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coauthors Dr. Hervé Roche, Dr. Paul Ehling, Dr. Michael Gallmeyer, and Dr. Sanjay

Srivastava. It has been a very rewarding experience to work with these great minds in

the asset selection paper and the capital gain taxation paper.

It is a pleasure to acknowledge my colleagues and friends: Haiying Zhou, Wei

Chen, Jie Cao, Jing Ai, Saurabh Bansal, Tianyang Wang, Yinglu Deng, Bo Shi, Qimou

Su, Weifeng Qiu, and Danhua Shao for their constant support. I am also grateful to

Krystal Ho, Hillary Patterson, Amanda No, and Caroline Walls for their administrative

help at the Department of Information, Risk, and Operations Management, McCombs

School of Business.

Finally, I would like to take this opportunity to thank my family, especially my

father, Qingfei Yang, my uncle, Junli An, and my aunt, Li Ma. Whenever I need help,

they are always there in every possible way.

v



Functional Approximation Methods for Solving Stochastic

Control Problems in Finance

Publication No.

Chunyu Yang, Ph.D.

The University of Texas at Austin, 2010

Supervisor: Stathis Tompaidis

I develop a numerical method that combines functional approximations and dy-

namic programming to solve high-dimensional discrete-time stochastic control prob-

lems under general constraints. The method relies on three building blocks: first, a

quasi-random grid and the radial basis function method are used to discretize and

interpolate the high-dimensional state space; second, to incorporate constraints, the

method of Lagrange multipliers is applied to obtain the first order optimality condi-

tions; third, the conditional expectation of the value function is approximated by a

second order polynomial basis, estimated using ordinary least squares regressions. To

reduce the approximation error, I introduce the test region iterative contraction (TRIC)

method to shrink the approximation region around the optimal solution. I apply the

method to two Finance applications: a) dynamic portfolio choice with constraints, a

continuous control problem; b) dynamic portfolio choice with capital gain taxation, a

high-dimensional singular control problem.
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Chapter 1

Introduction

Many problems in Engineering, Economics, Finance, and other fields can be for-

mulated as stochastic control problems, where a series of decisions must be made along

time in the face of uncertainty and constraints. Solving high-dimensional stochas-

tic control problems naively, using dynamic programming techniques and a regular

discretization of the state space, is challenging due to the exponentially increasing

requirements in computational resources. Recently, a series of papers have proposed

solving such problems with a simulation-based approach, combining Monte Carlo sim-

ulation and dynamic programming - see Tsitsiklis and Van Roy (2001), Longstaff and

Schwartz (2001), Brandt, Goyal, Santa-Clara, and Stroud (2005), and Koijen, Nijman,

and Werker (2009). Although the simulation-based approach has been successfully

applied to several applications in Finance, this approach has been largely limited to

stochastic control problems with exogenous state variables due to the dependency of the

discretization of the state space on a set of forward-simulated paths of the exogenous

state variables.

In this dissertation I develop a numerical methodology that combines functional

approximations and dynamic programming to solve high-dimensional discrete-time

stochastic control problems under general constraints. The method can handle prob-

lems with both a large number of endogenous and exogenous state variables. To incor-

porate constraints, I apply the method of Lagrange multipliers to obtain the optimality

conditions that characterize the optimal control. There are two difficulties in solving

the resulting system of equations: a) the high cost associated with repeated evaluations

of conditional expectations in the optimality conditions; and, b) the lack of efficient
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schemes to discretize and interpolate a high-dimensional state space including both

endogenous and exogenous state variables. To overcome the first difficulty, I extend

the functional approximation approach and approximate the conditional expectation

of the value function using a second order polynomial basis, where the coefficients are

estimated using regression-like methods. The benefit is that the resulting optimality

conditions become a system of linear equations, which can be solved efficiently. To

improve the accuracy of the second order approximation I introduce the test region

iterative contraction (TRIC) method and estimate the conditional expectation in a

region getting smaller and smaller around the estimated value of the optimal control.

To overcome the second difficulty, two meshfree approximation methods are employed:

first, a quasi-random grid is used to discretize a high-dimensional state space uniformly

with a smaller number of grid points than a regular grid; second, the value function on

the quasi-random grid is interpolated using a set of radial basis functions whose pa-

rameters are chosen by applying machine learning techniques, such as cross-validation

and iterative center selection.

There is an extensive literature on numerical methods for solving stochastic con-

trol problems in Finance. Tsitsiklis and Van Roy (2001) and Longstaff and Schwartz

(2001) solve an optimal stopping problem, pricing American-style options, using the

simulation/regression method. They approximate the continuation value of an Amer-

ican option; i.e., an expectation conditioning on the current stock price, as a linear

combination of basis functions, where the weights of the basis functions are estimated

using ordinary least squares regression. Inspired by the work of pricing American

options, Brandt et al. (2005) apply the idea of simulation and regression to solve a

continuous control problem, dynamic portfolio choice. They approximate conditional

expectations using a Taylor series expansion in the control variables and estimate the

coefficients of the expansion using the simulation/regression method. Koijen et al.

(2009) apply the simulation-based approach to solve a portfolio choice problem with

constraints on portfolio weights by solving the first order conditions of optimality.
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The method I propose is different from the simulation-based approach in three

ways: first, my method achieves an accurate approximation of the conditional expec-

tation using a different approach, the test region iterative contraction (TRIC) method

with quadratic basis functions; second, my method can solve problems with both en-

dogenous state variables and exogenous state variables; third, my method explicitly

incorporates a general class of constraints on control variables.

A closely related method is developed by Garlappi and Skoulakis (2008). To find

an efficient and accurate approximation of the conditional expectation, Garlappi and

Skoulakis (2008) extend the Taylor series expansion idea of Brandt et al. (2005) by

choosing a different center of expansion and separating the terms involving the control

variables from the terms involving the random shocks. As a result of this separation,

they are able to focus on evaluating the conditional expectations of the terms involving

the random shocks, where analytical results are available under certain distributional

assumptions. Their method relies on a Taylor series expansion of the value function

in the control variables, which becomes a bottleneck for problems with a complicated

dependency of the value function on the control variables. Instead of using a high order

Taylor series approximation to achieve accurate approximation within the entire control

space, the method I propose focuses on approximating the conditional expectation

within a small region around the optimal value of the control variables using a second

order polynomial.

I demonstrate the potential of the general methodology based on functional ap-

proximations by solving two applications in Finance. The first application considers a

continuous control problem, where an investor chooses her lifetime portfolio and con-

sumption plan to maximize her expected utility while facing financial constraints and

receiving an income stream. The difficulty of this problem is to find the optimal portfo-

lio weights that satisfy the margin requirements on the long positions (positive portfolio

weights) and the short positions (negative portfolio weights). The method I propose is

general enough to handle this type of constraints by applying the method of Lagrange
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multipliers and solving the first order optimality conditions, where the expected fu-

ture utility is approximated by the TRIC method with a second order polynomial.

The main finding is that severely constrained younger investors often optimally hold a

under-diversified portfolio compared to the portfolios held by older investors, which is

consistent with the empirical literature.

The second application of the TRIC method considers a state-dependent transac-

tion cost that affects the investor’s investment and consumption decision, taxation on

capital gains. Unlike the rest of the literature, who assumes that capital losses can be

immediately realized for a tax refund, I make the more realistic assumption that capital

losses can only be used to offset current capital gains or be carried forward to offset

future capital gains. This application is challenging because it is a high-dimensional

problem with singular controls. To model capital gain taxation for each risky asset one

needs to keep track of both the average purchasing price and the number of shares held.

Modeling the limited use of capital losses requires an additional state variable. The

resulting high-dimensional state space is discretized and interpolated using the mesh-

free techniques. The problem belongs to the class of singular control problems because

the relationship between capital gain taxes and portfolio choice is non-differentiable at

certain points. To handle singularity, I partition the control space into a set of disjoint

regions at the non-differentiable points, and select the optimal control by comparing

all the local optima obtained within each region. The results show that limiting the

use of losses to only offset gains results in significant reductions in the overall position

of risky assets held by the investor.

The rest of the dissertation is organized as follows. Chapter 2 describes the gen-

eral framework of the method. Chapter 3 and Chapter 4 illustrate the two applications

in Finance. Chapter 5 concludes and discusses plans for future work.
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Chapter 2

General Framework

2.1 Model Setup

I consider a finite-horizon discrete-time stochastic control problem with a given

terminal condition VT (XT ) at time T and a general form of recursion characterized by

the Bellman equation at time t = 0, 1, . . . , T − 11:

Vt (Xt) = max
xt

Ht {ut (Xt, xt) , Et [Vt+1 (Xt+1)|Xt]}

s.t. Xt+1 = Gt (Xt, xt, εt+1)

Ft (Xt, xt) ≥ 0

(2.1)

where Xt is the vector of state variables at time t with dimension dX ; Vt (·) is the

value function at time t; xt is the vector of control variables at time t with dimension

dx; ut (·, ·) is the utility function at time t when taking action xt at state Xt; Ht (·, ·)

is the function that aggregates current utility and expected future utilities at time t;

εt+1 is the vector of random noise over period [t, t + 1] with dimension dε; Gt (·, ·, ·)

is the evolution rule of state variables; Ft (·, ·) is the vector of constraints on control

variables xt with dimension dF . The general setup (2.1) accommodates a large class of

stochastic control problems by choosing the functions ut, Ht, Gt, and Ft. For example,

time separable utilities can be specified by choosing Ht (a, b) = a + βb, β ∈ (0, 1],

and recursive preferences can be specified by choosing Ht (a, b) =
[

(1 − β) a
1

θ + βb
1

θ

]θ

,

1Problem (2.1) has the same form of the general case discussed in Garlappi and Skoulakis (2008),
except that I explicitly specify the constraints on the control variables Ft (Xt, xt) ≥ 0, which is a

vector of dF constraints on the control variables xt; i.e.,
{

Fi
t (Xt, xt) ≥ 0

}dF

i=1
.
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θ 6= 0. The constraint functions,
{

Fk
t (Xt, xt)

}dF

k=1
, can be either state-dependent or

state-independent, linear or non-linear.

The state variable vector Xt contains both endogenous state variables Xen
t and

exogenous state variables Xex
t ; i.e., Xt = (Xen

t , Xex
t ). By definition, the exogenous

state variables at time t + 1 do not depend on the control variables and endoge-

nous state variables at time t, while the endogenous state variables do; i.e., Xen
t+1 =

Gen
t (Xen

t , Xex
t , xt, εt+1) and Xex

t+1 = Gex
t (Xex

t , εt+1). Unlike the simulation-based meth-

ods that focus on exogenous state variables, I provide a method that can handle both

endogenous and exogenous state variables.

2.2 Algorithm

The solution methodology is based on dynamic programming that solves the Bell-

man equation (2.1) backward along time. The difficulties of finding the optimal solution

to the Bellman equation arise from the following: first, the number of dimensions of

the state variable space can be very high which makes discretization and interpolation

using regular grids infeasible because the number of grid points increases exponen-

tially with the number of dimensions of the state variable space; second, the objective

function involves a conditional expectation which is costly to evaluate and needs to be

repeatedly evaluated for different values of state variables and control variables during

the process of searching for the optimal solution; third, a systematic way to incorporate

constraints is needed. To overcome the first difficulty I use meshfree techniques: the

quasi-random grid for discretization and the radial basis function method for inter-

polation. To overcome the second difficulty I focus on the functional approximation

approach to approximate the conditional expectations using a set of basis functions.

The third problem is addressed by the method of Lagrange multipliers. I summarize

the solution methodology using the algorithm below and further discuss every step in

the following sections.
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Algorithm: Main Steps

Step 1: Set the terminal condition at time T : VT (ST )

Step 2: Find the optimal policy backwards at time t = T − 1, T − 2, · · · , 0 :

Step 2.1: Discretize the space of state variables Xt with a quasi-random grid
{

X
(i)
t

}ng

i=1
.

Step 2.2: Find the optimal control at each state variable grid point X
(i)
t using

the TRIC method:

Step 2.2.1: Approximate conditional expectations and their derivatives us-

ing functional approximations

Step 2.2.2: Solve the optimality conditions with the approximations ob-

tained in Step 2.2.1

Step 2.2.3: Repeat Step 2.2.1 and 2.2.2 in a smaller approximation region

until a convergence condition is satisfied

Step 2.3: Approximate the value functions on the quasi-random grid with a set

of radial basis functions

2.3 Optimality Conditions

One challenge of finding the optimal solution to problem (2.1) is to incorporate

constraints on control variables,
{

Fk
t (St, xt) ≥ 0

}dF

k=1
, which can be state-dependent or

state-independent, linear or non-linear. To handle constraints, I apply the method of

Lagrange multipliers to the Bellman equation by defining a set of Lagrange multipliers
{

λk
t

}dF

k=1
. The Lagrangian and the corresponding Karush–Kuhn–Tucker conditions are

given below:

Lagrangian

L (xt, λt|Xt) = Ht {ut (Xt, xt) , Et [Vt+1 (Xt+1)|Xt]} +

dF
∑

k=1

λk
t F

k
t (Xt, xt) (2.2)

7



Karush–Kuhn–Tucker Conditions

0 = ∂L

∂xi
t

= ∂
∂xi

t

Ht +
dF
∑

k=1

λk
t

∂
∂xi

t

[

Fk
t (Xt, xt)

]

, i = 1, · · · , dx First Order Conditions

0 = λk
t F

k
t (Xt, xt) , k = 1, · · · , dF Complementary Conditions

0 ≤ λk
t ,F

k
t (Xt, xt) , k = 1, · · · , dF Feasibility Conditions

(2.3)

where the first order conditions can be further specified as

0 = ∂
∂xi

t

Ht {ut (Xt, xt) , Et [Vt+1 (Xt+1)|Xt]} +
dF
∑

k=1

λk
t

∂
∂xi

t

[

Fk
t (Xt, xt)

]

= ∂Ht,1
∂

∂xi
t

[ut (Xt, xt)] + ∂Ht,2
∂

∂xi
t

Et [Vt+1 (Xt+1)|Xt]

+
dF
∑

k=1

λk
t

∂
∂xi

t

[

Fk
t (Xt, xt)

]

, i = 1, · · · , dx

where ∂Ht,1 is the partial derivative of Ht with respect to its first argument.

The Karush–Kuhn–Tucker conditions (2.3) at a given grid point, X
(i)
t , i = 1, . . . , ng,

form a system of equations that characterize the optimal solution x∗
t . In general the

Karush–Kuhn–Tucker conditions are necessary conditions for optimality but not suf-

ficient. One needs to find all the candidate solutions that satisfy the Karush–Kuhn–

Tucker conditions by enumerating all the possible specifications of the complementary

conditions. The optimal solution is chosen among the candidates by comparing the

value function achieved by each candidate solution.2

The optimality of the Karush–Kuhn–Tucker condition requires the differentiabil-

ity of functions, ut, Ht, Gt, and Ft with respect to the control variables xt. However,

the method developed in this work can also accommodate situations where there are

non-differentiable kinks in those functions. The idea is to partition the control space

2For some special cases, the Karush–Kuhn–Tucker conditions are both necessary and sufficient for
optimality. In those cases once a candidate solution is found, the remaining specifications can be
skipped.
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at the kinks and find the optimal solution locally within each subset of the partition,

and pick the globally optimal solution by comparing the objective functions across all

locally optimal solutions.

2.4 Approximation of Conditional Expectations

Solving the optimality conditions (2.3) requires evaluations of the conditional

expectation

Et [Vt+1 (Xt+1)|Xt] = Et [Vt+1 (Gt (Xt, xt, εt+1))|Xt] (2.4)

and its derivatives with respect to the control variables xi
t, i = 1, . . . , dx. As a function

of the state variables Xt and the control variables xt, the conditional expectation (2.4)

needs to be evaluated repeatedly during the process of solving the optimality conditions.

Thus it is important to find an efficient approximation.

Under the functional approximation approach, the conditional expectation (2.4)

is approximated by a linear combination of basis functions3

Et [Vt+1 (Xt+1)|Xt] = Et [Vt+1 (Gt (Xt, xt, εt+1))|Xt] ≈

nf
∑

j=1

ωj (Xt) fj (xt) (2.5)

where nf is the number of basis functions and {fj (·)}
nf

j=1 are the basis functions on

control variables xt. The state-dependent coefficients {ωj (Xt)}
nf

j=1 are estimated using

cross-test-solution regression











Et

[

Vt+1

(

Gt

(

Xt, x
(1)
t , εt+1

))∣

∣

∣
Xt

]

...

Et

[

Vt+1

(

Gt

(

Xt, x
(nt)
t , εt+1

))∣

∣

∣
Xt

]











=











f1

(

x
(1)
t

)

· · · fnf

(

x
(1)
t

)

...
...

f1

(

x
(nt)
t

)

· · · fnf

(

x
(nt)
t

)

















ω1
...

ωnf







(2.6)

3I am abusing terminology by calling the set of functions {fj (·)}
nf

j=1 a basis since they do not
necessarily span the entire function space.
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where
{

x
(k)
t

}nt

k=1
is a set of trial values of the control variables, called test solutions,

that satisfy all the constraints. The conditional expectation (2.4) is approximated

using the following steps:

Algorithm: Approximation of Conditional Expectations

Step 1: Generate test solutions
{

x
(k)
t

}nt

k=1
quasi-randomly within a set θ, called the

test region. To guarantee that all the test solutions are feasible, the test region θ is

chosen to be a subset of the feasible region θ̄ (Xt) =
{

xt ∈ R
dx : Ft (Xt, xt) ≥ 0

}

;

i.e., x
(k)
t ∈ θ ⊆ θ̄ (Xt) , k = 1, . . . , nt.

Step 2: Evaluate the left-hand-side of (2.6) by evaluating the conditional expectation

for the different test solutions xt = x
(k)
t , k = 1, . . . , nt.

Step 3: Evaluate the right-hand-side of (2.6) by evaluating the basis functions at

different test solutions.

Step 4: Estimate the coefficients {ωj (Xt)}
nf

j=1 using ordinary least squares regression.

The algorithm expands Step 2.2.1 of the main algorithm described in Section

2.2. In Step 2 there are many possible ways to evaluate the conditional expectation

under different test solutions such as quadrature methods (as in Judd (1998)), simula-

tion/regression methods (as in Tsitsiklis and Van Roy (2001), Longstaff and Schwartz

(2001), and Brandt et al. (2005)), decomposition methods (as in Garlappi and Skoulakis

(2008)), and multinomial discretization methods (as in He (1990)).

Given approximation (2.5) the derivatives of the conditional expectation are given

by

∂

∂xi
t

Et [Vt+1 (Xt+1)|Xt] =

nf
∑

j=1

ωj (Xt)
∂fj (xt)

∂xi
t

, i = 1, . . . , dx (2.7)

where {ωj (Xt)}
nf

j=1 are the set of coefficients in (2.5) and the derivatives of the basis

functions {fj (·)}
nf

j=1 with respect to the control variables {xi
t}

dx

i=1 are easy to evaluate

since the basis functions are known.
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2.5 Reducing Approximation Error

Once the conditional expectation and its derivatives are approximated through

(2.5) and (2.7), the optimality conditions are approximated by a system of deterministic

equations that can be solved by many numerical packages.4

Approximate Karush–Kuhn–Tucker Conditions

0 = ∂H1
∂

∂xi
t

[ut (Xt, xt)] + ∂H2

nf
∑

j=1

ωj (Xt)
∂fj(xt)

∂xi
t

+
dF
∑

k=1

λk
t

∂
∂xi

t

[

Fk
t (Xt, xt)

]

, i = 1, · · · , dx

0 = λk
t F

k
t (Xt, xt) , k = 1, · · · , dF

0 ≤ λk
t ,F

k
t (Xt, xt) , k = 1, · · · , dF

(2.8)

The solution to the approximate optimality conditions (2.8) is an approximation

to the true optimal solution x∗
t that solves the original optimality conditions (2.3). To

reduce the approximation error, one needs to improve the quality of the functional

approximation defined in equation (2.5). There are three ways to improve this approx-

imation: reducing the sampling error, reducing the specification error, and reducing

the size of the approximation region; i.e., the test region θ.

The sampling error can be reduced by increasing the number of test solutions nt.

However, additional computational cost is needed to evaluate conditional expectations

with respect to more test solutions.

The specification error can be reduced by carefully choosing the type of basis

functions and using more basis functions; i.e. increasing nf . For a particular model, it

is possible to choose appropriate types of basis functions given problem-specific infor-

mation about the functional form of the conditional expectation to be approximated.

For the purpose of developing a general methodology, a common choice of basis func-

tions is the polynomial basis, where the number of basis functions is specified by the

4In the application section, I use the multidimensional root-finding solver of the GSL library to
solve the two numerical examples.
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order of the polynomial and the number of control variables. Choosing the order of

the polynomial basis is a balance between the specification error and the complexity of

the resulting approximate optimality conditions. Using a high order polynomial basis

reduces the specification error, but leads to a high order system of equations (the ap-

proximate optimality conditions), which requires more effort to solve and the solution

to the system of equations is more sensitive with respect to the initial guess. Moreover,

estimating the coefficients of a high order polynomial basis requires a larger sample of

test solutions.

To reduce the specification error while still keeping the benefit of a low order

polynomial basis, I consider ways to reduce the size of the test region. First I use

second order polynomial basis functions so that the approximate optimality conditions

become a system of linear equations that can be solved efficiently without an initial

guess. Then I reduce the size of the test region θ; i.e., approximate the conditional

expectation in a smaller region where the quadratic function becomes a better fit. This

motivates the idea of contracting the test region iteratively.

2.6 Test Region Iterative Contraction (TRIC) Method

Test region iterative contraction (TRIC) is a method that I introduce to improve

the accuracy of the functional-approximation-based approach of solving stochastic con-

trol problems. When the conditional expectation is approximated through the func-

tional approximation in equation (2.5), reducing the size of the test region θ reduces

the approximation error. However, without knowing the optimal solution x∗
t , reducing

the size of the test region blindly could lead to a test region that does not contain the

optimal solution. I demonstrate the basic idea of the TRIC method using an example

of optimal portfolio choice over two assets in Figure 2.1.
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Figure 2.1: An Illustration of the TRIC Method

13



As shown in Panel A of Figure 2.1, at Iteration 0 a set of test solutions is gener-

ated randomly within the initial test region θ0. Using a cross-test-solution regression

over these test solutions I can estimate a functional approximation of the conditional

expectation and obtain the approximate optimality conditions. Solving the approxi-

mate optimality conditions provides an approximate optimal solution x0. Iteration 1

starts with a smaller test region θ1 around x0, as shown in Panel B of Figure 2.1, and

finds a new approximate optimal solution x1 by repeating the procedures of generating

test solutions, estimating the cross-test-solution regression, and solving the approxi-

mate optimality conditions. If x1 falls in the current test region θ1, Iteration 2 keeps

shrinking the test region from θ1 to θ2 around x1, as shown in Panel C of Figure 2.1.

Otherwise, Iteration 2 uses a slightly larger test region θ2 as shown in Panel D of Figure

2.1. The iteration stops after some convergence criterion is met.

The following algorithm summarizes the TRIC method. It expands Step 2.2 of

the main algorithm described in Section 2.2 and requires the following inputs: the error

cutoff ε, the number of test solutions nt, the initial test region θ[0], and the test region

update rule, Θ (·, ·). If no further information is available one can set θ[0] = θ̄ (Xt),

where θ̄ (Xt) =
{

xt ∈ R
dx : Ft (Xt, xt) ≥ 0

}

is the feasible region at state Xt. However,

it is possible to obtain a smaller θ[0] if the optimal solution at a similar state, called a

reference solution, is available. Finding a reference solution requires problem-specific

knowledge. Usually the optimal solution at a similar state of the next period or the

current period is available as a reference solution. Sometimes analytical solutions are

available at certain states.
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Algorithm: the TRIC Method

Step 1: Initialization

• Set initial iteration number: i = 0

• Set initial test region: θ[0]

• Set accuracy level: ε

Step 2: Update the optimal solution

• Generate a set of test solutions,
{

x
[i,k]
t

}nt

k=1
, within the test region θ[i].

• Update the coefficients of the basis functions,
{

ω
[i]
j

}nf

j=1
, using the cross-

test-solution regression (2.6) over the test solutions
{

x
[i,k]
t

}nt

k=1
.

• Update the approximate optimality conditions (2.8) using
{

ω
[i]
j

}nf

j=1
.

• Find the approximate optimal solution x[i] by solving the approximate op-

timality conditions.

Step 3: Update the test region using

θ[i+1] = Θ
(

x[i], θ[i]
)

where the test region update rule, Θ
(

x[i], θ[i]
)

, satisfies

• If x[i] ∈ θ[i], shrink the test region to θ[i+1] ⊂ θ[i].

• If x[i] /∈ θ[i], enlarge the test region to θ[i] ⊂ θ[i+1] ⊂ θ[i−1].

Step 4: Test convergence

• If
∥

∥x[i] − x[i−1]
∥

∥ < ε, stop.

• If
∥

∥x[i] − x[i−1]
∥

∥ ≥ ε, update the iteration number i = i+1 and go to Step 2.
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Comparison Between the TRIC Method and the STRONG Method

Independent of this work, Chang, Hong, and Wan (2010) introduced a method

similar to TRIC, the Stochastic Trust-Region Response-Surface Method (STRONG).

STRONG combines the response surface method and the trust region method to iter-

atively solve unconstrained stochastic optimization problems with continuous control

variables. Within each iteration, STRONG estimates the value, the gradient, and the

curvature of the objective function at the current solution using the design of experi-

ment method and the ordinary least squares regression. Based on the information at

the current solution, a local model is constructed to approximate the objective function

locally around the current solution. Associated with the local model is a region around

the current solution, the trust region, where the local model is believed to be trustwor-

thy. Depending on the size of the trust region, either a linear or quadratic local model

is built. Solving the local model exactly or finding a nearly optimal solution of the

local model, such as a Cauchy point, within the trust region provides a new solution

that potentially improves the objective value. Based on the observed improvement

and the model-predicted improvement in the objective value, STRONG automatically

determines whether the new solution should be accepted and updates the size of the

trust region for the next iteration.

TRIC and STRONG share some common features. They are both iterative al-

gorithm to solve stochastic optimization problems with continuous control variables.

They both use low order polynomials to approximate the objective function within some

approximation regions (test regions in TRIC and trust regions in STRONG), whose

sizes are adjusted adaptively at each iteration. However, TRIC and STRONG are

different in many aspects. First, TRIC is for constrained optimization, but STRONG

is for unconstrained optimization. Second, STRONG finds new solutions that poten-

tially improve the objective value by searching along the improving direction. TRIC

finds new solutions by solving the first order optimality conditions, the Karush–Kuhn–

Tucker Conditions. Third, STRONG uses the information (the value of the objective
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function together with its gradient and curvature) at the center of the trust region

to construct the local model, while TRIC uses the information of a random sample,

drawn from the entire test region, to construct the local model. Fourth, new solutions

of STRONG must be inside of the trust region, while new solutions of TRIC can be

either inside or outside of the test region. Fifth, STRONG evaluates the reliability of

the local model and updates the size of the trust region by comparing the observed

improvement and the model-predicted improvement in the objective value. TRIC up-

dates the size of the test region by checking whether the new solution is inside of the

current test region. Sixth, if a new solution is found to be satisfactory, TRIC contracts

the test region of the next iteration, but STRONG expands the trust region of the next

iteration.

2.7 Meshfree Discretization and Interpolation of the State
Space

How to discretize the state space and interpolate the results on the discretized

state space is a problem faced by all numerical methods of solving stochastic control

problems. To overcome the problem of exponential growth of a regular mesh, I employ

two meshfree techniques: the quasi-random grid for discretization and the radial basis

function method for interpolation. The benefit of using a quasi-random grid is that

it can fill a high-dimensional state space uniformly with a relatively small number of

grid points.5 However, interpolating a function evaluated on a quasi-random grid is

difficult because of the lack of ready-to-use geometry structures across the data points.

The remedy is to use the radial basis function method.6

Radial basis functions Φ (X) : R
n → R are a family of functions whose values

5Problem-specific knowledge may help to place the grid points in a more efficient manner. For
example, additional grid points may be needed in regions of the state space where optimal controls
are more sensitive with respect to changes in the state variables.

6More information about the radial basis function method and other meshfree approximation
methods can be found in Fasshauer (2007).
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only depend on the “distance” (measured by some norm) from the center; i.e.,

Φ (X) = ϕ (‖X − C‖)

where C ∈ R
n is the center; ‖·‖ is a norm on R

n; ϕ : [0,∞) → R is a univariate

function. A well known radial basis function family is the Gaussian family

Φ (X) = e−ε−2‖X−C‖2
2

where ε ∈ R
+ is the width of the radial basis function; C ∈ R

n is the center of the

radial basis function; ‖·‖2 is the Euclidean norm. A Gaussian radial basis function

is closely related to the density function of the Normal distribution with ε related to

the variance σ2 by ε2 = 2σ2. A larger ε; i.e., a larger σ2, corresponds to a “flatter”

radial basis function that leads to more averaging across the surrounding radial basis

functions. A smaller ε causes faster decay of the radial basis function from its center

and, thus, a more localized effect.

I use a set of Gaussian radial basis functions together with low order polynomials

to interpolate the value function on the quasi-random grid. To capture the overall

pattern, the value function on the quasi-random grid is projected onto a set of low

order polynomials of the state variables. The local fluctuations left in the residuals are

approximated by a linear combination of a set of Gaussian radial basis functions:

V (X) =
nr
∑

i=1

βie
−ε−2

i ‖X−Ci‖
2
2 (2.9)

where nr is the number of radial basis functions; {βi}
nr

i=1, {εi}
nr

i=1, and {Ci}
nr

i=1 are the

weights, widths, and centers of the radial basis functions.

The radial basis function approximation (2.9) is very flexible in terms of the large

number of parameters: the number of radial basis functions, the location of the center

of each radial basis function, the width around each center, and the weights on each

radial basis function. How to choose these parameters to fit the given data points
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and, more importantly, to provide good out-of-sample performance for interpolation

is a challenge. I use trial-and-error to find a set of parameters that can provide both

good in-sample and out-of-sample performance. First, all data points are randomly

grouped into two sets: a training set and a validation set. Then different sets of radial

basis functions, characterized by different sets of parameters, are fitted to the training

data through ordinary least squares regression. The best set of radial basis functions is

chosen based on out-of-sample performance, measured by the mean square error over

the validation set.

Instead of choosing all the parameters simultaneously, the following algorithm

is used to choose the best set of parameters in a hierarchical manner. The algorithm

expands Step 2.3 of the main algorithm described in Section 2.2. There are three levels

of decisions in the algorithm. The optimal combination of nr and ε0 is selected by

trying different combinations through Level 1 and Level 2 and comparing their out-of-

sample mean square errors computed by Level 3. Given nr and ε0, Level 3 fits a set of

radial basis functions to the training set using iterative center selections. In general the

radial basis function method can place centers at locations that are not data points.

For simplicity, I only place centers on data points. The chosen centers in each iteration

are the training points with the largest absolute residuals; i.e., the new centers are

placed at the points where the current set of radial basis functions cannot fit well. To

prevent singularity of the ordinary least squares regression, all the chosen centers are

located at different points. The width of each radial basis function is set by ε0h, where

the standard width ε0 determines the average width across all centers, and the filling

distance h measures the density of surrounding centers. A larger h indicates a lower

density of centers in the area around this center and, thus, suggests a larger radial

basis function width to cover the space between this center to the surrounding centers.

A smaller h indicates an area filled by more centers, where a radial basis function with

smaller width and a more localized effect is more appropriate.
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Algorithm: Radial Basis Function Approximation of the Value Function

Level 1: Choose the number of radial basis functions nr from a set of trial values.

Level 2: Given nr, choose the standard width ε0 from a set of trial values.

Level 3: Given nr and ε0, fit a set of radial basis functions to the training set

iteratively and report the out-of-sample mean square error.

Step 1: Update residuals.

Step 2: Sort all training points based on their absolute residuals.

Step 3: Expand the set of centers by choosing ninc non-center points

from the training set with the largest absolute residuals.7

Step 4: Update the width of each radial basis function i using εi = ε0hi,

where hi is the filling distance of center i.8

Step 5: Fit the current radial basis functions to the training set using

ordinary least squares regression.

Step 6: If the total number of centers selected is less than nr, go to Step 1

and select ninc more centers; otherwise, stop and report the

out-of-sample mean square error over the validation set.

End Level 3

End Level 2

End Level 1

7In the first iteration nini centers are chosen from the training set.
8The filling distance of center i, hi, is defined as the minimum distance between center i and all

the other centers.
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Chapter 3

Finance Application I: Portfolio Choice with

Financial Constraints and Income

To demonstrate the capabilities of the methodology I solve two dynamic port-

folio choice problems in Finance. The first problem considers the effects of financial

constraints on an investor’s optimal portfolio and consumption choices. The second

problem studies the effects of an important type of friction in financial markets, capital

gain taxation. Each problem is discussed in depth in Chapter 3 and Chapter 4 with

the emphasis on the algorithm, the related numerical challenges, and main results.

In the paper of Roche, Tompaidis, and Yang (2009), we consider a finite-horizon

discrete-time optimal portfolio and consumption choice problem for an investor who

has constant relative risk aversion (CRRA) preferences, receives a stochastic income

stream, has access to five risky assets, and faces financial and margin constraints: the

investor cannot borrow against future income and faces a margin requirement to invest

in risky assets. This model provides a rational explanation for the under-diversification

of household portfolios documented in the empirical literature.

The literature on dynamic portfolio choice, pioneered by Merton (1971), suggests

that under certain conditions all investors prefer the same optimal mix of risky assets

(the market portfolio) regardless of their specific risk aversion or initial wealth. Indi-

vidual risk aversion only affects the proportion of wealth that the investors invest in

the market portfolio and the riskless asset. This is the so-called two-fund separation

theorem or the mutual fund separation theorem. However under the margin require-

ments and a non-tradable income stream the two-fund separation theorem may not
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hold. Instead, investors may deviate from the market portfolio and shift their portfo-

lios towards under-diversified portfolios which concentrate on a few assets with higher

expected returns. Intuitively this asset substitution behavior can be explained by the

notion of effective wealth which includes not only the investor’s current financial wealth

but also the discounted future income stream. Since the investor is not allowed to trade

her future income, she can only make the optimal investment and consumption deci-

sions based on her current wealth complying with the margin requirement. Comparing

to an unconstrained investor who can allocate an optimal proportion of the total effec-

tive wealth into the fully diversified risky portfolio, the constrained investor’s overall

exposure to risky assets is restricted by the current wealth and the margin require-

ment. When the current wealth is only a small fraction of the effective wealth; i.e., the

investor has a large amount of future income with respect to the current wealth, the

constrained investor’s overall exposure to risky assets may be well below the optimal

amount that the unconstrained investor can achieve. Thus the constrained investor

has to balance between her diversification motive and her motive for higher returns.

As the constraint becomes more binding (the ratio of current wealth over the effective

wealth becomes smaller) the motive for higher returns becomes stronger, which induces

the investor to remove assets with lower expected returns from her portfolio.

3.1 Model Setup

3.1.1 Financial Market and Income Stream

The investor can choose from one risk-free asset and na risky assets. The investor

also receives a stochastic income Yt. Both the risky assets’ prices {Si
t}

na

i=1 and the

income stream Yt follow geometric Brownian motions:
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dS1
t

S1
t

= µ1dt + σ1dZ
1
t

...

dSna

t

Sna

t

= µna
dt + σna

dZna

t

dYt

Yt

= µY dt + σY dZY
t

where Zt =
(

Z1
t , · · · , Zna

t , ZY
t

)

∈ R
na+1 is a vector of Brownian motion with cor-

relation matrix ρ(na+1)×(na+1). We approximate the continuous-time dynamics by a

discrete-time Markov chain using the discretization described in He (1990). In this

discretization an N dimensional multivariate normal distribution is described by N +1

nodes. Discretizing returns in this fashion preserves market completeness in discrete

time.

3.1.2 Optimization Problem

We consider an investor who starts working at time 0 and retires at time T . At

each intermediate time t = 0, · · · , T − 1, the investor’s problem is described as:

Bellman Equation1

Vt (Wt) = max
xt,ct

u (ct) + βEt

[

g1−γ
t Vt+1 (Wt+1)

]

s.t. Wt+1 = g−1
t (Wt − ct + 1)

(

na
∑

i=1

xi
tR

e,i
t + Rf

)

Wealth Evolution

m+
na
∑

i=1

xi+
t + m−

na
∑

i=1

xi−
t ≤ 1 Margin Constraint

(3.1)

with the terminal condition

VT (WT ) = φ
(WT − 1)1−γ

1 − γ

1The Bellman equation is homogenous in terms of wealth, income, and consumption. For simplicity,
we choose to scale by income. As a result, the investor receives one unit of income at each period.
Wealth and consumption are interpreted as wealth over income ratio and consumption over income
ratio.
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where V (·) is the value function; W is the wealth (scaled by income); x is the vector

of portfolio weights; c is the consumption (scaled by income); u (·) = (·)1−γ / (1 − γ) is

the power utility with risk aversion coefficient γ; β is the time discount factor; g is the

income growth rate; Re is the vector of excess return of risky assets; Rf is the return

of the risk-free asset; m+ and m− are the margin requirements on long positions and

short positions; na is the number of risky assets; φ is the bequest factor.

The bequest factor φ determines the relative importance of the terminal wealth

WT versus the intermediate consumption ct. If the investor has an expected remaining

life of τ years after retirement and the opportunity set remains constant, then the

factor φ is given by

φ =

[

1 − (βα)1/γ

1 − (βα)(τ+1)/γ

]−γ

α = E





(

na
∑

i=1

x∗Re,i
t + Rf

)1−γ




where x∗ is the vector of optimal portfolio weights after retirement — see Ingersoll

(1987).

3.1.3 Model Simplification

Model (3.1) can be further simplified by defining the total investment It = Wt −

ct + 1 as suggested by Carroll (2006). There is a one-to-one correspondence between

wealth Wt and total investment It:

It → Wt = It + c∗t (It) − 1

Wt → It = Wt − c∗t (Wt) + 1

Therefore we can specify a particular grid G either through wealth Wt (G) or equiva-

lently through investment It (G). However, discretizing the total investment It, instead

of the wealth Wt, allows the separation of the portfolio choice and the consumption

choice:
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Portfolio Optimization2

Jt (It) = max
x+

t ,x−

t

βEt

[

g1−γ
t Vt+1 (Wt+1)

]

s.t. Wt+1 = g−1
t It

[

na
∑

i=1

(

xi+
t − xi−

t

)

Re,i
t + Rf

]

m+
na
∑

i=1

xi+
t + m−

na
∑

i=1

xi−
t ≤ 1

xi+
t , xi−

t ≥ 0, i = 1, · · · , na

(3.2)

Consumption Optimization

Vt (Wt) = max
ct

u (ct) + Jt (It) = max
ct

u (ct) + Jt (Wt − ct + 1) (3.3)

where J (·) is the value function of the portfolio optimization step; x+ and x− are

vectors of long positions and short positions on the risky assets. We can solve problem

(3.1) by solving the two subproblems in a sequential order; i.e., solve the portfolio

optimization first then solve the consumption optimization.

3.2 Solution Methodology

As a special case of the general recursion (2.1), problem (3.1) can be solved by

the general algorithm described in Chapter 2 with further improvements considering its

special features. First, the one-dimensional state space can be efficiently discretized us-

ing a grid with more grid points placed at low wealth levels in an exponential manner as

suggested by Carroll (2006). Second, given the separation of portfolio optimization and

consumption optimization, finding the optimal control in a sequential order (portfolio

optimization followed by consumption optimization) is easier than finding the optimal

values of all the controls simultaneously. Third, the Karush–Kuhn–Tucker conditions

2To maintain equivalence we also need the constraints xi+
t xi−

t = 0, i = 1, · · · , na. However, one
can show that dropping these constraints will expand the feasible region but will not introduce new
optimal solutions which are non-trivially different.

25



of portfolio optimization are both necessary and sufficient,3 which makes enumerating

all specifications of the complementary conditions unnecessary.

The consumption optimization problem (3.3) is an one-dimensional unconstrained

optimization problem, which can be solved efficiently by many existing techniques. The

portfolio optimization problem (3.2) is a constrained stochastic optimization problem,

which can be solved by applying the TRIC algorithm to approximate the conditional

expectations in the following optimality conditions:

Karush–Kuhn–Tucker Conditions of Portfolio Optimization

0 = βItEt

{

g−γ
t

∂Vt+1(Wt+1)
∂Wt+1

Re,i
t

}

+ µi+
t − λtm

+, i = 1, · · · , na FOCs

0 = −βItEt

{

g−γ
t

∂Vt+1(Wt+1)
∂Wt+1

Re,i
t

}

+ µi−
t − λtm

−, i = 1, · · · , na FOCs

0 = µi+
t xi+

t , i = 1, · · · , na Complementarity

0 = µi−
t xi−

t , i = 1, · · · , na Complementarity

0 = λt

(

1 − m+
na
∑

i=1

xi+
t − m−

na
∑

i=1

xi−
t

)

Complementarity

1 ≥ m+
na
∑

i=1

xi+
t + m−

na
∑

i=1

xi−
t Feasibility

0 ≤ xi+
t , xi−

t , µi+
t , µi−

t , λt, i = 1, · · · , na Feasibility

where
{

µi+
t

}na

i=1
and

{

µi−
t

}na

i=1
are Lagrange multipliers of the non-negative constraints

on long positions and short positions; λt is the Lagrange multiplier of the margin

constraint.

The resulting algorithm that combines the general algorithm and the special

features can solve problem (3.1) efficiently. On a computer with a 2.66GHz CPU and

1.92GB memory, it takes approximately 20 hours to solve a numerical example with

45 periods (age 20 to age 65), five risky assets, a stochastic income stream, 1,000 grid

points, 300 test solutions, and no-short-sale-no-borrowing constraint.

3The sufficiency is justified by the concave objective function and the linear constraints.
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3.3 Numerical Results

3.3.1 Calibration

To apply the numerical algorithm, we consider the case of an investor that receives

income from age 20 to age 65, at which point she retires. After retirement the investor

has an expected lifetime of 20 years, which matches the data for a 65 year old female

in the 2004 Mortality Table — see Social Security Administration (2004). For the base

case we assume that income grows deterministically at a constant growth rate of 3%

per year, in line with the assumptions in Viceira (2001). We assume that the investor

is not able to either borrow or short any of the assets. For comparative statics we also

consider stochastic income stream, margin constraints on long and short positions, and

non-negative wealth constraints. The base case parameters are listed in Table 3.1.

The opportunity set available to the investor includes five risky assets correspond-

ing to the indices of five industries: Consumer, Manufacturing, High Tech, Health, and

Other. To calculate the covariance matrix for the five industries we constructed real

returns for each industry using the inflation data provided in Robert Shiller’s website,

see Shiller (2003), to deflate the annual returns of the five industry portfolios between

1927 and 2004, provided in Kenneth French’s website, see French (2008). The ex-

pected returns for each industry were computed using the methodology proposed by

Black and Litterman (1992), by matching the market capitalization weights for each

industry in July 2008, provided in Kenneth French’s website, to the relative weights

that a CRRA investor who receives no income would allocate to each industry within

her equity portfolio. The risk free interest rate was computed from the data in Robert

Shiller’s website to match the realized one year real interest rate between 1927 and

2004.
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Table 3.1: Application I - Parameter Values of the Base Case

Number of periods 45 years (age 20 to age 65)
Risk aversion 3
Long margin 1
Short margin ∞
Time discount factor (annually) 0.98
Interest rate (annually) 1.4%
Income growth rate (annually) 3%

Cnsmr Manuf HiTec Hlth Other
Asset drift (annually) 8.51% 7.83% 9.51% 6.97% 8.87%
Asset volatility (annually) 28.9% 25.8% 33.3% 26.6% 29.7%
Correlations between assets 1.000 0.898 0.832 0.732 0.932

1.000 0.848 0.698 0.930
1.000 0.772 0.856

1.000 0.727
1.000
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3.3.2 Diversification Measures

Calvet, Campbell, and Sodini (2008) present an empirical analysis of diversifi-

cation of household portfolios in Sweden, and describe several measures that quantify

the degree that investors deviate from mean-variance optimal portfolios. We use the

same measures in order to determine the potential magnitude of the impact of the

financial constraints on diversification. We present the measures below, following the

description in Calvet et al. (2008).

Denoting by rh,t, rB,t the returns of the risky asset portfolios of the constrained

and unconstrained investors, respectively, we have the following variance decomposition

rh,t = αh + βhrB,t + ǫh,t

and, if we denote by σB, σh the standard deviation of the returns of the portfolio of

the unconstrained and constrained investors respectively, we have

σ2
h = β2

hσ
2
B + σ2

i,h

The interpretation of this decomposition is that the portfolio of the constrained investor

has systematic risk |βh|σB and idiosyncratic risk σi,h. The idiosyncratic variance share

is given by
σ2

i,h

σ2
h

=
σ2

i,h

β2
hσ

2
B + σ2

i,h

Another measure of portfolio diversification is the Sharpe ratio of the risky portion of

the portfolio. We denote the Sharpe ratio of the portfolio of an investor that does not

face financial constraints SB, and the Sharpe ratio of a constrained investor Sh. These

ratios are defined by the ratio of the excess return of the respective portfolio to the

standard deviation of excess returns

Sh =
µh

σh
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where µh, σh, are the excess return and standard deviation of excess return for the

portfolio of the constrained investor. The relative Sharpe ratio loss is defined by

RSRLh = 1 −
Sh

SB

While the relative Sharpe ratio loss is a measure of the diversification loss in the risky

asset portion of the portfolio, it does not necessarily reflect the overall efficiency loss

in the portfolio. To capture this loss, we define the return loss as the average return

loss by the investor by choosing a suboptimal portfolio

RLh = wh(SBσh − µh)

where wh is the portion of the portfolio invested in risky assets.

Finally, we define a measure associated with utility losses for the constrained

investor, compared to the unconstrained one. It is defined as the increase in the risk-free

rate that would make the constrained investor indifferent between being constrained

with the higher risk-free rate and being unconstrained. In the case of a risk-averse

investor with CRRA preferences with risk aversion coefficient γ, Calvet et al. (2008)

calculate the utility loss from the relationship

ULh =
S2

B − S2
h

2γ

3.3.3 Base Case

The optimal asset allocations for the base case parameters are presented in Figure

3.1 for investors 30 and 60 years old over a range of wealth to income ratios. From

Figure 3.1 we notice that as the financial wealth of the investor decreases compared

to her income, the investor allocates a larger proportion of her wealth to the risky

assets. For a 30 year old investor the margin constraint binds if the investor’s financial

wealth is smaller than 12.9 times her annual income. While the proportion in which

each risky asset is held within the equity portfolio does not change when the margin
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constraint is not binding, once the constraint binds the investor shifts her portfolio to

increase the portfolio’s expected return, sacrificing diversification. When the financial

wealth reaches a level of 8.2, 6.5, 3.7, and 0.93 times the investor’s annual income,

the investor drops the Health, Manufacturing, Consumer, and Other industry stocks

from her portfolio, respectively. For financial wealth levels below 93% of the investor’s

annual income, the investor’s equity portfolio consists only of the stock of the High

Tech industry. A similar pattern is observed for an investor of age 60. In that case,

since the remaining income spans a smaller number of years; i.e., the discounted value

of future earnings is smaller than the 30 year old investor, the constraint binds at a

lower level of the financial wealth equal to 2.4 times annual income. For lower levels

of the financial wealth to income ratio the 60 year old investor also shifts her equity

portfolio, dropping the Health, Manufacturing, Consumer, and Other industry stocks

at ratios of 1.8, 1.6, 1.1, and 0.4 respectively.

Table 3.2 presents further details of the optimal allocations for different levels

of the financial wealth to annual income ratio, as well as values for the various diver-

sification measures and the investor’s lifetime relative risk aversion. From the table,

we notice that when the margin constraint is not binding and the ratio of financial

wealth to income decreases, the investor increases the portfolio’s expected return by

increasing the percentage of her wealth invested in risky assets while maintaining a

diversified portfolio. Once the constraint binds, further reductions in the financial

wealth to annual income ratio result in a deterioration of the portfolio diversification

measures. As an example, a 30 year old investor whose financial wealth is equal to

one year of her labor income holds a portfolio that has 11.1% idiosyncratic volatility

— which corresponds to 11.3% of the portfolio’s variance — Sharpe ratio of 25.9%

compared to 27.3% achieved when the portfolio is diversified, and a return loss of 48

basis points per year. The beta of the investor’s equity portfolio is 14% greater than

the beta of the equity part of the diversified portfolio, while the lifetime relative risk

aversion of the investor is 0.23, close to that of a risk-neutral investor. Panel B of
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Table 3.2 presents allocations and diversification measures for a 60 year old investor.

The results are qualitatively similar to the results in Panel A, with the main difference

being that the margin constraint binds at lower levels of the financial wealth to annual

income ratio.

Table 3.3 presents results obtained by simulating the evolution of the portfolio

of an investor starting at age 20. From Panel A we notice that the investor whose

financial wealth at age 20 was twice her annual income holds, at age 30, a portfolio

that almost always consists of one or two risky assets. At the same time the investor

consumes slightly more than her annual labor income. At age 45 the investor starts

saving for retirement and consumes less than her annual income. her portfolio is still

mostly constrained by the margin requirements. At age 60 the investor has accelerated

her saving behavior and is mostly unconstrained in her financial portfolio.4

Panel B of Table 3.3 presents the simulation results for an investor whose financial

wealth at age 20 is equal to ten times her annual income. Even though this investor is

relatively richer than the investor in Panel A, the margin constraint still largely binds

at age 30, leading to the investor holding an under-diversified equity portfolio. Given

her large financial wealth, this investor postpones saving much longer than the investor

in Panel A. Overall, the results in both panels indicate that younger investors, even if

they have significant amounts of financial wealth, are holding portfolios far from those

held by older, unconstrained, investors.

4Since consumption is measured with respect to current annual labor income and since in this
example income increases 3% annually, the reduction in consumption relative to income observed in
the table does not necessarily imply a reduction in the actual amount consumed by the investor.
Nevertheless, consumption to income ratios above 1.0 imply that the investor consumes part of her
financial wealth while ratios below 1.0 imply that the investor saves part of her labor income for
retirement.
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Figure 3.1: Application I - Asset Allocations of the Base Case

This figure presents the asset allocations for different levels of the financial wealth to annual
income ratio. The investor receives deterministic income. The investor’s opportunity set
consists of a riskless asset and five risky assets calibrated to the returns of stock industry
indices for the industries High Tech, Consumer, Manufacturing, Health, and Other. The
parameter values for the processes followed by the risky and riskless assets are given in
Table 3.1. The investor is not allowed to borrow or short an asset and is required to pay
100% of an asset’s value. The top panel corresponds to a 30 year old investor and the bottom
panel to a 60 year old investor.
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Table 3.2: Application I - Asset Allocations and Diversification Measures of the Base Case
This table presents the optimal asset allocations and diversification measures for the base case : deterministic income

with no-short-sale-no-borrowing constraint. W/Y is the current wealth to income ratio. Cnsmr, Manuf, HiTec, Hlth, and

Other are the portfolio weights (as a percentage of current wealth) of the five industry indices: Consumer, Manufacturing,

High Tech, Health, and Other. Margin is the total usage of the margin account in percentage. µh and σh are the expected

value and standard deviation of the excess return of the risky part of the portfolio. σi,h is the idiosyncratic standard

deviation. IVarS is the idiosyncratic variance share. Sh is the Sharpe ratio of the risky part of the portfolio. RSRLh is

the relative Sharpe ratio loss. RLh is the return loss of the total portfolio. ULh is the utility loss. βh is the β of the

constrained portfolio with respect to the unconstrained portfolio. LRRA is the lifetime relative risk aversion.
Panel A: Age 30

W/Y Cnsmr Manuf HiTec Hlth Other Margin µh σh σi,h IVarS Sh RSRLh RLh ULh βh LRRA
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

∞ 5 9 7 3 7 32 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 3.00
1000.0 5 10 8 3 8 33 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 2.87
100.0 7 14 11 5 11 47 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 2.05
20.0 13 25 19 8 20 85 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.13
15.0 14 28 21 9 22 95 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.02
12.0 15 27 24 9 25 100 7.49 27.4 0.3 0.0 27.3 0.0 0.00 0.00 1.01 0.92
10.0 16 21 29 5 30 100 7.67 28.1 1.3 0.2 27.3 0.0 0.00 0.00 1.03 0.87
9.0 17 17 32 2 33 100 7.78 28.5 1.8 0.4 27.3 0.1 0.00 0.00 1.05 0.82
8.0 17 12 35 0 37 100 7.91 29.0 2.5 0.7 27.3 0.2 0.01 0.00 1.06 0.80
7.0 16 5 38 0 42 100 8.01 29.4 3.1 1.1 27.2 0.3 0.02 0.01 1.08 0.77
6.0 14 0 41 0 45 100 8.10 29.8 3.6 1.5 27.2 0.5 0.04 0.01 1.09 0.73
5.0 9 0 44 0 47 100 8.14 29.9 3.9 1.7 27.2 0.6 0.05 0.01 1.09 0.63
4.0 2 0 48 0 49 100 8.20 30.2 4.6 2.3 27.1 0.8 0.07 0.02 1.10 0.56
3.0 0 0 55 0 45 100 8.25 30.5 5.2 2.9 27.0 1.1 0.09 0.03 1.11 0.49
2.5 0 0 59 0 41 100 8.28 30.7 5.7 3.5 26.9 1.4 0.12 0.03 1.11 0.44
2.0 0 0 66 0 34 100 8.33 31.1 6.6 4.5 26.8 1.9 0.16 0.05 1.12 0.41
1.7 0 0 72 0 28 100 8.37 31.4 7.4 5.5 26.7 2.4 0.21 0.06 1.12 0.37
1.4 0 0 80 0 20 100 8.42 31.9 8.5 7.1 26.4 3.2 0.28 0.08 1.13 0.29
1.2 0 0 87 0 13 100 8.47 32.3 9.6 8.8 26.2 4.1 0.36 0.10 1.14 0.28
1.0 0 0 96 0 4 100 8.54 33.0 11.1 11.3 25.9 5.3 0.48 0.13 1.14 0.23
0.7 0 0 100 0 0 100 8.57 33.3 11.6 12.2 25.7 5.8 0.53 0.14 1.15 0.19
0.4 0 0 100 0 0 100 8.57 33.3 11.6 12.2 25.7 5.8 0.53 0.14 1.15 0.09
0.0 0 0 100 0 0 100 8.57 33.3 11.6 12.2 25.7 5.8 0.53 0.14 1.15 0.00
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Table 3.2, cont.

Panel B: Age 60

W/Y Cnsmr Manuf HiTec Hlth Other Margin µh σh σi,h IVarS Sh RSRLh RLh ULh βh LRRA
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

∞ 5 9 7 3 7 32 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 3.00
1000.0 5 9 7 3 7 32 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 2.98
100.0 5 10 8 3 8 33 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 2.85
20.0 6 12 9 4 9 40 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 2.35
15.0 7 13 10 4 10 43 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 2.22
12.0 7 13 10 5 10 46 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 2.07
10.0 7 14 11 5 11 48 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.97
9.0 8 15 11 5 12 50 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.87
8.0 8 15 12 5 12 52 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.81
7.0 8 16 13 6 13 55 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.71
6.0 9 17 13 6 14 59 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.62
5.0 10 19 15 6 15 65 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.48
4.0 11 21 16 7 17 73 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.29
3.0 13 25 20 9 20 86 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.08
2.5 15 28 22 10 22 97 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 0.98
2.0 16 19 30 4 31 100 7.71 28.2 1.5 0.3 27.3 0.0 0.00 0.00 1.04 0.83
1.7 16 8 36 0 39 100 7.97 29.2 2.8 0.9 27.3 0.2 0.02 0.01 1.07 0.74
1.4 12 0 42 0 46 100 8.12 29.8 3.8 1.6 27.2 0.5 0.04 0.01 1.09 0.67
1.2 5 0 47 0 48 100 8.17 30.1 4.3 2.0 27.1 0.7 0.06 0.02 1.10 0.57
1.0 0 0 52 0 48 100 8.23 30.4 5.0 2.7 27.0 1.0 0.08 0.02 1.10 0.56
0.7 0 0 64 0 36 100 8.31 31.0 6.3 4.2 26.9 1.7 0.15 0.04 1.11 0.44
0.4 0 0 91 0 9 100 8.51 32.6 10.3 9.9 26.1 4.6 0.41 0.11 1.14 0.22
0.0 0 0 100 0 0 100 8.57 33.3 11.6 12.2 25.7 5.8 0.53 0.14 1.15 0.00
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Table 3.3: Application I - Base Case Simulations
This table presents summary statistics of the simulated wealth as well as the portfolio and

consumption choices that an individual investor faces starting from a given initial wealth and

following the optimal strategy. The results are based on 10,000 simulation paths. W/Y and

C/Y are the realized wealth to income ratio and consumption to income ratio. Cnsmr, Manuf,

HiTec, Hlth, and Other are the portfolio weights (as a percentage of current wealth) of the

five industry indices: Consumer, Manufacturing, High Tech, Health, and Other. Margin is

the total usage of the margin account in percentage. Q25, Q50, and Q75 are the 25% quantile,

the 50% quantile (median), and the 75% quantile. SD is the standard deviation.

Panel A: Initial wealth equal to two years of income
W/Y C/Y Cnsmr Manuf HiTec Hlth Other Margin

(%) (%) (%) (%) (%) (%)
Q25 0.3 1.0 0 0 78 0 0 100
Q50 0.7 1.1 0 0 100 0 0 100

Age 30 Q75 1.4 1.1 0 0 100 0 22 100
Mean 1.2 1.1 1 0 88 0 11 100
SD 1.7 0.1 3 2 19 1 16 1
Q25 1.0 0.8 0 0 59 0 0 100
Q50 1.5 0.9 0 0 78 0 20 100

Age 45 Q75 2.5 0.9 0 0 100 0 37 100
Mean 2.3 0.9 2 1 76 0 21 100
SD 2.9 0.1 4 5 22 2 17 4
Q25 5.2 0.6 7 14 11 5 11 49
Q50 7.1 0.7 8 16 12 5 13 55

Age 60 Q75 9.9 0.8 10 19 14 6 15 64
Mean 8.1 0.7 9 17 13 6 13 58
SD 4.4 0.2 2 4 3 1 4 13

Panel B: Initial wealth equal to ten years of income
W/Y C/Y Cnsmr Manuf HiTec Hlth Other Margin

(%) (%) (%) (%) (%) (%)
Q25 2.7 1.2 0 0 26 0 21 100
Q50 5.7 1.4 11 0 42 0 33 100

Age 30 Q75 11.3 1.7 15 21 57 7 45 100
Mean 8.4 1.5 8 9 45 3 32 97
SD 8.2 0.4 7 11 23 4 14 8
Q25 1.9 0.9 0 0 22 0 15 95
Q50 4.0 1.0 6 0 46 0 26 100

Age 45 Q75 10.6 1.3 12 18 69 6 42 100
Mean 8.4 1.2 6 8 49 2 27 93
SD 10.5 0.4 6 10 28 3 15 15
Q25 6.3 0.6 7 13 10 4 10 43
Q50 9.4 0.8 8 14 11 5 11 50

Age 60 Q75 14.7 1.1 9 17 13 6 13 58
Mean 11.9 0.9 8 15 12 5 12 52
SD 8.9 0.5 2 4 3 1 3 13

36



3.3.4 Comparative Statics

Regulation T Margin Requirements

Figure 3.2 presents the optimal asset allocations for an investor facing a margin

constraint in line with the requirements in Regulation T of 50% for long positions

and 150% for short positions. For the calibrated parameter values from Table 3.1, the

investor never shorts any of the risky assets. Compared to Figure 3.1, the investor

is unconstrained for a greater range of her financial wealth to income ratio, with the

allocations being identical when the margin constraint does not bind for either investor.

The margin constraint for the investor that faces the Regulation T margin requirements

binds at a level of financial wealth equal to 2.3 times her annual income at age 30 and

91% of her annual income at age 60. The order that assets drop out is the same as in

the base case, and the last asset held in the portfolio is the stock corresponding to the

High Tech industry, which is exclusively held at levels of financial wealth below 18%

of annual income at age 30 and below 12% of annual income at age 60.
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Figure 3.2: Application I - Asset Allocations with Margin Requirements

This figure presents the asset allocations for different levels of the financial wealth to annual
income ratio. The investor receives deterministic income. The investor’s opportunity set
consists of a riskless asset and five risky assets calibrated to the returns of stock industry
indices for the industries High Tech, Consumer, Manufacturing, Health, and Other. The
parameter values for the processes followed by the risky and riskless assets are given in
Table 3.1. The investor is allowed purchase a risky asset with 50% margin. The top panel
corresponds to a 30 year old investor and the bottom panel to a 60 year old investor.

38



Stochastic Income

Figure 3.3 presents the optimal asset allocations when the annual standard de-

viation of income growth is 10%, in line with the value used by Viceira (2001). The

remaining parameters are the same as in the base case, given in Table 3.1. From the

figure we notice that stochastic income has an effect in asset allocations: both for age

30 and age 60 investors, allocations in the industry stocks are reduced compared to the

base case of deterministic income, an effect intuitively expected due to the higher risk

implied by the stochastic nature of income growth. While the order in which assets

are dropped from the equity portfolio when the ratio of financial wealth to income

decreases is the same as in Figure 3.1, the threshold when the margin binds is lower.

For a 30 year old investor who receives income with deterministic growth the margin

binds at a financial wealth level equal to 12.9 times her annual income, while for the

investor who receives income with stochastic growth the margin constraint binds at a

level of financial wealth equal to 10.4 times her annual income.

Overall, Figure 3.3 illustrates that even in the case of stochastic income the

intuition developed in the base case by assuming deterministic income remains valid;

i.e., an investor with low levels of financial wealth compared to labor income holds

under-diversified portfolios consisting of only a few out of many possible risky assets.
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Figure 3.3: Application I - Asset Allocations with Stochastic Income

This figure presents the asset allocations for different levels of the financial wealth to annual
income ratio. The investor receives stochastic income with annualized volatility 10%. The
investor’s opportunity set consists of a riskless asset and five risky assets calibrated to the
returns of stock industry indices for the industries High Tech, Consumer, Manufacturing,
Health, and Other. The parameter values for the processes followed by the risky and riskless
assets are given in Table 3.1. The investor is not allowed to borrow or short an asset and is
required to pay 100% of an asset’s value. The top panel corresponds to a 30 year old investor
and the bottom panel to a 60 year old investor.
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Non-negative Wealth Constraints

A case of constrained choice previously studied in the literature is the case when

the investor’s wealth is required to remain greater or equal to zero but where the

investor does not face a margin requirement, see He and Pagés (1993), El Karoui

and Jeanblanc-Picqué (1998), and Duffie, Fleming, Soner, and Zariphopoulou (1997).

The margin requirement is a stricter constraint, since it automatically guarantees non-

negative wealth. To quantify the difference in asset allocations, Figure 3.4 presents the

optimal asset allocation for an investor facing a non-negative wealth constraint, but

who is otherwise identical to our base-case investor. From the figure we notice that

in both the cases of a non-negative wealth constraint and of a margin requirement,

investment in risky assets increases as the wealth to income ratio decreases. On the

other hand, there are significant differences: unlike the case of a margin requirement, an

investor that faces a non-negative wealth constraint maintains a diversified portfolio,

even when her income is much greater than her wealth; in addition, the size of the

risky asset portfolio for the investor that faces a non-negative wealth constraint is

much larger than for an investor that faces a margin requirement. In order to finance

this larger investment in risky assets, the results in the figure indicate that the investor

that is constrained to maintain wealth non-negative borrows amounts up to 10 times

her wealth or more, using her income as collateral.
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Figure 3.4: Application I - Asset Allocations with a Non-Negative Wealth Constraint

This figure presents the asset allocations for different levels of the financial wealth to annual
income ratio for an investor that faces a non-negative wealth constraint but no borrowing or
margin constraints. The investor receives deterministic income and has access to a riskless
asset and five risky assets calibrated to the returns of stock industry indices for the industries
High Tech, Consumer, Manufacturing, Health, and Other. The parameter values for the
processes followed by income and the risky and riskless assets are given in Table 3.1. The top
panel corresponds to a 30 year old investor and the bottom panel to a 60 year old investor.
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Chapter 4

Finance Application II: Portfolio Choice with

Capital Gain Taxation and Constraints

Capital gain taxation is an important friction faced by taxable investors when

they make asset allocation and consumption decisions. However, integrating capital

gain taxation into a portfolio choice setting is notoriously difficult. First, capital gain

taxes are realization-based and the portfolio choice problem faced is essentially one

with a state-dependent transaction cost. Second, in most countries, the portion of

the tax code involving capital gain taxation is full of a myriad of details such as the

treatment of long-term versus short-term capital gains, the computation of the tax

basis, the taxation of different risky securities, especially derivatives, and how capital

gain taxes are computed at an investor’s death.

Due to the complexity of modeling the capital gain taxation, academic work

studying portfolio choice with capital gain taxation often assumes the Full Use of

Capital Losses (FUL); i.e., capital losses can be immediately realized for a tax rebate

— see Constantinides (1983), Dybvig and Koo (1996), and Dammon, Spatt, and Zhang

(2001). The tax rebate cushions the downside of holding equity by providing a positive

cashflow from tax rebates whenever realized capital losses exceed realized capital gains.

While the FUL assumption simplifies the analysis, it is inconsistent with the US tax

code. In Ehling, Gallmeyer, Srivastava, Tompaidis, and Yang (2009) we investigate a

more realistic assumption, which is consistent with the US tax code, the Limited Use

of Capital Losses (LUL); i.e., realized capital losses can only be used to offset current

realized capital gains or be carried forward to offset future capital gains.

Our main finding is that assuming the limited use of capital losses significantly
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reduces the attractiveness of risky assets and leads to a lower overall allocation to risky

assets than in the FUL case. Another finding is that the tax rebate feature under the

FUL assumption results in a counterfactual welfare effect, where an untaxed investor

would actually prefer to pay a capital gain tax.

4.1 Model Setup

The investor chooses an optimal consumption and investment policy in the pres-

ence of realized capital gain taxation at trading dates t = 0, . . . , T . Our assumptions

concerning the exogenous price system, taxation, and the investor’s portfolio problem

are outlined below. The notation and model structure are based on the setting in

Gallmeyer, Tompaidis, and Kaniel (2006) with an extension to accommodate for the

limited use of capital losses.

4.1.1 Financial Market

The set of financial assets available to the investor consists of na dividend-paying

stocks and a riskless money market that pays a continuously-compounded pre-tax rate

of return r. The stocks pay dividends with constant dividend yields, {δi}
na

i=1. The

evolutions of the ex-dividend stock prices, {Si
t}

na

i=1, follow geometric Brownian motions

with constant drift and volatility. We approximate the continuous-time dynamics by a

discrete-time Markov chain using the discretization described in He (1990).

4.1.2 Wealth Evolution

We define Wt as the wealth in dollars at time t: before consumption; before re-

balancing the portfolio and paying capital gain tax; after receiving interest and paying

interest tax; after receiving stock dividends and paying tax on dividends. Before re-

balancing at time t, Wt consists of a stock portfolio of weights {xi
t}

na

i=1. The remaining

wealth is in the money market account. The investor chooses her consumption ct (as a
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fraction of Wt) and a new stock portfolio, {x̄i
t}

na

i=1, which will be held until time t + 1.

Rebalancing the stock portfolio from xt to x̄t is subject to paying capital gain tax φt

(as a fraction of Wt). Following these definitions, we can write the wealth growth rate

as

Wt+1

Wt

=
na
∑

i=1

x̄i
t

Si
t+1

Si
t

[1 + δi (1 − τD)] +

(

1 − ct − φt −

na
∑

i=1

x̄i
t

)

[er − (er − 1) τI ]

where τD is the tax rate on dividends and τI is the tax rate on interest income.

4.1.3 Capital Gain Taxation and Limited Use of Capital Losses

To calculate capital gain taxes one needs to keep track of the average purchase

price of each stock. Following the notation of Gallmeyer et al. (2006), we define the

tax basis, Bi
t, as the weighted average of the purchase price of stock i after rebalancing

at time t, and define the relative tax basis, bi
t, as

bi
t =

Bi
t−1

Si
t

, i = 1, . . . , na

When stock i has an embedded capital gain; i.e., bi
t < 1, the investor can either

increase or decrease her position, where reducing the position (0 ≤ x̄i
t ≤ xi

t) results in

a realization of the embedded capital gain. The total realized capital gain of all stocks,

gt (gt ≥ 0) is calculated as

gt =
na
∑

i=1

(

1 − bi
t

) (

xi
t − x̄i

t

)

1{bi
t<1, 0≤x̄i

t≤xi
t}

where 1{·} is an indicator function that takes the value of 0 or 1. In the FUL case, all

realized capital gains are subject to taxes. In the LUL case, the realized past capital

losses, accumulated in the carry–over loss account, lt (lt ≤ 0), are deductible from

current capital gains. Thus, the incurred capital gain tax, φt, is calculated as

φt = τC × max {0, gt + lt} (4.1)
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where τC is the capital gain tax rate. Any unused capital losses are carried forward to

the next period as

lt+1 =

(

Wt+1

Wt

)−1

× min {0, gt + lt} (4.2)

When stock i has an embedded capital loss; i.e., bi
t > 1, the investor’s optimal

strategy is to realize the loss immediately by liquidating the position xi
t to 0. In the

FUL case, realized capital losses are subject to tax rebates, or negative taxes, and

result in an increase in financial wealth when the loss is realized. In the LUL case,

realized capital losses augment the carry-over loss account, lt, which can be used to

offset current capital gains as in equation (4.1) or be carried forward as in equation

(4.2).

The relative tax basis of stock i, bi
t, evolves according to the investor’s rebalancing

decisions. If bi
t > 1, because of the immediate liquidation of the position in stock i, any

new purchase of this stock is at the price of Si
t and the relative tax basis next period

is bi
t+1 = Si

t/S
i
t+1. If bi

t < 1 and the investor reduces her position in stock i, there is no

new purchase of this stock and the average purchase price of this stock, measured in

dollars, remains constant. In terms of the relative tax basis, bi
t needs to be adjusted to

reflect the price change of stock i; i.e., bi
t+1 =

(

Si
t/S

i
t+1

)

bi
t. If bi

t < 1 and the investor

increases her position in stock i by purchasing additional shares at the price of Si
t , the

average purchase price, measured in dollars, is updated with this new purchase. Thus,

the relative tax basis next period is given by

bi
t+1 =

Si
t

Si
t+1

[

xi
tb

i
t + (x̄i

t − xi
t)

x̄i
t

]

=
Si

t

Si
t+1

[

(

bi
t − 1

) xi
t

x̄i
t

+ 1

]

When an investor dies, capital gain taxes are forgiven and the tax basis of the

stock resets to the current market price. This is consistent with the reset provision in

the U.S. tax code. Dividend and interest taxes are still paid at the time of death.
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4.1.4 Optimization Problem

To finance consumption, the investor trades in the money market and the stocks.

Given an initial equity endowment, a consumption and security trading policy is an

admissible trading strategy if it is self-financing, involves no short selling of the stocks,

and leads to non-negative wealth over the investor’s lifetime. The investor lives at

most T periods and faces a positive probability of death each period t, measured

by the conditional survival probability of e−λt . The single-period hazard rate, λt,

t = 0, . . . , T − 1, are calibrated to the 1990 U.S. Life Table, compiled by the National

Center for Health Statistics. We assume t = 0 corresponds to age 20 and T = 80

corresponds to age 100.

At time T = 80, the investor exits the economy with certainty. At time t < T ,

the investor has the conditional probability of e−λt to survive and 1−e−λt to die. If the

investor survives at time t, she chooses the optimal consumption and investment plan

to maximize the sum of the current utility from consumption and the expected future

utility. If death occurs at time t, the investor’s assets totaling W (t) are liquidated

and used to purchase a perpetuity that pays to her heirs a constant real after-tax cash

flow of R∗W (t) each period starting from t+1. The quantity R∗ is the one-period

after-tax real riskless interest rate computed using simple compounding. In terms of

the nominal riskless money market rate r and the inflation rate I, R∗ is given by

R∗ = ((1 − τD) er + τD) e−I − 1. The investor’s problem at time t can be described by

the Bellman equation:
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Bellman Equation

Vt (xt, bt, lt) = max
ct,x̄t

{

(

1 − e−λt
)

1
1−β

u (R∗) + e−λtu (ct)

+e−λte−I(1−γ)βEt

[

(

Wt+1

Wt

)1−γ

Vt+1

(

xt+1, bt+1, lt+1

)

]}

s.t. Wt+1

Wt
=

na
∑

i=1

x̄i
t
Si

t+1

Si
t

[1 + δi (1 − τD)] +

(

1 − ct − φt −
na
∑

i=1

x̄i
t

)

[er − (er − 1) τI ]

xi
t+1 = x̄i

t
Si

t+1

Si
t

(

Wt+1

Wt

)−1

, i = 1, . . . , na

bi
t+1 =

Si
t

Si
t+1

1{bi
t≥1} +

Si
t

Si
t+1

bi
t1{bi

t<1,0≤x̄i
t≤xi

t}

+
Si

t

Si
t+1

[

(bi
t − 1)

xi
t

x̄i
t

+ 1
]

1{bi
t<1,x̄i

t>xi
t}

, i = 1, . . . , na

gt =
na
∑

i=1

(1 − bi
t) (xi

t − x̄i
t)1{bi

t<1, 0≤x̄i
t≤xi

t}

φt = τC × max {0, gt + lt}

lt+1 =
(

Wt+1

Wt

)−1

× min {0, gt + lt}

m
na
∑

i=1

x̄i
t ≤ 1 − ct − φt

x̄i
t ≥ 0, i = 1, . . . , na

(4.3)

where V (·) is the value function; u (·) = (·)1−γ / (1 − γ) is the power utility with risk

aversion coefficient γ; β is the time discount factor; I is the inflation rate; m is the

margin requirement on long positions.

4.2 Solution Methodology

Problem (4.3) belongs to the class of high-dimensional singular control problems,

which are challenging to solve because its high-dimensionality and singularity.

To model the capital gain taxation, a state-dependent transaction cost, both the

initial stock positions and the relative tax basis need to be tracked for each stock;
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i.e., two state variables for each stock. In addition, modeling the limited use of capital

losses requires an additional state variable, the carry-over loss. In other words, na stocks

results in 2na + 1 state variables, which are all endogenous state variables that cannot

be solved efficiently by simulation-based methods. I address the problem of high-

dimensionality by the meshfree discretization and interpolation methods, discussed in

Section 2.7. More specifically, I discretize the carry-over loss using a regular grid, where

the grid points are placed more densely towards zero. For each level of the carry-over

loss, I use a quasi-random grid to discretize the state space, spanned by the initial

position, xt, and the relative tax basis, bt.

The problem of singularity is caused by the non-differentiability of bt+1 and lt+1

with respect to the control variables x̄t at the boundaries, where gt (xt, x̄t, bt) + lt = 0

or x̄i
t = xi

t, i = 1, . . . , na. To overcome this difficulty, I partition the control space at

those non-differentiable boundaries by defining the following sets:

All stocks: A = {1, . . . , na}

Degenerate stocks: AD
t = {i ∈ A : xi

t = 0 or bi
t ≥ 1}

Non-degenerate, reduce-position stocks: ARP
t =

{

i ∈ A\AD
t : 0 ≤ x̄i

t ≤ xi
t

}

Non-degenerate, increase-position stocks: AIP
t =

{

i ∈ A\AD
t : x̄i

t > xi
t

}

It is obvious that
(

AD
t , ARP

t , AIP
t

)

forms a partition of A. Given a grid point (xt, bt, lt),

all the possible partitions of the set A are enumerated. Under each partition, a locally

optimal solution, associated with this partition, is found by solving the first order

optimality conditions (4.4) using the TRIC method. The globally optimal solution is

selected among all locally optimal solutions by comparing their objective functions.
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Karush–Kuhn–Tucker Conditions1

0 = e−λte−I(1−γ)β ∂
∂x̄i

t

Et

[

(

Wt+1

Wt

)1−γ

Vt+1

(

xt+1, bt+1, lt+1

)

]

FOC of x̄i
t

−λRP,i
t 1{i∈ARP

t } + λIP,i
t 1{i∈AIP

t } + λi+
t

−λg
t

∂gt

∂x̄i
t

+ λm
t

(

−∂φt

∂x̄i
t

− m
)

, i ∈ A

0 = e−λte−I(1−γ)β ∂
∂ct

Et

[

(

Wt+1

Wt

)1−γ

Vt+1

(

xt+1, bt+1, lt+1

)

]

FOC of ct

+e−λtc−γ
t − λm

t

0 = λg
t (gt + lt) Complementarity

0 = λm
t

(

1 − ct − φt − m
∑

i∈A

x̄i
t

)

Complementarity

0 = λRP,i
t (xi

t − x̄i
t) , i ∈ ARP

t Complementarity

0 = λIP,i
t (x̄i

t − xi
t) , i ∈ AIP

t Complementarity

0 = λi+
t x̄i

t, i ∈ A Complementarity

0 ≤ λg
t ,− (gt + lt) Feasibility

0 ≤ λm
t , 1 − ct − φt − m

∑

i∈A

x̄i
t Feasibility

0 ≤ λRP,i
t , (xi

t − x̄i
t) , i ∈ ARP

t Feasibility

0 ≤ λIP,i
t , (x̄i

t − xi
t) , i ∈ AIP

t Feasibility

0 ≤ λi+
t , x̄i

t, i ∈ A Feasibility

(4.4)

where λg
t is the Lagrange multiplier of the LUL constraint, gt + lt ≤ 0; λm

t is the

Lagrange multiplier of the margin constraint, m
∑

i∈A x̄i
t ≤ 1− ct − φt; λRP,i

t , i ∈ ARP
t ,

are the Lagrange multipliers of the reduce-position constraints, x̄i
t ≤ xi

t, i ∈ ARP
t ; λIP,i

t ,

1For illustration purpose only the Karush-Kuhn-Tucker conditions assuming gt + lt ≤ 0 are pro-
vided. Similar conditions can be derived by assuming gt + lt ≥ 0.
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i ∈ AIP
t , are the Lagrange multipliers of the increase-position constraints, x̄i

t ≥ xi
t,

i ∈ AIP
t ; λi+

t , i ∈ A, are the Lagrange multipliers of the no-short-sale constraints,

x̄i
t ≥ 0, i ∈ A.

For each grid point, the first order optimality conditions (4.4) need to be solved

repeatedly under different partitions of the state space within different iterations of

the TRIC method. Although the conditional expectations in the first order optimality

conditions have been approximated by linear functions, the resulting system of equa-

tions still contains one non-linear equation, which is the first order condition of ct with

the term e−λtc−γ
t . The solution to the system of equations (4.4) is a pair of consump-

tion and portfolio weights, (c∗t , x̄
∗
t ). By observing the fact that the solution c∗t is very

insensitive with respect to different choices of the portfolio weights x̄∗
t , I suggest the

following way to find the solution (c∗t , x̄
∗
t ). Instead of treating (4.4) as a system of

non-linear equations and solving for c∗t and x̄∗
t simultaneously, I separate the first order

condition of ct, a non-linear equation, from the other equations in (4.4), which are all

linear equations. First, I assume an arbitrary portfolio weights x̄t and update the value

of ct by solving the first order condition of ct. Then, I solve x̄t from the remaining

system of linear equations given the value of ct. The process of updating is repeated

until the pair of solutions, (ct, x̄t), converges.

It takes 200 CPUs (2.66GHz, 1.92GB memory) about 50 hours to solve a numeri-

cal example in parallel with: two stocks (five state variables), 80 periods (age 20 to age

100), 30 test solutions, 48,000 grid points each period, and 4,800 radial basis functions

each period2.

2The carry-over loss is discretized with 16 levels. For each level of the carry-over loss, the remaining
state space is discretized with 3,000 quasi-random grid points. 300 of the grid points are selected as
the centers of radial basis functions to form the approximation of the value function each period.
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4.3 Numerical Results

4.3.1 Scenarios Considered

To understand how the LUL case influences optimal portfolio choice relative to

the FUL case, we focus on several scenarios where an investor faces different risk-

return tradeoffs between the stock and the money market as well as different tax

trading costs. Relative to the LUL and the FUL assumptions, one benchmark we

refer to is the case when the investor faces no capital gain taxation, abbreviated as

NCGT. In this benchmark, the investor still pays dividend and interest taxes. Given

the investment opportunity set is constant and the investor has constant relative risk

aversion (CRRA) preferences in this benchmark, the optimal trading strategy is to

hold a constant fraction of wealth in the stock at all times. Second, we also employ the

FUL case as a benchmark to compare with the LUL case since the FUL assumption is

commonly used in the academic literature.

In all our parameterizations, the investor begins investing at age 20 and can live

to a maximum of 100 years. Hence, the maximum horizon for an investor is T = 80.

The inflation rate is assumed to be I = 3.5%. The investor’s CRRA preferences are

calibrated with a relative risk aversion coefficient γ = 5 and a time discount parameter

β = 0.96. The bequest motive is calibrated such that the investor plans to provide a

perpetual real income stream to her heirs.

Our base case choice of parameters, referred to throughout as the “Base Case”,

views the stock as an index fund with price dynamics consistent with a large-capitalization

U.S. stock fund. We assume the expected return due to capital gains is µ = 8%, the

dividend yield is δ = 2%, and the volatility is σ = 16%. The money market’s return r

equals 6%. The investor rebalances her portfolio once a year. The investor enters the

economy at age 20 and exits no later than age 100. This choice of price system parame-

ters is roughly comparable to those used in Dammon et al. (2001) and Gallmeyer et al.

(2006). The tax rates used are set to roughly match those faced by a wealthy investor

under the current U.S. tax code. We assume that interest is taxed at the investor’s
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marginal income rate τI = 35%. Dividends are taxed at τD = 15%. The capital gain

tax rate is set to the long-term rate τC = 20%. To be consistent with the U.S. tax

code, capital gain taxes are forgiven at the investor’s death.

We also consider several variations of the Base Case parameters. The first varia-

tion is meant to increase the value of the tax-loss selling option under the FUL case to

capture an increased importance of tax-loss selling. An immediate way to increase the

value of the FUL tax-loss selling option is just to increase the capital gain tax rate. In

the “Capital Gain Tax 30% Case”, the capital gain tax rate is increased to τC = 30%,

roughly equal to the 28% rate imposed after the U.S. 1986 Tax Reform Act. This rate

also provides a setting that is roughly consistent with the long-term capital gain tax

rate paid in many foreign countries. For example, the capital gain tax rates in Finland,

France, Sweden and Norway are currently 28%, 29%, 30%, and 28% respectively. In

2009, Germany’s individual capital gain tax rate changed to approximately 28% from

0%. The second variation, the “Higher Risk Aversion Case”, captures a case where

stock holdings decrease for the NCGT investor and hence the dollar value of tax-loss

selling decreases for the FUL investor by assuming that the relative risk aversion of the

investor increases to γ = 10. Finally, we consider a variation with two stock indices

instead of one, where both indices have the same drift and dividend yield as the stock

index of the Base Case, and the correlation between the two indices is ρ = 80%. We set

the volatility of each individual stock index to σi = σ/
√

0.5 (1 + ρ) = 16.87%, i = 1, 2,

such that an equally weighted portfolio of the two stock indices has the same pre-tax

Sharpe ratio as the stock index in the one asset cases.

4.3.2 The Conditional Structure of Optimal Portfolios

We begin our numerical analysis of the long-dated portfolio problem outlined in

Equation (4.3) by characterizing the structure of optimal portfolios under the FUL and

the LUL cases at a particular time and state. This analysis shows conditionally how

the two tax cases differ as a function of the state variables. It however does not provide
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a full picture of the optimal strategies over the investor’s lifetime as these strategies are

just snapshots at a particular state and time. An analysis of lifetime portfolio holdings

is undertaken in the Section 4.3.3.

The Base Case

Figure 4.1 presents optimal portfolio weights on stock conditional on the begin-

ning period stock-to-wealth and basis-to-price ratios for the FUL and the LUL cases.

The LUL case is assumed to have a zero carry-over loss. The parameters used are

the Base Case parameters. Additionally, Table 4.1 provides the same information

numerically as Figure 4.1 for a subset of the beginning period stock-to-wealth and

basis-to-price ratios. The left (middle) panel is for the FUL (LUL) case. The right

panel computes the percentage increase of the stock-to-wealth ratio for the FUL case

relative to the LUL case. We do not report conditional trading strategies in the LUL

case for nonzero carry-over losses entering the trading period. Based on our simulation

analysis in the next section, nonzero carry-over losses mainly occur with stock posi-

tions with basis-to-price ratios close to one along the investor’s optimal path. Hence,

this situation is well-captured by just examining trading strategies with basis-to-price

ratios bigger than one entering the period. For the NCGT benchmark, the optimal

portfolio choice is a stock-to-wealth ratio of 0.498 at all times for these parameters.

The left panels of Figure 4.1 document optimal portfolio choice for the FUL

case at ages 20 (top panel) and 80 (bottom panel). Such trading strategies are well-

documented in Dammon et al. (2001). The investor’s optimal equity position is a

function of the beginning period allocation and the basis-to-price ratio. Tax trading

costs play a large role in the investor’s portfolio choice decision. When the marginal tax

costs of trading are high due to a large embedded capital gain, the investor optimally

chooses to hold more equity. For example at age 20 with a beginning period stock-

to-wealth ratio of 0.70, the investor trades to an equity position of 0.64 when the

basis-to-price ratio is 0.5 and an equity position of 0.57 when the basis-to-price ratio

is 1.0. Given the forgiveness of capital gain taxes at death, the marginal tax cost of
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trading effectively increases with age. At age 80 and a beginning period stock-to-wealth

ratio of 0.70, the optimal equity position increases to 0.70 when the basis-to-price ratio

is 0.5 and 0.59 when the basis-to-price ratio is 1.0. Similar patterns are documented

for the LUL case in the right panels of Figure 4.1. However, the LUL equity strategy

is non-monotonic along the basis-to-price dimension when the basis-to-price ratio is

around 1.0.

Overall, optimal equity allocations under the LUL case can fall significantly below

the FUL allocations. This reduction in equity is driven by the restrictions on the use of

capital losses placed on the LUL investor. Equity allocations when the basis-to-price

ratio is around 1.0 are most strongly influenced. For example at age 20, a basis-to-

price ratio of 1.0, and a beginning period stock-to-wealth ratio of 0.60, the LUL equity

allocation is 0.46 while the FUL equity allocation is 0.57. Relative to the LUL case,

this FUL allocation is 25% higher as can be seen in the right top panel of Table 4.1.

At a basis-to-price ratio around one, a FUL investor has the potential to tax loss sell

next period and receive a tax rebate. The LUL investor however will only potentially

receive a capital loss to carry forward to the next trading period.

Equally interesting is how the two different assumptions on capital losses converge

under extreme situations. The LUL equity strategy converges to the FUL equity

strategy when the investor is over-invested in equity with a large capital gain. In this

situation, the probability that the FUL investor engaging in any tax loss selling is

greatly reduced given the large locked-in capital gain in the portfolio. Hence, the two

strategies converge when the basis-to-price ratio is low and the beginning period equity

allocation is high. For example, the FUL and the LUL equity positions both equal 0.70

at an initial stock allocation of 0.70 and a basis-to-price ratio of 0.5 at age 80.

The LUL strategy also converges to the NCGT strategy when the investor enters

the period with a large capital loss. From Table 4.1 at age 80 and a basis-to-price ratio

of 1.2, the LUL equity allocation converges to the NCGT equity allocation of 0.50 for

all values of beginning period stock-to-wealth ratio between 0.30 and 0.70. Here the
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capital loss in the portfolio is large enough that the LUL investor can trade the same

strategy as the NCGT investor and offset all future capital gain taxes. Note that this

convergence of the trading strategy to the NCGT case would also occur when the LUL

investor’s carry-over loss is large.

Summarizing, under the Base Case parameters, the LUL optimal equity allocation

is non-monotonic relative to the FUL optimal equity allocation along the basis-to-price

dimension. When tax costs of trading are low, the LUL allocation falls significantly

relative to both the FUL and the NCGT allocations. When the LUL investor has

a position with a large embedded gain, he is locked into his position like the FUL

investor. When large capital losses are accumulated by the LUL investor, her trading

strategy resembles the NCGT investor’s strategy.
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Figure 4.1: Application II - Optimal Strategies of the Base Case

The left (right) panels summarize the optimal portfolio weight, x̄, as a function of the initial
stock position, x, and the initial tax basis, b, for the FUL (LUL) case. The top (bottom)
panels present the optimal portfolio weight at age 20 (80). The LUL plots have a zero carry-
over loss entering the trading period. The parameters used are the Base Case parameters
summarized in Section 4.3.1.
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Table 4.1: Application II - Optimal Strategies of the Base Case
The left (middle) panels summarize the optimal portfolio weight as a function of the initial stock position, x, and the

initial tax basis, b, for the FUL (LUL) case. The top (bottom) panels present the optimal portfolio weight at age 20 (80).

The right panels compute the relative increase of the FUL portfolio weight with respect to the LUL portfolio weight. The

LUL results have a zero carry-over loss entering the trading period. The parameters used are the Base Case parameters

summarized in Section 4.3.1. All numbers in the table are in percentage.
Panel A - Age 20

FUL — bt LUL — bt (FUL-LUL)/LUL — bt

50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120
30 47 48 50 52 55 57 58 58 43 43 44 44 45 46 49 49 8 11 15 18 22 25 20 18
35 46 47 49 52 55 57 58 58 43 43 43 44 45 46 49 49 5 9 14 17 21 25 18 18
40 45 46 48 51 54 57 58 58 43 43 43 44 45 46 49 49 4 7 11 17 21 25 18 18
45 45 46 47 50 54 57 58 59 45 45 45 45 45 46 49 49 0 1 5 11 19 25 19 19

xt 50 50 50 50 50 53 57 58 59 50 50 50 50 51 46 49 50 0 0 0 0 5 25 18 18
55 56 56 56 56 56 57 58 59 56 56 56 56 53 46 49 50 0 0 0 0 5 25 18 18
60 61 61 60 59 58 57 59 59 61 61 60 57 53 46 49 50 0 0 1 4 9 25 19 18
65 64 63 61 59 58 58 58 59 64 62 59 57 53 46 49 50 1 1 2 4 10 25 18 18
70 64 63 61 59 58 57 58 59 63 62 60 57 53 46 49 50 1 1 2 4 10 25 18 18

Panel B - Age 80
FUL — bt LUL — bt (FUL-LUL)/LUL — bt

50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120
30 49 50 52 54 57 59 59 60 47 46 46 46 47 47 49 50 5 7 12 16 22 26 20 20
35 49 49 51 53 57 59 59 60 47 46 46 46 46 47 49 50 4 6 10 15 22 26 20 19
40 48 49 50 52 56 59 59 60 47 47 46 46 47 47 50 50 3 4 8 14 21 25 20 20
45 49 49 49 52 56 59 60 60 48 47 46 46 46 47 50 50 2 3 6 12 21 25 20 20

xt 50 50 50 50 51 55 59 59 60 50 50 50 50 50 47 50 50 0 0 0 2 9 25 19 20
55 55 55 55 55 55 59 60 60 55 55 55 55 55 47 50 50 0 0 0 0 0 25 19 20
60 60 60 60 60 60 59 60 60 60 60 60 60 55 47 50 50 0 0 0 0 9 25 19 20
65 65 65 65 63 60 59 60 60 65 65 64 61 55 47 50 50 0 0 1 4 9 25 19 21
70 70 69 66 63 61 59 60 61 70 68 64 61 55 47 50 50 0 1 2 4 10 25 19 21
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Comparative Statics

Figure 4.2 and Table 4.2 explore the effect of increasing the capital gain tax

to 30% on the FUL and the LUL optimal equity strategies. Given that changing the

capital gain tax rate influences both the expected return and the volatility of the stock,

it is not immediately apparent how portfolio allocations will be influenced. Under the

LUL case, when the basis-to-price ratio is 1.0 and the capital gain tax rate is increased

from 20% to 30%, the optimal equity allocation drops slightly at age 20 and remains the

same at age 80. With the increase in the tax rate, the benefit of holding equity in the

LUL case is reduced, which leads to lower allocations. However, from Constantinides

(1983), we know that the benefit of tax loss selling is amplified by increasing the

capital gain tax rate. This is consistent with our numerical results. Under the FUL

case, increasing the capital gain tax rate from 20% to 30% significantly increases the

optimal equity allocations at ages 20 and 80 when the basis-to-price ratio is 1.0.

The risk aversion of the investor is increased to γ = 10 in Figure 4.3 and Table

4.3 to capture a scenario where equity is a less important component of the investor’s

portfolio. In this case, the NCGT equity-to-wealth allocation is 0.248 as compared to

0.498 under the Base Case parameters. Increasing the risk aversion leads to largely the

same patterns as in the Base Case and consistently lower equity allocations. The LUL

optimal equity allocation is again non-monotonic along the basis-to-price dimension.

Figures 4.4 and 4.5 and Tables 4.4 and 4.5 report the optimal equity allocations

when the investor can trade two stock indices with identical drift, volatility, and div-

idend yield, and a correlation of 80%. To summarize our numerical results of this

high-dimensional case, we present the optimal equity allocations as a function of the

basis-to-price ratios of both stocks when the beginning period stock-to-wealth ratios

are 0.3 for stock 1 and 0.4 for stock 2. Given the beginning period total equity alloca-

tion fixed at a relatively high level of 0.7, the investor attempts to reduce her overall

exposure to equity by selling the stock with a smaller marginal tax cost. For example,

at age 20 when the basis-to-price ratios are 0.9 for Stock 1 and 0.5 for Stock 2, the
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LUL investor reduces her Stock 1 holding to 0.19 and keeps her Stock 2 holding at

0.40. When the basis-to-price ratios are 0.5 for Stock 1 and 0.9 for Stock 2, the LUL

investor keeps her Stock 1 holding at 0.30 and reduces her Stock 2 holding to 0.25.

Another interesting finding is that the equity reduction behavior of the LUL investor

in the one asset cases still persists in the two assets case in terms of the total equity

allocation. Although crossovers are observed at the level of individual stocks, the to-

tal equity holdings of the LUL investor are consistently lower than the total equity

holdings of the FUL investor at ages 20 and 80.
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Figure 4.2: Application II - Optimal Strategies of the Capital Gain Tax 30% Case

The left (right) panels summarize the optimal portfolio weight, x̄, as a function of the initial
stock position, x, and the initial tax basis, b, for the FUL (LUL) case. The top (bottom)
panels present the optimal portfolio weight at age 20 (80). The LUL plots have a zero carry-
over loss entering the trading period. The parameters used are the Base Case parameters
summarized in Section 4.3.1 with a higher capital gain tax rate of 30%.
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Table 4.2: Application II - Optimal Strategies of the Capital Gain Tax 30% Case
The left (middle) panels summarize the optimal portfolio weight as a function of the initial stock position, x, and the

initial tax basis, b, for the FUL (LUL) case. The top (bottom) panels present the optimal portfolio weight at age 20 (80).

The right panels compute the relative increase of the FUL portfolio weight with respect to the LUL portfolio weight. The

LUL results have a zero carry-over loss entering the trading period. The parameters used are the Base Case parameters

summarized in Section 4.3.1 with a higher capital gain tax rate of 30%. All numbers in the table are in percentage.
Panel A - Age 20

FUL — bt LUL — bt (FUL-LUL)/LUL — bt

50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120
30 48 49 52 54 58 61 62 62 44 43 43 43 44 45 48 49 10 15 20 25 31 37 28 27
35 47 48 51 53 57 61 62 63 44 43 43 43 44 45 49 49 7 12 18 23 30 37 27 28
40 46 47 49 53 57 61 62 63 44 44 43 43 44 45 49 49 5 9 16 22 30 37 27 27
45 46 47 49 52 56 61 62 63 45 45 45 45 45 45 49 49 2 3 7 14 24 36 27 27

xt 50 50 50 50 51 55 61 62 63 50 50 50 50 50 45 49 50 0 0 0 2 9 36 27 27
55 56 56 56 56 56 61 62 63 56 56 56 56 54 45 49 50 0 0 0 0 3 36 27 26
60 61 61 61 61 61 61 62 64 61 61 61 59 54 45 49 50 0 0 0 2 12 36 27 27
65 66 66 65 64 62 61 63 64 66 65 63 59 54 45 49 50 0 0 4 7 14 36 27 27
70 70 68 66 63 62 61 63 64 68 65 62 60 54 45 49 50 3 4 5 6 15 36 27 28

Panel B - Age 80
FUL — bt LUL — bt (FUL-LUL)/LUL — bt

50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120
30 52 54 56 58 62 64 65 66 47 46 46 46 46 47 50 50 11 17 21 26 34 38 31 32
35 51 52 55 57 62 64 65 66 47 46 46 46 46 47 50 50 8 12 20 25 33 38 31 31
40 50 51 54 57 61 65 65 66 48 47 46 46 46 47 50 50 5 9 17 23 33 38 31 31
45 49 51 52 56 61 64 65 66 48 47 47 46 46 47 50 50 3 7 12 21 32 37 32 32

xt 50 50 50 52 56 60 64 65 66 50 50 50 50 50 47 50 50 0 0 3 11 20 36 31 33
55 55 55 55 56 59 64 65 67 55 55 55 55 55 47 50 50 0 0 0 0 6 37 31 33
60 60 60 60 60 60 64 66 67 60 60 60 60 59 47 50 50 0 0 0 0 2 36 31 33
65 65 65 65 65 65 64 66 67 65 65 65 65 59 47 50 50 0 0 0 0 11 36 31 34
70 70 70 70 70 67 65 66 67 70 70 70 66 59 47 50 50 0 0 0 5 13 37 31 34
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Figure 4.3: Application II - Optimal Strategies of the Higher Risk Aversion Case

The left (right) panels summarize the optimal portfolio weight, x̄, as a function of the initial
stock position, x, and the initial tax basis, b, for the FUL (LUL) case. The top (bottom)
panels present the optimal portfolio weight at age 20 (80). The LUL plots have a zero carry-
over loss entering the trading period. The parameters used are the Base Case parameters
summarized in Section 4.3.1 with a higher risk aversion coefficient of 10.
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Table 4.3: Application II - Optimal Strategies of the Higher Risk Aversion Case
The left (middle) panels summarize the optimal portfolio weight as a function of the initial stock position, x, and the

initial tax basis, b, for the FUL (LUL) case. The top (bottom) panels present the optimal portfolio weight at age 20 (80).

The right panels compute the relative increase of the FUL portfolio weight with respect to the LUL portfolio weight. The

LUL results have a zero carry-over loss entering the trading period. The parameters used are the Base Case parameters

summarized in Section 4.3.1 with a higher risk aversion coefficient of 10. All numbers in the table are in percentage.
Panel A - Age 20

FUL — bt LUL — bt (FUL-LUL)/LUL — bt

50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120
5 27 28 28 29 29 29 29 30 22 22 22 22 23 23 23 24 26 23 25 27 26 26 26 25

10 24 25 26 28 28 29 29 29 20 21 21 22 23 23 24 24 19 20 24 23 26 26 23 22
15 22 23 25 27 28 29 29 29 20 20 21 21 22 23 24 24 8 15 19 24 26 25 22 20
20 20 21 23 25 28 29 29 29 20 20 20 21 23 23 24 25 1 5 14 23 23 26 21 19

xt 25 25 25 25 25 27 29 29 29 25 25 25 25 25 23 24 25 0 0 0 0 7 25 20 19
30 30 30 30 30 29 29 29 29 30 30 30 29 27 23 24 25 0 0 0 2 8 25 20 19
35 35 34 32 31 30 29 29 29 35 33 31 30 27 23 24 25 1 2 3 4 8 25 19 18
40 35 34 32 31 30 29 29 29 35 33 31 30 27 23 25 25 1 2 3 4 9 26 19 18
45 35 34 32 31 30 29 29 30 35 33 31 29 27 23 25 25 1 3 3 5 9 26 19 18

Panel B - Age 80
FUL — bt LUL — bt (FUL-LUL)/LUL — bt

50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120
5 26 28 28 29 29 29 29 30 22 22 22 22 23 23 23 23 19 26 27 28 29 29 28 29

10 24 25 26 28 29 29 29 30 21 21 22 22 22 23 23 24 16 18 19 27 27 29 25 24
15 22 23 25 26 28 29 30 30 20 20 21 22 22 23 24 24 10 13 18 20 27 29 25 22
20 21 22 23 25 28 29 29 30 20 20 20 21 22 23 24 25 4 9 13 19 26 30 23 20

xt 25 25 25 25 25 26 29 29 30 25 25 25 25 25 23 24 25 0 0 0 0 5 28 22 21
30 30 30 30 30 30 29 30 30 30 30 30 30 28 23 24 25 0 0 0 0 8 27 21 20
35 35 35 34 32 30 29 30 30 35 35 34 31 28 23 24 25 0 0 0 2 9 29 21 19
40 38 36 34 32 30 29 30 30 38 36 34 31 28 23 25 25 1 0 0 2 10 29 20 20
45 38 36 34 32 30 29 30 30 38 36 34 31 28 23 25 25 1 0 1 4 9 28 20 20
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Figure 4.4: Application II - Optimal Strategies of the Two Assets Case at Age 20

The left (right) panels summarize the optimal portfolio weights as a function of the initial
tax bases of the two stocks, b1 and b2, for the FUL (LUL) case. The initial positions of
the two stocks are fixed at 30% and 40%. The top, middle, and bottom panels present the
optimal portfolio weight for Stock 1, Stock 2, and the sum of the two stocks. The LUL plots
have a zero carry-over loss entering the trading period. The parameters used are the Base
Case parameters summarized in Section 4.3.1 except that the investment opportunity set is
expanded to two stocks with correlation 80% and volatility 16.87%.
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Table 4.4: Application II - Optimal Strategies of the Two Assets Case at Age 20
The top (bottom) panels summarize the optimal portfolio weight as a function of the initial tax bases of the two stocks, b1

and b2, for the FUL (LUL) case. The initial positions of the two stocks are fixed at 30% and 40%. The left, middle, and

right panels present the optimal portfolio weight for Stock 1, Stock 2, and the sum of the two stocks. The LUL results

have a zero carry-over loss entering the trading period. The parameters used are the Base Case parameters summarized

in Section 4.3.1 except that the investment opportunity set is expanded to two stocks with correlation 80% and volatility

16.87%. All numbers in the table are in percentage.
Panel A - FUL

Stock 1 — b2 Stock 2 — b2 Total Equity — b2

50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120
50 30 30 30 30 30 30 30 30 36 35 32 30 27 25 25 26 67 65 63 60 57 56 56 56
60 29 30 30 30 30 30 30 30 38 35 33 30 28 26 26 26 66 65 63 60 58 56 56 57
70 25 28 30 30 30 30 30 30 40 37 33 31 29 27 27 27 65 64 63 61 59 57 57 57
80 23 24 27 29 30 30 30 30 40 38 36 32 29 27 27 28 63 63 62 61 60 58 58 58

b1 90 20 21 23 25 29 30 30 30 40 40 37 35 31 28 28 29 61 61 61 60 60 58 58 59
100 18 19 20 23 25 29 30 30 40 40 39 36 34 29 30 30 59 59 59 59 59 59 59 60
110 18 19 20 23 25 30 30 30 40 40 39 37 34 30 30 30 59 59 60 59 59 59 60 60
120 19 19 20 23 25 30 30 30 40 40 40 37 34 30 30 30 59 60 60 60 59 60 60 61

Panel B - LUL
Stock 1 — b2 Stock 2 — b2 Total Equity — b2

50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120
50 30 30 30 30 30 30 30 29 36 34 31 28 25 20 20 22 66 64 61 59 55 50 50 51
60 28 30 30 30 30 30 29 29 38 34 32 29 25 19 20 22 66 65 62 59 55 50 50 51
70 24 27 30 30 30 30 28 28 40 37 33 29 25 19 21 23 65 64 63 59 55 49 49 51
80 22 23 25 29 30 30 27 27 40 40 36 31 25 19 21 23 62 63 61 60 55 49 49 50

b1 90 19 19 20 22 28 30 26 27 40 40 40 36 27 20 22 23 59 60 60 58 56 49 49 50
100 15 15 15 15 17 24 25 25 40 40 40 40 35 24 25 25 55 55 55 55 52 48 49 50
110 16 17 18 19 21 24 25 25 35 34 32 30 27 24 25 25 51 51 50 49 48 49 50 50
120 19 19 21 23 24 25 25 25 31 30 28 26 25 25 25 25 50 50 49 49 50 50 50 50
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Figure 4.5: Application II - Optimal Strategies of the Two Assets Case at Age 80

The left (right) panels summarize the optimal portfolio weights as a function of the initial
tax bases of the two stocks, b1 and b2, for the FUL (LUL) case. The initial positions of
the two stocks are fixed at 30% and 40%. The top, middle, and bottom panels present the
optimal portfolio weight for Stock 1, Stock 2, and the sum of the two stocks. The LUL plots
have a zero carry-over loss entering the trading period. The parameters used are the Base
Case parameters summarized in Section 4.3.1 except that the investment opportunity set is
expanded to two stocks with correlation 80% and volatility 16.87%.
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Table 4.5: Application II - Optimal Strategies of the Two Assets Case at Age 80
The top (bottom) panels summarize the optimal portfolio weight as a function of the initial tax bases of the two stocks, b1

and b2, for the FUL (LUL) case. The initial positions of the two stocks are fixed at 30% and 40%. The left, middle, and

right panels present the optimal portfolio weight for Stock 1, Stock 2, and the sum of the two stocks. The LUL results

have a zero carry-over loss entering the trading period. The parameters used are the Base Case parameters summarized

in Section 4.3.1 except that the investment opportunity set is expanded to two stocks with correlation 80% and volatility

16.87%. All numbers in the table are in percentage.
Panel A - FUL

Stock 1 — b2 Stock 2 — b2 Total Equity — b2

50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120
50 30 30 30 30 30 30 30 30 40 40 37 32 28 26 26 26 70 70 67 62 58 56 56 56
60 30 30 30 30 30 30 30 30 40 40 37 33 29 26 27 27 70 70 67 63 59 57 57 57
70 28 29 30 30 30 30 30 30 40 40 37 33 30 27 27 28 68 69 68 64 60 57 57 58
80 25 25 26 30 30 30 30 30 40 40 40 34 31 28 28 29 65 65 66 65 61 58 58 59

b1 90 22 22 23 25 30 30 30 30 40 40 40 39 32 29 29 30 62 62 63 64 62 59 60 60
100 19 19 20 20 25 30 30 31 40 40 40 40 36 30 30 31 59 59 60 61 61 60 61 61
110 19 19 19 20 25 30 31 31 40 40 40 40 36 30 31 31 59 59 60 61 61 61 61 62
120 19 19 20 21 25 31 31 31 40 40 40 40 36 31 31 31 60 60 60 61 62 61 61 62

Panel B - LUL
Stock 1 — b2 Stock 2 — b2 Total Equity — b2

50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120
50 30 30 30 30 30 30 29 24 40 39 36 32 26 20 22 26 70 69 66 62 56 50 50 50
60 30 30 30 30 30 30 28 24 40 40 36 32 26 19 22 26 70 70 66 62 56 49 50 50
70 27 28 30 30 30 30 28 25 40 40 37 32 26 19 22 26 68 68 67 63 56 49 49 50
80 24 24 25 30 30 30 27 25 40 40 40 34 27 19 22 25 64 65 66 64 57 49 49 50

b1 90 19 20 20 21 29 30 26 25 40 40 40 40 28 20 23 25 60 60 60 61 57 49 49 50
100 12 13 13 14 15 24 25 25 40 40 40 40 38 24 25 25 53 53 53 54 53 48 49 50
110 15 16 17 19 21 24 25 25 35 34 32 30 27 24 25 25 50 49 49 48 48 49 50 50
120 19 20 21 23 24 25 25 25 30 29 28 26 26 25 25 25 50 49 49 49 50 50 50 50

68



4.3.3 The Lifetime Structure of Optimal Portfolios

While examining optimal portfolio choice at a particular time and state is useful

in understanding the conditional differences in the FUL and the LUL trading strategies,

it provides limited information about any differences in portfolio composition over an

investor’s lifetime. For example, it is very unlikely along an optimal trading path that

an investor will simultaneously have a large carry-over loss and a large equity position

with a low tax basis. Also, the conditional snapshots do not easily summarize the

increase in wealth from tax rebates collected by the FUL investor. To gain insights

about portfolio choice along the optimal strategy taken over an investor’s lifetime, we

perform Monte Carlo simulations starting at age 20 with no embedded stock gains, zero

carry-over loss (the LUL cases), and an initial wealth of $100 to track the evolution

of the investor’s optimal portfolio at ages 40, 60, and 80 conditional on the investor’s

survival. All simulations are over 50,000 paths and computed for the FUL and the LUL

investors. Percentiles, means, and standard deviations are reported for the following

variables at each age: wealth, W ; stock-to-wealth ratio, x̄; basis-to-price ratio, b;

cumulative capital gain tax-to-wealth ratio, G; LUL carry-over loss-to-wealth ratio, l.

The Base Case

Table 4.6 reports the simulation results for the Base Case. The ability to tax loss

sell in the FUL case leads to higher wealth relative to the LUL case at all ages and all

percentiles of the wealth distribution. This increase in the FUL wealth distribution is

driven by two effects — higher equity holdings and tax rebates collected through tax

loss selling. From the stock-to-wealth ratio column, the FUL equity holdings dominate

the LUL equity holdings at all ages until the 90th percentile leading to on average

higher equity holdings in the FUL case. This difference in equity holdings is driven by

the original divergence in equity holdings in the FUL and LUL cases when the basis-

to-price ratio is around 1.0. Tax loss selling also plays a role in the higher FUL wealth

distribution. Note that the cumulative capital gain tax-to-wealth ratios are negative
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for the lower percentiles at all ages for the FUL case. This is capturing the tax rebates

being collected when the FUL investor tax loss sells.

The Base Case simulations also highlight that the LUL investor’s carry-over loss

is typically quite small. At age 40, the average carry over loss is 0.8% of wealth. Also,

the distribution is heavily skewed toward zero as can be seen in the percentiles. Hence,

the investor rarely has a significant carry-over loss in her portfolio over her lifetime.

Overall, the Base Case simulations highlight that under both the FUL and LUL

cases, the investors get capital gains locked in quickly and actually pay little capital

gain taxes over their lifetimes. Even though the capital gain tax rate is 20%, effectively

it is significantly smaller.

Comparative Statics

Table 4.7 presents the simulation results for the Capital Gain Tax 30% Case.

Given the capital gain tax rate is now higher, the effects seen in the Base Case now

grow stronger. For example, the FUL investor’s average equity holding at age 40 is

9.6% (relatively 15.6%) higher than that of the LUL investor compared to an increase

of 4.4% (relatively 7.2%) in the Base Case. Also, the difference between the FUL

and LUL wealth distributions increases due to the larger spread in equity holdings as

well as the additional tax loss selling performed by the FUL investor. In particular,

average cumulative capital gain taxes under the FUL case are negative at age 40 and

approximately zero at ages 60 and 80.

Table 4.8 summarizes the simulation results for the Higher Risk Aversion Case.

Given the decrease in equity holdings due to the higher risk aversion coefficient, the

difference between the FUL and LUL wealth distributions is reduced relative to the

Base Case parameters. The size of tax loss selling is also smaller in the FUL case now.

At age 40 in the FUL case, the 5th percentile of the cumulative capital gain taxes is

-0.8% compared to -2.0% for the Base Case.
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Table 4.6: Application II - Base Case Simulations
This table presents simulation results for portfolio characteristics under the FUL and the

LUL cases at ages 40, 60, and 80 over 50,000 paths. The investor starts at age 20 with no

embedded capital gains and zero carry-over loss (the LUL cases). Percentiles, means, and

standard deviations are reported for the following variables at each age: wealth Wt, stock-

to-wealth ratio x̄t, basis-to-price ratio bt, cumulative capital gain tax-to-wealth ratio Gt, and

LUL carry-over loss-to-wealth ratio lt.
Wt ($) x̄t (%) bt (%) Gt (%) lt (%)

FUL LUL FUL LUL FUL LUL FUL LUL
Q5 161.3 160.5 52.3 46.0 7.8 7.8 -2.0 0.0 0.0

Q10 183.4 178.8 55.3 48.5 10.0 10.0 -1.1 0.0 0.0
Q15 202.8 194.7 57.3 49.9 11.7 11.7 -0.6 0.0 0.0
Q20 218.7 207.9 58.8 50.9 13.8 13.8 -0.3 0.0 0.0
Q30 250.9 235.1 61.6 53.9 16.1 16.1 0.1 0.0 0.0
Q40 281.8 261.3 63.9 57.7 19.7 20.1 0.2 0.0 0.0

Age 40 Q50 316.5 290.9 66.0 61.1 23.8 23.8 0.4 0.0 0.0
Q60 356.4 325.1 67.8 64.3 27.9 28.4 0.6 0.0 0.0
Q70 409.3 367.4 69.6 67.1 34.1 35.0 0.9 0.1 0.0
Q80 485.4 449.8 71.1 69.9 42.1 42.1 1.2 0.5 0.0
Q85 542.2 503.4 71.8 71.2 47.0 48.7 1.4 0.8 0.0
Q90 610.1 568.0 72.6 72.4 54.5 56.6 1.6 1.1 1.5
Q95 707.4 647.9 73.2 73.3 67.7 69.7 2.0 1.6 4.9

Mean 364.6 337.7 64.8 60.5 28.7 29.1 0.3 0.3 0.8
S.D. 187.7 172.0 6.6 8.9 18.6 19.2 1.4 0.6 3.7
Q5 375.9 356.3 51.5 48.2 1.2 1.2 -0.6 0.0 0.0

Q10 465.3 429.7 55.3 51.6 1.8 1.8 -0.2 0.0 0.0
Q15 540.5 494.1 58.1 54.7 2.2 2.2 0.0 0.0 0.0
Q20 613.3 555.1 60.3 57.1 2.6 2.6 0.1 0.0 0.0
Q30 759.2 681.8 64.1 61.5 3.6 3.6 0.2 0.0 0.0
Q40 925.7 828.3 67.1 65.1 4.9 4.9 0.4 0.0 0.0

Age 60 Q50 1,109.8 988.5 69.5 68.1 6.1 6.2 0.6 0.2 0.0
Q60 1,342.5 1,216.5 71.9 70.7 8.0 8.0 0.8 0.4 0.0
Q70 1,649.7 1,464.4 74.0 72.8 10.5 11.0 1.1 0.7 0.0
Q80 2,070.4 1,847.0 75.6 75.3 14.2 15.1 1.3 1.1 0.0
Q85 2,424.8 2,234.1 77.1 76.5 17.6 18.3 1.5 1.3 0.0
Q90 2,847.1 2,614.2 77.9 77.9 22.6 24.6 1.8 1.6 0.0
Q95 3,841.1 3,420.4 78.3 78.7 32.6 36.3 2.1 1.9 0.0

Mean 1,479.9 1,346.3 67.9 66.3 10.0 10.6 0.7 0.5 0.1
S.D. 1,276.5 1,182.6 8.4 9.5 11.6 12.6 0.9 0.7 1.4
Q5 983.7 904.6 52.2 51.0 0.2 0.2 -0.2 0.0 0.0

Q10 1,311.7 1,182.1 56.4 55.2 0.3 0.3 0.0 0.0 0.0
Q15 1,601.3 1,427.2 59.5 58.3 0.5 0.5 0.0 0.0 0.0
Q20 1,885.6 1,674.1 62.1 60.9 0.6 0.6 0.0 0.0 0.0
Q30 2,496.4 2,212.8 66.3 65.2 0.8 0.9 0.1 0.0 0.0
Q40 3,209.5 2,848.6 69.5 68.6 1.2 1.2 0.2 0.0 0.0

Age 80 Q50 4,083.6 3,621.8 72.4 71.6 1.6 1.7 0.3 0.1 0.0
Q60 5,208.0 4,647.2 74.9 74.2 2.2 2.3 0.4 0.2 0.0
Q70 6,803.4 6,072.7 77.3 76.8 3.2 3.4 0.5 0.4 0.0
Q80 9,235.1 8,387.0 79.8 79.4 5.0 5.3 0.6 0.5 0.0
Q85 11,150.3 10,142.6 81.1 80.8 6.6 7.2 0.7 0.6 0.0
Q90 14,155.2 12,928.9 82.6 82.3 9.7 11.1 0.9 0.8 0.0
Q95 20,245.4 18,514.4 84.5 84.3 16.7 19.5 1.1 1.0 0.0

Mean 6,618.7 5,990.0 70.8 70.1 4.1 4.5 0.3 0.3 0.0
S.D. 8,452.5 7,776.4 9.8 10.1 7.6 8.4 0.4 0.4 0.5
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Table 4.7: Application II - Capital Gain Tax 30% Case Simulations
This table presents simulation results for portfolio characteristics under the FUL and the

LUL cases at ages 40, 60, and 80 over 50,000 paths. The investor starts at age 20 with no

embedded capital gains and zero carry-over loss (the LUL cases). Percentiles, means, and

standard deviations are reported for the following variables at each age: wealth Wt, stock-

to-wealth ratio x̄t, basis-to-price ratio bt, cumulative capital gain tax-to-wealth ratio Gt, and

LUL carry-over loss-to-wealth ratio lt.
Wt ($) x̄t (%) bt (%) Gt (%) lt (%)

FUL LUL FUL LUL FUL LUL FUL LUL
Q5 162.0 160.8 56.8 45.6 7.8 7.8 -3.5 0.0 0.0

Q10 187.1 179.4 60.0 48.0 10.0 10.0 -2.1 0.0 0.0
Q15 206.9 195.0 62.2 49.3 11.7 11.7 -1.4 0.0 0.0
Q20 225.3 207.9 63.9 50.2 13.8 13.8 -0.9 0.0 0.0
Q30 259.5 233.3 66.9 53.4 16.1 16.2 -0.4 0.0 0.0
Q40 294.4 258.8 69.5 57.2 19.7 20.1 0.0 0.0 0.0

Age 40 Q50 334.1 287.8 71.9 60.8 23.8 23.8 0.1 0.0 0.0
Q60 381.8 321.5 74.0 64.3 27.9 28.8 0.2 0.0 0.0
Q70 448.3 364.1 76.1 67.8 34.1 35.2 0.3 0.0 0.0
Q80 535.3 444.5 78.3 71.8 42.1 42.2 0.6 0.0 0.0
Q85 605.3 499.6 79.4 73.9 47.0 49.1 0.7 0.0 0.0
Q90 691.7 570.5 80.6 76.4 53.8 57.0 0.9 0.0 0.0
Q95 821.3 669.1 81.9 79.7 67.1 70.0 1.3 0.0 4.6

Mean 397.9 339.6 70.9 61.3 28.6 29.2 -0.4 0.0 0.7
S.D. 231.0 185.1 7.8 10.7 18.5 19.3 1.8 0.2 3.6
Q5 385.1 355.5 55.4 49.2 1.2 1.2 -1.2 0.0 0.0

Q10 483.2 429.8 59.8 52.5 1.8 1.8 -0.6 0.0 0.0
Q15 566.3 493.4 63.1 55.6 2.2 2.2 -0.4 0.0 0.0
Q20 650.6 553.7 65.5 58.4 2.6 2.6 -0.2 0.0 0.0
Q30 821.6 677.2 69.4 63.0 3.6 3.6 -0.1 0.0 0.0
Q40 1,015.4 821.8 72.5 66.9 4.9 4.9 0.0 0.0 0.0

Age 60 Q50 1,251.2 986.9 75.2 70.3 6.0 6.2 0.1 0.0 0.0
Q60 1,537.1 1,211.6 77.6 73.5 8.0 8.0 0.1 0.0 0.0
Q70 1,948.1 1,511.5 79.8 76.4 10.3 11.0 0.2 0.0 0.0
Q80 2,536.4 1,953.2 82.1 79.4 13.8 15.1 0.3 0.0 0.0
Q85 3,014.2 2,366.5 83.4 81.0 16.9 18.7 0.4 0.0 0.0
Q90 3,627.1 2,871.6 84.7 82.9 21.2 25.1 0.6 0.1 0.0
Q95 5,139.5 3,970.0 86.4 85.1 30.8 37.8 0.8 0.4 0.0

Mean 1,807.9 1,447.6 73.6 69.0 9.8 10.8 0.0 0.1 0.1
S.D. 1,860.9 1,504.9 9.4 11.0 11.2 12.9 0.9 0.2 1.4
Q5 1,030.0 904.6 54.8 51.8 0.2 0.2 -0.4 0.0 0.0

Q10 1,387.4 1,181.7 59.6 56.3 0.3 0.3 -0.2 0.0 0.0
Q15 1,723.2 1,427.0 63.1 59.7 0.5 0.5 -0.1 0.0 0.0
Q20 2,061.3 1,670.4 65.7 62.4 0.6 0.6 -0.1 0.0 0.0
Q30 2,793.6 2,214.0 69.8 66.9 0.8 0.9 0.0 0.0 0.0
Q40 3,675.2 2,862.7 72.9 70.5 1.2 1.2 0.0 0.0 0.0

Age 80 Q50 4,799.4 3,695.4 75.7 73.6 1.6 1.7 0.0 0.0 0.0
Q60 6,306.3 4,830.2 78.2 76.3 2.1 2.3 0.0 0.0 0.0
Q70 8,487.5 6,461.3 80.4 78.9 3.0 3.3 0.0 0.0 0.0
Q80 11,908.7 9,218.7 82.7 81.5 4.6 5.0 0.1 0.0 0.0
Q85 14,661.8 11,300.6 84.0 82.9 5.8 6.8 0.1 0.0 0.0
Q90 19,228.0 14,878.9 85.4 84.6 8.2 10.4 0.2 0.0 0.0
Q95 29,064.7 22,829.6 87.2 86.6 14.1 18.4 0.3 0.1 0.0

Mean 8,828.3 6,907.8 74.0 71.9 3.7 4.3 0.0 0.0 0.0
S.D. 13,881.4 11,131.1 9.8 10.5 6.7 8.2 0.4 0.1 0.5
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Table 4.8: Application II - Higher Risk Aversion Case Simulations
This table presents simulation results for portfolio characteristics under the FUL and the

LUL cases at ages 40, 60, and 80 over 50,000 paths. The investor starts at age 20 with no

embedded capital gains and zero carry-over loss (the LUL cases). Percentiles, means, and

standard deviations are reported for the following variables at each age: wealth Wt, stock-

to-wealth ratio x̄t, basis-to-price ratio bt, cumulative capital gain tax-to-wealth ratio Gt, and

LUL carry-over loss-to-wealth ratio lt.
Wt ($) x̄t (%) bt (%) Gt (%) lt (%)

FUL LUL FUL LUL FUL LUL FUL LUL
Q5 175.9 174.7 25.0 22.3 7.8 7.8 -0.8 0.0 0.0

Q10 188.2 184.7 26.9 24.0 10.0 10.0 -0.3 0.0 0.0
Q15 197.6 192.6 28.5 25.1 11.7 11.7 0.0 0.0 0.0
Q20 206.0 199.6 29.5 26.5 13.8 13.8 0.2 0.0 0.0
Q30 220.5 212.6 31.6 29.0 16.2 16.2 0.4 0.0 0.0
Q40 234.7 225.8 33.4 31.4 19.7 19.8 0.7 0.1 0.0

Age 40 Q50 249.7 240.2 35.1 33.6 23.8 23.8 1.0 0.4 0.0
Q60 266.4 256.0 36.6 35.8 27.9 28.3 1.3 0.8 0.0
Q70 287.7 274.9 37.9 37.5 34.1 34.7 1.8 1.3 0.0
Q80 313.2 304.6 39.1 39.5 42.1 42.1 2.3 1.8 0.0
Q85 332.3 323.5 39.6 40.1 47.3 48.2 2.6 2.1 0.0
Q90 354.2 345.1 40.0 40.7 55.1 55.6 3.0 2.6 0.0
Q95 385.2 371.9 40.4 41.3 68.5 69.1 3.6 3.2 2.1

Mean 262.4 254.0 34.2 32.9 28.8 29.0 1.2 0.9 0.3
S.D. 67.5 65.2 5.0 6.3 18.9 19.0 1.4 1.1 1.5
Q5 371.7 357.7 24.1 22.9 1.2 1.2 0.1 0.0 0.0

Q10 414.9 396.4 26.9 25.6 1.8 1.8 0.4 0.0 0.0
Q15 449.1 428.1 29.0 27.8 2.2 2.2 0.6 0.1 0.0
Q20 481.0 458.0 30.7 29.9 2.6 2.6 0.8 0.4 0.0
Q30 537.8 514.1 33.7 33.1 3.6 3.6 1.3 0.9 0.0
Q40 596.5 574.0 36.1 35.7 4.9 4.9 1.7 1.4 0.0

Age 60 Q50 658.6 630.3 38.0 37.8 6.2 6.2 2.2 1.8 0.0
Q60 727.0 703.0 40.0 40.3 8.0 8.0 2.6 2.3 0.0
Q70 814.0 781.4 41.4 41.5 10.7 10.9 3.1 2.9 0.0
Q80 919.7 881.5 43.0 43.2 14.8 14.9 3.7 3.5 0.0
Q85 998.8 971.6 43.5 43.7 17.8 17.8 4.1 3.9 0.0
Q90 1,088.8 1,056.2 43.8 43.9 23.2 23.3 4.5 4.3 0.0
Q95 1,284.5 1,233.6 44.1 44.2 34.1 34.4 5.1 5.0 0.0

Mean 719.2 693.4 36.7 36.3 10.3 10.3 2.3 2.0 0.0
S.D. 293.2 286.8 6.4 6.9 12.2 12.3 1.6 1.6 0.5
Q5 833.9 790.6 25.6 25.0 0.2 0.2 0.3 0.0 0.0

Q10 974.0 923.9 28.8 28.3 0.3 0.3 0.5 0.3 0.0
Q15 1,085.7 1,033.8 31.3 30.9 0.5 0.5 0.8 0.6 0.0
Q20 1,188.3 1,131.1 33.3 33.1 0.6 0.6 1.0 0.8 0.0
Q30 1,385.0 1,325.8 36.7 36.6 0.9 0.9 1.5 1.3 0.0
Q40 1,587.2 1,523.0 39.5 39.4 1.2 1.3 1.9 1.8 0.0

Age 80 Q50 1,807.7 1,735.4 42.1 42.3 1.7 1.7 2.3 2.2 0.0
Q60 2,058.9 1,983.1 44.5 44.6 2.4 2.4 2.8 2.7 0.0
Q70 2,378.9 2,292.7 46.1 46.4 3.4 3.5 3.3 3.2 0.0
Q80 2,796.1 2,710.4 49.2 49.1 5.5 5.6 3.8 3.7 0.0
Q85 3,098.0 3,005.5 49.7 49.5 7.7 7.7 4.1 4.0 0.0
Q90 3,519.8 3,413.2 49.9 49.7 11.6 11.8 4.5 4.4 0.0
Q95 4,265.4 4,150.1 50.1 49.8 19.4 19.7 5.0 5.0 0.0

Mean 2,084.7 2,012.1 40.7 40.6 4.6 4.6 2.4 2.3 0.0
S.D. 1,155.6 1,132.5 7.9 8.0 8.4 8.5 1.5 1.5 0.2
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4.3.4 The Economic Costs of the FUL and the LUL Cases

Our analysis of the conditional structure of optimal portfolios in Section 4.3.2

demonstrates that optimal portfolios across the FUL and LUL cases can greatly differ

when the basis-to-price ratio is around one. The lifetime portfolio analysis of Section

4.3.3 partially mitigates the differences though — over an investor’s life, she typically

holds stock positions with significant embedded gains regardless of the FUL or LUL

assumption. However, optimal wealth distributions and taxes collected do differ.

We quantify the economic significance of the difference between the FUL and the

LUL cases using a measure called wealth change. The wealth change is the required

relative change in wealth for a 20 year old NCGT investor to be indifferent between

two scenarios: a) switching to capital gain taxation with no embedded gains and zero

carry-over loss (the LUL case); b) remaining untaxed on capital gains. If the wealth

change is negative, it implies that the investor is worse off when forced to pay capital

gain taxes. A positive wealth change implies that the investor is better off paying

capital gain taxes as compared to being untaxed. Our measure of the cost of taxation

is in contrast to most of the existing literature (Constantinides (1983); Dammon et al.

(2001); Garlappi, Naik, and Slive (2001)) as we do not measure tax costs relative to an

accrual-based capital gain taxation system where all gains and losses are marked-to-

market annually. Instead, our wealth change measure is meant to capture the change

in an investor’s welfare by imposing a capital gain taxation scheme as compared to

facing no capital gain taxation.

The Base Case

Under the FUL assumption, the wealth change of the Base Case shows a striking

feature that an investor, not currently taxed on capital gains, would actually prefer

to switch to paying capital gain taxes and the benefit of switching is equivalent to

increasing her current wealth by 2.2% and staying untaxed. This counterfactual welfare

result is driven by the stream of cash flows generated from the tax rebates. The same
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is not true for the LUL investor since the wealth change, -0.4%, is a negative value; i.e.,

switching to paying capital gain taxes is equivalent to decreasing her current wealth

by 0.4%. Overall, imposing the FUL assumption exaggerates the investor’s welfare by

2.6% compared to the more realistic assumption of LUL.

Comparative Statics

Increasing the capital gain tax rate to 30% amplifies the difference between the

FUL and the LUL wealth changes from 2.6% to 4.0%. As the capital gain tax rate

increases, the FUL wealth change increases to 3.6%. In contrast, the LUL wealth

change remains unchanged at -0.4%. The increasing wealth change under the FUL

case demonstrates the increased importance of the tax loss selling option in driving

optimal portfolio decisions.

When the investor’s risk aversion rises in the Higher Risk Aversion Case, the

investor holds less equity and the gap between the FUL and the LUL wealth changes

is reduced to 1.2%. The Two Assets Case has similar results as the Base Case. The

counterfactual behavior of the FUL investor is justified again by a positive wealth

change of 2.0%. The LUL wealth change, -0.6%, remains negative.
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Chapter 5

Conclusions and Directions for Future Research

I develop a functional-approximation-based framework to solve high-dimensional

stochastic control problems under general constraints by combining dynamic program-

ming, the method of Lagrange multipliers, meshfree discretization and interpolation

of a high-dimensional state space, and functional approximations of conditional ex-

pectations. To improve the accuracy of the conditional expectation approximation, I

introduce the test region iterative contraction (TRIC) method. The basic idea is to

approximate the conditional expectation using a second order polynomial basis within

an approximation region, whose size is contracted iteratively.

The functional-approximation-based framework is general enough to solve a large

class of high-dimensional discrete-time stochastic control problems arising from Fi-

nance, Economics, and other fields. I illustrate the capabilities of the method in two

applications from Finance. The capability to handle constraints is demonstrated in

the first application, where an investor chooses an optimal portfolio and consumption

stream while facing margin constraints and receiving a non-tradable income stream.

The second application focuses on the problem of high-dimensionality of the state space

and the problem of singularity of the control space by considering a dynamic portfolio

and consumption choice problem with capital gain taxation and multiple risky assets.

The functional-approximation-based framework can be extended in many direc-

tions. First, the development of the TRIC method is far from complete. The method

depends on many inputs which can take arbitrary values. For example, the rule to

contract and enlarge the test region, the shape of the test region, the number of test
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solutions, the iteration stopping criterion, etc. How do the complexity and the accu-

racy of the algorithm depend on these inputs? Is there any optimal way of choosing

these inputs? The convergence and the speed of convergence of the TRIC method

also need to be demonstrated. Second, the process of fitting a set of radial basis

functions to the discretized state space can be implemented using different machine

learning techniques. Instead of separating the discretization (sampling) step from the

interpolation (learning) step as described in this work, an alternative is to apply the

active learning technique and iteratively query for new samples in the regions where

interpolation errors are relatively large. Third, as one of the main building blocks of

the functional-approximation-based framework, the meshfree discretization and inter-

polation methods have been studied in many different fields. Other than the radial

basis function method described in this work, there exist other meshfree methods, for

example, the moving least squares method and the continuous blending method. Are

these methods more appropriate for the purpose of approximating the value functions

of stochastic control problems? I plan to address these issues in future research.
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labor income. Finance and Stochastics, 2:409–440, 1998.

Gregory E. Fasshauer. Meshfree Approximation Methods with MATLAB. World Sci-

entific Publishing Company, Singapore, 2007.

Kenneth R. French. Kenneth r. french-data library. 2008. URL http://mba.tuck.

dartmouth.edu/pages/faculty/ken.french.

Michael Gallmeyer, Stathis Tompaidis, and R. Kaniel. Tax management strategies

with multiple risky assets. Journal of Financial Economics, 80:243–291, 2006.

L. Garlappi, L. V. Naik, and J. Slive. Portfolio selection with multiple assets and capital

gains taxes. preprint SSRN eLibrary, 2001. URL http://ssrn.com/paper=274939.

Lorenzo Garlappi and Georgios Skoulakis. A state-variable decomposition approach

for solving portfolio choice problems. preprint SSRN eLibrary, 2008. URL http:

//ssrn.com/paper=1102604.

Hua He. Convergence from discrete- to continuous-time contingent claims prices. Re-

view of Financial Studies, 3:523–546, 1990.

Hua He and Henri F. Pagés. Labor income, borrowing constraints and equilibrium

asset prices. Economic Theory, 3:663–696, 1993.

Jonathan E. Ingersoll. Theory of Financial Decision Making. Rowman & Littlefield

Publishers, Lanham, Maryland, 1987.

K. Judd. Numerical Methods in Economics. MIT Press, Cambridge, Massachusetts,

1998.

79



Ralph S. Koijen, Theo E. Nijman, and Bas J. Werker. When can life-cycle investors

benefit from time-varying bond risk premia? preprint SSRN eLibrary, 2009. URL

http://ssrn.com/paper=795925.

Francis A. Longstaff and Eduardo S. Schwartz. Valuing american options by simula-

tions: A simple least-squares approach. Review of Financial Studies, 14:113–147,

2001.

Robert C. Merton. optimum consumption and portfolio rules in a continuous-time

model. Journal of Economic Theory, 3:373–413, 1971.

H. Roche, S. Tompaidis, and C. Yang. Asset selection and under-diversification with fi-

nancial constraints and income: Implications for household portfolio studies. preprint

SSRN eLibrary, 2009. URL http://ssrn.com/paper=1363910.

Robert J. Shiller. Long term stock, bond, interest rate and consumption data. 2003.

URL http://www.econ.yale.edu/shiller/data.html.

Social Security Administration. Period Life Table. 2004.

J.N. Tsitsiklis and B. Van Roy. Regression methods for pricing complex american-style

options. IEEE Transactions on Neural Networks, 12:694–703, 2001.

Luis M. Viceira. Optimal portfolio choice for long-horizon investors with nontradable

labor income. The Journal of Finance, 56:433–470, 2001.

80



Vita

Chunyu Yang was born in Baotou, Nei Mongol, China on 19 August 1979, the son

of Qingfei Yang and Xiangju Tian. He received the Bachelor of Engineering degree in

Engineering Mechanics from Tsinghua University, Beijing, China in 2002, the Master

of Science degree in Engineering Mechanics from Iowa State University in 2003, and

the Master of Science degree in Statistics from Iowa State University in 2004. Upon

graduation he joined the doctoral program of Risk Analysis and Decision Making at

the Information, Risk, and Operations Management Department, McCombs School of

Business, the University of Texas at Austin.

Permanent address: Shao Xian 29-26-46, Baotou
014010 Nei Mongol
P.R. China

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

81


