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Abstract 
 

Simulation Study of Preformed Particle Gel for Conformance Control 

 

Pongpak Taksaudom, M.S.E. 

The University of Texas at Austin 

 

Supervisor: Kamy Sepehrnoori 

 

Conformance control has long been a compelling subject in improving waterflood 

oil recovery.  By blocking the areas previously swept by water, subsequently injected water 

is allowed to sweep the remaining unswept portions of the reservoir and thereby increase 

the ultimate oil recovery. One technique that has received a great deal of attention recently 

in achieving this in-depth water shut-off is crosslinked gel injection. However, processing 

and predicting the performance of these gels in complex petroleum reservoirs is known to 

be extremely challenging. A model that accurately represents the reservoir features, 

chemical properties, and displacement mechanisms is, therefore, required. 

In this study, we further developed the UT in-house numerical reservoir simulator, 

branded as UTGEL. Our first focus was to enable UTGEL to simulate a new type of 

temperature-resistant and salt-tolerant pre-crosslinked swellable particle gel, known as 

Preformed Particle Gel or PPG. A series of numerical simulations have been conducted to 

match with experimental data and generate parameters for full field scale simulation. Five 

laboratory experimental matching attempts were successfully performed using the UTGEL 

simulator in this study. The matched experiments included a fracture model, two sandpack 

models, a sandstone coreflood experiment, and a parallel sandpack model  

The second focus of this study was to investigate the applications of PPG in 

blocking high-permeability layers, fractures, and conduits. A number of synthetic and 

actual field cases were generated to study the performance of PPG in (1) reservoirs with 
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various layered permeability contrasts, from extremely low to extremely high permeability 

contrasts, (2) reservoirs containing extensive conduits or channels, and (3) real field cases 

where heterogeneity had been identified unfavorable to the waterflood efficiency. The 

simulation outcomes indicated significant incremental oil recovery from PPG treatment 

ranging from less than 5% to almost 30%. A number of sensitivity analyses were also 

conducted to provide some insights on the optimal PPG treatment design. 

Lastly, to enhance the capability of UTGEL in simulating gel transport in diverse 

scenarios, a novel Embedded Discrete Fracture Modeling (EDFM) concept was 

implemented into UTGEL in this study, allowing multiple sets of fracture planes and 

conduits with dip angles and orientations to be modeled and simulated with gel treatments 

for the first time with a rather computationally inexpensive method. Although the 

developed simulator requires further improvement and validation against wider reservoir 

and fluid conditions, the representative results from a number of generated models in this 

study have suggested another step forward towards achieving realistic reservoir modeling 

and advanced gel transport simulation.  
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Chapter 1: Introduction 

 

Sweep inefficiency has been identified as one of the most important reasons for 

lower-than-expected waterflood recovery. Oil-bearing rocks generally comprise many 

layers of varying permeability. During a waterflood process, layers with high 

permeability often perform as channels transporting a large fraction of displacing fluid 

(typically less viscous than oil i.e. brine, freshwater). Consequently, layers with lower 

permeability are not efficiently swept and the corresponding oil remains trapped.  

 

Over the recent few decades, similar to many innovations adopted by the Oil and 

Gas industry, the practice of conformance control to improve waterflood sweep 

efficiency has been endorsed and has evolved greatly with advances in technology. 

Conformance control, although short-term in nature, can be more economical than typical 

Enhanced Oil Recovery or EOR applications. This is because conformance control assists 

in reducing water cut by effectively treating only minor areas of a high permeability 

zone; for instance, natural fracture conduits (Borling, 1994). Gel treatments have proven 

to be the new cost-effective methods for improving waterflood recovery by targeting both 

formation heterogeneity and an adverse mobility ratio. In fact, these treatments have been 

successfully applied in several mature fields encountering waterflood conformance 

problems; namely, Daqing Oilfield in China (Liu, et al., 2006), Minas Field in Indonesia 

(Pritchett, et al., 2003), and San Jorge Gulf of Argentina (Muruaga, et al., 2008).  

 

Preformed Particle Gel, or PPG, is a new type of temperature-resistant and salt-

tolerant pre-crosslinked swellable particle gel (Bai, et al. 2004, 2007, and 2013). Small 

amounts of these gels can be injected to block high permeability zones, divert the water 

to other regions of the reservoirs, and decrease the portion of bypassed oil. The distinct 

advantages of PPG involve its deeper penetration compared to bulk- or polymer gels and 
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the ability to control its intrinsic properties (e.g. size, strength, and thermal stability) prior 

to injection, unlike other types of microgels. 

 

Despite the straightforward concept, a successful gel treatment requires a 

comprehensive understanding of the reservoir and fluid parameters. The ability to model 

the behavior of injectants in-situ in a reservoir environment is necessary to optimize the 

treatment. In the past few years, such a capability has been developed with mathematical 

models proposed to characterize the propagation of gels in addition to typical fluids. 

However, previous works have only focused on polymer bulk gel (Kim, 1995), colloidal 

dispersion gel or CDG (Abdulbaki, 2012), and thermal/pH sensitive polymers 

(Onbergenov, 2012). Thus, an efficient model is desired to characterize PPG propagation 

through given reservoir formations. 

 

In this research we present an inclusive simulation study of PPG behaviors from 

laboratory experiment history matches to field-scale simulations, not only in porous 

media but also through fractures and conduits. Opening with a literature review of 

conformance control and gel treatments, Chapter 2 describes the concept of waterflood 

sweep efficiency and how the reservoir heterogeneity creates a problem, which leads to 

the use of polymer, polymer gel, and preformed particle gel or PPG for conformance 

control. Chapter 3 provides a concise description of the developed in-house reservoir 

simulator used in this study, UTGEL. A gel transport module developed in particular for 

PPG simulation was also presented in this chapter.  In Chapter 4, PPG simulations using 

UTGEL was validated by a series of experimental data obtained from the Petroleum 

Engineering laboratory at Missouri University of Science and Technology. In Chapter 5, 

synthetic field-scale cases were generated to analyze and evaluate PPG performance in 

diverse scenarios; namely, layered reservoir models with different permeability contrasts, 

and a couple of reservoir models containing large high permeability conduits. In Chapter 

6, a variety of optimization studies of PPG treatments were finally performed with actual 

field data. The simulation results indicated that a well-designed PPG treatment could 



3 

 

result in a significant increase in oil recovery, which was comparable to CDG and bulk 

gel treatments. However, further development works are required for further validation of 

UTGEL against wider ranges of reservoir and fluid constraints. A history match of an 

actual field performance of PPG treatment would highly benefit the study. Added as an 

extra chapter of this study, Chapter 7 presents a first-time integration of comprehensive 

gel transport modules and a novel discrete fracture modeling. By implementing a novel 

approach of Embedded Discrete Fracture Modeling (EDFM) into UTGEL, both (1) gel 

rheological and transport properties; such as shear thinning viscosity, adsorption, 

permeability reduction, and inaccessible pore volume, and (2) multiple sets of fractures 

with whichever dips and orientations were able to be captured all together in a numerical 

reservoir simulation. A number of synthetic cases were generated to verify as well as 

demonstrate the benefits of the incorporation of EDFM into UTGEL. The extensibility of 

this work could provide a further step in achieving better modeling of reservoirs and 

chemical treatments. 
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Chapter 2: Literature Review 

 

To illustrate how gel technology is important in improving waterflood recovery, it 

is essential to understand the fundamental concepts of waterflood sweep efficiency, what 

the critical problem is, and why polymer and, later, gel technologies have been employed 

to improve waterflood recovery. This chapter reviews the importance of waterflood 

sweep efficiency; a brief summary of why polymer and gel are needed for conformance 

control; what are the difference between polymer, polymer gels, and microgels; and 

finally, preformed particle gels or PPG in specific. 

2.1. Waterflood Sweep Efficiency 

 

By far, the most widely used method for increasing oil recovery in petroleum 

industries has been waterflooding. In reservoirs with favorable mobility ratios, 

waterflooding can yield substantial incremental oil recovery when compared to primary 

depletion. A typical successful waterflood project can increase oil recovery from the 

range of 5% to 30% of the initial oil-in-place, which is normally seen under primary 

recovery, up to the range of 30% to 70% of the initial oil-in-place.  

 

In waterflood reservoir management, one of the computed parameters typically 

used to define the effectiveness of the waterflood implementation is sweep efficiency (E). 

Sweep efficiency is a product of areal sweep efficiency (EA), vertical sweep efficiency 

(EI), and local displacement efficiency (ED):   

          …………………………….(2-1) 

 

Areal Sweep Efficiency (EA) represents the fraction of area that the water 

contacts in the reservoir. It depends mostly on the degree of reservoir 

compartmentalization, waterflood pattern, and well spacing. 

Vertical Sweep Efficiency (EI) represents the fraction of a formation on a vertical 

plane that the water contacts in the reservoir. It depends primarily on the degree of 

reservoir stratification. Composition, porosity, and permeability of the strata can all effect 
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vertical sweep efficiency. Thin, high permeability channels in stratified reservoirs can 

prevent efficient flooding of other zones. This results in lower oil production and 

increased water production.  

Displacement Efficiency (ED) relates to the amount of oil which water displaces 

in the invaded zone i.e. overcomes the capillary pressure that traps the oil which depends 

on interfacial contact.  

The causes of poor sweep efficiency, which often results in early breakthrough, 

excessive production of water, and thus, low waterflood recovery, can be largely 

identified into two categories: 

 

1. Reservoir heterogeneity 

The main challenge to oil recovery in waterfloods is reservoir heterogeneity. It is 

fundamentally any non-uniformity in a dynamic reservoir, including variability in 

permeability and porosity, anisotropy, fractures, faults, solution channels, 

interconnected vugs, karstic features, faults, and compartmentalization. Reservoir 

heterogeneity can be described as the quality of the medium which causes the flood 

front (the boundary between the displacing and displaced fluids) to spread as the 

displacements proceeds (Lake, 1989). The most popular means to express the 

heterogeneity of a reservoir is by calculating the Dykstra Parsons coefficient, a static 

measure based strictly on permeability variation. A reservoir is considered to be 

highly heterogeneous if a large fraction of the flow occurs in a small fraction of the 

pore space. In general, the Dykstra Parsons coefficient of any reservoir is in the 

range of 0.3-1.0 where the higher Dykstra Parsons coefficient correlates to the higher 

heterogeneity (Sahni, et al., 2005). 
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2. Unfavorable mobility ratio 

Mobility ratio (M) is defined as mobility  
 

 
  of the displacing phase (generally 

water) divided by the mobility of the displaced phase (generally oil). For 

waterfloods, the mobility ratio can be calculated as following: 

  
             

           
  

 
  
  

  

 
  
  

 
  

    

    

 =        ……………………..(2-2) 

An unfavorable mobility ratio implies the situation where it is more favorable for the 

displacing fluid to flow compared to the fluid being displaced, for example, the 

displacing fluid has lower viscosity and higher relative permeability. A mobility 

ratio of value more than one is thus considered unfavorable and can lead to a non-

uniform areal and vertical displacement or viscous fingering. 

 

2.2. Polymer Technology 

 

It is safe to say that all petroleum reservoirs are heterogeneous with varying 

degrees of heterogeneity. Therefore, the sweep efficiency of the waterflood can vary 

significantly between reservoirs. With the two causes mentioned previously, waterflood 

recovery can be, more often than not, lower than expected.  

 

Polymer injection or polymer flooding was introduced primarily to further 

enhance the oil recovery from waterfloods by addressing adverse mobility ratio. Polymer 

flooding increases the viscosity of water and thus lowers the water mobility, which leads 

to increasing fractional flow of oil (Figure 2-1).  



7 

 

 

Figure 2 - 1. Example of viscous fingering due to unfavorable mobility ratio 

 

The commercially attractive polymers for flooding can be classified into two 

classes; polyacrylamides and polysaccharides. Some common polymers that have been 

used extensively in the field are Xanthan gum, hydrolyzed polyacrylamide (HPAM), and 

copolymers of acrylic acid and acrylamide (Lake, 1996). 

The primary goals of any polymer floods are primarily to increase water viscosity 

and to minimize the polymer loss due to adsorption (Clemens, et al., 2011). By reducing 

the high conductivity of the displacing fluid with polymer injection, injection fluid can be 

further distributed to the less-swept regions of the reservoir and thus the sweep efficiency 

of the waterflood can be improved. In designing a polymer flood, the drainage volume of 

the selected well clusters should be well understood in order to minimize water cut at the 

producing wells and maximize the total oil recovery (Teklu, et al., 2013).  

However, the application of polymers in reservoirs with extreme permeability 

contrasts (i.e. fractured reservoirs) can be relatively limited. For reservoirs where 

extremely high permeability streaks or channels exist, improving a mobility ratio by 

polymer injection may not serve as an effective means to prevent low-recovery 

waterfloods. For such cases, conformance control to improve the areal and vertical sweep 
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efficiencies is of great importance. Also, by crosslinking and gelling the polymer, its 

strength and stability can be improved and better controlled. These lead to the 

technologies of crosslinked polymer gels and microgels.  

 

2.3. Polymer Gel and Microgel Technologies 

 

In extent to the polymer technology, polymer gel and microgel technologies were 

developed primarily to increase the overall vertical and areal sweep efficiencies of the 

post-treatment waterfloods by in-depth fluid diversion. A relatively small amount of 

strong plugging agents or gels are injected to block high permeability zones, and thus 

improving the injection profile by diverting the water to other regions of the reservoirs to 

displace a portion of bypassed oil (Figure 2-2). The main objective of the gel treatment is 

to reduce the water production without significantly impacting the oil productivity. 

 

Figure 2 - 2. Example of early water breakthrough due to poor waterflood sweep efficiency 

 

The primary distinction of polymer gel and microgel from polymer is the 

crosslinked structure. Gelling system consists of polymers and a crosslinker. Crosslinkers 

enable polymers to form a large network (gel network), which have superior ability in 

plugging pores than polymer alone does. The advantages of gels over polymers can be 

summarized as follows: 
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1) Due to the crosslinked structure, gels are more rigid or less penetrable than 

linear polymers. Their rheological behavior suggests that they are intermediate 

between linear polymers and hard spheres (Rousseau, et al., 2005). 

2) Gels can be soft and deformable yet hold their shape like a solid. Their 

properties (i.e. strength, softness, stability) are controllable by manipulating 

the microstructure of polymers, crosslinkers, and surrounding liquids (Grillet, 

et al., 2012) 

3) Gels can potentially achieve more significant, longer lasting, and more 

optimizable permeability reduction than polymers. The study indicated that 

with similar RF values designed, the crosslinked colloidal dispersion gel (or 

CDG) could result in a much higher RRF value when compared to the 

uncrosslinked polymer (Norman, et al., 1999). 

4) Compared to polymers, gels can move more deeply into formations. The 

efficiency of gels in entering deep inside the porous media is related to their 

swelling and elastic deformation. For reservoirs with high degrees of 

crossflow, in-depth treatments are preferable to near-wellbore treatments. 

5) The costs of gel treatments can be potentially cheaper than those of polymer 

treatments (Cuong, et al., 2011). 

6) Gels can be removed after decreasing of excess water production (Cuong, et 

al., 2011). 

 

A laboratory study of polymer gels for water shutoff in fractures conducted by 

Sydansk et al. (2004) revealed that water and oil usually „wormhole‟ through the 

treatment gels that reside in fractures resulting in large residual resistance factors. 

However, the gel used in this study, chromium(III) carboxylate/acrylamide-polymer 

(CC/AP)), was characterized as total-shutoff or sealing agents as large permeability 

reduction was imparted to not only water but also oil flow. Therefore, this type of water 

shut-off would be beneficial only if the gels are selectively placed in the water-producing 

fractures. To improve the waterflood recovery via conformance control, it is more 
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favorable for the injected polymers or gels to exhibit disproportionate permeability 

reduction (DPR) mechanism, which is the ability to reduce the permeability to water flow 

to a much greater extent than to oil or gas flow. 

Some of the crosslinked gels used to control water production have been 

polyacrylamides-based polymers; e.g. polyacrylamide homopolymer (PAM), 

polyacrylamide tertiary butyl acrylate copolymer (PAtBA), or partially hydrolyzed 

polyacrylamides (PHPA), crosslinked with an inorganic crosslinker; e.g. 

chromium(III)carboxylate, or an organic crosslinker; e.g. polyethyleneimine (PEI). At 

high temperatures, a study has revealed that organically crosslinking might be preferred 

due to its covalent bonding. Inorganically crosslinked gels rely mainly on the ionic 

interaction between the positively charged trivalent cation (i.e. Cr
3+

) and the negatively 

charged carboxylates which can be weakened greatly in high temperature environment 

(Al-Muntasheri, et al., 2009) 

Fundamental gelling properties include gelling time, final gel strength, and depth 

of gel penetration. These properties usually depend on many factors such as shear stress 

(both in surface and near wellbore), physic-chemical environment of the formation 

including pH, salinity, temperature, etc. All of these properties and environmental factors 

are important in achieving a reliable gel simulation and, consequently, a successful gel 

treatment design. The operational aspects of a gel treatment than often need to be 

designed include zonal isolation, types of gel treatments, shut-in time, gel injection rate, 

and amount of gels to be injected. 

Some of the most recent gel treatments or similar permeability-reducing materials 

that have been developed include: 

 A new PPG enhanced surfactant-polymer system  (Cui, et al., 2011) 

 A novel polymer, which first was injected into fractures or fracture-like 

features as a millimeter-sized particle gel acting as a plugging agent, and then 

dissolved into polymer solution at a designated time due to reservoir‟s 

temperature (Bai, et al., 2013) 
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 A new profile control gel which can resist the alkali environment has also 

recently been developed to improve the ASP flooding in a strong alkali 

environment (Wang, et al., 2013). 

Two characteristic factors often used to describe the recovery from chemical 

flooding and the DPR effect are Resistance Factor (RF) and Residual Resistance Factor 

(RRF): 

 

1. Resistance Factor (RF) is the ratio of the injection brine mobility to the polymer 

mobility in the same reservoir rock: 

 

    
                          

                            
   

 
  
  

 

 
  

  
 

                       ....……..(2-3) 

 

2. Residual Resistance Factor (RRF) is the ratio of the water flow resistance  
  

  
  after 

the chemical injection to the water flow resistance before the chemical injection. It 

can be expressed in terms of water mobility  
  

  

  as follows: 

 

     
                                                

                                             
  

 
  
  

 
       

 
  
  

 
     

     ………..(2-4) 

 

These two characteristic factors can either be determined from laboratory core 

floods or empirical data in the field. In the current version of the numerical simulation 

used in this study (to be discussed in the next chapter), for PPG treatment, two explicit 

parameters are required as input parameters in calculating the RF. The two parameters are 

either obtained from the laboratory experiments or used as varied parameters for history 

matching. 
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As the focus of this study is on the preformed particle gel (PPG) which is 

classified as a type of microgels that is preformed prior to injection, it is worth looking at 

the distinct differences, first, between polymer gels and microgels, and second, between 

in-situ gels and preformed gels. 

 

Polymer Gels (Bulk gels) and Microgels:  

 The primary difference between polymer gels and microgels is the concentration 

of reactants used in their respective formulations. Microgels are formed using relatively 

lower concentrations of polymer and crosslinker when compared to polymer or bulk gels. 

Therefore, they contain many separate polymer colloids instead of large branched 

polymers spanning the entire gels. As microgels are purposely designed for water shutoff 

treatment, they reduce the permeability disproportionately by forming thick absorbed 

layers that are soft enough to not affect the oil permeability while decreasing the water 

permeability (Chauveteau, et al., 2004). In addition, unlike polymer-based system, when 

injected into a multilayered reservoir, microgels invade the low-permeability zones 

significantly less due to the low viscosity of their solutions and Steric effects (Cozic, et 

al., 2009).  

Chauveteau et al. have summarized characteristics that have an impact on the 

performances of microgels as follows (Chauveteau, et al., 2004): 

1) Mean size and distribution – determine the capability of microgels in reducing 

water permeability and the quality of its self-placement between different layers 

in the absence of zonal isolation (bullhead treatment). 

2) Internal deformability or softness – to be a good DPR product, microgels must be 

deformable enough to be collapsed onto the pore surface when they are subjected 

to the capillary force. The softness of microgels is proportional to effective 

crosslink density. It is usually quantified by an internal elastic modulus. 

3) Interaction properties – either between microgels and rock surface or between 

microgels themselves. The attractive interaction between the microgels and the 

rock surface affects the adsorption of the particles while the attractive or repulsive 
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interaction between the microgels themselves induces either a multilayer or 

monolayer gel formation on the rock surface. In some cases, multilayer of gel 

formation could lead to plugging the porous media. 

4) Long term stability under reservoir conditions – depends on the purity of the 

chemical species used during the production process and their crosslink density. 

5) Non-toxicity – this is as per environmental protection requirement. 

 

In summary, microgels can provide a number of advantages over polymer or bulk 

gels; namely, better injectivity, deeper gel penetration, higher residual resistance 

permeability in high permeability channels, and the ability to selectively penetrate the 

highest permeability layers when properly designed. 

To date, there are different types of microgels developed; for example, preformed 

particle gel or PPG, colloidal dispersion gel or CDG, pH-sensitive microgels, temperature 

sensitive microgels, microgels for relative permeability modification (RPM), and nano-

sized gels. 

 

In-situ Gel and Preformed Gels:  

 

With in-situ gel treatments, the mixture of polymer and crosslinker called gelant 

is injected into the formation and react to form gel at reservoir conditions. This allows 

some major drawbacks such as inability to control gelation time, gelling uncertainty due 

to shear degradation, and change of gelant compositions and dilution by formation water. 

By mixing the polymer and the gelant on the surface, the preformed gel treatment, 

therefore, overcome these disadvantages as it allow more control of gelation time and gel 

strength to be achieved prior to injection. 

A flow experiment of gelled-polymer in a long conduit conducted by Stan et al. in 

2009 (McCool, et al., 2009) suggested that flow of preformed gel was characterized by 

high flow resistance in the entrance section while flow of in-situ gel was characterized by 

increasing in flow resistance as gelation occurs, followed by flow at steady resistant 

value.  
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2.4. Preformed Particle Gel (PPG)  

 

Preformed Particle Gel, or PPG, is a new type of temperature-resistant and salt-

tolerant pre-crosslinked swellable particle gel which is specifically developed for oilfield 

application of enhancing oil recovery by conformance control. It is an improved super 

absorbent polymer (SAP) consisting of dried, cross-linked, polyacrylamide powder (Bai, 

et al., 2013). SAPs are a unique group of materials that can absorb over a hundred times 

their weight in liquids and do not release the absorbed fluids easily under pressure. They 

are primarily used as absorbent aqueous solutions for diapers, feminine hygiene products 

and agriculture industry. However, due to their fast swelling time, low strength and 

instability at high temperature, the traditional SAPs in the markets do not meet the 

requirements for conformance control. A series of new SAPs called preformed particle 

gels (PPG) was developed later to suit the utilization of enhanced oil recovery via 

reservoir conformance control. According to Coste et al. (Coste, et al., 2000), PPG can 

contribute to the increase in oil recovery by two mechanisms:  

1) Inducing a resistance to the water flow in the high permeability layer and diverting 

the flow to the low permeability layer 

2) Pushing the oil remained out of  the pore space by entering the pore bodies 

 

Synthesis and Fabrication of PPG 

Bai et al. described the synthesis and fabrication of PPG in a number of papers 

(Bai, et al., 2004 and 2007).  The procedure started with synthesizing bulk gel from an 

acrylamide monomer, a crosslinker, an initiative, and additives at room temperature. 

Then, the bulk gel was cut into small pieces with a cutting machine and dried at a high 

temperature to form xerogel particles. Finally, the dried particles were ground and sieved 

to meet the requirement of specified treatments. Shown in Figure 2-3 is a schematic of 

PPG synthesis and fabrication process. 
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Figure 2 - 3. A schematic of PPG synthesis and fabrication process (Bai, et al., 2007) 

 

Figure 2-4 illustrates how dried PPG particles swell after contacting water. The 

swelling particles are elastic and deformable, thus, can be injected into reservoirs to fully 

or partially control the fluids flow in high permeability, fractures, or fracture-like 

channels. 

 

Figure 2 - 4. Dried and swelling PPG particles (Bai, et al., 2014) 

 

The swelling capacity of PPG (A) is defined as follows: 

   
        

  
              ……...…………………..(2-5) 

where     is the volume after swelling and    is the volume of the dry gel before 

swelling.  
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Propagation Mechanisms of PPG 

Based on the experimental studies on behavior and characteristics of particle gel 

transporting through porous media, PPG can be treated as one additional component in 

the aqueous phase and the simplified treatment can be characterized upon the following 

physical considerations (Bai, et al., 2004; 2007): 

1. Flow Pattern: PPG particle can transport through a porous media in six behavior 

patterns  

1.1) Direct Pass: when a particle is smaller than a pore throat, it can move straight 

through a pore throat once displaced by water. 

1.2) Adsorption:  when a particle is so small that the attraction force between rock 

and particle surface is dominant, it will be adsorbed or retained onto a rock 

surface.  

1.3) Trap:  a particle is blocked at the entrance of a pore throat and cannot move 

forward. 

1.4) Deform and Pass: due to the displacement force applied by flowing water, a 

particle changes its shape and passes through a throat. It is possible that the 

deformed particle may revert to its original shape after entering a larger pore. 

1.5) Shrink and Pass: due to the displacement force applied by flowing water, 

some water is squeezed from a swollen particle reducing the particle size so the 

particle is able to pass through the pore throat. It is possible that the shrunken 

particle may reabsorb some water from the pore space and revert to its original 

size. 

1.6) Snap-off and Pass: a particle is broken into smaller particles by a pore throat, 

and the smaller particles continue to pass through pore throats. 

The last four patterns happen when a particle size is larger than a pore-throat 

size. In reality, several patterns occur concurrently when PPG suspension is injected 

into a porous media. The dominant pattern depends primarily on the diameter ratio of 

the swollen PPG particle and the pore throat, the strength of the swollen PPG particle, 

and the fluid driving force. 
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2. Threshold Pressure Gradient for Elastic Particle Flow: unlike other traditional 

particles, swollen PPG particles are deformable, and they can pass through the pore 

throats smaller than particles themselves. However, the particle movement requires a 

threshold pressure gradient, i.e., the minimum pressure gradient to force the particles 

to move through a porous medium. The threshold pressure gradient depends mainly 

on the ratio of particle diameters to average pore size and the strength of gel particle. 

At the same ratio of particle to pore throat size, hard particle has higher threshold 

pressure gradient than soft particles.  

3. Particle Retention in Porous Media: the particles are not completely carried by the 

water flow as part of them will retain in the porous media due to gravitational 

deposition, adsorption, or interaction with pore surfaces. The retention density 

increases with the particle concentration and the hard particles have a higher retention 

than the soft ones as it is harder for them to move through pores and pore throats. 

Properties of PPG 

To date, a series of PPG has been developed for the purpose of conformance 

control. Bai et al. reported several extensive reviews of PPGs for conformance control 

that covered from PPGs mechanisms to field applications. Briefly summarized below are 

the typical features of PPG (Bai, et al. 2004, 2007, 2008, and 2013): 

1. Size: adjustable from µm to cm (after swelling). It is recommended that PPG 

be sized to neither penetrate into nor form a cake on the surface of the low-

permeability rocks. According to the experiments by Elsharafi (Elsharafi, et 

al., 2013), swollen particles cannot propagate through the porous media when 

the ratio of particle size to pore throat size is higher than 17. 

2. Swelling ratio in formation water: 30 to 200. PPG‟s swelling ratio can be 

correlated with the water salinity or brine concentration (Bai, et al., 2007). 

3. Salt resistance: all kinds of formation salts and concentrations acceptable 

4. Thermal stability: in excess of 1 year below 110 °C  
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5. Strength: adjustable with high strength product available as strong gels were 

preferable to weak gels when formation damage is concerned.  

Intrinsic properties of PPG are controlled by its synthesizing composition and its 

surrounding environment conditions, e.g. temperature, salinity, etc. High salinity results 

in a smaller swelling ratio. Increasing the temperature also results in swelling ratio 

increases.  

 

Advantages and Disadvantages of PPG 

 

The advantages of PPG for conformance control were inclusively studied by 

Coste et al. (2000), Bai et al. (2004, 2007, 2008, and 2013), Wu et al. (2008), Zhang, et 

al. (2010), and Elsharafi, et al. (2013). A summary of their work follows: 

1. Compared to traditional SAPs, PPG can be synthesized to have higher strength and 

stability with controllable swelling time. That is both strength and size of PPG can be 

tailored to suit variety of oilfield applications.  In other words, the damage or 

penetration caused by PPG on low-permeability, oil-rich zones could be effectively 

controlled by adjusting particle gel strength, particle size, and brine concentration. It 

was demonstrated that millimeter-sized PPG would not propagate through the 

formation zone with rock permeability less than a 300 mD approximately. 

2. As PPG is synthesized prior to contacting a formation, it overcomes many drawbacks 

inherent in in-situ gelation systems; for examples, uncontrolled gelation times, 

variations in gelation due to shear degradation, and gelant compositional changes 

induced by contact with formation minerals and fluids.  

3. Compared to other types of microgels and polymers, PPG is considered highly 

insensitive to hydrocarbon reservoir environments. It can be manufactured to resist 

the temperature as high as 120°C (250°F) and compatible with any kind of formation 

water. 
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4. In contrast to other traditional gels which are usually sensitive to salinity, multivalent 

cations, and H2S in the produced water, PPG is highly insensitive to those 

physicochemical properties. PPG suspension can be prepared using produced water, 

which is environmental friendly and beneficial in terms of freshwater saving.  

5. PPG treatment cost can be very attractive. The cost of material is approximately $2 

US/lb (Bai, et al., 2009). The operation and surface facilities for PPG injection are 

simple and straightforward. Generally, there is usually only one additional component 

during PPG treatment, which is the mixing tank for PPG. Therefore, the operating 

cost for PPG treatment is minimal.  

Nevertheless, it is not recommended to inject PPG in conventional porous media 

with low permeability. The injectivity of PPG is still questionable as its size is usually 

much larger than the conventional rock pore throats. Unlike the nano-sized particle gel, 

for instance, the BrightWater®  (Pritchett, et al., 2003; Frampton, et al., 2004), PPG can 

only be used to control conformance for the reservoirs with small fractures or high 

permeability channels. In addition, for the reservoirs with severe open channels or super-

high-permeability open fractures, there is still a possibility that PPG will be flushed out 

from producers. In some cases, injecting bulk gels or CDG could be considered as 

preferred options. 

Field Applications of PPG 

Among other types of microgels, PPG is considered more dedicated to treatments 

of fractures or very high permeability streaks. PPG can preferentially enter into fractures 

or fractured-like channels while minimizing its penetration into low permeable 

hydrocarbon zone. With the appropriate size and properties, PPG should be designed to 

transport through high permeability conduits and not penetrate into conventional 

permeability mediums. The minimized gel penetration in low permeable areas can result 

in significant reductions in the required gel volumes because fracture or fractured-like 
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channels usually comprise less than 10% of the reservoir volume (Bai, et al., 2008) and, 

more importantly, cause less damage on the overall productive oil zones. 

 

Since 1999, PPG or PPG combined with in-situ gels have been used to treat more 

than 4000 wells in mature oil fields by China (Bai, et al., 2013), Halliburton (Bai, et al., 

2009), Occidental oil company (Pyziak, et al., 2007), and Kinder-Morgan (Larkin, et al., 

2008). Although its mechanisms to control performance and its applied conditions were 

sometimes unclear, PPG has been applied for conformance control in mature oil fields in 

China, and most applications have been shown positive results (Liu, et al., 2006) 

 

  To date, the characteristics of reservoirs where PPG treatments have successfully 

been employed have been compiled (Bai, et al., 2013; Qiu, et al., 2014) as follows: 

 Reservoirs with natural fractures  

 Reservoirs without natural or hydraulic fractures 

 Reservoirs with CO2  flooding  

 Reservoirs with polymer flooding 

 Reservoirs with temperature: 30-110 °C 

 Reservoirs with formation water salinity: 2,900 - 300,000 ppm 

 

Some applications of PPG conformance control so far have been in high-salinity, 

high-temperature reservoirs, low-salinity, low-temperature reservoirs, reservoirs with 

sand production, applications in polymer flooding areas, applications in remediating large 

channels, fractures, and void conduit, applications in remediating unwanted 

communication in a CO2 flooding reservoir, etc. The study of PPG treatments in 655 

injection wells in China (Qiu, et al., 2014) revealed that there were no injection problems 

even in reservoirs without fractures and that even though not all applications had 

significant incremental oil produced, no negative effects were found from PPG injection.  
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PPG was also used in combined with polymer and surfactant in a chemical 

flooding system, Heterogeneous Combination Flooding System (HCFS) (Cui, et al., 

2011), where PPG can not only migrate and penetrate in porous medium, but also 

generate more significant volumetric sweep efficiency by the cycle of piling up-plug-

pressure rising-extending and deforming to pass through porous throats than the 

conventional polymer flooding to modify the existing dominant migration path.  
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Chapter 3: Numerical Model Description: UTGEL 

 

UTGEL (Delshad, et al, 2011) is a finite difference three-dimensional multiphase 

multi-component chemical composition reservoir simulator. It is developed at the Center 

for Petroleum and Geosystems Engineering of The University of Texas at Austin for the 

particular purpose of modeling chemical EOR processes of conformance controlling 

using different types of gels. The simulator comprises comprehensive modules 

established for gel rheological and transport properties such as shear thinning viscosity, 

adsorption, permeability reduction, and inaccessible pore volume. It consists largely of 

mass balance calculation and gel transport model. It is used to simulate a wide range of 

displacement processes in both laboratory and field scales. 

3.1. Mass Balance and Flow Calculation  

 

As each gridblock can possess different permeability and porosity, heterogeneity and 

variation in relative permeability and capillary pressure are allowed throughout the 

porous media. There are three fundamental equations used in this model for mass balance 

and flow calculation: 

1. The mass balance equation for each species 

The mass conservation equation for each component is expressed by overall volume 

per unit pore volume as 

 

  
                                    

  

   

              

                                                                                              …...…………………..(3-1) 

where 

    is the overall volumetric concentration of component  , 

   is the density of pure component  , 

   is the number of components, 

    is the concentration of component   in phase  , 
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     is the volumetric flux of phase  , 

        is the dispersive flux of component  , 

and    is the injection or production rate for component   per bulk volume  . 

 

The overall volumetric concentration of component   (or      can be computed as 

follows: 

                   for            

  

   

 

                                                                                                 ...……………………....(3-2) 

where 

   is the saturation of phase  , and     is the adsorbed concentration of component  . 

 

2. The energy balance equation 

The energy balance equation is derive by assuming that energy is a function of 

temperature only and energy flux in the reservoirs occurs by advection and heat 

conduction only. 

 

  
                     

  

   

                 

  

   

                      

……...………...………..(3-3) 

where 

  is the reservoir temperature, 

    and     are the rock and phase   heat capacities at constant volume, 

   is the phase   heat capacity at constant pressure, 

   is the thermal conductivity (assumed constant), 

   is the enthalpy source term per bulk volume, 

and    is the heat loss to formations     
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3. The pressure equation 

The pressure equation is developed by summing the mass balance equations, 

substituting Darcy‟s law for the phase flux terms, using the definition of capillary 

pressure, and noting that, for each phase, the summation of the volume concentration 

of all components is equal to one. 

 

   

  

  
         

  
                      

  
         

  

   

            
  
         

  

   

        

   

   

   

          .………...………………..(3-4) 

where 

      
   

  
      

   
    and total relative mobility with the correction for fluid 

compressibility is            
  

   
 , 

   is the total compressibility which is the sum of the rock (  ) and volume-

weighted component    
 ) compressibilities : 

 

          
    

   
             ..………...………………..(3-5) 

 

Treating gel particle as a solute in the aqueous phase, the mass balance equations 

are solved for water, oil, total divalent cation, and gel species. An overall mass balance of 

water and oil obtains the pressure of each fluid phase. And finally, the energy balance 

equation is used to determine the temperature. The number of components is variable 

depending on the application. 

 

The assumptions for developing flow equations were summarized by Goudarzi 

(Goudarzi, et al., 2013) as follows: 

1. Slightly compressible rock and fluid (no gas involved in the calculation) 

2. Darcy‟s law applied 

3. Ideal mixing 

4. Fickian dispersion with full tensor dispersion coefficient 

5. No flow and no dispersive flux across the impermeable boundaries  
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3.2. Gel Transport Model  

 

The transport ability of PPG through porous media is a function of many 

parameters including pore diameter, structure of PPG, its synthetic size, and salinity. 

There are two important properties for modeling PPG flow through porous media. They 

are permeability reduction factor and viscosity. As for the adsorption concentration of 

PPG, a Langmuir-type isotherm is used to describe the adsorption level of PPG, same as 

that of surfactant and polymer.  

1. Permeability Reduction Factor 

Permeability reduction factor is one of the most important parameters in modeling 

gelant flow in porous media. The effect of gel on aqueous-phase permeability 

reduction is taken into account through a residual resistance factor which is used for 

polymer flooding (see Equation 2-4). 

 

PPG particles are able to pass through the pores with specific conditions depending 

on the pore diameter, the structure of particles, and the particle size. The size of 

PPG particle changes with salinity as PPG swelling ratio is a function of salinity 

and PPG particles are defined as weak or strong particles by salinity.  

 

First, the swelling ratio and then swelled particle size are calculated after solving 

the pressure and concentration equations. Then, whether PPG particle is able to pass 

through the grid block containing the particle is determined by (a) the size of the 

particle and (b) the pore throat diameter of the grid block.  

 

(a) Swelling ratio or expansion ratio is the volume ratio of before and after the 

expansion of PPG particles. Bai et al. (Bai, et al., 2007) reported a relationship 

for swelling ratio as a function of salinity. They showed that the particles swell 

very fast within 60 minutes and the final swelling ratio is inversely proportional 
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to salt concentration. Higher salt concentration results in smaller swelling ratio. 

The equation for swelling ratio is presented as follows: 

            
                …………..…………..(3-6) 

where    and    are required input parameters in the software (corresponding 

to APPGS and PPGNS in INPUT files, respectively);    is swelling ratio, and 

     is effective salinity in meq per liter which takes into account the combined 

effect of anions and divalent cations. According to a laboratory test conducted 

by Bai in 2007 (Bai, et al., 2007), PPG particles move towards becoming strong 

particles as salt concentration increases. As the final swelling ratio is inversely 

proportional to salt concentration,    appears negative.  

(b) The average pore throat diameter is calculated using porosity and permeability 

of each grid block as the pore throat radius (  ) can be estimated by  

         
    

 
                       ………………………..(3-7) 

where the appropriate average permeability k is given by  

     
 

  
 
   

  
 
 

 
 

  
 
   

  
 
 

 
 

  
 
   

  
 
 

 
  

                           

                                                                                           ..………………………..(3-8) 

The conditions for passing PPG particle through the pore throats are set to be 

different for weak and strong PPG particles:  

 For weak PPG particles; If PPG diameter is less than 5.7 of pore throat diameter 

 For strong PPG particles; If PPG diameter is less than 1.3 of pore throat diameter 

If PPG can pass through the grid block, the permeability reduction factor is then 

calculated and the grid block permeability is modified. The degree of permeability 
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reduction depends on many factors, namely; gel type, molecular weight, shear 

effects, and rock properties. To date, the general equation for permeability 

reduction factor of PPG in UTGEL is based on Zhang et al.‟s experiment (Zhang, et 

al., 2010) as follows: 

          
            …..……………………..(3-9) 

where      is the permeability reduction factor,     and     are the required input 

parameters in the software (corresponding to APPGFR and PPGNFR parameters in 

INPUT files, respectively), and   is the flow rate in ft
3
/day. 

To ensure that permeability reduction remains during the post-waterflood injection, 

the residual permeability reduction is defined as follows: 

                                 …….………………..(3-10) 

where             is a model parameter and          is the maximum permeability 

reduction. 

2. Viscosity 

The viscosity of PPG suspension is a function of gel concentration, water viscosity, 

and shear rate.  At low shear rate, the viscosity for small microgel concentration 

below 2000 ppm is calculated using the Huggins equation (Shi, et al., 2011) 

 

                    
   

      ……………………..(3-11) 

 

where    is the effective viscosity of microgel solution at low shear rate,    is the 

solvent viscosity (usually is water),     is the zero-shear intrinsic viscosity, which 

characterizes the internal density of the microgel colloids,    is the Huggins 

constant, which characterizes the interactions of the microgel colloids in solution, 

and    is the microgel concentration, which is defined as the amount of microgel 
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per unit volume of solution and usually expressed in terms of mass per unit volume.  

The equation is re-written in terms of PPG model parameters as follows: 

 

                                              
         .……………..(3-12) 

 

where         and        are model input parameters, and      is the PPG 

concentration in aqueous phase. 

 

As the viscosity of gel decreases with increasing shear rate, the effective gel 

viscosity can be modified using Meter‟s equation (Meter, et al., 1964) as follows: 

         
  

     

   
    

     
 

                      …..…………..(3-13) 

and 

      
       

         
                             …..…………..(3-14) 

where  

  
  is the microgel solution viscosity at zero shear rate,  

     is the equivalent shear rate,  

      and    are model input parameters,  

    is the shear rate correction, 

     is the magnitude of flux for phase  ,  

    and    are the relative permeability and saturation of phase   respectively, and 

the appropriate average permeability    is, again, given by   

     
 

  
 
   

  
 
 

 
 

  
 
   

  
 
 

 
 

  
 
   

  
 
 

 
  

  ……………..(3-15)  
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Chapter 4: PPG Experiment History Matching 

 

In this chapter, the results of modeling and simulations of several experiments 

conducted at Missouri University of Science and Technology are presented. Five 

different experiments were successfully modeled and history matched with UTGEL 

conformance control reservoir simulator (December 2013 version): 

 

 CASE I: Water flow in an open fracture model 

 CASE II: Two-phase flow sandpack  

 CASE III: Two-phase flow coreflood  

 CASE IV: Two-phase flow sandpack with different PPG injection rates 

 CASE V: Two-phase flow using parallel sandpack  

 

Note that the history matches of CASE I and II using UTGEL had previously 

been implemented and presented (Goudarzi, et al., 2013). However, with the further 

developed version of UTGEL released in 2013, history matches of both cases were re-

performed in this study.  
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4.1. CASE I: Water Flow in an Open Fracture Model 

 

Objectives: Zhang et al. (2010) performed an experiment by constructing a transparent 

fracture model to visually track swollen PPG propagation through open fractures and 

water (brine) flow through PPG placed in fractures. Three factors; namely, injection rate, 

fracture width, and brine concentration, were investigated to understand how they impact 

PPG injection pressure.  

 

Materials and Experiment Setup: Figure 4-1 illustrates the flow chart of the experiment 

setup composed of two syringe pumps (one for PPG injection and the other for brine 

injection), one accumulator, and one fracture model. The fracture model was made of two 

acrylic plates with an O-ring rubber in between. The fracture width was controllable 

using bolts, nuts, and shims that held the two plates together. The acrylic plates were 

transparent so that the gel and brine movement could be clearly observed (see Figure 4-

2). There were inlet and outlet holds at each ends of the model for injecting and 

discharging the PPG and brine solution. Pressure transducers were connected at the inlet 

to record the injection pressure.  

 



31 

 

 

Figure 4 - 1. Open fracture experiment setup (Zhang, et al., 2010) 

 

 

Figure 4 - 2. left - PPG movement during gel injection into a fracture model,  

right - Brine movement during brine injection into a gel packed fracture model  (Zhang, et al., 2010) 
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Experimental Procedure: The experiments were conducted by first injecting brine into 

the fracture model. Then PPG suspension was dispensed into the fracture model through 

an accumulator. After the gel was in place, brine was injected once more into the gel 

packed fracture to investigate the plugging efficiency of gel on water. For all three 

injection steps, the injection pressure was recorded while the propagation of fluids was 

being monitored. Six injection rates, three fracture widths, and four brine concentrations 

were used in these experiments. With only one parameter adjusted at a time to examine 

the impact and to rank the influence of each factor (i.e. injection rate, fracture width, and 

brine concentration), the total number of experiments was 72.  

 

Numerical Simulation: Using the data obtained from the experiment, we constructed a 

simple 1-D numerical model (Figure 4-3) and performed a series of simulations to model 

PPG propagation and its effect on permeability reduction. Note that the original 

permeability of the fracture was calculated from its width using the conventional Cubic 

law (Klimczak, et al., 2010) 

  
  

  
                …………………………..(4-1) 

With most parameters known, there were only two input parameters that needed to be 

adjusted in the simulation to match the pressure response for each experiment. The two 

parameters were the viscosity parameters,        and        (see Equation 3-12, Chapter 

3). Once the history matches of all experiments were completed, a feasible range for each 

viscosity parameter was then compiled as recommendations for future PPG simulation. 

Key input parameters are given in Table 4-1. Complete input data of this simulation run 

can be found in Appendix A-1. 
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Figure 4 - 3. Simulation grids for the open fracture experiment 

 

 

Table 4 - 1. UTGEL simulation input parameters for the open fracture experiment 

Model 1-Dimentional Cartesian 
Number of gridblocks 20 x 1 x 1 
∆x, ∆z 2.75, 1 cm 

∆y (fracture width) 0.5, 1, 1.5 mm 

Porosity 1.0  

Permeability (calculated from fracture width) 20,833; 83,333; 187,500 Darcy 

Initial water saturation (single phase flow) 1.0 

Water viscosity 1.0 cp 

Temperature 72.5   

Outlet pressure 14.7 psi 

Salinity 0.05, 0.25, 1, 10 wt% 

Injection / production rate 5, 10, 15, 20, 25, 30 ml/min 

Injection / production period 5 PV 

PPG concentration 400 ppm 

PPG diameter 585 µm 
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Simulation Results: 

 

1. The 0.5-mm fracture width model experiments 

 

Figure 4-4 shows the comparisons of the injection pressures measured in the 

experiments and the injection pressures obtained as results of the simulation history 

matching at different injection rates and brine concentrations for the specific fracture 

width of 0.5 mm. It can be observed that the injection pressure increased with an 

increase in either injection flow rate or brine concentration, and that the simulation 

results matched the measured data reasonably well.  

 

The pressure values obtained from both approaches and the calculated errors of the 

simulation with respect to the measured values are summarized in Table 4-2. The 

high percentages of error were mostly those of the low flow rate experiments. 

However, all errors from the history matching were well below 10%. 
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Figure 4 - 4. Injection pressure vs. flow rate, 0.5-mm fracture width model 

 

 

 

Table 4 - 2. History match results for the 0.5-mm fracture width model 

 

 

  

Experiment Simulation error Experiment Simulation error Experiment Simulation error Experiment Simulation error

5 58 63 9% 63 67 7% 75 80 7% 86 91 5%

10 74 78 5% 80 82 2% 90 93 3% 102 105 3%

15 86 88 2% 92 93 1% 100 102 2% 112 114 2%

20 95 96 1% 102 101 1% 108 109 1% 120 122 2%

25 104 103 0% 111 108 3% 115 115 0% 126 127 0%

30 111 109 1% 118 115 3% 121 120 1% 132 132 0%

Flow rate 

(ml/min)
0.05% Brine 0.25% Brine 1% Brine 10% Brine

Pressure (psi)
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2. The 1.0-mm fracture width model experiments 

 

Figure 4-5 shows the comparisons of the measured and history matched injection 

pressures obtained at different injection rates and brine concentrations for a fracture 

width of 1.0 mm. Similar to the 0.5-mm fracture width model experiments, the 

injection pressure increased with the increase of both injection flow rate and brine 

concentration. Also, the simulation results matched the measured data reasonably 

well. However, it can be observed that, at the same flow rate and brine 

concentration, the injection pressure of the 1.0-mm fracture width model experiment 

was lower than that of the 0.5-mm fracture width model experiment.  

 

The pressure values obtained from both approaches and the calculated errors of the 

simulation with respect to the experimental values for the 1.0-mm fracture width 

model experiments are summarized in Table 4-3. All errors from the history 

matching were well below 10% except that of the 0.05% brine and 5 ml/min flow 

rate experiment where the injection pressure was relatively low.   
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Figure 4 - 5. Injection pressure vs. flow rate, 1.0-mm fracture width model 

 

 

 

Table 4 - 3. History match results for the 1.0-mm fracture width model 

 

 

  

Experiment Simulation error Experiment Simulation error Experiment Simulation error Experiment Simulation error

5 35 42 21% 55 56 2% 65 68 4% 78 82 5%

10 47 51 8% 69 71 3% 81 81 0% 94 96 2%

15 56 58 2% 78 79 1% 92 90 2% 106 106 0%

20 64 63 2% 86 85 1% 100 97 3% 115 113 1%

25 71 68 5% 93 90 3% 108 104 3% 122 120 2%

30 77 72 7% 98 95 3% 114 109 4% 128 125 3%

Flow rate 

(ml/min)

Pressure (psi)

0.05% Brine 0.25% Brine 1% Brine 10% Brine
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3. The 1.5-mm fracture width model experiments 

 

Figure 4-6 shows the comparisons of the measured and history matched injection 

pressures corresponding to different injection rates and brine concentrations at the 

fracture width of 1.5 mm. Similar to the 0.5-mm and 1.0-mm fracture width 

experiments, the injection pressure increased with the increase of both injection flow 

rate and brine concentration. The simulation results matched the measured data 

moderately well and, again, it can be observed that at the same flow rate and brine 

concentration, the injection pressure of the 1.5-mm fracture width model experiment 

was lower than that of the previous 0.5-mm and 1.0-mm fracture width model 

experiments.  

 

The pressure data obtained from both approaches and the calculated errors of the 

simulation with respect to the measured values for the 1.5-mm fracture width model 

experiments are summarized in Table 4-4. The simulation results gave close 

approximation for the total trend at each brine concentration but there was some 

discrepancy with each measurement point. With relatively low injection pressures of 

the large fracture width, the calculated errors in percentage were higher in this case 

in comparison to those of the previous cases with smaller fracture widths.  
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Figure 4 - 6. Injection pressure vs. flow rate, 1.5-mm fracture width model 

 

 

 

Table 4 - 4. History match results for the 1.5-mm fracture width model 

 

 

 

  

Experiment Simulation error Experiment Simulation error Experiment Simulation error Experiment Simulation error

5 23 28 23% 34 40 19% 41 47 16% 49 56 13%

10 33 35 8% 49 51 4% 56 60 6% 66 70 6%

15 40 40 0% 62 60 3% 68 69 1% 78 81 4%

20 47 44 6% 72 67 7% 78 77 2% 88 89 2%

25 52 48 8% 82 73 10% 87 84 4% 96 96 0%

30 58 51 12% 90 80 11% 95 91 4% 104 103 1%

Flow rate 

(ml/min)

Pressure (psi)

0.05% Brine 0.25% Brine 1% Brine 10% Brine
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Summary and Conclusions: 

 

1. PPG does not fully block the fracture opening. However, injected PPG can form a gel 

pack inside the opening and creating resistance to water flow.  

2. PPG injection pressure increases with the increase of injection rate but the degree of 

its increase is not as high as that of the injection rate. 

3. PPG injection pressure increases with the increase of brine concentration. The 

experimental results indicate that the softness or deformability of swollen particles is 

more dominant to PPG injection pressure than the particle size of the swollen PPG. 

Although the low salinity gives higher swelling ratio, the swollen particles in low 

salinity brine are softer or more deformable than that in high salinity brine.  

4. PPG injection pressure decreases with the increase of fracture width. This is due to 

the less resistance to flow (higher permeability) of the increased fracture width. 

5. UTGEL simulation can match with the experiment results moderately well.  Albeit 

some discrepancy, the simulation results provide the same trends and level of 

magnitude of injection pressure response as those measured in each experiment. 
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4.2. CASE II: Two-phase Flow in a Sandpack Model  

 

Objectives: To investigate the performance of PPG in improving waterflood recovery 

from a homogeneous sandpack model.  

 

Materials and Experiment Setup: Figure 4-7 illustrates the flow chart of the experiment 

setup composed of a 40-mesh sandpack (1 inch in diameter and 20 inches in length); 

three syringe pumps and 3 accumulators for KCl brine, oil, and PPG injection; and four 

pressure transducers mounted on the inlet and on the pressure tips along the sand pack 

with a pressure recorder to monitor the pressure behavior of the injection process.  

 

 

Figure 4 - 7. Sandpack experiment setup (Bai, 2014) 
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Experimental Procedure:  

1. Saturate the sandpack with 1% KCl brine and calculate the pore volume. 

2. Inject brine at different flow rates to calculate permeability.  

3. Inject oil to displace the water and calculate the oil-in-place volume based on the 

water displaced. 

4. At the constant injection rate of 2 ml/min, start displacing oil with brine, inject a few 

pore volumes of PPG (2000 ppm concentration), and displace PPG with brine again. 

Record the pressure, oil rate, and water rate with time to observe the injectivity, oil 

recovery, and water cut behavior. 

 

Numerical Simulation: Using the data obtained from the experiment, we constructed a 

simple 1-D numerical model of the sandpack (Figure 4-8) and simulated the experiment 

to calibrate and verify the PPG mechanistic model developed and implemented in the 

UTGEL simulator. With most parameters known, the only parameters that needed to be 

adjusted in the simulation to match the water cut response and oil recovery were the 

permeability reduction factor,     and     (see Equation 3-9, Chapter 3). The input 

parameters used in the history match are summarized in Table 4-5. Complete input data 

of this simulation run can be found in Appendix A-2. 
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Figure 4 - 8. Simulation grids for the sandpack experiment 

 

 
 

Table 4 - 5. UTGEL simulation input parameters for the sandpack experiment 

Model 1-Dimentional Cartesian 
Number of gridblocks 80 x 1 x 1 
∆x, ∆y, ∆z 0.25, 1, 1 inch 

Porosity 0.386 

Permeability 27290 mD 

Initial water saturation 0.12 

Oil viscosity 37 cp 

Water viscosity 1 cp 

Temperature 72.5   

Outlet pressure 14.7 psi 

Salinity 0.134 meq/ml 

Injection / production rate 2 ml/min 

Injection / production period 5.4 PV 

PPG concentration 2000 ppm 

PPG diameter 0.1 mm 
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Simulation Results: 

 

In this experiment, first 2.5 PV of brine was injected as the pre-treatment 

waterflood, then approximately 1.2 PV of PPG suspensions was injected, and finally 1.7 

PV of brine was injected to chase the PPG as the post-treatment waterflood. The 

comparison of the measured and simulated oil recovery is shown in Figure 4-9. It can be 

observed from the plot that the oil recovery was matched very closely for the entire pore 

volumes injected. The comparison of the water cut profile measured from the experiment 

and the water cut profile obtained from the history match attempt is demonstrated in 

Figure 4-10. It can be observed that the water cut reduction occurred after a while in 

response to PPG injection. The water cut reduced from almost 100% to approximately 

80% before rising back to the previous high level. For this experiment, the history match 

could be considered moderately accurate, noting the equivalents in the water 

breakthrough time during the pre-treatment waterflood, the reduction in water cut, and 

the increase back in water cut during the post-treatment waterflood. 

 

 

Figure 4 - 9. Oil recovery vs. time, sandpack experiment 
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Figure 4 - 10. Water cut vs. time, sandpack experiment 

 

Summary and Conclusions:  

 

1. From the sandpack model experiment, PPG injection could lead to an increase in oil 

recovery. In this case, the waterflood recovery prior to PPG injection was 63%. The 

final recovery after PPG injection was 80%. The incremental recovery from 1.2 PV 

of PPG injection was 17%. 

2. The water cut reduction was observed after the injection of PPG. In this case, the 

reduction of water cut was as significant as 20%. However, it went back up to the 

previous high level of water cut (99%) during the subsequent brine injection. 

3. UTGEL simulation could match the performance of PPG in improving oil recovery 

for a two-phase flow in a sandpack model.  The water cut behavior was matched by 

adjusting the permeability reduction factor and the PPG retention parameters. 
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4.3. CASE III: Two-phase Flow in a Coreflood  

 

Objectives: To investigate the performance of PPG in improving waterflood recovery 

from an actual coreflood. 

 

Materials and Experiment Setup: Figure 4-11 illustrates the flow chart of the 

experiment setup composed of an actual core of Roubidoux sandstone sample from 

Missouri (1 inch in diameter and 6 inches in length); a pressure transducer mounted to the 

inlet to monitor the injection pressure; pumps and accumulators for brine, oil, and PPG 

injection; a core holder and a confining pressure pump; and a computer used as a recorder 

and data processor.  

 

 

Figure 4 - 11. Coreflood experiment setup (Bai, et al., 2014) 
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Experimental Procedure:  

1. Saturate the sandstone core with 1% KCl brine and calculate the porosity.  

2. Pack the core in the core holder with 600 psi confining pressure. 

3. Inject brine at different flow rates to calculate the permeability.  

4. Inject oil to displace the water and calculate the oil-in-place volume based on the 

water displaced. 

5. At the constant injection rate of 1 ml/min, start displacing oil with brine, inject few 

pore volumes of PPG (2000 ppm concentration), and displace PPG with brine again. 

Record the pressure, oil rate, and water rate with time to observe the injectivity, oil 

recovery, and water cut behavior. 

 

Numerical Simulation: Using the data obtained from the experiment, we constructed a 

simple 1-D numerical model of the coreflood (Figure 4-12) and history matched the 

experimental results.  This exercise gives further verification of PPG transport model in a 

sandstone core with distribution of pore and pore throat sizes. With most parameters 

known, the only parameters adjusted to match the water cut and oil recovery were the 

permeability reduction factor,     and     (see Equation 3-9, Chapter 3). The history 

match input parameters are summarized in Table 4-6. Complete input data can be found 

in Appendix A-3. 
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Figure 4 - 12. Simulation grids for the coreflood experiment 

 

 

 
Table 4 - 6. UTGEL simulation input parameters for the coreflood experiment 

Model 1-Dimentional Cartesian 
Number of gridblocks 60 x 1 x 1 
∆x, ∆y, ∆z 0.1, 1, 1 inch 

Porosity 0.156 

Permeability 192.2 mD 

Initial water saturation 0.005 

Oil viscosity 37 cp 

Water viscosity 1 cp 

Temperature 72.5   

Outlet pressure 14.7 psi 

Salinity 0.134 meq/ml 

Injection / production rate 1 ml/min 

Injection / production period 35.6 PV 

PPG concentration 2000 ppm 

PPG diameter 100 µm 
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Simulation Results: 

 

The history matching for the coreflood experiment was conducted using UTGEL 

to match the total oil recovery and water cut profile. The comparison of the oil recovery 

measured from the experiment and the oil recovery obtained from the simulation history 

match is illustrated in Figure 4-13. In this experiment, first 5.4 PV of brine was injected 

as the pre-treatment waterflood, then approximately 23 PV of PPG suspension was 

injected as the PPG treatment, and finally 7.2 PV of brine was injected to chase the PPG 

suspension as the post-treatment waterflood. It can be observed from the figure that the 

simulation matched the experimental oil recovery moderately well for the entire volume 

injected.  

 

The comparison of the water cut profile measured from the experiment and the 

water cut profile obtained from the history match attempt is shown in Figure 4-14. It can 

be observed that the water cut slightly dropped for a short period in response to PPG 

injection before rising back to the previous high level. The reduction in water cut was 

rather minimal (less than 10%) for this experiment. The simulation matched the water 

breakthrough time during the pre-treatment waterflood and the reduction in water cut 

reasonably well even though it did not match the minor water cut fluctuation at the later 

part toward the end of the process during the post-treatment waterflood. 
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Figure 4 - 13. Oil recovery vs. time, coreflood experiment 

 

Figure 4 - 14. Water cut vs. time, coreflood experiment 



51 

 

Summary and Conclusions: 

 

1. From the coreflood experiment, PPG injection could lead to an increase in oil 

recovery from the sandstone core. In this case, the waterflood recovery was 58% 

prior to PPG injection. The final recovery after PPG injection was 68%. The 

incremental recovery from the total of 23 PV of PPG injection was 10%. For 

homogeneous flood, PPG can help improving recovery by creating a resistance 

factor and sometimes reducing the residual oil by lowering the capillary pressure. 

2. The water cut reduction was observed after the injection of PPG. However, it went 

back up to the previous water cut of 99% after only a few pore volumes of PPG 

injection. Also, the magnitude of water cut reduction was small compared to the 

sandpack experiment. The lower impact from PPG in this experiment could be 

because the permeability of the sandpack is much higher than the sandstone core (27 

D vs. 192 mD). The particle gels used in both experiments were commercial gels, 

which were usually designed to transport through high permeability conduits and not 

penetrate into conventional permeability rocks. 

3. UTGEL could match the performance of PPG in improving oil recovery during two-

phase flow in a sandstone core. The water cut behavior was closely matched by 

tuning the permeability reduction factor and PPG retention input parameters 
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4.4. CASE IV: Two-phase Flow in a Sandpack Model with Different PPG 

Injection Rates 

 

Objectives: To study the impact of PPG on water cut of a two-phase flow in a 

homogeneous sandpack model with various PPG injection rates.  

 

Materials and Experiment Setup: Figure 4-15 illustrates the flow chart of the 

experiment setup composed of a 20-mesh sand pack (2.5 cm in diameter and 91.4 cm in 

length); three syringe pumps and 3 accumulators for KCl brine, oil, and PPG injection; 

and four pressure transducers mounted on the inlet and on the pressure tips along the sand 

pack with a pressure recorder to monitor the pressure behavior of the injection process. 

 

 

Figure 4 - 15. Sandpack experiment with different PPG injection rates setup (Bai, et al., 2014) 

 

Experimental Procedure:  

1. Saturate the sandpack with 12.5% NaCl brine and calculate the pore volume and 

porosity.  

2. Inject brine at different flow rates to calculate the permeability.  

3. Inject oil to displace the water and calculate the oil-in-place volume based on the 

water displaced. 
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4. Start displacing oil with brine at a flow rate of 2 ml/min. Inject PPG (2000 ppm 

concentration) with different flow rates varied from 1 ml/min to 7 ml/min. Then, 

displace PPG with brine again at a flow rate of 2 ml/min. Record the pressure, oil 

rate, and water rate with time to observe the injectivity, oil recovery, and water cut 

behavior. 

 

Numerical Simulation: We constructed 1-D numerical model (Figure 4-16) of the 

sandpack experiment. Only parameters that needed to be adjusted to match the water cut 

response and oil recovery were the permeability reduction factor parameters,     and     

(see Equation 3-9, Chapter 3). In addition, to match the injection pressure at different 

rates of PPG injection with time, the viscosity parameters were also adjusted accordingly. 

The input parameters used in this history match model are given in Table 4-7. Complete 

input data of this simulation run can be found in Appendix A-4. 
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Figure 4 - 16. Simulation grids for the sandpack experiment with different PPG injection rates 

 

 

 
Table 4 - 7. UTGEL simulation input parameters for the sandpack experiment with different  

PPG injection rates 

Model 1-Dimentional Cartesian 

Number of gridblocks 40 x 1 x 1 

∆x, ∆y, ∆z 2.285, 2.5, 2.5 cm 

Porosity 0.364 

Permeability 27 Darcy 

Initial water saturation 0.310 

Oil viscosity 37 cp 

Water viscosity 1 cp 

Temperature 72.5   

Outlet pressure 14.7 psi 

Salinity 0.0336 meq/ml 

Injection / production rate 2 ml/min 

Injection / production period 16 PV 

PPG concentration 800 ppm 

PPG particle diameter size 180 µm 
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Simulation Results: 

 

The comparison of the oil recovery measured from the experiment and the oil 

recovery obtained from the simulation history match is illustrated in Figure 4-17. In this 

experiment, first 1.5 PV of brine was injected as the pre-treatment waterflood, then 

approximately 13 PV of PPG suspension was injected as the PPG treatment, and finally 

another 1.5 PV of brine was injected to chase the PPG suspension as the post-treatment 

waterflood. It can be observed from the figure that the simulation results matched the 

experimental oil recovery reasonably well for the entire pore volume injected.  

 

The comparison of the measured and simulated water cut profile is shown in 

Figure 4-18. The measured water cut in the experiment rather fluctuated between 93% 

and 100% with an average water cut of approximately 98% while the simulation water 

cut was rather steady at roughly 98% during the PPG treatment and went up to 100% 

towards the end of the experiment. 

 

Lastly, the injection pressures obtained from the simulation compared to the 

measurements in the experiment during the injection rate changing period are shown in 

Figure 4-19. The injection rate of PPG suspension was altered from 2 ml/min to 1, 3, 4, 5, 

6, and 7 ml/min during the short period of time between 12.7 to 14.1 PV injected. It can 

be seen that the pressure had been building up from the start of PPG injection until the 

rate was altered at 12.7 PV injected. As the rate fluctuated, the corresponding injection 

pressure also changed in the same direction.  The magnitude of each pressure change as a 

function of the injection rate from the simulation was well matched with the experimental 

value for this case. 
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Figure 4 - 17. Oil recovery vs. time, sandpack experiment with different PPG injection rates 

 

 

 

Figure 4 - 18. Water cut vs. time, sandpack experiment with different PPG injection rates 
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Figure 4 - 19. Injection pressure vs. time, sandpack experiment with different PPG injection rates 

 

 

Summary and Conclusions: 

 

1. The sandpack experiment indicated that PPG injection increased oil recovery 

compared to waterflooding. The waterflood recovery was approximately 60% prior 

to PPG injection. The final recovery after PPG injection was 88%. The incremental 

recovery from the total of 13 PV of PPG injection was 28% OOIP. 

2. The response to PPG was fast and the water cut reduction was observed after the 

injection of PPG. It mostly fluctuated in within 93% and 100% with an average 

water cut of 98%.  

3. UTGEL could match the performance of PPG in improving oil recovery in the 

sandpack.  Permeability reduction factor and gel retention model parameters were 

adjusted to match the amount and the timing of the water cut reduction with the 

observed data. Although the simulation could not reflect the fluctuation of the water 

cut, it gives a similar trend with an average value. 

4. The injection pressure of PPG as a function of injection rate can be well history 

matched by adjusting the viscosity model input parameters. 
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4.5. CASE V: Two-phase flow in a parallel sandpack model  

 

Objectives: To study PPG performance when injected into a simple heterogeneous 

model consisting of two sandpack layers with different permeabilities. 

 

Materials and Experiment Setup: Figure 4-20 illustrates the flow chart of the 

experiment setup composed of two sand packs (2.6 cm in diameter and 20 cm in length); 

three syringe pumps and 3 accumulators for KCl brine, oil, and PPG injection; and four 

pressure transducers mounted on the inlet to monitor the pressure behavior of the 

injection process. 

 

 

Figure 4 - 20. Parallel sandpack experiment setup (Bai, et al., 2014) 

 

Experimental Procedure:  

1. Inject brine at different flow rates to calculate the permeability of each sand pack.  

2. Saturate each sandpack by injecting oil at a flow rate of 1 ml/min.  

3. Set up the sandpack in parallel tubes. 

4. With a constant flow rate of 1 ml/min, start displacing oil into both tubes with 1% 

NaCl brine. Inject PPG (2000 ppm concentration) for 0.5 PVs. Then, displace PPG 

with brine again until no oil is produced to obtain the recovery factor. Record the 

pressure, oil rate, and water rate with time to observe the injectivity, oil recovery, 

and water cut behavior. 
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Numerical Simulation: 2-D numerical model (Figure 4-21) was set up to history the 

parallel sandpack results. Water cut and oil recovery results were matched by adjusting 

the permeability reduction factor parameters,     and     (see Equation 3-9, Chapter 3). 

In addition, to match the injection pressure at different rates of PPG injection with time, 

the viscosity parameters were also adjusted accordingly. The input parameters used in 

this history match model are given in Table 4-8. Complete input data of this simulation 

run can be found in Appendix A-5. 
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Figure 4 - 21. Simulation grids for the parallel sandpack experiment 

   

 

Table 4 - 8. UTGEL simulation input parameters for the parallel sandpack experiment 

Model 2-Dimentional Cartesian 

Number of gridblocks 40 x 1 x 2 

∆x, ∆y, ∆z 0.5, 2.1, 2.1 cm 

Porosity 0.272, 0.375 

Permeability 6778, 1005 mD 

Ratio of Kv/Kh 0 

Initial water saturation 0.26, 0.18 

Oil viscosity 195 cp 

Water viscosity 1 cp 

Temperature 72.5   

Outlet pressure 14.7 psi 

Salinity 0.17 meq/ml 

Injection / production rate 1 ml/min 

Injection / production period 5.23 PV 

PPG concentration 2000 ppm 

PPG particle diameter size 0.08 mm 
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Simulation Results: 

 

The comparison of measured and simulated oil recovery for the parallel sandpack 

model experiment is shown in Figure 4-22. Firstly, brine was injected as the pre-

treatment waterflood for 2.8 PV, then approximately 0.3 PV of PPG suspension was 

injected as the PPG treatment, and lastly 2.1 PV of brine was injected to chase the PPG 

suspension as the post-treatment waterflood. Figure 4-22 suggests a good match between 

experimental and simulated oil recoveries with a minor discrepancy. 

 

The comparison of the water cut profile measured from the experiment and the 

water cut profile obtained from the history match is demonstrated in Figure 4-23. It can 

be observed that the water cut dropped almost right after PPG injection before gradually 

rising up during the post-treatment waterflood. The reduction in water cut was rather 

significant for this experiment, exceeding 25%. The simulation also matched the water 

breakthrough time during the pre-treatment waterflood and the reduction in water cut 

fairly well for this case.  
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Figure 4 - 22. Oil recovery vs. time, parallel sandpack experiment 

 

 

 

Figure 4 - 23. Water cut vs. time, parallel sandpack experiment 



63 

 

Summary and Conclusions: 

 

1. The parallel sandpack experiment indicated PPG injection increased oil recovery 

compared to waterflooding. The overall waterflood recovery was 42%OOIP prior to 

PPG injection. The final recovery after PPG injection was 55%OOIP. The 

incremental recovery from the total of 0.3 PVs of PPG injection was 13%OOIP. For 

heterogeneous flood, PPG improves oil recovery by blocking the high permeability 

layer and diverting the water to the lower permeability layer.  

2. The response to PPG was fast. The maximum water cut reduction of more than 25% 

was observed after the injection of PPG.  

3. PPG can selectively penetrate into the higher permeable layer while minimizing its 

penetration into the lower permeable layer or unswept zone.  

4. UTGEL could match the performance of PPG in improving oil recovery in the 

parallel sandpack which represented a degree of heterogeneity in the experiment 

setup. Permeability reduction factor and gel retention model parameters were 

adjusted to match the amount and the timing of the water cut reduction with the 

experimental data.  
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Chapter 5: Synthetic Case Simulation 

 

5.1. Simulation of PPG Treatment in Layered Reservoir Models 

 

Objectives: To investigate the benefit of a PPG treatment in improving waterflood 

vertical sweep efficiency in layered reservoirs with different degrees of heterogeneities, 

five synthetic reservoir models were constructed to simulate PPG treatments and the 

impacts on conformance control and subsequent improved oil recovery. 

 

Model Description: 

Five reservoir numerical models were generated; the reservoir was 40 ft long, 40 ft wide, 

and 12 ft thick with a pair of injection and production wells located at the diagonally 

opposite corners. All models consisted of 3 numerical layers with different average 

permeabilities per layer. With all other parameters assumed the same, the degree of 

permeability contrast was increased progressively from case I to case V. This was done to 

represent the increase in permeability contrast and heterogeneity, which can also be 

expressed by the Dykstra Parsons coefficient (VDP). Demonstrated in Figure 5-1 are the 

simulation grids with the assigned permeability distributions. Table 5-1 presents the input 

parameters for cases I to V.  For all cases, to be compared with the base case of 8 pore 

volumes (PV) of waterflood, 3 PVs of PPG suspension was injected after 2 PV of pre-

treatment water injection and followed by 3 PVs of post-treatment water injection.  
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Figure 5 - 1. The five models generated for layered reservoir model case study 

Case Simulation Grid Model 

I. Very low permeability contrast 

VDP = 0.11 

 

 

 

 

 
 

II. Low permeability contrast 

VDP = 0.30 

 

 

 

 
 

III. Intermediate permeability contrast 

VDP = 0.53 
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Figure 5 - 1. The five models generated for layered reservoir model case study (cont.) 

Case Simulation Grid Model 

IV. High permeability contrast 

VDP = 0.74 

 

 

 

V. Very high permeability contrast 

VDP = 0.81 
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Table 5 - 1. Input parameters for reservoir models cases I to V 

Model 3-Dimentional Cartesian 

Number of gridblocks 8 x 8 x 24 

∆x, ∆y, ∆z 5, 5, 0.5 ft 

Porosity 0.25 

Permeability Varied from cases I to V, see Figure 5-1 

Ratio of Kv/Kh 0.001 

Initial water saturation 0.12 

OOIP 752 STB 

Oil viscosity 37 cp 

Water viscosity 1 cp 

Total injection period 8 PV  

PPG concentration 750 ppm 

PPG particle diameter size 0.1 mm 

 

 

Simulation Results: 

 

Table 5-2 shows the recoveries obtained for all five cases. From cases I to V, the 

only parameter adjusted for sensitivity analysis was the degree of permeability contrast 

(k1: k2: k3). The results indicated that incremental recovery obtained from PPG 

treatment increases significantly with the increase in the degree of heterogeneity. As 

expected, the total recovery as well as the waterflood recovery declined from cases I to V 

with the increase in the Dykstra Parsons coefficient (i.e. heterogeneity). However, the 

PPG incremental recovery behaved in the opposite trend. While injecting PPG in case I 

resulted in 8% incremental recovery, injecting PPG in case V gave 28%. 
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Table 5 - 2. Simulation results obtained from cases I to V 

 

 

Figures 5-2 and 5-3 illustrate the oil recovery profile for each scenario with and 

without the PPG treatments. In all cases, the PPG treatment was shown to improve the oil 

recovery. However, it can be seen that the magnitudes of the incremental oil recovery 

varied considerably. For reservoirs with high degrees of heterogeneity, i.e. reservoirs 

with Dykstra Parsons coefficients of more than 0.7, PPG treatment efficiently increased 

recovery factor by 15-30%OOIP. In contrast, for reservoirs with low to intermediate 

degrees of heterogeneity, i.e. reservoirs with Dykstra Parsons coefficients of less than 

0.5, PPG treatment only improved the recovery efficiency by less than 10%OOIP.  

 

Case
Permeability 

Contrast
k1:k2:k3

Dykstra Parson 

Coefficient
WF Recovery

Incremental 

Recovery from PPG

Total 

Recovery

I Very Low 700:800:900 0.11 64% 8% 72%

II Low 500:800:1200 0.30 63% 9% 72%

III Intermediate 300:800:1700 0.53 61% 10% 71%

IV High 100:150:2700 0.74 48% 16% 63%

V Very High 50:100:3000 0.81 36% 28% 64%
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Figure 5 - 2. Oil recovery vs. time for cases I to V, waterflood (base case) and PPG treatment 

 

 

 

Figure 5 - 3. Comparison of oil recovery for cases I to V, waterflood (base case) and PPG treatment 
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Figure 5-4 shows the plot of incremental recovery from PPG versus Dykstra 

Parsons coefficient. A rough correlation may be established so that one can estimate the 

incremental oil recovery obtained from PPG treatment from reservoir heterogeneity 

(expressed by Dykstra Parsons Coefficient). This can be useful in evaluating a PPG 

treatment project or comparing PPG treatment with other EOR (Enhanced Oil Recovery) 

options such as polymer injection, CO2 injection, or other chemical treatments. For 

example, when considering a heterogeneous reservoir with a Dykstra Parsons Coefficient 

of 0.6, in a very early assessment, one could use 14% as a ballpark figure for additional 

recovery associated from a PPG treatment. An initial economic analysis can be conducted 

to evaluate the viability of the PPG project with the knowledge of volume-in-place, 

timing of operations, and cost of treatments. However, this study has not yet incorporated 

a sensitivity analysis of many other parameters that affect the performance of a PPG 

treatment; namely, PPG concentration, injection period, injection rate, etc. Once the 

treatment has been chosen for implementation, a detailed optimization study considering 

all design parameters will need to be conducted for each reservoir. 

 

 

Figure 5 - 4. Incremental oil recovery from PPG treatments vs. VDP    
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Summary and Conclusions: 

 

It can be inferred from the simulation results that the benefit of PPG treatment is 

larger when reservoir is more heterogeneous for the cases studied in this chapter. The 

results are consistent with the fact that PPG treatment aims to reduce the fluid channeling 

through the high permeability streaks or fracture conduits.  The success of a PPG 

treatment depends mostly on whether or not PPG can selectively penetrate into the highly 

permeable channels while minimizing its penetration into lower permeable or unswept 

zones. In the case of low permeability contrast or a fairly homogeneous reservoir, 

waterflood recovery alone (or base case recovery) can reach approximately 60% without 

any PPG treatment attempts. This means that injecting PPG in homogeneous reservoirs is 

not beneficial and not recommended. In early phase of selecting a conformance control or 

PPG treatment to improve an oil recovery, a Dykstra Parsons coefficient may be used 

along with other factors to approximate the potential incremental gain.  
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5.2. Simulation of PPG Treatment in Reservoirs With Conduits 

 

Objectives: 

As reported in the recent study of PPG extrusion through opening conduits (Imqam, et 

al., 2014), PPG can effectively reduce the permeability of an open conduit of several 

Darcy with the resistance factor (permeability reduction factor) on the order of 10
2
 to 10

5
. 

To investigate PPG‟s blocking efficiency and simulate its application in improving 

waterflood sweep efficiency, two reservoir models were constructed and simulated for 

both waterflood and PPG treatments.  

 

Model Description: 

Conduit case I 

The Conduit case I model was a simple rectangular model with single matrix 

permeability. A long lateral conduit was placed in the middle of the model with a pair of 

injection and production wells at each end of the conduit on the edges of the model, as 

shown in Figure 5-5. Note that the matrix grid was made transparent in order to display 

the conduit located within the reservoir model. Including the conduit, which was placed 

explicitly by adding 1-ft layers vertically and horizontally in the middle column and 

layer, the model was 375 ft long, 241 ft wide, and 23.5 ft thick. Two simulation runs were 

conducted to investigate the effect of a PPG treatment on waterflood recovery: 

1) Base case, comprised of 3 PV of water injection only 

2) PPG, comprised of 1 PV of pre-treatment water injection, 1 PV of PPG 

suspension injection, and 1 PV of post-treatment water injection  

For both cases, the injection rates were maintained at 3000 ft
3
/day at all time 

while the production rates were controlled by bottomhole pressure constraint of 200 psi. 

The simulation input parameters for the Conduit case I study are given in Table 5-3. The 

complete input data is given in Appendix B-1. The impact of having the conduit in the 

reservoir model was quantified and summarized in Appendix B-3. 
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Conduit case II 

A long lateral conduit was placed in the middle of the numerical model with one 

injection well in the middle of the conduit and 4 production wells on four sides (Figure 5-

6). The conduit was positioned to align with two out of four producers and the injection 

well. Note that the matrix grid was made transparent in the figure to display the conduit 

which was located within the reservoir model. Including the conduit, which was placed 

explicitly by adding 1-ft layers vertically and horizontally in the middle column and 

layer, the model was 627 ft long, 625 ft wide, and 19 ft thick. Again, two simulations 

were conducted to investigate the impact of a PPG treatment on oil recovery: 

1) Waterflood, comprised of 3 PVs of water injection 

2) PPG, comprised of 0.5 PV of pre-treatment water injection, 1 PV of PPG 

suspension injection, and 1.5 PVs of post-treatment water injection  

For both cases, the injection rates were maintained at 5000 ft
3
/day at all time 

while the production rates of all 4 wells were controlled by the bottomhole pressure 

constraint of 500 psi. The input parameters for case II are given in Table 5-4. The 

complete input data can be found in Appendix B-2. The impact of having the conduit in 

the reservoir model was also summarized in Appendix B-3. 

 

Remark 

It is worth pointing out that, with limited time and capability of the conventional 

grid simulation used in this study, the size and the permeability contrast between matrix 

and conduit in both cases had to be compromised; i.e., the thickness contrast between 

matrix and conduit aperture was around 20 ft / 1 ft in this study whereas it could be a 

more realistic ratio of 20 ft / 0.01 ft The permeability contrast was assumed to be 50 mD / 

10,000 mD whereas the ratio of 1 mD / 1,000,000 mD is more realistic.  
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Figure 5 - 5. “Conduit case I” synthetic model 

 

Table 5 - 3. Input parameters for “Conduit case I” synthetic model 

Model 3-Dimentional Cartesian 

Number of gridblocks 25 x 25 x 10 

∆x, ∆y, ∆z 15, 10, 2.5 ft 

Conduit size 285 x 1 x 1 ft 

Porosity 0.3 (matrix), 0.9 (conduit) 

Permeability* 50 mD (avg), 10000 mD (conduit) 

Ratio of Kv/Kh 0.1 

Initial reservoir pressure 2000 psi 

Initial water saturation 0.31 

Residual oil saturation 0.22 

OOIP 78.3 MSTB 

Oil viscosity 37 cp 

Water viscosity 1 cp 

Total injection period 3 PV 

Injection PPG concentration 800 ppm 

PPG particle diameter size 0.1 mm 

  

*Note: the permeability of each grid was assigned slightly differently to reflect some 

degrees of heterogeneity in matrix. However, they all represented a single layer reservoir 

with the average permeability of 50 mD, see Appendix B-1. 
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Figure 5 - 6. “Conduit case II” synthetic model 

 

Table 5 - 4. Input parameters for “Conduit case II” synthetic model 

Model 3-Dimentional Cartesian 

Number of gridblocks 25 x 25 x 10 

∆x, ∆y, ∆z 25, 28, 2 ft 

Conduit size 475 x 1 x 1 ft 

Porosity 0.3 (matrix), 0.9 (conduit) 

Permeability* 50 mD (avg), 10000 mD (conduit) 

Ratio of Kv/Kh 0.1 

Initial reservoir pressure 2000 psi 

Initial water saturation 0.31 

Residual oil saturation 0.22 

OOIP 274.6 MSTB 

Oil viscosity 37 cp 

Water viscosity 1 cp 

Total injection period 3 PV 

Injection PPG concentration 1500 ppm 

PPG particle diameter size 0.1 mm 

 

*Note: the permeability of each grid is different to reflect heterogeneous matrix. 

However, they all represented as a single layer reservoir with an average permeability of 

50 mD. Refer to Appendix B-2 for more details. 
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Simulation Results:  

 

Conduit case I 

Figure 5-7 shows the oil recoveries for the waterflood and the PPG treatment in 

Conduit case I simulation study. According to the simulation results, the PPG treatment 

case resulted in an oil recovery 5.9% higher than waterflood. The waterflood oil recovery 

was 47.9% while that for PPG was 53.8%. The incremental recovery was attributed to the 

water cut reduction in the PPG case, as seen in Figure 5-8. PPG suspension was injected 

after 1 PV of waterflood. However, the water cut reduction response did not occur until 

after 0.7 PV injected. The maximum water cut reduction was approximately 7% at the 

time of 1.8 PV injected. After that, the water cut gradually increased and eventually was 

almost equal to that of the waterflood base case. It can be observed that the water 

breakthrough time of the pre-treatment waterflood was right after the start of injection 

(less than 0.1 PV injected) and the 90% water cut was reached after 1 PV of water 

injected with roughly 37% oil recovered. This meant that the injected water did sweep 

some portions or other layers but because of the thin layer in the middle containing a 

large conduit, there existed a small pathway where the water could reach the producer 

much faster and that results in a minor detriment to the waterflood recovery, see 

Appendix B-3.  

Figure 5-9 illustrates the PPG concentration and water saturation in the layer with 

the lateral conduit:  

 The first output time selected was at t = 0.1 PV injected, right after water had been 

introduced into the reservoir. No PPG had been injected yet. It can be seen that the 

water saturation of 0.7 had already reached the producer and that the high water 

saturation happened only around the injection point and the conduit as expected.  

 The second output time selected was at t = 1.5 PV injected, that is after half of the 

PPG (0.5 PV) had been injected into the reservoir. Observe the PPG concentration in 

the zoomed-in figure of the PPG concentration at this output time; the PPG 

concentration in the narrow gridblocks of conduit was higher than that of the 
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surrounding matrix gridblocks. Note that as the conduit did not connect directly to the 

injection well in this case, the PPG selected had to be small or weak enough to be 

able to pass through the matrix first. Therefore, the PPG treatment did not impact 

only the conduit in this case but also the matrix as well. However, as the total 

concentration of PPG injected was 750 ppm, it can be observed that the 

concentrations of PPG in the conduit gridblocks were mostly close to 750 ppm, 

higher than the surrounding matrix gridblocks, and that the propagation of the PPG in 

the conduit was further beyond those in the matrix toward the producer. As for the 

water saturation, the injected water had been diverted to the neighboring area now 

that PPG had reduced the permeability of the conduit. As shown in Figure 5-10, the 

resistance factor or the permeability reduction factor was 1500 in the conduit 

gridblocks at output time t = 1.5 PV. 

 The last output time selected was at t = 3 PV injected, that is the final PV injected 

after 1 PV of water, 1 PV of PPG suspension, and 1 PV of water had been injected. 

PPG in the conduit was mostly replaced by the post-treatment water injection. There 

were PPG remained in matrix gridblocks. This was due to the fact that the selected 

PPG size, small enough to pass through the matrix pore throat, was small enough to 

be washed out from the conduit. The water saturation profile showed that the water 

had displaced more oil areally at this time. Bear in mind what shown here is only one 

thin layer of the total reservoir. The conformance control by PPG should also happen 

vertically. 
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Figure 5 - 7. Oil recovery vs. time, Conduit case I 

 

 

 

Figure 5 - 8. Water cut vs. time, Conduit case I 
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Figure 5 - 9. PPG concentration and water saturation in the middle layer containing the conduit at 

selected output times, Conduit case I 

Output 

Time 
PPG Concentration (ppm) Water Saturation 

t = 0.1 PV 

After 0.1 

PV of 

water 

injection 

 

 

 
 

 

t = 1.5 PV 

After 0.5 

PV of 

PPG 

injection 

 

 

 
 

t = 3 PV 

Final time 
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Figure 5 - 10. Resistance factor in the middle layer containing the conduit  

at t = 1.5 PV, Conduit case I 
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Conduit case II 

 

Figure 5-11 compares oil recoveries from the waterflood and PPG treatment for 

the Conduit case II. According to the simulation results, the PPG treatment could increase 

the oil recovery by 3.3%. The oil recovery for the waterflood was 40.8% while the oil 

recovery from the PPG treatment with 1 PV of PPG injection was 44.1%. The 

incremental recovery was attributed to the water cut reduction as can be observed in 

Figure 5-12. The maximum water cut reduction was 3.2% from commingled producers. It 

is worth pointing out that the impact of PPG might seem smaller than that of the previous 

case despite the waterflood pattern setup and the early injection of PPG. This was owing 

to the larger size of the reservoir (more than three times larger) while the conduit 

remained the same. The reservoir could be considered nearly homogeneous. The effect of 

PPG in the case was, therefore, minimal. Nevertheless, the main purpose of simulating 

the Conduit case II was rather to observe the application of the PPG treatment with a 

scenario where a conduit was intentionally placed to undermine the waterflood areal 

sweep efficiency.  

Figure 5-13 demonstrates the PPG and water saturation profiles in the layer 

containing the conduit:  

 The first output time was at t = 0.1 PV injected, that is right after water had been 

injected. It can be seen that the injected water traveled straight to the two producers 

that were aligned with the conduit. The water saturations at these two production 

wells were approximately 0.5 while those of the other two producers were still at the 

initial water saturation of 0.31. 

 The second output time was at t = 1.0 PV injected, that is after half of the PPG 

suspension (0.5 PV) had been injected. As can be observed in the zoomed-in figure of 

the PPG concentration at this output time; the PPG concentration in the conduit was 

higher than that of the surrounding matrix. Again, the PPG treatment did not impact 

only the conduit but also the matrix as well. It can be observed that the concentrations 

of PPG in the conduit gridblocks were mostly close to injection PPG concentration of 
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1500 ppm. The propagation of the PPG in the conduit was further beyond those in the 

matrix toward the two producers in alignment with the conduit. As for the water 

saturation, the injected water had swept more neighboring area. This was because the 

permeability of the conduit had been reduced greatly by PPG. As shown in Figure 5-

14, the resistance factor or the permeability reduction factor was as high as 7500 in 

the conduit gridblocks at output time t = 1.0 PV. 

 The last output time was at t = 3 PVs injected (1 PV of water, 1 PV of PPG 

suspension, and 1 PV of water). As can be seen in the zoomed-in figure, PPG in the 

conduit was mostly replaced by the post-treatment water injection. There were some 

PPG remained in matrix gridblocks. This was due to the fact that the selected PPG 

size was small enough to be washed out from the conduit. The water saturation 

profile showed that the water had displaced more oil areally at this time. Again, it is 

worth pointing out that what shown here is only from one layer. The conformance 

control by PPG should impact the vertical sweep efficiency as well. 
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Figure 5 - 11. Oil recovery vs. time, Conduit case II 

 

 

 

Figure 5 - 12. Water cut vs. time, Conduit case II 
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Figure 5 - 13. PPG concentration and water saturation in the middle layer containing the conduit at 

selected output times, Conduit case II 

Output Time PPG Concentration (ppm) Water Saturation 

t = 0.1 PV 

After 0.1 

PV of 

water 

injection 

 

 

 
 

t = 1 PV 

After 0.5 

PV of PPG 

injection 

 

 

 
 

t = 3 PV 

Final time 
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Figure 5 – 14. Resistance factor in the middle layer containing the conduit  

at t = 1.0 PV, Conduit case II 
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Summary and Conclusions: 

 

1. For two numerical cases with conduits studied, PPG could successfully increase the 

waterflood oil recovery by greatly reducing the permeability of the extremely high 

permeability conduit. The injected water was then diverted to displace the oil the 

outside of the conduit. Additional oil recovery from PPG treatment was 5.9% for case 

I, and 3.3% for case II. 

2. Both synthetic cases demonstrated that PPG treatments could improve the areal 

waterflood sweep efficiency in the event that a high-permeability conduit existed in 

the reservoir and was in the position to undermine the sweep efficiency. 

3. Although not being focused in this study, timing of PPG injection, PPG 

concentration, and PPG size selections can play important roles in optimizing the 

PPG treatment.   

4. There were computational time and memory limitations in modeling a representative 

fracture or conduit. Another approach of numerical calculation is required for a better 

modeling and a more effective simulation of a reservoir containing fractures or 

conduits. One such option will be presented in Chapter 7. 
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Chapter 6: Field Case Simulation 

 

6.1. Field Case I- Gel Type Comparison  

 

Field Case Description: 

The reservoir model was obtained from an actual operating field where a 

significant degree of heterogeneity had been identified. It covered approximately 260 

acres (983 m x 1075 m) and was 37 ft in thickness. The field consisted of 10 injection 

wells and 7 production wells, all of which were vertical wells with perforated completion 

over the entire pay zone. The permeability varied both vertically and areally from less 

than 10 mD to 17,000 mD. Figure 6-1 illustrates the three-dimensional reservoir model 

for Field case I with given permeability distribution.  

 

 

Figure 6 - 1. Reservoir model with permeability distribution, field case I 
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Simulation Case Study: 

To divert injected water from high permeability into low permeability zones with 

larger remaining oil saturation, a method of conformance control using gels was therefore 

recommended for improving waterflood recovery. We performed reservoir simulations to 

investigate the performance of three different types of gels, namely; bulk gel, CDG, and 

PPG.  

Four production scenarios were simulated: 

1) Base case (waterflood), comprised of 7.3 PV of water injection 

2) PPG treatment, comprised of 5.0 PV of pre-treatment water injection, 0.3 PV 

of PPG treatment, and 2.0 PV of post-treatment water injection  

3) CDG treatment, comprised of 5.0 PV of pre-treatment water injection, 0.3 PV 

of CDG treatment, and 2.0 PV of post-treatment water injection 

4) Bulk gel treatment, comprised of 5.0 PV of pre-treatment water injection, 0.3 

PV of bulk gel treatment, and 2.0 PV of post-treatment water injection 

With the same treatment concentration, injection volume, and injection rate, the 

performance of each gel treatment can be evaluated and compared with that of 

waterflood. The simulation input parameters are given in Table 6-1.  
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Table 6 - 1. Input parameters for field case I 

Model 3-Dimentional Cartesian 

Number of gridblocks 43 x 47 x 19 

∆x, ∆y, ∆z 75, 75, 2 ft 

Porosity 0.17 (avg), 0.35 (max) 

Permeability 1500 mD (avg), 17000 mD (max) 

Dykstra Parsons coefficient 0.64 

Ratio of Kv/Kh 0.1 

Initial water saturation 0.2 

OOIP 10.3 MMSTB 

Oil viscosity 3.4 cp 

Water viscosity 0.37 cp 

Temperature 72.5   

Production bottomhole pressure constraint 300 psi 

Injection rate Different for each well 

Total injection period 7.3 PV 

Injection gel concentration 2000 ppm 

 

 

Simulation Results: 

 

The water cut profile for each treatment scenario described previously is 

presented in Figure 6-2. It can be observed that all gel treatments resulted in the decrease 

in water cut for a short period of time when compared to the waterflood base case. While 

the reduction in water cut was different for each gel type, they were rather close to each 

other, in a range of 30-40% at peaks after the gel injection. This led to incremental oil 

recoveries of approximately 8-12% from all treatments when compared to the base case 

of water injection alone. The incremental oil recovery from each treatment scenario is 

shown in Figure 6-3.  
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Figure 6 - 2. Water cut vs. time, field case I 

 

 

Figure 6 - 3. Oil recovery vs. time, field case I 
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Figure 6-4 demonstrates the total recovery from each scenario. Three gel 

treatments clearly improved the oil recovery where CDG treatment gave slightly higher 

incremental recovery compared to PPG followed by bulk gel. The recoveries are similar 

and about 10% higher than the waterflood. 

 

 

Figure 6 - 4. Comparison of total oil recovery from each scenario, field case I 

 

 

Summary and Conclusions: 

 

Three types of gels were successfully simulated using UTGEL with actual field 

data. The outcomes of this simulation study implied the applicable use of these three gels 

in improving waterflood performance in a field scale. In addition, with the simulation 

results indicating rather similar incremental oil recovery using the three gels; this 

suggested a level of validity between different gel modules used in UTGEL (i.e. PPG, 

CDG, and bulk gel modules). Further optimization study including operational, cost, and 

logistics could be conducted for each gel type in order to select the most suitable 

treatment for a given field. 
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6.2. Field case II – PPG Concentration Optimization 

 

Field Case Description: 

 

Modified from an actual operating field where a study was conducted for an ASP 

pilot project, the reservoir was selected for this simulation study of improving waterflood 

performance by PPG treatment. The modeled field covered approximately 9 acres (19 m 

x 19 m), with 40 ft in thickness. The field consisted of 4 injection wells and 9 production 

wells, all of which were vertical wells with perforated completion across the entire 

reservoir thickness. Illustrated in Figures 6-5 and 6-6 are three-dimensional up-scaled 

reservoir model with a distribution of permeability and initial water saturation, 

respectively. The permeability varied between 800 mD to 2,500 mD, with the Dykstra 

Parsons coefficient of about 0.46. Figure 6-5 indicates that the middle layer is the most 

permeable layer. 

 

 

Figure 6 - 5. Simulation grids with permeability distribution, field case II 
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Figure 6 - 6. Simulation grids with water saturation distribution, field case II 

 

Simulation Case Study: 

  The objective of this study was primarily to investigate the effect of PPG 

concentration on its performance. We performed a number of simulations to simulate the 

waterflood performance compared to PPG treatments using different PPG concentrations; 

five scenarios were investigated: 

1) Base case (waterflood), comprised of 1,000 days (or 1.8 PV) of water 

injection 

2) Four PPG cases with four different PPG concentration; 500, 1000, 2000, and 

4000 ppm, comprised of 100 days of pre-treatment water injection, 300 days 

of PPG injection (with different PPG concentration for each case), and 600 

days of post-treatment water injection 

The input parameters are given in Table 6-2. All parameters were the same except 

the concentration of PPG. Sensitivity analysis was conducted to optimize the incremental 

oil recovery from PPG treatment while taking into consideration the increase in 

maximum injection pressure required with the increase in PPG concentration. 
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Table 6 - 2. Input parameters for field case II 

Model 3-Dimentional Cartesian 

Number of gridblocks 19 x 19 x 3 

∆x, ∆y 32.8 ft 

∆z 10, 20, 10 ft 

Porosity 0.3 

Permeability 1655 mD (avg), 2457 mD (max) 

Dykstra Parsons coefficient 0.46 

Ratio of Kv/Kh 0.1 

OOIP 405 MSTB 

Oil viscosity 40 cp 

Water viscosity 0.46 cp 

Total injection period 1000 days (1.8 PV) 

Injection PPG concentration 500, 1000, 2000, and 4000 ppm 

 

Note that the injection/production periods and rates used were obtained from the ASP 

pilot simulation study (Delshad, et al., 1998), see Appendix C-2 for complete input data 
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Simulation Results: 

 

Figure 6-7 presents the permeability reduction factors obtained at the end of PPG 

injection (t = 400 days, PV = 0.72) and the final water saturation at the end of the 

treatment program i.e. after the post-treatment waterflood (t = 1000 days, PV = 1.80). 

Three cases; namely, waterflood (base case), PPG 1000 ppm, and PPG 4000 ppm, were 

selected to demonstrate permeability reduction factor due to PPG treatments, and how the 

subsequent water following PPG could improve sweep in both areal and vertical 

directions. 

 

The plots of oil rate, water cut, and oil recovery versus PV injected are shown in 

Figure 6-8, 6-9, and 6-10, respectively. The results suggested that PPG treatments led to 

higher incremental oil recovery when the PPG concentration was increased. This can be 

explained by the fact that increasing in PPG concentration resulted in higher effective 

viscosity and higher permeability reduction factor.  Figure 6-8 demonstrates the increase 

in oil rates during the PPG treatments while Figure 6-9 demonstrates the reduction in 

water cut. The maximum water cut reduction increased with PPG concentration and was 

as high as 25% when PPG concentration of 4000 ppm was used. 
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Figure 6 - 7. Permeability reduction factor obtained at the end of PPG injection period and final 

water saturation obtained at the end of the treatment, field case II 
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Figure 6 - 8. Oil rate vs. time, field case II 

 

 

Figure 6 - 9. Water cut vs. time, field case II 
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Figure 6 - 10. Oil recovery vs. time, field case II 

 

 

Presented by a bar graph in Figure 6-11 is the comparison of the total oil recovery 

obtained from the waterflood and different PPG treatment scenarios. The plot in Figure 6-

12 illustrates how the incremental oil recovery can be correlated with PPG 

concentrations. The correlation suggests that incremental recovery becomes sensitive to 

the PPG concentration beyond certain value. 
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Figure 6 - 11. Comparison of oil recovery from each scenario, field case II 

 

 

Figure 6 - 12. Correlation between incremental recovery and PPG concentration, field case II 
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Even though increasing PPG concentration tends to result in higher incremental 

oil recovery, in field design, it is recommended that the operational parameters e.g. 

injection pressure be roughly estimated beforehand to avoid exceeding operational limits. 

Figure 6-13 demonstrates the bottomhole injection pressure simulated. While the 

injection pressure of the waterflood was about 1800 psi, adding PPG resulted in elevated 

injection pressure in the range of 100-1200 psi. Presented in Figure 6-14 is the 

comparison of maximum injection pressure required for each scenario while Figure 6-15 

shows the correlation between the PPG concentration and the maximum injection 

pressure required for this particular field PPG treatment. It can be observed that the 

correlation here is also not linear. Small increment in PPG concentration can cause a 

significant difference in a maximum injection pressure when the concentration is above 

2000 ppm.   

 

 

Figure 6 - 13. Injection pressure vs. time, field case II 
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Figure 6 - 14. Comparison of maximum injection pressure for each scenario, field case II 

 

 

Figure 6 - 15.  Correlation between maximum injection pressure and PPG concentration, field case II 
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Summary and Conclusions: 

 

Simulations of PPG treatments using field data were successfully performed. 

Compared to the waterflood, PPG treatment could lead to an incremental oil recovery 

ranging from 13-25%. The incremental oil produced was a function of PPG concentration 

where the higher concentration of PPG contributed to greater amount of oil recovered. 

Nevertheless, it is important that the increase in injection pressure should be taken into 

consideration. The highest PPG concentration of 4,000 ppm could increase the 

bottomhole injection pressure to as high as 3,000 psi. This may not be in this field 

without fracturing the formation. For such a case, it could be worth exploring the option 

of injecting 2,000 ppm but doubling the period of injection in the simulation to keep the 

same mass of PPG injected. Moreover, while PPG treatment is often expected to increase 

oil recovery by diverting the injected water vertically (from high permeability to lower 

permeability layers), it can be observed that PPG can also improve the areal sweep 

effieciency.  
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6.3. Field case III – PPG Size Selection 

 

Field Case Description: 

 

Modified from an actual operating field where waterflood had been implemented 

with substandard performance due to early water breakthrough and poor sweep 

efficiency, a sector model was selected for PPG simulation study. The sector model was 

approximately 116 acres (607 m x 775 m), with 86 ft in thickness. The model consisted 

of 1 injection well and 2 production wells. Illustrated in Figures 6-16 and 6-17 are a 

three-dimensional up-scaled reservoir model with a distribution of permeability and 

initial water saturation, respectively. The permeability of the reservoir varied between 10 

mD to 1,000 mD with many extra-low permeability streaks and shale barriers. The 

injector, drilled down-dip of the producers, was in the vicinity of the tight portion of the 

reservoir with permeability less than 100 mD. To achieve a good in-depth permeability 

reduction effect from PPG in this case, it is necessary that suitable PPG size be selected 

for proper propagation from the injector. Large size PPGs would not pass through the 

pore throat while small size PPGs would be flushed out at the producers. 
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Figure 6 - 16. Simulation grids with permeability distribution, field case III 

 

Figure 6 - 17. Simulation grids with initial water saturation distribution, field case III 
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Simulation Case Study: 

The objective of this study was primarily to apply UTGEL to a more complex 

reservoir model and also investigating the effect of PPG on conformance control as an 

optimization study. In this case study, we performed six simulations to simulate the 

waterflood performance and five treatments with different sizes of PPG particles: 

1) Waterflood (base case), comprised of 1,500 days (or 0.25 PV) of water 

injection 

2) Five cases with different sizes of PPG (see Table 6-3), comprised of 500 days 

of pre-treatment water injection, 300 days of PPG suspension injection, and 

700 days of post-treatment water injection 

 

Table 6 - 3. Selected PPG sizes for field case III 

 

 

Note that the actual size of PPG that propagates through the reservoir is after 

swelling. In this study, we used fixed parameters of 30 and 0.3 for swelling ratio 

calculation (see the swelling equation in Chapter 3, note that the unit used in the 

simulation was English unit, not Metric unit). 

 

The simulation input parameters of Field case III are given in Table 6-4. All input 

parameters were the same in all simulations with the exception of PPG particle size. 

Sensitivity analysis was conducted to optimize the incremental oil recovery by selecting 

an appropriate size of PPG. The complete input data set can be found in Appendix C-3. 

Note that some of the data (for example, grid permeability) could not be shown due to 

excessive amount of data. 
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Table 6 - 4. Input parameters for field case III 

Model 3-Dimentional Cartesian 

Number of gridblocks 24 x 31 x 47 

∆x, ∆y, ∆z 83, 82, 1.82 ft 

Porosity 0.17 (avg), 0.28 (max) 

Permeability 90 mD (avg), 1580 mD (max) 

Dykstra Parsons coefficient 0.69 

Ratio of Kv/Kh 0.1 

OOIP 2.03 MMSTB 

Oil viscosity 2.5 cp 

Water viscosity 0.5 cp 

Temperature 180   

Initial reservoir pressure 2915 psi (at OWC) 

Production bottomhole pressure constraint 600, 1200 psi 

Injection rate 1200 bbl/day 

Total injection period 1500 days (0.25 PV) 

Injection PPG concentration 2000 ppm 

 

 

Simulation Results:  

 

Figures 6-18, 6-19, and 6-20 show the plots of oil rate, water cut, and oil recovery 

versus time for each treatment scenario. The results suggested that all PPG treatments led 

to incremental oil recovery. For this particular field simulation, it can be observed that the 

performance of PPG was different when a different size of PPG was chosen. The 

reduction in water cut varied between approximately 5% to 10% and so as the oil 

recovery, 15% to 19%.  

 



107 

 

 

Figure 6 - 18. Oil rate vs. time, field case III 

 

Figure 6 - 19. Water cut vs. time, field case III 
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Figure 6 - 20. Oil recovery vs. time, field case III 

 

Table 6-5 summarizes the incremental oil produced with respect to the size of 

PPG used. Evidently, the smaller size of PPG (170 - 230 U.S. Mesh) was more beneficial 

as they resulted in an incremental of more than 80,000 bbls while the larger PPGs (100 - 

140 U.S. Mesh) resulted in less than 40,000 bbls incremental. Figure 6-21 demonstrates 

the comparison of cumulative oil recovery from each scenario as a fraction of OOIP. It 

can be observed that the PPG4 case with the 200-Mesh size gave the highest oil recovery. 

As we reduced the PPG size from 100 to 200 Mesh, the oil recovery continuously 

increased from 15.4% to 18.7%. However, further reduction of PPG size from 200 to 230 

U.S. Mesh gave the opposite trend. There exists an optimum PPG size for each 

application. Very large particles would not propagate through the pore throats and very 

small PPGs would just pass through or be adsorbed onto a rock surface. 
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Table 6 - 5. Simulation results for field case III 

 
 

 

 

Figure 6 - 21. Comparison of oil recovery from each scenario, field case III 
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Summary and Conclusions: 

 

PPG simulations in a more complex field case were successfully performed. 

Compared to the waterflood, with the same amount of water injected, PPG treatment 

could lead to an incremental oil recovery ranging from 1 - 5%.  The incremental oil 

produced varied with the PPG particle size. According to the simulation results, the 

smaller particle size in the range of 170 - 230 U.S. Mesh was more effective than the 

larger sizes of 100 - 140 U.S. Mesh. This could be due to the fact that the permeability in 

the vicinity of the injection well is exceptionally low; less than 100 mD. Sensitivity 

analysis on particle size, thus, played an important role in finding the optimum size of 

PPG that can best propagate through the reservoir. With proper design, a PPG treatment 

could increase the recovery of this field by over 98,000 bbls compared to waterflood. The 

results of this case study suggest that, as a wide range of pore throat distribution exists in 

the reservoir, the PPG design can be optimized by simulating and selecting an optimal 

PPG size. However, it should be noted that the optimal size selection of PPG is utterly 

specific to each field and the rock pore structure. 

 

In addition, it is worth pointing out that the incremental oil recovery from PPG 

treatment in this case study was not as significant as those of previous cases. Again, this 

was likely owing to the low permeability around the injection region that limited the 

application of PPG. The areas with a high contrast of permeability both areally and 

vertically were rather close to updip producers. Other conformance control methods 

which can be activated in-depth, such as temperature sensitive microgels, should be 

investigated for improving sweep efficiency in this field. 
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Chapter 7: Applications of Embedded Discrete Fracture Model 

(EDFM) Approach in Gel Transport Simulation 

 

7.1. Introduction to Embedded Discrete Fracture Model 

 

Target reservoirs for PPG treatments are typically those with fractures or very 

high permeability streaks. The ability to model the propagation of PPG through a 

fractured reservoir was considered as a new challenge for this research study. Numerical 

simulation of fluid-flow in fractured reservoirs is complex due to the large contrast 

between matrix and fracture permeabilities, the extremely small size of fracture apertures, 

and the unstructured grid.  

Discrete fracture models or DFMs have been developed for realistic simulation of 

fractured reservoirs but they are numerically difficult to implement and computationally 

expensive. Also, they require generating unstructured grids which imposes more 

complexity for field simulations (Figure 7-1). 

 

 

Figure 7 - 1. Discrete fracture model with unstructured gridding 

 

To eliminate problems associated with unstructured gridding, a new model called 

Embedded Discrete Fracture Model (EDFM) has recently been developed and 

implemented in UTGEL. First, Li and Lee (2006) adopted a hierarchical modeling 

approach to represents fractured with different length scales. Later, Moinfar et al. (2013) 

employed this model to represent fractures with different dip angles and orientations in 

an in-house reservoir simulator called GPAS (Figure 7-2). 
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Figure 7 - 2. Embedded discrete fracture model (Moinfar, et al., 2012) 

 

With this novel discrete fracture modeling approach, in this study, the ability to 

explicitly incorporate the effect of fractures or high permeability conduits has been 

integrated into UTGEL for the first time. The developed EDFM approach has finally 

enabled multiple sets of fractures with any dip and strike angles to be included in the 

simulation of gel and microgel treatments for conformance control. The concept of 

EDFM is briefly summarized in this chapter. Nevertheless, complete details of EDFM 

implementation can be assessed in Shakiba (2014). 

The main objectives and scopes of this chapter were to verify the feasibility of 

EDFM and demonstrate its applications in a gel transport simulation. Primarily, we 

conducted simulations to validate the implementation of EDFM in UTGEL by running 

the EDFM in parallel with the conventional fine-grid model and comparing the results. 

Then, to show the advantages of EDFM in gel transport simulation, two case studies were 

simulated with applications of PPG in two rather challenging scenarios. First, PPG 

simulation was investigated in a fractured reservoir model with a       slant fracture 

plane cutting across the reservoir between the injector and producer pair. Second, PPG 

simulation was conducted in a reservoir model where a slightly complex fracture conduit 

was positioned in the middle of the reservoir creating a super high permeability pathway 

between the injector and producer pair. 
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7.2. Implementation of Embedded Discrete Fracture Model  

 
 

In this model, the fracture control volumes are considered as non-neighboring 

connections (NNC) in the simulator. A preprocessor (Sergio, 2014) is required to locate 

the fractures and to calculate the transmissibility factors between non-neighboring 

connections. Since the fracture control volumes are introduced inside the matrix grid 

domain, three new connections are defined based on non-neighboring connections. They 

are (I) matrix-fracture connection, (II) fracture-fracture intersection, and (III) fracture-

fracture connection of the same fracture plane. For each of these new connections, a 

transmissibility factor (T) is calculated using a preprocessing code.  

 

I) For matrix-fracture connection (Connection Type I),  

   
  

 
          ..…..……………………..(7-1) 

where  is the area of fracture cell inside the grid block,  is the harmonic average 

of the permeabilities, and  is the normal distance between center of matrix 

gridblock and fracture cell. 

II) For fracture-fracture intersection (Connection Type II), 

   
  

 
    

    

     
          ..…..……………………..( 7-2) 

where 

    
       

   
  ,           ..…..……………………..( 7-3) 

   
       

   
            ..…..……………………..( 7-4) 

and   is the fracture permeability,   is the fracture aperture,   is the length of 

intersection line (between 2 fractures) bounded in a gridblock, and the subscripts    

and     represent the intersected fracture number 1 and number 2.  

  

A k

d
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III) For fracture-fracture connection of the same fracture plane (Connection Type III),  

   
  

 
               ..…..……………………..( 7-5) 

where  is the fracture permeability,  is the length of intersection times the 

aperture, and is the distance between center of two segments. 

  

k A

d
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7.3. Validation of EDFM Implementation in Gel Transport Model 

 

 

Comparison between EDFM and conventional fine-grid model 

 

To validate the implementation of EDFM in UTGEL, we generated two 2D 

models; one was a fine-grid model in which a fracture was modeled using high 

permeability gridblocks (same as those of the case studies in Chapter 5), and the other 

was an embedded discrete fracture model of which the fracture was embedded using the 

EDFM approach. The fracture was placed in the exact same location in each model. 

Identical PPG treatments were simulated in both models. Then the simulation results 

obtained were compared to ensure that the results from the EDFM were in agreement 

with those from the conventional fine-grid model. The computational times used in the 

simulations of both models were also recorded for comparison.   

 

Figure 7-3 illustrates the conventional fine-grid model created with the given 

permeability distribution. Figure 7-4 illustrates the 3-dimensional view of the embedded 

fracture generated by the preprocessor for the EDFM. Both models were 50-ft long, 50-ft 

wide, and 3-ft thick with a 30-ft long fracture placed at the exact same location. In the 

conventional grid model, the size of all gridblocks was set equal to that of the fracture 

aperture, which was 0.25 ft, to eliminate any inconsistency from local grid refinement. 

The simulation of gel transport was conducted on a 2-dimentional basis, i.e. fluid only 

transported in X and Y directions, to avoid excessively long computational time in the 

conventional fine-grid model simulation. 

 

The PPG treatment used in both model simulations consisted of 0.4 PV of pre-

treatment water injection, 0.2 PV of PPG suspension injection, and lastly 0.4 PV of post-

treatment water injection. Table 7-1 shows the simulation parameters used for the two 

models. 
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Figure 7 - 3. Conventional fine-grid model created with the given permeability distribution 

 

 

Figure 7 - 4. 3D view of the embedded fracture generated by the preprocessor for EDFM 
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Table 7 - 1. Input parameters for fine-grid model and EDFM simulations 

Parameters Fine-grid Model EDFM 

Model 2D Cartesian 2D Cartesian 

Number of matrix gridblocks 160 x 160 x 1  200 x 200 x 1 

Number of fracture gridblocks (NNC) 96 - 

∆x, ∆y, ∆z 0.3125, 0.3125, 3 0.25, 0.25, 3 

Porosity 0.3 

Matrix Permeability 100 mD 

Fracture Permeability 50,000 mD 

Oil viscosity 5 cp 

Water viscosity 1 cp 

Initial reservoir pressure 2000 psi 

Production bottomhole pressure  500 psi 

Injection rate 100 ft
3
/day 

Total injection period 1.0 PV 

Injection PPG concentration 1000 ppm 

 

The simulation results are summarized in Table 7-2 and plotted for comparison 

purpose in Figure 7-5, 7-6, and 7-7. The differences between the results from EDFM and 

those from the fine-grid model are given in Table 7-2. Both simulations are in good 

agreement. Figure 7-5 demonstrates oil recoveries from both models, while Figure 7-6 

demonstrates water cut results, and Figure 7-7 shows the similarity of the average 

pressure profiles obtained from the two models. 

 

It can be concluded from all the comparisons that the EDFM results were in 

agreement with those of the fine-grid model. In addition, while it took almost 160 CPU 

hours to complete the fine-grid simulation, it only took 40 CPU hours using the EDFM 

method. This is due to the fact that the EDFM does not require grid refinements to 

establish a fracture with a small aperture size in a large-scale reservoir model. This 

suggests that the implementation of EDFM in gel transport modeling is feasible and that 

the EDFM approach can be employed in improving gel transport simulations. 
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Table 7 - 2. Results from the fine-grid model and EDFM simulations 

Simulation Results Fine-gird EDFM Difference 

Oil recovery from pre-treatment water injection (%) 47.21  46.63  0.58 

Total oil recovery (%) 66.88  67.01  0.13 

Water breakthrough time (PV injected) 0.26 0.24 0.02 

Final average reservoir pressure (psi) 3449 3377 72 

Simulation run time (hrs) 159 40 - 

 

 

 

Figure 7 - 5. Oil recovery profiles obtained from fine-grid model and EDFM simulations 
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Figure 7 - 6. Water cut profiles obtained from fine-grid model and EDFM simulations 

 

 

 

Figure 7 - 7. Average reservoir pressure profiles obtained from fine-grid model and EDFM 

simulations 

  



120 

 

7.4. Slanted Fracture Plane Model 

 

To substantiate the benefits of EDFM in gel transport simulation, we performed 

PPG simulations in a synthetic model where a       slanted fracture plane was placed 

through the reservoir between the injector and producer pair. With the preprocessor, the 

slanted fracture plane was created and embedded precisely in the reservoir model, and the 

transmissibility factors between non-neighboring connections were calculated. The 3-

dimensional views of the slanted fracture plane generated are shown in Figure 7-8. The 

PPG treatments used in this case study consisted of 0.8 PV of water injection and 0.2 PV 

of PPG suspension injection. However, to investigate the effect of PPG injection timing, 

four different simulations were carried out in this study:  

1) Waterflood, comprised of 1.0 PV of water injection 

2) Early PPG injection, comprised of 0.1 PV of pre-treatment water injection, 0.2 

PV of PPG suspension injection, and 0.7 PV of post-treatment water injection  

3) Intermediate PPG injection, comprised of 0.3 PV of pre-treatment water 

injection, 0.2 PV of PPG suspension injection, and 0.5 PV of post-treatment 

water injection  

4) Late PPG injection, comprised of 0.5 PV of pre-treatment water injection, 0.2 

PV of PPG suspension injection, and 0.3 PV of post-treatment water injection 

The parameters used in the simulation are given in Table 7-3. The complete inputs 

for the simulation run can be found in Appendix D-1. The impact of having the slanted 

fracture plane in this case study was also quantified and summarized in Appendix D-1. 
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Figure 7 - 8. 3D views of the slanted fracture plane generated by the preprocessor for EDFM 

 

Table 7 - 3. Input parameters for the slanted fracture plane model 

Model 3-Dimentional Cartesian 

Number of matrix gridblocks 50 x 50 x 15 

Number of fracture gridblocks (NNC) 884 

∆x, ∆y, ∆z 2, 2, 2 ft 

Fracture aperture 0.15 ft 

Porosity 0.25 

Permeability 100 mD 

Fracture permeability 50,000 mD 

Ratio of Kv/Kh 0.1 

Oil viscosity 5 cp 

Water viscosity 1 cp 

Initial reservoir pressure 1100 psi  

Production bottomhole pressure constraint 1000 psi 

Injection rate 1000 ft
3
/day 

Total injection period 1 PV 

Injection PPG concentration 1000 ppm 
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To demonstrate the behavior of the injectant (water) inside the fracture plane 

model created using EDFM approach, snapshots of water saturation profile by grid block 

and a sector model with a proper cut plane were generated. Figure 7-9 shows the water 

saturation profile of the base case simulation of the slanted fracture plane model at 0.5 

PV, along with a sector model cut by a plane at a 50  slanted angle. It can be observed in 

Figure 7-9 that the injected water propagated faster through the slanted fracture plane 

creating an abnormally slanted shape of higher water saturation at the producer end. 

 

 

Figure 7 - 9. Water saturation profile for waterflood in a slanted fracture plane model at an output 

time of 0.5 PV 

 

The simulation results of all 4 cases are summarized in Table 7-4. The 

incremental oil recoveries varied between 6% and 13% due to different PPG injection 

timing design. Figure 7-10 and 7-11 illustrate the oil recovery and water cut profiles from 

all cases, respectively. The earlier PPG injection resulted in higher incremental oil 

recovery for this case study. The water cuts plotted in Figure 7-11 reveal that the 

improvement in water cut became less significant from the early PPG treatment 
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(approximately 35% water cut reduction) to the late treatment (approximately 20% water 

cut reduction). The simulation run times used for all the simulation cases were less than 

15 CPU hours. 

 

Table 7 - 4. Simulation results for the slanted fracture plane model 

Simulation Cases 

Start time of 

PPG injection 

(PV) 

Oil recovery 

(%) 

PPG Incremental 

recovery (%) 

1. Waterflood -  55.77 - 

2. Early PPG treatment  0.1  68.25 12.49 

3. Intermediate PPG treatment 0.3  65.75 9.99 

4. Late PPG treatment  0.5 62.55 6.78 

 

 

 

 

Figure 7 - 10. Oil recovery vs. time, slanted fracture plane model  
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Figure 7 - 11. Water cut vs. time, slanted fracture plane model   
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7.5. Complex Fracture Conduit Model 

 
 

Another scenario where EDFM can be useful is illustrated here with a complex 

fracture conduit model. Many fracture streaks with different dip angles were generated to 

create an extensive fracture conduit in this case study. The preprocessor was employed to 

embed the conduit at the precise coordinates of the reservoir model and calculate the 

transmissibility factors between non-neighboring connections. The 3-dimensional views 

of the fracture conduit embedded are shown in Figure 7-12. For this study we aligned the 

conduit to be in one vertical plane so that the injection and production wells could be 

placed directly on the opposite sides of the conduit. Hence, it was convenient to visualize 

the fluid behavior around the conduit and the wells.  

 

Two simulations were performed for this case study; (1) the waterflood case 

consisted of 1 PV of water injection, and (2) the PPG treatment case consisted of 0.3 PV 

of pre-treatment water injection, 0.2 PV of PPG injection, and 0.5 PV of post-treatment 

water injection. The simulation parameters are given in Table 7-5. The complete input 

file can be found in Appendix D-2 as well as the brief review of the impact of the fracture 

conduit on the generated reservoir model. 
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Figure 7 - 12. 3D views of the fracture conduit generated by the preprocessor for EDFM 

 

Table 7 - 5. Input parameters for the complex fracture conduit model 

Model 3-Dimentional Cartesian 

Number of matrix gridblocks 40 x 20 x 20 

Number of fracture gridblocks (NNC) 85 

∆x, ∆y, ∆z 2, 2, 1.5 ft 

Fracture aperture 0.25 ft 

Porosity 0.25 

Permeability 50 mD 

Fracture permeability 80,000 mD 

Ratio of Kv/Kh 0.25 

Oil viscosity 2.5 cp 

Water viscosity 1 cp 

Initial reservoir pressure 1100 psi  

Production bottomhole pressure constraint 800 psi 

Injection rate 600 ft
3
/day 

Total injection period 1 PV 

Injection PPG concentration 2000 ppm 
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The behavior of the injectant (water) inside the fracture conduit model created 

with the EDFM approach is demonstrated in Figure 7-13. It can be observed in the figure 

that the injected water propagated faster through the complex fracture conduit creating an 

abnormal front of the injected water, which resulted in partial water breakthrough at the 

producer‟s end at the output time of 0.3 PV of water injection.  

 

The results of oil recovery versus pore volumes injected for the waterflood and 

the PPG treatment simulations are shown in Figure 7-14. The results of the simulation 

suggested that a PPG treatment led to an incremental oil recovery of approximately 7%. 

The water cut versus PV was also plotted in Figure 7-15. For the PPG case, the water cut 

reduction as high as 20% was observed at the producer after about 0.2 PV of PPG 

injection. The simulation run time for the waterflood and PPG treatment were 17.5 and 

19.7 CPU hrs, respectively. 

 

 

Figure 7 - 13. Water saturation profile for waterflood in a fracture conduit model at an output time 

of 0.3 PV 
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Figure 7 - 14. Oil recovery vs. time, fracture conduit model  

 

 

Figure 7 - 15. Water cut vs. time, fracture conduit model  
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From the two case studies, a slanted fracture plane and a complex fracture conduit 

with several dip angles were successfully generated and placed in the reservoir models 

using the EDFM preprocessor. With the non-neighboring connections (NNC) concept of 

the EDFM approach, the simulations of fluid and gel transport in reservoirs containing 

these uncharacteristic fracture passages were successfully performed with representative 

results.  The computational times used in the simulations were fairly reasonable 

considering the number of gridblocks and the contrast between the size of the fracture 

aperture and the matrix gridblocks. No local grid refinement was required and the 

fractures were able to be placed in more realistic manners. 
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Chapter 8: Conclusions and Recommendations 

8.1. Conclusions 

Although the developed simulator requires further improvement and validation against 

wider ranges of reservoir and fluid conditions, the following conclusions can be drawn 

from this research study: 

1. UTGEL, the university of Texas conformance control reservoir simulator, has been 

successfully developed to simulate the propagation of preformed particle gel (PPG) in 

improving waterflood sweep efficiency through resistance factor or permeability 

reduction effects. The results of the simulation of a series of PPG laboratory 

experiments agree with the experimental data. This suggests that the simulator works 

well and that the parameters used in simulation are reasonable. 

2. We simulated the application of PPG in various reservoirs scenarios including layered 

reservoirs with permeability contrasts and reservoirs with high permeability streaks or 

conduits. PPG can greatly reduce the permeability of an extremely high permeability 

fracture or conduit. The success of a PPG treatment is dependent on how well PPG 

can selectively penetrate into the high permeability passages while minimizing its 

penetration into the lower permeable or unswept regions. The Dykstra Parsons 

coefficient can be helpful in approximating the potential incremental gain from a PPG 

treatment. The benefit of PPG in improving waterflood sweep efficiency can occur 

both areally and vertically. 

3. Several simulations of PPG treatments in a reservoir model based on an actual field 

were successfully performed. UTGEL can be used as a reservoir management tool for 

history matching, performance forecast, production optimization, and injection 

design. 

4. Sensitivity analyses and mechanistic studies of PPG by means of simulation provide a 

number of oilfield applications: 

 PPG applications in comparison with other types of gel: Compared to other 

types of microgels, PPG is considered suitable for treatments of fractures or high 
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permeability streaks. PPG can preferentially enter into fractures or fractured-like 

channels while minimizing its penetration into low permeable zones. With several 

gel modules incorporated, UTGEL provides a capability to simulate not only PPG 

but also bulk gel, CDG, pH-sensitive and temperature-sensitive gels, i.e. 

Brightwater. 

 PPG concentration optimization: Increasing injected PPG concentration often 

results in higher incremental oil recovery from the treatments. However, for any 

particular field, it is important to monitor the injection flowing bottomhole 

pressure to avoid injection induced fracturing and limit the pressure below the 

parting pressure.  

 PPG size selection: A wide range of pore throat distributions usually exists in oil 

reservoirs, therefore gel simulation can be very helpful in selecting optimal PPG 

particle size. Sensitivity analysis on particle size plays an important role in 

finding the optimum PPG size that can best propagate through the reservoir since 

different fields are subjected to different heterogeneities, different well patterns, 

and different well spacings. 

 Timing of PPG treatment: Early injection of PPG often results in higher 

incremental oil recovery. Late PPG treatment can result in significantly lower 

incremental recovery. Therefore, it is important to make a timely diagnosis to 

recognize the need for the treatment. 

5. With an integration of comprehensive and mechanistic gel transport modules and a 

novel Embedded Discrete Fracture Modeling (EDFM) concept, both (1) gel 

rheological and transport properties; such as shear thinning viscosity, adsorption, and 

permeability reduction, and (2) multiple sets of fracture planes and conduits with dip 

angles and orientations, for the first time, were all captured in a numerical 

simulator. In this study, the implementation of EDFM was validated with a 

conventional fine-grid model and proved feasible with less computational time. The 

computationally inexpensive approach and the representative results from the 

generated slanted fracture plane and complex conduit models suggest a further step 
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toward achieving advanced and realistic modeling of gel treatments in complex 

reservoirs. 

8.2. Recommendations 

 

It is evident from this study that considerable scope for further work exists. The 

following areas of study can potentially improve the robustness and enhance the 

practicality of gel transport simulation. 

1. Further development of UTGEL  

UTGEL has been modified a number of times throughout the course of this research 

study and apparently it is still a work in progress. Many areas, of which some are 

already ongoing efforts, have been proposed to improve its robustness: 

 Effect of salinity on PPG resistance factor; currently the resistance factor is 

expressed as a function of injection rate and input model parameters.  As we 

know, the salinity has a direct impact on gel strength. Therefore, a new 

correlation was proposed to include the effective salinity in the calculation of 

PPG resistance factor. However, additional laboratory data is required to 

validate the proposed correlation (Goudarzi, et al., 2014) 

 PPG size distribution; currently the size of PPG is a constant input value. 

However, similar to the pore throat diameter, the diameter of PPG particle can 

vary. A normal distribution has been proposed to model PPG passing and 

blocking criteria (Wang, et al., 2013) 

 Shear rate equation; currently the effective gel viscosity can be modified using 

Meter‟s equation. However, laboratory data should be utilized to endorse or 

fine-tune the associated input parameters.   

 Residual oil saturation modification by gel; it has not been entirely clear 

whether and how the gel treatments affect the residual oil saturation to 

waterflood. More laboratory experiments are required to better understand 

whether PPG injection has any impact on waterflood residual oil saturation.  
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2. Further validation with actual field performance data 

Although some field case studies have been presented in this study, none of them 

have actually been treated with PPG yet. The studies only show that the simulations 

of PPG treatments were successfully performed based on actual field and reservoir 

data along with a number of sensitivity analysis studies that could benefit the 

optimization during the design phase. It is highly recommended that the simulations 

are compared with field results once the data become available. 
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Appendix 

Appendix A. Input Data for PPG Experiment History Matching 

 

A-1.  Input data for CASE I, Water flow in an open fracture model  

        (at 0.5 mm fracture width, 0.05% Brine, and 5 ml/min flow rate) 

 

CC******************************************************************* 

CC                                                                  * 

CC    BRIEF DESCRIPTION OF DATA SET                                 *  

CC                                                                  * 

CC******************************************************************* 

CC                                                                  * 

CC                                                                  * 

CC                                                                  * 

CC  LENGTH (cm) :  1.8          PROCESS :  PROFILE CONTROL          *  

CC  THICKNESS (FT) : 0.0328     INJ. PRESSURE (PSI) : -             * 

CC  WIDTH (FT) : 0.00164        COORDINATES : CARTESIAN             * 

CC  POROSITY :  1.0                                                 * 

CC  GRIDBLOCKS :  2                                                * 

CC  DATE :                                                          * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR DESCRIPTION                                         * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

*----RUNNO 

exp1_w1c1q1 

CC   

CC 

*----HEADER 

Experimental matching # 1, 1-D water flow in open fracture model (Zhang 2010) 

Fracture width = 0.5 mm, Brine conc. = 0.05%, Flow rate = 5 ml/min 

***************************************************************************** 

CC 

CC SIMULATION FLAGS 

*---- IMODE IMES IDISPC IREACT  ICOORD ITREAC ITC  IENG 

       1    2    3       1      1     0      0    0 

CC 

CC NUMBER OF GRIDBLOCKS AND FLAG SPECIFIES CONSTANT OR VARIABLE GRID SIZE 

*----NX   NY  NZ  IDXYZ  IUNIT 

     20    1   1  2       0           

CC 

CC  VARIABLE GRID BLOCK SIZE IN X 

*----DX(I)       

     20*0.0902231  

CC 

CC  CONSTANT GRID BLOCK SIZE IN Y 

*----DY  
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     1*0.00164042   

CC 

CC  VARIABLE GRID BLOCK SIZE IN Z 

*----DZ 

   1*0.328084 

CC 

CC TOTAL NO. OF COMPONENTS, NO. OF TRACERS, NO. OF GEL COMPONENTS 

*----N   NTW  NG 

     14   0   6  

CC 

CC 

*---- SPNAME(I),I=1,N 

WATER 

OIL 

none 

none 

SALT 

none 

none 

none 

none 

none 

none 

none 

none 

ppg 

CC 

CC FLAG INDICATING IF THE COMPONENT IS INCLUDED IN CALCULATIONS OR NOT 

*----ICF(KC) FOR KC=1,N 

   1  0  0  0  1 0  0 0 0 0 0 0 0 1 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    OUTPUT OPTIONS                                                * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

CC  FLAG FOR PV OR DAYS FOR OUTPUT AND STOP THE RUN 

*----ICUMTM  ISTOP   

     1     1  

CC 

CC FLAG INDICATING IF THE PROFILE OF KCTH COMPONENT SHOULD BE WRITTEN 

*----IPRFLG(KC),KC=1,N 

     1  0  0  0  1  0 0 0 0 0 0 0 0  1 

CC 

CC FLAG FOR PRES,SAT.,TOTAL CONC.,TRACER CONC.,CAP.,GEL, ALKALINE PROFILES 

*----IPPRES IPSAT IPCTOT IPGEL  ITEMP    

      1      1      1      1    0   

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES  

*----ICKL IVIS IPER ICNM  ICSE 

     0     1    0    0    0     

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES TO PROF 

*----IADS  IVEL IRKF IPHSE  

      0     0    1    0   

CC 

CC******************************************************************* 

CC                                                                  * 
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CC    RESERVOIR PROPERTIES                                          * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

CC MAX. SIMULATION TIME (PV)  

*---- TMAX 

      5  

CC 

CC ROCK COMPRESSIBILITY (1/PSI), STAND. PRESSURE(PSIA) 

*----COMPR   PSTAND 

      0.      14.7 

CC 

CC FLAGS INDICATING CONSTANT OR VARIABLE POROSITY, X,Y,AND Z PERMEABILITY 

*----IPOR1 IPERMX IPERMY IPERMZ  IMOD  ITRNZ  INTG 

       0      0     0      0      0     0      0 

CC 

CC VARIABLE POROSITY 

*----PORC1 

     1.0 

CC 

CC VARIABLE X-PERMEABILITY (MILIDARCY)  

*----PERMX(1) 

    20833333.33 

CC 

CC VARIABLE Y-PERMEABILITY (MILIDARCY) FOR LAYER K = 1,NZ 

*----PERMY(1) 

     20833333.33 

CC 

CC VARIABLE Z-PERMEABILITY 

*----PERMZC (MILIDARCY) 

     20833333.33 

CC 

CC FLAG FOR CONSTANT OR VARIABLE DEPTH, PRESSURE, WATER SATURATION 

*----IDEPTH  IPRESS  ISWI  

     0        0       0  

CC 

CC VARIABLE DEPTH (FT) 

*----D111 

    0.0         

CC 

CC CONSTANT PRESSURE (PSIA) 

*----PRESS1 

     14.7 

CC 

CC CONSTANT INITIAL WATER SATURATION 

*----SWI 

     1.0 

CC 

CC CONSTANT CHLORIDE AND CALCIUM CONCENTRATIONS (MEQ/ML) 

*----C50       C60 

   0.008547      0.0  

CC 

CC******************************************************************* 

CC                                                                  * 

CC    PHYSICAL PROPERTY DATA                                        * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC 
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CC CMC 

*----  EPSME   

      .0001   

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 1 

*----HBNS70 HBNC70 HBNS71 HBNC71 HBNS72 HBNC72 

     0.     .030    0.   .030     0.0   .030 

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 2 

*----HBNS80 HBNC80 HBNS81 HBNC81 HBNS82 HBNC82 

     0.     0.     0.     0.     0.     0. 

CC 

CC LOWER AND UPPER EFFECTIVE SALINITY FOR ALCOHOL 1 AND ALCOHOL 2 

*----CSEL7  CSEU7  CSEL8  CSEU8 

     .65   .9   0.     0. 

CC 

CC THE CSE SLOPE PARAMETER FOR CALCIUM AND ALCOHOL 1 AND ALCOHOL 2 

*----BETA6  BETA7  BETA8 

      0.0    0.    0. 

CC 

CC FLAG FOR ALCOHOL PART. MODEL AND PARTITION COEFFICIENTS 

*----IALC  OPSK7O  OPSK7S  OPSK8O  OPSK8S 

     0     0.      0.      0.      0. 

CC 

CC NO. OF ITERATIONS, AND TOLERANCE 

*----NALMAX   EPSALC 

     20       .0001 

CC 

CC ALCOHOL 1 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC7   AKWS7  AKM7  AK7     PT7 

     4.671   1.79   48.   35.31   .222  

CC 

CC ALCOHOL 2 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC8   AKWS8  AKM8  AK8     PT8 

     0.      0.     0.    0.      0. 

CC 

CC 

*--- IFT MODEL FLAG 

      0 

CC 

CC INTERFACIAL TENSION PARAMETERS 

*----G11  G12     G13   G21   G22    G23 

     13.  -14.8   .007  13.2   -14.5  .010 

CC 

CC LOG10 OF OIL/WATER INTERFACIAL TENSION  

*----XIFTW 

     1.477 

CC 

CC CAPILLARY DESATURATION PARAMETERS FOR PHASE 1, 2, AND 3 

*----ITRAP   T11        T22        T33 

      0       1865.      28665.46      364.2 

CC 

CC REL. PERM. AND PC CURVES 

*---- IPERM    IRTYPE 

        0       0 

CC 

CC FLAG FOR CONSTANT OR VARIABLE REL. PERM. PARAMETERS 

*----ISRW  IPRW  IEW 

    0      0    0 

CC 
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CC CONSTANT RES. SATURATION OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----S1RWC  S2RWC  S3RWC 

     .0    .0    .0 

CC 

CC CONSTANT ENDPOINT REL. PERM. OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----P1RW  P2RW     P3RW 

      1.0   1.0   1.0 

CC 

CC CONSTANT REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----E1W     E2W  E3W 

      1.0   1.0   1.0 

CC 

CC WATER AND OIL VISCOSITY , RESERVOIR TEMPERATURE 

*----VIS1   VIS2  TEMPV 

     0.5     1.25   0.0 

CC 

CC VISCOSITY PARAMETERS 

*----ALPHA1 ALPHA2  ALPHA3  ALPHA4  ALPHA5 

     0.0     0.0      0.0   0.000865    4.153 

CC 

CC PARAMETERS TO CALCULATE POLYMER VISCOSITY AT ZERO SHEAR RATE 

*----AP1     AP2     AP3 

     0.0001   0      0  

CC 

CC PARAMETER TO COMPUTE CSEP,MIN. CSEP, AND SLOPE OF LOG VIS. VS. LOG CSEP  

*----BETAP CSE1  SLOPE 

     10    .01   .0 

CC 

CC PARAMETER FOR SHEAR RATE DEPENDENCE OF POLYMER VISCOSITY 

*----GAMMAC  GAMHF  POWN    IPMOD   ishear  rweff   GAMHF2  iwreath 

     10.0        0.0    1.8     0       0       0.25    0      0 

CC 

CC FLAG FOR POLYMER PARTITIONING, PERM. REDUCTION PARAMETERS 

*----IPOLYM EPHI3 EPHI4 BRK    CRK    RKCUT 

     1      1.    1      0.     0.0  10 

CC 

CC SPECIFIC WEIGHT FOR COMPONENTS 1,2,3,7,AND 8 , AND GRAVITY FLAG 

*----DEN1  DEN2    DEN3     DEN7 DEN8  IDEN  

     62.899  49.857  62.399  49.824  0  2 

CC 

CC  FLAG FOR CHOICE OF UNITS ( 0:BOTTOMHOLE CONDITION , 1: STOCK TANK) 

*-----ISTB 

      0 

CC 

CC COMPRESSIBILITY FOR VOL. OCCUPYING COMPONENTS 1,2,3,7,AND 8  

*----COMPC(1)  COMPC(2)  COMPC(3)  COMPC(7)  COMPC(8) 

       0.        0.        0.        0.        0. 

CC 

CC CONSTANT OR VARIABLE PC PARAM., WATER-WET OR OIL-WET PC CURVE FLAG  

*----ICPC   IEPC  IOW  

      0       0   0 

CC 

CC CAPILLARY PRESSURE PARAMETERS, CPC 

*----CPC  

   0.  

CC 

CC CAPILLARY PRESSURE PARAMETERS, EPC 

*---- EPC 

      2. 

CC 
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CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 1 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0  0.0 0.0  

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 2 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0 0.0   

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 3 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0  0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 1 

*----ALPHAL(1)     ALPHAT(1) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 2 

*----ALPHAL(2)     ALPHAT(2) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 3 

*----ALPHAL(3)     ALPHAT(3) 

     0.0          0.0 

CC 

CC SURFACTANT AND POLYMER ADSORPTION PARAMETERS 

*----AD31     AD32  B3D    AD41   AD42  B4D  IADK, IADS1, FADS refk 

      0.        .0  1000.  0.672   0.0  1      0      0      0   0 

CC 

CC PARAMETERS FOR CATION EXCHANGE OF CLAY AND SURFACTANT 

*----QV     XKC   XKS  EQW 

      0     0.    0.   804 

CC 

CC 

*---  KGOPT   

      4 

CC 

CC 

* -- IRKPPG,   RKCUTPPG,   DPPG,       APPGS,     PPGNS,    DCRICWS   TOLPPGIN 

      2        100000     0.00192      46.4885    -0.3      0.045     0 

CC 

CC 

* -- APPGFR,    PPGNFR 

     334.07    -0.63 

CC  

CC 

*---  ADPPGA,     ADPPGB RESRKFAC,TOLPPGRK 

      0.0         0.0     0.2      1e-6 

CC 

CC 

* ---- APPG1,  APPG2,    GAMCPG,  GAMHFPG,  POWNPG 

       0.005   0.0001    0.0      0.0       1.8 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    WELL DATA                                                     * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC   

CC TOTAL NUMBER OF WELLS, WELL RADIUS FLAG, FLAG FOR TIME OR COURANT NO. 
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*----NWELL   IRO   ITIME  NWREL 

     2      2      1      2  

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW   IW    JW    IFLAG    RW     SWELL  IDIR   IFIRST  ILAST  IPRF 

      1    1     1      1       .0001     0.      3      1        1    0  

CC 

CC WELL NAME 

*---- WELNAM 

INJECTOR 

CC 

CC ICHEK MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX    QTMIN    QTMAX 

      0      0.0       10000    0.0     5615. 

CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     2    20   1   2       .0001       0.     3     1         1       0 

CC 

CC WELL NAME 

*---- WELNAM 

PRODUCER 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

      0     0.0      5000.   0.0     -50000. 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

    1    0.2543  1.   0.  0.     0.   0.008547    0.    0.    0.    0.   0.   

0.   0.   0.   400. 

    1    0.      0.   0.  0.     0.   0.          0.    0.    0.    0.   0.   

0.   0.   0.   0. 

     1    0.      0.   0.  0.     0.   0.          0.    0.    0.    0.   0.   

0.   0.   0.   0. 

CC 

CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL (IFLAG=2 OR 3) 

*----ID   PWF 

     2    14.7  

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR WRITING TO OUTPUT FILES 

*----TINJ    CUMPR1   CUMHI1     WRHPV   WRPRF      RSTC 

     5       1       1             0.01   1         10  

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO.  

*----DT      DCLIM     CNMAX   CNMIN     

 0.0001    0.01     0.1     0.01 
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A-2.  Input data for CASE II, Two-phase flow in a sandpack model 

 
CC******************************************************************* 

CC                                                                  * 

CC    BRIEF DESCRIPTION OF DATA SET                                 *  

CC                                                                  * 

CC******************************************************************* 

CC                                                                  * 

CC                                                                  * 

CC                                                                  * 

CC  LENGTH (FT) : 1.67           PROCESS :  PROFILE CONTROL         *  

CC  THICKNESS (FT) :  0.0833     INJ. PRESSURE (PSI) : -            * 

CC  WIDTH (FT) : 0.0833          COORDINATES : CARTESIAN            * 

CC  POROSITY : 0.386                                                * 

CC  GRIDBLOCKS : 80                                                * 

CC  DATE :                                                          * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR DESCRIPTION                                         * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

*----RUNNO 

exp2 

CC   

CC 

*----HEADER 

Experimental matching # 2, 1-D, 2-phase flow in a sandpack model  

 

***************************************************************************** 

CC 

CC SIMULATION FLAGS 

*---- IMODE IMES IDISPC IREACT  ICOORD ITREAC ITC  IENG 

        1    2    3       1      1     0      0    0 

CC 

CC NUMBER OF GRIDBLOCKS AND FLAG SPECIFIES CONSTANT OR VARIABLE GRID SIZE 

*----NX   NY  NZ  IDXYZ  IUNIT 

     80    1   1  2       0           

CC 

CC  VARIABLE GRID BLOCK SIZE IN X 

*----DX(I)       

     80*0.020833  

CC 

CC  CONSTANT GRID BLOCK SIZE IN Y 

*----DY  

     1*0.0833333   

CC 

CC  VARIABLE GRID BLOCK SIZE IN Z 

*----DZ 

     1*0.0833333 

CC 

CC TOTAL NO. OF COMPONENTS, NO. OF TRACERS, NO. OF GEL COMPONENTS 

*----N   NTW  N 

     14   0   6  
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CC 

CC 

*---- SPNAME(I),I=1,N 

WATER 

OIL 

none 

none 

SALT 

none 

none 

none 

none 

none 

none 

none 

none 

ppg 

CC 

CC FLAG INDICATING IF THE COMPONENT IS INCLUDED IN CALCULATIONS OR NOT 

*----ICF(KC) FOR KC=1,N 

   1  1  0  0  1 0  0 0 0 0 0 0 0 1 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    OUTPUT OPTIONS                                                * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

CC  FLAG FOR PV OR DAYS FOR OUTPUT AND STOP THE RUN 

*----ICUMTM  ISTOP   

       1     1  

CC 

CC FLAG INDICATING IF THE PROFILE OF KCTH COMPONENT SHOULD BE WRITTEN 

*----IPRFLG(KC),KC=1,N 

     1  1  0  0  0  0 0 0 0 0 0 0 0  1 

CC 

CC FLAG FOR PRES,SAT.,TOTAL CONC.,TRACER CONC.,CAP.,GEL, ALKALINE PROFILES 

*----IPPRES IPSAT IPCTOT IPGEL  ITEMP    

      1      1      1      1    0   

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES  

*----ICKL IVIS IPER ICNM  ICSE 

      0     1    0    0    0     

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES TO PROF 

*----IADS  IVEL IRKF IPHSE  

      0     0    1    0   

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR PROPERTIES                                          * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

CC MAX. SIMULATION TIME (PV)  

*---- TMAX 

      5.4  

CC 
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CC ROCK COMPRESSIBILITY (1/PSI), STAND. PRESSURE(PSIA) 

*----COMPR   PSTAND 

      0.      14.7 

CC 

CC FLAGS INDICATING CONSTANT OR VARIABLE POROSITY, X,Y,AND Z PERMEABILITY 

*----IPOR1 IPERMX IPERMY IPERMZ  IMOD  ITRNZ  INTG 

       0      0     0      0      0     0      0 

CC 

CC VARIABLE POROSITY 

*----PORC1 

     0.386 

CC 

CC VARIABLE X-PERMEABILITY (MILIDARCY)  

*----PERMX(1) 

     27290 

CC 

CC VARIABLE Y-PERMEABILITY (MILIDARCY) FOR LAYER K = 1,NZ 

*----PERMY(1) 

     27290 

CC 

CC VARIABLE Z-PERMEABILITY 

*----PERMZC (MILIDARCY) 

     27290 

CC 

CC FLAG FOR CONSTANT OR VARIABLE DEPTH, PRESSURE, WATER SATURATION 

*----IDEPTH  IPRESS  ISWI  

      0        0       0  

CC 

CC VARIABLE DEPTH (FT) 

*----D111 

     0.0         

CC 

CC CONSTANT PRESSURE (PSIA) 

*----PRESS1 

     14.7 

CC 

CC CONSTANT INITIAL WATER SATURATION 

*----SWI 

     0.12 

CC 

CC CONSTANT CHLORIDE AND CALCIUM CONCENTRATIONS (MEQ/ML) 

*----C50       C60 

     0.1342282      0.0  

CC 

CC******************************************************************* 

CC                                                                  * 

CC    PHYSICAL PROPERTY DATA                                        * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC 

CC CMC 

*----  EPSME   

      .0001   

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 1 

*----HBNS70 HBNC70 HBNS71 HBNC71 HBNS72 HBNC72 

     0.     .030    0.   .030     0.0   .030 

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 2 



144 

 

*----HBNS80 HBNC80 HBNS81 HBNC81 HBNS82 HBNC82 

     0.     0.     0.     0.     0.     0. 

CC 

CC LOWER AND UPPER EFFECTIVE SALINITY FOR ALCOHOL 1 AND ALCOHOL 2 

*----CSEL7  CSEU7  CSEL8  CSEU8 

     .65   .9   0.     0. 

CC 

CC THE CSE SLOPE PARAMETER FOR CALCIUM AND ALCOHOL 1 AND ALCOHOL 2 

*----BETA6  BETA7  BETA8 

     0.0    0.    0. 

CC 

CC FLAG FOR ALCOHOL PART. MODEL AND PARTITION COEFFICIENTS 

*----IALC  OPSK7O  OPSK7S  OPSK8O  OPSK8S 

     0     0.      0.      0.      0. 

CC 

CC NO. OF ITERATIONS, AND TOLERANCE 

*----NALMAX   EPSALC 

     20       .0001 

CC 

CC ALCOHOL 1 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC7   AKWS7  AKM7  AK7     PT7 

     4.671   1.79   48.   35.31   .222  

CC 

CC ALCOHOL 2 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC8   AKWS8  AKM8  AK8     PT8 

     0.      0.     0.    0.      0. 

CC 

CC 

*--- IFT MODEL FLAG 

      0 

CC 

CC INTERFACIAL TENSION PARAMETERS 

*----G11  G12     G13   G21   G22    G23 

     13.  -14.8   .007  13.2   -14.5  .010 

CC 

CC LOG10 OF OIL/WATER INTERFACIAL TENSION  

*----XIFTW 

     1.477 

CC 

CC CAPILLARY DESATURATION PARAMETERS FOR PHASE 1, 2, AND 3 

*----ITRAP   T11        T22        T33 

     0       1865.      28665.46      364.2  

CC 

CC REL. PERM. AND PC CURVES 

*---- IPERM    IRTYPE 

        0       0 

CC 

CC FLAG FOR CONSTANT OR VARIABLE REL. PERM. PARAMETERS 

*----ISRW  IPRW  IEW 

     0      0    0 

CC 

CC CONSTANT RES. SATURATION OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----S1RWC  S2RWC  S3RWC 

     .05    .15    .147 

CC 

CC CONSTANT ENDPOINT REL. PERM. OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----P1RW  P2RW     P3RW 

     .68    0.48    0.14 

CC 

CC CONSTANT REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 
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*----E1W    E2W      E3W 

     6.4    1.6    1.1 

CC 

CC WATER AND OIL VISCOSITY , RESERVOIR TEMPERATURE 

*----VIS1   VIS2  TEMPV 

     1.0    37    72.5 

CC 

CC VISCOSITY PARAMETERS 

*----ALPHA1 ALPHA2  ALPHA3  ALPHA4  ALPHA5 

     0.0     0.0      0.0   0.000865    4.153 

CC 

CC PARAMETERS TO CALCULATE POLYMER VISCOSITY AT ZERO SHEAR RATE 

*----AP1     AP2     AP3 

     0.0001   0      0  

CC 

CC PARAMETER TO COMPUTE CSEP,MIN. CSEP, AND SLOPE OF LOG VIS. VS. LOG CSEP  

*----BETAP CSE1  SLOPE 

     10    .01   .0 

CC 

CC PARAMETER FOR SHEAR RATE DEPENDENCE OF POLYMER VISCOSITY 

*----GAMMAC  GAMHF  POWN    IPMOD   ishear  rweff   GAMHF2  iwreath 

     10.0        0.0    1.8     0       0       0.25    0      0 

CC 

CC FLAG FOR POLYMER PARTITIONING, PERM. REDUCTION PARAMETERS 

*----IPOLYM EPHI3 EPHI4 BRK    CRK    RKCUT 

     1      1.    1      0.     0.0  10 

CC 

CC SPECIFIC WEIGHT FOR COMPONENTS 1,2,3,7,AND 8 , AND GRAVITY FLAG 

*----DEN1  DEN2    DEN3     DEN7 DEN8  IDEN  

   62.899  49.857  62.399  49.824  0  2 

CC 

CC  FLAG FOR CHOICE OF UNITS ( 0:BOTTOMHOLE CONDITION , 1: STOCK TANK) 

*-----ISTB 

      0 

CC 

CC COMPRESSIBILITY FOR VOL. OCCUPYING COMPONENTS 1,2,3,7,AND 8  

*----COMPC(1)  COMPC(2)  COMPC(3)  COMPC(7)  COMPC(8) 

     0.        0.        0.        0.        0. 

CC 

CC CONSTANT OR VARIABLE PC PARAM., WATER-WET OR OIL-WET PC CURVE FLAG  

*----ICPC   IEPC  IOW  

     0       0   0 

CC 

CC CAPILLARY PRESSURE PARAMETERS, CPC 

*----CPC  

   0.  

CC 

CC CAPILLARY PRESSURE PARAMETERS, EPC 

*---- EPC 

      2. 

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 1 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0  0.0 0.0  

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 2 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0 0.0   

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 3 (D(KC),KC=1,N) 
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*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0  0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 1 

*----ALPHAL(1)     ALPHAT(1) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 2 

*----ALPHAL(2)     ALPHAT(2) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 3 

*----ALPHAL(3)     ALPHAT(3) 

     0.0          0.0CC 

CC SURFACTANT AND POLYMER ADSORPTION PARAMETERS 

*----AD31     AD32  B3D    AD41   AD42  B4D  IADK, IADS1, FADS refk 

     0.        .0  1000.  0.672   0.0  1      0      0      0   0 

CC 

CC PARAMETERS FOR CATION EXCHANGE OF CLAY AND SURFACTANT 

*----QV     XKC   XKS  EQW 

      0     0.    0.   804 

CC 

CC *---  KGOPT   

      4 

CC 

CC 

* -- IRKPPG,RKCUTPPG, DPPG,        APPGS,   PPGNS,  DCRICWS    TOLPPGIN 

      2     10000000    0.0003281     30      -0.3     0.08 20 

CC 

CC 

* -- APPGFR, PPGNFR 

       20      -0.2 

CC 

CC 

*---  ADPPGA,  ADPPGB  RESRKFAC,TOLPPGRK 

       1      0.00002     0.1   1e-6 

CC 

CC 

* ---- APPG1,APPG2,GAMCPG,GAMHFPG,POWNPG 

      0    0    0.0     0.0    1.8 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    WELL DATA                                                     * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC   

CC TOTAL NUMBER OF WELLS, WELL RADIUS FLAG, FLAG FOR TIME OR COURANT NO. 

*----NWELL   IRO   ITIME  NWREL 

      2      2      1      2  

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW   IW    JW    IFLAG    RW     SWELL  IDIR   IFIRST  ILAST  IPRF 

      1    1     1      1       .0001     0.      3      1        1    0  

CC 

CC WELL NAME 

*---- WELNAM 

INJECTOR 

CC 
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CC ICHEK MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX    QTMIN    QTMAX 

      0      0.0       10000    0.0     5615. 

CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     2    80   1   2       .0001       0.     3     1         1       0 

CC 

CC WELL NAME 

*---- WELNAME 

PRODUCER 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

      0     0.0      5000.   0.0     -50000. 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1     0.101706  1.   0.  0.     0.   0.1342282    0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1     0.        0.   0.  0.     0.   0.           0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1     0.        0.   0.  0.     0.   0.           0.    0.    0.    0.  0.   

0.   0.   0.   0. 

CC 

CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL (IFLAG=2 OR 3) 

*----ID   PWF 

     2    14.7  

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR WRITING TO OUTPUT FILES 

*----TINJ    CUMPR1   CUMHI1     WRHPV   WRPRF      RSTC 

     2.51       1       1             0.1   1         10  

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO.  

*----DT      DCLIM     CNMAX   CNMIN     

     0.0001    0.01     0.1     0.01 

CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2 

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1    0.101706    1.     0.   0.     0.   0.1342282   0.    0.    0.    0.   

0.   0.   0.   0.   2000 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.         0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 
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     3.71     1       1            0.1            1          10 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

     0.0001   0.01          0.1   0.01 CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2 

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1 

CC 

CC ID,INJ. RATE AND INJ. COP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)  

     1    0.101706    1.     0.   0.     0.   0.1342282   0.    0.    0.    0.  

0.  0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.  

0.   0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.  

0.   0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

     5.4    1       1            0.1            1          10 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

     0.0001   0.01          0.1   0.01  
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A-3. Input data for CASE III, Two-phase flow in a coreflood 

 
CC******************************************************************* 

CC                                                                  * 

CC    BRIEF DESCRIPTION OF DATA SET                                 *  

CC                                                                  * 

CC******************************************************************* 

CC                                                                  * 

CC                                                                  * 

CC                                                                  * 

CC  LENGTH (FT) :  0.5             PROCESS :  PROFILE CONTROL       *  

CC  THICKNESS (FT) : 0.0833        INJ. PRESSURE (PSI) : -          * 

CC  WIDTH (FT) :  0.0833           COORDINATES : CARTESIAN          * 

CC  POROSITY :  0.156                                               * 

CC  GRIDBLOCKS :   60                                              * 

CC  DATE :                                                          * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR DESCRIPTION                                         * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

*----RUNNO 

exp3 

CC   

CC 

*----HEADER 

Experimental matching # 3, 1-D, 2-phase flow in a coreflood model  

 

***************************************************************************** 

CC 

CC SIMULATION FLAGS 

*---- IMODE IMES IDISPC IREACT  ICOORD ITREAC ITC  IENG 

        1    2    3       1      1     0      0    0 

CC 

CC NUMBER OF GRIDBLOCKS AND FLAG SPECIFIES CONSTANT OR VARIABLE GRID SIZE 

*----NX   NY  NZ  IDXYZ  IUNIT 

     60    1   1  2       0           

CC 

CC  VARIABLE GRID BLOCK SIZE IN X 

*----DX(I)       

     60*0.008333 

CC 

CC  CONSTANT GRID BLOCK SIZE IN Y 

*----DY  

     1*0.0833333   

CC 

CC  VARIABLE GRID BLOCK SIZE IN Z 

*----DZ 

     1*0.0833333 

CC 

CC TOTAL NO. OF COMPONENTS, NO. OF TRACERS, NO. OF GEL COMPONENTS 

*----N   NTW  NG 

     14   0   6  



150 

 

CC 

CC 

*---- SPNAME(I),I=1,N 

WATER 

OIL 

none 

none 

SALT 

none 

none 

none 

none 

none 

none 

none 

none 

ppg 

CC 

CC FLAG INDICATING IF THE COMPONENT IS INCLUDED IN CALCULATIONS OR NOT 

*----ICF(KC) FOR KC=1,N 

   1  1  0  0  1 0  0 0 0 0 0 0 0 1 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    OUTPUT OPTIONS                                                * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

CC  FLAG FOR PV OR DAYS FOR OUTPUT AND STOP THE RUN 

*----ICUMTM  ISTOP   

       1     1  

CC 

CC FLAG INDICATING IF THE PROFILE OF KCTH COMPONENT SHOULD BE WRITTEN 

*----IPRFLG(KC),KC=1,N 

     1  1  0  0  0  0 0 0 0 0 0 0 0  1 

CC 

CC FLAG FOR PRES,SAT.,TOTAL CONC.,TRACER CONC.,CAP.,GEL, ALKALINE PROFILES 

*----IPPRES IPSAT IPCTOT IPGEL  ITEMP    

      1      1      1      1    0   

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES  

*----ICKL IVIS IPER ICNM  ICSE 

      0     1    0    0    0    

 CC 

 

CC FLAG FOR WRITING SEVERAL PROPERTIES TO PROF 

 

*----IADS  IVEL IRKF IPHSE  

      0     0    1    0   

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR PROPERTIES                                          * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

CC MAX. SIMULATION TIME (PV)  

*---- TMAX 
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      35.656  

CC 

CC ROCK COMPRESSIBILITY (1/PSI), STAND. PRESSURE(PSIA) 

*----COMPR   PSTAND 

      0.      14.7 

CC 

CC FLAGS INDICATING CONSTANT OR VARIABLE POROSITY, X,Y,AND Z PERMEABILITY 

*----IPOR1 IPERMX IPERMY IPERMZ  IMOD  ITRNZ  INTG 

       0      0     0      0      0     0      0 

CC 

CC VARIABLE POROSITY 

*----PORC1 

     0.156 

CC 

CC VARIABLE X-PERMEABILITY (MILIDARCY)  

*----PERMX(1) 

     192.2 

CC 

CC VARIABLE Y-PERMEABILITY (MILIDARCY) FOR LAYER K = 1,NZ 

*----PERMY(1) 

     192.2 

CC 

CC VARIABLE Z-PERMEABILITY 

*----PERMZC (MILIDARCY) 

     192.2 

CC 

CC FLAG FOR CONSTANT OR VARIABLE DEPTH, PRESSURE, WATER SATURATION 

*----IDEPTH  IPRESS  ISWI  

      0        0       0  

CC 

CC VARIABLE DEPTH (FT) 

*----D111 

     0.0        

CC 

CC CONSTANT PRESSURE (PSIA) 

*----PRES1 

     14.7 

CC 

CC CONSTANT INITIAL WATER SATURATION 

*----SWI 

     0.005 

CC 

CC CONSTANT CHLORIDE AND CALCIUM CONCENTRATIONS (MEQ/ML) 

*----C50       C60 

     0.1342282      0.0  

CC 

CC******************************************************************* 

CC                                                                  * 

CC    PHYSICAL PROPERTY DATA                                        * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC 

CC CMC 

*----  EPSME   

      .0001   

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 1 

*----HBNS70 HBNC70 HBNS71 HBNC71 HBNS72 HBNC72 

     0.     .030    0.   .030     0.0   .030 
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CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 2 

*----HBNS80 HBNC80 HBNS81 HBNC81 HBNS82 HBNC82 

     0.     0.     0.     0.     0.     0. 

CC 

CC LOWER AND UPPER EFFECTIVE SALINITY FOR ALCOHOL 1 AND ALCOHOL 2 

*----CSEL7  CSEU7  CSEL8  CSEU8 

     .65   .9   0.     0. 

CC 

CC THE CSE SLOPE PARAMETER FOR CALCIUM AND ALCOHOL 1 AND ALCOHOL 2 

*----BETA6  BETA7  BETA8 

     0.0    0.    0. 

CC 

CC FLAG FOR ALCOHOL PART. MODEL AND PARTITION COEFFICIENTS 

*----IALC  OPSK7O  OPSK7S  OPSK8O  OPSK8S 

     0     0.      0.      0.      0. 

CC 

CC NO. OF ITERATIONS, AND TOLERANCE 

*----NALMAX   EPSALC 

     20       .0001 

CC 

CC ALCOHOL 1 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC7   AKWS7  AKM7  AK7     PT7 

     4.671   1.79   48.   35.31   .222  

CC 

CC ALCOHOL 2 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC8   AKWS8  AKM8  AK8     PT8 

     0.      0.     0.    0.      0. 

CC 

CC 

*--- IFT MODEL FLAG 

      0 

CC 

CC INTERFACIAL TENSION PARAMETERS 

*----G11  G12     G13   G21   G22    G23 

     13.  -14.8   .007  13.2   -14.5  .010 

CC 

CC LOG10 OF OIL/WATER INTERFACIAL TENSION  

*----XIFTW 

     1.477 

CC 

CC CAPILLARY DESATURATION PARAMETERS FOR PHASE 1, 2, AND 3 

*----ITRAP   T11        T22        T33 

     0       1865.      28665.46      364.2  

CC 

CC REL. PERM. AND PC CURVES 

*---- IPERM    IRTYPE 

        0       0 

CC 

CC FLAG FOR CONSTANT OR VARIABLE REL. PERM. PARAMETERS 

*----ISRW  IPRW  IEW 

     0      0    0 

CC 

CC CONSTANT RES. SATURATION OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----S1RWC  S2RWC  S3RWC 

     .4    .33    .147 

CC 

CC CONSTANT ENDPOINT REL. PERM. OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----P1RW  P2RW     P3RW 

     .99     0.26     0.14 
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CC 

CC CONSTANT REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----E1W     E2W      E3W 

     4.5     3.6      1.1 

CC 

CC WATER AND OIL VISCOSITY , RESERVOIR TEMPERATURE 

 

*----VIS1   VIS2  TEMPV 

     1      37     72.5 

CC 

CC VISCOSITY PARAMETERS 

*----ALPHA1 ALPHA2  ALPHA3  ALPHA4  ALPHA5 

     0.0     0.0      0.0   0.000865    4.153 

CC 

CC PARAMETERS TO CALCULATE POLYMER VISCOSITY AT ZERO SHEAR RATE 

*----AP1     AP2     AP3 

     0.0001   0      0  

CC 

CC PARAMETER TO COMPUTE CSEP,MIN. CSEP, AND SLOPE OF LOG VIS. VS. LOG CSEP  

*----BETAP CSE1  SLOPE 

     10    .01   .0 

CC 

CC PARAMETER FOR SHEAR RATE DEPENDENCE OF POLYMER VISCOSITY 

*----GAMMAC  GAMHF  POWN    IPMOD   ishear  rweff   GAMHF2  iwreath 

     10.0        0.0    1.8     0       0       0.25    0      0 

CC 

CC FLAG FOR POLYMER PARTITIONING, PERM. REDUCTION PARAMETERS 

*----IPOLYM EPHI3 EPHI4 BRK    CRK    RKCUT 

     1      1.    1      0.     0.0  10 

CC 

CC SPECIFIC WEIGHT FOR COMPONENTS 1,2,3,7,AND 8 , AND GRAVITY FLAG 

*----DEN1  DEN2    DEN3     DEN7 DEN8  IDEN  

   62.899  49.857  62.399  49.824  0  2 

CC 

CC  FLAG FOR CHOICE OF UNITS ( 0:BOTTOMHOLE CONDITION , 1: STOCK TANK) 

*-----ISTB 

      0 

CC 

CC COMPRESSIBILITY FOR VOL. OCCUPYING COMPONENTS 1,2,3,7,AND 8  

*----COMPC(1)  COMPC(2)  COMPC(3)  COMPC(7)  COMPC(8) 

     0.        0.        0.        0.        0. 

CC 

CC CONSTANT OR VARIABLE PC PARAM., WATER-WET OR OIL-WET PC CURVE FLAG  

*----ICPC   IEPC  IOW  

     0       0   0 

CC 

CC CAPILLARY PRESSURE PARAMETERS, CPC 

*----CPC  

   0.  

CC 

CC CAPILLARY PRESSURE PARAMETERS, EPC 

*---- EPC 

      2. 

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 1 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0  0.0 0.0  

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 2 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  
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     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0 0.0   

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 3 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0  0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 1 

*----ALPHAL(1)     ALPHAT(1) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 2 

*----ALPHAL(2)     ALPHAT(2) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 3 

*----ALPHAL(3)     ALPHAT(3) 

     0.0          0.0 

CC 

CC SURFACTANT AND POLYMER ADSORPTION PARAMETERS 

*----AD31     AD32  B3D    AD41   AD42  B4D  IADK, IADS1, FADS refk 

     0.        .0  1000.  0.672   0.0  1      0      0      0   0 

CC 

CC PARAMETERS FOR CATION EXCHANGE OF CLAY AND SURFACTANT 

*----QV     XKC   XKS  EQW 

      0     0.    0.   804 

CC 

CC 

*---  KGOPT   

      4 

CC 

CC 

* -- IRKPPG,RKCUTPPG, DPPG,      APPGS,   PPGNS,  DCRICWS   TOLPPGIN 

      2     10000000    0.00033    30      -0.32     0.5     40 

CC 

CC 

* -- APPGFR, PPGNFR 

       10      -0.3 

CC 

CC 

*---  ADPPGA,  ADPPGB  RESRKFAC,TOLPPGRK 

       12      0.0002     0.2   1e-6 

CC 

CC 

* ---- APPG1,    APPG2,    GAMCPG,  GAMHFPG, POWNPG 

     0.0001     0.0001    10.0     0.0      1.8 

CCCC******************************************************************* 

CC                                                                  * 

CC    WELL DATA                                                     * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC   

CC TOTAL NUMBER OF WELLS, WELL RADIUS FLAG, FLAG FOR TIME OR COURANT NO. 

*----NWELL   IRO   ITIME  NWREL 

      2      2      1      2  

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW   IW    JW    IFLAG    RW     SWELL  IDIR   IFIRST  ILAST  IPRF 

      1    1     1      1       .0001     0.      3      1        1    0  

CC 
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CC WELL NAME 

*---- WELNAM 

INJECTOR 

CC 

CC ICHEK MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX    QTMIN    QTMAX 

      0      0.0       10000    0.0     5615. 

CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

 

     2    60   1   2       .0001       0.     3     1         1       0 

CC 

CC WELL NAME 

*---- WELNAM 

PRODUCER 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

     0     0.0      5000.   0.0     -50000. 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1     0.050853  1.   0.  0.     0.   0.1342282    0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1     0.        0.   0.  0.     0.   0.           0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1     0.        0.   0.  0.     0.   0.           0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL (IFLAG=2 OR 3) 

*----ID   PWF 

     2    14.7  

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR WRITING TO OUTPUT FILES 

*----TINJ    CUMPR1   CUMHI1     WRHPV   WRPRF      RSTC 

     5.406       1       1            0.25   1         10  

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO.  

*----DT      DCLIM     CNMAX   CNMIN     

    0.0001    0.01     0.1     0.01 

CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2 

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1    0.050853    1.     0.   0.     0.   0.1342282   0.    0.    0.    0.   

0.   0.   0.   0.   2000 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 
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     1    0.         0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

     28.136     1       1            0.25            1          10 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

     0.0001   0.01          0.1   0.01 CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2 

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1    0.050853    1.     0.   0.     0.   0.1342282   0.    0.    0.    0.   

0.  0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.  0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.  0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

     35.656     1       1           0.25            1          10 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

     0.0001   0.01          0.1   0.01  
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A-4.  Input data for CASE IV, Two-phase flow in a sandpack model with 

different PPG injection rates 

 

CC******************************************************************* 

CC                                                                  * 

CC    BRIEF DESCRIPTION OF DATA SET                                 *  

CC                                                                  * 

CC******************************************************************* 

CC                                                                  * 

CC                                                                  * 

CC                                                                  * 

CC  LENGTH (FT) : 3              PROCESS :  PROFILE CONTROL         *  

CC  THICKNESS (FT) : 0.082       INJ. PRESSURE (PSI) : -            * 

CC  WIDTH (FT) : 0.082           COORDINATES : CARTESIAN            * 

CC  POROSITY :  0.364                                               * 

CC  GRIDBLOCKS :  40                                               * 

CC  DATE :                                                          * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR DESCRIPTION                                         * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

*----RUNNO 

exp4 

CC   

CC 

*----HEADER 

Experimental matching # 4, 1-D, 2-phase flow, sandpack model 

 

***************************************************************************** 

CC 

CC SIMULATION FLAGS 

*---- IMODE IMES IDISPC IREACT  ICOORD ITREAC ITC  IENG 

        1    2    3       1      1     0      0    0 

CC 

CC NUMBER OF GRIDBLOCKS AND FLAG SPECIFIES CONSTANT OR VARIABLE GRID SIZE 

*----NX   NY  NZ  IDXYZ  IUNIT 

     40    1   1  2       0           

CC 

CC  VARIABLE GRID BLOCK SIZE IN X 

*----DX(I)       

     40*0.0749672  

CC 

CC  CONSTANT GRID BLOCK SIZE IN Y 

*----DY  

     1*0.082021   

CC 

CC  VARIABLE GRID BLOCK SIZE IN Z 

*----DZ 

     1*0.082021 

CC 

CC TOTAL NO. OF COMPONENTS, NO. OF TRACERS, NO. OF GEL COMPONENTS 
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*----N   NTW  NG 

     14   0   6  

CC 

CC 

*---- SPNAME(I),I=1,N 

WATER 

OIL 

none 

none 

SALT 

none 

none 

none 

none 

none 

none 

none 

none 

ppg 

CC 

CC FLAG INDICATING IF THE COMPONENT IS INCLUDED IN CALCULATIONS OR NOT 

*----ICF(KC) FOR KC=1,N 

   1  1  0  0  1 0  0 0 0 0 0 0 0 1 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    OUTPUT OPTIONS                                                * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

CC  FLAG FOR PV OR DAYS FOR OUTPUT AND STOP THE RUN 

*----ICUMTM  ISTOP   

       1     1  

CC 

CC FLAG INDICATING IF THE PROFILE OF KCTH COMPONENT SHOULD BE WRITTEN 

*----IPRFLG(KC),KC=1,N 

     1  1  0  0  0  0 0 0 0 0 0 0 0  1 

CC 

CC FLAG FOR PRES,SAT.,TOTAL CONC.,TRACER CONC.,CAP.,GEL, ALKALINE PROFILES 

*----IPPRES IPSAT IPCTOT IPGEL  ITEMP    

      1      1      1      1    0   

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES  

*----ICKL IVIS IPER ICNM  ICSE 

      0     1    0    0    0     

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES TO PROF 

*----IADS  IVEL IRKF IPHSE  

      0     0    1    0   

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR PROPERTIES                                          * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

CC MAX. SIMULATION TIME (PV)  

*---- TMAX 
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      16.024  

CC 

CC ROCK COMPRESSIBILITY (1/PSI), STAND. PRESSURE(PSIA) 

*----COMPR   PSTAND 

      0.      14.7 

CC 

CC FLAGS INDICATING CONSTANT OR VARIABLE POROSITY, X,Y,AND Z PERMEABILITY 

*----IPOR1 IPERMX IPERMY IPERMZ  IMOD  ITRNZ  INTG 

       0      0     0      0      0     0      0 

CC 

CC VARIABLE POROSITY 

*----PORC1 

     0.364CC 

CC VARIABLE X-PERMEABILITY (MILIDARCY)  

*----PERMX(1) 

     27000 

CC 

CC VARIABLE Y-PERMEABILITY (MILIDARCY) FOR LAYER K = 1,NZ 

*----PERMY(1) 

     27000 

CC 

CC VARIABLE Z-PERMEABILITY 

*----PERMZC (MILIDARCY) 

     27000 

CC 

CC FLAG FOR CONSTANT OR VARIABLE DEPTH, PRESSURE, WATER SATURATION 

*----IDEPTH  IPRESS  ISWI  

      0        0       0  

CC 

CC VARIABLE DEPTH (FT) 

*----D111 

     0.0         

CC 

CC CONSTANT PRESSURE (PSIA) 

*----PRESS1 

     14.7 

CC 

CC CONSTANT INITIAL WATER SATURATION 

*----SWI 

     0.31 

CC 

CC CONSTANT CHLORIDE AND CALCIUM CONCENTRATIONS (MEQ/ML) 

*----C50       C60 

     0.0336    0.0  

CC 

CC******************************************************************* 

CC                                                                  * 

CC    PHYSICAL PROPERTY DATA                                        * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC 

CC CMC 

*----  EPSME   

      .0001   

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 1 

*----HBNS70 HBNC70 HBNS71 HBNC71 HBNS72 HBNC72 

     0.     .030    0.   .030     0.0   .030 

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 
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CC FOR ALCOHOL 2 

*----HBNS80 HBNC80 HBNS81 HBNC81 HBNS82 HBNC82 

     0.     0.     0.     0.     0.     0. 

CC 

CC LOWER AND UPPER EFFECTIVE SALINITY FOR ALCOHOL 1 AND ALCOHOL 2 

*----CSEL7  CSEU7  CSEL8  CSEU8 

     .65   .9   0.     0. 

CC 

CC THE CSE SLOPE PARAMETER FOR CALCIUM AND ALCOHOL 1 AND ALCOHOL 2 

*----BETA6  BETA7  BETA8 

     0.0    0.    0. 

CC 

CC FLAG FOR ALCOHOL PART. MODEL AND PARTITION COEFFICIENTS 

*----IALC  OPSK7O  OPSK7S  OPSK8O  OPSK8S 

     0     0.      0.      0.      0. 

CC 

CC NO. OF ITERATIONS, AND TOLERANCE 

*----NALMAX   EPSALC 

     20       .0001 

CC 

CC ALCOHOL 1 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC7   AKWS7  AKM7  AK7     PT7 

     4.671   1.79   48.   35.31   .222  

CC 

CC ALCOHOL 2 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC8   AKWS8  AKM8  AK8     PT8 

     0.      0.     0.    0.      0. 

CC 

CC 

*--- IFT MODEL FLAG 

      0 

CC 

CC INTERFACIAL TENSION PARAMETERS 

*----G11  G12     G13   G21   G22    G23 

     13.  -14.8   .007  13.2   -14.5  .010 

CC 

CC LOG10 OF OIL/WATER INTERFACIAL TENSION  

*----XIFTW 

     1.477 

CC 

CC CAPILLARY DESATURATION PARAMETERS FOR PHASE 1, 2, AND 3 

*----ITRAP   T11        T22        T33 

     0       1865.      28665.46      364.2  

CC 

CC REL. PERM. AND PC CURVES 

*---- IPERM    IRTYPE 

        0       0 

CC 

CC FLAG FOR CONSTANT OR VARIABLE REL. PERM. PARAMETERS 

*----ISRW  IPRW  IEW 

     0      0    0 

CC 

CC CONSTANT RES. SATURATION OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----S1RWC  S2RWC  S3RWC 

     .265    .068    .147 

CC 

CC CONSTANT ENDPOINT REL. PERM. OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----P1RW  P2RW     P3RW 

     0.72   0.3   0.14 

CC 
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CC CONSTANT REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----E1W    E2W      E3W 

     7.25    2.2    1.1 

CC 

CC WATER AND OIL VISCOSITY , RESERVOIR TEMPERATURE 

*----VIS1   VIS2  TEMPV 

     1.0    37    72.5 

CC 

CC VISCOSITY PARAMETERS 

*----ALPHA1 ALPHA2  ALPHA3  ALPHA4  ALPHA5 

     0.0     0.0      0.0   0.000865    4.153 

CC 

CC PARAMETERS TO CALCULATE POLYMER VISCOSITY AT ZERO SHEAR RATE 

*----AP1     AP2     AP3 

     0.0001   0      0  

CC 

CC PARAMETER TO COMPUTE CSEP,MIN. CSEP, AND SLOPE OF LOG VIS. VS. LOG CSEP  

*----BETAP CSE1  SLOPE 

     10    .01   .0 

CC 

CC PARAMETER FOR SHEAR RATE DEPENDENCE OF POLYMER VISCOSITY 

*----GAMMAC  GAMHF  POWN    IPMOD   ishear  rweff   GAMHF2  iwreath 

     10.0        0.0    1.8     0       0       0.25    0      0 

CC 

CC FLAG FOR POLYMER PARTITIONING, PERM. REDUCTION PARAMETERS 

*----IPOLYM EPHI3 EPHI4 BRK    CRK    RKCUT 

     1      1.    1      0.     0.0  10 

CC 

CC SPECIFIC WEIGHT FOR COMPONENTS 1,2,3,7,AND 8 , AND GRAVITY FLAG 

*----DEN1  DEN2    DEN3     DEN7 DEN8  IDEN  

   62.899  49.857  62.399  49.824  0  2 

CC 

CC  FLAG FOR CHOICE OF UNITS ( 0:BOTTOMHOLE CONDITION , 1: STOCK TANK) 

*-----ISTB 

      0 

CC 

CC COMPRESSIBILITY FOR VOL. OCCUPYING COMPONENTS 1,2,3,7,AND 8  

*----COMPC(1)  COMPC(2)  COMPC(3)  COMPC(7)  COMPC(8) 

     0.        0.        0.        0.        0. 

CC 

CC CONSTANT OR VARIABLE PC PARAM., WATER-WET OR OIL-WET PC CURVE FLAG  

*----ICPC   IEPC  IOW  

     0       0   0 

CC 

CC CAPILLARY PRESSURE PARAMETERS, CPC 

*----CPC  

   0.  

CC 

CC CAPILLARY PRESSURE PARAMETERS, EPC 

*---- EPC 

      2. 

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 1 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0  0.0 0.0  

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 2 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0 0.0   

CC 
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CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 3 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0  0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 1 

*----ALPHAL(1)     ALPHAT(1) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 2 

*----ALPHAL(2)     ALPHAT(2) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 3 

*----ALPHAL(3)     ALPHAT(3) 

     0.0          0.0 

CC 

CC SURFACTANT AND POLYMER ADSORPTION PARAMETERS 

*----AD31     AD32  B3D    AD41   AD42  B4D  IADK, IADS1, FADS refk 

     0.        .0  1000.  0.672   0.0  1      0      0      0   0 

CC 

CC PARAMETERS FOR CATION EXCHANGE OF CLAY AND SURFACTANT 

*----QV     XKC   XKS  EQW 

      0     0.    0.   804 

CC 

CC 

*---  KGOPT   

      4 

CC 

CC 

* -- IRKPPG,RKCUTPPG,      DPPG,          APPGS,   PPGNS,  DCRICWS    TOLPPGIN 

      2     10000000000    0.00059061     35     -0.3       0.05  150 

CC 

CC 

* -- APPGFR,   PPGNFR 

      70      -0.25 

CC 

CC 

*---  ADPPGA,  ADPPGB  RESRKFAC,TOLPPGRK 

      27       0.0009     0.1   1e-6 

CC 

CC 

* ---- APPG1,APPG2,GAMCPG,GAMHFPG,POWNPG 

      1e-6   5e-6   0.0     0.0    1.8 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    WELL DATA                                                     * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC   

CC TOTAL NUMBER OF WELLS, WELL RADIUS FLAG, FLAG FOR TIME OR COURANT NO. 

*----NWELL   IRO   ITIME  NWREL 

      2      2      1      2  

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW   IW    JW    IFLAG    RW     SWELL  IDIR   IFIRST  ILAST  IPRF 

      1    1     1      1       .0001     0.      3      1        1    0  

CC 

CC WELL NAME 
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*---- WELNAM 

INJECTOR 

CC 

CC ICHEK MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX    QTMIN    QTMAX 

      0      0.0       10000    0.0     5615. 

CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     2    40   1   2       .0001       0.     3     1         1       0 

CC 

CC WELL NAME 

*---- WELNAM 

PRODUCER 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

      0     0.0      5000.   0.0     -50000. 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1     0.1017062  1.   0.  0.     0.   0.0336       0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1     0.         0.   0.  0.     0.   0.           0.    0.    0.    0.   

0.   0.   0.   0.   0. 

 

     1     0.        0.   0.  0.     0.   0.           0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL (IFLAG=2 OR 3) 

*----ID   PWF 

     2    14.7  

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR WRITING TO OUTPUT FILES 

*----TINJ    CUMPR1   CUMHI1     WRHPV   WRPRF      RSTC 

     0.917       0.2       0.2       0.2       0.2        1  

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO.  

*----DT      DCLIM     CNMAX   CNMIN     

    0.0001    0.01     0.1     0.01 

CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2 

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1    0.1017062    1.     0.   0.     0.   0.0336      0.    0.    0.    0.   

0.   0.   0.   0.   800 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 
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     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

     12.691    0.05       0.05       0.05       0.05        1  

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

     0.0001   0.01          0.1   0.01 CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2 

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1    0.05085     1.     0.   0.     0.   0.0336      0.    0.    0.    0.   

0.   0.   0.   0.   800 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

     13.609     0.05       0.05       0.05       0.05        1  

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

    0.0001   0.01          0.1   0.01 

CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLA 

       2   1     1  2 

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0      

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1    0.152559    1.     0.   0.     0.   0.0336      0.    0.    0.    0.   

0.   0.   0.   0.   800 

     1    0.         0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.         0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 
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CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

     13.761    0.05       0.05       0.05       0.05       1  

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

    0.0001   0.01          0.1   0.01  

CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2 

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1    0.20341     .     0.   0.     0.   0.0336      0.    0.    0.    0.   

0.   0.   0.   0.   800 

     1    0.         0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.         0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

     13.853     0.05       0.05       0.05       0.05       1  

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

     0.0001   0.01          0.1   0.01CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2 

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1    0.254265    1.     0.   0.     0.   0.0336      0.    0.    0.    0.   

0.   0.   0.   0.   800 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.         0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 
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     13.93     0.05       0.05       0.05       0.05       1  

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

     0.0001   0.01          0.1   0.01 CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2 

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1    0.3051187    1.     0.   0.     0.   0.0336      0.    0.    0.    0.   

0.   0.   0.   0.   800 

     1    0.           0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.           0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

     14.006     0.05       0.05       0.05       0.05       1  

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

     0.0001   0.01          0.1   0.01 CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2 

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1    0.355972    1.     0.   0.     0.   0.0336      0.    0.    0.    0.   

0.   0.   0.   0.    800 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.         0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

     14.083    0.2       0.2       0.2       0.2        1  

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     
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    0.0001   0.01          0.1   0.01    

CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2 

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1    0.1017062   1.     0.   0.     0.   0.0336      0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.  

0.   0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.  

0.   0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

     16.024    0.2       0.2       0.2       0.2        1  

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

     0.0001   0.01          0.1   0.01  
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A-5. Input data for CASE V, Two-phase flow in a parallel sandpack model 

 

CC******************************************************************* 

CC                                                                  * 

CC    BRIEF DESCRIPTION OF DATA SET                                 *  

CC                                                                  * 

CC******************************************************************* 

CC                                                                  * 

CC                                                                  * 

CC                                                                  * 

CC  LENGTH (FT) :  0.66              PROCESS :  PROFILE CONTROL     *  

CC  THICKNESS (FT) : 0.14            INJ. PRESSURE (PSI) :  -       * 

CC  WIDTH (FT) : 0.07                COORDINATES : CARTESIAN        * 

CC  POROSITY : 0.272, 0.375                                         * 

CC  GRIDBLOCKS : 80                                                * 

CC  DATE :                                                          * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR DESCRIPTION                                         * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

*----RUNNO 

exp5 

CC   

CC 

*----HEADER 

Experimental matching # 5, 1-D, 2-phase flow, parallel sandpack model 

***************************************************************************** 

CC 

CC SIMULATION FLAGS 

*---- IMODE IMES IDISPC IREACT  ICOORD ITREAC ITC  IENG 

      1    2    3       1      1     0      0    0 

CC 

CC NUMBER OF GRIDBLOCKS AND FLAG SPECIFIES CONSTANT OR VARIABLE GRID SIZE 

*----NX   NY  NZ  IDXYZ  IUNIT 

     40    1   2  2       0           

CC 

CC  VARIABLE GRID BLOCK SIZE IN X 

*----DX(I)       

     40*0.0164 

CC 

CC  CONSTANT GRID BLOCK SIZE IN Y 

*----DY  

     1*0.07   

CC 

CC  VARIABLE GRID BLOCK SIZE IN Z 

*----DZ 

     2*0.07 

CC 

CC TOTAL NO. OF COMPONENTS, NO. OF TRACERS, NO. OF GEL COMPONENTS 

*----N   NTW  NG 

     14   0   6  

CC 

CC 
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*---- SPNAME(I),I=1,N 

WATER 

OIL 

none 

none 

SALT 

none 

none 

none 

none 

none 

none 

none 

none 

PPG 

CC 

CC FLAG INDICATING IF THE COMPONENT IS INCLUDED IN CALCULATIONS OR NOT 

*----ICF(KC) FOR KC=1,N 

   1  1  0  0  1 0  0 0 0 0 0 0 0 1 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    OUTPUT OPTIONS                                                * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

CC  FLAG FOR PV OR DAYS FOR OUTPUT AND STOP THE RUN 

*----ICUMTM  ISTOP   

       1     1  

CC 

CC FLAG INDICATING IF THE PROFILE OF KCTH COMPONENT SHOULD BE WRITTEN 

*----IPRFLG(KC),KC=1,N 

     1  1  0  0  1  0 0 0 0 0 0 0 0  1 

CC 

CC FLAG FOR PRES,SAT.,TOTAL CONC.,TRACER CONC.,CAP.,GEL, ALKALINE PROFILES 

*----IPPRES IPSAT IPCTOT IPGEL  ITMP    

 

      1      1      1      1    0   

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES  

*----ICKL IVIS IPER ICNM  ICSE 

      0     1    0    0    0     

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES TO PROF 

*----IADS  IVEL IRKF IPHSE  

     0     0    1    0   

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR PROPERTIES                                          * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

CC MAX. SIMULATION TIME (PV)  

*---- TMAX 

      5.23  

CC 

CC ROCK COMPRESSIBILITY (1/PSI), STAND. PRESSURE(PSIA) 



170 

 

*----COMPR   PSTAND 

     0.      14.7 

CC 

CC FLAGS INDICATING CONSTANT OR VARIABLE POROSITY, X,Y,AND Z PERMEABILITY 

*----IPOR1 IPERMX IPERMY IPERMZ  IMOD  ITRNZ  INTG 

       2      2     3      3      0     0      0 

CC 

CC VARIABLE POROSITY 

*----PORC1 

     40*0.2723   40*0.3750 

CC 

CC VARIABLE X-PERMEABILITY (MILIDARCY)  

*----PERMX(1) 

     40*6778.2   40*1005.17 

CC 

CC VARIABLE Y-PERMEABILITY (MILIDARCY) FOR LAYER K = 1,NZ 

*----FACTY 

     1 

CC 

CC VARIABLE Z-PERMEABILITY 

*----FACTZ 

    0.00001 

CC 

CC FLAG FOR CONSTANT OR VARIABLE DEPTH, PRESSURE, WATER SATURATION 

*----IDEPTH  IPRESS  ISWI  

      0        0       2  

CC 

CC VARIABLE DEPTH (FT) 

*----D111 

     0.0         

CC 

CC CONSTANT PRESSURE (PSIA) 

*----PRES1 

     14.7 

CC 

CC CONSTANT INITIAL WATER SATURATION 

*----SWI 

     40*0.26   40*0.18 

CC 

CC CONSTANT CHLORIDE AND CALCIUM CONCENTRATIONS (MEQ/ML) 

*----C50       C60 

     0.17094    0.0  

CC 

CC******************************************************************* 

CC                                                                  * 

CC    PHYSICAL PROPERTY DATA                                        * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC 

CC CMC 

*----  EPSME   

      .0001   

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 1 

*----HBNS70 HBNC70 HBNS71 HBNC71 HBNS72 HBNC72 

     0.     .030    0.   .030     0.0   .030 

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 2 

*----HBNS80 HBNC80 HBNS81 HBNC81 HBNS82 HBNC82 
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     0.     0.     0.     0.     0.     0. 

CC 

CC LOWER AND UPPER EFFECTIVE SALINITY FOR ALCOHOL 1 AND ALCOHOL 2 

*----CSEL7  CSEU7  CSEL8  CSEU8 

     .65   .9   0.     0. 

CC 

CC THE CSE SLOPE PARAMETER FOR CALCIUM AND ALCOHOL 1 AND ALCOHOL 2 

*----BETA6  BETA7  BETA8 

     0.0    0.    0. 

CC 

CC FLAG FOR ALCOHOL PART. MODEL AND PARTITION COEFFICIENTS 

*----IALC  OPSK7O  OPSK7S  OPSK8O  OPSK8S 

     0     0.      0.      0.      0. 

CC 

CC NO. OF ITERATIONS, AND TOLERANCE 

*----NALMAX   EPSALC 

     20       .0001 

CC 

CC ALCOHOL 1 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC7   AKWS7  AKM7  AK7     PT7 

     4.671   1.79   48.   35.31   .222  

CC 

CC ALCOHOL 2 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC8   AKWS8  AKM8  AK8     PT8 

     0.      0.     0.    0.      0. 

CC 

CC 

*--- IFT MODEL FLAG 

      0 

CC 

CC INTERFACIAL TENSION PARAMETERS 

*----G11  G12     G13   G21   G22    G23 

     13.  -14.8   .007  13.2   -14.5  .010 

CC 

CC LOG10OF OIL/WATER INTERFACIAL TENSION  

*----XIFT 

     1.477 

CC 

CC CAPILLARY DESATURATION PARAMETERS FOR PHASE 1, 2, AND 3 

*----ITRAP   T11        T22        T33 

     0       1865.      28665.46      364.2  

CC 

CC REL. PERM. AND PC CURVES 

*---- IPERM    IRTYPE 

        0       0 

CC 

CC FLAG FOR CONSTANT OR VARIABLE REL. PERM. PARAMETERS 

*----ISRW  IPRW  IEW 

     2      2    2 

CC 

CC CONSTANT RES. SATURATION OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----S1RWC  

     40*0.45   40*0.10 

CC 

CC 

*----S2RWC 

     40*0.09   40*0.32 

CC 

CC 

*----S3RWC 
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     40*0.12   40*0.12 

CC 

CC CONSTANT ENDPOINT REL. PERM. OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----P1RW   

     40*0.14   40*0.3 

CC 

CC 

*----P2RW  

     40*0.85   40*0.68  

CC 

CC 

*----P3RW 

     40*0.35  40*0.35 

CC 

CC CONSTANT REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----E1RW   

     40*5.2   40*4.2 

CC 

CC 

*----E2RW  

     40*1.6  40*2.4  

CCCC 

*----E3RW 

    40*2  40*2  

CC 

CC WATER AND OIL VISCOSITY , RESERVOIR TEMPERATUR 

*----VIS1   VIS2  TEMPV 

     1.0   195    72.5 

CC 

CC VISCOSITY PARAMETERS 

*----ALPHA1 ALPHA2  ALPHA3  ALPHA4  ALPHA5 

     0.0     0.0      0.0   0.000865    4.153 

CC 

CC PARAMETERS TO CALCULATE POLYMER VISCOSITY AT ZERO SHEAR RATE 

*----AP1     AP2     AP3 

     0.0001   0      0  

CC 

CC PARAMETER TO COMPUTE CSEP,MIN. CSEP, AND SLOPE OF LOG VIS. VS. LOG CSEP  

*----BETAP CSE1  SLOPE 

     10    .01   .0 

CC 

CC PARAMETER FOR SHEAR RATE DEPENDENCE OF POLYMER VISCOSITY 

*----GAMMAC  GAMHF  POWN    IPMOD   ishear  rweff   GAMHF2  iwreath 

     10.0        0.0    1.8     0       0       0.25    0      0 

CC 

CC FLAG FOR POLYMER PARTITIONING, PERM. REDUCTION PARAMETERS 

*----IPOLYM EPHI3 EPHI4 BRK    CRK    RKCUT 

     1      1.    1      0.     0.0  10 

CC 

CC SPECIFIC WEIGHT FOR COMPONENTS 1,2,3,7,AND 8 , AND GRAVITY FLAG 

*----DEN1  DEN2    DEN3     DEN7 DEN8  IDEN  

   62.899  49.857  62.399  49.824  0  2 

CC 

CC  FLAG FOR CHOICE OF UNITS ( 0:BOTTOMHOLE CONDITION , 1: STOCK TANK) 

*-----ISTB 

      0 

CC 

CC COMPRESSIBILITY FOR VOL. OCCUPYING COMPONENTS 1,2,3,7,AND 8  

*----COMPC(1)  COMPC(2)  COMPC(3)  COMPC(7)  COMPC(8) 

     0.        0.        0.        0.        0. 
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CC 

CC CONSTANT OR VARIABLE PC PARAM., WATER-WET OR OIL-WET PC CURVE FLAG  

*----ICPC   IEPC  IOW  

     0       0   0 

CC 

CC CAPILLARY PRESSURE PARAMETERS, CPC 

*----CPC  

   0.  

CC 

CC CAPILLARY PRESSURE PARAMETERS, EPC 

*---- EPC 

      2. 

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 1 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6) 

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0  0.0 0.0  

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 2 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0 0.0   

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 3 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0  0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 1 

*----ALPHAL(1)     ALPHAT(1) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 2 

*----ALPHAL(2)     ALPHAT(2) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 3 

*----ALPHAL(3)     ALPHAT(3) 

     0.0          0.0 

CC 

CC SURFACTANT AND POLYMER ADSORPTION PARAMETERS 

*----AD31     AD32  B3D    AD41   AD42  B4D  IADK, IADS1, FADS refk 

     0.        .0  1000.  0.672   0.0  1      0      0      0   0 

CC 

CC PARAMETERS FOR CATION EXCHANGE OF CLAY AND SURFACTANT 

*----QV     XKC   XKS  EQW 

     0     0.    0.   804 

CC 

CC 

*---  KGOPT   

      4 

CC 

CC 

* -- IRKPPG,RKCUTPPG,   DPPG,        APPGS,   PPGNS,  DCRICWS   TOLPPGIN 

      2     1000000000    0.000262     30      -0.3     0.5       50 

CC 

CC 

* -- APGFR, PPGNFR 

      60      -0.3 

CC 

CC 

*---  ADPPGA,  ADPPGB  RESRKFAC,TOLPPGRK 

      52     0.0016     0.25   1e-6 
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CC 

CC 

* ---- APPG1,APPG2,GAMCPG,GAMHFPG,POWNPG 

      3e-6     2e-6    0.0     0.0    1.8 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    WELL DATA                                                     * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC   

CC TOTAL NUMBER OF WELLS, WELL RADIUS FLAG, FLAG FOR TIME OR COURANT NO. 

*----NWELL   IRO   ITIME  NWREL 

      3      2      1      3  

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW   IW    JW    IFLAG    RW     SWELL  IDIR   IFIRST  ILAST  IPRF 

      1    1     1      1       .0001     0.      3      1        2    0  

CC 

CC WELL NAME 

*---- WELNAM 

INJ 

CC 

CC ICHEK MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX    QTMIN    QTMAX 

      0      0.0       10000    0.0     5615. 

CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     2    40   1   2       .0001       0.     3     1         1       0 

CC 

CC WELL NAME 

*---- WELNAM 

PROD_H 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESURE AND RATE 

 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

     0     0.0      5000.   0.0     -50000. 

CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     3    40   1   2       .0001       0.     3     2         2       0 

CC 

CC WELL NAME 

*---- WELNAM 

PROD_L 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

      0     0.0      5000.   0.0     -50000. 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1     0.0509    1.   0.  0.     0.   0.17094      0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1     0.        0.   0.  0.     0.   0.           0.    0.    0.    0.   

0.   0.   0.   0.   0. 
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     1     0.        0.   0.  0.     0.   0.           0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL (IFLAG=2 OR 3) 

*----ID   PWF 

     2    14.7  

CC 

CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL (IFLAG=2 OR 3) 

*----ID   PWF 

    3    14.7  

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR WRITIG TO OUTPUT FILES 

 

*----TINJ    CUMPR1   CUMHI1     WRHPV   WRPRF      RSTC 

     2.86       0.1       0.1       0.1       0.1    1  

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC.TOLERANCE,MAX.,MIN. COURANT NO.  

 

*----DT      DCLIM     CNMAX   CNMIN     

    0.0001    0.01     0.1    0.01 

CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2  2 

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1    0.0509      1.     0.   0.     0.   0.17094     0.    0.    0.    0.   

0.   0.   0.   0.   2000 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

     3.05    0.05       0.05       0.05       0.05        1  

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

    0.0001   0.01          0.1   0.01  

CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2  2 

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 
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     1        1 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1    0.0509      1.     0.   0.     0.   0.17094     0.    0.    0.    0.   

0.   0.   0.   0.   0 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

    5.23     0.05       0.05       0.05       0.05        1  

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

     0.0001   0.01          0.1   0.01 
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Appendix B. Input Data for Synthetic Case Simulation 

 

B-1. Input data for the Conduit case I synthetic model  
 

CC******************************************************************* 

CC                                                                  * 

CC    BRIEF DESCRIPTION OF DATA SET                                 *  

CC                                                                  * 

CC******************************************************************* 

CC                                                                  * 

CC                                                                  * 

CC                                                                  * 

CC  LENGTH (FT) : 375              PROCESS :  PROFILE CONTROL       *  

CC  THICKNESS (FT) : 241           INJ. PRESSURE (PSI) :  -         * 

CC  WIDTH (FT) :  23.5             COORDINATES : CARTESIAN          * 

CC  POROSITY :  0.3                                                 * 

CC  GRIDBLOCKS : 6250                                              * 

CC  DATE :                                                          * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR DESCRIPTION                                         * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

*----RUNNO 

Conduit Case 1 

CC   

CC 

*----HEADER 

Synthetic field case, 1 high perm conduit, 1 injector and 1 producer 

PPG treatment 

************************************************************************ 

CC 

CC SIMULATION FLAGS 

*---- IMODE IMES IDISPC IREACT  ICOORD ITREAC ITC  IENG 

        1    2    3       1      1     0      0    0 

CC 

CC NUMBER OF GRIDBLOCKS AND FLAG SPECIFIES CONSTANT OR VARIABLE GRID SIZE 

*----NX   NY  NZ  IDXYZ  IUNIT 

     25   25   10   2       0           

CC 

CC  VARIABLE GRID BLOCK SIZE IN X 

*----DX(I)       

   25*15 

CC 

CC  CONSTANT GRID BLOCK SIZE IN Y 

*----DY  

   10 10 10 10 10 10 10 10 10 10 10 1

 10 10 10 10 10 10 10 10 10 10 10

 10 10 

CC 

CC  VARIABLE GRID BLOCK SIZE IN Z 

*----DZ 

   2.5 2.5 2.5 2.5 1 2.5 2.5 2.5 2.5 2.5 
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CC 

CC TOTAL NO. OF COMPONENTS, NO. OF TRACERS, NO. OF GEL COMPONENTS 

*----N   NTW  NG 

     14   0   6  

CC 

CC 

*---- SPNAME(I),I=1,N 

WATER 

OIL 

none 

none 

SALT 

none 

none 

none 

none 

none 

none 

none 

none 

ppg 

CC 

CC FLAG INDICATING IF THE COMPONENT IS INCLUDED IN CALCULATIONS OR NOT 

*----ICF(KC) FOR KC=1,N 

   1  1  0  0  1 0  0 0 0 0 0 0 0 1 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    OUTPUT OPTIONS                                                * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

CC  FLAG FOR PV OR DAYS FOR OUTPUT AND STOP THE RUN 

*----ICUMTM  ISTOP   

       1     1  

CC 

CC FLAG INDICATING IF THE PROFILE OF KCTH COMPONENT SHOULD BE WRITTEN 

*----IPRFLG(KC),KC=1,N 

     1  1  0  0  0  0 0 0 0 0 0 0 0  1 

CC 

CC FLAG FOR PRES,SAT.,TOTAL CONC.,TRACER CONC.,CAP.,GEL, ALKALINE PROFILES 

*----IPPRES IPSAT IPCTOT IPGEL  ITEMP    

      1      1      1      1    0   

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES  

*----ICKL IVIS IPER ICNM  ICSE 

      0     1    0    0    0     

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES TO PROF 

*----IADS  IVEL IRKF IPHSE  

      0     0    1    0   

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR PROPERTIES                                          * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 
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CC MAX. SIMULATION TIME (PV)  

*---- TMAX 

      3.0 

CC 

CC ROCK COMPRESSIBILITY (1/PSI), STAND. PRESSURE(PSIA) 

*----COMPR   PSTAND 

      0.      14.7 

CC 

CC FLAGS INDICATING CONSTANT OR VARIABLE POROSITY, X,Y,AND Z PERMEABILITY 

*----IPOR1 IPERMX IPERMY IPERMZ  IMOD  ITRNZ  INTG 

       2      2     3      3      0     0      0 

CC 

CC VARIABLE POROSITY 

*----PORC1 

2778*0.3  19*0.9  3453*0.3 

CC 

CC VARIABLE X-PERMEABILITY (MILIDARCY)  

*----PERMX(1) 

32 33 32 35 34 37 37 30 36 30 32 30

 37 34 33 39 32 33 33 40 40 38 37

 31 30 35 36 33 30 38 40 33 40 37

 40 36 32 31 38 30 34 39 40 40 40

 40 39 34 37 35 32 35 37 37 40 33

 31 32 32 31 31 40 35 35 38 36 40

 30 32 34 32 31 30 38 40 33 35 37

 39 35 38 32 37 37 38 40 33 39 36

 34 32 33 34 37 36 32 32 38 33 40

 38 34 39 35 30 39 38 36 37 36 36

 40 32 39 31 32 35 37 33 32 34 37

 40 37 30 40 39 39 33 33 32 32 33

 32 30 34 40 37 36 37 34 31 30 31

 35 40 32 31 38 39 40 32 35 32 34

 40 38 33 37 35 32 31 40 34 39 32

 40 37 32 33 33 35 34 31 39 34 36

 30 32 35 30 31 37 35 37 33 37 39

 38 37 34 34 37 32 30 38 36 36 32

 39 34 37 37 36 32 34 32 37 31 36

 38 39 31 31 35 38 32 33 31 31 36

 33 32 32 34 39 36 33 34 35 30 36

 39 34 32 31 37 36 39 37 35 32 37

 32 37 33 38 37 31 37 34 39 39 30

 37 30 40 36 33 31 35 36 30 37 35

 40 39 33 38 34 34 38 31 40 37 35

 34 35 40 32 35 35 34 30 33 40 37

 40 31 33 36 31 36 33 30 38 40 38

 36 40 31 39 34 30 38 31 34 40 39

 38 30 34 31 39 32 30 37 32 30 30

 35 38 40 40 36 33 34 30 33 38 36

 36 35 35 34 39 30 37 39 35 35 33

 37 30 33 32 30 36 36 34 39 39 37

 36 31 36 40 39 38 30 36 36 40 38

 39 31 34 30 37 37 31 33 36 35 39

 35 33 33 33 35 36 38 37 39 30 32

 34 34 37 30 39 38 36 31 30 36 38

 32 34 37 34 31 36 40 31 30 37 37

 32 30 30 37 36 37 34 30 38 40 32

 40 36 36 34 31 38 36 30 34 37 33

 40 32 30 31 34 39 30 39 35 35 30

 37 34 33 35 35 37 37 32 35 40 34

 34 37 34 35 39 36 31 37 35 30 40
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 38 34 32 33 30 33 30 34 32 36 36

 40 36 31 38 38 37 38 33 31 30 37

 37 36 38 38 40 38 39 39 32 30 35

 37 34 36 30 36 31 32 30 30 34 35

 38 32 38 39 36 34 39 38 33 35 35

 35 39 33 36 33 31 34 35 40 34 40

 38 37 39 39 34 31 38 37 38 39 35

 35 35 33 39 30 34 33 35 32 38 34

 39 32 30 40 39 33 33 33 38 40 40

 31 38 31 30 32 38 39 36 31 33 35

 31 31 39 39 34 40 39 31 38 32 35

 32 37 40 36 33 36 32 40 33 38 40

 40 38 33 37 37 36 34 31 36 39 31

 36 32 35 38 32 33 33 36 32 33 38

 40 38 37 39 37 37 32 31 

45 45 41 44 44 45 45 40 44 43 41 43

 44 42 42 41 43 42 41 45 43 40 43

 42 44 41 42 41 41 41 42 41 43 40

 42 44 43 41 42 43 44 41 42 40 45

 45 43 41 44 44 44 44 45 41 42 43

 41 45 43 42 40 40 40 42 45 44 43

 45 40 44 41 42 44 44 40 41 41 43

 42 40 40 40 40 44 40 43 42 42 45

 42 44 41 42 43 40 43 43 44 43 45

 45 43 41 40 42 41 40 43 44 45 45

 45 44 43 40 42 41 41 42 45 40 42

 43 42 43 41 40 45 40 42 42 41 42

 45 43 42 43 42 44 43 40 40 42 45

 41 44 44 45 43 44 42 44 42 45 45

 40 44 40 40 42 42 43 44 40 43 40

 42 42 42 45 42 44 42 45 40 41 41

 42 42 41 43 41 44 44 44 45 45 44

 41 44 40 41 44 44 44 42 42 42 43

 43 45 43 44 45 44 41 45 45 41 44

 44 42 40 40 45 41 45 43 45 40 43

 43 44 41 41 40 41 43 44 44 45 44

 45 41 44 45 42 45 41 42 44 41 45

 43 40 45 40 43 41 44 41 45 42 45

 44 41 44 41 42 42 42 40 45 42 40

 40 45 43 45 42 45 41 44 42 43 42

 43 41 40 45 44 45 45 42 44 45 42

 44 42 41 41 41 44 42 41 41 42 43

 45 45 43 42 42 42 40 44 40 40 44

 45 45 43 40 40 41 44 43 42 42 41

 44 45 40 42 42 43 42 42 43 42 44

 42 45 44 41 43 42 42 44 44 41 45

 44 44 41 43 42 41 43 42 43 44 40

 41 43 43 43 43 42 40 43 43 44 43

 43 41 40 45 44 45 43 45 43 40 43

 40 40 44 43 45 42 40 45 42 42 42

 41 44 42 44 41 43 45 45 41 41 44

 44 41 43 41 45 40 43 43 45 41 40

 40 40 42 43 40 42 45 41 40 43 41

 42 44 45 40 41 42 40 45 43 43 41

 43 41 45 44 43 41 43 45 45 45 42

 41 40 44 44 44 45 45 45 45 45 40

 43 44 41 45 43 40 42 43 44 41 43

 45 43 42 41 44 41 43 40 40 45 42

 43 42 42 41 41 42 45 42 41 44 45

 43 44 43 41 40 42 45 42 41 44 44
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 43 40 43 41 41 41 40 43 45 42 40

 42 43 42 42 42 40 44 40 44 40 45

 44 45 42 43 42 42 40 41 44 45 41

 45 44 44 42 41 42 41 41 40 42 45

 41 44 43 43 41 41 43 43 40 45 44

 45 41 41 41 40 45 42 43 40 43 44

 40 45 40 41 41 41 45 45 42 43 45

 42 45 44 42 44 45 41 45 43 44 45

 43 44 43 45 44 40 43 44 41 45 40

 40 43 40 45 45 40 43 41 42 44 41

 45 42 45 42 45 44 42 41 40 42 43

 41 43 44 42 44 42 44 45 

45 47 45 48 47 48 49 48 45 47 50 46

 46 49 45 49 49 50 50 50 49 50 48

 50 49 50 48 49 48 48 46 45 50 45

 45 50 50 45 48 47 48 47 50 47 48

 48 48 46 47 46 50 48 45 47 46 47

 50 49 45 47 46 49 49 49 47 47 50

 49 45 50 47 46 48 47 47 45 47 48

 48 50 48 48 45 48 48 49 50 49 47

 47 48 49 48 50 47 49 45 46 45 50

 49 48 45 49 49 48 45 45 46 50 46

 49 48 47 47 46 49 49 50 50 50 48

 45 48 47 48 45 46 49 50 47 50 48

 49 49 45 45 48 46 49 50 47 46 45

 47 50 50 48 47 49 48 48 48 47 48

 47 48 46 45 47 50 45 50 46 47 50

 49 49 47 48 48 48 48 46 47 46 50

 47 48 45 46 47 47 50 48 50 47 45

 47 45 45 45 45 50 45 45 47 49 46

 46 49 50 45 45 45 49 50 45 49 48

 50 46 46 48 46 46 45 47 48 47 50

 45 49 48 50 48 46 48 49 50 45 50

 45 48 46 49 47 46 47 49 48 46 45

 50 49 47 45 48 49 45 47 46 50 48

 48 46 48 45 46 49 48 48 50 48 48

 45 48 46 45 48 45 50 49 50 50 49

 47 49 48 46 46 49 50 47 47 46 49

 50 48 45 46 47 47 46 45 48 49 49

 49 45 45 45 49 48 47 48 45 47 46

 50 50 47 48 45 47 45 50 48 46 45

 50 48 45 48 47 48 50 47 47 46 49

 47 47 48 48 47 49 46 48 48 49 46

 50 47 46 46 49 48 45 45 50 45 48

 50 48 50 47 49 47 47 50 48 48 50

 46 45 48 49 47 49 50 50 46 45 47

 47 45 49 50 48 48 50 50 49 49 47

 49 47 45 48 48 46 45 49 45 46 48

 48 50 49 45 49 49 47 46 50 48 48

 49 48 49 45 49 45 48 50 45 49 46

 47 46 47 46 48 46 47 50 46 48 49

 46 48 46 50 50 50 47 48 48 50 47

 47 47 47 49 49 49 46 50 46 50 47

 50 48 50 48 48 47 50 45 47 46 45

 45 47 48 45 47 48 50 49 45 48 48

 50 50 48 49 48 50 48 47 49 47 50

 47 48 47 46 47 49 47 49 48 46 45

 50 49 45 49 50 49 46 48 46 50 47

 48 49 45 49 47 48 46 47 50 45 48

 50 48 46 47 45 48 46 45 46 45 45
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 46 48 45 47 46 47 49 46 49 47 45

 46 49 46 50 48 45 47 48 49 50 45

 49 47 48 45 50 48 48 49 46 46 49

 46 49 50 50 50 50 50 49 49 50 46

 45 47 50 49 49 45 46 49 48 46 47

 50 45 45 50 46 45 48 45 46 49 50

 47 49 47 45 45 48 47 48 47 49 46

 47 45 48 49 50 46 45 45 48 49 47

 49 49 50 50 48 45 50 48 

57 57 50 56 50 57 54 58 58 57 56 56

 53 52 56 53 56 56 60 51 58 55 54

 57 59 52 50 55 50 59 57 58 52 52

 52 57 51 60 51 55 58 50 53 50 55

 58 51 54 59 52 57 55 55 55 52 57

 53 57 55 52 56 51 50 54 55 58 52

 59 58 50 55 56 55 55 57 54 53 59

 60 53 52 50 54 56 55 57 57 58 53

 58 51 54 54 60 50 58 52 54 51 59

 60 58 53 53 54 52 51 50 58 52 54

 55 52 60 59 55 55 56 58 59 50 56

 58 50 59 55 50 55 54 59 58 52 58

 50 50 54 52 53 59 56 52 54 52 59

 55 52 52 57 51 56 50 60 54 52 54

 53 54 51 54 58 54 54 55 59 54 59

 56 55 56 53 50 60 56 51 54 53 51

 58 53 54 50 60 52 52 51 52 58 53

 59 54 54 55 55 58 59 52 51 55 58

 60 51 56 60 54 53 55 53 55 56 57

 54 55 52 56 54 52 55 50 52 58 53

 53 51 58 56 56 60 59 57 54 55 60

 58 54 53 52 57 50 50 53 58 55 54

 52 52 57 59 50 59 59 60 60 55 50

 51 57 54 50 56 57 57 53 60 59 53

 57 57 50 50 52 59 52 52 52 53 53

 58 57 51 59 54 51 59 54 58 57 55

 52 52 54 53 52 53 53 55 57 54 57

 50 59 53 52 59 57 59 53 56 59 50

 51 53 57 59 59 52 55 51 52 58 55

 50 56 55 52 51 51 50 60 58 51 50

 55 60 57 58 58 54 54 52 60 54 50

 57 58 52 51 56 56 55 50 59 51 51

 56 56 51 59 58 54 55 58 57 55 51

 59 58 56 52 55 60 56 54 56 58 54

 52 59 58 56 52 59 54 51 50 60 60

 51 59 55 53 57 51 56 58 55 56 52

 57 54 56 57 57 58 52 50 58 59 52

 58 50 55 50 57 54 52 59 51 51 50

 59 52 56 51 59 50 53 58 55 53 53

 57 59 50 56 54 55 58 52 56 59 59

 54 59 56 56 51 56 59 55 59 58 56

 59 51 50 60 54 51 50 59 50 59 55

 59 55 52 58 58 50 53 50 52 51 60

 58 50 58 53 55 58 56 59 60 50 54

 53 57 60 53 59 60 50 50 59 51 58

 50 54 59 60 56 51 55 51 54 60 53

 59 53 58 52 55 57 59 59 53 53 53

 59 59 55 54 54 55 50 56 53 50 55

 53 56 60 59 57 53 55 57 54 50 52

 58 60 55 55 52 57 51 52 56 55 52

 59 57 51 52 58 58 55 52 55 53 56
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 54 58 53 60 58 58 53 52 51 50 55

 56 50 55 51 56 57 50 60 56 53 60

 52 50 51 51 59 60 57 59 52 55 57

 60 54 57 58 57 52 60 55 50 55 50

 58 60 59 53 50 56 56 60 60 57 60

 57 50 53 50 60 60 54 52 

53 55 50 60 51 54 54 58 53 58 50 52

 56 54 60 60 59 54 52 54 52 51 57

 58 57 54 53 60 50 56 57 53 57 51

 51 52 60 53 50 57 55 59 53 56 55

 52 56 53 56 60 53 57 58 54 56 52

 55 51 52 60 58 51 58 52 51 53 57

 59 55 50 60 57 50 60 60 51 52 55

 56 50 55 58 50 59 60 51 55 60 54

 56 51 58 59 59 52 59 57 50 55 57

 55 56 57 51 53 57 54 59 54 54 53

 60 50 51 55 59 60 59 57 52 51 58

 58 52 53 58 52 57 57 59 51 53 56

 59 58 57 58 52 56 58 50 58 57 57

 58 51 56 55 55 50 50 55 53 51 57

 51 55 58 55 53 57 60 54 58 57 60

 54 60 59 53 60 60 52 60 52 56 54

 51 57 58 59 50 54 51 50 56 51 50

 56 51 56 52 58 60 54 54 57 60 55

 51 57 53 59 59 55 55 58 52 56 50

 58 56 56 56 51 56 50 55 59 52 54

 50 54 57 54 50 57 56 54 55 60 52

 52 51 58 54 50 54 57 54 58 52 55

 53 58 52 53 58 50 51 58 60 51 55

 53 51 50 53 52 57 55 57 53 54 53

 56 54 53 57 53 56 54 54 59 57 53

 55 52 10000 10000 10000 10000 10000 10000 10000 10000 10000

 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 51

 55 55 54 60 51 52 52 60 57 52 51

 59 58 58 51 50 51 53 60 55 50 52

 54 58 56 54 60 59 52 54 52 50 51

 55 55 60 57 54 54 53 58 54 58 58

 50 54 58 56 53 57 50 52 58 53 53

 53 60 57 56 57 54 58 51 60 52 59

 51 52 51 50 56 54 57 57 53 56 51

 54 56 54 50 51 58 58 57 60 54 52

 54 51 56 59 60 50 53 58 53 54 56

 56 56 59 58 60 54 59 51 59 58 50

 59 50 59 57 51 52 59 50 60 56 60

 59 54 57 60 55 55 54 56 56 60 51

 58 58 59 50 51 57 57 54 50 51 55

 50 50 50 54 58 51 52 50 54 54 56

 60 52 56 56 60 59 55 59 59 51 50

 51 56 55 56 59 57 50 52 51 56 55

 60 52 60 51 55 60 53 58 51 58 52

 60 51 56 60 58 51 53 51 60 50 55

 57 50 51 54 53 52 56 51 59 60 53

 52 54 60 58 58 53 52 60 57 50 50

 55 56 59 58 50 50 54 57 58 51 56

 60 60 57 51 55 54 55 59 59 55 55

 52 57 59 53 50 50 60 51 57 59 58

 56 55 51 60 59 60 60 56 57 60 51

 52 50 58 54 56 57 51 58 56 50 59

 50 51 59 60 51 60 60 54 55 55 55

 56 54 56 53 58 52 56 58 54 57 57
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 59 56 53 57 54 53 51 56 55 54 53

 53 58 60 54 54 52 50 59 56 54 59

 53 52 55 58 58 50 56 53 

65 66 68 69 70 65 66 62 68 66 69 60

 69 65 68 62 66 64 65 62 60 66 70

 60 60 60 60 62 68 63 65 68 69 67

 68 62 61 64 64 70 64 60 63 62 70

 64 61 68 65 60 63 68 66 69 66 63

 66 69 69 68 70 66 60 67 62 62 70

 66 65 64 61 69 62 67 60 67 66 65

 70 63 65 68 66 62 63 67 69 69 62

 70 68 60 63 66 70 69 69 64 60 65

 68 68 65 67 66 64 62 62 63 66 67

 70 66 69 63 69 66 67 62 68 67 70

 67 68 66 64 69 70 62 70 65 61 70

 63 70 70 62 65 64 61 68 62 68 64

 63 69 64 67 62 70 70 61 67 63 70

 70 65 64 60 62 60 66 60 69 62 62

 67 62 65 63 68 63 64 67 63 61 70

 60 61 63 67 62 70 61 70 68 61 63

 65 61 70 61 68 67 66 66 68 69 64

 62 68 66 62 68 68 61 67 66 61 60

 68 64 70 63 68 69 69 62 70 69 67

 70 68 60 70 60 62 63 60 69 61 69

 62 66 64 67 61 68 68 67 62 70 67

 70 65 60 60 66 68 66 65 70 65 66

 61 65 70 69 62 60 62 69 65 64 66

 63 66 70 70 67 61 61 64 68 69 70

 70 68 62 65 65 62 67 65 61 61 62

 62 70 69 64 68 62 64 67 68 64 64

 62 64 62 67 67 69 60 60 67 68 62

 64 64 65 62 62 67 69 65 64 63 62

 63 67 60 70 68 61 67 69 69 68 60

 69 65 70 63 61 61 65 69 62 69 63

 63 61 61 63 67 64 61 66 64 64 64

 67 60 67 60 67 69 60 63 63 68 62

 60 65 66 61 63 70 65 66 67 65 62

 68 68 63 63 69 61 62 64 70 66 61

 66 64 60 65 62 66 61 60 63 70 70

 64 62 68 63 61 70 63 70 60 65 65

 70 63 66 60 67 68 67 63 60 61 61

 62 64 69 62 62 60 68 69 68 68 70

 65 66 70 63 68 69 65 64 61 65 67

 60 63 69 65 62 68 61 60 65 69 67

 60 68 60 67 65 63 69 70 67 66 62

 70 69 68 67 69 64 67 64 65 60 66

 61 63 61 65 68 67 64 66 67 60 64

 62 70 68 64 68 70 67 63 65 61 70

 62 62 61 61 70 67 64 61 61 62 65

 69 60 60 70 65 66 60 63 66 67 63

 65 60 64 61 69 62 64 60 61 68 70

 61 70 63 62 68 60 70 63 63 68 68

 66 64 64 65 66 62 63 69 65 61 64

 66 64 66 61 68 65 69 61 60 70 68

 70 65 70 60 70 60 69 63 61 66 70

 61 67 67 65 63 64 67 62 60 70 67

 68 66 62 67 65 69 67 60 70 64 62

 67 65 61 63 67 61 61 62 66 61 68

 65 66 62 66 66 61 67 68 65 60 64

 66 61 60 69 60 66 69 60 
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72 78 73 80 73 77 75 70 79 73 75 80

 70 77 80 73 80 70 73 79 73 76 77

 76 79 73 76 74 73 76 80 80 73 78

 80 78 79 73 74 77 71 70 78 70 79

 75 72 77 79 78 75 76 79 72 76 75

 74 73 73 71 71 76 74 76 75 71 71

 80 74 76 72 73 77 78 74 71 71 73

 78 73 79 77 78 70 70 78 79 75 79

 76 78 73 72 70 79 79 77 71 74 70

 71 78 71 77 79 71 78 75 71 75 77

 77 73 72 75 74 79 71 72 73 73 77

 73 71 77 76 79 74 73 74 79 74 79

 70 75 78 74 73 75 77 75 72 77 73

 70 70 76 73 71 71 75 76 71 71 70

 73 70 78 71 77 74 71 73 76 78 76

 74 80 79 70 80 74 78 73 70 72 78

 79 74 78 77 74 71 70 79 79 79 74

 71 78 73 71 72 74 77 75 74 79 74

 74 77 70 72 71 73 72 78 71 74 73

 73 75 72 72 73 73 71 76 72 74 72

 70 79 79 78 80 73 75 73 76 71 72

 72 70 76 77 76 71 79 80 77 74 74

 74 74 78 71 79 80 70 76 76 79 70

 76 79 76 78 72 70 79 73 74 70 73

 79 74 75 79 75 71 77 78 73 80 77

 80 77 76 72 77 78 72 72 72 80 77

 77 71 74 72 77 74 74 80 80 72 79

 74 72 75 79 72 72 70 78 77 71 71

 72 79 73 70 80 70 74 76 79 70 75

 72 79 73 75 74 79 77 80 74 75 70

 74 78 74 77 73 74 79 77 74 76 73

 75 70 77 73 71 78 75 71 71 80 73

 70 80 80 70 76 73 77 71 74 70 77

 73 76 78 71 70 80 70 75 72 71 76

 72 73 76 76 80 80 76 77 72 71 77

 72 71 79 74 75 74 79 73 76 72 76

 75 73 80 73 78 73 76 71 80 71 74

 80 78 76 72 72 79 75 78 80 76 77

 80 79 79 76 72 70 80 73 76 74 71

 76 72 74 79 77 73 77 74 70 79 80

 73 79 79 72 77 77 73 78 75 74 71

 73 73 73 78 73 78 74 71 77 70 76

 80 79 80 79 76 80 73 77 76 77 78

 78 74 71 77 78 72 79 70 74 75 73

 70 77 74 71 77 77 77 72 77 76 75

 79 80 73 79 71 77 70 74 71 74 77

 74 70 77 70 74 70 73 80 70 76 70

 74 74 75 70 78 77 80 75 76 78 75

 72 72 75 80 72 75 76 70 77 76 77

 73 76 78 80 70 76 73 79 79 79 72

 74 74 80 78 70 78 78 71 75 79 71

 79 78 71 80 70 80 73 71 71 76 78

 76 77 74 72 72 75 75 78 78 72 77

 78 76 80 71 75 80 79 79 76 73 78

 76 73 80 71 74 78 73 71 73 74 75

 76 78 77 78 75 75 77 70 80 75 79

 80 74 74 71 74 76 70 72 

51 55 55 59 51 58 50 59 51 55 53 57

 55 54 58 52 56 60 59 57 60 58 54

 60 58 60 60 58 57 51 57 50 59 55
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 60 59 58 50 59 51 59 56 57 59 52

 50 54 52 54 58 50 55 58 51 60 56

 59 59 60 58 52 56 57 56 54 57 54

 53 54 54 52 56 54 52 57 56 50 56

 55 59 50 54 56 53 50 57 56 59 58

 57 59 51 58 59 50 51 60 51 51 60

 53 54 54 54 51 56 53 52 54 57 56

 54 59 60 50 58 55 53 50 53 54 56

 53 54 57 50 60 58 52 56 58 51 52

 57 51 55 57 58 57 53 52 53 53 51

 50 59 54 53 50 60 51 50 56 53 60

 51 55 57 58 60 54 60 59 59 55 60

 53 52 57 58 59 60 52 50 54 55 58

 58 56 50 54 54 52 59 59 51 56 50

 53 59 57 55 57 56 52 53 58 56 58

 56 58 59 57 55 57 50 57 58 52 59

 56 59 52 60 54 52 59 50 50 50 52

 52 57 50 57 56 53 58 59 56 54 54

 55 59 51 55 59 53 54 56 60 52 59

 51 60 59 54 53 57 57 58 60 58 56

 59 50 54 56 59 56 51 57 50 56 56

 52 59 56 58 53 54 53 50 60 57 52

 51 54 50 56 52 52 60 53 51 58 53

 58 51 56 51 54 59 57 52 57 60 57

 60 56 52 51 59 59 50 58 57 51 58

 53 56 50 57 52 60 50 55 50 55 58

 60 60 53 51 53 54 53 54 50 53 52

 53 60 52 60 57 55 57 51 57 52 54

 53 57 56 57 60 55 55 51 55 53 51

 53 57 55 54 51 57 51 53 50 57 55

 56 60 53 59 57 60 59 57 57 60 53

 55 55 53 56 54 58 58 59 51 59 56

 50 57 55 55 54 54 52 60 57 55 55

 59 54 58 50 57 54 50 58 58 52 59

 51 60 54 58 55 54 58 51 55 50 52

 55 53 54 59 57 57 53 58 54 51 59

 50 60 51 51 54 51 52 51 51 53 53

 50 56 52 58 51 59 52 58 51 57 56

 54 54 51 59 56 51 59 53 53 58 59

 50 50 58 54 56 53 55 59 52 52 56

 50 55 53 50 57 59 59 57 60 56 57

 58 55 54 55 51 59 53 58 60 50 56

 60 52 51 53 51 56 55 56 52 50 55

 54 53 60 56 58 53 52 53 55 55 56

 60 56 50 59 57 50 57 51 59 55 53

 53 59 51 59 60 59 52 59 51 54 50

 60 54 51 60 55 53 53 50 53 53 58

 55 59 55 50 56 59 51 56 50 60 52

 53 57 53 59 50 56 57 52 59 57 59

 54 56 50 54 55 54 57 53 58 59 60

 51 52 57 57 54 54 53 53 54 55 50

 60 51 53 58 59 55 59 52 60 52 55

 57 58 50 58 56 51 52 56 59 53 57

 52 56 54 55 51 53 53 59 

62 58 57 59 64 55 56 56 56 59 62 58

 65 65 60 64 65 63 63 57 61 61 65

 60 62 56 56 64 60 55 65 61 55 59

 64 65 55 60 57 62 62 58 65 60 58

 60 60 57 58 57 63 56 57 60 58 65

 63 57 57 63 63 58 55 64 64 58 56
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 64 65 58 60 61 60 65 62 63 55 60

 58 55 65 56 65 61 56 65 60 60 63

 60 57 58 58 57 55 56 60 57 65 57

 59 62 65 65 64 59 60 55 65 58 58

 56 60 63 61 55 59 65 56 65 56 55

 56 55 57 56 61 61 55 58 62 63 55

 56 58 59 61 59 59 65 55 63 60 62

 55 62 59 61 59 60 56 58 59 65 65

 65 57 57 61 61 55 59 64 64 58 64

 65 63 59 56 55 55 58 57 61 57 65

 64 55 56 57 55 56 64 64 60 58 62

 59 59 60 57 60 63 55 60 56 64 60

 63 64 58 64 55 64 55 63 57 61 58

 63 58 56 57 62 65 59 56 64 60 57

 64 62 62 64 60 61 56 57 61 62 59

 56 65 61 63 57 61 57 57 56 56 56

 60 55 56 60 65 62 62 55 58 59 57

 55 62 61 60 63 58 62 55 60 63 55

 64 58 62 58 65 56 64 62 55 58 65

 58 57 56 63 62 63 64 56 60 60 60

 62 60 62 58 55 62 56 63 59 56 58

 58 56 57 63 60 65 62 60 60 57 60

 55 61 59 65 55 55 61 64 55 56 56

 62 55 58 61 63 57 56 59 61 55 59

 62 57 64 57 63 55 59 57 62 58 63

 56 56 56 62 63 64 64 64 65 64 60

 61 60 57 64 61 65 56 60 63 55 58

 57 56 60 55 60 58 56 60 65 63 58

 63 58 58 59 56 60 62 58 61 56 64

 62 56 63 56 61 57 65 58 59 58 58

 60 63 63 56 57 59 63 58 62 60 60

 65 59 62 60 63 57 55 59 63 60 63

 56 58 58 63 64 56 63 61 55 61 56

 61 60 61 58 60 60 64 64 57 60 59

 64 59 61 61 62 58 61 62 57 63 65

 63 65 64 65 64 64 63 62 65 57 64

 60 58 55 58 59 57 60 61 56 61 55

 55 55 63 57 62 56 57 63 63 65 61

 60 63 59 59 59 65 64 58 61 61 56

 55 57 63 63 65 65 55 61 64 64 56

 55 64 64 60 56 64 64 65 61 56 55

 62 58 65 57 59 64 57 57 58 57 59

 65 61 58 57 64 57 58 58 59 64 62

 61 55 60 64 64 60 59 65 58 61 59

 61 60 57 63 64 61 65 63 57 63 65

 64 61 56 60 60 63 62 55 55 61 57

 59 62 63 59 57 59 60 58 64 55 64

 57 57 60 57 63 64 65 56 63 63 62

 63 64 59 64 57 56 65 59 56 60 60

 64 65 58 60 60 60 64 55 57 60 63

 56 58 61 63 58 58 56 64 

56 69 56 55 57 65 62 59 50 68 64 64

 64 59 59 62 68 69 69 52 53 59 70

 69 58 70 56 61 50 58 69 70 50 69

 69 56 61 56 57 59 69 56 54 63 57

 62 51 70 56 55 60 66 70 63 62 70

 57 70 67 56 65 57 62 52 59 65 66

 64 65 67 52 59 65 61 56 69 54 51

 57 61 64 53 68 57 55 60 64 67 66

 57 66 70 67 67 69 50 60 51 70 69
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 64 55 59 53 66 56 65 66 50 53 55

 58 52 69 59 70 60 55 52 60 62 64

 57 52 50 53 65 70 62 59 65 54 61

 62 59 55 62 51 63 69 59 69 55 61

 52 69 62 60 70 53 64 52 60 62 59

 61 52 66 68 61 69 67 70 70 62 60

 55 57 59 70 50 62 62 61 70 61 54

 60 50 61 51 63 60 66 61 50 56 59

 51 61 51 56 67 59 55 61 67 58 56

 61 68 57 69 64 51 63 58 57 67 53

 62 61 61 66 50 61 58 50 67 53 52

 69 64 60 53 68 67 68 59 62 54 63

 63 61 54 59 62 70 57 58 50 60 50

 66 50 63 54 63 65 54 62 55 64 51

 61 52 61 65 50 69 64 60 67 62 59

 53 67 62 57 56 56 59 61 60 51 56

 63 66 54 50 52 56 61 70 66 69 66

 60 56 53 54 50 52 52 58 53 58 61

 51 66 55 57 60 69 65 59 55 56 53

 53 65 50 62 68 59 51 51 63 66 56

 51 60 58 57 56 58 56 57 55 65 53

 51 50 60 62 61 66 59 56 53 62 61

 50 59 62 52 54 57 53 53 60 56 55

 60 70 65 53 57 62 62 57 66 69 55

 58 69 63 65 57 54 54 56 67 63 50

 66 57 69 63 65 51 60 64 61 63 64

 70 63 66 61 60 65 65 61 56 64 53

 59 56 68 70 66 67 57 67 65 64 60

 61 59 56 66 52 55 67 62 52 53 52

 62 55 54 56 57 50 69 52 51 51 68

 58 68 59 57 69 53 66 50 53 65 56

 67 62 56 56 51 56 57 70 64 52 57

 70 67 53 51 53 63 64 53 55 63 52

 64 63 60 69 51 64 60 58 69 67 69

 60 56 51 51 65 65 50 50 64 55 60

 57 68 51 64 62 55 68 66 70 67 60

 50 57 52 66 61 66 60 59 66 58 65

 66 65 62 57 58 70 50 63 53 50 70

 54 69 65 60 68 60 65 62 69 51 52

 50 64 60 54 68 67 54 61 56 68 58

 66 59 70 65 65 65 68 68 59 60 53

 54 62 67 66 50 57 64 60 67 54 55

 67 62 68 57 69 61 52 58 64 68 69

 61 55 61 67 59 66 50 65 60 64 58

 53 57 64 50 56 67 69 57 64 61 61

 63 65 58 66 67 66 59 54 52 69 59

 52 63 67 55 64 69 70 5 70 54 62

 62 65 61 64 53 50 61 60 

CC 

CC VARIABLE Y-PERMEABILITY (MILIDARCY) FOR LAYER K = 1,NZ 

*----FACTY 

     1 

CC 

CC VARIABLE Z-PERMEABILITY 

*----FACTZ 

     0.1 

CC 

CC FLAG FOR CONSTANT OR VARIABLE DEPTH, PRESSURE, WATER SATURATION 

*----IDEPTH  IPRESS  ISWI  

      0        0       2  
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CC 

CC VARIABLE DEPTH (FT) 

*----D111 

     5000         

CC 

CC CONSTANT PRESSURE (PSIA) 

*----PRESS1 

     2000CC 

CC CONSTANT INITIAL WATER SATURATION 

*----SW 

2778*0.31  19*0.2  3453*0.31CC 

CC CONSTANT CHLORIDE AND CALCIUM CONCENTRATIONS (MEQ/ML) 

*----C50       C60 

     0.1342282      0.0  

CC 

CC******************************************************************* 

CC                                                                  * 

CC    PHYSICAL PROPERTY DATA                                        * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC 

CC CMC 

*----  EPSME   

      .0001   

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 1 

*----HBNS70 HBNC70 HBNS71 HBNC71 HBNS72 HBNC72 

     0.     .030    0.   .030     0.0   .030 

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 2 

*----HBNS80 HBNC80 HBNS81 HBNC81 HBNS82 HBNC82 

     0.     0.     0.     0.     0.     0. 

CC 

CC LOWER AND UPPER EFFECTIVE SALINITY FOR ALCOHOL 1 AND ALCOHOL 2 

*----CSEL7  CSEU7  CSEL8  CSEU8 

     .65   .9   0.     0. 

CC 

CC THE CSE SLOPE PARAMETER FOR CALCIUM AND ALCOHOL 1 AND ALCOHOL 2 

*----BETA6  BETA7  ETA8 

 

     0.0    0.    0. 

CC 

CC FLAG FOR ALCOHOL PART. MODEL AND PARTITION COEFFICIENTS 

*----IALC  OPSK7O  OPSK7S  OPSK8O  OPSK8S 

     0     0.      0.      0.      0. 

CC 

CC NO. OF ITERATIONS, AND TOLERANCE 

*----NALMAX   EPSALC 

    20       .0001 

 

CC 

CC ALCOHOL 1 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC7   AKWS7  AKM7  AK7     PT7 

     4.671   1.79   48.   35.31   .222  

CC 

CC ALCOHOL 2 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC8   AKWS8  AKM8  AK8     PT8 

     0.      0.     0.    0.      0. 

CC 
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CC 

*--- IFT MODEL FLAG 

      0 

CC 

CC INTERFACIAL TENSION PARAMETERS 

*----G11  G12     G13   G21   G22    G23 

     13.  -14.8   .007  13.2   -14.5  .010 

CC 

CC LOG10 OF OIL/WATER INTERFACIAL TENSION  

*----XIFTW 

     1.477 

CC 

CC CAPILLARY DESATURATION PARAMETERS FOR PHASE 1, 2, AND 3 

*----ITRAP   T11        T22        T33 

     0       1865.      28665.46      364.2  

CC 

CC REL. PERM. AND PC CURVES 

*---- IPERM    IRTYPE 

        0       0 

CC 

CC FLAG FOR CONSTANT OR VARIABLE REL. PERM. PARAMETERS 

*----ISRW  IPRW  IEW 

     2      2    2 

CC 

CC CONSTANT RES. SATURATION OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----S1RWC   

2778*0.31  19*0.2  3453*0.31 

CC 

CC 

*----S2RWC 

2778*0.22  19*0.17  3453*0.22 

CC 

CC 

*----S3RWC 

2778*0.31  19*0.2  3453*0.31 

CC 

CC CONSTANT ENDPOINT REL. PERM. OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----P1RW  

2778*0.5   19*0.92  3453*0.5 

CC 

CC 

*----P2RW 

2778*0.72   19*0.92  3453*0.72 

CC 

CC 

*----P3RW 

2778*0.5   19*0.92  3453*0.5 

CC 

CC CONSTANT REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----E1W   

2778*3   19*1.2  3453*3 

CC 

CC 

*---E2W 

2778*1.9   19*1.1  3453*1.9 

CC 

CC 

*---E3W 

2778*3   19*1.2  3453*3 

CC 
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CC WATER AND OIL VISCOSITY , RESERVOIR TEMPERATURE 

*----VIS1   VIS2  TEMPV 

     1.0    37    72.5 

CC 

CC VISCOSITY PARAMETERS 

*----ALPHA1 ALPHA2  ALPHA3  ALPHA4  ALPHA5 

    0.0     0.0      0.0   0.000865    4.153 

 

CC 

CC PARAMETERS TO CALCULATE POLYMER VISCOSITY AT ZERO SHEAR RATE 

*----AP1     AP2     AP3 

     0.0001   0      0  

CC 

CC PARAMETER TO COMPUTE CSEP,MIN. CSEP, AND SLOPE OF LOG VIS. VS. LOG CSEP  

*----BETAP CSE1  SLOPE 

     10    .01   .0 

CC 

CC PARAMETER FOR SHEAR RATE DEPENDENCE OF POLYMER VISCOSITY 

*----GAMMAC  GAMHF  POWN    IPMOD   ishear  rweff   GAMHF2  iwreath 

     10.0        0.0    1.8     0       0       0.25    0      0 

CC 

CC FLAG FOR POLYMER PARTITIONING, PERM. REDUCTION PARAMETERS 

*----IPOLYM EPHI3 EPHI4 BRK    CRK    RKCUT 

     1      1.    1      0.     0.0  10 

CC 

CC SPECIFIC WEIGHT FOR COMPONENTS 1,2,3,7,AND 8 , AND GRAVITY FLAG 

 

*----DEN1  DEN2    DEN3     DEN7 DEN8  IDEN  

  62.899  49.857  62.399  49.824  0  2 

 

CC 

CC  FLAG FOR CHOICE OF UNITS ( 0:BOTTOMHOLE CONDITION , 1: STOCK TANK) 

*-----ISTB 

      0 

CC 

CC COMPRESSIBILITY FOR VOL. OCCUPYING COMPONENTS 1,2,3,7,AND 8  

*----COMPC(1)  COMPC(2)  COMPC(3)  COMPC(7)  COMPC(8) 

     0.        0.        0.        0.        0. 

CC 

CC CONSTANT OR VARIABLE PC PARAM., WATER-WET OR OIL-WET PC CURVE FLAG  

*----ICPC   IEPC  IOW  

     0       0   0 

CC 

CC CAPILLARY PRESSURE PARAMETERS, CPC 

*----CPC  

      0.  

CC 

CC CAPILLARY PRESSURE PARAMETERS, EPC 

*---- EPC 

      2. 

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH CMPONENT IN PHASE 1 (D(KC),KC=1,N) 

 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0  0.0 0.0  

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 2 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0 0.0   

CC 
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CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 3 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0  0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 1 

*----ALPHAL(1)     ALPHAT(1) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 2 

*----ALPHAL(2)     ALPHAT(2) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 3 

*----ALPHAL(3)     ALPHAT(3) 

     0.0          0.0 

CC 

CC SURFACTANT AND POLYMER ADSORPTION PARAMETERS 

*----AD31     AD32  B3D    AD41   AD42  B4D  IADK, IADS1, FADS refk 

     0.        .0  1000.  0.672   0.0  1      0      0      0   0 

CC 

CC PARAMETERS FOR CATION EXCHANGE OF CLAY AND SURFACTANT 

*----QV     XKC   XKS  EQW 

      0     0.    0.   804 

CC 

CC *---  KGOPT   

      4 

CC 

CC 

* -- IRKPPG,RKCUTPPG,   DPPG,        APPGS,   PPGNS,  DCRICWS   TOLPPGIN 

      2     1000000000    0.0003281     10      -0.3     0.5       40 

CC 

CC 

* -- APPGFR, PPGNFR 

       100      -0.3 

CC 

CC 

*---  ADPPGA,  ADPPGB  RESRKFAC,TOLPPGRK 

      5       0.02     0.1   1e-6 

CC 

CC 

* ---- APPG1,APPG2,GAMCPG,GAMHFPG,POWNPG 

      1e-6    1e-6    0.0     0.0    1.8 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    WELL DATA                                                     * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC   

CC TOTAL NUMBER OF WELLS, WELL RADIUS FLAG, FLAG FOR TIME OR COURANT NO. 

*----NWELL   IRO   ITIME  NWREL 

      2      2      1      2  

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW   IW    JW    IFLAG    RW     SWELL  IDIR   IFIRST  ILAST  IPRF 

      1    1     13      1       0.4     0.      3      2       7    0  

CC 

CC WELL NAME 

*---- WELNAM 
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INJECTOR1 

CC 

CC ICHEK MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX    QTMIN    QTMAX 

      0      0.0       10000    0.0     50000. 

CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     2    25   13    2       0.4       0.     3     2         7       0 

CC 

CC WELL NAME 

*---- WELNAM 

PRODUCER1 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

      0     0.0      10000.   0.0     -50000. 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

    1     3000       1.   0.  0.     0.   0.1342282    0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1     0.         0.   0.  0.     0.   0.           0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1     0.         0.   0.  0.     0.   0.           0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL (IFLAG=2 OR 3) 

*----ID   PWF 

     2    200CC 

CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR WRITING TO OUTPUT FILES 

*----TINJ    CUMPR1   CUMHI1     WRHPV   WRPRF      RST 

    1.0       0.1       0.1             0.1   0.1         5  

 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO.  

*----DT      DCLIM     CNMAX   CNMIN     

    0.001    0.01     0.1     0.01 

CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2  

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1  

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1    3000        1.     0.   0.     0.   0.1342282   0.    0.    0.    0.   

0.   0.   0.   0.  800. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 
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CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

     2.0     0.1       0.1            0.1            0.1          5 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

    0.001   0.01          0.1   0.01  

CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2   

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1  

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1    3000        1.     0.   0.     0.   0.1342282   0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.  

0.   0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.  

0.   0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

    3.0     0.1       0.1            0.1            0.1          5 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

     0.001   0.01          0.1   0.01  
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B-2. Input data for the Conduit case II synthetic model 

 
CC******************************************************************* 

CC                                                                  * 

CC    BRIEF DESCRIPTION OF DATA SET                                 *  

CC                                                                  * 

CC******************************************************************* 

CC                                                                  * 

CC                                                                  * 

CC                                                                  * 

CC  LENGTH (FT) :  627             PROCESS :  PROFILE CONTROL       *  

CC  THICKNESS (FT) : 19            INJ. PRESSURE (PSI) :  -         * 

CC  WIDTH (FT) :   625             COORDINATES : CARTESIAN          * 

CC  POROSITY :   0.3                                                * 

CC  GRIDBLOCKS :  6250                                             * 

CC  DATE :                                                          * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR DESCRIPTION                                         * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

*----RUNNO 

Conduit Case 2 

CC   

CC 

*----HEADER 

Synthetic field case, 1 high perm conduit, 1 injector and 4 producers 

PPG treatment 

************************************************************************ 

CC 

CC SIMULATION FLAGS 

*---- IMODE IMES IDISPC IREACT  ICOORD ITREAC ITC  IENG 

        1    2    3       1      1     0      0    0 

CC 

CC NUMBER OF GRIDBLOCKS AND FLAG SPECIFIES CONSTANT OR VARIABLE GRID SIZE 

*----NX   NY  NZ  IDXYZ  IUNIT 

 

     25   25   10   2       0           

CC 

CC  VARIABLE GRID BLOCK SIZE IN X 

*----DX(I)       

     25*25 

CC 

CC  CONSTANT GRID BLOCK SIZE IN Y 

*----DY  

     28 28 28 28 28 28 28 28 28 28 28

 5 1 5 28 28 28 28 28 28 28 28

 28 28 28 

CC 

CC  VARIABLE GRID BLOCK SIZE IN Z 

*----DZ 

 2 2 2 2 1 2 2 2 2 2 

CC 
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CC TOTAL NO. OF COMPONENTS, NO. OF TRACERS, NO. OF GEL COMPONENTS 

*----N   NTW  NG 

     14   0   6  

CC 

CC 

*---- SPNAME(I),I=1,N 

WATER 

OI 

none 

none 

SALT 

none 

none 

none 

none 

none 

none 

none 

none 

ppg 

CC 

CC FLAG INDICATING IF THE COMPONENT IS INCLUDED IN CALCULATIONS OR NOT 

*----ICF(KC) FOR KC=1,N 

   1  1  0  0  1 0  0 0 0 0 0 0 0 1 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    OUTPUT OPTIONS                                                * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

CC  FLAG FOR PV OR DAYS FOR OUTPUT AND STOP THE RUN 

*----ICUMTM  ISTOP   

       1     1  

CC 

CC FLAG INDICATING IF THE PROFILE OF KCTH COMPONENT SHOULD BE WRITTEN 

*----IPRFLG(KC),KC=1,N 

     1  1  0  0  0  0 0 0 0 0 0 0 0  1 

CC 

CC FLAG FOR PRES,SAT.,TOTAL CONC.,TRACER CONC.,CAP.,GEL, ALKALINE PROFILES 

*----IPPRES IPSAT IPCTOT IPGEL  ITEMP    

      1      1      1      1    0   

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES  

*----ICKL IVIS IPER ICNM  ICSE 

      0     1    0    0    0     

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES TO PROF 

*----IADS  IVEL IRKF IPHSE  

      0     0    1    0   

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR PROPERTIES                                          * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

CC MAX. SIMULATION TIME (PV)  
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*---- TMAX 

      3.0 

CC 

CC ROCK COMPRESSIBILITY (1/PSI), STAND. PRESSURE(PSIA) 

*----COMPR   PSTAND 

      0.      14.7 

CC 

CC FLAGS INDICATING CONSTANT OR VARIABLE POROSITY, X,Y,AND Z PERMEABILITY 

*----IPOR1 IPERMX IPERMY IPERMZ  IMOD  ITRNZ  INTG 

       2      2     3      3      0     0      0 

CC 

CC VARIABE POROSITY 

 

*----PORC1 

2803*0.3 19*0.9   3428*0.3 CC 

CC VARIABLE X-PERMEABILITY (MILIDARCY)  

*----PERMX(1) 

32 33 32 35 34 37 37 30 36 30 32 30

 37 34 33 39 32 33 33 40 40 38 37

 31 30 35 36 33 30 38 40 33 40 37

 40 36 32 31 38 30 34 39 40 40 40

 40 39 34 37 35 32 35 37 37 40 33

 31 32 32 31 31 40 35 35 38 36 40

 30 32 34 32 31 30 38 40 33 35 37

 39 35 38 32 37 37 38 40 33 39 36

 34 32 33 34 37 36 32 32 38 33 40

 38 34 39 35 30 39 38 36 37 36 36

 40 32 39 31 32 35 37 33 32 34 37

 40 37 30 40 39 39 33 33 32 32 33

 32 30 34 40 37 36 37 34 31 30 31

 35 40 32 31 38 39 40 32 35 32 34

 40 38 33 37 35 32 31 40 34 39 32

 40 37 32 33 33 35 34 31 39 34 36

 30 32 35 30 31 37 35 37 33 37 39

 38 37 34 34 37 32 30 38 36 36 32

 39 34 37 37 36 32 34 32 37 31 36

 38 39 31 31 35 38 32 33 31 31 36

 33 32 32 34 39 36 33 34 35 30 36

 39 34 32 31 37 36 39 37 35 32 37

 32 37 33 38 37 31 37 34 39 39 30

 37 30 40 36 33 31 35 36 30 37 35

 40 39 33 38 34 34 38 31 40 37 35

 34 35 40 32 35 35 34 30 33 40 37

 40 31 33 36 31 36 33 30 38 40 38

 36 40 31 39 34 30 38 31 34 40 39

 38 30 34 31 39 32 30 37 32 30 30

 35 38 40 40 36 33 34 30 33 38 36

 36 35 35 34 39 30 37 39 35 35 33

 37 30 33 32 30 36 36 34 39 39 37

 36 31 36 40 39 38 30 36 36 40 38

 39 31 34 30 37 37 31 33 36 35 39

 35 33 33 33 35 36 38 37 39 30 32

 34 34 37 30 39 38 36 31 30 36 38

 32 34 37 34 31 36 40 31 30 37 37

 32 30 30 37 36 37 34 30 38 40 32

 40 36 36 34 31 38 36 30 34 37 33

 40 32 30 31 34 39 30 39 35 35 30

 37 34 33 35 35 37 37 32 35 40 34

 34 37 34 35 39 36 31 37 35 30 40

 38 34 32 33 30 33 30 34 32 36 36
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 40 36 31 38 38 37 38 33 31 30 37

 37 36 38 38 40 38 39 39 32 30 35

 37 34 36 30 36 31 32 30 30 34 35

 38 32 38 39 36 34 39 38 33 35 35

 35 39 33 36 33 31 34 35 40 34 40

 38 37 39 39 34 31 38 37 38 39 35

 35 35 33 39 30 34 33 35 32 38 34

 39 32 30 40 39 33 33 33 38 40 40

 31 38 31 30 32 38 39 36 31 33 35

 31 31 39 39 34 40 39 31 38 32 35

 32 37 40 36 33 36 32 40 33 38 40

 40 38 33 37 37 36 34 31 36 39 31

 36 32 35 38 32 33 33 36 32 33 38

 40 38 37 39 37 37 32 31 

45 45 41 44 44 45 45 40 44 43 41 43

 44 42 42 41 43 42 41 45 43 40 43

 42 44 41 42 41 41 41 42 41 43 40

 42 44 43 41 42 43 44 41 42 40 45

 45 43 41 44 44 44 44 45 41 42 43

 41 45 43 42 40 40 40 42 45 44 43

 45 40 44 41 42 44 44 40 41 41 43

 42 40 40 40 40 44 40 43 42 42 45

 42 44 41 42 43 40 43 43 44 43 45

 45 43 41 40 42 41 40 43 44 45 45

 45 44 43 40 42 41 41 42 45 40 42

 43 42 43 41 40 45 40 42 42 41 42

 45 43 42 43 42 44 43 40 40 42 45

 41 44 44 45 43 44 42 44 42 45 45

 40 44 40 40 42 42 43 44 40 43 40

 42 42 42 45 42 44 42 45 40 41 41

 42 42 41 43 41 44 44 44 45 45 44

 41 44 40 41 44 44 44 42 42 42 43

 43 45 43 44 45 44 41 45 45 41 44

 44 42 40 40 45 41 45 43 45 40 43

 43 44 41 41 40 41 43 44 44 45 44

 45 41 44 45 42 45 41 42 44 41 45

 43 40 45 40 43 41 44 41 45 42 45

 44 41 44 41 42 42 42 40 45 42 40

 40 45 43 45 42 45 41 44 42 43 42

 43 41 40 45 44 45 45 42 44 45 42

 44 42 41 41 41 44 42 41 41 42 43

 45 45 43 42 42 42 40 44 40 40 44

 45 45 43 40 40 41 44 43 42 42 41

 44 45 40 42 42 43 42 42 43 42 44

 42 45 44 41 43 42 42 44 44 41 45

 44 44 41 43 42 41 43 42 43 44 40

 41 43 43 43 43 42 40 43 43 44 43

 43 41 40 45 44 45 43 45 43 40 43

 40 40 44 43 45 42 40 45 42 42 42

 41 44 42 44 41 43 45 45 41 41 44

 44 41 43 41 45 40 43 43 45 41 40

 40 40 42 43 40 42 45 41 40 43 41

 42 44 45 40 41 42 40 45 43 43 41

 43 41 45 44 43 41 43 45 45 45 42

 41 40 44 44 44 45 45 45 45 45 40

 43 44 41 45 43 40 42 43 44 41 43

 45 43 42 41 44 41 43 40 40 45 42

 43 42 42 41 41 42 45 42 41 44 45

 43 44 43 41 40 42 45 42 41 44 44

 43 40 43 41 41 41 40 43 45 42 40
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 42 43 42 42 42 40 44 40 44 40 45

 44 45 42 43 42 42 40 41 44 45 41

 45 44 44 42 41 42 41 41 40 42 45

 41 44 43 43 41 41 43 43 40 45 44

 45 41 41 41 40 45 42 43 40 43 44

 40 45 40 41 41 41 45 45 42 43 45

 42 45 44 42 44 45 41 45 43 44 45

 43 44 43 45 44 40 43 44 41 45 40

 40 43 40 45 45 40 43 41 42 44 41

 45 42 45 42 45 44 42 41 40 42 43

 41 43 44 42 44 42 44 45 

45 47 45 48 47 48 49 48 45 47 50 46

 46 49 45 49 49 50 50 50 49 50 48

 50 49 50 48 49 48 48 46 45 50 45

 45 50 50 45 48 47 48 47 50 47 48

 48 48 46 47 46 50 48 45 47 46 47

 50 49 45 47 46 49 49 49 47 47 50

 49 45 50 47 46 48 47 47 45 47 48

 48 50 48 48 45 48 48 49 50 49 47

 47 48 49 48 50 47 49 45 46 45 50

 49 48 45 49 49 48 45 45 46 50 46

 49 48 47 47 46 49 49 50 50 50 48

 45 48 47 48 45 46 49 50 47 50 48

 49 49 45 45 48 46 49 50 47 46 45

 47 50 50 48 47 49 48 48 48 47 48

 47 48 46 45 47 50 45 50 46 47 50

 49 49 47 48 48 48 48 46 47 46 50

 47 48 45 46 47 47 50 48 50 47 45

 47 45 45 45 45 50 45 45 47 49 46

 46 49 50 45 45 45 49 50 45 49 48

 50 46 46 48 46 46 45 47 48 47 50

 45 49 48 50 48 46 48 49 50 45 50

 45 48 46 49 47 46 47 49 48 46 45

 50 49 47 45 48 49 45 47 46 50 48

 48 46 48 45 46 49 48 48 50 48 48

 45 48 46 45 48 45 50 49 50 50 49

 47 49 48 46 46 49 50 47 47 46 49

 50 48 45 46 47 47 46 45 48 49 49

 49 45 45 45 49 48 47 48 45 47 46

 50 50 47 48 45 47 45 50 48 46 45

 50 48 45 48 47 48 50 47 47 46 49

 47 47 48 48 47 49 46 48 48 49 46

 50 47 46 46 49 48 45 45 50 45 48

 50 48 50 47 49 47 47 50 48 48 50

 46 45 48 49 47 49 50 50 46 45 47

 47 45 49 50 48 48 50 50 49 49 47

 49 47 45 48 48 46 45 49 45 46 48

 48 50 49 45 49 49 47 46 50 48 48

 49 48 49 45 49 45 48 50 45 49 46

 47 46 47 46 48 46 47 50 46 48 49

 46 48 46 50 50 50 47 48 48 50 47

 47 47 47 49 49 49 46 50 46 50 47

 50 48 50 48 48 47 50 45 47 46 45

 45 47 48 45 47 48 50 49 45 48 48

 50 50 48 49 48 50 48 47 49 47 50

 47 48 47 46 47 49 47 49 48 46 45

 50 49 45 49 50 49 46 48 46 50 47

 48 49 45 49 47 48 46 47 50 45 48

 50 48 46 47 45 48 46 45 46 45 45

 46 48 45 47 46 47 49 46 49 47 45
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 46 49 46 50 48 45 47 48 49 50 45

 49 47 48 45 50 48 48 49 46 46 49

 46 49 50 50 50 50 50 49 49 50 46

 45 47 50 49 49 45 46 49 48 46 47

 50 45 45 50 46 45 48 45 46 49 50

 47 49 47 45 45 48 47 48 47 49 46

 47 45 48 49 50 46 45 45 48 49 47

 49 49 50 50 48 45 50 48 

57 57 50 56 50 57 54 58 58 57 56 56

 53 52 56 53 56 56 60 51 58 55 54

 57 59 52 50 55 50 59 57 58 52 52

 52 57 51 60 51 55 58 50 53 50 55

 58 51 54 59 52 57 55 55 55 52 57

 53 57 55 52 56 51 50 54 55 58 52

 59 58 50 55 56 55 55 57 54 53 59

 60 53 52 50 54 56 55 57 57 58 53

 58 51 54 54 60 50 58 52 54 51 59

 60 58 53 53 54 52 51 50 58 52 54

 55 52 60 59 55 55 56 58 59 50 56

 58 50 59 55 50 55 54 59 58 52 58

 50 50 54 52 53 59 56 52 54 52 59

 55 52 52 57 51 56 50 60 54 52 54

 53 54 51 54 58 54 54 55 59 54 59

 56 55 56 53 50 60 56 51 54 53 51

 58 53 54 50 60 52 52 51 52 58 53

 59 54 54 55 55 58 59 52 51 55 58

 60 51 56 60 54 53 55 53 55 56 57

 54 55 52 56 54 52 55 50 52 58 53

 53 51 58 56 56 60 59 57 54 55 60

 58 54 53 52 57 50 50 53 58 55 54

 52 52 57 59 50 59 59 60 60 55 50

 51 57 54 50 56 57 57 53 60 59 53

 57 57 50 50 52 59 52 52 52 53 53

 58 57 51 59 54 51 59 54 58 57 55

 52 52 54 53 52 53 53 55 57 54 57

 50 59 53 52 59 57 59 53 56 59 50

 51 53 57 59 59 52 55 51 52 58 55

 50 56 55 52 51 51 50 60 58 51 50

 55 60 57 58 58 54 54 52 60 54 50

 57 58 52 51 56 56 55 50 59 51 51

 56 56 51 59 58 54 55 58 57 55 51

 59 58 56 52 55 60 56 54 56 58 54

 52 59 58 56 52 59 54 51 50 60 60

 51 59 55 53 57 51 56 58 55 56 52

 57 54 56 57 57 58 52 50 58 59 52

 58 50 55 50 57 54 52 59 51 51 50

 59 52 56 51 59 50 53 58 55 53 53

 57 59 50 56 54 55 58 52 56 59 59

 54 59 56 56 51 56 59 55 59 58 56

 59 51 50 60 54 51 50 59 50 59 55

 59 55 52 58 58 50 53 50 52 51 60

 58 50 58 53 55 58 56 59 60 50 54

 53 57 60 53 59 60 50 50 59 51 58

 50 54 59 60 56 51 55 51 54 60 53

 59 53 58 52 55 57 59 59 53 53 53

 59 59 55 54 54 55 50 56 53 50 55

 53 56 60 59 57 53 55 57 54 50 52

 58 60 55 55 52 57 51 52 56 55 52

 59 57 51 52 58 58 55 52 55 53 56

 54 58 53 60 58 58 53 52 51 50 55
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 56 50 55 51 56 57 50 60 56 53 60

 52 50 51 51 59 60 57 59 52 55 57

 60 54 57 58 57 52 60 55 50 55 50

 58 60 59 53 50 56 56 60 60 57 60

 57 50 53 50 60 60 54 52 

53 55 50 60 51 54 54 58 53 58 50 52

 56 54 60 60 59 54 52 54 52 51 57

 58 57 54 53 60 50 56 57 53 57 51

 51 52 60 53 50 57 55 59 53 56 55

 52 56 53 56 60 53 57 58 54 56 52

 55 51 52 60 58 51 58 52 51 53 57

 59 55 50 60 57 50 60 60 51 52 55

 56 50 55 58 50 59 60 51 55 60 54

 56 51 58 59 59 52 59 57 50 55 57

 55 56 57 51 53 57 54 59 54 54 53

 60 50 51 55 59 60 59 57 52 51 58

 58 52 53 58 52 57 57 59 51 53 56

 59 58 57 58 52 56 58 50 58 57 57

 58 51 56 55 55 50 50 55 53 51 57

 51 55 58 55 53 57 60 54 58 57 60

 54 60 59 53 60 60 52 60 52 56 54

 51 57 58 59 50 54 51 50 56 51 50

 56 51 56 52 58 60 54 54 57 60 55

 51 57 53 59 59 55 55 58 52 56 50

 58 56 56 56 51 56 50 55 59 52 54

 50 54 57 54 50 57 56 54 55 60 52

 52 51 58 54 50 54 57 54 58 52 55

 53 58 52 53 58 50 51 58 60 51 55

 53 51 50 53 52 57 55 57 53 54 53

 56 54 53 57 53 56 54 54 59 57 53

 55 52 55 53 56 52 54 53 52 57 52

 60 50 52 53 56 59 53 59 50 58 51

 55 55 54 60 51 10000 10000 10000 10000 10000 10000

 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

 10000 10000 56 54 60 59 52 54 52 50 51

 55 55 60 57 54 54 53 58 54 58 58

 50 54 58 56 53 57 50 52 58 53 53

 53 60 57 56 57 54 58 51 60 52 59

 51 52 51 50 56 54 57 57 53 56 51

 54 56 54 50 51 58 58 57 60 54 52

 54 51 56 59 60 50 53 58 53 54 56

 56 56 59 58 60 54 59 51 59 58 50

 59 50 59 57 51 52 59 50 60 56 60

 59 54 57 60 55 55 54 56 56 60 51

 58 58 59 50 51 57 57 54 50 51 55

 50 50 50 54 58 51 52 50 54 54 56

 60 52 56 56 60 59 55 59 59 51 50

 51 56 55 56 59 57 50 52 51 56 55

 60 52 60 51 55 60 53 58 51 58 52

 60 51 56 60 58 51 53 51 60 50 55

 57 50 51 54 53 52 56 51 59 60 53

 52 54 60 58 58 53 52 60 57 50 50

 55 56 59 58 50 50 54 57 58 51 56

 60 60 57 51 55 54 55 59 59 55 55

 52 57 59 53 50 50 60 51 57 59 58

 56 55 51 60 59 60 60 56 57 60 51

 52 50 58 54 56 57 51 58 56 50 59

 50 51 59 60 51 60 60 54 55 55 55

 56 54 56 53 58 52 56 58 54 57 57

 59 56 53 57 54 53 51 56 55 54 53
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 53 58 60 54 54 52 50 59 56 54 59

 53 52 55 58 58 50 56 53 

65 66 68 69 70 65 66 62 68 66 69 60

 69 65 68 62 66 64 65 62 60 66 70

 60 60 60 60 62 68 63 65 68 69 67

 68 62 61 64 64 70 64 60 63 62 70

 64 61 68 65 60 63 68 66 69 66 63

 66 69 69 68 70 66 60 67 62 62 70

 66 65 64 61 69 62 67 60 67 66 65

 70 63 65 68 66 62 63 67 69 69 62

 70 68 60 63 66 70 69 69 64 60 65

 68 68 65 67 66 64 62 62 63 66 67

 70 66 69 63 69 66 67 62 68 67 70

 67 68 66 64 69 70 62 70 65 61 70

 63 70 70 62 65 64 61 68 62 68 64

 63 69 64 67 62 70 70 61 67 63 70

 70 65 64 60 62 60 66 60 69 62 62

 67 62 65 63 68 63 64 67 63 61 70

 60 61 63 67 62 70 61 70 68 61 63

 65 61 70 61 68 67 66 66 68 69 64

 62 68 66 62 68 68 61 67 66 61 60

 68 64 70 63 68 69 69 62 70 69 67

 70 68 60 70 60 62 63 60 69 61 69

 62 66 64 67 61 68 68 67 62 70 67

 70 65 60 60 66 68 66 65 70 65 66

 61 65 70 69 62 60 62 69 65 64 66

 63 66 70 70 67 61 61 64 68 69 70

 70 68 62 65 65 62 67 65 61 61 62

 62 70 69 64 68 62 64 67 68 64 64

 62 64 62 67 67 69 60 60 67 68 62

 64 64 65 62 62 67 69 65 64 63 62

 63 67 60 70 68 61 67 69 69 68 60

 69 65 70 63 61 61 65 69 62 69 63

 63 61 61 63 67 64 61 66 64 64 64

 67 60 67 60 67 69 60 63 63 68 62

 60 65 66 61 63 70 65 66 67 65 62

 68 68 63 63 69 61 62 64 70 66 61

 66 64 60 65 62 66 61 60 63 70 70

 64 62 68 63 61 70 63 70 60 65 65

 70 63 66 60 67 68 67 63 60 61 61

 62 64 69 62 62 60 68 69 68 68 70

 65 66 70 63 68 69 65 64 61 65 67

 60 63 69 65 62 68 61 60 65 69 67

 60 68 60 67 65 63 69 70 67 66 62

 70 69 68 67 69 64 67 64 65 60 66

 61 63 61 65 68 67 64 66 67 60 64

 62 70 68 64 68 70 67 63 65 61 70

 62 62 61 61 70 67 64 61 61 62 65

 69 60 60 70 65 66 60 63 66 67 63

 65 60 64 61 69 62 64 60 61 68 70

 61 70 63 62 68 60 70 63 63 68 68

 66 64 64 65 66 62 63 69 65 61 64

 66 64 66 61 68 65 69 61 60 70 68

 70 65 70 60 70 60 69 63 61 66 70

 61 67 67 65 63 64 67 62 60 70 67

 68 66 62 67 65 69 67 60 70 64 62

 67 65 61 63 67 61 61 62 66 61 68

 65 66 62 66 66 61 67 68 65 60 64

 66 61 60 69 60 66 69 60 
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72 78 73 80 73 77 75 70 79 73 75 80

 70 77 80 73 80 70 73 79 73 76 77

 76 79 73 76 74 73 76 80 80 73 78

 80 78 79 73 74 77 71 70 78 70 79

 75 72 77 79 78 75 76 79 72 76 75

 74 73 73 71 71 76 74 76 75 71 71

 80 74 76 72 73 77 78 74 71 71 73

 78 73 79 77 78 70 70 78 79 75 79

 76 78 73 72 70 79 79 77 71 74 70

 71 78 71 77 79 71 78 75 71 75 77

 77 73 72 75 74 79 71 72 73 73 77

 73 71 77 76 79 74 73 74 79 74 79

 70 75 78 74 73 75 77 75 72 77 73

 70 70 76 73 71 71 75 76 71 71 70

 73 70 78 71 77 74 71 73 76 78 76

 74 80 79 70 80 74 78 73 70 72 78

 79 74 78 77 74 71 70 79 79 79 74

 71 78 73 71 72 74 77 75 74 79 74

 74 77 70 72 71 73 72 78 71 74 73

 73 75 72 72 73 73 71 76 72 74 72

 70 79 79 78 80 73 75 73 76 71 72

 72 70 76 77 76 71 79 80 77 74 74

 74 74 78 71 79 80 70 76 76 79 70

 76 79 76 78 72 70 79 73 74 70 73

 79 74 75 79 75 71 77 78 73 80 77

 80 77 76 72 77 78 72 72 72 80 77

 77 71 74 72 77 74 74 80 80 72 79

 74 72 75 79 72 72 70 78 77 71 71

 72 79 73 70 80 70 74 76 79 70 75

 72 79 73 75 74 79 77 80 74 75 70

 74 78 74 77 73 74 79 77 74 76 73

 75 70 77 73 71 78 75 71 71 80 73

 70 80 80 70 76 73 77 71 74 70 77

 73 76 78 71 70 80 70 75 72 71 76

 72 73 76 76 80 80 76 77 72 71 77

 72 71 79 74 75 74 79 73 76 72 76

 75 73 80 73 78 73 76 71 80 71 74

 80 78 76 72 72 79 75 78 80 76 77

 80 79 79 76 72 70 80 73 76 74 71

 76 72 74 79 77 73 77 74 70 79 80

 73 79 79 72 77 77 73 78 75 74 71

 73 73 73 78 73 78 74 71 77 70 76

 80 79 80 79 76 80 73 77 76 77 78

 78 74 71 77 78 72 79 70 74 75 73

 70 77 74 71 77 77 77 72 77 76 75

 79 80 73 79 71 77 70 74 71 74 77

 74 70 77 70 74 70 73 80 70 76 70

 74 74 75 70 78 77 80 75 76 78 75

 72 72 75 80 72 75 76 70 77 76 77

 73 76 78 80 70 76 73 79 79 79 72

 74 74 80 78 70 78 78 71 75 79 71

 79 78 71 80 70 80 73 71 71 76 78

 76 77 74 72 72 75 75 78 78 72 77

 78 76 80 71 75 80 79 79 76 73 78

 76 73 80 71 74 78 73 71 73 74 75

 76 78 77 78 75 75 77 70 80 75 79

 80 74 74 71 74 76 70 72 

51 55 55 59 51 58 50 59 51 55 53 57

 55 54 58 52 56 60 59 57 60 58 54

 60 58 60 60 58 57 51 57 50 59 55
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 60 59 58 50 59 51 59 56 57 59 52

 50 54 52 54 58 50 55 58 51 60 56

 59 59 60 58 52 56 57 56 54 57 54

 53 54 54 52 56 54 52 57 56 50 56

 55 59 50 54 56 53 50 57 56 59 58

 57 59 51 58 59 50 51 60 51 51 60

 53 54 54 54 51 56 53 52 54 57 56

 54 59 60 50 58 55 53 50 53 54 56

 53 54 57 50 60 58 52 56 58 51 52

 57 51 55 57 58 57 53 52 53 53 51

 50 59 54 53 50 60 51 50 56 53 60

 51 55 57 58 60 54 60 59 59 55 60

 53 52 57 58 59 60 52 50 54 55 58

 58 56 50 54 54 52 59 59 51 56 50

 53 59 57 55 57 56 52 53 58 56 58

 56 58 59 57 55 57 50 57 58 52 59

 56 59 52 60 54 52 59 50 50 50 52

 52 57 50 57 56 53 58 59 56 54 54

 55 59 51 55 59 53 54 56 60 52 59

 51 60 59 54 53 57 57 58 60 58 56

 59 50 54 56 59 56 51 57 50 56 56

 52 59 56 58 53 54 53 50 60 57 52

 51 54 50 56 52 52 60 53 51 58 53

 58 51 56 51 54 59 57 52 57 60 57

 60 56 52 51 59 59 50 58 57 51 58

 53 56 50 57 52 60 50 55 50 55 58

 60 60 53 51 53 54 53 54 50 53 52

 53 60 52 60 57 55 57 51 57 52 54

 53 57 56 57 60 55 55 51 55 53 51

 53 57 55 54 51 57 51 53 50 57 55

 56 60 53 59 57 60 59 57 57 60 53

 55 55 53 56 54 58 58 59 51 59 56

 50 57 55 55 54 54 52 60 57 55 55

 59 54 58 50 57 54 50 58 58 52 59

 51 60 54 58 55 54 58 51 55 50 52

 55 53 54 59 57 57 53 58 54 51 59

 50 60 51 51 54 51 52 51 51 53 53

 50 56 52 58 51 59 52 58 51 57 56

 54 54 51 59 56 51 59 53 53 58 59

 50 50 58 54 56 53 55 59 52 52 56

 50 55 53 50 57 59 59 57 60 56 57

 58 55 54 55 51 59 53 58 60 50 56

 60 52 51 53 51 56 55 56 52 50 55

 54 53 60 56 58 53 52 53 55 55 56

 60 56 50 59 57 50 57 51 59 55 53

 53 59 51 59 60 59 52 59 51 54 50

 60 54 51 60 55 53 53 50 53 53 58

 55 59 55 50 56 59 51 56 50 60 52

 53 57 53 59 50 56 57 52 59 57 59

 54 56 50 54 55 54 57 53 58 59 60

 51 52 57 57 54 54 53 53 54 55 50

 60 51 53 58 59 55 59 52 60 52 55

 57 58 50 58 56 51 52 56 59 53 57

 52 56 54 55 51 53 53 59 

62 58 57 59 64 55 56 56 56 59 62 58

 65 65 60 64 65 63 63 57 61 61 65

 60 62 56 56 64 60 55 65 61 55 59

 64 65 55 60 57 62 62 58 65 60 58

 60 60 57 58 57 63 56 57 60 58 65

 63 57 57 63 63 58 55 64 64 58 56
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 64 65 58 60 61 60 65 62 63 55 60

 58 55 65 56 65 61 56 65 60 60 63

 60 57 58 58 57 55 56 60 57 65 57

 59 62 65 65 64 59 60 55 65 58 58

 56 60 63 61 55 59 65 56 65 56 55

 56 55 57 56 61 61 55 58 62 63 55

 56 58 59 61 59 59 65 55 63 60 62

 55 62 59 61 59 60 56 58 59 65 65

 65 57 57 61 61 55 59 64 64 58 64

 65 63 59 56 55 55 58 57 61 57 65

 64 55 56 57 55 56 64 64 60 58 62

 59 59 60 57 60 63 55 60 56 64 60

 63 64 58 64 55 64 55 63 57 61 58

 63 58 56 57 62 65 59 56 64 60 57

 64 62 62 64 60 61 56 57 61 62 59

 56 65 61 63 57 61 57 57 56 56 56

 60 55 56 60 65 62 62 55 58 59 57

 55 62 61 60 63 58 62 55 60 63 55

 64 58 62 58 65 56 64 62 55 58 65

 58 57 56 63 62 63 64 56 60 60 60

 62 60 62 58 55 62 56 63 59 56 58

 58 56 57 63 60 65 62 60 60 57 60

 55 61 59 65 55 55 61 64 55 56 56

 62 55 58 61 63 57 56 59 61 55 59

 62 57 64 57 63 55 59 57 62 58 63

 56 56 56 62 63 64 64 64 65 64 60

 61 60 57 64 61 65 56 60 63 55 58

 57 56 60 55 60 58 56 60 65 63 58

 63 58 58 59 56 60 62 58 61 56 64

 62 56 63 56 61 57 65 58 59 58 58

 60 63 63 56 57 59 63 58 62 60 60

 65 59 62 60 63 57 55 59 63 60 63

 56 58 58 63 64 56 63 61 55 61 56

 61 60 61 58 60 60 64 64 57 60 59

 64 59 61 61 62 58 61 62 57 63 65

 63 65 64 65 64 64 63 62 65 57 64

 60 58 55 58 59 57 60 61 56 61 55

 55 55 63 57 62 56 57 63 63 65 61

 60 63 59 59 59 65 64 58 61 61 56

 55 57 63 63 65 65 55 61 64 64 56

 55 64 64 60 56 64 64 65 61 56 55

 62 58 65 57 59 64 57 57 58 57 59

 65 61 58 57 64 57 58 58 59 64 62

 61 55 60 64 64 60 59 65 58 61 59

 61 60 57 63 64 61 65 63 57 63 65

 64 61 56 60 60 63 62 55 55 61 57

 59 62 63 59 57 59 60 58 64 55 64

 57 57 60 57 63 64 65 56 63 63 62

 63 64 59 64 57 56 65 59 56 60 60

 64 65 58 60 60 60 64 55 57 60 63

 56 58 61 63 58 58 56 64 

56 69 56 55 57 65 62 59 50 68 64 64

 64 59 59 62 68 69 69 52 53 59 70

 69 58 70 56 61 50 58 69 70 50 69

 69 56 61 56 57 59 69 56 54 63 57

 62 51 70 56 55 60 66 70 63 62 70

 57 70 67 56 65 57 62 52 59 65 66

 64 65 67 52 59 65 61 56 69 54 51

 57 61 64 53 68 57 55 60 64 67 66

 57 66 70 67 67 69 50 60 51 70 69
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 64 55 59 53 66 56 65 66 50 53 55

 58 52 69 59 70 60 55 52 60 62 64

 57 52 50 53 65 70 62 59 65 54 61

 62 59 55 62 51 63 69 59 69 55 61

 52 69 62 60 70 53 64 52 60 62 59

 61 52 66 68 61 69 67 70 70 62 60

 55 57 59 70 50 62 62 61 70 61 54

 60 50 61 51 63 60 66 61 50 56 59

 51 61 51 56 67 59 55 61 67 58 56

 61 68 57 69 64 51 63 58 57 67 53

 62 61 61 66 50 61 58 50 67 53 52

 69 64 60 53 68 67 68 59 62 54 63

 63 61 54 59 62 70 57 58 50 60 50

 66 50 63 54 63 65 54 62 55 64 51

 61 52 61 65 50 69 64 60 67 62 59

 53 67 62 57 56 56 59 61 60 51 56

 63 66 54 50 52 56 61 70 66 69 66

 60 56 53 54 50 52 52 58 53 58 61

 51 66 55 57 60 69 65 59 55 56 53

 53 65 50 62 68 59 51 51 63 66 56

 51 60 58 57 56 58 56 57 55 65 53

 51 50 60 62 61 66 59 56 53 62 61

 50 59 62 52 54 57 53 53 60 56 55

 60 70 65 53 57 62 62 57 66 69 55

 58 69 63 65 57 54 54 56 67 63 50

 66 57 69 63 65 51 60 64 61 63 64

 70 63 66 61 60 65 65 61 56 64 53

 59 56 68 70 66 67 57 67 65 64 60

 61 59 56 66 52 55 67 62 52 53 52

 62 55 54 56 57 50 69 52 51 51 68

 58 68 59 57 69 53 66 50 53 65 56

 67 62 56 56 51 56 57 70 64 52 57

 70 67 53 51 53 63 64 53 55 63 52

 64 63 60 69 51 64 60 58 69 67 69

 60 56 51 51 65 65 50 50 64 55 60

 57 68 51 64 62 55 68 66 70 67 60

 50 57 52 66 61 66 60 59 66 58 65

 66 65 62 57 58 70 50 63 53 50 70

 54 69 65 60 68 60 65 62 69 51 52

 50 64 60 54 68 67 54 61 56 68 58

 66 59 70 65 65 65 68 68 59 60 53

 54 62 67 66 50 57 64 60 67 54 55

 67 62 68 57 69 61 52 58 64 68 69

 61 55 61 67 59 66 50 65 60 64 58

 53 57 64 50 56 67 69 57 64 61 61

 63 65 58 66 67 66 59 54 52 69 5

 52 63 67 55 64 69 70 56 70 54 6

 62 65 61 64 53 50 61 60 

CC 

CC VARIABLE Y-PERMEABILITY (MILIDARCY) FOR LAYER K = 1,NZ 

*----FACTY 

     1 

CC 

CC VARIABLE Z-PERMEABILITY 

*----FACTZ 

     0.1 

CC 

CC FLAG FOR CONSTANT OR VARIABLE DEPTH, PRESSURE, WATER SATURATION 

*----IDEPTH  IPRESS  ISWI  

      0        0       2  
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CC 

CC VARIABLE DEPTH (FT) 

*----D111 

    5000         

 

CC 

CC CONSTANT PRESSURE (PSIA) 

*----PRESS1 

     2000 

CC 

CC CONSTANT INITIAL WATER SATURATION 

*----SWI 

2803*0.31 19*0.2   3428*0.31 

CC 

CC CONSTANT CHLORIDE AND CALCIUM CONCENTRATIONS (MEQ/ML) 

*----C50       C60 

     0.1342282      0.0  

CC 

CC******************************************************************* 

CC                                                                  * 

CC    PHYSICAL PROPERTY DATA                                        * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC 

CC CMC 

*----  EPSME   

      .0001   

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 1 

*----HBNS70 HBNC70 HBNS71 HBNC71 HBNS72 HBNC72 

     0.     .030    0.   .030     0.0   .030 

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL  

 

*----HBNS80 HBNC80 HBNS81 HBNC81 HBNS82 HBNC82 

     0.     0.     0.     0.     0.     0. 

CC 

CC LOWER AND UPPER EFFECTIVE SALINITY FOR ALCOHOL 1 AND ALCOHOL 2 

*----CSEL7  CSEU7  CSEL8  CSEU8 

     .65   .9   0.     0. 

CC 

CC THE CSE SLOPE PARAMETER FOR CALCIUM AND ALCOHOL 1 AND ALCOHOL 2 

*----BETA6  BETA7  BETA8 

       0.0    0.    0. 

CC 

CC FLAG FOR ALCOHOL PART. MODEL AND PARTITION COEFFICIENTS 

*----IALC  OPSK7O  OPSK7S  OPSK8O  OPSK8S 

     0     0.      0.      0.      0. 

CC 

CC NO. OF ITERATIONS, AND TOLERANCE 

*----NALMAX   EPSALC 

     20       .0001 

CC 

CC ALCOHOL 1 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC7   AKWS7  AKM7  AK7     PT7 

     4.671   1.79   48.   35.31   .222  

CC 

CC ALCOHOL 2 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC8   AKWS8  AKM8  AK8     PT8 
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     0.      0.     0.    0.      0. 

CC 

CC 

*--- IFT MODEL FLAG 

      0 

CC 

CC INTERFACIAL TENSION PARAMETERS 

*----G11  G12     G13   G21   G22    G23 

     13.  -14.8   .007  13.2   -14.5  .010 

CC 

CC LOG10 OF OIL/WATER INTERFACIAL TENSION  

*----XIFTW 

     1.477 

CC 

CC CAPILLARY DESATURATION PARAMETERS FOR PHASE 1, 2, AND 3 

*----ITRAP   T11        T22        T33 

     0       1865.      28665.46      364.2  

CC 

CC REL. PERM. AND PC CURVES 

*---- IPERM    IRTYPE 

        0       0 

CC 

CC FLAG FOR CONSTANT OR VARIABLE REL. PERM. PARAMETERS 

*----ISRW  IPRW  IEW 

     2      2    2 

CC 

CC CONSTANT RES. SATURATION OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----S1RWC   

2803*0.3 19*0.9   3428*0.3 

CC 

CC 

*----S2RWC 

2803*0.22 19*0.17   3428*0.22 

CC 

CC 

*----S3RWC 

2803*0.3 19*0.9   3428*0.3 

CC 

CC CONSTANT ENDPOINT REL. PERM. OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----P1RW 2803*0.5 19*0.92   3428*0.5 

CC 

CC 

*----P2RW 

2803*0.72 19*0.92   3428*0.72 

CC 

CC 

*----P3RW 

2803*0.5 19*0.92   3428*0.5 

CC 

CC CONSTANT REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----E1W   

2803*3 19*1.2   3428*3 

CC 

CC 

*---E2W 

2803*1.9 19*1.1   3428*1.9 

CC 

CC 

*---E3W 

2803*3 19*1.2   3428*3 
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CC 

CC WATER AND OIL VISCOSITY , RESERVOIR TEMPERATURE 

*----VIS1   VIS2  TEMPV 

     1.0    37    72.5 

CC 

CC VISCOSITY PARAMETERS 

*----ALPHA1 ALPHA2  ALPHA3  ALPHA4  ALPHA5 

     0.0     0.0      0.0   0.000865    4.153 

CC 

CC PARAMETERS TO CALCULATE POLYMER VISCOSITY AT ZERO SHEAR RATE 

*----AP1     AP2     AP3 

     0.0001   0      0  

CC 

CC PARAMETER TO COMPUTE CSEP,MIN. CSEP, AND SLOPE OF LOG VIS. VS. LOG CSEP  

*----BETAP CSE1  SLOPE 

     10    .01   .0 

CC 

CC PARAMETER FOR SHEAR RATE DEPENDENCE OF POLYMER VISCOSITY 

*----GAMMAC  GAMHF  POWN    IPMOD   ishear  rweff   GAMHF2  iwreath 

     10.0        0.0    1.8     0       0       0.25    0      0 

CC 

CC FLAG FOR POLYMER PARTITIONING, PERM. REDUCTION PARAMETERS 

*----IPOLYM EPHI3 EPHI4 BRK    CRK    RKCUT 

     1      1.    1      0.     0.0  10 

CC 

CC SPECIFIC WEIGHT FOR COMPONENTS 1,2,3,7,AND 8 , AND GRAVITY FLAG 

*----DEN1  DEN2    DEN3     DEN7 DEN8 IDEN  

 

   62.899  49.857  62.399  49.824  0  2 

CC 

CC  FLAG FOR CHOICE OF UNITS ( 0:BOTTOMHOLE CONDITION , 1: STOCK TANK) 

*-----ISTB 

      0 

CC 

CC COMPRESSIBILITY FOR VOL. OCCUPYING COMPONENTS 1,2,3,7,AND 8  

*----COMPC(1)  COMPC(2)  COMPC(3)  COMPC(7)  COMPC(8) 

     0.        0.        0.        0.        0. 

CC 

CC CONSTANT OR VARIABLE PC PARAM., WATER-WET OR OIL-WET PC CURVE FLAG  

*----ICPC   IEPC  IOW  

     0       0   0 

CC 

CC CAPILLARY PRESSURE PARAMETERS, CPC 

*----CPC  

   0.  

CC 

CC CAPILLARY PRESSURE PARAMETERS, EPC 

*---- EPC 

      2. 

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 1 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0  0.0 0.0  

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 2 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0 0.0   

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 3 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  
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     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0  0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 1 

*----ALPHAL(1)     ALPHAT(1) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 2 

*----ALPHAL(2)     ALPHAT(2) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 3 

*----ALPHAL(3)     ALPHAT(3) 

     0.0          0.0 

CC 

CC SURFACTANT AND POLYMER ADSORPTION PARAMETERS 

 

*----AD31     AD32  B3D    AD41   AD42  B4D  IADK, IADS1, FADS refk 

 

     0.        .0  1000.  0.672   0.0  1      0      0      0   0 

CC 

CC PARAMETERS FOR CATION EXCHANGE OF CLAY AND SURFACTANT 

*----QV     XKC   XKS  EQW 

      0     0.    0.   804 

CC 

CC 

*---  KGOPT   

      4 

CC 

CC 

* -- IRKPPG,RKCUTPPG,   DPPG,        APPGS,   PPGNS,  DCRICWS   TOLPPGIN 

      2     1000000000    0.0003281     10      -0.3     0.5       40 

CC 

CC 

* -- APPGFR, PPGNFR 

       500      -0.3 

CC 

CC 

*---  ADPPGA,  ADPPGB  RESRKFAC,TOLPPGRK 

      0       0     0.1   1e-6 

CC 

CC 

* ---- APPG1,APPG2,GAMCPG,GAMHFPG,POWNPG 

      0.001     0.001    0.0     0.0    1.8 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    WELL DATA                                                     * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC   

CC TOTAL NUMBER OF WELLS, WELLRADIUS FLAG, FLAG FOR TIME OR COURANT NO. 

*----NWELL   IRO   ITIME  NWREL 

      5      2      1      5  

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW   IW    JW    IFLAG    RW     SWELL  IDIR   IFIRST  ILAST  IPRF 

      1    13     13      1       0.4     0.      3      2       7    0  

CC 

CC WELL NAME 
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*---- WELNAM 

INJECTOR1 

CC 

CC ICHEK MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX    QTMIN    QTMAX 

      0      0.0       10000    0.0     50000. 

CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

    2    1   13    2       0.4       0.     3     2         7       0 

CC 

CC WELL NAME 

*---- WELNAM 

PRODUCER1 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

      0     0.0      10000.   0.0     -50000.CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     3    25   13    2       0.4       0.     3     2         7       0 

CC 

CC WELL NAME 

*---- WELNAM 

PRODUCER3 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

      0     0.0      10000.   0.0     -50000. 

CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     4    13   1    2       0.4       0.     3     2         7       0 

CC 

CC WELL NAME 

*---- WELNAM 

PRODUCER3 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

     0     0.0      10000.   0.0     -50000. 

CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     5    13   25    2       0.4       0.     3     2         7       0 

CC 

CC WELL NAME 

*---- WELNAM 

PRODUCER4 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

      0     0.0      10000.   0.0     -50000. 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1     5000      1.   0.  0.     0.   0.1342282    0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1     0.        0.   0.  0.     0.   0.           0.    0.    0.    0.   

0.   0.   0.   0.   0. 
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     1     0.        0.   0.  0.     0.   0.           0.    0.    0.    0.  0.   

0.   0.   0.   0. 

CC 

CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL (IFLAG=2 OR 3) 

*----ID   PWF 

    2    500 

CC 

CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL (IFLAG=2 OR 3) 

*----ID   PWF 

    3    500 

CC 

CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL (IFLAG=2 OR 3) 

*----ID   PWF 

    4    500 

CC 

CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL (IFLAG=2 OR 3) 

*----ID   PWF 

     5    500 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR WRITING TO OUTPUT FILES 

*----TINJ    CUMPR1   CUMHI1     WRHPV   WRPRF      RSTC 

     0.5       0.1       0.1             0.1   0.1         5  

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO.  

----DT      DCLIM     CNMAX   CNMIN     

 

    0.001    0.01     0.1     0.01 

CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2  2  2  2   

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1  

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

    1    5000        1.     0.   0.     0.   0.1342282   0.    0.    0.    0.   

0.   0.   0.   0.  1500. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

     1.5    0.1       0.1            0.1            0.1          5 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

    0.001   0.01          0.1   0.01  

CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2  2  2  2   



213 

 

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1  

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1    5000        1.     0.   0.     0.   0.1342282   0.    0.    0.    0.  

0.   0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.  

0.   0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

    3.0     0.1       0.1            0.1            0.1          5 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

     0.001   0.01          0.1   0.01  
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B-3.  The impact of having the conduit in the synthetic models  

 

Conduit case I 

 

Adding a conduit into a reservoir model resulted in an waterflood oil recovery 

reduction as seen in Figure B-1. The waterflood recovery from the model without the 

conduit was 49.31% while the recovery from the model with the conduit was 47.93%. 

This was due to the fact that water broke through to the producer more rapidly along the 

conduit. Even though the layer that containing the conduit took up only 4% of the total 

thickness and the volume occupied by the conduit accounted for merely 0.013% of the 

total volume, its effect on waterflood recovery was as significant as 1.38% reduction. 

 

 

Figure B - 1. Comparison of the waterflood performance of a reservoir with and without conduit, 

Conduit case I 
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Conduit case II 

 

Figure B-2 shows the comparison of the oil recoveries from waterflooding the 

synthetic model with and without the conduit for the Conduit case II study. The 

waterflood recovery from the model without the conduit was 41.85% while the recovery 

from the model with the conduit was 40.82%. The conduit‟s impact on waterflood 

recovery in this case was 1.03% reduction despite the fact that the volume occupied by 

the conduit was as insignificant as 0.006% of the total volume. In order to allow a better 

sweep efficiency and optimize the production from all four producers, a PPG treatment 

was required to block the conduit channel and divert the water equally among the four 

producers. 

 

 

Figure B - 2. Comparison of the waterflood performance of a reservoir with and without conduit, 

Conduit case II 
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Appendix C. Input Data for Field Case Simulation 

 

C-1.  Input data for field case I, gel type comparison 

 (Gel type = PPG)  

 
CC******************************************************************* 

CC                                                                  * 

CC    BRIEF DESCRIPTION OF DATA SET                                 *  

CC                                                                  * 

CC******************************************************************* 

CC                                                                  * 

CC                                                                  * 

CC                                                                  * 

CC  LENGTH (FT) : 3225              PROCESS :  PROFILE CONTROL      *  

CC  THICKNESS (FT) : 37           INJ. PRESSURE (PSI) :  -          * 

CC  WIDTH (FT) :  3525             COORDINATES : CARTESIAN          * 

CC  POROSITY :  variable                                            * 

CC  GRIDBLOCKS : 43x47x19 (38399)                                  * 

CC  DATE :                                                          * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR DESCRIPTION                                         * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

*----RUNNO 

Field1 

CC   

CC 

*----HEADER 

Minas field 

Modified from CDG Flood case of Abdulmaki Mazen Ramzi, 2012 

Field optimization - Gel type comparison 

CC  

CC SIMULATION FLAGS  

*---- IMODE IMES IDISPC IREACT ICOORD ITREAC ITC IENG 

      1     2    3      0      1      0      0   0     

CC 

CC NUMBER OF GRIDBLOCKS AND FLAG SPECIFIES CONSTANT OR VARIABLE GRID SIZE 

*----NX    NY  NZ  IDXYZ  IUNIT 

     43    47  19  2       0               

CC  

CC CONSTANT GRID BLOCK SIZE IN X, Y, AND Z  (in ft) 

*----DX       

     43*75 

CC  

CC  CONSTANT GRID BLOCK SIZE IN X, Y, AND Z  (in ft) 

*----DY       

     47*75 

CC 

CC  
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*----DZ  (this is mean from NET from ecl2gocad) total thickness is about 68 ft  

     2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 

CC 

CC TOTAL NO. OF COMPONENTS, NO. OF TRACERS, NO. OF GEL COMPONENTS 

*----N   NTW   NG 

     14  0     6 

CC   

CC  All species must be present even for standard waterflood. 

*---- species name 

WATER 

OIL 

none 

none 

SALT 

none 

none 

none 

none 

none 

none 

none 

none 

ppg 

CC  

CC FLAG INDICATING IF THE COMPONENT IS INCLUDED IN CALCULATIONS OR NOT 

*----ICF(KC) FOR KC=1,N 

      1  1  0  0  1 0  0 0 0 0 0 0 0 1  

CC 

CC*********************************************************************** 

CC                                                                   * 

CC    OUTPUT OPTIONS                                                 * 

CC                                                                   * 

CC*********************************************************************** 

CC    

CC ICUMTM=0==>TIME PRINTING;istop=1==>PV SPEC 

CC FLAGS FOR PV OR DAYS 

*----ICUMTM  ISTOP 

     1       1 

CC 

CC FLAG INDICATING IF THE PROFILE OF KCTH COMPONENT SHOULD BE WRITTEN 

*----IPRFLG(KC),KC=1,N 

      1  1  0  0  1 0  0 0 0 0 0 0 0 1 

CC 

CC FLAG FOR PRES,SAT.,TOTAL CONC.,TRACER CONC.,CAP.,GEL, ALKALINE PROFILES 

*----IPPRES IPSAT IPCTOT IPGEL IPTEMP 

     1      1     1      1     0     

CC  ICKL is phase conc.  (K is component and L is phase) 

CC FLAG FOR WRITING SEVERAL PROPERTIES TO UNIT 6 (PROFIL) 

*----ICKL IVIS IPER ICNM ICSE 

     0    1    0    0   0 

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES TO UNIT 6 (PROFIL) 

*----IADS  IVEL IRKF IPHSE 

     0    0    1    0 

CC 

CC********************************************************************* 

CC                                                                    * 

CC    RESERVOIR PROPERTIES                                            * 

CC                                                                    * 

CC********************************************************************* 
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CC   

CC   

CC MAX. SIMULATION TIME  

*---- TMAX   

      7.3 

CC 

CC ROCK COMPRESSIBILITY (1/PSI), STAND. PRESSURE(PSIA) 

*----COMPR      PSTAND   

     0.000008   14.7  

CC  Porosity Values For Each Grid Input Given Through Include Files 

CC  FLAGS INDICATING CONSTANT OR VARIABLE POROSITY, X,Y,AND Z PERMEABILITY 

*----IPOR1 IPERMX IPERMY IPERMZ  IMOD  ITRANZ  INTG 

     4     4      4      4       0     0       0 

CC Depth To The Top Layer Input Given Through Include Files 

CC FLAG FOR CONSTANT OR VARIABLE DEPTH, PRESSURE, WATER SATURATION 

*----IDEPTH  IPRESS  ISWI 

     4       1       0 

CC    

CC  

*----PINIT    HINIT  

     550.     1965.77185  

CC   

CC WATER SATURATION   

*----SWI 

     0.2 

CC 

CC CONSTANT CHLORIDE AND CALCIUM CONCENTRATIONS (MEQ/ML)  

*----C50       C60 

     0.0513    0.0 

CC 

CC********************************************************************* 

CC                                                               * 

CC PHYSICAL PROPERTY DATA                                             * 

CC                                                                    * 

CC********************************************************************* 

CC 

CC   

CC OIL CONC. AT PLAIT POINT FOR TYPE II(+) AND TYPE II(-), CMC (do not change) 

*---- EPSME 

      0.0001 

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC   

*----HBNS70 HBNC70 HBNS71 HBNC71 HBNS72 HBNC72 

     0.0    0.055  0      0.035  0.     0.055 

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 2 

*----HBNS80 HBNC80 HBNS81 HBNC81 HBNS82 HBNC82 

     0.     0.     0.     0.     0.     0. 

CC  

CC LOWER AND UPPER EFFECTIVE SALINITY FOR ALCOHOL 1(7) AND ALCOHOL 2 (8) 

*----CSEL7     CSEU7     CSEL8  CSEU8 

     0.5       0.85      0.     0. 

CC  

CC THE CSE SLOPE PARAMETER FOR CALCIUM AND ALCOHOL 1 AND ALCOHOL 2 

*----BETA6  BETA7  BETA8 

     0.0     0     0.0 

CC  

CC FLAG FOR ALCOHOL PART. MODEL AND PARTITION COEFFICIENTS 

*----IALC  OPSK7O  OPSK7S  OPSK8O  OPSK8S 

     0     0.0      0      0.      0. 



219 

 

CC 

CC NO. OF ITERATIONS, AND TOLERANCE 

*----NALMAX   EPSALC 

     20       .0001 

CC  

CC ALCOHOL 1 PARTITIONING PARAMETERS IF IALC=1  (leave as is) 

*----AKWC7   AKWS7  AKM7  AK7     PT7 

     4.671    1.79   48   35.31  0.222  

CC 

CC ALCOHOL 2 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC8   AKWS8  AKM8  AK8     PT8 

     0.      0.     0.    0.      0. 

CC 

CC   

*--- ift 

     1 

CC 

CC INTERFACIAL TENSION PARAMETERS 

*----CHUH  AHUH   

     0.3   10.   

CC 

CC LOG10 OF OIL/WATER INTERFACIAL TENSION  

*----XIFTW 

     1.48 

CC   

CC CAPILLARY DESATURATION PARAMETERS FOR PHASE 1, 2, AND 3 

*----ITRAP   T11        T22        T33 

     2      2000.      75000.     365.  

CC   

CC 

*----iperm     IRTYPE      

     0          0 

CC RESIDUAL SATURATION FOR EACH PHASE INPUT GIVEN THROUGH INCLUDE FILES   

CC FLAG FOR CONSTANT OR VARIABLE REL. PERM. PARAMETERS 

*----ISRW  IPRW  IEW 

     4      0    0 

CC   

CC CONSTANT ENDPOINT REL. PERM. OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----P1RW  P2RW  P3RW 

     0.30   0.7   0.30  

CC  

CC CONSTANT REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----E1W   E2W  E3W  

     2     2    2   

CC   

CC  RES. SATURATION OF PHASES 1,2,AND 3 AT HIGH CAPILLARY NO. 

*----S1RC(=SWIR)  S2RC(=SORCHEM)  S3RC(SMER=SWIR) 

     0.0001    0.0001   0.0001 

CC 

CC ENDPOINT REL. PERM. OF PHASES 1,2,AND 3 AT HIGH CAPILLARY NO. 

*----P1RC P2RC P3RC 

     1.    1.    1. 

CC 

CC REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT HIGH CAPILLARY NO. 

*----E13CW  E23C E31C 

     1    1    1 

CC  

CC WATER AND OIL VISCOSITY at reference temperature, RESERVOIR TEMPERATURE 

(leave zero) 

*----VIS1   VIS2  TEMPV 
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     0.37    3.4     0. 

CC  

CC MICROEMULSION VISCOSITY PARAMETERS  

*----ALPHA1 ALPHA2  ALPHA3  ALPHA4  ALPHA5 

       .1     2.5     0.1       0.1     0.1 

CC  

CC PARAMETERS TO CALCULATE POLYMER VISCOSITY AT ZERO SHEAR RATE 

*----AP1      AP2     AP3 

    45        625     1000 

CC   

CC PARAMETER TO COMPUTE CSEP,MIN. CSEP, AND SLOPE OF LOG VIS. VS. LOG CSEP  

*----BETAP CSE1  SSLOPE 

     1.    .01   -0.377 

CC   

CC PARAMETER FOR SHEAR RATE DEPENDENCE OF POLYMER VISCOSITY (50% shear ~ 10 cP) 

*----GAMMAC  GAMHF  POWN   IPMOD  ISHEAR   RWEFF  GAMHF2  IWREATH 

      4       30    1.8     0        1       0.4   0.0    1 

CC 

CC WREATH CORRELATION PARAMETERS 

*----WREATHM  WREATHB  WREATHN  WREATHT 

     4.7      0.18     0.48     1.0 

CC    

CC FLAG FOR POLYMER (4) PARTITIONING, PERM. REDUCTION PARAMETERS 

*----IPOLYM EPHI3 EPHI4   BRK    CRK    rkcut 

     1      1.    1       100   0.04      10 

CC    

CC SPECIFIC WEIGHT FOR COMPONENTS 1,2,3,7,AND 8 , AND GRAVITY FLAG 

*----DEN1  DEN2  DEN3 DEN7 DEN8 IDEN 

     .433  .377  .433 .346  0.  2 

CC 

CC  FLAG FOR CHOICE OF UNITS ( 0:BOTTOMHOLE CONDITION , 1: STOCK TANK) 

*-----ISTB 

      1 

CC 

CC  FVF FOR PHASE 1,2,3 

*-----(FVF(L),L=1,NPHAS) 

      1    1.083    1 

CC         

CC COMPRESSIBILITY FOR VOL. OCCUPYING COMPONENTS 1,2,3,7,AND 8  

*----COMPC(1)  COMPC(2)  COMPC(3)  COMPC(7)  COMPC(8) 

     0.000003   0.00001        0.        0.        0. 

CC 

CC CONSTANT OR VARIABLE PC PARAM., WATER-WET OR OIL-WET PC CURVE FLAG  

*----ICPC   IEPC  IOW  

     0       0     0 

CC 

CC CAPILLARY PRESSURE PARAMETERS, CPC  

*----CPC  

     0.  

CC 

CC CAPILLARY PRESSURE PARAMETERS, EPC  

*---- EPC 

      2. 

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 1 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6) D(7) D(8) D(9) D(10) D(1 

     0.   0.   0.   0.    0.  0.  8*0. 

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 2 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6) D(7) D(8) D(9)  D(10)  D(11) 



221 

 

     0.   0.   0.   0.   0.   0.  8*0. 

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 3 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6) D(7) D(8) D(9) D(10)  D(11) 

     0.   0.   0.   0.   0.   0.   8*0. 

CC   

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY (ft) OF PHASE 1 

*----ALPHAL(1)     ALPHAT(1) 

     4             0.4 

CC  

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 2 

*----ALPHAL(2)     ALPHAT(2) 

     4             0.4  

CC  

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 3 

*----ALPHAL(3)     ALPHAT(3) 

     4            0.4  

CC   Polymer (7 microg/g), surf. (0.3 mg/g) 

CC SURFACTANT AND POLYMER ADSORPTION PARAMETERS 

*----AD31  AD32  B3D    AD41   AD42  B4D      iadk   iads1   fads refk(mD) 

     0.125     0.0  1000.  1   0.    100.       0       0     0   0. 

CC   

CC PARAMETERS FOR CATION EXCHANGE OF CLAY AND SURFACTANT MW (needed for cation 

exch) 

*----QV      XKC   XKS  EQW 

    0.0     0.0   0.0  429. 

CC 

CC*---  KGOPT   

      4 

CC 

CC 

* -- IRKPPG,RKCUTPPG,   DPPG,        APPGS,   PPGNS,  DCRICWS   TOLPPGIN 

      2     1000000000    0.0003281     8      -0.3     0.5       50 

CC 

CC 

* -- APPGFR,    PPGNFR 

       100      -0.3 

CC 

CC 

*---  ADPPGA,  ADPPGB  RESRKFAC,TOLPPGRK 

      0        0       0.1      1e-6 

CC 

CC 

* ---- APPG1,    APPG2,  GAMCPG, GAMHFPG, POWNPG 

      1.5e-6     1e-6    0.0     0.0      1.8 

CC 

CC********************************************************************** 

CC                                                                     * 

CC  WELL DATA                                                          * 

CC                                                                   * 

CC********************************************************************** 

CC 

CC    

CC TOTAL NUMBER OF WELLS, WELL RADIUS FLAG, FLAG FOR TIME OR COURANT NO. 

*----NWELL   IRO   ITIME  NWELR 

      17      2      1     17 

CC  

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     1   16     13     1     0.4     0      3     1        19       0 
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CC  

CC WELL NAME 

*---- WELNAM 

S1_I1 

CC Maximum allowable rate of 2500b/d= 44916.8 cubic feet per day 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX  QTMIN   QTMAX 

     0       300.0    1300.0  0.0     84219 

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

      2   30   13  1        0.4    0      3      1       19        0 

CC 

CC WELL NAME 

*---- WELNAM 

S1_I2 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX  QTMIN   QTMAX 

     0       300.0    1300.0  0.0     84219 

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     3   36   25  1       0.4    0      3      1       19        0 

CC 

CC WELL NAME 

*---- WELNAM 

S1_I3 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX  QTMIN   QTMAX 

     0       300.0    1300.0  0.0     84219    

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     4   30   37    1      0.4    0      3      1       19        0 

CC 

CC WELL NAME 

*---- WELNAM 

S1_I4 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX  QTMIN   QTMAX 

     0       300.0    1300.0  0.0     84219    

CC  

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     5   16    37     1     0.4    0      3      1      19        0 

CC 

CC WELL NAME 

*---- WELNAM 

S1_I5 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX  QTMIN   QTMAX 

     0       300.0    1300.0  0.0     84219 

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     6   10   25    1     0.4     0      3      1       19         0 
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CC 

CC WELL NAME 

*---- WELNAM 

S1_I6 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX  QTMIN   QTMAX 

     0       300.0    1300.0  0.0     84219 

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

      7   10     5     1     0.4     0      3      1       19         0 

CC 

CC WELL NAME 

*---- WELNAM 

S1_I7 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX  QTMIN   QTMAX 

     0       300.0    1300.0  0.0     84219 

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     8   36    5     1     0.4       0      3      1       19      0 

CC 

CC WELL NAME 

*---- WELNAM 

S1_I8 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX  QTMIN   QTMAX 

     0       300.0    1300.0  0.0     84219 

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     9   36  44     1     0.4     0      3      1       19            0 

CC 

CC WELL NAME 

*---- WELNAM 

S1_I9 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX  QTMIN   QTMAX 

     0       300.0    1300.0  0.0     84219 

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     10   10    44     1     0.4     0      3      1       19     0 

CC 

CC WELL NAME 

*---- WELNAM 

S1_I10 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX  QTMIN   QTMAX 

     0       300.0    1300.0  0.0     84219 

CC  

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     11  22   25    2      0.4    0      3      1      19     0 
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CC 

CC WELL NAME 

*---- WELNAM 

S1_P1 

CC   DW, max 10000 bbls/d 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX  QTMIN   QTMAX 

     0       300.0      1300.   0.0     -56146.0  

CC  

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     12  22   5     2       0.4    0      3      1       19      0 

CC 

CC WELL NAME 

*---- WELNAM 

S1_P2 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX  QTMIN   QTMAX 

     0       300.0      1400.   0.0    -28073  

CC  

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     13  40   13     2       0.4    0      3      1       19     0 

CC 

CC WELL NAME 

*---- WELNAM 

S1_P3 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX  QTMIN   QTMAX 

     0       300.0      1400.   0.0     -28073  

CC  

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     14  40   37    2      0.4    0      3      1       19      0 

CC 

CC WELL NAME 

*---- WELNAM 

S1_P4 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX  QTMIN   QTMAX 

     0       300.0      1400.   0.0     -28073  

CC  

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     15  22   44    2      0.4    0      3      1       19        0 

CC 

CC WELL NAME 

*---- WELNAM 

S1_P5 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX  QTMIN   QTMAX 

     0       300.0      1400.   0.0    -28073 

CC  

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     16  4    37    2       0.4    0      3      1       19      0 
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CC 

CC WELL NAME 

*---- WELNAM 

S1_P6 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX  QTMIN   QTMAX 

     0       300.0      1400.   0.0     -28073  

CC  

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     17   4   13     2       0.4    0      3      1      19         0 

CC 

CC WELL NAME 

*---- WELNAM 

S1_P7 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX  QTMIN   QTMAX 

     0       300.0      1400.   0.0     -28073 

CC 

CC 

*----ID   QI    C 

     1  44916.8     1.    0.   0.    0.    0.05130  0.     2*0   4*0  2*0  

     1    0.        0.    0.   0.    0.    0.       0.     6*0   2*0 

     1    0.        0.    0.   0.    0.    0.       0.     6*0   2*0 

CC 

CC 

*----ID   QI    C 

     2   44916.8   1.    0.   0.    0.    0.05130   0.     2*0   4*0  2*0  

     2    0.        0.    0.   0.    0.    0.        0.     6*0   2*0 

     2    0.        0.    0.   0.    0.    0.        0.     6*0   2*0 

CC 

CC    

*----ID   QI    C 

     3  44916.8     1.    0.   0.    0.    0.05130 0.     2*0   4*0 2*0   

     3    0.        0.    0.   0.    0.    0.      0.     6*0   2*0 

     3    0.        0.    0.   0.    0.    0.      0.     6*0   2*0 

CC    

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     4  44916.8     1.    0.   0.    0.    0.05130 0.     2*0   4*0  2*0  

     4    0.        0.    0.   0.    0.    0.      0.     6*0   2*0 

     4    0.        0.    0.   0.    0.    0.      0.     6*0   2*0 

CC   

CC  

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     5  44916.8     1.    0.   0.    0.    0.05130 0.     2*0   4*0  2*0  

     5    0.        0.    0.   0.    0.    0.      0.     6*0   2*0 

     5    0.        0.    0.   0.    0.    0.      0.     6*0   2*0 

CC    

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     6  44916.8     1.    0.   0.    0.    0.05130 0.     2*0  4*0 2*0   

     6    0.        0.    0.   0.    0.    0.      0.     6*0   2*0 

     6    0.        0.    0.   0.    0.    0.      0.     6*0   2*0 

CC    

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     7  22458.4     1.    0.   0.    0.    0.05130 0.     2*0  4*0 2*0   
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     7    0.        0.    0.   0.    0.    0.      0.     6*0   2*0 

     7    0.        0.    0.   0.    0.    0.      0.     6*0   2*0 

CC   

CC  

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     8  22458.4     1.    0.   0.    0.    0.05130 0.     2*0  4*0 2*0   

     8    0.        0.    0.   0.    0.    0.      0.     6*0   2*0 

     8    0.        0.    0.   0.    0.    0.      0.     6*0   2*0 

CC    

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     9  22458.4     1.    0.   0.    0.    0.05130 0.     2*0  4*0  2*0  

     9    0.        0.    0.   0.    0.    0.      0.     6*0   2*0 

     9    0.        0.    0.   0.    0.    0.      0.     6*0   2*0 

CC   

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     10  22458.4     1.    0.   0.    0.    0.05130 0.     2*0  4*0  2*0  

     10    0.        0.    0.   0.    0.    0.      0.     6*0   2*0 

     10    0.        0.    0.   0.    0.    0.      0.     6*0   2*0 

CC 

CC   Pressure constrained producer 

*----WELL ID   PWF 

     11         300.0 

CC 

CC   Pressure constrained producer 

*----WELL ID   PWF 

     12         300.0 

CC 

CC   Pressure constrained producer 

*----WELL ID   PWF 

     13         300.0 

CC 

CC   Pressure constrained producer 

*----WELL ID   PWF 

     14         300.0 

CC 

CC   Pressure constrained producer 

*----WELL ID   PWF 

     15         300.0 

CC 

CC   Pressure constrained producer 

*----WELL ID   PWF 

     16         300.0 

CC 

CC   Pressure constrained producer 

*----WELL ID   PWF 

     17         300.0 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR WRITING TO OUTPUT FILES 

(3.7.8) 

*----TINJ      CUMPR1  CUMHI2  WRHPV(HIST) WRPRF(PLOT) RSTC 

    5         4.9     4.9     0.2          0.5        4.9  

CC  

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. time steps 

*----DT             DCLIM     CNMAX   CNMIN     

     0.00001        0.001     0.2     0.01 

CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS 

*---- IRO ITSTEP IFLAG 
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       2   1     10*1  7*2 

CC 

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0 

CC 

CC NUMBER OF WELLS WITH RATE CHANGES, ID - SP FLOOD INTO 10 INJECTORS 

*----NWEL2   ID 

     10       1 2 3 4 5 6 7 8 9 10 

CC    

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     1    14036.5     1.    0.   0.    0.    0.7116  0  0  6*0  2000 

     1    0.        0.    0.   0.    0.    0.      0.         6*0   2*0 

     1    0.        0.    0.   0.    0.    0.      0.         6*0   2*0 

CC    

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     2    14036.5     1.    0.   0.    0.    0.7116  0  0  6*0  2000 

     2    0.        0.    0.   0.    0.    0.      0.         6*0   2*0 

     2    0.        0.    0.   0.    0.    0.      0.         6*0   2*0 

CC   

CC  

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     3    14036.5     1.    0.   0.    0.    0.7116  0  0  6*0  2000 

     3    0.        0.    0.   0.    0.    0.      0.         6*0   2*0 

     3    0.        0.    0.   0.    0.    0.      0.         6*0   2*0 

CC    

CC  

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     4    14036.5     1.    0.   0.    0.    0.7116  0  0  6*0  2000 

     4    0.        0.     0.   0.    0.    0.      0.         6*0   2*0 

     4    0.        0.     0.   0.    0.    0.      0.         6*0   2*0 

CC    

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     5    14036.5     1.    0.   0.    0.    0.7116  0  0  6*0  2000 

     5    0.        0.    0.   0.    0.    0.      0.         6*0  2*0  

     5    0.        0.    0.   0.    0.    0.      0.         6*0  2*0 

CC   

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     6    14036.5     1.    0.   0.    0.    0.7116  0  0  6*0  2000 

     6    0.        0.    0.   0.    0.    0.      0.         6*0  2*0  

     6    0.        0.    0.   0.    0.    0.      0.         6*0  2*0 

CC    

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     7    7018.25   1.    0.   0.    0.    0.7116  0   0  6*0  2000 

     7    0.        0.    0.   0.    0.    0.      0.         6*0  2*0  

     7    0.        0.    0.   0.    0.    0.      0.         6*0  2*0 

CC    

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     8   7018.25     1.    0.   0.    0.    0.7116  0  0  6*0  2000 

     8    0.        0.    0.   0.    0.    0.      0.         6*0  2*0  

     8    0.        0.    0.   0.    0.    0.      0.         6*0  2*0 

CC    

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   
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     9   7018.25     1.    0.   0.    0.    0.7116  0  0  6*0  2000 

     9    0.        0.    0.   0.    0.    0.      0.         6*0  2*0  

     9    0.        0.    0.   0.    0.    0.      0.         6*0  2*0 

CC    

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     10  7018.25     1.    0.   0.    0.    0.7116  0  0  6*0  2000 

     10    0.        0.    0.   0.    0.    0.      0.         6*0  2*0  

     10    0.        0.    0.   0.    0.    0.      0.         6*0  2*0 

CC   

CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR WRITING TO OUTPUT FILES 

(3.7.8) 

*----TINJ    CUMPR1  CUMHI2 WRHPV(HIST) WRPRF(PLOT) RSTC 

     5.3     0.01    0.1   0.01        0.1        0.05  

CC CDG Inj. 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. time steps 

*----DT             DCLIM     CNMAX   CNMIN     

     0.00001       0.005     0.05   0.001 

CC   

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS 

*---- IRO ITIME IFLAG   

       2   1     10*1  7*2       

CC 

CC NUMBER OF WELLS changes IN LOCATION OR SKIN OR PWF 

*----NWEL1 

      0 

CC 

CC NUMBER OF WELLS WITH RATE changes, id 

*----NWEL2   Id 

     10      1 2 3 4 5 6 7 8 9 10 

CC  

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     1  14036.5     1.    0.   0.    0.   0.0513   0.       0     7*0  

     1    0.        0.    0.   0.    0.    0.      0.       6*0   2*0 

     1    0.        0.    0.   0.    0.    0.      0.       6*0   2*0 

CC   

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     2  14036.5     1.    0.   0.    0.0  0.0513   0.        0     7*0 

     2    0.        0.    0.   0.    0.    0.      0.        6*0   2*0 

     2    0.        0.    0.   0.    0.    0.      0.        6*0   2*0 

CC   

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     3  14036.5     1.    0.   0.    0.   0.0513   0.        0    7*0 

     3    0.        0.    0.   0.    0.    0.      0.        6*0   2*0 

     3    0.        0.    0.   0.    0.    0.      0.        6*0   2*0 

CC    

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     4  14036.5     1.    0.   0.    0.   0.0513   0.        0     7*0 

     4    0.        0.    0.   0.    0.    0.      0.        6*0   2*0 

     4    0.        0.    0.   0.    0.    0.      0.        6*0   2*0 

CC   

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     5  14036.5     1.    0.   0.    0.   0.0513   0.        0    7*0 

     5    0.        0.    0.   0.    0.    0.      0.        6*0  2*0  

     5    0.        0.    0.   0.    0.    0.      0.        6*0  2*0 
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CC    

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     6  14036.5     1.    0.   0.    0.0  0.0513   0.        0    7*0 

     6    0.        0.    0.   0.    0.    0.      0.        6*0  2*0  

     6    0.        0.    0.   0.    0.    0.      0.        6*0  2*0 

CC    

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     7    7018.25        1.    0.   0.    0.0  0.0513   0.        0      7*0  

     7    0.             0.    0.   0.    0.    0.      0.        6*0    2*0 

     7    0.             0.    0.   0.    0.    0.      0.        6*0    2*0 

CC    

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     8    7018.25        1.    0.   0.    0.0  0.0513   0.        0      7*0  

     8    0.             0.    0.   0.    0.    0.      0.        6*0    2*0 

     8    0.             0.    0.   0.    0.    0.      0.        6*0    2*0 

CC    

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     9    7018.25        1.    0.   0.    0.0  0.0513   0.        0      7*0  

     9    0.             0.    0.   0.    0.    0.      0.        6*0    2*0 

     9    0.             0.    0.   0.    0.    0.      0.        6*0    2*0 

CC    

CC id,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE(L=1,3) 

*----id  QI(M,L)  C(M,KC,L) (need to keep 2nd and 3rd lines for oil and ME)   

     10    7018.25        1.    0.   0.    0.0  0.0513   0.        0    7*0  

     10    0.             0.    0.   0.    0.    0.      0.        6*0  2*0  

     10    0.             0.    0.   0.    0.    0.      0.        6*0  2*0 

CC post flush formation water injection 

CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR WRITING TO OUTPUT FILES 

(3.7.8) 

*----TINJ      CUMPR1  CUMHI2 WRHPV(HIST) WRPRF(PLOT) RSTC 

     7.3       0.5    0.5   0.01        0.3        0.3  

CC  

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. time steps 

*----DT             DCLIM     CNMAX   CNMIN     

     0.000001       0.001     0.05   0.001 
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C-2.  Input data for Field case II, PPG concentration optimization 

(PPG concentration = 2000 PPM) 

 

CC******************************************************************* 

CC                                                                  * 

CC    BRIEF DESCRIPTION OF DATA SET                                 *  

CC                                                                  * 

CC******************************************************************* 

CC                                                                  * 

CC                                                                  * 

CC                                                                  * 

CC  LENGTH (FT) : 623.2             PROCESS :  PROFILE CONTROL      *  

CC  THICKNESS (FT) : 40             INJ. PRESSURE (PSI) :  -        * 

CC  WIDTH (FT) :  623.2             COORDINATES : CARTESIAN         * 

CC  POROSITY :  0.3                                                 * 

CC  GRIDBLOCKS : 19 x 19 x 3 (1083)                            * 
CC  DATE :                                                          * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR DESCRIPTION                                         * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

*----RUNNO 

Field2 

CC   

CC 

*----HEADER 

Karamay field (modified from ASP pilot, M. Delshad, 1998) PPG concentration 

optimization 

CC 

CC SIMULATION FLAGS 

*---- IMODE IMES IDISPC IREACT  ICOORD ITREAC ITC  IENG 

        1    2    3       1      1     0      0    0 

CC 

CC NUMBER OF GRIDBLOCKS AND FLAG SPECIFIES CONSTANT OR VARIABLE GRID SIZE 

*----NX    NY    NZ  IDXYZ  IUNIT 

     19    19    3    2       0           

CC 

CC  CONSTANT GRID BLOCK SIZE IN X 

*----DX(I)       

     19*32.8CC 

CC  CONSTANT GRID BLOCK SIZE IN Y 

*----DY  

     19*32.8   

CC 

CC  VARIABLE GRID BLOCK SIZE IN Z 

*----DZ 

     10.  20.  10. 

CC 

CC TOTAL NO. OF COMPONENTS, NO. OF TRACERS, NO. OF GEL COMPONENTS 

*----N   NTW  NG 
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     14   0   6  

CC 

CC 

*---- SPNAME(I),I=1,N 

WATER 

OIL 

none 

none 

SALT 

none 

none 

none 

none 

none 

none 

none 

none 

PPG 

CC 

CC FLAG INDICATING IF THE COMPONENT IS INCLUDED IN CALCULATIONS OR NOT 

*----ICF(KC) FOR KC=1,N 

     1  1  0  0  1 0  0 0 0 0 0 0 0 1 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    OUTPUT OPTIONS                                                * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

CC  FLAG FOR PV OR DAYS FOR OUTPUT AND STOP THE RUN (0: DAYS, 1: PV) 

*----ICUMTM  ISTOP   

       0     0  

CC 

CC FLAG INDICATING IF THE PROFILE OF KCTH COMPONENT SHOULD BE WRITTEN 

*----IPRFLG(KC),KC=1,N 

     1  1  0  0  0  0 0 0 0 0 0 0 0  1 

CC 

CC FLAG FOR PRES,SAT.,TOTAL CONC.,TRACER CONC.,CAP.,GEL, ALKALINE PROFILES 

*----IPPRES IPSAT IPCTOT IPGEL  ITEMP    

      1      1      1      1    0   

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES  

*----ICKL IVIS IPER ICNM  ICSE 

      0     1    0    0    0     

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES TO PROF 

*----IADS  IVEL IRKF IPHSE  

      0     0    1    0   

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR PROPERTIES                                          * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

CC MAX. SIMULATION TIME (DAYS)  

*---- TMAX 

      1000  
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CC 

CC ROCK COMPRESSIBILITY (1/PSI), STAND. PRESSURE(PSIA) 

*----COMPR   PSTAND 

      0.      1740.45 

CC 

CC FLAGS INDICATING CONSTANT OR VARIABLE POROSITY, X,Y,AND Z PERMEABILITY 

*----IPOR1 IPERMX IPERMY IPERMZ  IMOD  ITRNZ  INTG 

       0      2     3      3      0     0      0 

CC 

CC VARIABLE POROSITY 

*----PORC1 

     0.3 

CC 

CC VARIABLE X-PERMEABILITY (MILIDARCY)  

*----PERMX(1) 

 1648.1 1636.2 1634.9 1653.1 1659.0 1711.9 1817.3 1887.7 1941.6 1990.2 

 2017.1 2024.7 2054.8 2116.8 2200.1 2286.3 2317.7 2311.8 2283.6 

 1633.7 1614.1 1606.2 1623.7 1643.8 1704.1 1788.0 1913.3 1987.4 2024.0 

 2024.9 2017.7 2040.8 2113.5 2227.4 2338.4 2377.4 2357.3 2310.2 

 1629.7 1605.2 1593.0 1610.9 1664.9 1694.4 1776.4 1873.9 1990.9 2045.0 

 2011.4 1957.0 2008.3 2078.4 2228.9 2360.0 2410.0 2376.4 2314.0 

 1640.9 1618.3 1608.9 1628.4 1676.5 1682.3 1739.5 1816.9 1925.0 1988.3 

 1961.2 1900.5 1878.7 1944.8 2132.4 2286.4 2357.1 2333.3 2278.2 

 1666.8 1651.5 1648.4 1665.1 1656.9 1676.4 1688.0 1726.0 1786.6 1847.5 

 1842.8 1801.1 1772.6 1799.9 1901.4 2100.1 2204.1 2224.4 2204.5 

 1701.2 1692.2 1690.2 1653.6 1659.9 1667.0 1669.8 1666.4 1670.3 1677.8 

 1713.9 1700.1 1686.2 1669.6 1732.7 1870.0 2041.6 2103.8 2133.3 

 1702.8 1659.0 1646.0 1663.9 1654.4 1662.6 1673.0 1649.2 1585.6 1542.6 

 1592.2 1665.5 1651.9 1622.0 1676.7 1803.3 1887.0 2040.2 2075.4 

 1742.7 1738.9 1673.5 1644.4 1648.2 1644.6 1643.7 1589.7 1457.9 1413.8 

 1448.7 1600.3 1651.2 1657.2 1708.2 1802.5 1903.4 2022.5 2052.0 

 1782.7 1784.3 1723.8 1670.8 1620.7 1608.3 1566.3 1459.5 1310.4 1201.2 

 1305.4 1482.7 1645.5 1711.4 1770.1 1866.9 1954.2 2040.4 2053.4 

 1818.0 1824.9 1785.2 1717.3 1644.1 1559.9 1480.1 1415.1 1212.0 1085.0 

 1211.3 1444.8 1600.3 1722.8 1851.2 1941.0 2017.0 2061.2 2061.8 

 1831.8 1838.0 1810.0 1734.8 1653.0 1582.5 1507.2 1423.6 1280.7 1189.9 

 1301.2 1500.1 1690.2 1823.3 1893.6 1960.0 2034.4 2067.0 2054.6 

 1827.7 1826.8 1788.8 1722.1 1648.4 1590.0 1570.1 1519.4 1435.9 1390.1 

 1495.4 1670.5 1857.0 1956.3 1987.4 1988.8 2019.7 2054.9 2045.3 

 1818.5 1813.9 1787.9 1704.4 1640.3 1588.7 1577.0 1570.5 1556.5 1541.4 

 1658.5 1835.1 2030.4 2129.9 2094.4 2021.0 2038.8 2030.0 2020.6 

 1821.5 1816.5 1796.5 1714.2 1646.1 1586.2 1564.0 1581.7 1596.0 1620.6 

 1733.5 1919.8 2119.4 2216.0 2147.2 2032.6 2017.0 1994.7 1985.1 

 1842.2 1849.8 1839.6 1789.0 1680.4 1615.7 1597.4 1608.7 1626.7 1675.4 

 1759.9 1920.8 2066.4 2132.5 2090.3 1987.0 1954.4 1938.0 1937.7 

 1869.1 1896.4 1907.9 1855.6 1745.9 1656.3 1647.5 1641.9 1653.8 1691.0 

 1749.8 1850.5 1942.3 1960.2 1920.5 1845.5 1825.2 1860.6 1882.2 

 1883.6 1919.5 1943.0 1895.7 1767.8 1671.6 1649.0 1653.4 1666.6 1696.6 

 1730.8 1791.1 1877.4 1864.6 1770.5 1718.2 1730.9 1771.5 1831.8 

 1877.9 1904.1 1914.9 1872.4 1772.7 1689.5 1667.2 1676.9 1704.9 1744.1 

 1772.1 1807.1 1807.5 1763.6 1707.2 1672.0 1699.5 1752.3 1801.4 

 1859.5 1871.3 1867.8 1833.0 1771.1 1715.2 1702.6 1704.9 1721.3 1748.1 

 1757.9 1778.9 1775.3 1744.9 1717.9 1694.9 1711.4 1749.6 1790.2 

 2024.1 2034.6 2034.8 2014.7 1960.2 1898.9 1814.4 1767.9 1740.6 1750.5 

 1739.7 1763.2 1806.6 1870.5 1944.6 2017.3 2043.8 2041.4 2023.1 

 2038.6 2057.3 2065.2 2044.8 1980.1 1901.5 1829.8 1755.4 1728.1 1727.0 

 1726.6 1748.3 1794.3 1870.2 1968.2 2058.6 2088.9 2075.3 2043.3 

 2043.1 2066.7 2080.0 2057.8 1989.4 1892.0 1819.9 1755.0 1725.5 1717.0 

 1723.7 1743.9 1774.0 1847.8 1973.8 2075.8 2113.0 2089.4 2047.4 

 2033.4 2052.4 2060.5 2031.5 1956.8 1861.7 1805.6 1755.7 1731.7 1728.3 
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 1725.8 1733.2 1748.0 1796.7 1905.7 2023.0 2075.6 2060.4 2025.5 

 2013.7 2018.8 2010.5 1970.2 1895.2 1827.2 1767.3 1753.4 1741.5 1745.1 

 1725.0 1709.9 1688.9 1709.2 1778.5 1891.1 1970.1 1989.3 1981.6 

 1997.1 1987.9 1963.5 1911.3 1841.3 1775.5 1743.9 1742.7 1747.1 1719.8 

 1721.4 1678.4 1629.4 1594.7 1649.1 1767.0 1863.5 1917.4 1954.5 

 2002.1 1992.5 1960.1 1890.3 1819.2 1752.8 1723.0 1743.8 1759.3 1742.4 

 1732.6 1695.0 1597.0 1538.0 1600.2 1725.9 1828.1 1901.9 1936.8 

 2018.3 2005.3 1965.4 1911.0 1835.4 1777.5 1749.1 1767.9 1779.9 1799.1 

 1772.5 1733.0 1646.9 1600.8 1650.4 1759.8 1860.1 1922.4 1951.5 

 2049.0 2045.8 2008.4 1949.6 1883.0 1826.9 1799.2 1804.7 1844.6 1861.1 

 1839.8 1784.1 1739.8 1718.4 1758.7 1845.0 1929.3 1978.7 1989.0 

 2086.9 2091.7 2065.8 2008.8 1959.7 1883.0 1865.5 1853.8 1875.7 1891.0 

 1869.1 1828.5 1803.4 1803.4 1855.8 1925.9 1999.9 2034.1 2025.9 

 2097.1 2105.0 2087.5 2035.8 1977.0 1933.2 1909.3 1872.3 1878.8 1880.4 

 1877.3 1854.8 1852.5 1908.6 1936.0 1984.1 2035.9 2055.0 2046.8 

 2094.4 2098.3 2079.3 2035.5 1978.4 1928.8 1904.9 1904.4 1880.0 1875.4 

 1884.5 1917.9 1929.5 1943.5 1966.3 1997.4 2031.3 2047.9 2046.3 

 2121.0 2115.3 2083.6 2035.3 1970.3 1896.7 1859.9 1882.4 1915.2 1885.2 

 1930.5 1953.2 1958.4 1956.2 1972.6 2003.4 2037.2 2048.9 2052.7 

 2151.7 2150.2 2135.6 2079.0 1984.1 1879.0 1816.0 1868.4 1920.8 1966.8 

 1986.1 1972.1 1963.3 1951.0 1973.3 2022.8 2066.1 2078.6 2080.5 

 2195.6 2209.4 2204.0 2155.0 2059.5 1968.2 1913.3 1946.4 1977.4 2019.2 

 2013.1 2015.5 1998.6 1987.5 2032.2 2111.1 2138.4 2142.0 2131.3 

 2236.5 2269.4 2283.9 2237.8 2152.0 2114.5 2126.7 2092.0 2069.4 2061.3 

 2047.4 2056.5 2067.1 2097.7 2182.7 2256.3 2270.4 2231.3 2196.0 

 2257.2 2295.8 2319.0 2280.2 2197.7 2179.7 2202.0 2163.6 2119.6 2098.0 

 2082.9 2105.9 2169.3 2259.8 2357.4 2410.2 2381.5 2325.4 2255.7 

 2254.7 2282.8 2294.8 2264.6 2207.2 2183.5 2183.4 2164.6 2149.0 2138.7 

 2132.0 2167.6 2230.4 2323.1 2419.8 2457.0 2428.2 2372.7 2320.7 

 2239.4 2254.4 2256.0 2235.1 2202.0 2180.5 2165.3 2150.4 2156.1 2154.6 

 2152.9 2192.7 2254.9 2333.2 2406.3 2432.2 2414.6 2373.7 2330.2 

 1557.9 1580.9 1584.6 1555.3 1489.2 1405.4 1296.3 1239.5 1209.1 1183.9 

 1140.6 1109.6 1071.3 1037.7 1015.4 1013.6 1009.2 1010.8 1016.6 

 1582.4 1620.1 1635.5 1603.3 1516.7 1407.6 1314.5 1225.6 1199.6 1189.7 

 1164.2 1121.1 1069.5 1028.7 1006.3 1003.9 1000.3 1003.3 1011.4 

 1588.0 1636.3 1661.0 1624.1 1517.6 1390.3 1296.1 1217.3 1196.6 1195.0 

 1176.5 1126.3 1055.4 1013.0 1005.9  999.4  997.0 1000.4 1010.2 

 1563.3 1607.2 1625.6 1578.6 1462.8 1339.9 1265.1 1205.6 1192.2 1185.4 

 1154.5 1098.6 1037.9  993.3  989.9  996.3  998.9 1003.7 1015.3 

 1509.3 1533.0 1529.2 1470.1 1355.8 1260.4 1193.1 1180.9 1177.3 1160.4 

 1109.2 1048.4  980.9  963.2  966.6  979.7  999.3 1013.1 1029.2 

 1442.9 1445.2 1423.1 1355.2 1265.5 1182.3 1142.3 1149.0 1160.6 1123.0 

 1076.5 1000.2  925.4  881.6  908.7  969.2 1000.3 1032.0 1043.3 

 1356.6 1380.4 1355.5 1295.0 1205.8 1143.4 1116.0 1133.0 1147.8 1131.3 

 1079.7 1002.5  890.9  834.0  880.7  967.1 1028.2 1059.2 1087.6 

 1313.4 1303.5 1282.3 1247.0 1198.7 1156.5 1133.7 1147.7 1152.9 1156.1 

 1116.5 1044.7  941.0  890.4  926.1 1003.3 1086.3 1130.7 1154.1 

 1296.4 1290.6 1273.9 1242.1 1203.6 1176.3 1157.4 1160.4 1203.6 1232.2 

 1194.4 1108.7 1032.8  997.5 1013.5 1092.8 1180.7 1229.4 1234.0 

 1298.0 1299.8 1285.1 1248.5 1208.2 1147.7 1152.7 1168.2 1234.3 1278.0 

 1232.7 1148.6 1082.0 1069.3 1096.2 1177.2 1273.9 1319.5 1301.8 

 1295.7 1308.0 1285.9 1227.3 1167.7 1131.0 1127.3 1135.5 1197.5 1232.1 

 1202.7 1139.7 1096.0 1114.1 1147.1 1225.7 1318.3 1355.0 1333.5 

 1284.2 1290.0 1264.8 1203.6 1131.1 1071.1 1048.2 1079.9 1117.5 1144.5 

 1143.0 1121.3 1087.7 1083.4 1125.1 1201.5 1288.2 1327.5 1316.0 

 1265.0 1259.5 1224.5 1169.9 1085.8  990.2  941.5  987.6 1065.1 1078.4 

 1110.1 1090.2 1056.9 1037.3 1073.4 1151.0 1226.3 1270.5 1277.3 

 1250.5 1241.4 1215.0 1164.3 1073.2  950.4  874.0  943.9 1026.4 1075.7 

 1092.0 1076.4 1037.1 1010.0 1046.2 1125.5 1188.4 1229.4 1245.4 

 1255.0 1255.8 1243.2 1196.9 1120.2 1029.1  973.6 1012.4 1053.4 1096.7 
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 1094.2 1096.6 1065.7 1048.1 1089.9 1166.2 1198.9 1224.5 1235.4 

 1269.8 1286.2 1293.0 1256.7 1186.0 1160.4 1169.1 1139.8 1124.0 1122.5 

 1111.5 1110.2 1121.3 1135.6 1193.4 1245.3 1265.6 1249.6 1245.1 

 1278.9 1301.8 1317.0 1288.2 1224.3 1211.8 1232.0 1201.1 1164.8 1148.2 

 1133.4 1142.6 1157.0 1233.4 1290.8 1321.7 1313.8 1296.1 1262.5 

 1275.7 1292.6 1299.9 1276.9 1232.9 1215.1 1213.7 1196.2 1173.9 1157.2 

 1140.8 1159.5 1198.3 1258.2 1326.4 1346.0 1332.6 1309.7 1291.8 

 1264.6 1272.8 1272.3 1255.6 1229.7 1212.8 1195.0 1182.0 1176.9 1168.3 

 1155.5 1177.1 1215.3 1265.3 1320.5 1333.9 1326.4 1309.8 1294.3 

CC 

CC VARIABLE Y-PERMEABILITY (MILIDARCY) FOR LAYER K = 1,NZ 

*----FACTY 

     1.0 

CC 

CC VARIABLE Z-PERMEABILITY 

*----FACTZ 

     0.1 

CC 

CC FLAG FOR CONSTANT OR VARIABLE DEPTH, PRESSURE, WATER SATURATION 

*----IDEPTH  IPRESS  ISWI  

      0        2       2  

CC 

CC VARIABLE DEPTH (FT) 

*----D111 

     4150         

CC 

CC VARIABLE PRESSURE (PSIA) BLOCK I = 1,NX*NY*NZ 

*----P(I,1) I=1,NX*NY*NZ 

  1773.4  1772.1  1771.0  1770.4  1770.2  1770.0  1769.8  1769.4  1769.1  

1768.9 

  1769.5  1770.2  1770.8  1771.2  1771.1  1770.8  1770.6  1770.8  1771.0 

  1772.5  1771.0  1769.6  1769.6  1769.7  1769.7  1769.6  1769.2  1768.5  

1767.8 

  1768.9  1769.8  1770.5  1770.8  1770.8  1770.4  1769.9  1770.4  1770.8 

  1771.7  1769.9  1766.8  1768.9  1769.5  1769.7  1769.5  1769.0  1768.0  

1765.1 

  1768.4  1769.8  1770.7  1771.0  1770.8  1770.2  1768.3  1770.3  1770.8 

  1771.4  1770.2  1769.2  1769.3  1769.5  1769.7  1769.7  1769.4  1768.8  

1768.1 

  1769.3  1770.4  1771.1  1771.4  1771.4  1770.8  1770.4  1770.9  1771.2 

  1771.4  1770.6  1770.1  1769.8  1769.9  1770.1  1770.2  1770.0  1769.7  

1769.6 

  1770.2  1770.9  1771.4  1771.8  1772.0  1771.6  1771.3  1771.4  1771.6 

  1771.3  1770.7  1770.4  1770.2  1770.3  1770.5  1770.5  1770.0  1769.6  

1769.6 

  1770.0  1770.6  1771.3  1772.0  1772.2  1772.2  1771.9  1771.9  1772.0 

  1771.2  1770.7  1770.4  1770.4  1770.5  1770.7  1771.0  1769.3  1769.0  

1768.9 

  1769.3  1770.0  1770.8  1772.4  1772.4  1772.5  1772.2  1771.9  1771.9 

  1770.9  1770.5  1770.2  1770.3  1770.4  1770.4  1769.9  1768.9  1768.5  

1768.3 

  1768.9  1769.6  1770.4  1771.6  1772.1  1772.3  1771.9  1771.7  1771.6 

  1770.4  1769.9  1769.8  1770.0  1770.1  1770.3  1769.5  1768.4  1767.8  

1767.2 

  1768.1  1769.1  1769.9  1771.2  1771.9  1772.0  1771.5  1771.1  1771.1 

  1769.6  1768.9  1769.2  1769.7  1770.0  1770.1  1769.4  1768.1  1767.0  

1764.1 

  1767.5  1768.8  1769.6  1771.0  1771.8  1771.5  1770.9  1770.2  1770.4 

  1768.8  1766.2  1768.5  1769.5  1769.9  1770.1  1769.4  1768.3  1767.8  

1767.2 
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  1768.1  1769.0  1769.6  1770.8  1771.5  1771.2  1770.3  1768.2  1769.7 

  1769.6  1768.9  1769.2  1769.7  1770.1  1770.1  1769.6  1768.8  1768.5  

1768.4 

  1768.8  1769.3  1769.8  1770.7  1771.2  1771.3  1770.6  1770.0  1770.1 

  1770.4  1770.0  1769.8  1770.1  1770.3  1770.2  1770.0  1769.3  1769.0  

1769.0 

  1769.3  1769.7  1770.1  1770.9  1771.2  1771.4  1770.9  1770.6  1770.5 

  1771.0  1770.6  1770.3  1770.3  1770.4  1770.5  1770.9  1770.0  1769.9  

1769.9 

  1770.1  1770.2  1770.5  1771.2  1771.2  1771.1  1770.9  1770.7  1770.6 

  1771.4  1770.9  1770.6  1770.5  1770.5  1770.5  1770.5  1770.3  1770.3  

1770.5 

  1770.6  1770.4  1770.5  1770.7  1770.7  1770.8  1770.6  1770.5  1770.6 

  1771.7  1771.0  1770.6  1770.5  1770.6  1770.6  1770.5  1770.4  1770.3  

1770.7 

  1771.0  1770.5  1770.5  1770.4  1770.2  1770.1  1770.2  1770.3  1770.4 

  1772.1  1771.2  1770.2  1770.6  1770.7  1770.7  1770.5  1770.1  1768.8  

1770.3 

  1770.8  1770.6  1770.4  1770.1  1769.6  1768.9  1769.6  1770.0  1770.3 

  1772.7  1771.9  1771.2  1771.0  1770.9  1770.8  1770.6  1770.4  1770.1  

1770.4 

  1770.7  1770.7  1770.5  1770.1  1769.4  1767.8  1769.2  1769.8  1770.2 

  1773.5  1772.5  1771.8  1771.4  1771.2  1771.0  1770.9  1770.7  1770.6  

1770.8 

  1770.9  1771.0  1771.0  1770.4  1769.7  1769.1  1769.4  1769.9  1770.3 

  1778.1  1777.0  1775.9  1775.4  1775.3  1775.2  1775.1  1774.8  1774.4  

1774.3 

  1774.9  1775.5  1776.2  1776.6  1776.6  1776.3  1776.2  1776.3  1776.6 

  1777.2  1775.8  1774.3  1774.4  1774.9  1775.0  1774.9  1774.5  1773.9  

1773.3 

  1774.3  1775.3  1776.0  1776.3  1776.3  1776.1  1775.7  1776.1  1776.4 

  1776.5  1774.6  1771.0  1773.8  1774.7  1775.0  1774.9  1774.4  1773.5  

1770.8 

  1773.9  1775.2  1776.3  1776.5  1776.4  1775.9  1774.5  1776.0  1776.4 

  1776.3  1775.1  1774.1  1774.3  1774.7  1775.1  1775.1  1774.9  1774.3  

1773.6 

  1774.9  1776.0  1776.7  1777.0  1777.0  1776.5  1776.2  1776.6  1776.8 

  1776.4  1775.7  1775.2  1775.0  1775.2  1775.5  1775.7  1775.5  1775.2  

1775.1 

  1775.7  1776.5  1776.9  1777.4  1777.6  1777.2  1777.0  1777.1  1777.2 

  1776.4  1775.9  1775.7  1775.5  1775.7  1776.1  1776.0  1775.5  1775.1  

1775.1 

  1775.5  1776.1  1776.9  1777.7  1777.8  1777.9  1777.5  1777.5  1777.6 

  1776.4  1776.0  1775.8  1775.8  1776.0  1776.2  1776.8  1774.9  1774.6  

1774.4 

  1774.8  1775.5  1776.3  1778.1  1778.0  1778.2  1777.9  1777.6  1777.5 

  1776.1  1775.8  1775.6  1775.7  1775.9  1776.0  1775.5  1774.4  1774.0  

1773.8 

  1774.4  1775.1  1775.9  1777.2  1777.8  1778.1  1777.6  1777.3  1777.2 

  1775.5  1775.2  1775.2  1775.4  1775.6  1775.8  1775.1  1773.9  1773.3  

1772.7 

  1773.6  1774.6  1775.5  1776.8  1777.6  1777.7  1777.2  1776.9  1776.8 

  1774.7  1774.2  1774.5  1775.1  1775.4  1775.6  1775.0  1773.6  1772.5  

1769.8 

  1772.9  1774.3  1775.3  1776.7  1777.5  1777.3  1776.8  1776.1  1776.1 

  1774.0  1771.5  1773.8  1774.9  1775.3  1775.7  1775.0  1773.9  1773.3  

1772.7 

  1773.6  1774.6  1775.3  1776.4  1777.1  1777.1  1776.7  1774.6  1775.6 

  1774.7  1774.1  1774.7  1775.1  1775.7  1775.7  1775.2  1774.4  1774.0  

1774.0 
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  1774.4  1775.0  1775.4  1776.4  1777.0  1777.1  1776.5  1775.9  1775.9 

  1775.7  1775.4  1775.3  1775.6  1775.9  1775.9  1775.6  1774.8  1774.6  

1774.7 

  1775.0  1775.3  1775.7  1776.6  1777.0  1777.2  1776.7  1776.4  1776.3 

  1776.4  1776.1  1775.8  1775.8  1776.0  1776.2  1776.6  1775.6  1775.5  

1775.6 

  1775.7  1775.8  1776.2  1776.8  1776.8  1776.8  1776.6  1776.4  1776.3 

  1776.7  1776.4  1776.1  1776.1  1776.2  1776.2  1776.2  1776.0  1776.0  

1776.2 

  1776.3  1776.1  1776.2  1776.3  1776.3  1776.4  1776.2  1776.2  1776.3 

  1777.2  1776.6  1776.3  1776.2  1776.3  1776.3  1776.2  1776.1  1775.9  

1776.5 

  1776.7  1776.2  1776.1  1776.0  1775.8  1775.7  1775.8  1775.9  1776.0 

  1777.7  1776.9  1776.2  1776.3  1776.4  1776.4  1776.2  1775.8  1774.7  

1776.1 

  1776.5  1776.3  1776.0  1775.7  1775.2  1774.3  1775.2  1775.5  1775.9 

  1778.2  1777.6  1776.9  1776.6  1776.6  1776.4  1776.3  1776.1  1775.8  

1776.1 

  1776.4  1776.4  1776.1  1775.7  1774.9  1773.2  1774.7  1775.3  1775.8 

  1779.0  1778.1  1777.5  1777.0  1776.8  1776.7  1776.5  1776.3  1776.3  

1776.4 

  1776.6  1776.6  1776.4  1775.9  1775.1  1774.5  1774.9  1775.5  1775.7 

  1783.8  1782.4  1781.2  1780.8  1780.7  1780.6  1780.5  1780.2  1779.8  

1779.8 

  1780.4  1781.0  1781.8  1782.4  1782.2  1781.9  1781.9  1782.0  1782.3 

  1782.7  1781.1  1779.4  1779.6  1780.1  1780.3  1780.3  1779.9  1779.3  

1778.7 

  1779.6  1780.7  1781.4  1781.9  1781.8  1781.6  1781.2  1781.6  1782.0 

  1781.9  1779.7  1775.7  1778.9  1779.9  1780.3  1780.2  1779.7  1778.8  

1776.0 

  1779.2  1780.6  1781.7  1782.0  1781.9  1781.4  1780.1  1781.6  1782.0 

  1781.8  1780.3  1779.2  1779.4  1779.9  1780.3  1780.4  1780.2  1779.6  

1778.9 

  1780.2  1781.4  1782.1  1782.6  1782.6  1782.1  1781.7  1782.1  1782.5 

  1781.9  1781.0  1780.5  1780.2  1780.5  1780.8  1781.0  1780.8  1780.6  

1780.5 

  1781.2  1781.9  1782.6  1783.2  1783.2  1782.8  1782.6  1782.7  1782.9 

  1782.0  1781.3  1781.1  1780.8  1781.0  1781.4  1781.1  1780.9  1780.6  

1780.7 

  1781.0  1781.6  1782.4  1783.2  1783.4  1783.5  1783.1  1783.2  1783.4 

  1782.0  1781.4  1781.1  1781.2  1781.2  1781.4  1781.3  1780.1  1779.9  

1779.7 

  1780.2  1780.9  1781.8  1783.4  1783.6  1783.8  1783.5  1783.2  1783.3 

  1781.7  1781.3  1781.1  1781.1  1781.2  1781.4  1780.7  1779.6  1779.3  

1779.2 

  1779.8  1780.5  1781.3  1782.7  1783.4  1783.8  1783.3  1783.0  1782.9 

  1781.2  1780.7  1780.7  1780.9  1781.0  1781.4  1780.5  1779.2  1778.6  

1777.9 

  1779.0  1780.0  1781.0  1782.5  1783.6  1783.4  1783.0  1782.6  1782.5 

  1780.5  1779.8  1780.0  1780.6  1780.9  1781.2  1780.5  1779.0  1777.8  

1775.0 

  1778.2  1779.8  1780.8  1782.3  1783.3  1783.2  1782.7  1781.9  1781.9 

  1779.8  1777.7  1779.5  1780.4  1780.9  1781.4  1780.6  1779.4  1778.7  

1777.9 

  1779.0  1780.0  1780.8  1782.1  1783.1  1783.0  1783.0  1780.9  1781.5 

  1780.5  1779.8  1780.3  1780.7  1781.2  1781.4  1780.8  1779.9  1779.4  

1779.4 

  1779.8  1780.5  1781.0  1782.0  1782.9  1782.9  1782.4  1781.8  1781.8 

  1781.4  1780.9  1780.8  1781.1  1781.4  1781.4  1781.1  1780.3  1780.1  

1780.2 
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  1780.5  1780.9  1781.2  1782.3  1782.7  1783.0  1782.5  1782.1  1782.1 

  1782.1  1781.7  1781.3  1781.3  1781.5  1781.7  1781.8  1781.1  1781.1  

1781.2 

  1781.3  1781.4  1781.8  1782.5  1782.5  1782.6  1782.4  1782.1  1782.1 

  1782.3  1781.8  1781.6  1781.5  1781.8  1781.7  1781.6  1781.6  1781.6  

1781.9 

  1782.1  1781.7  1781.8  1781.9  1782.1  1782.2  1781.9  1781.9  1782.0 

  1782.8  1782.0  1781.6  1781.5  1781.7  1781.9  1781.8  1781.8  1781.7  

1782.3 

  1782.5  1781.8  1781.8  1781.6  1781.6  1781.4  1781.5  1781.6  1781.8 

  1783.3  1782.2  1781.1  1781.6  1781.9  1781.9  1781.7  1781.5  1780.7  

1781.8 

  1782.3  1782.0  1781.7  1781.4  1780.9  1780.4  1781.0  1781.2  1781.6 

  1783.9  1783.0  1782.3  1782.0  1782.1  1781.9  1781.8  1781.7  1781.6  

1781.8 

  1782.1  1782.1  1781.9  1781.4  1780.6  1779.0  1780.5  1781.0  1781.5 

  1785.0  1783.8  1783.1  1782.5  1782.3  1782.3  1782.1  1782.0  1782.0  

1782.2 

  1782.4  1782.4  1782.4  1781.8  1780.9  1780.3  1780.7  1781.3  1781.5 

CC 

CC VARIABLE INITIAL WATER SATURATION BLOCK I = 1,NX*NY*NZ (FRACTION) 

*----S(I,1) I=1,NX*NY*NZ 

  0.3295  0.3271  0.3272  0.3318  0.3403  0.3492  0.3570  0.3625  0.3675  

0.3746 

  0.3838  0.3968  0.4117  0.4242  0.4097  0.3926  0.3798  0.3712  0.3649 

  0.3316  0.3280  0.3242  0.3321  0.3442  0.3560  0.3649  0.3690  0.3704  

0.3743 

  0.3838  0.3950  0.4038  0.4083  0.4013  0.3895  0.3781  0.3719  0.3701 

  0.3343  0.3272  0.4804  0.4974  0.5068  0.5125  0.5158  0.5150  0.5138  

0.5110 

  0.5160  0.5194  0.5302  0.5347  0.5218  0.5171  0.5124  0.5124  0.3757 

  0.3386  0.3333  0.4957  0.5048  0.5117  0.5167  0.5202  0.5194  0.5195  

0.5194 

  0.5229  0.5340  0.5436  0.5485  0.5360  0.5196  0.5173  0.5160  0.3882 

  0.3433  0.3413  0.5041  0.5106  0.5167  0.5221  0.5633  0.5748  0.5622  

0.5544 

  0.5604  0.5771  0.5923  0.5936  0.5725  0.5396  0.5199  0.5193  0.4066 

  0.3474  0.3482  0.5094  0.5149  0.5213  0.5946  0.6112  0.6089  0.6041  

0.6013 

  0.6017  0.6051  0.6104  0.6126  0.5986  0.5682  0.5370  0.5366  0.4221 

  0.3501  0.3524  0.5123  0.5176  0.5463  0.6089  0.6858  0.5088  0.4601  

0.4508 

  0.4514  0.4602  0.4949  0.7536  0.7075  0.6873  0.6392  0.6348  0.4117 

  0.3501  0.6095  0.6166  0.6239  0.6426  0.7064  0.7285  0.4884  0.4681  

0.4559 

  0.4563  0.4659  0.4816  0.7218  0.7013  0.6682  0.6317  0.6263  0.4026 

  0.3501  0.6097  0.6171  0.6239  0.6310  0.6990  0.7169  0.4715  0.4657  

0.4577 

  0.4573  0.4613  0.4653  0.7111  0.6941  0.6466  0.6221  0.6170  0.3943 

  0.3491  0.6078  0.6168  0.6238  0.6301  0.6805  0.7116  0.4602  0.4607  

0.4577 

  0.4568  0.4570  0.4567  0.7055  0.6832  0.6328  0.6170  0.6151  0.3858 

  0.3484  0.6043  0.6167  0.6243  0.6306  0.6857  0.7123  0.4574  0.4587  

0.4570 

  0.4569  0.4573  0.4566  0.7066  0.6889  0.6340  0.6165  0.6120  0.3799 

  0.3510  0.6090  0.6182  0.6255  0.6421  0.7029  0.7187  0.4660  0.4617  

0.4572 

  0.4578  0.4628  0.4676  0.7139  0.6971  0.6536  0.6181  0.6147  0.3813 

  0.3530  0.6116  0.6191  0.6268  0.6739  0.7110  0.7307  0.4833  0.4659  

0.4570 
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  0.4577  0.4674  0.4885  0.7302  0.7061  0.6868  0.6277  0.6157  0.3841 

  0.3533  0.6114  0.6185  0.6267  0.6860  0.7173  0.7881  0.6328  0.6176  

0.6125 

  0.6136  0.4584  0.5193  0.6971  0.7189  0.6858  0.6412  0.3949  0.3843 

  0.3528  0.3544  0.6120  0.6193  0.6496  0.6993  0.6159  0.6107  0.6027  

0.5986 

  0.6011  0.4443  0.4567  0.4761  0.7074  0.6785  0.6352  0.3906  0.3815 

  0.3493  0.3492  0.6059  0.6144  0.6222  0.6679  0.5950  0.5939  0.5745  

0.5554 

  0.5736  0.4305  0.4393  0.4405  0.6863  0.6404  0.6309  0.3818  0.3756 

  0.3449  0.3419  0.5952  0.6080  0.6166  0.6226  0.5373  0.5371  0.5229  

0.5302 

  0.5487  0.4211  0.4261  0.4232  0.6434  0.6302  0.6245  0.3727  0.3681 

  0.3422  0.3425  0.3440  0.3568  0.3694  0.3804  0.3884  0.3913  0.3937  

0.3986 

  0.4062  0.4164  0.4213  0.4115  0.6265  0.6195  0.6170  0.3642  0.3601 

  0.3399  0.3412  0.3457  0.3554  0.3655  0.3744  0.3809  0.3850  0.3901  

0.3970 

  0.4069  0.4196  0.4299  0.4156  0.3916  0.3753  0.3646  0.3592  0.3522 

  0.3299  0.3280  0.3281  0.3336  0.3426  0.3515  0.3593  0.3650  0.3700  

0.3770 

  0.3864  0.3990  0.4117  0.4214  0.4091  0.3946  0.3823  0.3743  0.3690 

  0.3314  0.3284  0.3247  0.3328  0.3451  0.3570  0.3663  0.3707  0.3724  

0.3765 

  0.3861  0.3972  0.4053  0.4090  0.4025  0.3916  0.3804  0.3746  0.3732 

  0.3339  0.3271  0.4808  0.4972  0.5067  0.5127  0.5161  0.5154  0.5145  

0.5120 

  0.5167  0.5206  0.5348  0.5384  0.5258  0.5177  0.5136  0.5135  0.3782 

  0.3388  0.3336  0.4956  0.5046  0.5116  0.5167  0.5203  0.5196  0.5201  

0.5202 

  0.5262  0.5373  0.5458  0.5497  0.5377  0.5202  0.5179  0.5167  0.3901 

  0.3440  0.3421  0.5041  0.5105  0.5165  0.5219  0.5600  0.5759  0.5660  

0.5589 

  0.5648  0.5798  0.5921  0.5931  0.5717  0.5408  0.5240  0.5207  0.4060 

  0.3485  0.3493  0.5095  0.5149  0.5210  0.5932  0.6099  0.6085  0.6044  

0.6019 

  0.6022  0.6053  0.6104  0.6129  0.5982  0.5679  0.5394  0.5410  0.4185 

  0.3515  0.3537  0.5125  0.5176  0.5423  0.6075  0.6745  0.5059  0.4701  

0.4601 

  0.4609  0.4711  0.5043  0.7724  0.7074  0.6868  0.6419  0.6397  0.4113 

  0.3516  0.6106  0.6171  0.6241  0.6416  0.7059  0.7276  0.4861  0.4752  

0.4683 

  0.4686  0.4744  0.4837  0.7226  0.7008  0.6684  0.6350  0.6318  0.4040 

  0.3515  0.6109  0.6176  0.6242  0.6317  0.6997  0.7171  0.4769  0.4744  

0.4708 

  0.4704  0.4724  0.4744  0.7111  0.6938  0.6487  0.6262  0.6193  0.3969 

  0.3505  0.6091  0.6173  0.6242  0.6304  0.6848  0.7124  0.4719  0.4724  

0.4712 

  0.4704  0.4703  0.4690  0.7059  0.6871  0.6369  0.6184  0.6158  0.3893 

  0.3496  0.6058  0.6172  0.6246  0.6310  0.6902  0.7131  0.4705  0.4718  

0.4709 

  0.4705  0.4704  0.4688  0.7070  0.6904  0.6385  0.6170  0.6133  0.3833 

  0.3524  0.6102  0.6186  0.6258  0.6455  0.7031  0.7189  0.4744  0.4730  

0.4708 

  0.4709  0.4726  0.4740  0.7134  0.6968  0.6555  0.6208  0.6154  0.3843 

  0.3547  0.6126  0.6197  0.6271  0.6744  0.7106  0.7299  0.4830  0.4747  

0.4700 

  0.4700  0.4737  0.4831  0.7268  0.7048  0.6855  0.6310  0.6163  0.3875 

  0.3550  0.6124  0.6192  0.6271  0.6856  0.7164  0.7798  0.6309  0.6174  

0.6128 
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  0.6140  0.4671  0.5024  0.6193  0.7159  0.6840  0.6429  0.3964  0.3877 

  0.3545  0.3564  0.6129  0.6201  0.6529  0.6989  0.6145  0.6095  0.6023  

0.5989 

  0.6015  0.4435  0.4544  0.4646  0.7035  0.6772  0.6354  0.3920  0.3840 

  0.3510  0.3512  0.6072  0.6154  0.6229  0.6720  0.5946  0.5933  0.5765  

0.5610 

  0.5809  0.4304  0.4382  0.4377  0.6836  0.6390  0.6312  0.3830  0.3784 

  0.3465  0.3439  0.5973  0.6093  0.6177  0.6233  0.5409  0.5394  0.5258  

0.5355 

  0.5548  0.4216  0.4261  0.4221  0.6399  0.6302  0.6250  0.3745  0.3713 

  0.3437  0.3443  0.3464  0.3593  0.3720  0.3825  0.3908  0.3936  0.3961  

0.4008 

  0.4081  0.4176  0.4211  0.4107  0.6268  0.6201  0.6179  0.3666  0.3642 

  0.3414  0.3431  0.3481  0.3582  0.3685  0.3774  0.3838  0.3889  0.3939  

0.4004 

  0.4091  0.4192  0.4257  0.4135  0.3923  0.3772  0.3675  0.3631  0.3583 

  0.3302  0.3283  0.3286  0.3338  0.3422  0.3510  0.3589  0.3647  0.3699  

0.3769 

  0.3867  0.4011  0.4171  0.4303  0.4158  0.3979  0.3831  0.3739  0.3665 

  0.3323  0.3290  0.3251  0.3332  0.3453  0.3570  0.3664  0.3711  0.3732  

0.3773 

  0.3871  0.3991  0.4084  0.4136  0.4065  0.3950  0.3826  0.3760  0.3730 

  0.3351  0.3279  0.4802  0.4968  0.5064  0.5126  0.5162  0.5155  0.5145  

0.5121 

  0.5167  0.5201  0.5331  0.5372  0.5279  0.5183  0.5144  0.5141  0.3797 

  0.3400  0.3345  0.4953  0.5044  0.5113  0.5165  0.5200  0.5193  0.5195  

0.5194 

  0.5221  0.5316  0.5382  0.5422  0.5334  0.5217  0.5184  0.5173  0.3944 

  0.3450  0.3430  0.5039  0.5103  0.5161  0.5212  0.5465  0.5591  0.5516  

0.5459 

  0.5510  0.5619  0.5765  0.5854  0.5574  0.5362  0.5247  0.5263  0.4138 

  0.3495  0.3503  0.5094  0.5146  0.5203  0.5722  0.6068  0.6064  0.6027  

0.6001 

  0.6005  0.6037  0.6086  0.6109  0.5968  0.5563  0.5367  0.5442  0.4297 

  0.3524  0.3542  0.5126  0.5174  0.5309  0.6045  0.6535  0.4908  0.4619  

0.4561 

  0.4567  0.4636  0.4994  0.7611  0.7061  0.6701  0.6375  0.6386  0.4184 

  0.3527  0.6106  0.6172  0.6239  0.6329  0.7039  0.7257  0.4794  0.4661  

0.4620 

  0.4622  0.4661  0.4766  0.7216  0.6989  0.6548  0.6322  0.6310  0.4077 

  0.3526  0.6108  0.6176  0.6240  0.6305  0.6875  0.7157  0.4675  0.4661  

0.4641 

  0.4638  0.4650  0.4664  0.7097  0.6865  0.6394  0.6254  0.6213  0.3988 

  0.3514  0.6091  0.6172  0.6238  0.6298  0.6710  0.7112  0.4647  0.4652  

0.4647 

  0.4641  0.4639  0.4630  0.7049  0.6652  0.6322  0.6197  0.6163  0.3905 

  0.3506  0.6059  0.6170  0.6241  0.6303  0.6761  0.7119  0.4637  0.4648  

0.4644 

  0.4640  0.4638  0.4627  0.7057  0.6702  0.6326  0.6175  0.6142  0.3841 

  0.3533  0.6101  0.6185  0.6253  0.6342  0.7008  0.7181  0.4661  0.4655  

0.4642 

  0.4640  0.4649  0.4658  0.7120  0.6934  0.6427  0.6202  0.6159  0.3846 

  0.3558  0.6126  0.6197  0.6268  0.6644  0.7094  0.7296  0.4768  0.4667  

0.4635 

  0.4633  0.4654  0.4762  0.7254  0.7026  0.6627  0.6277  0.6165  0.3871 

  0.3564  0.6125  0.6196  0.6271  0.6787  0.7159  0.7866  0.6319  0.6178  

0.6123 

  0.6135  0.4604  0.5001  0.6263  0.7137  0.6797  0.6400  0.3967  0.3868 

  0.3559  0.3581  0.6135  0.6204  0.6487  0.6988  0.6150  0.6101  0.6021  

0.5974 
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  0.5998  0.4437  0.4542  0.4628  0.6995  0.6639  0.6352  0.3922  0.3832 

  0.3525  0.3533  0.6080  0.6161  0.6231  0.6632  0.5949  0.5933  0.5683  

0.5518 

  0.5650  0.4311  0.4383  0.4368  0.6801  0.6366  0.6314  0.3832  0.3774 

  0.3478  0.3459  0.5982  0.6101  0.6182  0.6236  0.5436  0.5401  0.5270  

0.5338 

  0.5497  0.4229  0.4271  0.4225  0.6373  0.6306  0.6257  0.3750  0.3702 

  0.3444  0.3454  0.3479  0.3606  0.3730  0.3834  0.3919  0.3945  0.3973  

0.4024 

  0.4103  0.4207  0.4241  0.4136  0.6275  0.6212  0.6187  0.3670  0.3624 

  0.3412  0.3430  0.3481  0.3580  0.3681  0.3769  0.3833  0.3882  0.3934  

0.4008 

  0.4116  0.4241  0.4350  0.4193  0.3951  0.3783  0.3680  0.3622  0.3543CC 

CC CONSTANT CHLORIDE AND CALCIUM CONCENTRATIONS (MEQ/ML) 

*----C50       C60 

     0.0583    0.0025  

CC 

CC******************************************************************* 

CC                                                                  * 

CC    PHYSICAL PROPERTY DATA                                        * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC 

CC CMC 

*----  EPSME   

      .0001   

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 1 

*----HBNS70 HBNC70 HBNS71 HBNC71 HBNS72 HBNC72 

     0.     .030    0.   .030     0.0   .030 

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 2 

*----HBNS80 HBNC80 HBNS81 HBNC81 HBNS82 HBNC82 

     0.     0.     0.     0.     0.     0. 

CC 

CC LOWER AND UPPER EFFECTIVE SALINITY FOR ALCOHOL 1 AND ALCOHOL 2 

*----CSEL7  CSEU7  CSEL8  CSEU8 

     .65   .9   0.     0. 

CC 

CC THE CSE SLOPE PARAMETER FOR CALCIUM AND ALCOHOL 1 AND ALCOHOL 2 

*----BETA6  BETA7  BETA8 

     0.0    0.    0. 

CC 

CC FLAG FOR ALCOHOL PART. MODEL AND PARTITION COEFFICIENTS 

*----IALC  OPSK7O  OPSK7S  OPSK8O  OPSK8S 

     0     0.      0.      0.      0. 

CC 

CC NO. OF ITERATIONS, AND TOLERANCE 

*----NALMAX   EPSALC 

     20       .0001 

CC 

CC ALCOHOL 1 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC7   AKWS7  AKM7  AK7     PT7 

     4.671   1.79   48.   35.31   .222  

CC 

CC ALCOHOL 2 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC8   AKWS8  AKM8  AK8     PT8 

     0.      0.     0.    0.      0. 

CC 
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CC 

*--- IFT MODEL FLAG 

      0 

CC 

CC INTERFACIAL TENSION PARAMETERS 

*----G11  G12     G13   G21   G22    G23 

     13.  -14.8   .007  13.2   -14.5  .010 

CC 

CC LOG10 OF OIL/WATER INTERFACIAL TENSION  

*----XIFTW 

     1.477 

CC 

CC CAPILLARY DESATURATION PARAMETERS FOR PHASE 1, 2, AND 3 

*----ITRAP   T11        T22        T33 

     0       1865.      28665.46      364.2  

CC 

CC REL. PERM. AND PC CURVES 

*---- IPERM    IRTYPE 

        0       0 

CC 

CC FLAG FOR CONSTANT OR VARIABLE REL. PERM. PARAMETERS 

*----ISRW  IPRW  IEW 

     0      0    0 

CC 

CC CONSTANT RES. SATURATION OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----S1RWC  S2RWC  S3RWC 

     .25    .15    .20 

CC 

CC CONSTANT ENDPOINT REL. PERM. OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----P1RW  P2RW     P3RW 

     .20     0.95     0.20 

CC 

CC CONSTANT REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----E1W     E2W      E3W 

     3.0     2.0      2.0 

CC 

CC WATER AND OIL VISCOSITY , RESERVOIR TEMPERATURE 

*----VIS1   VIS2  TEMPV 

     0.46    40    0 

CC 

CC VISCOSITY PARAMETERS 

*----ALPHA1 ALPHA2  ALPHA3  ALPHA4  ALPHA5 

     0.0     0.0      0.0   0.000865    4.153 

CC 

CC PARAMETERS TO CALCULATE POLYMER VISCOSITY AT ZERO SHEAR RATE 

*----AP1     AP2     AP3 

     0.0001   0      0 CC 

CC PARAMETER TO COMPUTE CSEP,MIN. CSEP, AND SLOPE OF LOG VIS. VS. LOG CSEP  

*----BETAP CSE1  SLOPE 

     10    .01   .0 

CC 

CC PARAMETER FOR SHEAR RATE DEPENDENCE OF POLYMER VISCOSITY 

*----GAMMAC  GAMHF  POWN    IPMOD   ishear  rweff   GAMHF2  iwreath 

     10.0        0.0    1.8     0       0       0.25    0      0 

CC 

CC FLAG FOR POLYMER PARTITIONING, PERM. REDUCTION PARAMETERS 

*----IPOLYM EPHI3 EPHI4 BRK    CRK    RKCUT 

     1      1.    1      0.     0.0  10 

CC 

CC SPECIFIC WEIGHT FOR COMPONENTS 1,2,3,7,AND 8 , AND GRAVITY FLAG 



242 

 

*----DEN1  DEN2    DEN3     DEN7 DEN8  IDEN  

   62.899  49.857  62.399  49.824  0  2 

CC 

CC  FLAG FOR CHOICE OF UNITS ( 0:BOTTOMHOLE CONDITION , 1: STOCK TANK) 

*-----ISTB 

      0 

CC 

CC COMPRESSIBILITY FOR VOL. OCCUPYING COMPONENTS 1,2,3,7,AND 8  

*----COMPC(1)  COMPC(2)  COMPC(3)  COMPC(7)  COMPC(8) 

     0.        0.        0.        0.        0. 

CC 

CC CONSTANT OR VARIABLE PC PARAM., WATER-WET OR OIL-WET PC CURVE FLAG  

*----ICPC   IEPC  IOW  

     0       0   0 

CC 

CC CAPILLARY PRESSURE PARAMETERS, CPC 

*----CPC  

   0.  

CC 

CC CAPILLARY PRESSURE PARAMETERS, EPC 

*---- EPC 

      2. 

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 1 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0  0.0 0.0  

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 2 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0 0.0   

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 3 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0  0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 1 

*----ALPHAL(1)     ALPHAT(1) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 2 

*----ALPHAL(2)     ALPHAT(2) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 3 

*----ALPHAL(3)     ALPHAT(3) 

     0.0          0.0 

CC 

CC SURFACTANT AND POLYMER ADSORPTION PARAMETERS 

*----AD31     AD32  B3D    AD41   AD42  B4D  IADK, IADS1, FADS refk 

     0.        .0  1000.  0.672   0.0  1      0      0      0   0 

CC 

CC PARAMETERS FOR CATION EXCHANGE OF CLAY AND SURFACTANT 

*----QV     XKC   XKS  EQW 

      0     0.    0.   804 

CC 

CC   

*---  KGOPT   

      4 

CC 

CC 
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* -- IRKPPG,RKCUTPPG,     DPPG,      APPGS,   PPGNS,  DCRICWS  TOLPPGIN 

      2     1000000000    0.0003281     12     -0.3     0.05      100 

CC 

CC 

* -- APPGFR, PPGNFR 

       20     -0.2 

CC 

CC   

*---  ADPPGA,  ADPPGB  RESRKFAC,TOLPPGRK 

       2       0.001     0.2    1e-6 

CC 

CC   

* ---- APPG1,  APPG2, GAMCPG, GAMHFPG,POWNPG 

       1e-6    1e-6   0.0     0.0     1.8 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    WELL DATA                                                     * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC   

CC TOTAL NUMBER OF WELLS, WELL RADIUS FLAG, FLAG FOR TIME OR COURANT NO. 

*----NWELL   IRO   ITIME  NWREL 

      13      2      1      13  

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW   IW    JW    IFLAG    RW     SWELL  IDIR   IFIRST  ILAST  IPRF 

      1    17     3      4       .49     0.      3      1        3    0  

CC 

CC WELL NAME 

*---- WELNAM 

A1 

CC 

CC ICHEK MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX    QTMIN    QTMAX 

      0      0.0       3700    0.0     7100 

CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     2    10   3    4       .49       0.     3     1         3       0 

CC 

CC WELL NAME 

*---- WELNAM 

A2 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

      0     0.0      3700.   0.0     7100. 

CCCC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW   IW    JW    IFLAG    RW     SWELL  IDIR   IFIRST  ILAST  IPRF 

      3    14     7      1       .49     0.      3      1        3    0  

CC 

CC WELL NAME 

*---- WELNAM 

A3 

CC 

CC ICHEK MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX    QTMIN    QTMAX 

      0      0.0       3700    0.0     7100. 
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CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     4    18   11    4       .49       0.     3     1         3       0 

CC 

CC WELL NAME 

*---- WELNAM 

A4 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

      0     0.0      3700.   0.0     7100. 

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW   IW    JW    IFLAG    RW     SWELL  IDIR   IFIRST  ILAST  IPRF 

      5    3     3      4       .49     0.      3      1        3    0  

CC 

CC WELL NAME 

*---- WELNAM 

A5 

CC 

CC ICHEK MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX    QTMIN    QTMAX 

      0      0.0       3700    0.0     7100. 

CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     6    7   7    1       .49       0.     3     1         3       0 

CC 

CC WELL NAME 

*---- WELNAM 

A6 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

     0     0.0      3700.   0.0     7100. 

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW   IW    JW    IFLAG    RW     SWELL  IDIR   IFIRST  ILAST  IPRF 

      7    10     10      4       .49     0.      3      1        3    0  

CC 

CC WELL NAME 

*---- WELNAM 

A7 

CC 

CC ICHEK MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX    QTMIN    QTMAX 

      0      0.0       3700    0.0     7100. 

CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     8    14   14    1      .49       0.     3     1         3       0 

CC 

CC WELL NAME 

*---- WELNAM 

A8 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

      0     0.0      3700.   0.0     7100. 
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CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW   IW    JW    IFLAG    RW     SWELL  IDIR   IFIRST  ILAST  IPRF 

      9    16    18      2       .49     0.      3      1        3    0  

CC 

CC WELL NAME 

*---- WELNAM 

A9 

CC 

CC ICHEK MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX    QTMIN    QTMAX 

      0      0.0       3700    0.0     7100. 

CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     10    2   11    4       .49       0.     3     1         3       0 

CC 

CC WELL NAME 

*---- WELNAM 

A10 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

      0     0.0      3700.   0.0     7100. 

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW   IW    JW    IFLAG    RW     SWELL  IDIR   IFIRST  ILAST  IPRF 

      11    7     14      1       .49     0.      3      1        3    0  

CC 

CC WELL NAME 

*---- WELNAM 

A11 

CC 

CC ICHEK MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX    QTMIN    QTMAX 

      0      0.0       3700    0.0     7100. 

CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     12    9   17    4       .49       0.     3     1         3       0 

CC 

CC WELL NAME 

*---- WELNAM 

A12 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

      0     0.0      3700.   0.0     7100. 

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW   IW    JW    IFLAG    RW     SWELL  IDIR   IFIRST  ILAST  IPRF 

      13    3     17      4       .49     0.      3      1        3    0  

CC 

CC WELL NAME 

*---- WELNAM 

A13 

CC 

CC ICHEK MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX    QTMIN    QTMAX 

      0      0.0       3700    0.0     7100. 
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CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     1   -679.19   

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     2   -803.88  

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L) 

 3     2035. 1. 0. 0. 0.     0.0583   0.  0. 0. 0.  0.   0. 0. 0. 0.  

 3     0.    0. 0. 0. 0.     0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

 3     0.    0. 0. 0. 0.     0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     4  -928.32  

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     5   -850.24  

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L) 

 6     2197.99  1.  0. 0. 0.     0.0583   0.  0. 0. 0.  0.   0. 0. 0. 0.  

 6     0.       0.  0. 0. 0.     0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

 6     0.       0.  0. 0. 0.     0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     7   -2088.94 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L) 

 8     2323.00  1.  0. 0. 0.     0.0583   0.  0. 0. 0.  0.   0. 0. 0. 0.  

 8     0.       0.  0. 0. 0.     0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

 8     0.       0.  0. 0. 0.     0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   PWF  

     9  1740. 

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     10   -843.90  

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L) 

 11    2010.11   1.  0. 0. 0.     0.0583 0.   0.  0. 0.  0.   0. 0. 0. 0.  

 11    0.        0.  0. 0. 0.     0.     0.   0.  0. 0.  0.   0. 0. 0. 0.  

 11    0.        0.  0. 0. 0.     0.     0.   0.  0. 0.  0.   0. 0. 0. 0.  

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT   

     12    -611.97  

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     13   -693.95   
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CC 

CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR ERITING TO OUTPUT FILES 

*----TINJ    CUMPR1   CUMHI1   WRHPV   WRPRF      RSTC 

     100.    26.0     26.0      1.0     5      30.0 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NUMBER 

*----DT      DCLIM   CNMAX   CNMIN 

     0.01    0.01    0.1       0.01 

cc 

CC IRO, ITSTEP, NEW FLAGS FOR ALL THE WELLS 

*---- IRO ITSTEP IFLAG(M),M=1,NWELL 

       2   1    4  4  1  4  4  1  4  1  2  4  1  4  4 

CC 

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

      0 

CC 

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     12     1  2  3  4  5  6  7  8  10  11  12  13 

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     1   -625.91 

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     2   -942.54 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L) 

 3     1994.57 1.0     0. 0. 0.   0.0583   0.  0. 0. 0.  0.   0. 0. 0. 2000. 

 3     0.      0.      0. 0. 0.   0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

 3     0.      0.      0. 0. 0.   0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     4   -1059.46 

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     5   -829.07 

CC   

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L) 

 6     2173.97 1.0     0. 0. 0.   0.0583   0.  0. 0. 0.  0.   0. 0. 0. 2000. 

 6     0.      0.      0. 0. 0.   0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

 6     0.      0.      0. 0. 0.   0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     7   -2465.65 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L) 

 8     2250.25  1.0     0. 0. 0.   0.0583   0.  0. 0. 0.  0.   0. 0. 0. 2000. 

 8     0.       0.      0. 0. 0.   0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

 8     0.       0.      0. 0. 0.   0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 
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*----ID   QT  

     10  -692.0 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L) 

 11    1956.79  1.0     0. 0. 0.   0.0583   0.  0. 0. 0.  0.   0. 0. 0. 2000. 

 11    0.       0.      0. 0. 0.   0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

 11    0.       0.      0. 0. 0.   0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     12  -220.73 

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     13  -795.53 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR ERITING TO OUTPUT FILES 

*----TINJ    CUMPR1   CUMHI1    WRHPV   WRPRF      RSTC 

     400.0    50.0     50.0       5.0    25.0       50 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURNAT NO. 

*----DT      DCLIM   CNMAX   CNMIN 

     0.01    0.001    0.1       0.00001 

cc 

CC IRO, ITSTEP, NEW FLAGS FOR ALL THE WELLS 

*---- IRO ITSTEP IFLAG(M),M=1,NWELL 

       2   1    4  4  1  4  4  1  4  1  2  4  1  4  4 

CC 

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

      0 

CC 

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     12     1  2  3  4  5  6  7  8  10  11  12  13 

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     1   -619.07 

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     2   -746.2 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L) 

 3     2000.93 1.0     0. 0. 0.   0.0583   0.  0. 0. 0.  0.   0. 0. 0. 0.  

 3     0.      0.      0. 0. 0.   0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

 3     0.      0.      0. 0. 0.   0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     4   -1071.65 

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     5   -884.73 

CC   

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 
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*----ID  QI(M,L)  C(M,KC,L) 

 6     2097.34 1.0     0. 0. 0.   0.0583   0.  0. 0. 0.  0.   0. 0. 0. 0.  

 6     0.      0.      0. 0. 0.   0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

 6     0.      0.      0. 0. 0.   0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     7   -2041.19 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L) 

 8     2250.96  1.0     0. 0. 0.   0.0583   0.  0. 0. 0.  0.   0. 0. 0. 0.  

 8     0.       0.      0. 0. 0.   0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

 8     0.       0.      0. 0. 0.   0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     10  -1521.71 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L) 

 11     2076.15  1.0     0. 0. 0.   0.0583   0.  0. 0. 0.  0.   0. 0. 0. 0.  

 11     0.       0.      0. 0. 0.   0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

 11     0.       0.      0. 0. 0.   0.       0.  0. 0. 0.  0.   0. 0. 0. 0.  

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     12  -213.65 

CC 

CC ID, PRODUCING RATE FOR RATE CONSTRAINT WELL (IFLAG=4) 

*----ID   QT  

     13  -696.41 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR ERITING TO OUTPUT FILES 

*----TINJ    CUMPR1      CUMHI1     WRHPV      WRPRF      RSTC 

     1000.0    100.0     100.0      5.0        100.0     200.0 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURNAT NOS. 

*----DT       DCLIM   CNMAX   CNMIN 

     0.005    0.0008    0.1    0.00001  
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C-3.  Input data for field case III, PPG size selection 

(PPG 3, 170 Mesh) 

 

CC******************************************************************* 

CC                                                                  * 

CC    BRIEF DESCRIPTION OF DATA SET                                 *  

CC                                                                  * 

CC******************************************************************* 

CC                                                                  * 

CC                                                                  * 

CC                                                                  * 

CC  LENGTH (FT) : 1992             PROCESS :  PROFILE CONTROL       *  

CC  THICKNESS (FT) : 85.5             INJ. PRESSURE (PSI) :  -      * 

CC  WIDTH (FT) :  2542             COORDINATES : CARTESIAN          * 

CC  POROSITY :  variable                                            * 

CC  GRIDBLOCKS : 24 x 31 x 47 (34968)                          * 
CC  DATE :                                                          * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR DESCRIPTION                                         * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

*----RUNNO 

Field3 

CC   

CC 

*----HEADER 

Chevron field, sector model with some modifications 

Field case optimization - PPG diameter  

 

CC  

CC SIMULATION FLAGS  

*---- IMODE IMES IDISPC IREACT ICOORD ITREAC ITC IENG 

      1     2    3      0      1      0      0   0     

CC 

CC NUMBER OF GRIDBLOCKS AND FLAG SPECIFIES CONSTANT OR VARIABLE GRID SIZE 

*----NX   NY  NZ  IDXYZ  IUNIT 

     24    31    47    0     0          

CC 

CC CONSTANT CARTESIAN GRID 

*----DX1   DY1   DZ1 

     83    82    1.82 

CC 

CC TOTAL NO. OF COMPONENTS, NO. OF TRACERS, NO. OF GEL COMPONENTS 

*----N   NTW   NG 

     14  0     6 

CC   

CC  All species must be present even for standard waterflood. 

*--- species name 

WATER 

OIL 

none 



251 

 

none 

SALT 

none 

none 

none 

none 

none 

none 

none 

none 

PPG 

CC  

CC FLAG INDICATING IF THE COMPONENT IS INCLUDED IN CALCULATIONS OR NOT 

*----ICF(KC) FOR KC=1,N 

      1  1  0  0  1 0  0 0 0 0 0 0 0 1  

CC 

CC*********************************************************************** 

CC                                                                   * 

CC    OUTPUT OPTIONS                                                     * 

CC                                                                   * 

CC*********************************************************************** 

CC    

CC ICUMTM=0==>TIME PRINTING;istop=1==>PV SPEC 

CC FLAGS FOR PV OR DAYS 

*----ICUMTM  ISTOP 

     0       0 

CC 

CC FLAG INDICATING IF THE PROFILE OF KCTH COMPONENT SHOULD BE WRITTEN 

*----IPRFLG(KC),KC=1,N 

      1  1  0  0  1 0  0 0 0 0 0 0 0 1 

CC 

CC FLAG FOR PRES,SAT.,TOTAL CONC.,TRACER CONC.,CAP.,GEL, ALKALINE PROFILES 

*----IPPRES IPSAT IPCTOT IPGEL IPTEMP 

     1      1     1      1     0     

CC  ICKL is phase conc.  (K is component and L is phase) 

CC FLAG FOR WRITING SEVERAL PROPERTIES TO UNIT 6 (PROFIL) 

*----ICKL IVIS IPER ICNM ICSE 

     0    1    0    0   0 

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES TO UNIT 6 (PROFIL) 

*----IADS  IVEL IRKF IPHSE 

     0     0    1    0 

CC 

CC********************************************************************* 

CC                                                                    * 

CC    RESERVOIR PROPERTIES                                            * 

CC                                                                    * 

CC********************************************************************* 

CC   

CC   

CC MAX. SIMULATION TIME  

*---- TMAX   

      1500 

CC 

CC ROCK COMPRESSIBILITY (1/PSI), STAND. PRESSURE(PSIA) 

*----COMPR      PSTAND   

     0.000008   14.7  

CC  Porosity Values For Each Grid Input Given Through Include Files 

CC  FLAGS INDICATING CONSTANT OR VARIABLE POROSITY, X,Y,AND Z PERMEABILITY 

*----IPOR1 IPERMX IPERMY IPERMZ  IMOD  ITRANZ  INTG 
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     4     4      3      3      0     0       0 

CC 

CC Constant permeability multiplier for Y direction permeability 

*----FACTY 

     1 

CC 

CC Constant permeability multiplier for Z direction permeability 

*----FACTZ 

     0.1 

CC Depth To The Top Layer Input Given Through Include Files 

CC FLAG FOR CONSTANT OR VARIABLE DEPTH, PRESSURE, WATER SATURATION 

*----IDEPTH  IPRESS  ISWI 

     4       1       4 

CC    

CC   

*----PINIT    HINIT  

     2915     6843 

CC  

CC CONSTANT CHLORIDE AND CALCIUM CONCENTRATIONS (MEQ/ML)  

*----C50       C60 

     0.0513   0.0 

CC 

CC********************************************************************* 

CC                                                               * 

CC PHYSICAL PROPERTY DATA                                             * 

CC                                                                    * 

CC********************************************************************* 

CC 

CC DW   

CC OIL CONC. AT PLAIT POINT FOR TYPE II(+) AND TYPE II(-), CMC (do not change) 

*---- EPSME 

      0.0001 

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC   

*----HBNS70 HBNC70 HBNS71 HBNC71 HBNS72 HBNC72 

     0.0    0.055  0      0.035  0.     0.055 

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 2 

*----HBNS80 HBNC80 HBNS81 HBNC81 HBNS82 HBNC82 

     0.     0.     0.     0.     0.     0. 

CC 

CC LOWER AND UPPER EFFECTIVE SALINITY FOR ALCOHOL 1(7) AND ALCOHOL 2 (8) 

*----CSEL7     CSEU7     CSEL8  CSEU8 

     0.5       0.85      0.     0. 

CC  

CC THE CSE SLOPE PARAMETER FOR CALCIUM AND ALCOHOL 1 AND ALCOHOL 2 

*----BETA6  BETA7  BETA8 

     0.0     0     0.0 

CC  

CC FLAG FOR ALCOHOL PART. MODEL AND PARTITION COEFFICIENTS 

*----IALC  OPSK7O  OPSK7S  OPSK8O  OPSK8S 

     0     0.0      0      0.      0. 

CC 

CC NO. OF ITERATIONS, AND TOLERANCE 

*----NALMAX   EPSALC 

     20       .0001 

CC  

CC ALCOHOL 1 PARTITIONING PARAMETERS IF IALC=1  (leave as is) 

*----AKWC7   AKWS7  AKM7  AK7     PT7 

     4.671    1.79   48   35.31  0.222  
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CC 

CC ALCOHOL 2 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC8   AKWS8  AKM8  AK8     PT8 

     0.      0.     0.    0.      0. 

CC 

CC  0 = Healy and Reed and 1 is Chun-Huh 

*--- ift 

     1 

CC 

CC INTERFACIAL TENSION PARAMETERS 

*----CHUH  AHUH   

     0.3   10.   

CC 

CC LOG10 OF OIL/WATER INTERFACIAL TENSION  

*----XIFTW 

     1.48 

CC   

CC CAPILLARY DESATURATION PARAMETERS FOR PHASE 1, 2, AND 3 

*----ITRAP   T11        T22        T33 

     2       2000.      75000.     365.  

CC   

CC  

*----iperm     IRTYPE      

     0          0 

CC RESIDUAL SATURATION FOR EACH PHASE INPUT GIVEN THROUGH INCLUDE FILES   

CC FLAG FOR CONSTANT OR VARIABLE REL. PERM. PARAMETERS 

*----ISRW  IPRW  IEW 

     0      0    0 

CC 

CC 

*----S1RWC  S2RWC  S3RWC 

     0.08    0.33    0.14 

CC   

CC CONSTANT ENDPOINT REL. PERM. OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----P1RW  P2RW  P3RW 

     0.45   0.75  0.30  

CC  

CC CONSTANT REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----E1W   E2W  E3W  

     3     2    3 

CC   

CC  RES. SATURATION OF PHASES 1,2,AND 3 AT HIGH CAPILLARY NO. 

*----S1RC(=SWIR)  S2RC(=SORCHEM)  S3RC(SMER=SWIR) 

     0.0001    0.0001   0.0001 

CC 

CC ENDPOINT REL. PERM. OF PHASES 1,2,AND 3 AT HIGH CAPILLARY NO. 

*----P1RC P2RC P3RC 

     1.    1.    1. 

CC 

CC REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT HIGH CAPILLARY NO. 

*----E13CW  E23C E31C 

     1      1    1 

CC  

CC WATER AND OIL VISCOSITY at reference temperature, RESERVOIR TEMPERATURE 

(leave zero) 

*----VIS1   VIS2  TEMPV 

     0.5   2.5    180 

CC  

CC MICROEMULSION VISCOSITY PARAMETERS  

*----ALPHA1 ALPHA2  ALPHA3  ALPHA4  ALPHA5 
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       .1     2.5     0.1       0.1     0.1 

CC 

CC PARAMETERS TO CALCULATE POLYMER VISCOSITY AT ZERO SHEAR RATE 

*----AP1      AP2     AP3 

    45        625     1000 

CC   

CC PARAMETER TO COMPUTE CSEP,MIN. CSEP, AND SLOPE OF LOG VIS. VS. LOG CSEP  

*----BETAP CSE1  SSLOPE 

     1.    .01   -0.377 

CC   

CC PARAMETER FOR SHEAR RATE DEPENDENCE OF POLYMER VISCOSITY (50% shear ~ 10 cP) 

*----GAMMAC  GAMHF  POWN   IPMOD  ISHEAR   RWEFF  GAMHF2  IWREATH 

      4       30    1.8     0        1       0.4   0.0    1 

CC 

CC WREATH CORRELATION PARAMETERS 

*----WREATHM  WREATHB  WREATHN  WREATHT 

     4.7      0.18     0.48     1.0 

CC    

CC FLAG FOR POLYMER (4) PARTITIONING, PERM. REDUCTION PARAMETERS 

*----IPOLYM EPHI3 EPHI4   BRK    CRK    rkcut 

     1      1.    1       100   0.04      10 

CC    

CC SPECIFIC WEIGHT FOR COMPONENTS 1,2,3,7,AND 8 , AND GRAVITY FLAG 

*----DEN1  DEN2  DEN3 DEN7 DEN8 IDEN 

     .433  .377  .433 .346  0.  2 

CC 

CC  FLAG FOR CHOICE OF UNITS ( 0:BOTTOMHOLE CONDITION , 1: STOCK TANK) 

*-----ISTB 

      1 

CC 

CC  FVF FOR PHASE 1,2,3 

*-----(FVF(L),L=1,NPHAS) 

      1    1.083    1 

CC         

CC COMPRESSIBILITY FOR VOL. OCCUPYING COMPONENTS 1,2,3,7,AND 8  

*----COMPC(1)  COMPC(2)  COMPC(3)  COMPC(7)  COMPC(8) 

     0.000003   0.00001        0.        0.        0. 

CC 

CC CONSTANT OR VARIABLE PC PARAM., WATER-WET OR OIL-WET PC CURVE FLAG  

*----ICPC   IEPC  IOW  

     0       0     0 

CC 

CC CAPILLARY PRESSURE PARAMETERS, CPC  

*----CPC  

     0.  

CC 

CC CAPILLARY PRESSURE PARAMETERS, EPC  

*---- EPC 

      2. 

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 1 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6) D(7) D(8) D(9) D(10) D(1 

     0.   0.   0.   0.    0.  0.  8*0. 

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 2 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6) D(7) D(8) D(9)  D(10)  D(11) 

     0.   0.   0.   0.   0.   0.  8*0. 

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 3 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6) D(7) D(8) D(9) D(10)  D(11) 



255 

 

     0.   0.   0.   0.   0.   0.   8*0. 

CC  

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY (ft) OF PHASE 1 

*----ALPHAL(1)     ALPHAT(1) 

     4             0.4 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 2 

*----ALPHAL(2)     ALPHAT(2) 

     4             0.4  

CC Mojdeh 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 3 

*----ALPHAL(3)     ALPHAT(3) 

     4            0.4  

CC   Polymer (7 microg/g), surf. (0.3 mg/g) 

CC SURFACTANT AND POLYMER ADSORPTION PARAMETERS 

*----AD31  AD32  B3D    AD41   AD42  B4D      iadk   iads1   fads refk(mD) 

     0.125     0.0  1000.  1   0.    100.       0       0     0   0. 

CC   

CC PARAMETERS FOR CATION EXCHANGE OF CLAY AND SURFACTANT MW (needed for cation 

exch) 

*----QV      XKC   XKS  EQW 

     0.0     0.0   0.0  429. 

CC 

CC 

*---  KGOPT   

     4 

 

CC 

CC 

* -- IRKPPG,RKCUTPPG,     DPPG,        APPGS,   PPGNS,   DCRICWS    OLPPGIN 

 

      2     1000000000    0.0002067    30      -0.3     0.05       50 

CC 

CC 

* -- APPGFR, PPGNFR 

       40      -0.3 

CC 

CC 

*---  ADPPGA,  ADPPGB  RESRKFAC,TOLPPGRK 

      0        0       0.2      1e-6 

CC 

CC 

* ---- APPG1,   APPG2,  GAMCPG, GAMHFPG, POWNPG 

       1e-6     1e-6    0.0     0.0      1.8 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    WELL DATA                                                     * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC   

CC TOTAL NUMBER OF WELLS, WELLRADIUS FLAG, FLAG FOR TIME OR COURANT NO. 

*----NWELL   IRO   ITIME  NWREL 

      3      2      1      3  

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW   IW    JW    IFLAG    RW     SWELL  IDIR   IFIRST  ILAST  IPRF 

      1    24     14      1       0.4     0.      3      1       47    1 

CC 
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CC 

*----kprf 

      0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

CC 

CC WELL NAME 

*---- WELNAM 

INJ 

CC 

CC ICHEK MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX    QTMIN    QTMAX 

      0      0.0       10000    0.0     50000. 

CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     2   2   27    2       0.4       0.     3     1         47       1 

CC 

CC 

*----kprf 

      0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

CC 

CC WELL NAME 

*---- WELNAM 

PROD_1 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

      0     0.0      10000.   0.0     -50000.CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

     3   2   8   2       0.4       0.     3     1         47       1 

CC 

CC 

*----kprf 

     0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 

00 0 0 0 0 0 0 0 0 

CC 

CC WELL NAME 

*---- WELNAM 

PROD_2 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

      0     0.0      10000.   0.0     -50000.CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

 

*----ID  QI(M,L)  C(M,KC,L)   

     1    6738       1.   0.  0.     0.   0.05         0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1     0.        0.   0.  0.     0.   0.           0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1     0.        0.   0.  0.     0.   0.           0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL (IFLAG=2 OR 3) 

*----ID   PWF 

    2    600 

CC 

CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL (IFLAG=2 OR 3) 
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*----ID   PWF 

     3    1200 

C 

CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR WRITING TO OUTPUT FILES 

*----TINJ    CUMPR1   CUMHI1     WRHPV   WRPRF      RSTC 

    500        20       20            20           20          50 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO.  

*----DT      DCLIM     CNMAX   CNMIN     

    0.000001    0.01     0.1     0.01 

CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2  2 

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1  

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,C,L)   

 

     1    6738        1     0.   0.     0.   0.05        0.    0.    0.    0.   

0.   0.   0.   0.   2000 

     1    0.         0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.         0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

C 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

     800      5       5            5           5          10 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

     0.000001   0.01          0.1   0.01 CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2  2 

CC   

CC NUMBE OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL 

     0       

CC  

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1  

CC 

CC ID,INJ. RATE AND INJ. COM. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1    6738       1.     0.   0.     0.   0.05        0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.         0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.         0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 
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CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

    1500      20       20            20           20          50 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

     0.000001   0.01          0.1   0.01  
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Appendix D. Input Data for Synthetic Fracture Model  

 

D-1.  Input data for the slanted fracture plane model 

CC******************************************************************* 

CC                                                                  * 

CC    BRIEF DESCRIPTION OF DATA SET                                 *  

CC                                                                  * 

CC******************************************************************* 

CC                                                                  * 

CC                                                                  * 

CC                                                                  * 

CC  LENGTH (FT) :  100             PROCESS :  PROFILE CONTROL       *  

CC  THICKNESS (FT) : 30            INJ. PRESSURE (PSI) :   -        * 

CC  WIDTH (FT) :   100             COORDINATES : CARTESIAN          * 

CC  POROSITY :    0.25                                              * 

CC  GRIDBLOCKS :   50 x 50 x 15                                    * 

CC  DATE :                                                          * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR DESCRIPTION                                         * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

*----RUNNO 

SlantPlane 

CC   

CC 

*----HEADER 

EDFM synthetic model, Slant fracture plane, PPG treatment 

 

 

CC 

CC SIMULATION FLAGS 

*---- IMODE IMES IDISPC IREACT  ICOORD ITREAC ITC  IENG  IFRAC 

        1    2    0      1      1     0      0    0      1 

CC 

CC NUMBER OF GRIDBLOCKS AND FLAG SPECIFIES CONSTANT OR VARIABLE GRID SIZE 

*----NX   NY  NZ  IDXYZ  IUNIT 

     50   50   15   0       0           

CC 

CC NUMBER OF FRACTURE GRIDBLOCKS 

*----NF  MAXF 

     884   50 

CC 

CC  VARIABLE GRID BLOCK SIZE IN X 

*----DX         DY          DZ       

     2          2           2 

CC 

CC TOTAL NO. OF COMPONENTS, NO. OF TRACERS, NO. OF GEL COMPONENTS 

*----N   NTW  NG 

     14   0   6  

CC 

CC 
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*---- SPNAME(I),I=1,N 

WATER 

OIL 

none 

none 

SALT 

none 

none 

none 

none 

none 

none 

none 

none 

ppg 

CC 

CC FLAG INDICATING IF THE COMPONENT IS INCLUDED IN CALCULATIONS OR NOT 

*----ICF(KC) FOR KC=1,N 

   1  1  0  0  1 0  0 0 0 0 0 0 0 1 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    OUTPUT OPTIONS                                                * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

CC  FLAG FOR PV OR DAYS FOR OUTPUT AND STOP THE RUN 

*----ICUMTM  ISTOP   

       1     1  

CC 

CC FLAG INDICATING IF THE PROFILE OF KCTH COMPONENT SHOULD BE WRITTEN 

*----IPRFLG(KC),KC=1,N 

     1  1  0  0  0  0 0 0 0 0 0 0 0  1 

CC 

CC FLAG FOR PRES,SAT.,TOTAL CONC.,TRACER CONC.,CAP.,GEL, ALKALINE PROFILES 

*----IPPRES IPSAT IPCTOT IPGEL  ITEMP    

      1      1      1      1    0   

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES  

*----ICKL IVIS IPER ICNM  ICSE 

      0     1    0    0    0     

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES TO PROF 

*----IADS  IVEL IRKF IPHSE  

      0     0    1    0   

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR PROPERTIES                                          * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

CC MAX. SIMULATION TIME (PV)  

*---- TMAX 

    1.0 

CC 

CC ROCK COMPRESSIBILITY (1/PSI), STAND. PRESSURE(PSIA) 

*----COMPR   PSTAND 
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      0.      14.7 

CC 

CC FLAGS INDICATING CONSTANT OR VARIABLE POROSITY, X,Y,AND Z PERMEABILITY 

*----IPOR1 IPERMX IPERMY IPERMZ  IMOD  ITRNZ  INTG 

       4      4     4      4      0     0      0 

CC 

CC FLAG FOR CONSTANT OR VARIABLE DEPTH, PRESSURE, WATER SATURATION 

*----IDEPTH  IPRESS  ISWI  

      0        0       2  

CC 

CC VARIABLE DEPTH (FT) 

*----D111 

     0         

CC 

CC CONSTANT PRESSURE (PSIA) 

*----PRESS1 

     1100 

CC 

CC CONSTANT INITIAL WATER SATURATION 

*----SWI 

37500*0.35 884*0.50 

CC 

CC CONSTANT CHLORIDE AND CALCIUM CONCENTRATIONS (MEQ/ML) 

*----C50       C60 

     0.134      0.0  

CC 

CC******************************************************************* 

CC                                                                  * 

CC    PHYSICAL PROPERTY DATA                                        * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC 

CC CMC 

*----  EPSME   

      .0001   

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 1 

*----HBNS70 HBNC70 HBNS71 HBNC71 HBNS72 HBNC72 

     0.     .030    0.   .030     0.0   .030 

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 2 

*----HBNS80 HBNC80 HBNS81 HBNC81 HBNS82 HBNC82 

     0.     0.     0.     0.     0.     0. 

CC 

CC LOWER AND UPPER EFFECTIVE SALINITY FOR ALCOHOL 1 AND ALCOHOL 2 

*----CSEL7  CSEU7  CSEL8  CSEU8 

     .65   .9   0.     0. 

CC 

CC THE CSE SLOPE PARAMETER FOR CALCIUM AND ALCOHOL 1 AND ALCOHOL 2 

*----BETA6  BETA7  BETA8 

     0.0    0.    0. 

CC 

CC FLAG FOR ALCOHOL PART. MODEL AND PARTITION COEFFICIENTS 

*----IALC  OPSK7O  OPSK7S  OPSK8O  OPSK8S 

     0     0.      0.      0.      0. 

CC 

CC NO. OF ITERATIONS, AND TOLERANCE 

*----NALMAX   EPSALC 

     20       .0001 
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CC 

CC ALCOHOL 1 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC7   AKWS7  AKM7  AK7     PT7 

     4.671   1.79   48.   35.31   .222  

CC 

CC ALCOHOL 2 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC8   AKWS8  AKM8  AK8     PT8 

     0.      0.     0.    0.      0. 

CC 

CC 

*--- IFT MODEL FLAG 

      0 

CC 

CC INTERFACIAL TENSION PARAMETERS 

*----G11  G12     G13   G21   G22    G23 

     13.  -14.8   .007  13.2   -14.5  .010 

CC 

CC LOG10 OF OIL/WATER INTERFACIAL TENSION  

*----XIFTW 

     1.477 

CC 

CC CAPILLARY DESATURATION PARAMETERS FOR PHASE 1, 2, AND 3 

*----ITRAP   T11        T22        T33 

     0       1865.      28665.46      364.2  

CC 

CC REL. PERM. AND PC CURVES 

*---- IPERM    IRTYPE 

        0       0 

CC 

CC FLAG FOR CONSTANT OR VARIABLE REL. PERM. PARAMETERS 

*----ISRW  IPRW  IEW 

     2      2    2 

CC 

CC CONSTANT RES. SATURATION OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----S1RWC 

37500*0.35  884*0.21 

CC 

CC 

*-- S2RWC 

37500*0.16  884*0.12    

CC 

CC 

*----S3RWC 

37500*0.35  884*0.21 

CC 

CC CONSTANT RES. SATURATION OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----P1RW 

37500*0.35  884*0.7 

CC 

CC 

*-- P2RW 

37500*0.78  884*0.92 

CC 

CC 

*----P3RW 

37500*0.35  884*0.7 

CC 

CC CONSTANT REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----E1W  

37500*3  884*1.1 
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CC 

CC 

*-- E2W 

37500*2  884*1.3 

CC 

CC 

*----E3W 

37500*3  884*1.1 

CC 

CC WATER AND OIL VISCOSITY , RESERVOIR TEMPERATURE 

*----VIS1   VIS2  TEMPV 

     1.0    5.0    150 

CC 

CC VISCOSITY PARAMETERS 

*----ALPHA1 ALPHA2  ALPHA3  ALPHA4  ALPHA5 

     0.0     0.0      0.0   0.000865    4.153 

CC 

CC PARAMETERS TO CALCULATE POLYMER VISCOSITY AT ZERO SHEAR RATE 

*----AP1     AP2     AP3 

     0.0001   0      0  

CC 

CC PARAMETER TO COMPUTE CSEP,MIN. CSEP, AND SLOPE OF LOG VIS. VS. LOG CSEP  

*----BETAP CSE1  SLOPE 

     10    .01   .0 

CC 

CC PARAMETER FOR SHEAR RATE DEPENDENCE OF POLYMER VISCOSITY 

*----GAMMAC  GAMHF  POWN    IPMOD   ishear  rweff   GAMHF2  iwreath 

     10.0        0.0    1.8     0       0       0.25    0      0 

CC 

CC FLAG FOR POLYMER PARTITIONING, PERM. REDUCTION PARAMETERS 

*----IPOLYM EPHI3 EPHI4 BRK    CRK    RKCUT 

     1      1.    1      0.     0.0  10 

CC 

CC SPECIFIC WEIGHT FOR COMPONENTS 1,2,3,7,AND 8 , AND GRAVITY FLAG 

*----DEN1  DEN2    DEN3     DEN7 DEN8  IDEN  

   62.899  49.857  62.399  49.824  0  2 

CC 

CC  FLAG FOR CHOICE OF UNITS ( 0:BOTTOMHOLE CONDITION , 1: STOCK TANK) 

*-----ISTB 

      0 

CC 

CC COMPRESSIBILITY FOR VOL. OCCUPYING COMPONENTS 1,2,3,7,AND 8  

*----COMPC(1)  COMPC(2)  COMPC(3)  COMPC(7)  COMPC(8) 

     0.        0.        0.        0.        0. 

CC 

CC CONSTANT OR VARIABLE PC PARAM., WATER-WET OR OIL-WET PC CURVE FLAG  

*----ICPC   IEPC  IOW  

     0       0   0 

CC 

CC CAPILLARY PRESSURE PARAMETERS, CPC 

*----CPC  

   0.  

CC 

CC CAPILLARY PRESSURE PARAMETERS, EPC 

*---- EPC 

      2. 

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 1 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0  0.0 0.0  
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CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 2 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0 0.0   

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 3 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0  0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 1 

*----ALPHAL(1)     ALPHAT(1) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 2 

*----ALPHAL(2)     ALPHAT(2) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 3 

*----ALPHAL(3)     ALPHAT(3) 

     0.0          0.0 

C 

CC SURFACTANT AND POLYMER ADSORPTION PARAMETERS 

*----AD31     AD32  B3D    AD41   AD42  B4D  IADK, IADS1, FADS refk 

     0.        .0  1000.  0.672   0.0  1      0      0      0   0 

CC 

CC PARAMETERS FOR CATION EXCHANGE OF CLAY AND SURFACTANT 

*----QV     XKC   XKS  EQW 

      0     0.    0.   804 

CC 

CC 

*---  KGOPT   

      4 

CC 

CC 

* -- IRKPPG        RKCUTPPG            DPPG         APPGS        PPGNS        

DCRICWS     TOLPPGIN 

      2           1000000000          0.0002888      10       -0.3         0.2        

40 

CC 

CC 

* --  APPGFR         PPGNFR 

       10        -0.3 

CC 

CC 

*---  ADPPGA         ADPPGB        RESRKFAC     TOLPPGRK 

       0            0            0.1           1e-6 

CC 

CC 

* ---- APPG1       APPG2     GAMCPG     GAMHFPG     POWNPG 

        1e-6         1e-6        0.0        0.0        1.8 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    WELL DATA                                                     * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC   

CC TOTAL NUMBER OF WELLS, WELL RADIUS FLAG, FLAG FOR TIME OR COURANT NO. 

*----NWELL   IRO   ITIME  NWREL 
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      2      2      1      2  

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW   IW    JW    IFLAG    RW     SWELL  IDIR   IFIRST  ILAST  IPRF 

      1     1    25      1       0.25     0.      3      1       15    0  

CC 

CC WELL NAME 

*---- WELNAM 

INJECTOR1 

CC 

CC ICHEK MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX    QTMIN    QTMAX 

      0      0.0       10000    0.0     50000. 

CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

      2    50   25   2        0.25      0.     3     1         15       0 

CC 

CC WELL NAME 

*---- WELNAM 

PRODUCER1 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

      0     0.0      10000.   0.0     -50000. 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1     1000       1.   0.  0.     0.   0.1342282    0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1     0.        0.   0.  0.     0.   0.           0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1     0.        0.   0.  0.     0.   0.           0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL (IFLAG=2 OR 3) 

*----ID   PWF 

     2    1000 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR WRITING TO OUTPUT FILES 

*----TINJ    CUMPR1   CUMHI1     WRHPV   WRPRF      RSTC 

     0.3        0.005       0.005        0.005   0.005         1 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO.  

*----DT      DCLIM     CNMAX   CNMIN     

     0.0001    0.01     0.1     0.01 

CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2  

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1  

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 
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*----ID  QI(M,L)  C(M,KC,L)   

     1    1000         1.     0.   0.     0.   0.1342282   0.    0.    0.    0.   

0.   0.   0.   0.  1000. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

     0.5      0.005       0.005        0.005   0.005         1 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

     0.0001   0.01          0.1   0.01  

CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2   

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1  

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1   1000         1.     0.   0.     0.   0.1342282   0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

   1.0      0.005       0.005        0.005   0.005         1 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT    DCLIM          CNMAX   CNMIN     

     0.0001   0.01          0.1   0.01  
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D-2.  Input data for the complex fracture conduit model 

CC******************************************************************* 

CC                                                                  * 

CC    BRIEF DESCRIPTION OF DATA SET                                 *  

CC                                                                  * 

CC******************************************************************* 

CC                                                                  * 

CC                                                                  * 

CC                                                                  * 

CC  LENGTH (FT) :    80           PROCESS :  PROFILE CONTROL        *  

CC  THICKNESS (FT) :  30           INJ. PRESSURE (PSI) :    -       * 

CC  WIDTH (FT) :    40            COORDINATES : CARTESIAN           * 

CC  POROSITY :     0.25                                             * 

CC  GRIDBLOCKS :  40 x 20 x 20                                     * 

CC  DATE :                                                          * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR DESCRIPTION                                         * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

*----RUNNO 

Complex Conduit 

CC   

CC 

*----HEADER 

EDFM Synthetic Model, Complex fracture conduit, PPG treatment 

 

 

CC 

CC SIMULATION FLAGS 

*---- IMODE IMES IDISPC IREACT  ICOORD ITREAC ITC  IENG  IFRAC 

        1    2    0      1      1     0      0    0      1 

CC 

CC NUMBER OF GRIDBLOCKS AND FLAG SPECIFIES CONSTANT OR VARIABLE GRID SIZE 

*----NX   NY  NZ  IDXYZ  IUNIT 

     40   20   20   0       0           

CC 

CC NUMBER OF FRACTURE GRIDBLOCKS 

*----NF  MAXF 

     85   50 

CC 

CC  VARIABLE GRID BLOCK SIZE IN X 

*----DX         DY          DZ       

     2          2           1.5 

CC 

CC TOTAL NO. OF COMPONENTS, NO. OF TRACERS, NO. OF GEL COMPONENTS 

*----N   NTW  NG 

     14   0   6  

CC 

CC 

*---- SPNAME(I),I=1,N 

WATER 

OIL 
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none 

none 

SALT 

none 

none 

none 

none 

none 

none 

none 

none 

ppg 

CC 

CC FLAG INDICATING IF THE COMPONENT IS INCLUDED IN CALCULATIONS OR NOT 

*----ICF(KC) FOR KC=1,N 

   1  1  0  0  1 0  0 0 0 0 0 0 0 1 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    OUTPUT OPTIONS                                                * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

CC  FLAG FOR PV OR DAYS FOR OUTPUT AND STOP THE RUN 

*----ICUMTM  ISTOP   

       1     1  

CC 

CC FLAG INDICATING IF THE PROFILE OF KCTH COMPONENT SHOULD BE WRITTEN 

*----IPRFLG(KC),KC=1,N 

     1  1  0  0  0  0 0 0 0 0 0 0 0  1 

CC 

CC FLAG FOR PRES,SAT.,TOTAL CONC.,TRACER CONC.,CAP.,GEL, ALKALINE PROFILES 

*----IPPRES IPSAT IPCTOT IPGEL  ITEMP    

      1      1      1      1    0   

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES  

*----ICKL IVIS IPER ICNM  ICSE 

      0     1    0    0    0     

CC 

CC FLAG FOR WRITING SEVERAL PROPERTIES TO PROF 

*----IADS  IVEL IRKF IPHSE  

      0     0    1    0   

CC 

CC******************************************************************* 

CC                                                                  * 

CC    RESERVOIR PROPERTIES                                          * 

CC                                                                  * 

CC******************************************************************* 

CC   

CC 

CC MAX. SIMULATION TIME (PV)  

*---- TMAX 

    1.0 

CC 

CC ROCK COMPRESSIBILITY (1/PSI), STAND. PRESSURE(PSIA) 

*----COMPR   PSTAND 

      0.      14.7 

CC 

CC FLAGS INDICATING CONSTANT OR VARIABLE POROSITY, X,Y,AND Z PERMEABILITY 
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*----IPOR1 IPERMX IPERMY IPERMZ  IMOD  ITRNZ  INTG 

       4      4     4      4      0     0      0 

CC 

CC FLAG FOR CONSTANT OR VARIABLE DEPTH, PRESSURE, WATER SATURATION 

*----IDEPTH  IPRESS  ISWI  

      0        0       2  

CC 

CC VARIABLE DEPTH (FT) 

*----D111 

     0         

CC 

CC CONSTANT PRESSURE (PSIA) 

*----PRESS1 

     1100 

CC 

CC CONSTANT INITIAL WATER SATURATION 

*----SWI 

16000*0.35 85*0.50 

CC 

CC CONSTANT CHLORIDE AND CALCIUM CONCENTRATIONS (MEQ/ML) 

*----C50       C60 

     0.134      0.0  

CC 

CC******************************************************************* 

CC                                                                  * 

CC    PHYSICAL PROPERTY DATA                                        * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC 

CC CMC 

*----  EPSME   

      .0001   

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 1 

*----HBNS70 HBNC70 HBNS71 HBNC71 HBNS72 HBNC72 

     0.     .030    0.   .030     0.0   .030 

CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 

CC FOR ALCOHOL 2 

*----HBNS80 HBNC80 HBNS81 HBNC81 HBNS82 HBNC82 

     0.     0.     0.     0.     0.     0. 

CC 

CC LOWER AND UPPER EFFECTIVE SALINITY FOR ALCOHOL 1 AND ALCOHOL 2 

*----CSEL7  CSEU7  CSEL8  CSEU8 

     .65   .9   0.     0. 

CC 

CC THE CSE SLOPE PARAMETER FOR CALCIUM AND ALCOHOL 1 AND ALCOHOL 2 

*----BETA6  BETA7  BETA8 

     0.0    0.    0. 

CC 

CC FLAG FOR ALCOHOL PART. MODEL AND PARTITION COEFFICIENTS 

*----IALC  OPSK7O  OPSK7S  OPSK8O  OPSK8S 

     0     0.      0.      0.      0. 

CC 

CC NO. OF ITERATIONS, AND TOLERANCE 

*----NALMAX   EPSALC 

     20       .0001 

CC 

CC ALCOHOL 1 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC7   AKWS7  AKM7  AK7     PT7 
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     4.671   1.79   48.   35.31   .222  

CC 

CC ALCOHOL 2 PARTITIONING PARAMETERS IF IALC=1 

*----AKWC8   AKWS8  AKM8  AK8     PT8 

     0.      0.     0.    0.      0. 

CC 

CC 

*--- IFT MODEL FLAG 

      0 

CC 

CC INTERFACIAL TENSION PARAMETERS 

*----G11  G12     G13   G21   G22    G23 

     13.  -14.8   .007  13.2   -14.5  .010 

CC 

CC LOG10 OF OIL/WATER INTERFACIAL TENSION  

*----XIFTW 

     1.477 

CC 

CC CAPILLARY DESATURATION PARAMETERS FOR PHASE 1, 2, AND 3 

*----ITRAP   T11        T22        T33 

     0       1865.      28665.46      364.2  

CC 

CC REL. PERM. AND PC CURVES 

*---- IPERM    IRTYPE 

        0       0 

CC 

CC FLAG FOR CONSTANT OR VARIABLE REL. PERM. PARAMETERS 

*----ISRW  IPRW  IEW 

     2      2    2 

CC 

CC CONSTANT RES. SATURATION OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----S1RWC 

16000*0.35  85*0.31 

CC 

CC 

*-- S2RWC 

16000*0.12  85*0.1    

CC 

CC 

*----S3RWC 

16000*0.35  85*0.21 

CC 

CC CONSTANT RES. SATURATION OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----P1RW 

16000*0.35  85*0.5 

CC 

CC 

*-- P2RW 

16000*0.85  85*0.95 

CC 

CC 

*----P3RW 

16000*0.35  85*0.7 

CC 

CC CONSTANT REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 

*----E1W  

16000*3  85*1.4 

CC 

CC 

*-- E2W 
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16000*2  85*1.2 

CC 

CC 

*----E3W 

16000*3  85*1.1 

CC 

CC WATER AND OIL VISCOSITY , RESERVOIR TEMPERATURE 

*----VIS1   VIS2  TEMPV 

     1.0    2.5    150 

CC 

CC VISCOSITY PARAMETERS 

*----ALPHA1 ALPHA2  ALPHA3  ALPHA4  ALPHA5 

     0.0     0.0      0.0   0.000865    4.153 

CC 

CC PARAMETERS TO CALCULATE POLYMER VISCOSITY AT ZERO SHEAR RATE 

*----AP1     AP2     AP3 

     0.0001   0      0  

CC 

CC PARAMETER TO COMPUTE CSEP,MIN. CSEP, AND SLOPE OF LOG VIS. VS. LOG CSEP  

*----BETAP CSE1  SLOPE 

     10    .01   .0 

CC 

CC PARAMETER FOR SHEAR RATE DEPENDENCE OF POLYMER VISCOSITY 

*----GAMMAC  GAMHF  POWN    IPMOD   ishear  rweff   GAMHF2  iwreath 

     10.0        0.0    1.8     0       0       0.25    0      0 

CC 

CC FLAG FOR POLYMER PARTITIONING, PERM. REDUCTION PARAMETERS 

*----IPOLYM EPHI3 EPHI4 BRK    CRK    RKCUT 

     1      1.    1      0.     0.0  10 

CC 

CC SPECIFIC WEIGHT FOR COMPONENTS 1,2,3,7,AND 8 , AND GRAVITY FLAG 

*----DEN1  DEN2    DEN3     DEN7 DEN8  IDEN  

   62.899  49.857  62.399  49.824  0  2 

CC 

CC  FLAG FOR CHOICE OF UNITS ( 0:BOTTOMHOLE CONDITION , 1: STOCK TANK) 

*-----ISTB 

      0 

CC 

CC COMPRESSIBILITY FOR VOL. OCCUPYING COMPONENTS 1,2,3,7,AND 8  

*----COMPC(1)  COMPC(2)  COMPC(3)  COMPC(7)  COMPC(8) 

     0.        0.        0.        0.        0. 

CC 

CC CONSTANT OR VARIABLE PC PARAM., WATER-WET OR OIL-WET PC CURVE FLAG  

*----ICPC   IEPC  IOW  

     0       0   0 

CC 

CC CAPILLARY PRESSURE PARAMETERS, CPC 

*----CPC  

   0.  

CC 

CC CAPILLARY PRESSURE PARAMETERS, EPC 

*---- EPC 

      2. 

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 1 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0  0.0 0.0  

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 2 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  
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     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0 0.0   

CC 

CC MOLECULAR DIFFUSIVITY OF KCTH COMPONENT IN PHASE 3 (D(KC),KC=1,N) 

*----D(1) D(2) D(3) D(4) D(5) D(6)  

     0.   0.   0.   0.   0.   0.  0.0  0.0  0.0  0.0  0.0  0.0 0.0  0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 1 

*----ALPHAL(1)     ALPHAT(1) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 2 

*----ALPHAL(2)     ALPHAT(2) 

     0.0          0.0 

CC 

CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 3 

*----ALPHAL(3)     ALPHAT(3) 

     0.0          0.0 

C 

CC SURFACTANT AND POLYMER ADSORPTION PARAMETERS 

*----AD31     AD32  B3D    AD41   AD42  B4D  IADK, IADS1, FADS refk 

     0.        .0  1000.  0.672   0.0  1      0      0      0   0 

CC 

CC PARAMETERS FOR CATION EXCHANGE OF CLAY AND SURFACTANT 

*----QV     XKC   XKS  EQW 

      0     0.    0.   804 

cc 

cc 

*---  KGOPT   

      4 

CC 

CC****particle size, swelling ratio 

* -- IRKPPG        RKCUTPPG            DPPG         APPGS        PPGNS        

DCRICWS     TOLPPGIN 

      2           1000000000          0.0002888      10       -0.3         0.4        

40 

CC 

CC****fittin equation for resistance factor 

* --  APPGFR         PPGNFR 

       20        -0.3 

CC 

CC 

*---  ADPPGA         ADPPGB        RESRKFAC     TOLPPGRK 

       0            0            0.2           1e-6 

CC 

CC 

* ---- APPG1       APPG2     GAMCPG     GAMHFPG     POWNPG 

        1e-6         1e-6        0.0        0.0        1.8 

CC 

CC******************************************************************* 

CC                                                                  * 

CC    WELL DATA                                                     * 

CC                                                                  * 

CC******************************************************************* 

CC 

CC   

CC TOTAL NUMBER OF WELLS, WELL RADIUS FLAG, FLAG FOR TIME OR COURANT NO. 

*----NWELL   IRO   ITIME  NWREL 

      2      2      1      2  

CC 

CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 
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*----IDW   IW    JW    IFLAG    RW     SWELL  IDIR   IFIRST  ILAST  IPRF 

      1     1    10      1       0.25     0.      3      1       20    0  

CC 

CC WELL NAME 

*---- WELNAM 

INJECTOR1 

CC 

CC ICHEK MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK   PWFMIN   PWFMAX    QTMIN    QTMAX 

      0      0.0       10000    0.0     50000. 

CC 

CC WELL ID, LOCATION, AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 

*----IDW  IW   JW   IFLAG    RW     SWELL  IDIR  IFIRST   ILAST    IPRF 

      2    40   10   2        0.25      0.     3     1         20       0 

CC 

CC WELL NAME 

*---- WELNAM 

PRODUCER1 

CC 

CC MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 

*----ICHEK  PWFMIN   PWFMAX  QTMIN   QTMAX 

      0     0.0      10000.   0.0     -50000. 

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1     600       1.   0.  0.     0.   0.1342282    0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1     0.        0.   0.  0.     0.   0.           0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1     0.        0.   0.  0.     0.   0.           0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL (IFLAG=2 OR 3) 

*----ID   PWF 

     2    800 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR WRITING TO OUTPUT FILES 

*----TINJ    CUMPR1   CUMHI1     WRHPV   WRPRF      RSTC 

     0.3        0.005       0.005        0.005   0.005         1 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO.  

*----DT      DCLIM     CNMAX   CNMIN     

     0.0001    0.01     0.1     0.01 

CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2  

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1  

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1    600         1.     0.   0.     0.   0.1342282   0.    0.    0.    0.   

0.   0.   0.   0.  2000. 
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     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

     0.5      0.005       0.005        0.005   0.005         1 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT     DCLIM          CNMAX   CNMIN     

     0.0001   0.01          0.1   0.01  

CC 

CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS ( WATER INJ.) 

*---- IRO ITIME IFLAG 

       2   1     1  2   

CC   

CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 

*----NWEL1 

     0       

CC   

CC NUMBER OF WELLS WITH RATE CHANGES, ID 

*----NWEL1   ID 

     1        1  

CC 

CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 

*----ID  QI(M,L)  C(M,KC,L)   

     1   600         1.     0.   0.     0.   0.1342282   0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

     1    0.          0.     0.   0.     0.   0.          0.    0.    0.    0.   

0.   0.   0.   0.   0. 

CC 

CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 

*----TINJ   CUMPR1  CUMHI1(PROFIL)  WRHPV(HIST) WRPRF(PLOT) RSTC 

   1.0      0.01       0.01        0.01   0.01         1 

CC 

CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. COURANT NO. 

*----DT    DCLIM          CNMAX   CNMIN     

     0.0001   0.01          0.1   0.01  
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D-3.  The impact of having the created fractures in the synthetic models 

 

Slanted fracture plane model 

 

Figure D-1 shows the comparison of the oil recoveries from waterflooding the 

synthetic model with and without the slanted fracture plane. The waterflood recovery 

from the model without the fracture plane was 61.81% while the recovery from the model 

with the conduit was only 55.77%. The impact of having the slanted fracture plane on 

waterflood recovery in this case was as significant as 6.04% reduction.  

 

 

Figure D - 1. Comparison of the waterflood performance of a reservoir with and without a slanted 

fracture plane 
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Complex fracture conduit model 

 

Figure D-2 shows the comparison of the oil recoveries from waterflooding the 

synthetic model with and without the complex conduit. The waterflood recovery from the 

model without the conduit was 73.57% while the recovery from the model with the 

conduit was 73.28%. The impact of having the complex conduit on waterflood recovery 

in this case was only 0.29% reduction.  

 

 

Figure D - 2. Comparison of the waterflood performance of a reservoir with and without a complex 

fracture conduit 
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Nomenclature 

English Symbols 

   Area of fracture cell inside the grid block  

         Model input parameter for PPG viscosity calculation in UTGEL 

         Model input parameter for PPG viscosity calculation in UTGEL 

      Model  input parameters for resistance factor calculation in UTGEL 

(corresponding to APPGFR in INPUT files) 

    Model input parameter for swelling equation in UTGEL (corresponding to 

APPGS in INPUT files) 

      Concentration of component   in phase   

  
   Volume-weighted component compressibility 

    Microgel concentration, which is defined as the amount of microgel per 

unit volume of solution and usually expressed in terms of mass per unit 

volume 

     Phase   heat capacity at constant pressure 

       PPG concentration in aqueous phase 

    Rock compressibility 

      Effective salinity in meq per liter which takes into account the combined 

effect of anions and divalent cations 

     Total compressibility  

      Phase   heat capacity at constant volume 

      Rock heat capacity at constant volume  

     Overall volumetric concentration of component   

      Adsorbed concentration of component   

   Normal distance between center of matrix grid block and fracture cell 

          Dispersive flux of component   

   Permeability or harmonic average of the permeabilities 

      Relative permeability of phase   

A

d

k
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    Average permeability  

     Huggins constant 

    Length of intersection line (between 2 fractures) bounded in a grid block 

    Mobility ratio  

     Volume of gel after swelling  

     Volume of dry gel before swelling 

     Model input parameters for resistance factor calculation in UTGEL 

(corresponding to APPGFR in INPUT files) 

     Number of components 

    Model input parameter for swelling equation in UTGEL (corresponding to 

PPGNFR in INPUT files) 

OOIP Original oil in place 

     Model input parameter for effective viscosity calculation in UTGEL 

     Part per million 

     Pore volume injected 

    Flow rate in cu.ft/day 

     Enthalpy source term per bulk volume 

     Heat loss  

     Pore throat radius  

     Injection or production rate for component   per bulk volume   

       Permeability reduction factor 

             Model input parameter for resistance factor calculation in UTGEL 

          Maximum permeability reduction 

RF   Resistance factor or permeability reduction factor 

RRF   Residual resistance factor  

     Saturation of phase   

     Swelling ratio 

    Reservoir temperature 
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T   Transmissibility factor  

VDP  Dykstra Parsons coefficient 

 

Greek Symbols 

     Thermal conductivity  

      Zero-shear intrinsic viscosity 

                    Porosity 

     Density of pure component   

       Volumetric flux of phase   

     Effective viscosity of microgel solution at low shear rate 

  
    Microgel solution viscosity at zero shear rate 

     Oil viscosity 

     Solvent viscosity  

     Water viscosity 

       Magnitude of flux, 

    Fracture aperture 

       Shear rate correction 

       Equivalent shear rate 

        Model input parameter for effective viscosity calculation in UTGEL  

 

  



280 

 

References 

 

Abdulbaki M.R., “Simulation Study of Polymer Microgel Conformance Treatments,” 

M.S.E. Thesis, The University of Texas at Austin, 2012. 

Al-Anazi H.A., and Sharma M. “Use of a pH Sensitive Polymer for Conformance 

Control,” International Symposium and Exhibition on Formation Damage 

Control, 20-21 February 2002, Lafayette, Louisiana. U.S.A. (paper SPE 73782)  

Al-Muntasheri G.A., Nasr-El-Din H.A., Al-Noaimi K.R., and Zitha P.L.J., “A Study of 

Polyacrylamide-Based Gels Crosslinked With Polyethyleneimine,” International 

Symposium on Oilfield Chemistry, 28 February - 2 March 2009, Houston, 

Texas, U.S.A. (paper SPE 105925)  

Bai, B., Liu Y., Coste J-P, and Li L., “Preformed Particle Gel for Conformance Control: 

Transport Mechanism Through Porous Media,” SPE/DOE Symposium on 

Improved Oil Recovery, 17-21 April 2007, Tulsa, Oklahoma, U.S.A. (paper SPE 

89468) 

Bai, B., Li L., Liu Y., Wang Z., and Liu H., “Preformed Particle Gel for Conformance 

Control: Factors Affecting its Properties and Applications,” SPE/DOE 

Symposium on Improved Oil Recovery, 17-21 April 2007, Tulsa, Oklahoma, 

U.S.A. (paper SPE 89389)  

Bai, B., Wei M., and Liu Y., “Field and Lab Experience with a Successful Preformed 

Particle Gel Conformance Control Technology,” SPE Production and Operations 

Symposium, 23-26 March 2013, Oklahoma City, Oklahoma, U.S.A. (paper SPE 

164511) 

Bai, B., Huang F., Liu Y., Seright R.S., and Wang Y., “Case Study on Preformed Particle 

Gel for In-depth Fluid Diversion,” SPE Symposium on Improved Oil Recovery, 

20-23 April 2008, Tulsa, Oklahoma, U.S.A. (paper SPE 113997) 

Bai B., “Preformed particle gel for conformance control,” REPSEA Project: 07123-2, 

Progress report November 2009, First annual report.  

Bai B., and Imqam A., Private communication, 2014.  



281 

 

Bai B., Private communication, 2014. 

Bai B., and Liu Y., “Thermo-Dissoluble Polymer for In-Depth Mobility Control,” 

International Petroleum Technology Conference, 26-28 March 2013, Beijing, 

China. (paper IPTC 16991) 

Borling D.C., “Injection conformance control case histories using gels at the Wertz field 

CO2 tertiary flood in Wyoming,” SPE/DOE Improved Oil Recovery 

Symposium, 17-20 April 1994, Tulsa, Oklahoma, U.S.A. (paper SPE 27825)  

Chang H.L., Sui X., Xiao L., Liu H., Guo Z., Yao Y., Xiao Y., Chen G., Song K., and 

Mack J.C., “Successful Field Pilot of In-Depth Colloidal Dispersion Gel (CDG) 

Technology in Daqing Oil Field,” SPE/DOE Symposium on Improved Oil 

Recovery, 17-21 April 2006, Tulsa, Oklahoma, U.S.A. (paper SPE 89460)  

Chauveteau G., Tabary R., Blin N., Renard M., Rousseau D., and Faber R., 

“Disproportionate permeability reduction by soft preformed microgels,” 

SPE/DOE Symposium on Improved Oil Recovery, 17-21 April 2004, Tulsa, 

Oklahoma, U.S.A. (paper SPE 89390) 

Chauvateau G., Tabary R., Le Bon C., Renard M., Feng Y., and Omari A., “In-Depth 

Permeability Control by Adsorption of Soft Sized-Controlled Microgels,” SPE 

European Formation Damage Conference, 13-14 May 2003, The Hague, 

Netherlands. (paper SPE 82228)  

Clemens T., Abdev J., Thlele M.R., “Improved Polymer-Flood Management Using 

Streamlines,” SPE Annual Technical Conference and Exhibition, 19-22 

September 2010, Florence, Italy. (paper SPE 132774) 

Cobb W.M., Marek F.J., “Determination of Volumetric Sweep Efficiency in Mature 

Waterflooding Using Production Data,” SPE Annual Technical Conference and 

Exhibition, 5-8 October 1997, San Antonio, Texas, U.S.A. (paper SPE 38902) 

Coste J-P., Liu Y., Bai B., Li Y., Shen P., Wang Z., and Zhu G. : “In-depth fluid 

diversion by pre-gelled particles. Laboratory study and pilot testing,” SPE/DOE 

Improved Oil Recovery Symposium, 3-5 April 2000, Tulsa, Oklahoma, U.S.A. 

(paper SPE 59362)  



282 

 

Cozic C., Rousseau D., and Tabary R., “Novel Insights into Microgel Systems for Water 

Control,” SPE Production & Operations, 2009. (paper SPE 115974)  

Cui X., Li Z., Cao X., Song X., Chen X., and Zhang X., “A Novel PPG Enhanced 

Surfactant-Polymer System for EOR,” SPE Enhanced Oil Recovery Conference, 

19-21 July 2011, Kuala Lumpur, Malaysia. (paper SPE 143506) 

Cuong, T., Chen Z., Nguyen N., Bae W., and Phung T.H., “Development and 

Optimization of Polymer Conformance Control Technology in Mature 

Reservoirs: Laboratory Experiments vs. Field Scale Simulation,” SPE Enhanced 

Oil Recovery Conference, 19-21 July 2011, Kuala Lumpur, Malaysia. (paper 

SPE 144221)  

Delshad M., Han W., Pope G.A., Sepehrnoori K., Wu W., Yang R., Zhao L., 

“Alkaline/Surfactant/Polymer flood predictions for the Karamay oil field,” 

SPE/DOE Improved Oil Recovery Symposium, 19-22 April 1998, Tulsa, 

Oklahoma. U.S.A. (paper SPE 39610) 

Delshad, M., Varavei, J., and Sepehrnoori, K. The University of Texas at Austin Gel 

Simulator (UTGEL), 2011.  

Elsharafi M.O., and Bai, B., “Effect of Preformed Particle Gel on Unswept Oil 

Zones/Areas during Conformance Control Treatments,” EAGE Annual 

Conference & Exhibition incorporating SPE Europec, 10-13 June 2013, London, 

UK. (paper SPE 164879) 

Goudarzi A., Delshad M., Varavei A., Zhang H., Sepehrnoori K., Bai B., and Hu Y., 

“Water Management in Mature Oil Fields using Preformed Particle Gels,” PE 

Western Regional & AAPG Pacific Section Meeting 2013 Joint Technical 

Conference, 19-25 April 2013, Monterey, California, U.S.A. (paper SPE 165356)  

Goudarzi A., Ayman A., Varavei A., Delshad M., Bai B., and Sepehrnoori K., “New 

experiment and models for conformance control microgels,” SPE Improved Oil 

Recovery Symposium, 12-16 April 2014, Tulsa, Oklahoma, U.S.A. (paper SPE 

169159) 



283 

 

Grillet A.M., Wyatt N.B., and Gloe L.M., “Polymer Gel Rheology and Adhesion,” 

http://www.intechopen.com/download/get/type/pdfs/id/30968, Sandia 

National Laboratories, 2012, U.S.A. 

Frampton H., Morgan J.C., Cheung S.K., Munson L., Chang K.T., Williams D., 

“Development of a novel waterflood conformance control system,” SPE/DOE 

Symposium on Improved Oil Recovery, 17-21 April 2004, Tulsa, Oklahoma, 

U.S.A. (paper SPE 89391) 

Liu H., Han H., Li Z., and Wang B., “Granular-Polymer-Gel Treatment Successful in the 

Daqing Oil Field,” SPE Production & Operations, 2006. (paper SPE 87071) 

Imqam A., Bai B., Al Ramadan M., Wei M., Delshad M., and Sepehrnoori K., 

”Preformed particle gel extrusion through open conduits during conformance 

control treatments,” SPE Improved Oil Recovery Symposium, 12-16 April 2014, 

Tulsa, Oklahoma, U.S.A. (paper SPE 169107)  

Izgec O., and Shook G.M., “Design Considerations of Waterflood Conformance Control 

with Temperature-Triggered, Low-Viscosity Submicron Polymer. SPE Reservoir 

Evaluation & Engineering,” SPE Reservoir Evaluation & Engineering (2012), 

pp. 533-540. (paper SPE 153898) 

Kim H.S., “Simulation study of gel conformance treatments,” Ph.D. Dissertation, The 

University of Texas at Austin, 1995. 

Klimczak C., Schultz R.A., Parashar R., and Reeves D.M., “Cubic law with aperture-

length correlation: implications for network scale fluid flow,” Hydrogeology 

Journal, 2010. 

Lake L.W., Jensen J.L., “A review of heterogeneity measures used in reservoir 

characterization,” 1989. (paper SPE 20156) 

Lake L.W., “Enhanced Oil Recovery,” The University of Texas at Austin, 1996. 

Larkin R.J., and Creel P.G., “Methodologies and solutions to remediate inter-well 

communication problems on the SACROC CO2 EOR project: A case study,” 

SPE Symposium on Improved Oil Recovery, 20-23 April 2008, Tulsa, 

Oklahoma, U.S.A. (paper SPE 113305) 

http://www.intechopen.com/download/get/type/pdfs/id/30968


284 

 

Li L., and Lee S.H., “Efficient field-scale simulation of black oil in a naturally fractured 

reservoir through discrete fracture networks and homogenized media,” 

International Oil & Gas Conference and Exhibition in China, 5-7 December 

2006, Beijing, China. (paper SPE 103901) 

Liu Y., Bai, B., and Shuler P.J., “Application and Development of Chemical-Based 

Conformance Control Treatments in China Oil Fields,” SPE/DOE Symposium 

on Improved Oil Recovery, 22-26 April 2006, Tulsa, Oklahoma, U.S.A. (paper 

SPE 99641) 

Lu X., Song K., Niu J., and Chen F., “Performance and Evaluation Methods of Colloidal 

Dispersion Gels in the Daqing Oil Field,” SPE Asia Pacific Conference on 

Integrated Modelling for Asset Management, 25-26 April 2000, Yokohama, 

Japan. (paper SPE 59466) 

Manrique E., Thomas C., Ravikiran R., Kamouei M., Lantz M., Romero J., and Alvarado 

V., “Current Status and Opportunities,” SPE Improved Oil Recovery 

Symposium, 24-28 April 2010, Tulsa, Oklahoma, U.S.A. (paper SPE 130113)  

McCool C.S., Li X., Willhite G.P., “Flow of a Polyacrylamide/Chromium Acetate 

System in a Long Conduit,” SPE Journal (2009), pp. 54-66. (paper SPE 106059) 

Meter, and Bird: “Polymer Flooding,” Computational Methods for Multiphase Flows in 

Porous Media, 1964, pp. 411-412. 

Moinfar A., Varavei A., Sepehrnoori K., and Johns R.T. : “Development of a novel and 

computationally-efficient discrete-fracture model to study IOR processes in 

naturally fractured reservoirs,”  SPE Improved Oil Recovery Symposium, 14-18 

April 2012, Tulsa, Oklahoma, U.S.A. (paper SPE 154246) 

Muruaga E., Flores M., Norman C., and Romero J., “Combining Bulk Gels and Colloidal 

Dispersion Gels for Improved Volumetric Sweep Efficiency in a Mature 

Waterflood,” SPE Symposium on Improved Oil Recovery, 20-23 April 2008, 

Tulsa, Oklahoma, U.S.A. (paper SPE 113334) 



285 

 

Norman C.A., Smith J.E., and Thompson R.S., “Economics of in-depth polymer gel 

processes,” SPE Rocky Mountain Regional Meeting, 15-18 May, Gillette, 

Wyoming, U.S.A. (paper SPE 55632)  

Onbergenov U., “Simulation of thermally active and pH-sensitive polymers for 

conformance control,” M.S.E. Thesis, The University of Texas at Austin, 2012. 

Pritchett J., Frampton H., and Brinkman J., “Field Application of a New In-Depth 

Waterflood Conformance Improvement Tool,” SPE International Improved Oil 

Recovery Conference in Asia Pacific, 20-21 October 2003, Kuala Lumpur, 

Malaysia. (paper SPE 84897)  

Pyziak D., and Smith D., “Update on Anton Irish conformance effort,” The 6th 

International Conference on Production Optimization--Reservoir Conformance-

Profile Control-Water and Gas Shut-off, 2007, Houston, Texas, U.S.A.  

Qiu Y., Wu F., Wei M., and Kang W., Li B., “Lessons learned from applying particle 

gels in mature oil fields,” SPE Improved Oil Recovery Symposium, 12-16 April 

2014, Tulsa, Oklahoma, U.S.A. (paper SPE 169161) 

Sydansk R.D., and Southwell G.P., “More Than 12 Years of Experience with a 

Successful Conformance-Control Polymer Gel Technology,” SPE/AAPG 

Western Regional Meeting, 19-22 June 2000, Long Beach, California, U.S.A. 

(paper SPE 62561) 

Rousseau D., Chauveteau G., Renard M., Tabary R., Zaitoun A., Mallo P., Braun O., and 

Omari A., “Rheology and Transport in Porous Media of New Water 

Shutoff/Conformance Control Microgels,” SPE International Symposium on 

Oilfield Chemistry, 2-4 February 2005, The Woodlands, Texas, U.S.A. (paper 

SPE 93254) 

Sahni A., Dehghani K., and Prieditis J., “Benchmarking Heterogeneity of Simulation 

Models,” SPE Annual Technical Conference and Exhibition, 9-12 October 2005, 

Dallas, Texas, U.S.A. (paper SPE 96838) 

Sergio J., Ph.D. Dissertation (in progress), The University of Texas at Austin, 2014. 



286 

 

Seright R.S., “Conformance Improvement Using Gels,” Annual Technical Progress 

Report, DOE Contract, September, 2004. 

Shakiba M., M.S.E. Thesis (in progress), The University of Texas at Austin, 2014. 

Sydansk R.D., Xiong Y., Al-Dhafeeri A.M., Schrader R.J., and Seright R.S., 

“Characterization of partially formed polymer gels for application to fractured 

production wells for water-shutoff purposes,” SPE/DOE Symposium on 

Improved Oil Recovery, 17-21 April 2004, Tulsa, Oklahoma, U.S.A. (paper SPE 

89401) 

Tang C.J., “Profile modification and profile modification plus oil displacement technique 

in the high water cut oilfield in Zhongyuan Oilfield,” Petroleum Geology & 

Oilfield Development in Daqing. Vol. 24, 2005. 

Teklu T.W., Alameri W., Akinboyewa J., Kazemi H., Graves R.M., AlSumalti A.M., 

“Numerical Modeling of Polymer-augmented Waterflooding in Heterogeneous 

Reservoirs,” SPE Middle East Oil and Gas Show and Conference, 10-13 March 

2013, Manama, Bahrain. (paper SPE 164199) 

Shi J., Varavei A., Huh C., Delshad M., Sepehrnoori K., and Li. X., “Transport Model 

Implementation and Simulation of Microgel Processes for Conformance and 

Mobility Control Purposes,” Energy & Fuels, 2011, pp. 5063-5075. 

Shi J., Varavei A., Huh C., Delshad M., Sepehrnoori K., and Li. X., “Viscosity Model of 

Preformed Microgels for Conformance and Mobility Control,” Energy & Fuels, 

2011, pp. 5033-5037. 

UTGEL User‟s Manual, Center of Petroleum & Geosystems Engineering, The University 

of Texas at Austin, 2014. 

Wang G., Zhang D., Yin D., Su Y., and Ma C., “Performance evaluation and laboratory 

experimental study on new gel-type profile control agent,” SPE Middle East Oil 

and Gas Show and Conference, 10-13 March 2013, Manama, Bahrain. (paper 

SPE 164225) 



287 

 

Wang J., Liu H, Wang Z., Xu J., and Yuan D., “Numerical simulation of preformed 

particle gel flooding for enhancing oil recovery,” Journal of petroleum science 

and engineering, 2013. 

Wu Y-S., and Bai, B., “Modeling Particle Gel Propagation in Porous Media,” SPE 

Annual Technical Conference and Exhibition, 21-24 September 2008, Denver, 

Colorado, U.S.A. (paper SPE 115678)  

Zhang H., and Bai B., “Preformed Particle Gel Transport through Open Fractures and its 

Effect on Water Flow,” SPE Improved Oil Recovery Symposium, 24-28 April 

2010, Tulsa, Oklahoma, U.S.A. (paper SPE 129908) 

Zhou W., Delshad M., Liu C, Wang Z., Varavei A., Zhang W., and Wang X., “A Multi-

Well Performance Particle Gel Injection Evaluation Using a Sophisticated 

Simulator,” International Petroleum Technology Conference, 26-28 March 2013, 

Beijing, China. (paper IPTC 16693) 

 


