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Abstract 

 

Thermal analysis of laser processes can be used to predict thermal stresses and 

microstructures during processing and in a completed part.  Thermal analysis is also the basis for 

feedback control of laser processing parameters in manufacturing. A comprehensive literature 

review of thermal analysis methods utilized in Laser Sintering (LS) has been undertaken. In 

many studies, experimental methods were commonly used to detect and validate thermal 

behavior during processing. Coupling of thermal experiments and FEM analyses were utilized in 

many of the latter studies.  Analytical solutions were often derived from the Rosenthal solution 

and other established theories. In recent years, some temperature measuring systems have been 

implemented to validate the simulation results.  The main characteristics of LS temperature 

distribution and effects of process parameters to temperature are also summarized and shown by 

a case study. 

 

Introduction  

 

Laser sintering (LS) was initially developed at the University of Texas at Austin [1].  LS 

is a process in which a high energy laser beam scans the surface of a powder bed (the powder 

can be metal, polymer or ceramics) and the melted powder solidifies to form the bulk part. 

Selective Laser Melting (SLM) is the most commonly used terminology to describe laser 

sintering of metals, however, the terms Laser Cusing and Direct Metal Laser Sintering (DMLS) 

are also used by certain manufacturers [2].  SLM makes it possible to create fully functional 

parts directly from metals without using any intermediate binders or any additional processing 

steps after the laser melting operation [3]. Laser sintering is very complicated because of its fast 

laser scan rates and material transformations in a very short timeframe. The temperature field 

was found to be inhomogeneous by many previous researchers [4,5,6,7,8]. Meanwhile, the 

temperature evolution history in laser sintering has significant effects on the quality of the final 

parts, such as density, dimensions, mechanical properties, microstructure, etc. For metals, large 

thermal gradients increase residual stresses and deformation, and may even lead to crack 

formation in the fabricated part. Thermal distortion of the fabricated part is one serious problem 

in SLM [9]. Therefore, understanding the process mechanisms and effects of process parameters 

are significant for the future development of SLM.  

 
Background of heat transfer models 

 

Since temperature distribution in laser sintering is important, many researchers have put 

their efforts toward  understanding the SLM process [10,11,12,13,14,15]  and formulating  

models to describe SLM thermal evolution [3,4,6,16,17,18].  Simulation models proved 
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beneficial for demonstrating the influence of various parameters. Those models are the essential 

tools for identifying proper parameters without extensive testing [5]. 

Figure 1 is a schematic representation of heat transfer in SLM [16]. The laser scans on 

the top of the powder bed following a prescribed scan pattern. The heat transfer process consists 

of powder bed radiation, convection between the powder bed and environment, and heat 

conduction inside the powder bed and between the powder bed and substrate.  The latent heat of 

fusion is large in SLM. The complexity brought about by the powder phase change and the 

corresponding variation of the thermal properties during SLM also complicates the heat transfer 

problem.     

 
Figure 1 Schematic representation of heat transfer [16] 

 

 

The most common formulation considers SLM thermal evolution as a heat transfer 

process utilizing Fourier heat conduction theory. Carslaw and Jaeger[19] used  equation (1) to 

describe the governing heat conduction in the moving medium. (2),(3) and (4) are the initial and 

boundary conditions respectively. 
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Initial condition: 

               Initial temperature:                                                                                           
Boundary conditions: 

Surface convection and radiation:   
  

  
      

    
                             

No heat loss at the bottom:   
  

  
                                                                             

where T is the temperature, λ the conductivity coefficient, ρ the density, c the heat capacity 

coefficient, q the internal heat,    the powder bed initial temperature,    the environment 

temperature,    the thermal radiation coefficient，   the Stefan-Boltzmann constant, and    the 

convection heat transfer coefficient. 

K. Dai used this governing equation to study the thermal field of dental porcelain using 

SLM [20]. [21,22,23,24,25,26,27] simulate the SLM metal temperature distribution by 

employing these equations. Rather than ignoring the laser heat source as an internal energy in (1) 

[28,29,30], a lot of studies put it into the boundary condition equation (3) [3,16]. These are two 

different forms of governing equation to represent the laser energy.  There are some other 

variations of the governing equation by including the phase change and enthalpy in the right side 

of (1) [3,16,28]. 

There is another model which considers the influence of powder shrinkage and molten 

pool fluid flow. [31] points out that the fluid flow in the molten pool has significant effect on the 

weld homogeneity. Since SLM and laser welding have similarities, many SLM modeling 

methods originate from welding.  Another consideration is that fluid flow in the molten pool may 

also influence the thermal field during SLM, which is not included in Carslaw and Jaeger’s 

equation. [32,33,34,35,36,37,74]  have investigated and built the model to simulate the melting 

and solidification phenomena. In [35], a one-dimensional melting problem in a powder bed 

containing a mixture of powders has been solved analytically. In [36], a model  has been 

formulated where the liquid motion in the melt pool was driven by capillary and gravity forces, 

and the  flow characteristics have been formulated using Darcy’s law.  A fixed grid temperature 

transfer model was also used to describe the melting and resolidification process.. Besides liquid 

flow, the shrinkage of the powder caused by the change in density has been  included in the 

model. The model results were validated with experiments conducted on a nickel braze and AISI 

1018 steel powder. Experiments showed that shrinkage was not negligible in SLM.  In [37],  the 

previous model has been expanded to a three dimensional model by considering the thermal 

behavior and fluid dynamics in the molten pool caused by maragnoni and buoyancy forces. 

In order to better reflect the SLM process, a lot of research on key process variables such 

as laser beam characteristics and powder thermal properties has been conducted. The simplest 

laser beam has been assumed to be a point source which is not in conjunction with reality.  It has 

been found that the laser beam can be characterized using three parameters namely diameter, 

power, and intensity distribution. Later, Courtney and Steen measured the laser beam and 

compared it against the Guassian beam distribution, and an effective Gaussian beam diameter 

has been deduced. This is also the most widely adopted model in literature. Equations (5), (6) 

and (7) describe the Guassian laser beam distribution[16].  
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where    is the beam diameter corresponds to the point where the irradiance (    diminishes by a 

factor of      , and d is the radial distance of a point from the center, similarly, the thermal heat 

flux is modeled using equation (6) as follows: 

     
  

   
   

 
   

  
 
                              

where P is the laser power,     the spot radius and r the radial distance. 

And the average heat flux on the laser spot is,  

   
 

   
           

  

 

 
       

   
                     

where   is the absorption rate. 

The laser beam distribution has been assumed to be either surface or volumetric in nature. 

To avoid the complexity, in [38] the powder has been considered to be a homogenously 

absorbing and scattering continuum with effective radiation transfer properties equivalent to 

those of a powder bed. A surface laser beam is common in literature since there is not so much 

research on laser beam penetration [4,28,39, 38]. In [4], a ray tracing (RC) model has been 

formulated in which the geometry and structure of the powder have been taken into account. 

Figure 2 is the two-dimensional (2D) illustration of the model. As shown in figure 2, the laser 

beam is taken as the ray which penetrates into the powder bed, which is reflected and absorbed 

by the powders. This experiment was based on the simulation of a large number of rays. This 

model allows for calculation of the ratio of the total absorption with respect to the material 

absorption, laser beam penetration, and more. In [39], a volumetric line heat source has been 

considered with the energy characteristics shown as (8) 

   
  
  
    

  
    

                               

where    is the line energy,    is the area energy,    is the laser power,     is the scan speed, and 

   is hatch spacing. In [28], a radiation transfer equation has been used with an isotropic 

scattering term to describe penetration in metallic powder. And in [7], it was concluded that if 

the finite element size is larger than five gradient diameters, laser penetration can be ignored in 

general. 

Understanding of the interaction between the powder bed and laser beam is key to the 

laser penetration and powder bed absorption. Since the absorption parameter are not known 

accurately, in [16] a constant absorption ratio of pure titanium powder at the Nd-YAG laser 

wavelength (1.06 mm) was assumed. This assumption has been reported in [48] which also 

utilizes the absorption ratio for the bulk material. Similarly in [40, 41, 42] a constant absorption 

rate has been assumed in their modeling schemes. The laser energy absorptance of a material is 

known to depend on a number of factors such as the nature of the surface, level of oxidation, the 

wavelength of the incident laser beam, surface temperature, etc [43]. Though, in the case of 

metallic powders, the absorption ratio varies from the in-coupling absorption as proposed by 

Kruth et al [5] to within a few percent of the molten metal absorption ratio [20].  
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Figure 2 2D illustration of the RC model: simulation over a depth of 1mm and width of 1mm of powder bed [29] 

 

Thermal properties include density, thermal conductivity, heat capacity and enthalpy.  In 

[19], it was shown that thermal conductivity is not a constant value and seems to vary with 

temperature. In SLM, the effective thermal conductivity has been used. Many formulations were 

developed using reasonable assumptions or experimentation and it has been established that the 

powder bed porosity influences conductivity. The effective thermal conductivity is a function of 

solid and gas thermal conductivity [1,16, 75]. In [1], using the Yagui and Kunni (1989) function, 

the thermal conductivity of the material   has been expressed as (9) 

   
   

   
  
  

                              

where    is the conductivity of the solid material,   is the conductivity of air,    is the solid 

fraction(  
 

  
)and   is an empirical coefficient.  

In [44], it has been proposed that thermal conductivity depends on porosity and pore 

geometries and it is controlled by the amount of gas content inside the pore.  In [45], during their 

studies on light extinction in powder beds, it has been demonstrated that the effective thermal 

conductivity of a powder is essentially independent of material but depends  on the size and 

morphology of the particles and the void fraction, as well as on the thermal conductivity of the 

gaseous environment. In [16], it has been established that the thermal conductivity of Ti6Al4V 

starts off from a low conductivity value for powder material and rises sharply at it nears the 

melting point. The thermal conductivity of this alloy increases considerably with temperature 

above room temperature. The temperature range near the melting point and above is the most 

important for the problem under consideration. In absence of any reliable experimental data, a 

constant value of    = 20 W/(m K) has been assumed, which is obtained by extrapolation to the 

melting point. The effective thermal conductivity of loose metallic powders is controlled by 

800



gaseous content in the pores [28]. The density and heat capacity of alloy powder can be 

described as the mean of the individual components in [75]. 

 

Analytical solutions  

 

The Carslaw and Jaeger [19] heat transfer model discussed above includes the unusual 

boundary conditions, and there is no analytical solution which completely satisfies the linear 

governing equation. However, there are some solutions associated with the simplified model 

which were first used in welding [46]. In particular, the Rosenthal solutions for a point and line 

heat source have been proved to be extremely useful in laser-based manufacturing.  

The three dimensional (3D) Rosenthal’s point solution for temperature distribution using 

a steady state point heat source moving on the surface of a semi-infinite plate along the x axis is 

given by (10)[2] 
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The 2D Rosenthal’s line solution for the temperature distribution using a steady state line 

heat source moving on the surface of a semi-infinite plate along the x axis is given by (11)[47] 

      
 

 
                        

where 

            
 

  
                    

   
  

  
    

  

  
 

and  ,  ,  ,  ,  ,  ,    are the absorption rate, laser power, scan velocity, density, heat capacity, 

thermal conductivity and the modified Bessel function of the second kind and order zero.  

The Rosenthal’s solution plays an important role in the study of SLM temperature 

distribution. A more complicated solution for different laser beam distributions can be built upon 

these elementary solutions. In [46], the temperature distribution of a moving Gaussian 

distribution heat source has been derived. The influence of beam diameters has been included, 

though the solution was in the form of an integral and not a closed form solution. These 

scenarios can be extended to cover time dependent situations.  The one-dimensional (1D) form 

of a time dependent point and line solution is derived in [47]. In [48], an expression of 

temperature distribution for a Gaussian heat source in a laser deposition process by using a 

Green function has been provided. Also, an analytical closed form solution for the maximum 

temperature of a stationary laser beam, an extremely fast moving laser beam and a laser beam 

with intermediate velocity has been derived.  In [49], a semi-analytical model has been 
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developed to estimate the thermal field created at a sample surface during a pulsed Nd-YAG 

laser treatment with constant thermal properties and a laser beam with Gaussian distribution. In 

[18], equation (1) has been solved analytically with boundary conditions provided in equation 

(4), the solution strategy ignores other important boundary conditions, such as convection, 

radiation, etc.  From the literature, there are no analytical solutions for the complete problem 

without considering the nonlinearity of the thermal properties.  There are some of the closed 

form analytical solutions such as the Rosenthal solution for very simple problems. The closed 

form solution transforms into an integral for more complex boundary conditions. Although these 

analytical or semi-analytical solutions are very important in the thermal study of SLM, they have 

many limitations. These solutions, though simple, can help lead to a better understanding of the 

problem before resorting to more complicated computational methods [47] 

 

Numerical Solutions 

 

Numerical methods are generally used for solving complex problems when closed-form 

solutions are not available for a physical situation. A number of research groups have reported 

their simulation strategies and results in the literature and are enumerated in Table 1. .  The 

simulation strategies can be classified by model dimensions, linear/nonlinear approaches, 

substrate characteristics and laser beam characteristics. The computation time for a real 

comprehensive model which considers all the factors above is very large and it takes hundreds of 

hours to compute a 3D model with several layers of real-time SLM processing.   

 

Table 1: Summary of simulation model from literature review 

Reference Material Basement Model size: mm 
Element size: 

mm 

Laser 

popup: 

w 

Scan speed: 

mm/s 

Hatch 

space: 

mm 

Laser 

beam: mm 

Laser 

type 

50 Nickel alloy N 
1.6x(5,10,20)x3.75 

0.25 1000 4 0.75 0.75 

 

N/A 

 

51 titanium N 0.1x0.1 12.5e-3 2 1 
N/A 

 
50e-3 Gaussian 

7 titanium N 
Coarse: 5x5x2  Coarse:0.1 

2 1 0.1 25 N/A 

Fine: 2x2x0.5  Fine:0.01 

40 Cu N Height:10 N/A 50-2500 N/A N/A 0.8 Uniform 

52 iron N 0.03x0.9x0.9 7.5e-3 2,3,4 180,200,225 0.0225 0.03-0.06 Gaussian 

8 W-Ni-Fe Metal: 2x3x1.5 1x2x0.05 0.05 100 20-140 
0.05-

0.15 
0.05 N/A 

16 titanium 
Mild steel: 

3x3x3 
1x1x0.15 

0.025x0.025x

0.03 
120 220 N/A 0.1 Gaussian 

41 copper 4.8x2x0.5 3.4x1.6x.3 0.1 400 60,120,180 0.3 0.4 Gaussian 

53 
H13 hot work 

tool steel 
mild steel 20x20x9 N/A 80 500 N/A 0.1 N/A 

42 titanium 
stainless steel 

25x10x5mm 
2x1x0.05 5e-3 110 200 N/A 0.034 Gaussian 
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29 42CrMo4 100x50x5mm N/A 
17675 

elements 
3500 10-30 N/A 

Wide 

band:10x8

3x1 

Rectang

ular 

30 ceramic N 20x24x2 0.2 10 3.3 N/A 2 Gaussian 

 

 The finite element (FE) and finite difference (FD) methods are the most commonly used 

numerical methods for solving the SLM thermal problem. A 1D model has its advantages for 

saving computation time and an ability to reflect some of the main characteristics of the SLM 

thermal problem. Henceforth, it has been employed commonly in the literature. In [54], a 1D FE 

model has been developed to simulate the SLS process using Bisphenol-a polycarbonate, and the 

solution was determined using a basic feed forward FD method. In [40], the axisymmetric heat 

conduction problem involving the melting of Cu with a pulsed laser source has been solved using 

a traditional backward difference scheme and Galerkin’s FE formulation. The FE mesh has been 

reconstructed from the change of molten pool shape. In [28], a single line scan on a layer of 

unconsolidated steel 316L powder has been studied by considering other heat transfer 

mechanisms such as the radiation and convective heat transfer. The temperature distribution of a 

single track of laser scanning on the Ti6Al4V powder was studied by including the temperature 

dependent thermal conductivity and heat capacity in ANSYS [42].  In [29], the thermal field of a 

wide band laser heat source scanning a single track has been studied and the heat source is 

considered volumetric.   

The 2D model is extensively developed and discussed. A 1D model is not always enough 

to explore the details of the thermal properties. The 2D model is not as time-consuming and 

expensive to produce as 3D, and keeps more details than the 1D model.  So the 2D model is 

often appropriate and useful. In [1], the temperature field is described by a quasi steady state 

equation which has been numerically solved by using the stream upwind Petrov Galerkin 

(SUPG) strategy together with a shock capturing scheme. In [50], a 2D FE model for a single 

nickel layer formed on the powder bed by SLM has been derived through the Galerkin method 

with the backward difference scheme. In [7], the FE method for space discretization coupled 

with a Chernoff scheme for time discretization, which was proved in [55] that this method 

provides a fully converged solution to the model, is employed to predict the temperature 

distribution on the top surface of a titanium powder bed during laser sintering of titanium 

powder. The quasi regular mesh with fine laser spot area cells and coarse cells in neighbor areas 

was employed to relieve the computation burden. [56] reports a FE model to simulate the 

temperature field of polymer-coated molybdenum powder in the SLS process. The model was 

solved using FORTRAN with fine and coarse meshing. The relative error between the 

experiment and numerical simulation results were less than 5%.  In [51], a 2D non-linear heat 

transfer with volume internal heat source problem is numerically solved based on the coupling of 

Matlab and ANSYS FEM models. The phase change effect, effective thermal conductivity, heat 

capacity and the Gaussian laser energy as internal heat source were considered in this model. The 

model was spatially discrete by Galerkin FE formulation and time discrete by implicit FE 

method.  [8] predict the surface temperature distribution during SLM of 90W–7Ni–3F materials. 

[52,53,30] report their research results of temperature fields in single metallic layer SLM 

processes by using element birth and death.  

The 3D model is able to better reflect the real SLM process and provides more 

information about the thermal field. In [39], a macroscopic FE-model using three different 

geometries and a volumetric line heat source has been presented. The 3D model shows the 

sintering of a single line, whereas two dimension models are used for longitudinal and crosscuts 
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of the sintering process. In [16], a more comprehensive understanding of the SLM thermal field 

has been achieved by creating a 3D model and considering the interval time (1s) for new powder 

recoating. A 10% convergence test was conducted to ascertain the suitability of the chosen mesh 

divisions. In [41], the substrate is included into a 3D thermal model which has three layers of 

powder. In [57], it takes several hours to simulate a 0.6x0.5x0.5mm cuboid using ABAQUS. It 

was concluded that using 2D analysis with generalized plane strain conditions seems to be 

convenient, but 3D analysis remains absolutely necessary to full understand the problem.  

 

Thermal measurements   

 

  Analytical and numerical models have limitations when predicting the thermal field in 

SLM since assumptions are necessary to simplify the problem. These models help researchers 

understand the process, however, to comprehensively understand the SLM thermal problem, 

measurements of temperature distribution during SLM are needed to validate the assumption and 

results. Experimental temperature measurement helps to better understand the interaction 

between the laser beam and powder bed [5]. Thermal imaging methods have been used 

numerous times for the determination of temperatures and the results have been published in 

different papers and theses [7,16,56,58 ,59,60]. However, the system is affected by the distance 

of the infrared device and powder bed. [7,16,56,59,60] set up the temperature measurement 

system to compare and validate their simulation model result by using an infrared camera. The 

top surface average temperature of titanium powder was measured in [59] under the continuous 

and pulsed wave modes of an Nd:YAG laser. The results show that the average powder bed 

surface temperature using pulsed wave mode is 30% lower than the continuous wave mode. 

Also, consolidation in pulsed wave mode is much more efficient than continuous wave mode. 

However, cameras were not able to resolve the temporarily higher skin temperature rises. The 

same experiments were carried out [7] for titanium power. Temperatures less than 500 
o
C were 

not presented since the camera data was not reliable below that threshold.  The infrared camera 

resolution used in [7,59] was 256x256.  [56,60] build an infrared thermometer to measure the 

powder surface temperature, and use the thermocouple to test the interior temperature of 

polymer-coated molybdenum powder in the SLS process. However, [7,56,59,61] do not describe 

details of their systems like implementation, camera angle, etc. In [58], a temperature monitoring 

system for a laser sintering system is presented and it explains the importance of the angle 

between the camera’s axis and surface normal. Some reference papers in [58] from Europe 

analyze the influence of this angle and experiments have been done to measure the temperature 

using different angles.  For this experiment a thermal imaging system was built into a DTM 

Sinterstation 2500. The thermal system uses the InfraTec Jade III MWIR with an optical 

resolution of 320x240, which is able to measure the whole powder temperature and also the 

melting temperature of the molten pool.  

[62,63,64,65] develop feedback temperature control systems to ensure a homogenous 

temperature field and stable molten pool. A CMOS camera based control loop system is used in 

[62] to measure the melt pool size and control for overhanging structures. The controller 

bandwidth was only applied to limited scan velocities. [63,64] improve the controller to be able 

to monitor the melt pool continuously at  high speed through the building process in real time. 

The thermal monitoring system was a combination of two types of optical sensors – a 2D digital 

CCD camera and a single spot pyrometer based on photodiodes [65]. Both monitoring systems 

were developed and used for the SLS/SLM process according to their different laser spot sizes. 
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Process parameter effects and optimization  

 

The quality of laser sintered parts greatly depends on proper selection of the processing 

parameters, such as laser power, scanning speed, spot size and material.  These have significant 

influence on the temperature distribution in the powder bed. A homogenous temperature field 

can lead to better microstructure, mechanical properties, dimensional accuracy and surface 

finish. Researchers typically try to find a relationship between process parameters and the 

temperature field.  Simulation models and design of experiment methods are the two most 

common ways to evaluate effects and correlations. The simulation results from [8,41,52,66] 

conclude that the peak temperature will increase with higher laser power and lower scan speed. 

These phenomena result from the increasing energy density corresponding to higher laser power 

and lower scan speed. T.C. Child and C. Hauser in [52,66,67] create a single track process map, 

shown in figure 3. The whole map is divided into five areas and each represents the 314SS single 

track shape with different laser power and scanning speeds. A preheating and narrower scan 

interval will increase the peak temperature [8].  In [41], the study shows that the surface quality 

of a single sintered layer will improve by lower scanning speed; however, higher scan speed is 

needed to improve the multi layer surface quality.  

Experimental design methods are usually used to test the process parameter effects and 

predict the temperature using a database collected from experiment or simulation. Part density is 

predicted in [68] as a nonlinear function of several process parameters in SLM by response 

surface methods. The data is from a simulation model based on ANSYS. Central composition 

design is used in [69] to predict the density, hardness and porosity of sintered low carbon steel 

parts under a pulsed Nd:YAG laser. The design shows that increasing layer thickness and 

hatching distance results in an increase in porosity and decrease in the hardness and density [69]. 

[70,71] use EFCP2
3
 and central point to study how process parameters effect single tracks and 

single layers in SLM.   

Classical design of experiment methods need a large numbers of data. Some advanced 

intelligence methods can make predictions using smaller databases. The neural network method 

is one advanced method from the literature [72,30]. In [64], it is used to build a model based on a 

feed-forward neural network (NN) with a back propagation (BP) learning algorithm. The basic 

idea is to train the prepared database first and then use the NN algorithm to create a good 

mapping between the process parameters and their resulting properties. Then the system can help 

to determine the most suitable process parameters automatically. In [73], an iterative method to 

optimize non-linear processes was developed. This neural model is able to make adjustment of 

the four process parameters with regard to target values of three product properties. The method 

is applied to SLM of titanium powder.  
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Figure 3 314S single track process map produced using a laser spot size of 1.1mm [52] 

 

Case study 
 

This section uses a model to show some characteristics of the SLM thermal field. The 

model in this study represents building Ti6Al4V on a Steel substrate, which is shown in Figure 4. 

The process parameters and Ti6Al4V thermal properties are adopted from [16]. The material is 

mild steel from [42].  The model and process parameters are shown in table 2. The simulation is 

carried out in ANSYS. The laser beam is assumed to have a Gaussian distribution with spot size 

100 µm. The element size is one quarter of the laser diameter and the laser energy is distributed 

on a 4X4 grid at every load step. The scanning strategy is the traditional S pattern. Convective 

heat and radiation in the molten pool is neglected [16]. Laser power and substrate surface heat 

convection are considered and the initial temperature is set at 335K. 

 

 
Figure 4. 3D model with substrate 

 
 

The model simulates one powder bed layer. The temperature profile for the first layer is 

shown in figure 5, in which the scanning direction is from right to left. The temperature isotherm 
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curve is a series of ellipses, which agrees with the result in [8]. The contour plot also shows that 

the front end of the molten pool is denser than the back end, that is, the thermal gradient at the 

front of the molten pool is larger than the back when considering laser scan direction. The 

reasons are mainly because of the different material thermal properties since they are 

temperature dependent and the thermal conductivity is increasing with increasing temperature as 

well as the fact that the laser source is moving.  

 

 
Figure 6 Temperature profile at 0.0325s 

 

Temperature variation with time is shown in figure 7. Figure 7(a) shows that for one track 

scanning there is only one temperature peak. Figure 7(b) shows temperature variation for single 

layer scanning. There are three temperature peaks. The laser scanning is following a traditional S 

pattern as it scans back and forth. As such the laser will heat the same position three times per 

layer, which leads to rapid temperature increases and drops three times. The number of peaks is 

determined by the laser spot diameter and hatch spacing. From figure 7 can be observed that the 

temperature increase rate is higher than the cooling rate. One important phenomenon is that the 

peak temperature happens after the laser beam has passed the spot. There is a lag between the 

laser beam and peak temperature. The red line in figure 7 illustrates the time when the laser beam 

passes, and it can be seen that the peak temperature happens after the beam has passed. 
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Figure 7 Temperature variation with time for one track scan (a), temperature variation 

with time for one layer scan (b) 

 

The pictures shown in Figures 8 and 9 are the process parameter effects of laser power 

and scan speed. The peak temperature increases with higher laser power and lower scan speed 

which has been shown in [8,41,52,66]. This can be explained by the laser energy; the higher 

power can generate more energy, as can lower scan speed. 

Table 2  Model information and process parameters 

Process parameters 

Laser power 120w 

Laser type Gaussian distribution 

Spot size 100µm 

Scanning speed 220mm/s 

Powder size 30µm 

Hatch space 50µm 

Absorption rate 0.35 

Model information  

 
Material Dimension(mm) Meshing(mm) 

Block Ti6Al4V 3x3x3 free 

Substrate 
Mild 

Steel 
1x1x0.03 0.025x0.025x0.03 
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Figure 8 The influence of the laser power to peak temperature 

 

 
Figure 9 The influence of scan speed to peak temperature 

 

Conclusion and future discussion 

 

A comprehensive literature review of the thermal modeling method in laser sintering is 

presented in this paper. Classical Fourier heat transfer equations are the most common for 

describing the temperature distribution. Based on the Fourier equation, various models have been 

developed by combing latent heat, material thermal property nonlinearity, laser heat source 

distribution and interaction between a laser beam and powder bed[21,22,23,24,25,26,27]. Many 

models consider the influence of sintered part shrinkage, molten pool liquid flow and binding 

mechanism [32,33,34,35,36,37,74]. None of these models can be completely solved analytically. 

Numerical methods are employed extensively to solve the temperature distribution problem 

where the FE method has proven to be reliable using available commercial software. Finally, 

temperature measurement systems have been used to demonstrate the actual temperature 

distribution in SLM processes to compare against the models.  
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Great efforts have been put into the field of SLM thermal analysis since the emergence of 

SLM technology, but there are still many areas of improvement that are needed, including in 

analytical and simulation modeling as well as in the experimental measurement and control side. 

A better understanding of SLM sintering and binding mechanisms will lead to better modeling of 

the SLM thermal field. Better understanding of the input energy model, which includes laser 

beam distribution, energy penetration and material absorption ratio; and the thermal properties, 

such as thermal conductivity, density of powder before and after laser scanning, are needed.. 

From the literature review of various SLM thermal numerical models it can be seen that very few 

models attempt to represent parts in the same length scales as those which are built in SLM in 

reality. This is due to the fact that the problem is highly nonlinear, resulting in a heavy 

computational burden.  Future work which carefully chooses an efficient numerical method and 

which utilizes some form of adaptive meshing technology will be of great help. With 

improvement in numerical modeling, the optimization of process parameters and exploration of 

empirical relationship between process parameters and temperature will become easier. These 

models can then be validated using well-developed temperature measurement systems. In the 

future, a parametric SLM simulation model which accurately predicts the optimal process 

parameters or parameter windows will significantly benefit users of laser sintering technology.  
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