
Copyright

by

Timothy Michael Coffey

2010

The Dissertation Committee for Timothy Michael Coffey
certifies that this is the approved version of the following dissertation:

Non-Dynamical Quantum Trajectories

Committee:

Robert E. Wyatt, Co-Supervisor

William C. Schieve, Co-Supervisor

Herbert L. Berk

Linda E. Reichl

E.C. George Sudarshan

Non-Dynamical Quantum Trajectories

by

Timothy Michael Coffey, B.A.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2010

Non-Dynamical Quantum Trajectories

Publication No.

Timothy Michael Coffey, Ph.D.

The University of Texas at Austin, 2010

Supervisors: Robert E. Wyatt
William C. Schieve

Commonly held opinion is that particle trajectory descriptions are in-

compatible with quantum mechanics. Louis de Broglie (1926) first proposed

a way to include trajectories in quantum mechanics, but the idea was aban-

doned until David Bohm (1952) re-invented and improved the theory. Bohm

interprets the particle trajectories as physically real; for example, an electron

actually is a particle moving on a well defined trajectory with a position and

momentum at all times. By design, Bohm’s trajectories never make predic-

tions that differ from standard quantum mechanics, and their existence cannot

be experimentally verified.

Three new methods to obtain Bohm’s particle trajectories are pre-

sented. The methods are non-dynamical, and utilize none of Bohm’s equations

of motion; in fact, two of the methods have no equations for a particle’s tra-

jectory. Instead, all three methods use only the evolving probability density

ρ = ψ∗ψ to extract the trajectories. The first two methods rest upon proba-

bility conservation and density sampling, while the third method employs the

iv

informational or geometrical construction of centroidal Voronoi tessellations.

In one-dimension all three methods are proved to be equivalent to Bohm’s

particle trajectories. For higher dimensional configuration spaces, the first

two methods can be used in limited situations, but the last method can be

applied in all cases. Typically, the resulting higher dimensional non-dynamical

trajectories are also identical to Bohm.

Together the three methods point to a new interpretation of Bohm’s

particle trajectories, namely, the Bohm trajectories are simply a kinematic

portrayal of the evolution of the probability density. In addition, the new

methods can be used to measure Schrödinger’s wave function and Planck’s

constant.

v

Table of Contents

Abstract iv

Chapter 1. Introduction 1

1.1 Trajectories in Quantum Mechanics 1

1.2 Bohm’s Theory . 7

1.2.1 Overview . 8

1.2.2 Properties . 10

1.2.2.1 de Broglie Connection 11

1.2.2.2 Wave and Particle Relationship 13

1.2.2.3 Trajectory Behavior 13

1.2.2.4 Quantum Potential 14

1.2.3 Objections . 15

1.2.3.1 Ockham’s Razor 16

1.2.3.2 Probability Current Under-determination 17

1.2.3.3 Surreal Trajectories 19

1.2.4 Successes and Applications 21

1.3 Non-Dynamical Quantum Trajectories 25

Chapter 2. Probability Conservation Trajectories 27

2.1 Probability Conservation Trajectory Method 27

2.2 Computing the Trajectories . 31

2.3 Examples . 33

2.3.1 Infinite Square Well (1D) 33

2.3.2 Harmonic Oscillator . 34

2.3.3 Free Particle . 36

2.3.4 Two-Slit Experiment . 36

2.3.5 Infinite Square Well (2D-Separable) 37

2.4 Conclusion . 39

vi

Chapter 3. Density Sampling Trajectories 41

3.1 Density Sampling . 41

3.2 Connection to Bohmian Mechanics 44

3.3 Examples . 45

3.3.1 Infinite Square Well . 45

3.3.2 Harmonic Oscillator . 46

3.3.3 Free Particle . 48

3.3.4 Two-Slit Experiment . 48

3.4 Extension to Higher Dimensions 49

3.4.1 2D Example . 51

3.5 Conclusion . 51

Chapter 4. Centroidal Voronoi Tessellation Trajectories 54

4.1 Density Representation . 55

4.2 Centroidal Voronoi Tessellation Trajectory Method 57

4.3 One-Dimensional Infinite Square Well 59

4.4 Two-Dimensional Examples 61

4.4.1 Free Gaussian Wave Packet 62

4.4.2 Separable Wave Function in an Infinite Square Well . . 63

4.4.3 Non-Separable Wave Function in an Infinite Square Well 65

4.5 CVT Method and Quantum Nodes 66

4.6 Conclusion . 69

Chapter 5. Applications 71

5.1 Interpretation of Bohm Trajectories 72

5.2 Quantum Trajectories for Experiments 75

5.2.1 Wave Function Measurements 78

5.2.1.1 Two-Slit Example 80

5.2.2 Planck’s Constant Measurements 88

5.2.2.1 Gaussian Single Slit Example 88

Chapter 6. Conclusion 91

6.1 Future Work . 93

vii

Appendices 94

Appendix A. Program Listing: Probability Conservation Tra-
jectories for the Infinite Square Well 95

Appendix B. Program Listing: Density Sampling Trajectories
for Harmonic Oscillator 100

Appendix C. Program Listing: Centroidal Voronoi Tessellation
Trajectories for Infinite Square Well (2D) 106

Appendix D. Program Listing: Measuring Wave Function for
Two-Slit Experiment 128

Bibliography 163

Vita 171

viii

Chapter 1

Introduction

The trajectory concept proved to be quite successful in classical physics.

Even to this day Newton’s laws of motion are able to successfully describe and

predict the trajectories of objects in ordinary situations. In the early stages

of quantum mechanics, experiments with electrons challenged the viability of

the trajectory description. Trajectories were abandoned as a successful funda-

mental descriptor of nature as a result of Heisenberg’s uncertainty principle.

In 1952, David Bohm created a new interpretation of quantum mechanics that

duplicated all the predictions of standard quantum mechanics, but maintained

the particle trajectory description. Debate occurred over the physicality of

Bohm’s trajectories, and even though debate still rages on, Bohm’s theory

has proved quite successful in the solution and interpretation of difficult quan-

tum problems. None the less, the true nature of Bohm’s trajectories is still

an open question. In an effort to understand their true physical nature, new

non-dynamical algorithms or methods are created, without any equations of

motion from Bohm’s theory, to generate the Bohm trajectories.

1.1 Trajectories in Quantum Mechanics

The motion of a classical object is not measured continuously but in-

stead is measured at several discrete times. Shown by the dots in Figure 1.1

are the measurements at various times of some object’s position. The motion

1

of the object between the measurements is now assumed to be a smooth tra-

jectory (the dotted line in the figure) which passes near the observed events.

Later this assumption of the object’s trajectory can be experimentally verified

by measuring the object’s motion for times different than those used for the

model.

Time

Position

Figure 1.1: An assumed trajectory (dotted line) for a classical object given
the discrete positional data (dots) collected at various times.

Historically, this method of exploration proved quite successful in de-

scribing the motion of objects in everyday situations. The synthesis of all the

experimental trajectories led to the creation of Newton’s second law of motion,

ma = Fn, (1.1)

where a is the acceleration of the object, with mass m, due to the net force

Fn acting on it. Armed with Newton’s second law one could predict the

trajectory of a classical object given only its mass, the net force, and some

boundary conditions: initial event, initial velocity, etc.

Now suppose one wanted to perform a similar series of experiments with

an electron. One immediate problem is that generally to detect an electron’s

2

position, it must be absorbed into the detector, making later measurements of

its position impossible. Therefore, instead of measuring the initial location of

the electron, it is made to pass through a very small slit (see Figure 1.2), and

then some time later its position is measured on a screen beyond the slit.

electron slit

screen

Figure 1.2: Instead of measuring the electron’s initial position, it is made to
pass through a small single slit. At some time later its position is measured
on a screen beyond the slit.

With a small slit the confidence is high in the initial location of the

electron as it passes through the slit. Between the slit and the screen there

is no classical force, therefore, Newton’s second law predicts that the electron

should follow a uniformly straight trajectory from the slit to the screen. There-

fore, classically the electron should be measured on the screen directly beyond

the slit. If the experiment is repeated many times with identically prepared

electrons passing through the slit, classical mechanics predicts that the elec-

trons are grouped evenly right beyond the slit on the screen (Classical density

in Figure 1.3). When the experiment is actually done, however, the electrons

do not make a sort of inverse-shadow of the slit, but instead are spread out

with some probability density on the screen (Quantum density in Figure 1.3).

Given that an electron has passed through the slit, no exact prediction can be

3

slit

screen
classical
density

quantum
density

Figure 1.3: Each electron passing through the slit impinges upon a different lo-
cation on the screen. Classically all of the electrons would land evenly directly
beyond the slit. Experimentally, though, what is found is that the electrons
form a smoothed out density on the screen that peeks at the location on the
screen just beyond the slit.

made of the position it will land on the detection screen, since experimentally

a smeared out probability density is obtained. If the slit width is altered the

corresponding density pattern changes as well. For a smaller slit, the density

pattern is more spread out, and vice-a-versa. This means that if the slit was

infinitely small the density pattern on the screen would be infinitely spread

out. In the attempt to pin down the initial position of the electron as it passes

through the slit, the ability to predict the later position is completely lost.

It is clear that this result can in no way be reconciled with the

idea that electrons move in paths. . . . In quantum mechanics there

is no such concept as the path of a particle. . . . The fact that an

electron [or particle] has no definite path means that it has also,

in itself, no other dynamical characteristics [except the parameters

of mass and charge]. [46]

This electron slit experiment, though coming after the birth of quantum me-

chanics, exemplifies the need for quantum mechanics. One of the fundamental

4

principles of quantum mechanics is known as the Heisenberg uncertainty prin-

ciple,

∆x∆p ≥ ~

2
. (1.2)

The measured uncertainty of an object’s position, ∆x, implies a corresponding

uncertainty of the object’s simultaneously measured momentum ∆p. Together

these uncertainties cannot become infinity small, and are bounded below by

Planck’s constant ~/2. It is this principle that led many to conclude that the

classical trajectory description is no longer accurate at the quantum level of

nature. In David Bohm’s 1951 quantum book he states,

Since, in classical theory, a knowledge of the initial momentum and

position of every particle is needed before the future orbits can

be determined from the equations of motion, it is clear why this

principle [Heisenberg’s uncertainty principle] implies a quantum-

mechanical limitation on the extent to which the deterministic de-

scription of classical theory can be applied. [10]

Classically, Newton’s second law allowed one to calculate the trajectory

of an object if the initial position and initial momentum are both known

simultaneously. In quantum mechanics the uncertainty principle implies two

possibilities for the descriptors position and momentum. The first possibility

is that the position and momentum of a particle is actually undefined at the

quantum level and hence do not exist, which implies that at the quantum level

the uncertainty is fundamental, and it simply doesn’t make sense to talk about

a particle having a trajectory.

The second possibility is that the position and momentum do in fact

always have definite values, but these values are simply unknown experimen-

tally. The position and momentum would have definite values in reality, but

5

these variables are hidden from experiments, which means that the particle

has a definite trajectory, but it can not be measured. The uncertainty in the

measured position and momentum values comes only from the measurement

interactions during the experiment. Again David Bohm, however, writes,

The idea that a particle has simultaneously well-defined values of

position and momentum, which are uncertain to us, is equivalent

to the assumption of hidden variables . . . that actually determine

what these quantities are at all times, but in a way that, in practice,

we cannot predict or control with complete precision. We shall see

. . . that quantum theory is inconsistent with the assumption of such

hidden variables. [10]

The topic of hidden variables in quantum mechanics is quite extensive

and could fill the pages of an entire book (or many books). In 1932, von Neu-

mann [68] introduced the first argument to demonstrate that hidden variables

were not compatible with quantum mechanics. This proof held for many years

until Bell in 1964 [7] demonstrated that von Neumann’s derivation contained a

wrong assumption. Bell then showed that only a certain kinds of hidden vari-

ables were inconsistent with the predictions of quantum mechanics. Assuming

that the hidden variables were local to the particle, the derived statements

were in direct disagreement with quantum predictions. Thus Bell showed that

local hidden variables were incompatible in quantum mechanics. Bell’s theo-

rem was later confirmed by the experiments of Aspect [3]. Since Bell, several

hidden variable proofs or no-go theorems have been created [43, 51, 34, 6],

but all basically reconfirm Bell’s theorem, that local hidden variables lead to

predictions that conflict with experiment.

With the overwhelming evidence against local hidden variable version

of quantum mechanics, physicists concluded that nature is fundamentally un-

6

certain at the quantum level, and that particles do not move along definite

trajectories. Quantum mechanics can produce an expression, however, that

is quite similar to Newton’s second law. This expression was first derived by

Ehrenfest,

m
d2〈x〉
dt2

= m〈a〉 = 〈F〉 (1.3)

Therefore, Newton’s second law is not an accurate description of each indi-

vidual particle at the quantum level, but is only true statistically through an

ensemble of identically prepared non-interacting particles.

In summary, the argument against a particle trajectory description in

quantum mechanics begins with Heisenberg’s uncertainty principle. Surpris-

ingly, the principle is not sufficient by itself to forbid the trajectories, but with

the combination of the various no-go and local hidden variable theorems has

led many to conclude that the particle trajectory description is not viable in

quantum mechanics.

1.2 Bohm’s Theory

Prior to 1951 David Bohm subscribed to the standard version of quan-

tum mechanics. In fact, his quotes included in the previous section came from

his quantum mechanics book [10]. At that time, he agreed with other physi-

cists that the trajectory description could not be used in quantum mechanics

because of Heisenberg’s uncertainty principle and the various hidden variable

theorems (Bell’s theorems had not been derived yet!). After the publication

of the book, Bohm had a general distaste for the lack of a realism in quantum

mechanics, and in 1952 published two papers creating a trajectory based de-

scription of quantum mechanics [11]. The Bohm trajectories circumvent the

hidden variable theorems by being explicitly non-local. In fact, it was Bohm’s

7

new theory that encouraged Bell to investigate the early hidden variable ar-

guments, and then later show that only local hidden variables are forbidden

in quantum mechanics.

1.2.1 Overview

Bohm’s theory begins with the Schrödinger wave equation,

i~
∂ψ

∂t
= − ~

2

2m
∇2ψ + V ψ. (1.4)

In general the wave function ψ is a complex function in a multi-dimensional

configuration space. A complex function can be written in polar form ψ =

ReiS/~ for real and single-valued functions R and S. Substituting this general

form of the wave function back into Schrödinger’s equation, and into the com-

plex conjugate equation as well, one obtains two expressions that are equivalent

to the original equation. The first is a continuity equation,

∂R2

∂t
+ ∇ ·

(

R2∇S
m

)

= 0, (1.5)

and the second is a quantum Hamilton-Jacobi equation,

∂S

∂t
+

1

2
m

(∇S
m

)2

+ V +Q = 0, (1.6)

where Q is known as the quantum potential,

Q = − ~
2

2m

∇2R

R
. (1.7)

The quantum Hamilton-Jacobi equation is exactly the same as the classical

Hamilton-Jacobi equation with only the addition the quantum potential. Clas-

sically the momentum of a particle is given by p = ∇S. In addition, the term

8

∇S/m in the continuity equation looks like a velocity. Bohm posits, therefore,

that the particle trajectories have a velocity given by the guidance law,

v =
∇S
m

. (1.8)

Defining the total time derivative as d/dt = ∂/∂t + v · ∇, one can derive a

quantum version of Newton’s second law,

m
dv

dt
= −∇V −∇Q = Fclassical + Fquantum, (1.9)

which is true for each individual particle, unlike the situation with Ehrenfest’s

expression in Eq. 1.3.

The expressions above comprise Bohm’s theory, which he summarized

for an electron (though electron could mean any particle) [12]:

1. The electron actually is a particle with a well-defined position

x(t) which varies continuously and is causally determined.

2. This particle is never separate from a new type of quantum

field that fundamentally affects it. The field is given by R

and S or alternatively by ψ = R exp(iS/~). ψ then satisfies

Schrödinger’s equation . . . so that it too changes continuously

and is causally determined.

3. The particle has an equation of motion

m
dv

dt
= −∇(V) −∇(Q).

This means that the forces acting on it are not only the clas-

sical force −∇V , but also the quantum force, −∇Q.

4. The particle momentum is restricted to p = ∇S. Since the

quantum field ψ is single valued it follows (as can easily be

shown) that
∮

p dx = nh.

. . .

9

5. In a statistical ensemble of particles, selected so that all have

the same quantum field ψ, the probability density is P = R2.

. . . if P = R2 holds initially, then the conservation equation

guarantees that it will hold for all time.[12]

Beyond particle trajectories, one of the most fundamental differences

between Bohm’s theory and standard quantum mechanics is the role of prob-

ability. In the widely accepted view of quantum mechanics, probability is a

fundamental, which means a particle behaves probabilistic at the foundation

of its evolution. In Bohm’s theory, however, a particle moves along a specific

trajectory at all times. The probabilities for Bohm are classical in that they

are not fundamental but from the lack of knowledge about the initial positions

of the particles. Bohm’s theory also makes evident or obvious the wholeness

that Bohr [13] referred to when discussing quantum mechanics,

In our interpretation of quantum theory, we see that the interaction

of parts is determined by something that cannot be described solely

in terms of these parts and their preassigned relationships. Rather

it depends on the many-body wave function . . . that refers directly

to the whole system . . . this is the most fundamentally new aspect

of the quantum theory. [12]

1.2.2 Properties

In this section are highlighted several more properties of Bohm’s theory.

In 1927 de Broglie introduced a similar theory, but it remained unrecognized

until 1952 when Bohm re-discovered and improved it. The duality between

wave and particle is non-existent in Bohmian mechanics, and the particle tra-

jectories themselves behave uncommonly due to the non-local action of the

quantum potential.

10

1.2.2.1 de Broglie Connection

Around 1926 de Broglie developed a particle trajectory based quantum

mechanics which he called the Double Solution. At the time the theory had

many mathematical difficulties that de Broglie was still wrestling with, so

when he presented a paper at the 1927 Solvay conference he decided to discuss

a simplified version of his ideas, which he named the pilot-wave theory. At the

conference Pauli criticized de Broglie’s pilot-wave idea by pointing out that

the theory was inconsistent in dimensions greater than one [54]. Then in 1952

Bohm independently rediscovered the mathematics of de Broglie’s pilot-wave

theory, but supplied the necessary interpretation to counter Pauli’s arguments.

The definition of de Broglie’s Double Solution was,

To every continuous solution ψ = aeiϕ/~ of the equation of propa-

gation of Wave Mechanics [Schrödinger’s equation] there must cor-

respond a singularity solution u = feiϕ/~ having the same phase ϕ

of ψ, but with an amplitude f involving a generally mobile singu-

larity [21].

The vision that de Broglie sought was a wave function ψ that was a solu-

tion of Schrödinger’s equation. The wave function, which generally is in a

high-dimensional configuration space, contained a phase ϕ. The phase was

duplicated by a real space function u that contained singularities at the lo-

cations of the moving particles. The particles or singularities would need to

move under the guidance law p = ∇ϕ. When de Broglie spoke at the Solvay

conference he changed the Double Solution to the pilot wave theory, in which

the u field is abandoned, and the particles are simply guided or piloted by the

phase of the wave function through the same guidance law.

11

The notion of a pilot wave that guides the particles through the guid-

ance law p = ∇ϕ, and the subsequent quantum potential, are really the over-

lap between de Broglie and Bohm’s ideas. For de Broglie the wave function ψ

could not be physically real since it generally propagates in a high-dimensional

configuration space,

It [Schrödinger’s wave] must be merely a fictitious wave function

of subjective character, capable only of giving us information of a

statistical order about the various possible motions of the parti-

cles. . . [21]

On the other hand, Bohm considers the wave function ψ as physically real.

From one of Bohm’s adherents,

. . . we ascribe to configuration space as much physical reality as we

do to three-dimensional Euclidean space . . . [41]

And from Bell,

In the literature one usually finds references to the de Broglie-Bohm

theory in an effort to give credit to both men for their contributions. But

beyond the commonality of the guidance law and the idea of a pilot wave

guiding the particles, the two approaches are different. The Double Solution

theory of de Broglie has never successfully been extended to account for many

body systems, while Bohm’s interpretation easily deals with many body sys-

tems. In these respects it might be a mistake to refer to Bohm’s theory by de

Broglie-Bohm.

12

1.2.2.2 Wave and Particle Relationship

In Bohm’s theory the wave-particle duality of standard quantum me-

chanics is replaced by neither a particle only description nor a wave only

description, but rather a particle and wave description. An individual phys-

ical system is made of two parts, a point particle that evolves according to

Eqs. 1.8 and 1.9, and a wave ψ which is a solution of Schrödinger’s equation.

The wave ψ is taken to be physically real even though it generally evolves in

a multi-dimensional configuration space. In Bohm’s picture, ψ only informs

the particle where it needs to move itself, which is strikingly contrary to a

classical wave in which the wave imparts energy and momentum to a particle

being influenced by the wave, and vice versa. But the Bohm particle doesn’t

have influence on the guiding ψ wave, since Schrödinger’s wave equation is

sourceless.

1.2.2.3 Trajectory Behavior

Bohm’s trajectories are similar to classical trajectories in only two as-

pects: 1) they are deterministic, and 2) they avoid nodes (regions of zero

probability). All other behavior of Bohm’s trajectories are generally non-

classical. Bohm’s trajectories do not cross while they evolve in configuration

space, which is typically not true of classical trajectories. Classically a free

particle moves in a uniformly straight line according to Newton’s second law.

But in Bohm’s theory the free particle is being influenced by the quantum po-

tential, which might not be zero, so a free particle will not move in a uniformly

straight line.

One of the more interesting behaviors of the Bohm trajectories is for a

stationary wave function. If the wave function can be written as ψ = f(x)eig(t)

13

for arbitrary functions f and g, then the Bohm particle is at rest! For example,

the ground state of a hydrogen atom has a stationary wave function, and hence

the electron will be at rest. This seemingly strange behavior is dismissed by

Bohm since he states that the particle only has an intrinsic position that

changes in time, and not an intrinsic momentum. The momentum that we

measure for the particle actually comes from the measurement interaction,

. . . the momentum is not . . . an intrinsic property. This will be true

for all properties other than the position. [12]

Therefore, the particle does not have an intrinsic energy as well, and energy

is not conserved along a Bohm trajectory.

1.2.2.4 Quantum Potential

The quantum potential is not a potential in the classical sense. A

classical potential typically depends on the location of the particle (and maybe

perhaps its velocity) and are time-independent, that is they are a pre-assigned

function of particle positions. At each moment the particle at a particular

place feels a certain force given by the gradient of the classical potential. The

quantum potential, on the other hand, depends on the entire ensemble through

the state of the guiding wave function. Therefore, it is not guaranteed that

the force a particle feels at some location will be the same the next time it is

at that location since the quantum potential is depends on the evolving wave

function.

A more striking difference about the quantum potential is that it is

independent of the intensity or strength of the guiding wave. Multiplying ψ

by an arbitrary constant leads to exactly the same quantum potential due to

14

the fact that the wave amplitude is on both sides of the fraction in Eq. 1.7.

So unlike an object being influenced by a classical wave, Bohm’s quantum

particle feels a force that is independent of the strength or amplitude of the

wave. Therefore, one concludes that the quantum force is not mechanical in

nature, and hence it does not conserve mechanical energy or momentum.

The most important characteristic about the quantum potential is that

it brings quantum non-locality and non-separability explicitly to the forefront.

Suppose a system is comprised of two particles. Using the Schrödinger equa-

tion for a two body system, and again writing ψ = ReiS/~ one gets that the

quantum potential in this case is,

Q = − ~
2

2m

(∇2
1 + ∇2

2)R

R
, (1.10)

with subscripts 1 and 2 referring to each body in the system. We see here

that even if the classical potential vanishes at large distances, the quantum

potential generally does not. Therefore, even at very large distances the two

bodies are still non-locally being influenced by each through the guiding ψ

wave. If one of these bodies were a measuring apparatus, then it is obvious

the measuring process interacts with the other body and what is measured

depends on the contextuality, or environment, of the observed body.

1.2.3 Objections

Over the years Bohm’s trajectory based version of quantum mechanics

has weathered many objections. Passon’s paper [53] provides a good account

of the objections and the responses by Bohm supporters. In Table 1.1 is a list

of the objections discussed in Passon’s paper. Below are summarized several

of these arguments that are relevant to the discussion herein.

15

Past Objections to Bohm’s Theory
• Meta-theoretic debate
• Ockham’s Razor
• Asymmetry
• Return to classical ideas
• Departure from established principles
• Under-determination of probability current
• Quantum equilibrium hypothesis
• Theory immanent debate
• Surreal trajectory objection
• Non-locality and relativistic generalization
• Cannot be extended to quantum field theory

Table 1.1: A list of past objections that have been used against Bohm’s par-
ticle trajectory based theory of quantum mechanics. A complete summary of
these objections and their responses is provided in O. Passon, Why isn’t every
physicist a Bohmian?, arXiv:quant-ph/0412119v2 (2005).

1.2.3.1 Ockham’s Razor

Ockham’s razor states that if two theories make the same predictions,

then the theory that utilizes less assumptions (i.e. is simpler) should be the

preferred theory. Bohm’s theory, by design, makes the same predictions as

standard non-relativistic quantum mechanics, yet it assumes the further con-

struct of particle trajectories. Hence, Bohm’s theory should not be the pre-

ferred theory and should be discarded. The following quote from Weinberg

summarizes this sentiment,

. . . Bohm’s quantum mechanics uses the same formalism as ordi-

nary quantum mechanics, including a wave function that satisfies

the Schrödinger equation, but adds an extra element, the particle

trajectory. The predictions of the theory are the same as for ordi-

nary quantum mechanics, so there seems little point in the extra

16

complication, except to satisfy some a priori ideas about what a

physical theory should be like. [70]

However, even though Bohm’s theory makes the same predictions as

standard quantum mechanics, and barring the additional construct of particle

trajectories, the two theories are actually different. In Bohmian mechanics

the notion of quantum measurement is totally dispensed with. A particle

(or a pointer) is measured at some location because simply that is where the

particle (pointer) was prior to the measurement; there was no collapse of the

wave function. More importantly, in standard quantum mechanics probability

is taken as fundamental, that is, nature is fundamentally probabilistic. But

Bohm’s theory introduces probability into quantum mechanics in a classical

way. For Bohm the quantum mechanical probabilities are classical, due to the

lack of knowledge of the initial starting positions of the ensemble of particles.

This important distinction between Bohm’s theory and standard quantum

mechanics leads one to conclude that the two theories in fact are not entirely

the same with just particle trajectories added on. Thus invoking Ockham’s

razor is not a valid objection against Bohm’s theory.

1.2.3.2 Probability Current Under-determination

From Schrödinger’s wave equation one can derive a continuity equation

∂ρ

∂t
+ ∇ · j = 0, (1.11)

where j = ~

2mi
(ψ∇ψ∗ − ψ∗∇ψ). This definition though is under-determined.

That is one could add a divergence-less gauge to the probability current

j → j + ja such that ∇ · ja = 0, and the gauged current will still satisfy

the required continuity equation. Therefore, it is unclear what the definition

17

of the probability current should be. The Bohm trajectories are equally under-

determined, since the Bohm trajectories are defined v = j

ρ
. There is an infinite

number of possible definitions of the Bohm velocity field, each one satisfying

the predictions of standard quantum mechanics. There has been several pa-

pers written to argue that the gauge freedom is not allowed. Holland used the

non-relativistic limit of the Dirac equation to show that for spin-1
2

particles the

guidance law is that of Bohm, but with an added spin dependent term [40]. A

few years later a similar proof was done for spin-0 and spin-1 particles [66].

In one dimension though we can begin with Schrödinger’s wave equa-

tion,

i~
∂ψ

∂t
= − ~

2

2m

∂2ψ

∂x2
+ V (x)ψ, (1.12)

and the similar expression for the complex conjugate,

−i~∂ψ
∗

∂t
= − ~

2

2m

∂2ψ∗

∂x2
+ V (x)ψ∗. (1.13)

Multiply the first expression by ψ∗, the second expression by ψ, and then

subtract the second from the first,

i~

(

ψ∗∂ψ

∂t
+ ψ

∂ψ∗

∂t

)

= − ~
2

2m

(

ψ∗∂
2ψ

∂x2
− ψ

∂2ψ∗

∂x2

)

. (1.14)

Writing the complex wave functions in polar form, ψ(x, t) = R(x, t)eiS(x,t)/~

for real functions R and S, and recognizing that ρ(x, t) = R(x, t)2 = ψ∗ψ, we

get that,

−∂ρ
∂t

=
∂ρ

∂x

∂S

m∂x
+ ρ

∂2S

m∂x2
. (1.15)

Notice, that the right hand side of this continuity equation is not written

as ∂j/∂x where j = ρ∂S/m∂x—this would have introduced an ambiguity or

under-determinedness of the probability current since there is no unique anti-

derivative. A generic one-dimensional continuity equation with velocity field

18

v is,
∂ρ

∂t
+

∂

∂x
(ρv) = 0, (1.16)

which can be solved for v,

v = −1

ρ

∫ x

−∞

∂ρ

∂t
dx. (1.17)

Substituting Eq. 1.15 into this expression and performing an integration by

parts with the boundary condition that the density ρ is zero at infinity leads

to,

v =
∂S

m∂x
= vBohm, (1.18)

by Eq. 1.8. Therefore, in one dimension the trajectories that satisfy the con-

tinuity equation are in fact the Bohm trajectories, and they are unique. Men-

tioned above were several arguments that showed that in higher dimensions

as well that the Bohm guidance law is correct and, in general, unique.

1.2.3.3 Surreal Trajectories

An interesting approach to challenge Bohm’s particle trajectory de-

scription in quantum mechanics was based upon presenting examples in which

the Bohm trajectories appear to behave unphysically. For example, the two-

slit experiment has the Bohm trajectories shown in Figure 1.5. The two slits

are on the left side of the figure, and the Bohm trajectories depict the familiar

bright-dark pattern on the screen located on the right of the figure. One im-

mediately notices that particles from each slit are trapped by the horizontal

line running down between the middle of the two slits. That is a detection on

the top side of the screen is from a particle that went through the top slit, and

likewise for the bottom side of the screen. Now suppose that single atom de-

tectors are placed on each slit. The familiar bright-dark pattern on the screen

19

is lost due to the interaction with the atom detectors. In this situation the

Bohm trajectories still are trapped on either side of the horizontal line between

the slits, so every time a particle is detected on the top half of the screen the

particle must have come from the top slit—similarly for the bottom half. But

this is at odds with what might be recorded experimentally [28, 29, 25, 64],

since half of the detections on the top half of the screen will have come from

the bottom slit as known by the atom detectors at the slits.

Other examples of supposedly surrealistic Bohm trajectories involve

protective measurements [2, 1]. It was shown that during the measurement

the Bohm particles participate in the local interaction of the measurement

though they might not be in the local region of the interaction. Again it

was suggested that the Bohm trajectories can not be an accurate depiction of

reality,

Therefore we can hardly avoid the conclusion that the formally in-

troduced Bohm trajectories are just mathematical constructs with

no relation to the actual motion of the particle. [1]

These examples and the surreal objection are simply dismissed by real-

izing that one can not a priori judge the Bohm trajectories. The fact remains

that the Bohm trajectories do what they have to do in order to maintain the

predictions of standard quantum mechanics [38]. If they behave in such a way

that is contrary to our classical prejudices then it is us that must move beyond

our preconceived notions!

These predictions are exactly the same as those obtained from

standard quantum mechanics. There are no observable differences

between standard quantum mechanics and the Bohm approach nor

20

can there be simply because the Bohm approach uses the same

wave functions and the same formalism as is used in the usual

approach and therefore both approaches must end up with exactly

the same probabilities. [37]

1.2.4 Successes and Applications

Despite the various objections raised against Bohm’s particle trajec-

tory description of quantum mechanics, it has had many successes and appli-

cations. Research has been pursued along two lines, referred to as the analytic

and synthetic approaches. The analytic approach works from a solution of

Schrödinger’s wave equation to compute the Bohm trajectories with the aim

of gleaning additional insight into quantum phenomena. The synthetic ap-

proach, however, aims to solve the time-dependent Schrödinger’s wave equa-

tion by utilizing the Bohm trajectories as a computational platform.

Numerous examples have been done using the analytic approach. Be-

ginning with simple diffraction, barrier tunneling, interference problems, to

more complex problems of the Einstein-Podolsky-Rosen experiment (see Hol-

land [41]). More modern examples include decoherence [61], atom surface

diffraction [62], the Talbot effect [63], and vortices in semiconductor devices [5].

The most celebrated example, however, is still the analytic approach

for the two-slit experiment. The calculation was first done by Philippidis et

al. in 1979 [56] for two Gaussian slits. In Figure 1.4 the quantum potential for

the two slits is shown. The figure is from the detection screen back towards

the slits, which are the small peaks on either side of the central peaks. The

quantum potential forces the particles from the tiny troughs onto the plateaus,

thus making the familiar bright dark pattern of the two slit experiment. In

standard quantum mechanics one can not discuss a particle going through one

21

Figure 1.4: The quantum potential for a two Gaussian slit experiment as
viewed from the detection screen back towards the slits. The two slits are the
small peaks on the left and right side of the central peaks. The particles are
forced from the small troughs onto the plateaus making the familiar bright
dark pattern. From Philippidis et al., Il Nuovo Cimento, 52 B (1979), 15.

slit or the other. In fact, one must say that the particle went through both

slits! Bohm’s trajectory description, however, shows (see Figure 1.5) that a

particle always goes through one slit or the other (on the left of the figure).

The ensemble of particles passing through the slits builds up the well known

intensity pattern on the detection screen located on the right side of the figure.

Unlike the analytic approach, the synthetic approach does not solve

Schrödinger’s wave equation first to find Bohm’s trajectories. Instead, the

22

Figure 1.5: The Bohm trajectories for a two Gaussian slit experiment. The
slits are located on the left side of the figure. On the right side of the figure
one recognizes the well known bright-dark bands. From Philippidis et al., Il
Nuovo Cimento, 52 B (1979), 15.

wave function is computed in step with Bohm trajectories. The most common

synthetic approach is the quantum trajectory method (QTM) [49, 72]. Here

Schrödinger’s wave equation is replaced by either one of two sets of three

equations. The first set is referred to as the force version and include,

dρ

dt
= −ρ∇ · v (1.19)

m
dv

dt
= −∇V −∇Q (1.20)

dS

dt
= L(t) =

1

2
mv · v − (V +Q). (1.21)

23

The second set of three is called the potential energy version,

dρ

dt
= −ρ∇ · v (1.22)

dS

dt
= L(t) =

1

2
mv · v − (V +Q) (1.23)

dx

dt
= v =

1

m
∇S. (1.24)

Either version begins with an ensemble of particles located at what are known

as launch points. From these launch points the Bohm trajectories are de-

rived in conjunction with the density ρ and wave function phase S along the

trajectories. The wave function along the trajectories x(t) is given by,

ψ(x, t) = exp

[

−1

2

∫ t

t0

(∇ · v)x(τ) dτ

]

exp

[

i

~

∫ t

t0

L(τ) dτ

]

ψ(x0, t0). (1.25)

QTM solves the time-dependent Schrödinger equation on a set of grid

points that are along the Bohm trajectories. This feature makes for an efficient

scheme since the Bohm trajectories follow the main features of the evolution of

the probability density [72]. An extreme example of the power of the synthetic

approach calculated the trajectories and wave function for a multi-dimensional

system with 200 vibrational modes, which was then used to calculate the time-

dependent reaction probabilities [4].

Whether or not Bohm’s particle trajectory description of quantum me-

chanics is an accurate depiction of nature, the theory does arm one with addi-

tional language and new computational tools in order to understand quantum

phenomena, which in itself should warrant its study. But despite the many

successes and applications of Bohm’s trajectory description, the theory still is

quite un-popular in the scientific community since the question of the physi-

cality of the trajectories still remains open.

24

1.3 Non-Dynamical Quantum Trajectories

Bohm’s particle trajectory description of quantum mechanics is a dy-

namical theory since there are equations of motion that describe the causes of

how the trajectories evolve (Eqs. 1.5, 1.6, 1.7, 1.8, 1.9). What follows in the rest

of this dissertation is an approach to understand more about the true nature

of Bohm’s trajectories. The following chapters demonstrate that numerous

particle trajectory descriptions, other than Bohm’s theory, can be created to

still be consistent with the predictions of standard quantum mechanics. These

other models need only to satisfy three requirements:

1. The particles trajectories must not cross in configuration space.

2. The density of particle trajectories must be equal to the probability

density of quantum mechanics, ψ∗ψ.

3. The particle trajectories must be conserved since in non-relativistic quan-

tum mechanics there is no particle creation or annihilation.

In order to understand Bohm’s trajectories our alternative particle de-

scriptions were developed to also abide by the following: 1) each model did not

solve any dynamical equations of motion (contrary to Bohm’s theory), and 2)

that the model’s trajectories were identical to Bohm’s trajectories. Further,

all models created utilized only the probability density ψ∗ψ, since this is the

only experimentally verifiable quantity in quantum mechanics,

. . . in physics the only observations we must consider are position

observations, if only the positions of instrument pointers. It is a

great merit of the de Broglie-Bohm picture to force us to consider

this fact. [8]

25

The main motivation for these additional restrictions was to address the ques-

tion of the true nature of Bohm trajectories. An added benefit of these new

methods of computing the Bohm trajectories allows one to experimentally

determine Schrödinger’s wave function (amplitude and phase), and Planck’s

constant.

In Chapter 2, the first method is discussed which utilizes a probability

conservation statement [17] in order to generate the Bohm trajectories. This

approach is shown to be identical to Bohm in one dimension, and in higher

dimensions for separable wave functions. The next method based on density

sampling [18] appears in Chapter 3, and employs no equations at all. The

sampling method works in the same domain as the probability conservation

method, and is shown to be a consequence of the first method. In Chapter 4

a final approach is described, which again uses no equations of motion, but

appears to yield Bohm trajectories for many higher-dimensional separable and

non-separable wave functions. This last method constructs the quantum tra-

jectories by chaining together centroidal Voronoi tessellations (CVT) done at

different times [19]. The ramifications to interpretation of the Bohm trajecto-

ries, and applications of these methods are discussed in Chapter 5. Finally in

Chapter 6 a short summary and discussion of future work is provided.

26

Chapter 2

Probability Conservation Trajectories

Using only the probability density ρ = ψ∗ψ, trajectories can be defined

by requiring that the each particle conserves total left (or right) probability1.

Brandt et al. [15] first proposed this idea and described it as quantile motion.

They argued that the quantile trajectories are identical to the Bohm trajecto-

ries, which while true in one dimension, their proof in higher dimensions failed

to account for the gauge freedom in the definition of the quantum probability

current. Their argument is refined to show that the method only works for

one dimension, and in higher dimensions if the wave function can be written

as a simple product of wave functions for each coordinate, in other words a

separable wave function. Demonstrated are several numerical examples, which

includes a two-slit experiment.

2.1 Probability Conservation Trajectory Method

Brandt et al. [15, 14] show quantum trajectories can be constructed by

simply requiring that the total right (or left) probability is conserved for any

particular trajectory,

Q =

∫ +∞

xQ(t)

ρ(x, t) dx = constant, (2.1)

1Adapted from T.M. Coffey, R.E. Wyatt, and Wm.C. Schieve, Uniqueness of Bohmian

Mechanics, and Solutions From Probability Conservation, arXiv:quant-ph:0710.4099v1

27

or for the total left probability (noting that P +Q = 1 for all time),

P =

∫ xP (t)

−∞
ρ(x, t) dx = constant. (2.2)

The total left probability is also known as the cumulative probability func-

tion(CPF) for the probability density ρ(x, t). The CPF is one-to-one and

monotonically increasing. At each time, there is only one xP that satisfies

Eq. (2.2) for a constant value of P . Therefore, there is a unique trajectory

such that the total left probability is conserved for all time. Given that P is

constant,
dP

dt
=

∫ xP (t)

−∞

∂ρ

∂t
dx+ ρ(xP , t)ẋP = 0. (2.3)

Where it’s assumed that the density is zero at the lower boundary. This is

solved for the unique velocity field for trajectories that conserve total left

probability,

ẋP = − 1

ρ(xP , t)

∫ xP (t)

−∞

∂ρ

∂t
dx. (2.4)

The discussion has been quite general so far and Eq. (2.4) is the defini-

tion for trajectories given any density ρ(x, t), whether it be quantum or not. To

apply the quantile trajectories to quantum mechanics, Eq. (1.15) is inserted

into Eq. (2.4),

ẋP =
1

ρ(xP , t)

∫ xP (t)

−∞

(

∂ρ

∂x

∂S

m∂x
+ ρ

∂2S

m∂x2

)

dx, (2.5)

and an integration by parts of the integrand’s second term (again assuming

that the density is zero at the lower boundary) gives,

ẋP =
∂S

m∂x
, (2.6)

28

which is the one-dimensional Bohm velocity field Eq. (1.8). The unique one-

dimensional quantile trajectories—those that conserved total left (or right)

probability—are in fact the Bohm trajectories in quantum mechanics.

The extension of the quantile motion into higher dimensions was also

discussed in Brandt et al. [15]. They showed that instead of the total left

(or right) probability being conserved in one dimension, that in higher di-

mensions the probability is conserved inside a volume enclosed by a surface

of Bohmian trajectories. This property, however, is not unique to Bohmian

mechanics. Any velocity field ẋ will conserve the probability inside a volume

in configuration space since [72],

dρ

dt
= −ρ∇ · ẋ and

dJ

dt
= +J∇ · ẋ, (2.7)

where ρ is the probability density and J is the Jacobian that describes the

volume changes dV (t) = JdV0. The probability inside this evolving volume is,

Pin =

∫

ρ dV (t) =

∫

ρJ dV0, (2.8)

which implies that dPin/dt = 0. Any velocity field ẋ, therefore, will conserve

total probability inside a volume enclosed by a surface of trajectories following

ẋ. This is in contrast to what was found for the one-dimensional case above,

where there was a unique velocity field that satisfied the total left (or right)

probability conservation.

However, the quantile motion concept can be used to generate trajec-

tories in higher dimensions if the marginal distribution for each coordinate is

used, which is analogous to the CPF in one dimension. Suppose the system can

be described by N Cartesian coordinates, then the corresponding definition of

Eq. (2.2) is,

Pi =

∫ xi(t)

−∞
ρi(xi, t) dxi for i = 1, 2, . . . , N, (2.9)

29

where ρi(xi, t) is the marginal distribution for the i-th coordinate. It’s assumed

that the particles are conserved so,

∂ρ

∂t
+

N
∑

i=1

∂

∂xi
(ρẋi) = 0. (2.10)

Partially integrating the continuity equation yields,
∫ +∞

−∞
..

∫ xi(t)

−∞
..

∫ +∞

−∞

∂ρ

∂t
dx1 . . . dxN

+

N
∑

j=1

∫ +∞

−∞
..

∫ xi(t)

−∞
..

∫ +∞

−∞

∂(ρẋj)

∂xj
dx1 . . . dxN = 0. (2.11)

Interchanging the partial derivative with respect to time and performing the

±∞ integrations, and again assuming that the density is zero at ±∞, only

the j = i integrals on the second term survive,
∫ xi(t)

−∞

∂ρi

∂t
dxi

+

∫ +∞

−∞
..

∫ +∞

−∞
ρẋi dx1 . . . dx6=i . . . dxN = 0. (2.12)

Then with the expression above, and differentiating Eq. (2.9) with respect to

time,
dPi

dt
= ρiẋi −

∫ +∞

−∞
..

∫ +∞

−∞
ρẋi dx1 . . . dx6=i . . . dxN . (2.13)

Hence, the i-th coordinate, in general, doesn’t conserve total left probability

of the marginal distribution since ẋi could depend on the other coordinates.

Suppose, however, that ẋi = ẋi(xi, t) (i.e. the motion along the i-th coordinate

is independent), then dPi/dt = 0, and the total left probability is conserved

for the marginal distribution ρi.

In higher-dimensional Bohmian problems the guidance law Eq. (1.8)

for the i-th coordinate becomes,

ẋi =
1

m

∂S(x1, x2, . . . , xN ; t)

∂xi
. (2.14)

30

If the wave function is separable, then,

ψ = ψ1(x1, t)ψ2(x2, t) · · ·ψN(xN , t). (2.15)

The probability density is also separable, ρ = ρ1(x1, t)ρ2(x2, t) . . . ρN(xN , t),

and the phase becomes S = S1(x1, t)+S2(x2, t)+· · ·+SN(xN , t), which implies

that ẋi = (1/m)∂Si(xi, t)/∂xi. The velocity field for the i-th coordinate,

therefore, is independent of the other coordinates for all i = 1, 2, . . . , N . Hence,

the one-dimensional total left (or right) probability conservation method can

be used independently for each coordinate, to generate higher-dimensional

Bohmian trajectories for a separable wave function.

2.2 Computing the Trajectories

The quantum probability density ρ = ψ∗ψ is assumed to be known,

and none of Bohm’s equations of motion are used in the calculation. From

Eq. (2.2) the total left probability is solved for xP (t) for each trajectory for

constant values of P . Solving for xP (t) is known as the inverse CPF and can

not, in general, be solved in closed form, and must be solved numerically.

A possible first approach to numerically solve the inverse CPF might

be to find the root of or minimize,

∫ xP (t)

−∞
ρ(x, t) dx− P, (2.16)

where P is a constant value between zero and one for each particle trajectory.

Typically though this avenue will most likely result in many numerical integra-

tions of the the integral above. A simpler way to solve the inverse CPF is to

first approximate the function by a series of trapezoids of equal width ∆x, see

Figure (2.1). From the P value for a particular trajectory, the corresponding

31

trapezoid is found. The xP value at each time is then calculated by solving

the linear equation for the top segment of the corresponding trapezoid. The

number of trapezoids can be increased for a better approximation of the CPF

curve, which will yield more accurate positions for the particles.

xP

Dx

x

P

1
CPFHxL

Figure 2.1: At each time step the cumulative probability function (CPF) curve
(in grey) is approximated by a series of trapezoids of width ∆x. The position
xP , corresponding to the constant quantile P value, is found by solving the
linear equation of the top line of the particular trapezoid.

To compute the trajectories, at each time t = n∆t (n = 1, 2, 3 . . .) with

time step ∆t, the positions of the ensemble of particles is found by the steps

described above. The positions from each time step for each particle are then

linked together to form the trajectories. The size of the time step ∆t can be

adjusted to have smoother trajectories.

32

2.3 Examples

Several examples are shown that compare the quantile trajectories to

the Bohm trajectories. Using the trapezoid method described above it was

found that ∆x/∆t ≈ 3 gave nice results for the examples below. The first

three examples are in one dimension, while the last example is for a two-

dimensional separable wave function. In each example, the wave function

is non-stationary so that ∂ρ/∂t 6= 0. The probability density is computed

from first solving Schrödinger’s equation for ψ, and then ρ(x, t) = |ψ(x, t)|2.
The Bohmian trajectories can be numerically solved using Eq. (2.6) or more

conveniently from this alternative form for the velocity field [12, 41],

ẋ =
~

2mi

(

ψ∗∂ψ/∂x − ψ∂ψ∗/∂x

ρ

)

. (2.17)

The quantile trajectories are computed numerically by the method de-

scribed above in Section 2.2. In the figures below, the quantile trajectory

points (+) are shown against the Bohm trajectory. In all these cases, quantile

motion is able to reproduce the Bohm trajectories.

2.3.1 Infinite Square Well (1D)

A simple wave function in a one-dimensional infinite square well. The

wave function is a superposition of the ground and first excited states,

ψ(x, t) =
1√
L

[

sin
(n1πx

L

)

e−iE1t/~ + sin
(n2πx

L

)

e−iE2t/~

]

, (2.18)

with n1 = 1, n2 = 2, L = 1, ~ = 1, m = π2/2, and Ei = n2
iπ

2
~

2/(2mL2). The

number of particles used during the calculation was N = 5, with time from

[0, 3] with 30 equal steps. For the trapezoid approximation a grid of 50 divi-

sions split up the well. See Appendix A for a listing of the Mathematica code

33

of this example. In Figure 2.2 are shown the resulting probability conserved

trajectories (+) as compared to their corresponding Bohm trajectories (solid).

+++++
+
+

+

+
++++

+

+
+
+++++++++

++
+

+

+
+

+++
+
+
+

+
+
++++++

+
+

+
+
++++++

+
+

+

+
+
++

++
+
+

+
+
++
++++++++

+

+

+
++++

+
+

+
+
++
++

++

+

+
++
++++++++++++

+

+

+++

+

+
++
++++

+

+
+
++
++++++++++++++

+
+

+

+
++
++++

++

0.5 1 1.5 2 2.5 3
t

0.5

1
xHtL

Figure 2.2: (color available). Infinite square well with wave function as the
superposition of the ground and first excited states. The quantile trajectories
(+) are shown with the Bohm trajectories (solid). The plot is in naturalized
units.

2.3.2 Harmonic Oscillator

In this example, the harmonic oscillator wave function is taken to be a

superposition of the ground and first excited states,

ψ(x, t) =
1√
2

(
√

1

a
√
π
e−

x2

2a2 e−iE0t/~ +

√

1

2a
√
π
e−

x2

2a2
2x

a
e−iE1t/~

)

, (2.19)

where a =
√

~/mω, and Ej = ~ω(j + 1/2). Naturalized units were used so

that ~ = 1, ω = 3, and m = 1. The range of the time was t = n∆t ∈ [0, 3] for

34

n = 1, 2, 3, . . . , and the size of each time step was ∆t = 0.1. The cumulative

probability function [the right hand side of Eq. (2.2)] was approximated by

a series of trapezoids (see Section 2.2) each with a width of ∆x = 0.2, and

the position range was x ∈ [−5, 5] (an area where the density was essentially

non-zero). In Figure (2.3), the quantile trajectory points (+) are plotted

superposed on top of the corresponding Bohm trajectories. We see that the

quantile trajectories are, in fact, the Bohm trajectories. Smaller trapezoid

widths and time steps will produce more accurate and continuous trajectories.

++
+

+

+
+
+++++++++

+
+
+

+

+
+++

+

+

+
+
++++

+++
+

+

+
+
+++++++

+
+
+

+

+
+++++

+

+

+
+
+++

++++
+

+

+
+
+++++

+
+
+

+

+
++
+++++

+

+

+
+
++

+++++
+

+

+
+++++

+
+

+

+
++
++++++

+
+

+

+
++

+++++
+
+

+

+
++++

+

+

+
++
++++++++

+
+

+

+
+

0.5 1 1.5 2 2.5 3
t

-0.5

0

0.5

1
xHtL

Figure 2.3: (color available). Harmonic Oscillator with wave function as a
superposition of the ground and first excited states. The quantile trajectory
points (+) are shown superposed on the Bohmian trajectories. The graph is
in naturalized units.

35

2.3.3 Free Particle

The wave function for the free particle (assumed to be Gaussian initially

with width a) is taken to be,

ψ(x, t) =

(

2a

π

)1/4
e−ax2/[1+(2i~at/m)]

√

1 + (2i~at/m)
. (2.20)

Naturalized units were used so that ~ = 1, m = 1, and a = π/2. Again, t =

n∆t ∈ [0, 3] (n = 1, 2, 3, . . .) with time steps of ∆t = 0.1. The trapezoid widths

(see Section 2.2) were ∆x = 0.2, while the range was x ∈ [−5, 5]. In Figure 2.4,

the quantile trajectory points (+) are shown against the Bohm trajectories.

Notice that the ensemble of trajectories depict the familiar spreading of the

wave function.

2.3.4 Two-Slit Experiment

This two-slit example is from §5.1.2 in Holland [41]. At first this prob-

lem seems to be two dimensional. However, the motion along the coordinate

from the slits to the screen [x in Figure 2.5] is assumed uniform, thus the prob-

ability density is one dimensional and is only a function of y and t. To allow

for easier calculation the experimental numbers were rescaled so that ~ = 1,

m = 1, and tmax = 100 (the time between the slits and the screen), and then the

results were rescaled back to the actual numbers. Using the trapezoid method

as described in Section 2.2, the time t = n∆t ∈ [0, tmax] (n = 1, 2, 3, . . .) with

a time step of ∆t = 2.5 (1/40-th the total time). At each time, the cumulative

probability function (this time a function of y) was approximated by a series

of trapezoids of width ∆y = 3.24169 (1/80-th the range of y). The range of

y was restricted to a width between ±129.668 where the probability density

was essentially non-zero. In Figure 2.5, the quantile trajectory points (+) are

36

+++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++++++

+++++++++
++++++

+++++++
++++++

+++

+++++
++++

+++
++++

++++
++++

+++
+++

+

++++
+++

+++
+++

+++
++
++
+++

+++
++
++
+

2 3
t

-5

-3

-1

1

3

5

xHtL

Figure 2.4: (color available). Free particle with an initial wave function of a
Gaussian centered around zero. The quantile trajectory points (+) are shown
superposed on the Bohmian trajectories. Even with only six trajectories shown
the spreading of the wave packet is evident. The plot is using naturalized units.

plotted along with the Bohm trajectories. The ensemble of trajectories makes

the familiar two-slit intensity pattern on the screen (located on the right hand

side of the figure). The quantile trajectories match the Bohm trajectories quite

well, even in those regions where the probability density is very close to zero

(between the high intensity bands).

2.3.5 Infinite Square Well (2D-Separable)

In Figure 2.6 is a comparison of the quantile trajectories and their

Bohm counterpart for the two-dimensional infinite square well. The separable

37

+ + + + + + + + + + +
+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +
+ + + + + + + + + + + + +

+ ++ + + + + + +
+ ++ + + + +

+ + + + +
+ ++ + + +

+ + +
+ +

+ + +
+ + +

+ +

+ +

+ +
+ +

+ +
+ +

+ + + + + + + + +
+ +

+ + + + + + + + ++ +
+ + + + + + + + + +

+ +
+ + + + + + + + + +

+ + + +
+ + + +

+ +
+ +

+ + + + + + + + +
+ + + +

+ + +
+ + +

+ + +
+ + +

+ + +
+ + +

+ + +
+ + +

+ + +
+

+ + + + + + +
+ + + +

+ + +
+ + +

+ + +
+ + +

+ + +
+ + +

+ + +
+ + +

+ + +
+ + +

+ + + + +
+ + + +

+ + +
+ + +

+ + +
+ + +

+ + +
+ + +

+ + +
+ + +

+ +
+ + +

+ + +

+ + + +
+ + + +

+ + + +
+ + +

+ + +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+

+ + + +
+ + +

+ + +
+ + +

+ + +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+

+ + +
+ + +

+ +
+ + +

+ + +
+ +

+ + +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +

+ +
+ + +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ + +
+ +

+ +
+ +

+ +
+ +

+

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+

0 10 20 30 40 50
x @cmD

-2

-1

0

+1

+2

y @�10-4 cmD

Figure 2.5: (color available). Two-Slit Experiment as described in §5.1.2 of
P.R. Holland, The Quantum Theory of Motion: An Account of the de Broglie-
Bohm Causal Interpretation of Quantum Mechanics, (Cambridge University
Press, New York, 1993). The quantile trajectory points (+) are shown super-
posed on the Bohmian trajectories. The initial positions in each slit (left side
of figure) are assumed to be Gaussian, and the ensemble of trajectories makes
the familiar bands of bright and dark on the screen (right side of the figure).

wave function is assumed to be ψ(x, y, t) = ψx(x, t)ψy(y, t), where,

ψx(x, t) =

√

1

L

(

sin
(πx

L

)

e−iE1t/~ + sin

(

2πx

L

)

e−i4E1t/~

)

, (2.21)

and a similar expression for ψy(y, t). The energy E1 = π2
~

2/2mL2, and natu-

ralized units were used so that m = 1, ~ = 1, and the width of the well in each

direction taken to be L = 1. The time was t = n∆t ∈ [0, 1] for n = 1, 2, 3 . . . ,

and the size of each time step was ∆t = 0.05. The (x(t), y(t)) position of each

particle was computed by approximating the cumulative probability function

for each coordinate’s marginal distribution by a series of trapezoids (see Sec-

38

tion 2.2) of width ∆x = ∆y = L/30. In Figure 2.6, the quantile trajectory

points (+) are plotted superposed on top of the corresponding Bohm trajec-

tories. For the separable wave function, the quantile trajectories are again

identical to the Bohm trajectories.

2.4 Conclusion

To require that a quantum trajectory conserve total left (or right) prob-

ability leads to this expression,

∫ xP (t)

−∞
ρ(x, t) dx = P0, (2.22)

where P0 is a constant, which it some sense is an equation of motion for the

particle’s trajectory. The expression, however, is not a dynamic equation of

motion since it does not concern itself with masses, forces, or potentials, so

the equation above needs to be interpreted as non-dynamical or kinematic.

This approach works in one dimension to reproduce the Bohm trajectories,

and can be extended into higher dimensions if the wave function underlying

the probability density is separable.

39

+ Quantile
- Bohm

t=0

+++
+
+

+

+
+
+
++
+++
+++++++

++++
+
+
+

+

+
+
++
++
++++
+++

++++
++
+
+

+

+
+
+
++
+++

+ + ++

+++++
++
+
+
+

+

+
+
+
+ +

+ +++
+

++++++
++
+
+
+
+

+

+
+
++
++++

+++++++
++
++
+
+
+

+

+
+
++
++

+++++++
++ +

+ +
+
+
+

+

+

+
++
+

++++++++ +
+ ++

++
+
+
+

+

+
++

++++++ + + + ++
+++
++
++
+
+
+

+++++ + + +++++++
+++++
++

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

xHtL

yH
tL

Figure 2.6: (color available). Comparison of the quantile trajectories (+) and
the Bohm trajectories for a separable wave function in the two-dimensional
infinite square well of size 1 × 1 in naturalized units. The initial position of
each trajectory lies on the line from (0.5, 0) to (0, 0.5).

40

Chapter 3

Density Sampling Trajectories

The probability conservation trajectories of the last chapter still uti-

lized an equation for the motion of each particle even though the expression

was not a typical dynamical equation. Here a Monte Carlo method is de-

scribed that generates one-dimensional trajectories for Bohm’s formulation of

quantum mechanics that does not involve differentiation or integration of any

equations of motion1. At each time, N particle positions are randomly sam-

pled from the quantum probability density. The positions are then sorted in

order, and finally chained together with the positions at other times to form

trajectories. The resulting trajectories are shown to be the Bohm trajectories

in the limit that N → ∞ and δt→ 0, where δt is the step between successive

times. Like the probability conservation method in the previous chapter, the

density sampling method works for one dimension, and in higher dimensions

for separable wave functions.

3.1 Density Sampling

As with the probability conservation method, this new method assumes

that the probability density, ρ(x, t), is known and given. The evolution of

1Adapted from T.M. Coffey, R.E. Wyatt, and Wm.C. Schieve, Monte Carlo generation

of Bohmian trajectories, J. Phys. A: Math. Theor. 41 (2008) 335304.

41

x

∆t

2∆t

t

ΡHx,0L

ΡHx,∆tL

ΡHx,2∆tL
N sampled points

N trajectories

Figure 3.1: The Density Sampling Method. At each time t = nδt (n =
1, 2, 3, . . .), N points are sampled from the probability density ρ(x, t) and
sorted. Trajectories are constructed by joining the i-th sorted point from each
time step.

the density is depicted by an ensemble of N particles, see Figure 3.1. The

trajectories of the N particles are constructed from locations at times t =

nδt (n = 1, 2, 3, . . .) with step size δt. At each time, the probability density

is sampled to generate a set of N possible x-points. The x-points are sorted

numerically. The i-th trajectory in the ensemble is built from the i-th x-point

of the sorted N points at each time step. Though there are many ways to

generate a set of N points sampled from a given distribution [35, 47], in the

examples below (Section 3.3), we use the von Neumann acceptance-rejection

method [69], see Figure 3.2, with a uniform proposal distribution ρU .

The quality of the trajectories generated relies on how one chooses the

42

xmin xmax
x

ΡU

ΡHxL

accepted

rejected

Figure 3.2: The von Neumann Acceptance-Rejection Method. For a given
density ρ(x), a set of x-points is generated by uniformly placing random dots
on the graph. If a dot is under the density curve, that dot’s x value is placed
in the set.

number of particles in the ensemble N and the size of each time step δt. The

following restrictions can be placed for these two parameters,

N ≫ 2Lρmax and Nδt ≈ L

ǫ
, (3.1)

where L is the width of the domain of the x coordinate (generally this is

limited to a range of values where the density is essentially non-zero), ǫ is

a small number 0 < ǫ ≪ 1 with the dimensions of a speed, and ρmax is the

maximum value of the density for all positions x ∈ L and for all times between

the initial and final times.

43

3.2 Connection to Bohmian Mechanics

The method constructs the i-th trajectory from the i-th N sampled

and sorted points at each time step. The particle trajectories, therefore, do

not intersect by design (a familiar property of Bohmian trajectories). Hence,

between successive time steps the approximate size of the maximum change

in position δx is of the order δx ≈ 2L/N . Identifying the density sampled

trajectory as xDS(t), and the Bohm trajectory as xB(t), we assume at t = 0

that xDS(0) = xB(0). We now describe the density sampled trajectory as

xDS(t) = xB(t) + δx(t) for some function δx(t) ∼ 2L/N such that δx(0) = 0.

Computing the cumulative probability function (CPF) value Eq. (2.2) for the

density sampled trajectory to first order in δx,

PDS =

∫ xDS(t)

−∞
ρ(x, t) dx ≈ PB + ρ(xB(t), t)δx(t). (3.2)

Recall, the CPF value for the Bohm trajectory PB is constant. From the

restrictions and assumptions above, ρmaxδx≪ 1, therefore, ρδx ≤ ρmaxδx≪ 1,

so the density sampled trajectory fluctuates about the Bohm trajectory.

While the parameter N places the location of the particle close to the

actual Bohmian location at each time, the other parameter δt (the size of each

time step) fixes the density sampled speed approximately equal to the Bohm

speed. The difference in the two speeds is on the order of δx/(2δt), where

again δx is the size of the fluctuation about the Bohmian trajectory. From

Eq. (3.1), we find that δx/(2δt) ≈ ǫ ≪ 1, or that the difference in the speeds

in quite small. Thus the density sampled trajectory will become the Bohm

trajectory for N → ∞ and δt→ 0.

44

3.3 Examples

In the examples below, the probability density is determined in the

usual way ρ(x, t) = |ψ(x, t)|2. The wave function was chosen to be non-

stationary so that ∂ρ/∂t 6= 0. For comparison, the Bohmian trajectories are

computed from Eq. (1.8) or its equivalent,

ẋ =
~

2mi

(

ψ∗∂ψ/∂x − ψ∂ψ∗/∂x

ρ

)

. (3.3)

In all cases, the range L of possible position values x was limited to an area

where the probability density was essentially non-zero. From Eq. (3.1), the

number of particles in the ensemble (or the number of sampled points) N was

approximately equal to 2Lρmax × 103, while ǫ was taken to have a numerical

value of the order 10−3.

3.3.1 Infinite Square Well

Again a simple wave function that is a superposition of the ground and

first excited state in the infinite square well,

ψ(x, t) =
1√
L

[

sin
(n1πx

L

)

e−iE1t/~ + sin
(n2πx

L

)

e−iE2t/~

]

, (3.4)

with L = 1, n1 = 1, n2 = 2, and Ei = n2
iπ

2
~

2/(2mL2). Naturalized units

were used so that the mass m = π2/2 and ~ = 1. During each time the

probability density ρ was sampled N = 104 times. The time range for the

calculation was t ∈ [0, 3] with 60 equal steps. In Figure 3.3 are shown five

of the resulting density sampling trajectories (+) compared to their Bohm

counterparts (solid). Even with the wave packet oscillating in the well, the

density sampling trajectories exactly match the Bohm trajectories.

45

+++++
++
+

+
++++

+

+
+
++++++++++

+
+
+

+
+

++++
+
+

+

+
++
++++

+

+

+
++++++++

+
+

+

+
++

+++
+
+

+

+
+
++++++

+
+

+

+
++++++

+
+

+

+
++
+

+++
+

+

+
+
++
++++++

+
+

+

+
+++++

+

+

+
+
+++

++
+

+

+
++
++++++++++

+

+

+
+++

+

+

+
++
+++

0.5 1 1.5 2 2.5 3
t

0.5

1
xHtL

Figure 3.3: (color available). Infinite square well with wave function as a
superposition of ground and the first excited states. The Bohmian trajectories
are solid lines while the density sampled trajectories are plotted as plus (+)
signs. The plot is in naturalized units.

3.3.2 Harmonic Oscillator

For this example a more complicated harmonic oscillator wave function

was used which was a superposition of the ground state and the first three odd

excited states,

ψ(x, t) =
1

2
√

a
√
π
e−

x2

2a2

∑

n=0,1,3,5

Hn(x/a)e−iEnt/~

√
n! 2n

(3.5)

where a =
√

~/mω, En = ~ω(n+ 1/2), and Hn are the Hermite polynomials.

Naturalized units were used so that ~ = 1, ω = 3, and m = 1. The range of

time was t ∈ [0, 3], and the size of each time step was δt = 0.1. The range of the

46

possible positions was x ∈ [−5, 5] (the area where the density was essentially

non-zero). The number of particles in the ensemble was N = 104. Five of

the resulting density sampled trajectories (+) are shown in Figure 3.4 against

the actual Bohm trajectories. Notice that the density sampled trajectories are

able to depict the complicated oscillatory behavior of the Bohm trajectories

rather well. The Mathematica code for a simpler harmonic oscillator example

is listed in Appendix B.

++
+
+

+
+
+

+

+

+++
+

+

+

+
+
+
+
+
+++

+
+

+
+
+

+
+

+

+
++

+
++++

+

+
++
+

+
++
++
+

++
+
++

+
+++

+
+

+

+++
+++

++
++
++
++
++

+++
+++++

+++
++
++

+
+
+

+
+++

+

+
+
++
+
+

++++
+

+
+
+
+
+

+
+++

+

++

++
+
+

+
+
+
+
+
++++

+
+
+

+
+

+
+
+++

+
+

++
+
+
+
+

0.5 1 1.5 2 2.5 3
t

-1.5

-1

-0.5

0

0.5

1

1.5

2
xHtL

Figure 3.4: (color available). Harmonic oscillator with wave function as a
superposition of ground and the first three odd excited states. The Bohmian
trajectories are solid lines while the density sampled trajectories are plotted
as plus (+) signs. The plot is in naturalized units.

47

3.3.3 Free Particle

The wave function for the free particle (assumed to be Gaussian initially

with width a) was taken to be,

ψ(x, t) =

(

2a

π

)1/4
e−ax2/[1+(2i~at/m)]

√

1 + (2i~at/m)
(3.6)

Naturalized units were used so that ~ = 1, m = 1, and a = π/2. Again,

t ∈ [0, 3] with time steps of δt = 0.15. The number of particles in the ensemble

was N = 105. Six of the resulting density sampled trajectories are plotted in

Figure 3.5 superposed on top of their corresponding Bohm trajectory. The

trajectories depict the familiar spreading of the wave packet.

3.3.4 Two-Slit Experiment

Again the two-slit example is from §5.1.2 in Holland [41]. Recall, that

this problem seems to be two dimensional. However, the motion along the

coordinate from the slits to the screen [x in Figure 3.6] is assumed uniform,

thus the probability density is effectively in one dimension. To allow for easier

computation the experimental values given in Holland’s book were rescaled

so that ~ = 1, m = 1, and the total time between the slits and screen was

tmax = 100. The range of possible positions was y ∈ [−129.668,+129.668].

The number of particles in the ensemble was N = 105, and δt = tmax/30.

The resulting trajectories were then rescaled back to Holland’s numbers for

plotting. Thirty of the density sampled trajectories (+) are plotted against

their Bohm counterpart in Figure 3.6. The trajectories manifest the familiar

bright and dark bands of the two-slit intensity pattern on the screen (left side

of figure). Also, notice the size of the fluctuations about the Bohm trajectory

in the different regions. In high density regions the method does better since

48

+ +

+ +

+ +
+ + + + + + + + + + +

+ + + + + + + + + ++ + + + +
+ + +

+ + + +
+ + +

+ + +
+ + +

+ + +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

2 3
t

-5

-3

-1

1

3

5
xHtL

Figure 3.5: (color available). Free particle with an initial wave function of a
Gaussian centered around zero. The Bohmian trajectories are solid lines, and
the density sampled trajectories are plotted as plus (+) signs. The plot is
in naturalized units. The ensemble of trajectories demonstrates the familiar
spreading of the wave packet.

δx ∝ 1/N is smaller. But in low density regions (between the bright bands)

δx is larger due to less particles being there.

3.4 Extension to Higher Dimensions

In general, the one-dimensional density sampling method described

above can not be extended into higher dimensions. In higher dimensions there

is no natural ordering to sort the N sampled points, and therefore, no way to

consistently identify the i-th position in the ensemble at each time step like

in the one-dimensional case. However, the quantile motion concept Eq. (2.2)

49

+ + +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ +

+
+
+ +

+ +
+
+
+
+
+

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +

+ + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + +

+ + + + + + + +
+ ++ + + + + +

+ ++ + + +
+ +

+ ++ + +
+
+ +

+ +
+
+ +

+ + +
+ +

+ +
+ + + + +

+ +
+ + + +

+ +
+ + + + + + + +

+ +
+ + + + + + + +

++ +
+ + + + + + +

+
+ + + + + + + +

+ + +
+ + +

+ + +
+ + +

+ + + + + + +
+ + + +

+ + + + + + +
+ + +

+ + +
+ + +

+ + +
+ + +

+ +
+ + +

+ + +
+

+ + + + + +
+ + +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +

+ + + +
+ + + +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+

+ + +
+ + +

+ + +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ + +
+ +

+ + +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+

+ + +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+
+ +

+ +

+ +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

0 10 20 30 40 50
x @cmD

-2

-1

0

+1

+2

y @�10-4 cmD

Figure 3.6: (color available). Two-Slit Experiment as described in §5.1.2 of
P.R. Holland, The Quantum Theory of Motion: An Account of the de Broglie-
Bohm Causal Interpretation of Quantum Mechanics, (Cambridge University
Press, New York, 1993). The density sampled trajectories (+) are plotted
superposed on the Bohmian trajectories (solid). The initial positions are as-
sumed Gaussian in the slits (left side of figure), and the ensemble of trajectories
makes the familiar bands of bright and dark on the screen (right side of the
figure).

of the last chapter can be used independently on each coordinate in higher

dimensions when the wave function is separable as shown in Section 2.1. Since

the one-dimensional density sampled trajectory fluctuates about the Bohm

trajectory defined by Eq. (2.2), the one-dimensional density sampling method

can be used independently on each coordinate to generate higher-dimensional

Bohm trajectories for those cases of a separable wave function. The method

will also generate higher-dimensional Bohm trajectories for wave functions

that are nearly separable [57], by applying the method independently on each

50

coordinate of the separable part of the wave function.

3.4.1 2D Example

In Figure 3.7 is a comparison of the density sampled trajectories and

their Bohm counterpart for the two-dimensional infinite square well. The

separable wave function was assumed to be ψ(x, y, t) = ψx(x, t)ψy(y, t), where,

ψx(x, t) =

√

1

L

(

sin
(πx

L

)

e−iE1t/~ + sin

(

2πx

L

)

e−i4E1t/~

)

, (3.7)

and a similar expression for ψy(y, t). The energy E1 = π2
~

2/2mL2, and natu-

ralized units were used so that m = 1, ~ = 1, and the width of the well in each

direction taken to be L = 1. The one-dimensional density sampling method

was used independently for each coordinate. The time was t = nδt ∈ [0, 1]

for n = 1, 2, 3 . . . , and the size of each time step was δt = 0.05. The number

of particles in each coordinate’s ensemble was N = 104. Note, in general, a

particle’s place in the each coordinate’s ensemble is not the same. The density

sampled trajectory points (+) are plotted superposed on top of the correspond-

ing Bohm trajectories. For the separable wave function, the density sampled

trajectories are again identical to the Bohm trajectories.

3.5 Conclusion

Like the probability conservation method of the last chapter, the den-

sity sampling method reproduces Bohm’s trajectories in one dimension and

higher dimensions if the wave function is separable. The sampling method is

very easy to implement and requires only three steps. First the probability

density is sampled, then the sample points are sorted, and finally the points

are chained together to form the trajectories. During an experiment the data

51

points are themselves a sampling of the true density, thus with sufficient data

points at each time the quantum trajectories can be developed directly from

experimental data. A fact that will be exploited in the last chapter.

52

+ Density Sampled
- Bohm

t=0

+++
+
+
+

+

+
++
++
+++
++++++

++++
++
+

+

+
+
+
++
++++
+++ +

++++
++
+
+

+

+

+
++
++
++ + + ++

+++++
++
+
+
+

+

+
+
+
+ +

+ ++
++

+++++
++
++
+
+

+
+

+
+
+ +
++++

+++++++
++
++
+ +

+

+

+
+
++
++

+++++++
+++

+ + +
+
+

+

+
+
++
+

+++++++ + +
+ +++

+
+
++

+

+
+
+

++++++ + + +++++
++
++
+
+
+
+

+++++ + + ++++++++
++++
++

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

xHtL

yH
tL

Figure 3.7: (color available). Comparison of the density sampled (+) and
the Bohm trajectories for a separable wave function in the two-dimensional
infinite square well of size 1 × 1 in naturalized units. The initial position of
each trajectory lies on the line from (0.5, 0) to (0, 0.5).

53

Chapter 4

Centroidal Voronoi Tessellation Trajectories

In the last chapter, the density sampling method was able to reproduce

the Bohm trajectories without any equations of motion! The only drawback of

the density sampling method is it only works one dimension and for separable

higher-dimensional wave functions. In this chapter a new method is introduced

that overcomes this shortcoming1. Like the density sampling method, again a

finite sample of the probability density is obtained at each time. The sample,

however, is rearranged to minimize a novel error or distortion functional. The

minimum arrangement of the particle positions form a centroidal Voronoi tes-

sellation(CVT) of the configuration space. A particular minimizing process is

used so that the identity of each particle is maintained during the calculation.

Thus the trajectories again can be formed by chaining together the positions at

different times. The last two examples in this chapter are for a non-separable

wave function in a two-dimensional infinite square well. In each example, the

CVT trajectories match the Bohm trajectories.

1Adapted from T.M. Coffey, R.E. Wyatt, and Wm.C. Schieve, Quantum Trajectories

from Kinematic Considerations, J. Phys. A: Math. Theor. 43 (2010) 335301.

54

4.1 Density Representation

We begin by asking a more basic question: how does one represent a

given probability density ρ(x) by a finite set of N particles? In Figure 4.1(a)

we show ten particles plotted along the x-axis that are one possible repre-

sentation of the distribution ρ(x) plotted above them. The representation, in

this case, seems poor since there are no particles in the higher probability re-

gion. In part (b), however, the particles represent the distribution better and

more uniformly. We quantify the goodness of the N particle representation by

introducing a novel error or distortion functional,

D =

N
∑

i=1

∫

Ci

(x − xi)
2ρ(x)γ dx, (4.1)

where γ = (k + 2)/k, and k is the number of dimensions (the length of each

position vector xi). The distortion functional introduced in Eq. (4.1) is similar

to the distortion measure in the field of vector quantization or signal compres-

sion [36]. [We must note that word ‘quantization’ in this field has nothing to

do with quantum mechanics.] For vector quantization the distortion functional

is the same as in Eq. (4.1) except with γ = 1. In addition to the probabil-

ity distribution, a particle density can be defined λ(x) ≡ limN→∞N(x)/N ,

where N(x)dx is the number of particles that are located in a small volume

dx around x. Our use of γ = (k+2)/k in the distortion functional of Eq. (4.1)

is necessary so that the particle density λ(x) becomes the probability distri-

bution ρ(x) in the high-resolution or large N limit. Otherwise, for γ = 1 the

particle density only becomes proportional to ρ(x)k/(k+2) as shown in Gersho

and Gray [36].

The best representation of the probability density, the set of particle

xi’s, is defined to be the one which minimizes the distortion. Each integration

55

x

ΡHxL
HaL

x

ΡHxL
HbL

Figure 4.1: (color available) Two possible particle representations (the black
dots on the x-axis) of a probability distribution ρ(x). The representation in (a)
seems poor since there are no particles in the higher probability region, while
in (b) the particles seem to depict the probability distribution much better.

in Eq. (4.1) is taken over an exclusive volume or area Ci that surrounds each

particle at xi. The Ci’s are determined solely by the entire set of xi’s and the

boundary conditions. A necessary condition for the particle positions to min-

imize the distortion is that they form a centroidal Voronoi tessellation(CVT)

[36, 24]. This means that each particle location xi is at the center of mass or

centroid of its particular Voronoi volume or cell Ci, where [52],

Ci = {x | ‖ x − xi ‖≤‖ x − xj ‖ for all j 6= i}. (4.2)

Notice that minimizing the distortion functional to get the particle positions

introduces non-locality since each particle’s position depends on the positions

of all the other particles in the ensemble.

The non-parametric method used to compute the CVT is the Lloyd-

Max iterative deterministic algorithm (also known in the literature simply as

the Lloyd algorithm) [48, 50]. In Figure 4.2(a) is shown a two-dimensional

probability density at some particular time. The Lloyd-Max algorithm typ-

ically begins with a random sampling of the density as shown in part (b).

56

During each iteration the algorithm computes the Voronoi tessellation of the

particle positions, then each particle is moved to the center of mass or cen-

troid of its particular Voronoi cell Ci. The algorithm continues until some

stopping criteria is satisfied; typically either a fixed number of iterations, or

the maximum distance any one particle moves during the iteration is less than

some small predetermined value. Shown in Figure 4.2(c) is the resulting CVT

after 200 such iterations. Notice the uniformity of the structure in part (c) as

opposed to the tessellation in part (b). The Lloyd-Max algorithm is beneficial

since it is easy to implement, and has several non-degeneracy and global mini-

mum or fixed-point convergence proofs in one and many dimensions [22, 23, 27].

More importantly, the algorithm keeps track of each particle’s position dur-

ing the entire computation, which is necessary for identifying each particle to

build its trajectory.

4.2 Centroidal Voronoi Tessellation Trajectory Method

The CVT trajectory method begins by sampling the probability dis-

tribution at t = 0 to get N particle positions. One could begin with a pre-

determined array of particle positions, then the entire calculation would be

deterministic, and not just in what follows. The initial sampling, then, is used

to construct an initial CVT at t = 0. The positions of the initial CVT become

the launch points for the particle trajectories. Time is then advanced a small

amount δt. Rather than resampling the probability density at t = δt, the ini-

tial CVT’s particle configuration is used as the input for the CVT computation

at the new time. The Voronoi tessellation can be computed many ways (see

Chapter 4 of Okabe et al. [52]), but in the examples below, Fortune’s sweep

line algorithm [30] was used. The calculation of the center of mass of each

57

(a)

0

50

100

x 0

50

100

y

ΡHx,yL

(b) (c)

Figure 4.2: (color available) (a) An example of a two-dimensional probability
density. (b) A Monte-Carlo sampling of the probability density. The sin-
gle dots represent the possible particle positions. The straight lines are the
Voronoi tessellation of these particle positions. (c) The centroidal Voronoi
tessellation after 200 iterations of the Lloyd-Max algorithm that began from
the initial sampling.

58

Voronoi cell Ci during the Lloyd-Max algorithm is done not with the common

ρ(x; t), but instead with ρ(x; t)(k+2)/k in keeping with the distortion functional

in Eq. (4.1). The time steps keep advancing by δt until some predetermined

time is reached. The computation of the CVT at each time begins with the

particle positions of the previous time’s CVT. Recall that the Lloyd-Max al-

gorithm keeps track of each particle’s position during the CVT computation.

Therefore, one can chain the i-th particle’s positions at the various times to

form a trajectory. In Figure 4.3 is shown an example of a two-dimensional

CVT at three times, and the construction of a particular trajectory. Notice

that the CVT method will never have trajectory intersections, which is a fa-

miliar behavior of the Bohm trajectories as well.

At each time step, the method above relies on the minimization of the

distortion functional of Eq. (4.1). Certainly, the minimum particle configu-

ration (or fixed-point) is, in general, not unique. A simple example would

be if the probability density exhibited any rotational symmetry. The CVT

method, however, uses the previous time’s fixed-point as the starting config-

uration for the minimization process at the new time. By making small time

steps the fixed-point at the new time will be in a small neighborhood of the old

fixed-point. Therefore, the evolution of the fixed-point (or minimum particle

configuration) of the distortion functional will yield smooth trajectories. This

feature is best illustrated in the two-dimensional free gaussian example below.

4.3 One-Dimensional Infinite Square Well

The CVT method simplifies greatly in one-dimensional calculations

since the Voronoi tessellation just amounts to finding the midpoint between

successive neighbors of the particle ensemble. To demonstrate the CVT and

59

Figure 4.3: (color available) At each time a centroidal Voronoi tessella-
tion(CVT) is computed using the particle positions from the previous time
as input. The Lloyd-Max algorithm begins with the old positions, but uses
the probability distribution at the new time. Each particle’s position is tracked
during each iteration of the Lloyd-Max algorithm. After the algorithm stops
the trajectories are constructed by mapping a particle’s old position to the
new position as shown in the figure.

60

Bohm equivalence let’s take for example a non-stationary state in a one-

dimensional infinite square well,

ψ(x, t) =

√

1

L

[

sin
(πx

L

)

e−iE1t/~ + sin

(

2πx

L

)

e−iE2t/~

]

, (4.3)

where En = n2π2
~

2/(2mL2). For this example the following units were used:

~ = 1, m = π2/2, L = 1, and time was t ∈ [0, 3] with 100 equal uniform

time steps. The number of particles in the ensemble was N = 256, and the

Lloyd-Max algorithm ran for a fixed number of 30,000 iterations. A selection

of the resulting CVT trajectories (+) is shown in Figure 4.4 with their cor-

responding Bohm trajectories (solid line). The CVT trajectories match the

Bohm trajectories even during the reversal of the wave packet’s direction. The

correlation coefficient for all N = 256 particles between the CVT trajectory

positions and the Bohm positions was rx = 0.999.

4.4 Two-Dimensional Examples

Presented here are three examples of the CVT method in two dimen-

sions. The first example is the free gaussian wave packet. The probability den-

sity in this example has no unique fixed-point at any time because of rotational

symmetry. Yet with small time steps the fixed-point does evolve smoothly, and

hence so do the resulting CVT trajectories. The second example is for a sep-

arable wave function in a two-dimensional square well. Even though in one

dimension the CVT trajectories are identical to the Bohm trajectories, it is

not assured that a higher-dimensional separable example will yield the correct

trajectories since the Voronoi tessellation has a completely different character

in one and higher dimensions. A non-separable example in the same square

well is done third. Each component of the two-dimensional CVT trajectories

61

+ +

+ + + +
+
+
+

+

+ + +

+

+
+ + + + + + + + +

+
+

+

+

+ + + +
+
+

+

+
+ + +

+

+

+
+ + + + + + +

+
+

+

+
+

+ + +
+
+

+

+
+ + + + +

+

+
+
+ + + + + +

+
+

+

+
+

+ + +
+
+

+

+
+ + + + +

+

+

+
+ + + + + +

+

+

+
+ +

+ + +
+

+

+
+
+ + + + +

+

+

+
+
+ + + +

+
+

+

+
+ +

+ +
+
+

+

+
+ +

+ + + + +
+

+

+
+ + + +

+

+

+
+ +

+

+ +
+

+

+
+ +

+ + + + + +
+
+

+

+ + + +

+

+
+
+ +

+

+ +

+

+
+ +

+ + + + + + + +
+

+

+
+ +

+

+

+
+ +

+ ++ +
+ +

+ + + + + + + + + + + + + + + + +
+ + + + +

0 0.5 1 1.5 2 2.5 3
Time

0.2

0.4

0.6

0.8

1.
xHtL

Figure 4.4: (color available) A comparison of the CVT trajectories (+) and the
Bohm trajectories (solid line) for a wave packet in a one-dimensional infinite
square well. The plot employs naturalized units (~ = 1).

are compared to the corresponding Bohm, x(t) and y(t), components. For all

examples, the resulting CVT trajectories are highly correlated with the Bohm

trajectories.

4.4.1 Free Gaussian Wave Packet

First, we begin with the free gaussian wave packet,

ψ(x, y; t) =

(

2a

π

)1/4
e−a(x2+y2)/g(t)

√

g(t)
, (4.4)

where g(t) = 1 + 2i~at/m. For the calculation, naturalized units were used

such that ~ = 1, m = 1, and a = π/2. The gaussian packet was placed in

the exact center of a two-dimensional box with a width 100 on each side. The

62

time duration was t ∈ [0, 10] with 20 equal time steps, and for each time step

a fixed 400 iterations were done of the Lloyd-Max algorithm. In Figure 4.5

is a random subset of 20 trajectories from the total ensemble of N = 400

trajectories. The packet begins concentrated at the center of the box, and

then spreads in time. For each CVT trajectory (+) the corresponding Bohm

trajectory (solid line) is calculated. In the figure, we can see that the CVT

trajectories match the Bohm trajectories quite well. For the whole ensemble

the correlation coefficients between the components of the CVT and Bohm

trajectories were rx = 0.996 and ry = 0.997.

4.4.2 Separable Wave Function in an Infinite Square Well

Next, shown is a non-stationary separable wave function ψ = ψxψy in

a two-dimensional infinite square well with length L on both sides,

ψx(x; t) =

√

1

L

[

sin
(πx

L

)

e−iE1t/~ + sin

(

2πx

L

)

e−iE2t/~

]

, (4.5)

with a similar expression for ψy(y; t), and with energy En = n2π2
~

2/(2mL2).

Again ~ = 1, m = 1, units were used, and the box width was set to L = 100.

The time interval was t ∈ [0, 10, 000π] with 48 equal time steps, and for each

time step 300 iterations of the Lloyd-Max algorithm were performed.

The correlation coefficients between the one-dimensional components

were rx = 0.967 and ry = 0.962. To better show correlation data concen-

trations, in Figure 4.6(a) the x positions were counted in 4 × 4 bins (the y

positions show a similar plot); the diagonal dominance is evident. In part (b)

a comparison of the trajectories for the particle with the worst correlation of

the highest quartile—25% of the ensemble correlate better than this result. In

part (c) is the trajectory with the best correlation of the lowest quartile—75%

63

of the trajectories correlate better. Despite the low number of Lloyd-Max it-

erations and particles in the ensemble, the CVT trajectory positions correlate

quite well with the Bohm positions.

+++++++++
++

++
+
+
+
+
+
+
+
+
+

++
++
++
++
++
+

+++++++++++

+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+

+++++++++++

++++++++++++
+
+
+
+
+
+
+
+
+
+

+++++++++++

+
+
+
+
+
+
+
+
+
+
+

+++
++
++
++
++

+
+

+

+

+

+

+

+

+

+

+

+
+
+
+
+
+
+
+
+
+
+

++
+
+
+
+
+
+
+
+
+

++++
++++

+++

++
+
++
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+

++
++
++
++
++
+

+++++++++++ ++
++
++
++
++
+

20 30 40 50 60 70 80
xHtL20

30

40

50

60

70

80
yHtL

Figure 4.5: (color available) A comparison of the Bohm trajectories (solid line)
and the CVT trajectories (+) for a two-dimensional gaussian wave packet. The
gaussian begins concentrated at the middle of the figure, and as time progresses
the gaussian spreads. The figure shows a random subset of 20 trajectories from
the total of 400 particles used in the calculation.

64

4.4.3 Non-Separable Wave Function in an Infinite Square Well

Lastly, the non-stationary non-separable wave function in a two-dimensional

infinite square well. The parameters were ~ = 1, m = π2/2, L = 100, and

(a)

0

50

100

xBohm

0

50

100

xCVT

0

200

400

600

count

rx=0.967

(b) (c)

++++
+++
+
+
+

+

+
+
++++++++

+
+
+
+
+
+++++++++++++

++
+

+

+

+
++
++

++
+
+

+

++
+
++
++++++++++++++++

++

+

+

+++++
+

+

+
+
++
+
+++++++

0 10 20 30 40
Time0

20

40

60

80

100
Position

yBohmHtL

xBohmHtL

25% of data is correlated better than this plot

++++++
+
++
++
+

+

+
+++++

+

+

+
++
+
++++++++++++

++
+++
+++
+

+
++

+++
+
+

+

+
+
++
+++
++++++++++++++

+
+

+

+++++
+

+

+
++
++++

+++
++

0 10 20 30 40
Time0

20

40

60

80

100
Position

yBohmHtL

xBohmHtL

75% of data is correlated better than this plot

Figure 4.6: (color available) Results for the separable wave function in the
two-dimensional well example. (a) The correlation of the whole ensemble’s
x positions for the CVT and Bohm trajectories. The correlation data was
counted in bins of width 4 on each side. (b) Comparison of the CVT tra-
jectory (+) and the Bohm trajectory (solid) for the worst correlation of the
highest quartile (i.e. 25% of the data is better than this result), where the
two-dimensional trajectory has been decomposed into its corresponding one-
dimensional coordinates. (c) The best correlated result of the lowest quartile.
All units have been naturalized (~ = 1).

65

the number of particles in the ensemble was N = 400. Time was restricted to

t ∈ [0, 104π] with 50 equal time steps. A fixed number of 400 iterations were

performed of the Lloyd-Max algorithm for each time step. The non-separable

wave function was,

ψ(x, y; t) =

√
2

L

[

sin
(πx

L

)

sin
(πy

L

)

e−iE11t/~

+ sin

(

2πx

L

)

sin

(

2πy

L

)

e−iE22t/~

]

, (4.6)

where Enm = (n2 +m2)π2
~

2/(2mL2). The correlation coefficients between the

CVT and Bohm trajectories’ components were rx = 0.957 and ry = 0.964.

In Figure 4.7(a) the x positions were again counted in 4 × 4 bins (and again,

the y positions show a similar plot). Similar to the separable case above, the

CVT trajectories for this non-separable example correlate well with the Bohm

trajectories; in parts (b) and (c) again we show the worst and best results of

the highest and lowest quartiles respectively.

4.5 CVT Method and Quantum Nodes

It is difficult to achieve any desired accuracy with the CVT method in

low probability regions since the algorithm encourages the particles to be in

the higher probability regions. This behavior is especially true around zeros

in the density (or wave function nodes). Here we present an example in which

the wave function has six quasi-nodes (low probability regions), of which three

periodically become actual nodes every quarter period. The wave function

66

was,

ψ(x, y; t) =

√

4

3L2

[

sin
(πx

L

)

sin
(πy

L

)

e−iE11t/~ + e−iE41t/~

{

sin

(

4πx

L

)

sin
(πy

L

)

+i sin
(πx

L

)

sin

(

4πy

L

)}]

, (4.7)

(a)

0

50

100

xBohm

0

50

100

xCVT

0

200

400

count

rx=0.957

(b) (c)

+++++
+++
++++++

+++++++
++++++++++

+++++++++
+++++++

++
++++++

+

+
+
++++

+
+

+
+++++++

+

+

+++++
+
+
+
++
++++

+
+
+
+++++

+
+
+
+++

0 10 20 30 40 50
Time0

20

40

60

80

100
Position

yBohmHtL

xBohmHtL

25% of data is correlated better than this plot

+++
++++++++++++++++++

+++++++
+++++++++

++++++++++++++

++
+
+
+
+
++
+++
+

+

+
++++++

+
+

+

+
++++

+

+
+
++++++

+
+
+
+++++

+

+
+
+++

0 10 20 30 40 50
Time0

20

40

60

80

100
Position

yBohmHtL

xBohmHtL

75% of data is correlated better than this plot

Figure 4.7: (color available) Results for the non-separable wave function in the
two-dimensional well example. (a) The correlation of the whole ensemble’s
x positions for the CVT and Bohm trajectories. The correlation data was
counted in bins of width 4 on each side. (b) Comparison of the CVT trajectory
(+) and the Bohm trajectory (solid) for the worst correlation of the highest
quartile, where 25% of the data is better than this plot. (c) The best correlated
trajectory of the lowest quartile. Naturalized units with ~ = 1 are used.

67

with ~ = 1, m = π2/2, Enm = (n2 +m2)π2
~

2/(2mL2), and the width on each

side of the well was L = 100. The time for the calculation was t ∈ [0, 8000π/3]

(two periods) with 80 equal time steps, and the number of particles in the

ensemble was N = 1200. The correlations between the CVT and Bohm tra-

jectories were rx = 0.84 and ry = 0.82 with similar looking correlation plots as

in Figure 4.6(a) and 4.7(a). The component correlations in this example are

smaller that the examples above, since some particles during the CVT calcula-

tion were pushed to the opposite side of a nodal region than the corresponding

Bohm trajectory. In Figure 4.8 five trajectories, each with a minimum x and y

average correlation of 0.9, are shown for various time steps superposed on the

corresponding CVT diagram. Again, the CVT trajectories (solid) resemble the

Bohm trajectories (dashed) quite well even though the six nodal regions are

moving quite a bit around the box. Between time steps 20 and 60 (and 40/80)

the density evolves for one full period. Notice that after this full period none

of the trajectories shown return to their original positions. Even after two

periods (the total run of this calculation) the particles do not return to their

initial launch points. This again demonstrates that the history or evolution of

the fixed-point of the distortion functional is important for the CVT method

to reproduce Bohm trajectories in these cases.

In this example, the trajectories do exhibit some helical behavior. The

CVT trajectory method, however, might not able to produce perfect circu-

latory motion around prolonged or persistent quantized vortices [39, 72] that

have non-zero vortex excitation,
∮

L
∇S · dl 6= 0 for any closed loop L around

a wave function node. For example, a stationary state for an electron in an

hydrogen atom is ψn(r, φ, θ, t) = eimφf(r)e−iEnt/~. The behavior of the Bohm

trajectories for the electron extensively depends on the value of the quantum

68

number m. When m 6= 0, the Bohm trajectories are circular orbits with con-

stant angular speed centered around the persistent node at r = 0; for m = 0,

however, the Bohm trajectories are at rest [12, 41]. The circular Bohm orbits

for the m 6= 0 cases do not provide any additional information to the experi-

mentally verifiable probability density ρ, and in fact, the orbits could have any

orbital speed whatsoever and still make the same predictions. This contradic-

tory behavior is not present with the CVT trajectories since for all values of

m the CVT trajectories are at rest, which is a more consistent description.

4.6 Conclusion

The centroidal Voronoi tessellation(CVT) trajectory method uses no

equations of motion for the particle trajectories themselves. Instead at each

time a particle’s position is determined by the global minimization of a dis-

tortional functional, Eq. 4.1. The method overcomes the lack of a natural

ordering needed in the density sampling method to sort and identify the parti-

cles. This is achieved by recycling the minimum configuration of the old time

as the starting configuration of the Lloyd-Max algorithm for the new time.

Unlike the previous two methods, the resulting CVT trajectories match the

Bohm trajectories even in the non-separable wave function examples.

69

(time step 20) (time step 40)

(time step 60) (time step 80)

Figure 4.8: (color available)A complicated two-dimensional infinite square well
that contains six quasi-nodes. Periodically three of the quasi-nodes become
actual nodes every quarter period. The CVT trajectories (solid) and the Bohm
trajectories (dashed) are shown for five particles superposed on the CVT dia-
gram at various time steps. The five particles shown have at least an average
x and y correlation of 0.9.

70

Chapter 5

Applications

To be consistent with the predictions of standard non-relativistic quan-

tum mechanics a trajectory model need only satisfy three conditions:

1. The particles trajectories do not cross in configuration space.

2. The density of particle trajectories is equal to the probability density of

quantum mechanics, ψ∗ψ.

3. The number of particle trajectories is constant due to the lack of creation

and annihilation.

Numerous models can be created to satisfy these requirements. For one-

dimensional systems, however, all methods will yield the same trajectories,

which will be identical with the Bohm trajectories. In higher-dimensional

problems this identity might not hold.

In addition to the requirements above, all three methods of Chapters 2,

3, and 4 were constructed so that 1) they didn’t utilize any of Bohm’s equations

of motion, or any dynamical equations of motion, 2) the method’s trajectories

were identical to the Bohm trajectories, and 3) only used the quantum prob-

ability density ρ = ψ∗ψ in their formulation. These constraints were further

applied to each model with the aim of gleaning insight about the true nature

of the Bohm trajectories. Beyond this understanding, the methods also have

71

practical applications in the measurement of the wave function and Planck’s

constant.

5.1 Interpretation of Bohm Trajectories

The Bohm trajectories by design never contradict the predictions of

standard non-relativistic quantum mechanics. Bohm interprets the particle

trajectories as physically real,

The electron actually is a particle with a well-defined position x(t)

which varies continuously and is causally determined. [12]

Since the trajectories never contradict quantum mechanical experiments, and

any measurement significantly alters the particle, the Bohm trajectories can

never be experimentally verified one way or the other.

One challenge to the realist interpretation of the Bohm trajectories

came from the under-determination of the quantum probability current (see

§1.2.3.2). Holland [40] and others [66], however, working from the non-relativistic

limit of the Dirac and Kemmer equations, showed that the Bohm guidance law

was unique, though it might include a spin dependent term. Another challenge

came by constructing situations for which the trajectories were argued to be

surrealistic (see §1.2.3.3), but Hiley [38] countered that the surrealistic conclu-

sions were based upon classical notions about the trajectories, and that one

should not a priori judge the behavior of the Bohm trajectories; they sim-

ply do what they need to do, in order to satisfy the predictions of quantum

mechanics.

The three non-dynamical methods described in Chapters 2–4 were de-

signed to reproduce the Bohm trajectories without recourse to any of the

72

equations of motion of Bohm’s theory. Instead, only the quantum probability

density ρ = ψ∗ψ was used to extract the quantum trajectories. In one dimen-

sion all three methods produced trajectories identical with Bohm’s trajectories.

Typically, the higher dimensional non-dynamical quantum trajectories remain

identical to Bohm’s trajectories with the noted exception around stationary

persistent quantum nodes (see §4.5).

Beyond reproducing the Bohm trajectories for quantum probability

densities, all three methods can compute trajectories for any probability den-

sity! In this respect the non-dynamical methods are more general that Bohm’s

theory. For a time-independent density the resulting non-dynamical trajec-

tories are at rest, which is exactly the behavior of Bohm’s trajectories as

well. Since trajectories for classical objects can be experimentally verified

the non-dynamical methods can be used to generate Bohm-like trajectories

for classical probability densities. For example, consider the motion of a

pendulum described by the angle of deflection, θ(t) = Θ cos(ωt + γ). The

time-independent probability distribution for the position of the pendulum is

ρ(θ) = 1/(π
√

1 − (θ/Θ)2) [20]. The resulting non-dynamical trajectories are

at rest, which does not reflect the swinging motion of the pendulum. Again,

the at rest trajectories for a time-independent probability density are a familiar

behavior of Bohm’s trajectories for stationary quantum states.

Now suppose that the pendulum is lightly damped but still oscillates

with frequency ω, then the pendulum’s motion is θ(t) = Θ(t) cos(ωt + γ),

where Θ(t) is a function that decays in time. The time-dependent probabil-

ity distribution is ρ(θ; t) = 1/(π
√

1 − (θ/Θ(t))2) [20]. The distribution is a

concave-up bowl centered at zero with vertical asymptotes at ±Θ(t), which

becomes narrower as Θ(t) decays. In this case, the trajectories (see Figure 5.1)

73

begin bunched at the edges of the bowl, and then as time progresses move to-

ward, but never cross, zero. As before, the trajectories do not resemble the

swinging pendulum.

Θ

t

Figure 5.1: (color available). The resulting non-dynamical Bohm-like trajec-
tories for a slightly damped classical pendulum. The trajectories do not reflect
the actual swinging motion of the pendulum.

The CVT method produced Bohm trajectories for separable and non-

separable wave functions. Recall the method generated the particle positions

at each time by minimizing a distortion functional

D =

N
∑

i=1

∫

Ci

(x − xi)
2ρ(x)γ dx, (5.1)

where γ = (k + 2)/k, and k is the number of dimensions or length of the

position vector xi. Of course the square measure is arbitrary and was only

chosen so that the resulting trajectories would match the Bohm trajectories.

74

For classical systems the resulting Bohm-like trajectories are not, in general,

the physically real trajectory. Instead, the non-dynamical methods produce

hydrodynamic trajectories [16], in which the particles are simply discrete fluid

elements that follow the probability density current. Therefore, the Bohm

trajectories, like the non-dynamical trajectories, are not physically real, but

are just kinematically portraying the evolution of the probability density.

5.2 Quantum Trajectories for Experiments

The connection between the non-dynamical methods described in the

previous chapters and actual physical experiments is pretty straightforward.

Recall that the quantum probability density ρ(x, t) is the only quantity that

can be measured in quantum mechanics,

. . . in physics the only observations we must consider are position

observations, if only the positions of instrument pointers. It is a

great merit of the de Broglie-Bohm picture to force us to consider

this fact. [8]

After the probability density has been measured at various times, the non-

dynamical methods can be used to generate the quantum trajectories between

those times. Then the quantum trajectories permit one to infer Schrödinger’s

wave function and Planck’s constant.

To obtain the quantum trajectories for experiments follow these steps:

1. Measure position data at various times. At each time the posi-

tion is measured for each particle of an ensemble of similarly prepared

particles. A number of different times are necessary in order to build

75

trajectories during the time range. The examples below have on the or-

der of ten experimental time steps. The position data can be recorded

on a detection screen. Resolutions on the detection screen are around

10−6 meters. One such screen for detecting helium atoms was described

by Kurtseifer and Mlynek in 1997 [44]. With this screen a two-slit exper-

iment can be performed (see Figure 5.2) by moving the detection screen

various distances from the slits. Each distance corresponds to a time

since the motion from the slits to the screen is assumed uniform. At

each distance a number of particle detections are recorded.

particle slits

screen

Figure 5.2: (color available). Experimental setup for a two-slit experiment
using a movable detection screen. At each position the screen records a large
number of particle detections.

2. Estimate probability density at each time. Using the measured

position data, the probability density is estimated at each time. The

field of density estimation is extensive, but some of the more popular

techniques include: histograms, kernel estimators, or Fourier series esti-

mation [67, 58]. The kernel estimators assume a kernel function K(u) at

76

each data point Xj, and then adds the functions from the n data points,

ρ̂(x) =
1

nh

n
∑

j=1

K

(

x−Xj

h

)

, (5.2)

where h is a bandwidth or smoothing parameter. Typical kernel func-

tions include the Gaussian K(u) = (1/
√

2π) exp(−u2/2), the triangu-

lar K(u) = 1 − |u| for |u| < 1, and the Epanechnikov K(u) = 3(1 −
u2/5)/(4

√
5) with |x| <

√
5. Related to kernel estimation is the Fourier

series estimator,

ρ̂(x) =
∑

k

B̂ke
2πikx, (5.3)

where the Fourier coefficients are defined,

B̂k =
1

n

n
∑

j=1

e−2πikXj , (5.4)

and k = 0,±1,±2, The maximum k value of the estimator is deter-

mined by first testing if |B̂k|2 > 2/(n + 1), and then the maximum k is

set when typically one or two values in succession fail the inequality. The

Fourier series estimator is frequently used due to its easy differentiation

and integration properties.

3. Generate Bohm trajectories from density. Once the probability

density has been estimated at each time the non-dynamical methods de-

scribed in Chapters 2–4 can be used to approximate the Bohm trajecto-

ries between the experimental time range. The probability conservation

method would be preferable if the measurements were in one dimension

and the number of data points at each time is less than 105. If the number

of data points at each time is greater than 105 then the density sampling

technique might be preferred since the previous density estimation step

77

above can be omitted, and the data itself can be used to generate the

sampling trajectories. For higher-dimensional measurements the CVT

method needs to be used.

4. Approximate smooth function for trajectories. The velocity and

acceleration along a each trajectory might need to be known so it is best

to approximate each with a smooth function using the positions at the

various time steps. Of course the approximation can be accomplished in

many ways. In the first example below at each time the trajectory was

approximated with a quadratic polynomial using least squares fitting

with the twenty nearest neighbors. The second example has a closed

form solution for the Bohm trajectories, so this solution’s parameters

were fit again with least squares across the entire ensemble.

5.2.1 Wave Function Measurements

Since Schrödinger first introduced his wave equation, people have been

trying to determine the physical meaning of the wave function. Bohm inter-

prets the wave function as physically real so that it can guide or pilot the

particles. However, de Broglie, the initial creator of the pilot wave theory,

claims that the wave function cannot be physically real since it propagates,

in general, in a higher-dimensional configuration space. Recently, there have

been experiments that attempt to actually measure the wave function (or the

equivalent Wigner function) [9, 31, 32, 33, 44, 45, 59, 60]. These experiments

must somehow mix the measurements of momentum and position together

into a position only measurement. The non-dynamical quantum trajectory

methods, however, only need position measurements.

To use the non-dynamical quantum trajectory methods to measure the

78

wave function, one first recalls that the quantum trajectory method(QTM)

solves the time-dependent Schrödinger equation by simultaneously solving the

following expressions [49, 72],

dρ

dt
= −ρ∇ · v (5.5)

dS

dt
= L(t) =

1

2
mv · v − (V +Q) (5.6)

dx

dt
= v =

1

m
∇S. (5.7)

The wave function is computed along each trajectory in the ensemble by,

ψ(x, t) = exp

[

−1

2

∫ t

t0

(∇ · v)x(τ) dτ

]

exp

[

i

~

∫ t

t0

L(τ) dτ

]

ψ(x0, t0). (5.8)

The expressions above (and the Bohm equations) claim that the wave

function phase S needs to be known before, or at the same time, to compute the

particle trajectories. Given the complete density the expressions above cannot

be solved for the phase and trajectories since there is no unique inverse to the

divergence operator. But with only the density and any of the non-dynamical

trajectory methods described in the previous chapters the Bohm trajectories

can be generated without the phase S. Either way, once the trajectories have

been computed, the phase is propagated along each trajectory across time

steps ∆t by

Si = Si−1 + ∆t

(

1

2
mv2

i − Vi −Qi

)

, (5.9)

where i is the i-th time step. The initial phase on all trajectories is assumed to

be zero, since the wave function is only known within a global phase. During

actual calculations the quantum potential,

Q = − ~
2

2m

∇2√ρ
√
ρ
, (5.10)

79

is typically transformed by letting C = ln
√
ρ [72], then,

Q = − ~
2

2m

(

∇2C + ∇C · ∇C
)

. (5.11)

In summary, to measure the wave function by the non-dynamical quantum

trajectory methods, one first follows the procedure outlined in the previous

section. Then after the quantum trajectories have been determined, the phase

S of the wave function is computed along each trajectory using the expressions

above. The amplitude of the wave function is calculated from the estimated

probability density, or R =
√
ρ.

5.2.1.1 Two-Slit Example

A two-slit experiment with helium atoms to measure the Wigner func-

tion was first done in 1997 [45, 55]. Helium atoms, m = 6.64632 × 10−27 kg,

were made to pass through two slits, each having width 10−6 m (see Fig-

ure 5.3), and a separation of 8 × 10−6 m. An atom detection screen [44] was

placed at various distance from the slits. Since the motion from the slits to the

screen is uniform it is treated like a time variable, and the quantum interfer-

ence is only along the perpendicular direction. The detection screen’s spatial

resolution was 10−6 m, and it had a temporal resolution of 10−6 s. During the

experiment a lensing system was used to project the momentum at different

angles onto the detection screen.

The experiment was simulated (see Appendix D for program listings)

by substituting the appropriate values into the two-slit wave function described

in §5.1.2 of Holland [41]. The experimental data was simulated by sampling

this assumed probability density 105 times in an interval of ±5× 10−7 seconds

centered at each time. The time range was t ∈ [0, 975µs] with 10 equal time

80

Figure 5.3: Experimental setup for a two-slit experiment performed with he-
lium atoms. The detection screen is moved between various distances beyond
the two slits. The figure is from Kurtsiefer et al, Nature, 386, 150–153 (1997).

steps. The sampled points were counted in bins of width 10−6 meters along

the detection screen. Only the bin counts centered at each bin on the screen

were used for the rest of the calculation. The density was then estimated using

a kmax = 40 Fourier series estimator from Eq. 5.3. The quantum trajectories

were computed using the probability conservation method of Chapter 2. The

resulting trajectories were smoothed using a quadratic moving least squares

fitting with the 20 nearest neighbors at each time. Between each of the exper-

imental time steps an additional 10 computational steps were assumed. The

density estimation at these in-between steps was a simple linear interpolation

of the two densities surrounding the step. In Figures 5.4 and 5.5 is a com-

parison of the assumed probability density (the density used to generate the

sampled data points) versus the inferred density (the density computed from

the sampled data points) along the quantum trajectories. The two slits are

located on the left side of the figures, while on the right side is seen the fa-

miliar bright and dark bands of intensity pattern on the screen. Along each

81

trajectory the average relative error between the inferred and assumed den-

sity was calculated. The errors are the least, see Figure 5.6 (the error bars

in the figure represent the standard deviation of the relative errors for each

trajectory), where the majority of trajectories are concentrated right behind

the two slits. The assumed and inferred phase of the two-slit wave function

is also compared in Figures 5.7 and 5.8, with the average relative errors in

Figure 5.9. Similar to the density errors, the phase errors are also least where

the quantum probability density is high right behind the slits.

Figure 5.4: (color available). The assumed quantum probability density for
the two-slit experiment that was the source of the simulated data used in the
measuring the wave function helium example.

82

Figure 5.5: (color available). The inferred probability density computed from
the simulated sampled data for the measuring the wave function helium ex-
ample. The assumed or source density is in Figures 5.4.

83

50 100 150 200
Trajectory

-0.05

0.05

0.10

0.15

0.20

0.25

0.30
Avg. Rel. Error

Figure 5.6: The average relative error along each trajectory between the as-
sumed density (Figure 5.4), and the inferred density (Figure 5.5) for the helium
two-slit experiment. The error bars represent the standard deviation of the
relative errors for each trajectory. The errors are the least where the quantum
probability density is high right behind the two slits.

84

Figure 5.7: (color available). The phase of the source or assumed wave function
supplied to the helium two-slit experiment simulation to generate experimental
data.

85

Figure 5.8: (color available). The measured or inferred phase of the wave func-
tion of the helium two-slit experiment simulation. The supplied or assumed
phase of the wave function is shown in Figure 5.7.

86

50 100 150 200
Trajectory

-0.05

0.05

0.10

0.15

0.20

0.25

0.30
Avg. Rel. Error

Figure 5.9: The average relative error along each trajectory of the assumed
phase (Figure 5.7), and inferred phase (Figure 5.8) for the wave function of
the helium two-slit experiment. The error bars are the size of the standard
deviation of the relative errors for each trajectory. Again the errors are least
for the trajectories right in the middle of the two slits.

87

5.2.2 Planck’s Constant Measurements

Typically a watt balance is used for the measurement of Planck’s con-

stant [71, 65]. A watt balance uses an induced current, in a wire loop or

coil that is placed in a magnetic field, to balance a solid mass object [26].

The watt balance experiments are complicated and require data be taken over

month scales. The non-dynamical quantum trajectory methods might allow

for the measurement to be done with a table-top experiment over day scales.

Again the procedure above for obtaining quantum trajectories for experiments

is preformed. The quantum Newton’s second law expression (Eq. 1.9),

ma = −∇V +
~

2

2m
∇
(∇2√ρ

√
ρ

)

, (5.12)

can be solved for Planck’s constant,

~ =





2m(ma+ ∇V)

∇
(

∇2
√

ρ√
ρ

)





1/2

. (5.13)

Therefore, from just experimental position data taken at various times, the

density ρ can be estimated, then from the density, the quantum trajectories

are found by the non-dynamical methods, and then acceleration a along the

trajectories is determined, which finally allows a value for Planck’s constant

to be measured.

5.2.2.1 Gaussian Single Slit Example

Here we simulate a single-slit electron diffraction experiment. Again,

we assume position only data has been taken at various times as shown in

Figure 5.2 for the two-slit experiment. The single slit was approximated by a

Gaussian with width 1
2

√
1 + t2, which has naturalized units of ~ = 1 and mass

88

m = 1. The experimental times were between 0 and 3 with 10 equal steps.

At each time the actual density was sample 14 × 106 times, with each sample

counted in bins between ±15 of width 0.015. An estimated Gaussian was

determined by a least squares process [42] using a histogram of the counted bin

data. Five-thousand quantum trajectories were computed by the probability

conservation method of Chapter 2 using the estimated Gaussian density. The

CPF constant values for the trajectories ranged uniformly from [0, 0.25] and

[0.75, 1.0]. The Bohm trajectories in this case have a closed form solution [41],

x(t) = x0

[

1 +

(

~t

2mσ2
0

)2
]1/2

, (5.14)

where σ0 is the initial half-width of the Gaussian slit, and x0 is the initial

position of the trajectory. Solving for Planck’s constant gives,

~ =
2mσ2

0

t

√

x(t)2

x2
0

− 1. (5.15)

At each the 10 positions of the N = 5000 trajectories the measured value

of ~ was computed. The estimated values and the histogram are shown in

Figure 5.10. The average value of Planck’s constant for all vertices was ~ =

1.0008 ± 0.0011. The non-dynamical quantum trajectories value of Planck’s

constant is not as precise as the watt balance experiments, but with addi-

tional data taken at each time step and improved computational techniques it

potentially could be.

89

(a)

10 000 20 000 30 000 40 000
Vertix

0.98

1.00

1.02

1.04

Planck’s
Constant

(b)

0.92 0.96 1. 1.04 1.08

Planck’s
Constant

0.2

0.4

0.6

0.8

1.0

% of Vertices

Μ = 1.00088
Σ = 0.00110183

Figure 5.10: (color available). The experimental values for Planck’s constant
from a simulated Gaussian single-slit calculation with ~ = 1 and m = 1. In (a)
are the sorted values computed at each vertex on the quantum trajectories,
and in (b) is a histogram of these values.

90

Chapter 6

Conclusion

In Chapters 2–4 three possible models for quantum trajectories were

presented. Each of the non-dynamical models did not use or solve any equa-

tions of motion described by causes of motion: masses, forces, or potentials. In

fact, only the probability conservation method in Chapter 2 took advantage of

an equation to describe each particle’s trajectory. This model proposed that

trajectories evolve in such a way as to conserve probability to the left and right

of them. In other words, for a particular particle’s trajectory x(t),

PL(t) =

∫ x(t)

−∞
ρ(x, t) dx = constant, (6.1)

where the quantum probability density ρ = ψ∗ψ for the Schrödinger wave

function ψ. In Chapter 3 the next model was described that relied on sampling

the quantum probability density. After the density was sampled at each time,

the sampled points were numerically sorted, and then each particle’s positions

at the various times were chained together to form trajectories. Both of these

first two methods had the drawback that they only worked in one dimension, or

higher dimensions for separable wave functions. The last model in Chapter 4

overcame this deficiency and still utilized no equations of motion at all. It was

realized that the goal of sampling the probability density was to find a finite

representation of the density. A novel distortion functional was defined,

D =

N
∑

i=1

∫

Ci

(x − xi)
2ρ(x)γ dx, (6.2)

91

where γ = (k + 2)/k, and k is the number of dimensions (the length of each

position vector xi). The best representation at each time was defined as the

particle configuration that minimized the distortion. This configuration was

found to be a centroidal Voronoi tessellation(CVT), which was computed by

an altered Lloyd-Max iterative algorithm; the best representation was recycled

from the previous time to begin the search for the new representation at the

current time. The CVT trajectories were then similarly constructed by joining

the CVT positions of each particle from each time step. Unlike the previous

models, the CVT method works in any number of dimensions for any density,

but is computationally intensive (and not well studied) for dimensions greater

than two.

In many situations, all three methods were able to reproduce the known

quantum trajectories of Bohm’s particle theory. The probability conservation

and density sampling methods worked in one-dimension and for higher dimen-

sional separable wave functions. The CVT method was shown to work in one

or two dimensions for separable and non-separable wave functions in several

cases. The only known case where the CVT and Bohm trajectories disagreed

was around a persistent stationary node of the wave function. These methods

together, though, provide a new insight into the true nature of the Bohm tra-

jectories. In was argued that the Bohm particle trajectories, instead of being

physically real, are simply kinematically portraying the evolution of the quan-

tum probability density ρ. In addition, it was shown that the non-dynamical

quantum trajectory methods allow one to measure or infer Schrödinger’s wave

function (amplitude and phase) and Planck’s constant from only experimental

position data taken at various times.

92

6.1 Future Work

The non-dynamical quantum trajectory methods presented herein are

ripe for improvements and new applications. All three methods can be easily

converted to run on parallel computers. Perhaps with more computing power

the density sampling method could be used for non-separable wave functions

in higher dimensions by computing all possible mappings from one time step

to the other, and from this large set (on the order of N2) choose the mapping

that satisfies some additional constraint, like least maximum distance moved.

Beyond the nodal examples shown in §4.5, the Voronoi method needs to be

altered to accommodate stationary persistent wave function nodes, so that

the non-dynamical quantum trajectories again reproduce Bohm’s trajectories

in this highly constrained situation.

The use of the non-dynamical quantum trajectories for measurements

of the wave function and Planck’s constant could also be improved upon. New

numerical techniques will be needed to increase the precision of the Planck’s

constant experiment to become comparable the other standard experiments.

There are other interesting avenues for new uses of the methods as well. As

remarked in §5.1 the methods can also be used with classical probability densi-

ties. In fact, the methods can generate Bohm-like trajectories for any density,

or even any positive function for that matter. From the density of some system,

the kinematic Bohm-like trajectories are computed using the non-dynamical

methods, then the trajectories themselves can be used to infer the dynamical

laws for a particle description of the system.

93

Appendices

94

Appendix A

Program Listing: Probability Conservation

Trajectories for the Infinite Square Well

Below is the Mathematica code to generate the probability conserved trajec-

tories and the Bohm trajectories for an infinite square well where the wave

function is a superposition of two energy eigenstates.

Declaration of parameters and variables.

m = π2/2; (* mass of particle *)

h = 1.0; (* Plank’s const divided by 2π *)

L = 1.0; (* width of the well *)

n1 = 1.0; n2 = 2.0; (* energies of wave function *)

particles = 6; (* number of particle trajs *)

tmin = 0.0; tmax = 3.0; (* time range *)

deltaT = tmax/30; (* time step *)

xmin = 0.0; xmax = L; (* left/right well boundaries *)

bins = 50; (* number of bins in well *)

deltaX = (xmax - xmin)/bins; (* bin width *)

(* set up x values for the bins *)

binX = Table[N[xp], {xp, xmin ,xmax , deltaX}];

(* wave function is superposition of two energies *)

psi =
√

1
L

(

Sin
[

n1πx
L

]

Exp
[

−I n12
π2h2t

2 m L2h

]

+ Sin
[

n2πx
L

]

Exp
[

−I n22
π2h2t

2 m L2h

])

95

(* conjugate of wave function *)

psistar = psi /.Complex[aaa , bbb]→ −Complex[aaa, bbb];

(* probability density *)

rho = psistar * psi;

Function Definitions

(*

getX[{xvalues}, {rvalues}, r]

Returns the x value that corresponds to the value r.

The list rvalues contains the CPF values for the bins

in addition to 0.0 and 1.0

*)

getX[xvalues , rvalues , r]:=

Block[{s,rtemp=rvalues},
rtemp = Sort[AppendTo[rtemp, r]];

s = First[Position[rtemp, r]-1][[1]];

xvalues[[s]] +

(r - rvalues[[s]]) *

(xvalues[[s+1]]-xvalues[[s]]) / (rvalues[[s+1]]-rvalues[[s]])

];

(*

cpfRho[xp, tp]

Returns the integration of the density rho at a given

time from the lower bound xmin to the location xp.

Better known as the Cumulative Probability Function.

Assumes a function rho(x,t) and xmin are defined already.

*)

cpfRho = Compile[{{xp, Real}, {tp, Real}},
NIntegrate[rho/.t→tp,{x, xmin, xp}]

];

96

Set up Initial Trajectory Values

(* equally distribute particle launch points in the well *)

launchPoints = Take[

Table[N[xp], {xp, xmin, xmax, (xmax-xmin)/(particles+1)}],
{2, particles + 1}];

(* the r-value (or CPF value) of each launch point *)

particleRs = Table[cpfRho[launchPoints[[i]], 0], {i,particles}];

Calculate the Bohm Trajectories

(* the Bohm velocity field *)

v =
(

h
2 m I ∗

(

psistar * D[psi, x] - psi * D[psistar, x]
rho

)

/.x→x[t]
)

;

(* the Bohm trajectory for each launch point *)

BohmTrajectories = Table[

x /. First[

NDSolve[{x’[t] == v, x[0] == launchPoints[[i]]},
x, {t, tmin, tmax}]
],

{i, particles}];

(* plot of Bohm trajectories *)

BohmPlot = Table[

Plot[BohmTrajectories[[i]][t], {t, tmin, tmax},
DisplayFunction→Identity,

PlotRange→{xmin, xmax},
AxesOrigin→{tmin, xmin},
AxesLabel→{‘‘t’’, ‘‘x(t)’’},
Ticks→{Range[tmin, tmax, (tmax-tmin)/6],

Range[xmin, xmax, (xmax-xmin)/4]},
PlotStyle→{Thin, Black}],

{i,particles}];

97

Calculate the Probability Conservation Trajectories

(*

Loop through time steps to build trajectories. At each

step the r-values (or CPF values) of the bins are

calculated. Then for each particle the new position is

found, and added to the particle’s trajectory

*)

CPFTrajectories = Table[{{0, launchPoints[[i]]}}, {i,particles}];
tcurrent = deltaT;

While[tcurrent <= tmax,

binR = Table[cpfRho[binX[[i]], tcurrent], {i, bins+1}];
For[j=1, j <= particles, j++,

xpoint = getX[binX, binR, particleRs[[j]]];

AppendTo[CPFTrajectories[[j]],{tcurrent, xpoint}]
];

tcurrent = tcurrent + deltaT;

]

(* plot of CPF trajectories *)

CPFPlot = Table[

ListPlot[CPFTrajectories[[i]],

Joined→False,

DisplayFunction→Identity,

PlotRange→{xmin, xmax},
AxesOrigin→{tmin, xmin},
PlotStyle→{Black},
PlotMarkers→{‘‘+’’, 12}],

{i,particles}];

98

Show CPF vs Bohm Trajectories

Show[BohmPlot, CPFPlot, ImageSize→Large]

+++++
++
+
+

+
++
+

+
++++++++++++

++
+
+

+

++++
+
+

+

+
++++++

+

+

+
+++++++

+
+
+

+
+
++

++
+

+

+
++
++++++++++

+

+

+
+++

+

+

+
++
+++

+

+

+
++
++++++++++++++

+

+

+

+
+
++
+++++

+
+
++
++++

++++++++++++
+
+
+
++
++++

++
+++

+++++
++++++++++++++++

+++++
++

0. 0.5 1. 1.5 2. 2.5 3.
t

0.25

0.5

0.75

1.
xHtL

99

Appendix B

Program Listing: Density Sampling

Trajectories for Harmonic Oscillator

Below is the Mathematica code to generate the density sampling trajectories

and the Bohm trajectories for a wave function that is a superposition of the

ground and first excited states of a harmonic oscillator.

Declaration of parameters and variables.

ensemble = 104; (* points to sample each time *)

particles = 5; (* trajectories to compute *)

tmin = 0; (* time values *)

tmax = 3;
deltaT = tmax/60;

xmin = −5; (* boundaries *)

xmax = +5;

h = 1; (* Planck’s constant *)

ω = 3; (* frequency *)

m = 1; (* particle’s mass *)

a =
(

h
mω

)1/2
;

n1 = 0; n2 = 1; (* ground + first excited states *)

100

(* wave function is superposition of two energies *)

psi = 1√
2

(

HermiteH[n1, x/a] Exp[-x2/(2 a2)]
“

n1! 2n1 a
√
π

”1/2
Exp

[

−I
(

n1 + 1
2

)

hωth

]

+

HermiteH[n2, x/a] Exp[-x2/(2 a2)]
“

n2! 2n2 a
√
π

”1/2
Exp

[

−I
(

n2 + 1
2

)

hωth

]

)

(* conjugate of wave function *)

psistar = psi /.Complex[aaa , bbb]→ −Complex[aaa, bbb];

(* probability density *)

rho = psistar * psi;

Function Definitions

(*

rhoC[x, t]

A compiled function for the density rho.

*)

rhoC = Compile[{x, t}, Evaluate[Re[rho]]];

(*

getMaximumValue[number, xMin, xMax, tNow]

Evaluates density rho number times between xMin and xMax

at tNow, and returns the maximum value found.

*)

getMaximumValue[number , xMin , xMax , tNow] :=

Last[Sort[Table[rhoC[RandomReal[xMin,xMax],tNow],number]]]

101

(*

getAPoint[xMin, xMax, tNow, rhoMax]

Returns one sampled point between xMin and xMax

for the density with a maximum of rhoMax at time tNow.

*)

getAPoint = Compile[#1, #2, #3, #4,

Block[xmin = #1, xmax = #2, rhotry, xtry=0.0,

While[True,

rhotry = RandomReal[#4];

xtry = RandomReal[xmin,xmax];

If[rhoC[xtry, #3] >= rhotry, Break[]]

];

xtry]];

(*

getPoints[numbGet, xMin, xMax, tNow, rhoMax]

Returns numbGet sampled points between xMin and xMax

for the density with a maximum of rhoMax at time tNow.

*)

getPoints[numbGet , xMin , xMax , tNow , rhoMax] :=

Table[getAPoint[xMin,xMax,tNow,rhoMax], numbGet];

Set up Initial Trajectory Values

(* which particles going to make trajectories for *)

trackingParticles =

Table[i*Round[ensemble/(particles+1)], {i, 1, particles}];

rhoMax = getMaximumValue[103, xmin, xmax, 0] * 1.1;

possibleLaunchPoints =

Sort[getPoints[ensemble, xmin, xmax, 0, rhoMax]];

102

(* launch points for trajectories *)

launchPoints =

Table[possibleLaunchPoints[[trackingParticles[[i]]]],

{i, 1, particles}];

Calculate the Bohm Trajectories

(* the Bohm velocity field *)

v =
(

h
2 m I ∗

(

psistar * D[psi, x] - psi * D[psistar, x]
rho

)

/.x→x[t]
)

;

(* the Bohm trajectory for each launch point *)

BohmTrajectories = Table[

x /. First[

NDSolve[{x’[t] == v, x[0] == launchPoints[[i]]},
x, {t, tmin, tmax}]
],

{i, particles}];

(* plot of Bohm trajectories *)

BohmPlot = Table[

Plot[BohmTrajectories[[i]][t], {t, tmin, tmax},
DisplayFunction→Identity,

PlotRange→{-1, +1},
AxesOrigin→{0, -1},
AxesLabel→{‘‘t’’, ‘‘x(t)’’},
Ticks→{{0.5, 1, 1.5, 2, 2.5, 3},

{-1, -0.5, 0, 0.5, 1}},
PlotStyle→{Thin, Black}],

{i,particles}];

103

Calculate the Density Sampling Trajectories

(*

Loop through time steps to build trajectories. At each

step the density is sampled ensemble times. The sampled

points are sorted and the positions are added to each

trajectory.

*)

RandomTrajectories =

Table[{{0, launchPoints[[i]]}}, {i, 1, particles}];
tcurrent = deltaT;

While[tcurrent <= tmax,

rhoMax = 1.1 * getMaximumValue[103, xmin, xmax, tcurrent];

xpoints = Sort[getPoints[ensemble, xmin, xmax, tcurrent, rhoMax]];

For[j=1, j <= particles, j++,

AppendTo[RandomTrajectories[[j]],

{tcurrent, xpoints[[trackingParticles[[j]]]]}]
]; tcurrent = tcurrent + deltaT;

];

(* only plot every other time step *)

RandomTrajectoriesShort = Table[RandomTrajectories[[j,i]],

{j, 1, particles}, {i, 1, Length[RandomTrajectories[[1]]],2}];

(* plot of density sampled trajectories *)

RandomPlot = Table[

ListPlot[RandomTrajectoriesShort[[i]],

Joined→False,

DisplayFunction→Identity,

PlotRange→{-1, +1},
AxesOrigin→{0, -1},
PlotStyle→{Black},
PlotMarkers→{‘‘+’’, 12}],

{i,particles}];

104

Show Density Sampled vs Bohm Trajectories

Show[BohmPlot, RandomPlot, ImageSize→Large]

++
+

+

+
+++++++++

++
+
+

+

+
+++

+

+

+
+
++++

+++
+

+

+
+
+++++++

+
+
+

+

+
+++++

+

+

+
+
+++

++++
+

+

+
+
++++++

+
+

+

+
++
+++++

+

+

+
+
++

+++++
+

+

+
+
++++

+
+

+

+
++
+++++++

+

+

+
+
+

++++++
+

+

+
++++

+

+
+
++
+++++++++

+

+

+
+

0.5 1 1.5 2 2.5 3
t

-0.5

0

0.5

1
xHtL

105

Appendix C

Program Listing: Centroidal Voronoi

Tessellation Trajectories for Infinite Square

Well (2D)

The C code for a non-separable wave function in a two-dimensional

infinite square well using the centroidal Voronoi tessellation (CVT) trajec-

tory method of Chapter 4. The code is divided into six files: defs.h, main.c,

lloyd.c, triangle.c, rho.c, output.c. The Voronoi tessellations are performed by

Fortune’s program [30] utilizing Derek Bradley’s memory fixes contained on-

line at http://www.derekbradley.ca/voronoi.html. Fortune’s out triple

function was replaced by the routine in output.c.

defs.h
/* ***********

* constants *

************/

#define GAUSSPTS 25

#define ENSEMBLE 400 /* particle # in box */

/* % to reflect at boundaries

and room for the reflections */

#define BOX_REFLECTION 1.0

#define ENSEMBLE_PLUS 6* ENSEMBLE

#define MAX_LLOYD 500 /* # of iterations */

#define RHO_MAX 6e-2 /* max(rho(t=0)^2) */

106

#define TMIN 0.0 /* time settings */

#define TMAX 10.0

#define TSTEPS 10

#define DELTA_T ((TMAX - TMIN) / TSTEPS)

#define BOX_XMIN 0.0 /* box dimensions */

#define BOX_YMIN 0.0

#define BOX_XMAX 100.0

#define BOX_YMAX 100.0

/* max # vertices per generator’s polygon */

#define MAX_NUM_VERTICES 30

#define SRAND_SEED 4266 /* [0, 65535]*/

/* ************

* structures *

*************/

struct Point

{

double x,y;

};

struct Generator

{

struct Point coord;

struct Point cell[MAX_NUM_VERTICES];

int numcell; /* vertices count*/

int genid; /* >0 if inside the box, 0 otherwise */

} generator[ENSEMBLE_PLUS], generatorTemp[ENSEMBLE];

struct myTriangle /* holds Fortune ’s output */

{

int gen1 , gen2 , gen3;

struct Point center;

};

107

struct vertix_angle /* angle of each vertix */

{

double angle;

int vertixID ;

};

/* ***********************

* function declarations *

************************/

void compute_voronoi(void); /* Fortune ’s main */

void new_generators(void);

void ReflectPoints(void);

void GetPolygons(void);

void sort_vertices(struct Generator *g);

int generator_comp(const void *a, const void *b);

int angle_comp(const void *a, const void *b);

double what_angle(struct Point *p1, struct Point *p2);

void center_generators(void);

void center_generators_uniform(void);

void TriangleCenter(struct Point *p1, struct Point *p2,

struct Point *p3,

struct Point *result);

double triangle_center(struct Point *p1,

struct Point *p2,

struct Point *p3,

struct Point *result);

double triangle_error(struct Point *p1,

struct Point *p2,

struct Point *p3);

double rho(struct Point *p);

struct myTriangle theTriangle[4* ENSEMBLE_PLUS];

int myNumTriangles;

double tnow; /* time now */

108

main.c
/* ***

*

* Compute Centroidal Voronoi Tessellation Trajectories for

* a Non -Separable Probability Distribution in a Two -

* Dimensional Infinite Square Well.

*

* Tim Coffey , 2009

*

*** */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "defs.h"

/* ***

* Main Function

*** */

int main(void)

{

int i, j, k, t;

int numTemp;

FILE *data_file;

/* limit filenames to 20 characters */

char data_name[20] = "time_step_";

char buf [20];

/* set time , and get new generators */

tnow = TMIN;

new_generators();

109

/* loop time and include last step */

for(t=0; t<(TSTEPS + 1); t++)

{

tnow = TMIN + t * DELTA_T;

/* Lloyd iterations for this time step */

for(k=0; k<MAX_LLOYD; k++)

{

myNumTriangles = 0; /* (re)set this counter */

nsites = ENSEMBLE; /* Fortune needs site # */

/* set the box dimensions */

xmin = BOX_XMIN; ymin = BOX_YMIN;

xmax = BOX_XMAX; ymax = BOX_YMAX;

/* create boundaries of box by reflection */

ReflectPoints();

/* Fortune requires sorting */

qsort(generator , nsites , sizeof *generator , scomp);

compute_voronoi(); /* Fortune ’s main() */

free_all (); /* Bradley ’s recover memory */

GetPolygons(); /* each generator’s polygon */

/* transfer those in the box to temp. storage */

numTemp = 0;

for(i=0; i<nsites; i++)

{

if(generator[i].genid) /* >0 inside box */

{

generatorTemp[numTemp] = generator[i];

numTemp ++;

}

}

110

/* transfer back those in the box */

for(i=0; i<ENSEMBLE ; i++)

{

generator[i] = generatorTemp[i];

}

/* move each to center of mass of polygon

for all steps except last one */

if(k<(MAX_LLOYD -1))

center_generators();

} /* k (Lloyd iterations) */

/* sort generators to maintain identity

and build trajectories */

qsort(generator , ENSEMBLE ,

sizeof *generator , generator_comp);

/* save generators’ positions */

sprintf(buf , "%d", t);

strcat(buf , ".txt");

strcat(data_name , buf);

data_file = fopen(data_name , "w");

if(data_file == NULL)

{

printf("Couldn’t open file.\n");

return -1;

}

for(i = 0; i<ENSEMBLE ; i++)

{

fprintf(data_file , "%f %f ",

generator[i].coord.x, generator[i].coord.y);

}

fprintf(data_file ,"\n");

111

/* save polygons */

for(j = 0; j<ENSEMBLE ; j++)

{

for(i = 0; i<generator[j].numcell; i++)

{

fprintf(data_file , "%f %f ",

generator[j].cell[i].x,

generator[j].cell[i].y);

}

fprintf(data_file , "\n");

}

/* clean up and reset */

fclose(data_file);

strcpy(data_name , "time_step_");

} /* t (time steps) */

return 0;

} /* end main */

/* ***

* ReflectPoints()

*

* Reflects a % of the ENSEMBLE points about each box side

* in order to create an artificial boundary

*** */

void ReflectPoints(void)

{

int i;

/* compute BOX_REFLECTION markers */

double xLower = BOX_XMIN +

(BOX_XMAX - BOX_XMIN) * BOX_REFLECTION;

double yLower = BOX_YMIN +

(BOX_YMAX - BOX_YMIN) * BOX_REFLECTION;

112

double xUpper = BOX_XMAX -

(BOX_XMAX - BOX_XMIN) * BOX_REFLECTION;

double yUpper = BOX_YMAX -

(BOX_YMAX - BOX_YMIN) * BOX_REFLECTION;

/* assumes nsites is already equal to ENSEMBLE */

for(i=0; i<ENSEMBLE; i++)

{

/* reflect around the x=BOX_XMIN line */

if(generator[i].coord.x <= xLower)

{

generator[nsites]. coord.x =

2.0 * BOX_XMIN - generator[i].coord.x;

generator[nsites]. coord.y = generator[i].coord.y;

generator[nsites]. numcell = 0;

generator[nsites]. genid = 0; /* outside box */

nsites++;

}

/* reflect around the x=BOX_XMAX line */

if(generator[i].coord.x >= xUpper)

{

generator[nsites]. coord.x =

2.0 * BOX_XMAX - generator[i].coord.x;

generator[nsites]. coord.y = generator[i].coord.y;

generator[nsites]. numcell = 0;

generator[nsites]. genid = 0; /* outside box */

nsites++;

}

/* reflect around the y=BOX_YMIN line */

if(generator[i].coord.y <= yLower)

{

generator[nsites]. coord.x = generator[i].coord.x;

generator[nsites]. coord.y =

2.0 * BOX_YMIN - generator[i].coord.y;

113

generator[nsites]. numcell = 0;

generator[nsites]. genid = 0; /* outside box */

nsites++;

}

/* reflect around the y=BOX_YMAX line */

if(generator[i].coord.y >= yUpper)

{

generator[nsites]. coord.x = generator[i].coord.x;

generator[nsites]. coord.y =

2.0 * BOX_YMAX - generator[i].coord.y;

generator[nsites]. numcell = 0;

generator[nsites]. genid = 0; /* outside box */

nsites++;

}

}

/* change the box coordinates to account for reflections */

xmin = BOX_XMIN - BOX_REFLECTION * (BOX_XMAX - BOX_XMIN);

ymin = BOX_YMIN - BOX_REFLECTION * (BOX_YMAX - BOX_YMIN);

xmax = BOX_XMAX + BOX_REFLECTION * (BOX_XMAX - BOX_XMIN);

ymax = BOX_YMAX + BOX_REFLECTION * (BOX_YMAX - BOX_YMIN);

} /* ReflectPoints */

/* ***

* new_generators()

*

* samples density using von Neumann acceptance -rejection

* method to produce a set of generators for Lloyd

* algorithm

*** */

void new_generators(void)

{

int i;

struct Point pttry;

114

double rhotry;

srand(SRAND_SEED);

/* put generators in Fortunes sites[] array */

for(i=0; i<ENSEMBLE; i++)

{

/* repeat till acceptable point */

while(1)

{

pttry.x = ((double)rand() /

((double)RAND_MAX + (double)1.0))

* (BOX_XMAX - BOX_XMIN)

+ BOX_XMIN ;

pttry.y = ((double)rand() /

((double)RAND_MAX + (double)1.0))

* (BOX_YMAX - BOX_YMIN)

+ BOX_YMIN ;

rhotry = ((double)rand() /

((double)RAND_MAX + (double)1.0))

* RHO_MAX;

if(rho(&pttry) >= rhotry) break; /* got one! */

}

/* use this point */

generator[i]. coord.x = pttry.x;

generator[i]. coord.y = pttry.y;

generator[i]. numcell = 0; /* init. cell count */

generator[i]. genid = i+1; /* inside box */

}

} /* new_generators */

115

/* ***

* scomp()

*

* Fortune ’s function modified .

*

* Sorts sites on y, then x coord.

* Uses Generator structure instead of Point.

*** */

int scomp(const void *a, const void *b)

{

struct Generator *s1 = (struct Generator *)a;

struct Generator *s2 = (struct Generator *)b;

if(s1 -> coord.y < s2 -> coord.y) return -1;

if(s1 -> coord.y > s2 -> coord.y) return 1;

if(s1 -> coord.x < s2 -> coord.x) return -1;

if(s1 -> coord.x > s2 -> coord.x) return 1;

return 0;

} /* scomp */

lloyd.c
/* ***

* Routines needed to perform iterations of the Lloyd

* algorithm to compute centroidal Voronoi tessellations.

*** */

#include <math.h>

#include <stdlib.h>

#include "defs.h"

/* ***

* center_generators()

*

* moves the current positions of the generators to the

* centroid of the generators Voronoi polygon (cell).

* Assumes the density is planar over each sub -triangle

* of the polygon.

*** */

116

void center_generators(void)

{

int i, j;

double tot_mass , mass;

struct Point com , poly_com;

for(j=0; j<ENSEMBLE; j++)

{

mass = tot_mass = 0.0;

com.x = com.y = 0.0;

poly_com.x = poly_com .y = 0.0;

/* find centroid of generator’s polygon */

for(i=0; i<(generator[j].numcell -1); i++)

{

/* mass of the i-th triangle of the polygon */

mass = triangle_center(&(generator[j].coord),

&(generator[j].cell[i]),

&(generator[j].cell[i+1]),

&com

);

tot_mass += mass;

/* centroid is weighted sum over triangles */

poly_com .x += mass * com.x;

poly_com .y += mass * com.y;

}

/* assign generator the new coordinates */

generator[j]. coord.x = poly_com.x / tot_mass ;

generator[j]. coord.y = poly_com.y / tot_mass ;

generator[j]. numcell = 0;

}

} /* center_generators */

117

/* ***

* GetPolygons()

*

* Computes ordered polygon for each generator

*** */

void GetPolygons(void)

{

int i;

/* find center of each triangle ’s circle */

for(i=0; i<myNumTriangles; i++)

{

TriangleCenter(

&(generator[theTriangle[i].gen1]. coord),

&(generator[theTriangle[i].gen2]. coord),

&(generator[theTriangle[i].gen3]. coord),

&(theTriangle[i].center)

);

}

/* add vertices (the centers) to polygon list */

for(i=0; i<myNumTriangles; i++)

{

/* only for generators inside the box */

if(generator[theTriangle[i].gen1].genid)

{

generator[theTriangle[i].gen1]

.cell[generator[theTriangle[i].gen1]. numcell]

= theTriangle[i].center;

generator[theTriangle[i].gen1].numcell ++;

}

if(generator[theTriangle[i].gen2].genid)

{

generator[theTriangle[i].gen2]

.cell[generator[theTriangle[i].gen2]. numcell]

= theTriangle[i].center;

118

generator[theTriangle[i].gen2].numcell ++;

}

if(generator[theTriangle[i].gen3].genid)

{

generator[theTriangle[i].gen3]

.cell[generator[theTriangle[i].gen3]. numcell]

= theTriangle[i].center;

generator[theTriangle[i].gen3].numcell ++;

}

}

/* order the vertices */

for(i=0; i<nsites; i++)

{

if(generator[i].genid) /* inside the box */

sort_vertices(&generator[i]);

}

} /* GetPolygons */

/* ***

* sort_vertices()

*

* orders generator’s polygon vertices by angle up from

* right horizontal ray. Also removes any duplicates.

*** */

void sort_vertices(struct Generator *g)

{

int i;

int numTemp = 0;

double lastAngle = -1.0;

struct Point temp[MAX_NUM_VERTICES];

119

struct vertix_angle vAngles[MAX_NUM_VERTICES];

/* initialize vertix_angle structure */

for(i = 0; i<g->numcell; i++)

{

vAngles[i].angle =

what_angle(&(g->coord), &(g->cell[i]));

vAngles[i]. vertixID = i;

}

/* sort the vertix_angles */

qsort(vAngles , g->numcell ,

sizeof *vAngles , angle_comp);

/* build sorted list of vertices removing duplicates */

for(i=0; i<g->numcell; i++)

{

if(vAngles[i].angle != lastAngle)

{

temp[numTemp] = g->cell[vAngles[i]. vertixID];

numTemp ++;

lastAngle = vAngles[i].angle;

}

}

/* transfer temp list back to the generator */

for(i=0; i<numTemp; i++)

{

g->cell[i] = temp[i];

}

g->cell[numTemp]= temp[0]; /* close the polygon */

g->numcell = ++ numTemp;

} /* sort_vertices */

120

/* ***

* generator_comp()

*

* compare generators based on their id’s

*** */

int generator_comp(const void *a, const void *b)

{

struct Generator *g1 = (struct Generator *)a;

struct Generator *g2 = (struct Generator *)b;

if(g1->genid > g2->genid) return 1;

if(g1->genid < g2->genid) return -1;

return 0;

} /* generator_comp */

/* ***

* angle_comp()

*

* decides which two angles is bigger

*** */

int angle_comp(const void *a, const void *b)

{

struct vertix_angle *s1 = (struct vertix_angle *)a;

struct vertix_angle *s2 = (struct vertix_angle *)b;

if(s1->angle > s2->angle) return 1;

if(s1->angle < s2->angle) return -1;

return 0;

} /* angle_comp */

121

/* ***

* what_angle()

*

* returns the angle a line segment makes with the

* horizontal right going ray

*** */

double what_angle(struct Point *p1, struct Point *p2)

{

double a, b;

double dx = p2->x - p1->x;

double dy = p2->y - p1->y;

/* deal with indeterminate cases */

if(dx == 0.0)

{

if(dy > 0.0)

return M_PI / 2.0;

else

return 3.0 * M_PI / 2.0;

}

/* figure out which quadrant and return angle a */

b = (double) atan((double) dy / dx);

if(dx > 0.0 && dy >= 0.0)

a = b;

else if(dx > 0.0 && dy < 0.0)

a = 2.0 * M_PI + b;

else /* dx < 0.0 */

a = M_PI + b;

return a;

} /* what_angle */

122

/* ***

* TriangleCenter()

*

* finds center of circle that intersects the 3 points

* of the triangle

*** */

void TriangleCenter(struct Point *p1, struct Point *p2,

struct Point *p3,

struct Point *result)

{

double x1 = p1->x; double y1 = p1->y;

double x2 = p2->x; double y2 = p2->y;

double x3 = p3->x; double y3 = p3->y;

result ->x = (x3*x3*(y1 - y2) +

(x1*x1 + (y1 - y2)*(y1 - y3))*

(y2 - y3) + x2*x2*(y3 - y1))/

(2.0*(x3*(y1 - y2) +

x1*(y2 - y3) + x2*(y3 - y1)));

result ->y = (-(x2*x2*x3) + x1*x1*(x3 - x2) +

x3*(y1*y1 - y2*y2) +

x1*(x2*x2 - x3*x3 + y2*y2 - y3*y3) +

x2*(x3*x3 - y1*y1 + y3*y3))/

(2.0*(x3*(y1 - y2) +

x1*(y2 - y3) + x2*(y3 - y1)));

} /* TriangleCenter */

123

triangle.c
#include <math.h>

#include <stdlib.h>

#include "defs.h"

/* ***

* triangle_center()

*

* returns the mass of a triangle defined by Points p1,

* p2, and p3. Also , set the variable Point result to the

* center of mass of the triangle . Mass is probability.

* The numerical integration on triangle performed as

* described by D.A. Dunavant , Int. J. Num. Meth. Eng.,

* Vol. 21, 1129 - -1148 (1985).

*** */

double triangle_center(struct Point *p1,

struct Point *p2,

struct Point *p3,

struct Point *result)

{

static double weight [25] = {

0.09081799038275, 0.03672595775647, 0.03672595775647,

0.03672595775647, 0.04532105943553, 0.04532105943553,

0.04532105943553, 0.07275791684542, 0.07275791684542,

0.07275791684542, 0.07275791684542, 0.07275791684542,

0.07275791684542, 0.02832724253106, 0.02832724253106,

0.02832724253106, 0.02832724253106, 0.02832724253106,

0.02832724253106, 0.00942166696373, 0.00942166696373,

0.00942166696373, 0.00942166696373, 0.00942166696373,

0.00942166696373 };

static double coord [25][3] = {

{0.33333333333333,0.33333333333333,0.33333333333333},

{0.02884473323269,0.48557763338366,0.48557763338366},

{0.48557763338366,0.02884473323269,0.48557763338366},

{0.48557763338366,0.48557763338366,0.02884473323269},

{0.78103684902993,0.10948157548504,0.10948157548504},

{0.10948157548504,0.78103684902993,0.10948157548504},

{0.10948157548504,0.10948157548504,0.78103684902993},

124

{0.14170721941488,0.30793983876412,0.55035294182100},

{0.14170721941488,0.55035294182100,0.30793983876412},

{0.30793983876412,0.14170721941488,0.55035294182100},

{0.30793983876412,0.55035294182100,0.14170721941488},

{0.55035294182100,0.14170721941488,0.30793983876412},

{0.55035294182100,0.30793983876412,0.14170721941488},

{0.02500353476269,0.24667256063990,0.72832390459741},

{0.02500353476269,0.72832390459741,0.24667256063990},

{0.24667256063990,0.02500353476269,0.72832390459741},

{0.24667256063990,0.72832390459741,0.02500353476269},

{0.72832390459741,0.02500353476269,0.24667256063990},

{0.72832390459741,0.24667256063990,0.02500353476269},

{0.00954081540030,0.06680325101220,0.92365593358750},

{0.00954081540030,0.92365593358750,0.06680325101220},

{0.06680325101220,0.00954081540030,0.92365593358750},

{0.06680325101220,0.92365593358750,0.00954081540030},

{0.92365593358750,0.00954081540030,0.06680325101220},

{0.92365593358750,0.06680325101220,0.00954081540030}

};

double area = 0.5 * fabs((p3->x - p1->x) *

(p2->y - p1->y) -

(p2->x - p1->x) *

(p3->y - p1->y));

double mass = 0.0;

double massX = 0.0;

double massY = 0.0;

double rhoAtp;

struct Point p;

int i;

for(i=0; i<25; i++)

{

p.x = coord[i][0] * (p1->x) +

coord[i][1] * (p2->x) +

coord[i][2] * (p3->x);

125

p.y = coord[i][0] * (p1->y) +

coord[i][1] * (p2->y) +

coord[i][2] * (p3->y);

rhoAtp = rho(&p);

massX += weight[i] * (p.x) * rhoAtp;

massY += weight[i] * (p.y) * rhoAtp;

mass += weight[i] * rhoAtp;

}

result ->x = massX / mass;

result ->y = massY / mass;

return area * mass;

} /* triangle_center */

rho.c
#include "defs.h"

#include <math.h>

/* ***

* rho()

*

* returns the value of the density at Point p given the

* time tnow. Time runs from 0 to 1.25*2000*M_PI before

* the density almost repeats.

*

* Box width is 100 on both sides.

*** */

double rho(struct Point *p)

{

/* the terms with tnow in them */

double t1 = cos(tnow / 2000.0);

double t2 = sin(tnow / 2000.0);

double t3 = cos(13.0 * tnow / 10000.0);

double t4 = sin(13.0 * tnow / 10000.0);

126

/* the terms with x in them */

double x1 = sin(M_PI * (p->x) / 100.0);

double x2 = sin(M_PI * (p->x) / 50.0);

/* the terms with y in them */

double y1 = sin(M_PI * (p->y) / 50.0);

double y2 = sin(3.0 * M_PI * (p->y) / 100.0);

double r = ((t1 * t1 + t2 * t2) *

(x1 * x1 * y1 * y1) +

(t1 * t3 + t2 * t4) *

(2.0 * x1 * x2 * y1 * y2) +

(x2 * x2 * y2 * y2)

) / 50.0;

return r*r; /* must square for 2D CVT trajectories */

} /* rho */

output.c
/* ***

* out_triple()

*

* Replacement of Fortune ’s out_triple() function . Instead

* of saving to drive , the information is collected in

* the theTriangle[] array.

*** */

void out_triple(struct Site *s1, struct Site *s2,

struct Site *s3)

{

theTriangle[myNumTriangles].gen1 = s1->sitenbr;

theTriangle[myNumTriangles].gen2 = s2->sitenbr;

theTriangle[myNumTriangles].gen3 = s3->sitenbr;

myNumTriangles++;

}

127

Appendix D

Program Listing: Measuring Wave Function

for Two-Slit Experiment

The C code for the simulation to measure the wave function of the two-

slit experiment as described in §5.2.1.1. The calculation is comprised of six

programs: get data.c, get coeffs.c, get trajs.c, get traj fits.c, get R.c, get S.c.

All programs share defs.h.

defs.h
/* ************************

* parameter declarations *

*************************/

#define SEED 101 /* random number */

#define ESTEPS 21 /* exp. time steps + 1 */

#define EPOINTS 1e5 /* exp. points per step */

#define TMIN 0.0 /* time boundaries */

#define TMAX 975.0e-6

#define XMIN -5.25e-5 /* space boundaries */

#define XMAX +4.75e-5

#define DT 5e-7 /* half time resolution */

#define DX 5e-7 /* half space resolution */

#define DRES 1e3 /* find density max res. */

#define FK 40 /* Fourier coeffs order */

#define NTRAJS 10000 /* # trajectories */

#define TSTEPS 10 /* steps btwn ESTEPS */

#define FITNUM 20 /* neighbors for fitting */

128

#define HBAR 1.05457148e-34

#define MASS 6.64632e-27

#define HBARMASS (HBAR*HBAR)/(2.0* MASS)

#define DN 5 /* deriv. order = 2*DN */

#define SX 1e-6 /* sampling distance */

get data.c
/* ***

! Purpose:

! Using a prescribed probability density , sample

! the density a number of times at various time steps.

! Save the points at each time step in separate files.

*** */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "defs.h"

/* function declarations */

double density(double x, double t);

int main(int argc , char *argv[])

{

/* variable declarations */

int ets; /* exp. time step */

int i;

double point; /* new point */

double dmax; /* maximum of density at step */

double dtry; /* density value try */

double tnow; /* current time */

double terr; /* error around time */

FILE *data_file;

char data_name[40];

129

/* begin */

srand(SEED);

/* main time loop */

printf("Getting data for experimental time step \n");

for(ets = 0; ets < ESTEPS; ets++)

{

printf("\t%d\n", ets);

/* open step’s file */

sprintf(data_name , "data/data_%d.txt", ets);

data_file = fopen(data_name , "w");

if(data_file == NULL)

{

printf("Couldn’t open necessary data file %d\n",

ets);

return -1;

}

/* calculate density maximum for this step */

/* assume no time error to find maximum */

dmax = 0.0;

tnow = (TMAX -TMIN) * ets / ESTEPS + TMIN;

for(i = 0; i <= DRES; i++)

{

dtry = density((XMAX -XMIN) * i / DRES + XMIN ,

tnow);

if(dtry > dmax) dmax = dtry;

}

dmax = 1.05 * dmax; /* make a little bigger */

130

/* get sampled points */

for(i = 0; i < EPOINTS; i++)

{

/* get one point */

do{

point = ((double)rand() /

((double)RAND_MAX + (double)1.0)) *

(XMAX -XMIN) + XMIN;

dtry = dmax * ((double)rand() /

((double)RAND_MAX + (double)1.0));

terr = DT * (

((double)rand() /

((double)RAND_MAX + (double)1.0)) *

2.0 - 1.0);

if(density(point , tnow + terr)

>= dtry)

break; /* keep point */

} while (1);

/* put point into bin */

point = floor((point - XMIN)/(2.0* DX)) *

2.0 * DX + XMIN + DX;

/* save this point */

fprintf(data_file , "%lf\n", point);

}

/* close file */

fclose(data_file);

}

return 0;

} /* main */

131

/* ***

* density ()

*

* returns value of probability density at (x,t)

*** */

double density(double x, double t)

{

double r = 0.0;

double ts = 1.0 + 3.03532 e7 * t * t;

r = 332452.0 *

exp((-22.2222 - 3.47222 e11 * x * x) / ts) *

(cos(3.06076 e10 * t * x / ts) +

cosh(5.55556 e6 * x / ts)) /

sqrt(ts);

return r;

} /* density */

get coeffs.c
/* ***

! Purpose:

! Reads in data at experimental time steps , and computes

! the Fourier coefficients , which are then saved.

** */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "defs.h"

/* function declarations */

void rescaledata(double x[], double xmin ,

double xmax);

132

int main(int argc , char *argv[])

{

/* variable declarations */

int ets; /* experimental time step */

int i,k;

double data[(int)EPOINTS];

double xmin , xmax;

double b_re[2*FK + 1]; /* Fourier coeffs (real) */

double b_im[2*FK + 1]; /* (imaginary) */

FILE *data_file;

FILE *coeffs_file;

char file_name[40];

int ferr;

printf("Computing coefficients for time step ... \n");

/* time loop */

for(ets = 0; ets < ESTEPS; ets++)

{

/* what’s going on */

printf("\t%d\n", ets);

/* open data file */

sprintf(file_name , "data/data_%d.txt", ets);

data_file = fopen(file_name , "r");

if(data_file == NULL)

{

printf("Couldn’t open necessary data file %d\n",

ets);

return -1;

}

133

/* open coeffs file */

sprintf(file_name , "data/coeffs_%d.txt", ets);

coeffs_file = fopen(file_name , "wb");

if(coeffs_file == NULL)

{

printf("Couldn’t open necessary coeffs file %d\n",

ets);

return -1;

}

/* load data */

for(i=0; i<(int)EPOINTS; i++)

{

fscanf(data_file , "%lf", &data[i]);

}

/* set boundaries */

xmin = XMIN;

xmax = XMAX;

/* rescale data */

rescaledata(data , xmin , xmax);

/* loop over k */

for(k=-FK; k<=FK; k++)

{

b_re[k+FK] = 0.0;

b_im[k+FK] = 0.0;

/* loop over data */

for(i=0; i<EPOINTS; i++)

{

/* calculate coeffs */

b_re[k+FK] = b_re[k+FK] +

cos(2.0 * M_PI * k * data[i]);

b_im[k+FK] = b_im[k+FK] +

sin(2.0 * M_PI * k * data[i]);

}

134

/* fix b_im */

b_im[k+FK] = - b_im[k+FK];

} /* k */

/* save boundaries and coefficients */

fwrite(&xmin , sizeof(double), 1, coeffs_file);

fwrite(&xmax , sizeof(double), 1, coeffs_file);

fwrite(b_re , sizeof(double), 2*FK+1, coeffs_file);

fwrite(b_im , sizeof(double), 2*FK+1, coeffs_file);

fclose(data_file);

fclose(coeffs_file);

} /* time */

return 0;

} /* main */

/* ***

* rescaledata()

*

* rescale data in x[] using xmin and xmax

*** */

void rescaledata(double x[], double xmin , double xmax)

{

int i;

double m = 1.0 / (xmax - xmin);

for(i=0; i<EPOINTS; i++)

{

x[i] = m * (x[i] - xmin);

}

} /* rescaledata */

135

get trajs.c
/* ***

! Purpose:

! Reads in Fourier coefficients and computes the Bohm

! trajectories using probability conservation and the

! cumulative probability function . The coefficients from

! two successive experimental time steps are combined

! with a weighted average to estimate densities between

! the experimental data time steps.

*** */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "defs.h"

/* global variables */

double br[2*FK+1]; /* avg. Fourier coeffs. */

double bi[2*FK+1];

/* function declarations */

double findx(double rvalue);

double cpf(double x);

int main(int argc , char *argv[])

{

/* variable declarations */

int ets; /* experimental time step */

int tts; /* traj time step */

int i,j;

double rvals[NTRAJS], cpfvals[NTRAJS];

double xtemp;

double *trajs;

double br1[2*FK+1], bi1[2*FK+1];

double br2[2*FK+1], bi2[2*FK+1];

FILE *coeffs_file;

136

FILE *trajs_file;

char file_name[40];

int ferr;

/* allocate trajs space */

trajs = (double *) malloc(

(NTRAJS *((ESTEPS -1)*TSTEPS + 1))*sizeof(double));

if(trajs == NULL)

{

printf("Could not allocate trajectory space.\n");

return -1;

}

/* set up r values between (0,1) */

for(i=0; i<NTRAJS; i++)

{

rvals[i] = (double)(i+1) / (NTRAJS +1.0);

}

/* time loop */

printf("Computing trajectories for time step ...");

for(ets = 0; ets < ESTEPS -1; ets++)

{

/* status */

printf("\n\t%d\t", ets);

/* load fourier coefficients for 2 densities */

sprintf(file_name , "data/coeffs_%d.txt", ets);

coeffs_file = fopen(file_name , "rb");

if(coeffs_file == NULL)

{

printf("Couldn’t open necessary coeffs file %d\n",

ets);

return -1;

}

/* don’t need first 2 values in coeffs_file */

fread(&xtemp , sizeof(double), 1, coeffs_file);

fread(&xtemp , sizeof(double), 1, coeffs_file);

137

fread(br1 , sizeof(double), 2*FK+1, coeffs_file);

fread(bi1 , sizeof(double), 2*FK+1, coeffs_file);

fclose(coeffs_file);

sprintf(file_name , "data/coeffs_%d.txt", ets + 1);

coeffs_file = fopen(file_name , "rb");

if(coeffs_file == NULL)

{

printf("Couldn’t open necessary coeffs file %d\n",

ets);

return -1;

}

/* don’t need first 2 values in coeffs_file */

fread(&xtemp , sizeof(double), 1, coeffs_file);

fread(&xtemp , sizeof(double), 1, coeffs_file);

fread(br2 , sizeof(double), 2*FK+1, coeffs_file);

fread(bi2 , sizeof(double), 2*FK+1, coeffs_file);

fclose(coeffs_file);

/* trajectory time loop */

for(tts = 0; tts < TSTEPS; tts++)

{

/* status */

printf("%d ", tts);

/* weighted average of coefficients */

for(i=0; i<=2*FK; i++)

{

br[i] = (1.0 - (double)tts/TSTEPS) * br1[i] +

((double)tts/TSTEPS) * br2[i];

bi[i] = (1.0 - (double)tts/TSTEPS) * bi1[i] +

((double)tts/TSTEPS) * bi2[i];

}

for(i=0; i<NTRAJS; i++)

{

/* x value [0,1] for r value */

xtemp = findx(rvals[i]);

138

/* rescale x, and add to trajs */

trajs[i * ((ESTEPS -1)*TSTEPS + 1) +

(ets*TSTEPS + tts)] =

(XMAX -XMIN)*xtemp + XMIN;

}

} /* trajectory time */

} /* time */

printf("fts\n");

/* final time step */

sprintf(file_name , "data/coeffs_%d.txt", ESTEPS -1);

coeffs_file = fopen(file_name , "rb");

if(coeffs_file == NULL)

{

printf("Couldn’t open necessary coeffs file %d\n",

ets);

return -1;

}

/* don’t need first 2 values in coeffs_file */

fread(&xtemp , sizeof(double), 1, coeffs_file);

fread(&xtemp , sizeof(double), 1, coeffs_file);

fread(br, sizeof(double), 2*FK+1, coeffs_file);

fread(bi, sizeof(double), 2*FK+1, coeffs_file);

fclose(coeffs_file);

for(i=0; i<NTRAJS; i++)

{

/* x values [0,1] for final time step */

xtemp = findx(rvals[i]);

/* rescale x, and add to trajs */

trajs[i * ((ESTEPS -1)*TSTEPS + 1) +

((ESTEPS -1)*TSTEPS)] =

(XMAX -XMIN)* xtemp + XMIN;

}

139

/* output trajectories */

sprintf(file_name , "data/trajs.txt");

trajs_file = fopen(file_name , "wb");

if(trajs_file == NULL)

{

printf("Couldn’t open necessary trajs file\n");

return -1;

}

fwrite(trajs , sizeof(double),

NTRAJS *((ESTEPS -1)*TSTEPS+1), trajs_file);

/* clean up */

fclose(trajs_file);

free(trajs);

return 0;

} /* main */

/* ***

* findx()

*

* finds x that corresponds to r by, x = CPF -1(r)

*** */

double findx(double rvalue)

{

double a = 0.0, b = 1.0;

double ya, yb;

double xm, ym;

int i;

ya = cpf(a) - rvalue;

yb = cpf(b) - rvalue;

if(floor(ya*yb) > 0) return 0.0;

140

/* fixed number of iterations of 50 */

for(i=0; i<50; i++)

{

xm = (a + b) / 2.0;

ym = cpf(xm) - rvalue;

if(floor(ya*ym) < 0)

{

b = xm;

yb = ym;

}

else

{

a = xm;

ya = ym;

}

}

return xm;

} /* findx */

/* ***

* cpf()

*

* computes CPF(x) using global Fourier coeffs

*** */

double cpf(double x)

{

int i;

const double TWOPI = 2.0 * M_PI;

double sum;

double norm = 1.0 / (1.0 + 2.0 * br[FK]);

sum = x / norm;

141

/* Fourier coefficients less than zero */

for(i=0; i<FK; i++)

{

sum = sum +

(br[i] * sin(TWOPI * (i-FK) * x) -

2.0 * bi[i] *

pow(sin(M_PI * (i-FK) * x), 2.0)

) / ((i-FK) * M_PI);

}

/* Fourier coefficients greater than zero */

for(i=FK+1; i<=2*FK; i++)

{

sum = sum +

(br[i] * sin(TWOPI * (i-FK) * x) -

2.0 * bi[i] *

pow(sin(M_PI * (i-FK) * x), 2.0)

) / ((i-FK) * M_PI);

}

/* normalize */

sum = sum * norm;

/* create limits */

if(sum < 1e-4)

sum = 0.0;

else if(sum > 0.9999)

sum = 1.0;

return sum;

} /* cpf */

142

get traj fits.c
/* ***

! Purpose:

! Reads in estimated particle trajectories. For each

! position uses a local least squares to find the

! smoothed out trajectory using a quadratic fit. Saves

! the computed fit parameters.

*** */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "defs.h"

/* macros */

#define TRAJ_MAX ((ESTEPS -1)*TSTEPS +1)

#ifndef max

#define max(a, b) (((a) > (b)) ? (a) : (b))

#endif

#ifndef min

#define min(a, b) (((a) < (b)) ? (a) : (b))

#endif

/* function declarations */

void localfit(double x[], double t[], int cnt ,

double *a, double *b, double *c);

int main(int argc , char *argv[])

{

/* variable declarations */

int trj;

int i,j,fnum;

double traj[TRAJ_MAX];

double times[TRAJ_MAX];

double a,b,c; /* quadratic parameters */

143

FILE *trajs_file;

FILE *fits_file;

/* open files */

trajs_file = fopen("data/trajs.txt", "rb");

if(trajs_file == NULL)

{

printf("Couldn’t open data/trajs.txt\n");

return -1;

}

fits_file = fopen("data/traj_fits.txt", "wb");

if(fits_file == NULL)

{

printf("Couldn’t open data/traj_fits.txt\n");

return -1;

}

/* set up time steps */

for(i=0; i<TRAJ_MAX ; i++)

{

times[i] = TMIN + (double)i *

(TMAX -TMIN) / (TRAJ_MAX -1.0);

}

/* loop over trajs */

printf("Fitting trajectory ...\n");

for(trj=0; trj<NTRAJS; trj++)

{

printf(" %d", trj);

/* load in next traj */

fread(traj , sizeof(double), TRAJ_MAX , trajs_file);

144

/* locally fit each position */

for(i=0; i<TRAJ_MAX; i++)

{

/* send fitting index */

j = max(i-FITNUM/2, 0);

if(i > FITNUM/2)

{

fnum = min(FITNUM , TRAJ_MAX -j);

}

else

{

fnum = FITNUM/2 + i;

}

localfit (&traj[j], ×[j], fnum , &a, &b, &c);

/* save quadratic fits for each position */

fwrite(&a, sizeof(double), 1, fits_file);

fwrite(&b, sizeof(double), 1, fits_file);

fwrite(&c, sizeof(double), 1, fits_file);

}

} /* traj loop */

/* clean up */

printf("\n");

fclose(trajs_file);

fclose(fits_file);

return 0;

} /* main */

145

/* ***

* localfit ()

*

* finds local quadratic fit a t^2 + b t + c using data

* x[] and t[] where cnt is the array size

*** */

void localfit(double x[], double t[], int cnt ,

double *a, double *b, double *c)

{

int i;

double St = 0.0;

double Sx = 0.0;

double St2 = 0.0;

double Sxt = 0.0;

double St3 = 0.0;

double St4 = 0.0;

double Sxt2 = 0.0;

double denom;

for(i=0; i<cnt; i++)

{

St += t[i];

Sx += x[i];

St2 += t[i]*t[i];

St3 += t[i]*t[i]*t[i];

St4 += t[i]*t[i]*t[i]*t[i];

Sxt += x[i]*t[i];

Sxt2 += x[i]*t[i]*t[i];

}

denom = St2*St2*St2 + cnt*St3*St3 +

St*St*St4 - St2 *(2.0*St*St3 + cnt*St4);

*a = (St2*St2*Sx - St*St3*Sx + cnt*St3*Sxt +

St*St*Sxt2 - St2*(St*Sxt + cnt*Sxt2))/denom;

146

*b = (St*St4*Sx + St2*St2*Sxt - cnt*St4*Sxt +

cnt*St3*Sxt2 - St2*(St3*Sx + St*Sxt2))/ denom;

*c = (St3*St3*Sx - St2*St4*Sx + St*St4*Sxt +

St2*St2*Sxt2 - St3*(St2*Sxt + St*Sxt2))/denom;

} /* localfit */

get R.c
/* ***

! Purpose:

! Reads in coeffs fit for density estimator , and the

! local least square fits for the trajectories. Computes

! and saves the particle location , estimated density , and

! actually density.

*** */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "defs.h"

/* macros */

#define TRAJ_MAX ((ESTEPS -1)*TSTEPS +1)

/* global variables */

double br[ESTEPS][2*FK+1]; /* Fourier coeffs. */

double bi[ESTEPS][2*FK+1];

/* function declarations */

double rhoE(double x, int ts);

double rhoA(double x, double t);

147

int main(int argc , char *argv[])

{

/* variable declarations */

int i,j;

double fits[TRAJ_MAX][3];

double time[TRAJ_MAX];

double xtemp;

double xnow;

double rho_est , rho_act;

FILE *coeffs_file;

FILE *fits_file;

FILE *r_file;

char file_name[40];

/* define times */

for(i=0; i<TRAJ_MAX; i++)

{

time[i] = TMIN + (double)i *

(TMAX -TMIN) / (TRAJ_MAX -1.0);

}

/* open fits and r files */

fits_file = fopen("data/traj_fits.txt", "rb");

r_file = fopen("data/traj_R.txt", "wb");

if(fits_file == NULL || r_file == NULL)

{

printf("Couldn’t open fits or R file\n");

return -1;

}

/* load in coeffs for all times */

for(i=0; i<ESTEPS; i++)

{

sprintf(file_name , "data/coeffs_%d.txt", i);

coeffs_file = fopen(file_name , "rb");

148

if(coeffs_file == NULL)

{

printf("Couldn’t open %s\n", file_name);

return -1;

}

/* don’t need first 2 values in coeffs_file */

fread(&xtemp , sizeof(double), 1, coeffs_file);

fread(&xtemp , sizeof(double), 1, coeffs_file);

fread(br[i], sizeof(double), 2*FK+1, coeffs_file);

fread(bi[i], sizeof(double), 2*FK+1, coeffs_file);

fclose(coeffs_file);

}

printf("Calculating R for trajectory ...\n");

/* loop on trajectories */

for(i=0; i<NTRAJS; i++)

{

/* notify world */

printf("%d ", i);

/* load in current traj_fits */

fread(&fits[0], sizeof(double),

3*TRAJ_MAX , fits_file);

/* loop time */

for(j=0; j<TRAJ_MAX; j++)

{

/* compute x at this time */

xnow = fits[j][0] * time[j] * time[j] +

fits[j][1] * time[j] +

fits[j][2];

/* rescale x [0,1] ?? */

xtemp = (xnow - XMIN) / (XMAX -XMIN);

/* compute rhoE(x), rhoA(x) */

rho_est = rhoE(xtemp , j);

149

rho_act = rhoA(xnow , time[j]);

/* rescale rhoE(x) ?? */

rho_est = rho_est / (XMAX -XMIN);

/* save (x, rhoE , and rhoA) */

fwrite(&xnow , sizeof(double), 1, r_file);

fwrite(&rho_est , sizeof(double), 1, r_file);

fwrite(&rho_act , sizeof(double), 1, r_file);

} /* end time loop */

} /* end traj loop */

/* clean up */

printf("\n");

fclose(fits_file);

fclose(r_file);

return 0;

} /* main */

/* ***

* rhoE()

*

* Estimated density rho at x and time step t. Needs

* global Fourier coeffs br[ESTEPS][2*FK+1] and

* bi[ESTEPS][2*FK+1]

*** */

double rhoE(double x, int ts)

{

int i;

const double TWOPI = 2.0 * M_PI;

double brA[2*FK+1];

double biA[2*FK+1];

150

double rho = 0.0;

/* current ESTEP and ESTEP+1 */

int et = (ts / TSTEPS);

int etplus = ts - TSTEPS * et;

/* find weight averages for br and bi */

for(i=0; i<2*FK+1; i++)

{

brA[i] = (1.0 - (double)etplus/TSTEPS) * br[et][i] +

((double)etplus/TSTEPS) * br[et+1][i];

biA[i] = (1.0 - (double)etplus/TSTEPS) * bi[et][i] +

((double)etplus/TSTEPS) * bi[et+1][i];

}

for(i=0; i<2*FK+1; i++)

{

rho += br[et][i] * cos(TWOPI * (i-FK) * x);

rho -= bi[et][i] * sin(TWOPI * (i-FK) * x);

}

rho *= 2.0;

rho += 1.0;

rho /= (1.0 + 2.0*br[et][FK]);

return rho;

} /* rhoE */

/* ***

* rhoA()

*

* Actual density rho at x and time t

*** */

double rhoA(double x, double t)

{

double r = 0.0;

double ts = 1.0 + 3.03532 e7 * t * t;

151

r = 332452.0 *

exp((-22.2222 - 3.47222 e11 * x * x) / ts) *

(cos(3.06076 e10 * t * x / ts) +

cosh(5.55556 e6 * x / ts)) /

sqrt(ts);

return r;

} /* rhoA */

get S.c
/* ***

! Purpose:

! Reads in coeffs fit for density estimator , and the

! local least square fits for the trajectories. Computes

! and saves the particle location , estimated phase , and

! actually phase.

*** */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "defs.h"

/* macros */

#define TRAJ_MAX ((ESTEPS -1)*TSTEPS +1)

#define dt (TMAX / TRAJ_MAX)

/* global variables */

double br[ESTEPS][2*FK+1]; /* Fourier coeffs. */

double bi[ESTEPS][2*FK+1];

double d1[2*DN+1], d2[2*DN+1]; /* derivative coeffs. */

/* function declarations */

double phaseE(double ph, double x, int ts, double v);

double phaseA(double ph, double x, double t, double v);

152

double rhoE(double x, int ts);

double rhoA(double x, double t);

int fact(int n);

void setup_d_coeffs(void);

int main(int argc , char *argv[])

{

/* variable declarations */

int i,j;

double fits[TRAJ_MAX][3]; /* fits for current traj */

double time[TRAJ_MAX];

double xtemp;

double xnow;

double phase_est , phase_act;

FILE *coeffs_file;

FILE *fits_file;

FILE *s_file;

char file_name[40];

/* define times */

for(i=0; i<TRAJ_MAX; i++)

{

time[i] = TMIN + (double)i *

(TMAX -TMIN) / (TRAJ_MAX -1.0);

}

/* setup derivative coeffs */

setup_d_coeffs();

/* open fits and r files */

fits_file = fopen("data/traj_fits.txt", "rb");

s_file = fopen("data/traj_S.txt", "wb");

153

if(fits_file == NULL || s_file == NULL)

{

printf("Couldn’t open fits or S file\n");

return -1;

}

/* load in coeffs for all times */

for(i=0; i<ESTEPS; i++)

{

sprintf(file_name , "data/coeffs_%d.txt", i);

coeffs_file = fopen(file_name , "rb");

if(coeffs_file == NULL)

{

printf("Couldn’t open %s\n", file_name);

return -1;

}

/* don’t need first 2 values in coeffs_file */

fread(&xtemp , sizeof(double), 1, coeffs_file);

fread(&xtemp , sizeof(double), 1, coeffs_file);

fread(br[i], sizeof(double), 2*FK+1, coeffs_file);

fread(bi[i], sizeof(double), 2*FK+1, coeffs_file);

fclose(coeffs_file);

}

printf("Calculating S for trajectory ...\n");

/* loop on trajectories */

for(i=0; i<NTRAJS; i++)

{

/* notify world */

printf("%d ", i);

/* load in current traj_fits */

fread(&fits[0], sizeof(double),

3*TRAJ_MAX , fits_file);

phase_est = 0.0;

phase_act = 0.0;

154

/* loop time */

for(j=0; j<TRAJ_MAX; j++)

{

/* compute x at this time */

xnow = fits[j][0] * time[j] * time[j] +

fits[j][1] * time[j] +

fits[j][2];

/* compute phases */

phase_est = phaseE(phase_est , xnow , j,

fits[j][0] * time[j] + fits[j][1]);

phase_act = phaseA(phase_act , xnow , time[j],

fits[j][0] * time[j] + fits[j][1]);

/* save (x, phaseE , and phaseA) */

fwrite(&xnow , sizeof(double), 1, s_file);

fwrite(&phase_est , sizeof(double), 1, s_file);

fwrite(&phase_act , sizeof(double), 1, s_file);

} /* end time loop */

} /* end traj loop */

/* clean up */

printf("\n");

fclose(fits_file);

fclose(s_file);

return 0;

} /* main */

155

/* ***

* setup_d_coeffs()

*

* computes derivative coeffs.

*** */

void setup_d_coeffs(void)

{

int k;

d1[DN] = 0.0;

for(k=1; k<DN+1; k++)

{

d1[k+DN] = pow(-1, (double)(k+1)) *

(double)(fact(DN) * fact(DN)) /

(double)(fact(DN-k) * fact(DN+k) * k);

d2[k+DN] = 2.0 * d1[k+DN] / (double)k;

}

d2[DN] = 0.0;

for(k=1; k<DN+1; k++)

{

d1[DN-k] = -d1[DN+k];

d2[DN-k] = d2[DN+k];

d2[DN] += d2[DN+k];

}

d2[DN] *= -2.0;

} /* setup_d_coeffs */

156

/* ***

* factorial n!

*** */

int fact(int n)

{

int i;

int f = 1;

for(i=1; i<=n; i++)

{

f *= i;

}

return f;

} /* fact */

/* ***

* phaseE()

*

* Estimate of phase based on previous phase ph and the

* position x and time step ts.

*** */

double phaseE(double ph, double x, int ts, double v)

{

int i;

double L = 0.0;

double T, V, Q, S;

double C1, C2;

double a[2*DN+1];

double r1, r2;

/* T = 0.5*m*v*v */

T = 0.5 * MASS * v * v;

/* V = 0 */

V = 0.0;

157

/* Q */

Q = 0.0;

/* sample rho */

for(i=0; i<(2*DN+1); i++)

{

a[i] = rhoE(x - (i-DN)*SX, ts);

}

/* r1 & r2 */

r1 = 0.0;

r2 = 0.0;

for(i=0; i<(2*DN+1); i++)

{

r1 += d1[i] * a[i];

r2 += d2[i] * a[i];

}

r1 /= DT;

r2 /= (DT * DT);

/* C1 = 0.5 * rho1(x,t) / rho(x,t) */

C1 = 0.5 * r1 / rhoE(x,ts);

/* C2 = 0.5 * (rho2(x,t)/rho(x,t) - 4.0*C1*C1) */

C2 = 0.5 * (r2 / rhoE(x,ts) -

4.0 * C1 * C1);

/* Q = - h*h / (2 * m) * (C1*C1 + C2) */

Q = - HBARMASS * (

C1 * C1 + C2);

/* L */

L = T + V + Q;

/* S = ph + L*dt */

S = ph + L * dt;

return S;

} /* phaseE */

158

/* ***

* phaseA()

*

* Estimate of phase based on previous phase ph and the

* position x and time step ts.

*** */

double phaseA(double ph, double x, double t, double v)

{

int i;

double L = 0.0;

double T, V, Q, S;

double C1, C2;

double a[2*DN+1];

double r1, r2;

/* T = 0.5*m*v*v */

T = 0.5 * MASS * v * v;

/* V = 0 */

V = 0.0;

/* Q */

Q = 0.0;

/* sample rho */

for(i=0; i<(2*DN+1); i++)

{

a[i] = rhoA(x - (i-DN)*SX, t);

}

/* r1 & r2 */

r1 = 0.0;

r2 = 0.0;

for(i=0; i<(2*DN+1); i++)

159

{

r1 += d1[i] * a[i];

r2 += d2[i] * a[i];

}

r1 /= DT;

r2 /= (DT * DT);

/* C1 = 0.5 * rho1(x,t) / rho(x,t) */

C1 = 0.5 * r1 / rhoA(x,t);

/* C2 = 0.5 * (rho2(x,t)/rho(x,t) - 4.0*C1*C1) */

C2 = 0.5 * (r2 / rhoA(x,t) -

4.0 * C1 * C1);

/* Q = - h*h / (2 * m) * (C1*C1 + C2) */

Q = - HBARMASS * (

C1 * C1 + C2);

/* L */

L = T + V + Q;

/* S = ph + L*dt */

S = ph + L * dt;

return S;

} /* phaseE */

/* ***

* rhoE()

*

* Estimated density rho at x and time step t. Needs

* global Fourier coeffs br[ESTEPS][2*FK+1] and

* bi[ESTEPS][2*FK+1]

*** */

double rhoE(double x, int ts)

{

int i;

const double TWOPI = 2.0 * M_PI;

160

double brA[2*FK+1];

double biA[2*FK+1];

double rho = 0.0;

double x01 = (x - XMIN) / (XMAX -XMIN);

/* current ESTEP and ESTEP+1 */

int et = (ts / TSTEPS);

int etplus = ts - TSTEPS * et;

/* find weight averages for br and bi */

for(i=0; i<2*FK+1; i++)

{

brA[i] = (1.0 - (double)etplus/TSTEPS) * br[et][i] +

((double)etplus/TSTEPS) * br[et+1][i];

biA[i] = (1.0 - (double)etplus/TSTEPS) * bi[et][i] +

((double)etplus/TSTEPS) * bi[et+1][i];

}

for(i=0; i<2*FK+1; i++)

{

rho += br[et][i] * cos(TWOPI * (i-FK) * x01);

rho -= bi[et][i] * sin(TWOPI * (i-FK) * x01);

}

rho *= 2.0;

rho += 1.0;

rho /= (1.0 + 2.0*br[et][FK]);

/* rescale rhoE(x) */

rho /= (XMAX -XMIN);

return rho;

} /* rhoE */

161

/* ***

* rhoA()

*

* Actual density rho at x and time t

*** */

double rhoA(double x, double t)

{

double r = 0.0;

double ts = 1.0 + 3.03532 e7 * t * t;

r = 332452.0 *

exp((-22.2222 - 3.47222 e11 * x * x) / ts) *

(cos(3.06076 e10 * t * x / ts) +

cosh(5.55556 e6 * x / ts)) /

sqrt(ts);

return r;

} /* rhoA */

162

Bibliography

[1] Y. Aharonov, B. G. Englert, and Marlan O. Scully. Protective measure-

ments and Bohm trajectories. Phys. Lett. A, 263:137, 1999. 266:216

2000.

[2] Yakir Aharonov and Lev Vaidman. About position measurements which

do not show the Bohmian particle position. In James T. Cushing, Arthur

Fine, and Sheldon Goldstein, editors, Bohmian Mechanics and Quantum

Theory: An Appraisal. Kluwer Academic, 1996.

[3] Alain Aspect, Jean Dalibard, and Gerard Roger. Experimental test

of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett.,

49(25):1804, 1982.

[4] Dmytro Babyuk and Robert E. Wyatt. Multidimensional reactive scat-

tering with quantum trajectories: Dynamics with 50-200 vibrational modes.

J. Chem. Phys., 124:214109, 2006.

[5] John R. Barker. On the completeness of quantum hydrodynamics: Vor-

tex formation and the need for both vector and scalar quantum potentials

in device simulation. J. Comp. Elect., 1:17–21, 2002.

[6] Frederick J. Belinfante. A Survey of Hidden-Variables Theories. Perga-

mon Press, 1973.

[7] John S. Bell. On the Einstein-Podolsky-Rosen paradox. Physics, 1:195,

1964.

163

[8] John S. Bell. Speakable and Unspeakable in Quantum Mechanics: Col-

lected Papers in Quantum Mechanics. Cambridge University Press, 1987.

[9] M. Bienert, F. Haug, W. P. Schleich, and M. G. Raizen. State recon-

struction of the kicked rotor. Phys. Rev. Lett., 89(5):050403, 2002.

[10] David Bohm. Quantum Thoery. Prentic Hall, Inc., New York, 1951.

Dover Publications, Inc. in 1989.

[11] David Bohm. A suggested interpretation of the quantum theory in terms

of ’hidden’ variables. Phys. Rev., 85:166, 180, 1952.

[12] David Bohm and Basil J. Hiley. The Undivided Universe. Routledge,

New York, 1993.

[13] Niels Bohr. Atomic Physics and Human Knowledge. Science Editions,

New York, 1961.

[14] Siegmund Brandt and Hans D. Dahmen. The Picture Book of Quantum

Mechanics. Springer-Verlag, New York, 3rd edition, 2001.

[15] Siegmund Brandt, Hans D. Dahmen, E. Gjonaj, and T. Stroh. Quantile

motion and tunneling. Phys. Lett. A, 249:265, 1998.

[16] I. Burghardt and L.S. Cederbaum. Hydrodynamic equations for mixed

quantum states. I. General formulation. J. Chem. Phys., 115:10303,

2001.

[17] Timothy M. Coffey, Robert E. Wyatt, and William C. Schieve. Unique-

ness of Bohmian Mechanics, and Solutions from Probability Conservation.

arXiv: quant-ph: 0710.4099v1, 2007.

164

[18] Timothy M. Coffey, Robert E. Wyatt, and William C. Schieve. Monte

Carlo generation of Bohmian trajectories. J. Phys. A: Math. Theor.,

41:335304, 2008.

[19] Timothy M. Coffey, Robert E. Wyatt, and William C. Schieve. Quantum

trajectories from kinematic considerations. J. Phys. A: Math. Theor.,

43:335301, 2010.

[20] David B. Cook. Probability and Schrödinger’s Mechanics. World Scien-

tific, New York, 2002.

[21] Louis de Broglie. Non-Linear Wave Mechanics. Elsevier Publishing

Company, 1960. Translated by A. J. Knodel and J. C. Miller.

[22] Qiang Du and Maria Emelianenko. Acceleration schemes for computing

centroidal Voronoi tessellations. Numer. Linear Algebra Appl., 13:173–

192, 2006.

[23] Qiang Du and Maria Emelianenko. Uniform convergence of a nonlinear

energy-based multilevel quantization scheme. SIAM J. Num. Anal.,

46(3):1483–1502, 2008.

[24] Qiang Du, Vance Faber, and Max Gunzburger. Centroidal Voronoi tes-

sellations: applications and algorithms. SIAM Rev., 41(4):637–676, 1999.

[25] Detlef Dürr, Walter Fusseder, Sheldon Goldstein, and Nino Zanghi. Com-

ment on ’Surrealistic Bohm trajectories’. Z. Naturforsch, 48a:1261–1262,

1993.

165

[26] A. Eichenberger, G. Genevés, and P. Gournay. Determination of the

planck constant by means of a watt balance. Eur. Phys. J. Special

Topics, 172:363, 2009.

[27] Maria Emelianenko, Lili Ju, and Alexander Rand. Nondegeneracy and

weak global convergence of the Lloyd Algorithm in R
D. SIAM J. Num.

Anal., 46(3):1423–1441, 2008.

[28] Berthold-Georg Englert, Marlan O. Scully, Georg Süssmann, and Herbert

Walther. Surrealistic Bohm trajectories. Z. Naturforsch, 47a:1175–1186,

1992.

[29] Berthold Georg Englert, Marlan O. Scully, Georg Süssmann, and Herbert

Walther. Reply to comment on ’Surrealistic Bohm trajectories’. Z.

Naturforsch, 48a:1263–1264, 1993.

[30] Steven Fortune. A sweepline algorithm for Voronoi diagrams. Algorith-

mica, 2:153–174, 1987. C program code avaiable at

http://ect.bell-labs.com/who/sjf/.

[31] Matthias Freyberger, Patrick Bardoff, Clemens Leichtle, Guenter Schrade,

and Wolfgang Schleich. The art of measuring quantum states. Phys.

World, 10(11):41–45, November 1997.

[32] Matthias Freyberger, Stefan H. Kienle, and Valery P. Yakovlev. Inter-

ferometric measurement of an atomic wave function. Phys. Rev. A,

56(1):195, 1997.

[33] Matthias Freyberger and Wolfgang P. Schleich. True vision of quantum

state. Nature, 386:121–122, March 1997.

166

[34] Marco Genovese. Research on hidden variable theories: A review of

recent progresses. Phys. Rep., 413:319–396, 2005.

[35] J. E. Gentle. Random Number Generation and Monte Carlo Methods.

Springer-Verlag, New York, 2nd edition, 2003.

[36] Allen Gersho and Robert M. Gray. Vector Quantization and Signal

Compression. Kluwer Academic, Boston, 1992.

[37] B. J. Hiley, R. E. Callaghan, and O. J. E. Maroney. Quantum trajecto-

ries, real, surreal or an approximation to a deeper process? arXiv:quant-

ph/0010020v2, November 2000.

[38] Basil J. Hiley and R. E. Callaghan. Delayed-choice experiments and the

Bohm approach. Phys. Scr., 74:336–348, 2006.

[39] Joseph O. Hirschfelder, Charles J. Goebel, and Ludwig W. Bruch. Quan-

tized vortices around wavefunction nodes. ii. J. Chem. Phys., 61:5456,

1974.

[40] Peter Holland. Uniqueness of paths in quantum mechanics. Phys. Rev.

A, 60(6):4326, December 1999.

[41] Peter R. Holland. The Quantum Theory of Motion. Cambridge Univer-

sity Press, New York, 1993.

[42] Dragan Jukić and Rudolf Scitovski. Least squares fitting Gaussian type

curve. Appl. Math. Comp., 167:286–298, 2005.

[43] Simon Kochen and E. Specker. The problem of hidden variables in quan-

tum mechanics. J. Math. Mech., 17:59–87, 1968.

167

[44] Ch. Kurtsiefer and J. Mlynek. A 2-dimensional detector with high spatial

and temporal resolution for metastable rare gas atoms. Appl. Phys. B,

64:85–90, 1997.

[45] Ch. Kurtsiefer, T. Pfau, and J. Mlynek. Measurement of the Wigner

function of an ensemble of helium atoms. Nature, 386:150–153, March

1997.

[46] L. D. Landau and E. M. Lifshitz. Quantum Mechanics (Non-relativistic

Theory). Pergamon Press, New York, 3rd edition, 1977.

[47] T. G. Lewis. Distribution Sampling for Computer Simulation. Lexington

Books, Massachusetts, 1975.

[48] S. P. Lloyd. Least Squares Quantization in PCM. IEEE Trans. Inf.

Theo., IT-28:129–137, 1982. Reprinted in Quantization, edited by P. F.

Swaszek (Van Nostrand Reinhold, New York, 1985).

[49] Courtney L. Lopreore and Robert E. Wyatt. Quantum wave packet

dynamics with trajectories. Phys. Rev. Lett., 82:5190, 1999.

[50] J. Max. Quantizing for Minimum Distortion. IEEE Trans. Inf. Theo.,

IT-6:7–12, 1960. Reprinted in Quantization, edited by P.F. Swaszek (Van

Nostrand Reinhold, New York, 1985).

[51] N. David Mermin. Hidden variables and the two theorems of John Bell.

Rev. Mod. Phys., 65(3):803, July 1993.

[52] Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara. Spatial Tessella-

tions. John Wiley & Sons, New York, 1992.

168

[53] Oliver Passon. Why isn’t every physicist a Bohmian?, 2005. arXiv:quant-

ph/0412119v2.

[54] Wolfgang Pauli. In Gauthiers-Villiars et Cie, editor, Reports on the 1927

Solvay Conference, Paris, 1928.

[55] T. Pfau and Ch. Kurtsiefer. Partial reconstruction of the motional

wigner function of an ensemble of helium atoms. J. Mod. Optics,

44(11/12):2551–2564, 1997.

[56] C. Philippidis, C. Dewdney, and B. J. Hiley. Quantum interference and

the quantum potential. Il Nuovo Cimento, 52B:15–28, 1979.

[57] Bill Poirier. Optimal separable bases and series expansions. Phys. Rev.

A, 56:120, 1997.

[58] J. O. Ramsay and B. W. Silverman. Functional Data Analysis. Springer,

New York, 2nd edition, 2005.

[59] M. G. Raymer. Measuring the quantum mechanical wave function. Cont.

Phys., 38(5):343–355, 1997.

[60] Th. Richter. Reconstruction of the quantum state via position distri-

bution and its time derivative. Phys. Rev. A, 54(3):2499, September

1996.

[61] Ángel S Sanz and F Borondo. A quantum trajectory description of

decoherence. Eur. Phys. J. D, 44:319–326, 2007.

[62] Ángel S Sanz, F Borondo, and Salvador Miret-Artés. Causal trajectories

description of atom diffraction by surfaces. Phys. Rev. B, 61(11):7743–

7751, 2000.

169

[63] Ángel S Sanz and Salvador Miret-Artés. A causal look into the quantum

talbot effect. J. Chem. Phys., 126:234106, 2007.

[64] Marlan O. Scully. Do Bohm trajectories always provide a trustworthy

physical picture of particle motion? Phys. Scr., T76:41–46, 1998.

[65] Richard Steiner, David Newell, and Edwin Williams. Details of the 1998

Watt balance experiment determining the Planck constant. J. Res. Natl.

Stand. Technol., 110:1–26, 2005.

[66] W. Struyve, W. De Baere, J. De Neve, and S. De Weirdt. On the

uniqueness of paths for spin-0 and spin-1 quantum. Phys. Lett. A,

322:84–95, 2004.

[67] Michael E. Tarter and Michael D. Lock. Model-Free Curve Estimation.

Chapman and Hall, New York, 1993.

[68] John von Neumann. Mathematische Grundlagen der Quantummechaniek.

Springer, Berlin, 1932. Mathematical Foundations of Quantum Mechan-

ics, Princeton University Press, New Jersey, 1955.

[69] John von Neumann. Various techniques used in connection with random

digits. Nat. Bur. Standards, 12:36–38, 1951.

[70] S. Weinberg. Unpublished email correspondence to Sheldon Goldstein.

[71] Edwin R. Williams, Richard L. Steiner, David B. Newell, and Paul T.

Olsen. Accurate Measurement of the Planck Constant. Phys. Rev.

Lett., 81(12):2404, September 1998.

[72] Robert E. Wyatt. Quantum Dynamics with Trajectories: Introduction to

Quantum Hydrodynamics. Springer, New York, 2005.

170

Vita

Timothy Michael Coffey was born in Chicago, Illinois on 12 February

1970, the son of Virginia and Timothy Coffey. He began his college studies

at Reed College in 1988. Two years later he left school, and began working

in Reno, Nevada as a casino dealer. While in Reno he received a US Patent

for a video game screen divider. In 1997 he moved back to Portland, Oregon

and began working for a national non-profit organization. In 2002, he finally

returned to Reed College and received the Bachelor of Arts degree in Physics

in 2004.

In August 2004, he entered the doctoral program in the Department

of Physics at The University of Texas at Austin, where he was employed as

a Teaching Assistant and an Assistant Instructor, winning a Distinguished

Teaching Award in 2009. Fall of 2006 he began working with Dr. William

C. Schieve, and then in fall 2008 began to work additionally with Dr. Robert

E. Wyatt.

Permanent address: 7504 Cayenne Lane
Austin, Texas 78741

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

171

