurements in the tension and fracture tests 

would provide a richer dataset on which the constitutive and failure models for the 

material can be calibrated.  

 

3.3 BLIND PREDICTION OF THE RESPONSE OF THE CHALLENGE GEOMETRY 

This simulation was performed without utilizing the available symmetry. 

Discretization of the challenge geometry is shown in Figure 3.8; eight-noded linear 

elements with reduced integration and hourglass control were used. Thirty-one elements 

were used across the thickness and the smallest elements had in plane dimensions of 

31.75 x 31.75 µm in keeping with the element size used in the failure calibration. A 

uniform and highly refined mesh is used in the vicinity of the holes A-B-C-D in regions 

of anticipated strain localization. These small elements were used uniformly in all areas 

where strain localization and subsequent fracture was a possibility; examination of the 

                                                                                                                                                 

(2011, 2012, 2013) have shown that in pure oxygen free high conductivity copper and Al 

6061-T6 the lower-bound for the equivalent plastic strain at failure could be in the range 

of 2 to 4. These studies also indicated that failure really nucleates at locations where 

positive triaxiality develops in specific regions of the specimen. Based on this experience, 

we expect that for the 15-5 PH stainless steel the equivalent plastic strain at failure under 

pure shear could be in this range as well. 
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specimen geometry clearly indicates that failure may occur along the thin ligaments 

across segments A-D, A-C, A-B, D-C, and C-E. A total of 2.25 million elements with 

seven million degrees of freedom were used; computations were performed in a Linux 

machine utilizing seven cores and typically required about 2000h of CPU time (280 hours 

of wall time with 7 cores). The constitutive and failure properties of the 15-5 PH stainless 

steel, calibrated as indicated in Section 3.2, were used to obtain a blind prediction to the 

response of the 2012 SFC challenge specimen. The loading pins were included as rigid, 

frictionless bodies; the pin nearest to hole D was kept stationary and the other pin was 

moved quadratically over the simulation time to apply the load. The applied load is 

reported from the reaction at the stationary pin.  

A graphical illustration of the results from the simulation is shown in a movie 

included as Supplementary Material SM3 to this dissertation. The predicted variation of 

the load with the COD is shown in Figure 3.9. In order to track the evolution of 

deformation and constraint in the specimen, the spatial distributions of the equivalent 

plastic strain and the triaxiality on the middle plane of the specimen at load steps marked 

as 1 – 6 in Figure 3.9 are shown in Figures 3.10 and 3.11, respectively. The variation with 

the COD of the equivalent plastic strain and triaxiality at critical elements (the elements 

that are approaching the failure criterion more quickly than any other in the same 

ligament) in the ligaments A-D and A-C near points labeled I and II in Figure 3.8 is 

shown in Figure 3.12. The variation of the equivalent plastic strain with triaxiality at the 

critical elements in ligaments A-D, A-C, and C-E is plotted in Figure 3.13, along with the 

failure curve in order to indicate the progression towards failure. The following features 

of the predictions are noted: 

 The load-COD diagram indicates an initial elastic region followed by a nonlinear 

response in the plastic region. From Figure 3.10, it is clear that during the early 
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stages of the loading (steps 2 and 3), plastic deformation accumulates more 

rapidly in the ligament A-D than in any other ligament. The triaxiality in this 

ligament is quite low (see Figure 3.11) and hence failure is not imminent.  

 A limit load is reached corresponding to a COD ~ 2.3 mm (state 3). From an 

examination of Figures 3.10 and 3.11, it is clear that this corresponds to the 

formation of a mechanism for accommodating plastic flow across ligaments A-D, 

D-C, and A-C. Following the limit load, a structural softening occurs. When the 

limit load is reached, the ligament A-D still carries the highest strain; however at 

this point thinning localization initiates in ligament A-C. 

 After the peak load, strain accumulation in ligament A-D tapers off quickly and 

the equivalent plastic strain reaches a constant value, well below the failure strain 

level for the triaxiality in this ligament (see the red lines in Figures 3.12 and 3.13). 

Meanwhile ligament A-C experiences a rapid increase in strain as well as 

triaxiality until it fails (see the black lines in Figures 3.12 and 3.13). The ligament 

A-C failed first eventually crossing the modified Johnson-Cook failure line at a 

triaxiality of about one.  

 The failure of the ligament A-C occurs over a small increase in COD in the 

simulation, raising the possibility of a dynamic event in the experiment. Due to 

the artificially increased mass, the simulation cannot capture dynamic events. 

Therefore, this simulation does not provide a confident prediction just after the 

fracture of ligament A-C begins.  

 The integrity of the simulation resumes shortly thereafter (at a COD increment of 

0.25 mm after first initiation), and shows a nearly constant load maintained over a 

large range of COD. In this region, deformation is localizing on the surface of 

hole C, on the large ligament C-E. The final fracture is then initiated just off the 
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surface of hole C and is accompanied by a rapid drop in load. With continued 

loading, the crack propagates towards the back edge of the specimen until the 

simulation is stopped. In summary, the simulations indicated a failure path along 

A-C-E, and the load-COD variation indicated in Figure 3.9.  

 The approach to failure is tracked by following the variation of the equivalent 

plastic strain and triaxiality with loading in Figure 3.13. The ligament A-C starts 

at a triaxiality of ~ 0.5, but quickly increases to about one and failure of the 

ligament occurs at the state indicated by the black ‘x’ in the figure. At this stage, 

the ligaments A-D and C-E are at a strain level of ~ 0.5, at smaller triaxialities, 

and far from failure as indicated by the circular symbols on the red and blue lines. 

Once ligament A-C breaks, the ligament A-D stops straining further and all strain 

accumulation is in the vicinity of the ligament C-E, which eventually fails at a 

strain level of ~ 1.25. 

The results described in this section are the main results of the blind prediction. 

We now turn to a comparison to the experimental results; a complete description of the 

experiments performed by SNL can be found in the article by Boyce et al. (2014). As 

described by Boyce et al. (2014), in a majority of the experiments performed, the crack 

followed the path A-D-C-E. However, two experiments – one each from the Structural 

Mechanics Laboratory and the Materials Mechanics Laboratory – showed fracture along 

the path A-C-E. Here we provide a comparison of our prediction only to the experiment 

D1 that exhibited the crack path A-C-E, as this response is distinct from the result for the 

other crack path. We will follow this up in Sections 3.4 and 3.5 with an additional 

investigation to discern the reasons for the experiments exhibiting two different paths.  

The load-COD variation from the blind prediction of the present work is overlaid 

with the experiment D1 in Figure 3.14. Overall, the prediction from this modeling effort 
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is in very good quantitative agreement with the experimental results reported by SNL for 

the specimens that followed the crack path A-C-E; see the article by Boyce et al. (2014) 

for a quantitative comparison of the scalar QoIs. Specifically, the loading sector prior to 

the onset of localization, the limit load, the onset of failure in the ligament A-C, the 

plateau load beyond the first failure of the ligament A-C, and the rate at which load drops 

after both failures are initiated, all show excellent agreement between the simulation and 

experiment. The COD of second initiation in the ligament C-E is the weakest part of the 

prediction. We attribute this shortcoming to the fact that the triaxiality of the initiation 

site is much lower than any experimental result used to calibrate the failure model and 

consequently falls outside the region where the failure model is best matched to the 

material. As shown in Figure 3.13, the location in the ligament A-C that failed first 

follows the path in triaxiality-strain space shown by the black line, beginning at very low 

triaxiality at the early stage of loading and eventually crossing the failure line at a 

triaxiality of about one. At this stage, the triaxiality in the critical element of ligament C-

E is about 0.6 (indicated by the blue circular symbol in Figure 3.13); with further loading, 

the triaxiality remains nearly constant as the strain increases towards the failure 

threshold; however, this triaxiality is outside the range of values used in the calibration of 

the failure criterion. Additional calibration data for lower triaxiality levels is needed in 

order to bring the second crack nucleation prediction closer to the experimentally 

observed range.  

We close by summarizing that the blind prediction for the 2012 SFC using a well-

calibrated continuum plasticity model, augmented with a simple triaxiality-dependent 

strain-to-failure model is capable of providing predictive simulations of ductile failure; 

the need for additional calibration experiments that can provide failure data at lower 

triaxiality conditions has also been identified. Nevertheless, some additional questions 
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remain: the most serious of these are as follows: (i) why did the majority of the 

experiments performed by SNL follow the path A-D-C-E? (ii) could the two different 

paths followed in the experiments be reproduced in the simulations by proper accounting 

of the underlying reasons? These issues are addressed in the following two sections 

through additional experiments and simulations.  

 

3.4 ADDITIONAL EXPERIMENTS EXPLORING CRACK PATH SELECTION 

The observation of multiple crack paths from SNL’s experiments gave rise to 

uncertainties about the testing conditions and how they could affect the test outcome. 

Furthermore, the excellent agreement demonstrated above between the predictions 

described in Section 3.0 and the specimen D1 that failed with crack path A-C-E provided 

strong evidence that some unreported and/or possibly unknown factor in these 

experiments determined their final outcome. Initially we hypothesized that misalignments 

in specimen loading may be a driving force to encourage localization in ligament A-D, 

since it is the site of substantial strain accumulation prior to the localization and 

subsequent failure of ligament A-C in the blind prediction. It is with this perspective that 

additional testing of the 2012 SFC challenge geometry was explored. SNL provided three 

samples (S09, S10, and S11) from the original lot of challenge specimens for this testing. 

Specimens S09 and S10 were fully machined and ready for testing, but specimen S11 

was not fully prepared on delivery. This specimen had the four holes drilled (A, B, C, and 

D), but the slot connecting hole A to the specimen’s edge had not been cut. The notch 

was cut at the University of Texas using wire EDM. The slot was placed as specified in 

the drawing, but after cutting it was clear that hole A was misplaced in such a way as to 

reduce the thickness of ligament A-D as can be seen in Figure 3.15.  
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The experimental setup shown in Figure 3.16 was designed to minimize loading 

misalignments and to quantify any remaining misalignments using an ARAMIS three 

dimensional digital image correlation system (3D-DIC). Both clevises were anchored to 

the loading frame through a universal joint. The extra degrees of freedom from the joints 

compensate for both in-plane and out of plane misalignments in the loading fixture. 

However, due to anticipated specimen rotation during the test, the universal joints are not 

sufficient to eliminate all unwanted in-plane loads. In order to accommodate this rotation, 

the clevis is flat where contact with the specimen loading pins occurs, as specified in 

ASTM standard E399 for fracture tests. This allows the loading pins to freely rotate 

throughout the test, significantly reducing unwanted in-plane transverse loads. The need 

for and use of this degree of freedom is clearly observed in images taken during the test 

and can be seen in the experimental videos included as Supplementary Materials SM4 

and SM5 for this dissertation. Loading was applied with a 100 kN capacity Instron Model 

5582 electromechanical universal testing machine. The load was measured by an Instron 

Model 2525 100 kN load cell. This sensor was self-calibrated and is specified to have an 

uncertainty of 25 N. The tests were carried out at a crosshead rate of 12.7 m/s, the same 

rate at which the SNL Structural Mechanics Laboratory tests were conducted. Load was 

sampled at a rate of 10 Hz and images were taken once every second. Displacements 

were tracked with two 2.5 MP cameras with a spatial resolution of 18 µm per pixel. The 

field of view of these cameras can be seen in the Supplementary Material files SM4 and 

SM5 for this dissertation. For these tests the uncertainty in displacements was found to be 

10 µm and the uncertainty in strain is 1000 microstrain. The COD was measured by 

taking the difference in displacement between two points tracked with DIC. Since DIC 

does not provide results near specimen edges, the points chosen for the COD 

measurement were offset about 1 mm from the knife edge (where clip gauge 
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measurements are taken), toward the center of the loading hole. In order to quantify the 

amount of out-of-plane deformation, a plane was fit to points with DIC measurements on 

the notch flanks where plastic deformation does not occur. Between all three specimens, 

the maximum deviation between this plane and any experimentally observed point did 

not exceed 17 µm prior to failure of ligament C-E, and the standard deviation between 

the plane and points never exceeded 4 µm. Typically the maximum deviation remained 

less than the uncertainty in displacement measurements, thus verifying that out-of-plane 

loading was negligible for these experiments. 

 

3.4.1 Failure path A-C-E 

Both specimens S09 and S10 failed along the crack path A-C-E. A video file 

containing the development of equivalent plastic strain as obtained from the 3D-DIC for 

specimen S09 is included as the Supplementary Material SM4 for this dissertation. The 

load variation with COD for both tests can be seen in Figure 3.17 and show agreement 

with SNL’s specimen D1 that failed along the same crack path. The sharp load drop is 

accompanied by an audible ‘pop’; the development of the crack penetrating the surface 

was not captured due to the limited spatial and temporal resolution of the stereo visions 

system used. The only noteworthy difference between the results from the present tests 

and the specimen D1 from SNL is that failure initiated at a greater COD in the present 

tests. The factors that may influence this observation are variations in specimen-to-

specimen material properties, geometry, or the slightly different loading conditions 

applied in the two labs. Decoupling the effects of these influences is not the focus of this 

work, however it is noted that experimental boundary conditions must be implemented 

with great scrutiny to ensure that the intended loading is imparted and so that 
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observations are repeatable in different labs. It is also noted that an analysis of the 

dimensional tolerances for the specimens S09-S11 is given in Boyce et al. (2014); 

specimens S09 and S10, along with D1 had the smallest deviation from the specifications 

in the ratio of the ligament lengths between A-D and A-C. 

Agreement with global quantities such as the variation of load with respect to 

COD does not always assure that a model accurately captures the conditions of failure 

initiation and propagation. Specifically, failure in this structure is always preceded by 

localization, regardless of crack path; during localization the strain field in the localized 

area changes rapidly with COD. Thus, even if the COD reported for failure in the model 

is close to the experimental value, the local state under which failure occurred in the 

model could have large errors. The local strain information obtained from using 3D-DIC 

in these experiments provides an additional assessment of the blind prediction offered in 

Section 3.0. Figure 3.18 shows the local equivalent plastic strain contours observed in the 

specimen S09 compared to those calculated in the blind prediction at three different COD 

levels. A quantitative comparison of the variation with COD of the measured equivalent 

plastic strains at two points in the ligaments A-D and A-C of Specimen S09 is shown in 

Figure 3.19 compared with the corresponding results from the blind predictions reported 

in Section 3.3. The simulation captures the correct overall trends in the strain evolution 

on the surface of the specimen as well as the details in all the ligaments where substantial 

straining occurs. Even further, the local strain at failure on the ligament A-C is nearly 

identical in the experiment and blind prediction, implying that the calibration of the 

failure model for this range of triaxiality is quite good.  

The failure surface of the ligament A-C was examined through microscopy; the 

overall appearance was similar to that observed by Boyce et al. (2014; see Figure 3.16). 

Significant thinning of the ligament was clearly observed; measurements of the thickness 
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change performed on a micrograph of the specimen near the notch A indicated a strain of 

about 0.28. This is clearly supported by the softening behavior seen in the load-COD 

variation. A high magnification image of the fracture surface in the middle portion of the 

ligament A-C is shown in Figure 3.20. This region has a dimpled surface suggesting that 

the failure occurred under high triaxiality through void growth and coalescence. There 

were some regions where the size of the fracture surface features were quite large, 

suggesting that the path possibly meandered through the stringers observed in the 

microstructure. 

 

3.4.2 Failure path A-D-C-E 

Specimen S11 failed with crack path A-D-C-E; a video file containing the 

development of equivalent plastic strain as obtained from the 3D-DIC for specimen S11 

is included as Supplementary Material SM5 for this dissertation. The load variation with 

COD is shown in Figure 3.21 and shows agreement with SNL’s tests that failed with the 

same crack path; data from SNL tests S02 and S08 are plotted in the same figure, because 

their COD at first initiation bound all other results. The first failure of the ligament was 

accompanied by an audible ‘pop’ as reported by SNL; this was due to an internal crack, 

as confirmed from further tests reported below. Subsequent loading caused this crack to 

propagate across the ligament A-D, and then triggered another audible ‘pop’ as the 

ligament C-D failed. Each audible sound was accompanied by a sharp load drop. This 

agreement between the failure behavior of S11 and SNL’s testing, as well as the fact that 

S11 had a geometrical defect in the ratio of the size of ligaments A-D to A-C that was out 

of specification, suggests that geometric defects similar to the one observed in specimen 

S11 might have existed in the specimens that failed with crack path A-D-C-E at SNL. 
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This was indeed confirmed by an examination of the geometric imperfections as reported 

by Boyce et al. (2014). The task of identifying the role of these geometric imperfections 

in the selection of paths A-C-E and A-D-C-E still remains; we will explore this, first by 

considering the experimental results of S09 and S11, and then through numerical 

simulations. 

The failure surface of the ligament A-D was examined through microscopy; the 

overall appearance was similar to that observed by Boyce et al. (2014; see Figure 3.16). 

Similar to the ligament A-C of specimen S09, thinning of the ligament A-D was 

significant; measurements of the thickness change performed on a micrograph of the 

specimen across the fractured surface indicated a strain of about 0.2. Although 

deformation is dominated by shear in this ligament, there must be significant stretching in 

order to cause such thinning. A high magnification image of the fracture surface in the 

middle portion of the ligament A-D is shown in Figure 3.22. This region presented a 

mixed appearance: some regions show a dimpled surface suggesting that the failure 

occurred through void growth and coalescence, but other regions appear as a cascade of 

ledges, with individual features on different planes. The mechanism of fracture is not 

readily apparent from these images. Additionally, regions away from the center of the 

ligament A-D were damaged significantly by contact and sliding of the two mating 

fracture surfaces resulting in a grooved appearance. In order to explore the failure along 

A-D more carefully, tests was performed on additional specimens fabricated from a 

different batch of material.2 Two of the specimens that indicated eventual failure along 

the path A-D were interrupted: one test was halted and the specimen unloaded as soon as 

                                                 
2 These specimens were made from another sheet of the 15-5 PH stainless steel purchased 

from AK Steel (West Chester, Ohio). We are grateful to Dr. Brad Boyce of Sandia 

National Laboratories for heat-treating these samples to the same protocol as the SFC 

2012 samples.  
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the audible pop was heard corresponding to the initiation of a crack along A-D. 

Examination of the front and back surfaces of the specimen did not reveal a surface 

breaking crack, even though the load dropped by 1150 N. The surfaces of the notch A and 

the hole D could not be observed at high magnification due to geometrical constraints. 

The specimen was then mounted in an epoxy holder and polished down to the mid-plane 

and etched with Vilella’s reagent in order to examine the crack that was nucleated in the 

ligament A-D. A composite image of this ligament at a high magnification is shown with 

reduced resolution Figure 3.23a. The full resolution image is available as Supplementary 

Material SM6 for this dissertation. The region of suspected crack nucleation is indicated 

by a red circle in this figure, and is roughly near the center of the ligament A-D. It is also 

clear that while the crack did not break through the front or back surfaces, it did grow all 

the way to the surface of the notch region A and the surface of the hole D. The tortuous 

path of the crack is an indication that this growth may have occurred under significantly 

mixed-mode loading. A high magnification scanning electron microscope image of the 

suspected nucleation site is shown in Figure 3.23b, with an additional high magnification 

image in Figure 3.23c. The surface of the fracture has nearly equiaxed dimples, clearly 

indicating that the nucleation was triggered through void nucleation and growth, even 

though the ligament A-D is under a macroscopic shear loading; however, we will show 

later in Section 3.5 that numerical simulations indicate that there is a region of high 

triaxiality within the ligament A-D in the neighborhood of where the crack nucleated. The 

high magnification image in Figure 3.23d shows connections between different open 

cracks by a very thin crack. Farther away from the nucleation site, there is evidence of 

large shear deformations. High magnification SEM images of the region highlighted by 

the yellow circle in Figure 3.23 are shown in Figure 3.24: a few features of the damage 

development are evident. First, in comparison to the initial grain structure, there is 
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significant shear deformation in the vicinity of the cracks that exhibit very little opening 

pointing to a shear mode of cracking/failure. Second, there are numerous voids, 

predominantly in the grain boundaries, but only over a region very close to the eventual 

fracture plane. Third, multiple open cracks separated either by a sheared region or 

sheared crack are observed. Finally, parallel sets of cracks are observed suggesting 

possible break-up of the growing crack due to the mode-III shear that is likely to form as 

the interior crack grows out towards the free surfaces of the specimen. These 

observations point to a complex mechanism or collection of mechanisms that coexist in 

these areas.  

 

3.4.3 The competition between failure paths A-C-E and A-D-C-E 

The experimental results allow us to make a comparison of the strain evolution 

between specimens that followed crack paths A-C-E and A-D-C-E and gain further 

insight into the cause of the different observed cracking paths. Contours of equivalent 

plastic strains on the surfaces of specimens S09 and S11 at two different values of COD 

are shown in Figure 3.25. The equivalent plastic strain variation with COD at two points 

in the ligaments A-D and A-C is compared between S09 and S11 in Figure 3.26. It is clear 

from these figures that even after a COD of only about 0.5 mm – well before any failure 

processes are activated and during the portion when all that governs is the plastic 

response of the material – there is a significant deviation in the local strain fields between 

specimens that fail with different crack paths. This deviation occurs well before 

localization of any ligament, and at this COD the strains in the specimen are relatively 

small, not exceeding a logarithmic strain of 0.07. The implication is that the crack path 

has been determined by the evolving plastic deformations early in the deformation history 
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when the material can be well described by continuum plasticity alone, without invoking 

any damage. This basic finding isolates the mechanisms involved in selection of the crack 

path and sets the boundaries on modeling efforts to replicate both experimentally 

observed crack paths – imperfections in the geometry and details of the plastic 

constitutive model must be the primary determinants rather than the failure model. 

 

3.5 ADDITIONAL SIMULATIONS EXPLORING CRACK PATH SELECTION  

There are two questions regarding the path selection that require further 

discussion: first, is there a bifurcation in the solution? i.e., for nominally the same 

boundary value problem posed in the original challenge, is there a bifurcation to two 

solutions corresponding to paths A-C-E and A-D-C-E? Second, can the two crack paths 

observed in the experiments be understood/replicated by simulations including the 

specific geometric imperfections, but with the same constitutive and failure model? The 

experimental observations suggest that there is no bifurcation in the solution: if one 

exists, then crack path A-D-C-E corresponds to the lower energy state and therefore this 

should be the only experimentally observed path; however, a significant number of 

specimens within some range of imperfections followed the crack path A-C-E. This 

suggests that the ideal geometry of the challenge problem lies near the boundary of two 

neighboring families of problems – one family that fails with crack path A-C-E and the 

other with A-D-C-E. The ideal geometry falls within the former family, and the geometric 

defects present in most of the test specimens cause them to lie within the latter. Both 

families of problems follow characteristic patterns of deformation that are clearly distinct 

from each other shortly after plastic deformation occurs, as discussed in Section 3.4. The 

distinction between each family continues to become more pronounced with increasing 
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deformation, and it is not observed that a switching between deformation patterns can 

occur – as it would from bifurcation. The recognition that a bifurcation is not present 

makes clear that the crack path A-D-C-E is not more common due to it being a lower 

energy path, but due to bias error in the placement of holes during specimen fabrication. 

A set of numerical simulations were performed in which the material model 

described in Section 3.2 for the blind predictions was kept unchanged and a range of 

imperfections spanning the observed variations in specimen geometry were introduced 

into the geometric model; additionally loading imperfections were also introduced. In all 

cases, the model predicted the path A-C-E. Since it was difficult to trigger first failure 

along the ligament A-D with just geometric perturbations, a second pair of simulations 

was performed in which the shear coefficient in the yield criterion was modified; 

specifically, by setting 2 3.47N   instead of 3 in Eq.(1), it was possible to continue 

concentrating strain along the ligament A-D, and prevent localization in the ligament A-C. 

This change in constitutive behavior only triggered crack path A-D-C-E for geometry 

with initial defects, and did not greatly alter the simulation results for the ideal geometry. 

The fact that such a small change in the yield condition makes a dramatic difference in 

strain accumulation points to the need for better characterization of the material even 

before the onset of damage. The results of this simulation, corresponding to the 

dimensions of specimen S06 (the specimen that has the median defect size for the ratio of 

ligament lengths A-D to A-C), show that although the overall deformation in the ligament 

A-D appears to be shear-dominant, the local levels of triaxiality increase with COD to ~ 

0.7 in the center of the ligament, where nucleation of the interior crack illustrated in 

Figure 3.23 occurs. These simulation results capture the early response of specimens 

failing with crack path A-D-C-E, as can be seen when comparisons to the experimental 

are made. The contours of equivalent plastic strain at two different COD values are 
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shown in Figure 3.27 from the experimental measurement of S11 and numerical 

simulation of S06. The equivalent plastic strain variation with COD at two points in the 

ligaments A-D and A-C is compared between the experiment S11 and the simulation S06 

in Figure 3.28. The agreement between the simulations of S06 and the experiments on 

S11 is extremely good until a COD of ~ 1.25 mm and reasonable up to a COD of ~ 2 

mm, when the experiment indicated a significant departure shortly before fracture. The 

load variation with COD is shown in Figure 3.29 for specimen S06 (obtained from the 

SNL results) and compared with the simulation of S06. While we have succeeded in 

nudging the development of strain accumulation along the ligament A-D ahead of 

ligament A-C, there is still significant discrepancy in the load-COD behavior and the 

onset of failure. This points to the need for additional material characterization, both with 

respect to the plastic response (anisotropy, shear effects, etc) and with respect to failure, 

particularly under low triaxiality – high shear conditions. It is suggested that such 

additional characterization would indeed provide a predictive framework for ductile 

failure.  

 

3.6 CONCLUSION 

The details of the simulations and experiments performed by the University of 

Texas team in response to the 2012 Sandia Fracture Challenge (SFC 2012; see Boyce et 

al. 2014) are presented in this chapter. The tension test and fracture test data were used to 

generate a power-law hardening model for characterizing the plastic behavior and a 

modified Johnson-Cook model for material failure. These were used to generate a blind 

prediction of the challenge specimen. Our predicted response indicated the path A-C-E 

and agreed quantitatively extremely well with specimen D1 of the experiments reported 
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by Sandia. Based on the confidence in our simulations we requested testing of additional 

specimens with different gripping conditions and additional measurements using 3D-DIC 

measurements of the strain field on the specimen surface. These experiments were 

performed at the University of Texas and indicated that geometric imperfections may 

have resulted in the alternate observed crack path. Some aspects of the effects of 

imperfections are confirmed in the article by Boyce et al. (2014). The experiments also 

provided a wealth of data for comparison both to the blind predictions and to additional 

simulations. Specifically, first, the comparison of the load-COD and strain evolution in 

the ligaments A-C and A-D for specimen S09 matched the blind predictions extremely 

well. Second, comparison of the experimental measurements of the load-COD and strain 

evolution in the ligaments A-C and A-D for specimens S09 and S11 indicated that the 

selection of the path A-D-C-E occurred very early in the deformation history, at a stage 

when the response was dictated by plasticity and not damage. Third, a simple 

modification to the parameters of the calibration of the constitutive model was adequate 

in switching the failure path from A-C to A-D when appropriate geometric imperfections 

were introduced in the numeric discretization to replicate the actual geometric 

imperfections. Lastly, it should be emphasized that the experiments and simulations 

presented here point to the ability of a simple constitutive and failure model to capture 

ductile failure when proper calibration of the material models is undertaken.  

 

3.6.1 Recommendations for Additional Material Testing: 

 Both the constitutive and failure models used in the present simulations can be 

improved through a small increase in the experimental work. First, the plasticity model 

was calibrated from just one set of experiments in which the only real input was the load-
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elongation diagram from a tensile test. Minor accommodations were introduced to 

account for anisotropy. A full set of experiments to characterize the anisotropic material 

response is essential in order to extract an appropriate plasticity model. The full 

integration of detailed three-dimensional kinematic measurements (using DIC or other 

full-field methods) with load-elongation measurements and numerical simulation is 

essential for this material calibration to be accomplished. The largest improvement to be 

gained will come from additional tests under shear-dominated loading. Strain-to-failure at 

such a low triaxiality will allow for more thorough determination of the damage 

parameters across a wide range of triaxialities. Finally, high spatial resolution of strain 

measurements near fracture surfaces can supplement the failure data already used to 

create a more robust failure model. 
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Table 3.1: Material parameters used in these simulations. Parameters labeled as 

“modified” were not part of the blind prediction, and were used only after 

the experimental results were released. 

Hardening 

Parameters 

1C  

(MPa) 

2C  

(MPa) 
3C  4C  

 
 

755.4 818.1 0.05674 0.2889 
 

 

Failure 

Parameters 
1D  2D  3D     

0.1000 3.810 -1.847 
   

Lankford 

Coefficients 
0r  45r  90r  

  
 

1.000 0.9537 0.9402 
  

 

Hill’s 

Coefficients 

F  G  H  L  M  N  

0.5328 0.5000 0.5000 1.500 1.500 1.500 

Modified 

Lankford 

Coefficients 

0r  45r  90r     

1.000 1.1808 0.9402 
   

Modified 

Hill’s 

Coefficients 

F  G  H  L  M  N  

0.5318 0.5000 0.5000 1.500 1.500 1.734 
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Figure 3.1: Nominal stress vs nominal strain variation. Black line corresponds to 

experimental results from Sandia National Laboratories (Boyce et al., 

2014) The red line was obtained from optimized simulations. ‘x’ marks 

the point of specimen failure. 
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Figure 3.2:  The variation of the true stress with equivalent plastic strain 

corresponding to the optimized constitutive behavior. Note that the direct 

measurement–prior to necking–corresponds to strain levels less than 

about 0.055 (as indicated by the black line) 



 84 

 
 

 

Figure 3.3: Overlay of the profile of the neck obtained from the optimized simulation 

on an image of the necked regions from the tensile experiment (image 

from Boyce et al. 2014) 

Simulation 

Figure 3.4: A view of the C(T) specimen mesh, sectioned along the prospective 

fracture plane. The initial crack extends from the notch tip at the left to 

the thick curve that designates the location of the fatigue precrack.  
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Figure 3.5: Equivalent plastic strain in the C(T) specimen simulation. (a). COD = 

0.39 mm (b). COD = 0.58 mm (c) COD = 0.87 mm. This view is 

sectioned along the prospective fracture plane as well as the specimen 

midplane. 

(a) (b) 

(c) 
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Figure 3.6: Load-COD response of fracture specimen from the experiment and the 

optimized simulation.  
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Figure 3.7:  Calibrated Johnson-Cook failure model with simulated failure paths 

shown 
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Figure 3.8: Details of the mesh used for the 2012 SFC geometry. A highly refined 

mesh was used in all areas of possible fracture. The locations I and II 

correspond to points where failure is most likely to initiate in their 

ligament. 

A 

B 

C 

D 
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Figure 3.9: Blind prediction of the load-COD response for the 2012 SFC geometry. 

The results at the marked points are discussed in the text and Figures 

3.10 and 3.11. 
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Figure 3.10: Equivalent plastic strain development in the midplane.  

COD=0.33 mm  

COD=0.93 mm  

COD=2.29 mm  

COD=3.66 mm  

COD=3.71 mm  

COD=6.75 mm 
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Figure 3.11: Triaxiality development in the midplane.  

COD=0.33 mm 

COD=0.93 mm 

COD=2.29 mm 

COD=3.66 mm 

COD=3.71 mm 

COD=6.75 mm 
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Figure 3.12: Local strain and triaxiality variation over COD at the critical elements in 

ligaments A-D and A-C. 
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Figure 3.13: Equivalent plastic strain and triaxiality histories of critical elements. The 

path towards failure on ligaments A-D, A-C and C-E are shown. Failure 

of the ligament A-C is denoted by the black ‘x’ and at this stage the state 

of ligaments C-E and A-D are denoted by the blue and red circular 

symbols. Failure of the ligament C-E is identified by the blue ‘x’. 
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Figure 3.14: Load variation with COD for the blind prediction with the experimental 

results for specimen D1, performed at Sandia’s Structural Mechanics 

Laboratory.  

. 
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Figure 3.15: A close-up image of specimen S11 prior to testing. The slot placement is 

within the specifications provided, but due to a machining error for hole 

A, the specimen was out of specification; a clear decrease in the size of 

the ligament A-D is evident in this image.  

Note misalignment 
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Figure 3.16: Experimental set-up. Note the double universal joints, the clevises with 

flat pin-holes to accommodate pin rolling, and the digital cameras for 

3D-DIC image acquisition.  



 97 

 

Figure 3.17: The load-COD variation for all experiments with crack path A-C-E in 

comparison with the blind prediction (black line). 
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Figure 3.18: Comparison of the equivalent plastic strain on the surface of the 

challenge specimen between the blind prediction (top row) and 

the experimental result from 3D-DIC on specimen S09 (bottom 

row). The experimental result shows an overlay of the post 

processed strain on top of the raw image. The textured 

appearance of the specimen is from a random speckle pattern 

adhered to its surface, required to perform DIC. The black dot 

near the center of ligaments A-C and A-D marks the point where 

strain data for Figure 19 is taken from. (a) COD ~ 1 mm, (b) 

COD ~ 2 mm, (c) COD ~ 3 mm. 

(a) 

 

(b) (c) 
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Figure 3.19: Variation of the plastic equivalent strain with COD on the surface of two 

ligaments (A-C and A-D) from the experiment (S09) compared to the 

blind prediction at the same locations.  
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Figure 3.20: High magnification image of the fracture surface in the center of 

ligament A-C from specimen S10. The surface is dominated by equiaxed 

dimples, but also shows some features significantly larger than the 

average grain size of ~4.7 µm.  
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Figure 3.21: The load-COD variation for specimen S11 (black line) compared to 

Sandia’s experiments that failed with the same crack path A-D-C-E. S02 

(red line) had the minimum COD at first failure and S08 (green line) had 

the maximum COD at first failure. 
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Figure 3.22: High magnification image of the fracture surface in the center of 

ligament A-D from specimen S11. The surface has both equiaxed 

dimples and larger features that resemble cascading ledges.  
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Figure 3.23: Micrographs from the midplane of a specimen that was not loaded 

beyond the first dynamic cracking event. (a) Optical image of the 

ligament A-D, after etching. Holes A and D are located, and the specimen 

is oriented as pictured in Figure 8. The suspected site of crack initiation 

is circled in red. (b) SEM image of the suspected initiation site with fine 

cracks emanating towards holes A and C. (c) High magnification image 

of the suspected initiation site, where nearly equiaxed dimples are seen 

on the unpolished surface. (d) High magnification of the fine crack 

heading towards hole D. Some small voids that tend to form within a 

band only as wide as a few grains can be seen on the crack flanks. 

(a) 

(b) (c) 

(d) 
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Figure 3.24: The region circled in 

yellow in Figure 23(a) 

is shown here with 

higher magnification 

SEM images. 

(a) Parallel cracks are seen running 

side by side for a small length of the 

ligament. Note that there is no 

appreciable void growth between the 

two cracks.  

(b) High magnification image 

where many grain boundaries 

are visible. The material near 

the crack has undergone large 

shearing deformation, apparent 

from the large aspect ratio of the 

initially equiaxed grains. The 

fine crack appears to be 

meandering along grain 

boundaries. This region has 

larger than typical void growth 

on the crack flanks. The voids 

appear to be the product of grain 

boundary decohesion.  

(c) Undeformed 

microstructure. 
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Figure 3.25: Comparison of the equivalent plastic strain on the surface of the 

challenge specimen between the experimental results from 3D-DIC 

on specimens S09 (left) and S11 (right). The black dot near the center 

of ligaments A-C and A-D marks the point where strain data for 

Figure 26 is taken from. (a) COD ~ 1 mm, (b) COD ~ 2 mm. 

(a) 

(b) 
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Figure 3.26: Variation of the equivalent plastic strain with COD on the surface of two 

ligaments (A-C and A-D) from specimen S09 with crack path A-C-E 

compared to specimen S11 with crack path A-D-C-E. 
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(a) 

(b) 

Figure 3.27: Comparison of the equivalent plastic strain on the surface of the 

challenge specimen between the experimental result from 3D-DIC on 

specimen S11 (left) and a non-blind simulation using the geometry from 

specimen S06 with a modified shear potential in the plasticity model 

(right). The black dot near the center of ligaments A-C and A-D marks 

the point where strain data for Figure 28 is taken from. 
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Figure 3.28: The equivalent plastic strain variation with the first 2.5 mm of COD at 

two selected locations is shown here. The experimental result is from 

specimen S11, the only specimen with crack path A-D-C-E for which 

3D-DIC data is available. The non-blind simulation result shown here is 

for the specific geometry of specimen S06.  
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Figure 3.29: The load variation over the first 2.5 mm of COD from the experimental 

result for specimen S06 and a non-blind simulation is shown here. The 

non-blind simulation differs from the blind one by taking into account 

the specific geometry of specimen S06, and by using a modified shear 

coefficient in the yield function. 
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Chapter 4: Prediction of Ductile Failure in Ti-6Al-4V using a local 

strain-to-failure criterion  

 

4.1 INTRODUCTION 

Sandia National Laboratories (SNL) issued the second Sandia Fracture Challenge 

(SFC2) in May of 2014. The details of the challenge itself and the overall outcomes are 

described by Boyce et al. (2015). This challenge is the second in a series of problems 

posed by SNL with the purpose of exploring and refining methods for predicting the 

failure of ductile metals. In this challenge, participating teams were invited to predict the 

behavior of a specially designed specimen geometry that will experience multiple 

cracking events during testing. To facilitate the prediction, SNL also provided data from 

a set of material characterization tests from which suitable constitutive and failure models 

for the material of interest could be calibrated. These constitute truly blind predictions 

because only after the participating teams submitted their predictions was the testing of 

the challenge specimen performed, ensuring that all predictions were made without any 

knowledge of the actual experimental result. A time-line was followed for the whole 

procedure as discussed in Boyce et al. (2015) that allowed about four months for the 

efforts associated with material calibration and prediction of the response of the challenge 

problem. In this challenge, both the calibration tests and the challenge tests were 

performed at two specific cross-head displacement rates – of 0.0254 in/min and 25.4 

in/min – in order to introduce strain-rate dependence. In this chapter, we will refer to 

those tests or simulations performed at 0.0254 in/min as the “slow-rate” and those 

performed at 25.4 in/min as “fast-rate”.  

For completeness, the quantities of interest (QoIs) that were requested from SNL 

to compare prediction to experimental results are summarized here: 
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i. What is the load when the crack opening displacement (COD) of notch B 

(referred to hereafter as COD1, and the COD at notch A is hereafter called 

COD2) is equal to 1 mm, 2 mm, and 3 mm? 

ii. What is the peak load? 

iii. What are the COD1 and COD2 values when the load is 90% and 30% of the peak 

load? 

iv. What is the crack path? 

v. What is the complete load variation with COD1 and COD2? 

After predictions were made and testing of the challenge geometry was performed, QoI 

iii was discarded and the following additional QoIs were posed: 

vi. Is crack growth stable or unstable? 

vii. What is the load at which an unstable crack is initiated? 

viii. What is the COD1 at which an unstable crack is initiated? 

This chapter provides the details of the effort from the University of Texas team 

both in the predictions for this challenge, as well as the experimental results performed as 

a follow-up exercise to identify additional local features of the response of the challenge 

geometry. The methods used here are quite similar to those used previously by the same 

authors in the previous SFC (Gross and Ravi-Chandar, 2014), but have been adapted for 

the change in material, available characterization data, and testing conditions. The details 

of calibrating the constitutive and failure models and the use of these models to generate 

a prediction are contained in Sections 4.2 and 4.3. Additional experiments performed on 

the challenge specimens with detailed observations of the material behavior is 

documented in Section 4.4. These observations are then used for assessing the modeling 

techniques used in the challenge in Section 4.5. A summary with concluding remarks and 
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recommendations on efforts to improve predictive ability for problems of ductile failure 

is given in Section 4.6.  

 

4.2 CONSTITUTIVE AND FAILURE MODELS 

In order to predict the response of structural materials, the elastic and plastic 

constitutive properties as well as the failure behavior of the material under consideration 

are needed. In this work, models for both of these behaviors were selected based on 

knowledge of the underlying physical mechanisms, the nature of the calibration data 

provided by SNL, past experience, and availability in the numerical tools used. ABAQUS 

finite element software was used for all modeling reported in this work. Some 

simulations were performed with implicit time stepping and others with explicit as 

described below. In the explicit simulations, fixed mass scaling (where the scaling factor 

for density is constant for each element, regardless of their initial mass) was used to 

increase the stable time step enough to make the simulations feasible on a desktop 

computer. Three-dimensional continuum linear elements with reduced integration 

(C3D8R and C3D8RT for models with thermal degrees of freedom) were used in all 

models for their computational efficiency and suitability for modeling large plastic 

deformations. 

 

4.2.1 Calibration of the constitutive model 

The anisotropic elastic moduli for Ti-6Al-4V shown in Table 4.1 were obtained 

by fitting the initial linear response for each of the calibration experiments. For the shear 

testing, this required performing a FEM simulation of the experiment (as no analytical 

solution exists for this problem) and matching the load vs. strain curves. In the absence of 
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experimental data, Poisson’s ratio was taken to be 0.34; the error associated with this 

assumption was expected to be negligible since the response of the structure was 

expected to be dominated by its plastic behavior.  

Ti-6Al-4V is a dual phase alloy with a hexagonally close-packed (HCP) α phase 

and a body-centered cubic β phase. As a consequence, a priori confidence in plasticity 

models developed for face-centered cubic polycrystals is lowered, and the plasticity 

models developed specifically for HCP metals by some investigators may be more 

appropriate. Despite the greater uncertainty of using a standard plasticity model, this 

choice was made due to the absence of models designed specifically for HCP metals in 

ABAQUS. The Hill-48 yield criterion was selected and the four parameters governing 

anisotropy of the normal and in-plane shear stresses were subject to calibration. The 

hardening behavior for plastic strains less than ~0.04 was represented by directly fitting 

to the experimental data a monotonically increasing spline of the form discussed in Gross 

and Ravi-Chandar (2015). For higher strain levels, the spline was extended with 7 knot 

points, whose locations were subject to calibration. For modeling of the experiments 

performed at the faster of the two loading rates, Johnson-Cook temperature and rate 

sensitivity model were used to modify the base stress-strain curve that was first found 

from the slower loading rate experiments. 

Selection of parameters for these models followed an inverse procedure nearly 

identical to that performed by Gross and Ravi-Chandar (2014) and is summarized as 

follows: FEM simulations of the calibration experiments were run with trial model 

parameters. The resulting load-elongation curves were compared to the experimental 

results and deviations were penalized in an optimization scheme. This process was 

automated and iterated until the deviations were satisfactorily low. It is important that all 

of the slow-rate calibration experiments that were selected for fitting were considered 
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simultaneously in order to obtain material parameters that are suitable for all the test data. 

That is, the parameters defining strain hardening and anisotropy that minimizes the sum 

of the errors between simulation and experiment for the rolling direction (RD) tensile, 

transverse direction (TD) tensile, and shear (VA; this orientation has the RD in the plane 

of shear) was sought. After calibration of the anisotropy and stress-strain curve from the 

slow-rate tests was completed, the parameters for temperature and rate sensitivity were 

found using the fast-rate RD tensile and VA shear tests with the same inverse procedure. 

TD tension test data was not used because temperature and rate sensitivity were expected 

to be isotropic, and thus its inclusion was not worth the extra computation time. The two 

fast-rate tests used for calibration were chosen because they were dominated by different 

strain rates and temperature ranges. 

Some of the data provided by SNL, such as the VP shear data (this orientation has 

the RD normal to plane of shear), were not used. The chosen constitutive model does not 

allow for anisotropy in pure shear loading between the VA and VP orientations. As a 

result, simulations of the two orientations only differ slightly, due to the change in 

orientation of the normal stresses that are present in the test geometry (which the 

constitutive model is sensitive to). Since the load elongation curve of both orientations 

could not be reproduced by the model; VA shear was used exclusively for model 

calibration as it corresponds to the dominant orientation of shear loading in the challenge 

geometry.  

Other experimental data were left out due to large scatter, which was handled 

indirectly because time only allowed for a deterministic model calibration. As a result, 

tensile test data that were distinctively more compliant than the stiffest observation were 

discarded based on the following argument. Because the tensile test samples a large 

volume of uniformly deformed material, and necking occurs at the weakest section of the 
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specimen, the post-necking load elongation behavior will be dominated by the largest 

defect (understood to be either geometric or perhaps an unfavorable orientation of the 

microstructure). In contrast, the volume of highly strained material in the challenge 

geometry is significantly smaller, and is significantly less likely to contain a defect of 

equal severity. Separately, one of the fast-rate RD tensile tests (RD4) was discarded as it 

was clear from the post-mortem photographs supplied that necking occurred partially 

outside the gauge length of the extensometer. The tensile test data used for calibration 

was RD 2 and 5 for slow-rate RD, TD 2, 3, and 4 for slow-rate TD, and RD10 for high-

rate RD. For tests where more than one specimen was chosen, the mean response was 

taken. The scatter for the shear tests was much smaller. VA1 was chosen for the slow-rate 

and VA4 for the fast-rate shear data for the calibration.  

Despite these efforts to distill the calibration experiments into a body of data that 

appropriately matched the limitations of the chosen plasticity model, there still existed 

one feature in this reduced dataset that is beyond the ability of model. The load-

elongation curves for tension in the RD and TD directions have distinctly different shapes 

prior to necking. The chosen plasticity model can only multiplicatively shift the stress 

strain curve to capture anisotropy, and not change the shape of the curve. We speculated 

that the shape of the stress strain curve in the high strain regime also differs for the two 

orientations; however, direct evidence of this is obscured by necking, and the influence of 

such a shape difference is left as an unknown. Additionally, there is some instability at 

the end of the elastic regime for both orientations; it is much more pronounced for the 

tension test in the TD. Understanding the nature of this load drop requires additional 

kinematic data that was not available. We conjectured that the importance of this 

instability would fade with strain as it occurs only in the very small plastic strain regime; 

however, due to the history dependence of plasticity, further propagation of error cannot 
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be ruled out. In summary, a model that allows for unique stress strain curves and/or 

anisotropic growth of the yield surface is most appropriate for this material, however due 

to an insufficiency of data to properly calibrate such a plasticity model and its 

unavailability in the numerical tools used, the simpler Hill-48 model was adopted. 

 

4.2.1.1 Calibration simulation setup 

The simulations of the slow-rate tests were performed for calibration of the strain 

hardening curve and yield surface using implicit time stepping. The effect of heating 

from plastic dissipation was not included in these simulations. All three available planes 

of symmetry were used in the tension test simulations while the shear simulations used 

just one symmetry plane in the thickness direction. A mesh convergence study was 

performed to find efficient meshes for both geometries and the “as-measured” thickness 

of the experimental specimens was used. The discretization details are listed in Table 4.2 

and the mesh details can be seen in Figure 4.1. 

The simulations of the fast-rate tests were performed for the calibration of rate 

and temperature effects using explicit time stepping. Mass scaling was used to increase 

the stable time step to 2 microseconds for both tensile and shear simulations. A Taylor 

factor of 0.9 was used in converting plastic work to heat in the simulations. Temperature 

dependent elastic moduli scaling, thermal conductivity, coefficient of thermal expansion, 

and specific heat were used from the works of Fukuhara and Sanpei (1993) and Zhang et 

al. (2001), respectively.  

The fast-rate tensile and shear simulations used only the through thickness 

symmetry; this choice was made so as to allow for localized necking to occur in the 

tensile simulation, as observed in the experiment. It was verified prior to fitting the 



 117 

calibration experiments that the simulation would in fact exhibit localized necking if a 

small defect was included (0.015% reduction of the flow stress for 8 elements) and the 

effect of thermal softening was large. Once again, a mesh convergence study was 

performed to find efficient meshes for both geometries. The mesh size required to allow 

for thermally triggered localization was found to be smaller than the size used for slow-

rate simulations. As a consequence, the fast-rate simulations have many more degrees of 

freedom than the slow-rate. The mesh is sufficiently fine so that mesh dependency of 

localized necking induced by thermal softening was combatted by the rate of heat 

diffusion between elements. Further refinement did not have a profound effect on the 

global load-elongation behavior. Despite the effort made to allow for thermal softening 

triggered localization, the calibrated material model did not exhibit this behavior for 

either the tensile or shear geometry. 

 

4.2.1.2 Boundary Conditions 

Care was taken to replicate the experimental conditions as closely as possible in 

the simulations used in the inverse problem. For modeling of geometry, this is as simple 

as using the dimensions from the machine drawings, but using the measured specimen 

thickness for the data particular test data chosen for calibration (or the average thickness 

if multiple curves were averaged). The application of proper boundary conditions 

required more effort.  

For shear testing at both loading rates, a local displacement measurement on the 

specimen was not supplied. As a result, to make the load vs. crosshead displacement 

curve useful, the slip correction suggested by SNL was used with an additional correction 

factor for grip compliance. The grip compliance was estimated by performing simulations 
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of the strain-gauged titanium compliance bar testing performed by SNL. The compliance 

correction was taken to be the difference in grip displacement between the experiment 

and simulation at a given level of load. This produced a nonlinear, elastic compliance 

curve that was used to shift the shear data. Unfortunately, application of this compliance 

correction to the shear specimen load-elongation data did not produce agreement between 

the simulated and compliance-corrected experimental curves in the elastic regime. The 

compliance curve was then scaled by a non-negligible factor to bring the simulations and 

experiments into agreement. This scaling factor sheds some doubt on the load elongation 

behavior of the shear specimens used, but without any displacement measurement made 

directly on the shear specimen, no better alternative was available. The uncertainty in this 

process points to the inadequacy of relying on displacement measurements that are not 

local to the specimen itself. 

Additional consideration is required for the applied boundary condition in the 

fast-rate tension test. The rate of load application in the tension test was inferred from the 

time variation of the extensometer measurement. The fast-rate tensile test simulation had 

displacement boundary conditions applied on the shoulders in such a way that caused the 

time variation of a virtual extensometer measurement on the simulation to match the 

nonlinear variation that was measured in the experiment. Of course the virtual 

extensometer measurement is dependent on the particular values chosen for the 

parameters of the constitutive model, so several iterations of boundary loading rates were 

required as the value of these parameters evolved throughout the calibration process. 

 

4.2.1.3 Optimization details 

The objective functions used for the slow- and fast-rate inverse procedures are: 
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Φ𝑆 = 𝜑𝑅𝐷 + 𝜑𝑇𝐷 + 𝜑𝑉𝐴 (1) 

Φ𝐹 = 𝜑𝑅𝐷 + 𝜑𝑉𝐴  (2) 

𝜑 = ∑
|𝐹𝑖

𝑒𝑥𝑝
−𝐹𝑖

𝑠𝑖𝑚|

𝐹
𝑖
𝑒𝑥𝑝

𝑛
𝑖=1   (3) 

where Φ𝑆 and Φ𝐹 are the objective function values for the slow- and fast-rate 

optimization procedures, respectively. 𝜑𝑅𝐷, 𝜑𝑇𝐷, and 𝜑𝑉𝐴 are the relative error between 

experiment and simulation for RD tension, TD tension, and VA shear, respectively, and 

taken at the appropriate loading rate. Equation (3) defines the relative error, where 𝐹𝑖 is 

the load at the 𝑖𝑡ℎ level of deformation, and 𝑛, the number of levels of deformation 

considered was set to be equal to 100.  

The genetic algorithm as implemented in MATLAB was the main tool used for 

minimization. Population sizes of 40 and 51 were chosen for the slow- and fast-rate 

optimization runs respectively. Thirty-one generations were completed for the slow-rate 

and eleven generations for the fast-rate. Latin hypercube sampling was used to generate 

the initial parameters used for both anisotropy and thermal/rate effects that were then 

used to seed the optimization runs. Due to the difficulty of using this same method to 

create constrained parameter sets, a large pool of initial flow curves was randomly 

generated and the curves that were not monotonically increasing or did not have a 

decreasing tangent stiffness were rejected. The relative difference between each of the 

remaining curves with respect to all the others was then calculated and the mean of all the 

relative differences for each curve was found. Finally, a diverse set of curves was made 

by selecting curves that spanned the range of mean relative difference. These curves 

made up the initial population for the genetic algorithm used in the slow-rate inverse 

procedure, and convergence to a minimum of the objective function was found. The best 

individual was then used to start the pattern search algorithm in MATLAB to reduce the 
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objective function further, although significant reduction was not achieved. The fast-rate 

optimization was performed with the genetic algorithm and no subsequent effort was 

made to reduce this value further. 

The load variation with applied displacement for the three slow-rate calibration 

tests are shown in Figure 4.2. It is seen that the simulated responses very closely match 

the experiments for all three tests. The average error between simulation and experiment 

for all three tests is only 1%. Within this minor error, the largest discrepancy occurs for 

the early part of the TD tension curve. As anticipated, the load drop just after the elastic 

regime was not captured by the model, leading to a reduced prediction in the TD yield 

stress. The next largest error occurred in the shear test, where matching of the load-

elongation curve degrades slightly with increasing deformation. The simulated response 

shows slightly stiffer behavior for a displacement in excess of 1.4 mm, when the average 

strain between the notches exceeds a value of about 0.2. These minor deviations in the 

load elongation behavior are interrogated in detail because it is possible that a minor error 

in this curve is evidence of a larger error in the local fields. However, little room for 

improvement is possible with the given information, and this calibration is deemed 

sufficient to move onto the calibration of model parameters controlling temperature and 

rate sensitivity. 

The load variation with applied displacement for the two fast-rate calibration tests 

are shown in Figure 4.3. The agreement between simulation and experiment is seen to be 

adequate, although not as good as the results at the slow-rate. The average error between 

simulation and experiment for these two tests is 2.3%. The cause for higher error is likely 

due to the minimization scheme being diverted by a local minimum and searching for 

parameters in its vicinity, and thus missing the global minimum for the objective 

function. To be clear, it is anticipated that the Johnson-Cook thermal and rate dependence 
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is able to describe the material more accurately than demonstrated here. A better 

calibrated parameter set for this model was not pursued due to time constraints. With the 

final set of calibrated model parameters, simulations of the two calibration experiments 

indicate structural response that does not soften as much as the experiment at high levels 

of deformation. This likely means that the actual constitutive properties are slightly more 

temperature dependent than the calibrated model.  

The extracted constitutive parameters underlying these load-elongation curves are 

given in Table 4.3. The slow-rate stress-strain curve is plotted in Figure 4.4a, and shows 

continued strain-hardening throughout the strain range explored. One projection of the 

calibrated Hill 48 yield surface is compared to von Mises yield surface in Figure 4.4b. 

The largest difference between these surfaces occurs in the biaxial stress regime, where 

anisotropy is seen to significantly delay yielding. 

 

4.2.2 Calibration of the failure model 

Ductile failure is most often described by the nucleation, growth, and coalescence 

of voids across a broad range of strains until failure occurs; micromechanical models 

such as the Gurson–Tvergaard–Needleman models have been developed and are 

commonly used in failure predictions. However, based on recent work 

(Ghahremaninezhad and Ravi-Chandar 2012, 2013, Haltom et al. 2013), and prior 

knowledge of the microstructure of the Ti-6Al-4V, we conjectured that damage will 

begin at much later stages in the deformation of the material with large scale void growth 

occurring only near the brink of final failure and then progress rapidly. The sudden 

appearance of damage just prior to failure means that stiffness degradation of the material 

due to damage can be adequately approximated as a complete loss of stiffness once 
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damage has occurred. Then, all behavior up to failure is completely described by the 

constitutive relations and a simple equivalent plastic strain-to-failure model suffices to 

incorporate material fracture. 

The failure strain, εf, is chosen to be dependent exclusively on stress triaxiality. 

When an element in the FEM simulations accumulates a damage parameter equal to unity 

according to the rule: ∫
𝑑𝜀𝑝

𝜀𝑓
, its stiffness is set to zero, where 𝑑𝜀𝑝 is the plastic strain 

increment. The failure strain was calibrated by using the optimized RD tensile and VA 

shear simulations.  

For tension, the central element in the neck has both the highest triaxiality and 

strain. Since rupture of the specimen occurs rapidly, it corresponds to failure of this 

central element. By matching the experimental elongation at rupture in the simulation, the 

central element in the neck provides a strain-to-failure estimate under moderate levels of 

triaxiality. Anisotropy in fracture properties is certainly a possibility, so the same 

calculation was also performed for TD tension, however the failure strain was found to be 

much higher. Seeing this discrepancy as more likely to be a plasticity modeling error than 

to actually describe the behavior of the material, the failure strain calculated from TD 

tension was simply ignored. 

Strain-to-failure estimation in the shear specimen is based on past experimental 

experience indicating that the peak load in the test corresponds to the formation of a 

crack at one of the notch tips. Then the grip displacement at peak load in the experiment 

corresponds to global deformation state where the element at the current notch tip in the 

simulation must fail. This provides an estimate on the strain-to-failure under negative 

triaxiality conditions. After crack initiation, stable growth occurs in the experiment and 

could be used to perform a more detailed failure calibration. Due to time constraints this 

data was not used. It was found that the strains to failure over the large range of triaxiality 
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spanned by these two tests were nearly identical (0.79 from tension and 0.82 from shear), 

so the strain-to-failure between them was simply interpolated linearly. For triaxialities in 

excess of those in the tensile test, a conservative strain-to-failure curve that is motivated 

by the exponential behavior first suggested by McClintock (1968) was adopted. 

 

4.3 RESULTS OF BLIND PREDICTION OF THE CHALLENGE PROBLEM 

Prior to performing the final prediction for the challenge geometry, a number of 

exploratory simulations for the slow-rate loading were performed. Firstly, a simulation 

with implicit time stepping and the exclusion of a failure model was used to investigate 

where on the specimen plasticity would cause localization of the deformation. 

Localization was found to occur first in ligament BD closesly followed by ligament DE. 

The model parameter controlling shear anisotropy was then varied to see if switching of 

localization to the ligament AC was possible. It was found that setting the parameter N in 

Hill-48 to be greater than or equal to 0.92 did in fact cause this change in the localization 

behavior. This critical value is sufficiently far from the calibrated value to preclude the 

chance of localization occurring in ligament AC in the slow-rate simulation, but close 

enough that both paths should be considered when the loading rate is changed. 

For the final prediction, the challenge geometry was modeled in full without using 

the available symmetry plane in the thickness direction. The loading pins were included 

as separate, rigid bodies from the challenge specimen. Frictionless contact was assumed 

between the pins and the specimen. The top pin was held stationary and for the slow-rate 

simulation the bottom pin was displaced downward at a quadratic rate. The rate of 

application for the slow-rate simulation is unimportant, as the material model does not 

include any time dependent behavior (e.g. viscoplasticity or heat diffusion). For the fast-
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rate simulation, the bottom pin was displaced downward at a quadratic rate during elastic 

deformation, reaching the target displacement rate of 25.4 mm/s just prior to the onset of 

plastic deformation, and continuing for the rest of the simulation at this constant rate.  

The challenge geometry was meshed as shown in Figure 4.5 for the slow-rate 

prediction. The inset shows the fine level of discretization used in the areas where 

fracture was expected. The mesh used for the fast-rate prediction is quite similar, but with 

refinement along the possible failure path through ligaments AC and CE. The 

discretization was chosen to be fine enough to ensure that plastic deformation is 

accurately modeled, yet without an undue number of elements so that the simulations 

could still be solved on a desktop computer. The details of the spatial and temporal 

discretization used for both loading rates are given in Table 4.4. 

The load-COD response for the slow-rate prediction is shown in Figure 4.6a and 

contours of the equivalent plastic strain development on the mid-plane are shown in 

Figure 4.7. The load-COD curve shows initial elastic behavior up to a load of ~10 kN at 

~0.56 mm of crack opening displacement at the lower notch (COD1). After this point, the 

curve becomes nonlinear, and the initial accumulation of plastic strain occurs most 

rapidly in the ligament AC, as seen in Figure 4.7a. By about 2 mm of COD1, the plastic 

strain in ligaments DE and BD surpasses that in ligament AC (Figure 4.7b), and maintains 

this lead for the rest of the deformation. At 3 mm of COD1 the maximum strain in the 

simulation is still well below the failure strain for the material and the load is still 

increasing with additional pin displacement. It is only just after the onset of structural 

instability (50 μm of additional COD1 after the peak load), that failure occurs. The failure 

occurs on these two ligaments in rapid succession, appearing as a single and sudden drop 

on the load vs. COD1 curve.  
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The first failure is predicted to initiate on the surface of hole D and exhibit 

unstable growth towards hole E. Just following this break, another failure event is 

predicted to initiate on the surface of notch B and exhibit unstable growth towards the 

hole D. Figure 4.7d shows the strain field in between these two cracking events, with 

ligament DE severed, but ligament BD intact. Initiation of both cracks occurs on the 

specimen mid-plane. After both of these ligaments have been severed, the specimen can 

accommodate a large rotation and will return to near zero load without being completely 

broken into two pieces (it is anticipated that in the experiment the load may not return to 

zero if there is significant load train compliance). Ligament EA is still intact at this point, 

but it is obvious that further loading will cause this ligament to eventually fail. All QoIs 

are thus known at this level of deformation and the simulation is halted.  

The crack path is reported as D-E;B-D;EA; indicating that first cracking will occur 

from hole D to E, a separate crack from hole B to D, and finally EA will break, but no 

prediction is supplied as to where this last crack will initiate. Greater specificity could not 

be given confidently for this final cracking event for two reasons: Firstly, part of ligament 

EA is undergoing compression, but the calibration data supplied did not probe material 

behavior in compression (which is known to be different than the tensile behavior for this 

metal). Secondly, the simulation used mass scaling and the effect of this during, and 

especially after dynamic cracking of the first two ligaments is not accounted for. 

The trends for the fast-rate simulations are very similar to that for the slow-rate 

simulations. The load-COD curve is shown in Figure 4.6b and the strain contours on the 

mid-plane in Figure 4.8. The strain paths of three points, one each in the ligaments BD, 

DE and AC are tracked in Figure 4.9 where the values of the equivalent plastic strain is 

plotted as a function of the triaxiality for later discussion. The largest difference in the 

fast-rate load-COD behavior from the slow-rate loading is that the structure is predicted 
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to reach a limit load well before failure occurs. This is a consequence of thermal 

softening on the structure, as substantial heating occurs in the ligaments between holes. 

After peak load, straining still occurs at a slow-rate on ligament AC, indicating that the 

structural softening is due to material effects and not geometric effects. When failure 

occurs, it is again with unstable crack growth in the ligaments BD and DE, however, the 

order is opposite from that in the slow rate loading. Again, the load is predicted to drop 

near zero when ligament EA is the only ligament left intact along the cracking path, and 

the simulation is halted for the same reasons as before. The crack path for the fast-rate 

prediction is the same as the slow-rate, however the sequence of cracking is different and 

was reported as B-D-EA.  

The complete table of QoIs for both loading rates that was extracted from these 

blind predictions and submitted to SNL prior to challenge deadline are presented in Table 

4.5. The upper and lower bounds for the predictions of load at the specified levels of 

COD1 were formed by the following simple, ad hoc method: The largest average strain 

in any of the ligaments on the challenge geometry was computed and correlated to the 

average strain in the minimum cross section of the neck in the (slow rate RD and TD) 

tensile calibration experiments. The range between upper and lower bound in the 

prediction was taken to be the same as the range in load observed between the tensile 

experiments at the same level of strain, with the simulation results assumed to be the 

mean response. Bounds for the COD predictions at the specified levels of load were 

formulated by maintaining that the load drop through this load range will be sudden. The 

range for the failure strain was assumed to be quite large (around 20%) causing about a 1 

mm window of COD over which failure was possible, with the simulated response again 

taken as the mean response. Given the constrained timeline that predictions had to meet, 
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the limited time available was dedicated to finding the mean response, only leaving time 

for a coarse method of bounding that mean response such as described above. 

We turn now to a comparison of the predictions to the experiments performed by 

SNL. A detailed description of these experiments can be found in Boyce et al (2015). The 

experimental load-COD curves for both loading rates are shown in Figure 4.6. Excellent 

agreement between the prediction and experimental results is found from the initial 

elastic response up to a COD1 level of about 1.75 mm for both the slow- and fast-rate 

cases (4.8% and 2.3% relative error for slow- and fast-rate cases, respectively). A 

significant contribution to this error is from the elastic regime, where synchronization 

error between experiment and simulation can have a large effect. Relative error for the 

COD1 range of 1 – 1.75 mm is 3.3% and 0.4% for slow- and fast-rate cases, respectively. 

For COD1 levels beyond this, the predicted load-COD1 curves are slightly stiffer than the 

experimental result. The effect of this stiffness discrepancy causes continuously 

increasing deviation from the predicted and observed load as COD1 increases. The fast-

rate simulation correctly predicts the presence of a limit load; however, it is predicted to 

occur at a larger COD1 than observed in the experiments. At both loading rates, the 

specimen is found to fail at a lower level of COD1 than predicted; however, the nature of 

failure occurs as predicted, with a sudden load drop caused by unstable propagation of 

cracks across the ligaments BD and DE occurring almost simultaneously (appearing 

completely simultaneous at the temporal resolution of the current measurements). As a 

whole, the major features of the experimental load-COD1 curves were predicted, but 

were spread out over a larger range of COD1 than observed in the experiment. In terms 

of the quantities of interest, all scalar measures except the COD1 at fracture were 

predicted to within 12%, and the presence of unstable fracture was identified. The only 

feature lacking in the predictions was a limit load for the slow-rate case prior to failure. 
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To probe the cause of these forecasting errors, experiments with additional diagnostic 

measurements were performed on the same material as the experiments performed at 

SNL. 

 

4.4 ADDITIONAL EXPERIMENTS 

Additional experiments of the challenge geometry were performed after the 

predictions of all participating teams and the results of experiments by two different 

groups within SNL had been distributed. These samples were provided by SNL with the 

sample designation 2, 5 and 31, and obtained from the same manufacturing lot as the 

samples tested at SNL. Due to the limited number of samples, only experiments at the 

slow-rate were performed. Additional measurements of the evolution of the three-

dimensional displacement fields on one surface of the specimen were taken in order to 

produce a complimentary set of data to those already compiled by the two Sandia 

laboratories. The two main goals of these experiments are (i) to provide greater details of 

local deformation fields in the specimen that can enable a careful assessment of the 

capabilities and difficulties in the modeling efforts and (ii) to reveal the crack sequence 

for the slow-rate experiment.  

 

4.4.1 Experimental setup 

The experimental setup used is shown in Figure 4.10. The experiments utilized a 

100-kN Instron electromechanical load frame, with a 100-kN load cell (±0.25% 

uncertainty of the measured value) at ambient temperature. The level of noise in the load 

signal was measured to be 2 N. The crosshead rate was maintained at 0.0254 mm/s, as 

prescribed in the challenge. Two universal joints were placed, one each at the upper and 
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lower grips in order to minimize the effect of loading misalignments. In addition, the 

same clevises used by SNL were used. Instead of using COD gages to measure the 

displacements at the notch mouths an optical measurement was made. This was made 

possible by affixing small fiducial patches with a speckle pattern to the four notch roots 

on the specimen, extending beyond the location of the knife edge features intended for 

contact COD measurements to provide features that could be used to obtain a DIC 

displacement measurement at the same location. A digital single-lens reflex (DSLR) 

camera was used to view the entire specimen and to capture the images needed for this 

measurement. The pixel resolution of this camera was 133 μm/pixel and frames were 

down sampled at a rate of 8 Hz. The DIC used a sub-image size of 40 pixels with a step 

of 10 pixels between sub-images. The resulting measurement of COD has an uncertainty 

of 0.02 mm. For one specimen (sample number 2) this camera was configured differently 

to have increased spatial resolution at the cost of sampling at a rate of one image every 5 

seconds. 

Images from two CCD cameras focused on the region between the notches were 

used to perform 3D-DIC measurements and determine the three-dimensional kinematic 

fields in the regions of highest deformation and eventual failure. A high contrast random 

speckle pattern was applied to the specimen in this region. The cameras captured images 

with a spatial resolution of 17.8 µm/pixel and at a rate of once every second. DIC was 

performed with a sub-image size of 20 pixels and a step size of 10 pixels between sub-

images. The effective gauge length for strain measurements is then 356 µm and strains 

were measured with an uncertainty of 1000 µε.  

A Photron SA1 camera, with high frame rate capability, was positioned to view 

the ligaments B-D and D-E and resolve the order in which these ligaments failed. This 

camera was placed on the back side of the specimen so that the bright lighting that is 
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required for fast-rate imaging could be focused on these two ligaments without disturbing 

the images taken by the other three cameras. A fan was used to cool the specimen so that 

the lights did not cause substantial heating during the test. To ensure that cracks on the 

specimen are as visible as possible, no speckle pattern was applied to the specimen, 

however, the specimen has a natural surface texture that is adequate for use in performing 

DIC measurements of the in-plane displacements. Images were captured with a spatial 

resolution of 37 μm/pixel at a rate of 20000 and 40000 frames per second for samples 2 

and 5, respectively. This camera was triggered with the load-drop corresponding to 

unstable crack initiation, with images recorded for half-second prior and half-second post 

trigger time; this permitted capturing the dynamic events associated with the failure of 

the ligaments DE and BD. 

 

4.4.2 Load-COD1 

Confirmation of the load-COD1 results observed at SNL is shown in Figure 

4.11Error! Reference source not found.. Sample 2 failed at a slightly higher level of 

OD1 than shown in this figure; the exact COD is not known precisely due to the coarser 

image capture rate used for COD measurements on this sample. Additionally, sample 31 

was not loaded until failure; loading was interrupted just after localization to preserve this 

sample for microscopic examination. Samples 2 and 5 failed along the same crack path 

(DE;BD;EA); failure occurred in ligaments BD and DE almost simultaneously. Although 

loading on sample 31was halted prior to cracking of these ligaments, it is clear that 

failure would have occurred there if further loading was applied.  
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4.4.2.1 Ligament failure sequence in the slow-rate tests 

For the two samples loaded until failure, unstable fast fracture occurred in 

ligaments BD and DE nearly simultaneously. However, the image sequence showing 

three subsequent frames captured by the high speed camera at the time of failure for 

sample 2 shown in Figure 4.12 is able to resolve the actual failure sequence. The overlaid 

color contours indicate the vertical displacement field calculated with DIC from the high 

speed images. The first image shows the state of the sample just before cracking of any 

ligament, the second image shows ligament BD intact with ligament DE completely 

severed, and the final image shows both ligaments fully broken. Identification of cracking 

in the in the ligament DE second image is made by observing a displacement field 

consistent with the elastic recovery expected after release of tractions across the broken 

ligament. A high speed video with more frames for this sample and without DIC 

processing is included as Supplementary Material SM7 for this dissertation. Despite 

increasing the frame rate for sample 5, only three subsequent frames capture the same 

behavior observed for sample 2. Sufficient temporal resolution to determine the location 

of crack initiation in each ligament was not pursued. Thus, the greatest specificity that 

can be given for the cracking sequence of these two specimens is that ligament DE failed 

first, closely followed by the failure of ligament BD within the next 50 s. It is clear that 

any modeling effort to capture the final failure of ligaments DE and BD must account not 

only for initiation of cracks, but also for their dynamic growth with inertial effects. After 

continued loading ligament EA is expected to fail as observed in the experiments 

performed by SNL.  

 



 132 

4.4.2.2 Strain field measurement 

The strain field for sample 5 just prior to fracture is overlaid on the raw image 

used for the DIC measurement in Figure 4.13. Since ligament AC was not of interest it 

was not completely contained in the field of view in order to increase the spatial 

resolution on the eventual path of failure. Despite this restricted field, at the state of 

deformation shown here it is likely that the strain gradient is too strong to be insensitive 

to the effect of gauge length. The DIC strain values should be interpreted with this in 

mind, and seen as lower bound for the actual strain, especially at larger levels of strain. 

The strain accumulation with COD1 at the points identified in Figure 4.13 (points of 

maximum principal strain measured within each of the ligaments) are plotted in Figure 

4.14. In spite of not capturing the location of maximum strain in ligament AC in the field 

of view, the point of maximum strain within the observed region still shows more strain 

accumulation in ligament AC than any other for COD1 values less than about 1 mm. 

After this level of COD1, strain accumulation in ligaments BD and DE accelerates until 

failure. This acceleration is gradual and continuous, with no indication of an abrupt 

localization into these ligaments apparent in the local strain field. This could again be due 

to strong gradients in the strain field, or because development of the localization is 

interrupted by failure before it has too much of a strain concentrating effect. Regardless 

of the reason, it is interesting to note that the global load measurement is able to reveal 

some detail of the strain development that is imperceptible with the DIC measurement.  

In seeming contradiction to the sequence in which cracking occurs, the maximum 

strain measured on the surface in ligament BD is larger than that measured in ligament 

DE. This can be explained by any combination of the following possibilities:  
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 Ligament DE may have a stronger strain variation through its thickness than 

ligament BD; thus the strain on the mid-plane (where failure develops) may 

actually be larger for this ligament.  

 The location of maximum strain in one or both ligaments may be on the edge of 

the hole, where DIC cannot provide a strain measurement. This unknown strain 

may be larger for ligament DE than BD. 

 The strain gradient across ligament DE may be stronger than that across ligament 

BD, thus causing the DIC measurement to underestimate the strain in this 

ligament more severely than in ligament BD. 

 The strain in ligament DE may actually be less than that in ligament BD and some 

other factor (e.g. a difference in stress triaxiality or lode angle) causes ligament 

DE to fail first. 

Since failure is likely initiated on the mid-plane of the specimen, it is useful to 

discuss the deformation history on this plane. Experimental strain measurements are not 

available on the mid-plane only the surface strains can be measured. The strain in the 

interior can be estimated by correlating the surface strain between simulation and 

experiment, and then investigating the interior strain in the simulation. This method can 

only be as accurate as the simulation. The stiffer response observed in the simulation is 

likely to underestimate the increase in strain experienced on the interior; this 

underestimation coupled with the underestimation of the strain from DIC places a very 

conservative lower bound on the failure strain as 0.6 for a triaxiality of 0.4. A better 

methodology for obtaining a tighter lower bound for the failure strain would be the 

tracking of microstructural deformations directly. Such a study was not pursued.  
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4.4.2.3 Microscopy 

The fracture surfaces of sample 5 were examined with a scanning electron 

microscope (SEM). Figures 4.15 and 4.16 show the upper and lower sides of the fracture 

surfaces along the ligament BD. The upper side refers to the part of the sample after 

failure along B-D-E-A that contains hole C. The fracture surfaces along ligament DE are 

nearly identical in all its features and hence is not shown. Most of the surface for both 

ligaments BD and DE is found to be dominated by uniformly distributed small dimples, 

with a typical equivalent diameter of about 3 m. These dimples are indicative of the 

ductile failure mechanism that is operative in the fracture of the ligaments. However, 

some localized regions exhibited larger dimples (of equivalent diameter ~ 12 m which is 

greater than the mean grain size in the material) as seen in the central portion of Figures 

4.15 and 4.16. Such a region of large dimples surrounded by the more prevalent small 

dimples is clearly identifiable on the failure surfaces of ligaments BD and DE. Due to the 

infrequency and isolation of such large dimples in comparison to more homogeneous 

distribution of the smaller dimples, it is thought that the regions of large dimples 

exhibited growth separately from the formation and growth of the fracture.  

Another feature of interest in Figures 4.15 and 4.16 is a nearly smooth region in 

the neighborhood of the region with the large dimples. Investigating five other locations 

on this same fracture surface revealed that such featureless regions always accompany the 

region with large dimples. By performing a comparison of the upper and lower fracture 

surfaces, it is clear that the regions with large dimples mate with each other (note the 

mirror symmetry about the horizontal axis since we are viewing the mating fracture 

surfaces), but the smooth regions do not mate each other! On the upper fracture surface 

the featureless region is always to the right (towards hole D) of the large dimpled region, 

while it is always to the left (towards notch B) of the large dimples on the lower fracture 
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surface. Furthermore, what would have been the mating surfaces of the featureless 

regions on the opposite fracture surface are fully dimpled with fine scale dimples. It is 

apparent that after the cracks had propagated across the ligament, a large sliding 

displacement between the opposing crack faces occurred, and the contact of opposing 

faces scraped off the dimples on either side of the region with the large dimples, leaving 

the featureless surfaces.  

Sample 31, the sample that was halted just after the limit load was reached, was 

examined in the scanning electron microscope (SEM). From the DIC calculation, the 

lower bound for the plastic strain in the ligaments BD and DE corresponding to the load-

interruption is in the range of 0.5, with a triaxiality in the range of 0.43, as found from the 

simulation. This sample was prepared for microscopy by extracting the material in the 

vicinity of the prospective crack path. The extracted piece was mounted and 

mechanically polished until the mid-plane was reached; it was then etched with Kroll’s 

reagent to reveal the grain boundaries. A SEM image near hole D, in the ligament DE is 

shown in Figure 4.17a along with an inlay showing the appearance of an unstrained 

region. The unstrained material was inspected over a broad area and no initial porosity 

was detectable at this spatial resolution. The presence of voids in the strained material is 

clearly observed and occurs over a broad region that extends beyond the edges of the 

image. The area fraction of voids in this image is approximately 1% and the mean 

ligament length between voids is about 22 μm. The largest void is elliptical in shape with 

major and minor axes of about 9 μm and 4 μm, respectively. The presence of voids is also 

observed in ligament BD in this same sample. Figure 4.17b shows how the state of 

porosity varies across the width of the ligament. The full resolution image is included as 

Supplementary Material SM8 for this dissertation. The voids are mostly concentrated in a 

band about 300 μm wide. Within this band the area fraction of voids is approximately 
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0.9% and the mean ligament length between voids in the band is about 24 μm. The 

largest void is elliptical in shape with major and minor axes of about 8 μm and 4 μm, 

respectively. 

These observations of voids made during the interrupted test are consistent with 

the images of the fracture surface for sample 5 and the images taken by Boyce et al. 

(2015) of the fracture surface for other challenge geometry specimens. Specifically, the 

larger than typical dimples that are seen on the fracture surface are thought to be the 

result of continued growth by voids like those found in the interior of the interrupted test. 

The size and location of the voided region and the size of the individual voids themselves 

observed in the interrupted test appears to be compatible with the features observed on 

the fracture surface. Finally, sample 31 was polished further and no voids were seen upon 

reexamination; the fact that voids do not exist on the newly exposed surface is also 

consistent with the observations made on the fracture surface that regions with larger than 

typical voids do not span more than a few hundred micron across the thickness. 

 

4.5 DISCUSSION 

4.5.1 Plasticity 

An important prerequisite to the ability to predict ductile failure is the ability to 

make an accurate prediction of the plastic behavior. The deformation leading up to the 

eventual failure of this material occurs through the continuing development of slip and 

twinning mechanisms at the crystallographic level that are readily modeled as plastic 

flow at the polycrystalline aggregate level through a phenomenological model. 

Assessment of the continuum plasticity model used for the blind prediction is then the 

starting point to assess the failure prediction. Figure 4.18 shows a comparison of contours 
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of the maximum principal strain between the blind prediction (left column) and the 

experimental measurement (right column) corresponding to different COD1 levels. 

Figure 4.19 shows a quantitative comparison of the variation with COD1 the maximum 

principal strains in the ligaments DE and BD between simulation and experiment. Note 

that the strain from the prediction is taken as the average of 64 neighboring elements, 

spanning the same area that is used for DIC strain calculation. The predicted strain in the 

ligaments tracks the measured values until the maximum principal strain is about 0.18 in 

ligament BD, at a COD1 of 1.8 mm. The maximum equivalent plastic strain in the 

simulation at this state is 0.22 at a location where the triaxiality is 0.44. Recall that the 

load-COD1 curve was also well predicted up to this level of COD1. Beyond this point, 

the predicted strain underestimates the measured value. It is anticipated that if a shorter 

gauge length were available for comparison, then the deviation between prediction and 

measurement would be even larger for strains beyond this level.  

The local strain comparison provides additional insight to validate the prediction 

up to a COD1 level of about 1.8 mm, and also elucidate what aspect of modeling needs 

improvement at higher levels of deformation. Matching of not only the global response, 

but also the local strain development in the ligaments demonstrates a much stronger 

correlation between simulation and experiment than matching just the global response. 

Essentially identical load-COD1 curves can be produced from different local fields, 

therefore a good match in global behavior can still hide discrepancies in the modeling. If 

matching of the local field at its most critical locations occurs as well, little room is left 

for such discrepancies in the models. Even better would be to match the local field over 

an area or volume rather than just at a point; however, producing a suitable metric to 

quantify the matching over such a region is still a work in progress. In the slow-rate 

prediction considered here, matching at the only two points in the local field that were 
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interrogated and the global response is found for COD1 values under 1.8 mm. This 

strongly suggests that the plasticity model used is well-suited to describe the material 

behavior for the strain range where matching occurred (0-0.22), in the region of stress 

space activated by this particular challenge geometry.  

The loss of agreement beyond an equivalent plastic strain of 0.22 is undoubtedly 

from an error in the extracted plasticity model. As seen by the microscopy performed on 

the interrupted test, voiding of the material does occur; although a tight lower bound 

cannot be placed for the strain on which it occurs for the loading history in ligaments BD 

and DE, an extremely conservative lower bound of 0.45 can be inferred from the DIC 

measured strain field. Even this inaccurately low bound for the onset of voiding is far 

above the strain level at which the prediction departs from the experiment. Thus, damage 

does not play a role in the departure of the prediction. 

This departure beyond a strain level of 0.22 indicates that some modification must 

be made to the plasticity model to improve overall predictive ability; however, the need 

for such a modification was not obvious from the suite of calibration data provided. The 

load-elongation curves, particularly for the slow-rate loading calibration experiments, 

were well replicated by the Hill-48 anisotropic plasticity model used in the calibration 

exercise. The ability to fit the plasticity calibration data well, yet not capture the correct 

plastic deformation throughout the prediction indicates a deficiency in the set of 

calibration data. One possible shortcoming of the calibration data is the aforementioned 

lack of sensitivity of global structural response to changes in the local fields. This will 

allow errors in the local fields to go undetected and propagate into error of the extracted 

model.  

Another weakness of the calibration data is the scarcity of stress paths explored. 

The majority of deformation in the challenge geometry occurs in stress states not 
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explored by the calibration experiments. Significant interpolation of the yield surface is 

then relied upon in the prediction, eroding confidence in predictive ability, and in this 

case even leading to a breakdown of predictive ability. Some amount of interpolation of 

the yield surface will always be required, but should either be performed over much 

smaller changes in stress state, or for a material where a particular interpolation strategy 

(e.g. choice of a particular yield surface shape) has been validated through extensive past 

examination. Reliance on calibration data that has a sparse exploration of stress space and 

does not include any local deformation information nearly precludes any systematic 

advantage that could be gained by using a sophisticated plasticity model that has more 

freedom in yield surface shape, anisotropic growth, and non-associated flow. Such a 

model requires a significantly larger set of calibration data to be well constrained. 

More calibration data could be provided through conventional methods, such as 

tensile testing in additional orientations and dimensional measurements to calculate 

Lankford’s parameters. Another route to enrich the calibration data would be to make 

local measurements of the deformation in addition to the conventional global 

measurements. This local deformation data can be used to turn the under constrained 

minimization problem of constitutive property extraction to an over constrained 

minimization problem. No matter the specifics of how calibration data is enhanced, 

predictive ability relies squarely on the suitability of models employed, and thus on the 

robustness of the experimental data used to calculate those models.  

 

4.5.2 Voids 

The presence of a dilute void population in the interrupted test of the challenge 

geometry (at equivalent plastic strains in excess of ~0.5 and a triaxiality of ~0.43) opens 
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the possibility that void growth models such as the GTN model may be of use for 

simulating this material; however, an experimental investigation to further understand the 

void mechanics is necessary before such a recommendation is made. Answers to the 

following questions are needed in such an investigation: 

 What are the conditions associated with the initiation of a measurable 

concentration of dilute voids? 

 How broad or narrow is the strain range where the presence of voids is 

detectable? 

 What is growth rate of voids with continued loading down the same stress path? 

 What level of porosity causes the material to exhibit a significantly decreasing 

tangent modulus? 

Experimental answers to these questions would determine if the effect of porosity 

is important to include in the material model. If so, the void model should finally be 

tested in a mode similar to the SFC to verify that it is of utility in creating predictions of 

ductile failure. Additionally, if porosity is found to have a non-negligible effect on the 

material, its inclusion in modeling may only be important for certain loading histories. 

What is certain is that more quantitative experimental results are needed to infer 

successful modeling techniques and that the material considered in this work seems well 

suited for such experiments. 

 

4.5.3 Failure 

Although the COD1 at failure was over predicted, the local state of deformation in 

the ligaments BD and DE is quite similar between the simulation and experiment when 

failure does occur. It is noted that the lower bound strain measurements made just before 
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failure with DIC are compatible with the failure strain used in the model. Further 

specification of the actual failure strain and its dependencies is not possible with the 

current set of experimental observations. Therefore, at the current level of investigation, 

no deficiency is found with the failure model used. In fact, all of the observed features of 

cracking in the experiment were correctly predicted. Specifically: 

 The crack path was predicted correctly 

 The cracking sequence of ligaments was predicted correctly (verified only for 

slow-rate loading)  

 Unstable propagation of initiated cracks was correctly predicted 

Predicting the correct crack path is mostly a consequence of the plasticity model 

being successful enough to correctly predict the location of maximum strain when failure 

is being approached. Indication of the correct crack sequence should not be given too 

much weight, as remaining deficiencies in the plasticity model are likely to play a larger 

role on the sequence than the failure model itself. The best indication that the failure 

model used is appropriate is that failure was predicted to occur in the correct strain range, 

and that failure was correctly predicted to cause the sudden and complete loss in load 

carrying ability of the challenge geometry.  

 

4.6 CONCLUSION 

The details of the simulations and experiments performed by the University of 

Texas team in response to the second Sandia Fracture Challenge are presented in this 

chapter of the dissertation. An adaptation of the same strategy that was successful in the 

first challenge was used. Specifically, calibration of a stress-strain curve, Hill 48 yield 

surface, and Johnson-Cook rate and temperature dependence were performed with the 
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load elongation data from tensile and shear testing at both loading rates. A strain-to-

failure model was used and was calibrated by considering the loading and deformation 

history of the first element to fail in the simulations of the calibration experiments. These 

models were used to generate a blind prediction of the challenge specimens. The load 

elongation behavior of the challenge specimen was accurately predicted for 

approximately the first 60% of crack opening displacement, but thereafter the prediction 

departed from the experimental result. The correct crack path and sequence of cracking 

events were predicted, as well as the occurrence of unstable crack growth. All the scalar 

measures except the COD1 at fracture were predicted to within 12%, and the presence of 

unstable fracture was identified. The only feature lacking in the predictions was a limit 

load for the slow-rate case prior to failure. Additional experiments performed on the 

challenge specimens included 3D-DIC and microscopy of an interrupted test. The strain 

field measurements from 3D-DIC revealed that the cause of departure of the prediction 

from the experiment is due to insufficient information about the plastic behavior of the 

material. Microscopy revealed that a dilute dispersion of voids occurs in this material 

prior to unstable crack growth. Attention to improving the methods and experimental data 

used for plasticity model calibration is seen as the most critical aspect to improving the 

ability to predict ductile failure. 

 

4.6.1 Recommendation to improve predictive ability 

The largest barrier to producing a successful prediction of ductile failure is still 

that of extracting an accurate model for plasticity from a set of calibration experiments. It 

is understood that a large experimental program for this purpose is unattractive, so it is 

suggested that the number of calibration experiments performed in the current work is 
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maintained, but that each experiment cause the material to deform over a large region of 

stress space. Such experiments need not have accompanying analytical solutions, as an 

inverse method for constitutive property extraction is seen as the best means for 

calibration of model parameters. Finally, the calibration experiments should include full 

field measurements of the deformation (e.g. from DIC) to supply enough data to properly 

constrain the inverse problem, and assure that each parameter in the constitutive model 

has sensitivity to the calibration data set.  
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Table 4.1: Anisotropic elastic moduli 

E1 

(GPa) 

E2 

(GPa) 

E3 

(GPa) 
ν 

G 

(GPa) 

112 120 120 0.34 39.7 

 

Table 4.2: Inverse calibration simulation details 

  

Number 

of  

elements 

Degrees 

of  

freedom 

Smallest 

element 

size (µm) 

Elements 

through 

thickness 

QS tension 1152 4995 150 × 397 4 

QS shear 1902 9108 178 × 57 2 

HR tension 8576 45900 100 × 397 4 

HR shear 6648 40992 49 × 48 2 

 

Table 4.3: Plasticity model parameters extracted by the inverse method 

Flow Curve Yield Surface 
Rate and Temperature 

Dependence 

Strain 
Stress 

(GPa) 
    

0.05 1130 F 0.431 m 0.8010 

0.10 1186 G 0.379 C 0.0278 

0.15 1239 H 0.621 𝜀0̇ 0.0582 

0.30 1327 N 1.901 
 

0.50 1422   

0.80 1522   

1.30 1563   
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Table 4.4: Prediction simulation details 

  

Number of  

elements 

Degrees of  

freedom  

(millions) 

Smallest 

element 

size (µm) 

Elements 

through 

thickness 

Slow-rate 697382 2.22 29.2 × 46.4 22 

Fast-rate 698526 2.96 29.2 × 46.4 22 

 

 

Table 4.5: Predicted quantities of interest for the challenge geometry subjected to slow 

and fast rate loading 

Slow  

Rate 
Force 

(N) at 

COD1 

Force 

(N) at 

COD1 

Force 

(N) at 

COD1 

Peak 

Force 

of 

Test 

COD1@90

% of peak 

force 

(mm) 

COD2@

90% of 

peak 

force 

(mm) 

COD1

@30% 

of peak 

force 

(mm) 

COD2@

30% of 

peak 

force 

(mm) 

Crack 

Path  

=1mm =2mm =3mm (N) 

Upper 

Bound  
15630 20260 21580 22180 5.128 4.573 5.128 4.573 

D-

E;B-

D;EA 

Expected 

Value 
15530 19860 20950 21570 4.628 4.073 4.628 4.073 

D-

E;B-

D;EA 

Lower 

Bound  
15430 19460 20320 20950 4.128 3.573 4.128 3.573 

D-

E;B-

D;EA 

          

          

          High  

Rate 
Force 

(N) at 

COD1 

Force 

(N) at 

COD1 

Force 

(N) at 

COD1 

Peak 

Force 

of 

Test 
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Figure 4.1: The finite element meshes used in the inverse problem to extract constitutive 

and failure models. (a) Fast-rate tension (b) slow-rate tension, (c) slow-rate 

shear, (d) fast-rate shear 
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Figure 4.2: Simulated and experimental load elongation curves for the slow-rate 

calibration experiments. (a) RD tension, (b) TD tension, and (c) VA shear. 

  



 148 

 

Figure 4.3: Simulated and experimental load elongation curves for the fast-rate 

calibration experiments. (a) RD tension and (b) VA shear. 

  



 149 

 

Figure 4.4: (a) The strain hardening behavior extracted by the inverse problem. (b) One 

projection of the yield surface extracted by the inverse problem, compared 

with the von Mises surface for reference.  
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Figure 4.5: Finite element mesh used for the slow-rate challenge geometry prediction 
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Figure 4.6: Predicted and experimentally observed load-COD1 behavior for (a) slow-

rate and (b) fast-rate tests. 
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Figure 4.7: Predicted equivalent plastic strain field on the mid-plane of the challenge 

geometry for the slow-rate at (a) COD1 = 1 mm, (b) COD1 = 2 mm, (c) 

COD1 = 3 mm, (d) COD1 = 4.63 mm (ligament BD is intact, DE is severed 

by a crack) 
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Figure 4.8: Predicted equivalent plastic strain field on the mid-plane of the challenge 

geometry for the fast-rate at (a) COD1 = 1 mm, (b) COD1 = 2 mm, (c) 

COD1 = 3 mm, (d) COD1 = 4.09 mm (ligament DE is intact, BD is severed 

by a crack) 
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Figure 4.9: Equivalent plastic strain variation with triaxiality for the most critical 

elements in ligaments BD, DE, and AC. Solid and dashed lines are for the 

slow- and fast-rates, respectively 
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Figure 4.10: Experimental setup showing a challenge specimen mounted in an 

electromechanical load frame surrounded by four lights and being observed 

by: a DSLR camera for COD measurements, two CCD cameras for 3D-DIC, 

and a high speed camera to resolve the crack sequence. 
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Figure 4.11: Load variation with COD1 compared to the results from SNL 
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Figure 4.12: Three sequential images from the high speed camera with the DIC 

displacement field overlaid. Positive displacement is downward. (a) 

Ligaments BD and DE intact, (b) ligament BD intact with ligament DE fully 

cracked, and (c) both ligaments fully cracked.  
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Figure 4.13: Overlay of the principal strain field for sample 13 on the image used for 

DIC. Data from the three points identified in the ligaments are plotted in 

Figure 4.14. 
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Figure 4.14: Maximum principal strain variation with COD1 for sample 5 at the locations 

identified in Figure 4.13.  
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Figure 4.15: Upper side fracture surface of ligament BD from sample five. The small 

dimples visible here are prevalent on the rest of the fracture surface. There is 

also a region of large dimples adjacent to an area that has been scraped by 

the opposing fracture surface to become nearly featureless. This pair of 

features appears at a modicum of other locations. 
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Figure 4.16: Region of the lower side fracture surface of ligament BD from sample five 

that directly opposes the region shown in Figure 4.15. The large dimples 

correspond to those visible in Figure 4.15. 
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Figure 4.17a: Observation of voids on the mid-plane near the surface of hole D from an 

interrupted test. Inlay shows the unstrained appearance of the surface at the 

same magnification. 
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Figure 4.17b: Observation of voids on the mid-plane in the ligament BD.  
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Figure 4.18: Comparison of the first principal strain fields for the prediction (first 

column) and those measured with 3D-DIC at (a) COD1 = 1 mm, (b) COD1 

= 1.75 mm, and (c) COD1 = 2.0 mm  
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Figure 4.19: Comparison of the maximum principal strain development between the 

prediction and experimental DIC measurements for ligaments (a) BD and 

(b) DE. 
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Chapter 5: Extraction of Elastic-Plastic Constitutive Properties from 

Three-Dimensional Deformation Measurements 

 

5.1 INTRODUCTION 

The effort to characterize the mechanical behavior of materials is an ongoing 

scientific pursuit with deep roots. For most of its history, this effort has been geared 

toward the development of test methodologies that provide simple, inexpensive, and yet 

reliable characterization of material properties. This has resulted in a number of 

standardized tests, such as those developed by ASTM, ISO, and other standardization 

organizations around the world. For the characterization of the constitutive response of 

materials, these methods are typically based on establishing a known state of deformation 

and measuring the force required to impose such deformation. The simplest example of 

this is the standard tensile test in which a prismatic specimen of length L and cross 

sectional area A is pulled along its length in a testing machine, ensuring a uniform state of 

stress and strain within a middle region of the specimen. The elongation over a selected 

“gage length” of the specimen as well as the force applied at the end grips of the 

specimen are measured; in some cases, the changes in cross-sectional dimensions are also 

monitored. Since the material in the gage length is subjected to homogeneous 

deformation, the global measurements of force and elongation of the specimen are readily 

converted to the stress-strain behavior of the material under test. While this approach 

works quite well during the early stages of deformation – and forms the backbone of 

engineering characterization of elastic and elastic-plastic properties for most materials – 

it is limited in its ability to provide appropriate characterization of the material behavior 

at very large deformations because of the inability of most test configurations to sustain 
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homogeneous deformations at all strain levels and stress states; material instabilities 

(Lüder’s bands) and structural instabilities (such as diffuse necking at the Considère 

point) intervene even in the case of the simple tensile test and localize the deformation 

over smaller regions of the specimen. The use of measurements of the changes in cross-

sectional dimensions and the Bridgman correction for the stress concentrating effect of a 

diffuse neck are early examples of efforts to account for the nonuniformity of the 

deformation field. However, they only account for nonuniformity in an average sense. 

Since further deformation accumulates only within these localized regions, the resulting 

inhomogeneity of the deformation and stress fields renders the global measurements 

irrelevant in the direct identification of the material constitutive model beyond the onset 

of such localization. Hence, interpretation of the global response of the specimen in terms 

of the local material constitutive model requires an inverse analysis. Inverse methods 

based on optimization techniques that seek to minimize differences between the 

measured global response and numerically simulated response have been developed and 

used in recent years. In the present work, we provide an enhancement to this method. 

In spite of the long history of mechanical testing, the use of inverse methods for 

material property identification is a rather recent development. The reasons for the recent 

spurt of activities in this area are two-fold. First, techniques for efficient and accurate 

numerical simulation of the nonlinear problem associated with the experiments (see for 

example, Chen, 1971, Needleman, 1972), and the computational power to exploit such 

methods have developed significantly in the last two decades. Second, techniques for the 

accurate experimental determination of the kinematic field over large domains of the 

specimen have recently advanced significantly with the development of digital image 

correlation and the associated high-resolution full-field imaging techniques. This allows 

for the extraction of the material properties through an optimization process that 
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compares full-field measurements of the deformations with numerical simulations. An 

early example of this effort is the work of Norris et al (1978) who performed a simulation 

of the axisymmetric deformation of a tensile specimen with round cross-section and 

through an iterative process obtained the flow stress-strain curve for an A533-B nuclear 

pressure vessel steel; they showed that the difference between this curve and one 

obtained by using a Bridgman correction (together with the measured necking cross-

sectional dimensions) was about 10% at a strain level of 100%.  

A proper optimization formulation, in which the deviation between the 

experimental measurements and numerical simulations is used to generate an objective 

function that is minimized to determine the material parameters, has been investigated by 

Mahnken and Stein, (1994, 1996), Gelin and Ghouati (1995) and Ghouati and Gelin 

(1998), Meuwissen et al. (1998), Kajberg and Lindkvist (2004), Coorman et al. (2008) 

and many others in recent years. Mahnken and Stein (1996) discuss the inverse problem 

(IP) in terms of an objective function that compares experimental and simulated 

displacements at selected points in the nonuniform deformation field of an arbitrary 

specimen; this was implemented within the framework of the infinitesimal strain 

formulation. As an example, they determine the material properties from a compact-

tension fracture test geometry. The displacements near the tip of a compact-tension 

fracture specimen in a Baustahl St52 were determined using a grid method and then 

compared with numerical simulations obtained from a finite element simulation. They 

demonstrated that the elastic-plastic material properties could be extracted through such 

inverse identification schemes. Gelin and Ghouati (1995) formulated a similar 

optimization problem, with an objective function that was nearly identical to that of 

Mahnken and Stein (1996) – based on the difference between the experimentally 

measured and numerically calculated displacements at selected points; this scheme was 
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used to determine the material properties of a 3014 aluminum alloy from a plane-strain 

compression test. Ghouati and Gelin (1998) used the same procedure to calibrate a Voce 

model for aluminum alloy sheet material, including Hill anisotropy; in one example, 

these authors use a comparison of a punch load vs displacement measurement from a 

deep punching experiment to perform the material property extraction. More recently, 

Kajberg and Lindkvist (2004) used a similar approach; two different hot-rolled steels 

were examined. The in-plane displacements (and strains) were determined through a two-

dimensional image correlation method. The objective function used in the optimization 

procedure accounted for the two in-plane components of displacements, the equivalent 

plastic strain as well as the global loading on the specimen. They demonstrated the fitting 

of a piecewise linear or a power-law model using the optimization procedure. Cooreman 

et al. (2008) explored identification of the elastic plastic material response with a 

cruciform specimen with a central hole to generate a complex stress/strain state; the 

surface strains were measured with a three-dimensional image correlation technique and 

then used in an optimization routine where the objective function was based on the 

individual strain components in the plane of the sheet; they were able to calibrate the Hill 

anisotropic plastic model, together with a Swift type power-law model of the hardening 

behavior.  

Many of the articles discussed above also discuss the limitations of this inverse 

approach, driven by the errors in the experimental data, errors in the models, and the 

sensitivity of the optimization techniques themselves. The examples discussed above 

clearly indicate the power of the inverse method in the identification of material 

properties to strain levels at which continued homogeneous deformations are 

unsustainable. With the commercial developments in the area of digital image correlation 

techniques for displacement measurements, the availability of high-fidelity experimental 
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measurements has increased significantly in recent years, and a corresponding increase is 

seen in the application of these measurements in such inverse methods as applied to the 

determination of the constitutive properties of materials. A review article by Avril et al 

(2008) discusses applications of such inverse methods, but with a focus on the 

determination of elastic properties. Here we present an application of the inverse method 

to extract the anisotropic material properties of a ductile structural metallic alloy 

deformed to very large strain levels.  

 

5.2 INVERSE PROBLEM IN MATERIAL PROPERTY CHARACTERIZATION 

Consider a specimen with arbitrary geometry   as illustrated in Figure 5.1. The 

external forces eF  are applied on a subset 
t  during the experiment and displacement 

constraints, if any, are applied on 
u . In typical standardized experiments the only 

measured quantities are the applied external force eF , the displacement eΔ  

corresponding to this force application region, and one internal displacement δe measured 

in the specimen’s gage section. Fe and δe can be normalized to provide the material 

behavior during states of homogenous deformation (presuming such a state is realized) 

and global structural response when deformation is heterogeneous. In order to gather 

additional relevant information about the material behavior after the deformation 

becomes heterogeneous, further measurements are essential. We will restrict3 attention to 

measurements on parts of the surface of the specimen 
v t    that is a subset of the 

traction boundary; specifically, for the optical measurements that we have in mind, this is 

                                                 
3 This restriction arises from the desire to use measurements in the wavelengths at which 

the specimen is opaque; in principle, the use of x-ray tomography (Babout et al. 2001), 

laminography (Helfen et al. 2013), and other tools could provide information on the 

interior, but such methods are still, under development, limited to identifying damage, 

experimentally expensive and await further development. 
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a portion of the traction boundary that is free from obstructions for visual observation and 

measurements. By necessity, these measurements are kinematic, yielding the 

displacements ( )u x  for 
vx . It is the addition of these displacement measurements 

that enriches the experimental data set and thus enhances the quality of constitutive 

model that can be extracted from it.  

Corresponding to any such experiment there is an associated boundary value 

problem (BVP) of the following form that needs to be solved:  

( ) 0 σ x   x  

( ) *( )u x u x  
u x   (5.1) 

( ) ( ) *( ) t x σ x n t x  
t x  

where ( )σ x  is the Cauchy stress tensor, n  is the unit outward normal, and *( )u x  and 

*( )t x  are prescribed functions. In order to solve this BVP a material model must be 

specified relating the strains to the stresses; this material model could be of any type – 

elastic, inelastic, time-dependent, damaging or evolving, strain-rate dependent, etc. 

Although there is great flexibility in what material model can be used, identification of 

the appropriate form of the constitutive model is an extremely important task that must be 

based on the characteristics of the observed data and the underlying physics. For the 

present purpose, we will simply indicate that the constitutive model will be parameterized 

by the set  1 2 3 4, , , , Nd E d d d d  d  representing the set of N material parameters. 

If the parameters d  contained in the material model are known a priori, then the forward 

solution of the BVP can be calculated to determine the state of the specimen under the 

applied boundary conditions. However, if material characterization is the problem of 

interest, the parameters d  in the material model are then unknown and instead, certain 

aspects (usually, kinematic) of the specimen’s state are measured during the course of the 
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experiment as described above. This presents the opportunity to set up an IP where the 

solution is no longer the state of the specimen, but rather the values of the parameters that 

define the constitutive model. The goal of solving the IP is to find the optimal values for 

each parameter of the constitutive model employed. Optimality, of course, is defined in 

the sense of minimizing an objective function whose aim is to represent the deviation 

between the experiment and simulation in some quantitative manner. The choice of 

constitutive parameters that minimizes the objective function is recognized as the best 

choice of parameters for the selected constitutive model. This does not guarantee that the 

constitutive model selected is the optimal choice for the material; just that the one 

selected is tuned to its optimal configuration for the given problem, for the given data, 

under the selected objective function.  

The optimal configuration of the selected material model is the solution to the IP. 

In order to find the optimal configuration, this BVP is solved using trial constitutive 

properties, and the results are compared against the experimental measurements. 

Differences between the solution of the BVP and the experimental observations are 

penalized. This process is repeated while changing the trial constitutive properties until 

satisfactory agreement is found between the experiment and solution to the BVP. The 

details of the process allow for a diversity of approaches to solve the IP, where neither 

the solution nor the method to obtaining it is unique. Specifically, there are ample choices 

in selecting the objective function, constitutive model, method of solving the BVP, and 

optimization scheme used for parameter selection. Each choice will alter the final 

solution to the IP, but the former choice is most central to the solution to the IP, while 

each latter choice is less intertwined with the solution of the IP. This work does not focus 

on the details for selecting the best objective function, constitutive model, etc., but rather 
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on establishing the perspective that the IP can be used as a method to guide the collection 

of experimental data and then put it to use in the most efficient manner. 

In order for the IP to guide the material characterization process, first it must be 

decided what constitutive information is being sought by solving the IP (e.g. in this work 

both the stress-strain behavior of the material and information about the material’s 

anisotropy are to be probed). Then feasible experimental measurements that are relevant 

to the desired constitutive properties can be determined, to be used later in the objective 

function for the IP. It has been shown by works such as those by Tardif and Kyriakides 

(2012) and Gross and Ravi-Chandar (2014) that the global structural response is relevant 

to the constitutive information being extracted in this work. However, these past works 

also show that while matching the global structural response is necessary, it is not 

sufficient to capture the material constitutive properties fully; as discrepancies have been 

found between experiments and simulation when the IP uses the global response 

exclusively as a basis for parameter identification. In fact, it is quite intuitive that very 

similar global responses can be formed from different local fields; simply stated, 

optimization based on global structural response is under-constrained. Thus, it is 

proposed that matching the local deformation fields in addition to the global structural 

response will result in additional constraints and thereby enable better characterization of 

the material behavior. The local deformation field is selected to evaluate the fitness of 

any candidate set of parameters for the selected material model not only because error in 

this field has already been observed, but also because the full field surface deformation 

can be obtained easily and inexpensively through the use of digital image correlation 

(DIC).  

It should be emphasized that the value of the local displacement measurements 

are highest during processes of inhomogeneous deformation. Such deformations provide 



 174 

the most economical path toward comprehensive constitutive characterization because 

numerous stress-states can be sampled in a few test configurations, thus lowering the cost 

of an experimental program. However, the impression should not be taken that this 

approach is a replacement for experimental results; rather, it is a systematic method to 

maximize and use every relevant piece of experimental data. Then, due to the increased 

efficiency of each experiment, a lesser quantity of experiments is necessary to collect the 

same amount, if not even more information about the material behavior. The exact 

formulation of the IP will be discussed in Section 5.6 after describing the experimental 

program. 

 

5.3 EXPERIMENT 

The material used in this work is 15-5 precipitation hardened stainless steel taken 

from a nominally 3.175 mm thick sheet produced by AK Steel (West Chester, Ohio). 

Dog-bone shaped tensile test specimens were fabricated using wire EDM and were 

subsequently heat treated to the H-1075 condition4. The dimensions are shown in Figure 

5.2. The cross section of the specimen was chosen to be square so as to minimize the 

influence of geometric asymmetries on the deformation. This feature is essential, as it 

allows for a near optimal observation of the anisotropic mechanical behavior of the plate 

without geometrically constraining the strain development. While a circular cross section 

is the optimal geometry for such an observation in the sense that natural anisotropy will 

be revealed through the tests, the fabrication of such a specimen from a thin sheet is far 

more labor intensive and potentially fraught with errors arising from the machining 

process. Regardless, the goal here is clear; the tensile test that provides the most insight 

                                                 
4 The authors would like to thank Dr. B.L. Boyce of Sandia National labs for performing 

the heat treatment. 
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into the material properties is performed in preference to conventional tests that further 

convolute this information into the structural response. Once the best possible 

characterization of the material is performed, this information can be used with the 

greatest level of success in any structural configuration. 

The tension test was performed at a quasi-static nominal strain rate of 2×10-4 s-1 in 

an electromechanical load frame (Instron Model 5582). The flared ends of the specimen 

were gripped in self-tightening mechanical wedge grips. The tensile direction is parallel 

to the rolling direction of the sheet. The gauge section of the specimen is cut with a small 

curvature so that there is a gradual reduction of cross sectional area going from the 

shoulders of the specimen to the center5. The center cross section is reduced by about 

0.8% from the cross section near the shoulder. This geometry provides an imperfection 

that does not cause any sharp gradients, and is also simple to model in the BVP. The 

applied load was monitored with a load cell with a range of 100 kN and a resolution of 

4.8 N. According to the manufacturer specifications, the uncertainty in load is 28 N. In 

addition to the measurement of the cross-head motion, the strain over a one inch gauge 

length was measured with an extensometer belonging to the ISO 9513 0.5 classification. 

While these are the typical global measurements obtained in most tensile tests, here a 3D-

DIC scheme was used to provide additional displacement and strain measurements. A 

stereo imaging system was positioned such that two adjacent surfaces of the specimen 

were visible to each camera, providing surface measurements on one face that lies in the 

plane of the sheet, and another that spans the thickness of the sheet (hereafter referred to 

as the front and side surfaces, respectively), as indicated schematically in Figure 5.2 by 

the shaded regions. An ARAMIS 3D-DIC system was used in obtaining the images; 

                                                 
5  Similar specimens have been used by other researchers: see Tardiff and Kyriakides, 

(2012) and Boyce et al. (2014) for recent examples of such use. 
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pictures with a frame size of 1624 by 1236 pixels and a resolution of 12.3 μm/pixel were 

obtained at specified time increments and synchronized with the corresponding global 

measurements of the load, cross-head displacement, and gage strain. These images were 

processed using the ARAMIS 3D-DIC software with a sub-image size of 20 by 20 pixels 

and a step of 5 pixels to obtain the deformation over the field of interest with an 

uncertainty of 1 µm, and strains to within 2000 µε over a 125 µm gauge length. 

Deformation history is tracked at over 12000 points, with a spatial resolution of 63 µm 

between observations. In addition, the average strain over a 20 mm gage length was 

estimated from the DIC measurements and used instead of the mechanical extensometer 

measurements. While DIC has been used in recent years (for example, in 2D by Kajberg 

and Lindkvist, 2004, and in 3D by Coorman et al. 2008), the key innovation introduced in 

the measurement presented here over those in the literature is that the 3D deformation 

data are acquired simultaneously over two planes that were initially orthogonal to each 

other, aligned along directions of rolling symmetry. This additional surface data permits a 

partial evaluation of the plastic anisotropy in the material. 

Figure 5.3 shows the global response of the tensile specimen plotted as the 

variation of the nominal stress vs the gage strain and exhibits features that are typically 

observed in tension tests. The initial elastic response is followed by a sharp knee as the 

specimen yields; the early portion of the plastic response developed a very small load 

drop after a nominal strain of about 0.9%, indicative of a possible instability, but was 

quickly followed by a hardening response until a nominal strain of 7.6%. This 

corresponds to the Considère strain for this material, and indicates the onset of necking. 

The nominal stress begins to drop beyond this point as the neck continues to grow and 

eventual failure of the specimen occurred at a nominal strain of 17%. The modulus of 

elasticity was calculated from the initial elastic response to be 196 GPa, and the 0.2% 
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offset yield stress was determined to be 1.1 GPa. The nonuniformity of the strain field 

was revealed clearly through the 3D-DIC images and is explored further here. Contour 

plots of the maximum true (logarithmic) principal strain field  1 x  on the front and side 

surfaces are shown in Figure 5.4, corresponding to selected nominal strain levels 

indicated in Figure 5.3. Similar data are available for the strain field  2 x  on the front 

surface and  3 x  on the side surface, but are not shown for the sake of brevity. As can 

be seen from these images, the strain field develops heterogeneously in the specimen, 

right after the onset of yielding, but this is quite a mild heterogeneity. The local load 

maximum at a nominal strain level of 
1 ~ 0.0093 does not seem to be related to Lüder’s 

bands, as can be inferred from the diffuse development of the strain between both ends of 

the specimen; this nonuniformity is likely due to imperfections in the specimen 

dimensions, alignment of the specimen or other geometric features. Presumably, the 

initiation site of this heterogeneity lies close to the stress concentration located near the 

specimen’s shoulder or where one of the extensometer clips is located, but these locations 

were outside the camera’s field of view, and thus the nucleation of heterogeneity could 

not be identified. The heterogeneous strain field persists until necking begins, 

consequently the strain field never returns to a homogeneous state after the elastic 

regime. The neck occurs within the field of view of the cameras and occurs 

approximately 8 mm away from the point of minimum cross section, likely due to the 

presence of a machining or material defect at this location. The nucleation point of the 

neck does not coincide with the nucleation point of the heterogeneity that directly 

followed the elastic regime. Beyond the Considère strain, the development of large 

deformations inside the neck is clearly identified by the 3D-DIC measurements; the peak 

strains approaching unity are observed at the deepest point in the necked region. The data 

set corresponding to the displacement and strain fields on the front and side surfaces of 
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the specimen at numerous nominal strain increments in the plastic region constitutes the 

primary additional information that is to be used in the optimization scheme for the 

identification of material response; this is developed further in the next section. However, 

the kinematic data are already rich enough to provide additional insight into the material 

behavior as indicated below. 

A direct analysis of the experimental results shows evidence of the material 

anisotropy. Figure 5.5a shows a contour map of the maximum true (logarithmic) principal 

strain field  1 x  just prior to rupture in the region of the neck. Note that a logarithmic 

strain of nearly one has been measured at the center of the neck at this stage. The small 

black and red dots indicate locations along the midline of each surface; the variations of 

longitudinal and transverse strains along these lines are plotted in Figure 5.5b at seven 

different states throughout the test. It can be observed that the spatial variation of 

longitudinal strain 𝜀11(𝑥) is nearly identical on both surfaces of the specimen for the 

entire duration of the test while more transverse strain 𝜀33(𝑥) accumulates on the side 

surface than the transverse strain 𝜀22(𝑥) on the front surface. This is not only a clear 

evidence of the anisotropy of the plastic response, but also a direct quantitative 

measurement of this anisotropy.  

The stress state on the surface of the specimen, in the deepest part of the neck 

(identified by the two large black dots in Figure 5.5a) is approximately in uniaxial tension 

throughout the entirety of the test. Therefore, results from these points can provide 

information about a uniaxial stress state up to high levels of strain (approaching a 

logarithmic strain of 1.0). Figure 5.6 shows a slightly nonlinear variation that is observed 

by plotting the transverse strains at the deepest part of the neck on both the front and side 

surfaces against the longitudinal strains at the same location. The nonlinearity is clear 

evidence of evolving plastic anisotropy of the material under these loading conditions. 
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Significant texture changes must occur at this location during the test, as grains become 

highly elongated in the direction of the applied load. However, it appears that this texture 

change does not greatly influence the ratio of transverse strains; a plot of the transverse 

strains 
22  vs 

33  at the deepest point of the neck is found to be nearly linear as shown in 

Figure 5.7. The slope of the best fit line provides one of Lankford’s parameters: 

𝑑𝜀22 𝑑𝜀33⁄ = 0.895 even to levels of strain beyond which the parameter is typically 

investigated. But performing the same linear fit to strain data averaged over the entire 

surface prior to necking, or even for the same two points from Figure 5.7 prior to 

necking, gives Lankford’s parameter to be 0.958 and 0.940 respectively. The differences 

between these measurements could be caused from the state of stress at the deepest part 

of the neck being only approximately uniaxial, the heterogeneous deformation prior to 

necking, or because Lankford’s parameter evolves with deformation. In order to explore 

this behavior further, additional, higher resolution measurements are necessary. 

Aleksandrovic et al. (2009) performed such measurements with contact methods (limiting 

the investigation to pre-necking strain levels) and found that Lankford’s parameter 

evolves, even at small levels of strain. Such a resolution has not been pursued in the 

current work, as the goal here is to characterize anisotropy indirectly and up to large 

strain levels. The information gathered from DIC provides a useful range in which to 

search for the Lankford parameter, which will be treated as a constant to simplify the 

modeling effort in the IP. If the perspective that Lankford’s parameter is well described 

as a constant is taken, then it can be concluded that the retexturing of the material from a 

uniaxial stress path causes changes to the plastic anisotropy that are near to being 

transversely symmetric.  
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5.4 MATERIAL MODEL 

Implementation of the inverse method for identification of the material response 

requires the specification of an appropriate constitutive model, with the goal of the 

inverse problem being the estimation of the optimal set of parameters for the selected 

constitutive model. Because the optimization process will provide the best-fit parameters 

for any constitutive model, the selection of an appropriate constitutive model requires 

knowledge of the specific material, its deformation mechanisms, and the appropriate 

constitutive framework in which the material is to be modeled. For the case of ductile 

metals, we note that some authors have used a strain-softening model, such as the 

Gurson-Tvergaard-Needleman model, to capture the load drop that occurs beyond the 

Considère strain under uniaxial loading conditions in ductile materials (see for example 

Fratini et al, 1996; Bernauer and Brocks, 2002). However, the necking deformation that 

occurs at the Considère strain is a structural instability that appears even in the absence of 

material softening; micrographic examination of the material in the vicinity of the neck 

obtained from interrupted tests as well as the failed specimens provide sufficient evidence 

of the absence of damage in the necked region to equivalent true plastic strain levels of 

around unity (see for example Tardif and Kyriakides, 2012; Ghahremaninezhad and 

Ravi-Chandar, 2012). Therefore, in this work, we model the elastic-plastic deformation 

of the 15-5 PH stainless steel as an elasto-plastic strain-hardening solid without damage; 

damage will eventually occur resulting in final failure of the specimen, but at strain levels 

beyond those considered in this work. . 

The plastic response is modeled by the flow theory with isotropic hardening; the 

Hill (1948) yield criterion with an associated flow rule is used, as it provides a suitable 

representation of the yield surface and is assumed to be capable of modeling the primary 

anisotropic features of 15-5 PH stainless steel. This criterion is written as follows: 
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Two additional assumptions are applied to the above criterion: first, we set 1G H  ; 

this assumption provides scaling for all of the material constants by fixing the equivalent 

plastic stress at yield to be equal to the stress that causes yield from the single tensile test 

analyzed in this work. The second assumption sets all of the shear coefficients to be equal 

to their isotropic values, 1L M N   .5. Since these shear stresses are nearly 

nonexistent in the tension test, it is not possible to estimate their influence on yielding 

simply from the uniaxial tension test. A test with different geometry is required in order 

to obtain a calibration of these parameters. This leaves two degrees of freedom in the 

yield criterion, and thus two parameters that must be obtained through the IP.  

In order to model the stress-strain curve, a rather non-traditional model is used. 

Conventionally, the stress-strain curve is modeled through some functional form; for 

example, the Ramberg-Osgood model, Swift model, Voce model, etc. are used to capture 

power law, exponential dependence, etc. However, it is clear from the nominal stress-

strain curve for the 15-5 PH stainless steel, that the true stress-strain relation prior to the 

necking strain (recall that the deformation prior to the Considère point is heterogeneous 

for this material so direct observation of the behavior is not possible and representation 

by the form for the stress-strain relation is required) is more complicated than can be 

produced by these typical models. Additionally, it is quite possible that the stress-strain 

behavior cannot be adequately characterized as a single power law over the large strain 

range investigated here. Even further, while functional forms of the above type are useful 

in obtaining analytical solutions, they pose no particular advantage when computational 

simulations are to be performed; any representation meeting suitable continuity 

requirements can be used. In addition to being sufficiently smooth, whichever form is 
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used should obey a couple of well-known physically-based rules regarding the strain 

hardening of metals that have been obtained from extensive studies of plastic flow: 1) the 

stress strain curve should be monotonically increasing and 2) the tangent modulus of the 

curve should decrease monotonically with increasing strain in the high strain regime (for 

materials where slip is the only mechanism for plastic flow). For the 15-5 PH stainless 

steel, it is postulated that the instability directly following the elastic regime is structural, 

not material; therefore the stress-strain representation is restricted to be of strictly 

monotonically increasing type for the entire strain range, however the tangent modulus 

will be allowed to increase in the small plastic strain range.  

Prior to selecting a form for the stress-strain relation, it is useful to examine what 

qualities are desirable in its representation. First and foremost, the representation must 

obey the two rules set out above, but any additional constraints beyond these two rules 

degrade the attractiveness of a candidate representation. For example, linear hardening 

satisfies both of the requirements, but is not a strong candidate because it imposes the 

extra and unphysical constraint that the tangent modulus is constant. Similarly, the 

conventional stress-strain representations impose unphysical constraints that influence the 

solution of the IP. During the optimization process, it is not the role of the stress-strain 

representation to limit the variety amongst the trial stress-strain curves. The 

representation should allow freedom for the optimization scheme to drive the stress-strain 

curve to a shape that minimizes the objective function, constrained only by the two 

criteria above. An example of a representation that does not impose additional constraints 

is a tabular definition with numerous entries. However, this is undesirable as well 

because the IP will have equally numerous parameters that must be optimized, making it 

too expensive to be solved.  
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To balance freedom of the representation with the number of parameters required, 

splines are a strong candidate. An arbitrary amount of flexibility can be included through 

the inclusion of additional knot points, yet a stress-strain curve can be well represented 

with generous spacing between knot points. Specifically, monotonically increasing 

splines are attractive since they satisfy the first rule mentioned above if the knot points 

are monotonically increasing, and typically satisfy the second rule if the slopes of lines 

connecting subsequent knot points are monotonically decreasing. A few options exist in 

this family, and the monotone preserving spline developed by du Preez and Maré (2013) 

is selected over the more classical example by Fristch and Carlson (1980) due to its 

ability to produce a more varied set of curves with a fixed number of knot points. This 

capability is important in the current work because the number of knot points and their 

abscissa (strain) values are chosen a priori, and different curves are created by selecting 

different ordinate (stress) values at the knot points. Using a more flexible spline makes 

the optimized stress strain curve less dependent on the number of knot points and the 

particular values chosen for their abscissa. However, since the final curve is still 

dependent on these two factors, care was taken to select points that were predicted to be 

near segments of the stress strain curve where changes in curvature occur most rapidly. 

There is a single parameter to be found by the IP for each knot point, so striving for the 

minimal number of knot points that can provide a good representation of the real stress-

strain curve is of practical importance. Based on a prediction of what the optimized 

stress-strain relation may be, the monotone preserving spline (with the number of knot 

points, 7pN  ) of du Preez and Maré (2013) was chosen to represent the stress-strain 

curve for 15-5 PH. The fixed strain levels of the spline points, as well as the optimized 

stress level (found from solving the IP) at each point are shown in Table 5.1. The 

representation takes the form: 



 184 

      2 3

1

1
i i i i i i i i ia b c d         


          (5.3) 

where ,  1,2,i pi N   are the prescribed strain levels at the knot points, and the four 

constants 
ia , 

ib , 
ic , and 

id , need to be determined for each segment of the spline ( 4 4n  

unknowns). Of these, 3 4n  equations for these constants are produced by enforcing that 

the spline passes through the knot points and that the spline is C1 continuous. The final n 

equations needed to uniquely define the spline are produced by estimating the slope at the 

knot points to be equal to that of a quadratic that passes through each knot point and its 

neighbor on either side; the end point slopes are estimated by setting the second 

derivative to be zero. Further details, including explicit formulas for this representation 

are given by du Preez and Maré (2013). It should be mentioned that the monotone 

preserving spline does not directly guarantee a monotonically increasing stress strain 

curve, only that the product of stress and strain is monotonically increasing. This feature 

stems from the original purpose for which the curve was intended, i.e. prediction of bond 

yield curves, where stress and strain are replaced by spot rate of interest and time, 

respectively, and the monotonically increasing product of the two guarantees that no 

arbitrage opportunities exist. In order to guarantee that a curve in which the product of 

stress and strain is monotonically increasing with strain would translate to a stress-strain 

curve that has the same property, the strain values were given a large shift (here 109 was 

used) when calculating the stress. Then the shift was removed from the strains so that the 

curve fell on the proper domain, starting from zero strain. In total, nine material 

parameters are to be found; two to describe anisotropy and another seven for the stress-

strain relation. 
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5.5 NUMERICAL SIMULATION OF THE BVP 

As indicated earlier, it is unimportant what method is used to solve the BVP for 

use in the IP, as long as the method is sufficiently accurate. From a practical standpoint 

the faster the BVP can be solved the better, particularly because it will need to be solved 

repeatedly. It is for this reason that several different solution methods for the BVP have 

been pursued by other investigators when solving the IP, many of these methods putting 

an emphasis on low computational cost. Nevertheless, for the problem at hand—as well 

as many others of interest—heterogeneous 3D fields with finite deformations prevail, and 

nonlinear, incremental constitutive models are required. To handle these factors, 

sufficiently accurate solutions of the BVP could only be obtained through numerical 

methods. Here, the commercial finite element code ABAQUS has been used to obtain the 

solutions. The model used in this work takes advantage of the three-fold symmetry of the 

tensile test, so only one eighth of the tensile specimen is modeled. The mesh 

discretization is shown in Figure 5.8; 5,800 elements (21,417 DOF) with linear shape 

functions and full integration (element C3D8) are used, with a refined mesh in the region 

where necking occurs. The smallest mesh dimension in the undeformed configuration is 

76 µm, the volume of such elements corresponding to the volume of approximately 

25,000 grains of the material being modeled. The problem is solved using 

Abaqus/Standard and each solution takes approximately 255 seconds to solve on a 

workstation with four cores.  
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5.5 OPTIMIZATION 

5.5.1 Comparison between experiment and simulation  

The combination of observing the deformation field in the experiment and using 

FEM to solve the BVP allows many options for comparison between the two. The first 

step in making an informed comparison is recognizing which of the experimental results 

will be best for comparison, and then committing to leave them unaltered through the 

comparison process. It is obvious that the net load carried by the specimen should be used 

for comparison and is a straightforward quantity to compare between experiment and 

simulation. In contrast, there are many choices for the deformation measurements, the 

first of which is selecting the region of the specimen over which the error will be 

quantified. In the tensile test, only the region of necking continues to accumulate strain 

past the Considère point. Consequently, this is the only region of the specimen that will 

provide new information about the material’s behavior after the onset of necking. Thus, 

only the necking region has been chosen as the area of interrogation for the deformation 

field. Additionally, there are several methods of how the simulated deformation field can 

be compared to the experimental, which in its most pure form is captured by the raw 

images. However, these images are not convenient for analyzing the deformation so they 

are processed with DIC to measure the experimental displacement field. This field, which 

is the direct output produced from correlating the images, is usually manipulated to 

estimate the strain field (there are many different approaches to calculate the strain field 

from the displacement).  

It is between these three choices – the raw images, the displacement field, and the 

strain field –that we must compare the experimental results to the FEM results. Of course, 

some combination of all three may be chosen, and it is likely that each comparison is 

superior over the others for certain stages along the optimization process. For example, 
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image comparison will likely result in nearly random error values if the FEM results 

deviate from the observations by more than the period size of the speckle pattern. 

However, once the FEM displacement field’s error reduces to subpixel values, image 

comparison will allow for the use of the experimental field with minimal error (since 

there will be no error from DIC or strain field approximation, only the measurement and 

simulation error will remain). For simplicity, this work is restricted to use only one of 

these methods for comparison. The displacement field is selected because the errors are 

quite low (a fraction of the pixel size), yet there is no difficulty in making systematic 

comparisons even when the FEM results greatly deviate from the experimental 

observations.  

 

5.5.2 Avoidance of spatial bias in the displacement error 

The use of the displacement field in the objective function presents some 

challenges for creating an objective function that are not present if the strain field is used 

instead. Rigid motion originating from frame and specimen compliance contributes to the 

displacement field and must be accounted for. It is also appropriate to account for 

misalignments normal to the direction of the load line (which also modifies the stress 

state by causing a small amount of bending); however, inclusion of this motion destroys 

the symmetry of the problem at hand. To preserve the symmetry, the misalignments and 

associated bending were neglected, justified by the fact that the measured transverse 

motions were about two orders of magnitude smaller than the longitudinal motion. 

Accounting for rigid motion along the load line is handled by specifying that the center of 

the neck remains at the same longitudinal coordinate value across all stages of 

deformation. As a result, the coordinate system is not fixed in space, but rather translates 
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with the longitudinal position of the neck, both in the experiment and simulation. Rigid 

body motion causing lateral displacements are accounted for at each deformation state by 

fitting a plane to a patch outside the necking region on each of the two surfaces observed. 

Based on the axial strain variation on these patches, a normal vector (side normal is the y-

direction, front normal is the z-direction) for each surface in the unstrained state is found 

with the current rigid body rotations. The cross product of the two normal vectors gives 

the x-direction vector for the specimen in the current state. Transverse translations are 

made by shifting the location of each fit plane to a location calculated from the expected 

Poisson contraction and the reference position of the plane. The coordinate system is 

constructed the same way for both the experiment and FE results to provide spatial 

synchronization. 

An additional hurdle to jump when using the displacement field is the prescription 

of how the displacement discrepancies between simulation and experiment should 

contribute to the objective function. The choice of features for synchronization (in this 

case, the center of the neck and the centerline of the specimen) influences the magnitude 

of deviation in displacement at each point being interrogated. For example, by definition, 

the x-component of displacement error is zero at the center of the neck for both the 

experiment and simulations, and error stack-up will cause larger deviations at points 

further from the neck. A good objective function should minimize the bias caused by 

error stack-up. An advantage of making strain comparisons between the experiment and 

model is that error stack-up does not occur, thus the strain based objective function 

eliminates this contribution to spatial bias. A careful selection of the error measure is 

needed when comparing displacement fields in order to minimize this bias.  
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5.5.3 The objective function 

The simplest and most common objective function that has been used in the 

literature considers matching the global response; here, the objective function is written 

as follows6: 

exp sim
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where 
tN  is the number of deformation states (nominal strain levels) at which the 

experimentally measured force, exp

iF  is to be compared with the force sim

iF  calculated 

from the numerical simulation. From here on, we will refer to the results obtained from 

optimizing the above objective function as the load-optimized result and the function 

itself as the displacement-blind objective function. In the present work, the objective 

function is augmented and given in terms of a combination of the global force as well as 

the displacement field obtained from the 3D-DIC measurements:  
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where 
tN  is the number of deformation states (nominal strain levels) observed and 

nN  is 

the number of points at which both the experimental and numerical results were 

compared, hereafter called interrogation points. Typically, we set ~ 600tN  and 

~170nN , although many more potential interrogation points were available both in the 

experiment and simulation. Only points within the most active region of the neck were 

                                                 
6 It is common to use the square root of the sum of squared error (L2 norm), with the 

underlying assumption that the errors are from random fluctuations in the experimental 

quantities and therefore could be idealized as Gaussian distributed. Here, systematic 

errors in the numerical solution dominate the random experimental fluctuations so we 

have taken the absolute value (L1 norm) for the error. While the L2 norm is dominated by 

large errors, the L1 norm accumulates all errors uniformly.  
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included. The weights for the load error, 
Fiw , were all set to unity. The weights for the 

displacement error, 
.j kw , were produced by examining the level of equivalent plastic 

strain observed in the experiment at each interrogation point and at all levels of 

deformation. The observations were then sorted into approximately 100 bins covering the 

range of strains observed. Each weight is then produced by taking the inverse of the 

population of the bin to which its strain observation belongs. This method of weighting is 

used to make sure that the objective function has equal weight from each level of strain. 

This is advantageous over weighting each observation equally, because then the strain 

levels that are most common will dominate the objective function, and the relatively few 

observations at high strain levels will be suppressed. For every loading state, each 

component of the displacement error is normalized by its own component of the 

experimentally measured displacement. Then the error of these three components of 

displacement are summed over all the interrogation points. Counting the displacement 

error of each component individually rather than using the Euclidian distance error at 

each point provides the objective function greater sensitivity to the parameters that model 

anisotropy. Otherwise, the much larger longitudinal displacements easily overwhelm the 

smaller transverse ones, causing them to have little influence on the objective function. 

The choice of normalization in Eq.(5.5) combats spatial error (Velay et al. 2007), most 

easily demonstrated by considering the value of the objective function when a 

homogeneous strain field is observed in the experiment and the simulation predicts a 

homogenous strain field of different magnitude. Every interrogation point in Eq.(5.5) will 

have an identical contribution to the objective function, regardless of where spatial 

synchronization occurs. If the displacements were not normalized by some measure of 

the local deformation field, then a strong spatial bias would be present in the objective 

function. Choosing a different point for synchronization would produce a different value 
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for the function. In fact, for this example the displacement error measure from Eq.(5.5) is 

identical to that of a strain error; if strain were considered as the primary field for 

comparison, the objective function would be written as: 

exp sim exp sim
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This strain based objective function is not used because the experimentally calculated 

strain field has larger errors than the displacement field. This is a result of differentiating 

the displacements to compute the strain field and the large strain gradients present in 

necking deformation. Strain based comparisons are not attractive if the gradients are not 

likely to be resolved well by the gauge length used for strain computation. From here on, 

we will refer to the results obtained from optimizing the objective function in Eq.(5.5) as 

the displacement-optimized result and the function itself as the displacement-aware 

objective function. The results presented in Section 5.7 compare the use of the objective 

function in Eq.(5.5) with the objective function that does not consider the deformation 

field given in Eq.(5.4). A more in depth investigation of objective function selection is 

recognized as being vital to understanding the best way to solve the IP, but is not pursued 

here. It is also important to consider the sensitivity of these error measures, and to 

explore the choice of experimental input on model calibration, but the latter topic is not 

considered here. 

 

5.5.4 Selection of parameters 

Due to the computational expense of performing each simulation, it is not feasible 

to construct a well sampled hypersurface of the objective function. Therefore, solution of 

the IP requires a robust method to alter the constitutive properties of the model from one 
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iteration to the next. Fortunately, from the perspective of parameter selection, the IP is a 

simple constrained minimization problem. A number of linear constraints are set between 

the parameters that define the stress strain relation in order to enforce its monotonicity as 

well as decreasing tangent modulus, and also bounds on the anisotropy parameters are set 

to prevent them from deviating far from the range that is expected from direct analysis of 

the experimental observation. There have been numerous optimization methods 

developed for this class of problems. Here the genetic algorithm (implemented in 

MATLAB as gamultiobj for multi-objective optimization or ga for single) is selected due 

to its efficiency in highly non-linear, global optimization problems with large parameter 

spaces. 

The optimization procedure is started by creating a random pool of trial material 

models with at least 500 members that satisfy the bounds and constraints. From this pool, 

effort is made to select the 50 members that best span the parameter space to use as the 

initial population for the genetic algorithm. Subsequently 600 function evaluations 

(spanning 12 generations) were performed seeking optimization of the Pareto front (the 

set of solutions for the parameters) in order to produce a refined initial population for the 

global minimization problem. The objective functions were decomposed by breaking 

apart the function in Eq.(5.5) into three different contributions for each knot point of the 

spline used to represent the stress-strain curve, as shown below:  
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where, 
fN  and 

sN  are the number of interrogation points on the front and side surfaces, 

respectively. The intervals 
,t sN  for subdividing the number of deformation states are 

chosen by estimating the deformation state where the minimum cross section inside the 

neck is dominated by strains that exceed 
s , the value of the strain corresponding to sth 

knot point with zero indicating the reference state. Separating the single objective 

function of Eq.(5.5) in this way allows the effect of changing each individual model 

parameter to be analyzed more independently. Complete decoupling of the parameters 

cannot be achieved due to the history dependence of plastic deformations and relationship 

between the deformation field (which determines the area of the minimum cross section) 

and the net load carried by the specimen. The deformation error on the two surfaces are 

kept separate from each other in case the errors in the transverse components of the 

deformation field on a single surface are more sensitive to one of the two anisotropy 

parameters.  

Once the multi-objective optimization is complete, the 50 members of the Pareto 

front with the lowest values for Eq.(5.7) are then used as the initial population for finding 

the global minimum using the genetic algorithm. The global optimization was allowed to 

run for 850 function evaluations (spanning 17 generations). Figure 5.9 show the 

progression of the objective function value for the best member of each subsequent 

population. To probe whether the global minimum has been found, the same process used 

to create the initial population for the multi-objective optimization was performed with 

more restrictive bounds on the parameters, centered on the optimal parameter set just 

found. This time the random initial population was fed straight into the global 

optimization and allowed to run for another 850 function evaluations. The displacement-

optimized solution achieved a lower objective function value than found when seeded 

with the Pareto front. However, the load-optimized results did not achieve a lower 



 194 

objective function value. To see if the objective function could be lowered further, 

MATLAB’s pattern search algorithm was used with the best result found from the 

previous optimization runs. This final optimization run was successful in lowering the 

load-optimized objective function value by an additional 11%, however the lowest 

displacement-optimized objective function value was barely improved upon, dropping by 

less than one percent.  

For optimization with each objective function, about a week of continuous 

running on a computer with four cores was spent on the four optimization runs described 

above. It is important to restate that the goal of this work is not to pursue the most 

efficient optimization method. Due to the high cost of function evaluations, this 

optimization problem appears to be one that could be greatly sped up by the use of 

Bayesian optimization techniques, but no such investigation has been done for this 

problem here.  

 

5.6 RESULTS AND DISCUSSION 

The simulation that minimizes each of the objective functions considered will 

now be compared to the experimental observations. Figure 5.10 shows a comparison of 

the nominal stress strain curve measured in the experiment to that produced by the load- 

and displacement-optimized simulations. Quantitatively, the agreement is excellent with 

a mean relative error of 0.23% and a standard deviation of 0.19% for the load-optimized 

case. The displacement-optimized case also matches well with a mean relative error of 

0.55% and standard deviation of 0.42%. Despite this excellent quantitative agreement, 

some features are not captured as well by these solutions. The small load drop after the 

elastic regime is not present in the load-optimized case; however, it is present in the 
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displacement-optimized case. Also, the simulated Considère point occurs at a strain of 

8.9% and 9.2% in the load- and displacement-optimized cases respectively, instead of the 

experimentally measured 7.6%.  

Looking at the errors in the displacement field, Figure 5.11 shows the magnitude 

of the displacement error vector for the load-optimized case color mapped onto the 

experimentally measured surfaces just before rupture. The error is relatively uniform 

across both the front and side faces of the neck with a mean of about 42 μm and a 

standard deviation of about 4.3 μm. Figure 5.12 shows the same information for the 

displacement-optimized case; note that the color scale is now magnified to indicate the 

error values since they are significantly smaller. The error shows substantial variation at a 

couple of locations with a mean of about 16 μm and a standard deviation of about 3.3 μm. 

In order to track the accumulation of error with loading, the spatio-temporal variation of 

the displacement error is shown in Figures 5.13 and 5.14 for the load-optimized and 

displacement-optimized cases. The variation of displacement error on a line that runs 

near the midline of the front surface (
2 3~ 0, / 2x x h ) is computed for every level of 

deformation and assembled to create a contour plot where the abscissa corresponds to the 

spatial location, the ordinate to time step (equivalently to the nominal strain) and the 

color indicates the displacement error on a scale indicated by the color bar. The 

displacement error tends to increase with deformation, while showing strong spatial 

uniformity. The maximum displacement error occurs shortly before rupture and has a 

value of just over 54 μm for the load-optimized case while it has a value of just over 29 

μm for the displacement-optimized case.  

In order to compare these results to previous investigations (Tardif and 

Kyriakides, 2012; and Gross and Ravi-Chandar, 2014), a comparison of the necked shape 

is considered in Figures 5.15 and 5.16. Although the profiles used in the previous 
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investigations were obtained through edge-tracing methods, the 3D measurements in the 

present work enable a comparison along the specimen mid-plane; therefore, the plots 

correspond to a plot of  3 1,0, / 2u x h  (front surface) and  3 1, / 2,0u x h  (side surface). It 

is found that the load-optimized solution produces a necked profile that does not deviate 

far (no more than 39 μm) from the experimental surface on either surface. The 

displacement-optimized case deviates even less, with 26 μm and 14 μm of deviation on 

the front and side surfaces respectively at the location of peak strain. A side-by-side 

video of the strain distribution in the displacement-optimized simulation and experiment 

can be found as Supplementary Material SM9 for this dissertation. Additionally, videos 

showing the spatial distribution of error over time on both surfaces for the displacement- 

and load-optimized cases are also included as SM10 and SM11, respectively. 

The results of the optimization process provide a calibration of the material stress-

strain curve; these results are now examined quantitatively. It should be noted that the 

results of the optimization process require interpretation/judgment to determine their 

applicability. In other words, the optimization process provides the best fit model that is 

sensitive to the objective function and the task of determining which objective function is 

appropriate to the model examined is not addressed in this process. We approach this 

through a comparison of the results obtained from displacement-blind and displacement-

aware objective functions. In exchange for a slightly higher error in the nominal stress 

strain curve than the load-optimized model carries (0.55% instead of 0.23%), the 

displacements are tracked to a much better accuracy in the displacement-optimized 

model. The mean Euclidean displacement error just before rupture for the load-optimized 

model over the region shown in Figure 5.11 is ~ 6.1%. The displacement-optimized 

model lowers this error to ~ 2.3%, while the nominal stress-strain error remains small. 

Despite equal weighting in the displacement-aware objective function (Eq.(5.5)), the 
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displacement-optimized model carries a larger error in the displacement field than it does 

in the nominal stress-strain curve. It is possible that unequal weighting in the objective 

function could be advantageous, but this has not been investigated in this study. To get 

another perspective on how the two models stack up against each other, the load-

optimized case produces a displacement-aware objective function value that is ~15% 

higher than the displacement-optimized model, indicating a measure of the combined 

load and displacement error. The displacement-optimized model also fares better in 

comparison to experimental necked geometry (Figures 5.15 and 5.16), however there is 

still some room for improvement. Nonetheless, the evidence suggests that use of the 

displacement-aware objective function does in fact provide better matching of the 

experimental observations by the optimized simulation. 

The effect of considering displacements in the objective function can be seen in 

the resulting behavior for the material derived from the optimization process. The true-

stress vs true (logarithmic) plastic strain corresponding to load and displacement 

optimized cases are shown in Figure 5.17. The parameters of the spline fit that 

corresponds to the best fit in either case are shown in Table 5.1. The first thing to note is 

that, although these correspond to the same experimental result, the extracted stress-strain 

curves are quite different. The largest difference between the stress-strain curves for both 

objective functions comes out at logarithmic plastic strains in excess of 0.25. At and 

above this level of strain the tangent modulus for the displacement-optimized model is 

less than that for the load-optimized model. At a logarithmic plastic strain of 0.5 the load-

optimized model exhibits a tangent modulus that is about 25% greater than the 

displacement-optimized model. Although this difference may not appear to provide a 

drastically different looking strain hardening curve, it does have an important effect on 

localization behavior. Localization will occur at lesser levels of deformation in the 
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displacement-optimized model than the load-optimized. In practice, this result is 

particularly important because the displacement-optimized strain hardening behavior is 

more conservative than the load-optimized. Since the same material model has been used 

in the same set of simulations, this difference in the stress-strain curve is completely due 

to the formulation of the objective function. We contrast this with the stress-strain curve 

for a nominally similar material that was extracted by Gross and Ravi-Chandar (2014) 

who used a power-law hardening model (see Figure 5.2 of Gross and Ravi-Chandar, 

2014), and therefore fewer degrees of freedom; the true stress vs true strain variation 

obtained in that work was quantitatively and qualitatively different from the result in the 

present work because of the differences in the material model. In addition to material 

model dependence, one could make a conjecture that using a strain-based objective 

function as in Eq.(5.7) might result in yet another stress-strain curve. Discrimination 

between these different results can be achieved only through additional considerations of 

the suitability of these objective functions (and material models) themselves. For the 

present purposes, we can satisfy ourselves by considering that the displacement-

optimized result has captured more elements of the measured response correctly with the 

chosen material model.  

In addition to more compliant strain hardening behavior, the displacement-

optimized model provides significantly different results for the parameters defining 

anisotropy. The Lankford parameter identified by the load-optimized and displacement-

optimized cases are 0.945 and 0.917, respectively. Figure 5.18a shows the sensitivity of 

the load-optimized objective function to changes in the Lankford parameter and the ratio 

of long transverse to longitudinal yield stresses. This objective function proves to be 

insensitive to the Lankford parameter – as it should be since we are only matching the 

overall load and the axial displacement without influence from the specific partition of 
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the transverse strains – making it clear that the value for the Lankford parameter selected 

to minimize this objective function cannot be trusted. Although the load-optimized 

objective function is sensitive to the ratio of yield stresses, sensitivity to a parameter is 

necessary but not sufficient to having found a meaningful value for it. As seen in Figure 

5.18b, the displacement-optimized objective function is sensitive to both the Lankford 

parameter and the ratio of yield stresses; this is a result of driving the displacements on 

two mutually orthogonal surfaces to match the experimental measurements. Importantly, 

this projection of the objective function has a single, well defined minimum point that 

appears to be reasonable for the material investigated.  

The displacement-optimized case can be further investigated by examining how 

the strain accumulation compares to that observed in the experiment. Figure 5.19 shows 

the variation of transverse strain with longitudinal strain measured at the deepest part of 

the neck for both the experiment and the displacement-optimized simulation. The 

simulated curves match the experimental data quite well. Such correlation suggests that 

the anisotropy evolves very weakly for this material when subjected to a nearly uniaxial 

stress-path, and that most of the nonlinearity in this plot is due to evolution in the stress-

path. The load-optimized result has not been included in this comparison, as it has 

already been shown that this case is not capable to determine the anisotropy.  

It should be noted that we have considered the problem of constitutive model 

extraction from a single experiment. There are three major considerations associated with 

this process. First, the choice of specimen geometry and loading has restricted the range 

of stress states that could be examined in this test. As a single test, the tensile test studied 

here is actually ill-suited for the purpose of determining the complete constitutive 

behavior, as it only explores a small region of stress space, albeit to high levels of strain. 

The tensile test may be much more useful if the IP is solved while considering several 
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experimental results simultaneously, spanning tensile, compressive, shear, and combined 

stress states. For both experimental and computational efficiency, it is likely that a 

carefully chosen geometry that deforms to span a large swath of the stress space up to 

high levels of strain is the best choice for the IP. Then, a multiobjective optimization 

process can be performed for extraction of the constitutive response, where the objective 

function aims to match all experimental results simultaneously. This will permit spanning 

a greater portion of the stress space; such generalization is a straightforward extension of 

the procedure utilized in the present work and poses no new challenges in principle, other 

than the size of the computational effort required.  

Second, validation experiments that are distinct from the set of experiments used 

to calibrate the model are needed in order to corroborate both the strain hardening and 

anisotropic behavior found from the IP. The nature of the optimization process produces 

a material model that best fits the BVP of the IP, not necessarily a BVP of engineering 

interest. For this reason there is great importance to carefully select the BVP for the IP to 

be one that causes the material model to be well-suited for a broad set of problems. 

However, validation experiments that consider different stress paths should be examined 

with similar requirements on matching between experiments and simulations, with the 

displacement-aware objective function. The effort undertaken after the Sandia Fracture 

Challenge in 2012 (Gross and Ravi-Chandar, 2014) provides an example of such 

validation. In that work, the stress-strain curve was extracted from a load-optimized 

simulation and then used to predict the response of a structural configuration; fortunately, 

the structural configuration experienced a similar load path as the test configuration and 

the calibration worked reasonably well. However, a broader range of validation 

simulations and experiments are needed in order to affirm the suitability of the IP pursued 

in the present work.  
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Finally, although we have performed a deterministic extraction of the material 

parameters by forcing a fit of the model to the experiment, it is important to consider 

stochastic effects that may arise from multiple sources. First, there is material variability 

that is inevitable due to variations in manufacturing conditions; therefore, fitting to just 

one experiment will not capture the variability in response. Second, there are geometric 

variations that arise from specimen fabrication and mounting procedures; the Sandia 

Fracture Challenge (Boyce et al. 2014) provided a good example of the response being 

significantly different in nominally identical specimens, but simply due to geometric 

variability. Lastly, the desired boundary conditions are imposed through specific 

experimental arrangements and may suffer variability in implementation. Assuming that 

all systematic experimental defects have been eliminated, these stochastic effects 

generally provide for variations in the measured response that must be taken into account 

in formulating and solving the inverse problem. For example, the use of experimentally 

measured boundary conditions in the numerical simulations may provide an even better 

fit to the objective function and greater model efficacy for displacement-optimized 

material models. One pathway towards incorporating such stochastic effects is to 

consider a number of repeat experiments under each loading condition, and to use 

Bayesian inference to identify not only the mean value of the material parameters, but 

also the covariance of each material parameter in the calibration process; the effort 

associated with this is significantly greater, but has the potential to provide appropriate 

material parameter identification.  
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5.7 CONCLUSION 

The problem of material property identification in elastic-plastic materials has 

been investigated. Specifically, an inverse method for constitutive property calibration 

from an experimental data set is described. The input to the inverse problem is the 

behavior of a tensile specimen, characterized either in terms of its load vs elongation 

behavior alone or in combination with the deformation measurements measured by 3D 

DIC on two orthogonal surfaces. The optimization was accomplished based on two 

different formulations: load-optimized, in which just the global load on the specimen at 

different macroscopic extensions of the specimen was matched and displacement-

optimized, in which in addition to the global load, details of the local displacement field 

in the vicinity of the neck was used to generate a displacement-aware objective function. 

The material was modeled using a flow theory of plasticity with isotropic hardening and 

with the Hill (1948) anisotropic yield criterion. The resulting boundary value problem 

was solved using the numerical finite element code ABAQUS/Standard. The 

optimization process was achieved using the genetic algorithm in MATLAB. The 

following are the main conclusions of the work: 

 Both the load-optimized and displacement-optimized cases provide very good 

match between the experimental and simulated nominal stress vs nominal strain 

variation. 

 The error in displacements over the entire field in the vicinity of the neck is 

smaller in the displacement-optimized formulation. 

 The stress-strain curves identified from the two different optimization cases are 

significantly different for equivalent plastic strain levels greater than about 0.25  

 The anisotropy parameter (Lankford parameter) obtained from the two different 

optimization cases was quite different; in the case of the displacement-optimized 
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formulation, this parameter was well constrained directly from the experimental 

measurements of the strains in two orthogonal planes.  

The availability of full-field displacement measurement methods, such as digital image 

correlation method, has now made it possible to pose the problem of material property 

identification in structural materials; the combination of this method with numerical 

solutions methodologies, such as the finite element method, makes for a powerful tool for 

material property identification as illustrated in the present work. Additional effort is 

required to identify an appropriate objective function for the optimization and to handle 

uncertainties arising from fluctuations.  
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Table 5.1: The optimized parameters defining the stress strain curve and plastic 

anisotropy for the load and displacement-optimized cases. Note that there 

were only two degrees of freedom in the anisotropy, however all the 

resulting parameters for the yield criterion and the Lankford parameter are 

listed for completeness.  

Load-Optimized   Displacement-Optimized 

Strain 
Stress 

GPa  
Anisotropy 

 
Strain 

Stress 

GPa  
Anisotropy 

0.003 1.069 

 

r 0.9450 

 

0.003 1.071 

 

r 0.9170 

0.008 1.082 

 

F 0.8662 

 

0.008 1.088 

 

F 0.6750 

0.02 1.098 

 

G 0.5141 

 

0.02 1.101 

 

G 0.5216 

0.1 1.205 

 

H 0.4859 

 

0.1 1.210 

 

H 0.4784 

0.2 1.260 

    

0.2 1.259 

   0.45 1.352 

    

0.45 1.330 

   1.3 1.608 

    

1.3 1.563 
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Figure 5.1:  A generic boundary value problem indicating the region of observation for 

acquiring additional kinematic measurements for use in the inverse problem. 
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Figure 5.2:  (a) Drawing of the tensile specimen with dimensions in mm. Note the small 

curvature over the gauge section and square cross section. (b) Orientation of 

the tensile specimen relative to the natural directions of texture in the sheet. 

This is also the perspective that the specimen is viewed from by the stereo 

imaging system to capture deformation information on two orthogonal 

surfaces. The shaded area is the region observed by the imaging system.  
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Figure 5.3: Nominal stress strain curve for 15-5 PH in the H-1075 condition. Strain was 

measured with a DIC-based extensometer, completely spanning the necked 

region. The first load peak occurs at a strain of about 0.9%, the minimum is 

reached at a strain of about 1.4%, and the onset of necking occurs at a strain 

of about 7.6%. Full field strain contours are shown in Figure 4 at the points 

marked (a)-(d). 
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Figure 5.4: Spatial variation of the maximum true (logarithmic) principal strain field 

 1 x  as measured from 3D-DIC at stages (a) - (d) marked in Figure 3. The 

front surface is the one below the corner and the side surface above. The 

white spaces are where DIC failed to correlate due to proximity to the 

specimen’s corner or local defects in the speckle pattern. No filtering, 

smoothing, or interpolation have been used in calculating the strain field.  

(a) 

(b) 

(c) 

(d) 
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Figure 5.5: (a) Spatial variation of the true (logarithmic) strain field  1 x  as measured 

from 3D DIC just prior to rupture. The maximum true strain measured is 

around one. The small black and red dots indicate locations along the 

midline of each surface where the spatial variation of strain is plotted in 

Figure 5b. The two large black dots are located at the center of necking. At 

these locations the stress state remains approximately uniaxial throughout 

the test. Strain data from these two points are used in Figures 5.6 and 5.7.  
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Figure 5.5: (b) Spatial variation of the longitudinal and transverse strains on both 

surfaces plotted at 30 second intervals for the last three minutes of the test 

(nominal strain values of 0.106, 0.117, 0.129, 0.142, 0.155, and 0.169). The 

longitudinal strains on both surfaces remain nearly identical to one another 

though the duration of the test. Transverse strains accumulate more rapidly 

on the side surface than the front, indicating a lower stiffness in the short 

transverse direction than long transverse.  
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Figure 5.6: Variation of the transverse strain with respect to longitudinal strain at the 

deepest point in the neck on the front and side surfaces. The transverse 

strains develop nonlinearly with continued longitudinal straining, thus 

indicating that the anisotropy maybe evolving throughout the test. Evolution 

appears to be the most rapid around a longitudinal strain of 0.14, where the 

curvature of the lines reaches their maximum magnitude.  
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Figure 5.7: The transverse strains on both surfaces plotted against each other. The 

variation is nearly linear, with the slope of the line providing one of 

Lankford’s parameters as 0.895. When investigated closely, the Lankford 

parameter is not constant; it varies most rapidly at the low strain range and 

then settles to a nearly constant value with increasing strain. This behavior is 

discernable from the measurements taken in this experiment, but the level of 

uncertainty is high to investigate this behavior closely. 
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Figure 5.8: Spatial discretization used for the FE model. Two of the three symmetries 

used are visible. Necking occurs at the symmetry plane on the right, where 

the refined mesh is located. The smallest mesh dimension is 76 µm. 
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Figure 5.9: Objective function value for the best member of each generation throughout 

the global optimization procedure. The curve is flat when a lower value for 

the objective function has not been found from the previous generation. 
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Figure 5.10: Comparison of the nominal stress strain curves produced by both objective 

functions to the experimental observation. Both of the simulated curves 

closely follow the experimental result. 
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Figure 5.11: Spatial distribution of the displacement error for the load optimized material 

just before rupture. The front surface is the lower area and the side surface is 

the upper area. The center of the neck is located at x=0. The region shown is 

not the entire surface, but corresponds to x < 0, y > 0, and z > 0. Error is 

relatively uniform across both surfaces within and beside the necked region. 

  
z P

o
sitio

n
 - m

m
 

μm 



 217 

 

  

Figure 5.12: Spatial distribution of the displacement error for the displacement optimized 

material just before rupture. The front surface is the lower area and the side 

surface is the upper area. The center of the neck is located at x=0. The 

region shown is not the entire surface, but corresponds to x < 0, y > 0, and z 

> 0. Error tends to be lower on the front surface and varies along the axis of 

the specimen. 
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Figure 5.13: Spatial (x-axis) and temporal (y-axis) variation of the displacement error 

along a line near the midline of the front surface for the load optimized 

material. Errors that are relatively spatially uniform increase most rapidly 

during necking. 
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Figure 5.14: Spatial (x-axis) and temporal (y-axis) variation of the displacement error 

along a line near the midline of the front surface for the displacement 

optimized material. Errors that are relatively spatially uniform increase most 

rapidly during necking. 
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Figure 5.15: Out of plane displacement on the midline of the front surface in the necked 

region. Both load and displacement optimized materials show satisfactory 

agreement. 
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Figure 5.16: Out of plane displacement on the midline of the side surface in the necked 

region. The displacement optimized material matches the experimental 

result much closer than the load optimized material does. 
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Figure 5.17: Strain hardening behavior for load and displacement optimized materials. 

The displacement optimized material is more compliant at high strains. The 

tangent modulus of the load optimized material is almost 25% stiffer at a 

(logarithmic) plastic strain of 0.5. 
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Figure 5.18: (a) Sensitivity of the displacement blind objective function to changes in the 

model parameters that define anisotropy. Data was produced using the load 

optimized strain hardening behavior and the values are normalized by the 

minimum. This objective function is not sensitive to changes in Lankford’s 

value. 
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Figure 5.18: (b) Sensitivity of the displacement aware objective function to changes in 

the model parameters that define anisotropy. Data was produced using the 

displacement optimized strain hardening behavior and the values are 

normalized by the minimum. This objective function is sensitive to both 

parameters that define anisotropy. 
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Figure 5.19: Variation of the transverse strain with respect to longitudinal strain at the 

deepest point in the neck on the front and side surfaces. The results from the 

simulation with the displacement-optimized material parameters are overlaid 

on the experimental measurement.  
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Chapter 6: Conclusion 

 

6.1 SUMMARY 

Several aspects related to the prediction of ductile failure have been investigated. 

Specifically, the failure mechanisms in Al 6061-T6 sheet have been investigated in detail 

through loading with in situ SEM imaging, complete predictions of ductile failure have 

been performed to assess where improvements are necessary, and a general method for 

using local deformation data to extract constitutive models from large experimental data 

sets has been developed. The findings from these separate, yet related studies, illuminate 

a consistent picture of the ductile failure process and make clear what is essential and 

what is unnecessary to model ductile failure.  

The in situ testing of Al 6061-T6 unambiguously shows the large strain, in excess 

of 2.5, that can be endured by this material in shear dominated loading. It has been 

demonstrated that the material response is matrix dominated and that strain hardening 

continues unabated, even up to this very high level of strain. The voids initially present in 

the microstructure show little evolution with deformation, and are not found to be 

important for either deformation or failure. The second phase particles are observed to 

crack and debond as a deformation mechanism, as the resulting cavities halt growth once 

compatibility with the matrix deformation is achieved. As a whole, it has been shown that 

no damage mechanisms exist for this material under shear dominated loading. 

The modeling implication gleaned from in situ testing is that continuum damage 

models are unnecessary and are based on mechanisms that do not even exist in some 

materials. Thus, implementation of a simpler class of models, strain-to-failure models, is 

better suited for the prediction of ductile failure. The successful blind prediction of the 
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failure behavior for a novel sample in the first Sandia Fracture Challenge has verified the 

efficacy of strain-to-failure models for this purpose. The effectiveness of these models is 

also supported by the quality of the prediction in the second Sandia Fracture Challenge, 

however, this exercise has also emphasized the need for highly accurate plasticity 

modeling in order to make robust failure predictions. 

In order to reduce the experimental effort required to calibrate a highly accurate 

plasticity model, local field measurements in addition to conventional global 

measurements have been used for inverse plasticity model calibration. The inclusion of 

local deformation data is shown to have a significant effect on model calibration. For 

tensile test data enriched with displacement measurements on two surfaces of the 

specimen, this data is able to constrain an anisotropy model that is insensitive to the 

global measurements alone. 

 

6.2 FUTURE WORK 

The in situ testing of a variety of materials is essential to verify the applicability 

of the conclusions made here for a particular form of aluminum to other alloys of the 

same base metal and different metals altogether. It would be particularly interesting to 

include a material that may exhibit voiding in this study, such as Ti-6Al-4V, to determine 

the conditions that cause void growth and the effect that a dilute void population has on 

the material, although such a phenomenon may only occur in a minority of materials. 

Also, testing with larger specimens, where the deformation gradient is on a far larger 

scale than the microstructure would provide a wealth of quantitative data about the 

mechanisms identified in the current work. Also, the use of X-ray tomography is needed 

to verify whether the mechanisms observed on the surface also occur in the interior.  
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Further opportunities also exist to refine the use of local field data for inverse 

calibration of material models. A study of objective functions is essential to determine the 

characteristics of a function that is optimal for mapping experimental observation to 

constitutive model parameterization. Then, the design and use of a test specimen that can 

span a large swath of the stress space in a single test up to high levels of strain should be 

performed. Such a specimen, or suite of specimens, will decrease the number of 

experiments required to calibrate sophisticated plasticity models. A constitutive model 

calibrated with this reduced experimental program should be validated against a separate 

calibration using the full set of experiments required for direct calibration. 
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