
Copyright

by

Man-Fung Cheung

2011



The Dissertation committee for Man-Fung Cheung

Certifies that this is the approved version of the following dissertation:

Gluon Propagator in Classical Color Field of Colliding

Hadrons and its Implications for Hadronic Cross

Sections

Committee:

Charles B. Chiu, Supervisor

Duane Dicus

Oscar Gonzalez

Christina Markert

E. C. George Sudarshan



Gluon Propagator in Classical Color Field of Colliding

Hadrons and its Implications for Hadronic Cross

Sections

by

Man-Fung Cheung, B.Sc.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2011



Dedicated to my parents, Yan-Man Cheung and Wai-Hong Cheng,

whom every single accomplishment of mine are based upon; and

my girlfriend, Wan-Ting Chuang, who has been supportive and has shared

uncertainties, sacrifices and happiness during my graduate study.



Acknowledgments

I would like to take this opportunity to thank all the kind people I have

encountered during my graduate study.

First and foremost, I would like to express my cordial gratitude to my

advisor, Prof. Charles Chiu, for his timeless support on my study. His guid-

ance and criticisms are crucial to sharpen my thoughts and my understanding

of physics. From him, I learnt how to examine thoughts and convey ideas.

The patience and motivation he has provided to me are both qualitatively and

quantitatively immeasurable. I hope one day I would be as good a teacher and

an advisor as Dr. Chiu is. I feel truly fortunate to have him as my advisor.

I would like thank my dissertation committee members, Prof. Duane

Dicus, Prof. Oscar Gonzalez, Prof. Christina Markert and Prof. E. C. George

Sudarshan, for their insightful comments and questions that help improve my

dissertation, especially for the valuable discussions I had with Dr. Dicus and

Dr. Sudarshan throughout my study.

Prof. Austin Gleeson’s teaching philosophy has been very influential to

me when I was an assistant instructor. I thank him for his advices and giving

me freedom to design my course. My thanks also go to the group of assistant

instructors working with me. It has been a pleasure to share our teaching

experience to each other.

v



I thank Matt Haley, also a student of Dr. Chiu, for his moral and

mutual support, especially when both of us had a difficult time, and also for

his help on improving my writing. In addition, to my friends who helped

me along the way and shared many good times with me, I truly value our

friendship.

Last but not least, this chapter of my life will not be completed without

the constant love, concern and support from my family and my girlfriend whom

this dissertation is dedicated to. I cannot thank them enough.

vi



Gluon Propagator in Classical Color Field of Colliding

Hadrons and its Implications for Hadronic Cross

Sections

Publication No.

Man-Fung Cheung, Ph.D.

The University of Texas at Austin, 2011

Supervisor: Charles B. Chiu

We review the Regge theory and the minijet model for pp and p̄p col-

lisions. We show that, in the conventional minijet approach, the asymptotic

behavior of the total cross section calculated using currently accepted gluon

distribution function and perturbative QCD rises too rapidly when compared

with the data and fails to satisfy Froissart bound. To tame the rise, we have

developed a new formalism for the interaction between QCD gluon and the

classical color field of the colliding nucleons, and show how the gluon propa-

gator is modified. The corresponding gauge invariance condition of the prop-

agator is derived and shown to be satisfied. The modified gluon propagator

leads to a suppression of the minijet cross section due to the gg → gg sub-

process in the small-x region. We show that the pp and p̄p total cross section

from
√
s = 5 GeV to 30 TeV can be described as a sum of a hard component

contributed by the classical field modified minijet model and a soft component
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due to the exchange of the Pomeron and the I = 0 exchange-degenerate ω and

f Regge trajectories. The soft-component model is motivated by the notion

of duality. The predicted total cross section has a ln s asymptotic behavior.
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Chapter 1

Introduction

1.1 Strong Interaction

Among the four fundamental interactions of nature: the electromag-

netic force, the weak force, the strong force and the gravitational force, the

strong force, also called the strong interaction, as the name suggested is the

strongest. It is so strong that it overcomes the electromagnetic repulsion due to

the same charged protons to form a nucleus. Further down to the microscopic

level, the strong interaction is also responsible for the existence of hadrons,

including mesons and baryons. It is responsible for the binding of quark and

anti-quark into mesons, and the binding of three quarks into baryons. Stable

hadrons are commonly used in collider experiments in many world leading

laboratories, including CERN, Fermilab and Brookhaven National Lab, to ex-

plore the energy frontier of nature. A better theoretical understanding of the

strong interaction leads to more precise interpretations of the experimental

results. In turn, much improved theory can be derived from the experiments.

1



1.2 Quantum Chromodynamics (QCD)

It is generally accepted that the strong interaction is described by quan-

tum chromodynamics (QCD) in which quarks and gluons are fundamental

particles carrying color charge and the interaction is mediated by gluons. This

belief is mainly based on the successful description of the processes involving

large momentum transfer. These processes are called hard processes.

One profound consequence of QCD is the asymptotic freedom [6, 7]

which means the coupling between two strongly interacting particles tends to

be zero as their momentum transfer approaches infinity. Asymptotic freedom

validates the use of perturbation theory in hard process. However, hadronic

collisions cannot be described by pQCD alone. Soft processes, in which small

momentum transfer is involved, are prevalent in hadronic collisions.

Soft process is difficult to handle in general because

• its coupling is strong so that perturbative method is not valid;

• its dynamics is governed by non-linear equation.

One way to treat the effect due to the soft processes is through the application

of factorization in parton model (for review, see [8]) in which the hadron-

hadron cross section is written schematically as

σ =
∑
i,j

∫
dx1dx2dQ

2fpi/A(x1, µ
2)fpj/B(x2, µ

2)H(x1, x2, Q
2, µ2), (1.1)

2



where fpi/A(x1, µ
2), (fpj/B(x2, µ

2)), is the parton distribution function of parton-

i with momentum fraction x1 from hadron A, (parton-j from hadron B), evalu-

ated at scale µ2 and H is the hard scattering cross section of the parton-parton

sub-process with momentum exchange at Q2. The renormalization scale µ2

serves as a division line between soft and hard. The hard part only consists of

processes with momentum larger than Q2 > µ2, while all the soft scattering

with Q2 < µ2 is absorbed into fpi/A. One can measure fpi/A at a fixed µ2

higher than the QCD scale ΛQCD, then fpi/A at a higher µ2 can be calculated

using pQCD. In this parton model, the scattering process becomes incoher-

ent, namely one parton does not interfere with the hard scattering of other

partons. However, the conventional description of the gluon distribution in

high energy grows rapidly. One expects the non-linearity of QCD implies the

recombination of gluons. Thus, the gluon distribution will saturate at high

energy. According to the analysis of the HERA data [9], there emerges a sat-

uration scale Q2
s below which the gluon inside the hadron is saturated. So far,

how to describe a saturated hadron is still an open question.

1.3 Proton-Proton and Anti-Proton-Proton Total Cross
Section

One of the unsettled and interesting issues in the strong interaction is

the understanding of total cross section of antiproton-proton p̄p and proton-

proton pp collisions at high energy. These total cross sections were measured

over a large range of center-of-mass energy,
√
s. See Fig. 1.1

3
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Figure 1.1: Energy dependence of p̄p and pp total cross section. The data is
from [1].

By mid 60s, the pp cross section was already well measured from
√
s = 2

to 6.3 GeV. In this energy region, the pp cross section is almost constant

throughout at the value ∼ 38 mb. At the time one thought that the pp cross

section has already reached some constant asymptotic value [10]. In the same

energy region the p̄p cross section drops from 90 mb to 60 mb. The trend

suggests that as the energy further increases, eventually p̄p cross section could

approach a common asymptotic value as the pp cross section as implied by the

Pomeranchuk theorem [11].

Along with the availability of higher energy accelerators, as time went

4



on, higher energy data became available [1]. Experiments have confirmed that

p̄p cross section merges with the pp cross section at around
√
s = 50 GeV.

Beyond which, they both can be described by the same energy dependent

function which continues to rise as the energy further increases. Some typical

examples are listed in Table 1.1. Various theoretical interpretations and models

Experiment
√
s σtot

ISR(pp) 62.7 GeV 43.82± 0.23 mb
SPS(pp̄) 541 GeV 63.0± 2.1 mb

Tevatron(CDF,pp̄) 1.8 TeV 80.03± 2.24 mb
Cosmic ray (pp) 30 TeV 120± 15 mb

Table 1.1: Table of typical pp and p̄p total cross sections from different colliders

have been developed in attempt to understand the rise of the pp and p̄p cross

sections from ISR energies and beyond.

In the 60s and 70s, there was an extensive development of Regge theory

which provides a useful framework for the description of soft physics, especially

near zero-momentum-transfer. It is not a fundamental theory as QCD. How-

ever in practice in the kinematic domain beyond the reach of pQCD, Regge

theory provides a supplementary tool in the description of soft physics. In

our work, we will divide the total cross section into a soft component and

a hard component. Regge theory will be used in the description of the soft

component.

Another approach is the QCD-inspired minijet model. It is first noticed

by Cline et al. [2] that the energy dependence of the total cross section rises

very similarly to the cross section of jet with small invariance mass, called

5



minijet, calculated by QCD. See Fig. 1.2. However, as energy keeps on in-

creasing, the minijet cross section rises too rapidly. Various approaches based

on eikonal models were then developed to tame the rise. Typically in these

approaches, the fittings of the data are successful only up to a certain energy,

as the energy further increases the predicted curve would begin to predict too

rapid a rise.

Figure 1.2: Comparing the rise of total cross section and that of minijet cross
section. The data points are the total cross section. The shaded area is
represents the contribution from the jet calculation. Notice that the rise of
the total cross section and the rise of the shaded area behaves similarly. Figure
is obtained from Ref. [2].

Recently, a new approach, called Color Glass Condensate (CGC), was

developed to treat the non-perturbative part of QCD by formulating the dy-

6



namics of saturated gluon field in terms of a classical field theory derived

from the QCD Lagrangian. The idea of CGC is initiated by McLerran and

Venugopalan. Their model is referred to as the MV model.

In this work, we applied the MV model to the pQCD calculation of the

p̄p and pp total cross sections within the framework of QCD. We derived the

modified gluon propagator in the presence of the classical color field and found

that it provides the right amount of taming on the minijet cross section. Here

the minijet cross section only rise as ln s asymptotically. This ln s dependence

satisfies the Froissart bound [12, 13] which requires that any total cross section

has to satisfy σ ≤ constant× (ln s)2.

This dissertation is organized as the followings. A short review of Regge

theory and its implications for the p̄p and pp cross section will be presented

in Chapter 2. We discuss the conventional minijet model and its problem in

Chapter 3. An introduction of classical color field in nucleon collision will be

given in Chapter 4. Chapter 5 is devoted to the calculation of the classical field

modified gluon propagator then it is applied to minijet cross section in Chapter

6. The implication of the modified propagator for the minijet cross section is

presented in Chapter 7. The gauge invariance of propagator is discussed in

Appendix B. We conclude the present model and give a outlook of the possible

applications of the present model on other hadronic processes in Chapter 8.

7



Chapter 2

Regge Theory and Duality

As we mentioned in Chapter 1, the pp and p̄p total cross sections, σpp

and σp̄p, at low energy,
√
s . 30 GeV, can be effectively described by Regge

theory. In this chapter, we will review the main ingredients of Regge theory

that lead to (a) the absence of energy dependence in σpp and (b) the 1/
√
s

power law dependence of σp̄p in that region. We will also review the duality

principle in strong interaction which plays an important role in the application

of Regge theory.

2.1 Crossing Symmetry

We first consider the process 1 + 2 → 3 + 4, where the particles have

masses mi and momentum pi for i = 1, 2, 3 and 4. We use the metric

(+,−,−,−) such that

pµ1p2µ = E1E2 − p⃗1 · p⃗2. (2.1)

8



The Lorentz invariant Mandelstam variables s, t and u are defined by

s = (p1 + p2)
2

t = (p1 − p3)
2 (2.2)

u = (p1 − p4)
2

that they satisfy

s+ t+ u =
4∑

i=1

m2
i . (2.3)

The s-channel scattering amplitude, shown in Fig. 2.1(a), is a function of

only two independent variables, denoted by A12,34(s, t) ≡ ⟨34|T |12⟩. If we

flip the sign of the momentum of 2 and 3 and replace particle 2 and 3 by

their antiparticle, 2̄ and 3̄, the process become 1 + 3̄ → 2̄ + 4. Its scattering

amplitude is A1+3̄,2̄+4(s
′, t′). The original variable t = (p1 − p3)

2 in Fig. 2.1(a)

acts as the total squared energy s′ = (p′1+ p′3)
2 = (p1− p3)

2 = t in Fig. 2.1(b).

The process 1+3̄ → 2̄+4 is called the t-channel process of 1+2 → 3+4. Even

though the variables of the two channel are related, the amplitudes are defined

in different region of the variables. For the s-channel, the physical region is

given by s ≥ (m1 +m2)
2 and t ≤ 0, while the physics region for the t-channel

is s′ = t ≥ (m1 +m3)
2 and t′ = s ≤ 0. Those are disconnected regions.

In the framework of S-matrix theory, the basic assumption is that the

amplitudes of these two different channels are represented by one single ana-

lytic function. The relation between the amplitudes of two channels is given

by

A12,34(s, t) = A13̄,2̄4(s
′ = t, t′ = s). (2.4)

9



1, p′1 = p1 2̄, p′2 = −p2

4, p′
4
= p43̄, p′

3
= −p3

s′ = t

(a) (b)

1, p1 2, p2

4, p43, p3

s

Figure 2.1: (a) The s-channel scattering process: 1 + 2 → 3 + 4 and (b) the
t-channel scattering process: 1 + 3̄ → 2̄ + 4.

This assumption enable us to write the amplitude in any convenient channel

and then analytical continue to other region to represent processes in other

channels.

2.2 Regge Pole Trajectory in pp

Let’s first consider the pp elastic process: p1p2 → p3p4 with mi = m.

In the t-channel, it becomes p1p̄3 → p̄2p4. We write the amplitude in partial

wave expansion as

App(s, t) = 16π
∞∑
l=0

(2l + 1)Al(t)Pl(zt), (2.5)

where Pl is the Legendre polynomial of the first kind and zt = 1 + 2s/(t −

4m2). We can further rewrite (2.5) into a sum of even- and odd-signatured

10



amplitudes, respectively denoted by A+ and A−, such that

App(s, t) = A+(s, t) + A−(s, t), (2.6)

where

A±(s, t) = 8π
∞∑
l=0

(2l + 1)A±
l (t)(Pl(zt)± Pl(−zt)). (2.7)

Since Pl(−z) = (−1)lPl(z), A
+ and A− are the sums of term with only even

l and only odd l, respectively. One can generalize l of A±
l (t) from an non-

negative integer to a complex number such that the partial wave amplitude in

complex l matches the original value when l is non-negative integers,

A+(l, t) = A+
l (t) for even l (2.8)

A−(l, t) = A−
l (t) for odd l (2.9)

The sum in eq. (2.7) can be written as a contour integral of l, called the

Sommerfeld-Watson transformation [14], as

A±(s, t) = 4πi

∮
C

dl(2l + 1)A±(l, t)
Pl(−zt)± Pl(zt)

sin(πl)
, (2.10)

where the contour C surrounds all the pole from 1/ sin(πl)the real axis from

0 to ∞ in a clockwise direction as shown in Fig. 2.2(a), such that, for any

function f(z) analytic along the positive real axis, we have∮
C

dz
f(z)

sin(πz)
=

i

2

∞∑
l=0

(−1)lf(l). (2.11)

According to Forissart-Gribov Formula, the behavior of the amplitude A±(l, t)

at large l goes like

A±(l, t) ∼ l−
1
2 z−l

t . (2.12)

11



In the asymptotic energy region, large s, the integrand of eq. (2.10) goes to

zero at large l. It allows us to deform the contour to C ′ that l goes from

−1/2 − i∞ to −1/2 + i∞. If A±(l, t) has poles in the right l-plane, we pick

up the residue contribution from the pole as shown in Fig. 2.2(b).

C

Regge Pole

C’

(a) (b)

Figure 2.2: Integration contours of the Sommerfled-Watson transformation in
the complex l-plane.

In the Regge theory, it is assumed that in the t-channel the resonances

contribute collectively as a family with either even or odd l. The members

of the family lie on a trajectory on the complex l-plane. The trajectory is

called the Regge trajectory α±(t) and has the property that when t equals the

mass of a resonance member, t = m2
R, the value of α

±(t) equals to the angular

12



momentum of the resonance, i.e.

α±(t = m2
R) = lR, (2.13)

where + and − label the signature of Regge trajectory with even and odd l,

respectively. An other assumption is that a simple pole, called Regge pole,

is assigned to the partial wave amplitude A±(l, t) at the position of a Regge

trajectory on the l-plane. The residue of the Regge pole is β±(t).

With the consideration of the Regge pole, eq. (2.10) becomes

A±(s, t) =− 8π
∑
i

(2α±
i (t) + 1)β±

i (t)

sin(πα±
i (t))

(Pα±
i (t)(−zt)± Pα±

i (t)(zt))

+ 4πi

∫ −1/2+i∞

−1/2−i∞
dl(2l + 1)A±(l, t)

Pl(−zt)± Pl(zt)

sin(πl)
(2.14)

The first term is the sum of all Regge pole i. The second term is referred as

the ”background integral” which can be diminished such that it is negligible

compared to the Regge pole term at large s [15]. The amplitude is first written

in t-channel, where t > 4m2 and s ≤ 0. However, eq. (2.14) allows us to

continue the expression to the high energy s-channel, s > 4m2 and t ≤ 0.

Large positive s corresponds to large negative zt. The asymptotic behavior of

the Regge term of eq. (2.14) is

A±(s, t) ∼
∑
i

β±
i (t)Γ(−α±

i (t))(1± e−iπα±
i (t))

(
s

s0

)α±
i (t)

, (2.15)

where the factor 1 ± e−iπα±
i (t) is the signature factor coming from rewriting

(−1)α = e−iπα in the Legendre polynomial.
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The total cross section of two particle scattering can be calculated di-

rectly with the imaginary part of the elastic forward scatting amplitude using

the optical theorem which says

σtot =
1

s
ImA(s, t = 0). (2.16)

When there is the exchange of a number of Regge poles, the total cross section

is the sum of the Regge pole contributions at t = 0 and the asymptotic behavior

of the total cross section is determined a power law sα(0)−1 with the exponent

given by the largest value of α(t = 0) among the all Regge poles exchanged.

2.3 Exchange Degeneracy in pp and p̄p

For pp, one assumes there are three dominant Regge trajectories: the

Pomeron, the ω and the f trajectories. The Pomeron is not observed as

a resonance particle. It is commonly assumed to carry a vacuum quantum

number and to have αP (0) = 1. So it contributes a constant term in σtot.

The f have even signature and the ω is odd. Both ω and f trajectories are

observed with αω(0) ≈ αf (0) ≈ 1/2 and surprisingly close to each other.

Fig. 2.3 shows that both the ω trajectory {ω(780), ω3(1670)} and f trajec-

tory {f2(1270), f4(2050)} lie on a straight line. We assume their trajectories

are exchange-degenerated trajectories, which are defined to have their α(t)

and their residue β(t) to be exactly the same. This assumption ensures that

the coefficient of the two Regge contribution is almost the same except their

14
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Figure 2.3: The Chew-Frautschi plot of ω and f trajectories. Ref: [3]

signature. The sum of the two Regge contribution in eq. (2.15) gives

Im(Aω(s, 0) + Af (s, 0)) ∼ Im
[
(1 + e−iπ/2) + (1− e−iπ/2)

]
s−1/2

= Im[2s−1/2] = 0 (2.17)

Therefore, the total cross section of pp is only given by the Pomeron constant

contribution,

σpp
tot = Im [AP (s, 0) + Aω(s, 0) + Af (s, 0)] /s = CP s

αP (0)−1 = CP (2.18)

A different situation emerges in the case of p̄1p2 → p̄3p4. The corre-

sponding t-channel is p̄1p3 → p̄2p4. If the t-channel resonance is ω, we write

15



the amplitude due to ω-exchange as

Ap̄p
ω = ⟨p̄1p3|ω⟩⟨ω|p̄2p4⟩. (2.19)

We insert a pair of charge conjugation operator in between ⟨p̄1p3|ω⟩ and use

the fact that ω has charge conjugation C = −1. The p̄p amplitude becomes

Ap̄p
ω = ⟨p̄1p3|CC|ω⟩⟨ω|p̄2p4⟩

= −⟨p1p̄3|ω⟩⟨ω|p̄2p4⟩

= −App
ω , (2.20)

since the t-channel ω-exchange for pp is 1 + 3̄ → ω → 2̄ + 4. Therefore, if the

resonance exchange in t-channel has odd C-parity, the amplitudes of pp and

p̄p have an opposite sign. If the resonance has even C-parity, for example f ,

then the amplitudes of pp and p̄p is the same.

The amplitude of p̄p due to ω and f written in term of the amplitude

of pp is

Im(Ap̄p
ω (s, 0) + Ap̄p

f (s, 0)) = Im(−App
ω (s, 0) + App

f (s, 0))

∼ Im
[
−(1 + e−iπ/2) + (1− e−iπ/2)

]
s−1/2

= Im[−2e−iπ/2s−1/2]

= 2s−1/2 (2.21)

Unlike total cross section of pp, here the imaginary parts of ω and f contribu-

tion do not cancel. The total cross section of p̄p consists of a constant term
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from the Pomeron and an 1/
√
s term from the exchange-degenerated trajec-

tories. It leads to the different energy behaviors between pp and p̄p at the low

energy shown in Fig. 1.1. We will use the parameterization

for pp : σpp
soft = σP (2.22)

for p̄p : σp̄p
soft = σP +

c√
s

(2.23)

to fit the data with at low energy.

2.4 Nonexotic and exotic quantum numbers

The use of the exchange degenerate Regge poles leading to the param-

eterization of eq (2.22) and (2.23) is based on the duality principle in strong

interaction physics developed in the latter part of 1960’s. At the time the pro-

jectile momentum range accessible to the experiments is plab = 5− 30 GeV/c,

or
√
s ∼ 3-8 GeV. In this energy range, there are two distinct sets of energy

dependence in the total cross sections. There is the set of K+p, K+n, pp and

pn scatterings where the total cross sections are approximately constant in en-

ergy, while the other set of K−p K−n, p̄p and p̄n and π±p scatterings, the total

cross sections fall off with energy. Why should the energy dependence of these

two sets are so different? Is there any fundamental reason which distinguishes

these two sets? [16]

It turned out all the cases with a constant cross section correspond to

those initial scattering states which have exotic quantum numbers, i.e. they

do not have the quantum number of ordinary hadrons, which are made out
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of qq̄ or qqq with nonexotic quantum numbers. This suggests that, from the

direct channel point of view, the cross section can be written as a sum of

two contributions, the background (or non-resonance) contribution and the

resonance contribution. The former, such as the pp case, has a flat cross

section which is associated with the asymptotic behavior of the exchange of

Pomeron with αP (0) = 1. This leads to the parameterization of eq. (2.22).

The nonexotic case, such as the p̄p case, has, in addition to the background

part, also an energy dependent part which leads to the falling of the cross

section of the form of eq.(2.23).

2.5 Finite Energy Sum Rule (FESR)

The relationship between the s-channel resonances and the t-channel

Regge poles can be expressed in terms of FESR [16, 17]. The generic form of

the n-th moment sum rule is given by∫ N

0

νnImA(ν, t)dν =
∑
i

βi(t)N
αi+1+n

αi + 1 + n
(2.24)

where ν = s−u
2M

with M being the mass of the target. The RHS is summing

over the contributions of the t-channel exchange of Regge poles. For total

cross section, we will only be concerned about the amplitude at t = 0 and

omit t in the argument. We will separate the full cross section as the sum

of the background associated with the Pomeron contribution, and the reso-

nance contribution associated with the t-channel nonexotic Regge trajectory
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contribution. This leads to two FESRs,∫ N

0

νnImAbk(ν)dν ∼ βP
NαP+1+n

αP + 1 + n
(2.25)

∫ N

0

νnImAres(ν)dν ∼
∑
R

βR
NαR+1+n

αR + 1 + n
(2.26)

An illustration of the relationship of eq. (2.26) for the πN → πN case, where

the t-channel isospin I = 1 is shown in Fig. 2.4 [4]. Here the t-channel ρ

trajectory contribution shows the average of the oscillations of the s-channel

resonance contribution.

Figure 2.4: A illustration of FESR from [4].

Thus in the context of FESR, it is the absence of nonexotic resonances

in the s-channel which through FESR ”causes” the cancellation of the imag-
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inary parts of the ω and f contributions. In this manner, FESR provides

the reason for having the exchange degenerate conditions, i.e. βω = βf and

αω(0) = αf (0).

2.6 Duality Diagram

The notion of duality is an important dynamical principle which is

found to work at least approximately in strong interaction physics. In a per-

turbation theory, one can add the s-channel exchange Feynman diagram to

t-channel exchange Feynman diagram to arrive at a resultant amplitude.

In contrast to this additive property in the perturbation theory, du-

ality principle implies that when integrating over the energy dependent part

of ImA(ν), it should be evaluated either in term of the s-channel resonance

contribution as given on the LHS of the FESR, or in terms of t-channel Regge

pole contribution i.e. the RHS of the FESR. If one takes the sum of the both

channel contributions, there will be a double counting.

The duality principle has been demonstrated by the Veneziano model

[18]. It involves the ππ → πω scattering amplitude which is symmetric between

any two pair of the Mandelstam variables, st, tu and us. The amplitude is

given by the some of three terms, where each term involves a pair. For example,

take the st term which can be written as a sum of s-channel pole contributions,

and alternatively as a sum of the t-channel pole contributions.

One can also characterize duality relationship in terms of duality dia-
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gram as shown in Fig. 2.5 [19, 20]. They are planar diagrams. Notice that

for meson-meson scattering amplitude as shown in Fig. 2.5a, the s-channel

nonexotic resonances build up t-channel nonexotic Regge poles. For the meson-

baryon case, there is the nonexotic Regge pole, which is dual to the nonexotic

baryon resonances, as it is in the case shown in Fig. 2.5b. The FESR plot

of Fig. 2.4 is a special case of Fig. 2.5b, where the average behavior of the

s-channel resonances is described by a smooth curve, which is the t-channel ρ

trajectory.

(a) (b)

s s

t t

Meson Meson

Meson Meson Baryon Meson

Baryon Meson

Figure 2.5: A illustration of (a) meson-meson and (b) meson-baryon s-t channel
duality.

We now come to the present case of pp and p̄p. In our work there is no

explicit mentioning of how the s-channel resonances build up the asymptotic

behavior, of the ω and f Regge poles. In fact the NN̄ case has been regarded

by previous authors as a puzzle in the implementation of duality principle

[19, 20]. Let us look at the situation more closely.

21



The corresponding planar diagrams are shown in Fig. 2.6. There are

two duality diagrams. In Fig. 2.6a, the s-channel resonance is nonexotic and t-

channel resonance is exotic. In Fig. 2.6b, the s-channel resonance is exotic and

t-channel resonance is nonexotic. For this case FESR of the zero-th moment

reads∫ N

0

[ImAres
exotic + ImAres

nonexotic]dν ∼
[
βnonexotic

NαR

αR + 1
+ βexotic

Nαexotic

αexotic + 1

]
(2.27)

If one assumes the dominance of nonexotic contribution both in the s-channel

and t-channel, the approximation to the FESR would be reduced to∫ N

0

[ImAres
nonexotic]dν ∼ [βnonexotic

NαR

αR + 1
]. (2.28)

Previous authors only considered one duality diagram. In this approx-

imation the FESR relation is not satisfied. Our use of both planar diagrams

of Fig. 2.6 have restored the validity of FESR.
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Figure 2.6: A illustration of p̄p s-t channel duality.
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Chapter 3

Minijet

In high energy scattering process, the resonance contribution discussed

in Chapter 2 is no longer important. The Regge theory alone predicts a con-

stant total cross section at asymptotic energy. However, the nature tells a

different story. The total cross sections of all hadronic scatterings rise with

energy [1].

In Chapter 1, we mentioned that Cline et al. [2] pointed out that

the rise of σpp can be considered as the same rise as in jet cross section.

Phenomenologically, the total cross section is the sum of a soft component,

which can be calculated with Regge theory, and a jet cross section, called the

hard component, written as

σtot = σsoft + σhard. (3.1)

Experimentally, among the jets produced most of them have relatively small

invariant mass, which are referred to as minijets. In the minijet model, the

gluon-gluon elastic scattering cross section is used, where a minijet is ap-

proximated by a final state gluon with a zero invariant mass. The minijet

component is computed using the parton model in pQCD. Nevertheless, the

conventional minijet cross section rises too rapidly. In attempt to explain the
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data quantitatively, various approaches incorporating eikonal model in minijet

have been considered by different authors [21–27].

In this Chapter, we define the conventional QCD-inspired minijet cal-

culation, discuss the problem led by the calculation and present our classical

field modified minijet model.

3.1 QCD-inspired minijet

The minijet cross section is defined as the inclusive process in which one

counts all the final states that include the specified outgoing jet. It corresponds

to the process nucleon A + nucleon B → jet + X where X denotes all other

particle except the jet. A jet is defined as a cluster of particles, usually mesons,

with a small angular distribution. To calculate the minijet cross section, one

assumes that the factorization between soft and hard holds for minijet process

(The validity of the factorization theorem involving two nucleons in the initial

state has been established, although it had been subjected of controversy. [8])

and write the minijet cross section as

σmnj =
∑

a,b={q,q̄,g}

∫ 1

2t̂0
s

dx1

∫ 1

2t̂0
x1s

dx2

∫ −t̂0

−ŝ+t̂0

dt̂fa(x1, Q
2)fb(x2, Q

2)
dσab

dt̂
(ŝ, t̂),

(3.2)

where the quantities ŝ, t̂ and û are the Mandelstam variables of the subprocess

and fa(x,Q
2)dx is the number of parton of type a with longitudinal momentum

fractions in the interval x to x+ dx coming from one of the colliding nucleons

in a transverse area of δS = 1/Q2. In other words, it is the number of gluon
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can be seen by a probe with a trasverse size 1/Q2. The momentum scale

is usually set as the characteristic momentum transfer of the parton-parton

elastic scattering diagram, for example Q2 = |t̂| for t̂-channel gluon exchange

diagram. fa(x,Q
2) is called the parton distribution function (pdf). dσab

dt̂
is

the differential cross section of the parton-parton elastic scattering. There is

a momentum cutoff parameter t̂0 below which pQCD is not valid and those

process with squared momentum transfer smaller than t̂0 should be included

in the soft component instead. Physically, it means in every subprocess there

is one parton coming from each nucleon. The two colliding partons undergo

elastic scattering, then radiate and produce jets while they are flying away

from the scattering center. The minijet cross section is the incoherent sum of

the elastic cross section of all binary pairs of the colliding partons.

At very large s, the lower limits of the x1- and x2-integration in eq.

(3.2) reach to a very small value. In small-x region, gluon pdf dominates over

all other type of partons (see Fig. 3.1). Therefore, the asymptotic behavior

of minijet cross section could be well approximated by considering only gluon

contribution as

σmnj =

∫ 1

2t̂0
s

dx1

∫ 1

2t̂0
x1s

dx2

∫ −t̂0

−ŝ+t̂0

dt̂g(x1)g(x2)Fmnj
dσgg

dt̂
. (3.3)

We introduce the factor Fmnj in the definition. For conventional minijet model,

Fmnj = 1. The value of Fmnj will be modified as we incorporate classical field

effect in the model discussed in Chapter 5. g(x) is the gluon distribution

function of the incident nucleons. In general g(x) is a function of x and Q2,
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Figure 3.1: ZEUS result [5] of various pdf at Q2 = 10 GeV2. Note that the
gluon and sea quark pdfs in the plot are only 5% of their actual values.

where Q2 can be set to be |t̂| or |û|, representing the typical momentum scale

of the subprocess. Since the differential cross section is singular in both t̂ and

û, we use the peak approximation and set g(x) = g(x, t̂0), where t̂0 = 1 GeV2 is

taken to be the initial value where the gluon evolution starts (DGLAP equation

[28–30]). The differential cross section of the gluon-gluon elastic scattering to
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the lowest order in pQCD is given by

dσgg

dt̂
=

πα2
s

ŝ2
|M |2, (3.4)

where

|M |2 = 9

2

(
3− ût̂

ŝ2
− ŝt̂

û2
− ûŝ

t̂2

)
(3.5)

≈ 9

2

(
− ŝt̂

û2
− ûŝ

t̂2

)
. (3.6)

For large s, the dominant contributions of the gg subprocess are from the

terms with t̂ and û singularities. The corresponding leading order diagrams

are the one gluon exchange diagrams in t̂- and û-channel which lead to the

final approximation in eq. (3.6). Fig. 3.2 shows this approximation has the

same asymptotic behavior as the full calculation up to a normalization.

10 100 1000 104 105 s HGeVL0
2000
4000
6000
8000

10 000

ΣjetHmbL

Figure 3.2: Comparison between the mini-jet cross section calculated with the
full gg elastic differential cross section (solid line) and that calculated with the
last two terms in (3.6) (dashed line).
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3.2 Violation of Froissart bound

The integral in eq. (3.3) is dominated by small-x region since g(x) has

the conventional parametric form g(x) ∼ x−J when x is small [5, 31, 32]. By

integrating x2 and t̂, it leads to the asymptotic form of the integral of x1 as

σmnj(s) =

∫ 1

2t̂0/s

dx1I(x1, s)

s→∞−−−→ 1

t̂0

∫ 1

2t̂0/s

dx1
1

x1

[(
s

2t̂0

)J−1

− x1−J
1

]
.

The integration over x1 leads to

σmnj(s) →
1

t̂0

(
s

t̂0

)J−1

ln
s

t̂0
. (3.7)

According to the deep inelastic scattering data from HERA and ZEUS, J ∼ 1.3

[5, 31, 32]. So, at large s, σmnj ∝ s0.3 ln s violates Froissart bound [12, 13],

which requires σ ≤ const.× (ln s)2.

3.3 Taming the rise

Many authors have noticed that the minijet cross section rise too rapidly.

The first modification is done by Gaisser and Halzen [22]. They found that,

in order to fit the data, the momentum cutoff in the minijet integration has to

increase as s increases. Another common approach to tame the rise is to use

eikonal model [23, 24]. In eikonal model, one uses the diffractive scattering for-

mulation which is consistent with the unitarity constraints and approximates

the total cross section by

σtot = 4π

∫ ∞

0

dbb[1− e−χ(b,s)], (3.8)
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where the eikonal function χ(b, s) is given by the sum of soft and hard contri-

butions as

χ(b, s) =
1

2
(Asoft(b)σsoft(s) + Ahard(b)σmnj(s)). (3.9)

Each contribution is a product of the cross section and a impact parameter

profile function A(b) which satisfies

2π

∫ ∞

0

db bA(b) = 1. (3.10)

If we consider χ is small and expand the exponential in eq. (3.8), the total cross

section reduces to the form given in eq. (3.1). Only when the minijet cross

section rises, the higher order terms with alternating sign in the expansion

become important and the taming occurs.

The authors of [25] observed that, even with the eikonal model, a fixed

momentum cutoff is inadequate. In particular, with the cutoff fixed e.g. at ∼ 1

GeV, they found that the minijet cross section in the eikonal model, as in the

case of the original minijet model, continues to rise too rapidly with s. They

then turned their attention to the effect due to soft gluon emissions. They

found that soft gluon emissions could generate an appropriate s-dependence

in the impact parameter profile function A(b, s) that leads to agreement with

the data [25, 27]. Despite the success of fitting the data with these approaches,

eikonal models do not have a firm theoretical foundation (Section 2.4 of [33]).

The use of eikonal model and the consideration of the soft gluon ra-

diation successfully tame the rise of cross section. The eikonal model can be
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considered as an effective theory for multiple scattering, while the soft gluon

radiation is an non-perturbative ingredient. Those modifications indicate that

it is important to incorporate non-perturbative features in the hard compo-

nent. For this reason, our goal is to formulate an effective correction, which

does not depend eikonal model, to the minijet calculation.

3.4 Minijet in classical color field

The gluon distribution function rises as x−λ when x is small for a fixed

Q2 (see Fig. 3.1). If we consider an external probe with momentum Q2, for

example the virtual photon in deep inelastic scattering and the exchange gluon

in nucleon-nucleon scattering, within the transverse area 1/Q2 of the probe,

the gluons are dilute when x is large. On the other hand, when x decreases, the

gluons become crowded, start to overlap and saturate the vision of the probe.

Fig. 3.3 shows the gluon with x inside a nucleon as probed by Q2. The big

circle is the nucleon and the small the circles is the gluon. The size of gluon seen

by the probe with Q2 is ∼ 1/Q2. The dash line divides the saturated region

and the dilute region. In the saturated region, gluons overlap on each other.

When the probe tries to interact with the constituents, the shadowing effect

cannot be ignored. Furthermore, the transition between dilute and saturated

gluons introduces a saturation scale Q2
s(x) ∝ αsxg(x,Q

2
s)/πR

2 for which being

larger than Q2, the nucleon is saturated. (See [34] for review.)

In the minijet model at high energy, the contribution to the total cross

section is dominated by the small-x gluons. As they are highly shadowed,
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Figure 3.3: A picture of a nucleon in the 1
x
−Q2 plane.

the saturation effect should be incorporated into the calculation. We consider

the following picture. In the center of mass frame, the colliding nucleons

are approximately moving at the speed of light. Consider a subprocess of

gluon-gluon elastic scattering. To the first order perturbation, the gluons from

different nucleons interact by exchanging a gluon with momentum Q2 > Λ2
QCD.

From the point of view of one of the nucleon, this exchange gluon serves as a

probe and strikes one of the constituent gluons with longitudinal momentum

fraction x inside this nucleon. When the exchange gluon propagates inside the

nucleon, it is also influenced by the other gluons which provide the shadowing
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effect. This shadowing would have a typical momentum at Q2
s. One expects

the minijet model with the correct physics should have the features that

1. if Q2
s < Q2, then the exchange gluon sees a dilute nucleon, and the

shadowing can be ignored and it reduces to the conventional minijet

model; and

2. if Q2
s > Q2 > Λ2

QCD, then the shadowing is important and the minijet

cross section will be suppressed.

To include the shadowing effect, we apply the MV model [35–37]. We

assume that the constituent gluons which do not directly interact with the ex-

change gluon will indirectly involve in the hard scattering as they are treated

as a static classical source. The gluons with a smaller x-value is originally ra-

diated by those with larger x via blemsstrahlung in the quantum mechanical

framework. In this classical picture, these smaller-x radiation is considered

as the classical color field generated by the classical source with a larger-x

according to the classical Yang-Mills equation of motion. The presence of the

classical field be thought of as a perturbative correction of the vacuum when

the source is weak. The hard scattering Feynman diagrams of the two con-

stituent gluons exchanging a gluon will then receive modification due to the

non-zero vacuum. All the gluon propagator in the diagram will be modified.

However, assuming factorization theorem, those correction on the external

gluon propagators can be absorbed in the definition of the initial gluon dis-

tribution function and the final fragmentation function. Only the propagator
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of the exchange gluon is modified explicitly. This modification leads to the

introduction of the modification factor in the minijet cross section formula in

eq. (3.3). This modification factor provides suppression to the minijet con-

tributed by the gluon in the saturated region. In the following chapters, we

will demonstrate how this factor is derived.
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Chapter 4

Classical Effective Theory of Small-x Gluons

4.1 Why does g(x,Q2) rise?

In the section, we discuss the origin of the rise of small-x gluon distri-

bution. The distribution g(x,Q2) is characterized by two variables, x and Q2,

which, in the infinite momentum frame (IMF), represent the longitudinal mo-

mentum fraction of the gluon and the momentum scale of the external particle

interacting with the nucleon (the probe), respectively. Let us discuss a simpli-

fied version of pQCD to illustrate the rise. In strong interaction, the emission

of gluons with the smaller x value are favorable through bremsstrahlung. Ac-

cording to pQCD, the probability of emitting a small-x gluon with momentum

(k⊥, kz = xPz), where Pz is the momentum of the parent gluon which has a

distribution of g(x = 1, Q2), is given by

dPBremsstrahlung =
αsNc

π2

d2k⊥
k2
⊥

dx

x
, (4.1)

where Nc = 3 for SU(Nc = 3) QCD1. The evolution when x is fixed and

Q2 → ∞ is referred to as the Bjorken limit. This dynamics can be well

1The gluon-to-gluon splitting function is Pgg(x) = 6
[
1
x − 2 + x(1− x)

]
+
(

11
2 − Nf

3

)
δ(1−

x) + 6
(

1
1−x − δ(1− x)

∫ 1

0
dx′ 1

1−x′

)
. For small x, it is proportional to 1/x. If the parent

emitter is a quark instead of a gluon, there will not be 1/x enhancement.
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described by DGLAP evolution equation [28–30]. As at another limit that Q2

is fixed and x → 0, the parent gluon can cascade with n intermediate gluon

ordered in x. For the n-th cascade, one has

αn
s

∫ 1

x

dxn

xn

∫ 1

xn

dxn−1

xn−1

. . .

∫ 1

x2

dx1

x1

=
1

n!

(
αs ln

1

x

)n

. (4.2)

Although, each cascade is suppressed by a factor of αs, the bremsstrahlung

correction is still large as x is small, αs ln 1/x & 1. Therefore, the nucleon is

populated by a large amount of low-x gluons. If one ignores the k2 dependence,

summing over all cascade in eq. (4.2) gives the gluon a form of

xg(x,Q2) ∼ eαsC ln(1/x) = x−αsC , (4.3)

where C is some positive constant.

A formal calculation for this cascade which sums over all the leading

ln 1/x and retain the full Q2 dependence is referred to as the BFKL equation

[38, 39]:

−x
∂

∂x
f(x,Q2) =

3αs(Q
2)

π
Q2

∫
d2k

k2

{
f(x, k2)− f(x,Q2)

|k2 −Q2|
+

f(x,Q2)√
4k4 +Q4

}
,

(4.4)

where f(x,Q2) = ∂xg(x,Q2)
∂ lnQ2 is the nonintegrated gluon distribution. If one fixes

the coupling constant at αs0 , the BKFL equation can be solve analytically and

for small-x it gives

xg(x,Q2) ∼ x1−αP√
ln(1/x)

, (4.5)

where αP = 1 + 12αs0 ln(2)/π is referred to as the intercept of the bare QCD

pomeron. It confirms the rapid rise of gluon distribution in small-x region.
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4.2 Space-time structure of partons

In the infinite momentum frame (IMF), the life time of the partons

(gluon or quark) with momentum k in the light-cone coordinate2 is ∆x+ ∼
1
k−

= k+

k2⊥
∝ x. The large-x fast partons survive for a much longer time than

the slow small-x gluons. Thus, as far as the dynamics of the slow gluons is

concerned, one can treat the fast partons as a static colour source which gen-

erates the color field at small x. Although, due to color neutrality assumption,

the global color charge average of the fast partons should be zero, the local

fluctuation of the source can give an non-zero color charge density. In our

approach, the fast partons can be the quarks or gluons with large x.

4.3 Classical field of a nucleon

In this section, we will follow the general assumptions in [34–37, 40] and

study the effective theory for the small-x gluons inside a fast moving nucleon.

Consider a nucleon moving along the positive light-cone (+z direction)

with velocity vµ = (1, 0, 0, 1). The charge distribution along the longitudinal

direction is Lorentz contracted, while the transverse distribution is given by

ρ(x⊥). With the static assumption of the source, the source is independent of

light-cone time x+,

Jaµ(x−, x⊥) = δµ+ρa(x−, x⊥). (4.6)

2See Appendix A.
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In Yang-Mills equation, the current is covariantly conserved satisfying

[Dµ, J
µ] = [D+, J

+] = ∂+J
+ − ig[A+, J

+] = 0 (4.7)

For a non-zero field A−, the source J+ will be subjected to color precession.

That means if the source at some x+ = x+
0 is J+(x+

0 , x
−, x⊥), the source at

other x+ is given by

J+(x+, x−, x⊥) = V (x+, x−, x⊥)J
+(x+

0 , x
−, x⊥)V

†(x+, x−, x⊥), (4.8)

where V is the Wilson line:

V (x+, x−, x⊥) = T exp

{
ig

∫ x+

x+
0

dz−A−(z+, x−, x⊥)

}
. (4.9)

For a static current, ∂+J
+ = 0, it is consistent to look for solution that satisfies

A+ = A− = 0. (4.10)

The static condition also applies to the field so that A is independent of x+,

Aµ = Aµ(x−, x⊥); therefore, the partial derivative of A with respect to x+

vanishes,

∂+A
µ = ∂−Aµ = 0. (4.11)

We use the covariant gauge ∂µA
µ = 0 to solve the field equation,

Dab
ν F b µν = Jaµ. (4.12)

The gauge condition together with eq. (4.10) and (4.11) reduces to

∂+A
+ + ∂−A

− − ∂iAi = 0

⇒∂iAi = 0. (4.13)
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Due to the finite size of the nucleon, we use the boundary condition of the

field at infinity that A(|x⊥| → ∞) = 0. Thus, the gauge condition eq. (4.13)

implies

Ai(x
−, x⊥) = 0. (4.14)

So only A+ = A− is non-zero which also implies Aa
µA

b µ = Aa−Ab++Aa+Ab−−

Aa iAb i = 0. These conditions greatly simplify eq. (4.12). The LHS of Eq.

(4.12) for µ = + reduces to

Dab
ν F b+ν =∂νF

a+ν + gfabcAb
νF

c+ν

The first term is

∂ν(∂
+Aa ν − ∂νAa+ + gfabcAb+Ac ν) = −�Aa+ + gfabc(∂νA

b+)Ac ν

= −�Aa+ + gfabc(∂+A
b+)Ac+

= −�Aa+.

For the second term, we have

gfabcAb
νF

c+ν = gfabcAb
ν(∂

+Aa ν − ∂νAa+ + gfabcAb+Ac ν)

= gfabcAb
−(−∂−Aa+ + gfabcAb+Ac−) = 0.

Therefore, the field equation becomes

�Aa+(x−, x⊥) = −ρ(x−, x⊥)

⇒(2∂+∂− − ∂i∂i)A
a+(x−, x⊥) = −ρ(x−, x⊥)

⇒∇2
⊥A

a+(x−, x⊥) = ρ(x−, x⊥). (4.15)
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Eq. (4.15) is the field equation of the classical field for a given source in the

covariant gauge with assumptions: (1) the source and the field are static and

(2) the field is zero at infinite in the transverse plane. The linearity of the

equation validates the fields given by sources moving along the positive light-

cone can be obtain by superposition. We write the transverse dependence of

ρa in momentum space

ρa(x−, k⊥) =
1

2π

∫
d2x⊥e

−ik⊥·x⊥ρa(x−, x⊥), (4.16)

for which the solution of the 2D Poisson equation, eq. (4.15) is

Aa+
1 (x−, x⊥) = − 1

(2π)2

∫
d2y⊥

∫
d2k⊥

ρa1(x
−, y⊥)

k2
⊥

eik⊥·(x−y)⊥ . (4.17)

We assigns an index 1 to ρ to indicate the source is forward moving. For

a source moving toward the opposite direction, the static assumption results

A+ = 0 and ∂+Aµ = 0. The only non-zero field is

Aa−
2 (x+, x⊥) = − 1

(2π)2

∫
d2y⊥

∫
d2k⊥

ρa2(x
+, y⊥)

k2
⊥

eik⊥·(x−y)⊥ . (4.18)

In general, if there are two approaching sources, there will be both non-zero

A+ and A−. Eq. (4.8) suggests that the sources cannot be treated as static

anymore. The field of each source will induce a change in the opposite source.

Since we are working toward the first order correction of a bare vacuum due to

the source, these cross inductions, which are considered as higher order, will

be ignored. Therefore, the total field to the leading order approximation of

the source strength is

Aaµ = δµ+Aa+
1 [ρ1] + δµ−Aa−

2 [ρ2] +O(ρ1ρ2) + · · · (4.19)
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This solution in fact is an approximate of eq. (4.12) to first order in ρ1 and

ρ2,

∂νF
aµν + gfabcAb

νF
c µν = V1δ

ν+Ja+
1 V †

1 + V2δ
ν−Ja−

2 V †
2

⇒ −�Aa ν = δν+Ja+
1 + δν−Ja−

2 .

Splitting Aν into Aν
1(x

−, x⊥) + Aν
2(x

+, x⊥), we will have

∇2
⊥A

ν
1 = δν+Ja+

1 (4.20)

∇2
⊥A

ν
2 = δν−Ja−

2 (4.21)

which give the solutions in eq. (4.17) and (4.18).

4.4 The McLerran-Venugopalan model

So far the source is not explicitly specified. In fact, it may be impossible

to do so, since color objects are confined and only color neutral particle has

been observed. However, MV model suggested that the general property of

the fluctuation of the source can be specified in the following way.

For simplicity, consider only one nucleon moving along positive light-

cone. The source ρ is treated as a random variable. The physical observable

O is calculated by first obtaining O = O[ρ] in term of ρ, then averaging over

ρ with a Gaussian weight function W written as

⟨O⟩MV =N

∫
D/G

DρO[ρ]W [ρ]

=N

∫
D/G

DρO[ρ] exp

{
−
∫

dx−dx⊥
(ρa(x

−, x⊥))
2

2(λ(x−))2

}
, (4.22)
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where the average is a gaussian integral, N is normalization constant and λ

characterizes the correlation between two positions in sources. If two sources

are connected by a gauge transformation, the redundancy is excluded in the

stochastic average. We denote this domain of the ρ integration as D/G.

In QCD, the source will transform if we switch gauge, ρ → UρU †. The

weight function is invariant, as ρaρa = Tr[ρ̂ρ̂] and Dρ is an invariant measure.

Therefore, in order to have the observable satisfying gauge invariant, one needs

to ensure the observable O[ρ] is also invariant if it is evaluated with a gauge

transformed source ρ′ such that O[ρ] = O[ρ′].

An useful form of the averaging over source configurations is

⟨ρa(x)ρb(y)⟩MV = δabδ(x− − y−)δ2(x⊥ − y⊥)λ(x
−). (4.23)

It provides that the total color charge is zero,

⟨Qa⟩MV =

∫
dx−d2x⊥⟨ρa⟩ = 0, (4.24)

and the fluctuation of the charge is non-zero,

⟨QaQb⟩MV =

∫
dx−d2x⊥

∫
dy−d2y⊥⟨ρa(x)ρb(y)⟩

=

∫
dx−d2x⊥

∫
dy−d2y⊥δ

abδ(x− − y−)δ2(x⊥ − y⊥)λ(x
−)

= δab
∫

dx−d2x⊥λ(x
−)

= δab
∫

d2x⊥µ, (4.25)

where µ =
∫
dx−λ(x−) is introduced and has the meaning of the average

squared color charge of the source in unit of transverse area. This parameter
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characterizes the shadowing effect due to saturation. The more the nucleon

saturates, the higher the value of µ.

In our calculation, since the field A is linearly dependent on ρ, any non-

zero contribution must come from A2
1 or A2

2 . The sources from two different

nucleons do not correlate; therefore, ⟨A1[ρ1]A2[ρ2]⟩ = 0.
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Chapter 5

Quantum Gluon Propagator in Classical Field

Equipped with the first order approximation of the classical field of

the colliding nucleons, we will formulate a quantum field theory of gluon in

the classical field. We will first incorporate the classical field to the QCD La-

grangian with background gauge which is consistent with the covariant gauge

when it is applied to the classical field A. By writing the total gauge field as

A = A+B, where B is the quantum field, interactions between A and B nat-

urally emerge. We then calculate the leading order correction of the quantum

gluon propagator due to the classical field.

5.1 Lagrangian in classical field

In the last chapter we show it is possible to solve for the classical field

of two colliding nucleons in the covariant gauge. It has been shown that if one

introduces a classical gauge field to the QCD Lagrangian, it is convenient to

fix the gauge with background gauge [41]. For the classical field, it requires

D̄ab
µ Ab µ = 0, (5.1)
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while for the quantum field, we choose the corresponding gauge fixing function

to be

fa = D̄ab
µ Bb µ, (5.2)

where where D̄ is the covariant derivative involving only A.

D̄ac
µ =

(
∂µδ

ac + gfabcAb
µ

)
(5.3)

Putting our classical field solution, eq. (4.17) and (4.18) to the LHS of Eq.

(5.1), one finds,

D̄ac
µ Ac µ =

(
∂µδ

ac + gfabcAb
µ

)
Ac µ

= ∂µ(A
aµ
1 + Aaµ

2 ) + gfabc(A1 + A2)
b
µ(A1 + A2)

c µ

= gfabc(Ab+
1 Ac−

2 + Ac+
1 Ab−

2 )

= 0,

the classical field also satisfies background gauage condition.

We write the full Lagrangian, ignoring the fermion field, as the classical

QCD Lagrangian with A replaced by A+B

LQCD = −1

4
F aµνF a

µν + Jaµ(A+B)aµ, (5.4)

where

F aµν = ∂µ(A+B)a ν − ∂ν(A+B)aµ + gfabc(A+B)b µ(A+B)c ν , (5.5)

J is the classical source of the nucleons. The Lagrangian is invariant under

the infinitesimal gauge transformation,{
Jaµ → J ′aµ = (δab − fabcαc)J b µ

(A+B)aµ → (A′ +B′)aµ = (A+B)aµ + fabc(A+B)bµα
c + 1

g
∂µαa (5.6)
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provided that ∂µJ
µ = 0 which is satisfied by a static source. A detail discussion

on the gauge invariance of the theory can be found in Appendix B.

5.2 Quantum theory

To formulate a quantum theory for the field B, we assume the only

degree of freedom is the field B. The classical field is a prescribed field. We

can organize the first term of the Lagrangian in eq. (5.4) in term of the powers

of B,

Lgauge ≡ −1

4
F aµνF a

µν = L0 + L1 + L2 + L3 + L4 (5.7)

where the subscripts represent the order of B containing in each term. L0

is independent of B. Upon volume integration it become a constant in the

action, so it does not affect the observables and can be ignored. The first

order term is

L1 = −D̄ab
ν F̄ b µνBa

µ + (total derivative) = −JaµBa
µ + (total derivative) (5.8)

according to the field equation of the classical field, eq. (4.12), where F̄ is the

field tensor of A,

F̄ a νµ = ∂µAa ν − ∂νAaµ + gfabcAb µAc ν . (5.9)

This term cancels with J · B in the Lagrangian so that there is no single leg

vertex diagram for B. L3 and L4 contain terms proportional to

gB3, g2AB3, g2B4.
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The first type is the original QCD three-gluon vertex. The last two types are

higher order terms. Our interest, instead, is in the leading order classical field

effect which comes from the quadratic term as

L2 =
1

2
Ba

µ

[
gµνD̄ρ

acD̄cb ρ − D̄µ
acD̄

ν
cb − 2gfacbF̄ c µν

]
Bb

ν . (5.10)

Including the background gauge fixing term

LGF = −1

2
(D̄µ

abB
b
µ)

2 =
1

2
Ba

µD̄
µ
acD̄

ν
cbB

b
ν + total derivative, (5.11)

the quadratic term in B of the Lagrangian becomes

L2 + LGF =
1

2
Ba

µ

[
gµνD̄ρ

acD̄cb ρ − 2gfacbF̄ c µν
]
Bb

ν

=
1

2
Ba

µ

[
gµν
(
δab�+ gfacb(∂ρAc

ρ + 2Ac
ρ∂

ρ)

+ g2faecf cdbAe
ρA

d ρ
)
− 2gfacbF̄ c µν

]
Bb

ν

=
1

2
Ba

µ

[
gµν
(
δab�+ gfacb2Ac

ρ∂
ρ

+ g2faecf cdbAe
ρA

d ρ
)
− 2gfacbF̄ c µν

]
Bb

ν . (5.12)

We can think of the last three terms in eq. (5.12) as interactions between A and

B. For example, the term ggµνfacbBa
µA

c
ρ∂

ρBb
ν is the vertex with one classical

leg and two quantum legs. Since A = A1 + A2, this term actually represents

two types of interactions, one with each nucleon. An interaction with only

one power of A does not directly contribute because of the vanishing average

⟨A⟩ = 0. Therefore, we will expect the gluon to interact with the same classical

field through this interaction twice to give a correction at the g2 order which

is the first non-zero order correction. The next term is a vertex with four
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legs while two of them are classical. In this term, A1 · A1 = A2 · A2 = 0. It

leaves with g2A1 · A2. Again, A1 and A2 belongs to two different averaging

procedures, ⟨A1A2⟩ = ⟨A1⟩⟨A2⟩ = 0. So we need to have one more interaction

with either classical field. However, this term is already at g2 order. Any extra

interaction will give one order higher in g. It will be ignored in our first order

calculation. For the last term, we can write the field strength into the sum

of field strength due to nucleon 1, F1, nucleon 2, F2 and the cross term F12.

Explicitly, the cross term is

gF c µν
12 = g2f cde(Adµ

1 Ae ν
2 + Adµ

2 Ae ν
1 ).

The same argument of the vanishing cross term applies also on this case and

this cross term can be ignored. The important consequence of having no cross

term in the leading order is that the contributions of nucleon 1 and 2 can be

calculated independently and additive. Therefore, the final contribution is the

sum of the two.

5.3 Propagator

In this section , we will derive the gluon propagator in the field of the

nucleon moving to +z direction only. The result can be easily converted to

the case of the nucleon moving to −z direction. The propagator of interest

is the exchange gluon in the minijet subprocess. It serves as a probe with

momentum q2 = −Q2 of the nucleons or a transverse dimension of the order

of 1/Q2.
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Recall the field of the nucleon has only ”+” component and the deriva-

tive w.r.t. x+ vanishes ∂+A
+ = ∂−A+ = 0, so Aa

µA
b µ = 0 and only the ”+i”

and ”i+” components, F̄ a i+ = −F̄ a+i = ∂iAa+, do not vanish. Eq. (5.12) is

simplified to

L2 + LGF =
1

2
Ba

µ

[
gµν(δab − gfabc2Ac+∂−)

+ 2gfabc

2∑
i=1

(gµ−gνi − gµigν−)∂iA
c+

]
Bb

ν . (5.13)

The inverse of the first term gives the Feynman propagator. Let us denote the

second term and the third term as

Lint1 =− g gµνfabcBa
µA

+c∂−Bb
ν (5.14)

Lint2 =gfabc

2∑
i=1

Ba
µ(g

µ−gνi − gµigν−)∂iA
c+Bb

ν (5.15)

Lint =Lint1 + Lint2 (5.16)

There are two kinds of interactions: (1) the gluon changes color but not polar-

ization and (2) the gluon changes both color and polarization. The two-point

Green’s function to the leading order in A[ρ] is

⟨Gab
µν(x, y; ρ)⟩MV

=⟨T{Ba
µ(x)

(
1 + i

∫
d4z1Lint(z1)

+
i2

2!

∫
d4z1d

4z2Lint(z1)Lint(z2)

)
Bb

ν(y)}⟩MV

=⟨T{Ba
µ(x)B

b
ν(y)}⟩MV

+ ⟨T{Ba
µ(x)

i2

2!

∫
d4z1d

4z2Lint(z1)Lint(z2)B
b
ν(y)}⟩MV
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z1 z2
x, a, µ y, b, ν

A+ A+

Figure 5.1: Feynman diagram of the propagator in classical field. Each vertex
can be Lint1 or Lint2 . The dotted line represents the interaction the momentum
exchange between the gluon and the classical field.

where the notation ⟨· · · ⟩MV means averaging over classical source defined in eq.

(4.22). The interaction term linear in A+ vanishes because ⟨A+(x)⟩MV = 0.

The first term is the Feynman propagator in bare vacuum. The second term

represents Feynman diagrams as in Fig. 5.1. There are totally four different

contributions coming from the binary pair of interactions Lint1 and Lint2 . We

will call them vertex 1 and 2, respectively. and denote the propagator correc-

tion involving interactions with two Lint1 as 1-1 term, with two Lint2 as 2-2

term and with the mixed vertices as 1-2 and 2-1 terms.

5.3.1 ⟨Aa+Ab+⟩MV

A crucial ingredient of the calculation is the random source averaging

of A. Applying the MV average, eq. (4.23), on Aa+Ab+ of eq. (4.17) gives

⟨Aa+(z1)A
b+(z2)⟩MV = δab

λ

(2π)2
δ(z−1 − z−2 )

∫
d2k⊥
k4
⊥

eik⊥·(z1−z2)⊥ . (5.17)

Since we consider the gluon exchange in perturbative region, the gluon propa-

gates only inside the nucleon which is assumed to be an uniformly distributed
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source along z−. The z− dependence of squared charge density λ is dropped

out.

5.3.2 1-1 term

Let us demonstrate the calculation of the propagator due to gluon in-

teracting with Lint1 twice at two positions. Let p1, p2 and p3 be the momentum

of the gluon lines in the left, middle and right, respectively, in Fig. 5.1. The

Two-point function is given by

G+
11

ab
µν(x, y) =2× i2

2!
⟨T{

∫
d4z1d

4z2B
a
µ(x)Lint1(z1)Lint1(z2)B

b
ν(y)}⟩MV

=− ⟨T{
∫

d4z1d
4z2B

a
µ(x)(−gf cmdBc

ρ(z1)A
m+(z1)∂

−Bd ρ(z1))

(−gf enfBe
σ(z2)A

n+(z2)∂
−Bf σ(z2))B

b
ν(y)}⟩MV

There are four different ways to contract the fields. The first way is to contract

Ba
µ(x)B

c
ρ(z1), Bd ρ(z1)B

e
σ(z2), Bf σ(z2)B

b
ν(y),

which gives

G
+(1)
11

ab
µν(x, y) =− g2gµνf

amdfdnb

∫
d4z1d

4z2⟨Am+(z1)A
n+(z2)⟩MV

d4p1
(2π)4

d4p2
(2π)4

d4p3
(2π)4

−i

p21

−i

p22

−i

p23

e−ip1·(x−z1)(−ip−2 )e
−ip2·(z1−z2)(−ip−3 )e

−ip3·(z2−y) (5.18)

The MV average of AmAn produces δmn so that famdfdnb becomes famdfdmb =

−Ncδ
ab. In order to carry out the integration of z1 and z2, we write ⟨AA⟩ in
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4D fourier transform as

⟨Aa+(z1)A
b+(z2)⟩MV = δab

∫
d4k1d

4k2e
−ik1·z1e−ik2·z2F (k1, k2), (5.19)

where

F (k1, k2) =
λ

(2π)3
δ(k−

1 )δ(k
−
2 )δ(k1⊥ + k2⊥)δ(k

+
1 + k+

2 )

k2
1⊥k

2
2⊥

. (5.20)

With some algebraic manipulations,

G
+(1)
11

ab
µν(x, y) =− ig2gµνδ

abNc(p
−
2 )

2d
4p1d

4p2d
4p3

(2π)4

1

p21p
2
2p

2
3

e−ip1·x+ip3·yF (p1 − p2, p2 − p3). (5.21)

p−2 and p−3 combine to be (p−2 )
2 because of the δ(k−) = δ(p−2 − p−3 ) in F which

implies that the classical field does not carry momentum at the − component.

Thus,

p−1 = p−2 = p−3 . (5.22)

Integrating over p2, we have

I =

∫
d4p2

1

p22 + iϵ
F (p1 − p2, p2 − p3)

=

∫
d4p2

1

p22 + iϵ
δ(p−1 − p−2 )δ

4(p1 − p3)
λ

(2π)3
1

(p2 − p1)4⊥

=δ4(p1 − p3)
λ

(2π)3

∫
d4p2

δ(p−2 − p−1 )

2p+2 p
−
2 − p22⊥ + iϵ

1

(p2 − p1)4⊥

=δ4(p1 − p3)
λ

(2π)3

∫
dp+2

2p+2 p
−
1 − p22⊥ + iϵ

∫
d2k⊥
k4
⊥

(5.23)

The p+2 integration is taken to be the principal value from −L to L as L → ∞.∫
dp+2

2p+2 p
−
1 − p22⊥ + iϵ

= −iπ
θ(p−1 )− θ(−p−1 )

2p−1
. (5.24)
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The origin of the k⊥ integration is from integrating the transverse distribution

of the classical source ρ. Since the shadowing effect is large for a gluon with a

size larger that the probe of Q2, 1/k2
⊥ > 1/Q2, those gluons are not considered

as part of the source. The size of probed source provide an UV-cutoff of the

momentum integration of the source k⊥. The IR-cutoff is set to be the QCD

scale ΛQCD. Therefore, it becomes∫ Q2

Λ2
QCD

d2k⊥
k4
⊥

=
π(Q2 − Λ2

QCD)

Λ2
QCDQ

2
. (5.25)

The result is

G
+(1)
11

ab
µν(x, y) =− g2Ncλ

16πΛ2
QCD

Q2 − Λ2
QCD

Q2
(θ(q−)− θ(−q−))

gµνδ
ab d4q

(2π)4
q−

q4
e−iq·(x−y). (5.26)

Now we consider the other way to contract the B fields. As we mentioned

above, eq. (5.22), that all the ”−” components of the momentum are the

same. This makes the results of contracting the B fields in the different ways

identical. For example, if one contracts Ba
µ(x)B

d ρ(z1) and Bc
ρ(z1)B

e
σ(z2). The

color index of f cmd becomes fdmc so it picks up a negative sign. However, the

∂− is now acting on the gluon line with p1 at z1, ∂
−e−ip1(x−z1) = +ip−1 . It is

different by another negative sign. So there is no over sign change between the

two different contraction. As p−1 = p−2 , the two contraction become exactly

the same. So the contribution due to the 1-1 term is 4 times of the result from

any one of the contractions. The propagator correction in momentum space
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is given by

G+
11

ab
µν(q) = gµνδ

ab

(
− g2Ncλ

4πΛ2
QCD

)
Q2 − Λ2

QCD

Q2
(θ(q−)− θ(−q−))

q−

q4
, (5.27)

where λ is the squared charge per unit transverse area per unit light-cone

longitudinal length the source. The saturation scale Q2
s in the color glass

condensate framework [34] is defined as

µ =
Q2

s

αsNc

, (5.28)

where µ = λL− is the squared charge transverse density and L− is the longi-

tudinal size of the +z moving source.

5.3.3 1-2 and 2-1 terms

As we have already worked out the 1-1 term, the details for the calcu-

lations of the rest of the terms are similar. We will point out a few keys in

the calculation. For the 1-2 and 2-1 terms, The interaction term Lint2 consists

of a ∂i on the classical field. In the 1-2 term, Lint1 is at z1 and Lint2 is at z2.

The derivative in Lint2(z2) acts at position z2 of ⟨A(z1)A(z2)⟩ and gives −ik⊥.

While the 2-1 term with the same order of contraction will have the derivative

acting on z1 resulting +ik⊥. Each contraction in the 1-2 term will cancel with

the that in the 2-1 term.

5.3.4 2-2 term

The interaction vertex is symmetric under exchange of color index

a ↔ b together with Lorentz index µ ↔ ν. So there are totally 8 different
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contractions, including exchanging z1 and z2, that give identical contributions.

At the level of the Lorentz index, the only surviving term is
∑

i,j −gijg−µ g
−
ν .

The 2-2 term is

G+
22

ab
µν(x, y) =i

4g2Nc

(2π)7λ
g−µ g

−
ν δ

abd
4p1
p41

e−ip1·(x−y)

∫
dp+2

1

2p+2 p
−
1 p

2
2⊥

∫
d2k⊥
k2
⊥

.

(5.29)

=i
4g2Nc

(2π)7λ
g−µ g

−
ν δ

abd
4p1
p41

e−ip1·(x−y)−iπ

2p−1
(θ(p−1 )− θ(−p−1 ))

∫
d2k⊥
k2
⊥
(5.30)

=
4g2Ncπ

2

(2π)7λ
g−µ g

−
ν δ

ab d4p1
2p−1 p

4
1

e−ip1·(x−y)(θ(p−1 )− θ(−p−1 )) ln(Q
2/Λ2

QCD)

(5.31)

Therefore, the propagator correction in momentum space is

G+
22

ab
µν(q) =

2g2Ncπ
2λ

(2π)3
g−µ g

−
ν δ

ab
ln(Q2/Λ2

QCD)

q−q4
(θ(q−)− θ(−q−)) (5.32)

5.3.5 Result

We have found the leading order correction of the gluon propagator

due to the classical color field in the background gauge. The classical field

introduces two type of interactions to the gluon. As for the propagator, single

interaction with the classical field does not contribute because of the color neu-

trality assumption, namely the overall average of color field should be zero.

However, the fluctuation can be non-zero so that second order terms con-

tribute. Among all the second order diagrams, only the 1-1 and 2-2 terms

survive. The 1-1 term is diagonal in both color and Lorentz structure, while

the 2-2 term contains g−µ g
−
ν . When one try to sum a series of 1-1 and 2-2
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terms, any series with more than one 2-2 term will be zero. It is because when

one connect these diagram with a bare propagator, gνρ is inserted between two

diagrams. Therefore, a 2-2 term connecting with a 2-2 term has a form of

g−µ g
−
ν × gνρ × g−ρ g

−
λ = g−µ g

−−g−λ = 0 since g−− =0. (5.33)

The difference between the nucleons moving in +z and −z is that for

the one moving at −z direction, the A field is A = A− in stead of A+. To

obtain the interactions, one just needs to exchange the index + ↔ − in any

fields and derivatives from the interaction term of the +z case. We denote the

propagators of the case for +z and −z as G+ and G−, respectively.

The classical field modified gluon propagator to the first leading order

to the field A = A+
1 + A−

2 is

Gcl
ab
µν(q) = G0

ab
µν(q) +G+

11
ab
µν(q) +G−

11
ab
µν(q) +G+

22
ab
µν(q) +G−

22
ab
µν(q), (5.34)

where G0
ab
µν(q) =

−i
q2
gµνδ

ab is the bare propagator in vacuum,

G±
11

ab
µν(q) = G0

ab
µν(q)

(
i

Q2
s1,2

Λ2
QCDL

∓

)
Q2 − Λ2

QCD

Q2

q∓

q2
(θ(q∓)− θ(−q∓)) (5.35)

and

G±
22

ab
µν(q) = g∓µ g

∓
ν δ

abQ
2
s1,2

L∓

ln(Q2/Λ2
QCD)

q∓q4
(θ(q∓)− θ(−q∓)). (5.36)

We have related λ to Q2
s using eq. (5.28). Q2

s1,2 is the saturation scale of the

nucleon 1 (+z) and 2 (−z).
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Chapter 6

Implications for Hadronic Cross Sections

In minijet, gluon contribution dominates the cross section at high en-

ergy [42]. As discussed in Chapter 3, the minijet cross section rises too rapidly

and at high energy gluon density increases to a point that shadowing effect

cannot be ignored. We apply the classical field to characterize the shadowing

of soft (small-x) gluon field and obtain a correction on the gluon propagator

due to the classical field. We are now in the position of applying the modified

propagator to minijet model. The underlying idea is that when energy is high

and the smaller-x gluon involves in the hard scattering of minijet, one should

consider the exchange gluon in the gluon-gluon subprocess is propagating in a

field generated by the other gluons in the nucleons, instead of in a vacuum.

6.1 Application to minijet

Let us consider the modification due to nucleon 1, the +z moving nu-

cleon. We use kinematic argument to relate q− in the modified gluon propaga-

tor to q2 and the energy of the nucleons. Consider, in the center of mass (CM)

frame of the collision between two head on nucleons, an exchange gluon is

emitted from the nucleon moving to +z direction as in Fig. (6.1). A collinear
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gluon from the nucleon with momentum fraction x1 exchanges a gluon with

the gluon in the other nucleon (omitted in the figure). When one applies the

propagator to the t̂ and û channel exchanges, which dominates the minijet

cross section (see Chapter 3), the energy-momentum conservation of the ver-

tex and the on-shell condition of the incoming and outgoing gluons requires

q− = q2/2x1P
+, where P+ =

√
s/2. Therefore,

q− =
q2

x1

√
2s

. (6.1)

Since q2 < 0 for u and t-channel exchange gluon, so the theta function in eq.

(5.35) and (5.36) will give a negative sign. Putting eq. (6.1) into the modified

propagator, eq. (5.35) and (5.36) become

G+
11

ab
µν(q) = δabgµν

(
i

Q2
s1

2Λ2
QCD(x1P+L−)

)
Q2 − Λ2

QCD

Q2

−i

q2
, (6.2)

and

G+
22

ab
µν(q) = g−µ g

−
ν δ

ab
ln(Q2/Λ2

QCD)

L−
Q2

s1

Q2

x1

√
2s

q4
. (6.3)

Further simplification between P+ and L− can be made. We define the typical

x1P
+ k

q

P+

Figure 6.1: Momentum conservation of the vertex and on-shell condition for
the incoming(x1P

+) and outgoing(k) gluons: −2x1P · q + q2 = 0 ⇒ q− =
q2/(2x1P

+).
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size of each individual gluon source with longitudinal momentum x1P
+ to be

L− =
χ

x1P+
, (6.4)

where χ is a fitted parameter of the order of unity. The value χ = 1.34 is used

in our fit to the pp and p̄p data.

For the nucleon going to −z, q+ appears in the correction terms in-

stead of q−. Looking at the vertex of the exchange gluon in this nucleon,

one finds q+ = −q2/(x2

√
2s). So q+ and q− have opposite signs. If q− > 0,

the contribution from +z moving nucleon pick up the q−θ(q−) > 0 in G+
11

and θ(q−)/q− > 0 in G+
22, while q+ < 0 and the contribution of the other

hadron comes from q+(−θ(−q+)) > 0 in G−
11 and −θ(−q+)/q+ > 0 in G−

22.

The effects from both nucleons always have the same sign and, therefore, their

contributions are additive. Combining the two, we arrive at

G11
ab
µν(q) = δabgµν

(
i
Q2

s(x1) +Q2
s(x2)

2Λ2
QCDχ

)
Q2 − Λ2

QCD

Q2

−i

q2
, (6.5)

and

G22
ab
µν(q) = g−µ g

−
ν δ

ab
ln(Q2/Λ2

QCD)

χ

x2
1Q

2
s(x1) + x2

2Q
2
s(x2)

Q2

s

q4
. (6.6)

where x1 and x2 are the momentum fractions of the constituent gluons from

the nucleons moving to +z and −z, respectively.

6.2 Analytic continuation

Fig. 3.3 illustrates the kinematic domain between saturated and dilute

region. In the dilute region, pQCD is applicable. But in the saturated region,
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even the coupling αs is small, pQCD does not work well because of the high

gluon density. One cannot simply treat the hard scattering as it is under pure

vacuum.

The gg → gg amplitude in the classical fields can be calculated by re-

placing the bare propagator of the exchange gluon by the classical field mod-

ified propagator. The amplitude is proportional to Gclab
µν(q) in eq. (5.34).

If one assumes that the amplitude is an analytic function of both Q2 and

z ≡ Q2
s1+Q2

s2

Q2 , A(Q2, z) except at one isolated point, at the region where Q2 is

large and z is small, the amplitude should reduce to the result calculated by

pQCD and weak classical field method, therefore our result of the amplitude.

For z = 0, it corresponds to pure pQCD case. On the other hand, one can

find an expansion of the amplitude about z = 0 for a fixed large Q2, then find

the corresponding analytic function which is defined in the complex plane of z

and has the same expansion for z ∼ 0. This analytic function of the amplitude

analytically continues to the domain that z is large. Therefore, the amplitude

in the saturation domain can be constructed by the amplitude in the dilute

region using pQCD and weak classical field method.

It is well known that the variables Q2 determine the applicability of

pQCD due to asymptotic freedom. We will now explain how z determines the

weak classical field so that analytic continuation from small z to large z, in

fact, corresponds to going from dilute to saturated region. For simplicity, let

consider only on nucleon, therefore, fix x2. z can be thought of as z = Q2
s/Q

2

(We suppress the subscribe 1 in Q2
s.). Since Q

2
s is proportional to the squared
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charge density µ of the source, it is proportional also to the number of particles

(gluons), N , inside the nucleon of size RN . On the other hand, the exchange

gluon has a transverse size of RQ = 1/Q2. One can define NQ = RN/RQ as the

number of probe can be fitted in a nucleon. If we define a ”saturated” region

to be where, on average, having at least one particle in each probe which can

fitted in the nucleon. If the ratio

N

NQ

< 1, it is dilute;

N

NQ

> 1, it is saturated.

Writing the ratio in term of Q2 and Q2
s,

N

NQ

∝ Q2
s

RN/RQ

=
Q2

s

Q2RN

∝ Q2
s

Q2RN

Therefore, indeed, the variable z = Q2
s/Q

2 characterizes the saturated/dilute

property of the nucleon.

We want to find out the leading contribution to the amplitude, there-

fore the propagator, at the dilute region. For fixed (x1, x2) and x1 > x2,

(suppressing the color and Lorentz index)

G11 ∝
z

Λ2
QCD

(
1−

Λ2
QCD

Q2

)
, (6.7)

G22 =
ln(Q2/Λ2

QCD)

χ

x2
1Q

2
s(x1) + x2

2Q
2
s(x2)

Q2

s

q4
(6.8)

<
ln(Q2/Λ2

QCD)

χ

Q2
s(x1) +Q2

s(x2)

Q2

x2
1s

q4
(6.9)

∝ ln(Q2/Λ2
QCD)z

x2
1s

Q4
(6.10)
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For a large enough Q2, G11 → z
Λ2
QCD

and G22 → 0. So the leading order

correction in z is G11 ∼ z
Λ2
QCD

in the pQCD and weak field domain. Together

with the bare propagator, it is

Gcl(Q2 = −q2, z) = gµνδ
ab−i

q2
+ gµνδ

ab −i

q2
(izCq2), (6.11)

where

C =
1

2χΛ2
QCD

. (6.12)

6.3 Resummation

Now we start to analytically continue eq. (6.11) from large Q2 and

z ≈ 0 to other z value for a fixed Q2 by finding the analytic function of the

propagator as a function of z of which the first order Taylor expression at

z = 0 matches the our pQCD result. To do this, we take eq. (6.11) and use

the fact that 1
1−z

≈ 1 + z + · · · ,

Gcl(Q2 =− q2, z) = gµνδ
ab−i

q2
(
1 + (izCq2)

)
(6.13)

→gµνδ
ab−i

q2
1

1− (izCq2)
(6.14)

=gµνδ
ab−i

q2
1

1 + iC(Q2
s(x1) +Q2

s(x2))
. (6.15)

Eq. (6.15) is analytic for the entire complex plane of z except at z = −i/(Cq2).

Therefore, by analytic continuation, this expression of the modified propagator

is valid for all value of z, including the saturated region where z > 1. This

result corresponds to summing over a series of the diagrams with n-number
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of elements gµνδ
ab−i

q2
(izCq2). Diagrammatically, it corresponds to the series in

Fig. 6.2. Each blob represents the gluon’s interaction with the A field from

+ + · · ·+

Figure 6.2: Schematic Feynman diagram which represents the iterative sum of
the modified propagator. The first term is the bare propagator. The blob and
the two lines connecting to it in the series represent the interaction between
the quantum gluon propagator and the classical field.

both hadrons and contributes the same multiplicative factor. The sum of the

series is simply a geometric sum. So the final form of the propagator is the

product of the bare propagator and a correction factor,

f =
1

1 + iC(Q2
s(x1) +Q2

s(x2))
(6.16)

as eq. (6.15).

6.4 Modification factor in Minijet

Upon taking an absolute square of the gg → gg amplitude of gluon

exchange diagram, a new factor

F cl
mnj ≡ |f |2 = 1

1 + C2(Q2
s(x1) +Q2

s(x2))2
(6.17)

is introduced to the minijet cross section of the dominating t̂- and û-channel

diagrams. We refer to F cl
mnj as the classical field modification factor which is

a function of x1 and x2. If both x1 and x2 are large, F cl
mnj(x1, x2) is close
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to unity. When one of the x, x1 or x2, becomes small, F cl
mnj is less than 1.

Therefore, the contribution from the region where either x1 or x2 is small is

suppressed. For example, when x2 is large and x1 is small, then F cl
mnj(x1 ≪

1, x2 ∼ 1) → 1/(1 + C2Q2
s(x1)

2). In both cases, the minijet cross section

can still be considered as factorisable. However, in the region where both x1

and x2 are small, both Q2
s(x1) and Q2

s(x2) are large. Their contributions are

important, as these contributions that make dependence on x1 and x2 in the

minijet calculation non-factorisable. The behavior of F cl
mnj is illustrated in Fig.

6.3, where we used the parameterization of Q2
s discussed in the next section.

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

Fcl
mnj

Figure 6.3: x1-dependence of F cl
mnj while keeping x2 = 1
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Chapter 7

Result and Discussion

7.1 pp and p̄p total cross section at high energy from
modified minijet model

We recall that the minijet cross section is dominated by the t̂- and

û-channel contributions and for those diagrams the modified propagator in-

troduced a modification factor to the integral of the minijet cross section. We

have

σcl
mnj(s) =

∫ 1

2t̂0
s

dx1

∫ 1

2t̂0
x1s

dx2

∫ −t0

−ŝ+t0

dt̂g(x1)g(x2)
dσ′

dt̂
F cl
mnj(x1, x2) (7.1)

where

F cl
mnj(x1, x2) =

4χ2Λ4
QCD

4χ2Λ4
QCD + (Q2

s(x1) +Q2
s(x2))2

, (7.2)

and dσ′/dt̂ is the sum of the singular terms in t̂ and û in eq. (3.6). We take

the QCD scale ΛQCD = 0.2 GeV and a fixed coupling constant1 αs = 0.33. We

follow the parametrization of g(x) in [44] and write

g(x,Q2
0 = 1 GeV2) = 1.2x−1.28(1− x)5.6. (7.3)

1As shown in Fig. 23 in [43], data points of present interest are following: at Q ∼ 1.5
GeV, αs ∼ 0.4 and at Q ∼ 2.5 GeV, αs ∼ 0.3. The average value is at Q = 2 GeV with
αs ∼ 0.33
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The t̂-cutoff is taken to be 1 GeV2 since g(x) is parametrized starting at Q2
0 = 1

GeV2. For F cl
mnj, we take Q

2
s which is parametrized with a power law in x from

the analysis of HERA data [9] as

Q2
s(x) = Q2

0

(x0

x

)λ
(1− x)5.6, (7.4)

with the typical values compatible to earlier analyses [9, 45]:

λ = 0.28, Q2
0 = 1 GeV2 and x0 = 0.6× 10−4. (7.5)

The extra factor (1 − x)5.6 is added to ensure Q2
s → 0 when x ≈ 1. Since

Q2
s ∝ xg(x), we follow the parameterization of g(x) in eq. (7.3). For the cross

section of the soft component, we take

σpp
soft = σsoft (7.6)

σp̄p
soft = σsoft

(
1 +

a√
s

)
, (7.7)

where σsoft = 38.5 mb and a = 1.5 GeV. We compare the total cross section

to the pp and p̄p data for energy 5 GeV ≤
√
s ≤ 30 TeV. The results of pp and

p̄p total cross sections from the present model are shown in Fig. 7.1 as curves

a and b, respectively. Curve e shows the rapid rise of the original minijet cross

section. Comparing curves a and b with curve e, one sees there is a strong

suppression effect in the present model, which leads to the agreement with the

data. In Fig. 7.1, curves c and d are included to illustrate the sensitivity of

the value of λ used.

Note that our calculation is intended to show the effect of the modified

propagator. We use a fixed coupling constant αs and g(x) at Q2 = t̂0 = 1

66



10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

120

140

160

√

s [GeV]

σ to
t [m

b]

pp

p̄p

a
b
c
d
e

Figure 7.1: Comparison between pp and p̄p data with classical field modified
minijet model. Curves a and b are σpp and σp̄p of the present model where Q2

s

is defined in eq. (7.4) and (7.5), with λ = 0.28. Curves c and d are for σpp

with λ = 0.25 and 0.33, respectively. Curve e is the original minijet model
with Fmnj = 1. The data is from [1].

GeV2. Since the minijet is dominated by the singularities at t̂ and û, the

corresponding Q2 does not extend beyond the neighborhood of t̂0.

7.2 Asymptotic behavior of the σcl
mnj and the J = 1 + λ

relationship

From eq. (7.1), after integrating over t̂ and keeping the leading term

in s, the classical field modified minijet cross section is given by σcl
mnj ≡
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(9πα2
s/t̂0)H(J, λ, s) where

H(J, λ, s) ∝
∫ 1

2t̂0
s

dx1

∫ 1

2t̂0
x1s

dx2
1

xJ
1x

J
2

1

(x−λ
1 + x−λ

2 )2
. (7.8)

The asymptotic behavior depends mainly on the values of J and λ and can

be categorized into three cases. Case (a): For J < 1 + λ, H approaches to a

constant. Case (b): For J > 1 + λ, H grows as sJ−1−λ. Case (c): J = 1 + λ

H ∝ 1

2λ2
log

1
4

(
s

2t̂0

)λ
[
1 +

(
2t̂0
s

)λ
]2

s→∞−−−→ ln
(
s/2t̂0

)
/2λ. (7.9)

Among the three cases, case (c) is the only choice for the rising asymptotic

behavior of the pp and p̄p cross section that does not violate Froissart bound

since it rises as ln s. This choice also implies the identity

J = 1 + λ. (7.10)

We observe that this relationship is consistent with earlier analyses of the data.

For example, the value of J ∼ 1.3 from gluon distribution analysis [44] and

the value of λ ∼ 0.3 from geometric scaling [9].

Theoretically, the relation between J and λ of eq. (7.10) could be

understood within the MV framework. To see this, consider a fast moving

nucleon which consists of gluons with the longitudinal fraction ranging from 0

to 1. Let x be the longitudinal momentum fraction of the gluon which involves

in the hard scattering subprocess with some value in between 0 and 1. This

gluon, in the context of the MV model, will serve as a division point between
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the source and the classical field. Among all gluons, the source gluons have the

momentum fraction xsource > x and the classical gluon field produced by the

source gluons will be associated with xfield < x. Recall that in the CGC model,

µ = Q2
s

αsNc
represents the number density of the source, which, for small-x, is

given by Q2
s ∝

∫ 1

x
dx′g(x′) ∼ xg(x) ∼ x1−J , assuming gluon source dominates.

Matching the powers of x leads to 1− J = −λ or eq. (7.10). In our modified

minijet model, the power matching is the necessary and sufficient condition

for the minijet cross section to satisfy Froissart bound.

7.3 Why is minijet production suppressed in the small
x region?

Let us examine the reason why the minijet production is suppressed

in the small x region. Notice that the modification factor in eq. (7.2) is

suppressive as shown in Fig. 6.3. The smaller x1 and/or x2, the larger the

denominator function and the stronger the suppression. It is related to the

fact that when the value of x is smaller, which means z is also smaller, the

exchange gluon is probing a denser medium. In the saturation region, the

classical filed is stronger, and in turn the shadowing effect on the propagator

gluon is more influential. Thus, the suppression is stronger. This is analogous

to the situation in geometric optics. Consider a light ray traversing a darkish

medium: the darker the medium, the stronger the absorption of light. For

the present case, the interaction between the gluon and the classical field

contribute an imaginary part to the correction (See eq. (6.11)). Analogously,
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in the geometric optics language, an non-zero imaginary part of the index of

refraction means that medium is absorptive.

7.4 Minijet cross section of pA and AA

One of the differences in the present minijet model from the original

minijet is the prediction on how the minijet cross section scales with nucleon

numbers in nucleon-nucleus (e.g. pA) and nucleus-nucleus (AA) collision at

high energy. In the pA case, the original minijet model predicts that the

minijet cross section is linear to the total the nucleon number in a nucleus if

one natively assumes the parton distribution function (pdf) of a nucleus is A

times the pdf of a nucleon.

σmnj ∝ A. (7.11)

In the present model, the pdf is the same so it will also be linear to A. However,

the classical field modified factor F cl
mnj goes like 1/(Q4

s) for large Q2
s. Q2

s is

proportional the number of gluons per transverse area (recall µ in Chapter 5

and 6), so that Q2
s ∝ A/A2/3 = A1/3. Thus, the minijet cross section would

have an A dependence as

σcl
mnj ∝

A

A2/3
= A1/3. (7.12)

Following the same reasoning, for the case of AA, the original minijet predicts

σmnj ∝ A2, (7.13)

while the present model will have

σcl
mnj ∝

A2

A2/3 + A2/3
∝ A4/3. (7.14)
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Chapter 8

Summary

In this dissertation, we considered one of the unresolved problems in

theoretical particle physics, namely how to calculate total cross section in

hadron-hadron collision at high energy. In the 60’s, physicists studied this

problem and predicted that the total cross section would stay constant even

for higher collision energy. Intuitively, this conclusion is appealing because

hadron is a composited object with a finite geometric size. The cross section

should approach to its size. However, as collision energy increases, experiments

show the total cross section rises with energy. Therefore, the size of a proton

would appear to grow with energy!

In this work, in order to understand the complete picture of the hadronic

total cross section from low to high energy, we started with a review on the

Regge theory which is a viable theory for small momentum exchange. Dual-

ity implies that if there are nonexotic resonances, in the intermediate energy

region, the cross section should decrease with energy. Otherwise, the cross sec-

tion stays constant. From the t-channel point of view, this different energy de-

pendences can be understood in terms of the exchange of exchange-degenerate

trajectories. This provides a good reason for the difference between pp and
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p̄p cross section at
√
s lower than 30 GeV. Although Regge theory is not con-

sidered as a fundamental theory, it serves as a complementary tool for one to

understand the low energy physics.

For the rise of the cross section, we focused on the well accepted the-

ory for strong interaction, the quantum chromodynamics (QCD). In QCD, the

fundamental particles are quarks and gluons. Hadrons are bound states and

resonances of quarks or antiquarks bounded together by gluons. As a quan-

tum field theory, particles can be created as long as energy allows. For this

reason, QCD provides a natural way to explain the rise of the cross section;

namely as energy increases more particles can be created inside the hadron,

as a result more scatterings can occur. In turn the cross section increases

with energy, even though the actual geometric size of the hadron does not.

We reviewed the conventional QCD inspired minijet model in Chapter 3 and

discussed that the minijet model with the currently accepted gluon distribu-

tion function will generate a rapid rise in s with σ ∼ s0.3 ln s that violates

the asymptotic bound of hadronic cross section, the Froissart bound, which

only allows σ ≤ const × (ln s)2. The rapid rise is directly related to the in-

crease of gluon density in the hadron. It is believed that when gluon density

is high, simple perturbation (pQCD) will break down even when coupling is

small because of multiple scattering or shadowing effect. Treating the dense

gluonic medium is important to understand strong interaction at high energy,

in general.

In 1994, McLerran and Venugopalan (MV) proposed an effective theory
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to describe the high density soft gluons, the small-x gluon, as a classical color

field generated by the other large-x constituents in the hadron. As long as the

hadron is strongly boosted forward (backward), the large-x partons can be

treated as a Lorentz contracted steady classical color source moving along the

forward (backward) light-cone. The Yang-Mills equation of the classical field

can be solved exactly including the non-linear effect for one single hadron or

perturbatively (in our case, to the first order) for two colliding hadrons. Since

then this theory has been extensively studied and is referred to as Color Glass

Condensate (CGC). In CGC, the key concern is the classical field itself (For

review, see [46–48]). The particle production in collision is associated with the

field intensity far away from the collision center. Multiplicity of the particle

production can be calculated [49–56]. The modified propagator for fermion

was also considered [57–62]. So far, the quantitative prediction on the total

cross section is not available.

In this work, we took a slightly different path from the CGC. We

adopted the point of view of MV to find the classical for to the leading order

for two colliding hadrons. Then we formulated a quantum theory for the quan-

tum gluon in the presence of the classical field. The classical field is treated

as a prescribed field, instead of a dynamical field, in contrast with CGC. We

obtained the classical field modified propagator of the quantum gluon with

pQCD to the leading order of coupling constant and leading order of classical

field strength in the dilute region. We then analytically continued the result

to the saturated domain where shadowing of high density small-x gluons is
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important. For consistency check, we derived the condition for gauge invari-

ance of the propagator in the model and showed it was satisfied. The detail is

provided in Appendix B.

In Chapter 6, we applied the modified propagator to the minijet model.

The modified propagator introduced a modification factor to the minijet cross

section. This factor suppresses the contribution from the constituent small-

x gluons since they are in the saturation region. As for the large-x gluons,

the modified minijet model converges to the conventional minijet model. We

calculated the pp and p̄p total cross section and compared it with the data

in Chapter 7. We found that the data from
√
s = 5 GeV to 30 TeV can

be well described by the sum of a soft and a hard components where the soft

component is motivated by Regge theory and the hard component is calculated

with our classical field modified minijet model. The modification factor alone

provides a correct taming of the rapid rise of the total cross section. More

intriguingly, the present model yields a Froissart bound respectful asymptotic

behavior with σ ∼ ln s. We also briefly discussed the extension of the present

model to nucleus collisions and explored the nucleon number dependence of

the pp, pA an AA total cross section.

To conclude, we integrated the effective classical theory and the quan-

tum theory to formulate a method to treat scattering problem in high energy

strong interaction physics. Both the classical and the quantum theories can

be directly derived from QCD Lagrangian. The need of both classical and

quantum regimes of QCD indicates that strong interaction is non-trivial, yet
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interesting that a simple theory could yield and unify different emerging effects.

As for the present model, the classical field provides an universal description

of different hadrons at high energy. Having nucleon as a reference point, the

applicability of model has a potential to be extended to other strongly interact-

ing particles, including mesons, baryon, nucleus and even photon at extremely

high energy.
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Appendix A

Light-cone Coordinate

A 4-vector, p, in the light-cone coordinate is defined in relation to its

(0,1,2,3) components as

p+ =
1√
2
(p0 + p3) (A.1)

p− =
1√
2
(p0 − p3) (A.2)

p1 =p1 (A.3)

p2 =p2 (A.4)

The dot product of a and b is

a · b = a+b− + a−b+ − a1b1 − a2b2. (A.5)

So the absolute square of a vector aµ is

a · a = 2a+a− − a1a1 − a2a2. (A.6)

The matrix tensor gµν is

g+− = g−+ = g+− = g−+ = 1, (A.7)

gij = gij = −δij, (A.8)
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the other components vanish. As a result,

a+ = a− (A.9)

a− = a+ (A.10)

ai = ai (A.11)

(A.12)

For a massless particle or a particle approximately moving at the speed

of light toward +z direction with energy E, it momentum vector in light-cone

coordinate is

p+ =
√
2E (A.13)

p− = 0 (A.14)

pi = 0 (A.15)
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Appendix B

Gauge Invariance

In this Appendix, we will use functional method to derive a gauge

invariant condition for the two-point Green’s function of the propagator and

use it to check gauge invariance. We generalized the Slavnov-Taylor identity

[63, 64] to the presence of an non-zero background field.

B.1 Gauge transformation with background

We start with the generating functional

Z[η; ρ] =

∫
DB∆(f(B))

× exp

{
i

∫
d4x

(
L0(A+B, ρ) + LGF + ηaµB

aµ
)}

(B.1)

where N is a normalization constant and the gauge fixing function f is chosen

as

fa(B) = D̄ab
µ Bb µ (B.2)

such that

LGF = −1

2
(D̄µ

abB
b
µ)

2, (B.3)

Since the classical field A is chosen to be a prescribed field, it does not trans-

form. As a result, B takes all the burden of the gauge transformation. The
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infinitesimal gauge transformation becomes
ρaµ → ρ′aµ = (δab − fabcαc)ρb µ

Aa
µ → A′a

µ = Aa
µ

Ba
µ → B′a

µ = Ba
µ + fabc(A+B)bµα

c + 1
g
∂µαa

(B.4)

Hence,

δfa(x)

δαc(y)
=D̄ab

µ

δB′b
µ

δαc(y)

=D̄ab
µ

(
f bde(A+B)dµδecδ(x− y) +

1

g
∂µδbcδ(x− y)

)
(B.5)

=
1

g
D̄ab

xµ

[
∂µδbcδ(x− y) + gf bdc(Ax +Bx)

dµδ(x− y)
]

(B.6)

=
1

g

[
δab δ(x− y)

+ gfadc(2Ad
xµ∂

µ + ∂µAd
xµ +Bd

xµ∂
µ + ∂µBd

xµ)δ(x− y)

+g2faebf bdcAe
xµ(Ax +Bx)

e µδ(x− y)
]
. (B.7)

The subscript x is a abbreviation of the argument of the function, e.g. Ax =

A(x). We define

Mac(x, y) =D̄ab
xµ

[
∂µδbcδ(x− y) + gf bdc(Ax +Bx)

dµδ(x− y)
]

(B.8)

with a inverse M−1 cd(x, y) satisfying∫
dyD̄ab

xµ

[
∂µδbcδ(x− y)

+ gf bdc(Ax +Bx)
dµδ(x− y)

]
M−1 cd(y, z)

= δadδ(x− z) (B.9)

The determinant of the gauge fixing function with respect to the infinitesimal

gauge transformation is

∆(f) = det

(
δfa(x)

δαb(y)

)
= det(M) det(

1

g
). (B.10)
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The determinant of 1/g can be absorbed into the normalization constant N .

This determinant can also be written as a ghost term in the Largangian:

det(M) =

∫
Dc̄Dc exp

{
−i

∫
d4x [c̄a ca

+ gfabcc̄a(2A
b
µ∂

µ + ∂µAb
µ +Bb

µ∂
µ + ∂µBb

µ)cc

+ g2faebf bdcc̄aA
d
µ(A+B)e µcc] (B.11)

Additional interactions between the ghost and the classical field A are also

introduced. The connected n-point Green’s function of the quantum gluon is

given by taking n-derivative with respect to the source η then divided by Z

evaluating at η = 0

Ga1,a2,...an
µ1,µ2,...µn

(x1, x2, . . . xn) =
(−i)n

Z

δnZ

δηµ1
a1 (x1) . . . δη

µn
an (xn)

∣∣∣∣∣
η=0

(B.12)

B.2 Slavnov-Taylor Identity

As we mentioned above, the observable has to be gauge invariant. The

transition amplitude depends explicitly on the Green’s functions which itself

depends on the gauge fixing. Therefore, one need find out a set of conditions

on the Green’s functions to ensure gauge invariance. This is equivalent to

restrict the generating functional to be invariant under gauge transformation.

To do that, we transform the generating functional using Eq.(B.4) such that

Z[η; ρ] → Z′[η; ρ′] =N

∫
DB′ ∆(f(B′))

exp

{
i

∫
d4x

(
L0(A+B′, rho′) + LGF (B

′) + ηaµB
′aµ)}
(B.13)
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Since L0 is gauge invariant,

L0(A+B′, ρ′) = L0(A+B, ρ),

and the Jacobian of the transformation on DB is 1,

DB = DB′,

the difference between Z and Z ′ is due to the change in gauge fixing term, the

determinant ∆(f) and the source term ηB.

Z′ =N

∫
DB (∆ + δ∆)exp

{
i

∫
d4x

(
L0 + LGF + δLGF + ηaµB

aµ + ηaµδB
aµ

)}

∼N

∫
DB∆

(
1 +

δ∆

∆

)[
1 + i

∫
d4x

(
δLGF + ηaµδB

aµ

)]
× exp

{
i

∫
d4x

(
L0 + LGF + ηaµB

aµ

)}

=Z+N

∫
DB∆

[
δ∆

∆
+ i

∫
d4x

(
δLGF + ηaµδB

aµ

)]

× e

{
i
∫
d4x

(
L0+LGF+ηaµB

aµ

)}
. (B.14)

We require that

0 = δZ = N

∫
DB∆

[
δ∆

∆
+ i

∫
d4x

(
δLGF + ηaµδB

aµ

)]

× e

{
i
∫
d4x

(
L0+LGF+ηaµB

aµ

)}
(B.15)
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for all αa(x).

δLGF = −1

2
2faδfa

= −
(
D̄ab

µ Bb µ
) (

D̄ab
µ δBb µ

)
= −

(
D̄ab

µ Bb µ
)
D̄ab

µ

(
f cde(A+B)dµαe +

1

g
∂µαc

)
= −

(
D̄ab

µ Bb µ
) 1
g

∫
dyMac(x, y)αc(y) (B.16)

where M is defined in Eq.(B.8)

ηaµδB
aµ = ηaµ

[
fade(A+B)dµx αe(x) +

1

g
∂µαa(x)

]
= ηaµf

adc(A+B)dµx αc(x)− 1

g

(
∂µηaµ

)
αa(x) +

1

g
∂µ
(
ηaµα

a
)

=

[
ηaµf

adc(A+B)dµx − 1

g

(
∂µηaµ

)
δac
]
αc(x) +

1

g
∂µ
(
ηaµα

a
)

(B.17)

From here on we will denote ∆(f) as the determinant of Mab(x, y)/g. After

the transformation, M becomes M+δM and the determinant becomes, under

gauge transformation (B.4),

∆′ = det(M + δM) = det
(
D̄ab

xµ

[
∂µδbcδ(x− y) + gf bdc(Ax +B′

x)
dµδ(x− y)

])
= det

(
D̄ab

xµ

[
∂µδbcδ(x− y) + gf bdc(Ax +Bx)

dµδ(x− y)

+ gf bdcfdmn(Ax +Bx)
mµαn

xδ(x− y)

+ f bdc(∂µ
xα

d
x)δ(x− y)

])
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Expanding ∆′ to first order in δM

∆′ = det(1/g) det(M + δM)

= det(1/g) det(M) det(1 + δMM−1)

= det(1/g) det(M) exp(Tr log(1 + δMM−1))

∼ det(1/g) det(M) exp(Tr[δMM−1])

∼ det(1/g) det(M)(1 + Tr[δMM−1])

= det(1/g)∆(1 + Tr[δMM−1]).

One can identify

δ∆

∆
= Tr(δMM−1).

Explicitly M and δM reads

Mac
x ϕc(x) = D̄ab

xµ

[
∂µδbcϕc + gf bdc(Ax +Bx)

dµϕc
]

δMacϕc = D̄ab
xµ

[
gf bdcfdmn(Ax +Bx)

mµαn
xϕ

c + f bdc(∂µ
xα

d
x)ϕ

c
]
,
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therefore, the trace becomes1

Tr[δMM−1] = Tr
[
D̄ab

xµ

[
gf bdcfdmn(Ax +Bx)

mµαn
xM

−1 ce(x, y)

+f bdc(∂µ
xα

d
x)M

−1 ce(x, y)
]]

=

∫
dxdy D̄ab

xµ

[
gf bdcfdmn(Ax +Bx)

mµαn
xM

−1 ce(x, y)

+f bdc(∂µ
xα

d
x)M

−1 ce(x, y)
]
δaeδ(x− y)

=

∫
dx
[
gfaklf lcn(∂µ

xA
k
xµM

−1 ca(x, x))

+g2faklf ldcfdmnAk
xµ(A+B)mµ

x M−1 ca(x, x)
]
αn
x

(B.18)

The total contribution from eq.(B.16), (B.17) and (B.18) to the deviation of

Z is, neglecting the total derivative term,

δ∆

∆
+ i

∫
d4x

(
δLGF + ηaµδB

aµ

)
=

∫
dx
[
gfaklf lcn(∂µ

xA
k
xµM

−1 ca(x, x))

+g2faklf ldcfdmnAk
xµ(A+B)mµ

x M−1 ca(x, x)
]
αn
x

−
∫

dxdy
(
D̄ab

µ Bb µ
) 1
g
Mac(x, y)αc(y)

+

∫
dy

[
ηaµf

adc(A+B)dµy − 1

g

(
∂µηaµ

)
δac
]
αc(y)

Let an arbitrary function

χa
x = Mab

x αb
x (B.19)

1Tr[f(x, y)] =
∫
dxdyδ(x− y)f(x, y) =

∫
dxf(x, x)
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Therefore,

δ∆

∆
+ i

∫
d4x

(
δLGF + ηaµδB

aµ

)
=

∫
dxdy

[
gfaklf lcn(∂µ

xA
k
xµM

−1 ca(x, x))

+g2faklf ldcfdmnAk
xµ(A+B)mµ

x M−1 ca(x, x)
]
M−1ne(x, y)χe(y)

−
∫

dy
(
D̄eb

µ B
b µ(y)

) 1
g
χe(y)

+

∫
dxdy

[
ηaµf

adc(A+B)dµx − 1

g

(
∂µηaµ

)
δac
]
M−1 ce(x, y)χe(y)

The generalized Slavnov-Taylor identity is given by the equation

δZ = 0 =

{∫
dx
[
gfaklf lcn(∂µ

xA
k
xµM

−1 ca(x, x))M−1ne(x, y)

+g2faklf ldcfdmnAk
xµ(A+B)mµ

x M−1 ca(x, x)
]
M−1ne(x, y)

− 1

g
D̄eb

µ B
b µ
y

+

∫
dx

[
ηaµf

adc(A+B)dµx − 1

g

(
∂µηaµ

)
δac
]
M−1 ce(x, y)

}
Z

(B.20)

The equation is an abbreviation of

{. . . }Z =

∫
DB{. . . }ei

∫
dxL0+LGF+ηB

To the leading order, the first two terms in eq. (B.20) are neglected

because they are at least one g order higher than the last two. Differentiating

the last two terms with respect to ηcν(z) and setting all η = 0, we obtain

0 =
{
D̄eb

µ yB
b µ
y Bc ν

z

+ i
[
gf cdb(A+B)d νz + ∂νδcb

]
M−1

be (z, y)
}
Z
∣∣
η=0

(B.21)

86



By taking a covariant derivative D̄e′c
z ν , the second term becomes delta functions

according to eq. (B.8) leading to{
D̄eb

µ yD̄
dc
ν zB

b µ
y Bc ν

z + iδedδ(z − y)
}
Z
∣∣
η=0

= 0 (B.22)

By identifying the connected two-point Green’s function as

Gbc
µν(x, y) =

1

Z

{
Bb µ

x Bc ν
y

}
Z
∣∣
η=0

and taking the MV average of eq. (B.22), it leads to

⟨D̄ac µ
x D̄bd ν

y Gcd
µν(x, y; ρ)⟩MV = −iδabδ4(x− y) (B.23)

This condition is analogous to the transverality condition of gluon Green’s

function in Slavnov’s original derivation (eq. (22) and (23) in [63]). One can

check the propagator derived in Section 5 satisfies eq. (B.23)

B.3 Gauge invariance of the modified propagator

We will show the green’s function to the leading order in g and A2

satisfies the generalized Slavnov-Taylor identity, eq. (B.23). For simplicity,

only one nucleon will be considered. Since the contributions of the cross terms

involving two colliding source vanished after the MV average, the proof can

be easily generalized to the two nucleons case.

In eq. (B.23), the MV average is taken after acting the covariant deriva-

tive on the Green’s function (GF). The covariant derivative consists of a linear

term in A which multiplying with the first order term in A of the GF will have
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non-zero contribution. Therefore, besides the terms we calculated in Section

5, one needs to calculate the diagram that has only one interaction with the

classical field.

Firstly, we argue that the interaction term

Lint2 = gfabc
∑
i

B1
µ(g

µ−gνi − gµigν−)∂iA
c+Bb

ν

should be considered as of order A2 for the following reason. An similar ar-

gument can be found in [65]. In the MV average, the volume integration of

⟨ρρ⟩ is the density of the source in a volume L−L2
⊥, where L− is the size of

the source along the light-cone − direction and L2
⊥ is the transverse size of the

source. Recall eq. (4.23)

⟨ρa(x)ρb(y)⟩MV = δabδ(x− − y−)δ2(x⊥ − y⊥)
µ

L− . (B.24)

Integrating both sides of eq. (B.24) over a volume gives∫
⟨ρρ⟩MV dV ∼ µ

L− , (B.25)

where the LHS is has a dimension of 1/Volume = 1/(L−L2
⊥). We defines a

typical transverse correlated size L⊥ of two local sources as

L⊥ ∼ 1
√
µ
. (B.26)

Eq. (B.25) also implies ρ ∼
√

µ
L2
⊥L−)2

=
√
µ

L−L2
⊥
. Eq. (5.17) suggests that A2

is proportional to µ/((L−)2Λ2
QCD) ∼ µ both L− and ΛQCD are related to the

88



aµx

p1 p2

b ν y

p1 − p2

Figure B.1: Schematic Feynman diagram for gluon GF with single interaction
with A.

confinement scale. Therefore, the transverse derivative in Lint2 is of the order

of

∂⊥A ∼ A

L⊥
∼ √

µ
√
µ = µ ∼ A2.

For this, we conclude Lint2 is of the order of O(A2), although it is only explicitly

linear in A. Thus, the diagram which has two vertices of Lint2 is considered as

a higher order, O(A4), contribution and will not be included in the checking

of gauge invariance.

B.3.1 Terms linear in Lint1 and Lint2

We have calculated the terms of O(A2) in Section 5. To check gauge

invariant, we also need the other terms that vanish only after taking the MV

average. There are two of these term. One is from Lint1 and the other from

Lint2 . Diagrammatically, we consider a gluon enter from the left with momen-

tum p1 then interacts at z and leaving with momentum p2 as shown in Fig.

(B.1)
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For the first term with vertex of Lint1 , the GF is

GIab
µν(x, y) =i⟨TBa

µ(x)

∫
dzLint1(z)B

b
ν(y)⟩ (B.27)

=i(−g)f cmd

∫
dz⟨TBa

µ(x)g
αβBc

α(z)A
c+∂−Bd

β(z)B
b
ν(y)⟩. (B.28)

There are two way to contract the fields. The sum of the two contributions is

GIab
µν(x, y) = g gµνf

abc

∫
d4z

d4p1d
4p2

(2π)8
(p−1 + p−2 )

p21p
2
2

Ac+(z)e−ip1(x−z)−ip2(z−y)

(B.29)

The second term comes from the interaction with Lint2 and is given by

GIIab
µν(x, y) =− 2g fabc(g−µ g

i
ν − giµg

−
ν ) (B.30)∫

d4p1d
4p2

(2π)8
∂iA

c+(z)d4z

p21p
2
2

e−ip1(x−z)−ip2(z−y). (B.31)

However, this term does not contribute to eq. (B.4) to O(A2) because it is

explicitly linear to A which will vanish after taking MV average. On the other

hand, when we multiple the A in the covariant derivative to this term, its

contribution is non-zero, but it excesses the order of A2.

B.3.2 Checking gauge invariant

Let us rewrite the LHS of eq. (B.23) according to the order of A as

⟨D̄ac µ
x D̄bd ν

y Gab
µν(x, y)⟩MV

=⟨∂µ
x∂

ν
yG0

ab
µν(x, y)⟩MV (O(1))

+ ⟨∂µ
xgf

bcdAc ν(y)GIad
µν(x, y) + ∂ν

ygf
acdAc ν(x)GIdb

µν(x, y)⟩MV (O(A2))

+ ⟨∂µ
x∂

ν
yG

+
11

ab
µν(x, y)⟩MV (O(A2)).
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The O(1) term is the derivatives on a bare Feynman propagator. The MV

average provide no effect to this term. Straight forward evaluation gives

δabgµν∂
µ
x∂

ν
y

∫
d4q

(2π)4
−i

q2
e−iq(x−y)

=δab
∫

d4q

(2π)4
(−i)e−iq(x−y)

=− iδabδ(x− y),

which is the RHS of eq. (B.23).

The first term of the O(A2) term is

⟨∂µ
xgf

bcdAc ν(y)GIad
µν(x, y)

=⟨∂µ
xgf

bcdAc ν(y)g gµνf
ade

∫
d4z

d4p1d
4p2

(2π)8
(p−1 + p−2 )

p21p
2
2

Ae+(z)e−ip1(x−z)−ip2(z−y)⟩MV

=g2f bcdfade⟨Ac+(y)Ae+(z)⟩MV ∂
−
x

∫
d4z

d4p1d
4p2

(2π)8
(p−1 + p−2 )

p21p
2
2

e−ip1(x−z)−ip2(z−y).
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Using eq. (5.19), we have

⟨∂µ
xgf

bcdAc ν(y)GIad
µν(x, y)

=−Ncg
2δab

∫
d4k1d

4k2F (k1, k2)(−ip−1 )

∫
d4z

d4p1d
4p2

(2π)8
(p−1 + p−2 )

p21p
2
2

× e−i(p1+k1)xei(p1−k2−p2)zeip2y

=−Ncg
2δab

∫
d4k1d

4k2F (k1, k2)(−ip−1 )
d4p1d

4p2
(2π)8

(p−1 + p−2 )

p21p
2
2

× e−i(p1+k1)x(2π)4δ4(p1 − k2 − p2)e
ip2y

=iNcg
2δab

∫
d4k1F (k1, p1 − p2)(p

−
1 )

d4p1d
4p2

(2π)4
(p−1 + p−2 )

p21p
2
2

e−i(p1+k1)xeip2y

=iNcg
2δab

∫
d4k1

λ

(2π)3
δ4(k1 + (p1 − p2))

δ(k−
1 )

k4
1⊥

(p−1 )

× d4p1d
4p2

(2π)4
(p−1 + p−2 )

p21p
2
2

e−i(p1+k1)xeip2y

=δabi
Ncg

2λ

(2π)7

∫
d4p1d

4p2
δ(p−1 − p−2 )

(p1 − p2)4⊥
(p−1 )

(p−1 + p−2 )

p21p
2
2

e−i(p1−(p1−p2))xeip2y

=δabi
2Ncg

2λ

(2π)7

∫
d4p1d

4p2
δ(p−1 − p−2 )

(p1 − p2)4⊥
(p−1 )

2 1

p21p
2
2

e−ip2(x−y)

=δabi
2Ncg

2λ

(2π)7
(p−2 )

2

∫
d4p2

1

p22

∫
dp+1

2p+1 p
−
2 − p21⊥ + iϵ

∫
d2p1⊥

(p1 − p2)4⊥
e−ip2(x−y)

=δabi
2Ncg

2λ

(2π)7
(p−2 )

2

∫
d4p2

1

p22

∫
dp+1

2p+1 p
−
2 − p21⊥ + iϵ

∫
d2k⊥
k4
⊥

e−ip2(x−y).

Identifying the integrals of p1 and k⊥ as the same as of eq. (5.24) and (5.25),

and by changing p2 to q, we finally have

⟨∂µ
xgf

bcdAc ν(y)GIad
µν(x, y)

=δab
Ncg

2λ

8π

(
θ(q−)− θ(−q−)

) Q2 − Λ2
QCD

Λ2
QCDQ

2

∫
d4q

(2π)4
q−

q2
e−iq(x−y). (B.32)

The second term of the O(A2) term has the same contribution as the first
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term, as

⟨∂ν
ygf

aceAc µ(x)GIeb
µν(x, y) (B.33)

=δab
Ncg

2λ

8π

(
θ(q−)− θ(−q−)

) Q2 − Λ2
QCD

Λ2
QCDQ

2

∫
d4q

(2π)4
q−

q2
e−iq(x−y). (B.34)

So the sum of the two is

δab
Ncg

2λ

4π

(
θ(q−)− θ(−q−)

) Q2 − Λ2
QCD

Λ2
QCDQ

2

∫
d4q

(2π)4
q−

q2
e−iq(x−y). (B.35)

For the last term in eq. (B.32), let us recall G11 of eq. (5.27) in

coordinate space as

G+
11

ab
µν(x, y) = gµνδ

ab

(
−g2Ncλ

4π

)
Q2 − Λ2

QCD

Λ2
QCDQ

2
(θ(q−)−θ(−q−))

d4q

(2π)4
q−

q4
e−iq(x−y).

(B.36)

Applying the derivatives ∂µ
x∂

ν
y provides −iqµiqν which contracts with gµν gives

q2 canceling one of the q2 in the denominator. Therefore, we have

∂µ
x∂

ν
y ⟨G+

11
ab
µν(x, y)⟩MV

= δab
(
−g2Ncλ

4π

)
Q2 − Λ2

QCD

Λ2
QCDQ

2
(θ(q−)− θ(−q−))

d4q

(2π)4
q−

q2
e−iq(x−y), (B.37)

which exactly cancel the sum of the first two O(A2) terms in (B.35). So we

claim to the leading order in A, O(A2) and g, O(g2), the generalized Slavnov-

Taylor identity for two point GF is satisfied by the modified gluon propagator

obtained in Section 5.
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