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Abstract 

 

Documenting, Demonstrating and Enhancing an Offshore Geotechnical 

Database for Reliability-Based Foundation Design 

 

 

 

Katherine Elaine Zadrozny, M.S.E. 

The University of Texas at Austin, 2013 

 

Supervisor:  Robert B. Gilbert 

 

 There is a large amount of geotechnical data. By putting it into a database, it can be applied 

to design reliable offshore foundations. The goal of this research is to improve the efficiency and 

transparency of the implementation of the previously developed reliability-based framework to 

streamline the process for analyzing and developing an offshore site in the Gulf of Mexico by 

looking at spatial variations among data sets. 

This thesis documents how to store soil behavior information in the database and how to use 

that information for offshore foundation design. The process is illustrated through observing the 

steps with figures provided directly from the database so the user can more readily use the database 

to produce results. This makes the database more transparent for the user to follow the flow of 

information from input to analysis and to follow the calculation process as well. Enhancements 

were also made to the database to provide a more readily accessible interface. There is now an 

allowance of data to streamline the data input process. There is also a set amount of fifty data points 

to be used in each spatially conditioned analysis. 
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These detailed explanations and consistencies in data collection help the user to 

understand the models. This database provides a synthetic image of the site using both 

physical and statistical parameters where there might not be exact data at a desired 

foundation location. By providing the industry with a database that uses reliability-based 

design from actual data and spatial variation analysis, this project will continue to provide 

a more efficient design process. 
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 Introduction Chapter 1:

1.1 BACKGROUND INFORMATION 

Subsurface explorations present a unique challenge to the practitioner. The 

practitioner has to work with a small sampling of the subsurface to observe potential soil 

behaviors over the larger site area. A geotechnical investigation, involving both field and 

lab observations, is performed to get as much perspective as possible. This investigation 

is especially difficult when sampling and designing hundreds to thousands of feet below 

the ocean.  

Offshore, these investigations are used to design foundations in deep water. 

Offshore foundations are generally supported by various arrangements of suction 

caissons extending into the subsurface, Figure 1-1. Suction caissons, Figure 1-2, are 

essentially hollow piles that are suctioned into the seafloor through the negative pressure 

from pumping water out.  
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Figure 1-1: Various Offshore Foundation Types (www.naturalgas.org) 

 

 

Figure 1-2: Suction Caisson Installation (www.power-technology.com) 

As new offshore facilities are developed, new geotechnical data are also being 

collected. Previous research developed a database to store and use data for foundation 
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design (Cheon 2011). The database is currently designed for deep offshore foundation 

analysis specifically for the geologic setting of the Gulf of Mexico, which primarily 

consists of normally to slightly overconsolidated marine clay. The data are analyzed 

through a reliability-based framework which generates results using both nearby data and 

overall site generic data for offshore foundation design. The reliability in the design is 

reflected through inputs based on a target reliability level and outputs an additional factor 

of safety that accounts for the uncertainty in soil behavior between data points.  

The geostatistical methods applied by Cheon are useful to model the spatial 

variations in soil behavior between data points. The model helps to maximize the value of 

information from the site investigation. This allows the practitioner to see more of the 

subsurface behavior while keeping the cost of the investigation within reason. 

1.2 MOTIVATION FOR RESEARCH 

The database presented has only been used by researchers so far. The reliability-

based design implementation developed, as with any research database, becomes more 

efficient through user demands. The motivation for this thesis is to revise the database to 

be more easily used by practitioners and to make it more transparent to provide a more 

efficient design process and to optimize design. 

1.3 OBJECTIVES 

The goal of this research is to improve the efficiency and transparency of the 

implementation of the reliability-based framework to streamline the process for analyzing 

and developing a site. The goal is achieved through the following objectives: 
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1. Document the practical implementation of a reliability-based framework that has 

been previously developed to account for spatial variations in soil properties to 

develop designs for offshore foundations. 

2. Demonstrate the implementation of the reliability-based framework, including the 

steps to input new data, to compile results from new and existing data, to perform 

the calculations used to develop foundation designs, and to present the results. 

3. Conduct a sensitivity analysis to study the effect of the reliability-based 

framework input parameters on the resulting foundation design. 

4. Devise improvements for the implementation of the reliability-based framework 

to increase the size of the available database and to make the process more user-

friendly. 

1.4 THESIS ORGANIZATION 

This report is organized into six chapters. Chapter 2 documents the framework of 

the database created by Cheon (2011). A case study in Chapter 3 demonstrates how to use 

the database from receiving and inputting data to producing an ultimate safety factor for 

application in foundation design. Chapter 4 provides a sensitivity analysis showing the 

effects of three statistical parameters on the additional factor of safety and the design 

axial capacity. In Chapter 5, the improvements to the implementation of the framework 

are outlined. Finally, Chapter 6 recommends future work and draws conclusions on the 

research performed. Appendix A provides the theoretical backgrounds for the models 

discussed and Appendix B provides the Visual Basic code used in various workbooks. 
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 Framework Documentation Chapter 2:

This chapter will provide the user with information on how to use the workbooks, 

the workbooks’ individual worksheets, and where to find the results of those worksheets’ 

analyses. The workbooks are broken into two categories: workbooks that store data and 

workbooks that use data for foundation design purposes. The workbooks that are used 

specifically to store information input by the user are: 

Table 2-1: Workbooks to Store Information 

Workbook Name Worksheets Function(s) 

Boring Information 

Location.xlsx 
Borings 

Store information about boring location 

and boring sampling 

Input.xlsx 

Home, Definitions, 

Borings, Design Su, 

Design Su_r, Input-Su 

and Su_avg, Input-Sur 

and Sur_avg, Input-Su1 

Store boring locations, design undrained 

shear strength data, remolded undrained 

shear strength data, and equivalent linear 

undrained shear strength data 

The workbooks that are used for foundation design purposes are: 
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Table 2-2: Workbooks to Analyze Information 

Workbook Name Worksheets Function(s) 

Depth-Averaged 

and Point 

Undrained Shear 

Strength.xlsm 

Home, Definitions, 

Borings, Input, 

Generic and 

Conditioned, 

Correlated Data 

Returns the depth-averaged and point undrained 

shear strengths using the generic and conditional 

models for user-input location and depth of 

penetration; returns ranges of correlation 

coefficients; utilizes a macro for analysis 

Generic and 

Conditional 

Axial 

Capacity.xlsm 

Home, Definitions, 

Borings, Input, 1 

Existing Data Point, 

Multiple Existing 

Data Points, 

Correlated Data 

Returns the axial capacity and additional partial 

factor of safety using the generic and 

conditioned models for  user-input location and 

caisson dimensions; returns the ranges of 

correlation coefficients; utilizes a macro for 

analysis 

Generic and 

Conditional 

Lower Bound 

Axial 

Capacity.xlsm 

Home, Definitions, 

Borings, Input, 1 

Existing Data Point, 

Multiple Existing 

Data Points, 

Correlated Data 

Returns the lower bound axial capacity and 

additional partial factor of safety using the 

generic and conditioned models for  user-input 

location and caisson dimensions; returns the 

ranges of correlation coefficients; utilizes a 

macro for analysis 

Generic and 

Conditional 

Equivalent 

Linear 

Undrained Shear 

Strength.xlsm 

Home, Definitions, 

Borings, Input, 

Generic and 

Conditioned, 

Correlated Data 

Returns the equivalent linear undrained shear 

strength gradient using the generic and 

conditioned models for user-input location and 

depth of penetration; returns the ranges of 

correlation coefficients; utilizes a macro for 

analysis 

Modified 

Additional 

Factor of Safety 

for Lateral 

Capacity.xlsm 

Home, Analysis 

Returns the lateral capacity using the model 

developed by Aubeny et al (2003) for user-input 

caisson design properties and the equivalent 

linear undrained shear strength gradient (as 

found with Generic and Conditional Equivalent 

Linear Undrained Shear Strength.xlsm) and the 

additional partial spatial factor of safety; utilizes 

Solver for analysis 

UT Caisson 

Capacities.xlsm 

Home, Definitions, 

Background, 

Analysis, W’ 

Caisson, 2-tip  

Returns the axial and lateral capacity for user-

input caisson dimensions and linear or nonlinear 

point undrained shear strength design profile; 

utilizes Solver for analysis 

FALL16Rev3Ma

r2008-N 

TitlePage, 

UserGuide, 

Nomenclature, 

InputForm, 

MasterPage 

Returns suctions caisson capacities for user-

input caisson properties, load characteristics, and 

soil properties; utilizes Solver for analysis 
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Within both the input workbooks and the analysis workbooks, the worksheets are 

set up to highlight where the user will input new information, yellow highlighted cells, 

and where the user will see results generated from analysis, blue highlighted cells. The 

workbooks are all organized into a framework. Information located within certain 

worksheets in “Input.xlsx” is used among the various analysis worksheets as follows. 

 

 

Figure 2-1: Flow of Information from Input.xlsx to Analysis Workbooks 

Section 2.1 documents using the input workbooks and Section 2.2 documents 

using the analysis workbooks. 

Worksheets 

within 

Input.xlsx:

Input

Worksheet 

within analysis 

workbook that 

is linked to 

Input.xlsx

Input.xlsx 

worksheet is 

linked to these 

workbooks:

Depth Averaged and Point 

Undrained Shear Strength.xlsm,  

Generic and Conditional Axial 

Capacity.xlsm, Generic and 

Conditional Lower Bound Axial 

Capacity.xlsm, Generic and 

Conditional Equivalent Linear 

Undrained Shear Strength.xlsm 

Borings Input

Depth Averaged 

and Point 

Undrained Shear 

Strength.xlsm,  

Generic and 

Conditional Axial 

Capacity.xlsm

Generic and 

Conditional 

Lower Bound 

Axial 

Capacity.xlsm

Generic and 

Conditional 

Equivalent 

Linear 

Undrained 

Shear 

Strength.xlsm 

Input

Input.xlsx

Input-Su1Home Borings Design Su Design Su_r
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2.1 INPUT WORKBOOKS 

The input workbooks are used to hold all the data to be used in the various 

analyses. The user will manually input information into these workbooks and copy 

adjacent formulas for an accurate analysis. Some information within the input workbooks 

was used for research purposes only and is hidden for this documentation as it is not 

relevant; the gaps can be recognized as inconsistencies in the alphabetic labeling of 

columns. Also, some information will be grayed out as it is confidential and cannot be 

shown. One last thing to note is that the information or data for a sample may be received 

with different information depending on sampling conditions and what information was 

recorded by the data provider. So when viewing the sampling information, some samples 

might have empty fields where other samples have a full set of information. These data 

gaps do not affect the analysis; they are simply how the information was received. 

2.1.1 Boring Location Information  

“Boring Location Information.xlsx” provides a comprehensive list of all lab and 

field information. The boring is identified first by a unique identifier and name. The 

unique identifier, UT ID, is an integer that identifies that unique boring and the data 

points on the design shear strength profile from that boring. The “New Name” is a 

combination of the name of the site and the boring number. For example, if the site was 

named Field 1 and the boring was named BH-1, the “New Name” would be Field 1 BH-

1. The location information is stored next in easting and northing, in feet and meters, with 

the UTM zone, and then longitude and latitude. The location information is provided as 

UTM location using the NAD 1927 projection datum and an online converter was used to 

find the longitude and latitude with that given location information. 

. 
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Figure 2-2: Name and Location Information in Columns A-J of Borings Worksheet 

within “Boring Location Information.xlsx” 

The next set of information for the boring provides location information relative 

to the nearest river inlet to the Gulf of Mexico. 

 

 

Figure 2-3: Location Information in Columns K-W of Borings worksheet within "Boring 

Location Information.xlsx" 

The r-θ coordinates are relative to the mouth of the nearest river. In columns R-

W, the distance to the rivers is displayed and the nearest distance is highlighted in orange.  

The next set of information has to do with the sampling of the specimens from 

type of sampling and the sampling tube. “DB” is the client that the site investigation is 

done for. Maximum penetration is the total depth of sampling below the mudline. 

 

 

Figure 2-4: Sampling Information in Columns X-AI of Borings worksheet within "Boring 

Location Information.xlsx" 
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 The final set of information fields has to do with the sample’s proximity to the 

nearest coast and where that nearest coast location is. 

 

 

Figure 2-5: Columns AK-AS of Borings 

2.1.2 Input 

“Input.xlsx” contains all of the data used in generating results. The “Home” 

worksheet reminds the user to change data in this workbook only as this information is 

linked to certain analysis worksheets. The information stored in “Borings,” “Design Su,” 

and “Design Su_r” is directly received from the client. The “Input-…” worksheets are 

where the user translates the provided design profiles to data points that are used in 

analysis. There is a text box in each of the worksheets in “Input.xlsx” to remind the user 

to check that data have carried from the appropriate fields in analysis worksheets, so that 

all data are included in the model. 

The “Borings” worksheet is set to deal with 200 unique borings. The information 

provided in the “Borings” worksheet is the same information stored in “Boring Location 

Information.xlsx.” 
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Figure 2-6: “Borings” Worksheet of “Input.xlsx” 

The next worksheet, “Design Su,” in “Input.xlsx” is where the design undrained 

shear strengths are listed as collected from the data provider. 

 

Figure 2-7: “Design Su” worksheet of “Input.xlsx” 

  The ID and name are the same as in “Boring Location Information.xlsx.” The 

unique number is calculated as multiplying the ID by one thousand and adding the start 

depth of the sample. This was chosen based on the potential amount of data so that each 

individual data point has its own unique identifier. The depths of sampling are provided 

from the data provider with the design undrained shear strength and unit weight. The 

effective strength is calculated as follows: 

                                                      (2.1) 

                                       (2.2) 
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where:           = vertical effective stress at depth of top of sample 

         = vertical effective stress at depth of bottom of sample 

           = vertical effective stress at top of sample 

 The remolded design shear strength data input, “Design Su_r” worksheet, is set up 

similar to “Design Su,” but with the remolded design undrained shear strength profile.  

 

 

Figure 2-8: “Design Su_r” Worksheet of “Input.xlsx” 

   

 The next worksheet in Input.xlsx is called “Input-Su and Su_avg.” This worksheet 

contains the point undrained shear strength, column G, read from the design profile in 

“Design Su,” and the depth-averaged undrained shear strength, which is calculated from 

the point undrained shear strength as documented in Appendix A from Cheon (2011). 
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Figure 2-9: “Input-Su and Su_avg” worksheet of “Input.xlsx” 

Column A is a unique identifier for each data point determined by numbering the 

individual data points in ascending order. This “i” value is the value that corresponds to 

the “2000 unique Su and Su-avg data points” mentioned in the text box. The worksheet is 

set to deal with a maximum of 2000 unique data points.  

The next columns are where the user inputs data in ten-foot increments as 

prescribed by the model (Cheon 2011), starting with z=10 feet and continuing in ten-foot 

increments until the bottom of sampling for that boring. For example, if a boring is 

sampled from 2 to 75 feet, there will be seven unique data points from z=10 ft to z=70 ft. 

The point design undrained shear strength, Su, column F, is found as the point on the 

design shear strength profile, provided in “Design Su.” The depth-averaged design 

undrained shear strength is found as the area under the point-undrained shear strength 

profile curve. The depth-averaged design undrained shear strength is calculated as 

follows: 

          
 

 
∫        

 

 
       (2.3) 
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where: L=depth of penetration in feet 

Using the data provided in figure 2-6 with equation 2.3, the depth-averaged 

undrained shear strength at 10 feet is calculated as follows: 

           
 

  
[
        

 
    

             

 
   ]             

 Columns L and M are the average side shear and end bearing, which are the 

factored depth-averaged undrained shear strength and point undrained shear strength, 

respectively. 

                    (2.4) 

                    (2.5) 

where:     = factored average side shear at depth 

     = depth-averaged shear strength 

 = friction factor for side shear 

     = unit end bearing at depth 

     = point undrained shear strength 

  = bearing capacity factor 

The next worksheet in “Input.xlsx” is for use in lower bound axial capacity 

analyses, “Input-Sur and Sur_avg”. The calculations are the exact same as the 

undisturbed strengths except for the data being used. The data used are from the 

remolded samples, where the design remolded undrained shear strength profiles are 

located in “Design Su_r.” 
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Figure 2-10: “Input-Sur and Sur_avg” Worksheet of “Input.xlsx” 

The identifying numbers, “i,” are reused with the data used in different analyses. 

The data sets share the same names as well. The equations to find the averaged side shear 

and unit end bearing here are the same as for “Input Su”, but use an alpha of 1 to account 

for remolded strengths being used in this lower-bound analysis. 

The final worksheet of “Input.xlsx” is stores the equivalent linear undrained shear 

strength profile, Su1. This gradient is calculated using the nonlinear design undrained 

shear strength profile. The lateral capacity is found for the design profile using “UT 

Caisson Capacities.xlsm.” Then, the user uses “Fall16Rev3Mar2008-N.xlsm” and 

calculates the lateral capacity while guessing on the shear strength gradient until the 

lateral capacity matches that calculated in “UT Caisson Capacities.xlsm.” 
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Figure 2-11: "Input-Su1" Worksheet of "Input.xlsx" 

2.2 ANALYSIS IMPLEMENTATION 

The analysis workbooks are grouped according to their respective results. The 

workbooks used for axial capacity analysis are set up very similarly while the workbooks 

used for lateral capacity analysis are set up similarly as well. The models referenced from 

Cheon (2011) in this section are presented in Appendix A. 

The “Home” worksheets within the workbooks have been enhanced to make the 

database more transparent and more user-friendly. The “Home” worksheets now contain 

notes on how to use the workbook from inputting information to finding the calculated 

results and seeing the ranges in the correlated data that were used in the calculations. The 

“Borings” worksheets in the analysis workbooks is similar to the “Borings” worksheet in 

“Input.xlsx” and the number of borings should be the same between the “Borings” 

worksheets. 

There are visual similarities between the worksheets within the analysis 

workbooks in the organization of the data and model calculations. The orange, gray, or 
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white cells are either linked to other worksheets within that workbook or are linked to 

worksheets within “Input.xlsx” and the blue cells are the results of the calculations. 

Figures are provided to follow the process of inputting new data, which cells are 

activated during analysis, and where to find the generated results. The information in the 

“Borings” and “Input” worksheets must be linked to “Input.xlsx” through the following 

path within Excel: Data → Connections → Edit Links and then either Update Values if 

the source is already linked or Change Source if the proper Input workbook is not linked. 

2.2.1 Unfactored Undrained Shear Strength Analysis 

“Depth-Averaged and Point Undrained Shear Strength.xlsm” calculates the mean, 

standard deviation, and coefficient of variation of the unfactored depth-averaged 

undrained shear strength and the unfactored point undrained shear strength of both the 

generic and the conditional models.  
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Figure 2-12: “Home” Worksheet Information of “Depth-Averaged and Point Undrained 

Shear Strength.xlsm” 

CHEON, JEONG YEON-UT2009   luv.doogie@gmail.com

Revisions by:

Zadrozny, Katherine - UT 2013 zadroke@gmail.com

♦NOTE

-Do not move, delete or hide worksheets.

-Fill or change values only in the yellow highlighted cells.

-This workbook has been updated so that the macros work with the present version of Microsoft Excel 2010.

-As more data is received, make sure to carry down the formulas within the [Input] sheet and update the n-value, G4, to match the number of data points 

Input worksheet

Borings Contains UT ID, data set name, location information, Utm zone

Input Contains Su and Su_avg with depth and correlation calculations

Calculation worksheet

generic and conditioned

Reports generic Su and Su_avg and spatially conditioned, 

unfactored, Su and Su_avg calculated from muliple existing data 

points

Correlated Data
Reports ranges of correlation coefficients with maximum and 

minimum corresponding data point

cmatrix Covariance matrix calculations

♦how to use:

1. Check all input data in the "INPUT.xls" workbook (C:\BP-database\C-Analysis Workbooks\)

2. Fill the model parameters in the "[nput] worksheet for depth averaged and point shear strength, respectively: cells B3-10 and D3-D10.

3.Go to the [generic and conditioned] sheet and fill in location information it UTM format.

4. Fill in specified caisson diameter.

5. To generate a profile, generate results at a regular depth interval (i.e. 10 foot intervals to a depth of 100 ft).

6. With steps 3,4, and 5, the results for generically calculated values will be shown with each interval.

7. Click the macro button to calculated spatially conditioned shear strengths

8. If there is an error in the data being "out of range," increase the m1 and m2 values, G2 and G3, in [Input].

9. If the results return no correlated points for the spatially conditioned profile, try increasing the m1 and m2 values, G2 and G3, in [Input].

♦results of [generic and conditioned]:

1. The mean spatially conditioned depth averaged shear strength is given in cell I4.

2. The spatially conditioned point shear strength is given in cell I9.

3. In columns L-T, are the data sets that were used in the spatially conditioned calculations for depth averaged shear strength.

4. In columns V-AD, are the data sets that were used in the spatially conditioned calculations for point shear strength.

To change or update values in the 
[Borings] sheet, open c:\BP-database\C-
Analysis Workbooks\INPUT.xls.x

To change or update values in the [Input] sheet, copy the 
formulas throughout all the columns , A-AH, to include all data 
from c:\BP-database\C-Analysis Workbooks\INPUT.xls.x
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Figure 2-13: “Borings” Worksheet of “Depth-Averaged and Point Undrained Shear 

Strength.xlsm” 

The “Input” worksheet of this workbook contains the design shear strength data 

from “Input-Su and Su_avg” of “Input.xlsx” and the calculations that correlate those 

points to the user-input foundation location for analysis. 

 

Figure 2-14: “Input” Worksheet of “Depth-Averaged and Point Undrained Shear 

Strength.xlsm” 

The model parameters listed in the top right corner of the worksheet are used to 

calculate depth-averaged undrained shear strength and point undrained shear strength for 
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each data point, i.e. each “i.” The number of data points, cell G4, uses the built-in Excel 

Count() function to count how many data points are currently available for analysis.  

Columns A, C, D, E, and F are all linked to “Input-Su and Su_avg” of 

“Input.xlsx.” Columns B and G-K are as explained in 2.1.3. Columns G-K are linked to 

the “Borings” worksheet within this analysis workbook using the built-in Excel function 

Vlookup(). The Vlookup() function finds  the UT ID in Column C in “Borings” and then 

returns the respective value, such as x, y, or data set. 

Scrolling right within “Input” shows where the calculations are performed for 

analysis. The reliability-based model is provided in Appendix A with the calculations 

used to populate the cells. 

 

Figure 2-15: “Input” Worksheet Calculations of “Depth Averaged and Point Undrained 

Shear Strength.xlsm” 

These fields are located in columns P-AJ of the “Input” worksheet. They are 

numbered to help reference the columns in the VBA code provided in Appendix B which 

is used to generate results. Columns 16-33 are as calculated in Appendix A and use the 

same parameters that Cheon (2011) devised for the model. The “i” value is provided to 

the right for ease of referencing so that the user doesn’t have to scroll from side to side of 

the worksheet. The ranks of columns 30 and 31 are an enhancement to the database and 

are used to select the highest 50 correlated values to be used in the  covariance matrix 

calculations, provided in Appendix A. 
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The next worksheet of this workbook is where the macro button is to return the 

calculated results for the generic and conditioned models relating a new foundation 

location to the existing data.  

 

Figure 2-16: “Generic and Condtioned” Worksheet of “Depth-Averaged and Point 

Undrained Shear Strength.xlsm” 

The generic model will be the same at depth regardless of location. The spatially 

conditioned results are calculated by clicking on the orange button which runs the macro 

and populates the blue cells. 

Upon putting in a new location, certain columns of the “Input” worksheet change 

to relate the new location to each data point. Columns A-K will stay the same regardless 

of what new location is put in and columns P-AJ will be populated using the model 

developed by Cheon (2011). Then a rank for correlation coefficient values of depth-

averaged undrained shear strength and point undrained shear strength between existing 

datum and the new location is produced. The top fifty correlation coefficients correspond 

to the data points that are used in the covariance matrix analysis to generate the spatially 

conditioned results. 



22 

 

Also within this analysis worksheet are those 50 correlated data points used in the 

calculations. 

 

Figure 2-17: Correlated Data Points Used in Calculations from “Generic and 

Conditioned” Worksheet of “Depth-Averaged and Point Undrained Shear 

Strength.xlsm” 

The “Correlated Data” worksheet has been added to check and make sure the 

model is working correctly and that the model is using fifty individual correlated data 

points. Columns M and W of “Generic and Conditioned” are further analyzed in the next 

worksheet to show the ranges of the correlation coefficients.  

 

 

Figure 2-18: “Correlated Data” Worksheet of “Depth-Averaged and Point Undrained 

Shear Strength.xlsm” 

These tables in “Correlated Data” read information from the two tables in 

“Generic and Conditioned” and return the highest and lowest correlation coefficients 
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used in analysis with their corresponding data set “i,” which is column A in the “Input” 

worksheet of this analysis workbook. The correlation coefficient limits are set to provide 

an overview of the correlated data used. The current display is showing 50 points with 

correlation coefficients of 0 to 0.1 because there was no analysis run. The sum to check 

should always be 50, all coefficients will be accounted for when “sum to check:” reads 

“50 Correlated Points.” 

2.2.2 Average and Lower Bound Axial Capacity Analyses 

Generic and Conditional Axial Capacity 

“Generic and Conditional Axial Capacity.xlsm” calculates the mean, standard 

deviation, and coefficient of variation of the axial side shear capacity, the axial end 

bearing capacity, and the total axial capacity of a new location using just one location or 

using the fifty locations with the highest correlation coefficients. The analysis returns a 

generic and conditional additional partial spatial factor of safety using a target reliability 

index to reflect the uncertainty in the model from not having exact site specific data. 
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Figure 2-19: “Home” Worksheet of “Generic and Conditional Axial Capacity.xlsm” 

CHEON, JEONG YEON-UT2009   luv.doogie@gmail.com

Revisions by:

Zadrozny, Katherine - UT 2013 zadroke@gmail.com

♦NOTE

-Do not move, delete or hide worksheets.

-Fill or change values only in the yellow highlighted cells.

-This workbook has been updated so that the macros work with Microsoft Excel 2010.

-As more data is received, make sure to carry down the formulas within the [Input] sheet and update the n-value, G4, to match the available number of data points.

Input worksheet

Borings Contains UT ID, data set name, location information, Utm zone

Input Contains Su and Su_avg with depth and correlation calculations

Calculation worksheet

1 existing data point

Reports axial capacity conditioned generically and exactly as reported from one 

existing data point

multiple existing data points

Reports generic capacty and axial capacity conditioned generically and 

spatially from muliple existing data points

Correlated Data
Reports ranges of correlation coefficients with maximum and minimum 

corresponding data point

cmatrix Covariance matrix calculations

♦how to use:

1. Check all input data in the "INPUT.xls" workbook (C:\BP-database\C-Analysis Workbooks\)

2. Fill the model parameters in the [Input] worksheet for side shear and end bearing, respectively: cells B3-B10 and D3-D10.

3. Go to the [multiple existing data points] sheet and fill in location information in UTM format.

4. Fill in specified caisson diameter and length and check that the correlation coefficient is 0.5.

5. Fill in the statistical parameters for the reliability-based design.

6. With steps 3, 4, and 5, the results for the generically calculated values will be shown.

7. Click the macro button to calculate spatially conditioned capacities.

8. If there is an error in the data being "out of range," increase the m1 and m2 values, G2 and G3, in [Input].

9. If the results return no correlated points for the spatially conditioned profile, try increasing the m1 and m2 values, G2 and G3, in [Input].

♦results of [multiple existing data points]:

1. The mean spatially conditioned total axial capacity is given in cell I20.

2. The partial spatial factor of safety and the partial resistance factor are given in cells I38 and I39, respectively.

3. In columns L-T, are the data sets that were used in the spatially conditioned calculations for side shear.

4. In columns V-AD, are the data sets that were used in the spatially conditioned calculations for end bearing.

To change or update values in the [Borings] sheet, 
open c:\BP-database\C-Analysis 
Workbooks\INPUT.xls.x

To change or update values in the [Input] sheet, copy the 
formulas throughout all the columns , A-AH, to include all 
data from c:\BP-database\C-Analysis Workbooks\INPUT.xlsx.
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Figure 2-20: “Borings” Worksheet of “Generic and Conditional Axial Capacity.xlsm” 

The “Input” worksheet of this workbook contains the shear strength data from 

“Input-Su and Su_avg” of “Input.xlsx” and the calculations that correlate those data 

points to the user-input foundation location for analysis. It is similar to the depth-

averaged and point undrained shear strength data with factors, α and Nc, to convert the 

shear strengths to axial capacities. 

 

Figure 2-21: “Input” Worksheet of “Generic and Conditional Axial Capacity.xlsm” 

The model parameters listed in the top right corner of the worksheet are used to 

calculate depth-averaged undrained shear strength and point undrained shear strength for 

each data point, i.e. each “i.” The average side shear and unit end bearing capacity 

calculations use these parameters and then factor the strengths accordingly to produce 
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side shear and end bearing capacities. The number of data pointts, cell G4, uses the built-

in Excel Count() function to count how many data points are currently available for 

analysis.  

Columns A, C, D, E, and F are all linked to “Design-Su and Su_avg” of 

“Input.xlsx.” Columns B and G-K are as explained in 2.1.3. Columns G-K are linked to 

the “Borings” worksheet within this analysis workbook using the built-in Excel function 

Vlookup(). The Vlookup() function finds  the UT ID in Column C in “Borings” and then 

returns the respective value, such as x, y, or data set. 

Scrolling right within “Input” shows where the calculations are performed for 

analysis. The reliability-based model is provided in Appendix A with the calculations 

used to populate the cells. 

 

 

Figure 2-22: “Input” Worksheet Calculations of “Generic and Conditional Axial 

Capacity.xlsm” 

These fields are located in columns P-AJ of the “Input” worksheet. They are 

numbered to help reference the columns in the VBA code. Columns 16-33 are as 

calculated in Appendix A and use the same parameters that Cheon (2011) devised for the 

model. The “i” value is provided to the right for ease of referencing so that the user 

doesn’t have to scroll from side to side of the worksheet. Columns 30 and 31 are an 
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enhancement to the existing database and are used to select the highest 50 correlated 

values to be used in the c-matrix calculation to generate the results. 

The next worksheet of this workbook is where the results for the generic and 

conditioned models relating a new foundation location to one existing data point are 

located. 

 

Figure 2-23: “1 Existing Data Point” Worksheet of “Generic and Conditional Axial 

Capacity.xlsm” 

This implementation of the model is useful to see how the results change with 

respect to singular points. The information presented for the generic model is still the 

same over the whole site regardless of where the new location is and which of the 

existing data points are being used. The spatially conditioned model will be different than 

when using the fifty highest correlated data points because the model is correlating 

between different data. 
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Figure 2-24: “Multiple Existing Data Points” Worksheet of “Generic and Conditional 

Axial Capacity.xlsm” 

The generic model will be the same at a given caisson length and diameter 

regardless of location. The example provided was chosen arbitrarily to display the 

unconditional results. The spatially conditioned results are calculated by clicking on the 

orange button, which runs the macro. The code for the macro is provided in Appendix B. 

New location (X) 1-1.Generic Unit Avg.Side Shear 2-1.Spatially Conditioned Avg.Side Shear

D(ft) 16 μFs(L) 0.1923 ksf μFs, X|Y1,…,Yn 0.1923 ksf

L or LX (ft) 60 σFs(L) 0.0296 ksf σFs, X|Y1,…,Yn 0.0296 ksf

Easting (ft) 2,500,000.0 δFs(L) 0.1539 δFs, X|Y1,…,Yn 0.1540

Northing (ft) 9,800,000.0

UTM zone 15N 1-2.Generic Unit End Bearing 2-2.Spatially Conditioned End Bearing

x 2500000.0 μFB(L) 4.61700 ksf μFB, X|Y1,…,Yn 4.6165 ksf

y 9800000.0 σFB(L) 0.7920 ksf σFB, X|Y1,…,Yn 0.7920 ksf

δFB(L) 0.1715 δFB, X|Y1,…,Yn 0.1716

r  FS,FB 0.5 Soil contribution Only Soil contribution Only

1-3.Generic Axial Capacity 2-3.Spatially Conditioned Axial Capacity

μQside 580 kips μQside,X|Y1,…,Yn 580 kips

σQside 89 kips σQside,X|Y1,…,Yn 89 kips

δQside 0.1539 δQside,X|Y1,…,Yn 0.1540

μQend 928 kips μQend,X|Y1,…,Yn 928 kips

θH (ft) 11404 σQend 159 kips σQend,X|Y1,…,Yn 159 kips

θV (ft) 30 δQend 0.1715 δQend,X|Y1,…,Yn 0.1716

End Bearing μQ 1508 kips μQ,X|Y1,…,Yn 1508 kips

θH (ft) 8869 σQ 218 kips σQ,X|Y1,…,Yn 218 kips

θV (ft) 25 δQ 0.1446 δQ,X|Y1,…,Yn 0.1446

To change values below , go to the[ Input] sheet

α 0.8

Nc 9 Reliability-based design Reliability-based design

β 4.5 β 4.5

W' 0.0 W' 0.0

ρ 0.5 ρ 0.5

ΩR 0.3 ΩR 0.3

ΩS 0.1 ΩS 0.1

ΩR' 0.3000 ΩR' 0.3000

μR 1508 μR 1508

σR 218 σR 218

δR 0.1446 δR 0.1446

FsδR 1.1522 FsδR 1.1522

ΦδR 0.8679 ΦδR 0.8679

RESULTS

Side shear

INPUT

Click to calculate spatially conditioned capacity
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The reliability-based design is shown in the lower part of the worksheet and 

provides an additional partial spatial factor of safety, FsδR, and an additional partial 

resistance factor, φδR.  

Upon putting in a new location, certain columns of the “Input” worksheet change 

to relate the new location to each data point. Columns A-K will stay the same regardless 

of what new location is put in and columns P-AJ will be populated using the model 

developed by Cheon (2011). Then a rank for correlation coefficient values of depth-

averaged undrained shear strength and point undrained shear strength between existing 

datum and the new location is produced. The top fifty correlation coefficients correspond 

to the data points that are used in the covariance matrix analysis to generate the spatially 

conditioned results. 

Also within this analysis worksheet are those 50 correlated data points used in the 

calculations. 

 

Figure 2-25: Correlated Data Points Used in Calculations from “Multiple Existing Data 

Points” Worksheet of “Generic and Conditional Axial Capacity.xlsm” 

The “Correlated Data” worksheet has been added to check and make sure the 

model is working correctly and  is using fifty individual correlated data points for 

analysis. Columns M and W of “Multiple Existing Data Points” are further analyzed in 

the next worksheet to show the ranges of the correlation coefficients.  
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Figure 2-26: “Correlated Data” Worksheet of “Generic and Conditional Axial 

Capacity.xlsm” 

These tables read information from the lists of correlated data points in “Multiple 

Existing Data Points” and return the highest and lowest correlation coefficients used in 

calculations with their corresponding data set “i,” which is column A in the “Input” 

worksheet of this analysis workbook. The correlation coefficient limits are set to provide 

an overview of the correlated data used. The current display is showing 50 points with 

correlation coefficients of 0 to 0.1 because there was no analysis run. The sum to check 

should always read “50 Correlated Points”, showing that all correlation coefficients are 

accounted for. 

Generic and Conditional Lower Bound Axial Capacity with Additional Factor of Safety 

“Generic and Conditional Lower Bound Axial Capacity.xlsm” calculates the 

mean, standard deviation, and coefficient of variation of the lower bound axial side shear 

capacity, the lower bound axial end bearing capacity, and the lower bound total axial 

capacity of a new location using just one location or using the fifty locations with the 
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highest correlation coefficients. Also, using the fifty locations with the highest correlation 

coefficients, the analysis returns a generic and conditional additional partial spatial factor 

of safety using a target reliability index to reflect the uncertainty in the model from not 

having exact site specific data. The organization is the exact same as “Generic and 

Conditional Axial Capacity.xlsm” but using the remolded undrained shear strength data 

and is linked to “Input-Sur and Sur_avg” of “Input.xlsx.” 

2.2.3 Lateral Capacity Analyses 

Generic and Conditional Equivalent Linear Undrained Shear Strength for Lateral 

Capacity 

“Generic and Conditional Equivalent Linear Undrained Shear Strength for Lateral 

Capacity.xlsm” calculates the mean, standard deviation, and coefficient of variation of a 

linear shear strength profile. This information is used along and in another workbook, 

documented in the next subsection, when calculating lateral capacity. Also, using the fifty 

locations with the highest correlation coefficients, the analysis returns a generic and a 

conditional equivalent linear undrained shear strength at depth.  
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Figure 2-27: “Home” Worksheet of “Generic and Conditional Equivalent Linear 

Undrained Shear Strength.xlsm” 

 

CHEON, JEONG YEON-UT2009   luv.doogie@gmail.com

Revisions by:

Zadrozny, Katherine - UT 2013 zadroke@gmail.com

♦NOTE

-Do not move, delete or hide worksheets.

-Fill or change values only in the yellow highlighted cells.

-This workbook has been updated so that the macros work with the present version of Microsoft Excel 2010.

-As more data is received, make sure to carry down the formulas within the [Input] sheet and update the n-value, G4, to match the available number of data points.

Input worksheet

Borings Contains UT ID, data set name, location information, Utm zone

Input Contains Su1 with depth and correlation calculations

Calculation worksheet

generic and conditioned

Reports generic and spatially conditioned Su1 from multiple existing data 

points

Correlated Data
Reports ranges of correlation coefficients with maximum and minimum 

corresponding data point

cmatrix Covariance matrix calculations

♦how to use:

1. Check all input data in the "INPUT.xls" workbook (C:\BP-database\C-Analysis Workbooks\)

2. Fill the model parameters in the [Input] worksheet for equivalent linear shear strength: cells B3-B8.

3. Go to the [generic and conditioned] sheet and fill in location information in UTM format.

4. Fill in the depth at which is desired for lateral capacity calculations, which is generally the caisson length.

5. With steps 3 and 4, the results for the generically calculated values will be shown.

6. Click the macro button to calculate spatially condtioned equivalent linear shear strength.

8. If there is an error in the data being "out of range," increase the m value, G2, in [Input].

9. If the results return no correlated points for the spatially conditioned profile, try increasing the m value, G2, in [Input].

♦results of [generic and conditioned]:

1. The mean spatially conditioned total axial capacity is given in cell I4.

2. In columns L-T, are the data sets that were used in the spatially conditioned calculations for equivalent linear shear strength.

To change or update values in the 
[Borings] sheet, open c:\BP-
database\C-Analysis 
Workbooks\INPUT.xls.x

To change or update values in the [Input] 
sheet, copy the formulas throughout all the 
columns , A-AH, to include all data from c:\BP-
database\C-Analysis Workbooks\INPUT.xlsx.
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Figure 2-28: “Borings” Worksheet of “Generic and Conditional Equivalent Linear 

Undrained Shear Strength.xlsm” 

The “Input” worksheet of this workbook contains the shear strength data from the 

“Input-Su1” worksheet of “Input.xlsx” and the calculations that correlate those points to 

the requested data location for analysis. 

 

 

Figure 2-29: “Input” Worksheet of “Generic and Conditional Equivalent Linear 

Undrained Shear Strength.xlsm” 

The model parameters listed in the top right corner are used to calculate statistical 

parameters as outlined in Appendix A for the slope of the linear shear strength profile, 

Su1, for each data point, i.e. each “i.” The number of data points, cell G4, uses the built-in 

Excel Count() function to count how many data points are currently available for 

analysis.  

Columns A, C, D, E, and F are all linked to “Input-Su1” of “Input.xlsx.” Columns 

G-K are linked to the “Borings” worksheet within this analysis workbook using the built-
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in Excel function Vlookup(). The Vlookup() function finds  the UT ID in Column C in 

“Borings” and then returns the respective value, such as x, y, or data set. 

Scrolling right within “Input” shows where the calculations are performed for 

analysis. The reliability-based model is provided in Appendix A with the calculations 

used to populate the cells. 

 

Figure 2-30: “Input” Worksheet Calculations of “Generic and Conditional Equivalent 

Linear Undrained Shear Strength.xlsm” 

These fields are located in columns P-AJ of “Input. They are numbered to help 

reference the columns in the VBA code. Columns 16-21, 28-30, and 32 are as calculated 

in Appendix A and use the same parameters that Cheon (2011) devised for the model. 

The “i” value is provided to the right for ease of referencing so that the user doesn’t have 

to scroll from side to side of the worksheet. The ranking of correlation coefficients of 

column 30 is an enhancement to the database and is used to select the highest 50 

correlation coefficient values to be used in the c-matrix calculation to generate the results. 

The next worksheet of this workbook is where the macro button is to return the 

calculated results for the generic and conditioned models relating a new site to the 

existing data.  
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Figure 2-31: “Generic and Conditioned Worksheet” of “Generic and Conditional 

Equivalent Linear Undrained Shear Strength.xlsm” 

The generic model will be the same at a given caisson length and diameter 

regardless of location. The spatially conditioned results are calculated by clicking on the 

orange button, which runs the macro. The code for the macro is provided in Appendix B. 

Upon putting in a new foundation location, certain columns of the “Input” 

worksheet change to correlate the new location to each existing data point. Columns A-K 

stay the same as they are specific for each data point. Columns P-AI change with a new 

foundation location as those are the cells that are populated using the model developed by 

Cheon (2011) to generate the rank of correlation coefficient values of the equivalent 

shear strength profile between existing data and the new location. The top fifty 

correlation coefficients correspond to the data points that are used in the c-matrix 

analysis, as provided in Appendix A, to generate the spatially conditioned results. 

Also within this analysis worksheet are the correlated data points used in the 

calculations. 
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Figure 2-32: Correlated Data Points Used in Calculations of “Generic and Conditioned” 

Worksheet of “Generic and Conditional Equivalent Linear Undrained Shear 

Strength.xlsm” 

The “Correlated Data” worksheet has been added to check and make sure the 

model is working correctly and that the model is using fifty individual correlated data 

points. Column M “Generic and Conditioned” is further analyzed in the next worksheet 

to show the ranges of the correlation coefficients.  

 

 

Figure 2-33: “Correlated Data” Worksheet of  

This table reads information from “Generic and Conditioned” and returns the 

highest and lowest correlation coefficients used in calculations with their corresponding 

data point “i,” which is column A in the “Input” worksheet of this analysis workbook. 

The correlation coefficient limits are set to provide an overview of the correlated data 
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used. The current display is showing 50 points with correlation coefficients of 0 to 0.1 

because there was no analysis run. The sum to check should always read “50 Correlated 

Points”, showing that all coefficients are accounted for. 

Modified Additional Factor of Safety for Lateral Capacity 

“Modified Additional Factor of Safety for Lateral Capacity.xlsx” was created by 

Ching Hsiang Chen (2012). This implement uses results from “Generic and Conditional 

Equivalent Linear Undrained Shear Strength.xlsm” to produce a lateral capacity at a 

location using the equivalent linear shear strength gradient and corresponding depth of  

suction caisson penetration. There are only two worksheets within this workbook, a 

“Home” worksheet that provides notes and instructions to use the workbook and an 

“Analysis” worksheet that reports generically or spatially conditioned lateral capacity 

with an additional partial spatial factor of safety to apply in lateral capacity design. The 

analysis will report a generic capacity if the generic equivalent linear profile is input and 

will report a spatially conditioned capacity if the spatially conditioned equivalent linear 

profile is input. 
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Figure 2-34: "Home" Worksheet of "Modified Additional Factor of Safety for Lateral 

Capacity.xlsm" 
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Figure 2-35: “Analysis” Worksheet of “Modified Lateral Capacity with Additional Factor 

of Safety.xlsm” 

The user will input information to calculate the lateral capacity and use Solver to 

produce the mean, standard deviation, and coefficient of variation of the lateral capacity 

with the provided information. The depth to center of rotation is highlighted with red text 

to emphasize that the user needs to put in an estimate for Solver to work correctly. Solver 

works with the worksheet, which is calculating lateral capacity as described in Appendix 

A and is iterating through calculations to find a minimum capacity by changing the depth 

to center of rotation which is the limiting factor. 
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Note that the worksheet is applicable to a depth of penetration less than two 

hundred feet. Also, the text in column L tells the user to not change anything to the right 

of that column as those are the model calculations.  

Once the user has input specifications for design, open the Solver function box, 

within the Data menu in Excel. Solver will then step through the model as implemented 

by Ching-Hsiang Chen (2012) to produce a minimum lateral capacity by changing the 

depth to the center of rotation. The reliability based design operates as stated in the model 

developed by Cheon (2011) to yield an additional partial spatial factor of safety to 

account for the uncertainty in spatial variations in soil properties. 

2.2.4 UT Caisson Capacities via Linear or Nonlinear Profile 

“UT Caisson Capacities.xlsm” calculates axial and lateral capacities for a given 

caisson dimension via a linear or nonlinear design undrained shear strength profile. At 

present use, this workbook should only be used to calculate lateral capacity. The 

calculations use the linear equivalent shear strength profile, Su1, or the nonlinear design 

undrained shear strength profile. 

The “Home” worksheet provides notes for the user on what results the workbook 

provides the user, short descriptions of what each worksheet does within the workbook, 

how to use each of the worksheets, and references for the calculations. The 

“Background” worksheet provides compiled text from the listed references to give the 

user an idea of how the calculations are performed. This background information is 

further supported with Appendix A.  

The “W’caisson” worksheet calculates the approximate submerged unit weight of 

the caisson.  
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Figure 2-36: “W’caisson” Worksheet of “UT Caisson Capacities.xlsm” 

The image in the figure above shows a cross section of the cylindrical caisson 

used in analysis. Each of the variables is defined here, with the calculations explained in 

“Background.” The final worksheet listed is “2-tip” which steps through the calculations 

for lateral capacity as explained in Appendix A and that follow the model provided in 

Aubeny et al (2001 and 2003). 
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“Calculation-nonlinear” is where the user will put in his caisson dimensions, 

undrained shear strength profile, and submerged unit weight profile of the soil to get 

either the axial capacity or the lateral capacity. 

 

Figure 2-37: Caisson Parameter Inputs with Example Su Profile of “Calculation-

nonlinear” Worksheet of “UT Caisson Capacities.xlsm” 

The example Su profile is provided to show the user how to input values into the 

design shear strength profile table. The point undrained shear strength is listed with its 

corresponding depth to provide the nonlinear profile for analysis. If analyzing a linear 
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profile, the user will simply input the shear strength at the mudline, either calculated 

using previous analysis implements or using data from Input.xlsx, to find the equivalent 

linear profile for data, which is explained in the case study, and then the equivalent linear 

shear strength value at depth. 

 

Figure 2-38: Shear Strength and Submerged Unit Weight Profile Inputs of “Calculation-

nonlinear” Worksheet of “UT Caisson Capacities.xlsm” 

The R- and N- values in the yellow outlined table are from the model developed 

by Aubeny et al (2001 and 2003). The Lo value, the depth to the center of rotation in 

lateral capacity analysis, is initially guessed by the user to begin the calculation iterations.  
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Figure 2-39: Instructions and Results of Analysis in “Calculation-nonlinear” Worksheet 

of “UT Caisson Capacities.xlsm” 

The text box gives instructions on how to use Solver to generate results. Note that 

axial capacity and lateral capacity cannot be solved simultaneously due to the fact that 

alpha is different for each analysis as it has been applied for this research. Also, note that 

the lateral capacity is dependent on the user-input load attachment point. The text box to 

the right of the figure reminds the user to not change columns to the right as that 

information is the model implementation. 

2.3 SUMMARY OF FRAMEWORK DOCUMENTATION 

This chapter provided the user with the necessary steps and accompanying figures 

to operate the database. The Input files were documented to show the user how to store 

boring information from the data provider and where to input that data to specific 

worksheets from which the data are used in analysis. The user also has a quick guide on 

how to operate each analysis workbook with the revised “Home” worksheets. 



45 

 

 Framework Demonstration Chapter 3:

This chapter demonstrates the process of receiving and inputting data, producing 

results from that existing data, and showing which results are ultimately emphasized to be 

applied in foundation design. Section 3.1 outlines receiving and inputting data. Section 

3.2 outlines generating results, which is independent of section 3.1 

3.1 INPUTTING NEW DATA 

The data are given as undrained shear strength at a point at sampling intervals. 

The boring data are provided with location in UTM format. The data are initially input as 

provided from field and lab test results, at the sampling depth within the boring with the 

thickness of the sample between testing depths, design shear strength, and unit weight. 

The data needs to be listed by data points at ten foot intervals for analysis, and 

then the necessary calculations are performed to report design undrained shear strengths 

at a point, averaged over depth, and equivalent linear gradient. 

Table 3-1: Raw Data for Boring A 

z (ft) Design Shear Strength (psf) 

0 25 

2 25 

15 65 

25 150 

56 490 

This profile is translated to ten-foot intervals by reading the data at that depth on 

the curve to create a design undrained shear strength profile to the depth of exploration 

within the geologic setting, i.e. disregarding heavily consolidated materials from an 

ancient debris flow. 
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The depth-averaged shear strength is found by calculating the area under the point 

undrained shear strength curve with the provided design shear strength profile. Note that 

data at the mudline is not part of the used data. An example of the steps is given here for 

Boring A: 

 

 

Figure 3-1: Design Undrained Shear Strength for Boring A 

The depth-averaged undrained shear strength and equivalent linear undrained 

shear strength were then calculated as follows from the interpolated data: 
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Capacities.xlsm.” The lateral capacity is then found. To find the equivalent gradient, use 

“Fall16Rev3Mar2008-N.xlsx” and estimate the gradient, cell D24 in the “InputForm” 

worksheet. By implementing a guess-and-check process, guess the gradient until the 

lateral capacities are practically equal.  

Table 3-2: Input Design Shear Strengths for Boring A 

z (ft) Su (psf) z (ft) Su (ksf) Su,avg (ksf) Su1 (psf/ft) 

0 25 10 .0496 .0373 - 

2 25 20 .1075 .0579 - 

15 65 30 .2048 .0907 - 

25 150 40 .3145 .1329 - 

56 490 50 .4242 .1802 7.1889 

3.2 SHOWING RESULTS 

The results produced were a combination of the data, spatial variations between 

data points, and statistical reliabilities using the models as defined in Appendix A. 

Provided in this section are results for a sample location and then figures showing 

comparisons of all results.  

Pipeline end termination (PLET) 1 is located in an area with 12 existing data 

points that were used to calculate design capacities at that site. These existing data points 

are correlated to PLET 1 as described in Appendix A.  
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Figure 3-2: Location of PLET 1 with 12 Nearest Data Borings  

The generic profiles were first reported as those are the same regardless of where 

the new foundation locations are. Those values for depth-averaged and point undrained 

shear strength are found by putting the location and depth information in “Depth-

Averaged and Point Undrained Shear Strength.xlsm.” This screenshot shows the results 

at a penetration of ten feet. 
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Figure 3-3: Results Generated Using "Depth-Averaged and Point Undrained Shear 

Strength.xlsm" 

Table 3-3: Generic Undrained Shear Strength Profiles 

  Depth-Averaged Undrained Shear Strength Undrained Shear Strength at a Point 

z 
(ft) 

μSu 
(ksf) σ μ+σ μ-σ δ 

μSu 
(ksf) σ μ+σ μ-σ δ 

0 0.0100 0.0100 0.0200 0.0000 1.0000 0.0150 0.0100 0.0250 0.0050 0.6667 

10 0.0464 0.0145 0.0609 0.0319 0.3125 0.0955 0.0230 0.1185 0.0725 0.2408 

20 0.0836 0.0190 0.1026 0.0646 0.2273 0.1770 0.0360 0.2130 0.1410 0.2034 

30 0.1216 0.0235 0.1451 0.0981 0.1933 0.2595 0.0490 0.3085 0.2105 0.1888 

40 0.1604 0.0280 0.1884 0.1324 0.1746 0.3430 0.0620 0.4050 0.2810 0.1808 

50 0.2000 0.0325 0.2325 0.1675 0.1625 0.4275 0.0750 0.5025 0.3525 0.1754 

60 0.2404 0.0370 0.2774 0.2034 0.1539 0.5130 0.0880 0.6010 0.4250 0.1715 

70 0.2816 0.0415 0.3231 0.2401 0.1474 0.5995 0.1010 0.7005 0.4985 0.1685 

80 0.3236 0.0460 0.3696 0.2776 0.1422 0.6870 0.1140 0.8010 0.5730 0.1659 

90 0.3664 0.0505 0.4169 0.3159 0.1378 0.7755 0.1270 0.9025 0.6485 0.1638 

100 0.4100 0.0550 0.4650 0.3550 0.1341 0.8650 0.1400 1.0050 0.7250 0.1618 

The mean, standard deviation, and coefficient of variation for the spatially 

conditioned model were recorded next. 
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Table 3-4: PLET 1 Spatially Conditioned Undrained Shear Strength Results 

  Depth-Averaged Undrained Shear Strength Undrained Shear Strength at a Point 

z 
(ft) 

μSu 
(ksf) σ μ+σ μ-σ δ 

μSu 
(ksf) σ μ+σ μ-σ δ 

0 0.0100 0.0100 0.0200 0.0000 1.0000 0.0150 0.0100 0.0250 0.0050 0.6667 

10 0.0544 0.0140 0.0684 0.0404 0.2575 0.1006 0.0227 0.1233 0.0779 0.2256 

20 0.0847 0.0184 0.1031 0.0663 0.2167 0.1745 0.0356 0.2101 0.1389 0.2042 

30 0.1217 0.0224 0.1441 0.0993 0.1840 0.2537 0.0482 0.3019 0.2055 0.1899 

40 0.1589 0.0263 0.1852 0.1326 0.1654 0.3320 0.0604 0.3924 0.2716 0.1818 

50 0.1963 0.0300 0.2263 0.1663 0.1529 0.4086 0.0723 0.4809 0.3363 0.1768 

60 0.2343 0.0336 0.2679 0.2007 0.1434 0.4858 0.0838 0.5696 0.4020 0.1725 

70 0.2749 0.0378 0.3127 0.2371 0.1375 0.5691 0.0965 0.6656 0.4726 0.1696 

80 0.3173 0.0421 0.3594 0.2752 0.1328 0.6621 0.1091 0.7712 0.5530 0.1648 

90 0.3603 0.0461 0.4064 0.3142 0.1281 0.7609 0.1212 0.8821 0.6397 0.1592 

100 0.4043 0.0499 0.4542 0.3544 0.1235 0.8538 0.1325 0.9863 0.7213 0.1552 

With this data, the mean (expected value if there was data at that location) profiles 

are plotted showing the data within one standard deviation of the mean, the standard 

deviations are plotted with depth. The standard deviations represent the uncertainty due 

to the fact that there is no data at PLET 1 and exist due to the spatial variability in the 

geologic setting. The design profiles are plotted showing the depth-averaged undrained 

shear strength and the undrained shear strength at a point with the correlated surrounding 

data. The significance of each data point on the conditioned mean is essentially weighted 

by its correlation coefficient, which is reported in the worksheet output with the results, 

also shown in Appendix A. 
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Figure 3-4: PLET 1 Undrained Shear Strength Profiles for Axial Capacity Analysis 
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Figure 3-5: PLET 1 Standard Deviation of Undrained Shear Strength Profiles for Axial 

Capacity Analysis 
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Figure 3-6: PLET 1 Depth-Averaged Undrained Shear Strength Profile for Axial 

Capacity Analysis in Side Shear 
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Figure 3-7: PLET 1 Undrained Shear Strength at a Point Profile for Axial Capacity 

Analysis in End Bearing 

The surrounding data points listed are the sets that were used to formulate the 

profile for PLET 1. The mean profile of the depth-averaged undrained shear strength 

versus depth is used to estimate the axial side shear capacity of a suction caisson. For a 

given depth of penetration, the depth-averaged side shear is multiplied by the 

circumference and length of the caisson and the side shear friction coefficient to calculate 

the side shear. The mean profile of the point undrained shear strength versus depth is 

used to estimate the axial end bearing capacity of a suction caisson. For a given depth of 

penetration, the point undrained shear strength is calculated at the tip of the caisson and 
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multiplied by the cross-sectional area of the tip and the bearing capacity factor to 

calculate the end bearing. 

The next values reported are the spatially conditioned, unfactored, axial capacity 

and the partial spatial factor of safety for axial capacity for a caisson length of sixty feet 

and a caisson diameter of sixteen feet. These results are calculated in “Generic and 

Conditional Axial Capacity.xlsm.” 

 

Figure 3-8: Generic and Conditional Axial Capacity for PLET 1 with Additional Partial 

Spatial Factors of Safety 

New location (X) 1-1.Generic Unit Avg.Side Shear 2-1.Spatially Conditioned Avg.Side Shear

D(ft) 16 μFs(L) 0.1923 ksf μFs, X|Y1,…,Yn 0.1995 ksf

L or LX (ft) 60 σFs(L) 0.0296 ksf σFs, X|Y1,…,Yn 0.0211 ksf 0.7129

Easting (ft) 2,515,072.0 δFs(L) 0.1539 δFs, X|Y1,…,Yn 0.1058

Northing (ft) 9,862,774.0

UTM zone 15N 1-2.Generic Unit End Bearing 2-2.Spatially Conditioned End Bearing

x 2515072.0 μFB(L) 4.61700 ksf μFB, X|Y1,…,Yn 4.6254 ksf

y 9862774.0 σFB(L) 0.7920 ksf σFB, X|Y1,…,Yn 0.6301 ksf

δFB(L) 0.1715 δFB, X|Y1,…,Yn 0.1362

r  FS,FB 0.5 Soil contribution Only Soil contribution Only

1-3.Generic Axial Capacity 2-3.Spatially Conditioned Axial Capacity

μQside 580 kips μQside,X|Y1,…,Yn 602 kips

σQside 89 kips σQside,X|Y1,…,Yn 64 kips

δQside 0.1539 δQside,X|Y1,…,Yn 0.1058

μQend 928 kips μQend,X|Y1,…,Yn 930 kips

θH (ft) 11404 σQend 159 kips σQend,X|Y1,…,Yn 127 kips

θV (ft) 30 δQend 0.1715 δQend,X|Y1,…,Yn 0.1362

End Bearing μQ 1508 kips μQ,X|Y1,…,Yn 1532 kips

θH (ft) 8869 σQ 218 kips σQ,X|Y1,…,Yn 168 kips

θV (ft) 25 δQ 0.1446 δQ,X|Y1,…,Yn 0.1096

To change values below , go to the[ Input] sheet

α 0.8

Nc 9 Reliability-based design Reliability-based design

β 4.5 β 4.5 Target reliability index

W' 0.0 W' 0.0 Net weight of caisson (kips)

ρ 0.5 ρ 0.5 Correlation coefficient between predicted side and tip capacity

70 235 ΩR 0.3 ΩR 0.3 c.o.v. in capacity

75 250 ΩS 0.1 ΩS 0.1 c.o.v. in  load

80 270 ΩR' 0.3000 ΩR' 0.3000 Reduced c.o.v. in capacity

85 285

90 300 μR 1508 μR 1532 Mean of predicted total capacity (kips)

95 315 σR 218 σR 168 Standard deviation of predicted total capacity (kips)

100 330 δR 0.1446 δR 0.1096 c.o.v. in predicted capacity due to spatial variability

FsδR 1.1522 FsδR 1.0865 Partial spatial factor of safety

ΦδR 0.8679 ΦδR 0.9204 Partial resistance factor

RESULTS

Side shear

INPUT

Click to calculate spatially conditioned capacity
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3.3 TRANSLATING RESULTS TO DESIGN USE 

The results for a foundation are reported in the same order as in section 3.2. The 

methodology is also provided to help the user document where the user got the individual 

results from. While the results are important to show the practitioner the site conditions, 

the reliability in design is a main point of concern, which is reflected in the additional 

partial spatial factors of safety. The factors found for the individual sites are compared to 

the provided design and an overall factor for the site is provided to the practitioner to be 

applied in addition to standard design factors of safety. 

Table 3-5: Ultimate Additional Factor of Safety 

  Framework Analysis         

D = 16 ft      
L = 60 ft 

Axial 
Capacity 

(kips) 

Lateral 
Capacity 

(kips) 

FSδr-
Axial 

FSδr-
Lateral 

Ratio of 
Axial 

Capacities 

Ratio of 
Lateral 

Capacities 

FSδr-Axial 
Using 

Estimated 
Su Profile 

FSδr-Lateral 
Using 

Estimated Su 
Profile 

PLET 1 1454 645 1.14 1.04 1.0117 1.0496 1.1533 1.0916 

PLET 2 1461 653 1.13 1.04 1.0068 1.0368 1.1377 1.0782 

PLET 3 1476 678 1.13 1.04 0.9966 0.9985 1.1262 1.0385 

PLET 4 1456 651 1.13 1.04 1.0103 1.0399 1.1416 1.0815 

Estimated 
Su Profile 1471 677     (3.4) (3.4) (3.5) (3.5) 
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Figure 3-9: Additional Partial Spatial Factor of Safety to be Applied for Axial Capacity 

 

Figure 3-10: Additional Partial Spatial Factor of Safety to be Applied for Lateral 

Capacity 
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                                                         (3.5) 
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foundation design. These additional factors of safety account for the spatial variations in 

data and the consequent uncertainty in design for not having data exactly at the 

foundation location. 

3.4 SUMMARY OF FRAMEWORK DEMONSTRATION 

This demonstration provided the user with the steps to translate sampling 

information from the data provider to appropriate intervals so that data can be used in 

analysis. Examples of shear strength design profiles and capacities were also given to 

show how to effectively communicate results for design purposes. The comparisons of 

additional partial spatial factors of safety are an output of the database used to tell the 

designer the reliability of the model given no specific data at the foundation location; the 

maximum of these factors is the limiting factor for design. 
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 Sensitivity Analysis Chapter 4:

In the statistical analyses performed to get the additional partial spatial factor of 

safety, there are three main variables that the framework uses in calculations: the target 

reliability index, the coefficient of variation in load, and the coefficient of variation in 

capacity. See Appendix A for statistical variable interactions with the reliability-based 

model. 

A caisson weight of 0 kips has thus far been assumed, the target reliability index 

was 4.5, the coefficient of variation in capacity was 0.3, and the coefficient of variation in 

load is 0.1. Using 0.3 for the c.o.v. in capacity was determined based on pile load tests 

and using 0.1 for the c.o.v. in load was determined based on the fact that a manifold’s 

capacity is generally governed by the weight of the manifold and the manifold’s capacity 

relatively deterministic. 

The following sections provide sensitivity analyses on axial capacity by varying 

these three variables to better understand model inputs. The values previously mentioned 

are used as the standard for comparison. The analysis was performed over the whole site 

using the unconditioned model for PLET 1 which was used in the case study with caisson 

length-to-diameter aspect ratio of 4 to 1. 

4.1 SENSITIVITY TO TARGET RELIABILITY INDEX 

The relationship between target reliability index, design reliability, and 

probability of failure are given in Table 4-1. 
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Table 4-1: Relationship between Reliability and Probability of Failure 

β Reliability Probability of failure 

1.5 0.933193 0.06681 

2.0 0.977250 0.02275 

2.5 0.993790 0.00621 

3.0 0.998650 0.00135 

3.5 0.999767 0.00023 

4.0 0.999968 0.00003 

4.5 0.999997 3.4E-06 

5 1 2.87E-07 

The target reliability index was varied from 3.5 to 4.0 to 4.5 keeping the 

coefficient of variation in capacity at 0.3 and the coefficient of variation in load at 0.1. A 

plot of the generic capacity and additional factor of safety are given below. 

 

Figure 4-1: Axial Capacity Sensitivity to Target Reliability Index 
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Figure 4-2: Effect of Target Reliability Index on Additional Partial Spatial Factor of 

Safety for Axial Capacity Analysis 

As the target reliability increases, and the probability of failure decreases, the 

additional factor of safety increases to reflect the higher degree of structural reliability in 

that the foundation was designed with a higher degree of confidence in not failing. This is 

also reflected in the capacity as caisson penetration increases and the design capacity 

slightly decreases due to the increased confidence and less conservative factor. 

4.2 SENSITIVITY TO COEFFICIENT OF VARIATION IN CAPACITY 

The coefficient of variation in capacity is the ratio of the standard deviation to the 

expected value and accounts for the uncertainty in the caisson’s capacity. This value is 

found through lab tests and these lab tests gave the standard value used in offshore design 

as 0.3. 
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Figure 4-3: Axial Capacity Sensitivity to c.o.v. in Capacity 

 

Figure 4-4: Effects of c.o.v. in Capacity on Additional Partial Spatial Factor of Safety for 

Axial Capacity Analysis 
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Increasing ΩR shows a greater confidence in the capacity of the caisson, i.e. the 

axial capacity increased with depth as the c.o.v. in capacity increased, which 

consequently decreased the factor of safety. As the factor of safety decreased, the axial 

capacity increased and the design capacity became less conservative. 

4.3 SENSITIVITY TO COEFFICIENT OF VARIATION IN LOAD 

The coefficient of variation in load is the ratio of the standard deviation to the 

expected value and accounts for the uncertainty in the applied load to the caisson. This 

value is found through lab tests and field experience, which together yielded the standard 

value used in offshore design as 0.1.  

 

Figure 4-5: Axial Capacity Sensitivity to c.o.v. in Load 
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Figure 4-6: Effects of c.o.v. in Load on Additional Partial Spatial Factor of Safety for 

Axial Capacity Analysis 

Increasing ΩS shows a greater confidence in the load which the caisson can 

withstand which consequently decreased the factor of safety. As the factor of safety 

decreased, the axial capacity increased and the design capacity became less conservative. 

4.4 CONCLUSIONS 

When looking at the capacities, conclusions were drawn at caisson lengths greater 

than 50 feet for practical purposes; suction caissons generally penetrate at least that deep 

into the seafloor. 

Increasing the target reliability index decreased the design axial capacity by about 

three percent. Likewise, the additional partial spatial factor of safety decreased by 

approximately three percent. Increasing the target reliability index, within the range 

demonstrated, improves the reliability, but likely not to the point where the design can be 

made more economical. 
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Changing the coefficient of variation in capacity increased the design axial 

capacity an average of about eight percent. The additional partial spatial factor of safety 

decreased by about seven percent with the change in the c.o.v. in capacity. With greater 

certainty in the capacity, the additional partial spatial factor of safety decreased and the 

design axial capacity increased. 

The coefficient of variation in load follows a similar trend but shows less of an 

effect than the coefficient of variation in capacity. The design axial capacity decreased by 

approximately one and one-half percent with more certainty in the load and the additional 

partial spatial factor of safety decreased by approximately two percent with increased 

certainty in load. 
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Improvements for Framework Implementation Chapter 5:

The improvements made to the analysis process involved making changes to the 

structure of how existing data were used and increasing the amount of data used to 

produce more reliable results. The worksheets are also set up to allow for a finite amount 

of data, which optimizes the input process. 

5.1 ALLOWANCE FOR FINITE AMOUNT OF DATA 

Once data are put into the database, through a Microsoft Excel® workbook 

(Input.xlsx), each of the analysis workbooks then calls the corresponding data through a 

worksheet named “Input” which is in each of the applied workbooks. The data from the 

borings are also in each of the workbooks located in “Borings.”  

These two worksheets, “Input.xlsx” and “Boring Location Information.xlsx”, are 

now set to allow for a finite amount of data to save the user time in updating the analysis 

implements. As of publication, the database contains 120 individual borings and is set to 

a capacity of 200 individual borings.  

 

Figure 5-1: Borings Data Limitation 
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Figure 5-2: Input Data Limitation 

Also as of publication, the database is set to a capacity of 2000 individual data 

points. The individual data point is the previously mentioned data translate from 

sampling intervals to ten feet intervals.  

Follow these steps when dealing with the database: 

1) Make sure that the data in the analysis worksheets are always linked to the 

most up-to-date Input file. 

2) Do not change numbers in the “Borings” or “Input” worksheets in analysis 

workbooks. Any changes should be done in the “Input.xlsx” and, when 

properly linked, will update automatically in the appropriate cells in the 

“Borings” and “Input” worksheets. 



68 

 

3) In the “Input” worksheet, the model parameters are formatted to be changed 

as needed. The calculation worksheets, which are highlighted red, however, 

are where the user should focus when generating results. 

4) The input worksheets and calculation worksheets are set to deal with the 

unique geologic setting of the Gulf of Mexico, normally to overconsolidated 

marine clays. 

As data continue to be put into the database, the limits on linked data between the 

“Input.xlsx” and the analysis workbooks will be reached. In order to increase the capacity 

of “Borings”:  

1) Copy all of row 201within the “Borings” worksheet and drag that information 

and the formulas located in those cells down through more rows to allow for 

as many borings as needed. 

2) Expand the formatted area by dragging the thick blue line at the bottom of row 

201 to the bottom of the rows with information from step 1. 

3) Ensure this has worked correctly by checking that columns A-X are 

highlighted yellow with dashed cell borders. Also row 1 and columns A-C 

should still be frozen panes within Excel® to more easily view the boring data. 

Once the borings are updated, the “Design Su” and “Design Su_r” worksheets 

need to be updated with the corresponding lab and field data. Columns B and C within 

those worksheets are linked to “Borings.” The last row needs to be highlighted and 

copied in columns B and C to reflect the new borings. These data points are then 

processed by the user to put into the “Input-Su and Su_avg,” “Input-Sur and Sur_avg,” 

and “Input Su1” worksheets.  

The three “Input-…” worksheets within “Input.xlsx” are set to a capacity of 2000 

unique data poits. In order to increase the data point capacity of these worksheets: 
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1) Highlight row 2014, within the worksheet and drag the information and the 

respective formulas down to allow for as many data sets as needed. 

2) Make note of the new capacity so that other users will understand the data 

limits. 

3) Ensure this has worked correctly by checking that columns A and B-M are 

highlighted yellow with dashed cell borders, that column B has no fill color, 

and rows 1-14 and column A are still frozen panes. 

Once “Input.xlsx” is correctly filled with the given data, the analysis workbooks 

must be updated to reflect the changes so that the analysis will take into account all 

available data. Each of the following analysis workbooks is organized similarly, as 

demonstrated in Chapter 2, so the process of updating the new input data will be the 

same: “Generic and Conditional Axial Capacity.xlsm,” “Generic and Conditional Lower 

Bound Axial Capacity.xlsm,” “Depth-Averaged and Point Undrained Shear Strength-

Unfactored.xlsm,” and “Generic and Conditional Equivalent Linear Undrained Shear 

Strength.xlsm.” To update these analysis workbooks: 

1) Make sure that the data are linked to the most up-to-date “Input.xlsx” by 

checking cell B2 in “Borings” and cell A15 in “Input.” The cells should read: 

“='C:\...” which is the path to the user’s Input file. When used correctly, these 

cells will automatically update, which is why it is necessary to verify that the 

information is linked. 

2) In “Borings,” drag the thick blue line at the bottom of row 201 to allow for the 

appropriate amount of data. 

3) Highlight A201:J201 and drag the formulas down to the thick blue line. The 

newly input data should populate the cells now and will consequently be 

available for analysis. 
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4) In “Input” select row 2014 and drag the formulas and formatting down to 

allow for the correct amount of data that there is. Make sure to highlight 

A2014:AJ2014 to check that all of the necessary calculations for analysis are 

copied. Cell G4, the value n, should update to reflect the new number of data 

sets. 

Do this for each of the worksheets and check that the data are being used correctly 

by entering a new point close to the newly input data into the analysis worksheets and 

check that the correlated data show the new data in the analysis. 

5.2 DEFINITE AMOUNT OF EXISTING DATA USED IN ANALYSIS 

The structure through which the calculations used correlated data were initially 

limited by matrix size limitations within Excel and a user-defined minimum correlation 

coefficient between existing data points and the location being analyzed. This method 

would produce a Visual Basic® run error if the minimum correlation coefficient returned 

more than fifty correlated data points. To prevent this problem, and to streamline the 

analysis process, the analysis is now structured so that the correlated data used are the 

fifty correlated data points with the highest correlation coefficients between themselves 

and the new location. These changes were made by ranking correlation coefficients 

within the Input worksheet of the analysis workbooks and then calling those fifty highest 

ranked data sets through Visual Basic to use in matrix calculations and calculate final 

values. 

Once the analysis is implemented, the fifty correlated data points are summarized 

in a recently-added worksheet called “Correlated Data.” The worksheet will report the 

highest and lowest correlation coefficients as well as the corresponding data set names. 

Then the numbers of correlation coefficients within one-tenth incremental ranges are 
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reported between 0 and 0.5, reporting all values above 0.5 as one number. Below is an 

example of the information. 

Table 5-1: Summary of Correlated Data Using "Correlation Summation" 

Correlated Data Summary 

Max and Min ρ 
Data 
set 

highest value 0.59 1583 

lowest value 0.10 612 

ρ limits 
Number of Correlated 

Points 

>0.5 1 

0.4-0.5 3 

0.3-0.4 4 

0.2-0.3 15 

0.1-0.2 27 

0-0.1 0 

sum to check: 50 Correlated Points 

 

5.3 SUMMARY OF IMPROVEMENTS FOR FRAMEWORK IMPLEMENTATION 

The database was revised as documented to create a more user-friendly interface 

for foundation design. Enhancements were made to allow the user to readily add 

additional data and streamline the data input process. 

The correlation coefficient ranking system now shows the user which data points 

are being used in analysis and the “Correlated Data” worksheets show what those 

respective correlation coefficients are. 
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 Conclusions and Recommendations for Future Work Chapter 6:

6.1 CONCLUSIONS 

There is a large amount of geotechnical data. By putting it into a database, it can 

be applied to reliable offshore foundation designs. The database has been enhanced to be 

more transparent and more user-friendly. Instructions with complimentary figures have 

been provided to show the user how to operate both the input and analysis workbooks of 

the database. The revised “Home” worksheets are a quick reference to use the analysis 

workbooks. 

An example of data points, like would be given by the data provider, has been 

provided to show the user how to translate that design profile, at sampling depths, to a 

design profile at ten-foot intervals to be used in foundation analysis for a new foundation 

location. A case study for a pipeline end termination foundation showed how results are 

presented to the practitioner with overall comparisons of the additional partial spatial 

factors of safety, which are used to account for not having site specific data and are to be 

applied in addition to design factors of safety. 

A sensitivity analysis looked at the effects of reliability-based design parameters 

on caisson lengths between fifty and one hundred feet. Increasing the target reliability 

index, decreased the design axial capacity and increased the additional partial spatial 

factor of safety both by about three percent. Increasing the certainty in the foundation’s 

capacity had a similar effect with an increase by about eight percent in the design axial 

capacity and a decrease by about seven percent in the additional partial spatial factor of 

safety. Likewise, increasing the certainty in the load induced on the foundation, the 

design axial capacity increased by approximately one and one-half percent while the 

additional partial spatial factor of safety decreased by about two percent. 
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The revisions to the database were documented to provide a more user-friendly 

interface for foundation design. Enhancements to the data input process allow the user to 

readily add additional data. The model is also now set to use fifty correlated data points 

in analysis. A ranking system has been created and shows the user which data points are 

being used in analysis with the additional “Correlated Data” worksheets that show what 

those respective correlation coefficients are. 

In initiating work with a database, basic steps like detailed explanations and 

consistency in data collection methods can help the user to understand the models. This 

database gives as full of a picture of real conditions as possible with physical and 

statistical parameters reporting reliable strengths where there is in fact no data. With 

increased experience in the lab and field, and consequently increased data and results, the 

model is continually being updated to decrease uncertainty and increase reliability.  

By providing the industry with a database that uses reliability-based design from 

actual data and spatial variation analysis, this project will continue to provide a more 

efficient design process. Reliability-based design can create a more optimized offshore 

foundation design with increasing reliability through process efficiency.   

6.2 FUTURE RECOMMENDATIONS 

Through user needs and process optimization, there will continue to be room for 

improvements. Some of those ideas are highlighted here: 

 Implement a lower bound analysis for lateral capacity 

 Develop a model where the data points are correlated to points along the 

continental shelf. 

 Recognize other geologic settings within the Gulf of Mexico 
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 Show the information in three dimensions to help spot areas of weakness 

in strength or weakness in data, i.e. locations with a greater degree of 

uncertainty due to lack of data 

 Develop a model to account for foundation capacities in sands alone, clays 

alone, and a combination of the two soils 

 Develop a model to account for designing shallow foundations 
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: Reliability-Based Equations (Cheon, 2011) Appendix A

DATABASE MODEL 

The database created by Cheon (2011) uses reliability-based methods to calculate 

both factored and unfactored design strengths at a site. Design strengths are calculated 

using nearby data and horizontal and vertical spatial variation correlations among 

existing data points and between existing data points and the location in question. Refer 

to Cheon for further background on theory and model calibration. 

The reliability-based calculations provided in this section are the backbone of this 

framework. Understanding how the implementation uses existing data to produce results 

at a new location is key to further optimizing the framework. The next section of this 

chapter provides subsequent steps in foundation analysis. 

 

Generic Model 

There is a generic model that is not spatially conditioned and represents the field 

as a whole. The probability distribution that describes design property variations for a 

particular location, i, is described by a cumulative distribution function,  Fxi (xi), which is 

characterized by the mean, standard deviation, and coefficient of variation (Ang and Tang 

1975). The mean is the expected soil property value at a site if there was an actual 

investigation performed there. The standard deviation represents the uncertainty in that 

predicted value. (Cheon 2011) 

Spatially Conditioned Model 

The spatially conditioned model takes existing data into account that is within the 

area of the requested location. The spatially conditioned forms for the mean and standard 
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deviation, the first and second moments, respectively, for a new location j, using existing 

data location i are (Ang and Tang 1975): 

                  
   

   
                (A.1) 

       [   (        )
 
]
   

       (A.2) 

where        = mean value at j given value at i 

    ,    = mean values from generic model 

       = standard deviation at j given i 

    ,    = standard devition values from generic model 

   = known value at location i 

       = correlation coefficient between values at i and j 

These equations show how the spatial conditioning can affect the design values. 

Looking at equation 2.1, as the correlation coefficient increase, i.e. as the new location 

gets closer to existing data, the conditional mean is more affected by the existing 

location. As the correlation coefficient decreases, the mean value at j given the mean at i 

approaches the mean value at j. Likewise, looking at equation 2.2, as the correlation 

coefficient decreases, i.e. as the new location gets further from the existing location, the 

uncertainty becomes larger and approaches the generic value. (Cheon 2011) 

The probability distribution for the conditional variable is assumed to be the same 

as that for the unconditional variable. It is also assumed to be fully characterized by its 

first two moments, the mean and standard deviation. With these assumptions, the 

cumulative distribution function is as follows (Journel and Huijbregts 1978): 

      (  |  )                                              
⃑⃑ ⃑⃑  ⃑   (A.3) 

where       (  |  ) = cumulative distribution function for value at j given i 

 gf (…) = model for the cumulative distribution function 

   
⃑⃑ ⃑⃑  ⃑= vector of model parameters that describe gf() 
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 With one or more nearby data points, the conditional model is as follows: 

                  
     ⃑⃑  ⃑     ⃑⃑ ⃑⃑  ⃑       (A.4) 

        √   
        

     
        (A.5) 

where   ⃑⃑  ⃑= vector containing the known values at location i 

    ⃑⃑ ⃑⃑  ⃑= vector containing the mean values from the generic model 

     [

                         

   
                         

] 

     {                       } 

where square brackets denote matrices and curved brackets denote vectors. 

 The correlation coefficient changes depending on the distance between the two 

locations being used, whether among existing data or considering a new location’s 

proximity to existing data. It is expressed as: 

                                         
⃑⃑ ⃑⃑  ⃑     (A.6) 

where gR (…) = model for the correlation coefficient 

   
⃑⃑ ⃑⃑  ⃑= vector of model parameters that describe gR() 

 The model parameter calibration is documented in detail in Cheon 2011. The 

maximum likelihood method was used to calibrate the models. This calibration was used 

to estimate the model parameters,  ⃑⃑⃑ , which are given with the appropriate equations in 

the next section. 

MODELS FOR DESIGN UNDRAINED SHEAR STRENGTH 

Using the basic form of the model described in 2.1, the mean and standard 

deviation of the generic model, the mean, standard deviation, and horizontal and vertical 

correlations of the conditioned model are used to describe the design shear strength 

models. 
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Design Undrained Shear Strength at a Point, Su(L) 

The design undrained shear strength at a point is predicted in terms of the mean 

and the standard deviation as follows: 

                     
       (A.7) 

                        (A.8) 

where       = mean [ksf] 

       = standard deviation [ksf] 

L= depth of penetration [ft] 

 For a new location X that is conditioned of existing data points Y1, Y2,…Yn, the 

conditional forms of the mean and standard deviation are as follows: 

                             
       

⃑⃑ ⃑⃑ ⃑⃑  ⃑        ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑     (A.9) 

               √      
        

     
      (A.10) 

The correlation coefficient between two locations is: 

  (       )         (A.11) 

where τ=distance separating j and i 

 θ= correlation distance 

 The correlation coefficient in undrained shear strength between locations is 

modeled as: 

   (         )(         )       (A.12) 

where τH= horizontal distance between points 

 τV= vertical distance between points 

 θH= horizontal correlation distance [ft] 

 θV= vertical correlation distance [ft] 

 The correlation distance is the distance to where the correlation coefficient 

becomes comparatively small. The data points within the correlation distance tend to be 
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relatively close in value. For example, if the location in question is within the correlation 

distance of design shear strengths higher than the generic value, that shear strength at that 

location will likely be higher than the generic value as well (Cheon 2011).  

 The correlation distances are modeled as: 

                               (A.13) 

                          (A.14) 

Note that the horizontal correlation distance is modeled as a function of penetration due 

to the fact that within the study area, the correlation in design shear strength at a point 

tends to increase with depth. 

 The model parameters that describe the design shear strength are presented in 

table A-1. 

Table A-6-1: Model Parameters for Su(L) 

μ σ θH θV 

φC1 φC2 φC3 φC4 φC5 φC6 φC7 φC8 

0.015 0.008 0.000005 0.01 0.0013 8.4 4.3 3.2 

[ksf] [ksf/ft] [ksf/ft
2
] [ksf] [ksf/ft] [ln(ft)]  [ln(ft)] 

 

Depth-Averaged Design Undrained Shear Strength (Su,avg) 

The depth-averaged design undrained shear strength is predicted in terms of the 

mean and the standard deviation as follows: 

                         
       (A.15) 

                           (A.16) 

where           = mean [ksf] 

           = standard deviation [ksf] 

L= depth of penetration [ft] 
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 For a new location X that is conditioned of existing data points Y1, Y2,…Yn, the 

conditional forms of the mean and standard deviation are as follows: 

                                     
           

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑             ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑   (A.17) 

                   √          
        

     
     (A.18) 

 The correlation coefficient in depth-averaged undrained shear strength between 

locations is modeled the same as undrained shear strength at a point: 

   (         )(         )       (A.19) 

The correlation distances for the predicted depth-averaged undrained shear 

strength are: 

                                  (A.20) 

                             (A.21) 

 The model parameters that describe the depth-averaged undrained  shear strength 

are presented in table 2-2. 

Table A-6-2: Model Parameters for Su,avg(L) 

μ σ θH θV 

φA1 φA2 φA3 φA4 φA5 φA6 φA7 φA8 

0.01 0.0036 0.000004 0.01 0.00045 8.7 4.5 3.4 

[ksf] [ksf/ft] [ksf/ft
2
] [ksf] [ksf/ft] [ln(ft)]  [ln(ft)] 

 

Equivalent Linear Profile of Design Shear Strength (Su,1) 

To predict the equivalent linear shear strength profile, the model of deign 

undrained shear strength at a point is used. The equivalent linear profile is predicted in 

terms of the mean and the standard deviation as follows: 

                        (A.22) 

                     (A.23) 
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where        = mean [ksf] 

        = standard deviation [ksf] 

L= depth of penetration [ft] 

 The correlation coefficient for the predicted slope of the equivalent linear shear 

strength profile between locations is modeled the same as undrained shear strength at a 

point: 

   (         )(         )       (A.24) 

The correlation distances for the predicted slope of equivalent linear undrained 

shear strength are: 

                                (A.25) 

                           (A.26) 

 The model parameters that describe the equivalent linear undrained shear strength 

are presented in table 2-3. 

Table A-6-3: Model Parameters for Su1(L) 

μ σ θH θV 

φD1 φD2 φD3 φD4 φD5 φD6 

6.12 0.02 1.10 8.5 4.5 3.4 

[psf/ft] [psf/ft
2
] [psf/ft] [ln(psf/ft)]  [ln(psf/ft)] 

 

Design Remolded Shear Strength at a Point (SuR) 

The design undrained remolded shear strength is predicted in terms of the mean 

and the standard deviation as follows: 

                        (A.27) 

                        (A.28) 

where        = mean [ksf] 

        = standard deviation [ksf] 



82 

 

L= depth of penetration [ft] 

 For a new location X that is conditioned of existing data points Y1, Y2,…Yn, the 

conditional forms of the mean and standard deviation are as follows: 

                               
        

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑         ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑      (A.29) 

                √       
        

     
      (A.30) 

 The correlation coefficient for design remolded undrained shear strength between 

locations is modeled as: 

   (         )(         )       (A.31) 

The correlation distances for the predicted design remolded undrained shear 

strength are: 

                           (A.32) 

                           (A.33) 

 The model parameters that describe the design remolded undrained  shear strength 

are presented in table 2-4. 

Table A-6-4: Model Parameters for SuR(L) 

μ σ θH θv 

φE1 φE2 φE3 φE4 φE5 φE6 

0.005 0.0031 0.004 0.00085 8.7 3.55 

[ksf] [ksf/ft] [ksf] [ksf/ft] [ln(ft)] [ln(ft)] 

 

Depth-Averaged Remolded Shear Strength (SuR,avg) 

The depth-averaged design undrained remolded shear strength is predicted in 

terms of the mean and the standard deviation as follows: 

                            (A.27) 

                            (A.28) 
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where            = mean [ksf] 

            = standard deviation [ksf] 

L= depth of penetration [ft] 

 For a new location X that is conditioned of existing data points Y1, Y2,…Yn, the 

conditional forms of the mean and standard deviation are as follows: 

                                       
            

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑             ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑  (A.29) 

                √       
        

     
      (A.30) 

 The correlation coefficient for design remolded undrained shear strength between 

locations is modeled as: 

   (         )(         )       (A.31) 

The correlation distances for the predicted design remolded undrained shear 

strength are: 

                              (A.32) 

                              (A.33) 

 The model parameters that describe the design remolded undrained  shear strength 

are presented in table 2-4. 

Table A-6-5: Model Parameters for SuR,avg(L) 

μ σ θH θv 

φF1 φF2 φF3 φF4 φF5 φF6 

0.004 0.0015 0.004 0.00034 8.9 3.6 

[ksf] [ksf/ft] [ksf] [ksf/ft] [ln(ft)] [ln(ft)] 

 

FRAMEWORK SUMMARY 

The comprehensive approach between the lab and the field allows for a more 

reliable design by seeing how the parameters correspond to each other through different 
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testing methods. The main goal of the site investigation is to gain as clear a picture as 

possible with representative data to design with.  

The geostatistical models developed and calibrated by Cheon use spatial 

variations to represent a large site with a small amount of data. The uncertainty in this 

reliability-based design is represented by the standard deviation and further reflected in 

an additional factor of safety for design. This step uses statistical parameters to produce a 

reliability factor to account for load and capacity variations with a target reliability index. 

Using reliability-based design helps to maximize the value of information obtained from 

the geotechnical site investigation. 

With this framework, the predicted values of design shear strength at a point are 

used for design axial end bearing capacity, the predicted values of depth-averaged design 

shear strength are used for design axial side shear capacity, and the predicted values of 

the equivalent linear design shear strength are used for design lateral capacity. 

Design Axial Capacity of a Suction Caisson 

The axial capacity of a suction caisson in clay is a combination of side shear, Qs, 

and reverse end bearing, Qp, capacities estimated using the API (2003) design guide. The 

framework yields a design axial capacity that analyzes spatial variation due to soils only 

and no considering the submerged unit weight of the caisson (Cheon 2011): 

                    (A.34) 

The axial side shear capacity is calculated using the depth-averaged undrained 

shear strength over the length of the caisson as follows below. Note that the alpha value 

used is a dimensionless friction coefficient that is assumed to be 0.8 throughout the side 

shear calculations. The value of 0.8 is a typical value used in offshore foundation designs 

founded in normally consolidated clays in the Gulf of Mexico (Cheon 2011): 

                (A.35) 
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∫            

 

 
               

                         (A.36) 

where   =side surface area (πDL) 

  =average unit side shear 

  = depth of penetration 

      =unit side shear as a function of depth of penetration 

     = friction coefficient 

 D = diameter of caisson 

 L = length of caisson 

 The end bearing develops at the tip of the caisson under undrained loading 

conditions using the undrained shear strength at a point and is calculated below. Note that 

the bearing capacity factor is assumed to be 9 throughout the database as recommended 

in accordance with API (2003): 

                 (A.37) 

          

                   (A.38) 

where   = cross sectional area of the caisson (πD
2
/4) 

   = unit reverse end bearing 

   = bearing capacity factor 

Design Lateral Capacity of a Suction Caisson 

Aubeny et al. (2003) proposed a simplified plasticity model to calculate the lateral 

capacity of a suction caisson. This model uses energy equations to translate work applied 

by the plastic failure of the soil to a lateral capacity through the work that is dissipated 

over a local zone. The lateral capacity, Hmax, of a suction caisson is calculated as follows: 

              
          

|  
  
  

|
       (A.39) 
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where   = energy dissipated due to side resistance 

   = energy dissipated due to the spherical soil end cap 

   = velocity at the mudline 

   = depth of load attachment on the caisson 

   = depth of the center of rotation 

 The database minimizes the lateral capacity, with a known load attachment point, 

with respect to the center of rotation through a solver iteration. 

 

Partial Spatial Factor of Safety (FSδR) 

The partial spatial factor of safety is a way to quantify the reliability based on the 

target reliability index, β, and the coefficients of variation in load, Ωs, and capacity, ΩR. 

Assuming that the available load and ultimate load are lognormally distributed, the partial 

spatial factor of safety is found as the probability that the load imposed on the caisson is 

less than the ultimate load the caisson can support.  

Design reliability for a suction caisson is calculated based on R, the capacity, and 

S, the load, which are both modeled as random variables with a normal distribution. The 

capacity and load are also assumed statistically independent. The reliability is calculated 

as: 

                             (4.1) 

                      (4.2) 

where   = probability of failure 

     = standard normal function of β 

The target reliability index is normally distributed as: 

      (
             

√  
    

    
 
)       (A.40) 

where    = median factor of safety 
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   = coefficient of variation in spatial variability in resistance 

 Then to find the partial spatial factor of safety, the target reliability is set to equal 

the same value with and without spatial variability. Through equation simplification, the 

partial spatial factor of safety, for both axial and lateral capacity is: 

      
    ( √  

    
    

 )

    ( √  
    

 )

       (A.41) 
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 : Visual Basic Code Appendix B

Depth Averaged and Point Undrained Shear Strength.xlsm: 

  

Public x(2000), y(2000), z(2000), sFs(2000), sFB(2000) 

Public Rhos(2000), RhoB(2000), k1(50), k2(50), C1(50, 50), C2(50, 50) 

_______________________ 

 

Sub DepthAvgPointShearStrengths() 

 

'Initiates model parameters 

Dim A1, A2, A3, A4, A5, A6, A7, A8, m1, m2 As Single 

Dim B1, B2, B3, B4, B5, B6, B7, B8 As Single 

 

 

 

Sheets("input").Select 

A1 = Range("B3").Value 

A2 = Range("B4").Value 

A3 = Range("B5").Value 

A4 = Range("B6").Value 

A5 = Range("B7").Value 

A6 = Range("B8").Value 

A7 = Range("B9").Value 

A8 = Range("B10").Value 
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B1 = Range("D3").Value 

B2 = Range("D4").Value 

B3 = Range("D5").Value 

B4 = Range("D6").Value 

B5 = Range("D7").Value 

B6 = Range("D8").Value 

B7 = Range("D9").Value 

B8 = Range("D10").Value 

 

'Uses updated n-value to represent number of data sets 

n = Range("g4").Value 

 

 

'============ 

'Initates stepping through the existing data 

ns = 0 

nb = 0 

For j = 1 To n 

 

Sheets("input").Select 

    z(j) = Range(Cells(j + 14, 4), Cells(j + 14, 4)).Value 

    x(j) = Range(Cells(j + 14, 11), Cells(j + 14, 11)).Value 

    y(j) = Range(Cells(j + 14, 10), Cells(j + 14, 10)).Value 
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    sFs(j) = Range(Cells(j + 14, 18), Cells(j + 14, 18)).Value 

     

    sFB(j) = Range(Cells(j + 14, 24), Cells(j + 14, 24)).Value 

    

    

   'Rho values for both side shear (s) and end bearing (B) 

   Rhos(j) = Range(Cells(j + 14, 30), Cells(j + 14, 30)).Value 

   RhoB(j) = Range(Cells(j + 14, 31), Cells(j + 14, 31)).Value 

   

   'Ranks of correlation coefficients from columns 35 and 36 

   Ranksj = Range(Cells(j + 14, 35), Cells(j + 14, 35)).Value 

   RankBj = Range(Cells(j + 14, 36), Cells(j + 14, 36)).Value 

       

   'If loop that takes ranks 1-50 for depth-averaged correlation 

   If Ranksj <= 50 Then 

        ns = ns + 1 

        k1(ns) = j 

   End If 

    

   'If loop that takes ranks 1-50 for point correlation 

   If RankBj <= 50 Then 

        nb = nb + 1 

        k2(nb) = j 

   End If 
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Next j 

    nks = ns 

    nkb = nb 

 

'==========depth-averaged strength c matrix=c1 

For ii1 = 1 To nks 

      For jj1 = 1 To ii1 

            'Calculation to populate c-matrix 

            C1(ii1, jj1) = Exp(-Sqr((x(k1(ii1)) - x(k1(jj1))) ^ 2 + (y(k1(ii1)) - y(k1(jj1))) ^ 2) / 

(Exp(A6) + Exp(A7) * z(k1(ii1)))) * Exp(-Abs(z(k1(ii1)) - z(k1(jj1))) / Exp(A8)) * 

sFs(k1(ii1)) * sFs(k1(jj1)) 

            'Code to populate c-matrix 

            If ii1 <> jj1 Then 

            C1(jj1, ii1) = C1(ii1, jj1) 

            End If 

     Next jj1 

Next ii1 

 

'==========point strength c matrix=c2 

For ii2 = 1 To nkb 

     For jj2 = 1 To ii2    

            'Calculation to populate c-matrix 

            C2(ii2, jj2) = Exp(-Sqr((x(k2(ii2)) - x(k2(jj2))) ^ 2 + (y(k2(ii2)) - y(k2(jj2))) ^ 2) / 

(Exp(B6) + Exp(B7) * z(k2(ii2)))) * Exp(-Abs(z(k2(ii2)) - z(k2(jj2))) / Exp(B8)) * 

sFB(k2(ii2)) * sFB(k2(jj2)) 



92 

 

      'Code to populate c-matrix 

      If ii2 <> jj2 Then 

      C2(jj2, ii2) = C2(ii2, jj2) 

      End If            

      Next jj2 

Next ii2 

 

'Fills columns L and V to show existing data used===== 

Sheets("generic and conditioned").Select 

Range("l4:l300,v4:v300").Select 

Range("l4").Activate 

Selection.ClearContents 

 

'Fills cells with number of correlation points, 50 points 

'for code at present use 

Range("l2").Value = nks 

Range("v2").Value = nkb 

    With Application 

        .Calculation = xlMabnual 

        .MaxChange = 0.001 

    End With 

    ActiveWorkbook.PrecisionAsDisplayed = False 

    Range("J20").Select 

For j = 1 To nks 

    'generic and conditioned sheet correlated data 
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    'points for Su_avg 

    Range("L4").Offset(j - 1, 0).Value = k1(j) 

Next j 

For j = 1 To nkb 

    'generic and conditioned sheet correlated data 

    'points for Su_point 

    Range("v4").Offset(j - 1, 0).Value = k2(j) 

Next j 

'Shows c-matrix 

Sheets("cmatrix").Visible = True 

Sheets("cmatrix").Select 

'Fills c-matrices 

    Range("E3:bb52,E60:bb109").Select 

    Range("E3").Activate 

    Selection.ClearContents     

'==========depth-averaged c matrix=c1 

For ii1 = 1 To nks 

      For jj1 = 1 To nks 

           Range(Cells(ii1 + 2, jj1 + 4), Cells(ii1 + 2, jj1 + 4)).Value = C1(ii1, jj1)       

      Next jj1       

Next ii1 

'==========point c matrix=c2 

For ii2 = 1 To nkb 

      For jj2 = 1 To nkb 

           Range(Cells(ii2 + 59, jj2 + 4), Cells(ii2 + 59, jj2 + 4)).Value = C2(ii2, jj2)            
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      Next jj2       

Next ii2 

'Symmetric matrix 

For p1 = nks + 1 To 50 

Range(Cells(p1 + 2, p1 + 4), Cells(p1 + 2, p1 + 4)).Value = 1 

Next p1 

 

For p2 = nkb + 1 To 50 

Range(Cells(p2 + 59, p2 + 4), Cells(p2 + 59, p2 + 4)).Value = 1 

Next p2 

 

'Select c-matrixes 

    Range("e3:bb52,e60:bb109").Select 

         

    Calculate 

    With Application 

        .Calculation = xlAutomatic 

        .MaxChange = 0.001 

    End With 

    ActiveWorkbook.PrecisionAsDisplayed = False 

       

'Names values from c-matrix sheet then selects generic and conditioned 

' to fill conditional values 

muFs = Range("A2").Value 

siFs = Range("A4").Value 
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muFB = Range("A59").Value 

siFB = Range("A61").Value 

 

'select "generic and conditioned" sheet 

Sheets("generic and conditioned").Select 

Range("i4").Value = muFs 

Range("i5").Value = siFs 

Range("i9").Value = muFB 

Range("i10").Value = siFB 

 

'CMATRIX 

    Sheets("cmatrix").Select 

    ActiveWindow.SelectedSheets.Visible = False 

       

 Range("a1").Select 

 'Formats correlated existing data in multiple existing data points 

    Range("L4:T4").Select 

    Range(Selection, Selection.End(xlDown)).Select 

    Selection.Sort Key1:=Range("M4"), Order1:=xlDescending, Key2:=Range("L4") _ 

       , Order2:=xlAscending, Header:=xlNo, OrderCustom:=1, MatchCase:= _ 

       False, Orientation:=xlTopToBottom, DataOption1:=xlSortNormal, DataOption2 _ 

        :=xlSortNormal 

    Range("V4:AD4").Select 

   Range(Selection, Selection.End(xlDown)).Select 

    Selection.Sort Key1:=Range("W4"), Order1:=xlDescending, Key2:=Range("V4") _ 
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        , Order2:=xlAscending, Header:=xlNo, OrderCustom:=1, MatchCase:= _ 

        False, Orientation:=xlTopToBottom, DataOption1:=xlSortNormal, DataOption2 _ 

        :=xlSortNormal 

 

End Sub 

____________________________ 

  



97 

 

Generic and Conditional Axial Capacity.xlsm: 

_____________ 

Public x(2000), y(2000), z(2000), sFs(2000), sFB(2000) 

Public Rhos(2000), RhoB(2000), k1(50), k2(50), C1(50, 50), C2(50, 50) 

Sub ConditionalAxCapFS() 

 

'Initiates model parameters 

Dim A1, A2, A3, A4, A5, A6, A7, A8, m1, m2 As Single 

Dim B1, B2, B3, B4, B5, B6, B7, B8 As Single 

 

Sheets("input").Select 

A1 = Range("B3").Value 

A2 = Range("B4").Value 

A3 = Range("B5").Value 

A4 = Range("B6").Value 

A5 = Range("B7").Value 

A6 = Range("B8").Value 

A7 = Range("B9").Value 

A8 = Range("B10").Value 

 

B1 = Range("D3").Value 

B2 = Range("D4").Value 

B3 = Range("D5").Value 

B4 = Range("D6").Value 

B5 = Range("D7").Value 
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B6 = Range("D8").Value 

B7 = Range("D9").Value 

B8 = Range("D10").Value 

 

'Uses updated n-value to represent number of data sets 

n = Range("g4").Value 

 

'============ 

'Initates stepping through the data 

ns = 0 

nb = 0 

For j = 1 To n 

Sheets("input").Select 

    z(j) = Range(Cells(j + 14, 4), Cells(j + 14, 4)).Value 

    x(j) = Range(Cells(j + 14, 11), Cells(j + 14, 11)).Value 

    y(j) = Range(Cells(j + 14, 10), Cells(j + 14, 10)).Value 

    sFs(j) = Range(Cells(j + 14, 18), Cells(j + 14, 18)).Value 

sFB(j) = Range(Cells(j + 14, 24), Cells(j + 14, 24)).Value 

    

   'Rho values for both side shear (s) and end bearing (B) 

   Rhos(j) = Range(Cells(j + 14, 30), Cells(j + 14, 30)).Value 

   RhoB(j) = Range(Cells(j + 14, 31), Cells(j + 14, 31)).Value 

   

   'Ranks of correlation coefficients from columns 35 and 36 

   Ranksj = Range(Cells(j + 14, 35), Cells(j + 14, 35)).Value 
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   RankBj = Range(Cells(j + 14, 36), Cells(j + 14, 36)).Value  

   'If loop that takes ranks 1-50 for side shear correlation 

   If Ranksj <= 50 Then 

        ns = ns + 1 

        k1(ns) = j 

   End If 

   'If loop that takes ranks 1-50 for end bearing correlation 

   If RankBj <= 50 Then 

        nb = nb + 1 

        k2(nb) = j 

   End If 

Next j 

    nks = ns 

    nkb = nb 

  

'==========side shear c matrix=c1 

For ii1 = 1 To nks 

For jj1 = 1 To ii1 

'Calculation to populate c-matrix 

            C1(ii1, jj1) = Exp(-Sqr((x(k1(ii1)) - x(k1(jj1))) ^ 2 + (y(k1(ii1)) - y(k1(jj1))) ^ 2) / 

(Exp(A6) + Exp(A7) * z(k1(ii1)))) * Exp(-Abs(z(k1(ii1)) - z(k1(jj1))) / Exp(A8)) * 

sFs(k1(ii1)) * sFs(k1(jj1)) 

           'Code to populate c-matrix 

            If ii1 <> jj1 Then 

            C1(jj1, ii1) = C1(ii1, jj1) 
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            End If 

Next jj1  

Next ii1 

 

'==========end bearing c matrix=c2 

For ii2 = 1 To nkb 

     For jj2 = 1 To ii2 

'Calculation to populate c-matrix 

            C2(ii2, jj2) = Exp(-Sqr((x(k2(ii2)) - x(k2(jj2))) ^ 2 + (y(k2(ii2)) - y(k2(jj2))) ^ 2) / 

(Exp(B6) + Exp(B7) * z(k2(ii2)))) * Exp(-Abs(z(k2(ii2)) - z(k2(jj2))) / Exp(B8)) * 

sFB(k2(ii2)) * sFB(k2(jj2)) 

'Code to populate c-matrix 

      If ii2 <> jj2 Then 

      C2(jj2, ii2) = C2(ii2, jj2) 

      End If 

Next jj2 

Next ii2 

 

'Fills columns L and V to show existing data used===== 

Sheets("multiple existing data points").Select 

 

Range("l4:l300,v4:v300").Select 

Range("l4").Activate 

Selection.ClearContents 
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'Fills cells with number of correlation points, 50 for code at present use 

Range("l2").Value = nks 

Range("v2").Value = nkb 

 

    With Application 

        .Calculation = xlManual 

        .MaxChange = 0.001 

    End With 

    ActiveWorkbook.PrecisionAsDisplayed = False 

    Range("J20").Select 

 

For j = 1 To nks 

    'multiple existing borings sheet correlated data points for side shear 

    Range("l4").Offset(j - 1, 0).Value = k1(j) 

Next j 

For j = 1 To nkb 

    'multiple existing borings sheet correlated data points for end bearing 

    Range("v4").Offset(j - 1, 0).Value = k2(j) 

Next j 

 

'Shows c-matrix 

Sheets("cmatrix").Visible = True 

Sheets("cmatrix").Select 

'Fills c-matrices 

    Range("E3:bb52,E60:bb109").Select 
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    Range("E3").Activate 

    Selection.ClearContents 

'==========side shear c matrix=c1 

For ii1 = 1 To nks 

      For jj1 = 1 To nks 

Range(Cells(ii1 + 2, jj1 + 4), Cells(ii1 + 2, jj1 + 4)).Value = C1(ii1, jj1) 

    Next jj1 

Next ii1 

'==========end bearing c matrix=c2 

For ii2 = 1 To nkb 

      For jj2 = 1 To nkb 

           Range(Cells(ii2 + 59, jj2 + 4), Cells(ii2 + 59, jj2 + 4)).Value = C2(ii2, jj2) 

      Next jj2 

Next ii2 

 

'Symmetric matrix 

For p1 = nks + 1 To 50 

Range(Cells(p1 + 2, p1 + 4), Cells(p1 + 2, p1 + 4)).Value = 1 

Next p1 

 

For p2 = nkb + 1 To 50 

Range(Cells(p2 + 59, p2 + 4), Cells(p2 + 59, p2 + 4)).Value = 1 

Next p2 

 

'Select c-matrices 
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    Range("e3:bb52,e60:bb109").Select 

     

    Calculate 

    With Application 

        .Calculation = xlAutomatic 

        .MaxChange = 0.001 

    End With 

    ActiveWorkbook.PrecisionAsDisplayed = False 

    'Names values from c-matrix sheet then selects multiple existing data 

'points to fill conditional values 

muFs = Range("A2").Value 

siFs = Range("A4").Value 

muFB = Range("A59").Value 

siFB = Range("A61").Value 

Sheets("multiple existing data points").Select 

Range("i4").Value = muFs 

Range("i5").Value = siFs 

Range("i9").Value = muFB 

Range("i10").Value = siFB 

 

'CMATRIX 

   Sheets("cmatrix").Select 

   ActiveWindow.SelectedSheets.Visible = False 

Range("a1").Select 

'Formats correlated existing data in multiple existing data points 
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    Range("L4:T4").Select 

  Range(Selection, Selection.End(xlDown)).Select 

   Selection.Sort Key1:=Range("M4"), Order1:=xlDescending, Key2:=Range("L4") _ 

       , Order2:=xlAscending, Header:=xlNo, OrderCustom:=1, MatchCase:= _ 

        False, Orientation:=xlTopToBottom, DataOption1:=xlSortNormal, DataOption2 _ 

        :=xlSortNormal 

    Range("V4:AD4").Select 

   Range(Selection, Selection.End(xlDown)).Select 

    Selection.Sort Key1:=Range("W4"), Order1:=xlDescending, Key2:=Range("V4") _ 

        , Order2:=xlAscending, Header:=xlNo, OrderCustom:=1, MatchCase:= _ 

        False, Orientation:=xlTopToBottom, DataOption1:=xlSortNormal, DataOption2 _ 

        :=xlSortNormal 

 

End Sub 

________________ 
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Generic and Conditional Equivalent Linear Undrained Shear Strength.xlsm: 

 

_________________ 

Public x(2000), y(2000), z(2000), sFs(2000) 

Public Rhos(2000), k1(50), C1(50, 50) 

Sub EquivLinearProfLatCap() 

 

Dim D1, D2, D3, D4, D5, D6, m As Single 

'Initiates model parameters 

Sheets("input").Select 

D1 = Range("B3").Value 

D2 = Range("B4").Value 

D3 = Range("B5").Value 

D4 = Range("B6").Value 

D5 = Range("B7").Value 

D6 = Range("B8").Value 

'Uses updated n-value to represent number of data sets 

n = Range("g4").Value 

'============ 

'Initates stepping through the data 

ns = 0 

For j = 1 To n 

Sheets("input").Select 

    z(j) = Range(Cells(j + 14, 4), Cells(j + 14, 4)).Value 

    x(j) = Range(Cells(j + 14, 11), Cells(j + 14, 11)).Value 
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    y(j) = Range(Cells(j + 14, 10), Cells(j + 14, 10)).Value 

     

    sFs(j) = Range(Cells(j + 14, 18), Cells(j + 14, 18)).Value 

     

  'Rho value for Su1 

   Rhos(j) = Range(Cells(j + 14, 30), Cells(j + 14, 30)).Value 

   'Ranks of correlation coefficient from column 35 

   Ranksj = Range(Cells(j + 14, 35), Cells(j + 14, 35)).Value 

 'If loop that takes ranks 1-50 for side shear correlation 

   If Ranksj <= 50 Then 

        ns = ns + 1 

        k1(ns) = j 

   End If 

    

Next j 

    nks = ns 

'==========Su1 c matrix=c1 

For ii1 = 1 To nks 

For jj1 = 1 To ii1 

   'Calculation to populate c-matrix 

            C1(ii1, jj1) = Exp(-Sqr((x(k1(ii1)) - x(k1(jj1))) ^ 2 + (y(k1(ii1)) - y(k1(jj1))) ^ 2) / 

(Exp(D4) + Exp(D5) * z(k1(ii1)))) * Exp(-Abs(z(k1(ii1)) - z(k1(jj1))) / Exp(D6)) * 

sFs(k1(ii1)) * sFs(k1(jj1)) 

          'Code to populate c-matrix 

            If ii1 <> jj1 Then 
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            C1(jj1, ii1) = C1(ii1, jj1) 

            End If 

      Next jj1 

 Next ii1 

'======================================= 

'Fills column L to show existing data used===== 

Sheets("generic and conditioned").Select 

Range("l4:l300").Select 

Range("l4").Activate 

Selection.ClearContents 

'Fills cells with number of correlation points, 50 for code at present use 

Range("l2").Value = nks 

 

With Application 

        .Calculation = xlManual 

        .MaxChange = 0.001 

    End With 

    ActiveWorkbook.PrecisionAsDisplayed = False 

    Range("J20").Select 

For j = 1 To nks 

    'multiple existing borings sheet correlated data points 

    Range("l4").Offset(j - 1, 0).Value = k1(j) 

Next j 

'Shows c-matrix 

Sheets("cmatrix").Visible = True 
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Sheets("cmatrix").Select 

'Fills c-matrix 

    Range("E3:iv254").Select 

    Range("E3").Activate 

    Selection.ClearContents 

'==========Su1 c matrix=c1 

For ii1 = 1 To nks 

For jj1 = 1 To nks 

Range(Cells(ii1 + 2, jj1 + 4), Cells(ii1 + 2, jj1 + 4)).Value = C1(ii1, jj1) 

      Next jj1 

     Next ii1 

'Symmetric matrix 

For p1 = nks + 1 To 50 

Range(Cells(p1 + 2, p1 + 4), Cells(p1 + 2, p1 + 4)).Value = 1 

Next p1 

'Select c-matrix 

    Range("e3:bb52").Select 

     

    Calculate 

    With Application 

        .Calculation = xlAutomatic 

        .MaxChange = 0.001 

    End With 

    ActiveWorkbook.PrecisionAsDisplayed = False 

'Names values from c-matrix sheet then selects multiple existing data 
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'points to fill conditional values 

muFs = Range("A2").Value 

siFs = Range("A4").Value 

 

Sheets("generic and conditioned").Select 

Range("i4").Value = muFs 

Range("i5").Value = siFs 

'CMATRIX 

    Sheets("cmatrix").Select 

    ActiveWindow.SelectedSheets.Visible = False 

     

 'Formats correlated existing data 

    Range("L4:T4").Select 

    Range(Selection, Selection.End(xlDown)).Select 

    Selection.Sort Key1:=Range("M4"), Order1:=xlDescending, Key2:=Range("L4") _ 

        , Order2:=xlAscending, Header:=xlGuess, OrderCustom:=1, MatchCase:= _ 

        False, Orientation:=xlTopToBottom, DataOption1:=xlSortNormal, DataOption2 _ 

        :=xlSortNormal 

End Sub 

__________________ 

 



110 

 

References 

American Petroleum Institute (1993, 2003). “Recommended Practice for Planning, 

Designing and Constructing Fixed Offshore Platforms—Load and Resistance 

Factor Design.”  RP 2A-LRFD, Washington, D. C. 

Ang, A. H-S. and Tang, W. H. (1975) “Probability Concepts in Engineering Planning and 

Design, Volme I – Basic Principles”, John Wiley & Sons, Inc. 

Aubeny, CP, Han, SW., Murff , JD.(2003) “Inclined load capacity of suction caissons”.  

International Journal for Numerical and Analytical Methods in 

Geomechanics,2003;27:1235-1254. 

Cheon, Jeong Yeon. (2011) “Analysis of Spatial Variability in Geotechnical Data for 

Deepwater Foundations in Gulf of Mexico.” The University of Texas at Austin. 

Buster, Noreen A., and Charles W. Holmes. Gulf of Mexico Origin, Waters, and 

Biota.College Station, TX: Texas A&M UP, 2011. Print. 

F. Moretzsohn, J.A. Sánchez Chávez, and J.W. Tunnell, Jr., Editors. 2012. GulfBase: 

Resource Database for Gulf of Mexico Research. World Wide Web electronic 

publication. http://www.gulfbase.org, 08 November 2012. 

Olson, R. E., Rauch, A. F., Gilbert, R. G., Tassoulas, J. L., Aubeny, C. P. and Murff, J. 

D., (2001), “ Toward the Design of New Technologies for Deep-Water Anchors”, 

Proceedings ISOPE, Stavanger. 

Quiros,G.W., Little, R.L. (2003) “Deepwater Soil Properties and Their Impact on the 

Geotechnical Program” Proceedings, Offshore Technology Conference, Houston, 

Texas,  

Valdez-Llamas, Y.P. (2003), “Spatial Variability of the Marine Soil in the Gulf of 

Mexico” Proceedings, Offshore Technology Conference, Houston, Texas, OTC 

15266, 1-6. 


