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This study develops methods to represent the effect of subgrid scale topog-

raphy for shallow water hydrodynamic models using Cartesian grids. Neglect of

subgrid scale topographic variability is recognized as causing misrepresentation of

wetting and drying processes (Defina, 2000). Subgrid topography has been previ-

ously parameterized at model-resolved grid scales using data from high-resolution

digital elevation models to capture flow area and volume effects (e.g., Casulli, 2009),

but proposed approaches have neglected key aspects of flow resistance. Form drag

exerted by unresolved subgrid features cannot be arbitrarily neglected for shallow

flow dynamics as it introduces complexity through directional variability. That is,

the conventional approach to modeling subgrid frictional effects is through drag co-

efficients that apply identically to all flow directions through a grid cell; however,

subgrid features can introduce directional bias through form drag, e.g., an embank-

ment that blocks flow in only one direction.
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In the present work, two new model schemes were developed to address the

frictional forcing on subgrid scale. These schemes are extensions of the subgrid

modeling ideas of Volp et al. (2013) and Casulli (2009). The first new scheme is

a subgrid drag model that determines directional drag coefficients representing the

integrated and directionally-biased effects of subgrid drag. The second new scheme

is a subgrid momentum model using the integrated fluxes through faces of a grid cell

to represent subgrid forces and acceleration at the resolved-scale interface between

two grid cells. The combination of these two methods is demonstrated to provide an

approach to representing subgrid physical processes that have been missing in prior

models.

The new subgrid models were implemented in the Fine Resolution Environ-

mental Hydrodynamics Model (Frehd) and validated using model-model comparisons

at fine and coarse grid resolution. The validation test cases use real-world estuar-

ine topography of a section from a 1×1 m lidar survey of the Nueces River Delta

(Texas, USA). The new subgrid models are shown to reduce discrepancies between

coarse-grid and fine-grid simulations over the time-space domain. Of key importance

is that the new models can represent the flow deflection by subgrid topographic ob-

structions that cannot be captured without directional drag coefficients. This study

indicates that application of the new subgrid modeling approaches can reduce grid-

scale dependency that otherwise requires finer grid resolution to adequately capture

flow physics.
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Chapter 1

Introduction

1.1 Unresolved topography and subgrid methods

It is well understood that numerical models for real-world shallow water flows

are sensitive to the model grid scale, i.e., the relationship between the resolved model

grid and unresolved subgrid features (Yu and Lane, 2006a; Horritt and Bates, 2001).

The grid scale controls both the resolved flow scale and the submerged topography

that can be directly represented in the discrete governing equations (Nicholas and

Mitchell, 2003). Until recently, practical grid scales for shallow-water hydrodynamic

models were often finer than, or similar to the surveyed topographic data (Blöschl

and Grayson, 2001). For such conditions the grid-scale bottom topography can be

reasonably approximated by simple interpolation from survey data and the unknown

subgrid features can be represented by a friction parameter, which usually is obtained

from literature estimates or calibration. The resulting model fidelity is constrained

by survey data rather than model physics and numerical methods (McMillan and

Brasington, 2007). However, with the recent developments in topographic survey

technologies (e.g., aerial photometry, remote sensing, hyper-spectral image process-

ing, etc.), it is possible to obtain topographic detail that is far finer than the practical

discretization grid scales (Dottori et al., 2013). Therefore, we are faced with an open

question of how to effectively use such detailed topographic information (hereinafter,
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denoted as “subgrid topography”) for the greatest fidelity without actually resolving

the finest known details.

A fine grid allows a numerical hydrodynamic model to capture flow effects

of minor topographic features, but can dramatically increase computational cost

(Özgen et al., 2015). For example, a two-dimensional (2D) model with a 1×1 m grid

will require 100 times more grid cells than a model with a 10×10 m grid, and will

require a time step that is 1/10th the size, so the overall computational cost increases

by 1,000 for a linear change from 10 m to 1 m resolution. Although massively

parallel supercomputers with direct computation of hydrodynamics at fine scales is

possible (e.g., Aizinger et al., 2013; Lambrechts et al., 2008), such computational

capabilities are not readily accessible to many engineers and scientists who need to

use hydrodynamic models for real-world solutions. Furthermore, engineering analyses

of “what if” cases typically use multiple model runs with a variety of environmental

forcings, which might require more supercomputing CPU time than is cost effective.

Thus, despite advances in supercomputing, there is a need for efficient hydrodynamic

modeling at grid scales that are coarser than the known topographical features.

Various grid schemes have been developed in a form of (i) adaptive grids

(e.g., Liang and Borthwick, 2009), (ii) unstructured grids (e.g., Sehili et al., 2014;

Begnudelli and Sanders, 2007), (iii) multi-scale grid modeling such as hierarchical

grid refinement (Platzek et al., 2015), and (iv) cut-cell approach (e.g., Rosatti et al.,

2005) (see Figure 1.1). Such schemes use refined grids locally in time-space domain

for representing the effects of small topographic features. Resolving fine-scale features

with the schemes outlined in Figure 1.1 typically increases computational complexity

2
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Figure 1.1: Locally refined grid schemes in time-space domain
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of grid generation and/or solution algorithms. In contrast, a structured grid scheme is

easy to implement and typically has computationally-efficient solutions, but requires

the same grid resolution throughout the model grid (Platzek et al., 2015). Numerical

schemes addressing this disagreement between topographic data resolution and model

grid resolution (hereinafter, denoted as a “subgrid method”) have been of interest for

their potential computational efficiency (Casulli, 2009; Yu and Lane, 2006a; Defina,

2000). A subgrid method generally parameterizes the effects of topographic details

into the governing equations (Platzek et al., 2015; Dottori et al., 2013). A goal

for any subgrid method is to accurately reproduce the resolved-scale flow processes

influenced by subgrid features at lower computational costs than a fine-scale resolved

model.

Subgrid topographic structures can deflect, force, or impede flow (Chen et al.,

2012; Yu and Lane, 2006a), and affect the local storage volume for a given surface

elevation (Dottori and Todini, 2013; Yu and Lane, 2006a). Subgrid spatial hetero-

geneity in emergent/submerged topography creates a geometry problem because the

net inflow volume into a resolved grid cell and the elevation change are no longer

related by the simple resolved grid geometry (Defina, 2000). That is, a net inflow

volume (dV ) into a resolved grid cell of discrete surface area A = ∆x∆y without

emergent subgrid topography will result in an elevation change of dη = dV A−1.

However, emergent subgrid topography creates a relationship between the wet sur-

face area and dry surface area as a function of elevation (η), such that a relationship

of the form dη = α(η)V A−1 is required, where α(η) is a function representing the

effects of the emergent subgrid topography that can vary nonlinearly with η. Further-

4



more, at the face between two resolved grid cells, any subgrid topography (emergent

of submerged) affects the flow area between the cells and hence the relationship be-

tween velocity and flux. The resulting discrepancies between the resolved-scale and

fine-scale water volumes and fluxes will, in turn, cause errors in critical wetting and

drying processes such as flow rate, time-space coverage of inundation, and flow path

(Yu and Lane, 2006a).

The effects of emergent topography can be examined through a conceptual

model relating η, the mean bottom elevation (Zb) and a range of subgrid bottom

elevations (zb). With a change of the surface elevation (dη), we can consider three

possible conditions illustrated in Figure 1.2: (i) the upper panels illustrate the fully-

flooded condition when η > max(zb) and η > Zb, (ii) the middle panels illustrate the

emergent topography condition when η < max(zb) and η > Zb, and (iii) the lower

panels show the unresolved volume condition when η < Zb and η > min(zb).

In conventional Cartesian-grid models such as ELCOM (Hodges et al., 2000)

or TRIM (Casulli and Cheng, 1992), the volume change at a discrete cell (dV ) is

determined with dV = Adh, where A is the cell surface area and h is the depth,

defined as h = η − Zb. For our conceptual model, in condition (i) the dV is un-

changed from the conventional Cartesian-grid approach, but for conditions (ii) and

(iii) requires A = f(h) or A = f(η), which introduces an additional nonlinearity into

the governing equations. Furthermore, for sufficiently complex topography the water

storage volume below the fully flooded condition will depend upon the grid scale, as

illustrated in Figure 1.3.

Neglect of subgrid topographic variability can cause unresolved local forcing

5
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Figure 1.2: A representative cross-section of a grid cell with resolved topography
(left) and unresolved topography (right). The nomenclature, dη denotes a change
of the free-surface elevation (η), Zb and max zb denote the resolved-grid bottom
elevation and the highest subgrid elevation, respectively.
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Figure 1.3: Storage volume (V ) of fine grid bathymetry and coarse grid bathymetry
in relation with a change of the surface elevation (η). The nomenclature, Zb and
max zb denote the resolved grid bottom elevation and the highest subgrid elevation,
respectively.

7



and under/overestimation of friction (Volp et al., 2013; Yu and Lane, 2006a). The

bottom friction in a momentum equation typically is a functional form of CDu
2, where

CD is an empirical drag coefficient or any friction parameter and u2 is the square of

the flow velocity. The upper panel of Figure 1.4 shows an extension of our conceptual

model to consider velocity/drag effects associated with variability associated with

subgrid obstructions; specifically, the local velocity variability (i.e., ui: i ∈ {1 : N},

with N denoting the number of discrete subgrid units) and a locally-varying drag

coefficient (i.e., CDi: i ∈ {1 : N}) that might represent different forms of submerged

vegetation. The bottom friction at a resolved grid cell is CDcū
2 with the resolved

flow velocity ū and drag coefficient CDc. We expect that CDcū
2
i =

∑
i(CDiu

2
i )/N

only under conditions where the CDc is carefully tuned. There is no reason to expect

that such a tuning should be independent of ū.

Finally, our conceptual model needs to consider cross-sectional area effects for

shear terms in the momentum equation that are affected by emergent topography, as

illustrated in the lower panel of Figure 1.4. Surface forces (F ) between the fluid in

two resolved grid cells are functions of the turbulent shear stress τ and the cell face

flow area Af , such that F = τAf . The flow area Af in the resolved grid geometry is

simply Af = h∆x or h∆y compared to a more complicated nonlinear function of h

implied in the sketch for emergent subgrid topography.

Some previous subgrid methods represented the effects of unresolved topog-

raphy with a porosity parameter (e.g., Cea and Vázquez-Cendón, 2010; Guinot and

Spares-Frazão, 2006). Others used an averaging approach for the “wet-dry” phase-

modified governing equations over a computation unit (e.g., Defina, 2000). These
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Figure 1.4: A representative cross-section of a grid cell with resolved topography
(left) and unresolved topography (right). The nomenclature, ū and CDc denote the
velocity and drag coefficient of the resolved grid cell; ui and CDi denote the local
velocity and local drag coefficient at the location i (i ∈ {1, 2, . . . , 5}); and Af denotes
a representative flow area of the grid cell.
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can be considered forms of “subgrid geometric parameterization” as they rely only

on the geometry and for parameterization and do not consider dynamic flow effects.

The approach of Defina (2000) addressed the geometry problem corresponding to a

change of the free-surface elevation (dη) that provides nonlinearity associated with

emergent/submerged topography (Figs. 1.2∼1.3, as discussed above).

An approach introduced by Casulli (2009) used integrated fluxes in/out of a

grid cell over subgrid topography linked to dη in a volume-conserving scheme. Two

key drawbacks have been previously noted with the Casulli (2009) approach: (i)

the inability to represent unresolved flow connectivity or blockage on subgrid scale

as illustrated in Figure 1.5, and (ii) the friction slope requirement within a model-

resolved grid cell (Platzek et al., 2015; Volp et al., 2013; Stelling, 2012). The friction

slope requirement across a model-resolved grid cell can cause a misrepresentation of

energy loss by subgrid obstructions causing backwater (e.g., embankments), steering

effects (e.g., narrow channels), or spatially-varying shear.

Despite its importance in shallow water dynamics (Yu and Lane, 2006b), the

issue of subgrid bottom friction has not been addressed with the type of numeri-

cal experimentation previously applied to the issues of subgrid storage volume and

subgrid-face flow area that were discussed above. Friction parameters have often

been defined as a single value applied to the bulk flow that is set using either empir-

ical data (Lane, 2005) or calibration (Wang et al., 2012). Some recent studies have

included a dynamic friction model that depends on flow depth to incorporate nonlin-

ear effects of subgrid topography (hereinafter, “subgrid friction parameterization”).

A common approach in prior subgrid friction models is use of a local roughness height
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derived from a representative (i.e., model-resolved) water depth and the mixing layer

theory (e.g., Casas et al., 2010). A recent new avenue in the subgrid friction param-

eterization is the quadtree approach of Volp et al. (2013), which uses four subgrid

momentum domains within a resolved grid cell. The integrated effect of local friction

is distributed over a sub-domain (a quarter of a grid cell) with known subgrid to-

pography, sub-domain volume, and resolved grid face velocities. The friction model

of Volp et al. (2013) has an effect of considering variability of friction across each

sub-domain, but variability is constrained to the four sub-domains.

To date, there are no subgrid models that comprehensively represent unre-

solved flow connectivity or blockages created by subgrid topographic features. Here

a “feature” can be considered a coherent set of subgrid elevations forming obstruc-

tions, channels, or depressions that might steer or block the flow. For example, as

illustrated in Figure 1.5 there can be subgrid-scale passages whose bottom elevations

(zb) are lower than the resolved-scale bottom elevation (zb ≤ Zb). Physically, flow

is possible along contiguous subgrid channels, but cannot occur at the resolved grid

scale when the resolved grid cell is “dry” (i.e., η ≤ Zb). Representing the effects of

these features at the resolved flow scales is a challenge as their effects are due to

the coherent relationships forming the feature rather than the statistical variability

of the topography. One partially-effective approach addressing the effect of subgrid

blockage in prior studies is sampling a representative subgrid topographic elevation

of embankments, and assigning it as the resolved grid cell geometry (e.g., Platzek

et al., 2015). In another approach, narrow embankments that are as long as (or

longer than) a single resolved grid cell have been shown to be effectively represented
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Figure 1.5: A cross-section of two neighboring grid cells with resolved topography
(left) and unresolved topography (right). Unresolved subgrid topographic features:
(top) subgrid embankments, (middle) subgrid flow passages, and (bottom) isolated
ponds. Blue arrows indicate flow velocity.
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as edges in a hydrodynamic model (Hodges, 2015). For subgrid storage, Jiang and

Wai (2005) constructed a network of capillaries connecting resolved-scale “dry” grid

cells to representing subgrid water storage. Another approach by Li (2015) prior-

itized connectivity over blockage, which was accomplished by using the minimum

subgrid topographic elevation for a resolved grid scale elevation.

The present work builds on the prior studies (which are discussed more thor-

oughly in Chapter 2) by developing a subgrid model addressing the effect of frictional

forcing on the subgrid scale in shallow water dynamics. Two different schemes are

proposed to account for flow friction caused by emergent unresolved topography,

building on the ideas of Casulli (2009) and Volp et al. (2013). The first scheme is

a subgrid drag model (Chapter 4) derived by upscaling subgrid wetted areas into

the resolved grid equation so that directional drag coefficients can represent the in-

tegrated effects of drag in the different coordinate directions. The advantage of this

approach is that the major change to a 2D shallow water solution method is the

addition of different drag coefficients on the x and y faces of the grid cells. The sec-

ond scheme (Chapter 5) is a subgrid momentum model that is derived from subgrid

forces and the integrated fluxes in/out the faces of a grid cell. This approach has the

effect of considering the subgrid topography at the interface between two resolved

grid cells in momentum conservation. The present work additionally applies a sub-

grid topography sampling method (Section 5.4) to address the effect of subgrid flow

passages that are below a resolved grid cell bottom elevation; this work builds on

the idea of (Li, 2015).

One of the complexities introduced by dynamic subgrid modeling (i.e., con-
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sidering the time-varying geometry of emergent topography) in the present work is

the need for nonlinear functions relating the water surface elevation (η) to geometric

values (e.g., surface area, flow cross-section). To reduce computational costs, we ap-

ply a a look-up table that stores subgrid geometric quantities at pre-defined intervals

of ∆η for each grid cell. The approach taken herein is a modification of an algorithm

proposed by Li (2015) (Appendix D).

Coupling the new subgrid drag model with the new subgrid momentum model

and using an improved subgrid topography sampling approach is shown to provide

good representation of subgrid topographic effects (Chapter 6). To verify the dif-

ferent model performances and constraints, the subgrid drag model and the subgrid

momentum model are tested and compared both separately (Chapters 4, 5) and

in a coupled approach (Chapter 6). The numerical tests validate the performance

by comparing the coarse-grid solution using the subgrid models with the fine-grid

solution for the same region.

The performance of any subgrid method will depend on the scale ratio between

resolved and unresolved topographic features, the separation and distribution of

unresolved features, as well as the parameterizations and limitations of the subgrid

model itself. Ideally, a subgrid model in a dynamic simulation should capture exactly

the correct net flows in/out of the resolved grid cell and a resolved water elevation

that reflects the median local elevation obtained by an equivalent fine-grid model.

However, it is unlikely that any subgrid model will achieve such performance, so

there is a practical interest in evaluating unavoidable model errors in relation with

multiple topographic features of the test terrain. Herein are new proposed indicators

14



that can be used for evaluating the performance and limitations of a subgrid model as

simple and quantitative measures, which provide insight for a subgrid model selection

depending on topography of a test region. Chapter 6 provides a description of new

indicators and examines the use of the indicators in evaluating the performance of

the new subgrid models.

The focus of the present research is on the subgrid methods needed for mod-

eling tidal marshes where small channels, pools, and irregular embankments are

combined with wetting/drying of the landscape. Such flows are mostly subcritical

(Froude number less than unity), with supercritical regions typically being local and

unresolvable at practical grid resolutions. Although tidal marshes can be the estu-

arine interface between fresh and salt water, the depths are typically shallow (often

less than 1 m) and are readily mixed by the wind so vertical stratification typically

does not affect the flow dynamics (Ji, 2008). It follows that modeling is reason-

ably approximated with the 2D depth-averaged hydrostatic Navier-Stokes equations

(commonly known as the shallow water equations) (Dias et al., 2013; Knock and

Ryrie, 1994).

Herein, the Fine Resolution Environmental Hydrodynamics Model (Frehd)

has been modified to include new subgrid algorithms. Frehd is a numerical model

written in Matlab by Prof. B.R. Hodges as a research tool for developing and test-

ing new numerical schemes. Although Frehd is written with capabilities for full 3D,

non-hydrostatic, and density stratification behavior, herein only the 2D, hydrostatic,

uniform density attributes are applied. Frehd is an implementation of the semi-

implicit, volume-conserving TRIM scheme originated by Casulli and Cheng (1992),
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which was also adopted and modified in the ELCOM code (Hodges et al., 2000)

and subsequent works of Casulli and Zanolli (2002); Casulli (1999) and Casulli and

Cattani (1994). The new subgrid models are tested for simple theoretical domains

and with 1×1 m high-resolution topography from marshes of the Nueces River Delta

along the Texas (USA) coast of the Gulf of Mexico. This work follows on previ-

ous coarse-grid implementations of Frehd on this system (Ryan and Hodges, 2011).

Chapter 3 provides a methodology of Frehd and its free-surface solution without a

subgrid scheme which becomes a baseline for the verification test of the new subgrid

models.

Tidal marshes such as the Nueces River Delta can be considered one of the

most challenging topographies for hydrodynamic modeling due to the heterogeneous

distribution of emergent and submerged topography over a range of scales, with fea-

ture as small as 3 to 4 m readily visible in 1×1 m lidar data (Figure 1.6). From recent

experience, practical grid resolutions for engineering studies on such a system might

range from 10×10 m to 30×30 m, depending on available computational resources.

For example, int he Nueces River Delta study of Ryan and Hodges (2011), a 15×15

m grid was used in a computational domain of more than 600,000 grid cells with

a model time step of 180 seconds. The computations were typically accomplished

at 7 times real time on a desktop workstation with a 3 GHz Intel processor and 8

GB of memory. In contrast, a 1× 1 m grid requires almost 150 million grid cells an

a time step near 1 second, which presently cannot be handled without resorting to

supercomputing. Appendix A provides an overview of the Nueces Delta region and

the restoration efforts for the Delta.
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Figure 1.6: Nueces Delta. (top) Satelite image (image source: Hill et al. (2012));
(bottom) 1×1m grid scale bathymetry. The color scale is of the bottom elevation
(m)
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1.2 Research objectives and approach

The objectives of this research are:

1. Parameterize frictional resistance of subgrid topography based upon the rela-

tionships between the grid scale and the unresolved topography to create a

subgrid drag model (Chapter 4).

2. Develop a subgrid mementum model that includes subgrid topographic effects

on both mass and momentum conservation on cell faces (Chapter 5).

3. Evaluate the effectiveness of coupling the subgrid drag model, subgrid mo-

mentum model, and the subgrid topography sampling method as a combined

subgrid model (Chapter 6).

4. Evaluate the performance of a look-up table method to reduce the computa-

tional cost of the new combined subgrid model (Chapter 6).

5. Devise new indicators for evaluating a subgrid model behavior across diverse

topography (Chapter 6).

This study parameterizes the effects exerted by topographic features from

local flow scale to the resolved flow scale. The first objective was achieved by de-

riving an analytical relationship between grid-scale and unresolved topography that

provides upscaling of the distributed drag coefficients (at the subgrid scale) to an

effective drag coefficient at the resolved grid scale. This approach creates a resolved

scale drag coefficient is a function of the estimated distribution of subgrid water
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depths as well as the distribution of emergent topography and distributed rough-

ness. The resolved scale drag coefficient changes dynamically with the local flow

conditions. The resulting subgrid drag model parameterizes the horizontal spatial

distribution of subgrid topography. This approach is tested in the Frehd code, but

can be readily adapted to other models as it simply requires a dynamic approach to

computing the drag coefficient from subgrid data.

The second objective was achieved by deriving an extension of the mass con-

servative subgrid method of Casulli (2009) to include conservation of momentum

with subgrid geometric effects across resolved grid faces on surface shear forces. In

contrast to the subgrid drag model (above) that considers the effects of the horizontal

distribution of subgrid topography across a grid cell, the subgrid momentum model

developed to meet the second objective uses the subgrid topography at the interface

between two resolved grid cells to parameterize the conservation of mass and mo-

mentum. The subgrid momentum model was implemented in the Frehd code and

required significant revision of the fundamental numerical discretization. Although

the method is adaptable to other hydrodynamic codes, it must be derived specifically

to apply to the discretization method of the code.

The third objective was achieved by defining metrics for quantitative compar-

ison of numerical simulations at fine-grid scale and coarse-grid scale, which allows

analysis of subgrid model performance. The subgrid drag model, the subgrid mo-

mentum model, and the combined model were tested separately and compared using

models simulations of sections from the 1×1 m topography of the Nueces River Delta

(Texas, USA).
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The fourth objective was achieved by adding the linear interpolation function

to the prior look-up table algorithm of Li (2015). A linear interpolation provides

an approximation of subgrid geometric values at a linear range of the water surface

elevation with low computational cost. The effectiveness of the look-up table method

was evaluated through the numerical simulations.

The fifth objective was achieved by devising new indicators for integrated

effects of subgrid topographic feature over the test domain. Use of the indicators

for evaluating the performance of a subgrid model was examined with the numerical

test results of the new subgrid models in the current work.

1.3 Contributions to science and technology

This research specifically contributes new advances in science and technology

by:

1. Deriving the new numerical scheme to analytically include the effects of het-

erogenous subgrid topography and distributed roughness directly on the re-

solved scale drag coefficient in a manner that can be readily adapted to other

models.

2. Deriving the new numerical scheme that includes subgrid topographic effects

on surface shear forces in momentum conservation at the interface between grid

cells,

3. Developing the new model that is coupled with the consideration of subgrid

varied forcing on local flow scale, the geometric consideration of mass and
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momentum at the boundaries of grid cells, and subgrid flow connectivity below

the resolved grid-cell bottom elevation,

4. Providing insight for developing the look-up table method in order to improve

computational cost efficiency of a subgrid model,

5. Proposing new indicators that can be used for evaluating the performance of a

subgrid model in relation with topography of a test terrain.

The overall contribution of this research is in the creation of new numeri-

cal approaches for computationally-efficient models of the shallow flow over complex

terrain at practical grid scales. As high-resolution lidar and 3D bathymetric data be-

come more commonly available, practicing engineers will be faced with the challenge

of how to quantitatively incorporate the high-resolution data into lower-resolution

engineering hydrodynamic models. The methods developed herein are an answer to

this challenge.

1.4 Dissertation outline

This dissertation consists of seven chapters. Chapter 2 provides a review

about the key findings of prior subgrid model studies. Chapter 3 provides the

methodology of the baseline hydrodynamic model without a subgrid scheme (Frehd).

The new subgrid drag model is derived in Chapter 4. Chapter 5 describes a deriva-

tion of the new subgrid momentum model and the subgrid topography sampling

method for reflecting the effect of flow connectivity at the surface elevation below

the model-resolved grid bottom elevation. Validation and verification of the new
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subgrid models, and development of new indicators as measures for evaluation of a

subgrid model performance are provided in Chapter 6. Lastly, Chapter 7 summarizes

the key findings and limitations of this research with associated recommendations

for future work.
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Chapter 2

Subgrid Methods

2.1 Prior work in subgrid geometric parameterization

Defina (2000) introduced an approach integrating the “wet-dry” phase-modified

governing equations over depth and averaging it over a computational unit area in

order to deal with the geometry problem (i.e., the partially wet area) created by

unresolved topography. The wet-dry phase function (Ψ) in Defina (2000) represents

local wet or dry conditions, which are defined as:

zb(x) ≤ η → Ψ(x) = 1

zb(x) > η → Ψ(x) = 0

where x is the vector of the spatial coordinates at the subgrid scale, and zb denotes

subgrid topographic elevation. This approach provides a resolved-scale 0 ≥ Ψ ≥ 1

that represents the effective fractional area that is wet for each resolved grid cell.

Other studies used the idea of a porosity parameter with both isotropy (e.g.,

Cea and Vázquez-Cendón, 2010; Guinot and Spares-Frazão, 2006) and anisotropy

(e.g., Chen et al., 2012; Schubert and Sanders, 2012) to capture the volume-elevation

relationship with emergent topography. The porosity type parameter was a priori

specified for a bulk water mass in the early works, but in recent studies has a time-
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space variability, being computed directly from subgrid bathymetry at each time-step

as a function of the water level.

An approach presented by Casulli (2009) used a volume-conserving scheme for

addressing the nonlinearity of wet-dry interfaces and ensuring a strict flow continuity.

This scheme discretizes a solution for η at the center of a grid cell representing the

average derivative over a grid cell with the velocities at the midpoint on the faces

of each grid cell. Casulli (2009) constructed the flow continuity with the integrated

fluxes (Q) in/out of a grid cell on the faces of a grid cell.

∆V

∆t
+

∫
f

dQn+1/2 = 0 (2.1)

where V denotes the volume of a grid cell,
∫
f

denotes an integral of the fluxes on the

faces (f) of a grid cell, and the time index n + 1/2 indicates the net flux between

the n and n + 1 time step. The flow continuity for the integrated net fluxes on the

faces of a grid cell modifies the discrete free-surface solution to ensure conservative

relationships between the volume flux, the resolved velocity at the grid cell face, and

the total subgrid area at the face. This approach has an effect of adding a friction

slope between the faces of a grid cell. Appendix B provides the first-order upwind

discretized solution applying the flow continuity model of Casulli (2009), which is

coded in Frehd for the verification test of the new subgrid models in Chapter 6.

Chapter 3 provides further description of the volume-conserving scheme, which is

adapted and improved within the present work.
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2.2 Prior work in subgrid friction parameterization

A key drawback of the subgrid geometric parameterizations discussed in Sec-

tion 2.1 is their use of a single friction slope across the entire resolved grid cell to

characterize energy losses (Platzek et al., 2015; Volp et al., 2013). This assumption

is questionable for subgrid topography that includes obstructions causing backwa-

ter (e.g., embankments), steering effects (e.g., narrow channels), or spatially-varying

shear. By misrepresenting the linkage between energy loss, velocity magnitude, and

cross-sectional flow area, the subgrid geometry schemes described above can either

overestimate or underestimate energy losses. As a result, modeled velocities and

fluxes can be larger than physically plausible or smaller than reasonable for the

forcing (Sehili et al., 2014; Volp et al., 2013).

With a highly irregular terrain or shallow flow, neglected local forcing can

make a model unreliable (Cea and Vázquez-Cendón, 2010; D’Alpaos and Defina,

2007). Effectively estimating the resolved-scale effects of the heterogeneous subgrid

energy loss appears to be a key issue in addressing the issues of subgrid spatial

variation (Volp et al., 2013; Casas et al., 2010). Drag exerted by rigid topographic

structures or vegetation was reported to be likely dominant over bottom shear in

a free-surface flow (Cea and Vázquez-Cendón, 2010; Huthoff et al., 2007). This

problem can arguably be addressed with subgrid friction parameterization.

Employing a friction or roughness parameter is a recognized way to account

for energy loss due to unresolved topography and roughness in a numerical model

(Smith and Liang, 2013; Lane, 2005). With the ease of integrating a friction pa-

rameter into existing models (McMillan and Brasington, 2007), it is widely used for
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incorporating the unresolved forcings (e.g., turbulence, depth-integrated flow scales,

numerical dissipation, etc.) (Morvan et al., 2008). A drag coefficient (CD) is typically

used to represent the relationship between the drag force developed by a boundary

layer and the velocity of the free steam flow. Drag can be conceptually divided into

surface drag (the effect of surface roughness smaller than the viscous boundary layer

thickness) and form drag (the blocking and wake effects from larger objects). For

simple flows the relationship between CD and free-stream velocity can be obtained

through experiment applied with scaling arguments (White, 2006). However, with

complex topography it is difficult to clearly identify the free-stream velocity at any

particular location, and the contributions from surface and form drag can be so

intermingled as to be indistinguishable.

In a hydrodynamic model, the flows and geometry at the resolved grid scale

are typically assumed to provide reasonable approximations of the free-stream veloc-

ity so that CD (or some other friction parameter) implicitly incorporates both the

surface and form drag effects of roughness and obstructions (Chisolm, 2011; Huthoff

et al., 2007). The model friction parameter, or a heterogenous spatial distribution of

a friction parameter, is typically determined a priori through either (i) model calibra-

tion with observed data from the system (Hughes et al., 2011) or (ii) using land-cover

classification for the topography and friction parameters previously reported in the

literature (Abu-Aly et al., 2014; Hossain et al., 2009).

Neither approach is entirely satisfactory for topographically-complex flows

such as tidal marshes. Calibration from observations would seem to be preferred,

but observations are typically too coarse in either time and spatial distribution to
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provide confidence that a calibration results in the correct fluxes at non-observed

locations. Use of literature values for friction is also problematic as they do not

consider the scale effects between the resolved grid and the subgrid features. That

is, the friction parameter that is appropriate for a 30×30 m grid cell might not be

the same value as that for a 10×10 m grid cell as the relationships between the

resolved velocity, the subgrid geometry, and the frictional losses can be different.

Further compounding this problem is that the model grid scale is closely linked to

the development of numerical dissipation, which depends on the numerical scheme

(Morvan et al., 2008; Horritt, 2005). For coarse-grid models with low-order numer-

ical schemes the numerical dissipation can be larger than the physical dissipation

represented by the friction parameter, which renders the latter irrelevant. While

Schubert and Sanders (2012) and Lane et al. (2004) argued that a friction parameter

is less important to a model solution than grid scale, a number of studies stressed

its influence on model accuracy (e.g., Abu-Aly et al., 2014; Casas et al., 2010).

An advance over the traditional a priori constant friction parameters is the

use of time-varying (dynamic) frictional parameters based on local roughness heights

(vegetation or land-cover), mixing layer theory, and the resolved water depth (e.g.,

Casas et al., 2010). These approaches included an analytic study based on a balance

of gravitational force, surface and form drag (e.g., Huthoff et al., 2007), or employed

a scaling parameter for incorporating local friction (e.g., Özgen et al., 2015). Al-

though these methods do not solve the problem of how to effectively use subgrid

topographical data, they point the way towards using more complex parameteri-

zations including known local topography and bed forms, along with the scales of
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Figure 2.1: Quadtree grid

subgrid energy dissipation and flow processes.

The recent quadtree approach of Volp et al. (2013) introduced a new avenue

for addressing the effect of local topography on the scales of subgrid energy dissi-

pation and flow. In this method we let FΩNE denote the friction (normalized by

density) on the northeast sub-domain of a resolved-scale grid cell (ΩNE, see Figure

2.1),

FΩNE =

∫
ΩNE

CDfuf

√
(u2

f + v2
f )dΩNE

where uf and vf are local velocity components in x and y-directions, respectively,

and CDf is local drag coefficient. By using an uniform friction slope over the subgrid

region (i.e., u2
f/hf ' constant) and sub-domain volume-average velocities (i.e., u ≡
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(1/VΩNE)
∫

ΩNE
ufhfdΩNE, where VΩNE is the sub-domain volume), Volp et al. (2013)

substituted a function of known topographic quantities, sub-domain volume, and

resolved grid face velocities for unknown subgrid flow variables.

FΩNE =
ui+1/2,j

√
(u2

i+1/2,j + v2
i,j+1/2)VΩNE

HfΩNE

(2.2)

Herein, HfΩNE is a “friction depth”: HfΩNE ≡
[∫

ΩNE
hf
√
hf/CDfdΩNE / VΩNE

]2

.

The nomenclature, i and j are horizontal spatial indices for the Cartesian space (in

x and y-direction, respectively); and u and v are the sub-domain-volume-averaged

velocities. Note that the spatial indices i+ 1/2 or j + 1/2 indicates the node at the

center of a grid cell face boundary (Fig. 2.1). Summing frictions from each sub-

domain provides the total friction on a resolved grid cell (i.e., FΩ = FΩNE + FΩSE +

FΩNW + FΩSW ). The friction model of Volp et al. (2013) was implemented into the

mass and momentum model applying the ideas of Defina (2000) and Casulli (2009),

and shown to reduce model sensitivity to grid scale (e.g., Wu et al., 2016; Volp

et al., 2013). The quadtree approach of Volp et al. (2013) has an effect of addressing

horizontal and vertical shear effect caused by local obstructions distributed over each

sub-domain, although the overall effect is limited by the use of only four sub-domains.
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Chapter 3

Fine Resolution Environmental Hydrodynamics

Model

3.1 Introduction

This chapter describes the numerical method of the Frehd model in Section

3.2, its governing equations in Section 3.3, and its bottom friction model in Section

3.4. The original approach of the Frehd model without a subgrid scheme in Section

3.5 becomes a baseline for the verification of the new subgrid models.

3.2 Numerical method

The Fine Resolution Environmental Hydrodynamics Model (herein, Frehd)

is a numerical code for 2D and 3D hydrodynamic modeling, which is governed by

the incompressible, hydrostatic, and free-surface Navier-Stoke equation (Hodges and

Rueda, 2008; Rueda et al., 2007). The Frehd code solves the governing equations by

the finite volume differencing, semi-implicit, and weighted predictor-corrector two

time-level method (Hodges and Rueda, 2008; Rueda et al., 2007). Scalar transport

(e.g., salinity) is solved with a mass-conserving scheme.

The numerical method of Frehd was built on the previous studies so as to

facilitate a relatively large time-step; its predictor-corrector scheme is a family of
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semi-implicit TRIM methods (Casulli and Cattani, 1994; Casulli and Cheng, 1992);

The Frehd code adopts the advances of Hodges and Rueda (2008), which improved

the semi-implicit θ method of Casulli and Cattani (1994) to the second order for

barotropic and baroclinic terms; non-hydrostatic discretization of Frehd was founded

on Wadzuk and Hodges (2004), which followed Casulli and Zanolli (2002). The

Frehd code provides several turbulence models (e.g., mixing-length, 2D κ− ε model);

however, for simplicity the present work uses only the 2D depth-integrated drag term

and all the horizontal-shear turbulence models are disabled.

The Frehd code employs a uniform Cartesian grid with square or rectangular

cells (square are used exclusively herein) with a hybrid of finite-difference and finite-

volume techniques. The free-surface elevation at the center of a grid cell represents

the average value over a grid cell. Face-normal velocities (and fluxes) are solved

at the midpoint face of each grid cell in a standard staggered-grid finite difference

formulation, as illustrated in Figure 3.1 for the (i, j) cell and its (i+ 1, j) and (i, j +

1) neighbors. The solution of the depth-integrated incompressible conservation of

mass and the kinematic boundary condition for a free surface is in an implicit (θ-

weighted) approach that is effectively a finite-volume method ensuring conservation

of volume to numerical precision. Explicit finite-difference discretizations are used for

the velocity terms in momentum conservation, which are combined with the implicit

free-surface gradients for a classic semi-implicit scheme. The nonlinear bottom drag

term is discretized in a time-linearized approach so that the sign of the drag term

is always consistent with the time n + 1 velocity direction and the drag magnitude

incorporates the product of velocity from both time steps, e.g., unun+1.
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Figure 3.1: Computation nodes at a grid in Frehd. Squares: computational node
for the free-surface elevation (η) and depth (h); Circles: computational nodes for
velocities (u, v)
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In the Frehd code, the boundary forcing can be driven by: (i) inflows, (ii)

tidal elevations, (iii) precipitation, (iv) wind, and (v) thermal exchange with the

atmosphere. In the present modeling, only the inflows and tidal elevation boundary

conditions are used.

The Frehd code is suitable for 2D and 3D hydrodynamics of small to moderate-

size water bodies, including river channels, estuaries, lagoons, lakes, and urban flood-

ing. The code is implemented in Matlab, which effectively limits the efficiency of the

algorithms and requires longer computational time than an equivalent code written

in Fortran or C. However, Matlab provides a logical coding structure that is simpler

to follow and is beneficial for efficient writing, debugging, and testing new algorithms.

In this research, Frehd is used for the verification test of the subgrid methods along

with the bathymetric data of the Nueces Delta, solving the depth-averaged, hydro-

static, uniform density, Navier-Stokes equation (commonly known as the 2D shallow

water equations). The Frehd algorithms can be used with first or second-order dis-

cretizations in both time and/or space. For simplicity in code development and

testing, the first-order discretizations are used for the present work.

3.3 2D shallow water equations

The 2D shallow water equations can be written as momentum and depth-

integrated continuity combined with the kinematic boundary condition, providing:

∂ui
∂t

+ uj
∂ui
∂xj

+ g
∂η

∂xi
− ν ∂2ui

∂xj∂xj
− τBi
ρh
− τSi
ρh

= 0 : i = {1, 2} (3.1)

∂η

∂t
+

∂

∂xj
(huj) = 0 (3.2)
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where xi denotes the Cartesian space; ui are the depth-averaged velocity compo-

nents in the horizontal Cartesian directions; η is the free surface elevation; ν is the

horizontal turbulent eddy viscosity; τB is the bottom shear stress; τS is the surface

shear stress; g is the gravitational acceleration; h is the flow depth; ρ is fluid density;

and the Einstein summation convention is applied (unconventionally) over the set

j = {1, 2} for repeated subscripts; that is, the j = 3 advection and diffusion terms

of the 3D momentum equations are wrapped into τB and τS. Note that wind forcing

(τS) is neglected in this study.

3.4 Bottom friction model

The present study uses the drag model for the bottom shear stress τB in

Eq. (3.1), which is a quadratic function of depth-averaged velocities and a drag

coefficient CD (Hervouet, 2007; Lightbody and Nepf, 2006).

τBi
ρh

=
1

2h
CDui

√
ujuj : i, j = {1, 2} (3.3)

The friction parameters are typically determined empirically or by using the prior

experiment values (Hervouet, 2007). In Frehd, the user can choose either Manning’s

coefficient n or a drag coefficient CD. where the conversion is the relationship used

by Pasternack et al. (2006) and Ding et al. (2004), which provides the bottom shear

stress term as

τBi
ρh
≡ − g n2

cos(α)h4/3
~U |U |

Where the bed slope is negligible, cos(α) ≈ 1. Then, it follows:

CD =
2gn2

h1/3
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An appropriate Manning’s n can be estimated from land-cover data (e.g., 2001 Na-

tional Land Cover Dataset), which has been linked to approximate values for Man-

ning’s n (Hossain et al., 2009).

3.5 Discrete free-surface solution

Herein we will only discuss the simplest forms of the Frehd discretization,

specifically the first-order upwind approach. Discretization of momentum, Eq. (3.1)

for the x direction in Frehd is:

(un+1
i+1/2,j − uni+1/2,j)

∆t
+Nn

x i+1/2,j + g
(ηn+1
i+1,j − ηn+1

i,j )

∆x

−Dn
xx i+1/2,j −D

n
yy i+1/2,j

− 1

(hni,j + hni+1,j)
CD u

n+1
i+1/2,j

√
[(uni+1/2,j)

2 + (vni+1/2,j)
2] = 0

where n is the time index; i and j are horizontal spatial indices for the Cartesian

space (in x and y-direction, respectively); x and y denote the Cartesian space; u

and v are the depth-averaged velocity components in the Cartesian coordinates; h

is the flow depth; CD is the drag coefficient, and the N and D terms represent

explicit nonlinear advection and turbulent diffusion discretization that are explicitly

discretized as:

Nn
x i+1/2,j = uni+1/2,j

(uni+1/2,j − uni−1/2,j)

∆x
+ vni+1/2,j

(uni+1/2,j+1/2 − uni+1/2,j−1/2)

∆y

Dn
xx i+1/2,j =

1

∆x

[
(νx)i+3/2,j

(uni+3/2,j − uni+1/2,j)

∆x
− (νx)i+1/2,j

(uni+1/2,j − uni−1/2,j)

∆x

]

Dn
yy i+1/2,j

=
1

∆y

[
(νy)i+1/2,j+1/2

(uni+1/2,j+1 − uni+1/2,j)

∆y
− (νy)i+1/2,j−1/2

(uni+1/2,j − uni+1/2,j−1)

∆y

]
where ν is horizontal turbulence eddy viscosity and the corner values (e.g., uni+1/2,j+1/2)

are obtained by interpolation from faces. The discrete time advance for x-momentum
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is therefore

un+1
i+1/2,j = uni+1/2,j −∆tNn

x i+1/2,j − g
∆t

∆x
(ηn+1
i+1,j − ηn+1

i,j )

+ ∆tDn
xx i+1/2,j + ∆tDn

yy i+1/2,j
+ ∆t

1

2hni,j
CD u

n+1
i+1/2,j

√[(
uni+1/2,j

)2

+
(
vni+1/2,j

)2
]

(3.4)

and a similar equation for vn+1
i,j+1/2 can be inferred.

For simplicity in exposition, let

Bn
x i+1/2,j ≡

1

2hni,j
CD

√[(
uni+1/2,j

)2

+
(
vni+1/2,j

)2
]

Ini+1/2,j ≡
1

1−∆tBn
x i+1/2,j

Then, Eq. (3.4) is:

un+1
i+1/2,j = Ini+1/2,j u

n
i+1/2,j − Ini+1/2,j∆tN

n
x i+1/2,j − I

n
i+1/2,j

g∆t

∆x
(ηn+1
i+1,j − ηn+1

i,j )

+ Ini+1/2,j∆tD
n
xx i+1/2,j + Ini+1/2,j∆tD

n
yx i+1/2,j

(3.5)

Let an explicit source term, Ex, be defined as:

En
x i+1/2,j ≡ Ini+1/2,j(u

n
i+1/2,j −∆tNn

x i+1/2,j + ∆tDn
xx i+1/2,j + ∆tDn

yx i+1/2,j
)

Equation (3.5) is thus reduced to:

un+1
i+1/2,j = En

x i+1/2,j − I
n
i+1/2,j

g∆t

∆x
(ηn+1
i+1,j − ηn+1

i,j ) (3.6)

The flow continuity equation, Eq. (3.2), is implicitly discretized for the x-

direction as:

ηn+1
i,j − ηni,j +

∆t

∆x
hni,j(u

n+1
i+1/2,j − un+1

i−1/2,j) (3.7)

+
∆t

∆y
hni,j(v

n+1
i,j+1/2 − vn+1

i,j−1/2) = ∆t
Sn+1
i,j

∆x∆y
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where S includes all the external volume sources (e.g., inflows, precipitation). Sub-

stituting Eq. (3.6) for un+1
i+1/2,j into Eq. (3.7) provides

ηn+1
i,j +

∆t

∆x
hni,j

[
En
x i+1/2,j − Ini+1/2,j

g∆t

∆x
(ηn+1
i+1,j − ηn+1

i,j )

]
− ∆t

∆x
hni,ju

n+1
i−1/2,j +

∆t

∆y
hni,jv

n+1
i,j+1/2 −

∆t

∆y
hni,jv

n+1
i,j−1/2 = ηni,j + ∆t

Sn+1
i,j

∆x∆y

Similar substitutions can be made for un+1
i−1/2,j, v

n+1
i,j+1/2, and vn+1

i,j−1/2. The resulting

discrete free surface equation is

ηn+1
i,j +

∆t

∆x
hni,jE

n
x i+1/2,j −

g(∆t)2

(∆x)2
hni,j I

n
i+1/2,j

(
ηn+1
i+1,j − ηn+1

i,j

)
(3.8)

− ∆t

∆x
hni,jE

n
x i−1/2,j +

g(∆t)2

(∆x)2
hni,j I

n
i−1/2,j

(
ηn+1
i,j − ηn+1

i−1,j

)
+

∆t

∆y
hni,jE

n
y i,j+1/2

− g(∆t)2

(∆y)2
hni,j I

n
i,j+1/2

(
ηn+1
i,j+1 − ηn+1

i,j

)
− ∆t

∆y
hni,jE

n
y i,j−1/2

+
g(∆t)2

(∆y)2
hni,j I

n
i,j−1/2

(
ηn+1
i,j − ηn+1

i,j−1

)
= ηni,j + ∆t

Sn+1
i,j

∆x∆y

The discrete form can be compressed by defining explicit face coefficients as:

Cn
i+1/2,j ≡

g(∆t)2

(∆x)2
hni,j I

n
i+1/2,j

Cn
i−1/2,j ≡

g(∆t)2

(∆x)2
hni,j I

n
i−1/2,j

Cn
i,j+1/2 ≡

g(∆t)2

(∆y)2
hni,j I

n
i,j+1/2

Cn
i,j−1/2 ≡

g(∆t)2

(∆y)2
hni,j I

n
i,j−1/2

and the cell-center coefficients as:

Gn
i,j ≡ ∆t hni,j

(
En
x i+1/2,j − En

x i−1/2,j

∆x
+
En
y i,j+1/2

− En
y i,j−1/2

∆y

)
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Substituting C and G into Eq. (3.8) provides

ηn+1
i,j − Cn

i+1/2,j

(
ηn+1
i+1,j − ηn+1

i,j

)
+ Cn

i−1/2,j

(
ηn+1
i,j − ηn+1

i−1,j

)
− Cn

i,j+1/2

(
ηn+1
i,j+1 − ηn+1

i,j

)
+ Cn

i,j−1/2

(
ηn+1
i,j − ηn+1

i,j−1

)
+Gn

i,j

= ηni,j + ∆t
Sn+1
i,j

∆x∆y

The above can be written as a linear matrix equation for implicit solution of ηn+1:

ηn+1
i,j

(
1 + Cn

i+1/2,j + Cn
i−1/2,j + Cn

i,j+1/2 + Cn
i,j−1/2

)
(3.9)

− ηn+1
i+1,j C

n
i+1/2,j − ηn+1

i−1,j C
n
i−1/2,j − ηn+1

i,j+1 C
n
i,j+1/2 − ηn+1

i,j−1C
n
i,j−1/2

= ηni,j + ∆t
Sn+1
i,j

∆x∆y
−Gn

i,j

Once the solution for ηn+1 is obtained, the velocities un+1
i+1/2,j and vn+1

i,j+1/2 can

be found as an explicit solution from Eq. (3.4), and from a similar equation inferred

for the y-momentum. This completes the classic semi-implicit solution for a single

time step.
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Chapter 4

Subgrid Drag Model

4.1 Introduction

The need for a subgrid drag model can be motivated quite simply: the drag

term in a momentum equation typically has a functional form of CDu
2, where CD

is an empirical drag coefficient or a friction parameter, and u2 is the square of the

flow speed. If ū is the average flow speed in a model grid cell, and ui for i =

{1...N} are a set of subgrid flow speeds such that if ū =
∑

i ui/N , then CDū
2 6=

CD
∑

i u
2
i /N . Thus, a modified CD is required to account for the influence of subgrid

topographic variability on local velocities. Furthermore, it follows that any CD that

correctly accounts for subgrid features is inherently grid-dependent rather than a

simple physical parameter, so a calibration of CD for a particular model grid might

not be informative of the correct CD for any other grid.

The sensitivity of hydrodynamic model results to a friction parameter is gen-

erally accepted (Néelz and Pender, 2007; Lane, 2005), although Hardy et al. (1999)

noted results were more dependent on the model grid scale. Subgrid topography

is known to generate a drag force on a flow, thereby affecting the flow route, flow

rate, spatial coverage, and temporal behavior. Moreover, a number of studies (e.g.,

Chisolm, 2011; Casas et al., 2010) showed that a friction or roughness parameter
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required modification as a model grid was coarsened, implying a fundamental grid

dependence.

Model friction parameters are sometimes set using values from the literature

(Hicks and Mason, 1991) or, more commonly, by calibration (e.g., Sahoo et al.,

2006; Horritt and Bates, 2001). Using literature values can be problematic because

of grid dependence when the topographic features are not fully resolved and the

relationship between numerical dissipation and the energy dissipation implied by the

friction parameter is not known. Because of nonlinearity, locally-higher velocities

within limited subgrid areas have a greater effect on the resolved-scale energy losses

than the resolved-scale velocity (Volp et al., 2013). This idea is readily illustrated by

considering a resolved grid cell of area A where a subgrid region of A/3 has a velocity

of 0.5 m/s and the complementary region of 2A/3 has a velocity of only 0.1 m/s. The

area integrated frictional losses would be roughly (0.08CD(f) + 0.007CD(s))A where

CD(f) and CD(s) are drag coefficients of the fast and slow velocity regions, respectively.

Clearly, if the CD are of similar magnitudes then the integrated frictional losses are

dominated by the losses in the high speed region. Ideally, a model friction parameter

should be set from known topography, bed forms, and other roughness elements

by applying an understanding of how the scales of resolved flow processes relate

to the scales of subgrid energy dissipation; calibration should be, at most, a small

perturbation that reflects the uncertainties associated with estimates of the friction

parameter. Unfortunately, this is only possible if we can understand and relate the

effects of subgrid topography over a range of flow conditions to the modeled drag.

The problem of handling subgrid friction or roughness has been previously
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noted (Lane, 2005; Defina, 2000) and there is a wide literature on the similar problem

of flow-through roughness of vegetation, but there are few quantitative works on

methods for estimating drag effect exerted by subgrid topographic solid elements.

Early studies have addressed local frictional properties in various ways: Carney et al.

(2006) assumed a known statistical probability function; in classic papers, Horton

(1933, (recited from Woo (2001)) and Lotter (1933, (recited from Yang et al. (2005))

assumed the subgrid scale flow quantities were equally distributed so as to apply

a continuity law. Time and space-varying friction parameters were introduced by

Casas et al. (2010), using local roughness heights and mixing layer theory. Stem drag

exerted by solid submerged objects or vegetation has been scaled with depth-averaged

flow quantities through the analytic studies based on a steady force balance between

the shear frictional force and the gravitational force (Buckman, 2013; Huthoff et al.,

2007). Volp et al. (2013) recently presented a quadtree grid approach representing

local frictional effects created by subgrid topography over a quarter of a grid cell,

however it is not clear the method can be practically generalized to a larger number

of subgrid domains.

Building on prior work, the present study develops a systematic method for

determining drag coefficients to represent energy dissipation effects of subgrid-scale

topography. The advantage of the new subgrid drag model is that it dynamically

approximates the resolved-grid scale effects of the subgrid flow area including effects

of time-varying water surface elevation and emergent topography. For model formu-

lation, we consider a “fine grid” system which consists of uniform raster whose outer

cells share a boundary with the model-resolved grid (see Section 4.2.2). A resolved
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grid-wise momentum solution is approximated with the spatially-averaged fine-grid

momentum solutions over the resolved grid area (see Section 4.2.3). The integrated

fine-grid momentum over the coarse-grid area is represented as a function of subgrid

topographic quantities, the resolved grid scale, and the resolved flow variables (see

Section 4.2.4). This new approach provides dynamic drag coefficients incorporating

the effect of local forcing distributed over the resolved grid cell into a coarse-grid

momentum model; however, flow processes caused by subgrid horizontal shear (e.g.,

circulation, backwater) within a resolved grid cell are excluded in the model and

remain a subject for future study.

The new model is tested in Chapter 6 using the Frehd code (Chapter 3) with

a fine-grid scale grid of 1 × 1 m and a coarse-grid scale grid of 15 × 15 m derived

from lidar and survey topography of the Nueces River Delta (Appendix A). The new

subgrid drag model will be implemented into the new subgrid model developed in

Chapter 5 as the combined subgrid model to examine the effectiveness of a coupled

approach.

4.2 Model formulation

4.2.1 Momentum equation

The 2D shallow water momentum equation, Eq. (3.1), where the free surface

shear stress (τS) is neglected and the bottom shear stress (τB) is parameterized by a

drag coefficient (CD) can be written as

∂ui
∂t

+ uj
∂ui
∂xj

+ g
∂η

∂xi
− ν ∂2ui

∂xj∂xj
− 1

2h
CDui

√
ujuj = 0 : i = {1, 2} (4.1)
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where xi denotes the Cartesian space; ui are the velocity components in Cartesian

directions, η is the free surface elevation; g is the gravitational acceleration; ν is

horizontal turbulent eddy viscosity; h is the flow depth, and the Einstein summation

convention is applied over the set j = {1, 2} for repeated subscripts.

4.2.2 Fine-grid system

For the subgrid drag method, we consider a single topographical elevation

for each model-resolved grid cell (i.e., over which the hydrodynamic equations are

solved) with known local subgrid topographical perturbations from this elevation. It

will be convenient to use “coarse grid” to refer to the model-resolved grid scales and

“fine grid” to refer to the subgrid bathymetry. For simplicity, we will restrict our

derivation to a system wherein the fine grid can be described by a uniform raster

whose outer cells share a common boundary with the coarse grid, as illustrated in

Figure 4.1.

4.2.3 Integration of fine-grid momentum

Equation (4.1) can be used to obtain a fine-grid momentum equation for the

coordinate system (r, s) in the r direction, which is parallel to the x-direction in the

Cartesian space as:

∂uf
∂t

+ uf
∂uf
∂r

+ vf
∂uf
∂s

+ g
∂ηf
∂r
− 1

2hf cosαf
CDf (uf )

2 = 0 (4.2)

where the f subscripts indicate fine-grid values, u and v are velocities in r and s

directions, CDf is a subgrid drag coefficient, and α is an angle of flow direction.
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(r +1, s)

(r, s −1)

(i +1, j)(i, j)

(i, j +1)

Fine− grid system

Coarse− grid system

Figure 4.1: Coarse-grid (i, j) and fine-grid (r, s) coordinate systems
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Noting that from geometry, an angle of flow direction can be defined that

cosα =
u√

u2 + v2

For u = v = 0, cosα is set to be unity in order to prevent flow in immobile zones

which is an unphysical result.

It may be noted that Eq. (4.2) does not include the horizontal eddy-viscosity

term of Eq. (4.1). Neglecting this term is effectively an assumption that the fine-grid

bottom shear dominates the fine-grid horizontal shear, which is likely the case for

shallow flows but might be problematic for narrow channels in complex topography.

The subject of subgrid turbulence modeling for horizontal shear is an additional layer

of complexity that is not attempted in the present research.

A coarse-grid momentum equation in the x direction can be written similar

to Eq. (4.2), but where the lack of subscripts implies coarse-grid values. The result

is:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂η

∂x
− 1

2h cosα
CDxu

2 = 0 (4.3)

where CDx represents a coarse-grid drag coefficient for the x direction that may be

different from CDy that is used in a similar y direction momentum equation.
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Non-dimensionalized fine-grid variables can be defined as

t∗ ≡ t
√
u2 + v2

h

r∗ ≡ r

h

u∗f ≡
uf√

(u2 + v2)

h∗f ≡
hf
h

η∗f ≡
ηf
h

where non-dimensional coarse-grid variables follow similarly as x∗, u∗, h∗, η∗ and a

non-dimensional grid-cell surface area A∗ where dimensional coarse-grid A = ∆x∆y.

x∗ ≡ x

h

u∗ ≡ u√
(u2 + v2)

h∗ ≡ h

h

η∗ ≡ η

h

∆x∗ ≡ ∆x

h

∆y∗ ≡ ∆y

h

A∗ ≡ ∆x∗∆y∗

The Froude number is defined with coarse-grid variables as:

F 2 ≡ (u2 + v2)

gh

To non-dimensionalize Eq. (4.2), we first multiply through by
√
u2 + v2/h,
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which provides

(u2 + v2)

h

∂uf
∂t

+
(u2 + v2)

h
uf
∂uf
∂r

+
(u2 + v2)

h
vf
∂uf
∂s

+
(u2 + v2)

h
g
∂ηf
∂r

− (u2 + v2)

h

1

2hf cosαf
CDf (uf )

2 = 0

Substituting the non-dimensional relationships provides the non-dimensional fine-

grid equation as

∂u∗f
∂t∗

+ u∗f
∂u∗f
∂r∗

+ v∗f
∂u∗f
∂s∗

+
1

F 2

∂η∗f
∂r∗
− 1

2h∗f cosαf
CDf (u

∗
f )

2 = 0 (4.4)

Similarly, the coarse-grid non-dimensional form of Eq. (4.3) is:

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
+

1

F 2

∂η∗

∂x∗
− 1

2h∗cosα
CDx(u

∗)2 = 0 (4.5)

To develop an upscaled version of the non-dimensional fine-grid equation, we

define a spatial averaging operator (θ∗f ) for any variable θ∗f over a coarse-grid area as

θ∗f ≡
1

A∗

∫
θ∗fdA

∗

We further define a coarse-grid variable θ∗ as the coarse-grid average of fine-grid

variables θ∗f .

θ∗ ≡ θ∗f (4.6)

Applying the spatial averaging operator to the non-dimensional fine-grid Eq. (4.4),

we get
∂u∗f
∂t∗

+ u∗f
∂u∗f
∂r∗

+ v∗f
∂u∗f
∂s∗

+
1

F 2

∂η∗f
∂r∗
− 1

2h∗f cosαf
CDf (u∗f )

2 = 0 (4.7)
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If we use Eq. (4.6) to replace the coarse grid variables (except the drag term) with

the equivalent spatially-averaged fine-grid variables in Eq. (4.5), we obtain

∂u∗f
∂t∗

+ u∗f
∂u∗f
∂x∗

+ v∗f
∂u∗f
∂y∗

+
1

F 2

∂η∗f
∂x∗
− 1

2h∗ cosα
CDx(u

∗)2 = 0 (4.8)

Subtracting Eq. (4.7) from Eq. (4.8) provides the relationship between the integrated

fine-grid drag coefficient, the coarse-grid drag coefficient, and the nonlinear advection

terms as:

u∗f
∂u∗f
∂x∗
− u∗f

∂u∗f
∂r∗

+ v∗f
∂u∗f
∂y∗
− v∗f

∂u∗f
∂s∗
− 1

2h∗ cosα
CDx(u

∗)2 +
1

2h∗f cosαf
CDf (u∗f )

2 = 0

(4.9)

The first four terms of Eq. (4.9) represent the subgrid contributions of advection in a

form similar to the Leonard terms derived in Large Eddy Simulation (LES) models.

Arguably, these terms could be used to represent channelization, obstructions, and

horizontal shear effects from subgrid topology. However, the present study focuses

on the subgrid contributions of drag and we have already neglected the turbulent

eddy viscosity term in Eq. (4.2), so we make the consistent assumption that these

subgrid advection contributions can be also neglected, i.e.,

u∗f
∂u∗f
∂x∗
≈ u∗f

∂u∗f
∂r∗

v∗f
∂u∗f
∂y∗
≈ v∗f

∂u∗f
∂s∗

From the above it follows that a relationship between the CDx and CDf is

CDx =
h∗ cosα

(u∗)2

1

h∗f cosαf
CDf (u∗f )

2
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As the coarse-grid variables are uniform over the averaging space, the above can be

written more simply as

CDx =
h∗

h∗f

cosα

cosαf

(u∗f )
2

(u∗)2 CDf (4.10)

The above provides the fundamental equation for a representing fine-grid space-time

varying velocities and water depths along with spatially-varying drag coefficients

within a directional drag coefficient CDx, with a similar equation implied for the y

direction using CDy.

4.2.4 Approximation of subgrid flow velocities

Consistent with neglecting horizontal shear effects, we assume the flux across

a coarse-grid face can be approximated as uniformly distributed across all the fine-

grid cells coincident with the face, i.e., there is only a single value of u∗f for multiple

fine grid cell faces along a coarse-grid cell face characterized by u∗. It follows that

A∗fxu
∗
f ≈ ∆y∗ h∗u∗

where for some position r along the fine-grid axes (r, s) we can define the total fine

grid area normal to the x axis as

A∗fx|r ≡
∫

∆y∗
h∗f |(r,s)ds∗

Thus, the fine grid velocity accounts for the difference between the coarse-grid flow

area and the fine grid flow area as:

u∗f =
∆y∗h∗

A∗fx
u∗
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Consistent with neglecting subgrid horizontal shear, we assume that the directional

angle of the subgrid velocities is similar to the coarse-grid velocities, i.e.,

cosα

cosαf
≈ 1

It is convenient to write the spatial averaging operator as a double integration over

the (r, s) axes, such that

CDx =
1

A∗

∫
∆x∗

∫
∆y∗

(h∗)3 (∆y∗)2

h∗f
(
A∗fx

)2 CDf ds
∗dr∗

The above equation can be written as

CDx =
(h∗)3 (∆y∗)2

A∗

∫
∆x∗

(
1

A∗fx

)2 ∫
∆y∗

1

h∗f
CDf ds

∗dr∗

= (h∗)3 ∆y∗

∆x∗

∫
∆x∗

(
1

A∗fx

)2 ∫
∆y∗

1

h∗f
CDf ds

∗dr∗

Noting that h∗ ≡ 1, it follows that separate time-dependent drag coefficients for x

and y directions are

CDx(t) =

(
∆y∗

∆x∗

)∫
∆x∗

(
1

A∗fx

)2 ∫
∆y∗

1

h∗f
CDf ds

∗dr∗ (4.11)

CDy(t) =

(
∆x∗

∆y∗

)∫
∆y∗

(
1

A∗fy

)2 ∫
∆x∗

1

h∗f
CDf dr

∗ds∗ (4.12)

where all terms on the right-hand side are functions of t except for ∆x∗, ∆y∗, and

CDf .
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To prevent an infinite values for coarse-grid drag coefficient in Eqs. (4.11) and

(4.12), we require non-dimensional lower cutoff bounds (β) such that

1

h∗f
< βh → 1

h∗f
= βh(

1

A∗fx

)2

< βf →

(
1

A∗fx

)2

= βf(
1

A∗fy

)2

< βf →

(
1

A∗fy

)2

= βf

The above can be written as minimum requirements:

h∗f (r, s) = min

[
h∗f ,

1

βh

]
A∗fx(r) = min

[
A∗fx(r),

1

β
1/2
f

]

A∗fy(s) = min

[
A∗fy(s),

1

β
1/2
f

]
To prevent unphysical damping that is greater than the kinetic energy available in

the flow, the βf and βh should be selected for the range of expected h∗f , A
∗
fx and A∗fy

values such that CDx ≤ 1 and CDy ≤ 1.

The above formulations for CDx and CDy require subgrid depths hf and sub-

grid cross-sectional areas Afx, Afy to be known. The time-varying difference between

the fine-grid bottom and coarse-grid bottom can be denoted as δz(r, s, t), which is

defined with a fine-grid topographic elevation zb(r, s), a coarse-grid bottom elevation

Zb that is uniform over subgrid space, and time-varying model-resolved water depth

h.

δz(r, s, t) ≡ min [zb(r, s)− Zb, h(t)] (4.13)
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Thus, δz(r, s) is constant with time only if the coarse-grid depth is greater than the

difference between the fine and coarse topography. The non-dimensional form for

Eq. (4.13) is

δz∗ ≡ δz

h

The subgrid depths hf at the time t are estimated by subtracting δz from the model-

resolved water depth h at the time t.

hf (r, s, t) = h(t)− δz(r, s, t) (4.14)

The above approach ensures that hf (r, s) = 0 when the coarse-grid free-surface

elevation is less than the zb(r, s) subgrid topographic elevation.

As a control case, we can consider the simple spatial average of the drag

coefficient (without any depth weighting) as a simple upscaling model. Note that

this approach produces a single coarse-grid drag coefficient, CDa that is identical in

both x and y directions and constant through time.

CDa ≡
1

A∗

∫
∆x∗

∫
∆y∗

CDf (r, s) ds∗ dr∗ (4.15)

Comparison of the control case with directional drag coefficients of Eqs. (4.11) and

(4.12) provides a method of quantifying the behavior of the dynamic algorithm. The

capabilities and limitations of the time-varying CDx and CDy for representing subgrid

effects are analyzed in Chapter 6.
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Chapter 5

Subgrid Momentum Model and Solution

5.1 Introduction

This portion of the study develops a subgrid method accounting for subgrid

topographic effects on surface stresses, pressure gradients, and flow continuity for the

integrated fluxes at grid cell faces, which are needed obtain mass and momentum con-

servation at the resolved-grid scale. The new ideas are built on foundations pioneered

by Casulli (2009) and Volp et al. (2013) (see Chapter 2). This new momentum-based

subgrid method addresses the effect of frictional forcing on the subgrid scale by ap-

proximating the integrated subgrid shear from the resolved velocity and topography

(see Section 5.2). The new subgrid formulation is completed by substituting discrete

versions of momentum for velocities at the cell faces into discrete continuity (see

Section 5.3). The incompressible flow continuity is constructed by applying the ap-

proach of the Casulli (2009) to flux integration at the faces of a grid cell. In addition,

this study applies a subgrid topography sampling method, building on the idea of Li

(2015). The sampling method is implemented within the subgrid momentum method

so as to capture the effect of minor flow channels below a resolved grid cell bottom

elevation (see Section 5.4).
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5.2 Subgrid momentum model

Newton’s second law defines a force on a particle of mass M and x velocity

component u as

∑
Fx = M

Du

Dt
(5.1)

where D/Dt is the material derivative following a particle. A balance of forces on

the moving water element can be constructed using surface forces Fs (e.g., pressure

forces, surface frictional forces) and body forces Fb (e.g., gravitational forces). A

surface force along the face of a grid cell can be obtained by integrating a stress

or pressure around the face. For example, an xz plane has a τxy shear stress that

exerts a force in the x direction due to velocity shear in the y direction, so that the

contribution to the force is

Fs(x) =

∫
Axz

τxy dA

Figure 5.1 is a schematic sketch that illustrates surface forces summed along

the net flow areas for the x direction. It is convenient to denote the vertical faces

of a resolved grid cell as abcd, efgh, abfe, and cdhg. Summing the forces in the x

direction along the net flow areas on vertical faces of a grid cell and including the

bottom shear stress (τBx) provides

∑
Fx =−

[
(pAyz)abcd − (pAyz)efgh

]
+
[
(τxxAyz)abcd − (τxxAyz)efgh

]
(5.2)

+
[
(τyxAxz)abfe − (τyxAxz)cdhg

]
+ (τBxAxy)
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Figure 5.1: Surface forces exerting on the net face flow areas of a resolved grid cell
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where p is the pressure, τxx, τyx, and τBx are the normal, shear, and bottom shear

stress for the x-direction. The variable τyx indicates a stress in the x-direction exerted

on a plane perpendicular to the y-direction.

5.2.1 Inertia and advection

Using M = ρV , where ρ is the fluid density and V is a volume, the momentum

in terms of the material derivative in the x direction in Eq. (5.1) can be converted

using the Reynolds Transport Theorem applied to a finite volume,

D

Dt

∫
Ω

ρudV =

∫
Ω(t)

∂(ρu)

∂t
dV +

∫
∂Ω(t)

ρ
(
Ū · n̂

)
u dA (5.3)

where Ū is a vector velocity and n̂ is a normal vector that is positive pointing outward

from Ω. Approximating ∂u/∂t as uniform over a finite volume and requiring ∂V/∂t to

be sufficiently small (i.e., in a numerical time step of ∆t we require ∆t ∂V/∂t� V ),

then ∫
Ω(t)

∂(ρu)

∂t
dV ≈ ρV

∂u

∂t
(5.4)

Approximating u on a face as uniform, and requiring ∂A/∂t to be sufficiently small,

we obtain ∫
∂Ω(t)

ρ
(
Ū · n̂

)
u dA ≈

∑
f∈∂Ω

ρufQf (5.5)

where Qf is a volume flux given a sign that is negative for an inflow and positive

for an outflow. Substituting Eqs. (5.4) and (5.5) into Eq. (5.3) and then putting the

result back into Eq. (5.1) provides∑
Fx = ρV

∂u

∂t
+
∑
f∈∂Ω

ρufQf
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Noting that Q = uA for uniform velocities over a cross-sectional area, a discrete form

of inertia and advection at the edge of a grid cell can be defined from the above using

a first-order upwind scheme as:

∑
Fx = ρV

(un+1
i+1/2,j − uni+1/2,j)

∆t
+ ρuni+1/2,j(A

n
yz)i+1/2,j(u

n
i+1/2,j − uni−1/2,j)

+ ρvni+1/2,j(A
n
xz)i+1/2,j(u

n
i+1/2,j − uni+1/2,j−1) (5.6)

where n is the time index; i and j is horizontal spatial indices for the Cartesian space

(in x and y-direction, respectively); and u and v are the depth-averaged velocity

components in the Cartesian directions, respectively.

5.2.2 Frictional forces

The friction forces are obtained by integrating the surface stresses over the

edges of a grid cell.

Fx(friction) =

∫
Ayz

τxxdA+

∫
Axz

τyxdA+

∫
Axy

τBxdA

Expressing the surface stresses with velocity gradients (Stokes, 1845),

τxx = λ∇ · Ū + 2µ
∂u

∂x
(5.7)

τyx = τxy = µ

(
∂v

∂x
+
∂u

∂y

)
(5.8)

where µ is the molecular viscosity coefficient and λ is the bulk viscosity coefficient.

Based on the incompressible mass conservation relationship,

∇ · Ū = 0, thus, τxx = 2µ
∂u

∂x

57



The bottom shear stress can be modeled as a quadratic function with depth-averaged

velocities and a drag coefficient CD (Hervouet, 2007; Lightbody and Nepf, 2006).

τBx =
1

2
ρCDxu

√
u2 + v2

The discrete form of frictional forces can be approximated with the first-order upwind

scheme as:

Fx(friction) =
[
(τnxx) i+3/2,j

(
Anyz
)
i+3/2,j

− (τnxx) i+1/2,j (Anyz)i+1/2,j

]
+
[(
τnyx
)
i+1/2,j

(Anxz)i+1/2,j −
(
τnyx
)
i−1/2,j

(Anxz)i−1/2,j

]
+
(
τn+1
Bx

)
i+1/2,j

(
Anxy
)
i,j

(5.9)

where τBx term is discretized with the implicit velocity un+1
i+1/2,j; the surface stresses

τxx and τyx, and the face areas Ayz, Axz, and Axy at the edges and the bottom of a

grid cell are explicitly discretized. Substituting Eqs. 5.7 and 5.8 into Eq. 5.9 provides

Fx(friction) = 2 (νx)i+1/2,jρ(Anyz)i+1/2,j

(uni+3/2,j − uni+1/2,j)

∆x

− 2 (νx)i−1/2,jρ(Anyz)i−1/2,j

(uni+1/2,j − uni−1/2,j)

∆x

+ (νy)i+1/2,jρ(Anxz)i+1/2,j

[
(vni+3/2,j − vni+1/2,j)

∆x
+

(uni+1/2,j+1 − uni+1/2,j)

∆y

]

− (νy)i−1/2,jρ(Anxz)i−1/2,j

[
(vni+1/2,j − vni−1/2,j)

∆x
+

(uni−1/2,j+1 − uni−1/2,j)

∆y

]
+

1

2
ρ(Anxy)i,jCDxu

n+1
i+1/2,j

√
(uni+1/2,j)

2 + (vni+1/2,j)
2 (5.10)

where ν is horizontal turbulence eddy viscosity [L2/s].
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5.2.3 Pressure force

The net force due to hydrostatic pressure in the x direction over a small

element of length ∆x is given by

Fx(pressure) =

∫
Ayz(x)

ρg (η − z) dA−
∫
Ayz(x+∆x)

ρg (η − z) dA

Writing the above for a uniform density fluid, we obtain

Fx(pressure) = ρg

{∫
Ayz(x)

η dA−
∫
Ayz(x+∆x)

η dA−
∫
Ayz(x)

z dA+

∫
Ayz(x+∆x)

z dA

}
As ∆x→ 0, the above can be approximated as

Fx(pressure) ≈ −∆x ρgAyz

{
∂η

∂x
− ∂zc
∂x

}
where zc is the elevation of the centroid of the face Ayz (i.e., the elevation of the center

of area). For the present purposes, we will confine ourselves to conditions where the

free surface gradient dominates the centroid gradient so that, for the i+ 1/2 face of

a grid cell, a discrete form is

Fx(pressure) ≈ −ρgAyz (ηi+1 − ηi)

Future studies should perhaps consider the effect of the centroid gradient on the

hydrostatic pressure term. It is neglected herein as the centroid gradient can have

reversals and discontinuities within the subgrid scale from the i to i + 1 cell cen-

ters, which is significantly more complex to discretize than the typically smooth free

surface gradient.

An implicit linear discretization of the pressure term that is valid for ∆t ∂Ayz/∂t�

Ayz is

Fx(pressure) = −
[
ρgηn+1

i+1,j(A
n
yz)i+1/2,j − ρgηn+1

i,j (Anyz)i+1/2,j

]
(5.11)
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The above follows the linearization introduced in Casulli (1999) whose second-order

effects are discussed in Hodges (2004).

5.2.4 Momentum equation

Substituting Eqs/ (5.6), (5.10), and (5.11) into Eq. (5.2), the first-order up-

wind discretization of the incompressible momentum equation is:

ρV
(un+1

i+1/2,j − uni+1/2,j)

∆t

+ ρuni+1/2,j(A
n
yz)i+1/2,j(u

n
i+1/2,j − uni−1/2,j)

+ ρvni+1/2,j(A
n
xz)i+1/2,j(u

n
i+1/2,j − uni+1/2,j−1)

=

−
[
ρgηn+1

i+1,j(A
n
yz)i+1/2,j − ρgηn+1

i,j (Anyz)i+1/2,j

]
+ 2 (νx)i+1/2,jρ(Anyz)i+1/2,j

(uni+3/2,j − uni+1/2,j)

∆x

− 2 (νx)i−1/2,jρ(Anyz)i−1/2,j

(uni+1/2,j − uni−1/2,j)

∆x

+ (νy)i+1/2,jρ(Anxz)i+1/2,j

[
(vni+3/2,j − vni+1/2,j)

∆x
+

(uni+1/2,j+1 − uni+1/2,j)

∆y

]

− (νy)i−1/2,jρ(Anxz)i−1/2,j

[
(vni+1/2,j − vni−1/2,j)

∆x
+

(uni−1/2,j+1 − uni−1/2,j)

∆y

]
+

1

2
ρ(Anxy)i,jCDx u

n+1
i+1/2,j

√
(uni+1/2,j)

2 + (vni+1/2,j)
2
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Rearranging the equation above provides

ρV

∆t
un+1
i+1/2,j =

ρV

∆t
uni+1/2,j

− ρuni+1/2,j(A
n
yz)i+1/2,j(u

n
i+1/2,j − uni−1/2,j)

+ ρvni+1/2,j(A
n
xz)i+1/2,j(u

n
i+1/2,j − uni+1/2,j−1)

−
[
ρgηn+1

i+1,j(A
n
yz)i+1/2,j − ρgηn+1

i,j (Anyz)i+1/2,j

]
+ 2 (νx)i+1/2,jρ(Anyz)i+1/2,j

(uni+3/2,j − uni+1/2,j)

∆x

− 2 (νx)i−1/2,jρ(Anyz)i−1/2,j

(uni+1/2,j − uni−1/2,j)

∆x

+ (νy)i+1/2,jρ(Anxz)i+1/2,j

[
(vni+3/2,j − vni+1/2,j)

∆x
+

(uni+1/2,j+1 − uni+1/2,j)

∆y

]

− (νy)i−1/2,jρ(Anxz)i−1/2,j

[
(vni+1/2,j − vni−1/2,j)

∆x
+

(uni−1/2,j+1 − uni−1/2,j)

∆y

]
+

1

2
ρ(Anxy)i,jCDxu

n+1
i+1/2,j

√
(uni+1/2,j)

2 + (vni+1/2,j)
2

For clarity, we define a nonlinear advection (Nx) term as

Nn
x i+1/2,j =− uni+1/2,j(A

n
yz)i+1/2,j(u

n
i+1/2,j − uni−1/2,j)

+ vni+1/2,j(A
n
xz)i+1/2,j(u

n
i+1/2,j − uni+1/2,j−1)
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Similarly, the diffusive stress (e.g., Dyx) terms are

Dn
xx i+1/2,j = 2 (νx)i+1/2,j(A

n
yz)i+1/2,j

(uni+3/2,j − uni+1/2,j)

∆x

− 2 (νx)i−1/2,j(A
n
yz)i−1/2,j

(uni+1/2,j − uni−1/2,j)

∆x

Dn
yx i+1/2,j

= (νy)i+1/2,j(A
n
xz)i+1/2,j

[
(vni+3/2,j − vni+1/2,j)

∆x
+

(uni+1/2,j+1 − uni+1/2,j)

∆y

]

− (νy)i−1/2,j(A
n
xz)i−1/2,j

[
(vni+1/2,j − vni−1/2,j)

∆x
+

(uni−1/2,j+1 − uni−1/2,j)

∆y

]
and a bottom drag (Bx) term is

Bn
x i+1/2,j =

(Anxy)i,j

2V n
i,j

CD
√

(uni+1/2,j)
2 + (vni+1/2,j)

2

Dividing both sides of the discrete momentum equation by ρV/∆t and using the

above notation, the x momentum equation can be written as

un+1
i+1/2,j −∆tBn

x i+1/2,ju
n+1
i+1/2,j =uni+1/2,j −

∆t

V n
i,j

Nn
x i+1/2,j

− g∆t

V n
i,j

[
ηn+1
i+1,j(A

n
yz)i+1/2,j − ηn+1

i,j (Anyz)i+1/2,j

]
+

∆t

V n
i,j

Dn
xx i+1/2,j +

∆t

V n
i,j

Dn
yx i+1/2,j

(5.12)

Further define

Ini+1/2,j ≡
1

1−∆tBn
x i+1/2,j

En
x i+1/2,j ≡ Ini+1/2,j

[
uni+1/2,j −

∆t

V n
i,j

Nn
x i+1/2,j +

∆t

V n
i,j

Dn
xx i+1/2,j +

∆t

V n
i,j

Dn
xy i+1/2,j

]
Then Eq. (5.12) is

un+1
i+1/2,j =En

x i+1/2,j − g∆t
Ini+1/2,j

V n
i,j

(
Anyz
)
i+1/2,j

(
ηn+1
i+1,j − ηn+1

i,j

)
(5.13)
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5.2.5 Comparison with the prior momentum models

The new approach (as proposed above) directly considers subgrid geometry

surface areas (e.g., Ayz) in discretizing resolved effects of subgrid surface forces.

This approach can be contrasted with the methods of Casulli (2009) (developed in

the context of wetting/drying algorithms) that used only the mean water depth on a

face (i.e., the average of the subgrid contributed depths). For comparison purposes,

Appendix B provides the first-order upwind discrete solution of a subgrid model

applying the idea of Casulli (2009).

Another approach in the literature is that of Volp et al. (2013), who approxi-

mated the subgrid momentum using a quadtree approach (Chapter 2). The subgrid

force model is discretized on a ∆x/2 scale (i.e., the flow variability is limited to

four subgrid domains in a resolved grid cell no matter how many fine grid cells are

actually available within a resolved grid cell). The key difference between the Volp

et al. (2013) approach and the present work is that they emphasized the variability

of forces within a resolved grid cell (i.e., at the ∆x/2 scale), whereas we emphasize

the integrated subgrid forces around the resolved grid cell. That is, the Volp et al.

(2013) approach uses the fine-grid data to improve the effective grid scale by a fac-

tor of 2, whereas our method adapts the traditional finite-volume approach using

integrated surface values around the resolved cell but directly applies the subgrid

approximations at whatever scale the subgrid data are available. It seems likely that

combining the approaches could be useful, but such efforts are not within the scope

of the present work.

In Chapter 6, a free-surface solution of the subgrid model applying the idea
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of Casulli (2009) is compared with the solution of the new subgrid momentum model

evaluate the performance of the new momentum model. The approach of Volp et al.

(2013) was not added to the existing Frehd code and remains an open issue for future

consideration.

5.3 Model solution

5.3.1 Flow continuity with the edge fluxes

The flow continuity is constructed by applying the idea of Casulli (2009)

(Chapter 2). Integrating fine-grid fluxes at the edges of a grid cell provides a strict

flow continuity of the volume flux over the subgrid area at the faces of a grid cell.

The incompressible flow continuity with the integrated net flux (Q) at the faces of a

grid cell, Eq. (2.1) is discretized as:

(V n+1
i,j − V n

i,j)

∆t
+

∫
f

dQ
n+1/2
i,j = 0 (5.14)

With an algebraic approximation (see figures in upper panel of Figure 5.2), the

volume change in the resolved grid cell i, j is a function of the changing surface

elevation and surface area:

V n+1
i,j − V n

i,j ' (An+1
xy )i,jη

n+1
i,j − (Anxy)i,jη

n
i,j (5.15)

where (Axy)i,j is the surface flow area on the xy plane that does not include the

emergent (dry) subgrid areas (see lower panel of Fig. 5.2).

With the net flow areas Ayz and Axz at the xz and yz-planar faces of a grid
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Figure 5.2: (top) Flow continuity with the net fluxes at the faces of a grid cell (Qx,
Qy) and a difference of the surface elevation ∆η over ∆t. (bottom) Volume change
(∆V ) scaled with the surface area A (left) and with the effective surface area Axy
(right).
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cell (see Figure 5.3), the net flux (dQ) is discretized as:∫
f

dQ
n+1/2
i,j =

[
u
n+1/2
i+1/2,j (An+1/2

yz )i+1/2,j − un+1/2
i−1/2,j (An+1/2

yz )i−1/2,j

]
(5.16)

+
[
v
n+1/2
i,j+1/2 (An+1/2

xz )i,j+1/2 − vn+1/2
i,j−1/2 (An+1/2

xz )i,j−1/2

]
In the above, the net flow areas Ayz and Axz are unresolved topography areas with

dashed borders in lower panel of Figure 5.3. Substituting Eqs. (5.16) and (5.15) into

Eq. (5.14) provides[
(An+1

xy )i,jη
n+1
i,j − (Anxy)i,jη

n
i,j

]
∆t

+
[
u
n+1/2
i+1/2,j (An+1/2

yz )i+1/2,j − un+1/2
i−1/2,j (An+1/2

yz )i−1/2,j

]
+
[
v
n+1/2
i,j+1/2 (An+1/2

xz )i,j+1/2 − vn+1/2
i,j−1/2 (An+1/2

xz )i,j−1/2

]
= 0 (5.17)

In Appendix B, it is shown that the above can be represented as a standard θ-method

for an semi-implicit free surface solution as:

ηn+1
i,j + θc

∆t

(Anxy)i,j

[
un+1
i+1/2,j (Anyz)i+1/2,j − un+1

i−1/2,j (Anyz)i−1/2,j

]
+ θc

∆t

(Anxy)i,j

[
vn+1
i,j+1/2 (Anxz)i,j+1/2 − vn+1

i,j−1/2 (Anxz)i,j−1/2

]
= ηni,j − (1− θc)

Sni,j
(Anxy)i,j

+
∆t

(Anxy)i,j
T
n+1/2
i,j (5.18)

where T represents external volume sources (inflows, precipitation), and the explicit

source term (S) is defined as:

Sni,j ≡∆t
[
uni+1/2,j (Anyz)i+1/2,j − uni−1/2,j (Anyz)i−1/2,j

]
+ ∆t

[
vni,j+1/2 (Anxz)i,j+1/2 − vni,j−1/2 (Anxz)i,j−1/2

]
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Figure 5.3: Schematic diagram of a grid cell with resolved topography (top) and
unresolved topography (bottom). The nomenclature, Qx and Qy denote x and y-
directional fluxes on the faces of the cell (displayed with arrows); Axz and Ayz denote
the flow areas of the faces of the cell.
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5.3.2 Free-surface elevation solution

The overall algorithm is completed by substituting discrete versions of mo-

mentum, Eq. (5.13) for un+1 and vn+1 at the cell faces i+ 1/2, i− 1/2, j + 1/2 and

j − 1/2 into discrete continuity Eq. (5.18), which provides

ηn+1
i,j + θc

∆t

(Anxy)i,j

[
En
x i+1/2,j(A

n
yz)i+1/2,j − Ini+1/2,j

g∆t

V n
i,j

(Anyz)
2
i+1/2,j(η

n+1
i+1,j − ηn+1

i,j )

]
− θc

∆t

(Anxy)i,j

[
En
x i−1/2,j(A

n
yz)i−1/2,j − Ini+1/2,j

g∆t

V n
i,j

(Anyz)
2
i−1/2,j(η

n+1
i,j − ηn+1

i−1,j)

]
+ θc

∆t

(Anxy)i,j

[
En
y i,j+1/2

(Anxz)i,j+1/2 − Ini,j+1/2

g∆t

V n
i,j

(Anxz)
2
i,j+1/2(ηn+1

i,j+1 − ηn+1
i,j )

]
− θc

∆t

(Anxy)i,j

[
En
y i,j−1/2

(Anxz)i,j−1/2 − Ini,j−1/2

g∆t

V n
i,j

(Anxz)
2
i,j−1/2(ηn+1

i,j − ηn+1
i,j−1)

]
= ηni,j − (1− θc)

Sni,j
(Anxy)i,j

+
∆t

(Anxy)i,j
T
n+1/2
i,j (5.19)

For simplicity in exposition, let

Cn
i+1/2,j ≡ θc

g(∆t)2

(Anxy)i,j V
n
i,j

Ini+1/2,j (Anyz)
2
i+1/2,j

Cn
i−1/2,j ≡ θc

g(∆t)2

(Anxy)i,j V
n
i,j

Ini−1/2,j (Anyz)
2
i−1/2,j

Cn
i,j+1/2 ≡ θc

g(∆t)2

(Anxy)i,j V
n
i,j

Ini+1/2,j (Anxz)
2
i,j+1/2

Cn
i,j−1/2 ≡ θc

g(∆t)2

(Anxy)i,j V
n
i,j

Ini−1/2,j (Anxz)
2
i,j−1/2

and

Gn
i,j ≡∆t

[
En
x i+1/2,j(A

n
yz)i+1/2,j − En

x i−1/2,j(A
n
yz)i−1/2,j

]
+ ∆t

[
En
y i,j+1/2

(Anxz)i,j+1/2 − En
y i,j−1/2

(Anxz)i,j−1/2

]
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Substituting G and C into Eq. 5.19, we have

ηn+1
i,j − Cn

i+1/2,j(η
n+1
i+1,j − ηn+1

i,j ) + Cn
i−1/2,j(η

n+1
i,j − ηn+1

i−1,j)

− Cn
i,j+1/2(ηn+1

i,j+1 − ηn+1
i,j ) + Cn

i,j−1/2(ηn+1
i,j − ηn+1

i,j−1) + θc
Gn
i,j

(Anxy)i,j

= ηni,j − (1− θc)
Sni,j

(Anxy)i,j
+

∆t

(Anxy)i,j
T
n+1/2
i,j (5.20)

Rearranging Eq. (5.20) provides

ηn+1
i,j

[
1 + Cn

i+1/2,j + Cn
i−1/2,j + Cn

i,j+1/2 + Cn
i,j−1/2

]
− ηn+1

i+1,j C
n
i+1/2,j − ηn+1

i−1,j C
n
i−1/2,j − ηn+1

i,j+1C
n
i,j+1/2 − ηn+1

i,j−1C
n
i,j−1/2

= ηni,j − (1− θc)
Sni,j

(Anxy)i,j
+

∆t

(Anxy)i,j
T
n+1/2
i,j − θc

Gn
i,j

(Anxy)i,j
(5.21)

For the present work, we limit our focus to a Backwards Euler discretization, applying

θc = 1. Thus, Eq. (5.21) is reduced to:

ηn+1
i,j

[
1 + Cn

i+1/2,j + Cn
i−1/2,j + Cn

i,j+1/2 + Cn
i,j−1/2

]
− ηn+1

i+1,j C
n
i+1/2,j − ηn+1

i−1,j C
n
i−1/2,j − ηn+1

i,j+1C
n
i,j+1/2 − ηn+1

i,j−1C
n
i,j−1/2

= ηni,j +
∆t

(Anxy)i,j
T
n+1/2
i,j −

Gn
i,j

(Anxy)i,j
(5.22)

Note that in the formulation above the cell face values (e.g., Ayz) always appear in

terms that (when products are broken down) have forms such as AyzV
−1 or AyzA

−1
xy .

As a result, such terms will go to zero (rather than infinity) when a subgrid face is

dry as long as some portion of the subgrid geometry remains wet. Thus, the only

special handling for wetting and drying is the conventional approach used in Frehd

(i.e., as hi,j → 0), which can be interpreted here as applying when Vi,j → 0.
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For a linear solution of ηn+1, the free-surface solution, Eq. (5.22) requires

subgrid cross-sectional areas Axz, Ayz, effective grid-cell surface area Axy, and storage

volume of a resolved grid cell V to be known at time n for elevation ηn in each

grid cell. These are determined directly from the subgrid topography. Appendix C

provides the equations computing subgrid geometric quantities. Figure 5.4 depicts

the structure of computation nodes at a grid in the present approach.

In comparison to the original approach in Frehd discussed in Chapter 3, the

new subgrid model considers how the cell storage volume varies nonlinearly with the

surface elevation as well as the subgrid integrated surface forces at the cell faces. Cal-

culating the continuous range of geometric values for any η can be computationally

expensive, especially when the subgrid contains a large number of cells. To reduce

this effort, we employ a “look-up table” scheme (Appendix D), which stores subgrid

geometry values at pre-defined intervals of ∆η for each grid cell. The accuracy and

time-efficiency of the subgrid model implemented with/without the look-up table

scheme is compared in Chapter 6.

5.4 Subgrid topography sampling

One challenge for implementing subgrid topography effects into the resolved

grid scale is in the potential for flow connectivity at water surface elevations below

the model-resolved grid bottom elevation (see discussion in Section 1.1 and Fig. 1.5).

That is, if the resolved grid represents the bottom elevation (Zb) of a grid cell with
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Figure 5.4: Computation nodes at a grid. Squares: free-surface elevation (η), depth
(h), water volume (V ), and surface flow area (Axy); Circles: velocities (u, v), fluxes
(Q), and face flow areas (Ayz, Axz)
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a simple average of the subgrid elevations (zb) over the nr × ns subgrid cells, e.g.,

Zb ≡
1

nr ns

nr∑
r=1

ns∑
s=1

zb(r, s)

then there is a potential for a continuous path of subgrid cells r, s across the resolved

grid cell such that zb(r, s) < Zb. Thus, flow is physically possible along the subgrid

path, but is blocked at the resolved grid scale because the resolved grid cell is nomi-

nally “dry” (i.e., η ≤ Zb). Simple approaches to obtaining resolved bathymetry from

subgrid topography cannot directly represent flow conveyance through subgrid flow

passages where ηi,j < Zb(i,j), but a connected path of zb(r, s) < Zb exists within the

subgrid topography.

Although a full investigation of subgrid connectivity is beyond the scope of

the present work, herein we experiment with using the minimum subgrid elevation

to represent the resolved grid cell elevation, i.e.,

Zb ≡ min [zb(r, s)] : r = {1, 2, . . . nr} , s = {1, 2, . . . ns}

Applying this bathymetry treatment requires reconsideration of the resolved grid

cell depth within the subgrid method. The simplest approach to the resolved flow

depth is the difference between the resolved free surface elevation and the resolved

bottom, i.e., hi,j(t) = ηi,j(t)− Zb(i,j)(t). However, when Zb represents the minimum

depth, this value for h is not a good representation of the effective flow depth at the

resolved scale. Herein we use the average of subgrid depths (hf (i,j)) instead of the

model-resolved depth.

hf (i,j)(t) ≡
1

nrns

nr∑
r=1

ns∑
s=1

hf (r, s, t)
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For computational convenience, the subgrid depth hf (r, s, t) is defined as:

hf (r, s, t) = h(t)− δz(r, s, t)

where

δz(r, s, t) ≡ min [zb(r, s)− Zb, h(t)]

As a subject for future study, there is an open question as to whether the simple

average (used above) or a median value would provide a more effective approach.

Herein we used the average based solely on computationally efficiency.
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Chapter 6

Validation and Verification of Subgrid Models

6.1 Introduction

This chapter presents descriptions of the simulation cases and the metrics

used to evaluate subgrid model performance. Section 6.2 describes the numerical ex-

periments, reference, and control cases for different subgrid model options. Section

6.3 describes the test section of the Nueces River Delta and the coarse resolution

bathymetries used in the model testing. Section 6.4 describes the boundary con-

ditions and other inputs to the models. In Section 6.5, the standard metrics for

comparing models at different grid resolutions are presented and discussed. The

results of the numerical experiments with the subgrid models (herein simply “ex-

periments” for brevity) are compared to both reference cases and control cases and

discussed in Chapter 6.6. Section 6.7 describes a new set of global indicators that

we propose which can be used to evaluate time-varying subgrid model performance.

6.2 Numerical experiments, reference, and control cases

All modeling herein uses a portion of the complex marsh topography of the

Nueces River Delta described in Appendix A. The reference cases use the Frehd

model (Chapter 3) at 1×1 m grid resolution (see Section 6.3). The experiments and
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the control cases use same portion of the Nueces River Delta, but coarsen the grid

resolution to 15×15 m, which has proven a computationally tractable scale for mod-

eling the entire Nueces River Delta (Ryan, 2011). The control cases use the Frehd

model (Chapter 3) as the reference cases and averaging of static drag coefficients as

the simplest approach for handling subgrid variability. Ideally, numerical models of

natural systems should be validated directly from field data, but the frequency and

spatial distribution of available observation data in complex topographical systems

are generally insufficient for model validation. Herein we use model-model compar-

isons to validate new model features, which follows the precedent of prior researchers

in subgrid algorithms (e.g., Wu et al., 2016; Volp et al., 2016).

A total of 8 model runs for a single scenario were conducted to test and

validate the new algorithms (see Table 6.1). To identify the different model aspects

in a particular run we use a series of letters, e.g., MDB, which can be parsed as follows.

The fine-grid reference and the control are denoted as “F” and “C”, respectively. A

“D” is used to denote experiments using the new drag model of Chapter 4. An

“M” is used to denote experiments using the new momentum model of Chapter 5.

Simulations using subgrid topography sampling (Section 5.4) are denoted with a

“B.” An “L” is used to denote use of a look-up table for geometry values rather than

direct computation (Appendix D). A “G” is used to denote experiments with the

subgrid model approach that applies only the flux integration developed by Casulli

(2009) and described in Appendix B. These “G” runs were designed to evaluate the

improvements of the present approaches over the predecessor model.

For simplicity in naming, model runs use the same algorithms as the control
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(C) case unless otherwise specified; e.g., a GL run uses the Casulli (2009) flux inte-

gration subgrid model with the Look-up table algorithm, but otherwise applies the

same topography and drag treatment of the Control case. The new subgrid methods

were tested both in combination (MDB) and separately (D and M) to better under-

stand the effect of each model. Note that the look-up table (L) does not significantly

effect the model results, but it does effect the computational performance. Thus,

for clarity the L is only appended on model runs that are used for comparisons of

performance with and without the look-up table. The expected performance of the

topography sampling (B) for addressing the flow advection under the resolved grid

cell bottom elevation requires parameterization of the subgrid topography on the

face flow area.

Table 6.1: Run cases

Run case
Model aspect

Subgrid Subgrid Topography
Momentum (M) Drag (D) Sampling (B)

F (Reference) X X X
C (Control) X X X

G X X X
M O X X
D X O X
MD O O X
MB O X O
MDB O O O
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6.3 Test bathymetry

The reference model used the best available grid-scale bathymetry (1×1 m) of

the Nueces Delta in the southern Texas (USA), which was compiled from lidar data by

J. Gibeaut of Texas A&M Corpus Christi. We selected two test sections of 300×300

m that include the typical natural heterogeneity of the delta. To minimize numerical

effects of edge boundary conditions, 300 m wide buffer domains were added around

all edges of each test section. In effect, the test sections were centered in 900×900

m modeling domains developed from the lidar data. The fine resolution bathymetry

for test sections A and B and their surrounding buffer domains are shown in Figures

6.1 and 6.2.

With the exception of B experiments using the subgrid topography sampling,

the 15×15 m grid-scale bathymetry for the model experiments and control cases

were obtained by the mean elevation of the fine-grid bathymetry within a coarse grid

cell, Eq. (5.23). The B experiments used the minimum local elevation, Eq. (5.23) to

examine small flow passage effects (Section 5.4).

6.4 Boundary conditions and model parameters

The model boundary conditions are artificial approximations of typical con-

ditions in the Nueces Delta. Three of the boundaries were forced with simple linear,

in-phase tidal oscillations, as indicated in Figure 6.3. The fourth boundary used a

fixed inflow of QBC = 10 m3/s distributed uniformly over the 900 m edge of the

buffer domain. Frehd’s approach to an inflow boundary is to distribute the flow

proportionally with the local area. That is, given the depth hedge,j for j = 1...Nj
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Figure 6.1: 1×1m grid scale bathymetry of the test section A. The color scale is of
the bottom elevation (m). Bold lines indicate the boundaries of the test section.
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Figure 6.2: 1×1m grid scale bathymetry of the test section B. The color scale is of
the bottom elevation (m). Bold lines indicate the boundaries of the test section.
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edge cells, the inflow Qedge,j at the j grid cell will be

Qedge,j = QBC
hedge,j∑Nj
1 hedge,j

Thus, the distribution of the flow across changes with time in response to the interior

water levels of the simulation. Total model simulated time was 24 hours.

Although real-world conditions can be expected to have spatially-varying drag

coefficients, for the present work we used a uniform drag coefficient (CDf ) of 0.01

across the entire fine-grid modeling domain. The coarse-grid control cases (C) and

all non-D experiments use a simple spatial average for CDa, so they also have uniform

drag coefficients of 0.01. The D model experiments have dynamically-adjusting non-

uniform coefficients computed by Eqs. (4.11) and (4.12). This approach enables us

to examine the most simple form of the model behavior and compare with the effects

of heterogeneity developed by the subgrid model.

The horizontal eddy viscosity was selected as 10−4 m2/s over the entire model-

ing domain. A small uniform value was chosen rather than invoking a more complex

turbulence model so that the focus of the work remains on the performance of the

subgrid model itself. A time step of 24 seconds was used for all the coarse grid

experiments and control cases. The fine grid cases used a time step of 16 seconds.

With these times steps the CFL conditions were typically 0.1 for the coarse grid runs

and 0.5 for the fine grid runs.
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Figure 6.3: Boundary conditions for the numerical test. (top) Black lines: tidal
boundaries, red arrows: inflow, and black dashed box: test section. (bottom) Black
line: tidal boundary elevation, blue “X”s: time-steps of comparing projected flow
variable, and black dashed lines: time-span of analyzing errors.
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6.4.1 Evaluation time interval

To allow for spin-up of the oscillating flow driven by the tidal boundary con-

ditions, the time interval for evaluating the metrics of Section 6.5 was from 12.67

hours to 18.67 hours, corresponding to the third tidal peak to the fourth tidal peak

of the boundary conditions (see Fig. 6.3).

6.5 Standard statistical metrics

6.5.1 Projected flow variables

To compare the fine-grid simulations to the coarse-grid simulations requires

the either downscaling the coarse-grid results to the fine grid, or upscaling the fine-

grid results to the coarse grid. These are the “projected” variables. Herein we

use downscaling for the water surface elevation (η) and upscaling for the fluxes.

The downscaling is used for η as we seek to understand the error associated with

accumulated water volume within a coarse grid cell that depends on the difference

between η and the fine-grid bottom elevation. In contrast, the reference fluxes are

upscaled from the fine grid to the coarse grid as our interest is whether the net

fluxes in/out of a coarse grid cell are being adequately represented, whereas the local

interchanges within the coarse-grid cell is of lesser import.

We use a simple uniform distribution downscaling, so that the value of ηi,j

for a cell i, j in the coarse-grid domain is applied to all the r, s subgrid elements in

that cell. If we use X to represent the coarse-grid model nomenclature (e.g., MD

as described above), then a downscaled ηX for coarse grid cell i, j can be formally
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represented as ηdX , where

ηdX(r, s, t) ≡ ηX(t) : r ∈ {1 : nr} , s ∈ {1 : ns}

The downscaled depth is the difference between the downscaled water surface eleva-

tion and the fine-grid bottom elevation, with negative depths set to zero:

hdX(r, s, t) ≡ max [(ηdX(r, s, t)− zb(r, s)), 0] (6.1)

The flow velocities at the edges of the reference grid cell (uF and vF ) are

upscaled by integrating along the faces to obtain the net coarse-grid flux, denoted

as QuF , which is computed for the x and y directions as:

QFx(r, s, t) ≡ hF (r, s, t)uF (r, s, t)

QFy(r, s, t) ≡ hF (r, s, t) vF (r, s, t)

QuFx(t) ≡
ns∑
s=1

QFx(nr, s, t)∆s

QuFy(t) ≡
nr∑
r=1

QFy(r, ns, t)∆r (6.2)

where nr and ns are the numbers of fine-grid cells composing the fine-grid system for

r and s-directions, and ∆r and ∆s are the unit lengths of the fine-grid coordinates.

Fluxes at the resolved grid cell of the coarse-grid simulation method X are scaled

with the flow velocities at the edges of the coarse-grid cell (uX and vX) as:

QXx(t) ≡ hX(t)uX(t)∆y (6.3)

QXy(t) ≡ hX(t) vX(t)∆x
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where ∆x and ∆y are the unit lengths of a model-resolved grid cell for x and y-

directions.

The time-varying spatial average of the free-surface elevations over the test

region, ηX(t) can be determined as:

ηX(t) ≡ 1

NxNy

Nx∑
i=1

Ny∑
j=1

ηX(i, j, t) (6.4)

and for the reference model, ηF (t) is determined as:

ηF (t) ≡ 1

NxNy

Nx∑
i=1

Ny∑
j=1

[
1

nrns

nr∑
r=1

ns∑
s=1

ηF (r, s, t)

]
(i,j)

(6.5)

where Nx and Ny are the numbers of model-resolved grid cells for x and y-directions

over the test domain.

6.5.2 Standard comparison metrics

In the present work, two previously-defined error metrics, the “absolute mean

error” (Anderson and Bates, 2001) and the “Willmott Skill Score” (Willmott, 1981)

were applied to quantify time-space scales of discrepancies of the experiments and

the control from the reference. The absolute mean error is selected as a more re-

strictive metric than a simple mean error. The latter was not chosen as it allows

underprediction in one location (or time) to be offset by overprediction in another

location (or time), hence producing a smaller error result for oscillating flows that

does not reflect the actual performance of the models. In contrast to the absolute

mean error, the Willmott Skill Score provides a normalized metric of errors across a

time-space domain. To ensure that effects of boundary conditions and spin-up do not
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dominate the error metrics, we use a limited space domain (i.e., the central portion

of the domain, see Section 6.3) and a limited time span (i.e., beginning after spin up

is completed) for computations (see Section 6.4.1).

For coarse-grid simulation method X, the relative error for subgrid element

ηdX(r, s, t) in coarse-grid cell i, j is denoted as δηdX , and is scaled on the maximum

subgrid depth over the coarse-grid cell.

δηdX(r, s, t) ≡ ηdX(r, s, t)− ηF (r, s, t)

max [hF (α, β, t)]
: α ∈ {1 : nr} , β ∈ {1 : ns} ,

max [hF (α, β, t)] > ε

With ε chosen as the depth tolerance (10−3 m), one order of magnitude larger than

the depth tolerance used in the Frehd model to designated dry cells. This approach

prevents nearly dry cells (i.e., 1 mm of water) from dominating the error metric. By

use of the uniform distribution downscaling for η, the relative error of the depth (h)

is identical to that of η.

The relative error of the coarse-grid flux for the coarse-grid simulation method

X is denoted as δQuX , and is scaled on the maximum subgrid flux over the coarse-grid

cell as:

δQuX(i, j, t) ≡
[
(QXx (i, j, t)−QuFx (i, j, t))2 + (QXy (i, j, t)−QuFy (i, j, t))2]1/2

max
[√

Q2
Fx(α, β, t) +Q2

Fy(α, β, t)
]

: α ∈ {1 : nr} , β ∈ {1 : ns} , max
[{
Q2
Fx(α, β, t) +Q2

Fy(α, β, t)
}1/2

]
> 0

The condition, max
[{
Q2
Fx(α, β, t) +Q2

Fy(α, β, t)
}1/2

]
> 0 prevents the denominator

from going to zero in the case of zero fluxes.
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The time-varying absolute mean error across all of space is simply the spatial-

average of the absolute relative errors (|δηdX |) across the test domain, denoted as

EXη(t) :

EXη(t) ≡
1

NxNy

Nx∑
i=1

Ny∑
j=1

[
1

nrns

nr∑
r=1

ns∑
s=1

|δηdX(r, s, t)|

]
(i,j)

(6.6)

Similarly, the space-varying absolute mean error across all of time at coarse-grid cell

i, j is EXtη(i, j) and computed as:

EXtη(i, j) ≡
1

Nt

Nt∑
t=1

[
1

nrns

nr∑
r=1

ns∑
s=1

|δηdX(r, s, t)|

]
(i,j)

(6.7)

The time-varying absolute mean error of the upscaled flux is:

EXQ(t) ≡ 1

NxNy

Nx∑
i=1

Ny∑
j=1

δQuX(i, j, t) (6.8)

EXtQ(i, j) ≡ 1

Nt

Nt∑
t=1

δQuX(i, j, t) (6.9)

It follows that the absolute mean error across the solution time and space is

EXθ ≡
1

Nt

Nt∑
t=1

EXθ(t) : θ ∈ {η,Q} (6.10)

The standard deviation of the time-varying spatial-averaged errors over time-scale

σ(EXθ) (θ ∈ {η,Q}) is:

σ(EXη)(t) ≡

√√√√ 1

NxNy

Nx∑
i=1

Ny∑
j=1

[
1

nrns

nr∑
n=1

ns∑
s=1

(δηdX(r, s, t)− EXη(t))2

]
(i,j)

(6.11)

σ(EXQ)(t) ≡

√√√√ 1

NxNy

Nx∑
i=1

Ny∑
j=1

(δQuX(i, j, t)− EXQ(t))2 (6.12)
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The above error metrics are such that smaller values indicate better model perfor-

mance, and are used to provide insight into the model behavior in Section 6.6

The Willmott Skill Score has been used for assessing model fidelity over a

non-dimensional range from 0 to 1 with higher values indicating better results (e.g.,

Kärnä et al., 2015; Liu et al., 2009). The Willmott Skill Score is typically applied for

comparison of modeling results and observation data, but the methodology can be

readily modified for a comparison to the reference model results. Let W (t) denote

the Willmott Skill Score for the X experiment (e.g., MB) or control case (C) at time

t. The time-varying metric of the X experiment for η over the spatial domain is

WXη(t) ≡ 1−
∑Nx

i=1

∑Ny
j=1

[∑nr
r=1

∑ns
s=1 (ηdX(r, s, t)− ηF (r, s, t))2]

(i,j)∑Nx
i=1

∑Ny
j=1

[∑nr
r=1

∑ns
s=1 (|ηdX(r, s, t)− ηF (t)|+ |ηF (r, s, t)− ηF (t)|)2]

(i,j)

(6.13)

Let

QX(i, j, t) ≡
√
Q2
Xx(i, j, t) +Q2

Xy(i, j, t)

QuF (i, j, t) ≡
√
Q2
uFx(i, j, t) +Q2

uFy(i, j, t)

and the spatial average flux over time for the reference model (QF (t)) is:

QF (t) ≡ 1

NxNy

Nx∑
i=1

Ny∑
j=1

√
Q2
uFx(i, j, t) +Q2

uFy(i, j, t)

It follows that the metric for the upscaled flux over the spatial domain is as:

WXQ(t) ≡ 1−
∑Nx

i=1

∑Ny
j=1 [QX(i, j, t)−QuF (i, j, t)]2∑Nx

i=1

∑Ny
j=1

[
|QX(i, j, t)−QF (t)|+ |QuF (i, j, t)−QF (t)|

]2 (6.14)
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As the Willmott Skill Score is always positive, it is reasonable to take an average of

the time-varying score as a measure of the overall model skill:

WXθ ≡
1

Nt

Nt∑
t=1

WXθ(t) : θ ∈ {η,Q} (6.15)

The average metric over time-space domain above considers the relative scale of

error over time-varying spatial-averaged error. Values of WX(t) and WX closer to

one indicate model experiments or control cases that are closer to the reference case.

To provide insight into the variability of the model skill, the standard deviation of

WXθ(t) (θ ∈ {Q, η}) can be computed as:

σ(WXθ) ≡

√√√√ 1

Nt

Nt∑
t=1

(WXθ(t)−WXθ)2 (6.16)

where a smaller value of σ(WXθ) indicates smaller variability in model fidelity over

the time-space domain.

6.5.3 Time fraction metric

The purpose of using a subgrid model at a coarse grid resolution rather than

directly solving a fine-grid model is to allow a larger domain to computed with

reduced computational costs. Thus, the computational performance of the subgrid

model is of interest. Let tX and tF represent the computational time for the X exper-

iment and the fine-grid reference case for identical initial and boundary conditions.

A time-fraction metric can be defined as:

TX ≡
tX
tF

(6.17)

where a smaller value indicates better performance of the subgrid model.
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6.6 Test results and discussion

6.6.1 Overview

The new models were examined though error metric analysis in Section 6.6.2

and observation of projected flow variables in Section 6.6.3. In Section 6.6.4, perfor-

mances of various model aspects are discussed. Computational costs of the subgrid

models and the effectiveness of the look-up table (L) simulations are evaluated in

Section 6.6.5.

6.6.2 Comparison of error metrics

An analysis of error metrics verifies that the combined model using the new

methods (MDB) was effective in reducing the discrepancy between the coarse-grid

and fine-grid solutions across the time-space domain in the test cases. The MDB

case was quantitatively more effective than both the G case with the Casulli (2009)

approach or the Control case (C). Tables 6.2 and 6.3 compare the time-space average

error metrics across the experiments and control in the test sections A and B: for

the absolute mean error E, from Eq. (6.10), see Table 6.2; and for the Willmott

Skill Score W , from Eq. (6.15), see Table 6.3. The Willmott Skill Score close to one

indicates model experiments that are closer to the reference, while the absolute mean

error close to zero indicates a good agreement with the reference.

The absolute mean error for η of the MDB run was 67% (Section A) and

74% (Section B) lower than the C simulation. The corresponding Q errors for MDB

were also 8% (Section A) and 22% (Section B) lower. In comparison with the G

simulations, the MDB reduced the η error by 22% and 35% for Sections A and B,
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respectively, with the Q error similarly reduced by 56% and 5%.

Table 6.2: Absolute mean errors

Run case
Eη EQ

Section A Section B Section A Section B
C 0.1173 0.1368 0.4471 0.4938
G 0.0517 0.0565 1.0607 0.8804

MDB 0.0403 0.0365 0.4436 0.3834

The Willmott Skill Score metric (Table 6.3) shows minor improvements with

the MDB model, i.e., 4% and 10% increases for η skill compared to C, and 4% increase

for Q. More importantly is that the time-variability of the skill (represented by σ)

is significantly lower for the MDB simulations. Again, the MDB outperforms the

G simulations in both the value of the Willmont Skill Score and reduced variability

over time.

Table 6.3: Average and standard deviation of the Willmott Skill Score

Run Wη σ(Wη) Wη σ(Wη) WQ σ(WQ) WQ σ(WQ)
case Section A Section B Section A Section B
C 0.9536 0.0323 0.9052 0.0617 0.7228 0.1087 0.6409 0.1615
G 0.9906 0.0072 0.9770 0.0289 0.3577 0.1089 0.4186 0.1490

MDB 0.9943 0.0035 0.9927 0.0056 0.7535 0.0700 0.6718 0.1077

The improvements in the MDB run can also be seen in the time-evolution of

the error metrics and their variability, as shown in Figures 6.4 and 6.5 for tests in

Section A, and Figures 6.6 and 6.7 for Section B.

The scales of the error metrics vary over time with the time-varying tidal

boundary elevation (ηt). The time-evolution of the absolute mean error for η over
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Figure 6.4: Absolute mean errors of the MDB experiment and control in the test
section A
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Figure 6.5: Willmott Skill Scores of the MDB experiment and control in the test
section A
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Figure 6.6: Absolute mean errors of the MDB experiment and control in the test
section B
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Figure 6.7: Willmott Skill Scores of the MDB experiment and control in the test
section B
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the test domain, Eη along with its standard deviation σ(Eη) is overall less than 0.1

for the MDB case over all the range of ηt, which is about a half of that of the C case

(upper row in Figs. 6.4 and 6.6). The Willmott Skill Score support this analysis as

the score for η was close to unity throughout the MDB run (upper row of Figs. 6.5

and 6.7).

For flux (Q) on the coarse-grid scale, the MDB also reduced the discrepancies

from the reference, but the results are not significantly different than the C case.

However, there does appear to be a consistent reduction in the variability in the

Willmont Skill Score for Q. Of particular performance is the behavior at high tide.

When the tidal elevation reaches close to its highest elevation (ηt → 0.63 m), EQ(t)

and σ(EQ)(t) of the MDB case are smaller than those of the C (middle panels of

Figs. 6.4 and 6.6), but in the other range of ηt, the error metrics of MDB are similar

to case C. The Willmott Skill Score W (t) shows a similar trend with tide (middle

panels of Figs. 6.5 and 6.7). These results indicate the importance of the dynamic

adjustments with tidal elevation that are part of the MDB methods.

Figures 6.8 and 6.9 show the spatial distribution of absolute mean errors

Eqs. (6.7) and (6.9) in the MDB run. The numbers marked with the contour lines

indicate the absolute mean errors for projected free-surface elevation and flowrate

(EXtη and EXtQ) in the test regions A and B, respectively.
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Figure 6.8: Spatial distribution of absolute mean errors in the test region A
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Figure 6.9: Spatial distribution of absolute mean errors in the test region B
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6.6.3 Behaviors of projected flow variables

Comparisons of projected flow variables indicate that the MDB simulations

are a better match for the F (fine-grid reference) case than the C (control) case. In

particular, the MDB captures horizontally-deflected flow routes affected by subgrid

topographic variations that cannot be seen in the C case. The flow variables com-

pared between MDB, C, and F cases are (i) spatial-average free-surface elevation

over time, η(t), Eqs. (6.4) and (6.5); (ii) spatial distribution of directional fluxes on

the coarse-grid scale, Qux and Quy, Eqs. (6.2) and (6.3), (iii) spatial scales of flow

depths on the fine-grid scale, hd, Eq. (6.1), and (iv) spatial distribution of the drag

coefficients. The spatial distribution of directional fluxes, flow depths, and drag co-

efficients were investigated at different tidal elevations: ηt =0.07 m (t =15.2 hours),

0.32 m (14.1 and 16.4 hours), and 0.63 m (17.6 hours). To investigate the effect of a

change of the tidal elevation on a rise or drop, the variables were compared at two

different time-steps (t =14.1 hours and 16.4 hours) while ηt was 0.32 m at both cases.

The spatial-average free-surface elevation over time η(t) of the MDB run is

observed to be better matched with η(t) of the reference, compared with that of the

control. These effects can be seen in Figures 6.10 and 6.11, which compare η(t) of the

MDB run (blue line), C (red dashed line) and F (black bold line) in the test sections

A and B, respectively. The difference between η(t) in MDB and F increases at low

tidal elevations (ηt =0.07 m, 15.2 hours), but remains smaller than that difference

between C and F indicating that MDB is performing better than C. The larger

differences between F and both the MDB and C cases at low tidal levels (compared

to high tide levels) likely indicates the effect of subgrid small channels. The control
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(C) uses the average bottom elevation that misses these channels whereas the MDB

uses of the minimum subgrid elevation that (at least partially) represents subgrid

channels.
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(a) Spatial average free-surface elevation (η)

(b) Tidal boundary elevation (ηt)

Figure 6.10: Spatial average free-surface elevation of the MDB experiment and
control in the test section A
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(a) Spatial average free-surface elevation (η)

(b) Tidal boundary elevation (ηt)

Figure 6.11: Spatial average free-surface elevation of the MDB experiment and
control in the test section B
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Flow deflection can be caused by subgrid topography that is higher than

represented by the mean bottom elevation in a grid cell. Such deflections can cause

convoluted flow paths, thereby dissipating more energy in actual flow dynamics.

Both the MDB and F cases show deflected flows around submerged topographic

obstructions at the high tidal elevation, but similar deflections are not apparent in C

cases. Figures 6.12 through 6.15 depict flux distribution at different tidal stages over

the spatial domain for the reference (F) case, MDB experiment, and control (C) case

over test section A. The blue arrows indicate the magnitude and direction of flux

vectors on the resolved coarse-grid cell. In these figures, an area with narrow channels

is identified as S1 and an area with an embankment is identified as S2. Neither MDB

nor C simulations were able to capture the flows in the narrow channels of S1, which

indicates that future work should include a focus on the problem of poorly-resolved

channels. At low tidal elevations (Fig. 6.12 through 6.14) the MDB and C perform

similarly in the S2 region and do not show substantial pattern differences from the

F case. However, at higher tidal elevations (Fig. 6.15), the F case shows a flow

deflection in the S2 area that is clearly represented in the MDB case and entirely

missing in C. These results are consistent with the previous error analyses, that

showed the MDB performed significantly better for Q than the C case at higher tidal

elevations, but had similar variability at lower tides.
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Reference

Experiment (MDB) Control

Figure 6.12: Fluxes projected in the test section A at ηt =0.32 m (t =14.1 hours).
The grey scale is of the bottom elevation (m). A blue arrow indicates a flux vector
on the resolved coarse-grid cell (m3/s).
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Reference

Experiment (MDB) Control

Figure 6.13: Fluxes projected in the test section A at ηt =0.07 m (t =15.2 hours).
The grey scale is of the bottom elevation (m). A blue arrow indicates a flux vector
on the resolved coarse-grid cell (m3/s).
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Reference

Experiment (MDB) Control

Figure 6.14: Fluxes projected in the test section A at ηt =0.32 m (t =16.4 hours).
The grey scale is of the bottom elevation (m). A blue arrow indicates a flux vector
on the resolved coarse-grid cell (m3/s).
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Reference

Experiment (MDB) Control

Figure 6.15: Fluxes projected in the test section A at ηt =0.63 m (t =17.6 hours).
The grey scale is of the bottom elevation (m). A blue arrow indicates a flux vector
on the resolved coarse-grid cell (m3/s).
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The spatial distribution of flow depths can be visually compared for several

tidal conditions in Figs. 6.16 through 6.23. In general the MDB is a better match

for the F case than is C over all the range tidal conditions in both test sections.

Compared with the flow depths of F, those of the C were typically shallower (darker

tint) at the low tidal levels, (Figs. 6.16 through 6.18 and 6.20 through 6.22), which

agrees with the prior error analyses of the spatially-average free-surface elevation.

At the high tidal level in section A, Figs. 6.19, the C depths were typically deeper

(brighter tint), with the highland areas marked with “H1” showing the C has water in

areas that are essentially dry in both F and MDB. However, in section B the high-tide

differences between MDB and F are not visually obvious, as indicated by Fig. 6.23.

Thus, the performance of the subgrid model is closely linked to the variability in the

bathymetry.
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Figure 6.16: Flow depths on the fine-grid scale projected in the test section A at
ηt =0.32 m (t =14.1 hours). The color scale is of the depth (m)
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Figure 6.17: Flow depths on the fine-grid scale projected in the test section A at
ηt =0.07 m (t =15.2 hours). The color scale is of the depth (m)
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Figure 6.18: Flow depths on the fine-grid scale projected in the test section A at
ηt =0.32 m (t =16.4 hours). The color scale is of the depth (m)

110



H1

0

0.1

0.2

0.3

0.4

0.5

0.6

Reference

H1

300 350 400 450 500 550 600

Distance in y-axis (m)

300

350

400

450

500

550

600

D
is

ta
n

c
e
 i
n

 x
-a

x
is

 (
m

)

Experiment (MDB)

H1

Control

Figure 6.19: Flow depths on the fine-grid scale projected in the test section A at
ηt =0.63 m (t =17.6 hours). The color scale is of the depth (m)
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Figure 6.20: Flow depths on the fine-grid scale projected in the test section B at
ηt =0.32 m (t =14.1 hours). The color scale is of the depth (m)
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Figure 6.21: Flow depths on the fine-grid scale projected in the test section B at
ηt =0.07 m (t =15.2 hours). The color scale is of the depth (m)
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Figure 6.22: Flow depths on the fine-grid scale projected in the test section B at
ηt =0.32 m (t =16.4 hours). The color scale is of the depth (m)
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Figure 6.23: Flow depths on the fine-grid scale projected in the test section B at
ηt =0.63 m (t =17.6 hours). The color scale is of the depth (m)
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The MDB method computes directional coarse-grid drag coefficients that vary

in goth space and time (Chapter 4). The minimum drag coefficient 0.01, which is

the value used for the (uniform) fine-grid CD. The maximum value is 1.0, which

can occur when subgrid depths are small. Figures 6.24 through 6.27 depict the

resolved-grid drag coefficients in the MDB run for the test sections A and B. There

is considerable time-space variability in the drag coefficients and their directionality

(i.e., different values in x and y-direction).
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Figure 6.24: x-directional drag coefficients applied to the MDB experiment in the
test section A. The grey scale is the scale of the drag coefficient.
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Figure 6.25: y-directional drag coefficients applied to the MDB experiment in the
test section A. The grey scale is the scale of the drag coefficient.
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Figure 6.26: x-directional drag coefficients applied to the MDB experiment in the
test section B. The grey scale is the scale of the drag coefficient.
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Figure 6.27: y-directional drag coefficients applied to MDB experiment in the test
section B. The grey scale is the scale of the drag coefficient.
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6.6.4 Evaluation of component models

The error analysis (Section 6.6.2) and the observation of projected flow vari-

ables (Section 6.6.3) verify the validity of the combined subgrid model (MDB). Eval-

uating the performance of individual model components provides insight into the

effectiveness of the different approaches. Herein we compare simulations using only

the subgrid momentum model (M), only the subgrid drag model (D), and combi-

nations MD, and MB, where B is the topographic sampling method. The Willmott

Skill Scores are provided in Tables 6.4 and 6.5

Table 6.4: Absolute mean errors of all the experiments and control

Run case
Eη EQ

Section A Section B Section A Section B
C 0.1173 0.1368 0.4471 0.4938
G 0.0517 0.0565 1.0607 0.8804

MDB 0.0403 0.0365 0.4436 0.3834

MB 0.1400 0.1488 0.5393 0.4745
MD 0.0304 0.1390 0.4601 1.1348
M 0.0570 0.0649 0.8185 1.3180
D 0.0891 0.0964 0.3654 0.4278

It can be seen that overall the MDB is the preferred scheme, with error metrics

and skill scores equivalent to, or better than, the other methods. It is interesting

that the absolute mean error for η in the MD case for Section A is slightly less

than the MDB error, but the Q error for Section B is dramatically greater. This

result indicates that B approach to topography is likely important to obtaining the

correct fluxes. The error metrics and skill scores indicate that momentum model (M)

is important to getting the surface elevations correct, whereas the drag model and
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Table 6.5: Willmott Skill Scores of all the experiments and control

Run case
Wη WQ

Section A Section B Section A Section B
C 0.9536 0.9052 0.7228 0.6409
G 0.9906 0.9770 0.3577 0.4186

MDB 0.9943 0.9927 0.7535 0.6718

MB 0.9301 0.8890 0.6732 0.6201
MD 0.9953 0.9200 0.7341 0.3022
M 0.9894 0.9778 0.4563 0.2477
D 0.9726 0.9499 0.7571 0.6385

bathymetric model (B) are important to getting the fluxes correct. As the Q skill is

substantially lower than the η skill, these results indicate that future efforts should

focus on improving the flux representation.

The time-varying error metrics and their variability for cases M and C are

shown in Figure 6.28. It can be seen that the η error is smaller and has less variability

for the M case, but the Q error for M has significantly greater variability than C.

The provides further confirmation that the momentum method alone cannot solve

the problem of subgrid topography.
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Figure 6.28: Absolute mean errors of the M experiment and control in the test
section A
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The combination of momentum with the topographic sampling (MB) appears

to be more valuable than M alone. Figure 6.29 shows fluxes of M, MB, and F for a

typical condition in Section A. Clearly the overall fluxes in MB are close to F, and the

channelized area in region S1 is better represented in case MB than in M. In Figure

6.30 for Section A, it can be seen in the S4 region that the M case provides a flux that

is entirely in the wrong direction, and misses the entire flow variability around S5.

The MB case does not perfectly represent the F case, but does show the directional

variability in the S5 region that is closer to the F case. However, comparison of error

metrics in Figure 6.31 indicate that the MB combination actually has greater error

and variability than the M case for η, but slightly lower variability in Q. From this we

conclude that the topographic sampling method (B) is critical to the overall success

in representing Q, but appears to introduce some issues into the solution of the free

surface. This may indicate a limitation of sampling method for the minimum subgrid

elevation (i.e., with an increase of η, the effect of unresolved connectivity below

the resolved grid-cell may decrease). Developing a dynamic sampling corresponding

to a change of the water level could be one effective approach for addressing flow

advection, but such work is beyond the present study.
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Reference

Experiment (MB) Experiment (M)

Figure 6.29: Comparison of projected fluxes between the MB and M experiments
in the test section A at ηt =0.32 m (t =14.1 hours). The grey scale is of the bottom
elevation (m). A blue arrow indicates a flux vector on the resolved coarse-grid cell
(m3/s).
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Reference

Experiment (MB) Experiment (M)

Figure 6.30: Comparison of projected fluxes between the MB and M experiments
in the test section B at ηt =0.07 m (t =15.2 hours). The grey scale is of the bottom
elevation (m). A blue arrow indicates a flux vector on the resolved coarse-grid cell
(m3/s).
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Figure 6.31: Absolute mean errors of the M and MB experiments in the test section
A
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The subgrid drag model (D) has slightly smaller errors and increased skill

compared to the control (C) and prior subgrid model (G) for both η and Q except

for the Section B skill score for Q, where the C and D skills are similar. Combining

D with M has inconsistent results, causing some error reduction (skill increases) and

some error increases (skill reduction) compared to D or M alone. Comparison of the

fluxes in the M and MD runs in Figure 6.32 shows that MD is significantly better

than M in capturing the flux scales and the deflected flow motion at S2 test section

A. These results indicate the subgrid drag term (D) is a critical addition to the

momentum model (M) for capturing topographical effects.

Of particular interest is a comparison of the time-varying, spatially-averaged,

free-surface elevation produced by the different model configurations, as shown in

Figure 6.33 over the entire simulation time (including spin-up). The MB case sig-

nificantly underestimates the average surface elevation, as does the control (C). In

contrast, the M case slightly underestimates the free surface whereas the MD is quite

close after spin-up. The behavior of all the cases is quite different during the initial

tidal period, which is likely due to how the different models respond to the initial

conditions. Arguably, the fine-grid case (which does not see an initial elevation peak)

is filling the test domain initially through small channels, whereas the other simula-

tions can only fill depressions by flooding over significant topographic obstructions.
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Reference

Experiment (MD) Experiment (M)

Figure 6.32: Comparison of projected fluxes between the MD and M experiments
in the test section A at ηt =0.63 m (t =17.6 hours). The grey scale is of the bottom
elevation (m). A blue arrow indicates a flux vector on the resolved coarse-grid cell
(m3/s).
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(a) Spatial average free-surface elevation (η)

(b) Tidal boundary elevation (ηt)

Figure 6.33: Spatial average free-surface elevation of the M , MB, MD experiments,
control, and reference in the test section A
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6.6.5 Computational cost of subgrid models and look-up table method

The computational cost of the experiments and control was evaluated using

the time fraction metric, T , from Eq. (6.17), which relates the computational time

of the subgrid model to the computational time for a fine-scale (F) model. Table 6.6

compares the time fraction metric across the experiments and control along with the

time-space average error metircs (Eθ & Wθ: θ ∈ {Q, η}). The time fraction metric

of the experiments was measured in the range of 0.011 (D) to 0.027 (MD), which

indicates that all the subgrid models used less than 3% of the simulation time that

the fine-grid reference model used for the current test scenario. The time fraction

metric of MDB model was reduced from 0.026 to 0.021 with a marginal increase of

the error metrics by using the look-up table (i.e., MDBL experiment) in the test

section A. Thus, the best subgrid method, MDBL used about 2.1% of the reference

model’s run-time upon the test conditions. It should be noted that this is 3 times

the computational time of the control (C), so the subgrid method is computationally

expensive relative to the control, but inexpensive relative to the reference. However,

as this study was necessarily exploratory in its approach, it is likely that there are

coding efficiencies that could further reduce the computational time of the MDBL

model.

The look-up table method (L), as described in Appendix D, applies a linear

interpolation for approximating subgrid geometry quantities corresponding to the

modeled η from the stored data at the interval of ∆η. The MDBL experiment

applied a look-up table built with 0.01 m interval of ∆η for the test section A.

Figure 6.34 compares the linearly interpolated grid cell surface area (Axy) of the test
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Table 6.6: Time fraction and error metrics of the experiments and the control in the
test section A

Run case ∆η
Time

Eη Wη EQ WQfraction (T )
Control - 0.007 0.1173 0.9536 0.4471 0.7228
G - 0.025 0.0517 0.9906 1.0607 0.3577

MDB - 0.026 0.0403 0.9943 0.4436 0.7535

MDBL
0.01 m

0.021 0.0421 0.9922 0.6143 0.6623
(interpolation)

MB - 0.025 0.1400 0.9301 0.5393 0.6732
MD - 0.027 0.0304 0.9953 0.4601 0.7341
M - 0.024 0.0570 0.9894 0.8185 0.4563
D - 0.011 0.0891 0.9726 0.3654 0.7571

section A with a change of ∆η in the look-up table from 0.005 m to 0.1 m. Such an

analysis is entirely dependent on the complexity of the topography. For the present

study it is clear that a look-up table of ∆η =0.05 m would likely be sufficient, and a

table using 0.01 m would be too coarse. It might be useful to develop a look-up table

whose intervals are customized for the particular topography and its variability.

Running the 1×1 m grid reference model (F) with the current test scenario

required 1.32 hour of computer time for every hour of model simulated time on a 2.7

GHz dual-core processor, which is not practical for multi-scenario modeling across

the entire the Nueces River Delta (Appendix A). In contrast, the subgrid models

required less than 0.04 hour of computer time for every hour of model simulated

time for the test scenarios. However, the costs of dynamically computing the drag

coefficient and momentum flux areas are significantly greater than the costs for the

simple control (C) model with static drag coefficients over the coarse grid. It seems
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Figure 6.34: Average grid cell surface area with a change of ∆η in the test section A

likely that the extra computational costs can be reduced through coding efficiencies.

6.7 Global indicators for evaluation of subgrid models

The fidelity of a subgrid model is affected by topographic features below the

subgrid scale, features at the resolved grid scale, and the algorithm that links these

scales. A coarse-grid model using some form of subgrid approach will necessarily have

some level of error relative to a fine-resolution model. There remains a challenging

question: what level of error is acceptable? Although the standard comparison

metrics described in Section 6.5 are useful in evaluating the relative performance

of different modeling options, they are less useful in evaluating the consequences of

unavoidable model errors. Herein we propose five new indicators that can be used
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to evaluate subgrid model performance with quantitative measures. We believe that

these indicators will prove useful in the future when selecting the resolved grid scale

and subgrid models required for a desired model fidelity.

The topographic features and scales affecting the modeled flow field are di-

verse, including (i) topographic roughness that impedes flow, (ii) fine-scale connec-

tivity that provides preferential flow channels, (iii) slope variability where concave or

convex regions lead to preferential ponding or water shedding. To better evaluate the

effects of topography on the subgrid model fidelity, we have devised new indicators

that quantify some of these topographic effects. These indicators are:

• WSD: Global water storage difference (Section 6.7.1),

• WSDm: Global water storage difference below the resolved-grid bottom eleva-

tion (Section 6.7.2) ,

• TC: Global topographic connectivity (Section 6.7.3),

• TCm: Global topographic connectivity below the resolved-grid bottom eleva-

tion (Section 6.7.4),

• σ(zb) Global subgrid roughness (Section 6.7.5).

The WSD is a global quantification of the cell storage volume difference

between the fine-grid and resolved-scale bathymetry. The WSDm provides further

insight through quantifying the WSD that is below the nominal bottom of the

resolved grid. The TC is a global measure of smoothness based on spatial covariance.
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The TCm uses a similar approach to TC, but with a focus on the topographic features

below the resolved grid cell bottom elevation. The σ(zb) provide an indication of the

global variability of the topography at the subgrid scale. Section 6.7.6 examines the

global indicators to provide insight into the time-varying model behavior.

6.7.1 Global water storage difference

The water storage difference (WSD) is a metric that indicates the relative

importance of the unresolved volume at the resolved grid scale based solely on topog-

raphy (i.e., not incorporating actual model results). The impact of the unresolved

volume on the model results can be expected to depend on the ratio of the unresolved

volume to the resolved volume. As this ratio depends on the water surface level, the

WSD is designed as a integrated metric over a range over water surface levels.

At a given water surface elevation, ηb, the integrated water storage volume

for the coarse (resolved) grid is

VC(ηb) ≡ min [ηb − Zb(i, j), 0] ∆y∆x

where the min[ ] function ensures that cells i, j where ηb < Zb(i, j) are not included

as negative volumes. The Nx and Ny are the numbers of grid cells for x and y-

directions that compose the test domain, and ∆x and ∆y are the unit lengths of

a model-resolved grid cell for x and y-directions. Similarly, the integrated storage

volume for the fine (reference) grid is

VF (ηb) ≡

{
nr∑
r=1

ns∑
s=1

min [ηb − zb(r, s), 0] ∆s∆r

}
(i,j)
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where nr and ns are the numbers of fine-grid cells for r and s-directions, which share

outer boundaries with a coarse-grid cell; and ∆r and ∆s are the unit lengths of a

fine-grid cell. The volume storage difference at water level ηb is

∆V (ηb) ≡ VF (ηb)− VC(ηb)

To provide insight into the relative scale of the subgrid topography at a given

ηb, we non-dimensionalize by the volume in the test domain between ηb and the lowest

point in the fine-grid bathymetry (i.e., as if the entire bottom elevation were uniform

at the lowest elevation point ). Formally, this provides the non-dimensionalized cell

volume difference at the grid cell i, j as

∆VS(i, j, ηb) ≡
∆V (ηb)

(ηb −min [zb(α, β)])∆x∆y
: α ∈ {1 : nr} , β ∈ {1 : ns}

Note that in the above, the magnitude of the numerator is always less than the

magnitude of the denominator, but the numerator can be either positive or negative.

Spatial-averaging of ∆VN(i, j, ηb) over the test domain provides the non-dimensional

storage volume difference over the test region ∆VN as:

∆VN(ηb) ≡
1

NxNy

Ny∑
i=1

Nx∑
i=1

∆VS(i, j, ηb)

As ∆VN(ηb) → 0, the coarse-grid volume is a better approximation of the fine-grid

volume over the test section. As ∆VN(ηb)→ ±1 the difference between the fine-grid

volume and resolved-grid volume is increasingly large.

Integrating ∆VS(ηb) over the minimum to maximum fine-grid topographic

elevation provides our definition of the WSD metric as:

WSD ≡ 1

max(z)−min(z)

∫ max(z)

min(z)

∆VN(ηb) dη (6.18)
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The global indicator, WSD has a range of -1∼1. The indicator represents a rep-

resentative scale of unresolved cell storage volume induced by subgrid topographic

variability relative to the the resolved scale over the test domain and the range of

the free-surface elevation between dry and fully submerged topography. A larger

magnitude of WSD suggests greater volume distortion at the resolved scale.

6.7.2 Global water storage difference below the resolved-grid bottom
elevation

The WSD described above provides a global measure of the error in the re-

solved grid volume over the range of water surface elevations from dry topography

to fully submerged over the test domain. We can modify this metric to evaluate the

subgrid volumes that are below the resolved coarse-grid bottom elevation (Zb). That

is, we define a WSDm metric based on only the fine-grid water volume associated

with water surface levels when the associated coarse-grid cell is dry.

The coarse-grid cell i, j water storage volume below both the coarse-grid bot-

tom elevation Zb(i, j) and below a test-domain uniform water level ηb is

Vm(i, j, ηb) ≡
ns∑
s=1

nr∑
r=1

hb(r, s, ηb)∆r∆s

where hb denotes depths at the subgrid cells whose bottoms are located below the

resolved-grid bottom elevation (Zb)

hb(r, s, ηb) ≡ max [αhf (r, s, ηb), 0]

where hf (r, s) is the depth in the fine-grid r, s cell at water surface elevation ηb with
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hf (r, s) = 0 for dry cells, i.e.,

hf (r, s, ηb) ≡ max [(ηb − zb(r, s)), 0]

and α ∈ {0, 1} is a binary coefficient set to select only cells where the associated

coarse grid bottom elevation is higher than the water surface elevation, i.e., α =

1 ⇐⇒ Zb ≥ ηb.

The corresponding global non-dimensional unresolved volume (similar to the

difference ∆VN) is

VNm(ηb) ≡
∑Nx

i=1

∑Ny
j=1 Vm(i, j, ηb)

(ηb −min [zb(α, β)])∆x∆yNxNy

: α ∈ {1 : nr} , β ∈ {1 : ns}

When the fine-grid elevation zb(r, s) is identical to the model-resolved grid elevation

Zb and is everywhere uniform across cells i, j, then the VNm is formally undefined

(both numerator and denominator are zero). However, if Zb is nonuniform and

zb(r, s) is identical to the associated Zb(i, j) for all r, s cells, then it follows that the

denominator is non-zero whereas the numerator Vm(i, j, ηb) = 0 for all ηb; therefore

VNm(ηb) = 0 is the lower bound. Furthermore, the construction of VNm ensures that

(i) its numerator is always non-negative, (ii) the denominator is always positive, and

(iii) the numerator always smaller than the denominator. Thus, 0 ≤ VNm ≤ 1.

Limiting ηb to the range of the minimum to the maximum subgrid elevation

over the test domain (i.e., min [zb(α, β)] ≤ ηb ≤ max [zb(α, β)], α ∈ {1 : nrNx} , β ∈

{1 : nsNy}), the global metric for the unresolved volume below the model-resolved

grid bottom elevation is

WSDm ≡
1

max(z)−min(z)

∫ max(z)

min(z)

VNm(ηb) dη (6.19)
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WSDm has a range of -1∼1. The indicator WSDm provides a metric for the volume

that is below the resolved bottom of the coarse-grid system, which is an indication of

whether unresolved volumes might provide flow paths and volume retention at low

water surface elevations that will be missing from the coarse-grid system. A larger

WSDm indicates the potential of effects by unresolved flow connectivity below the

resolved coarse-grid bottom elevation.

6.7.3 Global topographic connectivity

We propose TCI as the indicator of the spatial correlation of topographic

obstructions that might be poorly resolved at the coarse-grid scale. The TCI is an

integrated measure based on a proposed TCδ that is inspired by measures of spatial

covariance in geostatistics (e.g., Wackernagel, 2009). Specifically, for N pairs of

points xi with some property θ with separation δ, the spatial covariance is formally

Cs(δ) ≡
1

N

N∑
i=1

θ(xi)θ(xi + δ)− θ(xi) θ(xi + δ)

where θ denotes the mean over the samples.

To develop our metric for the fine-grid topography, we first need an estimate of

mean distances between similar elevation levels in the test domain, i.e., the equivalent

of θ in the geostatistics spatial covariance. Let ζb ∈ {ζb(1), ζb(2), ...ζb(Nb)} represent

a finite set of discrete elevations so that a number of fine-grid cells share a common

discrete value within some tolerance ε, i.e., for any ζb(k) there are a set of fine-

grid cells α, β satisfying ζb(k) − ε < zb(α, β) ≤ ζb(k) + ε, and the number of cells

satisfying this condition is Nζ(k). It will generally be convenient to have uniform
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intervals between adjacent ζb values, but that is not necessarily required. Note that

the set of discrete ζb values and ε should be chosen so that
∑
Nζ = nrnsNxNy; i.e.,

each fine grid cell is included in exactly one ζb set. From the above it follows that

Nζ(k) is the number of fine-grid cells with zb ≈ ζb(k).

For any ζb(k), let xm, ym be the Cartesian coordinates of a fine-grid cell in the

ζb(k) set, such that m ∈ {1 : Nζ(k)}. For simplicity in exposition, let M = Nζ(k),

then the non-dimensional average distance between the fine-grid cells of similar ele-

vation in the set ζb(k) can be written as

L(k) ≡ 1

{M − 1}!

{
M∑
m=2

1

`

[
(x1 − xm)2 + (y1 − ym)2]1/2

+
M∑
m=3

1

`

[
(x2 − xm)2 + (y2 − ym)2]1/2

+ · · ·+
M∑

m=M−1

1

`

[
(xM−1 − xm)2 + (yM−1 − ym)2]1/2} (6.20)

where ` is an appropriate length scale for non-dimensionalizing. Herein we use a

normalization length scale equivalent to a half of the diagonal length of the test

domain:

` ≡ 1

2

√
(∆xNx)2 + (∆y Ny)2

It follows that L(k) is a separation length scale providing a measure of the fraction

of the domain typically separating cells of zb ≈ ζb(k).

The the normalized mean square separation between cells at levels ζb(k) and

ζb(m) can be compared to the product of their separation length scales L(k)L(m) as

measure whether topographical obstructions/channelization scaling on ζb(k)− ζb(m)

140



is expected, i.e.,

C1(k,m) ≡

Nζ(k)∑
i=1

Nζ(m)∑
j=1

(xi − xj)2 + (yi − yj)2

`2Nζ(k)Nζ(m)
− L(k)L(m) (6.21)

If C1 < 0, the length scales between ζb(k) and ζb(m) are small compared to the

connective lengths scales of either L(k) or L(m), which indicates rough topography

that is likely to have significant obstructions and channelization. In contrast, if

C1 > 0, it can be expected that the topography is smoother with areas of similar

elevation being more coherent in space.

As a metric, the problem with C1 is that it is related to the specific ζb(k)

and ζb(m) elevations, which provides Nb (Nb − 1) individual metrics. A more useful

metric might be based based on topographic height differences. To do this, we define

the difference between ζb(k) and ζb(m) elevations as:

δkm ≡ ζb(k)− ζb(m) (6.22)

If we limit our approach to using a uniform incremental distance (δh) separating

adjacent ζb values, then it follows that

δkm = δh (k −m) (6.23)

as correlations for −δkm are the same as for δmk, we can consider only the positive

value, i.e.,

1 ≤ δkm
δh
≤ Nb − 1 (6.24)
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We can now define a metric for the vertical separation of nδh as

TCδ(n) ≡

Nb∑
k=1

C1(k, k + n)Nζ(k)Nζ(k + n)

Nb∑
k=1

Nζ(k)Nζ(k + n)

: 1 ≤ n ≤ Nb − 1 (6.25)

which provides Nb− 1 metrics over a range of nδh scales to describe the spatial rela-

tionships. Similar to C1, for TCδ < 1 we expect obstructions and/or channelization

and for TCδ > 1 we expect relative smoothness.

Finally, we can define TCI as an integrated metric of the correlation scales

across all separation distances:

TCI ≡
1

Nb − 1

Nb−1∑
n=1

TCδ(n) (6.26)

This preserves the meaning of TCδ that values TCI > 1 are relatively smooth topog-

raphy and TCI < 1 are obstructed or channelized.

6.7.4 Global topographic connectivity below the resolved-grid bottom
elevation

We can modify TCI to evaluate the spatial correlation of topographic obstruc-

tions that are below the resolved coarse-grid bottom elevation (Zb). That is, we define

a TCIm metric based on the spatial correlation of only the fine-grid cells whose eleva-

tions are below Zb, which is as an indicator for the potential of subgrid flow passages

at the surface elevation below the resolved grid bottom elevation. Note that the met-

ric analyzes the spatial correlation of fine-grid cells over the test domain like TCI , but

it uses only the fine-grid cells (α, β) at the coarse-grid cell (γ, κ) satisfying the condi-

tion zb(γ,κ)(α, β) < Zb(γ, κ): α ∈ {1 : nr} , β ∈ {1 : ns} , γ ∈ {1 : Nx} , κ ∈ {1 : Ny}.
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Consider for any ζbs(k) that there are a set of fine-grid cells αs, βs satisfying

both ζbs(k)−ε < zb(αs, βs) ≤ ζbs(k)+ε and zb(γ,κ)(αs, βs) < Zb(γ, κ), and the number

of cells satisfying this condition is Nζs(k). Let xs, ys be the Cartesian coordinates of a

fine-grid cell in the ζbs(k) set, such that s ∈ {1 : Nζs(k)}. Then Eqs. (6.20) through

(6.26) above are computed correspondingly for ζbs(k), xs, and ys. The resulting

metric in a form that is similar to Eq. (6.26), but computed with ζbs(k), xs, and ys,

is denoted as TCIm.

6.7.5 Global subgrid roughness

As a simple metric representing variability of subgrid topography over the test

domain, we can use the average of the standard deviations of subgrid topographic

elevations in each resolved coarse-grid cell over the test domain, i.e., let denote σ(zb)

as the standard deviation of subgrid elevations over a resolved coarse-grid cell, and

the average of σ(zb) over the test region is denoted as σ(zb) which is used as the

subgrid roughness metric in the current work.

The standard deviation of fine-grid topographic elevations over the resolved

coarse-grid cell is:

σ(zb) ≡

√√√√ 1

nrns

ns∑
s=1

nr∑
r=1

(zb(r, s)− zb)2

with zb denoting the average of fine-grid bottom elevations over the resolved grid

cell, i.e.,

zb ≡
1

nrns

ns∑
s=1

nr∑
r=1

zb(r, s)
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It follows that σ(zb) is:

σ(zb) ≡
1

NxNy

Nx∑
i=1

Ny∑
j=1

σ(zb)(i,j) (6.27)

The metric arguably has an effect of considering the relative variability of subgrid

topography over the discretized grid scale, compared with the standard deviation of

all the fine-grid cells over the test region, i.e.,

σe(zb) ≡

√√√√ 1

NxNy

Nx∑
i=1

Ny∑
j=1

[
1

nrns

nr∑
r=1

nr∑
r=1

(
zb(r, s)− zb

)2

]
(i,j)

where zb ≡ (1/NxNy)
∑Nx

i=1

∑Ny
j=1 [(1/nrns)

∑nr
r=1

∑nr
r=1 zb(r, s)](i,j).

6.7.6 Evaluation of subgrid models with indicators

One question raised from the test results (Sections 6.6.2 and 6.6.3) is different

behaviors of the model behavior in several coupled approaches between the test

sections A and B. The performance of a subgrid model is arguably affected by diverse

features of subgrid topography, a scale ratio of subgrid and resolved topography as

well as the limitations of the model’s parameterization.

As an experiment examining use of the indicators, the present work com-

pares any possible linkages between the models simulations (Tables 6.4 and 6.5) and

magnitudes of the indicators for the test sections A and B in Table 6.7.

The test results (Section 6.6.4) provides different performances of the models

between the test sections A and B, which are: (i) the coarse-grid control model

provided larger discrepancies for both η and Q from the reference in the test section
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Table 6.7: Magnitude of global indicators for the test bathymetries

Test Bathymetry WSD WSDm TCI TCIm σ(zb)
A 0.0173 0.0104 1.2296 0.5148 0.1255
B 0.0178 0.0092 0.3952 0.3048 0.0787

B than A; (ii) coupling with the B aspect was more effective in reducing discrepancies

of the coarse-grid solution for Q from the reference in the test section B than A; (iii)

coupling with the D aspect was effective in reducing discrepancies for both η and Q

in the test section A, but was not for η in the section B; (iv) different behaviors of

the M/G aspects between the test sections A and B.

One dominant difference of subgrid topography between the test sections A

and B is a difference in magnitude of the topographic connectivity indicator, TCI ,

Eq. (6.26) as shown in Table 6.7. The indicator TCI was measured to be three

times as large in the test section A than B, which indicates smoother topography for

the test section A. A difference in magnitude of the indicator for submerged subgrid

variability WSD, Eq. (6.18) is slight between the two regions. The magnitudes of the

indicators for subgrid topography below the model-resolved grid bottom elevation,

i.e., WSDm, Eq. (6.19) and TCIm, show a similar pattern to the case of WSD and

TCI , which indicate a higher subgrid connectivity below the resolved grid cell bottom

elevation for the test section A. However, a larger σ(zb), Eq. (6.27) in the test section

A compared to B (i.e., A’s is about 1.5 times of B’s) indicates a higher variability

of subgrid topography in the test section A than B, while its magnitude is relatively

small in both regions. Such indication for higher subgrid connectivity and higher

variability in the test section A may be able to explain better performance of the D
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model aspect in the test section A. However, this idea is not matched with larger

discrepancies of the control model and better performance of B aspect in the test

section B.

Verifying the global utility of the indicators requires investigations using

more diverse controlled bathymetric data (e.g., reversed bathymetries, smoothened

bathymetries) and models simulations. One issue in developing indicators is a scale

ratio of the resolved topography and the subgrid bathymetry. A scale ratio of ne-

glected subgrid topography and the resolved bathymetry can be an indicator for the

performance of the subgrid model. The other issue is the effect of time-varying wa-

ter surface elevation, which provides time-varying wet-dry interfaces (e.g., emergent

topography changes with the water level). Arguably, the effect of neglected subgrid

topography moderates or decreases as the water level increases.

The indicators, WSD and WSDm represent a difference between the resolved

topography and the subgrid topography, although their magnitudes are small and

similar in two region. The connectivity indicators, TCI and TCIm can be applied

for the resolved bathymetry with a correcting factor for a different grid scale. Any

differences of these indicators in magnitude between the resolved bathymetry and

subgrid bathymetry can provide insight for understanding a subgrid model behavior.

The proposed indicators are integrated (averaged) across the spatial domain and

along the length of the minimum subgrid bottom elevation to the maximum subgrid

bottom elevation over the test domain. Substituting a range of possible water surface

elevation for the length of the minimum subgrid elevation to the maximum subgrid

elevation can be useful for the indicators.
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Chapter 7

Conclusions and Future Works

7.1 Addressing the research objectives

The present work developed a new subgrid drag model by deriving a relation-

ship between subgrid topography and the resolved grid cell scale that provides inte-

grating of time-space varying subgrid drag effect at the resolved grid scale (Chapter

4). The new subgrid drag model provides time-space varying directional drag coef-

ficients parameterizing variability of subgrid drags on the resolved grid scale, which

has an effect of capturing energy dissipation of subgrid obstructions. The present

work verified the effect of the new model’s parameterization of subgrid drag in the

numerical tests which showed improved model fidelity in projection of directional

fluxes by coupling the drag approach.

This study developed a new subgrid momentum model by constructing the

momentum sources with the integrated fluxes in/out the faces of a grid cell (Chap-

ter 5). The new momentum model coupled with the flow continuity model for the

integrated fluxes on the faces of a grid cell provides the free-surface solution repre-

senting subgrid topographic effect across resolved grid faces on surface shear forces

and flow continuity, which has an effect of representing strict mass and momentum

conservative relationships.
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Sampling the minimum subgrid elevation for addressing flow connectivity be-

low the resolved-grid cell bottom elevation was verified to improve model fidelity for

projection of directional fluxes by coupling with the new drag and momentum mod-

els. The expected effect of the coupled approach using the new subgrid drag model,

the new momentum model, and the subgrid topography sampling is representing an

unresolved combined effect of subgrid topography in subgrid region, at the interface

between two resolved grid cells, and below a resolved coarse-grid bottom elevation.

The coupled approach was verified to improve model fidelity at the coarse-grid

(15×15 m) scale in the current test scenario. One advantage of the coupled model

was representation of horizontal flow deflection caused by topographic obstructions,

which was excluded in the coarse-grid solution without subgrid scheme.

The look-up table that pre-stores subgrid geometric data at the pre-defined

interval of the surface elevation had an effect of reducing computational cost of our

subgrid model, while its effectiveness might be limited by the pre-defined interval

scale and the interpolation scheme.

This study proposed five new global indicators for integrated effects of subgrid

topography over the test region. The new indicators were examined for their use in

an analysis of the subgrid model behavior, but verifying the utility of the indicators

requires more investigations using diverse bathymetric data and model simulations.
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7.2 Recommendation for future work

Noting that the validity of the new subgrid models was verified for the test

scenario of the current work, further investigation using diverse test scenarios is

recommended for verifying the effectiveness of the new models. For examining the use

of the new indicators for a study of a subgrid model behavior, further investigation

using diverse bathymetries is recommended.

Developing a subgrid turbulence model that addresses horizontal shear effects

by distributed subgrid topographic features is recommended. The present subgrid

drag model approximated subgrid bottom shears to be dominant over subgrid hor-

izontal shears. Neglected horizontal shear effects can be problematic in modeling

studies that are interested in local flow processes (e.g., narrow channels). Combining

the quadtree approach Volp et al. (2013) for surface shear forces with our subgrid

drag model can provide an effective approach.

Developing a subgrid topography sampling for ensuring flow connectivity be-

low the resolved-grid cell bottom elevation is recommended. The current work sim-

ply assigned the minimum subgrid elevation for the model-resolved grid elevation.

A dynamic sampling corresponding to a change of the water level can be effective

for addressing unresolved flow advection. Developing an dynamic and customized

interpolation scheme corresponding to the water level and topographic feature is

recommended for the applicability of the look-up table.
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Appendix A

Nueces Delta and Restoration Efforts

A.1 Geography and climate

The Nueces Estuary is located nearby the city of Corpus Christi in the south-

east Texas. It consists of the Nueces Delta, the Nueces River tidal segment, the

Corpus Christi Bay, the Nueces Bay, the Oso Bay, and the Redfish Bay (Montagna

et al., 2009a). The Nueces Delta which extends about 57 km2 (Montagna et al.,

2009b) ∼ 75 km2 (United States and Bureau of Reclamation, 2000) is mainly com-

posed of shallow vegetated marshes, mudflats, and shallow ponds (Fig. 1.6). This

region is belonged to the semi-arid climate zone where mean precipitation is about

75∼76 cm/year (Rasser, 2009; Tolan, 2007).

The Nueces Delta receives freshwater from the Nueces River, pumped water

from the Callelen Pool through the Rincon Bayou Pipeline, and rainfall. While the

Nueces River passes by the delta at the usual time, it overbanks into the Nueces

Delta on the occasion of severe floods (Hill et al., 2012).

Tidal flow from the Gulf of Mexico is the another source of water for the

Nueces Delta. The daily tidal range was reported to be about 0.3m (Hodges et al.,

2012) while the tidal elevation varies seasonally (neap and spring tides) and annually:

e.g., the water level changed from -0.25 to 1.06m (NADV88 datum) during October
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2009 through September 2010 at the White Point station (011) by the Conrad Blucher

Institute for Surveying and Science, Texas A&M University-Corpus Christi (herein,

CBI); and at near the inlet to the Nueces Bay (NUDE3 station (043)), the water

level varied from -0.63 to 0.86m during October 2011 through September 2012 (water

depths measured at station datum were converted to NADV88 datum). The salinity

of the region broadly varies: e.g., approximately 2∼34 parts per thousand (ppt) in the

Nueces Delta and Bay (Guadalupe, San Antonio, Mission, and Aransas Rivers and

Mission, Copano, Aransas, and San Antonio Bays Basin and Bay Expert Science

Team, 2011); and 1∼70 practical salinity units (psu) in the Nueces Delta during

October 2011 through September 2012 at NUDE2 (042) by CBI. Mean annual salinity

was recorded to be approximately 25 ppt in the Nueces Delta and Bay (Guadalupe,

San Antonio, Mission, and Aransas Rivers and Mission, Copano, Aransas, and San

Antonio Bays Basin and Bay Expert Science Team, 2011).

A.2 Threats to the Nueces Delta

The tidal marshes of the Nueces Delta in the southern Texas have provided

unique habitats for wildlife (Zimmerman et al., 2002). The stuarine systems provide

breeding or nursery habitats for about 50% of commercial marine finfish and shellfish

in the US (Lellis-Dibble et al., 2008). The tidal-freshwater seasonal pulse helps

nutrient exchange and distribution, and buffers against drastic changes of the salinity

and temperature (Hill et al., 2015). However, man- and nature-made interruptions

have substantially reduced freshwater inflow to the Nueces Delta, thereby altering

the tidal-freshwater balance in this region (Hill et al., 2012).
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Severe droughts and increasing urban water use have significantly altered

freshwater inflow to the Nueces Delta since 1940 (Guadalupe, San Antonio, Mission,

and Aransas Rivers and Mission, Copano, Aransas, and San Antonio Bays Basin

and Bay Expert Science Team, 2011). The precipitation dropped to be as little

as 20.0cm during September 2010 through August 2011 at NUDEWX gauge in the

proximity of the delta, while most of this precipitation was measured before the

drought season began (Tunnell and Lloyd, 2011). Moreover, consecutive construction

of dams (the Wesley Seale Dam (Lake Corpus Christi) (1958) on the Nueces River and

the Choke Canyon Dam (1982) on the Frio River) and increased water use upstream

have significantly reduced freshwater inflow to the delta. For example, Asquith et al.

(1997) reported that the mean number of annual overbanking events has decreased

from 2.3 to 0.8 since the construction of the Choke Canyon Dam (1982). As a result,

the mean annual freshwater that flows into the upper delta has dropped by over

99% since 1980s, compared to the record before 1958 (United States and Bureau of

Reclamation, 2000).

Reduced freshwater inflow made seawater intrude further to upstream, thereby,

increasing the salinity over the delta. Increased porewater salinity is posing a danger

to marine fish species as the porewater salinity over 25 ppt could significantly limit

the productivity of biomass which feeds marine fish species (Stachelek, 2012). The

alteration in seasonal freshwater flushing has affected the sedimentation and erosion

processes in the region, which it that considerable tidal marsh vegetations in the

lower delta has been lost by enhanced erosion (Hodges et al., 2012). A weakened

sedimentation and a loss of vegetation are degrading ecological habitat conditions,
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which provide breeding and nursery habitats for diverse marine species (Guadalupe,

San Antonio, Mission, and Aransas Rivers and Mission, Copano, Aransas, and San

Antonio Bays Basin and Bay Expert Science Team, 2011).

A.3 Restoration effort for the Nueces Delta

The ecological ill-functioning of the Nueces Estuary resulted in its being con-

sidered as the only part of an estuarine system which is ecologically unsound in the

comprehensive studies mandated by Texas Senate Bill 3 (Guadalupe, San Antonio,

Mission, and Aransas Rivers and Mission, Copano, Aransas, and San Antonio Bays

Basin and Bay Expert Science Team, 2011). For restoring the ecological soundness of

the Nueces Estuarine system, USCE, the Coastal Bend Bay and Estuaries Program

(herein CBBEP), and the Texas Water Development Board (herein TWDB) have

proposed and implemented multiple measures since 1980s. These measures included

construction of bypass pipelines and overflow channels which supply freshwater to

the delta and establishment of environmental flow recommendations as described

fully below.

Multi-agency collaboration efforts led to construction of freshwater pumping

facilities and establishment of freshwater inflow recommendations (Hill et al., 2015),

but, we lack a comprehensive understanding on the efficient way of supplying fresh-

water to maximize the ecological efficiency in the delta. Ecological habitats require

hydrologic heterogeneity for their maintenance (Crowder and Diplas, 2000; Poff et al.,

1997). Achieving the ecological effectiveness of inundation needs a best estimate on

flow processes in time-space scales. Such circumstance required the Frehd model
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(Chapter 3) as a tool for investigation on freshwater pumping scenarios (see Section

A.4).

A.3.1 Rincon Bayou demonstration and diversion project

The US Bureau of Reclamation (herein USBR) conducted the Rincon Bayou

Demonstration Project for a purpose of sending more freshwater to the delta during

1994 ∼ 1999 (Guadalupe, San Antonio, Mission, and Aransas Rivers and Mission,

Copano, Aransas, and San Antonio Bays Basin and Bay Expert Science Team, 2011;

United States and Bureau of Reclamation, 2000). This project proposed the con-

struction of (i) the Nueces Overflow Channel that connects the Nueces River to the

headwater of the Rincon Bayou Creek and (ii) the Rincon Bayou Overflow channel

that connects the upper Rincon Bayou Creek to the tidal mudflat of the delta. The

Nueces Overflow Channel was closed in 2000 and re-opened in 2001. These overflow

channels are used only in overbanking floods.

The Rincon Bayou Pipeline is capable to deliver up to 60,000 gallon/minute

and to 3,000 acre-feet/month with all three pumps operating from the Calallen Pool

to the upper delta (Montagna et al., 2009b). The Calallen Dam and Pool were cre-

ated to prevent seawater intrusion from impairing drinking water resource of the city

of Corpus Christi in the late 1980s. They are located approximately 10 mile up-

stream from the mouth of the river. The Rincon Bayou Pipeline was completed and

has been operated since 2008 (Tunnell and Lloyd, 2011). Nueces River Authority

monitors the amount of freshwater pumped through the pipeline to the delta.
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A.3.2 Allison wastewater treatment plant diversion project

The City of Corpus Christi conducted the Allison Wastewater Treatment

Plant Diversion Project, which included a construction of a pipeline to deliver the

treated water from the Allison Wastewater Treatment Plant to the delta during 1997

∼ 2003. The Wastewater plant located in the south bank of the Nueces River has

discharged its secondary treated effluent to the Nueces River since it was built in

1966. The pipeline, which was created below the bottom of the Nueces River, can

deliver the wastewater plant effluent of approximately 2.0× 106 gallon/day from the

plant to the lower delta region. the project helps ease the salinity surge in the lower

delta, but its capacity may not be sufficient for the freshwater flushing effect in the

delta (Ryan, 2011).

A.3.3 Nueces Delta freshwater inflow

The “environmental flow” (herein, EF) indicates the flow required for main-

taining an ecologically sound environmental condition (“recommended flow regime

for environment and ecosystem”) in river, channels, estuaries, and bays (Nueces

River and Corpus Christi and Baffin Bay Basin and Bay Area Stakeholder Com-

mittee, 2012). The environmental flow is often compatibly used with the “instream

flow” required for inland water bodies or “freshwater inflow” required for coastal

water bodies. Herein, the EF in the Nueces Delta indicates the latter case. A plan

for EF supply addresses diverse factors of EF regime, such as timing, frequency,

quantity, and duration, based on regional hydrodynamic conditions (Bradsby, 2009).

Two legislative directives guide EF plan in Texas: the Senate Bill 2 and the
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Senate Bill 3. The Senate Bill 2 directs state agencies to conduct the data collection

and evaluation programs for attaining the data required for determining EF recom-

mendations (Mallard et al., 2005). The Senate Bill 3 directs to determine EF recom-

mendations based on the data by the Senate Bill 2 for all Texas river basins and estu-

aries (Guadalupe, San Antonio, Mission, and Aransas Rivers and Mission, Copano,

Aransas, and San Antonio Bays Basin and Bay Expert Science Team, 2011). The

Senate Bill 3 enhances a stakeholders leading process for establishing EF recommen-

dations. In accordance with the Senate Bill 3, 7 among 11 basins in Texas have estab-

lished EF recommendations to date (Texas Water Development Board, 2014.3; http:

//www.twdb.state.tx.us/surfacewater/flows/environmental/index.asp).

The recent EF recommendations for the Nueces Estuarine system, i.e., Nueces

River and Corpus Christi and Baffin Bay Basin and Bay Area Stakeholder Committee

(2012), were proposed based on the HEFR method, which categorizes flow conditions

into four regimes: subsistence flows, base flows, high flow pulses, and overbank

flows (Science Advisory Committee, 2009). Each flow regime was classified based on

magnitude, duration, timing frequency, and rate of change. Hydrologic conditions of

each flow regime were combined with the data of ecology, geomorphology, and water

quality for assessing the integrated ecological functioning under each flow regime.

Based on the full years records, Guadalupe, San Antonio, Mission, and Aransas

Rivers and Mission, Copano, Aransas, and San Antonio Bays Basin and Bay Expert

Science Team (2011) investigated 25, 50, and 75 percentile of daily flows at perennial

streams in the basin as the base flows in dry, average, and wet hydrologic conditions,

while it determined the subsistence flow, using the median of the lowest 10% base
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flows that did not include zero flows. It followed that high flow pulses and overbank

flow, based on the frequency of the flow events that increased above 75 percentile daily

flow were determined, using logarithmic regression model and multipeaks-multiplier

hydrographic separation method (selected multiplier: 1.5).

Considering an interaction of flow regime and ecological condition, Guadalupe,

San Antonio, Mission, and Aransas Rivers and Mission, Copano, Aransas, and San

Antonio Bays Basin and Bay Expert Science Team (2011) established multi-tier EF

recommendations to achieve a desirable environmental flow regime at each hydro-

logic condition. Nueces River and Corpus Christi and Baffin Bay Basin and Bay Area

Stakeholder Committee (2012) reviewed and approved the recommendations through

the stakeholders decision-making process. The EF recommendations are summarized

in Table A.1. Detailed methodology and processes are out-lined in Nueces River and

Corpus Christi and Baffin Bay Basin and Bay Area Stakeholder Committee (2012).

Table A.1: Environmental flow recommendations for the Nueces Delta and Bay

Condition Nueces Bay Freshwater Inflow Regime Recommendations
(Target salinity) Nov. ∼ Feb. Mar. ∼ Jun. Jul. ∼ Aug. Sep. ∼ Oct. Annual Total

-
one overbanking event per year of 39, 000acft,

-maximum discharge of 3, 600cfs
High Flows 125, 000acft 250, 000acft 375, 000acft 750, 000acft

(10ppt) (Attainment 11%) (11%) (12%) (Attainment 16%)

Base Flows 22, 000acft 88, 000acft 56, 000acft 166, 000acft
(18ppt) (23%) (30%) (40%) (47%)

Subsistence 5, 000acft 10, 000acft 15, 000acft 30, 000acft
Flows (34ppt) (69%) (88%) (74%) (95%)

Previous EF plans were based on the system (upstream reservoir) storage

and allowed for no pass when the system storage drops under 30% (Nueces River
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and Corpus Christi and Baffin Bay Basin and Bay Area Stakeholder Committee,

2012). The recent EF recommendations provided more enforceable guidelines based

on the understanding of regional integrated ecological regime. It set the required

amount of flow that has to pass downstream at 18 streams locations so as to maintain

at least the subsistence flow condition over the delta and bay (Table A.1). The

recent recommendations included not only the flow amount, but also the attainment

frequency for restoring a seasonal pulse of tidal-freshwater in order to ensure the

implementation of the guidelines.

A.4 Role of the Frehd model for restoring the Nueces Delta

The Frehd code (Chapter 3) has been applied into the recent restoration efforts

for the Nueces Delta (e.g., Li and Hodges, 2015). While the recent restoration efforts

constructed the pipelines and pumps for freshwater water supply and established the

EF recommendations, but it did not provide operating plans for local infrastructures

(Hodges et al., 2012). The EF recommendations provided annual total freshwater

inflow to the Nueces Bay (Table A.1), but not freshwater inflow required for the

Nueces Delta separately. Therefore, establishing a practical operating plan at local

scale needs an additional study evaluating the effect of freshwater inflow, and here

is a need of a reliable tool for hydrodynamic modeling. The Frehd cede has the ease

and stability in hydrodynamic, which makes it a tool for investigating an optimal

freshwater inflow plan to maximize the ecological efficiency (Hodges et al., 2012).

One challenge for hydrodynamic modeling of the Nueces Delta that is a shal-

low tidal marsh with a highly complex terrain is unresolved small topographic de-
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tails. For hydrodynamic modeling of the Nueces Delta, Frehd employed 15×15m

(e.g., Hodges et al., 2012) ∼ 30× 30m grid scale (e.g., Li and Hodges, 2015),

which were rasterized from the 1×1m grid-scale lidar-derived bathymetric data by J.

Gibeaut(2010). The observation of the 1×1m grid resolution bathymetric data of the

Nueces Delta indicates the presence of high spatial variability in bottom topography

of shallow marshlands (e.g., sediment bars), which makes use of a smooth bottom

boundary for subgrid areas hard to be rationalized. A fine-grid model is arguably not

feasible for a multi-scenario simulation in a large water basin with dimension up to

100km2 (Ryan, 2011), and a processor solving a matrix of large-scale flow mechanics

is not easily accessible for a modeler.

Neglect of topographic forcing caused by subgrid topographic details can re-

strict model fidelity in addressing wetting and drying processes in shallow flow (e.g.,

flow volume, time-space coverage, rate, and route) (Tsubaki and Kawahara, 2013;

Yu and Lane, 2011). Considering the tidal fluctuations in the delta, wetting and

drying process is a key process in hydrodynamics with respect to the regional ecolog-

ical functioning. Therefore, addressing the effect of unresolved topographic features

is a key task for the application of Frehd into exploring flow dynamics in the shal-

low complex terrain of the Nueces Delta. The prior Frehd model for the Nueces

Delta used roughness parameters that were determined from the land-cover legend

(e.g., 2001 National Land Cover Dataset) and the Manning’s coefficient n conver-

sion (Hossain et al., 2009). Using a friction parameter estimated from the lumped

land-cover classes arguably provides uncertainty since it does not represent physical

processes induced by local surface roughness and topographic forcing. Moreover, the
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roughness parameter was set on a coarser grid scale than the model grid scale (i.e.,

land-cover data was built at 30×30m grid scale that is coarser than the model grid

scale (15×15m ∼ 30×30m)). These circumstances provided a motivation for the

current work, which is developing a subgrid method to incorporate the effect of local

forcing exerted by subgrid topography into a coarse-grid solution.
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Appendix B

Free-surface Solution Applying the Flux

Integration Approach for the flow continuity

B.1 Flow continuity equation

The mass conservative relationship for the integrated net fluxes (Q) at the

faces of the grid cell (Casulli, 2009) provides the new flow continuity equation, Eqs.

(5.14) ∼ (5.17). Applying θ weighting method into Eq. (5.17) and assuming An+1 '

An provides[
(An+1

xy )i,jη
n+1
i,j − (Anxy)i,jη

n
i,j

]
∆t [

u
n+1/2
i+1/2,j (An+1/2

yz )i+1/2,j − un+1/2
i−1/2,j (An+1/2

yz )i−1/2,j

]
[
v
n+1/2
i,j+1/2 (An+1/2

xz )i,j+1/2 − vn+1/2
i,j−1/2 (An+1/2

xz )i,j−1/2

]
= 0

Arranging the equation above follows

(Anxy)i,jη
n+1
i,j − (Anxy)i,jη

n
i,j + θc∆t

[
un+1
i+1/2,j (Anyz)i+1/2,j − un+1

i−1/2,j (Anyz)i−1/2,j

]
+ θc∆t

[
vn+1
i,j+1/2 (Anxz)i,j+1/2 − vn+1

i,j−1/2 (Anxz)i,j−1/2

]
+ (1− θc)∆t

[
uni+1/2,j (Anyz)i+1/2,j − uni−1/2,j (Anyz)i−1/2,j

]
+ (1− θc)∆t

[
vni,j+1/2 (Anxz)i,j+1/2 − vni,j−1/2 (Anxz)i,j−1/2

]
= ∆tT

n+1/2
i,j
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where T
n+1/2
i,j represents all external volume sources (e.g., inflow, pump).

Let define an explicit source term (S) as:

Sni,j ≡∆t
[
uni+1/2,j (Anyz)i+1/2,j − uni−1/2,j (Anyz)i−1/2,j

]
+ ∆t

[
vni,j+1/2 (Anxz)i,j+1/2 − vni,j−1/2 (Anxz)i,j−1/2

]
Substituting S for the explicit source terms and rearranging the equation provides

ηn+1
i,j (Anxy)i,j − ηni,j(Anxy)i,j + (1− θc)Sni,j

+ θc∆t
[
un+1
i+1/2,j (Anyz)i+1/2,j − un+1

i−1/2,j (Anyz)i−1/2,j

]
+ θc∆t

[
vn+1
i,j+1/2 (Anxz)i,j+1/2 − vn+1

i,j−1/2 (Anxz)i,j−1/2

]
= ∆tT

n+1/2
i,j

The flow continuity equation is reduced as:

ηn+1
i,j + θc

∆t

(Anxy)i,j

[
un+1
i+1/2,j (Anyz)i+1/2,j − un+1

i−1/2,j (Anyz)i−1/2,j

]
(B.1)

+ θc
∆t

(Anxy)i,j

[
vn+1
i,j+1/2 (Anxz)i,j+1/2 − vn+1

i,j−1/2 (Anxz)i,j−1/2

]
= ηni,j − (1− θc)

Sni,j
(Anxy)i,j

+
∆t

(Anxy)i,j
T
n+1/2
i,j

B.2 Momentum conservation equation

The first-order upwind discretized momentum equation is stated as:

hni+1/2,ju
n+1
i+1/2,j = hni+1/2,jE

n
x i+1/2,j − I

n
i+1/2,jh

n
i+1/2,j

g∆t

∆x
(ηn+1
i+1,j − ηn+1

i,j ) (B.2)
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where E is the sum of the explicit terms (advection term N , diffusive friction term

Dxx and Dyx) as:

En
x i+1/2,j ≡ Ini+1/2,j(u

n
i+1/2,j −∆tNn

x i+1/2,j + ∆tDn
xx i+1/2,j + ∆tDn

yx i+1/2,j
)

Nn
x i+1/2,j = uni+1/2,j

(uni+1/2,j − uni−1/2,j)

∆x
+ vni+1/2,j

(uni+1/2,j − uni+1/2,j−1)

∆y

Dn
xx i+1/2,j =

1

∆x

[
(νx)i+3/2,j

(uni+3/2,j − uni+1/2,j)

∆x
− (νx)i+1/2,j

(uni+1/2,j − uni−1/2,j)

∆x

]

where ν is horizontal turbulence eddy viscosity. Dn
yx i+1/2,j

is discretized similarly.

Further define I as:

Ini+1/2,j ≡
1

1−∆tBn
x i+1/2,j

where

Bn
x i+1/2,j =

1

2hni+1/2,j

CD
√

[(uni+1/2,j)
2 + (vni+1/2,j)

2]

Arranging Equation (B.2) provides,

un+1
i+1/2,j = En

x i+1/2,j − I
n
i+1/2,j

g∆t

∆x
(ηn+1
i+1,j − ηn+1

i,j ) (B.3)
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B.3 Free-surface elevation solution

Substituting un+1
i+1/2,j in Eq. (B.3) into Eq. (B.1) provides

ηn+1
i,j + θc

∆t

(Anxy)i,j

[
En
x i+1/2,j − I

n
i+1/2,j

g∆t

∆x
(ηn+1
i+1,j − ηn+1

i,j )

]
(Anyz)i+1/2,j (B.4)

− θc
∆t

(Anxy)i,j
un+1
i−1/2,j (Anyz)i−1/2,j

+ θc
∆t

(Anxy)i,j

[
vn+1
i,j+1/2 (Anxz)i,j+1/2 − vn+1

i,j−1/2 (Anxz)i,j−1/2

]
= ηni,j − (1− θc)

Sni,j
(Anxy)i,j

+
∆t

(Anxy)i,j
T
n+1/2
i,j

un+1
i−1/2,j, v

n+1
i,j+1/2, and vn+1

i,j−1/2 can be substituted similarly.

For further simplicity in exposition, let

Cn
i+1/2,j ≡ g(∆t)2 (Anyz)i+1/2,j

∆x (Anxy)i,j
Ini+1/2,j

Cn
i−1/2,j ≡ g(∆t)2 (Anyz)i−1/2,j

∆x (Anxy)i,j
Ini−1/2,j

Cn
i,j+1/2 ≡ g(∆t)2 (Anxz)i,j+1/2

∆x (Anxy)i,j
Ini,j+1/2

Cn
i,j−1/2 ≡ g(∆t)2 (Anxz)i,j−1/2

∆x (Anxy)i,j
Ini,j−1/2

and

Gn
i,j ≡

∆t

(Anxy)i,j

[
En
x i+1/2,j(A

n
yz)i+1/2,j − En

x i−1/2,j(A
n
yz)i−1/2,j

]
+

∆t

(Anxy)i,j

[
En
y i,j+1/2

(Anxz)i,j+1/2 − En
y i,j−1/2

(Anxz)i,j−1/2

]
Substituting C and G into Eq. (B.4), the free-surface solution is derived in a
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form that is similar to Eq. (3.9).

ηn+1
i,j

(
1 + Cn

i+1/2,j + Cn
i−1/2,j + Cn

i,j+1/2 + Cn
i,j−1/2

)
(B.5)

− ηn+1
i+1,j C

n
i+1/2,j − ηn+1

i−1,j C
n
i−1/2,j − ηn+1

i,j+1C
n
i,j+1/2 − ηn+1

i,j−1C
n
i,j−1/2

= ηni,j − (1− θc)
Sni,j

(Anxy)i,j
+

∆t

(Anxy)i,j
T
n+1/2
i,j −Gn

i,j
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Appendix C

Definition of Subgrid Quantities for New Subgrid

Model

The new subgrid model (Chapter 5) requires subgrid topographic quantities

Axy, Axz, Ayz, and V corresponding to time-varying model-resolved free-surface ele-

vation (η) to be known. We can consider a fine-grid system whose outer cells share

a boundary with a model-resolved grid cell for the subgrid region (Section 4.2.2).

Equation (4.13) provides the time-varying difference between the fine-grid

bottom and coarse-grid bottom (δz(r, s, t)) as :

δz(r, s, t) ≡ min [zb(r, s)− Zb, h(t)]

with a fine-grid topographic elevation zb(r, s), a coarse-grid bottom elevation Zb that

is uniform over subgrid space, and the time-varying model-resolved water depth h.

If follows that the subgrid depth hf at the time t, Eq. (4.14):

hf (r, s, t) = h(t)− δz(r, s, t)

Where for some position r or s along the fine-grid axes (r, s), time-varying

difference of cross-sectional area between the fine-grid and coarse-grid system (ξ) is

ξx(r, t) ≡
ns∑
s=1

δz(r, s, t)∆s
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or

ξy(s, t) ≡
nr∑
r=1

δz(r, s, t)∆r

where ∆r and ∆s are the unit lengths of a fine-grid cell for r and s-directions; and

nr and ns are the numbers of fine-grid cells of the fine-grid axes (r, s) respectively.

The cross-sectional flow areas Afx and Afy where for some position r and s along

the fine-grid axes (r, s) are defined as:

Afx(r, t) ≡ h(t)∆y − ξx(r, t)

and

Afy(s, t) ≡ h(t)∆x− ξy(s, t)

where ∆x and ∆y are the discretized unit lengths of a model-resolved grid cell for x

and y-directions, respectively.

The flow area of the grid cell (i, j) is assigned with a smaller area between

the face flow areas of two neighboring grid cells at their common face. It follows

that the face area Ayz(t) is determined with a smaller flow area between those of two

neighboring grid cells (i, j) and (i+ 1, j) as:

Ayz(i,j)(t) ≡ min
[
Afx(i,j)(r = nr, t), Afx(i+1,j)(r = 1, t)

]
Similarly, the flow area Axz(t) is determined as:

Axz(i,j)(t) ≡ min
[
Afy(i,j)(s = ns, t), Afy(i,j+1)(s = 1, t)

]
The cell water volume V and the effective surface area Axy are determined at the

center of a grid cell as:

V (t) ≡
nr∑
r=1

Afx(r, t)∆r
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Axy(t) ≡
V (t)

h(t)

Note that Axy set to be ∆x∆y when h(t) = 0. It prevents from making inflow

boundary elevation have infinity, since Frehd’s approach to an inflow boundary is to

distribute the flow proportionally with the local area (i.e., ηBC = QBC/Axy).
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Appendix D

Look-up Table Scheme

The new subgrid model (Chapter 5) requires geometric data of each grid

cell corresponding to the surface elevation (η). Computing a continuous range of

geometric values for each grid cell can be expensive, especially when the modeling

domain consists of a large number of cells. A “look-up table” method has been used

in prior subgrid model studies (e.g., Wu et al., 2016; Li, 2015) in order to reduce

the computational expenses associated with the computation of geometric quantities

required for parameterizing the effect of subgrid topography. In the look-up table

method, subgrid geometric quantities for each grid cell are computed at pre-defined

increments of ∆η, stored, and fed back to a model at each time-step corresponding

to the modeled surface elevation η.

The look-up table in the current study stored four subgrid geometric quanti-

ties for each resolved grid cell, which were Ayz, Axz, V , and hf (Chapter 5). Note

that the effective surface area Axy was not stored in the look-up table, and was de-

termined by dividing Vl fed by the look-up table with the modeled depth h at each

time-step.

Let ηl(k) is a set of the surface elevations that are determined by incrementing

k ∆η (i.e., ηl(k) = min ηl +k×∆η: k = {1, . . . Nl}). The geometric quantities in the
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look-up table corresponding to ηl(k) are denoted as Ayz(l)(k), Axz(l)(k), Vl(k), and

hf(l)(k), respectively. The current work set the length and range of ηl (i.e., Nl and

min ηl) by referring to the highest and lowest elevations of the test domain.

The depth at the fine-grid coordinates (r, s) at ηl(k) is determined as:

hl(r, s, k) = min [ηl(k)− zb(r, s), 0]

where zb is the fine-grid elevation, and the min[ ] function ensures that the geometric

quantities do not include negative depth, area, or volume. It defines the average

fine-grid depth and water volume at kth interval as:

hf(l)(k) =
1

nrns

nr∑
r=1

ns∑
s=1

hl(r, s, k)

where nr and ns are the numbers of fine-grid cells in the fine-grid coordinates (r, s).

Vl(k) =
nr∑
r=1

ns∑
s=1

hl(r, s, k)∆s∆r

where ∆r and ∆s are the discretized unit lengths of a fine-grid cell.

The cross-sectional flow areas Afx(l) and Afy(l) where for some position r and

s along the fine-grid axes (r, s) are defined at ηl(k) as:

Afx(l)(r, k) =
ns∑
s=1

hl(r, s, k)∆s

Afy(l)(s, k) =
nr∑
r=1

hl(r, s, k)∆r

The face flow area of the grid cell (i, j) corresponding to ηl(k) is assigned with a

smaller area between the face flow areas of two grid cells (i, j) and (i + 1, j) or

(i, j + 1), which is denoted as Ayz(l)(k) or Axz(l)(k).

Ayz(l)(k) ≡ min
[
(Afx(l))i,j(r = nr, k), (Afx(l))i+1,j(r = 1, k)

]
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Axz(l)(k) ≡ min
[
(Afy(l))i,j(s = ns, k), (Afy(l))i,j+1(s = 1, k)

]
A look-up table storing subgrid geometric values at a small interval of the

free surface elevation is preferred for model fidelity, but it degrades the effectiveness

of the method. The current study simply added a linear interpolation function to

the prior algorithm of Li (2015) in order to improve the effectiveness of the look-up

table method. With the modeled surface elevation ηn at nth time-step, let ηl(α) is

the closest elevation to ηn, which is determined by incrementing α ∆η, and θl(k)

(k = {1, . . . Nl}) is the subgrid geometric quantity stored in the table at the kth

interval of ∆η. The linearly-interpolated quantity corresponding to the modeled

surface elevation ηn (θn) is determined as:

θn+1 = θl(α) +
ηn − ηc

∆η
θl(α)
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Blöschl, G. and R. Grayson, “Chapter 2. Spatial Observation and Interpolation, Spa-

173



tial Patterns in Catchment Hydrology: Observation and Modeling”, Cambridge

University Press, 2001.

Bradsby, C. B., “The Environmental Flows Allocation Process”, Texas Water Law

Institute, 2009.

Buckman, L., “Hydrodynamics of Partially vegetated channels: stem drag forces

and application to an in-stream wetland concept for tropical, urban drainage sys-

tems, MSc thesis report”, Delft University of Technology & National University

of Singapore, 2013.

Carney, S. K., B. P. Bledsoe, and D. Gessler, “Representing the bed roughness of

coarse-grained streams in computational fluid dynamics”, Earth Surface Processes

and Landforms, 31:736–749, 2006.

Casas, A., S. N. Lane, D. Yu, and G. Benito, “A method for parameterizing roughness

and topographic sub-grid scale effects in hydraulic modelling from LiDAR data”,

Hydrology and Earth System Sciences (HESS) & Discussions (HESSD), 2010.

Casulli, V., “A semi-implicit finite difference method for non-hydrostatic, free-surface

flows”, International Journal for Numerical Methods in Fluids, 30(4):425–440,

1999.

Casulli, V., “A high-resolution wetting and drying algorithm for free-surface hydro-

dynamics”, International Journal for Numerical Methods in Fluids, 60(4):391–408,

2009.

174



Casulli, V. and E. Cattani, “Stability, accuracy and efficiency of a semi-implicit

method for three-dimensional shallow water flow”, Computers & Mathematics

with Applications, 27(4):99–112, 1994.

Casulli, V. and R. T. Cheng, “Semi-implicit finite difference methods for three-

dimensional shallow water flow”, International Journal for Numerical Methods in

Fluids, 15(6):629–648, 1992.

Casulli, V. and P. Zanolli, “Semi-implicit numerical modeling of nonhydrostatic free-

surface flows for environmental problems”, Mathematical and computer modelling,

36(9):1131–1149, 2002.

Cea, L. and M. E. Vázquez-Cendón, “Unstructured finite volume discretization of

two-dimensional depth-averaged shallow water equations with porosity”, Interna-

tional Journal for Numerical Methods in Fluids, 63(8):903–930, 2010.

Chen, A. S., B. Evans, S. Djordjević, and D. A. Savić, “A coarse-grid approach to

representing building blockage effects in 2D urban flood modelling”, Journal of

Hydrology, 426:1–16, 2012.

Chisolm, R. E., “The effect of grid scale on the calibration of two-dimensional river

models through the drag coefficient”, Master’s thesis, The University of Texas at

Austin, USA, 2011.

Crowder, D. W. and P. Diplas, “Using two-dimensional hydrodynamic models at

scales of ecological importance”, Journal of Hydrology, 230(3):172–191, 2000.

175



D’Alpaos, L. and A. Defina, “Mathematical modeling of tidal hydrodynamics in

shallow lagoons: A review of open issues and applications to the Venice lagoon”,

Computers & Geosciences, 33(4):476496, 2007.

Defina, A., “Two-dimensional shallow flow equations for partially dry areas”, Water

Resources Research, 36(11):3251–3264, 2000.

Dias, J. a. M., J. M. Valentim, and M. C. Sousa, “A numerical study of local

variations in tidal regime of Tagus Estuary, Portugal”, PLoS one, 8(12):e80450,

2013.

Ding, Y., Y. Jia, and S. S. Wang, “Identification of Manning’s roughness coefficients

in shallow water flows”, Journal of Hydraulic Engineering, 130(6):501–510, 2004.

Dottori, F. and E. Todini, “Testing a simple 2D hydraulic model in an urban flood

experiment”, Hydrological Processes, 27(9):1301–1320, 2013.

Dottori, F., G. D. Baldassarre, and E. Todini, “Detailed data is welcome, but with a

pinch of salt: Accuracy, precision, and uncertainty in flood inundation modeling”,

Water Resources Research, 49(9):6079–6085, 2013.

Guadalupe, San Antonio, Mission, and Aransas Rivers and Mission, Copano,

Aransas, and San Antonio Bays Basin and Bay Expert Science Team, “Envi-

ronmental Flows Recommendations Report, Final Submission to the Environmen-

tal Flows Advisory Group, Nueces River and Corpus Christi and Baffin Bays

Basin and Bay Area Stakeholders Committee, and Texas Commission on Environ-

176



mental Quality”, Available at http://www.tceq.texas.gov/permitting/water_

rights/eflows, 2011.

Guinot, V. and S. Spares-Frazão, “Flux and source term discretization in two-

dimensional shallow water models with porosity on unstructured grids”, Interna-

tional Journal for Numerical Methods in Fluids, 50(3):309–345, 2006.

Hardy, R. J., P. D. Bates, and M. G. Anderson, “The importance of spatial resolution

in hydraulic models for floodplain environments”, Journal of Hydrology, 216(1):

124–136, 1999.

Hervouet, J., “Hydrodynamics of free surface flows: modelling with the finite element

method”, John Wiley & Sons, 2007.

Hicks, D. M. and P. D. Mason, “Roughness characteristic of New Zealand rivers:

a handbook for assigning hydraulic roughness coefficients to river reaches by the

“visual comparison” approach”, Water Resources Survey, 1991.

Hill, E. M., J. W. Tunnell, and L. Lloyd, “Spatial Effects of Rincon Bayou Pipeline

freshwater inflows on salinity in the lower Nueces Delta, Texas”, Coastal Bend

Bays & Estuaries Program, 2012.

Hill, E. M., J. W. Tunnell, and B. A. Nicolau, “Spatial and temporal effects of

the Rincon Bayou Pipeline on hypersaline conditions in the Lower Nueces Delta,

Texas, USA”, Texas Water Journal, 6(1):11–32, 2015.

Hodges, B. R., “Accuracy order of crank-nicolson discretization for hydrostatic free

surface flow”, Journal of Engineering Mechanics, 130(8):904–910, 2004.

177

http://www.tceq.texas.gov/permitting/water_rights/eflows
http://www.tceq.texas.gov/permitting/water_rights/eflows


Hodges, B. R., “Representing hydrodynamically important blocking features in

coastal or riverine lidar topography”, Natural Hazards and Earth System Sciences,

15(5):1011–1023, 2015.

Hodges, B. R. and F. J. Rueda, “Semi-implicit two-level predictor-corrector methods

for non-linearly coupled, hydrostatic, barotropic/baroclinic flows”, International

Journal of Computational Fluid Dynamics, 22(9):593–607, 2008.

Hodges, B. R., J. Imberger, A. Saggio, and K. B. Winters, “Modeling basin-scale

internal waves in a stratified lake”, Limnology and oceanography, 45(7):1603–1620,

2000.

Hodges, B. R., K. H. Dunton, P. A. Montagna, and G. H. Ward, “Nueces Delta

Restoration Study”, Coastal Bend Bays & Estuaries Program, 2012.

Horritt, M. S., “Chapter 9. Parameterisation, validation and uncertainty analysis of

CFD models of fluvial and flood hydraulics in the natural environment”, In Bates,

P. D., S. N. Lane, and R. I. Ferguson, editors, “Computational Fluid Dynamics”,

pages 193–213. John Wiley & Sons, 2005.

Horritt, M. S. and P. D. Bates, “Effects of spatial resolution on a raster based model

of flood flow”, Journal of Hydrology, 253(1):239–249, 2001.

Horton, R. E., “Separate roughness coefficients for channel bottom and sides”, En-

gineering News Record, 111(22):652–653, 1933, (recited from Woo (2001)).

178



Hossain, A. A., Y. Jia, and X. Chao, “Estimation of Manning’s roughness coefficient

distribution for hydrodynamic model using remotely sensed land cover features”,

In “2009 17th International Conference on Geoinformatics”. IEEE, 2009.

Hughes, J. D., J. D. Deckerb, and C. D. Langevinc, “Use of upscaled elevation and

surface roughness data in two-dimensional surface water models”, Advances in

Water Resources, 34(9):11511164, 2011.

Huthoff, F., D. Augustijn, and S. J. Hulscher, “Analytical solution of the depth-

averaged flow velocity in case of submerged rigid cylindrical vegetation”, Water

Resources Research, 43(6), 2007.

Ji, Z., “Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries”,

John Wiley & Sons, 2008.

Jiang, Y. W. and O. W. H. Wai, “Drying-wetting approach for 3d finite element

sigma coordinate model for estuaries with large tidal flats”, Advances in Water

Resources, 28:779–792, 2005.
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