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Abstract 

 

Thermoeconomic Optimization of a Heat Recovery Steam Generator 

(HRSG) system using Tabu Search 

 

 

 

 

Zelong Liu, M.S.E 

The University of Texas at Austin, 2010 

 

Supervisor:  J. Wesley Barnes 

 

Heat Recovery Steam Generator (HRSG) systems in conjunction with a primary 

gas turbine and a secondary steam turbine can provide advanced modern power 

generation with high thermal efficiency at low cost. To achieve such low cost 

efficiencies, near optimal settings of parameters of the HRSG must be employed. 

Unfortunately, current approaches to obtaining such parameter settings are very limited. 

The published literature associated with the Tabu Search (TS) metaheuristic has shown 

conclusively that it is a powerful methodology for the solution of very challenging large 

practical combinatorial optimization problems. This report documents a hybrid TS-direct 

pattern search (TS-DPS) approach and applied to the thermoeconomic optimization of a 

three pressure level HRSG system. To the best of our knowledge, this algorithm is the 

first to be developed that is capable of successfully solving a practical HRSG system. 



 vii

A requirement of the TS-DPS technique was the creation of a robust simulation 

module to evaluate the associated extremely complex 19 variable objective function. The 

simulation module was specially constructed to allow the evaluation of infeasible 

solutions, a highly preferable capability for methods like TS-DPS. The direct pattern 

search context is explicitly embodied within the TS neighborhoods permitting different 

neighborhood structures to be tested and compared. Advanced TS is used to control the 

associated continuum discretization with minimal memory requirements. Our 

computational studies show that TS is a very effective method for solving this HRSG 

optimization problem. 



 viii

Table of Contents 

List of Tables .......................................................................................................................x 

List of Figures .................................................................................................................... xi 

Chapter 1:  Introduction .......................................................................................................1 

Chapter 2:  Background .......................................................................................................3 

2.1 Heat Recovery Steam Generator (HRSG) Systems Review.................................3 

2.1.1 Steam Turbine (ST) Simple Cycle power plant. .......................................4 

2.1.2 Gas Turbine (GT) Simple Cycle power plant ...........................................5 

2.1.3 Combined Cycle Gas Turbine (CCGT) power plant ................................6 

2.1.4 Integrated Gasification Combined Cycle (IGCC) Power Plant ................8 

2.1.5 Heat Recovery Steam Generator (HRSG) ................................................9 

2.2 Process simulations and optimizations review ...................................................12 

2.2.1 Process Simulation..................................................................................12 

Equation-Oriented (EO) approach ..........................................................12 

Sequential-Modular (SM) approach .......................................................13 

2.2.2 Process Simulation/Optimization Commercial Software Packages .......14 

1. Company “Thermoflow”’  “GT PRO” and “GT MASTER”..............14 

2. Company GE energy “Gate Cycle” ....................................................15 

3. Company GE energy “Knowledge³ (Kn³ ™)”....................................15 

4. Company ”Invensys” PRO/II..............................................................18 

5. Company “ASPENTCH” Aspen Plus.................................................18 

6. Company “ASPENTCH” HYSYS......................................................21 

2.3 Academic research review ..................................................................................24 

2.3.1 Tabu Search (TS) applied to continuous non-linear problems ...............24 

2.3.2 Genetic Algorithms (GA) to the continuous non-linear problems..........29 

2.3.3 Direct pattern search (DPS) algorithm....................................................36 

2.3.4 Hybrid optimization algorithms..............................................................38 



 ix

Chapter 3:  Thermodynamics system numerical simulation..............................................43 

Chapter 4:  Optimization programming.............................................................................47 

4.1 Thermal Economic Optimization........................................................................47 

4.2 Optimizing thermal efficiency ............................................................................49 

4.3 Optimization Methodology.................................................................................51 

4.4 The Advantages of a deterministic neighborhood definition..............................55 

4.5 The TS-DPS Pseudo-code...................................................................................56 

Chapter 5:  Results and Discussion....................................................................................59 

5.1 Thermal energy efficiency ..................................................................................59 

5.2 Thermoeconomical Ratio....................................................................................61 

5.3 Effect of neighborhood definition.......................................................................66 

Chapter 6:  Conclusions .....................................................................................................67 

References..........................................................................................................................68 

Vita….................................................................................................................................72 

 



 x

List of Tables 

Table.1 “Aspen HYSYS” available solvers.......................................................................23 

Table.2 Summary of global optimization methods (1996) ................................................29 

Table.3 Hybrid search algorithms......................................................................................39 

Table.4 Y.S. Teh, G.P. Rangaiah (2003) tested 20 functions ............................................41 

Table.5 Y.S. Teh, G.P. Rangaiah (2003) test results .........................................................42 

Table.6 Gas turbine data at design point............................................................................44 

Table.7 Variables names and meanings.............................................................................45 

Table.8 Variables for Best Solution Found........................................................................61 

Table.9 Optimum variables for Thermo-economical ratio ................................................64 



 xi

List of Figures 

Figure.1 Steam Turbine (ST) simple cycle power generation .............................................3 

Figure.2 Gas Turbine (GT) simple cycle power generation ................................................4 

Figure.3 Combined Cycle Gas Turbine (CCGT) power generation ....................................5 

Figure.4 Tampa Electric IGCC Project................................................................................7 

Figure.5 Tampa Electric IGCC Project................................................................................8 

Figure.6 Schematic for IGCC with CO2 capture and H2 production..................................9 

Figure.7 Heat recovery Steam generator (HRSG) .............................................................10 

Figure.8 “GT PRO” simulation user interface...................................................................14 

Figure.9 “PRO/II” simulation user interface .....................................................................16 

Figure.10 “PRO/II” optimization definition ......................................................................16 

Figure.11 “PRO/II”SQP optimization algorithm...............................................................17 

Figure.12 “Aspen Plus” simulation user interface.............................................................19 

Figure.13 “Aspen HYSYS” simulation user interface.......................................................21 

Figure.14 P. SIARRY ”ball” neighborhood definition......................................................25 

Figure.15 Random hyper-rectangular neighborhood definition ........................................26 

Figure.16 General flow chart of ECTS..............................................................................27 

Figure.17 TS application to the heat exchangers networks ...............................................28 

Figure.18 Manuel Valdes HRSG with different pressure..................................................30 

Figure.19 Manuel Valdes GA convergence.......................................................................31 

Figure.20 Manuel Valdes GA application to three pressure HRSG ..................................32 

Figure.21 Manuel Valdes machine learning GA convergence ..........................................32 

Figure.22 HYSYS simulation flow sheet of the NGL recover plant .................................33 

Figure.23 Architecture between user, GA, MATLAB, HYSYS .......................................33 



 xii

Figure.24 Aspen plus simulator for the GQSA problem ...................................................34 

Figure.25 General Structure of GA for HE design ............................................................35 

Figure.26 Solution strategy for the optimum of HE design...............................................35 

Figure.27 simplex move: Reflection..................................................................................37 

Figure.28 simplex move: Expansion..................................................................................37 

Figure.29 simplex move: Contraction................................................................................38 

Figure.30 simplex move: Multi-contraction ......................................................................38 

Figure.31 GQSA is faster than pure GA optimization.......................................................40 

Figure.32 Flow diagram of three pressure HRSG system .................................................43 

Figure.33 1-Δ neighborhood for 3 dimensional problems (Nb=6) ....................................52 

Figure.34 2-Δ neighborhood for 3 dimensional problems (Nb=12) ..................................53 

Figure.35 3-Δ neighborhood for 3 dimensional problems (Nb=8) ....................................53 

Figure.36 Composite of the 1-Δ and 2-Δ neighborhoods ..................................................54 

Figure.37 Composite of the 1-Δ and 3-Δ neighborhoods ..................................................54 

Figure.38 Pseudo code of the TS-DPS algorithm..............................................................58 

Figure.39 T-Q Plot for the best thermal efficiency solution..............................................59 

Figure.40 Convergence of thermal efficiency ...................................................................60 

Figure.41 a Compromise between high efficiency and low cost .......................................62 

Figure.42 Two pressure configuration...............................................................................63 

Figure.43 Convergence of thermoeconomic ratio .............................................................65 

Figure.44 Effect of neighborhood definitions....................................................................66 

  

 

 



 1 

Chapter 1:  Introduction 

It is well known that a gas turbine combined with a multi-pressure level HRSG 

system can have thermal efficiencies in excess of 55% with comparatively low facility 

costs (Alessandro, et al. 2002).  Single cycle gas or steam turbine systems can achieve 

nearly 40% thermal efficiency but only with insupportably high facility costs 

 Conventional thermodynamic optimization problems are very difficult to solve 

because the associated continuous objective function and constraints are highly nonlinear 

and their evaluation requires a complex simulation model. Certain combinations of 

system parameters can cause computational difficulties within the simulation model, 

stopping its execution.  Care must be exercised in the coding of the simulation model to 

make it robust under such conditions. 

Several researchers (Attala, et al. 2001; Alessandro, et al. 2002; Manuel, et al. 

2003) have studied the thermoeconomic optimization of HRSG systems. Attala et al. 

(2001) used practical data and regression analysis to model the cost functions of the 

major components of a combined cycle power plant such as the HRSG, gas turbine, 

steam turbine, generator, and condenser. Such cost functions are invaluable in the 

thermoeconomic optimization of such a system. Alessandro et al (2002) applied a Nelder-

Mead simplex pattern search algorithm to optimize the operations of a gas turbine 

combined cycle plant. Manel et al (2003) performed thermoeconomic optimization to a 

combined cycle gas turbine power plant using a genetic algorithm. Their work embodied 

the first metaheuristic approach to the area of thermoeconomic optimization. Their 

approach was shown to be effective on a set of selected problems with nine or fewer 

decision variables. The fixed cost of a specific gas turbine was included in their objective 

function.  
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The structure of the problem addressed in this report makes classical methods 

embodying nonlinear search (Bertsekas, 2003) inapplicable because no derivative 

information is available.  In addition, the complexity of the feasible solution space makes 

it difficult for the search to remain feasible and once feasibility is lost it is difficult to 

regain. Pure direct pattern search approaches (Chelouah, et al. 2005) are also ineffective 

on those problems since they are easily trapped in local optima.  

In this report, we propose a hybrid method combining Tabu Search (TS) and 

direct pattern search, TS-DPS, and apply it to the thermoeconomic optimization of a three 

pressure level heat recovery steam generator system. The TS-DPS local search 

neighborhood definition is based on a direct pattern search-coordinate descent method. 

TS allows the local pattern search to escape from local optima and intelligently uses 

memory structures to trace and control the search process.  
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Chapter 2:  Background 

 

2.1 Heat Recovery Steam Generator (HRSG) Systems Review 

 First, this chapter introduces the concepts and applications of Gas Turbine (GT) 

simple cycle systems, Steam Turbine (ST) simple cycle systems, Combined Cycle Gas 

Turbine (CCGT) power systems, Integrated Gasification Combined Cycle (IGCC), and 

Heat Recovery Steam Generator (HRSG) systems. Second, this chapter presents a survey 

simulation and optimization investigations of such systems which includes the theoretical 

research and programming development in industry and academia. 

 

 

Figure.1 Steam Turbine (ST) simple cycle power generation 

(Source: electricalandelectronics.org) 
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 A power plant is an assembly of systems or subsystems to generate electricity. 

Major conventional power plants include a Gas Turbine (GT) simple cycle power plant, a 

Steam Turbine (ST) simple cycle power plant, and a Gas turbine-Steam turbine combined 

cycle (CCGT) power plant.  

2.1.1 Steam Turbine (ST) Simple Cycle power plant.   

 A ST simple cycle power plant uses water and steam as the working medium to 

drive a steam turbine and to power the electricity generator. A ST simple cycle power 

plant is most suitable where coal is available in abundance. A ST power plant’s consists 

primarily of:  a fuel burner, a boiler (steam generator), a steam turbine (heat engine),  a 

steam condenser,  a deaerator,  an electrical generator,  pipes and a pumping system. An 

average ST simple cycle power plant’s thermal efficiency is 30% - 35%.  

 

 

Figure.2 Gas Turbine (GT) simple cycle power generation 

(Source: www.sunriseriverenergy.com) 
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2.1.2 Gas Turbine (GT) Simple Cycle power plant 

A GT obtains its power by utilizing the energy of burnt gases, from a source such 

as natural gas, syngas, light oil, or heavy oil, and air, which, at high temperature and 

pressure, expands through the turbine. A compressor is required to obtain a high pressure 

for the working fluid (air) which is essential for expansion. Thus, a simple gas turbine 

cycle consists of a compressor, a combustor, a turbine and a generator. An average GT 

simple cycle power plant’s thermal efficiency is 35% - 43%.  

 

 

Figure.3 Combined Cycle Gas Turbine (CCGT) power generation 

(Source: www.sunriseriverenergy.com) 
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2.1.3 Combined Cycle Gas Turbine (CCGT) power plant 

A CCGT is a fossil fuel power plant that uses a gas turbine in conjunction with a 

Heat Recovery Steam Generator (HRSG). It combines the Brayton cycle (gas cycle) of 

the gas turbine with the Rankine cycle (steam cycle) of the HRSG. The Gas Turbine (GT) 

generator generates electricity and the waste heat is used to make steam to generate 

additional electricity via a Heat Recovery Steam Generator (HRSG) and Steam Turbine 

(ST). For a large scale commercial CCGT, adding a Rankine steam cycle to the Brayton 

gas cycle enhances the total thermal efficiency of electricity generation by 50% of the 

thermal efficiency of a gas turbine simple cycle. For example, a GE 9E gas turbine 

combined cycle thermal efficiency is 52% (heat rate - 6570 BTU/kWh) which has 53% 

more thermal efficiency than simple cycle which has is 34% only thermal efficiency 

(Heat Rate - 10100 BTU/kWh).  An average CCGT power plant’s thermal efficiency 

varies from 40% to 60% depends on plant’s scale. The University of Texas at Austin has 

a small scale CCGT power plant. The plant equipped a Westinghouse CW251B10 gas 

turbine, which power output is 36180KW. The gas turbine simple cycle thermal 

efficiency is about 31%. The combined cycle thermal efficiency is about 40%. Right 

now, this plant is running as a cogeneration of heat and power plant (CHP) and the 

thermal efficiency (generates electricity and steam for heating) is about 73% (Ryan Reid, 

2008).  
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Figure.4 Tampa Electric IGCC Project 

(Source: www.netl.doe.gov) 

A CCGT is one of the most important fossil fuel power plants not only because 

the newest gas power plants in North America and Europe are of this type and  usually 

burn natural gas (NG), light oil or heavy oil, but also because a CCGT can be used with 

an Integrated Gasification Combined Cycle (IGCC), burning coal. This is the most 

successful Clean Coal Technology (CCT). IGCC promises to be a key technology for 

lessening global warming problems (green house gas, carbon dioxide pollution) 

associated with the electrical power generation industry.  
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Figure.5 Tampa Electric IGCC Project 

(Source: www.netl.doe.gov) 

2.1.4 Integrated Gasification Combined Cycle (IGCC) Power Plant   

An IGCC plant provides a cleaner, economical coal-to-power option where coal 

or heavy fuel oil is first gasified to produce a fuel gas for a CCGT unit. Gasification is a 

partial oxidation process that transforms coal into a synthesis gas (syngas). The syngas 

stream is then cleaned and sent to a unique syngas ready gas turbine/steam turbine 

combined cycle system where it is used to generate electricity. An IGCC cost effectively 

removes pollution-causing emissions from the syngas stream before combustion.  

Compared with other clean coal technologies IGCC produces the lowest levels of SOx 
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and NOx emissions and is the best at capturing the “Green House” gas—carbon dioxide. 

It can also produce hydrogen for other power needs.  

 

 

Figure.6 Schematic for IGCC with CO2 capture and H2 production 

(Source: www.claverton-energy.com) 

 

2.1.5 Heat Recovery Steam Generator (HRSG) 

Advanced CCGT and IGCC power systems have a common module—a Heat 

Recovery Steam Generator (HRSG) system, which enables the production of over one 

third of the total electricity energy output. In a 10 Megawatt CCGT, the gas turbine 

produces about 6 Megawatts and the steam turbine produces about 4 Megawatts. An 

HRSG consist of three major components. They are the Evaporator, Superheater, and 
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Economizer. The different components are put together to meet the operating 

requirements of the unit.  

 

 

Figure.7 Heat recovery Steam generator (HRSG) 

 (Source: Cleaver-Brooks) 

In a horizontal type HRSG, exhaust gas flows horizontally over vertical tubes. In 

a vertical type HRSG, exhaust gas flows vertically over horizontal tubes. A HRSG can be 

a single pressure and multi pressure unit. Single pressure HRSGs have only one steam 

drum and steam is generated at single pressure level whereas multi pressure HRSGs can 

employ two (double pressure) or three (triple pressure) steam drums. Triple pressure 

HRSG consists of three sections: an LP (low pressure) section, a reheat/IP (intermediate 

pressure) section, and an HP (high pressure) section. Each section has a steam drum and 
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an evaporator section where water is converted to steam. This steam then passes through 

superheaters to raise the temperature and pressure past the saturation point. 
 



 12 

2.2 Process simulations and optimizations review 

Currently, the energy industry relies increasingly on the use of advanced 

computational modeling and simulating complex process systems. In this report, we 

present the computational research challenges and opportunities for the simulation and 

optimization of energy power generation systems from process synthesis and design to 

plant operations.  

 

2.2.1 Process Simulation 

Process simulation is used for the design, development, analysis, and optimization 

of technical processes. Process simulation software describes processes in flow diagrams 

where unit operations are positioned and connected by product streams. The software has 

to solve for mass and energy balance to find a stable operating point. The goal of a 

process simulation is to find optimal conditions for an examined process. This type of an 

optimization problem must be solved iteratively. Process simulators typically consist of 

unit operation models, thermodynamic calculation models, reaction models, and a 

physical property database. The unit operation models typically perform mass and energy 

balances. Engineers use process simulators to quickly predict the steady state and 

dynamic behavior of power plants, as well as to perform equipment costing and sizing 

calculations.  

 

Equation-Oriented (EO) approach 

The EO approach is one way to solve a steady-state process model, where all of 

the process equations are solved simultaneously. The greatest advantage of such an 

approach is their suitability for sophisticated general purpose numerical algorithms. 
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Derivatives are calculated in an efficient and accurate manner and, in principle, the solver 

has full access to all variables, equations and derivative information 

The EO approach offers speed and flexibility for steady-state calculations and is 

an excellent approach for performing dynamic simulations.  It has proved to be very 

useful in real time optimization (on-line optimization), but often at the price of losing the 

robustness of the numerical methods especially developed for some unit operations. Also, 

to obtain the performance benefits of this optimization approach, the development, 

analysis and implementation are much more difficult and time consuming than with the 

previous ones. Moreover, for large non-convex NLP problems, no algorithms exist that 

solve such problems in polynomial time. 

 

Sequential-Modular (SM) approach 

Most steady-state simulators use the SM approach where the process flowsheet 

consists of unit operation models and all recycle streams. Each unit operation is solved 

separately.  The iterative approach is needed to achieve global convergence. This 

sequential modular approach is essentially a “black-box” approach.  The unit-specific 

procedures are fairly straightforward. However, because the overall flowsheet consists of 

black-box modules, simulation is usually performed using slow convergence techniques. 

Moreover, for optimization, the calculation of derivatives involves perturbing and re-

simulating the entire flowsheet with respect to the decision variables. This process is both 

time-consuming and error prone due to probable internal convergence failures involved. 

Another advantage with sequential based process simulators is that their graphical user 

interface (GUI) can make implementation of the petrochemical process models relatively 

less time consuming than in equation based models.  
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2.2.2 Process Simulation/Optimization Commercial Software Packages 

1. Company “Thermoflow”’  “GT PRO” and “GT MASTER” 

The Thermoflow Company’s  “GT PRO” and “GT MASTER” are two simulation 

packages that simulate expected performance of specific Gas Turbine and Steam Turbine 

Combined Cycle power plants at different operating conditions, such as different 

ambients and loads. Those software packages are pure SM simulations without special 

global optimization functions.  

 

 

Figure.8 “GT PRO” simulation user interface 

(Source: www.thermoflow.com) 
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2. Company GE energy “Gate Cycle” 

The GE energy company’s “GateCycle” is design and simulation software that 

calculates heat balances under design and off-design conditions for any type of thermal 

power plant. GateCycle software predicts design and off-design performance of 

combined cycle plants, fossil boiler plants, nuclear power plants, cogeneration systems, 

combined heat-and-power plants, advanced gas turbine cycles and many other energy 

systems. Its component-by-component approach and advanced macro capabilities allow 

people to model virtually any type of system.  

 

3. Company GE energy “Knowledge³ (Kn³ ™)” 

The GE energy company has another optimization package called “Knowledge³ 

(Kn³ ™)”, which provides accurate modeling technology, unique optimization and state-

of-the-art control. The optimization engine provides sophisticated, multi-objective 

optimization, allowing several different goals to be addressed simultaneously. The 

optimization iteratively updates inputs, progressively driving the calculation efficiently 

and accurately towards the best set. The optimization technology is based on a genetic 

algorithm (GA). GAs are known to be able to find excellent solutions to complex 

optimization problems but can be time and effort intensive.  
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Figure.9 “PRO/II” simulation user interface 

(Source: iom.invensys.com) 

 

 

Figure.10 “PRO/II” optimization definition 

(Source: iom.invensys.com) 
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Define xk = (x1,k, x2,k, ….xn,k,) as the vector of the optimization variables which define the state of the system. 

 

Termination Criteria 

1. Is the relative change in the objective function at consecutive cycles less than 0.005 (or the user defined value

RTOL for the objective function)? 

2. Is the relative change in each variable at consecutive cycles less than 0.0001 (or the user defined values RTOL

for each variable)? 

3. Has the maximum number of cycles been reached? 

4. Does the scaled accuracy of the solution fall below 10-7 (or the user defined value SVERROR)?  The scaled 

accuracy, which is also known as the Kuhn-Tucker error, 

is calculated from: 

 

5. Is the relative error for each specification less than 0.001 (or the user defined value)? 

6. Is the relative error for each constraint less than 0.001 (or the user defined value)?   

Figure.11 “PRO/II”SQP optimization algorithm 

(Source: iom.invensys.com) 
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4. Company ”Invensys” PRO/II 

The Invensys Operations Management Company’s simulation and optimization 

package, PRO/II , performs all mass and energy balance calculations needed to model 

most steady-state processes within the chemical, petroleum, natural gas, solids processing 

and polymer industries. PRO/II runs in an interactive Windows®-based GUI 

environment. PRO/II solves process flowsheets using an SM approach. This technique 

solves each individual process unit, applying the best solution algorithms available. 

Additionally, PRO/II applies several advanced techniques known as Simultaneous 

Modular Techniques, to enhance simulation efficiency. 

PRO/II uses Successive Quadratic Programming (SQP) to solve the nonlinear 

optimization problem. SQP is similar to the direct linear approximation method where the 

successive quadratic method approximates the general function to a quadratic function. In 

each iteration of the successive quadratic programming method, a new quadratic 

programming problem is solved using the solution obtained from the previous iteration.  

 

5. Company “ASPENTCH” Aspen Plus 

The AspenTech company’s process simulation and optimization software, 

“Aspen Plus” , is the most popular process flowsheet simulator (Advanced System for 

Process Engineering) was developed by MIT’s Energy Laboratory at 1970s. Aspen Plus 

is a Steady-State commercial simulator, which also provides both the SM and EO 

simulation solution approaches.  
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Figure.12 “Aspen Plus” simulation user interface 

(Source: www.aspentech.com) 

This sophisticated software package can be used in almost every aspect of process 

engineering from design stage to cost and profitability analysis. It has a built-in model 

library for many options including distillation columns, separators, heat exchangers, and 

reactors. User models are created with Fortran subroutines or Excel worksheets which are 

added to its model library. Using Visual Basic to add input forms for user models makes 

them indistinguishable from the native built-in ones. Aspen Plus has a built-in property 

databank for thermodynamic and physical parameters.   

Aspen Plus Optimization Algorithm. Two optimization algorithms are available 

in Aspen Plus, the COMPLEX method and the SQP (successive quadratic 

programming) method. The COMPLEX method uses the well-known Complex 

algorithm, a feasible path "black-box" pattern search. The method can manage inequality 

constraints and bounds on decision variables. Equality constraints must be specified as 
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design specifications. The COMPLEX method frequently takes many iterations to 

converge, but does not require numerical derivatives. It has been widely used for all kinds 

of optimization applications for many years and offers a well-established and reliable 

option for optimization convergence. 

The SQP method is a state-of-the-art, quasi-Newton nonlinear programming 

algorithm. It can converge tear streams [Aspen Plus User Guide, 2000], equality 

constraints, and inequality constraints simultaneously with the optimization problem. A 

tear stream is a recycle stream with component flows, total mole flow, pressure, and 

enthalpy all determined by iteration. The SQP method usually converges in only a few 

iterations, but requires numerical derivatives for all decision and the tear stream 

variables. The trade-off is the number of derivative evaluations versus the time required 

per derivative evaluation.  

Other than the standard SQP solver, Aspen Plus uses several variants of the SQP 

algorithms solver which are DMO, LSSQP (Large-scale Sparse Successive Quadratic 

Programming algorithm), SRQP, and OPTRND for NLP (Nonlinear Programming). It 

performs the optimization by solving a sequence of quadratic programming sub-

problems. DMO offers various options for controlling the line search and trust region 

methods to improve efficiency and robustness, particularly for large problems. DMO is 

also useful for solving cases with no degrees of freedom, such as equation-oriented 

simulation and parameter estimation. LSSQP implements a variant of a class of 

successive quadratic programming (SQP) algorithms, for large-scale optimization. It 

performs the optimization by solving a sequence of quadratic programming subproblems. 

Other than Steady-State simulators (PRO/II and Aspen Plus), dynamic simulation 

tools provide a continuous view of a process in action by calculating the transient 

behavior of the plant over time. Typical applications include plant startup, upset, 
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shutdown and transient analysis and the evaluation of control schemes. Well-known 

commercial dynamic simulators include Aspen HYSYS Dynamics® (Aspen Technology 

Inc.) and the EO-based packages, Aspen Dynamics® (Aspen Technology Inc.)  

 

 

Figure.13 “Aspen HYSYS” simulation user interface 

(Source: www.aspentech.com) 

 

6. Company “ASPENTCH” HYSYS 

The Aspentch HYSYS package contains a multi-variable steady state Optimizer. 

The BOX, Mixed, and Sequential Quadratic Programming (SQP) methods are available 

for constrained minimization with inequality constraints. The original and the Hyprotech 

SQP methods can manage equality constraints. The Fletcher-Reeves and Quasi-Newton 

methods are available for unconstrained optimization problems.  
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The Box method is a sequential search technique that solves problems with non-

linear objective functions, subject to non-linear inequality constraints. No derivatives are 

required. It manages inequality constraints but not equality constraints. This method is 

inefficient in terms of the required number of function evaluations. It generally requires a 

large number of iterations to converge to the solution. However, if applicable, this 

method is very robust. 

The Mixed method attempts to take advantage of the global convergence 

characteristics of the BOX method and the efficiency of the SQP method. It starts the 

minimization with the BOX method using a very loose convergence tolerance (50 times 

the desired tolerance). After convergence, the SQP method is then used to locate the final 

solution using the desired tolerance. 

The Sequential Quadratic Programming (SQP) Method manages inequality 

and equality constraints. SQP is considered by many to be the most efficient method for 

minimization with general linear and non-linear constraints, provided a reasonable initial 

point is used and the number of primary variables is small. It minimizes a quadratic 

approximation of the Lagrangian function subject to linear approximations of the 

constraints. The second derivative matrix of the Lagrangian function is estimated 

automatically. A line search procedure utilizing the “watchdog” technique [Aspen Plus 

online manual, 2006] is used to force convergence. 

The Quasi-Newton method of Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

method is similar to the Fletcher-Reeves method. It calculates the new search directions 

from approximations of the inverse of the Hessian Matrix.  

The Fletcher-Reeves conjugate gradient method is efficient for general 

unconstrined minimization. 
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The discretization algorithm can be either a stochastic method or a Branch and 

Bound Method.  

 
Solver Type of Optimization Method 
FEASOPT  Steady state or dynamic Reduced space 
Nelder-Mead Steady state or dynamic Reduced space 
HYPSQP  Steady state or dynamic Reduced space 
SRQP Steady state Full space 
Open NLP – reduced space Steady state or dynamic Reduced space 
Open NLP – full space Steady state Full space 

Table.1 “Aspen HYSYS” available solvers 
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2.3 Academic research review 

2.3.1 Tabu Search (TS) applied to continuous non-linear problems 

TS is an advanced metaheuristic optimization method that uses memory structures 

to escape from local optima and to prevent cycling (Glover, et al. 1993). TS starts from 

an initial incumbent solution and examines a neighborhood of adjacent solutions 

reachable in one iteration of the search. The best nontabu neighboring solution is selected 

as the new incumbent, and the next iteration begins. A solution attribute captures some 

characteristic of the solution that can be used to prohibit the search from returning to 

previously visited tabu solutions for a specified number of moves, the tabu tenure.  

In recent times, TS has experienced many significant improvements in its 

algorithmic techniques as exemplified in references (Battiti, et al. 1994; Carlton et al. 

1996; Harwig, et al. 2001) and has been shown to be very effective in the solution of 

complex combinatorial optimization problems (Colletti, et al. 1999; Barnes et al. 2004). 

Tabu Search (TS) was originally used primarily to solve discrete combinatorial 

optimization problems, such as the traveling salesman problem (TSP). In recent years, 

more applications of TS to continuous optimization problems have been published.   

N. Hu (1992) was the first researcher to adapt TS to continuous optimization. He 

proposed a tabu search with a random move neighborhood definition to global 

optimization problems with continuous variables.  

P. Siarry, and G. Berthiau (1997) proposed a continuous variable optimization 

tabu search algorithm with the “ball” neighborhood definition of N. Hu (1992), and 

successfully applied TS to the Goldstein-Price 2 variable problem [L. C. W. Dixon and 

G. P. Szego, 1978] and the Hartmann 3 variables problem [K. Schittkowski and W. Hock, 

1987].  
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Figure.14 P. SIARRY ”ball” neighborhood definition 

Franze and Speciale (2001) proposed the DOPE algorithm, which was based on 

pattern search and tabu search, and applied it to the minimization of multidimensional 

functions with multiple local minima and with variables defined over continuous finite 

ranges. Further, the function’s analytical form is unknown (hence gradient and Hessian 

matrix are not available) and its evaluation has a high computational cost. Their 

algorithm uses a Variable move step, a limited 2N directions neighborhood definition 

where N is the number of variables, and a monotonic reduction of the step size when no 

favorable point is found in the neighborhood).  

Chelouah and Siarry (2000) proposed an Enhanced Continuous Tabu Search 

(ECTS) for the global optimization of multiminima functions which emphasized 

diversification and intensification strategies (Glover, 1993; Battiti et al., 1994). They 

used a random hyper-rectangular neighborhood to simplify the neighborhood evaluation.  
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Figure.15 Random hyper-rectangular neighborhood definition 
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Figure.16 General flow chart of ECTS 
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Y. S. Teh and Rangaiah (2003), applied an enhanced continuous Tabu Search 

(ECTS) to the phase equilibrium calculations via Gibbs free energy minimization. They 

compared ECTS with a Genetic Algorithm (GA) to the same benchmark set of problems. 

The results show that while both TS and GA locating the global minimum, TS converges 

faster than GA thus reducing the computational time and number of function evaluations.  

Lin and Miller (2004) implemented TS for heat exchanger network (HEN) 

synthesis and compare their approach to others presented in the literature  using a random 

subset strategy to generate neighboring solutions. Figure 17 shows the solution (10 

exchangers with heat duty(kW)) to a HEN problem with 5 hot streams, 5 cold streams, 1 

hot utility and 1 cold utility.  The objective is to minimize the annualized cost expressed 

as the sum of the utility costs, fixed charges for each heat exchanger and an area-based 

cost for each heat exchanger. The area of a heat exchanger is a highly nonlinear function 

of the temperature difference and heat load. In their case studies, the global optimal 

solution was found more than 90% of the time, demonstrating the potential of TS to solve 

other optimization problems in chemical engineering.  

 

Figure.17 TS application to the heat exchangers networks 
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2.3.2 Genetic Algorithms (GA) to the continuous non-linear problems 

As presented in Table 2, Elwakeil and Arora (1996) summarized the attributes of 

the most popular global optimization methods at that time.  

 

Table.2 Summary of global optimization methods (1996) 

Focusing on Combined Cycle Gas Turbine (CCGT) power generation systems, 

Valdes, Duran, and Rovira (2003) performed a thorough investigation of the use of 

Genetic algorithms for global thermoeconomic optimization. 



 30 

 

 

Figure.18 Manuel Valdes HRSG with different pressure 

An illustrated in Figure 18, a tuned genetic algorithm was applied to a single 

pressure CCGT power plant and to two and three pressure levels in the heat recovery 

steam generator (HRSG). The variables considered for the optimization were the 

thermodynamic parameters that establish the configuration of the HRSG. Two different 
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objective functions were proposed: one minimizes the cost of production per unit of 

output and the other maximizes the annual cash flow. The results obtained with both 

functions are compared in order to find the better optimization strategy. Figure19 shows 

the GA evolution of the maximum cash flow value corresponding to each generation (the 

maximum is the 100% reference value). Figure 20 illustrates the system studied and 

Figure 21 shows the convergence rate of the GA used. 

 

 

Figure.19 Manuel Valdes GA convergence 

Rovira, Valdés and Casanova (2005) used a GA to solve the non-linear equations 

applied to Combined Cycle Gas Turbine simulation. Their methodology combined 

genetic-based machine learning (GBML) and GA, using a population of possible solution 

processes.  
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Figure.20 Manuel Valdes GA application to three pressure HRSG 

 

 

Figure.21 Manuel Valdes machine learning GA convergence 
 

Mehrpooya, Gharagheizi, Vatani (2006) used Aspen HYSYS and GA to optimize 

a natural gas liquids (NGL) recovery unit pictured in Figures 22 and 23.  
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Figure.22 HYSYS simulation flow sheet of the NGL recover plant 
 

 

Figure.23 Architecture between user, GA, MATLAB, HYSYS 

Jang, Hahn, and Hall (2005) used a Genetic/quadratic search algorithm (GQSA) 

for plant economic optimizations using a process simulator. By coupling a regular GA 

with an algorithm based upon a quadratic search, the required number of objective 
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function evaluations for obtaining an acceptable solution decreased significantly in most 

cases. Figure 24 illustrates the system that was studied. 

 

Figure.24 Aspen plus simulator for the GQSA problem 

Mohagheghi and Shayegan (2009) used a GA to perform the thermodynamic 

optimization of design variables and heat exchangers layout in a HRSG for CCGT. A 

new method was introduced for modeling the steam cycle in advanced combined cycles 

by organizing the non-linear equations and their simultaneous solutions using hybrid 

Newton methods. 

Ponce-Ortega, Serna-González and Jiménez-Gutiérrez (2009) presented an 

approach based on GAs for the optimal design of shell-and-tube heat exchangers.  The 

examples analyzed, as illustrated in Figures 25 and 26, show that GAs provide a valuable 

tool for the optimal design of heat exchangers.  
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Figure.25 General Structure of GA for HE design 
 

 

Figure.26 Solution strategy for the optimum of HE design 
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2.3.3 Direct pattern search (DPS) algorithm 

Direct pattern search, as defined in this report, requires only objective function 

evaluations. Direct pattern search methods like the coordinate descent method (Fermi, et 

al. 1996), evolutionary operation (Box, 1957), the Hook and Jeeves technique (Hooke, et 

al. 1961) and the very popular Nelder-Mead simplex method (Nelder, et al. 1965; 

Margaret, et al. 1995) date from the early 1960s.  These methods were largely ignored 

until 1990 when McKinnon described a convergent form of the Nelder-Mead algorithm 

for strictly convex functions in two dimensions (Mckinnon, et al. 1998). Since that time 

little additional work has been focused on the Nelder-Mead approach.  

Since 1990, newly developed computer hardware and software techniques 

brought about an increase in the use of direct pattern search methods (Wright, 1995).  In 

2003, Tamara et al. (2003) proved that the coordinate descent search method possesses 

strong convergence properties.   Unlike classical combinatorial optimization problems 

(Carlton, et al. 1996), the solution space topology of many engineering problems is 

relatively smooth in its contours. These convergence properties and a smooth solution 

space, along with the very simple implementation of the coordinate descent method led 

us, in the research documented in this report, to select it to be our basic method of 

neighborhood generation for the associated TS methodology. 

Nelder-Mead simplex method.  The most famous simplex-based direct search 

method was proposed by Nelder and Mead in their 1965 paper. The Nelder-Mead method 

is based on the idea of creating a sequence of changing simplices which are deliberately 

modified so that the simplex ”adapts itself to the local landscape”.   

The Nelder–Mead simplex algorithm is a very powerful local deterministic 

algorithm, making no use of the objective function derivatives. A ‘‘simplex’’ is a 

geometrical figure consisting, in n-dimensions, of (n + 1) points. If any point of a simplex 
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is taken as the origin, the n other points define vector directions that span the n-dimension 

vector space. As illustrated in Figures 27, 28, 29 and 30, through a sequence of 

elementary geometric transformations (reflection, contraction and extension), the initial 

simplex moves, expands or contracts.  

 

Figure.27 simplex move: Reflection 

 

Figure.28 simplex move: Expansion 
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Figure.29 simplex move: Contraction 

 

 

 

Figure.30 simplex move: Multi-contraction 
 

2.3.4 Hybrid optimization algorithms 

Commercial process simulators, such as ASPEN Plus, PRO/II, or HYSIS, have 

experienced rapid development and found widespread application in the power 

generation process industries.  The main reason is that these process simulators can 

provide process engineers with rigorous descriptive thermodynamic models. When using 

a process simulator for process optimization, convergence of the process flowsheet is 



 39 

required to evaluate the value of the objective function. Since the process flowsheet 

consists of multiple independent units, convergence is achieved by separate unit 

convergence and by applying feed back techniques for converging streams. This 

characteristic of process simulators can cause difficulties for gradient-based optimization 

because information required for computing the gradient may not be readily available and 

the nonlinear characteristics in the system may cause multiple local optima to be present. 

Gradient-free optimization techniques (Black-Box solvers) such as GA, TS, and 

Simulated Annealing (SA) are commonly applied to problems with such properties.  

When applying those black-box solvers to optimization problems involving a 

process simulator, the evaluation complexity requires as few as possible objective 

function evaluations.   

Hybrid approaches which are combined with two complementary algorithms (in 

terms of global exploration and local exploitation), generally have better performance 

than pure Black-Box algorithms.   

The most common hybrid approaches are shown the Table.3:  

 
  Global Search  

Local Search TS GA SA 
Simplex search (Nelder-Mead) TS/NM GA/NM SA/NM 

Pattern search     
Gradient descent     

Conjugate gradient method     
Newton method TS/NR GA/NR   

Quasi-Newton method (QN) TS/QN GA/QN   
Finite Difference Estimates       

Table.3 Hybrid search algorithms 

Chelouah and Siarry (2003) proposed a Continuous Hybrid Algorithm (CHA), 

which is a GA/Nelder-Mead hybrid algorithm for the global optimization of 
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multiminima functions. Their main contribution was the introduction of two concepts: 

diversification and intensification. In a diversification phase, they start with a large 

population and a high mutation probability to homogeneously cover the whole search 

space and detect a promising subspace. The intensification phase is then performed inside 

this promising subspace by using a local search.  

Chelouah and Siarry (2003) also proposed a Continuous Tabu Simplex Search 

(CTSS) ,i.e., a Tabu Search/Nelder-Mead hybrid algorithm. They concluded that 

generally hybrid methods achieve better solutions than ‘‘pure’’ methods, and converge 

more quickly. Among pure global methods, the GA was the least accurate, and the TS 

was the fastest.  

Jang, Hahn and Hall (2005) proposed a genetic/quadratic hybrid search algorithm 

(GQSA) for optimizing plant economics when a process simulator models the plant. As 

shown in Figure 31, the GQSA quadratic search reduces the required number of objective 

function evaluations for convergence to an optimum.  

 

 

Figure.31 GQSA is faster than pure GA optimization 



 41 

 

Table.4 Y.S. Teh, G.P. Rangaiah (2003) tested 20 functions 

 

As summarized in Table 4 and 5, Teh and Rangaiah (2003) tested TS/Nelder-

Mead (TS/NM), TS/ Quasi-Newton method (TS/QN), GA/Nelder-Mead (GA/NM), and 

GAQuasi-Newton method (GA/QN) hybrid algorithms on 20 global continuous 

optimization functions.  
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Table.5 Y.S. Teh, G.P. Rangaiah (2003) test results 

The test results indicate that the performance of TS/QN and GA/QN is better than 

that of TS/M and GA/NM, respectively. Additionally, this study showed that TS/QN 

required less objective function evaluations than GA/QN for mathematical functions and 

Gibbs free energy minimization.  
 



 43 

Chapter 3:  Thermodynamics system numerical simulation 

The three pressure level HRSG system of Figure.32 schematically pictures the 

configuration that was used to test the TS-DPS algorithm developed in the research 

documented in this report. There are two major reasons for this selection: (1) this system 

is widely used in the gas turbine power generation industry (Alessandro, et al. 2002) and 

a successful optimization method for this system will contribute to the solution of similar 

practical problems, and (2) it is typical of the type of complex problems with highly 

nonlinear objective and constraint functions that are encountered in the power generation 

industry.  
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Figure.32 Flow diagram of three pressure HRSG system 

 

Figure.32 pictures the flow of water and steam within a sophisticated three 

pressure HRSG system which includes 16 heat exchangers, 2 stream mixers, 3 
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evaporators (HPE, MPE, LPE), 3 steam turbines (HPST, MPST, LPST), 1 generator, 1 

condenser and 1 feed water pump. Heat exchangers EL1, EM1, EM2, EH1, EH2, EH3 

are economizers for the three water streams (-), respectively.  Heat exchangers SL2, 

SL3, SL4, SM3, SM4, SH4 are the super heaters for the three steam streams (--), 

respectively.  Heat exchanger SR4 is re-heater of the steam exhaust from the high 

pressure steam turbine.  

 The fixed parameters for the gas turbine are given in Table 6. 
 

Parameter Input data 

Ambient temperature (°C)  25 

Ambient pressure (bar) 1.01325 

Compressor isentropic efficiency 0.85 

Compressor ratio 20 

Turbine isentropic efficiency 0.91 

Combustor chamber efficiency 0.95 

Combustor chamber pressure loss (%) 4 

Turbine inlet temperature (°C)  1430 

Inlet air mass (kg/s) 300 

GT work output----Wgt (MW) 105.3 

GT thermal efficiency-----ETgc 0.382 

fuel mass---Gf (kg/s) 5.69 

GT exhausted gas temperature----Tg (°C)  503.15 

Table.6 Gas turbine data at design point 

Before HRSG system optimization, a simulation code for the HRSG system must 

be constructed that will evaluate both the system thermal efficiency and the ratio of cash 

flow over a fixed investment.  The construction of such an evaluation code has been well 
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described (Manuel, et al. 2004). Table 7 lists the 19 independent decision variables that 

constitute the input data for the HRSG simulator:  
 

x1 

x2 

x3 

x4 

x5 

x6 

x7 

x8 

x9 

x10 

x11 

x12 

x13 

x14 

x15 

x16 

x17 

x18 

x19 

PLP  

PMP  

PHP  

DTAL 

DTAM 

DTAH 

DTPL 

DTPM  

DTPH  

DTEM1 

DTEH1 

DTEH2 

DTSL2 

DTSL3 

DTSL4 

DTSM3 

DTSM4 

DTSH4 

DTSR4 

pressure of low pressure evaporator 

pressure of middle pressure evaporator 

pressure of high pressure evaporator 

sub cool temperature of low pressure water 

sub cool temperature of middle pressure water 

sub cool temperature of high pressure water 

pinch temperature of low pressure stream 

pinch temperature of middle pressure stream 

pinch temperature of high pressure stream 

approach temperature at outlet of EM1 

approach temperature at outlet of EH1 

approach temperature at outlet of EH2 

approach temperature at outlet of SL2 

approach temperature at outlet of SL3 

approach temperature at outlet of SL4 

approach temperature at outlet of SM3 

approach temperature at outlet of SM4 

approach temperature at outlet of SH4 

approach temperature at outlet of SR4 

Table.7 Variables names and meanings 
 

The HRSG code must properly manage a large number of restrictions which are 

partitioned into soft and hard constraints. Many of the components, like air, water, steam, 

and gas, of the HRSG system are limited to a specific operational range. These hard 
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constraints can not be violated. Other soft constraints are enforced through the use of 

penalty functions.  
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Chapter 4:  Optimization programming 

 

4.1 Thermal Economic Optimization 

In the thermal economics arenas, the thermal energy efficiency, the cost of 

production per unit of output and the annual cash flow are most widely used measures of 

effectiveness in simulation and optimization problems (Manuel, et al. 2003). In this 

report, the quantity and temperature of the gas turbine exhaust hot gas are fixed and the 

primary focus is on designing a system which will maximize the thermal energy 

efficiency.  

The goal is to achieve greater steam turbine electricity generation while requiring 

a lower investment of fixed facilities associated with the HRSG. To achieve this goal, we 

define another objective function, detailed in Equation (1), to be a ratio of profit divided 

by cost, the thermoeconomic ratio.  The numerator of Equation (1) captures the profit 

derived from the level of generated electricity in Watts (Wst) by the steam gas turbine 

over K years where there are H hours of operation per year and the profit per Watt-hour 

is P.  The denominator of Equation (1) is the total cost of the HRSG system, Ctot, 

composed of the sum of four component costs: (i) the cost of the steam turbine, Cst, (ii) 

the cost of the condenser, Ccon, (iii) the cost of the generator, Cgen, and (iv) the cost of the 

rest of the components that make up the HRSG system, Chrsg. 

 
     
Maximize      (1) 

      
 
where the components of Ctot are defined as follows (Attala, et al. 2001):  
 

* * *( ) st

tot

W K H Pf x
C

=
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0.60.6 0.6 0.79

1700[ ( ) ( ) ( ) ( ) ]evapecon sh lte
hrsg

econ evap sh lte

QQ Q QC
T T T T

= + + +
Δ Δ Δ Δ∑ ∑ ∑ ∑    (2) 

 
0.261 1.543319728 823.7st stC A W= +        (3) 

  
1.01162condC S=          (4) 

  
0.583082gen stC W=          (5)  

Qecon, Qevap, Qsh, and Qlte is the heat energy in Watts and ΔTecon, ΔTevap, ΔTsh, and 

ΔTlte are the temperature differences at the economizers, the evaporators, the super-

heaters, and the feed water pre-heaters, respectively.  In addition, A is the area of the 

steam turbine final section in square meters and S is the area of the heat exchanger 

surface of the condenser in square meters. The decision variables, xi, i = 1,…, 19, 

determine the values of Qecon, Qevap, Qsh, Qlte, ΔTecon, ΔTevap, ΔTsh, ΔTlte, A, S, and Wst by 

means of the complex relationships presented in detail in Equations (2) through (5). 

These complex relationships can not be analytically solved.  This forces the use of a 

deterministic emulation, an implementation of those relationships to achieve a solution.  

Historically, only thermal efficiency optimization has been performed on systems 

like that given in Figure 32. Such limited activities ignore the significant benefits that 

may be achieved by a thermoeconomics optimization. Nevertheless, a thermal efficiency 

optimization provides a starting point for the more comprehensive thermoeconomic 

optimization. In the next section we describe how such an optimization is performed.  
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 4.2 Optimizing thermal efficiency 
 
 
The definition of thermal efficiency is; 
 

Maximize  ( )
*

gt st

f

W W
f x

G LHV
+

=       (6) 

where Wgt is the electricity generated (Watts) by the gas turbine;  Gf is the input mass 

flow of fuel to the gas turbine (in kilograms per second).  LHV is the low heating value 

(in joules per kilogram) of the fuel (Rydstrand, et al. 2004).  

Equations 7 through 15 stipulate physical relationships (constraints) that must be 

satisfied in the optimization of Equation 6: 

 
20 ≥ x1 ≥ 3.0, 60 ≥ x2 ≥ 20, 200 ≥ x3 ≥ 60 (bars), i = 1, …, 3   (7) 
 
xi ≥ 3.0 (degrees Celsius), i = 4, …, 9      (8a) 
 
300 ≥ xi ≥ 10 (degrees Celsius), i = 10, …, 19     (8b) 
 
T15 ≥ T14 ≥ T13 ≥ T12 > T11 ≥ T00       (9) 
 
T25 ≥ T24 ≥ T23 > T22 ≥ T21 ≥ T00       (10) 
 
T35 ≥ T34 > T33 ≥ T32 ≥ T31 ≥ T00       (11) 
 
Tg1 > Tg2 > Tg3 > Tg4 > Tg5 > Tg6 > Tg7 > Tg8     (12) 
 
T37 ≥ T36          (13) 
 
Dr36, Dr39, Dr41 ≥ 90%        (14) 
 
Tg8 ≥ Tdw          (15) 
 

where the Tij are the flow temperatures (in Kelvin degrees) at the designated specific 

locations pictured in Figure 32. In like manner, the Tgi are the exhaust gas temperatures 
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(in Kelvin) at their designated locations in Figure 32. Finally, Dr is the dryness of the 

steam at steam turbine outlet points of 36, 39 and 41 and Tdw is the dew point temperature 

in degrees Kelvin.  

Once again, the decision variables, xi, i = 1,…, 19, determine the values of the 

intermediate variables, i.e., the temperatures (the Tij, Tgi, Tdw), the steam quality (Dr36, 

Dr39, Dr41) and Wst, in accordance with the mathematical equations presented in detail 

above (Attala, et al., 2001).  
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4.3 Optimization Methodology 
 

The values of the 19 decision variables associated with Equations 6 through 15 

are obtained in the following way: 

The definition of the neighborhood of an incumbent solution is essential to the TS 

optimization of a problem with continuous decision variables. Hu (1992) and Siarry et al. 

(1997) employed a “neighboring hypersphere” of radius r about an incumbent solution, s, 

where all s’ satisfying the relation, || s’-s || ≤ r, are neighbors of s. The next iteration’s 

incumbent solution is obtained by randomly generating k neighbors and selecting the best 

of them. Chelouah (2005) employed a similar neighborhood construct by formulating 

concentric hypercubes around the incumbent solution with a similar random neighbor 

selection method. Neither of these methods use the available approximate objective 

function derivative information and do not allow an efficient tabu memory structure, i.e., 

using random step sizes to discretize the continuous solution space is not conducive to an 

efficient tabu memory structure.  

Rather than depending on randomization, our neighborhood definition borrows 

from basic concepts associated with coordinate direct pattern search. Many neighborhood 

definitions are possible in this context. One such neighborhood is the m-Δ neighborhood 

that was used in this research.  Figures 33 through 37 illustrate the m-Δ neighborhood for 

a three parameter problem for m = 1, 2, 3 where m is the number of parameters that are 

simultaneously perturbed.  In general, the cardinality of a m- Δ neighborhood is Nb= 
m

m
n

2⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

.  

 In Figure.33 each iteration consists of a single variable being incremented or 

decremented by a fixed amount, Δ.  
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As illustrated in Figure.34, larger composite neighborhoods are easily defined by 

the superimposition of 2 or more unique m-Δ neighborhoods  
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Figure.33 1-Δ neighborhood for 3 dimensional problems (Nb=6) 
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Figure.34 2-Δ neighborhood for 3 dimensional problems (Nb=12) 
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Figure.35 3-Δ neighborhood for 3 dimensional problems (Nb=8) 
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Figure.36 Composite of the 1-Δ and 2-Δ neighborhoods 
(Nb=6+12=18) 

 

0

1

2 0

1

2

0

1

2

Z 
Ax

is

Y Axis
X Axis

 
  
 

Figure.37 Composite of the 1-Δ and 3-Δ neighborhoods 
(Nb=6+8=14) 
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4.4 The Advantages of a deterministic neighborhood definition 
 

In classical TS methodology, the neighborhood definition is often the most 

important factor in yielding excellent solutions quickly (Barnes, et al. 2003). In applying 

TS to continuous optimization problems, this can be even more important because the 

neighborhood selection is complicated by the additional requirement to specify the step 

size, Δ, dynamically during the search process.  Siarry, et al. (1997) studied the 

relationship between Δ and the speed of convergence for a GA applied to a continuous 

optimization problem. Smaller step sizes yielded more precise answers but at the cost of 

more computational effort.  

A dynamic Δ also makes the implementation of an effective and efficient TS 

memory structure more challenging, i.e., preventing repetitions of a previously visited 

solution within a specified number of iterations is a more complex undertaking in a 

continuous solution space. To make these problems tractible, the following stipulations 

are imposed:  

 

• Δ is limited to 3 specific values, i.e., Δ=5, 1, or 0.1.  

• A modified form of adaptive TS [Harwig, J., Barnes, J.W., More, J., 2001] 

is employed where the tabu tenure is decreased (increased) after a 

specified number of consecutive improvements (disimprovements) occur. 
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4.5 The TS-DPS Pseudo-code 
 

In this section, a description of the TS-DPS algorithm is given using both verbal 

descriptions and the psuedo-code presented in Figure 38.  In early computational studies, 

the best solution from the thermal efficiency TS-DPS optimization was used as the initial 

incumbent solution for the thermoeconomic ratio optimization. However, this proved 

ineffective because that solution to the thermal economics problem was dramatically 

dissimilar from good solutions to the thermal efficiency problem. After some additional 

empirical experimentation, it was found that an acceptable starting solution for the 

thermoeconomic problem was 

 
 X0= (12,30,130,100,25,10,50,50,50,100,100,100,100,100,100,100,100,100,100) 
 

   Initial empirical experimentation led to the conclusion that the composite 1-Δ 

and 2-Δ neighborhood yielded a robust effective search. The initial tabu tenure was set to 

3000 iterations, the initial discretization factor, Δ, was set to 5.0 and the solution 

representation used in the tabu memory structure was a vector of the 19 parameter values, 

xi , i = 1,…,19, joined with a simple hashing value, ii xi ∗Π =
19

1 . At the start of the 

algortihm, the incumbent solution XI, the initial step size Δ, the step coefficient k, the 

interaction counter IT, the neighborhood implementation time, and the tolerance Eps are 

initialized. After initialization, the TS-DPS algorithm performs iterations until the 

maximum time allowed is exceeded or the tabu memory is fully filled. We use as simple 

a neighborhood definition (1-Δ) as possible as long as the global best solution, X* , is 

updated before time, T_1d (obtained from empirical experimentation). After T_1d time 

units have passed, the 1-Δ and 2-Δ neighborhood definition are implemented.   
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In each iteration, all neighboring solutions are considered and the best nontabu 

solution becomes the new incumbent solution.  If all neighboring solutions are tabu, the 

neighborhood definition is incrementally expanded (while maintaining the same 

cardinality) until the best solution in the new neighborhood is not tabu, whereupon that 

best solution becomes the new incumbent solution. The neighborhood definition is 

returned to the default structure, and the iterations continue.  If after 100 such expansions, 

the algorithm fails to find a non tabu best solution, execution terminates.   

Each new best nontabu solution is compared with the global best solution and we 

retain the number of nonimprovements in Cnt_nonimprovements. When 

Cnt_nonimprovements = 10, the new neighborhood definition is incrementally expanded 

again using a different step coefficient and step size. After 100 such expansions, the 

neighborhood definition is returned to the default structure (k=1, Δ=1.0). 

Each incumbent solution is placed in the tabu memory structure and, if the current 

solution is the best found so far, it is recorded.  The algorithm terminates when the time 

limit is exceeded or the tabu memory is fully filled.  
 



 58 

Set all required physical parameter values (Table 1) 

Set initial incumbent solution, XI =X0;  Set best solution found so far, X*= XI 

Set step size, Δ=5.0;  Set Iteration Counter, IT = 0; Set step size coefficient, k = 1 

Set 1-Δ neighborhood implementation time to T_1d=50.0 second 

While (maximum time not exceeded) and (tabu memory is not fully filled) 

{ IT = IT + 1 

 If (Current time < T_1d)  Then  

  Implement One-Δ neighborhood definition 

 Else 

  Implement One-Δ and Two-Δ neighborhood definition 

 End If 

 Evaluate all solutions in neighborhood of XI, Xj∈NI 

 If (one or more Xj are not tabu) 

     Select the best non-tabu Xj, Xj,Best  

 End If 

 // Dynamic Neighborhood Management 

 If (all Xj are tabu) Then 

   While (k <= 100) 

    k=k+1, define new neighborhood, i.e., Xj∈NI , with Δ=0.1*k 

    Evaluate all neighborhood solutions in new neighborhood  

    Select the best neighbor Xj,Best which is not tabu 

   End while  

   If (k = 101) Then Stop 

 Else 

  If (Cnt_nonimprovements > 10) Then reset Cnt_nonimprovements=0 

   While (k <= 100) 

    k=k+1, define new neighborhood, i.e., Xj∈NI, with Δ=0.1*k 

    Evaluate all neighborhood solutions in new neighborhood  

    Select the best neighbor Xj,Best which is not tabu 

   End while  

   If (k = 101) Then set k = 1; Δ=1.0 

  End If 

 End If 

 Set XI = Xj,Best,  

 Place XI into the tabu memory structure 

 If XI is best solution found so far, X*= XI 

 If  X* has not improved, reset nonimprovement counter Cnt_nonimprovements +1 

} End While 
 

 

Figure.38 Pseudo code of the TS-DPS algorithm 
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Chapter 5:  Results and Discussion 

 

5.1 Thermal energy efficiency  

 The TS-DPS algorithm was applied to the problem of Figure 39 with thermal 

efficiency as objective function. The best thermal efficiency achieved was 55.2% which 

is consistent with the results of previous research (Alessandro, et al. 2002). Figure 39 gives 

the T-Q plot for that configuration where the temperature of HRSG exhausted gas is 

approximately 100ºC. The thermal efficiency of this system is much higher than the 

efficiency of typical current gas turbine combined cycle power generation systems with 

the same turbine inlet temperature to the gas turbine. This is partially due to the fact that 

practical systems are rarely designed solely for thermal efficiency. In most cases, a 

multicriteria objective function drives the system design.  

 

 
 

Figure.39 T-Q Plot for the best thermal efficiency solution 
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Figure.40 presents a plot of how quickly improved thermal efficiencies were 

achieved during the algorithm’s search. The best solution found is given in Table 8. All 

pinch temperatures, sub-cool temperatures and most approach temperatures are at their 

lower bounds (denoted with a * in the table).  

 

 
 
 

Figure.40 Convergence of thermal efficiency 
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5.2 Thermoeconomical Ratio 

The solution stated in Section 4.6 is used as the initial solution for the TS-DPS 

algorithm when applied to the problem of optimizing the thermoeconomic ratio. The 

initial solution’s thermoeconomic ratio was 0.76855, less then 50% of the best found 

thermoeconomic ratio of 1.822, reflecting the fact that high thermal efficiency is always 

associated with very high facility expenditures in an HRSG.  

 
 Name Meaning of variables Lower 

Bound 

Upper 

Bound 

Optimum 

x1 PLP pressure of low pressure evaporator (bar) 3 20 4.1 

x2 PMP pressure of middle pressure evaporator (bar) 20 60 44.7 

x3 PHP pressure of high pressure evaporator (bar) 60 200 173.8 

x4 DTAL sub cool temperature of low pressure water (°C) 3 - 3* 

x5 DTAM sub cool temperature of middle pressure water (°C) 3 - 3* 

x6 DTAH sub cool temperature of high pressure water  (°C) 3 - 3* 

x7 DTPL pinch temperature of low pressure stream  (°C) 3 - 3* 

x8 DTPM pinch temperature of middle pressure stream  (°C) 3 - 3* 

x9 DTPH pinch temperature of high pressure stream  (°C) 3 - 3* 

x10 DTEM1 approach temperature at outlet of EM1 (°C) 10 300 10* 

x11 DTEH1 approach temperature at outlet of EH1 (°C) 10 300 10* 

x12 DTEH2 approach temperature at outlet of EH2 (°C) 10 300 10* 

x13 DTSL2 approach temperature at outlet of SL2 (°C) 10 300 10* 

x14 DTSL3 approach temperature at outlet of SL3 (°C) 10 300 10* 

x15 DTSL4 approach temperature at outlet of SL4 (°C) 10 300 107 

x16 DTSM3 approach temperature at outlet of SM3 (°C) 10 300 252.9 

x17 DTSM4 approach temperature at outlet of SM4 (°C) 10 300 10* 

x18 DTSH4 approach temperature at outlet of SH4 (°C) 10 300 10* 

x19 DTSR4 approach temperature at outlet of SR4 (°C) 10 300 10* 

Table.8 Variables for Best Solution Found 
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Figure.41 a Compromise between high efficiency and low cost 
 
 

Figure 41 indicates that seeking the best thermoeconomical ratio forces a 

compromise between high efficiency and low cost resulting in an increase of about 100ºC 

in exhausted gas temperature of the HRSG. In addition, as the solution gets better and 

better, the mass flow of low pressure steam approaches zero. This implies that the three-

pressure HRSG system should be discarded in favor of a two-pressure HRSG system like 

that depicted in Figure 42.  This will dramatically reduce the complexities that must be 

considered. This result is consistent with current practice where it is usual that level gas 

turbine combined cycle systems use two-pressure HRSG systems.  
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 Name Meaning of variables Lower 

Bound 

Upper 

Bound 

Optimum 

x1 PLP pressure of low pressure evaporator (bar) 3 20 10.0 

x2 PMP pressure of middle pressure evaporator (bar) 20 60 22.5 

x3 PHP pressure of high pressure evaporator (bar) 60 200 103.3 

x4 DTAL sub cool temperature of low pressure water (°C) 3 - 127.5 

x5 DTAM sub cool temperature of middle pressure water (°C) 3 - 7.6 

x6 DTAH sub cool temperature of high pressure water  (°C) 3 - 3.0* 

x7 DTPL pinch temperature of low pressure stream  (°C) 3 - 63.0 

x8 DTPM pinch temperature of middle pressure stream  (°C) 3 - 33.0 

x9 DTPH pinch temperature of high pressure stream  (°C) 3 - 47.2 

x10 DTEM1 approach temperature at outlet of EM1 (°C) 10 300 42.6 

x11 DTEH1 approach temperature at outlet of EH1 (°C) 10 300 47.6 

x12 DTEH2 approach temperature at outlet of EH2 (°C) 10 300 32.6 

x13 DTSL2 approach temperature at outlet of SL2 (°C) 10 300 69.6 

x14 DTSL3 approach temperature at outlet of SL3 (°C) 10 300 160.5 

x15 DTSL4 approach temperature at outlet of SL4 (°C) 10 300 290.5 

x16 DTSM3 approach temperature at outlet of SM3 (°C) 10 300 80.1 

x17 DTSM4 approach temperature at outlet of SM4 (°C) 10 300 86.1 

x18 DTSH4 approach temperature at outlet of SH4 (°C) 10 300 66.9 

x19 DTSR4 pressure of low pressure evaporator (bar) 10 300 96.0 

 

Table.9 Optimum variables for Thermo-economical ratio 
 

Table.9 presents the best found solution for thermoeconomical ratio problem. In 

this solution, only two variables are close to their low bounds. The remaining 17 

variables values reside in the middle of their limits. From Figure 42, it can be seen that 

the  TS-DPS algorithm works well , converging in 80s cpu time when we use a composite 
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neighborhood direct pattern search methodology with a one variable deterministic 

neighborhood (1-VDNB) plus a two variable deterministic neighborhood (2-VDNB).  

 

 

Figure.43 Convergence of thermoeconomic ratio 
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5.3 Effect of neighborhood definition  
 

 We tested the three-pressure HRSG problem using different neighborhood 

definitions and compared their process of convergence. The results are presented in 

Figure 43. The composite deterministic neighborhood definition with one variable 

perturbing and two variables perturbing (1-VDNB + 2-VDNB) produces the largest 

objective function value.  
 

 

Figure.44 Effect of neighborhood definitions 
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Chapter 6:  Conclusions 

We have developed a hybrid global algorithm combining TS and coordinate direct 

pattern search. We used a deterministic variable perturbing neighborhood definition with 

dynamic step size which is markedly different from the random neighborhood definition 

that appeared in previous research. Our neighborhood definition extended ideas from 

coordinate direct pattern search to take better advantage of the local convexity 

information of a smooth continuous objective function for engineering problems in which 

the variables have special physical meanings. To exploit continuous function step size 

sensitivities of different variables, we used TS to save memory efficiently and adjust the 

discretization step size dynamically to hasten convergence.  

In this report, we show that TS algorithm can be successfully applied to optimize 

a three pressure level HRSG system with continuous 19 independent variables and 

continuous objective functions. We believe that this TS based algorithm can be 

successfully applied to a wide variety of additional engineering problems where no 

derivative information is available.   
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