
Copyright
by

Ajay Vadakkepatt
2016

The Dissertation Committee for Ajay Vadakkepatt
certifies that this is the approved version of the following dissertation:

Topology Optimization for Thermal-Fluid Applications
using an Unstructured Finite Volume Scheme

Committee:

David G. Bogard, Supervisor

Jayathi Y. Murthy, Co-Supervisor

Carolyn C. Seepersad

Nedialko B. Dimitrov

Sanjay R. Mathur

Topology Optimization for Thermal-Fluid Applications
using an Unstructured Finite Volume Scheme

by

Ajay Vadakkepatt, B.E.; M.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2016

Dedicated to my Guru

Her holiness ‘Sri Sri Mata Amritanandamayi Devi’

The embodiment of infinite compassion!

Acknowledgments

I would like to first express my infinite gratitude to my spiritual mas-

ter Amma (Her holiness Sri Sri Mata Amritanandamayi Devi), known as the

‘Hugging Saint’, for everything she has bestowed upon me. Her guidance

throughout my life and PhD is inexplicable. I also thank all the Swamis

(monks) of Amma’s Ashram for their positive influence and guidance in my

life.

My mother, father, sister, wife and family have been my constant source

of support and inspiration during all stages of my life. Tears trickle down

my cheeks whenever I think about the sacrifices my parents have endured

throughout their life for others. I sincerely thank each and every person of my

family for all their help and support.

I consider myself extremely fortunate to have been advised by my su-

pervisors Prof. Jayathi Y. Murthy and Dr. Sanjay R. Mathur. What more

can I ask than being able to stand on the shoulders of these two world-class

giants of Computational Fluid Dynamics? I thank both my advisers and all

other professors who have guided throughout my PhD in various ways.

Finally, I would like to sincerely express my gratitude to all my friends,

lab-mates, room-mates and colleagues who have helped me throughout the

course of my PhD.

v

Topology Optimization for Thermal-Fluid Applications
using an Unstructured Finite Volume Scheme

Publication No.

Ajay Vadakkepatt, Ph.D.
The University of Texas at Austin, 2016

Supervisors: David G. Bogard
Jayathi Y. Murthy

Topology optimization is a method for developing optimized geometric

designs that maximize a quantity of interest (QoI) subject to constraints. Un-

like shape optimization, which optimizes the dimensions of a template shape,

topology optimization does not start with a pre-conceived shape. Instead, the

algorithm builds the geometry iteratively by placing material pixels in a speci-

fied background domain, aiming to maximize the QoI subject to a constraint on

the volume of material or other constraints. The power of topology optimiza-

tion lies in its ability to realize design solutions that are not initially apparent

to the engineer. Topology optimization, though well established in structural

applications, has not percolated to the thermal-fluids community to any great

degree, and most published papers have not addressed sufficiently realistic

engineering problems. However, the methodology has immense application

vi

potential in the area of fluid flow, heat and mass transfer and other transport

phenomena at all length scales. In the literature, the solution methodology

used for topology optimization is based mostly on finite element methods.

However, unstructured finite volume methods are frequently the numerical

method of choice in the industry for those addressing thermal-fluid or other

transport problems. It is essential that methods for topology optimization

work well in the finite volume framework if they are to find traction in indus-

try. Regardless of the numerical method employed for forward solution, the

most popular methodology employed for topology optimization is the solid

isotropic material with penalization (SIMP) approach in conjunction with a

gradient-based optimization algorithm. This optimization approach requires

the calculation of sensitivity derivatives of the QoI with respect to design

variables through a discrete adjoint method. The Method of Moving Asymp-

totes (MMA) is a widely-used algorithm for topology optimization. Thus the

objective of this dissertation is to build a robust framework for topology opti-

mization for thermal-fluid problems, employing SIMP and MMA, within the

framework of industry-standard finite volume schemes.

Towards realizing this goal, we first develop and demonstrate topol-

ogy optimization for multidimensional steady heat conduction problems in a

cell-centered unstructured finite volume framework. The fundamental method-

ologies for SIMP/RAMP interpolation of thermal conductivity and the basic

optimization infrastructure using MMA are developed and tested in this chap-

ter. The effect of including secondary gradients in sensitivity computations is

vii

evaluated for typical heat conduction problems. Topologies that maximize or

minimize relevant quantities of interest in heat conduction applications with

and without volumetric heat generation are presented.

Industry standard finite volume codes for fluid flow are built on un-

structured cell-centered formulations employing co-located pressure-velocity

storage, and a sequential solution algorithm. This type of algorithm is very

widely used, but poses a number of difficulties when used as the solution kernel

for performing efficient gradient-based topology optimization. The complete

Jacobian required for discrete adjoint sensitivity computation is never avail-

able in a sequential technique. Also, the complexities of co-located algorithms

must be correctly reflected in the Jacobian and sensitivity computations if

correct optimal structures are to evolve.

We build an Automatic Differentiation library, christened ‘Rapid’, to

compute accurate Jacobians and other necessary derivatives for the discrete

adjoint method in the context of an unstructured co-located sequential pres-

sure based algorithm. The library is designed to provide a problem-agnostic

pathway to automatically computing all required derivatives to machine ac-

curacy. With sensitivities obtained from the Rapid library, we next develop

and demonstrate topology optimization for multidimensional laminar flow ap-

plications. We present a variety of test cases involving internal channel flows

as well as external flows, for a range of Reynolds numbers.

An essential feature of Rapid is that it is not necessary to write new

code to find sensitivities when new physics, such as turbulence models, are

viii

added, or when new cost functions are considered. The next step is there-

fore to extend the topology optimization for flow problems to the turbulent

regime. Based on the Spalart-Allmaras RANS turbulence model, the topology

optimization methodology for steady state turbulent flow problems is devel-

oped and demonstrated for channel flow problems.

Finally we develop topology optimization methodology for forced con-

vection applications which requires the coupling of the Navier-Stokes and en-

ergy equations and which are typically solved sequentially in finite volume

schemes. The coupled nature of the problem introduces the concept of multi-

objective opposing cost functions from the two physical models, for example,

minimizing pressure drop and simultaneously maximizing heat transfer. Tech-

niques to obtain sensitivities for forced convection with laminar and turbulent

flow with Rapid are presented. Challenges for topology optimization resulting

from multi-objective cost functions are discussed.

We believe this is the first time that a complete topology optimization

framework using an unstructured finite volume method and the discrete ad-

joint method, fully generalizable to practical use in commercial solvers and

for industrial applications, has been demonstrated in the open literature. The

methodologies developed here provide a basis for performing topology opti-

mization involving other transport phenomena, more complex cost functions

and more realistic constraints.

ix

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xv

List of Figures xvi

Chapter 1. Introduction 1
1.1 Introduction to topology optimization 1
1.2 Current status of topology optimization 2
1.3 Application potential in transport phenomena 6
1.4 Motivation of current work . 8
1.5 MEMOSA . 10
1.6 Objectives of dissertation . 11
1.7 Dissertation road-map . 12

Chapter 2. Heat conduction on un-structured meshes 15
2.1 Introduction . 15
2.2 Notation and terminology . 19
2.3 Governing equations and boundary conditions 20
2.4 Numerical method . 21

2.4.1 Finite volume method (FVM) 21
2.4.2 Discretization . 22
2.4.3 Residual formulation and linear system 25

2.5 Topology optimization . 27
2.5.1 Solid isotropic microstructure with penalization (SIMP) 27
2.5.2 Mathematical formulation 31
2.5.3 Algorithm for topology optimization 33

x

2.5.4 Sensitivity calculations using adjoint method 33
2.5.5 Non-linear optimization algorithm - Method of Moving

Asymptotes (MMA) . 39
2.5.6 Filtering sensitivities 43

2.6 Results . 45
2.6.1 Test case 1: Conduction in plane slab 45
2.6.2 Test case 2: Conduction with heat generation 52

2.6.2.1 Test case 2a 52
2.6.2.2 Test case 2b . 55
2.6.2.3 Test case 2c . 57

2.6.3 Test case 3: Comparison of structured and unstructured
meshes . 59

2.7 Closure . 62

Chapter 3. Residual Automatic PartIal Differentiator (RAPID)
65

3.1 Introduction to Automatic Differentiation (AD) 65
3.2 AD based on templating and operator overloading 67

3.2.1 Forward mode . 69
3.2.2 Reverse mode . 71

3.3 Number of variables in topology optimization 76
3.4 Need for a new AD library . 79
3.5 Implementation of Rapid library 83

3.5.1 Formal notations for building Rapid 84
3.5.2 Tangent library . 86

3.5.2.1 Flow of derivatives 87
3.5.2.2 Tangent data structure 90
3.5.2.3 Building the Tangent Class 90

3.5.3 Rapid Library . 96
3.5.3.1 Rapid data structure 96
3.5.3.2 Setting up independent and dependent variables 97
3.5.3.3 Example illustrating Rapid data structure . . 99
3.5.3.4 Building the Rapid Class 100

3.6 Using MEMOSA with Rapid library 111
3.7 Closure . 115

xi

Chapter 4. Laminar flow applications 117
4.1 Introduction . 118
4.2 Governing equations and boundary conditions 125
4.3 Numerical method . 126

4.3.1 SIMPLE algorithm . 129
4.3.2 Discretization of momentum equations 130
4.3.3 Jacobians of momentum residual 136
4.3.4 Solution of momentum equations for u, v and w 138
4.3.5 Discretization of continuity equation 138
4.3.6 Momentum interpolation of face velocities 139
4.3.7 Solution of pressure correction equation 144
4.3.8 Correction of pressure and velocity fields 145

4.4 Flow model sensitivities with Rapid AD library 147
4.4.1 Method 1: Traversal of SIMPLE algorithm with indepen-

dent cell variables . 148
4.4.2 Method 2: Algorithm with independent cell and face vari-

ables . 152
4.4.3 Method 3: Modified algorithm with independent cell vari-

ables . 156
4.4.4 Illustrative example . 161

4.5 Topology optimization for flow problems 166
4.5.1 Formulation and algorithm 166
4.5.2 Flow topology optimization using Rapid 168

4.6 Results . 171
4.6.1 Test cases for internal flow 173

4.6.1.1 Channels . 173
4.6.1.2 Diffusers . 177
4.6.1.3 Pipe bend . 181

4.6.2 Test cases for external flow 182
4.6.2.1 Structured mesh 182
4.6.2.2 Unstructured mesh 185

4.7 Closure . 185

xii

Chapter 5. Turbulent flow applications 188
5.1 Introduction . 188
5.2 Governing equations and boundary conditions 191

5.2.1 Reynolds Averaged Navier-Stokes (RANS) equation . . . 191
5.2.2 Spalart Allmaras (SA) turbulence model 192
5.2.3 PDE-based wall distance model 195
5.2.4 Boundary conditions . 196
5.2.5 Spalding’s wall function 198

5.3 Numerical method - SIMPLE for RANS-SA model 199
5.4 Topology optimization using RANS-SA model 203

5.4.1 Formulation . 203
5.4.2 Sensitivities for RANS-SA using Rapid 205

5.5 Results . 208
5.6 Closure . 213

Chapter 6. Convective heat transfer applications 215
6.1 Introduction . 215
6.2 Forced convection with laminar flow 220

6.2.1 Governing equations and boundary conditions 220
6.2.2 Numerical method . 221
6.2.3 Multi-objective cost function 222
6.2.4 Sensitivity computation for forced convection 225

6.3 Forced convection with turbulent flow 227
6.4 Results . 230
6.5 Challenges with Multi-Objective topology optimization 240
6.6 Closure . 243

Chapter 7. Summary and future directions 244
7.1 Major contributions of the dissertation 244
7.2 Short term extensions . 245

7.2.1 Parallelization of Rapid library and adjoint linear system 245
7.2.2 Extension to other physical models 247
7.2.3 Quantities of Interest 247

xiii

7.2.4 Modifying boundary conditions and initial design domain
space . 248

7.3 Future directions . 248
7.3.1 Multi-objective cost functions and constraints 249
7.3.2 Filtering . 249
7.3.3 Discrete and continuous adjoint methods and level sets 250
7.3.4 Acceleration of adjoint linear system 251
7.3.5 Amalgamation of topology and shape optimization . . . 251

7.4 Closure . 252

Bibliography 253

xiv

List of Tables

2.1 Comparison of 2D and 3D topology optimization. 52
2.2 Summary of three sub-problems in test case 3. 53

4.1 Comparison of sensitivities . 162

6.1 Normalized cost functions, pressure drop and bulk temperature
rise, for the various cases considered in Section 6.4. For all
cases, Re = 20, Pr = 10 and therefore Pe = 200. 238

xv

List of Figures

1.1 Illustration of shape optimization. (a) The shape of the holes of
the structure is optimized to reduce stress concentration levels
(Courtesy-Altair [1]). (b)Shape optimization of airfoil shapes
for different criteria (Adapted from [2]). 2

1.2 Illustration of topology optimization to determine the structure
with maximum stiffness subjected to a concentrated load at its
free end [3]. (a) Design space; 50% of this space is constrained to
be filled with material. (b) - (f) Evolution of the design leading
to the optimized geometry. (Based on open source MATLAB
code in [3]). 3

1.3 Topology optimization of a heat dissipating structure. The de-
sign space is filled with a fixed amount of conducting material
to remove the heat generated in the volume. (a) Design space
with part of the left boundary maintained at a specified temper-
ature Tb while keeping the remaining boundaries adiabatic. (b)
- (f) Representative steps depicting the evolution of the optimal
geometry. 4

1.4 Illustration of topology optimization being used in industry in
a design work flow (Courtesy - TOSCA [4]). 5

1.5 Momosa software environment 11

2.1 Domain discretization and variable storage in a cell-based finite
volume method. 23

2.2 Flowchart for topology optimization (left). Flowchart for solv-
ing non-linear optimization problem iteratively using convexi-
fied optimization sub-problems (right) 34

2.3 Schematic for problem solved in test case 1. 46
2.4 Topology optimization in test case 1. (a) Initial random distri-

bution of β (b) & (c) Representative steps leading to optimized
geometry. (d) One possible optimal topology. 48

2.5 (a) Another possible optimal geometry obtained with a differ-
ent initial random distribution of β. (b) Linear temperature
distribution in the final geometry. 49

xvi

2.6 Normalized objective function and volume fraction of high-conductivity
material versus iteration number. The plot also shows the nor-
malized filter radius applied at various phases of the topology
optimization. 50

2.7 (a) An optimal topology for the 3D version of the problem in test
case1 with a volume fraction of 0.4. Note that the cross-section
is constant in the heat transfer direction. Only one material is
shown to demonstrate that the cross section remains the same
across the width (b) The same geometry with both materials. 51

2.8 Optimal heat dissipating structure for test case 2a for three
conductivity ratios (a) k1 � k2 (b) k1/k2 = 25 (c) k1/k2 = 5. 56

2.9 Topology optimization in test case 2b and 2c (a) Schematic
diagram of the both the test cases (b) Optimal topology for
ε = 0.5 for 2D for test case 2b (c) Optimal topology for the
same volume fraction in 3D for test case 2b, where the design
space is a cube (d) Optimal topology for ε = 0.5 for 2D for test
case 2c. 58

2.10 Schematic for problem solved in test case 3. 60
2.11 Optimal topology for volume fractions ε = 0.4 for test case 3

obtained using (a) an unstructured mesh, and (b) a Cartesian
mesh. 61

2.12 Schematic for problem solved in test case in Section 2.6.3. . . 62

3.1 (a) Breaking down the evaluation of function fi (X) into ki el-
ementary function evaluations. (b) Illustration of elementary
functions f (j)

i for two example functions. 70
3.2 Derivative propagation of a forward mode AD during each step

of the elementary function evaluation. 72
3.3 Derivative propagation of a reverse mode AD during each step

of the elementary function evaluation. 74
3.4 Order of the number of variables in topology optimization . . 77
3.5 Order of the number of variables in topology optimization with

adjoint method . 78
3.6 Model mesh . 81
3.7 Rapid data structure. 97
3.8 Illustration of independent and dependent Rapid objects. Here

we define fi = sin
(∏

j

(
(xi + c ∗ (xi + xj))2

))
for each cell i in

(a) where j represents a neighbor of the element i. 101

xvii

3.9 Evaluation tree for the example to illustrate Rapid. 104
3.10 Methodology for obtaining sensitivities of numerical models in

MEMOSA using Rapid. 112

4.1 Statement of the problem of topology optimization for flow
problems. 119

4.2 Two representative neighboring cells C0 and C1 sharing a com-
mon face f in an unstructured mesh. 128

4.3 Flowchart for a typical SIMPLE algorithm. 131
4.4 Method 1: Sequence of steps of the SIMPLE algorithm depicted

in Figure 4.3 in Rapid mode. Traversal along red arrows is
performed both in the forward solve in double mode and in the
Rapid mode to get the desired sensitivities. We do not follow
the black arrows in Rapid mode. Traversal along the green
arrow is performed only in Rapid mode. 150

4.5 Method 2: A method (Section 4.4.2) of obtaining the the ac-
curate complete Jacobian of the coupled momentum and con-
tinuity equations, required for adjoint based sensitivity compu-
tation. Here the cell velocities, cell and face pressures and face
mass fluxes are defined as independent variables. The figure il-
lustrates the sequence of steps needed to be performed to obtain
the complete Jacobian in Rapid mode. 153

4.6 Method 3: Computation of complete Jacobian of the coupled
momentum and continuity equations (Section 4.4.3). Here only
cell velocities and pressure variables are defined as independent
variables. The figure illustrates the sequence of steps needed to
be performed to obtain the complete Jacobian in Rapid mode. 158

4.7 Laminar Newtonian flow in a channel. The objective is to com-
pute the sensitivity of total pressure drop in a channel with
respect to the viscosity of fluid. 162

4.8 Jacobian of the momentum and continuity residuals with re-
spect to velocity and pressure variables using the Rapid library
and following Method 1 and Method 3. 164

4.9 Model mesh illustrating the numbering schemes for computing
sensitivities using Rapid. 169

4.10 Flowchart depicting the generation of complete Jacobians with
respect to flow (u,v,p) and design variables (β) for SIMP based
topology optimization with Rapid library. 170

4.11 Sparse matrix representation of Jacobian of momentum and
continuity residuals with respect to design variables β. 172

xviii

4.12 Encapsulated version of the flowchart depicting the generation
of complete Jacobians with respect to flow (u,v,p) and design
variables (β) for SIMP based topology optimization withRapid
library . 173

4.13 Topology optimization in test case 1. (a) Initial random distri-
bution of β (b) & (c) Representative steps leading to optimized
geometry. (d) One possible optimal topology. αs = 100, αf =
0, ε = 0.5 . 175

4.14 Normalized objective function and the volume fraction of fluid
material versus iteration number. The plot also shows the nor-
malized filter radius applied at various phases of the topology
optimization process. 177

4.15 Effect of Reynolds number on the optimal topologies for the
channel test case with L = 2a. 178

4.16 Problem statement for (a) diffuser, and (b) bend design. . . . 179
4.17 Topology optimization of an open diffuser. 180
4.18 Design of pipe bends. 181
4.19 Schematic for test case for external flows 183
4.20 Optimal topologies for test cases described in Section 4.6.2.1. 184
4.21 Topology optimization for flow past an obstruction using un-

structured meshes. 186

5.1 Flowchart for a Spalart-Allmaras turbulence model employing
SIMPLE algorithm. The governing equations include the wall
distance model (blue), the RANS equations (black) and the
Spalart-Allmaras model (red). 200

5.2 Computation of various derivative terms required to compute
discrete adjoint sensitivities dc/dβ for the RANS-SA turbulent
model. The figure illustrates the sequence of steps needed to
be performed to obtain the complete Jacobian of all residuals
in Rapid mode. 207

5.3 Sensitivity of total pressure drop in a channel with respect to
viscosity of fluid. 209

5.4 (i)-(vi) Illustration of the evolution of the topologies for turbu-
lent flow in a channel at Re = 5000. Corresponding evolution
of wall distance d in (vi)-(xii), vorticity magnitude in (xiii)-
(xviii), eddy viscosity νT in (xix)-(xxiv) and velocity magnitude
in (xxv)-(xxx). 210

xix

5.5 Distribution of state variables – velocity magnitude (a), eddy
viscosity νT (b) and wall distance d (c) for the final topology
presented in Figure 5.4 (vi). (d) Normalized objective function,
volume fraction of solid and filter radius versus iteration number
during the process of optimization. 212

6.1 Various ways of incorporating convection into topology opti-
mization (diagrams re-created based on [5]). (a) Constant sur-
face (out of plane) convection using heat transfer coefficient to
model convective heat loss (b) Constant side (in-plane) con-
vection using heat transfer coefficient to model convective heat
loss (c) Forced convection with explicit solution of combined
flow and heat transfer to model forced convection. 217

6.2 Flowchart for solving forced convection sequentially using the
SIMPLE algorithm. 222

6.3 Figure depicts the computational of various derivative terms
required to compute discrete adjoint sensitivities dc/dβ for the
RANS-SA turbulent model for used in topology optimization.
The figure illustrates the sequence of steps needed to be per-
formed to obtain the complete Jacobian of all residuals inRapid
mode. 226

6.4 Flowchart for a forced convection for turbulent flow turbulence
model employing SIMPLE algorithm with RANS-SA model.
Here the algorithm is an interplay of four different models. . . 229

6.5 The computation of sensitivities for forced convection with tur-
bulent flow using Rapid library. 231

6.6 Test case for demonstrating topology optimization for forced
convection. 232

6.7 Topologies for test case obtained by solely minimizing pressure
drop i.e. γ = 0 for various Reynolds numbers (a) Re = 2 (b)
Re = 20 (c) Re = 100 . 234

6.8 Case 1: Final topology obtained obtained by minimizing the
multi-objective cost function for Re = 20. Here the scale factor
γ = 1. (a) Final topology, (b) velocity distribution for the final
topology, and (c) corresponding temperature distribution. . . 235

6.9 Case 2: The scale factor here is γ = 2.5. (a) Final topology, (b)
velocity distribution for the final topology, and (c) correspond-
ing temperature distribution. 236

6.10 Case 2: The scale factor here is γ = 5. (a) Final topology, (b)
velocity distribution for the final topology, and (c) correspond-
ing temperature distribution. 237

xx

6.11 Case 2: The scale factor here is γ = 10. (a) Final topology, (b)
velocity distribution for the final topology, and (c) correspond-
ing temperature distribution. 237

6.12 Evolution of flow and thermal cost functions for γ = 10. . . . 239
6.13 A test case to highlight the challenges of multi-objective opti-

mization problem in realizing an active volume constraint. . . 241

7.1 Illustration of topology and shape optimization being used in
industry in a design work flow (Courtesy - TOSCA [4]). . . . 252

xxi

Chapter 1

Introduction

1.1 Introduction to topology optimization

In Computer Aided Engineering (CAE), a design engineer creates a ge-

ometry, sets relevant design constraints, and boundary and initial conditions,

and performs relevant engineering analyses to ensure that the certain design

objectives are met. For instance, the goal of a structural engineer may be to

keep stress concentration levels below yield limits. In fluid mechanics or heat

transfer applications, the design may seek to reduce the pressure drop or to

increase heat transfer. The design may be optimized for best performance. A

variety of simulation methods, such as finite element or finite volume meth-

ods, are typically used to perform the analysis that forms the core of the

optimization process.

Many papers have been published on shape optimization by both the

structural and the fluids-thermal community [6, 7, 8]. Shape optimization

starts with a notional or proposed shape; the optimization procedure deter-

mines the parameters of the shape (say, airfoil chord length or camber) to

achieve the optimal quantity of interest (QoI) (illustration in Figure 1.1).

Topology optimization differs from shape optimization in a fundamental

1

(a) (b)

Figure 1.1: Illustration of shape optimization. (a) The shape of the holes of the
structure is optimized to reduce stress concentration levels (Courtesy-Altair
[1]). (b)Shape optimization of airfoil shapes for different criteria (Adapted
from [2]).

way. The objective here is to determine the template shape itself, as illustrated

in Figures 1.2 and 1.3. Here, there is no template which is the design input - the

design is the output of topology optimization process. The process is intended

to bring out the optimal geometrical design (or topology) for the set of given

loads, boundary conditions and other requirements. Topology optimization is

a method used to determine the material distribution in a given design space

that maximizes a quantity of interest (QoI) [9, 10]. The power of topology

optimization lies in its ability to realize design solutions that are not initially

apparent to the engineer.

1.2 Current status of topology optimization

In the area of structural mechanics, topology optimization has become

a well-established procedure, and has been used to obtain initial conceptual

designs. Here, the QoI to be maximized or minimized is typically the stiffness

or compliance of the structure [11, 3]. In the last decade, commercial CAE

2

(a) (b)

(c) (d)

(e) (f)

Figure 1.2: Illustration of topology optimization to determine the structure
with maximum stiffness subjected to a concentrated load at its free end [3].
(a) Design space; 50% of this space is constrained to be filled with material.
(b) - (f) Evolution of the design leading to the optimized geometry. (Based on
open source MATLAB code in [3]).

3

(a) (b) (c)

(d) (e) (f)

Figure 1.3: Topology optimization of a heat dissipating structure. The design
space is filled with a fixed amount of conducting material to remove the heat
generated in the volume. (a) Design space with part of the left boundary
maintained at a specified temperature Tb while keeping the remaining bound-
aries adiabatic. (b) - (f) Representative steps depicting the evolution of the
optimal geometry.

4

Figure 1.4: Illustration of topology optimization being used in industry in a
design work flow (Courtesy - TOSCA [4]).

packages (e.g., OptiStruct, Genesis, MSC/Nastran, Ansys, Tosca, etc.) have

added modules on topology optimization [12], and thus the technique is now

beginning to be used in industry. Figure 1.4 illustrates a case study of topo-

logically optimized structure obtained using the commercial package TOSCA

[4]. Starting from an approximate design domain, the workflow in the figure

demonstrates the evolution of the design of the structure trying to achieve

maximum stiffness using minimum material.

Topology optimization has important practical applications in the au-

tomotive, aerospace, biomedical, electronics and various other industries and

its applicability is likely to increase significantly with the advent of 3D printing

[13, 14].

Topology optimization in industrial applications involving flow, heat or

5

mass transfer phenomena is far less common. The last decade has witnessed

a moderate number of publications in flow and heat transfer applications;

however the industry has not yet embraced the field on any large scale. The

primary motivation of this dissertation is to make strides in this direction.

1.3 Application potential in transport phenomena

Topology optimization has a variety of applications in fluid flow, heat

and mass transfer and other transport phenomena in all length scales. In this

section, we present few of the possible applications out of the many that would

serve as motivation.

For heat conduction applications, topology optimization can be used to

design optimal heat dissipating structures (or fins) with maximum efficiency

under given design constraints [15, 16, 17]. With the advancement of compu-

tationally feasible methods for nano-scale heat transfer applications (like the

Boltzman transport equations) one can envisage the design of nano-composites

to maximize a relevant QoI (say, the heat transfer rate or the thermo-electric

effect) [18]. Furthermore, we may seek to determine battery electrode ge-

ometries to maximize energy density to power density ratios to significantly

improve conventional battery architectures [19, 20].

Topology optimization has been performed for flow applications [21, 22]

and has very recently witnessed advancements targeting real life applications

[23]. However it is still far from use in practical industrial flows. At the

smaller length scales, design of microfluidic devices, especially those manu-

6

facturable with 3D printing, have immense application potential [24]. At the

larger length scales, spanning both laminar and turbulent flow regimes, effi-

cient design of diffusors, nozzles, venturis, aerofoils, turbine blades, minimum

drag bodies, and a variety of flow devices can be performed with topology op-

timization. Though many efficient designs have evolved over decades for such

conventional applications, topology optimization can still aid in achieving bet-

ter designs under various design constraints. Efficient design of flow switches

[25, 26] and various biomedical devices like artificial heart valves [27] can also

be investigated using topology optimization.

The application potential of topology optimization for coupled flow

and thermal (or mass transfer) problems is even greater. This is because

designs maximizing a flow QoI may negatively impact the thermal QoI and

vice versa. Designs with an optimal balance of various QoI’s can be obtained

using topology optimization. For example, one can think of the design of

porous structures in heat pipes which maximize the heat transfer rate while

minimizing pressure drop [28]. Microfluidic mixers to achieve maximum mixing

at low Reynolds number can be developed as well [29]. Similarly heat sinks,

micro-pumps, heat exchanges can also be designed.

Very often topology optimization may result in complex structures be-

yond the reach of conventional manufacturing techniques. However, recent ad-

vances in 3D printing technologies are making it possible to manufacture very

complicated geometries made of polymers or metals of different length scales

[20, 30]. This will add impetus to the development of topology optimization

7

methodologies suitable for the fluid flow and heat transfer community.

1.4 Motivation of current work

The overwhelming majority of papers published on topology optimiza-

tion use finite element methods because of the origins of the work in the struc-

tures community. The underlying numerical method enters the picture in two

ways. First, the process of optimization requires the numerical solution of the

physical problem at chosen points in the parameter space. Second, gradient-

based optimization techniques require the evaluation of first derivatives of the

QoI with respect to the design variables; these gradients are typically evaluated

from the discrete algebraic equations resulting from the underlying numerical

scheme. Since much of the published work has been on evolving optimal ge-

ometries for structural mechanics, topology optimization methods using finite

element techniques have thus far been the norm. For fluid mechanics and heat

transfer applications finite volume formulations have generally been the norm.

Here, the conservation of mass, momentum and energy is enforced discretely

on each computational cell [31, 32], with specialized handling of incompress-

ible and compressible flows. Most available commercial computational fluid

dynamics (CFD) packages employ the finite volume framework.

As will be discussed in later chapters, most of the literature on topology

optimization applications for thermal flow problems use structured Cartesian

meshes. In real life applications, the design space need not be always Carte-

sian. As shown in Figure 1.4, the initial design space can be non-Cartesian.

8

The final topology can also be quite sensitive to the geometry of the design

space, especially for flow applications. It is necessary for the design space to be

versatile enough to admit arbitrary geometries. Therefore topology optimiza-

tion in an unstructured mesh framework is indispensable for it to be integrated

into industrial applications.

Over the years finite volume solvers have established very robust so-

lution methodologies. The topology optimization algorithm built on such a

finite volume framework should be able to work with these established pro-

cedures. For finite volume codes, the central issue that arises in the compu-

tation of sensitivity derivatives is that typical finite volume schemes do not

assemble the complete Jacobian during the solution process. Secondary gra-

dients in unstructured mesh solvers [31] are typically computed in deferred

fashion, complicating the computation of sensitivity derivatives. Sequential

flow solver algorithms like SIMPLE for pressure-velocity coupling [32] and co-

located pressure-velocity [31] schemes also never assemble complete Jacobians.

It is unclear from published finite volume solution schemes whether these is-

sues have been completely addressed for topology optimization [33]. Modern

commercial incompressible finite volume solvers use colocated pressure veloc-

ity schemes for unstructured meshes. To our knowledge, there has not been

a comprehensive work on topology optimization for flow problems in an un-

structured colocated finite volume schemes. This step is also necessary for

elevating the field to address real-life engineering applications.

To the knowledge of authors, there is only one paper published very

9

recently on topology optimization for turbulent flow in SIMP methodology

[34], again in an finite element framework. Forced convection with flow and

thermal coupling is also an active area of research.

1.5 MEMOSA

The implementations in this dissertation will be performed in the MEM-

OSA framework. MEMOSA is a state-of-the-art, industry standard, parallel,

C++ open source multiscale multiphysics software suite developed in-house

at the PRISM center [35] funded by National Nuclear Security Administra-

tion(NNSA). MEMOSA is built on a unstructured finite volume framework

and can solve a wide gamut of problems in physics including fluid flow, heat

transfer, electrostatics, rarefied gas dynamics, charge and species transport,

phonon transport and structural mechanics. It is designed to use modular

C/C++ building blocks combined with Python, which enables flexible orches-

tration of the solver suite, and ease of maintenance and flexibility (Figure 1.5).

Meshes generated from commercial or open source software in certain formats

(.cas or .msh) can be imported into MEMOSA. Various linear solvers and pre-

conditioners have been incorporated in MEMOSA as well. In addition to a

variety of post-processing tools available in MEMOSA, computational results

can also be exported to various formats readable from Paraview [36] or Tecplot

[37] for visualization or for further post-processing. The inclusion of topology

optimization within the MEMOSA framework will make available to the open

source community a serious research tool to help develop this methodology

10

Figure 1.5: Momosa software environment

further.

1.6 Objectives of dissertation

Our overall objective in this dissertation is to develop a robust multi-

dimensional topology optimization framework based on an unstructured finite

volume formulation to address laminar and turbulent incompressible flow and

heat transfer problems. The intent is also to solve physically-realistic problems

involving realistic boundary conditions and cost functions compared to the

ones published in the literature thus far.

The specific objectives of the dissertation are to:

11

1. Develop and demonstrate topology optimization for multidimensional

steady heat conduction problems in an unstructured finite volume frame-

work.

2. Develop an Automatic Differentiation library to obtain all required deriva-

tives needed for adjoint method based sensitivity computation in a problem-

agnostic way.

3. Develop and demonstrate topology optimization for multidimensional

laminar flow applications. An unstructured co-located finite volume

scheme using a sequential pressure velocity coupling algorithm will be

used as the basis.

4. Develop and demonstrate topology optimization for multidimensional

turbulent flow applications within the same finite volume framework.

5. Develop and demonstrate a topology optimization methodology for cou-

pled thermal-flow applications.

1.7 Dissertation road-map

The intent of this chapter was to motivate the field of topology opti-

mization for applications in which flow, heat and mass transfer phenomena

are dominant. In the process, a general survey of the published work in the

field has been presented in this chapter. However, a comprehensive literature

survey pertinent to the specific content is presented in each of the remaining

chapters. We briefly outline the contents of each chapter below.

12

Chapter 2 presents the topology optimization procedure for heat con-

duction applications in an unstructured finite volume framework. The chap-

ter also presents the building blocks and work-flow for topology optimization

that is common for all applications, be it flow or coupled thermal fluid prob-

lems. The Solid Isotropic Material with Penalization (SIMP) approach which

we follow for all applications throughout the dissertation is described here.

The most widely used optimization algorithm for topology optimization, the

Method of Moving Asymptotes (MMA), is briefly presented for completeness.

The sensitivities needed for gradient-based optimization are obtained using

the adjoint method, which is described in detail. The adjoint method needs

partial derivatives of the discrete residuals and cost functions with respect to

the state and design variables. These are obtained using manual differentiation

in this chapter. Various test cases are presented at the end.

By the end of chapter 2, it will be clear that a problem-agnostic way

to obtain sensitivities is needed in order to generalize and scale topology opti-

mization to more complex applications. Towards achieving this goal, an Auto-

matic Differentiation library christened Rapid is developed to compute all the

required derivatives for the adjoint method. The development of the library is

described in detail in Chapter 3. Readers interested in using or implementing

the library for their applications can read the chapter as an independent one.

Having set up the necessary foundation, in Chapter 4 we consider topol-

ogy optimization to flow applications. Laminar flow in an unstructured frame-

work is considered in this chapter. The SIMPLE family of algorithms is widely

13

used in the finite volume community to solve the Navier-Stokes equations. We

present the use of the Rapid library to obtain the sensitivities of the QoI with

respect to velocities, pressure and the design variables. The great potential

of the Rapid library is revealed in this chapter. Various test cases for flow

applications are presented at the end of the chapter.

In Chapter 5, we turn to topology optimization for turbulent flows. We

choose the Spalart-Allmaras turbulent. The Reynolds-Averaged Navier-Stokes

(RANS) equations are augmented with an additional governing equation for

turbulent viscosity, and yet another for computing wall distance. Again, the

Rapid library is exploited to obtain sensitivity derivatives. We then go on to

present topology optimization results for turbulent flows.

Topology optimization for forced convection problems is presented in

Chapter 6. Here flow equations and energy transport equations are coupled.

This also necessitates the use of multi-objective cost functions, considering

both the flow and energy equations. Test cases are presented for forced convec-

tion problems in both laminar and turbulent flows. Some of the complexities

associated with performing topology optimization involving multi-objective

cost functions are also presented.

Finally, in Chapter 7, we conclude the dissertation by discussing gen-

eral guidelines, pitfalls and thoughts regarding topology optimization garnered

from our experience. We also discuss in detail the various avenues that needs

further work to advance topology optimization to real life applications in flow,

heat and other transport applications.

14

Chapter 2

Heat conduction on un-structured meshes

The objective of this chapter is to develop and demonstrate the topol-

ogy optimization procedure for steady state heat conduction problems using

an unstructured cell-centered finite volume framework. Topologies that maxi-

mize or minimize relevant quantities of interest in heat conduction applications

are presented. Addressing topology optimization for steady state heat conduc-

tion also serves to introduce all the necessary framework, building blocks and

work-flows. The chapter also sets the stage for later chapters where more

complicated transport processes are solved. Nomenclature and typesetting

conventions presented in the chapter are followed throughout the thesis.

2.1 Introduction

Heat conduction at the continuum scale is governed by diffusion. Dif-

fusion phenomena are well explored and relatively easy to solve numerically.

Topology optimization first percolated from structural applications to trans-

port phenomena through heat conduction applications. The majority of the

topology optimization research in the literature for structural applications em-

ploys the well-established ‘solid isotropic material with penalization’ (SIMP)

15

approach (Section 2.5.1) in conjunction with a gradient-based optimization al-

gorithm (Section 2.5.5). Similarly, topology optimization for heat conduction

has also used SIMP and gradient-based optimization in the last decade and

half.

Bendsoe and Sigmund presented a simple application of topology op-

timization for steady state heat conduction in [9, 3]. Since then many papers

have been published along similar lines. Gersborg-Hansen et al. presented the

same problem using finite elements in [9] and with a finite volume methods in

[38]. Gao et al. extended the methodology for heat conduction by considering

both design-independent and design-dependent heat loads [39]. Similar work

with slight variations was presented in [40, 41]. A multi-objective TO conduc-

tion problem with two opposing cost functions was presented by Marck et al.

using a finite volume method [16].

Bruns extended topology optimization for heat transfer applications in-

corporating convection effects, but did not explicitly solve the underlying fluid

flow and convective heat transfer problem. Convection effects were absorbed

into the heat conduction equation through source/sink terms. Similar work

was done by Iga et al. [42]. Very recently, Zhou et al. published similar

problems using CAE industry software tools[43].

Only a few papers have been published on topology optimization using

the finite volume framework. In their implementation of TO for heat con-

duction, Hansen et al. [38] discuss an elementary implementation using a

Cartesian node-based finite volume method. The work by Marck et al. [16]

16

employed a Cartesian cell-based finite volume method.

Most of the literature on TO for any applications uses structured Carte-

sian meshes. A few authors [44, 45] have presented topology-optimized designs

using unstructured meshes, all in the finite element framework, but few details

have been given. Ref. [46] discusses the integration of topology optimization

into the CAD process using unstructured meshes. Talischi et al. present a gen-

eral 2D topology optimization framework using unstructured polygonal finite

element meshes [47] and also discuss some ways to reduce the computational

expenses of unstructured meshes compared to their structured counterpart. It

would be difficult to integrate topology optimization into industrial applica-

tions unless the design space is versatile enough to admit arbitrary geometries.

Furthermore, design constraints and boundary conditions may be more accu-

rately represented in such geometries, and the ability to adapt the mesh to

the solution presents opportunities to refine preliminary designs resulting from

topology optimization.

Many additions are incorporated for solving governing equations on un-

structured meshes as compared to structured meshes [31, 48]. For instance,

the non-orthogonal nature of the grids necessitates the computation of a ‘sec-

ondary gradient flux’ term for proper discretization of the diffusion operator

[31, 49]. The gradients of the transported variable at the face centroids (which

in turn requires gradients at cell centroids) are required to compute the sec-

ondary gradient flux term. Gradients of the transported variable, be it tem-

perature or velocity components, are also required in many other cases. For

17

example, velocity gradients are required to compute the production term in

turbulence models or to compute the strain rate for non-Newtonian viscosity

models [48].

The central issue that arises in the computation of sensitivity deriva-

tives is that typical finite volume schemes do not assemble the complete Jaco-

bian during the solution process. Secondary gradients in unstructured mesh

solvers [31] are typically computed in deferred fashion, complicating the com-

putation of sensitivity derivatives. Similarly, production terms in turbulence

models are not included in the Jacobian, but are treated explicitly. This again

complicates the computation of sensitivity derivatives needed for topology op-

timization. It is unclear from the published finite volume solution schemes

whether these issues have been completely addressed for topology optimization

[33]. In this dissertation, an automatic differentiation framework is developed

which allows us to address the lack of complete Jacobians in finite volume

schemes.

The objective of this chapter is to develop and demonstrate the topol-

ogy optimization procedure for steady state heat conduction problems using

an unstructured cell-centered finite volume framework. We perform topology

optimization in 2D and 3D heat conduction problems, including conjugate

heat transfer, heat transfer in the presence of heat sources, and for a variety of

boundary conditions. A variety of cost functions, including that of maximizing

heat transfer or minimizing material temperature (i.e. minimizing enthalpy),

are explored, subject to volume constraints on the amount of available volume

18

of a particular material. The implementation in this chapter is performed

using MEMOSA [50] based on the methodology described in [31].

We now briefly discuss the contents of the chapter. The governing equa-

tion for heat conduction, boundary conditions and the corresponding finite vol-

ume formulation are briefly outlined in Sections 2.3 and 2.4 with specific em-

phasis on residual formulation. In Section 2.5, we describe the building blocks

of topology optimization. We first describe the SIMP (Solid Isotropic Material

with Penalization) method for topology optimization. The mathematical for-

mulation for topology optimization using this method and the corresponding

numerical solution procedures are also discussed in the following sub-sections.

The gradient-based topology optimization algorithm requires calculation of

the sensitivity field. In Section 2.5.4 we develop the procedures employed

to compute the sensitivity field based on the finite volume framework. The

method of moving asymptotes (MMA) is discussed briefly in the subsequent

sub-section. In results section, we demonstrate the process of topology opti-

mization for heat conduction using three test cases motivated by applications

in heat transfer.

2.2 Notation and terminology

The following notations and terminology is used throughout the disser-

tation.

Fields are generic quantities defined throughout the domain that are

functions of space and time. The un-bold variables (e.g T or k) are continuous

19

scalar fields. Variables with an overhead arrow (e.g. ~V , ~J or ~A) are vector

fields in the domain. Variables with subscripts (e.g. Ti, ki or βi) are discrete

values of the corresponding variables defined at cell centroids or face centroids

(discussed in Section 2.4). Variables with subscripts (e.g. the components of

velocity vector Vi) may also be used to identify the scalar components of the

vector depending on the context. The bold variables (e.g. T , k, ~V or β)

represent the collection of discrete variables in all the n cells in the domain.

For instance T = {T1, T2, · · · , Tn} or ~V =
{
~V1, ~V2, · · · , ~Vn

}
.

We classify variables as state variables and design variables. The vari-

ables solved in the differential equations are termed state variables (T, ~V , p

for example) while those determined by the optimization process are termed

design variables (β, the cell volume fraction of solid, for example).

2.3 Governing equations and boundary conditions

The governing equation for steady state heat conduction is given by

∇ · (k∇T) = ST (2.1)

where k represents the thermal conductivity, T (~r) the temperature

field, ~r the position vector, ST the heat source in the domain.

We consider Dirichlet and Neumann boundary conditions in this chap-

ter. A Dirichlet condition corresponds to a boundary at a given temperature,

Tb = T(b,given), while a Neumann condition corresponds to a specified heat flux

20

at the boundary expressed as − (k∇T)b · ~n = qb,given, where ~n represents the

outward-pointing unit normal vector at the boundary.

2.4 Numerical method
2.4.1 Finite volume method (FVM)

We employ the unstructured cell-centered finite volume scheme de-

scribed in [31] for solving Eq. 2.1. The design domain is discretized using

arbitrary convex polyhedral cells. All the variables of interest including tem-

perature, thermal conductivity and design variables are stored at cell centroids.

The governing equations are discretized by enforcing conservation on each cell

as described in [32, 31] which yields a system of linear equations for tempera-

ture at cell centroids.

The linear system is set up in a ‘residual formulation’ which is described

shortly. Accurate computations of sensitivity derivatives are very important in

the process of topology optimization. Residual formulations are also employed

for the computations of sensitivity derivatives based on the adjoint method

described in Section 2.5.4. Though the governing equations increase in com-

plexity in the subsequent chapters, the residual formulation and the adjoint

method based sensitivity computation used throughout the dissertation for all

physical models retain the structure and form presented in this chapter.

21

2.4.2 Discretization

Let the total number of cells in the discretized domain be n. Consider

two representative cells C0 and C1 as shown in Figure 2.1(a), separated by

a shared face f . A non-orthogonal local coordinate system (ξ, η) as shown in

Figure 2.1 is employed. The centroid-to-centroid direction is denoted by ξ and

a direction tangential to face f is given by η; the corresponding unit vectors

are ~eξ and ~eη. The area vector normal to the face is given by ~Af . Details of

the discretization are given in [31]. For later discussions, two representative

cells of a Cartesian mesh are depicted in Figure 2.1(b).

The heat conduction equation (Eq. 2.1) is integrated over each control

volume and the divergence theorem applied to yield

∫
A

~Jf · d ~A =
∫

∆V
STdV (2.2)

where ∆V is cell volume and d ~A is the elemental area vector pointing outward

from the control volume. ~Jf is the heat flux vector on faces of control volume,

defined as
~Jf = −kf∇T (2.3)

The thermal conductivity at the face kf , is calculated using harmonic

average, which is given by

kf = 2kC0kC1

kC0 + kC1
(2.4)

22

(a) Two representative neighboring cells and sharing a com-
mon face f are shown.

(b) Two neighboring finite volume cells, C0 and
C1, in a cartesian mesh.

Figure 2.1: Domain discretization and variable storage in a cell-based finite
volume method.

23

The heat transfer rate leaving the cell C0 through face f and entering C1 is

approximated by [48],

~Jf · ~Af = − kf∆ξ
~Af · ~Af
~Af · ~eξ

(TC1 − TC0) + Sf (2.5)

where ∆ξ is the centroid-to-centroid distance and TC1 and TC0 are

the cell centroid temperatures. Sf is termed the secondary gradient flux and

results from mesh non-orthogonality. The term drops out for the Cartesian

mesh shown in Figure 2.1(b). The secondary gradient is given by [48],

Sf = −kf (∇T)f · ~Af + kf
∆ξ

~Af · ~Af
~Af · ~eξ

(∇T)f · ~ef∆ξ (2.6)

This term requires the temperature gradient (∇T)f on the face between

the cells. It is generally calculated as the average of the cell gradients (∇T)C0

and (∇T)C1 calculated at cell centroids of the cells C0 and C1. The cell

gradient (∇T)C0 is computed using a linear least squares approximation[48]

given by,

(∇T)C0 =
(
MTM

)−1
MT (∆T)C0 (2.7)

where the matrix M is formed with the differences in co-ordinates of

the cell centroids of cell C0 with each of its j neighbors. In 2D it is given by

24

M =


∆x1 ∆y1
∆x2 ∆y2

... ...
∆xj ∆yj

 (2.8)

(∆T)C0 is the difference in temperature of the the cell C0 with each of

its neighbors given by,

(∆T)C0 =


TC1 − TC0
TC2 − TC0

...
TCj − TC0

 (2.9)

where TC0 and TC1 are temperatures at the cell centroids and (∆x,∆y)

denote the distance between the cell centroids.

2.4.3 Residual formulation and linear system

The discrete residual RT
i for a cell i is given by

RT
i =

∑
faces

− ~Jf · ~Af + ST∆V


i

(2.10)

where the quantity ~Jf · ~Af is given by Eq. (2.5) is summed over all the

faces of the corresponding control volume i. At convergence, RT (T) = 0 for

the conservation principle to hold true i.e.,

RT (T) =


RT

1 (T1, T2 . . . Tn)
RT

2 (T1, T2 . . . Tn)
...

RT
n (T1, T2 . . . Tn)

 = 0. (2.11)

25

To solve for T , we may recast the nominally linear system in delta form

as:

∂RT

∂T
δ + RT = 0 (2.12)

where ∂RT

∂T
is the Jacobian matrix given by,

∂RT

∂T
=



∂RT1
∂T1

∂RT1
∂T2

· · · ∂RT1
∂Tn

∂RT2
∂T1

∂RT2
∂T2

· · · ∂RT2
∂Tn...

∂RTn
∂T1

∂RTn
∂T2

· · · ∂RTn
∂Tn

 (2.13)

Here δ = T − T prev is the difference between the current solution and

the previous iterate.

A variety of linear solvers, including an algebraic multigrid solver [51],

may be used for solving the resulting linear equations with Picard iteration to

address non-linearities. The temperature field thus obtained can be processed

to obtain a QoI such as the heat rate on the boundary.

The fact that finite volume schemes do not assemble the complete Ja-

cobian during the solution process, mentioned earlier, can be clarified now.

Though the residual Ri retains the the secondary gradient term in Eq. 2.10, it

is neglected while forming (linearizing) the Jacobian (Eq. 2.13) for the linear

system. Secondary gradients are typically computed in deferred fashion. The

linear system (Eq. 2.12) is solved multiple times (Picard iterations), each time

with corrected residuals. The secondary flux term in Jacobian is neglected not

26

only because it is difficult to linearize, but also for stability purposes[48]. The

reader is reminded that the Jacobians need not be exact and are sometimes

modified in the path to solution of a linear system. However, for computing

sensitivities using the adjoint method, one needs the exact Jacobian. We will

get back to this discussion later.

2.5 Topology optimization

In this section we describe the main elements of topology optimization.

2.5.1 Solid isotropic microstructure with penalization (SIMP)

Topology optimization is generally formulated as a material distribu-

tion problem [52, 53]. In a typical problem, a design space is specified and

discretized using elements or cells. The optimal placement of a material in

the cells is determined in order to maximize or minimize an objective func-

tion, subject to constraints. Typical objective functions for conduction heat

transfer may maximize the heat transfer rate on a boundary, or minimize the

maximum temperature. Constraints typically require the total solid fraction

to be held below a specified value. Single and multi-material problems may be

posed for heat conduction, and when fluid flow is considered, multiple phases

as well. In this chapter, the problem that we are considering is to fill the

design space with two materials with different thermal conductivities.

As discussed in Section 2.4 on FVM, the design space in which material

must be distributed is discretized into convex polyhedral control volumes on

27

which energy balances are enforced. The goal of topology optimization is to

determine which of these control volumes are filled with one material and which

with other. The material distribution process is parameterized by defining a

cell-wise constant binary design variable, βi = {0, 1} which indicates whether

cell i consists of the chosen material (βi = 1) or not (βi = 0). This design

variable is discrete and may represent material or void, two heterogeneous

materials, or multiple phases, depending on the problem being solved.

Direct search (discrete) methods like evolutionary algorithms or simu-

lated annealing may be used to determine such a material distribution process

[9]. However these methods can be prohibitively expensive or intractable for

large scale problems. The goal is to be able to use gradient-based contin-

uous optimization methods to tackle such problems. The most commonly

used approach is to replace the integer variables with continuous variables i.e.

β ∈ [0, 1], and then introduce some form of penalty that steers the solution to

discrete binary values.

This method is the most popular numerical method for topology opti-

mization, now known as the ‘solid isotropic microstructure with penalization’

(SIMP) method [13]. Each cell or control volume is associated with a value β

which can be interpreted as the microscopic volume fraction of the material in

the cell.

This design variable is introduced into the governing transport equa-

tions by the interpolation of material properties as functions of β. In addition,

terms like the source term or forcing terms in the governing equations are also

28

interpolated in terms of the design variable. Such interpolation functions are

generally chosen based on physical arguments, though this is not always nec-

essary. The continuous nature of β provides a continuous transition between

the two phases or materials. To push the continuous variable to binary values,

penalization is introduced in the chosen interpolation function. The interpo-

lation scheme must also be closely linked to the optimization problem being

solved. Properly chosen interpolation schemes may bestow other theoretical

or computationally advantageous features for specific problems.

Various interpolation schemes have been used in the literature for per-

forming topology optimization. Properties like conductivity, diffusivity, macro-

scopic density, specific heat capacity etc. have been interpolated with the

design variable as [41],

Γeff (β) = Γ2 + (Γ1 − Γ2) βp (2.14)

Here Γ1 and Γ2 are the properties of the two materials respectively,

Γeff is the effective material property of a cell and p is the penalization factor.

The intent of the optimization is to converge Γeff to either to Γ1 or Γ2, thus

giving one of the identities to the corresponding discretized cell.

At this juncture, we discuss the commonly used interpolation functions

for effective properties or fields found in the literature. For topology optimiza-

tion of Stokes flow problems,α, the impermeability of the porous medium, must

be interpolated in terms of β. Whenβ varies between 0 and 1, it corresponds

29

to the volume fraction of artificial solid and fluidic phases respectively. The

interpolation used in [21] is,

αeff (β) = αf + (αs − αf) β
1 + p

β + p
(2.15)

where αs (a very high number) and αf (= 0) represent impermeability

of solid and fluid phases respectively. p is the penalization factor.

For coupled natural convection-flow problems, the effective Peclet num-

ber is interpolated in [54] as ,

Peeff = Ck (1 + pβ)
β (Ck (1 + p)− 1) + 1Pef (2.16)

where, Pef is the Peclet number of the fluid, Ck = kf
ks

is the ratio of

the fluid to solid conductivity, Pes = CkPef is the Peclet number of the solid

and p is the penalization factor. Eqs. 2.15 and 2.16 are known as ‘Rational

Approximation of Material Properties’ (RAMP) functions in the literature.

Evgrafov et al. [55] performs topology optimization for nano-scale heat

transfer applications, where the material property that enters the governing

equations is the mean free path of phonons, Λ. The authors use the following

interpolation scheme for the effective mean free path,

Λ−1
eff = (1− β) Λ−1

1 + βΛ−1
2 (2.17)

30

where Λ1 and Λ2 are the mean free path of phonons for two different

materials. There is no explicit penalization factor here.

The interpolation function chosen for the topology optimization for

steady heat conduction in this chapter is Eq. 2.14. The only material property

that must be considered here is the thermal conductivity, and therefore

keff (β) = k2 + (k1 − k2) βp (2.18)

where k1 corresponds to the high conducting material and k2 corre-

sponds to the low conducting material. β represents the elemental volume

fraction of high conducting material in each finite volume element. The heat

generation source term may also be interpolated in terms of β, as presented

in some of the results (Section 2.6).

S = αβp (2.19)

2.5.2 Mathematical formulation

Topology optimization is essentially a partial differential equation (PDE)

constrained optimization. Here, a functional or cost function c is minimized.

The cost function is, generally a function of the field (called the state variable)

that is solved for in the PDE, as well as the design variable β. For heat con-

duction the cost function is denoted as c(T, β), where T is the temperature

field.

31

The goal of topology optimization is to distribute specified volumes of

two materials in the design space. Let ε and 1 − ε be the specified volume

fractions of materials 1 and 2 with which we wish to fill the design space. In

topology optimization, we seek appropriate values for the design variable that

minimizes the functional c by satisfying all the constraints of the problem. If

V0 is the volume of the initial design space, then we can define a function V1 (β)

which is equal to the specified volume of material 1. Thus mathematically, the

topology optimization problem in a continuous formulation is given by

min : c = c (T, β)
subject to : V1(β)

V0
≤ ε

∇ · (−keff (β)∇T) = S (β)
0 ≤ β ≤ 1

(2.20)

In discretized form, the optimization problem is given by

min : c = c (T ,β)
subject to : g :=

∑n

i
βi

n
− ε ≤ 0

RT (T ,β) = 0
0 ≤ β ≤ 1

(2.21)

It must be noted that the formulation may have more than just the

volume constraint or replaced with another constraint. One can also pose

other types of constraints such as in [29], where the total pressure drop is kept

below a given value. However specifying volume fraction constraints is the

most common type.

The optimization problem 2.21 is generally solved using a nested for-

mulation, wherein the discretized system of equations for the state field is

32

solved separately from the design problem. An algorithm to perform such an

optimization is discussed in the next section.

2.5.3 Algorithm for topology optimization

Nearly all published work on topology optimization follows the method-

ology depicted in the Figure 2.2. Further details may be found in [9]. First,

the design variable field β is initialized and effective material properties are

calculated using the material interpolation schemes (Eq. 2.18) discussed in

Section 2.5.1. The residual equations are set up using the numerical scheme

used for discretizing the governing equations (Section 2.4.2). These discrete

equations are solved for the state variable field T . The cost function is then

calculated based on the solved state and the design variable field. Using a

non-linear optimization program, the design variable field is updated so as to

minimize the cost function. The new effective material properties are then cal-

culated. The iteration continues as shown in the flowchart until the difference

in the values of β satisfies a prescribed cost function no longer falls.

2.5.4 Sensitivity calculations using adjoint method

In gradient-based optimization, the process of finding the optimal value

of the β field relies on the calculation of sensitivity derivatives dc
dβ

. They repre-

sent how the cost function c responds to changes in the discrete design variable

in each cell in the computational domain. There are several methods for calcu-

lating sensitivity derivatives including finite differencing, direct differentiation,

33

Figure 2.2: Flowchart for topology optimization (left). Flowchart for solving
non-linear optimization problem iteratively using convexified optimization sub-
problems (right)

34

and the adjoint method. We employ the adjoint method in this study. Ad-

joint methods are very efficient in calculating sensitivities when the numbers

of optimization variables is large. Since the numbers of optimization variables

is equal to the mesh size which can be quite large, adjoint methods are well

suited for topology optimization [56, 15].

The adjoint method that we mention throughout the dissertation refers

to discrete adjoint method. Here the adjoint system is formed with the dis-

cretized or linearized PDE. In continuous adjoint method, the adjoint of the

PDE is first formed and then discretized for solution purposes.

We drop the super-script T for RT in the following discussion, since

the method is general and will be used for all the physical models described in

the later chapters. Given a distribution of the cell-wise values of β, the finite

volume solution for the discrete temperature field (or any state variable) is

obtained as discussed in Section 2.4. At this point, we have the residual vector

R = 0 (Eq. 2.11). The adjoint method is applied following a converged finite

volume solve. At this point, the variables of interest and their dependencies

are given by

35

β

��))

T

~~

k = k (β)

))

ST = ST (β)

��
RT = RT (T ,β) = 0

��
c = c (T ,β)

(2.22)

A perturbation in the design variables β changes k and S, which is

in turn propagated to the residual R and cost function c. Note that the

residual R has moved away from 0 at this point. A new finite volume solve to

drive back R to 0 changes the temperature T , also contributing an additional

change to the cost function c.

For simplicity, let us consider just one design variable βγ. The total

variation in the cost function c due to the perturbation of this single design

variableβγ is given by,

δc =
[
∂c

∂Ti
δTi

]
I

+
[
∂c

∂βγ
δβγ

]
II

(2.23)

Indices with Roman subscripts imply Einstein summations, while in-

dices with Greek subscripts do not imply summation. The total variation in

residual vector is given by,

δRj =
[
∂Rj

∂Ti
δTi

]
I

+
[
∂Rj

∂βγ
δβγ

]
II

= 0 (2.24)

36

The power of adjoint method lies here. Eqs. 2.23 and 2.24 are also true

for simultaneous variations of all design variablesβ independently.

δc =
[
∂c

∂Ti
δTi

]
I

+
[
∂c

∂βk
δβk

]
II

(2.25)

The total variation in residual vector is given by,

δRj =
[
∂Rj

∂Ti
δTi

]
I

+
[
∂Rj

∂βk
δβk

]
II

= 0 (2.26)

Note that the term I in Eq. 2.23 is different from term I of Eq. 2.25.

Since δR = 0, one can see that the scalar product of the vector δR

with any vector ψ can be added to δc without any change to it, as is shown

below,

δc =
[
∂c

∂Ti
δTi

]
I

+
[
∂c

∂βk
δβk

]
II

− ψj
([
∂Rj

∂Ti
δTi

]
I

+
[
∂Rj

∂βk
δβk

]
II

)
(2.27)

Eq. 2.27 is slightly regrouped as follows,

δc =
{[

∂c

∂Ti
δTi

]
I

− ψj
[
∂Rj

∂Ti
δTi

]
I

}
+
{[

∂c

∂βk
δβk

]
II

− ψj
[
∂Rj

∂βk
δβk

]
II

}
(2.28)

δc =
{
∂c

∂Ti
− ψj

∂Rj

∂Ti

}
δTi +

{
∂c

∂βk
− ψj

∂Rj

∂βk

}
δβk (2.29)

37

Since ψ can be any vector, one can choose a particular vector that

satisfies the following equation,

∂Rj

∂Ti
ψj = ∂c

∂Ti
(2.30)

where ∂Rj
∂Ti

is the Jacobian matrix J and the vector ∂c
∂Ti

may be analyti-

cally computed using the discrete equations. Eq. 2.30 is known as the adjoint

equation and the corresponding ψ the adjoint field. Such a choice of ψ results

in

δc =
{
∂c

∂βk
− ψj

∂Rj

∂βk

}
δβk (2.31)

=⇒ dc

dβk
= ∂c

∂βk
− ψj

∂Rj

∂βk
(2.32)

The terms in Eq. 2.32 are computed using the chain rule as follows,

∂c

∂βk
= ∂c

∂ki

∂ki
∂βk

+ ∂c

∂Si

∂Si
∂βk

(2.33)

∂Rj

∂βk
= ∂Rj

∂ki

∂ki
∂βk

+ ∂Rj

∂Si

∂Si
∂βk

(2.34)

Each individual term in Eqs. 2.33 and 2.34 may be analytically com-

puted from the discrete algebraic finite volume equations.

Summarizing, the calculation of sensitivity derivatives is broken down

into two steps. The first is the solution of the linear equation set to obtain

38

the adjoint field ψ defined by Eq. 2.30. The second is the computation of the

necessary sensitivity derivatives. For the first step, an iterative linear solver

is usually used. This step can be computationally intensive, since the adjoint

linear system is generally stiff. For very stiff systems, it may be necessary to

resort to direct solvers.

The second step (computing Eqs. 2.33 and 2.34), though not compu-

tationally intensive, requires the computation of the analytical derivatives of

the algebraic equations resulting from the finite volume discretization. For

the finite volume scheme used here for unstructured meshes, calculation of the

derivative term ∂Rj
∂βk

involves finding derivatives of the secondary gradient flux

term (Eq. 2.6). It is extremely difficult to differentiate the secondary flux

term (Eq. 2.6) with respect to state and design variables. We will develop the

infrastructure for differentiating complex functions in the Chapter 3. However,

the secondary gradient flux term for orthogonal meshes is zero. In such a case,

all the derivative terms required for sensitivity computation for a pure heat

conduction problem can be obtained through manual differentiation.

2.5.5 Non-linear optimization algorithm - Method of Moving Asymp-
totes (MMA)

Many optimization algorithms have been explored for topology opti-

mization [9], including gradient-based methods such as optimality criteria

(OC) methods [3], sequential linear programming (SLP) methods [57], the

‘method of moving asymptotes’ (MMA)[9] and evolutionary methods such as

39

genetic algorithms, bi-directional evolutionary structural optimization (BESO)

and others [58, 59].

We follow the MMA algorithm developed by Svanberg [60, 61]. MMA is

an optimization algorithm for general nonlinear constrained problems, which

is popular in the topology optimization community. The MMA algorithm han-

dles problems with a large number of design variables subject to few constraint

functions very well. Since the number of design variables is equal to the the

number of discrete cells in the domain, which can be very large, MMA is well-

suited to the problem considered here. The methodology underlying MMA is

also well suited for parallelization (refer [62]).

MMA is a one of the class of optimization algorithms called Conser-

vative Convex Separable Approximation (CCSA) methods . Algorithms like

Sequential Linear Programming (SLP) or Sequential Quadratic Programming

(SQP) iteratively solve a sequence of convex sub-problems (linearized functions

or quadratic functions respectively) to reach the minimum. In a similar way

MMA also solves the general non-linear optimization problem by iteratively

solving a sequence of convex sub-problems constructed with some separable

approximations of original functions (both objective functions and constraint

functions). It is recalled that a separable function is one that can be expressed

as a sum (or linear combination) of functions of each individual optimization

variable. Unlike SLP or SQP, a CCSA algorithm guarantees that iterations

points of the sub-problems are feasible with original constraints when solved

with its generated convex separable approximations . Use of these separable

40

approximations makes MMA a good method capable of handling extremely

large number of design variables.

Figure 2.2 also depicts the general algorithm of MMA used for topol-

ogy optimization. For a given finite volume solve, the objective function

c = c (T ,β) and the sensitivities ∂c
∂βk

are calculated as mentioned in previ-

ous sections. Calculation of volume constraint function g (in Eq. 2.21) and

its derivative ∂g
∂βk

are straightforward. The function values, the derivatives

and the current values of β(0)
i are fed into the MMA optimizer, as shown

in Figure 4. With the function values and its derivatives, approximate con-

vex optimization sub-problems are created (described in the next paragraph),

which is solved using a standard optimization algorithm such as interior point

method [60, 61, 62]. The new design variable are updated with which a new

subproblem is created. The procedure repeated until the difference between

the successive iterative values of βi fall below a prescribed tolerance value.

The convex optimization sub-problem is generated by replacing all the

original functions (cost function and the constraint function) with conservative

separable convex functions. This process is outlined here briefly from a user

perspective (based on Refs. [60]). Let the original function (either cost func-

tion or constraint function) value be f (β) and its gradient vector be ∂f
∂βk

(β),

evaluated at a given β. The the approximated function is constructed with

a linear combination of basis functions of the form 1
Uj−βj or 1

βj−Lj (Eq. 2 of

Ref. [60]) depending on the sign of the particular sensitivity value ∂f
∂βk

, given

in general form by

41

f (β) ≈ f̃i (β) =
n∑
j=1

(
pij

Uj − xj
+ qij
xj − Lj

)
+ rj, i = 0, 1, . . .m, (2.35)

rj is the difference between original and approximated function calcu-

lated at β. Uj and Lj are called upper and lower asymptotes. They are calcu-

lated using their previous iterate counterparts Uprev
j or Lprevj , the current and

previous iterates β and βprev and a parameter (γ in Ref. [61]) which controls

the level of conservativeness. If the asymptotes (Uj or Lj) are chosen closer

to βj the approximation functions are said to be more conservative and vice

versa. For two different approximating functions f̃1 and f̃2 of a given original

function, the former is more conservative than latter if f̃1 < f̃2. Sometimes,

for instance, the constraint functions need to be chosen very conservatively

depending on the problem to aid the path to optimal solution in the initial

stages.

The constant pij is next determined with β , original derivatives ∂f
∂βk

(β)

and the current upper asymptotes Uj. Similarly qij is determined but with Lj.

The bounds of the original problem are also modified in each iteration, with

variables called move limits (α and β in Ref. [61]; note that this β should

not be confused with design variable βi used in this dissertation as design

variables). They are obtained from the original bounds of the problem, current

asymptote values Uj and Lj, current iterate values β and two parameters

(asymincr and asymdecr in Ref. [61]). Changing these parameters also change

the conservativeness of the function.

42

Tuning the above discussed parameters by trial and error can help in

obtaining convergence or increasing the rate of convergence. In addition, in

practice, the MMA sub-problem also have additional linear and quadratic func-

tions of artificial optimization variables (variables yi, z of Eq. 3.1 in Ref. [61])

to ensure that the sub-problem always has a feasible solution. The coefficients

accompanying these functions (ai, ci, di in Eq. 3.1 in Ref. [61]) also need to be

chosen judiciously for practical reasons (further details in [60, 63]]).

Svanberg [61] made some practical adjustments for MMA to work ef-

fectively. We have found that it is important to scale the objective function c

and its senstitiviites dc
dβj

, as depicted in Figure 2.2. Svanberg recommends that

the objective function c = c (T ,β) be scaled such that 1 ≤ c (T ,β) ≤ 100, for

reasonable values of the design variables βj. The actual order of magnitude of

the objective function is obviously dependent on the problem and its parame-

ters. The sensitivity derivatives of the objective function must also be scaled

with the same scale factor. Generally, a scale factor may be chosen based on

the objective function of the initial configuration.

2.5.6 Filtering sensitivities

Topology optimization is generally ill-posed unless appropriate geomet-

ric restrictions are applied [59]. For instance, the final topology can be highly

mesh-dependent if not properly handled. It is not uncommon for the opti-

mization process to get trapped in a local minimum. A filtering process is

generally employed to circumvent such issues. In this chapter we use a simple

43

filter whereby the sensitivity derivatives in each cell are modified by adding the

weighted average of the product of the sensitivity and design variable values

of the neighboring cells (Eq. 7 in Ref. [64]]). The sensitivity filter modifies

the sensitivities dc
dβi

as follows,

d̂c

dβi
= 1

max(γ, βi)
∑
j∈ne

Hij

∑
j∈ne

Hijβj
dc

dβj
(2.36)

d̂c
dβi

is the modified sensitivity for cell i, ne is the set of elements i for

which the center-to-center distance ∆(i, j) to element j is smaller than the

filter radius rmin, γ = 0.001 is a small positive number to avoid division by 0,

and Hij is a weight factor defined as:

Hij = max (0, rmin −∆(i, j)) (2.37)

The choice of how many neighboring cells are used is heuristic. During

the initial phases of optimization, a large number of neighbor cells is typically

used. The neighborhood is gradually reduced as the optimization proceeds [9].

Though no sound theoretical basis exists for filtering sensitivities, numerous

papers have been published based on such sensitivity modification, both in 2D

and 3D problems and with many constraints. Bendsoe [9] claims that compu-

tational experience has shown that filtering is a highly efficient way to ensure

mesh-independency. Sensitivity filters are also called mesh independence fil-

ters in the literature. Filters can also be used for controlling the minimum and

44

maximum length scales in the evolving geometry [65, 66]. This is important

when taking manufacturability into consideration. Other methods, such as

perimeter control and gradient restriction, have been published and may be

incorporated as constraints [9, 61].

2.6 Results

We consider three test cases to demonstrate the application of the topol-

ogy optimization algorithm to heat conduction problems. In the examples

below, we consider both 2D and 3D problems, as well as initial design spaces

that are both rectangular and non-rectangular. In all cases, a volume fraction

constraint for the high-conducting material is stated as an inequality, as in Eq.

2.20. In every case presented below, the optimal solution is found to have a

volume fraction equal to the specified maximum, ε.

2.6.1 Test case 1: Conduction in plane slab

In this test case, we perform a verification test for the optimal material

distribution for heat conduction in a plane slab. Figure 2.3 shows the 2D

rectangular design space, with two materials of given volume fractions which

must be distributed to maximize a cost function. A chosen maximum volume

fraction of the design space, ε = 0.4 in this case, is to be filled with a highly

conductive material of conductivity k1, with the remaining volume occupied by

a material with low thermal conductivity k2. Constant temperature boundary

conditions are applied on the two vertical boundaries. The top and bottom

45

Figure 2.3: Schematic for problem solved in test case 1.

faces are adiabatic boundaries. The objective is to maximize the heat rate on

the right boundary,

c =
∫

Γ
(−k∇T) · d ~A Γ = right boundary (2.38)

V1(β)
V0

≤ 0.4

The maximum heat flow occurs in a scenario where the thermal re-

sistance is the least. Therefore a geometry with minimum path length and

maximum cross-sectional area is the optimal solution. A rectangular strip

filled by the highly conductive material and stretching the entire length of the

domain is one optimal solution. A collection of discretely spaced strips are

equally valid solutions.

46

Figure 2.4 shows the process of topology optimization being performed

on the described problem. The design domain in Figure 2.4 is made of a

mesh of 100 X 100 quadrilateral cells. To demonstrate the robustness of the

algorithm and its insensitivity to the initial distribution of the material, we

choose a random distribution of the initial β field. Figure 2.4(a)-(d) shows

the process of topology optimization and steps in the evolution of the random

distribution of β to the optimal rectangular strip topology. The red region

represents the high conducting material while the blue region represents the

low conducting material. Results are shown for k1/k2 = 10.

As mentioned before, various other geometries are possible as solution

to this problem. One such solution is shown in Figure 2.5(a) which was arrived

with a different initial random distribution of β. Both geometries Figure

2.4 (d) and Figure 2.5(a) have same value of the final objective function as

expected. Figure 2.5(b) shows the temperature distribution of all the final

geometries obtained.

Figure 2.6 shows plots of normalized objective function and volume

fraction of the high-conductivity material plotted at each iteration of the op-

timization process. We also plot the filter radius normalized with the domain

length for each iteration. As was mentioned before, the neighborhood area on

which the filtering is performed is gradually reduced during the optimization

process. We observe that the volume fraction constraint is active (satisfied in

its equality) as the optimization process reaches its conclusion. The maximum

cost function can be calculated analytically for this problem and is used to

47

(a) (b)

(c) (d)

Figure 2.4: Topology optimization in test case 1. (a) Initial random distribu-
tion of β (b) & (c) Representative steps leading to optimized geometry. (d)
One possible optimal topology.

48

(a) (b)

Figure 2.5: (a) Another possible optimal geometry obtained with a different
initial random distribution of β. (b) Linear temperature distribution in the
final geometry.

normalize the cost function during each iteration. The normalized cost func-

tion can be seen approaching the maximum possible value. The evolution of

geometry in Figure 2.4(a)-(d) is marked on the cost function plot in Figure 2.6.

It is seen that an approximate geometry is evolved quickly in the first twenty

iterations, and a slower evolution to the final optimal solution then occurs.

A 3D version of the same problem is now considered, as shown in Figure

2.7. The cuboidal design space is made up of a mesh of 50X50X50 hexahedral

cells. Here again, two chosen opposite faces are given-temperature boundaries

while all the remaining faces are subject to symmetry boundary conditions.

The volume fraction of the highly conducting material is set at 40% of the

design space. Figure 2.7 shows the final geometry obtained with a random

49

Figure 2.6: Normalized objective function and volume fraction of high-
conductivity material versus iteration number. The plot also shows the nor-
malized filter radius applied at various phases of the topology optimization.

initial distribution. Though many optimal solutions are possible, the final ge-

ometry must have a constant cross-section spanning the two given-temperature

boundaries shown. This is depicted in in Figure 2.7(a) where only the high

conducting material is shown. Figure 2.7(b) shows both materials for the same

final geometry.

We contrast the computational cost for 2D and 3D topology optimiza-

tion for same mesh resolution of the design space in Table 2.1. Keeping all

parameters the same, on a Xeon E5-2680 processor, this particular test case

on a 50X50X50 3D mesh took around 1337 seconds while that on a 50X50 2D

mesh took around 35.02 seconds, i.e., roughly 38 times more. The 3D mesh

size is larger than the 2D mesh by a factor of 50. The cost of the corresponding

50

(a) (b)

Figure 2.7: (a) An optimal topology for the 3D version of the problem in test
case1 with a volume fraction of 0.4. Note that the cross-section is constant in
the heat transfer direction. Only one material is shown to demonstrate that
the cross section remains the same across the width (b) The same geometry
with both materials.

51

Table 2.1: Comparison of 2D and 3D topology optimization.

Operation 2D (secs) 3D (secs) Scaling (3D/2D)
Finite Vol. Soln. 6.27 392.89 62.62

Senstivity 18.66 830.93 44.54
Filtering 0.23 53.28 231.25

Optimizer 9.86 59.51 6.04
Total 35.02 1336.61 38.17

finite volume solution scaled by a factor of 63, sensitivity calculations using

the adjoint method by a factor of 45, and the filtering operation by a factor

of 231. On the other hand, the optimizer scaled by a factor of 6, very much

lower than the mesh size scaling. The vast majority of the time spent is on

the computation of sensitivity derivatives, though the finite volume solution

also takes significant time in 3D.

2.6.2 Test case 2: Conduction with heat generation

In this problem we consider a 2D design space containing two materials

k1 and k2with k1 > k2. In addition, a volumetric heat source term is included

in Eq. 2.1. Three sub-problems are considered, and are outlined in Table 2.2.

2.6.2.1 Test case 2a

The schematic for test case 2a is shown in Figure 2.8(a). A rectangular

domain with two materials is considered, with k1 greater than k2. Part of the

left boundary near the center is maintained at a temperature T1 while keeping

the remaining boundaries adiabatic. A constant thermal energy source term

52

Table 2.2: Summary of three sub-problems in test case 3.

Test
Case 3

Description Modeling
Source term

Conductivity
ratio

Objective
function;
Minimize

(a) Constant source
throughout the

domain; independent
of design variable

S = α k1
k2

=
105, 25, 5

Average
tempera-

ture of the
domain

(b) Source term only
present in the

high-conducting
region; dependent on
the design variable

S = α · β k1
k2

= 105 Center
point tem-
perature

(c) Source term only
present in low-

conducting material;
dependent on the

design variable

S =
α · (1− β)

k1
k2

= 10 Center
point tem-
perature

53

S = α is applied throughout the domain. The objective is to minimize the

average temperature of the domain, with the volume fraction of material 1

held at ε = 0.4. The objective function in this case is given by

c = 1
V

∫
Ω
TdV =

n∑
i=1

Ti
n

(2.39)

V1(β)
V0

≤ 0.4

Three different conductivity ratios are investigated viz., k1/k2 = 105, 25

and 5. A Cartesian mesh of 100X100 quadrilateral cells is used.

The optimal topology for the case k1/k2 = 105 is shown in Figure

2.8, and has been published previously in [23, 25]. The fractal-like structure

maximizes the surface area of heat-conducting material exposed to the heat-

generating material, and the thick ‘stem’ of the fractal structure minimizes

the heat transfer resistance to cold sink.

The optimal topology for the finite conductivity ratio k1/k2 = 25 is

shown in Figure 2.8(c). We note that the branches of the geometry have re-

duced in number compared with Figure 2.8(b). Figure 2.8(d) shows an even

smaller number of branches for k1/k2 = 5. Though more interpenetrating

paths increase the reach of the conducting material into a larger volume of the

heat generating region, they also increases the resistance to heat flow due to in-

crease in the conduction path length and decrease in the cross-sectional areas.

For the optimal structure in Figure 2.8(b), a fractal interpenetrating struc-

ture is essential since the blue regions are virtually non-conducting. However,

54

as observed in Figure 2.8(c) and (d) for finite conductivities, the algorithm

balances the surface area exposed to the heat source with the increase in con-

duction path length. The effect is most pronounced in Figure 2.8(b) where

material 1 displays a much less ‘fingered’ structure; since material 2 is suffi-

ciently conducting it also offers a low-resistance path to the sink and deeply

interpenetrating structures are no longer required.

2.6.2.2 Test case 2b

The schematic for this problem is shown in Figure 2.9(a). A source

exists only in regions filled with material 1. Since β represents the element-

wise volume fraction of high conducting material of each finite volume cell, the

source term in each cell can be modeled as S = α ·β. The goal of the design is

to minimize the maximum temperature, which occurs at the domain center.

min c = T (0) (2.40)
V1(β)

V0
≤ 0.5

Both 2D and 3D cases are considered. For the 2D case, a quadrilateral

mesh of 99 X 99 cells is used. For the 3D case, a hexahedral mesh of 49 X 49

X 49 cells is used.

The optimal geometry computed for this problem for a specified max-

imum volume fraction ε = 0.5 is shown in Figure 2.9(b). A uniform initial

distribution β is used. Hourglass patterns are obtained as shown, with the

55

(a) (b)

(c) (d)

Figure 2.8: Optimal heat dissipating structure for test case 2a for three con-
ductivity ratios (a) k1 � k2 (b) k1/k2 = 25 (c) k1/k2 = 5.

56

regions near the boundaries having maximum contact with the cold thermal

boundary condition. Similar hourglass patterns are obtained for other volume

fractions as well.

The 3D counterpart of the test case 2b where the initial design space

is a cube has its final topology shown in Figure 2.9(c). The topology has

symmetric hour-glass form and is very similar to the 2D topologies in Figure

2.9(b), except that it has six legs in 3D.

2.6.2.3 Test case 2c

The schematic for this test case is the same as shown in Figure 2.9 (a).

Here, the source term is modeled as S = α · (1− β) so that heat generation

is confined to the low-conducting phase. Similar to the previous case, the

objective is to minimize the center point temperature (Eq. 2.40). Figure

2.9(d) shows the optimal topology for ε = 0.5. We note the difference in the

final geometries in Figure 2.9(b) and (d). In the former case, the algorithm

maximizes the contact area of the high conducting material (which contains

the source) with the cold boundary. In the latter case, the algorithm not

only increases the contact area between the low-conducting material (which

contains the source) and the cold boundary, but also provides pathways to

the boundary through the high-conducting material. This is because heat

generated in the low-conducting material can find a path to the cold boundary

though the high-conducting path as well.

57

(a) (b)

(c) (d)

Figure 2.9: Topology optimization in test case 2b and 2c (a) Schematic dia-
gram of the both the test cases (b) Optimal topology for ε = 0.5 for 2D for
test case 2b (c) Optimal topology for the same volume fraction in 3D for test
case 2b, where the design space is a cube (d) Optimal topology for ε = 0.5 for
2D for test case 2c.

58

2.6.3 Test case 3: Comparison of structured and unstructured
meshes

In this test case, we consider a problem in 2D, with a mix of temperature

and symmetry boundary conditions in a non-rectangular initial design space.

We consider both unstructured triangular meshes and structured Cartesian

meshes, and compare the final optimal geometry obtained. As was mentioned

before, there is no contribution of the secondary gradient flux (Eq. 2.6) to the

residual of a cell for Cartesian meshes. However there is a contribution from

the secondary gradient to the residual of a cell for non-orthogonal meshes.

Therefore we intend to investigate the effect of the secondary gradient term in

the sensitivity calculation on the final optimal topologies in this test case. As

mentioned in Section 2.5.4, we develop the infrastructure (Rapid Automatic

Differentiation Library) for computing derivatives of secondary gradient flux

terms in Chapter 3. However we use Rapid in this test case to investigate the

influence of secondary gradient flux term on final topologies.

Figure 2.10(a) describes the problem. The objective is to maximize the

heat rate on the top right edge.

c =
∫

Γ
(−k∇T) · d ~A Γ = top right boundary (2.41)

V1(β)
V0

≤ 0.4

Thermal conductance is directly proportional to cross sectional area

while inversely proportional to length of the path and the final solution should

59

(a) (b)

Figure 2.10: Schematic for problem solved in test case 3.

reflect this balance. The design space is constrained to be filled with a maxi-

mum volume fraction ε = 0.4 of the high conducting material. The conductiv-

ity ratio considered is k1/k2 = 10. The non-rectangular region is discretized

with high-quality triangular elements as is shown in Figure 2.10(b). Here in

the figure the triangular elements are populated with random values for as its

initial distribution.

Figure 2.11 (a) shows the final optimized topology for the problem on

such an unstructured mesh of 19346 triangular cells. The high-conducting

material is seen to be deployed in a continuous band connecting the hot and

cold boundaries, as expected.

The same problem is now solved on the Cartesian mesh with 8400

quadrilateral cells. For purposes of comparison, both the meshes have been

60

(a) (b)

Figure 2.11: Optimal topology for volume fractions ε = 0.4 for test case 3
obtained using (a) an unstructured mesh, and (b) a Cartesian mesh.

matched to each other in terms of cell length scale. The final topology for

Cartesian meshed domain is shown in Figure 2.11 (b). Notice that the topolo-

gies obtained using unstructured and Cartesian meshes are visually nearly

identical.

We now make more quantitative comparisons. Figure 2.12(a) depicts

the evolution of the objective function and volume fraction of the high con-

ducting material with iteration. The objective function is normalized with

the finally-achieved value. We observe that the curves for the two meshes

almost fall on top of each other. In Figure 2.12(b), we also plot the tem-

perature along the horizontal axis for the final topologies in Figures 2.11(a)

and (b). The temperature is normalized with the difference in the boundary

temperatures and the axial distance with the size of the design domain. The

61

Figure 2.12: Schematic for problem solved in test case in Section 2.6.3.

temperature distribution is also found to be near identical.

These quantitative measures establish that secondary gradients do not

significantly influence the sensitivity computations thereby not affecting the

final optimal solution if the unstructured mesh is of high-enough quality. Or

in other words, we can neglect the secondary gradient flux for pure heat con-

duction problems for good-quality meshes.

2.7 Closure

In this chapter, topology optimization for heat conduction problems

has been explored within a unstructured finite volume framework based on a

residual formulation. Sensitivities are calculated employing the adjoint method

and MMA is used as the optimization algorithm. Secondary gradients, which

62

appear in the discretization for unstructured meshes, are accounted for in the

computation of the temperature field, but not in the calculation of sensitiv-

ity gradients. Topology optimization is demonstrated on a number of heat

conduction problems and the optimal geometries so obtained are rationalized

based on physical arguments. Our computations demonstrate that secondary

gradients for unstructured meshes may be neglected for high quality meshes for

pure conduction problems. The various test problems presented in this chap-

ter demonstrate the ability of topology optimization in obtaining non-intuitive

geometry designs.

A number of challenges remain in generalizing the unstructured mesh

topology optimization method presented here for general fluid flow and con-

vective heat transfer. As mentioned earlier, among the most popular methods

for the solution of incompressible flows are sequential pressure-based algo-

rithms like SIMPLE[32] which do not assemble complete Jacobians, making

the computation of sensitivity derivatives more complex. Furthermore, nearly

all published topology optimization work thus far has focused on staggered

mesh implementations of SIMPLE, whereas the most widely-used codes em-

ploy non-staggered or co-located pressure-velocity formulations[31]. Indeed,

for unstructured meshes, staggered formulations are difficult to formulate and

have rarely been used. Sensitivity derivative calculations for momentum-

interpolation schemes such as that described in are cumbersome, and alter-

native techniques which yield optimal or near-optimal results are necessary.

Finally, nearly all published papers on topology optimization for fluid flow have

63

addressed laminar flows, while most flows of industrial importance are turbu-

lent. But if these challenges can be addressed, finite-volume based topology

optimization can emerge as a powerful tool for the generation of preliminary

designs for industrial problems.

The biggest impediment to such an extension is the process of comput-

ing sensitivities using the adjoint method. We build an infrastructure named

Rapid, an automatic differentiation library, as the first step to obtaining these

sensitivities. We describe the implementation of this library in the next chap-

ter.

64

Chapter 3

Residual Automatic PartIal Differentiator
(RAPID)

“Everything should be made as simple as possible, but no
simpler.” - Einstein

The goal of this chapter is to present the development of the automatic differ-

entiation tool, christenedRapid. In the process of presenting the methodology,

we touch upon the basics of automatic differentiation and present a brief sur-

vey of the current state of automatic differentiation that has motivated us in

building our tool. Throughout the chapter, we use simple examples designed

to elucidate the necessary concepts.

3.1 Introduction to Automatic Differentiation (AD)

Automatic differentiation (AD), also referred to in the literature as

algorithmic differentiation, code differentiation and computational differentia-

tion, has the potential to become a very powerful component of computational

science and engineering if utilized to its full potential. Function derivatives

(or sensitivities) are necessary for many applications such as design optimiza-

tion, sensitivity analysis, inverse problems, uncertainty quantification, ma-

65

chine learning as well as elementary applications such as solution of algebraic

equations and curve fitting [67]. However one can encounter very complex

mathematical functions, for instance, the source terms in the Spalart-Allmaras

turbulence model which is of interest in this dissertation. Manual differen-

tiation and coding of the derivatives of complex terms is prone to human

error. AD tools can automatically and efficiently compute derivatives of func-

tions accurately to machine precision. If used judiciously, AD can eliminate

hard labor and human errors in differentiation, and can help to obtain deriva-

tives of already programmed codes non-intrusively. Many excellent resources

(http://www.autodiff.org) and books are available in the area of AD [67, 68].

AD facilitates the computation of derivatives of any mathematical func-

tion expressed using a computer program. The programmer only needs to write

the program for function evaluation at specified parameter values, AD tools

can evaluate the derivative of the same function at the same specified values

automatically. AD does not perform symbolic computation of derivatives (as

computer algebra packages like Mathematica or Maple do). It does not deter-

mine derivative functions but only evaluates the derivative values. At the same

time, AD does not evaluate derivatives using finite differencing of derivatives

and therefore does not carry the burden of truncation errors. AD operates by

systematic repeated application of the chain rule of differentiation to obtain

actual numerical values of algebraic expressions and their derivatives [67]. AD

exploits the semantics of a programming language to evaluate a mathemati-

cal expression and employs well-defined unique rules of differential calculus to

66

evaluate derivatives.

Methods to perform AD have evolved over the years. When procedural

programming languages like Fortran were popular, ‘source transformation’ AD

tools were developed. Here, the AD tool parses a given source code written

to compute a mathematical function, and generates another source code to

compute the derivative of the function with respect to specified independent

variables. ADIFOR [69] and TAF [70] are some of the source transformation

AD tools available.

A shift from procedural to object oriented programming languages like

C++ led to new approaches [71, 72]. Features of C++ like operator overload-

ing and template programming naturally made it easier to implement AD in

a more direct fashion. Many AD tools have been developed in C++ in recent

years. FADBAD [73], Sacado[74, 75], ADEPT [72], CppAD [76] are some of

the AD tools using operator overloading. Since Rapid is based on operator

overloading, we discuss the concept more deeply about it in a little detail in

the next section.

3.2 AD based on templating and operator overloading

‘Templating’ is a feature available in C++ that allows the user to decide

the type of a variable at compile time. Consider the following code snippet,

where the programmer has defined variables x,y and z of a generic type T.
1 T x,y,z;
2 .

67

3 .
4 z=x+y;

If T is of type double, the usual addition operation is performed. If T

is some user defined type, the compiler can be forced to execute some other

user defined operations, called overloaded functions, for example, for the ‘+’

operator. Thus by specifying a generic type ‘T’, the user can avoid specifying

the actual type of the variables while programming. The user can later decide

at compile time what type ‘T’ should be. Templating can be very useful for

code re-usability.

Operator overloading feature incorporated in C++[77] allows the user

to customize the functionality of operators based on the user-defined type of

the operands. For instance, in the computation of the expression x + y, the

operator ‘+’ computes the usual sum of its operands x and y if these variables

are of the basic data type, say ‘double’. However, if the variables are of some

other user-defined type, then the same operator ‘+’ can be made to perform

another user defined functionality acting on the operands. Thinking from an

AD perspective, if the new type is defined by the user to have two fields, one for

storing function value and another for storing derivative value, the operator ‘+’

can be re-implemented not only to compute the sum x+ y and store it in the

first field, but also to compute the derivative dx+dy and store it in the second

field. Similarly, the multiplication operator ‘*’ can be forced to simultaneously

compute x ∗ y that is stored in the first field and to compute xdy + ydx and

store it in the second field. AD tools based on operator overloading are built

68

based on this concept.

This combination of operator overloading and templating facilitates

building of powerful unintrusive AD tools for obtaining derivatives and thus

greatly enhances code re-usability.

There are two modes of AD - forward mode and reverse mode [67,

78]. Both have their own advantages and disadvantages. Both forward and

reverse mode AD tools have been implemented using source transformation

and operator overloading/template programming techniques. We primarily

discuss the two modes with the latter.

3.2.1 Forward mode

In forward mode AD, derivatives propagate along the flow of computa-

tion from the beginning to the end until the final output variable is computed.

We illustrate this statement with simple examples after defining some notation.

Suppose X = {x1, x2 . . . xn} is the set of n independent variables and

F = F (X) = {f1 (X) , f2 (X) . . . fm (X)} be a set of m dependent functions

each defined over X. Further, let function fi be decomposed into k (vary-

ing) elementary steps as depicted in 3.1(a). As an example if we define two

functions f1 and f2 as,

f1 (x1, x2) = exp (x1x2 + sin (x1))

f2 (x1, x2) = x2
1 + x2

2 (3.1)

69

X = (x1, x2 . . . xn)
k1 steps

vv
k2 steps
��

''

km steps
**

f1 (X) f2 (X) . . . fm (X)
(a)

X = (x1, x2)

vv

uu

((

))

f
(1)
1 = x1 ∗ x2

��

%%

f
(1)
2 = x1 ∗ x1

��

yy

f
(2)
1 = sin (x1)

��

f
(2)
2 = x2 ∗ x2

��

f
(3)
1 = f

(1)
1 + f

(2)
1

��

f
(3)
2 = f

(1)
2 + f

(2)
2

f
(4)
1 = exp

(
f

(3)
1

)
(b)

Figure 3.1: (a) Breaking down the evaluation of function fi (X) into ki ele-
mentary function evaluations. (b) Illustration of elementary functions f (j)

i for
two example functions.

then Figure 3.1(b) shows the series of 4 elementary steps needed to compute

f1 and 3 elementary steps to compute f2 from the independent variables X =

(x1, x2).

In a forward mode AD, the user first chooses one of the independent

variables in the set X with which the derivatives of the each dependent func-

tions fi need to be computed. Henceforth, for each output functions fi, deriva-

tives with respect to the chosen independent variable are computed along with

70

each elementary function along the tree. For the two examples in Eq. 3.1, sup-

pose one chooses x1 to be the independent variable, then the derivatives w.r.t

x1 propagate in the flow of computation at each elementary function evaluation

of f1 and f2 as shown in the Figure 3.2(a). A second sweep all the way from the

beginning by setting x2 as the second independent variable will be required to

compute the derivative of functions f1 and f2 w.r.t x2 shown in Figure 3.2(b).

The independent variable x1 is signalled by denoting ∂x1 (x1) = 1; ∂x1 (x2) = 0

and x2 by ∂x2 (x1) = 0; ∂x2 (x2) = 1 as seen in Figure 3.2. The rationale behind

such a construct will become clear in the forthcoming sections.

3.2.2 Reverse mode

Reverse mode AD propagates adjoints[67], in contrast to the forward

mode, which propagates derivatives. Our goal is to understand the reverse

mode just enough to distinguish the features of the Rapid AD infrastructure

that we have developed. In contrast to the forward mode, the reverse mode

derivative computation starts from the output variable and propagates back-

ward in the reverse flow of computation.

We choose the same example as in Figure 3.1 to illustrate reverse mode

AD. In Figure 3.3, the elementary functions are computed along the forward

direction marked with letter ‘f ’ like the forward mode computation. Thus

all dependent functions F are computed. Unlike the forward mode, we do

not choose the independent variable in the beginning and no derivatives pro-

pogate along forward sweep. However the history of the operations and associ-

71

X = (x1, x2) ; [∂x1 (x1) = 1, ∂x2 (x2) = 0]

ss

rr

++

,,

f
(1)
1 ; ∂x1

(
f

(1)
1

)
��

$$

f
(1)
2 ; ∂x1

(
f

(1)
2

)
��

zz

f
(2)
1 ; ∂x1

(
f

(2)
1

)
��

f
(2)
2 ; ∂x1

(
f

(2)
2

)
��

f
(3)
1 ; ∂x1

(
f

(3)
1

)
��

f
(3)
2 ;∂x1

(
f

(3)
2

)

f
(4)
1 ;∂x1

(
f

(4)
1

)
(a) Function evaluation tree of f1 and f2 and their derivatives when x1 is set as independent
variable.

X = (x1, x2) ; [∂x2 (x1) = 0, ∂x2 (x2) = 1]

ss

rr

++

,,

f
(1)
1 ; ∂x2

(
f

(1)
1

)
��

$$

f
(1)
2 ; ∂x2

(
f

(1)
2

)
��

zz

f
(2)
1 ; ∂x2

(
f

(2)
1

)
��

f
(2)
2 ; ∂x2

(
f

(2)
2

)
��

f
(3)
1 ; ∂x2

(
f

(3)
1

)
��

f
(3)
2 ;∂x2

(
f

(3)
2

)

f
(4)
1 ;∂x2

(
f

(4)
1

)
(b) Evaluation tree of f1 and f2 and their derivatives when x2 is set as independent variable.

Figure 3.2: Derivative propagation of a forward mode AD during each step of
the elementary function evaluation.

72

ated operands are recorded in the memory. Once the dependent functions are

computed and a trace recorded, the user chooses one dependent function (or

output variable) with respect to which all its derivatives are required. Once

the output variable is selected, the reverse mode AD starts sweeping back up

the evaluation tree that is depicted with the arrow marked ‘r ’ in the Figure 3.3.

In Figure 3.3(a) f1 is chosen as the output variable while f2 is chosen in Figure

3.3(b). At each re-tracing step of the stack, the sensitivity of a corresponding

elementary function with respect to the chosen output variable is computed.

Finally when one reaches the beginning of the stack, the sensitivity of all the

input variables with respect to the chosen output variable is computed. This

also implies that the sensitivity of the chosen output variable with respect to

each input independent variable is in place at the end of retrace.

We now contrast the differences between forward mode and reverse

mode AD. Forward and reverse modes are two extreme cases of doing AD to

compute derivatives. Generally, for m output functions F = {f1, f2 . . . fm},

a forward mode AD computes derivatives of all the functions fi with respect

to the chosen independent variable xα in one single sweep. For each function

computation fi, derivatives of a chosen variable xα propagates along each of

its ki elementary steps. Thus a single sweep produces the derivatives of all

functions fi with respect to xα. It is noted that n such sweeps would be

required to compute derivatives of the output functions with respect to each

input independent variable xi. Forward mode AD is therefore preferable when

m� n.

73

X = (x1, x2) ; [∂x1f1, ∂x2f1]
f

ss

f

rr

f **

f

**

f
(1)
1 ; ∂f1

(
f

(1)
1

)
f
��

f

&&

r

33

f
(1)
2 ; ∂x1

(
f

(1)
2

)
f
��

f

zz

f
(2)
1 ; ∂f1

(
f

(2)
1

)
f
��

r

OO

r

HH

f
(1)
2 ; ∂x1

(
f

(1)
2

)
f
��

f
(3)
1 ; ∂f1

(
f

(3)
1

)
f
��

r

OO
r

::

f
(3)
2 ;∂f2 (f2)

f
(4)
1 ;∂f1

(
f

(4)
1

)r

OO

[∂f1 (f1) = 1; ∂f2 (f2) = 0]

r

OO

(a) Propogation of adjoints when f1 is set as independent output variable.

X = (x1, x2) ; [∂x1f2, ∂x2f2]
f

tt

f

tt

f ++

f

++

f
(1)
1 ; ∂f1

(
f

(1)
1

)
f
��

f

&&

f
(1)
2 ; ∂x1

(
f

(1)
2

)
f
��

f

zz

r

kk

f
(2)
1 ; ∂f1

(
f

(2)
1

)
f
��

f
(1)
2 ; ∂x1

(
f

(1)
2

)
f
��

r

OO

r

VV

f
(3)
1 ; ∂f1

(
f

(3)
1

)
f
��

f
(3)
2 ;∂f2

(
f

(1)
2

)r

OO
r

ff

f
(4)
1 ;∂f1

(
f

(4)
1

)
[∂f1 (f1) = 0; ∂f2 (f2) = 1]

r

OO

(b) Propagation of adjoints when f2 is set as independent output variable.

Figure 3.3: Derivative propagation of a reverse mode AD during each step of
the elementary function evaluation.

74

In a reverse mode AD, all the derivatives of a chosen dependent function

fi with respect to all the independent variables are obtained in a single reverse

sweep. However m such reverse sweeps need to be performed if the derivatives

of all the output variables with respect to all the independent variables are

required to be computed. There are many practical situations when the num-

ber of input variables is much greater than the number of output variables of

interest. Reverse mode AD is attractive in such cases. Generally if n � m,

reverse mode AD is the choice. However the implementation of reverse mode

AD is more complicated than forward mode AD because of the necessity of

keeping the forward trace in memory.

With regarding to the speed of AD for either mode, when the the

number of elementary function evaluations of a function (ki in Figure 3.1(a))

becomes large, AD generally becomes slow due to the overhead of creating

and destroying many temporary objects during each step of the computation.

Expression templates[79], another advanced feature supported by C++, have

been used to speed up AD. The forward mode AD library FAD/SACADO

was accelerated with expression templates and illustrated with 20 input design

variables in[80]. Further speed up by improving the use of expression templates

was reported in[81]. Similarly reverse mode AD has been accelerated using

expression templates in the library Adept[72].

75

3.3 Number of variables in topology optimization

We discuss the order of the number of independent and dependent

variables in topology optimization problems. This will help us to choose the

right mode of AD to use. In topology optimization, the number of design

variables β is the number of elements N in the mesh, which is quite large

(for discussions here we ignore ghost cells). We only compute one or two

cost functions in topology optimization and therefore the number of output

variables m = O (1). The number of independent input variables currently is

n = N . The flow of the function evaluation c is shown in Figure 3.5.

Consider a thought experiment in such a setting. Solely looking at the

number of sweeps required to compute all sensitivities dc
dβi

, using forward mode

AD is very unattractive. At a first glance reverse mode AD looks promising

since only few reverse swipes (m), are theoretically enough to obtain all sensi-

tivities. However the process of solving the simultaneous linearized equations

(or linear system) R (φ,β) = 0, be it using iterative or direct methods, in-

volves a tremendous number of elementary evaluations that would make both

the modes infeasible for topology optimization.

One of the feasible ways to obtain sensitivities is by using the discrete

adjoint method [56, 82]. The reader is warned that reverse mode AD is also

known as adjoint mode AD in the literature [67]. The discrete adjoint method

should not be confused with adjoint mode AD. As discussed in detail in Section

2.5.4, Chapter 2, the derivatives of all the residuals and cost functions with

respect to both state variables and design variables are required to compute

76

Set design variables β = {βi}

��

n = N variables

Formulate residuals R (φ,β) = {Ri}

��
Forward solve forφ R (φ,β) = 0

��
Compute cost function c (φ,β) m = O (1) variables

Figure 3.4: Order of the number of variables in topology optimization

the sensitivities dc
dβi

. If AD is used to compute the residuals and cost functions

from the converged state variables and current design variables, the required

derivatives can be automatically computed. As shown in Figure 3.5, the con-

verged state variables and design variables are set as independent variables.

If p is the total number of unknowns in the PDEs (p = 1 for pure conduction

equations, p = 4 for momentum and continuity equations, p = 5 for a coupled

laminar flow-thermal equations etc.), then there are n = N · (p+ 1) input

variables1. There are p ·N residual equations and O (1) cost functions making

the total output variables to m ∼ p · N . We see that n and m are almost

of the same order. Neither forward mode nor reverse mode AD to compute

the necessary derivatives required for discrete adjoint method would deliver

superior advantage in terms of computational cost of AD.

It is appropriate here to briefly survey of the use of AD specific to the

1If we account for ghost cells, we have N design variables, and a little more than N · p
state variables. This is because we associate state variables of ghost cells, but not for design
variables. See Section 3.4.

77

Set design and converged state variables φ+ β

��

n = p ·N +N variables

Compute residuals & cost functions R (φ,β) ; c (φ,β) m ∼ p ·N variables

Figure 3.5: Order of the number of variables in topology optimization with
adjoint method

applications of interest involving many input variables. One of them is the

large scale sparse Jacobian computation that arises in many scientific appli-

cations. Averick et al. used AD to compute sparse Jacobians matrices using

ADIFOR. Using graph coloring technique and AD, Coleman et al. [83] com-

puted sparse Jacobians. AD has been introduced into the finite element PDE

solver FEniCS to be used for a variety of purposes [84].

Sensitivity computation using adjoint methods is very popular in con-

trol theory and optimization where the number of optimization variables is

large. The computation of sensitivities using the discrete adjoint method using

AD for various applications in transport problems has picked up momentum

in the last decade and in an active area of research. A flow control problem

to minimize the drag on a cylinder by controling the parameters (twenty) of

the boundary condition was implemented by Pierre et al. [80]. Aerodynamic

shape optimization of aerofoils with an adjoint method was performed using

AD by Gauger et al. [85]. An extension of similar work was implemented in

the framework of the open-source finite volume suite SU2 [86]. Towara et al.

[82, 87] implemented a discrete adjoint version of the Navier-Stokes equations

in the open-source finite volume framework OpenFOAM[88] using the AD tool

78

dco/c++[89].

Regarding the choice of AD, a forward mode AD library is much eas-

ier to implement than a reverse mode one, as mentioned before. It is also

our understanding that it is much easier to use the application (specifically a

numerical PDE solver) with a forward mode AD as it requires minimal code

intrusion. However, even with the existence of a wide variety of forward mode

AD libraries like FAD, Sacado, CppAD, we felt the need to develop a new

library keeping our end application and solution strategies in mind. Next we

discuss the rationale for developing such a new AD library.

3.4 Need for a new AD library

By now it is clear that AD does not simplify expressions like the com-

puter algebra packages. The efficiency of an AD tool cannot get better than

the efficiency of the program written for the function evaluation. Though we

would like to avoid code intrusion as discussed before, blind application of AD

to existing code may not be advisable. An AD tool that takes advantage of

the user’s insight into the underlying structure of the program achieves best

performance [67].

In our case, we use the finite volume framework to solve the govern-

ing PDEs in transport phenomena, following well-developed methodologies

evolved over decades. On the other hand, topology optimization has certain

characteristics in its algorithm. TheRapid library was developed keeping both

methodologies in consideration to perform the intended tasks effectively. We

79

motivate more quantitatively the need for the development of Rapid with a

simple example described below.

Consider the model Cartesian mesh shown in Figure 3.6 of dimensions

5X3 units. This model mesh will be used throughout this dissertation wherever

necessary. The mesh has a total of 31 cells which includes 15 regular cells (red

color coded) and 16 ghost cells (green color coded). The mesh contains a total

of 38 faces with 22 internal faces that have cells on both sides and 16 boundary

faces that have cells only on one side. We again consider the discretization of

the pure diffusion equation (Eq. 2.1) modeling heat conduction. Since there

are 31 cells in the mesh, there are 31 state variables Ti (temperature) and 15

design variables βi (no design variables for ghost cells) summing to a total of

46 independent input variables.

First we consider the computation of the residual of the PDE for each

cell Ri. Out of the total set of variables, Ri of each cell depends only on

few of the total variables. For instance, the residual R7 (excluding secondary

gradient flux) is computed as follows,

R7 =
∑
(i,f)

kf

∆ξ
~Af · ~Af
~Af · ~ef

(Ti − T7) ; (i, f) = {(2, 3) , (8, 7) , (12, 15) , (6, 4)}

kf = k7ki
k7 + ki

i = 2, 8, 12, 6

ki = f (βi) i = 7, 2, 8, 12, 6 (3.2)

Out of the 46 state and design variables, the residual R7 depends only

80

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

12345

678910

1112131415

1617181920

21

22

23

2425262728

29

30

31

1

23

4

5

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

2324252627

28

29

30

3132333435

36

37

38

Figure 3.6: Model mesh

81

on 10 of the total variables given by

R7 = R7 (T7, T2, T8, T12, T6, β7, β2, β8, β12, β6) (3.3)

Only the partial derivatives of R7 with the above 10 variables need be

computed and stored. Similarly the residual of a ghost cell R22 depends on

three other variables from the total list given by,

R22 = k29

∆ξ
~A29 · ~A29

~A29 · ~e29
(T10 − T22) (3.4)

= R22 (T22, T10, β10) (3.5)

Each of the 31 residual values Ri depends on only few of the total state

and design variables. This number can vary depending on connectivity.

Similarly, a cost function computation defined as the total heat rate on

the right boundary becomes,

c =
∑
(i,b)
−k (Ti − Tb)

∆ξ ; (i, b) = {(1, 29) , (6, 30) , (11, 31)} (3.6)

For a heat conduction problem, the number of independent variables

on which Ri depends would be of the similar order as the above examples

however large the mesh size may be. A secondary gradient computation for

an unstructured mesh (discussed in Section 2.4.2, Chapter 2) would bring

dependencies of Ri on a few more neighbor variables.

82

In summary, one one hand, the total number of both independent

(Ti, βi) and depedent (Ri) variables are very large since they are propotional to

the mesh size. However each of the dependent variable depends only on a few

out of the total set of independent variables. As mentioned in Section 2.5.4,

Chapter 2, Jacobians ∂Ri
∂Tj

,∂Ri
∂βj

and cost function derivatives ∂c
∂Tj

, ∂c
∂βj

are required

to compute sensitivities needed for topology optimization. The data structure

for AD needs to be defined to compute these derivatives not only exploiting

their sparsity, but also ease of population and post-manipulation. Motivated

by an understanding the underlying structure of the problem being solved,

we develop the Rapid library described in the next section. Efficiency, mini-

mal code intrusion, generality, ease of implementation, and most importantly,

capturing dependencies in the best possible way given a current function imple-

mentation, have guided the development. The last aspect will be understood

better after the chapters on fluid flow (Chapter 4) is covered.

3.5 Implementation of Rapid library

The acronymRapid stands for Residual Automatic PartIal Differentiator.

The purpose of the library is to obtain the partial derivatives of PDE residuals

with respect to both state and design variables through automatic differenti-

ation, viz. in a rapid way. This section is devoted to the main aspects of the

implementation of the Rapid library in C++.

A forward automatic differentiation library Tangent was built by the

founding authors of MEMOSA and has been used extensively to perform un-

83

certainty quantification for various physical problems [90]. Subsequently, other

researchers extended the Tangent library to obtain higher order derivatives of

functions upto 4th order for applications in nano-scale heat transfer [91]. The

‘Tangent library’ is very similar in implementation to various existing open-

source forward mode AD packages, especially FAD [92]. Rapid was built based

on Tangent but with significant differences in its implementation.

Memosa is a software suite that is being developed continuously. A for-

ward automatic differentiation library ‘Tangent’ was built by founding authors

of Memosa and has been used extensively to perform Uncertainty Quantifica-

tion of various physical models [90]. Subsequently, other researchers extended

‘Tangent’ to obtain higher order derivatives of functions upto 4th order for ap-

plications in nano-scale heat transfer [91]. Tangent is very similar in implemen-

tation to various open-source existing forward mode AD packages, especially

FAD[92]. Rapid was built based on Tangent but with significant differences

in its implementation.

3.5.1 Formal notations for building Rapid

We recall that X = {x1, x2, . . . xn} represents the set of n independent

variables and F = {f1, f2, . . . fm} the set of functions (or dependent variables)

with each function defined on the set X. Let the set X be partitioned into two

subsets Xa and Xna, the former named as independent active set containing

q variables and latter named as independent inactive set containing the re-

maining n− q variables. Xa is named active, because we wish to compute the

84

partial derivatives of functions fi with respect to variables in Xa using AD.

We do not wish to compute derivatives of the function fi with any variables

in Xna. Constants can be classified into this category. Therefore, we intend

to obtain

Rij = ∂fi (X)
∂xj

; xj ∈ Xa (3.7)

An important characteristic of the functions defined on F , as discussed

in Section 3.4, is that any particular function fi depends on only few inde-

pendent variables of the set Xa. If the number of variables from set X on

which fi depend be ri, then O (ri) � p. Rij is thus a sparse second order

tensor. We will exploit this nature when building the Rapid class for efficient

computation of partial derivatives through AD.

A general mathematical function is a combination of various mathe-

matical operators operating on operands. The most common operators imple-

mented in any programming language[80] is the set F = FA ∪ FM ∪ FL, the

union of arithmetic operators FA, logical operators FL and various individual

mathematical functions FM , listed in Eq. 3.8.

FA = {+,−, ∗, /,+ (unary) ,− (unary),++,−−, . . .)}

FM = {pow, sqrt, exp, log, sin, cos, tan, . . . } (3.8)

FL = {! =,==, <,>,<=, >=, . . . }

85

The operators in FA have uniquely defined rules in differential calculus

while that in FM have uniquely defined expressions for their derivatives. The

user can define rules for derivatives for operators in FL based on the context.

A roadmap for the implementation is given ahead. A minimal set of

operators is selected from the set F and a simplified implementation of the

AD library for these operators are presented. We select addition, multipli-

cation, power function, sin and exponential function as model operators for

the minimal library. All other operations can be implemented following same

methodology. For an easier understanding of Rapid, we first present briefly

the implementation of the minimal Tangent library. Examples have been cho-

sen carefully to demonstrate the functioning of the library. This is followed

by the implementation details of Rapid corresponding to the same minimal

Tangent library. Throughout we list modified snippets of the C++ Tangent

and Rapid implementations. The listings have been highly simplified for di-

dactic purposes. Interested readers willing to use or implementRapid for their

purposes will benefit from going through these listings before looking through

the actual code.

3.5.2 Tangent library

The Tangent library consists of a Tangent class and other associated

functions. The flow of derivative with the following example will help us to

design the Tangent library.

86

3.5.2.1 Flow of derivatives

If one numerically sets x′
1 = 1 (implying ∂x1 (x1) = 1) and x

′
2 = 0

(implying ∂x2 (x2) = 0), then the derivatives can be made to flow along each

step of the evaluation tree for the functions f1 and f2 (Eq. 3.1 and Figure 3.1)

according to the Eqs. 3.9 and 3.10. These equations present the computation

of derivative of each term ∂x1f
(i)
1 and ∂x1f

(i)
2 with respect to x1 from the

beginning to end in the evaluation tree depicted in Figure 3.2(a). Prime (′)

represents the derivative with respect to whatever argument is present in the

elementary function. If we choose x′
1 = 1 and x′

2 = 0 , we effectively set up x1

and x2 as the independent active and inactive variable.

x
′

1 = 1; Or ∂x1 (x1) = 1

x
′

2 = 0; Or ∂x2 (x2) = 0

=⇒ ∂x1

(
f

(1)
1

)
= ∂x1 (x1 ∗ x2) = ∂x1 (x1) ∗ x2 + ∂x2 (x2) ∗ x1

= x
′

1 ∗ x2 + x
′

2 ∗ x1 = x2 + 0 = x2

=⇒ ∂x1

(
f

(2)
1

)
= ∂x1 (sin (x1)) = (sin (x1))

′
· ∂x1 (x1) = cos (x1) · 1 = cos (x1)

=⇒ ∂x1

(
f

(3)
1

)
= ∂x1

(
f

(1)
1 + f

(2)
1

)
= ∂x1

(
f

(1)
1

)
+ ∂x1

(
f

(2)
1

)
= x2 + cos (x1)(3.9)

=⇒ ∂x1

(
f

(4)
1

)
= ∂x1

(
exp

(
f

(3)
1

))
=
(
exp

(
f

(3)
1

))′

∂x1

(
f

(3)
1

)
= log

(
f

(3)
1

)
· (x2 + cos (x1))

= log (x1x2 + sin (x1)) · (x2 + cos (x1))

87

x
′

1 = 1; Or ∂x1 (x1) = 1

x
′

2 = 0; Or ∂x2 (x2) = 0

=⇒ ∂x1

(
f

(1)
2

)
= ∂x1

(
x2

1

)
=
(
x2

1

)′

∂x1 (x1) = 2x1 · 1 = 2x1 (3.10)

=⇒ ∂x1

(
f

(1)
2

)
= ∂x1

(
x2

2

)
=
(
x2

2

)′

∂x1 (x2) = 2x1 · 0 = 0

=⇒ ∂x1

(
f

(2)
2

)
= ∂x1

(
f

(1)
2 + f

(2)
2

)
= ∂x1

(
f

(1)
2

)
+ ∂x1

(
f

(2)
2

)
= 2x1 + 0 = 2x1

Similarly x2 can be set as the independent active variable by numeri-

cally setting x′
1 = 0 (implying ∂x1 (x1) = 0) and x′

2 = 1 (implying ∂x2 (x2) = 1).

A second sweep all the way from the beginning to the end with such a setting

will make the derivatives flow through all elementary functions with respect

to x2 as depicted in Figure 3.2(b). The equations corresponding to the flow

are,

88

x
′

1 = 0; Or ∂x1 (x1) = 0

x
′

2 = 1; Or ∂x2 (x2) = 1

=⇒ ∂x2

(
f

(1)
1

)
= ∂x2 (x1 ∗ x2) = ∂x2 (x1) ∗ x2 + ∂x2 (x2) ∗ x1

= x
′

1x2 + x
′

2x1 = x1

=⇒ ∂x2

(
f

(2)
1

)
= ∂x2 (sin (x1)) = (sin (x1))

′
· ∂x2 (x1) = cos (x1) · 0 = 0

=⇒ ∂x2

(
f

(3)
1

)
= ∂x2

(
f

(1)
1 + f

(2)
1

)
= ∂x2

(
f

(1)
1

)
+ ∂x2

(
f

(2)
1

)
= x1 + 0 = x1

=⇒ ∂x2

(
f

(4)
1

)
= ∂x2

(
exp

(
f

(3)
1

))
=
(
exp

(
f

(3)
1

))′

∂x2

(
f

(3)
1

)
= log

(
f

(3)
1

)
· (x1)

= log (x1x2 + sin (x1)) · (x1) (3.11)

x
′

1 = 0; Or ∂x1 (x1) = 0

x
′

2 = 1; Or ∂x2 (x2) = 1

=⇒ ∂x2

(
f

(1)
2

)
= ∂x2 (pow (x1, 2)) = (pow (x1, 2))

′
· ∂x1 (x1)

= 2x1 · 0 = 0

=⇒ ∂x2

(
f

(2)
2

)
= ∂x2 (pow (x2, 2)) = (pow (x2, 2))

′
· ∂x2 (x1)

= 2x2 · 1 = 2x2 (3.12)

=⇒ ∂x2

(
f

(2)
2

)
= ∂x2

(
f

(1)
2 + f

(2)
2

)
= ∂x2

(
f

(1)
2

)
+ ∂x2

(
f

(2)
2

)
= 0 + 2x2 = 0

We can discern a pattern in such a mechanical process of differentiating

89

the functions illustrated above. A need for a structure to hold the data that

facilitates such a process of mechanical differentiation becomes evident.

3.5.2.2 Tangent data structure

The first step in implementing the AD framework is to design a proper

‘data-structure’ that holds the relevant information [71]. From Figure 3.2 and

Eqs. 3.9-3.12, it is clear that each variable needs two fields to store - a function

value and a derivative value. Since each is a real value, each can be of the

‘double’ data type. Thus any variable of type Tangent will inherently have

two fields. A class ‘Tangent’ as listed in Listing 2 is therefore introduced

that contains a component for storing its value (‘double v’) and a second

component for storing its derivative value (’double dv’).

3.5.2.3 Building the Tangent Class

The function and the derivative values for a forward mode AD need to

be computed simultaneously. Member functions have to be built into the class

acting on the data structure to accomplish this simultaneous computation.

The operators in F are re-implemented in the library for simultaneous com-

putation of function values and derivatives. The operator overloading feature

of C++ enables us to accomplish this task.

In our implementation, some operators are re-implemented in the ‘Tan-

gent’ class with class member functions and the remaining as non-member

functions. Listings 1 defines the data members and the bare minimum mem-

90

Program Listing 1 Tangent class definition

1 class Tangent {
2 public:
3 // Constructors
4 Tangent () {}
5 Tangent (const double v, const double dv):_v(v),_dv(dv) {}
6 Tangent (const double v):_v(v){}
7 Tangent (const Tangent & o):_v(o._v),_dv(o._dv){}
8 ˜ Tangent () {}
9 // Member functions

10 Tangent & operator =(const Tangent & o);
11 Tangent & operator +=(const Tangent & o);
12 Tangent & operator *=(const Tangent & o);
13 // display
14 void print () {cout << "_v=" << _v << "," << "_dv=" << _dv ;}
15 // Data members
16 double _v;
17 double _dv;
18 };

91

ber functions. Lines 4-8 define few constructors including the copy constructor

for various types of initializations of the object of the class. Note that only

the ‘=,+ =, ∗ =’ operators are re-implemented as class member functions

while the ‘+, ∗, pow, sin, exp’ operators are implemented as non-class member

functions2.

Program Listing 2 Overloading assignment operator ‘=’

1 Tangent & Tangent :: operator =(const Tangent & o) {
2 if (this == &o)
3 return *this;
4 _v = o._v;
5 _dv = o._dv;
6 return *this;
7 }

Listing 2 implements the assignment operator where the two data mem-

bers v and dv are correspondingly assigned. Listing 3 shows the implementa-

tion of ‘+=’ as a class member function and ‘+’ as non-class member function.

Note that both these operators are necessary and work in unison to realize the

addition operator of two objects of the Tangent type. It is in the ‘+=’ member

function that the differentiation rules for addition are programmed.

Listing 4 implements multiplication operator. Again we need the ‘*=’

and ‘*’ operators to be overloaded as a class and a non-class member func-

tions respectively. The multiplication rules of calculus are coded in ‘*=’ class

member function.

2This is one way of a simple implementation

92

Program Listing 3 Implementing addition by overloading ‘+=’ and ‘+’ op-
erators

1 Tangent & Tangent :: operator +=(const Tangent & o) {
2 _v += o._v;
3 _dv += o._dv;
4 return *this;
5 }
6 Tangent operator +(const Tangent & a, const Tangent & b) {
7 return Tangent (a) += b;
8 }

Such a combination of (‘+=,+’) and (‘*=,*’) are necessary to realize

a general function evaluation which will have multiple elementary operations

(Figure 3.2). Only then would the derivatives propagate along the function

evaluation tree in accordance with the chain rule of differentiation. It is also

noted that the copy constructor plays an important role in the implementation.

For instance, the ‘+’ produces a temporary object (Listing 3 line 7) with a

copy constructor and becomes the calling object for the ‘+=’. This temporary

object is destroyed as soon as it is no longer needed.

Program Listing 4 Implementing multiplication operation by overloading
‘*=’ and ‘*’ operators

1 Tangent & Tangent :: operator *=(const Tangent & o) {
2 _dv = _dv*o._v + _v*o._dv;
3 _v *= o._v;
4 return *this;
5 }
6 Tangent operator *(const Tangent & a, const Tangent & b) {
7 return Tangent (a) *= b;
8 }

93

In-built mathematical functions like ‘pow’, ‘sin’ and ‘exp’ etc. are re-

implemented in accordance with rules of differential calculus as non-member

functions. Listing 5 should be fairly self-explanatory.

Program Listing 5 Implementation of ‘pow’, ‘sin’ and ‘exp’ mathematical
functions.

1 Tangent pow(const Tangent & a, const Tangent & b) {
2 double arg1 = a._v == 0.0 ? 0 : pow(a._v ,b._v);
3 double arg2 = a._v == 0.0 ? 0 : a._dv*b._v*pow(a._v ,b._v -1);
4 return Tangent (arg1 , arg2);
5 }
6 Tangent sin(const Tangent & a){
7 return Tangent (sin(a._v), a._dv*cos(a._v));
8 }
9 Tangent exp(const Tangent & a){

10 return Tangent (exp(a._v), a._dv*exp(a._v));
11 }

With this infrastructure, we now proceed to compute the two exam-

ple functions discussed in Figure 3.1 using the Tangent type. The function

‘testExample1()’ in Listing 6 computes the derivative of functions f1 and f2

given in Eq. 3.1 with respect to x1. The independent variables x1 and x2 are

defined as ‘Tangent’ objects in lines 3-4. Setting the ‘ dv’ field of object x1

signals that we wish to compute the derivative of all functions with respect to

x1. At the same time, the corresponding field of x2 is set to 0. We can obtain

the derivatives of the functions with respect to x2 by setting the dv fields the

reverse way as shown in ‘testExample2()’ in the same listing. It is noted that

in such an infrastructure, if there are n independent variables, the dv field

94

of only one of them should be set to 1 and all the remaining n − 1 variables

should be set to 0 to obtain derivatives correctly.

Program Listing 6 Computing derivatives of functions in Eq. 3.1 using
Tangent class.

1 // Computing df1/dx1 , df2/dx1
2 void testExample1 () {
3 Tangent x1 (2.0 ,1);
4 Tangent x2 (3.0 ,0);
5 Tangent f1 = exp(x1*x2+sin(x1)); f1.print ();
6 Tangent f2 = pow(x1 ,2)+ pow(x2 ,2); f2.print ();
7 }
8 // Computing df1/dx2 , df2/dx2
9 void testExample2 () {

10 Tangent x1 (2.0 ,0);
11 Tangent x2 (3.0 ,1);
12 Tangent f1 = exp(x1*x2+sin(x1)); f1.print ();
13 Tangent f2 = pow(x1 ,2)+ pow(x2 ,2); f2.print ();
14 }

The infrastructure can now be made more general and multipurpose in

various ways using various programming techniques. Expression templates[81]

as discussed earlier can be used to enhance computational efficiency. Type

traits is another useful technique for compile time type conversion [93]. Inter-

ested readers are pointed to [94, 50].

We also mention that the FAD package [81] available in SACADO

[94] does have the mechanism to specify more than one independent variable

with which the derivatives need to be computed. Line 4 in Listing 7 is a

multiple array object capable of holding derivatives with respect to multiple

95

independent variables.

Program Listing 7 Data-structure of FAD class.

1 template <class T> class Fad {
2 protected :
3 T val_;
4 Vector <T> dx_;
5 public:
6 ...
7 };

However for reasons mentioned in Section 3.4, we follow a different

approach to obtain all the partial derivatives in a single sweep.

3.5.3 Rapid Library
3.5.3.1 Rapid data structure

A Rapid data structure has two data members. The first one is of data

type double named ‘ v’ and stores the value of the function that it represents.

The second data member is an object of ‘STL map data structure’ named

dv that stores all the partial derivatives of the function with respect to each

independent variable. Figure 3.7 shows the abstract definition of Rapid data

structure.

C++ STL maps[77] are associative containers that store elements formed

by a combination of a ‘key value’ and a ‘mapped value’ [95]. The key value is

used to sort and uniquely identify the element, while the mapped value is a

data associated with this key. The data type of the key and mapped value can

be chosen based on the purpose. The mapped value is accessed directly by its

96

Figure 3.7: Rapid data structure.

corresponding key using the bracket operator ‘[]’. The number of elements in

the map can grow dynamically. Maps also have built in iterators that facilitate

traversal of the elements. The elements in a map are always sorted by their

keys following a specific strict weak ordering criterion (in our case, ascending

order) [95].

For Rapid, the key value of the data member dv is of data type int

while the mapped value is of type double, i.e. map¡int, double¿. The number of

elements of dv depend on the number of independent variables that function

v depends on. (Later an alias ‘Gradient’ for the combination map¡int, double¿

would be used.)

3.5.3.2 Setting up independent and dependent variables

All the variables in X and F are objects of the Rapid class shown in

Figure 3.7. The classification of variables into independent active and inactive

and dependent variables have to be built into the Rapid construct.

In the construct, all the elements of set Xa are assigned a unique iden-

97

tifier. The integer key of the data member dv is used for this purpose. The

corresponding mapped value of dv is set to 1.0, essentially capturing the fact

that the derivative of a variable with itself is unity. Also, the map object dv

for an active variable strictly contains only one element. The map object dv

for the inactive independent variable is kept empty by leaving it untouched

and therefore does not need an identifier/key. An inactive independent vari-

able thus does not have any elements in dv. This is in contrast to our Tangent

class where the dv field was set to 0 for the inactive variables.

The data member dv of a dependent variable (function) is also left

untouched. However the construct of the Rapid class facilitates populating

the elements of the map dynamically. The load is completely taken up by

the the compiler. The number of elements in the map depends on how many

independent active variables ri the function variable fi depends on. This

allows optimal use of storage space akin to various sparse matrix storage data

structures. The key of each element of dv signals the partial derivative of

fi with respect to the particular active variable with the matching key. The

associated value stores the value of the corresponding derivative.

From a user’s perspective, one just needs to set up the active variable

set by assigning a unique integer key after which the Rapid data structure

propagates all the partial derivatives along the function evaluation trace. An

example is presented next illustrating the how the data structure holds the

function and derivative values.

98

3.5.3.3 Example illustrating Rapid data structure

Let X = {x1, x2, . . . x9} be the set of 9 independent variables associated

with each cell in Figure 3.8(a). Let F = {f1, f2, . . . f9} be a set of functions,

with each function defined on set X given by the following test function

fi = sin
∏

j

(
(xi + c ∗ (xi + xj))2

) (3.13)

where j represents a neighbor of the element i in Figure 3.8(a). Some

representative functions are

f1 = sin
(
(x1 + c ∗ (x1 + x2))2 ∗ (x1 + c ∗ (x1 + x4))2

)
(3.14)

f2 = sin
(
(x2 + c ∗ (x2 + x1))2 ∗ (x2 + c ∗ (x2 + x3))2 ∗ (x2 + c ∗ (x2 + x5))2

)
f5 = f5 (x2, x4, x5, x6, x8)

Evaluation of these functions is accompanied by the evaluation of the

derivatives with respect to only the independent variables on which they de-

pend. For instance, evaluation of f1 is accompanied by the evaluation of only

the following three derivatives,

99

∂f1

∂x1
= cos

(
(x1 + c ∗ (x1 + x2))2 ∗ (x1 + c ∗ (x1 + x4))2

)
×(

(2 (x1 + c ∗ (x1 + x2))× (1 + c)) ∗ (x1 + c ∗ (x1 + x4))2
)
×(

(x1 + c ∗ (x1 + x2))2 ∗ (2 (x1 + c ∗ (x1 + x4))× (1 + c))
)

(3.15)
∂f1

∂x2
= . . .

∂f1

∂x4
= . . .

Similarly f2 and f5 evaluations are accompanied by the evaluation of

four and five derivative components respectively as is shown in Figures 3.8(b).

Figure 3.8(c) illustrates the function and derivative values being stored

in v and dv fields for some of the independent and dependent Rapid vari-

ables. As shown in Eq. 3.15, one can see that the derivatives are tedious

to compute. We now proceed to their computation and storage in the data

structure discussed above.

3.5.3.4 Building the Rapid Class

We list a few modified snippets of the C++Rapid implementations that

are counterparts of the listings of Tangent class. The Rapid library consists

of a Rapid class with member functions and non-member functions acting on

Rapid objects. Similar to the Tangent class, theRapid library overloads (or re-

implement) operators in the set F = FA∪FM ∪FL using operator overloading,

some with member functions and others with non-member functions.

100

(a)

(b)

(c)

Figure 3.8: Illustration of independent and dependent Rapid objects. Here
we define fi = sin

(∏
j

(
(xi + c ∗ (xi + xj))2

))
for each cell i in (a) where j

represents a neighbor of the element i.

101

Program Listing 8 Rapid class definition

1 class Rapid
2 {
3 public:
4 typedef map <int , double > Gradient ;
5 typedef const Gradient :: value_type GradientIterator ;
6 typedef map <int , double >:: iterator Iter;
7 typedef map <int , double >:: const_iterator CIter;
8 // Constructors
9 Rapid () {}

10 Rapid(const double v, const Gradient & dv):_v(v),_dv(dv) {}
11 Rapid(const double v):_v(v){}
12 Rapid(const Rapid& o):_v(o._v),_dv(o._dv){}
13 ˜Rapid () {}
14 // Member functions
15 void setAsIndependentVariable (const int key){ _dv[key] = 1.0;}
16 Rapid& operator =(const Rapid& o);
17 Rapid& operator +=(const Rapid& o);
18 Rapid& operator *=(const Rapid& o);
19 // Display
20 void print () {
21 cout << "_v=" << _v;
22 foreach (GradientIterator & ii , _dv)
23 cout << "," << "_dv[" << ii.first << "]=" << ii.second;
24 }
25 // Data members
26 double _v;
27 Gradient _dv;
28 };

102

Listing 8 shows the definition of Rapid class with the data members,

constructors and member functions. Lines 9-13 lists various constructors with

the copy constructor in line 12. The member function to set a Rapid variable

as an independent active variable is listed in line 15 as described in Section

3.5.3.2.

Program Listing 9 Overloading assignment operator ‘=’

1 Rapid& Rapid :: operator =(const Rapid& o) {
2 if (this == &o)
3 return *this;
4 _v = o._v;
5 _dv = o._dv;
6 return *this;
7 }

The assignment operator ‘=’ is overloaded as shown in Listing 9. The

two data members v and dv of the Rapid operand are assigned the corre-

sponding data members of the Rapid operand following the assignment opera-

tor. The rest of the implementation of the minimal infrastructure is explained

with the example function f1 (Eq. 3.14) discussed in Section 3.5.3.3 given by,

f1 = sin
(
(x1 + c ∗ (x1 + x2))2 ∗ (x1 + c ∗ (x1 + x4))2

)
As before, the compiler will break down this function evaluation into

a series of elementary ones. Let the evaluation tree be as shown in Figure

3.9 (the order can depend slightly on the compiler) where the superscripts

represents the evaluation step,

103

(x1, x2, x4) ∈ Xa; c ∈ Xna

tt **

yy

**

yy

%%

**

%%

f
(1)
1 = x1 + x2

��

f
(5)
1 = x1 + x4

��

f
(2)
1 = c ∗ f (1)

1

��

f
(6)
1 = c ∗ f (5)

1

��

f
(3)
1 =

(
x1 + f

(2)
1

)
��

f
(7)
1 =

(
x1 + f

(6)
1

)
��

f
(4)
1 = pow

(
f

(3)
1 , 2

)
**

f
(8)
1 = pow

(
f

(7)
1 , 2

)
tt

f
(9)
1 = f

(4)
1 ∗ f

(8)
1

��

f
(10)
1 = sin

(
f

(9)
1

)
Figure 3.9: Evaluation tree for the example to illustrate Rapid.

Program Listing 10 Test example to illustrate use of Rapid library.

1 void testRapid () {
2 Rapid x1 (1.0); x1. setAsIndependentVariable (1);
3 Rapid x2 (3.0); x2. setAsIndependentVariable (2);
4 Rapid x4 (2.0); x3. setAsIndependentVariable (3);
5 Rapid c(2.0);
6 Rapid f1 = sin(pow(x1+c*(x1+x2) ,2)* pow ((x1+c*(x1+x4)) ,2));
7 f1.print ();
8 }

104

The first step is to set the required variables as independent variables.

The active and inactive independent variable are assigned values. The active

variables are then assigned unique identifiers, while the inactive are left un-

touched. This is accomplished by lines 2-5 in Listing 10. The data structure

of the independent Rapid variables can now be visualized as,

x1 =
[

v = 1
dv[1] = 1

]
; x2 =

[
v = 3

dv[2] = 1

]
; x4 =

[
v = 2

dv[4] = 1

]
; c =

[
v = 2
dv =<>

]
(3.16)

Program Listing 11 Implementing addition by overloading ‘+=’ and ‘+’
operators in Rapid class.

1 Rapid& Rapid :: operator +=(const Rapid& o) {
2 _v += o._v;
3 foreach (GradientIterator & ii , o._dv)
4 _dv[ii.first] += ii.second;
5 return *this;
6 }
7 Rapid operator +(const Rapid& a, const Rapid& b) {
8 return Rapid(a) += b;
9 }

The addition of Rapid variables is accomplished with Listing 11. The

addition operator is illustrated with the computation of f (1)
1 given by,

f
(1)
1 = x1 + x2 =

[
v = 1

dv[1] = 1

]
+
[

v = 3
dv[2] = 1

]
=

 v = 4
dv[1] = 1
dv[2] = 1

 (3.17)

105

First, references of Rapid objects x1 and x2 are passed to ‘a’ and ‘b’ in

line 7 after which a copy of ‘a’ is constructed. The copy becomes the output

object (line). For explanation we call this copied object f (1)
1 , though this

does not appear explicitly in the listing. This copied object f (1)
1 in turn calls

the ‘+=’ operator in line 1 with a reference of ‘b’ passed to object ‘o’. After

the function values of f (1)
1 and ‘o’ are added to v field of f (1)

1 , computation

of its derivative components starts by traversing through the dv map of the

‘o’. The traversal is accomplished with the ‘boost’ library (line 3). Here it

is important to note that the derivative values with common keys of f (1)
1 and

‘o’ get added up and assigned to the corresponding field in f
(1)
1 . Derivative

values with disjoint keys of f (1)
1 and ‘o’ just gets carried over to the f (1)

1 object.

These processes result in the final values for f (1)
1 as in Eq. 3.17. There are no

common keys between f
(1)
1 and ‘o’ specific to the computation of Eq. 3.17 .

Multiplication of two Rapid objects listed in Listing 12 is slightly more

involved and is illustrated with the computation of f (2)
1 in Figure 3.9 as follows,

f
(2)
1 = c∗f (1)

1 =
[

v = 2
dv =<>

]
∗

 v = 4
dv[1] = 1
dv[2] = 1

 =

 v = 2× 4
dv[1] = 1× 2
dv[2] = 1× 2

 =

 v = 8
dv[1] = 2
dv[2] = 2


(3.18)

Here references of objects ‘c’ and f (1)
1 are passed to ‘a’ and ‘b’ (line 20)

after which a copy of ‘a’ is assigned to the temporary object which we call

f
(2)
1 . Next f (2)

1 calls the operator ‘*=’ with the argument ‘b’ (or f (1)
1) being

passed to ‘o’. In the implementation of the multiplication operation, we need

106

Program Listing 12 Implementing multiplication operation by overloading
‘*=’ and ‘*’ operators in Rapid class.

1 Rapid& Rapid :: operator *=(const Rapid& o) {
2 foreach (GradientIterator & ii , o._dv) {
3 Iter key;
4 key = _dv.find(ii.first);
5 if (key != _dv.end ())
6 _dv[ii.first] = _dv[ii.first]*o._v + _v*ii.second;
7 else
8 _dv[ii.first] = _v*ii.second;
9 }

10 }
11 foreach (GradientIterator & ii , _dv) {
12 CIter key;
13 key = o._dv.find(ii.first);
14 if (key == o._dv.end ())
15 _dv[ii.first] = _dv[ii.first]*o._v;
16 }
17 _v *= o._v;
18 return *this;
19 }
20 Rapid operator *(const Rapid& a, const Rapid& b) {
21 return Rapid(a) *= b;
22 }

107

to traverse map field dv of both objects f (2)
1 and ‘o’. During the traversal of

dv of ‘o’ (lines 2-10), the derivatives of f (2)
1 and ‘o’ with common keys are

computed in line 6, following the rules of calculus. Line 8 implements the

computation of derivatives for disjoint keys in ‘o’ but not in f
(2)
1 . The second

traversal of dv of f (2)
1 (lines 11-16) computes the derivatives of the disjoint

key in f
(2)
1 but not in ‘o’. Specifically for this example computation of Eq.

3.18, only line 8 is executed.

A similar methodology follows for the computation of the remaining

elementary functions f (3)
1 to f (10)

1 . Here, only relevant differences are explained.

In the computation of f (3)
1 , the derivatives of objects have common key (here

‘[1]’) and are therefore added to f
(3)
1 . Again the disjoint key is just carried

over to the output f (3)
1 .

f
(3)
1 = x1+f (2)

1 =
[

v = 1
dv [1] = 1

]
+

 v = 8
dv[1] = 2
dv[2] = 2

 =

 v = 1 + 8
dv [1] = 1 + 2
dv [2] = 2

 =

 v = 9
dv [1] = 3
dv [2] = 2


(3.19)

Overloading of mathematical functions ‘pow’ and ‘sin’ for Rapid ob-

jects are listed in Listing . The computation of f (4)
1 is self explanatory, except

that the object ‘b’ is assumed to be constant or an inactive variable.

f
(4)
1 = pow

(
f

(3)
1 , 2

)
=

 v = 92

dv [1] = 3× (2× 91)
dv [2] = 2× (2× 91)

 =

 v = 81
dv [1] = 54
dv [2] = 36

 (3.20)

108

Program Listing 13 Implementing of pow and sin functions

1 Rapid pow(const Rapid& a, const Rapid& b) {
2 // Assumes b is a constant
3 Rapid o;
4 o._v = pow(a._v ,b._v);
5 foreach (Rapid :: GradientIterator & ii , a._dv)
6 o._dv[ii.first] = ii.second*b._v*pow(a._v ,b._v -1);
7 return o;
8 }
9 Rapid sin(const Rapid& a) {

10 Rapid o;
11 o._v = sin(a._v);
12 foreach (Rapid :: GradientIterator & ii , a._dv)
13 o._dv[ii.first] = ii.second*cos(a._v);
14 return o;
15 }

Computations of the f (5)
1 to f (8)

1 proceed exactly the same way f (1)
1 to

f
(4)
1 , except with a new independent variable x4.

f
(5)
1 = x1+x4 =

[
v = 1

dv[1] = 1

]
+
[

v = 2
dv[4] = 1

]
=

 v = 3
dv[1] = 1
dv[4] = 1

 =

 v = 3
dv[1] = 1
dv[4] = 1


(3.21)

f
(6)
1 = c ∗ f (5)

1 =
[

v = 2
dv =<>

]
∗

 v = 3
dv[1] = 1
dv[4] = 1

 =

 v = 6
dv [1] = 2
dv [4] = 2

 (3.22)

f
(7)
1 = x1 + f

(6)
1 =

[
v = 1

dv [1] = 1

]
+

 v = 6
dv [1] = 2
dv [4] = 2

 =

 v = 7
dv [1] = 3
dv [4] = 2

 (3.23)

109

f
(8)
1 = pow

(
f

(7)
1 , 2

)
=

 v = 72

dv [1] = 3× (2× 71)
dv [4] = 2× (2× 71)

 =

 v = 49
dv [1] = 42
dv [4] = 28

 (3.24)

Computation of f (9)
1 invokes all the possibilities of multiplication and

deserves mention. ‘[1]’ is a common key and hence the computation of dv[1] is

accomplished by 6. Derivatives of the disjoint key in f (4)
1 but not in f (8)

1 dv[2]

is computed in line 15 while dv[4] is computed in 8. The order of computation

can be different from what is explained here. However, the compiler takes the

burden of arranging the map in increasing order (this is a property of map

stl).

f
(9)
1 = f

(4)
1 ∗ f

(8)
1 =

 v = 81
dv [1] = 54
dv [2] = 36

 ∗
 v = 49

dv [1] = 42
dv [4] = 28



=


v = 81× 49

dv [1] = 54× 49 + 42× 81
dv [2] = 36× 49
dv [4] = 28× 81

 =


v = 3969

dv [1] = 6048
dv [2] = 1764
dv [4] = 2268

(3.25)

Finally the computation of f (10)
1 is shown in Eq. 3.26 and is self ex-

planotory.

f
(10)
1 = sin

(
f

(7)
1

)
=


v = sin (3969)

dv [1] = 6048× cos (3969)
dv [2] = 1764× cos (3969)
dv [4] = 2268× cos (3969)

 =


v = −0.9202

dv [1] = −2368.1073
dv [2] = −690.6979
dv [4] = −888.0402


(3.26)

110

The reader might need to go back and forth between examples and the

listings before the process is completely understood. All the operators in the

set F can be similarly implemented with slight modifications. After having

developed the library, we concisely present the procedure to perform topology

optimization using Memosa in conjunction with Rapid library.

3.6 Using MEMOSA with Rapid library

As discussed earlier, C++ allows the variable type to be templated

and suitably type-cast at compile time. All classes in MEMOSA implement-

ing scalar transport equations, including the diffusion, convection, source and

transient operators, have been templated at different levels. To use the Rapid

library with MEMOSA, only small modifications are needed in the source code.

With the help of a representative listing, we give an idea of the type of edits

needed.

For illustrative purposes, we list a highly pruned version of a class

implementing the ‘diffusion discretization’ of the PDE in Listing 14. The

types of three variables X, Diag, OffDiag as listed in line 1 are specified at

compile time. These are templated to facilitate discretization of the diffusion

operator arising in various physical models and are beyond the scope of the

discussion here. For heat conduction problems, these are generally passed with

scalar double type for each. The entire code gets compiled when passed with

the type double (or any other type except Rapid).

As far as sensitivity computations are concerned, we are interested only

111

Program Listing 14 Using the templated diffusion discretization class with
Rapid.

1 template < class X, class Diag , class OffDiag >
2 class DiffusionDiscretization : public Discretization
3 {
4 public :
5 typedef typename NumTypeTraits <X >:: T_Scalar T_Scalar ;
6 typedef CRMatrix <Diag ,OffDiag ,X> CCMatrix ;
7 typedef typename CCMatrix :: DiagArray DiagArray ;
8 typedef typename CCMatrix :: PairWiseAssembler CCAssembler ;
9 typedef Gradient <X> XGrad ;

10 typedef Array <X> XArray ;
11 typedef Array <T_Scalar > TArray ;
12 typedef Vector <T_Scalar ,3> VectorT3 ;
13 typedef Array <VectorT3 > VecT3Array ;
14
15 DiffusionDiscretization (...) :
16 Discretization (...){}
17 void discretize (...)
18 {
19 ...
20 #if !(defined (USING_ATYPE_RAPID))
21 CCMatrix & matrix = dynamic_cast < CCMatrix &>
22 (mfmatrix . getMatrix (cVarIndex , cVarIndex));
23 DiagArray & diag = matrix . getDiag ();
24 # endif
25 const VecT3Array & cellCentroid = dynamic_cast < const VecT3Array &>(_geomFields . coordinate [cells]);
26 const TArray & cellVolume = dynamic_cast < const TArray &>(_geomFields . volume [cells]);
27 XArray & xCell = dynamic_cast < const XArray &>(xField [cVarIndex]);
28 XArray & rCell = dynamic_cast < XArray &>(rField [cVarIndex]);
29 ...
30 foreach (const FaceGroupPtr fgPtr , mesh. getAllFaceGroups ()) {
31 ...
32 #if !(defined (USING_ATYPE_RAPID))
33 DiagArray & diag = matrix . getDiag ();
34 CCAssembler & assembler = matrix . getPairWiseAssembler (faceCells);
35 # endif
36 for(int f=0; f< nFaces ; f++) {
37 const int c0 = faceCells (f ,0);
38 const int c1 = faceCells (f ,1);
39 T_Scalar vol0 = cellVolume [c0];
40 T_Scalar vol1 = cellVolume [c1];
41 VectorT3 ds= cellCentroid [c1]- cellCentroid [c0];
42 faceDiffusivity = harmonicAverage (diffCell [c0], diffCell [c1]);
43 const T_Scalar diffMetric = faceAreaMag [f]* faceAreaMag [f]/ dot(faceArea [f],ds);
44 const T_Scalar diffCoeff = faceDiffusivity * diffMetric ;
45 const VectorT3 secondaryCoeff = faceDiffusivity *(faceArea [f]-ds* diffMetric);
46 const XGrad gradF = (xGradCell [c0]* vol0+ xGradCell [c1]* vol1)/(vol0+vol1);
47 const X dFluxSecondary = gradF * secondaryCoeff ;
48 X dFlux = diffCoeff *(xCell [c1]- xCell [c0])+ dFluxSecondary ;
49 rCell [c0] += dFlux ; rCell [c1] -= dFlux ;
50 #if !(defined (USING_ATYPE_RAPID))
51 assembler . getCoeff01 (f) += diffCoeff ;
52 assembler . getCoeff10 (f) += diffCoeff ;
53 diag[c0] -= diffCoeff ; diag[c1] -= diffCoeff ;
54 # endif
55 }
56 }
57 }
58 ...
59 };

112

Figure 3.10: Methodology for obtaining sensitivities of numerical models in
MEMOSA using Rapid.

113

in residual computation with the converged variables in this code snippet. We

do not form the Jacobian for the linear system of the forward solution. A

separate object file is created by passing the type Rapid for X, diag and

OffDiag. Technically it does not matter what we pass for diag or offDiag

since they do not get used for residual computation. The parts of the code

that should be precluded from compilation are enclosed within ‘macros’ (other

methods can also be used). Notice how manual Jacobian computation required

for the forward solve is avoided with the help of lines 20-24, 32-35 and 50-54

(color coded in pink) in Listing 14 when run in Rapid mode. This will ensure

that only the residual rCell[] is computed. At the end of the program function,

the Rapid type computes residuals rCell in its field v and all its derivatives in

its field dv. The residual field dv may be checked for correctness by making

sure that it is close to zero within tolerance (or whatever the forward solve

achieved at convergence for residuals). Following the example all the necessary

minor edits were made in various other classes.

Figure 3.10 shows such a C++ finite volume templated code after mak-

ing necessary edits to all the classes being used in Rapid mode. Two compiled

versions of the complete code are generated, one type-cast in the basic type –

double and the other one in the Rapid type. For a given distribution of design

variables β, the residual equations are solved for the state variables (temper-

ature or velocities/pressure) using the code in double mode. The converged

state and design variables are transferred to the code compiled in Rapid mode

and then both are set as independent variables. Residuals and cost function are

114

re-calculated in Rapid mode, which automatically generates all the required

derivatives for sensitivity calculation, as shown in the flowchart depicted in

Figure 3.10. This automation is critical in making the code independent of

the cost function definition, and also independent of the underlying physics.

If a new governing equation is added to the parent code, the Rapid infras-

tructure will automatically generate all necessary derivatives without any new

coding.

Going back to the model mesh shown in Figure 3.6, we briefly describe

the process of setting the state and design variables as independent variables.

There are 31 state variables and 15 design variables. Thus, 46 unique numbers

(say 0-30 for temperature state variables and 31-45 for design variables) are

set, making them active independent variables. Henceforth, the residuals and

cost functions will have the appropriate derivatives in dv field after neces-

sary computation. Populating the adjoint linear system is very easy with the

dv map field. The adjoint system is solved with a direct solver available in

PETSc[96].

We demonstrated topology optimization for heat conduction problems

in Chapter 2, where the derivatives of residuals and cost functions, required for

discrete adjoint sensitivity computation, were hand coded. All the topology

optimization test cases with Cartesian meshes presented in Chapter 2 were

re-run again, but with sensitivities obtained from Rapid mode. We obtained

exactly the same topologies for all the cases, thus testing and validating the

methodology of using MEMOSA withRapid library to obtain the sensitivities.

115

3.7 Closure

In this chapter, we explained in detail the implementation of the AD

libraryRapid. One of the pioneers in Automatic Differentiation (AD), Dr. An-

dreas Griewank says [67]: “AD has been rediscovered and implemented many

times, yet its application still has not reached its full potential”. Implementing

the new AD library Rapid for obtaining sensitivities for TO applications has

been very effective from our experience, though bench-marking of the library

has to be done with other available libraries.

Programs that are C++ templated can be compiled with Rapid and

used for obtaining sensitivities. We believe that the Rapid library will help

the scientific community to use AD in for a variety of applications. One area

of interest could be dynamic mesh adaptation in response to the evolving flow

solution. It is useful to carry out dynamic mesh adaptation based on the

instantaneous sensitivities of the various variables of interest.

In the next three chapters, we useRapid extensively in TO for thermal-

fluid problems in both laminar and turbulent regimes.

116

Chapter 4

Laminar flow applications

Following in the footsteps of Chapter 2, the overall objective of this

chapter is to develop and demonstrate a topology optimization methodology

for steady state flow problems using an un-structured cell-centered finite vol-

ume method. Topologies that maximize or minimize flow QoIs for both inter-

nal and external flow applications spanning a range of Reynolds numbers are

presented to demonstrate the applicability of the methodology. We consider

topology optimization for laminar flow applications in this chapter; turbulent

flow applications are presented in the next chapter. We lay special emphasis on

the development of a novel technique to compute various derivative ingredients

required for the discrete adjoint method for flow solvers based on sequential

pressure-based incompressible flow algorithms (for example, the SIMPLE al-

gorithm [97, 31]), using the Rapid AD library. The technique also forms for

the basis for sensitivity computations for flow problems involving new physics

like turbulence or heat transfer, which are discussed in forthcoming chapters.

117

4.1 Introduction

Optimization methods have been extensively applied to various viscous

fluid flow problems. For instance, optimal control theory has become popular

in designing practical flow control systems [98, 99, 100]. Shape optimization

has been applied to determine optimal geometries for minimum drag bodies,

diffusers, valves, airfoils etc. [6, 101]. The objective in fluid flow applications

is typically to minimize drag, minimize energy rate dissipation or minimize

the pressure drop across the domain.

However, as discussed in Chapter 1, relatively few papers have been

published on topology optimization for fluid flow applications. Published work

on topology optimization using the finite volume method is even more scarce.

Most publications on TO employ a SIMP based approach, though level set

and lattice Boltzmann based methods have also been used. To begin this

chapter, we review the literature on topology optimization for pure fluid flow

applications. The discussion mainly pertains to papers based on the SIMP

approach.

Topology optimization for fluid flow can be stated as a problem of

subdividing the design domain into a solid region and a flow region as illus-

trated in Figure 4.1. For pure conduction problems, a single heat conduction

equation with an interpolation function for thermal conductivity was all that

was necessary for distributing the two materials on the design domain. Fluid

flow is governed by the Navier-Stokes equations with the no-slip boundary

conditions on the solid-fluid interfaces. Since the interfaces are not known

118

Figure 4.1: Statement of the problem of topology optimization for flow prob-
lems.

a priori, topology optimization for fluid flow cannot be performed with the

Navier-Stokes equations in their pristine form. The presence of the solid is

signaled through the use of momentum sinks in the Navier-Stokes equations,

and a variety of different forms have been proposed in the literature[21, 22, 34].

Interpolation of these source terms, as well as interpolation of viscosity, and

the numerical consequences of these choices are additional issues for fluid flow.

These are discussed briefly, following the historical evolution of the field.

The breakthrough work that introduced topology optimization for fluid

flow problems was published by Borrvall and Petersson [21] for Stokes flow (low

Reynolds number flow). The Stokes equations that govern creeping flows are

obtained by dropping the convective term in Navier-Stokes equations. The

Stokes equation is then augmented with a friction term proportional to the

velocity to allow the damping of velocity in solid regions. The governing

continuity and momentum equations are given by:

119

∇ · (µ∇~v)−∇p− α (β)~v = 0 (4.1)

∇ · (ρ~v) = 0

where ~v is the velocity field, ∇p is the pressure gradient, µ is the viscos-

ity of the fluid and α is called the inverse permeability function and is used to

damp velocities in solid elements. The differentiation of a given spatial point

into either solid or fluid region is achieved by virtue of the friction term α · ~v,

that acts as a momentum sink. This term has its origin in the modeling of

fluid flow through porous media. Solid regions which are impermeable can be

thought of having extremely high values of α. In such a case, the pressure

drop is completely balanced by the friction term, thereby implying vanishing

velocities of fluid through solid regions. This emulates the no-slip condition on

the solid-fluid interfaces. The impermeability α of the fluid region is negligible,

thereby enabling the pressure drop to be balanced solely by the viscous terms,

and recovering the Stokes equation. Similar to the interpolation functions of

thermal conductivity [Eq. 2.18] and heat source terms [Eq. 2.19] in Chapter

2, α is parameterized in terms of the design variable β. Borrvall and Petersson

used the RAMP function to parameterize effective αeff , given by

αeff (β, γ) = αs + (αf − αs) β
1 + γ

β + γ
(4.2)

where αf ∼ 0 is the fluid impermeability and αs � 0 (Borrvall and

Petersson [21] used 105) is the solid impermeability. γ is the penalization

120

factor that controls the convexity of the interpolation function. Extremely

high values of αs may lead to numerical instability.

A paper similar to [21] with minor modifications was published by

Guest et al. [102], where the authors use the following governing equations,

termed the Darcy-Stokes equations, instead of Eq. 4.1.

(1− ρ (β))∇ · (µ∇~v)−∇p− ρ (β) µ
k
~v = 0 (4.3)

∇ · (ρ~v) = 0

Here ρ (β) is interpolated between 0 and 1 forcing the governing equa-

tion to switch between Stokes and Darcy’s equations in the limits. Both the

papers present topologically derived 2D fluidic channels (like diffusers) using

the finite element, by minimizing the pressure difference between inlet and

outlet for various inlet and outlet configurations. Flow past an obstacle was

modelled as well to come up with the optimal shape of the obstacle that min-

imized the pressure drop. The same methodology was extended to 3D and

similar problems presented in [45]. The types of problems solved in these

papers have become standard problems for bench-marking topology optimiza-

tion of fluid flow problems. The addition of the friction term is termed the

Brinkman approach to fluid topology optimization. Wiker et al. extended Eq.

4.1 by also interpolating viscosity using SIMP. Such a methodology partitions

the design space into a fluid region and a permeable region (allowing seeping

flow); it is used to design conceptual filters [103].

121

The Brinkman approach was later extended to the Navier-Stokes equa-

tions (i.e. without truncating the convection terms) [22, 104, 105]. The gov-

erning equations are

∇ · (ρ~v~v) = ∇ · (µ∇~v)−∇p− α (β)~v (4.4)

∇ · (ρ~v) = 0

In [22, 104], simple 2D fluid channels were designed to minimize the

pressure drop for low-to-moderate Reynolds numbers. Hansen et al. also

introduced various other cost functions in their paper and demonstrated con-

ceptual designs of a flow switch and a fluid mechanism (finding the channel

topology that reverses the flow in the direction of interest at the center of the

device). Again the Brinkman penalized Navier-Stokes equations were solved

using the finite element method. The next natural extension is to add body

forces to the Navier Stokes equations which was done by [106]. Here a body

force term ~f (β) was added to the momentum equations and used a SIMP in-

terpolation to restrict the body forces on to fluid elements. Two-dimensional

fluid channels with centrifugal and/or Coriolis forces were investigated.

Topology Optimization has been applied to many passive transport

problems, where QoIs are based on convected scalar quantities (thermal or

mass transfer) in the presence of an underlying flow field. Forced convection

[107], natural convection[54], micro-fluidic mixers [29], reactive flows [108] etc.,

122

have been explored recently and are an active area of research. To the knowl-

edge of the authors, the only finite volume work in the literature, based on

SIMP and using Brinkman’s Navier-Stokes equations, published by Marck et

al. [33]. Marck et al. used a staggered sequential algorithm (SIMPLER) on

2D structured meshes for laminar flows. The authors also presented a coupled

flow and heat transfer problems with bi-objective function from both flow and

thermal variables. We will discuss such coupled problems in Chapter 6.

For completeness, we briefly touch upon other methods employed for

topology optimization for fluid flow problems. Almost all the above papers

employ a discrete adjoint method for sensitivity computation. Topology opti-

mization based on a continuous adjoint method in the finite volume framework

was presented by [109], again based on Eq. 4.4. Pingen et al. [110] used the

lattice Boltzmann method instead of a Navier-Stokes formulation for solving

fluid topology optimization problems. Level set methods for the flow solution

have been used for topology optimization have also been used [111, 112, 113].

Here, the solid-fluid interface is implicitly characterized by the zero-level con-

tour of a level set function. The authors claim that level set methods produce

interfaces that are smooth compared to density-based approaches. However,

level set methods are not as popular in the topology optimization community

as SIMP. Kreissl et al. [113] employed the lattice Boltzmann method in combi-

nation with a level set-based geometric interface representation for generalized

shape optimization for fluid flows.

Over the years, finite volume solvers have been developed for incom-

123

pressible flow employing co-located pressure-velocity schemes on unstructured

meshes [31]. Most commercial CFD software vendors, including ANSYS Fluent

[114], OpenFOAM [88], STAR-CCM+ [115] etc. employ such methodologies

for incompressible flow. As we mentioned before, to our knowledge, topology

optimization has not been explored in a co-located unstructured finite volume

framework in the published literature. Here we attempt to address this issue,

and present detailed methodologies to perform topology optimization in such

industry-standard finite volume frameworks.

It has been mentioned earlier that one of the biggest challenges in ad-

dressing this issue is the process of computing sensitivities using the adjoint

method. Finite volume schemes (like SIMPLE) do not assemble the complete

Jacobian during the solution process. For a forward solution, approximate Ja-

cobians are sufficient in guiding the iterative procedure. However a complete

Jacobian is necessary for the adjoint solution of the problem. The problem

therefore boils down to obtaining complete Jacobians while using partial Jaco-

bians for forward solution. We achieve this using the Rapid library mentioned

in Chapter 3, as explained in detail in this chapter.

This chapter is composed of two parts. Sections 4.2, 6.2.2 and 4.4 form

the first part. Here we present the sequential solution algorithm for flow equa-

tions using unstructured co-located finite volume schemes in a residual formu-

lation, with the goal of computing adjoint based sensitivities using automatic

differentiation. Finite volume practitioners who wish to obtain sensitivities

using a discrete adjoint method for any custom application can use this part

124

of the chapter independently. The remaining sections form the second part of

the chapter. It is here that we present most of material on topology optimiza-

tion for flow applications. We describe the associated Rapid infrastructure

in Section 4.5. Finally we present the results obtained by performing topol-

ogy optimization for flow applications with a variety of test cases in Section

4.6. We believe that the topology optimization procedures described in this

chapter, will guide in the advancement of the field for flow applications.

4.2 Governing equations and boundary conditions

The equations governing viscous flow are given by Navier Stokes equa-

tions. In all the discussions that follow, the finite volume formulation and

the solution of these flow field equations are meant for general 3D flows on

unstructured meshes. However for reasons of simplicity we explicitly mention

only two independent spatial coordinates during formulation. The flow field

variables to be determined are the velocity vector and the pressure fields. We

restrict our discussions to Newtonian flow, the governing equations for which

are given by

∇ · (ρ~vu)−∇ · (µ∇u) = −∇p ·~i+ Su (4.5)

∇ · (ρ~vv)−∇ · (µ∇v) = −∇p ·~j + Sv (4.6)

∇ · (ρ~v) = 0 (4.7)

where ~v = [u, v] is the velocity vector field and p is the pressure field

125

to be determined. The diffusion coefficient is the viscosity of the fluid µ. ρ is

the density of the fluid.

Eqs. 4.5 and 4.6 are the momentum equations in the x and y directions

cast in the form of general scalar transport equation and express the statement

of conservation of linear momentum. A part of the stress tersor forms the

diffusion term of the momentum equations. The source terms Su and Sv in

the x and y direction contain the body forces and the remaining part of

the stress tensor for a general Newtonian fluid. For an incompressible flow

of a constant viscosity fluid this part of the stress tensor drops out[48]. The

source/sink terms are also used to accommodate additional physical models

like Darcy’s term for flow through porous media (which we will use for topology

optimization) or the Boussinesq approximation for natural convection.

The Eq. 4.7 represents steady state continuity equation expressing

conservation of mass.

The boundary is partitioned into a solid boundary(wall), and inlet and

outlet regions. A no slip boundary condition is applied to solid boundaries.

Either a given velocity or a given pressure condition can be applied to inlets

and outlets.

4.3 Numerical method

We discussed the discretization of the diffusion terms in the scalar trans-

port equation in Section 2.4.2, Chapter 2. Momentum equations (Eqs. 4.5 and

126

4.6) have additional convection terms and pressure gradient terms. We briefly

mention the discretization of these terms in the framework of finite volume

method for non-orthogonal meshes. Details may be found in [31, 48].

We employ a co-located or non-staggered finite volume scheme, again

described in [31] for solving governing Eqs. 4.5-4.6. Consider the cells C0 and

C1 in Figure 4.2. The Cartesian velocities u and v and pressure p are stored at

the cell centroids (i.e. at the same location, unlike in staggered mesh schemes).

However in the process of computation of these cell-centroid variables, other

derived variables need to be computed. The face pressure pf is associated with

the face centroid of face f . The massflux Ff is also associated with the faces.

Recall that the direction the direction ~eξ is aligned with the line joining cell

centroids, and for general non-orthogonal meshes, is not parallel to face area

vector ~Af . The vector ~eη is any direction tangential to the face.

As mentioned, the unknowns to be determined are u, v and p. The

momentum equations 4.5 and 4.6 each serve as the scalar transport equation

for variables u and v respectively. The continuity equation is also expressed in

terms of the velocity components u and v. Thus we see that, for incompressible

flow, there is no explicit equation for pressure variable p. Pressure only appears

in the pressure gradient terms in the u and v momentum equations. An

equation for pressure has to be derived suitably from continuity equation.

All these equations are coupled to each other which makes the solution of

flow variables even more complicated. However, over the course of time, the

finite volume community have developed established algorithms to solve these

127

Figure 4.2: Two representative neighboring cells C0 and C1 sharing a common
face f in an unstructured mesh.

128

coupled equations for the flow variables.

4.3.1 SIMPLE algorithm

The SIMPLE (Semi-Implicit Method for Pressure Linked Equation) al-

gorithm and its variants - SIMPLER (SIMPLE-Revised), SIMPLEC (SIMPLE-

Corrected) and others, termed pressure-based methods, are among the most

widely used algorithms in the incompressible flow community [97]. The cen-

tral idea of these algorithms is to create discrete equations for pressure from

the continuity equation by introducing a relationship between pressure and

velocity from the discrete momentum equation.

MEMOSA uses an unstructured co-located SIMPLEC algorithm for

solving flow equations. We discuss these procedures briefly, the main objective

being able to devise procedures for obtaining sensitivities of the relevant QoIs

using the adjoint method using Rapid AD library. Some familiarity with

SIMPLE algorithm is assumed; readers unfamiliar with these algorithms are

directed to [48].

Figure 4.3 depicts the flowchart of a typical SIMPLE/SIMPLEC algo-

rithm for a co-located unstructured scheme. For the current set of cell veloci-

ties and pressure fields, discrete momentum equations are solved for new cell

velocities. Next the continuity equation is solved for pressure correction fields

(discussed in subsequent sub-sections) with velocities obtained from the most

recent momentum equations. Then, cell velocities and pressures are updated

based on the pressure correction field. This forms one complete iteration of

129

the SIMPLE algorithm. The procedure is repeated until convergence as shown

in the flowchart. We discuss briefly each of the steps in the flowchart.

To facilitate reading the all the subsequent flow charts, the notations

used for the variables are mentioned here. Variables with sub-scripts 0 or 1

associates the variable to cell centroids of the cell C0 and cell C1 respectively.

Variables with the sub-script f associates the variable to the face centroids of

the common face between cell C0 and cell C1.

4.3.2 Discretization of momentum equations

The general transport equation of a scalar quantity φ quantifies the net

diffusive transport and the convective transport of the scalar quantity φ in the

presence of an underlying flow field ~v (Add a small section about the general

scalar transport equation in Chapter 1). By the same token, the transport

equation for u (or v) is viewed as its net diffusive and convective transport with

the underlying flow field ~v. We start discretizing the the transport equation

for u given by,

∇ · ~Ju = −∇p ·~i+ Su (4.8)

where the total convective and diffusive flux ~Ju is

~Ju = (ρ~vu− µ∇u) (4.9)

The usual process of integration of Eq. 4.8 over cell C0 followed by the

130

Start

��
Guessu, v, p at cell centroids

��
ApproximateFf , pf (Eq. 4.27)

��

oo

rr ,,
ComputeRu (Sec 4.3.2)

��

ComputeRv (Sec 4.3.2)

��
Compute ∂Ru

i

∂u0
,
∂Ru

i

∂u1
(Sec 4.3.3)

�� aPu

��

Compute ∂Rv
i

∂v0
,
∂Rv

i

∂v1
(Sec 4.3.3)

��aPv

��

SolveRu = 0 (Sec 4.3.4)

u

,,

SolveRv = 0 (Sec 4.3.4)

v

rr

Save momentum coefficientsaP (Sec 4.3.3)

Momentum interpolation
��

ComputeFf (Sec 4.3.6)

Pressure correction
��

ComputeRp (Sec 4.3.7)

��

Compute ∂Rp
i

∂p0
,
∂Rp

i

∂p1
(Sec 4.3.7)

��
SolveRp = 0

p ′

��
Correct pC ,Ff , u, v, pf (Sec 4.3.8)

��
Check convergence

Yes
��

No //

OO

Stop

Figure 4.3: Flowchart for a typical SIMPLE algorithm.

131

application of divergence theorem yields,

∫
A

~Ju · d ~A =
∫

∆V0

(
−∇p ·~i

)
dV +

∫
∆V0

SudV (4.10)

Source discretization yields,

∫
∆V0

SudV =
(
SCu + SPu φ0

)
∆V0

The pressure gradient discretization under the assumption that the face

pressure pf prevails over a entire given face is obtained as,

∫
∆V0

(
−∇p ·~i

)
dV =

∫
∆V0

(−∇pdV) ·~i

=
∫
Af

(
−pd ~Af

)
·~i

= −~i ·

∑
f

pf ~Af

 (4.11)

We denote a discrete field for the pressure gradient associated with each

cell C0 as ∇p0. The discretization of pressure gradient term in terms of ∇p0

is then given by,

∫
∆V0

(
−∇p ·~i

)
dV = −∇p0∆V0 (4.12)

thus discretely implying,

132

−∇p0∆V0 = −
nbs∑
f

pf ~Af (4.13)

If the face pressures pf of all the bounding faces of a cell C0 are known,

its pressure gradient ∇p0 can be computed using Eq. 4.13. On the other hand,

if neighbor cell pressures and cell velocities of neighbor cells C0 and C1 are

known, then the face pressure pf of the common face f can be computed. The

functional form for computation of pf is deferred to later sub-sections.

Now, assuming the x−momentum flux on the face ~Ju may be written

in terms of the face centroid value ~Juf , Eq. 4.10 approximates to

∑
f

~Juf · ~Af = −~i ·
∑

f

pf ~Af

+
(
SCu + SPu φ0

)
∆V0 (4.14)

where the summation is over the faces f of the cell. The flux is given

by

~Juf = (ρ~vu)f − µf (∇u)f (4.15)

The transport of u at the face f may thus be written as

~Juf · ~Af = (ρ~v)f · ~Afuf − µf (∇u)f · ~Af (4.16)

Physically the above term is the rate of x−momentum transported out

of face f .

133

We define the face mass flow rate Ff out of the cell C0 associated with

a face f as

Ff = (ρ~v)f · ~Af (4.17)

Similar to the diffusion discretization heat equation in Chapter 2, the

diffusion transport of the x−momentum at the face may be written as

−µf (∇u)f · ~Af = µf
∆ξ

~Af · ~Af
~Af · ~eξ

(u1 − u0) + S u
f (4.18)

Defining the quantity Df as,

Df = µf
∆ξ

~Af · ~Af
~Af · ~eξ

(4.19)

the net transport of u across the face f is

~Juf · ~Af = Ffuf −Df (u1 − u0) + S u
f (4.20)

The secondary gradient and the face diffusivity are,

S u
f = −µf (∇u)f · ~Af + µf

∆ξ
~Af · ~Af
~Af · ~eξ

(∇µ)f · ~ef∆ξ (4.21)

µf = 2µ0µ1

µ0 + µ1
(4.22)

134

The convective transport of u at the face requires the evaluation of the

face velocity component uf .

A general transport quantity φ at the face φf can be interpolated using

a central difference approximation, an upwind difference approximation and

a higher order scheme[31, 48]. We use an upwind scheme throughout the

dissertation. Under the upwind difference approximation,

φf = φ0 if Ff > 0 (4.23)

= φ1 otherwise (4.24)

The same upwinding is performed for the face velocity component uf .

Though upwinding as above is a only a first-order approximation, we believe

that this level of accuracy is sufficient for topology optimization, and for de-

termining the conceptual designs that result from it.

Thus the discrete residual of the x−momentum equation of cell C0

transporting u becomes,

Ru
i =

∑
f

−
[
Ffuf −Df (u1 − u0) + S u

f

]
−~i · (∇p0∆V0) +

(
SCu + SPu u0

)
∆V0


i

(4.25)

Similarly the discrete residual for y−momentum equation of cell C0

transporting v becomes,

135

Rv
i =

∑
f

−
[
Ffvf −Df (v1 − v0) + S v

f

]
−~j · (∇p0∆V0) +

(
SCv + SPv u0

)
∆V0


i

(4.26)

At this juncture, the computation of massflux at the faces Ff given

by Eq. 4.17 requires further clarification. In a co-located formulation we

compute the velocities and the pressure variables associated with the cell-

centroids. However Ff requires the velocities associated with the faces (or face

centroids). The face velocities thus needs to be interpolated appropriately, as

discussed in Section 4.3.6. However, during the first iteration of the SIMPLE

algorithm where momentum equations are solved, the face velocities and face

pressure are obtained as the average of the initial guess of neighboring cell

velocities and pressure given by,

Vf = 0.5 · (V0 + V1)

pf = 0.5 · (p0 + p1) (4.27)

4.3.3 Jacobians of momentum residual

During the forward mode solution of flow variables, the following two

Jacobian terms for the derivative of the x−momentum residual w.r.t u, the

first one being the diagonal term and the second one being the off diagonal

term, are computed as

136

∂Ru
i

∂u0
=

∑
f

 − [Ff +Df + SPu ∆V0
]

if Ff > 0
−
[
Df + SPu ∆V0

]
otherwise

 (4.28)

∂Ru
i

∂u1
=

∑
f

(
− [−Df] if Ff > 0

− [−Ff −Df] otherwise

)
(4.29)

In principle, the convection term (Ffuf) in the momentum equation

is non-linear since the mass flux term Ff has velocity components within it.

However, in the standard implementation of the SIMPLE algorithm, while

forming the Jacobian terms in Eqs. 4.28 and 4.29, the convection term is

linearized assuming mass flux Ff is a constant coefficient. Furthermore, the

terms ∂Rui
∂v0

and ∂Rui
∂v1

of the Jacobian are neglected as a consequence of this

assumption. Also residual Ru
i has the pressure gradient term which depends

on the face pressure of its faces which in turn depends on the cell pressure of

the neighbors. The derivative of Ru
i w.r.t. cell pressures is not computed while

forming its Jacobian because of the sequential nature of solution algorithm.

Similarly only the terms ∂Rvi
∂v0

and ∂Rvi
∂v1

are computed for y−momentum residual

assuming constant Ff , in turn also leading to omission of the terms ∂Rvi
∂u0

and
∂Rvi
∂u1

. The pressure dependence is also omitted. In addition, the secondary

gradient flux terms of the diffusion discretization terms are not included in

the Jacobian for all momentum equations. Thus a complete Jacobian is never

computed. All these facts will have implications when we find sensitivity

derivatives using Rapid AD library.

137

4.3.4 Solution of momentum equations for u, v and w

Though we restricted to variables in 2D formulation for simplicity until

now, we start explicitly mentioning the variables in 3D formulation from now

on. The following three nominally linear systems in delta form are individually

solved for obtaining cell velocities u, v and w.


∂Ru

∂u
∂Rv

∂v
∂Rw

∂w



δu
δv
δw

+


Ru

Rv

Rw

 =


0
0
0

 (4.30)

In practice both momentum equations and continuity equations are

under-relaxed during iterative solution[31]. If αm is the under-relaxation factor

chosen for momentum equations and and ~V ∗ the current velocity of the cell,

then the cell velocities are updated based on the solution ~δ = {δu, δv, δw} of

Eq. 4.30 as,

V ← V ∗ + αm~δ (4.31)

From implementation perspective, we realize the correction by scaling

the Jacobian diagonal term instead of explicitly correcting the velocity after

the solve.

4.3.5 Discretization of continuity equation

To discretize the continuity equation, we integrate Eq. 4.6 over the

control volume and apply divergence theorem to obtain,

138

∫
V0
∇ · (ρ~v) dV = 0

=⇒
∫
A

(ρ~v) · d ~A = 0

=⇒
∑
f

(ρ~v)f · ~Af = 0

=⇒
∑
f

Ff = 0 (4.32)

The residual for the continuity equation is therefore

Rp
i =

∑
faces

−Ff


i

(4.33)

4.3.6 Momentum interpolation of face velocities

The massflux at the faces Ff for Eq. 4.33 requires normal velocities

at the faces. One way is to obtain face velocity is to linearly interpolate

from the cell velocities obtained from the solution of momentum equations.

However such an interpolation if used for continuity equations can support

pressure checker-boarding in turn supporting velocity checker-boarding in the

final solution[48]. The root cause for checker boarding is the discretization of

the pressure gradient term in the discretized momentum equations (Eqs. 4.25

and 4.26). The linearly interpolated normal velocity at the face V n
f would have

the following functional dependence.

V
n
f = V

n
f (V0,V1,∇p0,∇p1)

139

As a consequence of this linear interpolation involving pressure gradi-

ents, face velocities finally get expressed in terms of alternate cell pressure val-

ues causing pressure checker-boarding [31]. To prevent such checker-boarding,

co-located formulations employ interpolation procedures that express face ve-

locities in terms of the adjacent pressure values rather than alternate pressure

values. Such an interpolation is known as ‘momentum interpolation’ or as an

‘added dissipation scheme’ in the literature[31, 48].

Momentum interpolation prevents checker-boarding of the velocity field

by not interpolating the velocities linearly. Here the pressure gradient term

resulting from linear interpolation of face velocity is subtracted and a new

pressure gradient term written in terms of the pressure difference of the ad-

jacent pressure values p0 − p1 is added [31]. Therefore we are seeking an

momentum-interpolated face normal velocity of the form given by,

V n
f = V n

f (V0,V1,∇pf (p0, p1)) (4.34)

where the pressure gradient associated with the face ∇pf depends func-

tionally on adjacent pressure values p0 and p1.

We now briefly describe the process of interpolation of the velocities at

the face for an unstructured co-located scheme in the most generic case where

the coefficients of u, v or w momentum equations can be different. Again the

primary intent is to present the flow of function evaluations for the purpose

of obtaining sensitivities. For detailed understanding and rationale of these

140

formulas, the reader is referred to [31, 48].

The diagonal terms of the Jacobian matrices
[
∂Ru

∂u

]
,
[
∂Rv

∂v

]
and

[
∂Rw

∂w

]
formed for solving the linear system for u, v and w are saved for momen-

tum interpolation. These diagonal terms are commonly referred as the aP

coefficients. The coefficients for cell C0 and cell C1 are given by,

aPi =
{
auPi , a

v
Pi
, awPi

}
=
{
∂Ru

i

∂ui
,
∂Rv

i

∂vi
,
∂Rw

i

∂wi

}
(4.35)

We define a mean coefficient for each cell referred as to as aP given by,

aPi =

(
auPi + avPi + awPi

)
3 (4.36)

Consequently, the corresponding coefficient associated with the com-

mon face f for cells C0 and C1 can then be given by,

aPf = aP0 + aP1 (4.37)

As discussed before, the momentum interpolation procedure is applied

to the normal velocity at the face. The linearly interpolated face normal

velocity V n

f from the discretized momentum equations is given by,

V
n
f = ((V0 ·Af)× aP0 + (V1 ·Af)× aP1)

aP0 + aP1

(4.38)

141

where V0 and V1 are the velocities from the converged momentum equa-

tions of the current iteration. The mean pressure gradient of the face dotted

the unit vector ~ef , termed as ∇pf , is computed from the pressure gradient of

the cells ∇p0 and ∇p1 as,

∇pf = ∆V0 (∇p0 ·∆ξ~ef) + ∆V1 (∇p1 ·∆ξ~ef) (4.39)

Implementing the idea of momentum interpolation, we subtract this

component of pressure gradient ∇pf , in the direction of cell centroids, from

V
f

n to obtain V̂ n
f

V̂ n
f =

(
(V0 ·Af)× aP0 + (V1 ·Af)× aP1 −∇pf

~Af · ~Af
~Af ·∆ξ~eξ

)
aP0 + aP1

(4.40)

A term df , which is the coefficient for the new pressure gradient term

∇pf (p0, p1), is computed from the ap coefficients of the cells as,

df =
(

AxfA
x
f

auP0 + auP1

+
AyfA

y
f

avP0 + avP1

+
AzfA

z
f

awP0 + awP1

)
(∆V0 + ∆V1)

~Af · ~eξ
(4.41)

The manipulation results in adding a pressure gradient term associated

with the gradient ∂p
∂ξ

rather than ∂p
∂n

, since this is the only gradient that can

be directly associated with the adjacent pressure difference p1 − p0. Thus the

pressure gradient term ∇pξ (p0, p1) is given by,

142

∇pξ (p0, p1) = −df (p0 − p1) (4.42)

After adding the above pressure gradient to V̂ n
f , we obtain the interpo-

lated face velocity V n
f as

V n
f = V̂ n

f +∇pξ (p0, p1) = V̂ f
n − df (p0 − p1) (4.43)

Finally we obtain the mass flux at the face obtain through the process

of momentum interpolation given by,

Ff = ρf
[
V̂ n
f − df (p0 − p1)

]
(4.44)

Here the mean density ρf for the the face is

ρf = (ρ0 + ρ1)
2 (4.45)

Again in practice, the momentum interpolated mass flux at the faces

are under-relaxed based on the momentum under-relaxation factor αm. If F †f
is the most recent mass flux at the face, then the mass flux is computed as

Ff ← ρf
[
V̂ n
f − df (p0 − p1)

]
+ (1− αm)F †f (4.46)

143

4.3.7 Solution of pressure correction equation

Before convergence the momentum interpolated mass flux (Eq. 4.44/4.46)

does not satisfy continuity field. The residual of the continuity equation (Eq.

4.33) using the interpolated mass flux physically represents the total mass

source of the cell and is not zero. Therefore the algorithm should drive the

residual to zero thus achieving the continuity satisfying velocity field. Our

intent is to determine a mass flux correction term F ′
f that when added to

the most recent momentum interpolated mass flux F∗f (Eq. 4.44/4.46), would

result in a continuity satisfying velocity field in the cell, i.e.,

∑
faces

−Ff


i

= 0 (4.47)

where Ff is the corrected mass flux given by,

Ff ← F∗f + F ′

f (4.48)

Based on Eq. 4.44 and keeping with the SIMPLE philosophy, the mass

flux correction term is proposed solely in terms of pressure correction field

p
′ and dropping the velocity term V̂ n

f . The mass flux correction F ′
f and its

relation to the change in pressure difference across the face f is assumed to

be:

F ′

f = ρf
[
−df

(
p

′

0 − p
′

1

)]
(4.49)

144

To solve for p′ , we may recast the nominally linear system in delta form

as,

[
∂Rp

∂p

] {
p

′}+ Rp = 0 (4.50)

We also note that instead of using the variable δ as the vector to be

solved, we term it as p′ itself, since after all we are interested in a correction

field. The partial Jacobian terms for cells C0 and C1 with respect to pressure

variables used in the pressure-correction linear system are,

∂R0
p

∂p0
=
∂R1

p

∂p1
= ρfdf (4.51)

∂R0
p

∂p1
=
∂R1

p

∂p0
= −ρfdf (4.52)

Notice that the terms
[
∂Rp

∂u

]
,
[
∂Rp

∂v

]
and

[
∂Rp

∂w

]
are not used in the

pressure correction equation because of the nature of the sequential algorithm.

4.3.8 Correction of pressure and velocity fields

Once the pressure correction equation is solved and the p′ field is ob-

tained (Eq. 4.50), the cell pressure is corrected as,

pi ← p∗i + αpp
′

i (4.53)

where αp is the under-relaxation factor for pressure correction equation.

The face pressure is corrected based on the corrected cell pressures as,

145

pf =
(
d0p0 + d1p1

d0 + d1

)
(4.54)

where d0 and d1 are computed based on momentum aP coefficients as

[31, 48],

d0 =
(
Axf
auP0

+
Ayf
avP0

+
Azf
awP0

)
(∆V0ρ0)
~Af · ~eξ

; d1 =
(
Axf
auP1

+
Ayf
avP1

+
Azf
awP1

)
(∆V1ρ1)
~Af · ~eξ

(4.55)

The massflux at the faces is updated after computing F ′
f with p′ as,

F ′

f = −
[
∂R0

p

∂p1

]
p

′

1 −
[
∂R1

p

∂p0

]
p

′

0 (4.56)

Ff ← F∗f + F ′

f (4.57)

For the co-located version of the SIMPLE algorithm, the face pressure

and the cell velocities are also corrected [31, 48]. The face pressure is corrected

as

p
′

f =
(
d0p

′
0 + d1p

′
1

d0 + d1

)
(4.58)

The cell velocity corrections are computed as [31, 48],

~V
′

0 =
{
p

′
fA

x
f

auP0

,
p

′
fA

y
f

avP0

,
p

′
fA

z
f

awP0

}
; ~V ′

1 =
{
p

′
fA

x
f

auP1

,
p

′
fA

y
f

avP1

,
p

′
fA

z
f

awP1

}
(4.59)

146

Finally the cell velocities are corrected as [31, 48],

~V0 ← ~V0 + ~V
′

0 ; ~V1 ← ~V1 − ~V
′

1 (4.60)

The above procedure has described the SIMPLE algorithm for co-

located pressure-velocity schemes. The SIMPLEC algorithm, a variant of

SIMPLE[48], which converges somewhat faster than SIMPLE, is easily imple-

mented using the same framework. This is accomplished simply by choosing

the under-relaxation factors for momentum and continuity equations such that

αp = 1− αm.

The operations mentioned in this subsection are needed only for the

forward solution of the flow problem. They are not needed for sensitivity

computation.

4.4 Flow model sensitivities with Rapid AD library

By now we understand that the co-located SIMPLE algorithm for

pressure-velocity coupling does not assemble the complete Jacobian during the

solution process. However sensitivity computations using the adjoint method

need the complete Jacobian. We intend to re-compute residuals and cost func-

tions in the Rapid mode with chosen independent variables that would auto-

matically compute the complete Jacobian with respect to all the independent

variables.

We follow the same procedure outlined in Section 3.6, Chapter 3 for

147

obtaining residual derivatives of flow equations. We first obtain the converged

values of the flow variables from the forward solution of the flow model (Figure

4.3) in double mode. The converged flow variables are then transferred to the

code compiled with the Rapid type.

A preferred situation would be to able to blindly follow the sequence of

steps of SIMPLE algorithm used for forward solution to compute residuals in

Rapid mode, automatically leading to the computation of the complete Jaco-

bians. However in retrospect, one would understand that such a blind proce-

dure results in inaccurate sensitivities. This is primarily because of non-linear

coupled nature of flow equations and the methodology devised in SIMPLE for

obtaining equations for pressure. We have to devise algorithm specifically to

obtain sensitivities accurately. We present three methods which illustrate the

underlying issues.

4.4.1 Method 1: Traversal of SIMPLE algorithm with independent
cell variables

The first step while using the Rapid mode is to choose the set of inde-

pendent variables with respect to which derivatives are desired. As mentioned,

in a co-located formulation, flow variables are associated with cell centroids.

Variables associated with faces, such as face velocities (or face mass flux) and

face pressure, can be derived from their cell counterparts. In obtaining sen-

sitivities, there may be imperatives such as minimizing code-intrusion and

obtaining problem-agnostic implementations.

148

For the SIMPLE algorithm depicted in Figure 4.3, the residual variables

Ru,Rv, Rw and Rp are dependent on the cell velocity components (u, v, w)

and cell pressures p. It is therefore natural to select cell velocities and pressure

variables as the independent state variables. Face variables can be dependent

functions of their cell counterparts.

Figure 4.4 depicts the process of obtaining derivatives of residuals fol-

lowing the SIMPLE algorithm depicted in Figure 4.3 in Rapid mode. As

mentioned in Section 3.6, Chapter 3, minimal modifications are needed while

executing the code in Rapid mode. This is pictorially represented with the

color coded arrows in the flowchart in Figure 4.4. Here, we traverse the flow

chart following the red arrows for both the forward solution with double mode

and derivative computation with the Rapid mode. However we skip the steps

depicted in the black arrows in the Rapid mode. We follow the green arrows

only in the Rapid mode. Steps related to solution of the linear system and

the correction steps that follow are skipped.

While performing automatic differentiation, it is important that the

functional dependencies are properly captured. Consider the computation

of the u-momentum residual Ru
i (Eq. 4.25) for a particular cell, using the

flowchart in Figure 4.4. We need cell velocities for the diffusion term, face and

cell velocities for convection term, face pressures for pressure gradient term as

well as linearized source terms for the computation of Ru
i . The face veloci-

ties and pressure are approximated with neighbor cell velocities and pressures

with Eq. 4.27. Computation of Ru
i will produce its complete Jacobian terms

149

Start

��
Convergedu, v, p

��
ApproximateFf , pf

��

oo

ss ++
ComputeRu

��

"*

ComputeRv

��

t|

Compute ∂Ru
i

∂u0
only

��
aPu

��

Compute ∂Rv
i

∂v0
only

��
aPv

��

SolveRu = 0

u

..

SolveRv = 0

v

pp

Save momentum coefficientsaP
Momentum interpolation

��
∂uRu, ∂vRu, ∂pRu ComputeFf

��

∂uRv, ∂vRv, ∂pRv

ComputeRp

��

))

+3 ∂uRp, ∂vRp, ∂pRp

SolveRp = 0
p ′

��
Correct p,Ff , u, v, pf

��
Check convergence

Yes
��

No //

OO

Stop

Figure 4.4: Method 1: Sequence of steps of the SIMPLE algorithm depicted
in Figure 4.3 in Rapid mode. Traversal along red arrows is performed both in
the forward solve in double mode and in the Rapid mode to get the desired
sensitivities. We do not follow the black arrows in Rapid mode. Traversal
along the green arrow is performed only in Rapid mode.

150

∂uRu, ∂vRu, ∂pRu per the defined functional dependencies.

It is important to address the discretization of convection term and the

pressure gradient term. The dependency of face velocity solely being a function

of neighbor velocities (Eq. 4.27) is reflected while computing the convection

term Ffuf of Ru
i . However the face mass flux Ff has much more complex

dependence on more neighbor cell velocities and cell pressures through the

process of momentum interpolation (Eq. 4.44). The pressure gradient term

of a cell is computed based on the face pressure of its faces. Though we

approximate the face pressure with neighbor cell pressures, it has much more

complex dependence of the neighbor cell pressures and velocities as shown in

Eq. 4.54. These dependencies are not captured while computing Ru
i in Figure

4.4. Thus the Jacobian terms ∂uRu, ∂vRu, ∂pRu would be not only inaccurate

but will also be missing the dependencies on many cell and pressure variables.

The same is true for Rv
i .

Going forward with the algorithm, we re-compute the face mass flux Ff

using momentum interpolation with the aP momentum coefficients obtained

from the momentum residual computations. This mass flux is used to com-

pute the continuity residual Rp
i . This re-computed mass flux reflects the true

dependence on all neighbor cell velocities and pressure variables with the right

functional form. This residual computation is followed by the computation of

all its Jacobian terms ∂uRp, ∂vRp, ∂pRp.

4.61Once we get all the Jacobian terms, the adjoint system for solving

the adjoint variables associated with each flow variable can be assembled in

151

the following way. Here the RHS is the partial derivative of the cost function

(QoI) w.r.t each flow variable u, v, w and p.


∂uRu︸ ︷︷ ︸
nC×nC

∂vRu ∂wRu ∂pRu

∂uRv ∂vRv ∂wRv ∂pRv

∂uRw ∂vRw ∂wRw ∂pRw

∂uRp ∂vRp ∂wRp ∂pRp




ψu
ψv
ψw
ψpC

 =


∂uc
∂vc
∂wc
∂pc

 (4.61)

Here nC is the number of cells. All terms in the Jacobian (Eq. 4.61)

sparse matrices of size nC × nC .

4.4.2 Method 2: Algorithm with independent cell and face vari-
ables

Having conceptually understood that the Jacobians of momentum resid-

uals can be inaccurate in Method 1 because of the inability to use the momen-

tum interpolation functional form for mass flux (Eq. 4.25) and face pressure

(Eq. 4.54), we can conceptually device an algorithm as depicted in Figure 4.5.

At the end of the forward solution we have accurate values for cell ve-

locities, cell pressures, face mass fluxes and face pressures. We can set each

of these cell and face variables as independent variables. As depicted in Fig-

ure 4.5, we start with converged values of u,v,p,Ff and pf that have been

defined as independent variables in Rapid mode. We can right away compute

all the momentum residuals (Eqs. 4.25 and 4.26) and continuity residual (Eq.

4.33) in Rapid mode. Since the u−momentum residual Ru is now a func-

tion of five independent variables u,v,p,Ff and pf , Rapid generates all the

152

u,v,p,Ff ,pf Cont. res. //

u−mom. res.

uu

v−mom. res.

))

pf

��

Ff

��

pf

��

Rp = Rp (Ff)

��

∂Ff
Rp

∂uRu, ∂vRu, ∂pRu, ∂Ff
Ru, ∂pf

Ru ∇pC = ∇pC ({pf})

rr ++

||

∂uRv, ∂vRv, ∂pRv, ∂Ff
Rv, ∂pf

Rv

Ru = Ru (Ff ,Df ,VC ,∇pC ,Su)

��

KS

Rv = Rv (Ff ,Df ,VC ,∇pC ,Sv)

��

KS

aPu = aPu (Ff ,Df , Su)

..

aPv = aPv (Ff ,Df , Sv)

ppaP = {aPu
, aPv
}

��

))

��

""

āP = āP (aP)

tt

∇pf = ∇pf (∇p0,∇p1)

Mom. Inter.
��

df = df (aP0 ,aP1)

tt

dC = dC (aP)

Face pressure res.

��

V̂ nf = V̂ nf
(
V0,V1, āP0 , āP1∇pf

)
Face mass flux res.

��

RFf = RFf

(
Ff , V̂

n
f , df , p0, p1

)
��

Rpf = Rpf (pf , d0, d1, p0, p1)

��

∂uRFf , ∂vRFf , ∂pRFf , ∂Ff
RFf , ∂pf

RFf ∂uRpf , ∂vRpf , ∂pRpf , ∂Ff
Rpf , ∂pf

Rpf

Figure 4.5: Method 2: A method (Section 4.4.2) of obtaining the the accu-
rate complete Jacobian of the coupled momentum and continuity equations,
required for adjoint based sensitivity computation. Here the cell velocities, cell
and face pressures and face mass fluxes are defined as independent variables.
The figure illustrates the sequence of steps needed to be performed to obtain
the complete Jacobian in Rapid mode.

153

Jacobian terms ∂uRu, ∂vRu, ∂pRu, ∂FfR
u and ∂pfR

u as per the functional

dependence of the discrete momentum equation. The same is the case with

the v−momentum residual Rv. Since face massflux Ff is an independent vari-

able, the definition for the continuity residual is directly in terms of the mass

flux given by Eq. 4.33. Its computation is accompanied by the generation of

the derivative term ∂FfR
p.

In addition, new residual variables, termed RFf and Rpf , must be

defined and properly computed for the new additional independent variables

Ff and pf .

We discuss the definition of RFf first. As shown in Figure 4.5, cell

pressure gradient is computed from face pressure using Eq. 4.13. Subsequently,

the average face pressure gradient is computed using Eq. 4.39. The velocity

term V̂ n
f (Eq. 4.40) and the term df (using Eq. 4.41 from the momentum ap

coefficients) are computed thereafter. We are now in a position to define the

residual RFf of a given face f by,

RFf = Ff − ρf
[
V̂ n
f − df (p0 − p1)

]
(4.62)

It is specifically noted that the face flux term Ff used in Eq. 4.62 is

the converged independent variable as depicted in the figure. The computation

of the above residual generates the terms ∂uRFf , ∂vRFf , ∂pRFf , ∂FfR
Ff and

∂pfR
Ff .

Similarly the residual for face pressure Rpf of a face f is defined as

154

Rpf = pf −
(
d0p0 + d1p1

d0 + d1

)
(4.63)

where the coefficient for the cell dC is computed using 4.55 from mo-

mentum aP coefficients as depicted in the figure. The face pressure pf used in

Rpf is the independent converged value of face pressure as shown in the fig-

ure. The computation of residual Rpf generates its complete Jacobian terms

∂uRpf , ∂vRpf , ∂pRpf , ∂FfR
pf and ∂pfR

pf .

Introducing new independent variables also affects the adjoint system

used for sensitivity computation. New adjoint variables ψFf and ψpf must be

added. The Jacobian also increases in size. If nC and nf are the number of

cells and number of faces in the mesh, then the size of Jacobian for a 3D flow

problem would be (4nC + 2nf)× (4nC + 2nf).



∂uRu︸ ︷︷ ︸
nC×nC

∂vRu ∂wRu ∂pRu ∂FfR
u︸ ︷︷ ︸

nf×nf

∂pfR
u

∂uRv ∂vRv ∂wRv ∂pRv ∂FfR
v ∂pfR

v

∂uRw ∂vRw ∂wRw ∂pRw ∂FfR
w ∂pfR

w

∂FfR
p

∂uRFf ∂vRFf ∂wRFf ∂pRFf ∂FfR
Ff ∂pfR

Ff

∂uRpf ∂vRpf ∂wRpf ∂pRpf ∂FfR
pf ∂pfR

pf





ψu
ψv
ψw
ψpC
ψFf
ψpf


=



∂uc
∂vc
∂wc
∂pc
∂Ff c
∂pf c


(4.64)

It is clear that the implementation depicted in Figure 4.5 produces

all the required derivatives accurately to compute sensitivities based on the

adjoint method. However this approach has larger computational overheads.

Generally the number of faces nf are approximately 1.5 times that of number

155

of cells nC . Thus the number of independent variables is nearly doubled,

increasing the time required for automatic differentiation by theRapid library.

Moreover, two more residual vectors RFf and Rpf , associated with each face

of the mesh, must be added. These are only to be used in the code when

compiled in Rapid mode. The increased size of the Jacobian for the adjoint

system also increases the time required for the the adjoint solution.

In addition to the computational overhead, this method requires con-

siderable modification or addition of code to the existing forward solution

infrastructure. This can be inferred to an extent by comparing the Figures

4.5 and 4.4. Our motivation was again to obtain a problem-agnostic method

for obtaining accurate enough sensitivities with minimal modification of the

existing infrastructure. Ideally we still desire an infrastructure similar to the

one in Figure 4.4. This brings us to the third method described next. The

design of the Rapid library actually facilitates this objective very effectively.

In fact this was one of the main guiding principles for designing the library.

4.4.3 Method 3: Modified algorithm with independent cell vari-
ables

Similar to Method 1, we only set the converged values of cell variables

u,v and p as the independent variables. Residuals are required for these

variables solely, which already exist for a typical flow solver depicted in Figure

4.3. The modified algorithm employing independent cell variables is depicted

in Figure 4.6. Most of the steps in Figure 4.3 are followed here, however with

156

changes in the executing the sequence of steps.

We explained the significance of properly capturing the functional de-

pendence of face mass flux and face pressure on neighbor (and next-neighbor)

cell velocities and cell pressures arising from the momentum interpolation (Eq.

4.44), for use in convection and pressure gradient discretized terms of momen-

tum equations. This was not obtained in Figure 4.4. To account for such

dependency here, we swap the order of computation of the momentum and

continuity residuals. Unlike Method 1 (Figure 4.4), we first compute continu-

ity residual followed by computation of momentum residual. We describe the

steps depicted in Figure 4.6 in order.

To start, we compute an approximate face mass flux termed F∗f based

on just average neighbor cell velocities (Eq. 4.27). The momentum aP coef-

ficients require only discretized convection, diffusion and source terms. The

discretized pressure gradient discretized term does not enter the computation

at this stage. There is no need for an approximate face pressure here. Thus

based on the approximate mass flux term F∗f , diffusion coefficient and SP

source terms, momentum coefficients aPu and aPv are computed for the u and

v momentum equations based on Eq. 4.28. An average momentum coefficient

term āP associated with each cell is subsequently computed based on Eq. 4.36.

By now it is important to understand that the āP of a cell will have functional

dependencies of the various operators of momentum equation in terms of cell

and its neighbor cell velocities. For non-orthogonal meshes, next-neighbor cell

velocity dependencies are also captured arising from secondary gradient flux

157

u,v,p

��
F∗f = F∗f (V0,V1)

uu ((

aPu = aPu

(
F∗f ,Df , Su

)
..

aPv = aPv

(
F∗f ,Df , Sv

)
ppaP = {aPu

, aPv
}

��

))

uu

āP = āP (aP)

vv

df = df (aP0 ,aP1)

))

dC = dC (aP)

��
pf = pf (d0, d1, p0, p1)

����
∇pC = ∇pC ({pf})

��

�� ��

∂uRp, ∂vRp, ∂pRp ∇pf = ∇pf (∇p0,∇p1)

��
Rp = Rp (Ff)

KS

V̂ nf = V̂ nf
(
V0,V1, āP0 , āP1 ,∇pf

)
��

Ff = Ff
(
V̂ nf , df , p0, p1

)
Cont. res.

cc

u−mom. res.nn v−mom. res. 11
Ru = Ru (Ff ,Df ,VC ,∇pC ,Su)

��

Rv = Rv (Ff ,Df ,VC ,∇pC ,Sv)

��

∂uRu, ∂vRu, ∂pRu ∂uRv, ∂vRv, ∂pRv

Figure 4.6: Method 3: Computation of complete Jacobian of the coupled mo-
mentum and continuity equations (Section 4.4.3). Here only cell velocities and
pressure variables are defined as independent variables. The figure illustrates
the sequence of steps needed to be performed to obtain the complete Jacobian
in Rapid mode.

158

computation [Eq. 2.6]. Rapid captures all these dependencies while comput-

ing derivatives and stores them in its derivative field, given by,

āP = āP (uP , unb1, unb2 . . . vP , vnb1, vnb2 . . .) (4.65)

∂ (āP) = {∂uP (āP) , ∂unb1 (āP) , ∂unb2 (āP) . . . , ∂vP (āP) , ∂vnb1 (āP) , ∂vnb2 (āP)}

We need face pressure pf for both momentum interpolation of the mass-

flux and later for pressure gradient discretization in the momentum equations.

The term dC associated with each cell is computed from the aP coefficients

using Eq. 4.55. The face pressure pf is interpolated with pressure and the

dC values of neighbor cells using Eq. 4.54. At this juncture, we note the

dependencies that Rapid has captured for pf ,

pf = pf (u0, u1, unb1 . . . v0, v1, vnb1 . . . p0, p1) (4.66)

∂ (pf) = {∂u0 (pf) , ∂u1 (pf) , ∂unb1 (pf) . . . , ∂v0 (pf) , ∂v1 (pf) , ∂vnb1 (pf) . . . p0, p1}

The pressure gradient of a cell ∇pC is computed from the face pressure

of all its bounding faces denoted by {pf}. Notice how the effect is cascaded

in the Rapid variable for ∇pC capturing the dependencies on neighbor cell

velocities and cell pressures. The cell pressure gradients thus computed will

be later used for momentum residual computation.

Next we proceed to compute the face massflux using momentum inter-

polation. The face velocity term V̂ n
f (Eq. 4.40) is computed using the average

159

face pressure gradient ∇pf (Eq. 4.13) and average momentum coefficients āP

(Eq. 4.36). Finally a pressure coefficient term df associated with the face is

computed using Eq. 4.41. Face mass flux Ff is thus interpolated with all these

computed terms using Eq. 4.44. We visualize the Rapid data stucture for Ff

for a face f with a collection of velocities {u} , {v} and pressure {p}variables,

where { } represent the neighbor set cell variables of face f .

Ff = Ff ({u} , {v} , {p}) (4.67)

∂Ff = ∂{u}Ff , ∂{v}Ff , ∂{p}Ff

Computation of continuity residual generates all the desired derivatives

of Rp
i w.r.t. all the neighbor independent variables that it depends upon.

Convection, diffusion, source and pressure gradient terms are used to

computed the momentum residuals using Eqs. 4.25 and 4.26. Notice that

we use momentum interpolated mass fluxes, cell velocities and interpolated

pressure gradient terms computed until now to computed the various terms of

momentum residuals. The complete Jacobian terms can be used to solve the

adjoint linear system (Eq. 4.61) for adjoint variables, which in turn, are used

for obtaining sensitivities.

Unlike the complete Jacobians generated with Method 1 (Figure 4.4),

the complete Jacobians generated using Method 3 (Figure 4.6) should in prin-

ciple be accurate enough to compute accurate sensitivities for adjoint method.

We demonstrate the validity of such a statement using an illustrated example

160

in the next sub-section. A rigorous mathematical analysis to determine the

accuracy of method 3, in the context of the solution of the adjoint system, is

beyond the scope of this dissertation.

4.4.4 Illustrative example

We consider a 2D rectangular channel illustrated in Figure 4.7 with

dimensions a = 3 m and L = 5 m. A fully developed velocity profile (parabolic

profile) is specified at the inlet with mean velocity of V = 2/3 m/s. A zero

pressure is specified at the outlet. No slip conditions are specified at the

remaining two boundaries of the domain. The objective is to determine the

sensitivity of total pressure drop in the channel with respect to the viscosity µ

of the fluid. The pressure gradient for a fully developed flow for a Newtonian

fluid in a rectangular channel is given by [116],

∂p

∂x
= −12µV

a2

[
N
m3

]
(4.68)

The total pressure drop in the x−direction for unit depth into the page

is given by

F∆P = −12µV
a

L [N] (4.69)

The sensitivity of the total pressure drop with viscosity is therefore

given by,

161

Figure 4.7: Laminar Newtonian flow in a channel. The objective is to compute
the sensitivity of total pressure drop in a channel with respect to the viscosity
of fluid.

Table 4.1: Comparison of sensitivities

Method ↓ Sensitivity ∂(F∆P)
∂µ

[
m2

s

]
Mesh size (No. of cells) → 3X5=15 6X10=60 15X25=375 90X150=13500
Finite Difference method -10.7604 -12.4105 -13.0913 -13.6026

Adjoint method (Method 1) -10.8438 -9.3053 -7.8497 -6.8861
Adjoint method (Method 3) -10.7950 -12.4216 -13.0931 -13.3286

Analytical 13.3333

∂ (F∆P)
∂µ

= −12V
a
L

[
m2

s

]
(4.70)

Next we consider a domain of dimensions 3 m×5 m discretized with four

different Cartesian meshes of varying cell numbers as outlined in Table 4.1. We

compare the analytical value of sensitivity from Eq. 4.70 with the sensitivities

obtained through finite differencing and the discrete adjoint method based on

Method 1 (Section 4.4.1) and Method 3 (Section 4.4.3) for all mesh sizes.

162

Converged flow variables (cell velocities and pressure) from the forward

solution are transferred to Rapid mode. These flow variables are set as inde-

pendent state variables. Viscosity is set as the independent design variable.

Residuals are computed using both Method 1 and Method 3 and the sensitiv-

ity of total pressure drop with respect to viscosity determined using adjoint

method with derivatives obtained from Rapid.

The adjoint sensitivity from Method 1 and 3 for the coarsest mesh

are approximately the same but quite different from the analytical value. As

the mesh gets finer, sensitivity from Method 3 (and from finite differencing)

approaches the analytical value, while that of Method 2 diverges slowly.

The rationale for such a behavior with Method 1 is that the mass flux

and face pressure of a particular face under consideration is not interpolated

with the right functional dependence on the cell velocities and cell pressures

that influence these face variables. Method 3 is able to bring in the functional

dependence of the independent variables on the mass flux and face pressure

used for momentum residual computation. We try to qualitatively express

these behavior with the sparse distribution diagram for 3X5 mesh and 6X10

mesh in Figure 4.8.

Figures 4.8 (a) and (b) depict the sparse distribution of the complete

Jacobian of the momentum and continuity residuals with respect to cell veloc-

ities and pressure variables obtained using Method 1 and Method 3 with the

Rapid library. The difference in the number of elements is visually obvious

from the figure. For 3X5 mesh, there are a total of n =134 flow variables.

163

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 770

(a) Method 1 on 3× 5 mesh; nz = 770

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 1190

(b) Method 3 on 3× 5 mesh; nz = 1190

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

nz = 3569

(c) Method 1 on 6× 10 mesh; nz = 3569

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

nz = 6029

(d) Method 3 on 6× 10 mesh; nz = 6029

Figure 4.8: Jacobian of the momentum and continuity residuals with respect to
velocity and pressure variables using the Rapid library and following Method
1 and Method 3.

164

The number of non-zero (nz) elements can be thought of as a measure of how

each method captures the dependence of the right number of cell velocities

and pressure. Method 1 has lower nz compared to Method 3. We define a

normalized metric M to quantify the number of dependencies given by

M = ∆nz
n

(4.71)

M for a 3X5 mesh is ˜ 3.13. Similarly Figures 4.8 (c) and (d) shows

the Jacobian matrices on 6X10 mesh. Again the difference is distribution is

quite noticeable. The mesh has n = 368 flow variables. The value for metric

M for this mesh is 6.68. The values for the metric for finer meshes with

elements 15X25 and 90X150 are 9.85 and 12.82 respectively. A high value of

this metric represents the decrease in capturing the dependencies of residuals

on independent neighbor flow variables. The divergence of sensitivity values

obtained from Method 1 can be attributed to increase in such a metric for the

meshes.

We now summarize our presentation in the last three sections. A tech-

nique is devised (Method 3) to compute all the partial derivatives of the mo-

mentum residuals, continuity residuals and the desired cost functions with

respect to all the flow and design variables, to be used for adjoint based sen-

sitivity computation. The methodology achieves this objective by traversal of

the sequence of steps of the SIMPLE algorithm in Rapid mode, albeit with

minor modifications (as opposed to Method 2). The methodology can be used

165

to compute sensitivity for any flow problem solved using the finite volume

method and employing the SIMPLE algorithm. This methodology is used to

obtain the sensitivities of arbitrary cost functions with respect to the design

variables β to perform topology optimization for flow applications.

4.5 Topology optimization for flow problems
4.5.1 Formulation and algorithm

Though the formalism and the algorithm of topology optimization for

flow applications remains exactly the same as was presented for heat con-

duction applications (see Section 2.5.2, Chapter 2), we briefly highlight the

differences. As mentioned in the introduction of this chapter, the governing

equations are Brinkman’s penalized Navier-Stokes equation (Eq. 4.4), ob-

tained by choosing the source terms of Eqs. 4.5 and 4.6 to be a Brinkman’s

term.

The state variables for flow equations are the cell velocity vector and

pressure. The cost function or QoI for a flow problem is generally a function

of these flow state variables and the design variable β. The cost function is

thus c = c ({u, v, w, p} , β).

The goal of topology optimization is to partition the design space into

specified volumes of solid and fluid. If ε and 1 − ε be the specified volume

fractions of fluid and solid with which we wish to fill the design space of volume

V0, then we seek appropriate values for the design variable β that minimizes

the functional c by satisfying all the constraints of the problem. The topology

166

optimization problem in continuous and discrete form and shown side to side

below,

min : c = c ({u, v, p} , β)
subject to : Vf (β)

V0
≤ ε

∇ · (ρ~vu)−∇ · (µ∇u) = −∇p ·~i− α (β)u
∇ · (ρ~vv)−∇ · (µ∇v) = −∇p ·~j − α (β) v

∇ · (ρ~v) = 0

0 ≤ β ≤ 1

min : c = c (u,v,p,β)
subject to : g :=

∑n

i
βi

n
− ε ≤ 0

Ru (u,v,p,β) = 0
Rv (u,v,p,β) = 0
Rp (u,v,p,β) = 0

0 ≤ β ≤ 1
(4.72)

Here Vf (β) is equal to the specified volume of the fluid. The coefficient

of the Brinkman’s term, α (β) is expressed in terms of the design variable

β. Various interpolations have been used in the literature. We have tested

both the RAMP (Eq. 4.2) and SIMP functional forms for interpolating α and

found negligible differences. We use both the RAMP and SIMP functional

form given by respectively,

αu (β) = αf + (αs − αf)
(1− β)

(1 + q · β) (4.73)

α (β) = (αs − αf) (1− β)p + αf (4.74)

We should be aware of the consequences of the functional form we use.

In Eqs. 4.73 or 4.74, the cell signals the presence of fluid element when corre-

sponding β = 1, while signal solid element if β = 0. We discuss this in more

167

detail in Chapter 6, where we present coupled thermal and flow problems.For

all the results presented in this chapter we choose αs = 100 and αf = 0.

We can also have other constraints in addition to the volume constraint.

In all the figures presented in the Results section, the flow region (β = 1) is

shown in red region, while the solid region (β = 0) is represented by red re-

gions. The optimization problem 4.72 is solved using the nested formulation

as shown in Figure 2.2, Chapter 2, where the discretized system of equations

for the flow fields are solved separately from the design problem. The figure is

self-explanatory since it had been described earlier for heat conduction appli-

cations. We have found that filtering is much more essential in flow problems

than heat conduction problems, probably because of the more complex nature

of the flow equations.

4.5.2 Flow topology optimization using Rapid

We invoke the model mesh introduced in Chapter 3 to illustrate the

process of performing topology optimization for flow problem with the Rapid

library (Figure 4.9). There are 31 cells partitioned into 15 normal cells and 16

ghost cells. Since there are 4 flow variables u, v, w and p associated with each

of the 31 cells, there are a total of 124 independent flow variables. The design

variables β is associated only with interior cells, and so we have 15 design

variables.

The same procedure is followed for obtaining sensitivities for flow prob-

lems as presented the flowchart (Chapter 3 Figure 10). For a given value of

168

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

1
[1,2,3,4]

[124]

2
[5,6,7,8]

[125]

3
[9,10,11,12]

[126]

4
[13,14,15,16]

[127]

5
[17,18,19,20]

[128]

6
[21,22,23,24]

[129]

7
[25,26,27,28]

[130]

8
[29,30,31,32]

[131]

9
[33,34,35,36]

[132]

10
[37,38,39,40]

[133]

11
[41,42,43,44]

[134]

12
[45,46,47,48]

[135]

13
[49,50,51,52]

[136]

14
[53,54,55,56]

[137]

15
[57,58,59,60]

[138]

16
[61,62,63,64]

17
[65,66,67,68]

18
[69,70,71,72]

19
[73,74,75,76]

20
[77,78,79,80]

21
[81,82,83,84]

22
[85,86,87,88]

23
[89,90,91,92]

24
[93,94,95,96]

25
[97,98,99,100]

26
[101,102,103,104]

27
[105,106,107,108]

28
[109,110,111,112]

29
[113,114,115,116]

30
[117,118,119,120]

31
[121,122,123,124]

Figure 4.9: Model mesh illustrating the numbering schemes for computing
sensitivities using Rapid.

design variables, the forward solution is performed to obtain the converged

values for flow variables. These are then transferred to the code compiled in

Rapid mode. The 124 flow variables and the 15 design variables are set as

independent variables. As mentioned, unique numbers have to be used to set

the independent variables. This is illustrated in Figure 4.9. For example, keys

from 1-4 are assigned to velocity and pressure for cell 1, while 57-60 are used

for cell 15. Numbers from 125-139 are used to identify each of the 15 design

variables. Afterwards, the residuals are recomputed and the adjoint system

solved to obtain sensitivities to be fed into the optimizer to determine new

values of β.

We present the customized version of Figure 4.6 for computing sensi-

169

u,v,p,β

��

yy

��vv ((
Su = Su (β)

��

ρC = ρC (β)

��

Sv = Sv (β)

��

F∗f = F∗f (V0,V1)

yy %%

µC = µC (β)

��
aPu

= aPu

(
F∗f ,Df , Su

)
..

Df = Df (µ0, µ1)oo // aPv
= aPv

(
F∗f ,Df , Sv

)
ppaP = {aPu

, aPv
}

��

))

uu

āP = āP (aP)

vv

df = df (aP0 ,aP1)

))

dC = dC (aP)

��
pf = pf (d0, d1, p0, p1)

����
∇pC = ∇pC ({pf})

��

�� ��

∂uRp, ∂vRp, ∂pRp, ∂βRp ∇pf = ∇pf (∇p0,∇p1)

��
Rp = Rp (Ff)

KS

V̂ nf = V̂ nf
(
V0,V1, āP0 , āP1 ,∇pf

)
��

Ff = Ff
(
V̂ nf , df , p0, p1

)
Cont. res.

cc

u−mom. res.mm v−mom. res. 11
Ru = Ru (Ff ,Df ,VC ,∇pC ,Su)

��

Rv = Rv (Ff ,Df ,VC ,∇pC ,Sv)

��

∂uRu, ∂vRu, ∂pRu, ∂βRu ∂uRv, ∂vRv, ∂pRv, ∂βRv

Figure 4.10: Flowchart depicting the generation of complete Jacobians with
respect to flow (u,v,p) and design variables (β) for SIMP based topology
optimization with Rapid library. 170

tivities specifically for topology optimization of flow problems in Figure 4.10.

For flow problems, in the most general way, the design variables enter the gov-

erning equations through the source term or material properties like density

or viscosity (we only employ a design variable dependent source term for our

work in this chapter). These are coded blue color in Figure 4.10. We note

that adding design variables as independent variables also effortlessly gener-

ates the Jacobians of momentum and continuity residuals ∂βRu ,∂βRv and

∂βRp with respect to design variables β. Figure 4.11 illustrates the Jaco-

bians of the momentum and continuity residuals obtained using Method 1 and

Method 3. Notice how Rapid captures more dependencies with Method 3,

thereby computing accurate sensitivities.

In the next chapters, we build methodologies for new physical models

where the infrastructure presented in Figure 4.6 always serves as the base.

An encapsulated version of Figure 4.10 is presented in Figure 4.12 to avoid

repetition of the former, in the forthcoming chapters.

4.6 Results

We consider a number of test cases for both internal and external flows

demonstrating the applicability of the topology optimization algorithm to flow

problems. Both Cartesian and un-structured meshes are considered. A volume

fraction constraint for the solid is stated as an inequality for all the cases, as

in Eq. 4.72. At the end of optimization, the optimal topology for all other

problems is found to have a volume fraction of the fluid equal to the specified

171

0 5 10 15

nz = 117

0

10

20

30

40

50

60

(a) Method 1 - nz =
117

0 5 10 15

nz = 261

0

10

20

30

40

50

60

(b) Method 3 - nz =
261

Figure 4.11: Sparse matrix representation of Jacobian of momentum and con-
tinuity residuals with respect to design variables β.

172

u,v,p,β

��
Ff ,Df ,pf ,S

u,Sv

��
u−mom. res.

rr
v−mom. res.

,,
Ru = Ru (Ff ,Df ,VC ,S

u,∇pC)

��

Rp = Rp (Ff)

��

Rv = Rv (Ff ,Df ,VC ,∇pC ,Sv)

��

∂uRu, ∂vRu, ∂pRu, ∂βRu ∂uRp, ∂vRp, ∂pRp, ∂βRp ∂uRv, ∂vRv, ∂pRv, ∂βRv

Figure 4.12: Encapsulated version of the flowchart depicting the generation of
complete Jacobians with respect to flow (u,v,p) and design variables (β) for
SIMP based topology optimization with Rapid library

maximum, ε.

4.6.1 Test cases for internal flow

4.6.1.1 Channels

Almost all the papers published on topology optimization for flow ap-

plications present a so-called diffuser problem[21, 102, 33]. This is a typically

a 2D square design space with a fully developed velocity inlet spanning the

entire width on the left boundary and part of the exit boundary specified with

another fully developed profile, respecting continuity. The top and bottom

sides are set to no-slip condition.

We consider a more realistic variant of this test case in this section

by specifying a velocity inlet - pressure outlet combination. The schematic

diagram of the test case is the same rectangular channel used for the illustrative

173

example in Figure 4.7 but now with a = L. A fully developed velocity profile is

specified at the left inlet boundary and the flow exits to zero pressure value at

the right boundary. No-slip wall conditions are specified at the top and bottom

boundaries. The objective is to minimize the total pressure drop across the

channel in horizontal flow direction. Thus the cost function is:

c = min
(∫

Γin
pdA−

∫
Γout

pdA
)

(4.75)

The Reynolds number based on the inlet channel width is 10. The

volume constraint of fluid ε is set to 0.5, implying that the optimizer fill the

design space with at-least 50% fluid. The design domain is made of a mesh

of 100 X 100 quadrilateral cells. A uniform distribution for β = 0.5 is chosen

as the initial condition for the design variable.The value for αs and αf are

chosen to be 100 and 0. Figure 4.13 (a)-(i) shows the process of the topology

optimization and the steps in the evolution β to a shape akin to a converging-

diverging channel. The red region represents the fluid while the blue region

represents solid.

Figure 4.14 shows the plots of cost function normalized with a scale

factor based on the dynamic pressure, and given by,

c∗ = 1
2ρ
(
V in

)2
Ain (4.76)

where ρ is the density of the fluid, V in is the average inlet velocity

and Ain is the inlet area. We observe that the normalized total pressure

174

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.13: Topology optimization in test case 1. (a) Initial random distri-
bution of β (b) & (c) Representative steps leading to optimized geometry. (d)
One possible optimal topology. αs = 100, αf = 0, ε = 0.5

175

drop between the inlet and outlet has been reduced from an initial value of

˜2400 for the initial geometry to a final value of ˜20 for the final topology.

Though the initial value of the normalized cost function depends on the value

of αs chosen, the final value is independent of it. Figure 4.14 also shows the

volume fraction of the solid material and filter radius normalized with domain

length for each iteration. The filter radius is gradually reduced during the

optimization process. The volume fraction of the solid reaches the set value

at the end, making the volume fraction constraint active (i.e., satisfied in

its equality). Similar to heat conduction test cases, it is observed that an

approximate geometry is evolved quickly in the first twenty iterations, and

the optimizer fine-tunes the geometry to the final optimal solution at a slower

pace.

Next we perform the same problem on a longer design domain with L =

2a. The domain is composed of 100X200 quadrilateral cells. Various Reynolds

numbers ranging from Re = 1 to Re = 200 were considered. Figure 4.15(a)

and (b) shows the final topologies for Re = 1 and Re = 100 respectively. The

channel converges at the entrance to a near constant cross-section down-stream

for the low Reynolds numbers. For high Reynolds number, the channel again

converges near the entrance but starts opening up towards the outlet.

It is useful to understand the design obtained through topology op-

timization. The initial converging section is necessary since we are given a

certain solid volume that we must use, and the best use for it would be to ar-

chitect a smoothly converging section with low losses. The diverging portion

176

0.0

0.2

0.4

0.6

0.8

1.0

V
o
lu
m
e
fr
a
ct
io
n
co
n
st
ra

in
t

0.02

0.04

0.06

0.08

0.10

N
o
rm

a
li
z
e
d
fi
lt
e
r
ra

d
iu
s

10−1

100

101

102

103

N
o
rm

a
li
z
e
d
o
b
je
ct
iv
e
fu
n
ct
io
n

100 101 102
Iteration

Figure 4.14: Normalized objective function and the volume fraction of fluid
material versus iteration number. The plot also shows the normalized filter
radius applied at various phases of the topology optimization process.

allows pressure recovery so that the pressure difference between inlet and out-

let can be minimized. At high Reynolds number, the pressure recovery is large

because of the quadratic dependence on velocity in Bernoulli’s equation. On

the other hand, in a converging-diverging geometry, the narrow throat means

greater viscous losses. These are greater for low Reynolds number flows. The

balance of these considerations means that we see a nearly straight channel

design for low Re flows, but a diverging section for high Re flows.

4.6.1.2 Diffusers

We consider next a variant of the above problem, with boundary condi-

tions that lead to diffuser-like geometries. The schematic for design of diffuser

177

(a) Optimal topology for Re = 1 (b) Optimal topology for Re = 100

1 20.000e+00 2.258e+00

Velocity Magnitude

(c) Velocity magnitude distribution for Re = 1

1 20.000e+00 2.258e+00

Velocity Magnitude

(d) Velocity magnitude distribution for Re = 100

40 80 1200.000e+00 1.817e+02

Pressure

(e) Pressure distribution for Re = 1

1 2 3 40.000e+00 4.636e+00

Pressure

(f) Pressure distribution Re = 100

Figure 4.15: Effect of Reynolds number on the optimal topologies for the
channel test case with L = 2a.

178

(a) (b)

Figure 4.16: Problem statement for (a) diffuser, and (b) bend design.

test case is shown in Figure 4.16(a). A portion of the inlet boundary is speci-

fied with a velocity profile. The outlet is specified as a zero- pressure boundary.

The top and bottom boundaries are no-slip, as shown in the figure. We perform

topology optimization for a variety of combinations of solid volume fraction

and Reynolds number. The Reynolds number is based on the inlet width.

Again the cost function is to minimize the total pressure drop between inlet

and outlet.

Figure 4.17(a) is the final topology for Re = 2 and ε = 0.2, i.e. with

the specified volume fraction of fluid Vf/V0 ≤ 0.2. The dimensions of the

inlet width is 20% of the total width of the left boundary. The chosen volume

179

(a) Re = 2, ε = 0.8 (b) Re = 2, ε = 0.5 (c) Re = 20, ε = 0.5

Figure 4.17: Topology optimization of an open diffuser.

constraint should thus ideally prevent the channel from expanding. This is

a test case to check whether the optimizer realizes the intended purpose. As

can be seen in 4.17(a), this is indeed the case, but again the channel slightly

converge and diverges, since it is not allowed to open up from the inlet.

We set the volume fraction of fluid ε = 0.5 and obtain the results for two

Reynold’s numbers Re = 2 and 20. Both the topologies open up as intended

as shown in Figure 4.17, but at different rates. For low Re the channel mostly

opens up close to the inlet as seen in Figure 4.17(b. Higher Re delays the rate

of opening up the channel, basically to prevent adverse pressure gradient as

shown in Figure 4.17(c). The volume constraint is satisfied to equality for all

the three sub-cases.

180

(a) Optimal topology for Re = 2 (b) Optimal topology for Re = 200

Figure 4.18: Design of pipe bends.

4.6.1.3 Pipe bend

Design of a pipe bend is a has been a simple benchmark problem in

topology optimization[21, 102, 33, 22], the schematic of which is being shown

in Figure 4.18 (a). A part of the left boundary serves as the velocity inlet

while a part of the right bottom region serves as the outlet. We again specify

a fully developed velocity profile at the inlet and a zero pressure at the out-

let. There are 100X100 elements in the design domain. We specify the fluid

volume constraint ε to be 0.25. To demonstrate the effect of Reynolds num-

ber, topology optimization was performed with two Reynolds numbers Re = 2

and Re = 200. The corresponding optimal topologies are displayed in Figure

4.18(a) and (b) respectively.

There are two competing imperatives in arriving at the final design.

The incoming flow, which enters horizontally, must turn in order to exit. The

181

slower the turn, the smaller are the pressure losses. However, the slower the

turn, the longer the path length and therefor, the greater are the viscous losses.

For low Re, the turning of the flow is more easily accomplished because of low

inertia, but the potential for viscous loss is high. Therefore the design focuses

on creating a direct straight-line path from inlet to outlet. At high Re, it is

more difficult to turn the flow, and abrupt turns lead to high losses. Therefore,

the design focuses on a more gentle turn, albeit at the cost of a longer path.

4.6.2 Test cases for external flow

The test cases presented in this section are for external flows past bluff

bodies. The objective is to obtain shapes that minimize the pressure drop

across the domain. The schematic of the test case is shown in Figure 4.19.

Constant velocity profiles (plug flows) at specified angles are specified at the

inlet while pressure is specified at the outlet. Symmetry conditions are spec-

ified at the top and bottom boundaries. Small obstacles are placed along the

center-line axis of the design space at specified distances from the inlet bound-

ary to encourage the formation of streamlined bodies around them to minimize

the overall pressure drop from inlet to outlet. For test cases for external flow

we consider Eq. 4.74 for interpolation of α. We now consider various cases.

4.6.2.1 Structured mesh

We first consider plug flow with a zero angle of attack. The design

space is square-shaped with side L = L1 = L2. A structured mesh of size

182

(a) (b)

Figure 4.19: Schematic for test case for external flows

200X200 cells is used. A circular obstacle of diameter D = 0.02L is placed at a

distance of L3 = 0.25L from the inlet along the center line. The circular object

is realized by setting the appropriate cells within the circular region to have

values of β = 0. They are held at this value and not therefore considered design

variables. The fluid volume constraint is set to ε = 0.95 i.e. Vf/V0 ≤ 0.95. In

other words, the goal is to place 5% of solid material around the obstacle so

as to minimize the pressure drop between the inlet and outlet. We present the

final topologies for three Reynolds number, namely Re = 10, 100 and 200 in

Figure 4.20. The corresponding velocity plots are also plotted in the figure.

We observe that the shape of the body takes that of a back-to-front

symmetric streamlined rugby ball at Re = 10. As Re increases, the shape re-

mains streamlined, but the cross-sectional area exposed to the inflow becomes

smaller, and the trailing edge of the blade becomes thinner. This is because a

183

(a) Optimal topology for
Re = 10

0.4 0.8 1.20.000e+00 1.565e+00

Velocity Magnitude

(b) Velocity mag. distri-
bution for (a)

(c) Optimal topology for
Re = 100

0.4 0.8 1.20.000e+00 1.565e+00

Velocity Magnitude

(d) Velocity mag. distri-
bution for (c)

(e) Optimal topology for
Re = 200

0.4 0.8 1.20.000e+00 1.565e+00

Velocity Magnitude

(f) Velocity mag. distri-
bution for (e)

Figure 4.20: Optimal topologies for test cases described in Section 4.6.2.1.

184

blunt trailing edge would lead to separation and pressure loss.

4.6.2.2 Unstructured mesh

A similar problem is presented here, but the obstacle is explicitly cre-

ated in the geometry as in shown in Figure 4.21. Again the domain is square

with side L = L1 = L2. The obstacle is placed at a distance of L3 = 0.5L along

the center line axis from the inlet boundary. The diameter of the obstacle is

D = 0.1L. The design domain is discretized with un-structured meshes. The

mesh is not symmetrically arranged about the horizontal center-line. The fluid

volume constraint is set to ε = 0.8.

We consider two inlet flows with same magnitude of velocity, one with

a zero angle of attack and another with θ = −45◦. We consider only a low

Reynolds number, Re = 0.1 based on the diameter of the obstacle. Figure

4.21 shows the shapes of the two bodies that minimize the pressure drop

for the given configuration. We can see the asymmetry in the shape of the

object when the velocity direction is inclined. This is more conspicuous in

the velocity plots shown in the figure. The symmetry condition influences the

topology significantly well.

4.7 Closure

In this chapter, we developed and demonstrated topology optimization

for incompressible Newtonian flow problems in the laminar regime. The under-

lying numerical technique is the finite volume method employing a sequential

185

(a) Angle of attack θ = 0◦

0.4 0.8 1.20.000e+00 1.796e+00

Velocity Magnitude

(b)

(c) Angle of attack θ = −45◦

0.4 0.8 1.20.000e+00 1.796e+00

Velocity Magnitude

(d)

Figure 4.21: Topology optimization for flow past an obstruction using unstruc-
tured meshes.

186

co-located pressure-velocity scheme for unstructured meshes. We also devel-

oped a novel technique to compute discrete adjoint sensitivities within such

a finite volume framework using the Rapid AD library. The central idea was

to capture the full Jacobian accurately in the Rapid mode accounting for the

right dependencies of face mass flux and face pressure on the relevant cell

velocities and cell pressures.

The methodology described in this chapter is essentially problem-agnostic

in nature. Similar strategies can be extended systematically to compute sen-

sitivities in flow problems coupled with new physics. For example, one can

obtain sensitivities for Reynolds-Averaged Navier-Stokes (RANS) based turbu-

lent flow models or coupled flow and thermal problems. We consider topology

optimization for turbulent flows in Chapter 5. Coupled flow and thermal prob-

lems are described in Chapter 6. In both chapters, we build methodologies for

new physical models using the infrastructure presented in Figure 4.6.

187

Chapter 5

Turbulent flow applications

In this chapter, we extend topology optimization for flow problems

to the turbulent regime. We choose the Spalart-Allmaras RANS turbulence

model, though other models may be considered as well. Based on this model,

the topology optimization methodology for steady state turbulent flow prob-

lems is developed in the frameworks of unstructured cell-centered finite volume

schemes and automatic differentiation for computations of discrete adjoint sen-

sitivities. The use of the Rapid library makes the arduous task of differenti-

ating the various terms of the Spalart-Allmaras governing equations virtually

effortless. Finally, as proof of concept, we demonstrate the methodology with

a channel flow test case.

5.1 Introduction

The definition of turbulence by Peter Bradshaw in his book is very rel-

evant here [117]. ‘Turbulence is a three-dimensional time-dependent motion in

which vortex stretching causes velocity fluctuations to spread to all wavelengths

between a minimum determined by viscous forces and a maximum determined

by the boundary conditions of the flow. It is the usual state of fluid motion

188

except at low Reynolds numbers.’ Thus even though there are quite a few in-

dustrial applications of laminar flow such as in microfluidics, food processing,

polymer and glass processing etc., the majority of flows in industry (and in

nature) are turbulent. Therefore it is necessary to consider turbulence when

designing airplane wings, turbine blades, heat exchangers, chemical reactors,

buildings/bridges etc. Therefore topology optimization must be extended to

turbulent flow before it can become an accepted design tool in industry.

There exist various computational methods to solve turbulent flow.

Direct Numerical Simulation (DNS) employs the solution of the Navier-Stokes

equations by resolving all scales of turbulence [118]. Though most accurate,

this method can be only used to solve relatively low Reynolds number problems

even with the most powerful computers available today. DNS has been used

to understand the physics of turbulence and to validate various turbulence

models. To make simulation of turbulent flows computationally tractable,

many turbulent models have been developed over the last few decades with

varying degrees of success. Reynolds Averaged Navier Stokes (RANS) based

models and Large Eddy Simulation (LES) are among the most important

[119, 120], though the latter are still computationally intensive. The most

widely used models in the commercial CFD codes are RANS based models.

Of the large variety of RANS models[119, 121] available, the linear

eddy viscosity models are the most prevalent. These are again sub-classified

to algebraic models, one-equation models, two-equation models etc., and offer

increasing applicability but with increasing computational complexity. The

189

Spalart-Allmaras (SA) model is a popular one equation model which has been

used with a fair amount of success [122]. Here one scalar transport equation for

a new transport variable related to the eddy viscosity is solved in conjunction

with the RANS equations. Among the most widely used two-equations models

are the are k − ε model and k − ω models. Here two extra scalar transport

equations, for the turbulent kinetic energy and either the eddy dissipation or

the specific dissipation, are solved along with equations [119]. To demonstrate

topology optimization for turbulent flow we choose the SA model here, though

the same methodology can be applied to other RANS based models as well.

Before discussing the SA model in detail, we present the literature on

topology optimization for turbulent flows.

As was mentioned before, a significant amount of work has been done

on shape optimization for flows in turbulent regime. However the work on

topology optimization for turbulent flow has just started to appear recently

and is very much in its infancy[23]. The few published works on the topic use

a continuous adjoint method. The authors used the Spalart-Allmaras model

using a continuous adjoint method in a finite volume framework [123, 124, 125].

They solved coupled flow and thermal problems as well. To the best of our

knowledge, we know of only one very recent paper in the literature on topology

optimization for turbulent flow using SIMP and a discrete adjoint method [34].

Here, the SA model is used within a finite element framework.

We briefly outline the contents of chapter. To begin, the governing

equations underlying turbulent flows using the Spalart-Allmaras model are

190

described. The numerical procedure to solve these equations based on the

SIMPLE algorithm is described next in Section 5.3. The description of topol-

ogy optimization for turbulent flow starts in Section 5.4 and includes a detailed

description of the relevant sensitivity computation using theRapid library. Fi-

nally a test case is presented as a proof of concept.

5.2 Governing equations and boundary conditions
5.2.1 Reynolds Averaged Navier-Stokes (RANS) equation

For many practical situations of engineering interest, it is enough to

know the mean velocity of the turbulent flow. To obtain an equation for mean

velocity, the time-dependent flow velocity v = vi = [u, v, w] is decomposed

into the mean velocity term v̄i and the fluctuating velocity term v
′
i and then

substituted into the Navier-Stokes equations. The Navier-Stokes equations are

then time-averaged to obtain the RANS equations given by,

∂ (ρv̄i)
∂t

+ ∂ (ρv̄j v̄i)
∂xj

= − ∂p̄

∂xi
+ ∂

∂xj

(
µ
∂v̄i
∂xj
− ρv′

iv
′
j

)
(5.1)

∂ (ρv̄i)
∂xi

= 0

where p̄ is the mean pressure field (details in [119]). The unknowns

being solved in the RANS equations are the mean velocity v̄i and pressure p̄.

The term v
′
iv

′
j is the correlation of turbulent fluctuations termed as Reynolds

stress rij = −v′
iv

′
j, and is not known in terms of v̄i. Therefore to close the

191

RANS equations, one needs to model the Reynolds stress rij term. A number

of closure models have been proposed in the literature[119, 121].

Eddy viscosity models are one such class of models where the effect of

turbulence is modelled with an effective viscosity term νT . In this approach,

one writes

rij = νT

(
∂v̄i
∂xj

+ ∂v̄j
∂xi

)
− 2k

3 δij = −νTSij + 2k
3 δij (5.2)

The term νT is termed as eddy viscosity and k is the mean turbulent

kinetic energy given by

k = 1
2
(
v

′
iv

′
i

)
(5.3)

If νT and k are specified, then the RANS equation (Eq. 5.1) can be

closed.

5.2.2 Spalart Allmaras (SA) turbulence model

In the SA model, the last term of Eq. 5.2 is generally ignored since k is

not readily available[126]. Therefore the Reynolds stress is approximated as,

rij = νT

(
∂v̄i
∂xj

+ ∂v̄j
∂xi

)
= ρµT

(
∂v̄i
∂xj

+ ∂v̄j
∂xi

)
(5.4)

Substituting in Eq. 5.1, and assuming steady state yields the follow-

ing scalar transport equations with source terms for ū, v̄ (w̄ implied)and p̄ in

192

conservative form as,

∇ · (ρv̄ū) = −∇p̄ ·~i+∇ · ((µ+ µT)∇ū) + Su (5.5)

∇ · (ρv̄v̄) = −∇p̄ ·~j +∇ · ((µ+ µT)∇v̄) + Sv (5.6)

∇ · (ρv̄) = 0

To determine the eddy viscosity νT = µT/ρ, a new transport equation

is proposed for a variable ν̃, called the SA variable. The two variables are

related by [122],

νT = ν̃fv1 (5.7)

where

fv1 = χ3

χ3 + c3
v1

; χ := ν̃

ν
(5.8)

Here ν = µ/ρ is the molecular kinematic viscosity.

The transport equation for ν̃ may be written as,

∇ · (ρv̄ν̃)︸ ︷︷ ︸
convection

= ∇ ·
(
ρ (ν + ν̃)

σ
∇ν̃

)
+ ρcb2

σ
(∇ν̃)2

︸ ︷︷ ︸
diffusion

+ cb1 (1− ft2) S̃ν̃︸ ︷︷ ︸
production

−
(
cw1fw −

cb1
κ2 ft2

) [
ν̃

d

]2

︸ ︷︷ ︸
wall destruction

(5.9)

Here

193

(∇ν̃)2 = ∂ν̃

∂xj

∂ν̃

∂xj
(5.10)

Eq. 5.9, cast in the form of a scalar transport equation for finite volume

discretization and is given by,

∇·(ρv̄ν̃) = ∇·
(
ρ (ν + ν̃)

σ
∇ν̃

)
+ρcb2

σ
(∇ν̃)2 + cb1 (1− ft2) S̃ν̃ −

(
cw1fw −

cb1
κ2 ft2

) [
ν̃

d

]2

︸ ︷︷ ︸
Source term

(5.11)

There are many closure functions in Eq. 5.9, which are systematically

given by,

S̃ ≡ S + ν̃

κ2d2fv2, fv2 = 1− χ

1 + χfv1
(5.12)

fw = g

[
1 + C6

w3
g6 + C6

w3

]1/6

, g = r+Cw2
(
r6 − r

)
, r ≡ min

(
ν̃

S̃κ2d2
, 10

)
(5.13)

ft2 = Ct3 exp
(
−Ct4χ2

)
(5.14)

S =
√

2ΩijΩij (5.15)

The rotation tensor Ωij is given by

194

Ωij = 1
2

(
∂v̄i
∂xj
− ∂v̄j
∂xi

)
(5.16)

The constants in the above closure functions are given by,

σ = 2/3

Cb1 = 0.1355

Cb2 = 0.622

κ = 0.41

Cw1 = Cb1
κ2 + (1 + Cb2)

σ

Cw2 = 0.3

Cw3 = 2

Cv1 = 7.1

Ct1 = 1

Ct2 = 2

Ct3 = 1.1

Ct4 = 2 (5.17)

5.2.3 PDE-based wall distance model

Computation of the wall destruction term in Eq. 5.9 requires specifying

the distance d of a field point to the nearest wall. It is easiest to compute the

distance to the nearest wall by solving a partial differential equation (PDE),

195

though other methods exist. Various PDEs have been postulated to serve the

purpose [127]. For example, the Eikonol function approach was proposed for

which the solution to the PDE is the wall distance [34]. Spalding proposed a

simple PDE for computing a field φ from which wall distance d can be post-

computed [128]. φ is henceforth referred as the wall distance function. We

employ Spalding’s approach in this dissertation.

The equation to be solved is Poisson’s equation,

∇2φ+ 1 = 0 (5.18)

The boundary conditions are

φ = 0 at walls (5.19)
∂φ

∂n
= 0 every other boundary (5.20)

After solving the field φ for the given domain, the distance of any field

point to the nearest wall is given by

d =
√
∇φ · ∇φ+ 2 (|φ|)−

√
∇φ · ∇φ (5.21)

5.2.4 Boundary conditions

All the boundary conditions for velocities and pressure variables speci-

fied at inlet, outlet and wall boundaries for the Navier-Stokes equations apply

196

for the RANS equations as well, but operate on the corresponding mean ve-

locity and pressure variables.

At the inlet boundary, the value of the SA variable ν̃ is usually specified

as a multiple of molecular kinematic viscosity, generally between 3ν ≤ ν̃ ≤ 5ν

[126]. The values of ν̃ are generally extrapolated from the interior at the outlet

boundary. The symmetry condition is achieved by applying the condition
∂ν̃
∂n

= 0, where n is the normal to the symmetry boundary.

The wall boundary condition is

ν̃ = 0 (5.22)

We will be revisiting the wall boundary condition (Eq. 5.22), as it is of

specific interest to us from the perspective of topology optimization.

It is also noted that the boundary conditions for ν̃ are generally specified

in terms of the turbulent viscosity ratio I, defined as the ratio of eddy viscosity

and molecular viscosity and is given by,

I := µT
µ

= νT
ν

= ν̃fv1

ν
= χfv1 (5.23)

=⇒ fv1 = I

χ
(5.24)

Also,

197

fv1 = χ3

χ3 + c3
v1

(5.25)

Therefore,

I

χ
= χ3

χ3 + c3
v1

(5.26)

Therefore given a value for I one can find χ by solving the non linear

equation (Eq. 5.26), from which ν̃ can be determined for a given ν.

5.2.5 Spalding’s wall function

For turbulent flow, the near-wall mesh must be extremely refined to

resolve the thin turbulent boundary layer. To circumvent this, it is a gen-

eral practice to correct the eddy viscosity near the wall using wall functions

based on the law of the wall. Among the many wall functions available in the

literature, we use Spalding’s formula [129] given by:

y+ = u+ + exp (−κB)
[
exp

(
κu+

)
− 1− κu+ − 1

2
(
κu+

)2
− 1

6
(
κu+

)3
]

(5.27)

where y+ and u+ are scaled wall distance and velocity respectively, and

are given by,

y+ := yuτ
ν

and u+ := u/uτ (5.28)

198

Here y is the wall distance of the cell adjacent to the wall boundary.

uτ is the friction velocity based on the shear stress on the wall which is an

unknown. Our goal is to determine uτ from Eq. 5.27 for the given y. The

non-linear Eq. 5.27 is solved using Newton Raphson iteration. Once uτ is

solved, the eddy viscosity of the cell near the wall is found using,

νT = u2
τ

|∇vwall · ~n|
− ν (5.29)

where ∇vwall is the velocity gradient of the wall adjacent cell under

consideration and ~n is the normal to the wall.

5.3 Numerical method - SIMPLE for RANS-SA model

There are three groups of scalar transport equations to be solved for

RANS based SA turbulent model -

1. Momentum and continuity equation,

2. Wall distance model and

3. Spalart-Allmaras equation for ν̃.

From an implementation perspective, the numerical solution of RANS

equation is identical to the solution of the Navier-Stokes equation that were

discussed in Chapter 4 using the SIMPLE algorithm. We solve for the mean

velocity and pressure variables in the RANS equations as opposed to solving

199

Start

��
Guessu, v, pC , ν̃, φ

Wall distance model start
��

DiscretizeRφ

��
SolveRφ = 0

��
Updateφ

��
Compute wall distd
Wall distance model stop

��
Transferd to SA model d //

Flow model start
��

��// Compute totalµ

��

//

SA model start
��

DiscretizeRu,Rv,Rp

��

Compute SA closure functions

��
SolveRu,Rv,Rp = 0

��

Compute SA source functions

��
Update pC ,Ff , u, v, pf

��

DiscretizeRν̃

��
Check convergence

No
��

Yes

))

SolveRν̃ = 0

��
Compute Ω

Flow model stop
��

Update ν̃

��
Transfer Ω,Ff to SA model //

Ω,Ff

OO

Compute νT

��
Stop Correct νT with wall function

SA model stop
��

νT

OO

Transfer νT to flow modeloo

Figure 5.1: Flowchart for a Spalart-Allmaras turbulence model employing
SIMPLE algorithm. The governing equations include the wall distance model
(blue), the RANS equations (black) and the Spalart-Allmaras model (red).

200

the intrinsic velocities in laminar flow. The only additional operation that

needs to be done is to compute an effective viscosity termed µtotal,

µtotal = µ+ µT (5.30)

which is the sum of molecular viscosity and the eddy viscosity µT . The

rest of the procedure is same until we finish the post-correction part (Section

4.3.1, Chapter 4) of the SIMPLE algorithm.

The wall distance model (Eq. 5.18) is a pure diffusion equation with a

constant source term and requires no further explanation. It is solved using

methods similar to those for the heat conduction equation described in Chapter

2.

Solution of the transport equation for the SA variable (Eq. 5.11) is also

straightforward By the time one solves the SA equation, the underlying flow

field variables are known from the solution of the momentum and continuity

equations. The mass flux term Ff thus obtained from the current flow solution

is used to discretize the convection part of the SA equation. The source terms

are algebraically complicated and need care while discretization.

Thus the solution to the RANS-SA using a SIMPLE based finite volume

scheme is a sequential iteration between the three models in the order depicted

in Figure 5.1. For enhanced readability, the three models are color coded -

blue for wall distance model, black for flow model and red for SA ν̃ model. In

MEMOSA the iteration between the various physical models implemented in

201

C++ is controlled at a higher level using Python scripting (shown in magenta).

As depicted in Figure 5.1, the wall distance is solved only once to obtain

the field φ, from which the wall distance field d is is computed using Eq. 5.21..

For a given geometry, the field d is transferred to SA model once for all.

We now consider the flow solver part of the algorithm. Based on a

guessed value of ν̃, total viscosity µtotal is computed using Eq. 5.30. The

momentum and continuity equations are then solved. Next, from the current

solution of velocity field, the vorticity field given by Eq. 5.16 is computed.

The current mass flux field and vorticity field are transferred to the SA model.

All the closure functions from Eqs. 5.12 to Eqs. 5.15 are computed in

the proper sequence. The source term as given in Eq. 5.11 is discretized with

cell center values. The new values of the SA variable ν̃ are then computed.

Based on Eq. 5.7, eddy viscosity νT is computed. The current value of νT near

the wall is corrected using the the procedure outlined in Section 5.2.5.

The latest values of eddy viscosity are transferred back to the flow

model and the new µtotal computed. The algorithm iterates between flow and

SA solvers until convergence of mean quantities in RANS is obtained.

We end with a note reminding the reader that due to the sequential

nature of the algorithm described above, only partial Jacobians are computed

during the forward solution, both for the flow equations and the SA equa-

tions. However, complete Jacobians are needed for sensitivity computations

for topology optimization.

202

5.4 Topology optimization using RANS-SA model
5.4.1 Formulation

The governing equations for RANS based SA turbulence model are

Eqs. 5.5, 5.11 and 5.18.Topology optimization for fluid flow is accomplished

by partitioning the design domain into fluid and solid regions. The boundary

conditions for all the three governing equations that must be satisfied on the

solid-fluid interface Γ are

uΓ = 0; vΓ = 0;φΓ = 0; ν̃Γ = 0 (5.31)

We modify the governing equations to achieve this condition.

We first modify the wall distance Eq. 5.18 by adding a term αφφ as

follows,

∇2φ+ 1 + αφφ = 0 (5.32)

If the αφ � 0, then the laplacian term becomes negligible reducing the

wall distance PDE to αφφ = 0, thereby implying φ = 0 and in turn signaling

that the field point under consideration is solid. On the other hand if αφ = 0,

we recover the original wall distance PDE signaling the field point to be present

in fluid region. Thus we interpolate αφ between zero and a chosen high value

using a SIMP function designed to achieve the proper limiting values.

Based on the same argument, the equation for the SA variable ν̃ is also

augmented with the term αν̃ ν̃, where the coefficient αν̃ is interpolated between

203

two limits - zerop and a high value. The algorithm is intended to drive the

coefficient value to one of the limits, consistent with whether the cell under

consideration is fluid or solid. The RANS equations is augmented with the

Brinkman’s penalized term as before. Thus the modified governing equations

using the SIMP methodology takes the following final form.

∇ · (ρv̄ū) = ∇ · ((µ+ µT)∇ū)−∇p̄ ·~i− αu (β) ū (5.33)

∇ · (ρv̄v̄) = ∇ · ((µ+ µT)∇v̄)−∇p̄ ·~j − αv (β) v̄

∇ · (ρv̄) = 0

0 = ∇ · (∇φ) + 1− αφ (β)φ

∇ · (ρv̄ν̃) = ∇ ·
(
ρ (ν + ν̃)

σ
∇ν̃

)
+ ρcb2

σ
(∇ν̃)2 + . . .

cb1 (1− ft2) S̃ν̃ −
(
cw1fw −

cb1
κ2 ft2

) [
ν̃

d

]2
− αν̃ (β) ν̃

We choose the same functional forms for all the SIMP functions αu (β) ū, αv (β) v̄,

αφ (β)φ and αν̃ (β) ν̃ as in previous chapters given by,

α (β) = (αs − αf) (1− β)p + αf (5.34)

where values for αs and αf for each governing equation are different

and must be chosen judiciously.

The state variables for turbulent flow equations are thus the mean veloc-

ity vector, the mean pressure, the SA variable, and the wall distance function

204

φ. The cost function can be therefore a function of these state variables and

the design variable β, and is thus denoted by c = c ({ū, v̄, w̄, p̄, φ, ν̃} , β). The

optimization problem may thus be stated as:

Following the same pattern (Chapter 4, Eq. XX) and with the volume

constraint for the fluid Vf (β)
V0
≤ ε, the topology optimization problem in discrete

form is,

min : c = c (ū, v̄, p̄,φ, ν̃,β)
subject to : g :=

∑n

i
βi

n
− ε ≤ 0

Ru (ū, v̄, p̄,φ, ν̃,β) = 0
Rv (ū, v̄, p̄,φ, ν̃,β) = 0
Rp (ū, v̄, p̄,φ, ν̃,β) = 0
Rφ (ū, v̄, p̄,φ, ν̃,β) = 0
Rν̃ (ū, v̄, p̄,φ, ν̃,β) = 0

0 ≤ β ≤ 1

(5.35)

HereVf (β) is equal to the specified volume of the fluid and V0 the total

volume of the design domain. The optimization problem 4.72 is again solved

using the nested formulation as shown in Figure 2.2, Chapter 2, where the

discretized system of equations for the turbulent flow field are solved separately

from the design problem. We now turn to the problem of obtaining adjoint

based sensitivities for topology optimization for the RANS-SA model.

5.4.2 Sensitivities for RANS-SA using Rapid

Again, it is easiest to explain the algorithm and its implementation

using the model mesh in Chapter 3. There are six variables ū, v̄, w̄, p̄, φ and ν̃

205

associated with each of the 31 cells bringing the total number of independent

state variables to 186. In addition for β, we have 15 design variables. There

are thus a total of 201 independent variables.

The same procedure is followed for obtaining sensitivities for the RANS-

SA turbulent flow problems as was presented in the flowchart in Figure 3.10,

Chapter 3. For given values of the design variable, the forward solution is

performed to obtain the converged values of the flow variables. These are then

transferred to the code compiled in Rapid mode. The 201 variables are set as

independent variables. As mentioned, unique numbers have to be used to set

the independent variables. For example, keys from 1-6 may be assigned to the

mean velocities, pressure, φ and ν̃ the for state variables of cell 1, keys 7-12

can be assigned to the state variables of cell 2 etc. (Figure 4.9, Chapter 4).

The residuals are then recomputed and the adjoint system solved to obtain

sensitivities to be fed into the optimizer to determine new values of β.

The methodology for computing sensitivities for the RANS-SA model

is shown in Figure 5.2 and is built based on Method 3 described in Section

4.4.3, Chapter 4. The process generates the complete Jacobian of all residuals

with respect to the state and design variables. We set the converged values

of cell variables ū, v̄, w̄, p̄,φ and ν̃ as the independent variables. The eddy

viscosity computation (Eq. 5.7) followed by computation of total viscosity

(5.30), brings in the dependence on the SA variable ν̃ into the diffusion part of

the momentum residual. The face mass flux is then computed in exactly the

same way as presented in Method 3, and in addition captures the dependence

206

Sφ (β)

��

ū, v̄, p̄,φ, ν̃,β

��

oo //

ww

((

##

((

d (φ)

{{

Rφ = Rφ (φ,Sφ)

��

Ω = Ω (ū, v̄)

##

∂φRφ, ∂βRφ Sν̃ = Sν̃ (β)

xx

µT (ν̃)

""

Su (β) ,Sv (β)

��

S̃ = S̃ (Ω, ν̃,d)

��
Rν̃ = Rν̃

(
Ff , ν̃, S̃,S

ν̃
)

��

Ff ,Df ,pf ,S
u,Sv

��rr ,,

11

∂uRν̃ , ∂vRν̃ , ∂pRν̃ , ∂ν̃Rν̃ , ∂φRν̃ , ∂βRν̃

Ru = Ru (Ff ,Df ,VC ,∇pC ,Su)

��

Rp = Rp (Ff)

��

Rv = Rv (Ff ,Df ,VC ,∇pC ,Sv)

��

∂uRu, ∂vRu, ∂pRu, ∂ν̃Ru, ∂βRu ∂uRp, ∂vRp, ∂pRp, ∂ν̃Rp, ∂βRp ∂uRv, ∂vRv, ∂pRv, ∂νRv, ∂βRv

Figure 5.2: Computation of various derivative terms required to compute dis-
crete adjoint sensitivities dc/dβ for the RANS-SA turbulent model. The figure
illustrates the sequence of steps needed to be performed to obtain the complete
Jacobian of all residuals in Rapid mode.

on ν̃ here. Subsequently, computation of all the momentum residuals and

continuity residual generates the complete Jacobian as shown in Figure 5.2.

The magnitude of the vorticity (Eq. 5.15) and the face mass flux from

the flow model feed into the residual computation for ν̃. The wall distance

d as a function of φ (Eq.5.21) is fed in from the wall function model. Thus

the computation of Rν̃ generates the derivatives with respect to all the vari-

ables as shown in Figure 5.2. Computing the derivatives of the source terms

(production, destruction and part of diffusion) in Eq. 5.11 is very laborious.

207

However the Rapid AD library computes all these derivatives effortlessly and

automatically. Since the wall distance is computed based on the variable φ,

the computation of Rφ is also required to include ∂φRφ in the adjoint com-

putation.

The adjoint system is assembled with the complete Jacobian terms as

shown in Eq. 5.36. Once the adjoint linear system is solved, the sensitivities

dc/dβ can be computed from Eq. 2.32 (Chapter 2).



∂uRu ∂vRu ∂wRu ∂pRu ∂ν̃Ru

∂uRv ∂vRv ∂wRv ∂pRv ∂ν̃Rv

∂uRw ∂vRw ∂wRw ∂pRw ∂ν̃Rw

∂uRp ∂vRp ∂wRp ∂pRp ∂ν̃Rp

∂uRν̃ ∂vRν̃ ∂wRν̃ ∂pRν̃ ∂ν̃Rν̃ ∂φRν̃

∂φRφ





ψu
ψv
ψw
ψpC
ψν̃
ψφ


=



∂uc
∂vc
∂wc
∂pc
∂ν̃c
∂φc


(5.36)

5.5 Results

We consider a single test case to demonstrate topology optimization for

turbulent flow. The schematic for the test case is shown in Figure 5.3 with

a = L. The design domain is made of a 100X100 Cartesian mesh.

A velocity inlet with a fully developed turbulent velocity profile is spec-

ified. The velocity profile is generated by simulating a channel flow with same

width but with a considerably longer length using the SA model, where a plug

flow at Re = 5000 is specified at inlet and pressure at the outlet. The fully

developed turbulent profile near the outlet of this channel is used as the inlet

208

Figure 5.3: Sensitivity of total pressure drop in a channel with respect to
viscosity of fluid.

velocity profile for the topology optimization problem.A turbulent viscosity

ration of 1 was applied at the inlet, that corresponds to ν̃in = 4.62284ν where

ν is the molecular kinematic viscosity of the fluid. Zero pressure is specified

at the outlet and no-slip at the top and bottom boundaries. The cost function

is to minimize the total pressure drop across the channel in horizontal flow

direction.

c = min
(∫

Γin
pdA−

∫
Γout

pdA
)

(5.37)

The goal is to fill 50% of the design space with solid material i.e. ε =

0.5. A uniform distribution for β = 0.5 is chosen as the initial condition for

the design variable. The limiting values for the SIMP function αs and αf for

the flow model, SA model and wall distance model, are listed in order.

209

i ii iii iv v vi

vii viii ix x xi xii

xiii xiv xv xvi xvii xviii

xix xx xxi xxii xxiii xxiv

xxv xxvi xxvii xxviii xxix xxx

Figure 5.4: (i)-(vi) Illustration of the evolution of the topologies for turbulent
flow in a channel at Re = 5000. Corresponding evolution of wall distance d in
(vi)-(xii), vorticity magnitude in (xiii)-(xviii), eddy viscosity νT in (xix)-(xxiv)
and velocity magnitude in (xxv)-(xxx).

210

αsu,v,w = 100, αfu,v,w = 0 (5.38)

αsν̃ = 10, αfν̃ = 0

αsφ = 10, αfφ = 0

These parameters were obtained by trial and error. A proper analysis

to determine the range of these parameters must be investigated to extend the

methodology to any general problem. With the current parameters as in Eq.

5.38, the topology optimization was carried out. Figure 5.4 shows the evolution

of various variables of interest along the optimization process. In Figure 5.4,

(i)-(vi) illustrates the evolution of β, where the red region represents the solid

and blue the fluid. We finally get a very similar topology as the one we got

for laminar flow, but with a wider exit mouth. The evolution of wall distance

d is shown in sub-figures (vi)-(xii). The center-point at the inlet is indeed

the point with the largest value of d in the fluid domain, which is exactly

captured towards the end of the optimization as is shown in the last sub-

figure. The corresponding values for vorticity magnitude at various steps is

shown in (xiii)-(xviii). Next we show the values for eddy viscosity νT in sub-

figures (xix)-(xxiv). We note that the values for eddy viscosity are high near

the inlet and at the exit. We also show the velocity distribution at the same

steps in sub-figures (xxv)-(xxx). While comparing the eddy viscosity figures

to the velocity figures, one can see the influence of the particular distribution

of eddy viscosity on the velocity distribution.

211

4 8 121.232e-05 1.347e+01

Velocity Magnitude

(a)

0.2 0.4 0.66.558e-34 7.211e-01

NuT

(b)

4 8 12 16 201.762e-01 2.250e+01

wallDistance

(c)

0.0

0.2

0.4

0.6

0.8

1.0

V
o
lu
m
e
fr
a
ct
io
n
co
n
st
ra

in
t

0.02

0.04

0.06

0.08

0.10

N
o
rm

a
li
z
e
d
fi
lt
e
r
ra

d
iu
s

10−1

100

101

102

103

104

N
o
rm

a
li
z
e
d
o
b
je
ct
iv
e
fu
n
ct
io
n

100 101 102
Iteration

(d)

Figure 5.5: Distribution of state variables – velocity magnitude (a), eddy
viscosity νT (b) and wall distance d (c) for the final topology presented in
Figure 5.4 (vi). (d) Normalized objective function, volume fraction of solid
and filter radius versus iteration number during the process of optimization.

212

Figure 4.21 shows the distribution of different state variables, i.e. veloc-

ity magnitude, eddy viscosity and wall distance d for the final topology shown

in Figure 5.4 (vi). Figure 4.21 (d) also shows the evolution of normalized

cost function, i.e. the total pressure drop across the inlet and and the outlet

normalized with the dynamic pressure at the inlet, against iteration number

during the process of optimization. The volume fraction of the solid material

and the filter radius are also shown.

The final optimal shape may be rationalized in the much the same was

as for laminar flow. Given that the domain must be filled with a minimum of

50% solid, the optimization algorithm produces a gently contoured converging

diverging nozzle. The diverging section is produced because pressure recovery

at the exit helps reduce the overall pressure drop. However, too large an exit

area would make it difficult to fill the domain with the necessary amount of

solid. Furthermore, too narrow a throat increases viscous losses. A balance

between these competing imperatives produces the final optimal geometry.

5.6 Closure

In this chapter, we extended the infrastructure built in Chapters 3 and 4

to compute sensitivities and perform topology optimization for turbulent flows

using the Spalart-Allmaras turbulence model. Even though the governing

equations have grown significantly in complexity, The Rapid infrastructure

allows relatively straightforward problem-agnostic implementation. A test case

that serves as the proof of concept of the applicability of topology optimization

213

for turbulent flow was presented. In the next chapter, we consider combined

flow and heat transfer for both laminar and turbulent flow.

214

Chapter 6

Convective heat transfer applications

In this chapter, we develop the topology optimization methodology for

forced convection applications in which the Navier-Stokes and energy equa-

tions are coupled. As before, the procedure is implemented in an unstructured

co-located finite volume framework employing a sequential pressure-based al-

gorithm. Sensitivities are obtained using the Rapid AD library. The coupled

nature of the problem requires the use of a multi-objective cost function re-

flecting both flow and heat transfer components. The techniques developed

here are valid for both laminar and turbulent flows.

6.1 Introduction

Convective heat transfer is central to virtually every industry applica-

tion in which thermal transport occurs. Here, the focus is on heat transfer

occurring between a fluid in motion and an adjacent solid surface[130]. The

goal is generally to enhance the heat transfer between two media. Convection

heat transfer is generally classified into forced and natural convection. When

the flow of fluid is induced by external forces it is termed as forced convec-

tion. When the flow arises due to buoyancy caused by spatial variations in

215

density, it is termed natural convection. We start this chapter by presenting

a literature survey on topology optimization for forced convection.

Approximate representations of forced convection heat transfer have

been published in conjunction with topology optimization. For plane prob-

lems where the out-of-plane dimension is small, in-plane convection was ne-

glected and a constant out-of-plane convective boundary condition applied,

e.g. [131, 132, 42]. Here, the actual fluid flow is not solved; only its effect

is included through a convection heat transfer coefficient. This is depicted in

Figure 6.1(a). In order to include the effects of in-plane convective heat trans-

fer on the topology, convective boundary conditions are applied in different

ways [133, 132, 15, 42]. This is shown in Figure 6.1(b). Both the methods rely

on specifying a heat transfer coefficient. Since the convective heat transfer

coefficient is a strong function of geometry, which is not known a priori, this

approach is not physically correct and can give incorrect designs. To obtain

realistic designs, it is necessary to couple flow and heat transfer together and

to explicitly resolve the flow and temperature fields, as shown in Figure 6.1(c).

Here, both the fluid and solid design regions are explicitly modelled to obviate

the need for specifying a heat transfer coefficient.

216

(a) (b) (c)

Figure 6.1: Various ways of incorporating convection into topology optimiza-
tion (diagrams re-created based on [5]). (a) Constant surface (out of plane)
convection using heat transfer coefficient to model convective heat loss (b)
Constant side (in-plane) convection using heat transfer coefficient to model
convective heat loss (c) Forced convection with explicit solution of combined
flow and heat transfer to model forced convection.

For coupled flow and heat transfer problems, it is necessary to solve

the Navier-Stokes equations with the Brinkman formulation coupled with the

energy equation (Section 6.2.1). Only a few papers have been published with

this methodology. Yoon [5] implemented topology optimization to design heat

dissipating structures subjected to forced convection, with an objective to mini-

mize thermal compliance. The Navier-Stokes equations with the Brinkman for-

mulation were coupled with the energy equation and were numerically solved

using the finite element method. All material properties including thermal

conductivity, specific heat capacity, macroscopic density and inverse perme-

ability, were modelled with the SIMP formulation. A few simple 2D examples

were presented. The intent was to come up with optimized structures that

would maximize heat dissipation. Lee [134] also presented results for sim-

ple 2D and 3D convective heat exchanger geometries design using topology

optimization within a finite element framework for Reynolds number up to

217

1000. The author discussed some of the numerical issues such as velocity and

pressure oscillations and ways to circumvent them.

Koga et al. [135] performed topology optimization with coupled flow

and energy equations on a 2-D planar domain to design a micro-channel heat

sink using the finite element method. The authors assumed Stokes flow, while

retaining both conduction and convection terms in the energy equation. In

the internal flow problem that they solved, flow enters and exits the domain

through opposing faces convecting the heat generated in the solid portions of

the domain. The objective function used is a weighted combination of two op-

posing functionals, one minimizing the fluid power dissipation and the other

maximizing the overall heat dissipation. The combined cost function was for-

mulated as the weighted sum of the log of the two individual functions. The

log function was used to bring the objective functions to approximately same

scale. The extruded geometry of the optimized topology was fabricated with

aluminum and experimental results were presented with water flow on the

channels. Similar work was done by Matsumori et al. for various Reynolds

number (10-100) [136]. However the authors assume both solid and fluid re-

gions to have same thermal conductivity citing simplification.

Topology optimization with a multi-objective cost function was also

done by Marck et al. [33] using the finite volume method based on a staggered-

mesh sequential algorithm (SIMPLER) on 2D structured meshes to design a

simple heat exchanger in a 2-D domain. In this internal laminar flow problem,

fluid entering through a portion of the left boundary is heated by top and

218

bottom walls maintained at specified temperatures, before exiting through a

portion of the right boundary. The governing equations are the Brinkman

penalized Navier-Stokes equations coupled with the energy equation. The

conductivity and inverse permeability are parameterized in terms of element

density using RAMP functions. The objective function consists of the differ-

ence in the pressure and the enthalpy between the inlet and the outlet. By

weighting these two parts differently, the authors arrived at different optimal

topologies.

We close the survey with some related works. As mentioned in Chap-

ter 5, Papoutsis et al. presented topology optimization of forced convection

using a continuous adjoint method in finite volume framework [123, 137, 125].

Alexandersen et al. published work on natural convection, where both flow

and thermal equations have two way coupling[54, 23]. They used a single

thermal objective function.

In this chapter we extend our topology optimization methodology to

combined flow and heat transfer. The chapter is sub-divided into two parts.

The first part deals with topology optimization for forced convection applica-

tions with laminar flow with all the infrastructure developed until now. A brief

discussion of the governing equations and numerical methods emphasizing the

coupling of two physical models is presented. The new concept introduced in

this chapter is multi-objective optimization and is dealt with in detail. The

changes needed for the sensitivity computation are also presented. A test case

is chosen to demonstrate the methodology as a proof of concept. The second

219

part discusses the implementation of forced convection with turbulent flow.

Example forced convection test problems are presented to demonstrate the

efficacy of the implementation.

6.2 Forced convection with laminar flow
6.2.1 Governing equations and boundary conditions

The governing equations governing laminar fluid flow and heat transfer

are:

∇ · (ρ~vu) = ∇ · (µ∇u)−∇p ·~i− αu (β)u (6.1)

∇ · (ρ~vv) = ∇ · (µ∇v)−∇p ·~j − αv (β) v

∇ · (ρ~v) = 0

∇ · (ρCp~vT) = ∇ · (k (β)∇T) + ST (β)

Here, the notation for fluid flow is the same as that in Chapter 4. T is

temperature, Cp is the specific heat capacity, and k is the thermal conductivity.

As usual, the boundary is partitioned into solid boundaries, and inlet

and outlet regions. A no-slip boundary condition is applied at solid bound-

aries for the flow equations. For the energy equation, either a temperature

(Dirichlet) or a heat flux (Neumann) boundary condition may be applied at

solid boundaries. Furthermore, for solid regions embedded in a fluid, the for-

mulation permits conjugate heat transfer using the SIMP/RAMP formulation,

as described in Chapter 2.

220

As before, either velocity or pressure boundary may be applied at both

inlets and outlets. For the energy equation, temperature values must be spec-

ified at the inlet. Under the assumption that there is no reverse flow at the

outlet, temperature at outlets is extrapolated from the interior.

For topology optimization, the momentum equations have the usual

Brinkman’s term interpolated in terms of the design variable. In addition,

thermal conductivity is also interpolated here, similar to what was done for

topology optimization of heat conduction applications. A RAMP formulation

is used here [CITE]. The quantities αu (β), αv (β) and k (β) are interpolated

within the two limits with the interpolation formula given by,

αu (β) = αf + (αs − αf)
(1− β)

(1 + q · β) (6.2)

k (β) = kf + (ks − kf)
(1− β)

(1 + q · β)

This interpolation formula ensures that β = 1 signifies fluid, and β = 0

signifies solid.

6.2.2 Numerical method

Figure 6.2 depicts the sequential algorithm for forced convection. We

have discussed in detail how to solve flow equations using SIMPLE algorithm

in Chapter 4. After the flow variables get converged, the face mass flux Ff is

transferred to the thermal model as shown in the figure. The term FfCp is used

to discretize the convective term in the energy equation, following procedures

221

Start

��
Guessu, v, pC , T

��
DiscretizeRT

��

oo DiscretizeRu,Rv,Rp

��

oo

SolveRT = 0

��

SolveRu,Rv,Rp = 0

��
UpdateT

��

Update pC ,Ff , u, v, pf

��
Stop Check convergence No //

Yes
��

OOOO

Transfer Ff to thermal modeloo

Figure 6.2: Flowchart for solving forced convection sequentially using the SIM-
PLE algorithm.

discussed in [31]. Accordingly the convection term can be discretized using

upwinding scheme. If properties are temperature independent, the convection

term is linear, unlike for the flow equations. In this event, the energy equation

is thus solved for temperature after the flow field has converged, as shown in

the figure.

6.2.3 Multi-objective cost function

Until now we have dealt with only one objective or cost function that

was minimized. That was primarily because we solved problems governed by

a single physical model. It is noted that it is possible to define more than one

222

cost function (which can be opposing as well) from a single physical model

[16]. The goal of doing forced convection is to maximize some metric of heat

transfer. One common goal is to maximize fluid enthalpy changed ∆H from

the inlet to the outlet: the bulk (or mean) temperature Tm of the fluid at the

outlet boundary or the enthalpy change ∆H from the inlet to the outlet of the

fluid, respectively given by,

∆H =
∫

Γout
ρ~vCpT · d ~A−

∫
Γin

ρ~vCpT · d ~A =
∑
outlet

FfCpTAf −
∑
inlet

FfCpTAf

(6.3)

At the same time, we would like to minimize the energy expended in

driving the fluid through the domain. A good metric of this energy is the total

pressure drop of the fluid across the boundaries,

∆P =
(∫

Γin
pdA−

∫
Γout

pdA
)

(6.4)

Most often trying to minimize pressure drop reduces the gain in heat

transfer and vice versa. Therefore the cost function for such problems is gen-

erally chosen as a weighted sum of two cost functions, one from each physical

model, and is termed as a multi-objective cost function. The weights deter-

mine the preference levels of one cost function over other. For forced convection

problems, our objective can be thus to determine topologies that would mini-

mize the total pressure drop of the fluid across the boundary while maximizing

the mean temperature of the fluid at the outlet formulated as,

223

c = γF ·∆P + γT ·∆Tb (6.5)

where γF and γT are the weights for the pressure drop and the bulk

temperature respectively. In Eq. 6.5, ∆Tb is the difference in bulk tempera-

ture between the inlet and the outlet. The bulk temperature Tb for a given

boundary Γ is defined as,

Tb =
∫

Γ ρ~vCpT · d ~A∫
Γ ρ~vCp · d ~A

=
∑

ΓFfCpTAf∑
ΓFfCpAf

(6.6)

=⇒ ∆Tb = Tb,outlet − Tb,inlet (6.7)

Note that the units of the weights γF and γT are different. For any

generic cost function for flow and thermal problems given by cF and cT as

functions for state and design variables, the topology optimization problem

for forced convection may be stated as,

min : c = γF · cF (u,v,pC ,β) + γT · cT (u,v,pC ,T ,β)
subject to : g :=

∑n

i
βi

n
− ε ≤ 0

Ru (u,v,pC ,T ,β) = 0
Rv (u,v,pC ,T ,β) = 0
Rp (u,v,pC ,T ,β) = 0
RT (u,v,pC ,T ,β) = 0

0 ≤ β ≤ 1

(6.8)

The volume constraint ε is specified for the total volume fraction of the

fluid. The procedure for performing topology optimization with the nested

224

formulation remains the same. We only discuss the sensitivity computation

for forced convection in detail, due to the multi-objective cost function.

6.2.4 Sensitivity computation for forced convection

By the end of forward solution for a given set of design variable β, we

have converged values of the state variables - i.e. the flow variables u, v, pC and

temperature T . These values are transferred to the Rapid code. Figure 6.3

shows how to compute the necessary derivatives for sensitivity computation.

As usual we compute the residuals associated with the various state variables

as described briefly.

The momentum and continuity residuals are computed as usual (Chap-

ter 4). The temperature does not influence the flow for the forced convection

problems considered here. Thus we do not expect any dependence of momen-

tum or continuity residuals on temperature T and hence do not find these

residual derivatives with respect to temperature. The mass flux computed

in the process gets transferred to the computation of temperature residual,

as shown in Figure 6.3. Therefore the temperature residual computation is

accompanied by derivative computation with respect to all variables.

The adjoint system is assembled with the complete Jacobian terms

as shown in Eq. 6.9. Notice that only one-way coupling between flow and

temperature variables is reflected in the Jacobian.

225

u,v,pC ,T ,β

��

''
k = k (β) ,ST (β)

��

Su (β) ,Sv (β)

��

RT = RT
(
Ff ,T ,S

T
)

��

Ff ,Df ,pf ,S
u,Sv

��ss ++

22

∂uRT , ∂vRT , ∂pRT , ∂TRT , ∂βRT

Ru = Ru (Ff ,Df ,VC ,∇pC ,Su)

��

Rp = Rp (Ff)

��

Rv = Rv (Ff ,Df ,VC ,∇pC ,Sv)

��

∂uRu, ∂vRu, ∂pRu, ∂βRu ∂uRp, ∂vRp, ∂pRp, ∂βRp ∂uRv, ∂vRv, ∂pRv, ∂βRv

Figure 6.3: Figure depicts the computational of various derivative terms re-
quired to compute discrete adjoint sensitivities dc/dβ for the RANS-SA tur-
bulent model for used in topology optimization. The figure illustrates the
sequence of steps needed to be performed to obtain the complete Jacobian of
all residuals in Rapid mode.

226


∂uRu ∂vRu ∂wRu ∂pRu

∂uRv ∂vRv ∂wRv ∂pRv

∂uRw ∂vRw ∂wRw ∂pRw

∂uRp ∂vRp ∂wRp ∂pRp

∂uRT ∂vRT ∂wRT ∂pRT ∂TRT





ψu
ψv
ψw
ψpC
ψT


= γF



∂ucF
∂vcF
∂wcF
∂pcF

0


+γT



∂ucT
∂vcT
∂wcT
∂pcT
∂T cT


(6.9)

The RHS of the adjoint system for multi-objective optimization prob-

lems requires special mention. The RHS is comprised of the discrete partial

derivatives of the cost function with respect to all the state variables. Since

there are two weighted cost functions, the weights also appear in the RHS as

shown in Eq. 6.9.. Once this adjoint linear system is solved, the sensitivities

dc/dβ can be computed from Eq. 2.32 (Chapter 2).

6.3 Forced convection with turbulent flow

Turbulent forced convection involves all the four physical models dis-

cussed thus far - the fluid flow solver, the SA turbulence model, the thermal

model and wall distance model. The solution process using a sequential algo-

rithm is depicted in Figure 6.4. The flow chart is self explanatory for the most

part. We focus on the concept of eddy conductivity.

Forced convection involving turbulent flows involves all the four phys-

ical models discussed until now - flow solver, SA turbulence model, thermal

model and wall distance model. The solution process, for a forced convection

with underlying turbulent flow field, using a sequential algorithm is depicted

in Figure 6.4. The flow chart is self explanatory for most of its parts from

227

our previous chapters, with the need to only discuss the the concept of eddy

conductivity.

Similar to the quantity eddy viscosity enhancing fluid diffusion, a eddy

conductivity component also gets introduced into the total conductivity of the

thermal model. The rationale behind adding an eddy conductivity component

makes sense because turbulence enhances heat transfer. Therefore

ktotal = kf + kT (6.10)

where kT is the eddy conductivity. Based on the Prandtl number, once

can express the the conductivity in terms of other material properties as as

follows,

Pr = ν

α
= ρCpν

k

=⇒ k = ρCpν

Pr
(6.11)

Based on the same logic, the eddy conductivity is defined as

kT = ρCpνT
Pr

(6.12)

Here Prandtl number in Eq. 6.12 is a model parameter, which needs to

be specified by the user. Therefore one can determine the value for kT from a

value for νT obtained from a turbulent model, say the SA model.

228

Start

��
Guessu, v, pC , ν̃, φ

Wall distance model start
��

DiscretizeRφ

��
SolveRφ = 0

��
Updateφ

��
Compute wall distd
Wall distance model stop

��
Transferd to SA model d //

Flow model start
��

��Compute total k

��

oo // Compute totalµ

��

//

SA model start
��

DiscretizeRT

��

DiscretizeRu,Rv,Rp

��

Compute SA closure functions

��
SolveRT = 0

��

SolveRu,Rv,Rp = 0

��

Compute SA source functions

��
UpdateT

��

Update pC ,Ff , u, v, pf

��

DiscretizeRν̃

��
Stop Check convergence

Yes

))

No
��

SolveRν̃ = 0

��
Compute Ω

Flow model stop
��

Update ν̃

��
Transfer Ω,Ff to SA model //

Ω,Ff

OO

Compute νT

��

Ff ,νT

OO

Transfer Ff , νT to thermal modeloo Correct νT with wall function
SA model stop

��

νT

OO

Transfer νT to flow modelνToo

Figure 6.4: Flowchart for a forced convection for turbulent flow turbulence
model employing SIMPLE algorithm with RANS-SA model. Here the algo-
rithm is an interplay of four different models.

229

As can be seen in Figure, 6.4 once face mass flux and the eddy vis-

cosity is transferred to thermal model, eddy conductivity is computed. This

is followed by the usual process of discretization and solution of temperature

equations.

Figure 6.5 depicts the flow diagram for computing the sensitivities for

turbulent flow. It is mostly self explanatory, except that the eddy conduc-

tivity computed from converged variables feed into the temperature residual

computation.

The adjoint system with the Jacobian now takes the following form.



∂uRu ∂vRu ∂wRu ∂pRu ∂ν̃Ru

∂uRv ∂vRv ∂wRv ∂pRv ∂ν̃Rv

∂uRw ∂vRw ∂wRw ∂pRw ∂ν̃Rw

∂uRp ∂vRp ∂wRp ∂pRp ∂ν̃Rp

∂uRν̃ ∂vRν̃ ∂wRν̃ ∂pRν̃ ∂ν̃Rν̃ ∂φRν̃

∂φRφ

∂uRT ∂vRT ∂wRT ∂pRT ∂ν̃RT ∂TRT





ψu
ψv
ψw
ψpC
ψν̃
ψφ
ψT


=



∂uc
∂vc
∂wc
∂pc
∂ν̃c
∂φc
∂T c


(6.13)

6.4 Results

We consider a test case that the demonstrates topology optimization for

forced convection under laminar flow. A similar problem has been presented

in [33] and [136]. A square domain discretized with a 100X100 Cartesian mesh

is considered, as shown in Figure 6.6. A small portion of the left boundary

serves as the inlet and a similar region on the right boundary serves as the

230

S
φ

(β
)

��

ū
,v̄
,p̄

C
,φ
,ν̃
,β

yy
""

oo
//

##

((

$$

((

��

d
(φ

) ||

R
φ

=
R
φ

(φ
,S

φ
)

��

k
T

=
k
T

(ν̃
)

rr

Ω
=

Ω
(ū
,v̄

)

""

∂
φ
R
φ
,∂
β
R
φ

µ
T

(ν̃
) zz

S
ν̃

=
S
ν̃

(β
) yy

S
T

=
S
T

(β
)

��

S
u

(β
),
S
v

(β
)

��

S̃
=
S̃

(Ω
,ν̃
,d

)

��

R
T

=
R
T
(F

f
,k

T
,T
,S

T
)

��

R
ν̃

=
R
ν̃
(F

f
,ν̃
,S̃
,S

ν̃
)

��

∂
u
R
T
,∂
v
R
T
,∂
p
R
T
,∂
ν̃
R
T
,∂
T

R
T
,∂
β
R
u

F
f
,D

f
,p

f
,S

u
,S

v

��
rr

,,

11
mm

∂
u
R
ν̃
,∂
v
R
ν̃
,∂
p
R
ν̃
,∂
ν̃
R
ν̃
,∂
φ
R
ν̃
,∂
β
R
ν̃

R
u

=
R
u

(F
f
,D

f
,V

C
,∇
p
C
,S

u
)

��

R
p

=
R
p

(F
f
)

��

R
v

=
R
v

(F
f
,D

f
,V

C
,∇
p
C
,S

v
)

��

∂
u
R
u
,∂
v
R
u
,∂
p
R
u
,∂
ν̃
R
u
,∂
β
R
u

∂
u
R
p
,∂
v
R
p
,∂
p
R
p
,∂
ν̃
R
p
,∂
β
R
p

∂
u
R
v
,∂
v
R
v
,∂
p
R
v
,∂
ν
R
v
,∂
β
R
v

Fi
gu

re
6.

5:
T

he
co

m
pu

ta
tio

n
of

se
ns

iti
vi

tie
sf

or
fo

rc
ed

co
nv

ec
tio

n
w

ith
tu

rb
ul

en
tfl

ow
us

in
g
R

ap
id

lib
ra

ry
.

231

Figure 6.6: Test case for demonstrating topology optimization for forced con-
vection.

outlet. A fully-developed laminar velocity profile is specified at the inlet and

a zero pressure boundary at the outlet. A no-slip condition is specified on

all the remaining boundaries. The incoming fluid at the inlet is set at a cold

temperature, TC . The top and bottom boundaries are specified at a higher

temperature, TH . Adiabatic boundaries are specified as shown in the figure.

The temperature at the outlet need not be specified; it is extrapolated from

the interior.

The thermal cost function maximizes the bulk temperature rise ∆Tb

at the outlet (Eq. 6.7). At the same time, the total pressure drop across the

channel should also be minimized. Therefore we have a multi-objective cost

function, as in Eq. 6.5 and 4.72. For convenience, we rewrite the cost function

in Eq. 6.5 with a single weightage factor γ without any loss of generality as

follows,

232

c = ∆P − γ∆Tb (6.14)

The parameters of the problem are now described. The conductivity

ratio is chosen to be ks/kf = 100, where ks = 10 W/mK and kf = 0.1 W/mK.

The limits of α are kept at αs = 100 and αf = 0.0001 for the momentum

equations. Density ρ , specific heat capacity Cp and viscosity of the fluid are

set to unity. The Prandtl number for the fluid is thus given by,

Pr = Cpµ

kf
= 10 (6.15)

The Reynolds number based on the center line inlet velocity and the

width of the inlet is Re = 20. Therefore the Peclet number for the problem is,

Pe = Re× Pr = 20× 10 = 200 (6.16)

The walls are kept at TH = 100 K, while the incoming fluid is at TC = 0

K.

For the volume of domain V0 and volume occupied the fluid Vf , a

volume fraction constraint for the fluid is stated as an inequality for all the

cases, i.e,

Vf
V0

= ε ≤ 0.4 (6.17)

233

(a) (b) (c)

Figure 6.7: Topologies for test case obtained by solely minimizing pressure
drop i.e. γ = 0 for various Reynolds numbers (a) Re = 2 (b) Re = 20 (c)
Re = 100

For comparison with later results, we first present the topologies ob-

tained by solely minimizing the pressure drop. The thermal cost function does

not enter the total cost function and hence γ = 0 in Eq. 6.14. Figure 6.7 illus-

trates the three topologies for three different Reynolds numbers Re = 2, 20 and

100. For Re = 2, the geometry is front-to-back symmetric while the topology

for Re = 100 gets skewed towards the right. This shape can be rationalized

as being due to the higher inertia of the incoming fluid in Figure 6.7 (c).

Next we perform topology optimization with both the cost functions,

by choosing four different values for scale variable γ = 1, 2.5, 5 and 10. The

cases for the different values of γ are termed Case 1, Case 2, Case 3 and

Case 4 respectively. As proof of concept, we choose arbitrary scales with an

interpretation that higher values of γ would give more preference to thermal

cost function. However the two cost functions have different units and have

234

0.2 0.4 0.6 0.81.000e-04 1.000e+00

beta

(a)

0.25 0.5 0.750.000e+00 1.000e+00

Velocity Magnitude

(b)

25 50 750.000e+00 1.000e+02

temperature

(c)

Figure 6.8: Case 1: Final topology obtained obtained by minimizing the multi-
objective cost function for Re = 20. Here the scale factor γ = 1. (a) Final
topology, (b) velocity distribution for the final topology, and (c) corresponding
temperature distribution.

to be scaled by proper non-dimensionalization with the characteristic values

of the QoIs of the problem in order to extend the formulation to real-world

applications.

Figure 6.8 shows the final topology and velocity and temperature dis-

tribution for for γ = 1 and Re = 20 and Pe = 200. Contrast the difference

in topologies by comparing Figure 6.8(a) with 6.7(b) for the same Reynolds

number. Inclusion of the thermal cost function has skewed the topology to the

right. Such a skewing is a result of the thermal inertia present at Pe = 200,

causing the area expansion to occur further downstream then if the Peclet

number were lower.

Figures 6.9, 6.10 and 6.11 show the corresponding figures for for γ =

2.5, 5 and 10. Note that the cost function becomes more thermally dominated

235

0.2 0.4 0.6 0.81.000e-04 1.000e+00

beta

(a)

0.25 0.5 0.750.000e+00 1.000e+00

Velocity Magnitude

(b)

25 50 750.000e+00 1.000e+02

temperature

(c)

Figure 6.9: Case 2: The scale factor here is γ = 2.5. (a) Final topology, (b)
velocity distribution for the final topology, and (c) corresponding temperature
distribution.

for higher values of γ. In the topologies that are generated, a solid region is

deposited in the middle of the domain, forcing the fluid to take convoluted long-

residence-time path close to the hot boundary. This facilitates higher surface

area of contact with the solid regions connected to the hot walls. The contact

surface area with the lower and upper solid regions increase with increasing

values for γ. The fact that the outgoing fluid attains higher temperatures with

increasing γ can be seen visually in the temperature plots.

Table 6.1, shows the data more quantitatively, with normalized individ-

ual cost functions for the final topologies for various scale factors. The pressure

drop is normalized by the a characteristic pressure scale which is chosen to be

the dynamic pressure at the inlet,

236

0.2 0.4 0.6 0.81.000e-04 1.000e+00

beta

(a)

0.25 0.5 0.750.000e+00 1.000e+00

Velocity Magnitude

(b)

25 50 750.000e+00 1.000e+02

temperature

(c)

Figure 6.10: Case 2: The scale factor here is γ = 5. (a) Final topology, (b)
velocity distribution for the final topology, and (c) corresponding temperature
distribution.

0.2 0.4 0.6 0.81.000e-04 1.000e+00

beta

(a)

0.25 0.5 0.750.000e+00 1.000e+00

Velocity Magnitude

(b)

25 50 750.000e+00 1.000e+02

temperature

(c)

Figure 6.11: Case 2: The scale factor here is γ = 10. (a) Final topology, (b)
velocity distribution for the final topology, and (c) corresponding temperature
distribution.

237

Table 6.1: Normalized cost functions, pressure drop and bulk temperature
rise, for the various cases considered in Section 6.4. For all cases, Re = 20,
Pr = 10 and therefore Pe = 200.

Case # γ Normalized pressure drop Normalized bulk temperature rise
Case 1 1 1.6211 0.2190
Case 2 2.5 8.5177 0.3661
Case 3 5 18.3236 0.4820
Case 4 10 34.3108 0.5854

c∗ = 1
2ρ
(
V in

)2
Ain (6.18)

The bulk temperature rise ∆Tb is normalized with the difference TH −

TC . We observe that ∆Tb increases significantly by choosing larger scale values,

but at the expense of increasing increasing pressure drop.

Finally, in Figure 6.12, we plot the evolution of the flow cost function,

the thermal cost function and the total cost function for the Case 4, where

γ = 10. As the last part of the section, we plot two figures as shown in Figure

6.12, depicting the evolution of the flow cost function, thermal cost function

and the total cost function. The pressure drop and the mean temperature are

normalized as discussed above. The total cost function is normalized with the

characteristic pressure scale as in Eq. 6.18. Figure 6.12(a), shows the evolution

of the cost functions with the complete range of their values. Figure 6.12(b)

is selectively zoomed for enhanced viewing by plotting the pressure drop and

combined cost function in linear scale as opposed to log scale in Figure 6.12(a).

238

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o
rm

a
li
z
e
d
b
u
lk

te
m
p
e
ra

tu
re

10−1

100

101

102

103

C
o
m
b
in
e
d
co
st

fu
n
ct
io
n

10−1

100

101

102

103

N
o
rm

a
li
z
e
d
p
re
ss
u
re

d
ro
p

10 20 30 40 50 60 70 80 90
Iteration

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o
rm

a
li
z
e
d
b
u
lk

te
m
p
e
ra

tu
re

0

10

20

30

40

50

C
o
m
b
in
e
d
co
st

fu
n
ct
io
n

0

10

20

30

40

50

N
o
rm

a
li
z
e
d
p
re
ss
u
re

d
ro
p

10 20 30 40 50 60 70 80 90
Iteration

(b)

Figure 6.12: Evolution of flow and thermal cost functions for γ = 10.

239

The optimizer performs optimization solely based on the combined cost

function. In the process, one can observe that final value of pressure drop

is attained relatively early in the optimization stages. The optimizer tries

to enhance thermal cost function at a slower pace but spread across widely.

These trends in the individual cost functions gets reflected in the combined

cost function.

6.5 Challenges with Multi-Objective topology optimiza-
tion

Multi-objective topology optimization poses unique challenges not en-

countered in previous chapters. Consider, for example, the test case in Section

4.6.1.1, Chapter 4, but with a combined cost function as in Eq. 6.14. The top

and bottoms walls are maintained at a higher temperature TH while the incom-

ing fluid is set to a cold temperature TC . The Reynolds number and Prandtl

numbers are 10 and 100 respectively. The problem is therefore convective

driven due to the high Peclet number, Pe = 1000. We choose a particular

value of γ = 200 (cost function is almost entirely dependent on the tempera-

ture increase) and contrast the evolution of topology with the case for γ = 0

(cost function is purely dependent on pressure drop). Recall that the liquid

volume fraction is constrained to be less than or equal to 0.5; i.e., the solid

fraction is constrained to be greater than or equal to 0.5.

Figure 6.13(a) shows the topology for minimizing the pressure drop

solely, i.e., for γ = 0. A unique stable solution is reliably obtained, and

240

0.2 0.4 0.6 0.81.000e-04 1.000e+00

beta

(a)

0.2 0.4 0.6 0.81.000e-04 1.000e+00

beta

(b)

25 50 750.000e+00 1.000e+02

temperature

(c)

0.2 0.4 0.6 0.81.000e-04 1.000e+00

beta

(d)

Figure 6.13: A test case to highlight the challenges of multi-objective opti-
mization problem in realizing an active volume constraint.

241

the solid fraction at convergence is found to be exactly 0.5, i.e., the volume

constraint is found to be satisfied in the equality. This is as expected: filling the

domain with more than the minimum amount of solid would make it harder to

push the fluid through the domain because of the reduction in cross-sectional

area. Thus the optimizer correctly picks the minimum solid volume as the

final converged value.

Consider now the case γ = 200. Here the cost function is determined

almost entirely by the bulk temperature difference between the inlet and the

outlet. (Only the outlet fluid temperature appears in the cost function because

of the definition in Eq. 6.6). Here, increasing the amount of solid in the

domain decreases the area of cross section of the fluid channel, increasing the

fluid velocity and the convective heat transfer rate from the solid to the fluid,

and causing the the fluid to heat up more. Thus, the optimizer moves in the

direction of filling up the domain with solid. The volume fraction constraint

can no longer be met in the equality. The solid volume increases without

bound and a stable convergent solution cannot be found. Figure 6.13(d) shows

an intermediate topology in the evolution process. As is evident, the fluid

channel has become narrower, and the process will continue indefinitely until

the domain is filled with solid.

In all the problems solved in this dissertation, we have posed the volume

fraction constraint as an inequality constraint. The problem encountered here

could be circumvented by posing the constraint as an equality constraint. For

more complex problems, care must be taken in posing the problem correctly.

242

In topology optimization, a guiding principle is that “you get what you ask

for.” Posing the right problem is central to obtaining the right solution.

6.6 Closure

In this chapter we demonstrated the topology optimization method-

ology for forced convection. We saw that consideration of forced convection

naturally introduces a multi-objective cost function into the problem formula-

tion. Topology optimization for forced convection problems is more complex

due to the multi-objective nature of the cost function. Unless care is taken

with the problem statement, unexpected (though mathematically defensible)

solutions may be obtained. Furthermore, we have taken a relatively simple

approach to multi-objective optimization, using a simple linear weighted sum

of objective functions to drive the problem. More sophisticated methods are

available, though these have not, to our knowledge, been explored in the con-

text of topology optimization [138]. This represents a rich area for future

work, and is essential if industrially-relevant problems are to be solved using

topology optimization.

243

Chapter 7

Summary and future directions

In this chapter, we briefly summarize the major contributions of this

dissertation. We also outline possible future work, classified into short term

and long term extensions. In the process, we identify the major areas of

research that need to be done for taking the field of topology optimization for

flow and transport applications to the next level.

7.1 Major contributions of the dissertation

The objective of this dissertation has been to develop topology opti-

mization procedures for thermal-fluid problems in the framework of unstruc-

tured finite volume methods. The topology optimization employed here is

based on the SIMP formulation in conjunction with a gradient based opti-

mization algorithm. A central contribution of the dissertation has been the

development of methodologies for obtaining discrete adjoint sensitivities for

the finite volume scheme employing co-located pressure-velocity storage and a

sequential solution algorithm. A novel Automatic Differentiation library was

built to enable the computation of sensitivities in a problem-agnostic way.

After developing and demonstrating the topology optimization procedures for

244

heat conduction applications, we systematically developed the procedures for

fluid flow applications in the laminar regime. Building on laminar flow proce-

dures, the methodology was expanded to turbulent flow applications modelled

using the Spalart-Allmaras RANS turbulent model. Finally topology opti-

mization was developed for forced convection applications for both laminar

and turbulent flows. We demonstrated the evolution of optimal topologies

for flow and heat transfer applications with a variety of realistic cost function

for both laminar and turbulent flows. We believe this is the first time that a

complete SIMP based topology optimization framework using an unstructured

finite volume method, fully generalizable to practical use in commercial solvers

and for industrial applications, has been demonstrated.

7.2 Short term extensions

We first identify extensions that can be implemented easily within a

short period of time based on the work carried out in this dissertation.

7.2.1 Parallelization of Rapid library and adjoint linear system

Topology optimization algorithms should be able to run in parallel for

obtaining solutions to real-life industrial applications [62, 23]. Having devel-

oped methodologies in this dissertation for topology optimization using finite

volume method, the natural extension would be to parallelize the infrastruc-

ture. MEMOSA is a finite volume software suite inherently written for parallel

architectures using domain decomposition and therefore the forward solution

245

part of topology optimization is already taken care of. The Rapid library has

to be extended for parallelization with domain decomposition.

There are a series of independent state variables and a design variable

associated with every finite volume cell in Rapid mode. All these variables

have to be uniquely identified with certain numbering scheme as discussed in

Sections 3.4/4.5.2, Chapters 3/4 for the residuals to be computed to obtain

derivatives. In domain decomposition, the mesh is decomposed and distributed

to the the various processors. It is noted that the process of computing resid-

uals in Rapid mode is ‘embarrassingly parallel’, since the converged values of

variables are already available and residual computation of one cell does not

depend on any other. It is necessary to devise a proper numbering schemes

for the variables to be assigned to each finite volume cell of every decomposed

domain, so that the construct for computing the derivatives using MAP-STL

works as desired. Some methods in the Rapid class might need modifications

to realize parallelization.

The adjoint linear system underlying topology optimization is very stiff

and sometimes requires direct solvers to solve. There are many powerful par-

allel sparse direct solvers available in the open source [96, 139]. MEMOSA can

be used in tandem with these open source libraries for parallelization of the

topology optimization methodology using domain decomposition methods.

246

7.2.2 Extension to other physical models

We demonstrated the topology optimization procedure for the flow and

energy equation. The procedures can easily be extended to various models,

say for example, the species transport equations and chemical reactions in-

corporating various chemistry models. Other possible applications include the

design of mixers, chemical reactors, 3D batteries etc. The methodology can

also be extended to sub-micron transport models using phonon-BTE transport

models, to design particulate composites and nano-structures for engineering

the desired thermal and electrical properties. Coupling of various physical

models can also be accomplished by following the methodology presented for

coupling flow and energy equations in the dissertation.

The advent of 3D printing is a particular opportunity for topology

optimization. Indeed, one may view it as an essential design tool for this

emerging technology. Development of a user-friendly CAD system based on

topology optimization, and the ultimate translation of 3D printed designs to

a laser rastering scheme for, for example, selective laser sintering [140, 30]

is an intriguing possibility. Coupling of various physical models can also be

accomplished by following the methodology presented for coupling flow and

energy equations in the dissertation.

7.2.3 Quantities of Interest

Many new interesting problems could be solved within the existing

infrastructure. We have explored only a few QoIs for the various applications

247

described in the dissertation. For instance, the only QoI used for fluid flow

application was the the pressure drop across the boundaries. Also it is noted

that these QoIs were based on boundary values of pressure and temperature.

Various other boundary and volume–related QoIs can be explored to solve

new problems effortlessly. Rapid facilitates computation of the sensitivities of

any newly specified cost functions in a problem-agnostic way. This powerful

functionality must be explored further for realistic industrial problems.

7.2.4 Modifying boundary conditions and initial design domain
space

It has to be understood that the designer cannot use topology opti-

mization to come up with the best geometrical designs in the first attempt for

every new problem that is specified. The process is iterative in nature, where

the user can try various the boundary conditions for the problem, or modify

the geometries of initial domain space or change constraints of the problem,

change the various parameters of the problem etc., based on previous trials.

One has to understand that the process is also an art. In optimization, you

only get what you ask for, problem definition is key to obtaining useful designs.

7.3 Future directions

We now briefly discuss some of the non-trivial extensions that might

need significant research to make noteworthy strides.

248

7.3.1 Multi-objective cost functions and constraints

We demonstrated topology optimization for forced convection applica-

tions that involved multi-objective cost functions in Chapter 6. As mentioned,

there are various issues associated with multi-objective cost functions in the

current formulation. The major one is the inability of the currently imple-

mented optimizer to satisfy the volume constraint in the equality. Either new

paths to solution must be devised so that the constraint is active, or the opti-

mizer must be modified to accommodate equality constraints. Correct scaling

of competing cost functions is also an issue that must be addressed. The liter-

ature is rich in optimization techniques for multi-objective optimization, and

it would be interesting to see if these methods could be married to topology

optimization to address more complex industrially-relevant problems.

In this dissertation, we have explored relatively simple constraints, typ-

ically only on the total volume fraction. For topology optimization to be truly

useful to the industrial practitioner, it would be important to address more

complex constraints, for example on manufacturability. Constraints on mate-

rial connectivity (to prevent the formation of holes) or on feature size would

be some examples.

7.3.2 Filtering

Filtering of either sensitivity variables or design variables is critical in

topology optimization, especially in the early part of the process, in order to

avoid getting trapped at local minima (Chapter 2, Section 2.5.6). The process

249

is also necessary to mitigate mesh dependence. There has been substantial

on-going research in the area of filtering and design for manufacturability.

However the majority of the papers have focused on structural applications [65,

141, 142]. Filtering of sensitivities or design variables for flow problems must

be explored, since flow problems have fundamental differences when compared

to structural mechanics.

7.3.3 Discrete and continuous adjoint methods and level sets

As mentioned previously, the vast majority of the work in the literature,

including this work, has been done using the discrete adjoint method. Here,

sensitivities are computed based on the adjoint formed from the discretized

PDE. Recently, some interesting results have been published on topology opti-

mization for flow and heat transfer problems using continuous adjoint methods

[109, 123, 137, 125]. In the continuous adjoint method, the adjoint PDE is for-

mulated from the original PDE, and then discretized and solved. Evgrafov

et al. present a mathematical analysis of the convergence of finite volume

schemes for design problems and in the process compare the discrete and ad-

joint approaches [143].

A few papers have been also published on topology optimization using

level set methods. This methodology may allow the final optimal geometry to

be defined with smooth boundaries rather than with a stair-step geometry. Of

course, this is also easily achieved posteriori by identifying a bounding contour

surface based on the stair-stepped geometry.

250

The authors cite different advantages for the the methods they present.

However a more quantitative comparative study between discrete and con-

tinuous adjoint methods and level set methods will help to move the field of

topology optimization forward.

7.3.4 Acceleration of adjoint linear system

It is the solution of adjoint system used for computing sensitivities that

take the most amount of time in topology optimization. Because of significant

research in the last several decades, the forward solution of the governing PDEs

is quite efficient both in serial and parallel. Similar research for accelerating

the solution of the adjoint linear system, especially for the systems arising in

topology optimization, would be useful to move the field forward.

7.3.5 Amalgamation of topology and shape optimization

We started Chapter 1 with an example illustrating the use of topology

optimization for a design work-flow in the industry. For convenience the figure

is reproduced here as Figure 7.1. It is interesting to see how the designer uses

the techniques of topology optimization and shape optimization in tandem to

come up with an optimally stiff structure with minimum weight.

251

Figure 7.1: Illustration of topology and shape optimization being used in
industry in a design work flow (Courtesy - TOSCA [4]).

Topology optimization is best at realizing initial conceptual designs in

an initial arbitrary design space. Once an initial geometry is conceptualized

from topology optimization, shape optimization can be used to optimize these

template shapes. As mentioned in Chapter 1, shape optimization for fluid

applications is a well developed field [6, 7, 8]. Thus, following in the footsteps

of optimization for structural applications described in Figure 7.1, implemen-

tation of such a combined methodology for flow and thermal applications may

pay significant dividends as well.

7.4 Closure

We thus come to the end of this dissertation. We believe that this

work will help motivate the thermal fluids community to not only use topology

optimization for their various applications, but also will propel future research

and move the field forward. The avenues are infinite!

252

Bibliography

[1] http://altairenlighten.com/in-depth/shape-optimization/.

[2] Jens Howard Peter Buckley. Numerical Shape Optimization of Airfoils

With Practical Aerodynamic Design Requirements. PhD thesis, Univer-

sity of Toronto, 2009.

[3] Ole Sigmund. A 99 line topology optimization code written in matlab.

Structural and Multidisciplinary Optimization, 21(2):120–127, 2001.

[4] http://www.3ds.com/products-services/simulia/products/tosca/.

[5] Gil Ho Yoon. Topology optimization for stationary fluid–structure in-

teraction problems using a new monolithic formulation. International

journal for numerical methods in engineering, 82(5):591–616, 2010.

[6] Jan Sokolowski and Jean-Paul Zolesio. Introduction to Shape Optimiza-

tion. Springer, 1992.

[7] Olivier Pironneau. On optimum design in fluid mechanics. Journal of

Fluid Mechanics, 64(01):97–110, 1974.

[8] Jeff Borggaard and John Burns. A pde sensitivity equation method

for optimal aerodynamic design. Journal of Computational Physics,

136(2):366–384, 1997.

[9] Martin Philip Bendsoe and Ole Sigmund. Topology Optimization: The-

ory, Methods and Applications. Springer, 2003.

253

[10] Martin P Bendsøe and Ole Sigmund. Material interpolation schemes in

topology optimization. Archive of applied mechanics, 69(9-10):635–654,

1999.

[11] Hans A Eschenauer and Niels Olhoff. Topology optimization of contin-

uum structures: A review*. Applied Mechanics Reviews, 54(4):331–390,

2001.

[12] Claus BW Pedersen and Peter Allinger. Industrial implementation and

applications of topology optimization and future needs. In IUTAM

Symposium on Topological Design Optimization of Structures, Machines

and Materials, pages 229–238. Springer, 2006.

[13] George IN Rozvany. A critical review of established methods of struc-

tural topology optimization. Structural and Multidisciplinary Optimiza-

tion, 37(3):217–237, 2009.

[14] Andrew T Gaynor, Nicholas A Meisel, Christopher B Williams, and

James K Guest. Multiple-material topology optimization of compliant

mechanisms created via polyjet three-dimensional printing. Journal of

Manufacturing Science and Engineering, 136(6):061015, 2014.

[15] Tyler E Bruns. Topology optimization of convection-dominated, steady-

state heat transfer problems. International Journal of Heat and Mass

Transfer, 50(15):2859–2873, 2007.

[16] Gilles Marck, Maroun Nemer, Jean-Luc Harion, Serge Russeil, and Daniel

Bougeard. Topology optimization using the simp method for multiob-

jective conductive problems. Numerical Heat Transfer, Part B: Funda-

254

mentals, 61(6):439–470, 2012.

[17] Ajay Vadakkepatt, Bradley L Trembacki, Sanjay Mathur, and Jayathi Y

Murthy. Topology optimization for heat conduction applications. In

ASME 2014 International Mechanical Engineering Congress and Expo-

sition, pages V08BT10A035–V08BT10A035. American Society of Me-

chanical Engineers, 2014.

[18] James Madigan Loy. An efficient solution procedure for simulating

phonon transport in multiscale multimaterial systems. 2013.

[19] Bradley L Trembacki, Jayathi Y Murthy, and Scott Alan Roberts. Fully

coupled simulation of lithium ion battery cell performance. Techni-

cal report, Sandia National Laboratories (SNL-NM), Albuquerque, NM

(United States), 2015.

[20] Matthew Roberts, Phil Johns, John Owen, Daniel Brandell, Kristina Ed-

strom, Gaber El Enany, Claude Guery, Diana Golodnitsky, Matt Lacey,

Cyrille Lecoeur, et al. 3d lithium ion batteriesâĂŤfrom fundamentals to

fabrication. Journal of Materials Chemistry, 21(27):9876–9890, 2011.

[21] Thomas Borrvall and Joakim Petersson. Topology optimization of fluids

in stokes flow. International journal for numerical methods in fluids,

41(1):77–107, 2003.

[22] Allan Gersborg-Hansen, Ole Sigmund, and Robert B Haber. Topology

optimization of channel flow problems. Structural and Multidisciplinary

Optimization, 30(3):181–192, 2005.

[23] Joe Alexandersen, Ole Sigmund, and Niels Aage. Large scale three-

255

dimensional topology optimisation of heat sinks cooled by natural con-

vection. International Journal of Heat and Mass Transfer, 100:876–891,

2016.

[24] Aliaa I Shallan, Petr Smejkal, Monika Corban, Rosanne M Guijt, and

Michael C Breadmore. Cost effective 3d-printing of visibly transparent

microchips within minutes. Analytical chemistry, 2014.

[25] Gwo-Bin Lee, Bao-Herng Hwei, and Guan-Ruey Huang. Micromachined

pre-focused m× n flow switches for continuous multi-sample injection.

Journal of Micromechanics and Microengineering, 11(6):654, 2001.

[26] Robert DK Templeton and William W Arnott. Fluid flow switches with

low flow resistance, May 28 1991. US Patent 5,019,678.

[27] Marc Bessler and Timothy AM Chuter. Artificial heart valve and

method and device for implanting the same, January 5 1999. US Patent

5,855,601.

[28] Karthik K Bodla, Jayathi Y Murthy, and Suresh V Garimella. Direct

simulation of thermal transport through sintered wick microstructures.

Journal of heat transfer, 134(1):012602, 2012.

[29] Casper Schousboe Andreasen, Allan Roulund Gersborg, and Ole Sig-

mund. Topology optimization of microfluidic mixers. International

Journal for Numerical Methods in Fluids, 61(5):498–513, 2009.

[30] Carolyn Conner Seepersad. Challenges and opportunities in design

for additive manufacturing. 3D Printing and Additive Manufacturing,

1(1):10–13, 2014.

256

[31] SR Mathur and JY Murthy. A pressure-based method for unstructured

meshes. Numerical Heat Transfer, 31(2):195–215, 1997.

[32] Suhas Patankar. Numerical heat transfer and fluid flow. CRC Press,

1980.

[33] Gilles Marck, Maroun Nemer, and Jean-Luc Harion. Topology opti-

mization of heat and mass transfer problems: laminar flow. Numerical

Heat Transfer, Part B: Fundamentals, 63(6):508–539, 2013.

[34] Gil Ho Yoon. Topology optimization for turbulent flow with spalart–

allmaras model. Computer Methods in Applied Mechanics and Engi-

neering, 303:288–311, 2016.

[35] http://www.purdue.edu/discoverypark/prism/.

[36] James Ahrens, Berk Geveci, Charles Law, CD Hansen, and CR Johnson.

36-paraview: An end-user tool for large-data visualization, 2005.

[37] Washington Bellevue. Tecplot user’s manual. Amtec Engineering Inc,

2003.

[38] Allan Gersborg-Hansen, Martin P Bendsøe, and Ole Sigmund. Topol-

ogy optimization of heat conduction problems using the finite volume

method. Structural and multidisciplinary optimization, 31(4):251–259,

2006.

[39] T Gao, WH Zhang, JH Zhu, YJ Xu, and DH Bassir. Topology opti-

mization of heat conduction problem involving design-dependent heat

load effect. Finite Elements in Analysis and Design, 44(14):805–813,

2008.

257

[40] Jaco Dirker and Josua P Meyer. Topology optimization for an internal

heat-conduction cooling scheme in a square domain for high heat flux

applications. Journal of Heat Transfer, 135(11):111010, 2013.

[41] Kurt Maute. Topology optimization of diffusive transport problems. In

Topology Optimization in Structural and Continuum Mechanics, pages

389–407. Springer, 2014.

[42] A Iga, S Nishiwaki, K Izui, and M Yoshimura. Topology optimization

for thermal conductors considering design-dependent effects, including

heat conduction and convection. International Journal of Heat and

Mass Transfer, 52(11):2721–2732, 2009.

[43] Mingdong Zhou, Joe Alexandersen, Ole Sigmund, and Claus BW Ped-

ersen. Industrial application of topology optimization for combined

conductive and convective heat transfer problems. Structural and Mul-

tidisciplinary Optimization, pages 1–16, 2016.

[44] Tomás Zegard and Glaucio H Paulino. Toward gpu accelerated topology

optimization on unstructured meshes. Structural and Multidisciplinary

Optimization, 48(3):473–485, 2013.

[45] Niels Aage, Thomas H Poulsen, Allan Gersborg-Hansen, and Ole Sig-

mund. Topology optimization of large scale stokes flow problems. Struc-

tural and Multidisciplinary Optimization, 35(2):175–180, 2008.

[46] Jean-Christophe Cuillière, Vincent Francois, and Jean-Marc Drouet. To-

wards the integration of topology optimization into the cad process.

Computer-Aided Design and Applications, 11(2):120–140, 2014.

258

[47] Cameron Talischi, Glaucio H Paulino, Anderson Pereira, and Ivan FM

Menezes. Polytop: a matlab implementation of a general topology opti-

mization framework using unstructured polygonal finite element meshes.

Structural and Multidisciplinary Optimization, 45(3):329–357, 2012.

[48] Jayathi Y Murthy and SR Mathur. Numerical methods in heat, mass,

and momentum transfer. School of Mechanical Engineering Purdue

University, 2002.

[49] JY Murthy and SR Mathur. Computation of anisotropic conduction

using unstructured meshes. Journal of heat Transfer, 120(3):583–591,

1998.

[50] https://github.com/c-primed/fvm.git.

[51] Sanjay R Mathur and Jayathi Y Murthy. A multigrid method for the

poisson–nernst–planck equations. International Journal of Heat and

Mass Transfer, 52(17):4031–4039, 2009.

[52] Martin Philip Bendsøe and Noboru Kikuchi. Generating optimal topolo-

gies in structural design using a homogenization method. Computer

methods in applied mechanics and engineering, 71(2):197–224, 1988.

[53] Martin Philip Bendsøe. Optimal shape design as a material distribution

problem. Structural optimization, 1(4):193–202, 1989.

[54] Joe Alexandersen, Niels Aage, Casper Schousboe Andreasen, and Ole

Sigmund. Topology optimisation for natural convection problems. In-

ternational Journal for Numerical Methods in Fluids, 76(10):699–721,

2014.

259

[55] Anton Evgrafov, Kurt Maute, RG Yang, and Martin L Dunn. Topol-

ogy optimization for nano-scale heat transfer. International journal for

numerical methods in engineering, 77(2):285–300, 2009.

[56] Antony Jameson. Aerodynamic shape optimization using the adjoint

method. Lectures at the Von Karman Institute, Brussels, 2003.

[57] Ole Sigmund. On the design of compliant mechanisms using topology

optimization*. Journal of Structural Mechanics, 25(4):493–524, 1997.

[58] Qing Li, Grant P Steven, YM Xie, and Osvaldo M Querin. Evolution-

ary topology optimization for temperature reduction of heat conducting

fields. International Journal of Heat and Mass Transfer, 47(23):5071–

5083, 2004.

[59] Zhihao Zuo. Topology optimization of periodic structures. 2009.

[60] Krister Svanberg. The method of moving asymptotes-a new method for

structural optimization. International journal for numerical methods in

engineering, 24(2):359–373, 1987.

[61] Krister Svanberg. Mma and gcmma. www.math.kth.se/ krille/gcmma07.pdf,

2007.

[62] Niels Aage and Boyan S Lazarov. Parallel framework for topology op-

timization using the method of moving asymptotes. Structural and

Multidisciplinary Optimization, 47(4):493–505, 2013.

[63] Krister Svanberg. A class of globally convergent optimization methods

based on conservative convex separable approximations. SIAM Journal

on Optimization, 12(2):555–573, 2002.

260

[64] Erik Andreassen, Anders Clausen, Mattias Schevenels, Boyan S Lazarov,

and Ole Sigmund. Efficient topology optimization in matlab using 88

lines of code. Structural and Multidisciplinary Optimization, 43(1):1–16,

2011.

[65] Weisheng Zhang, Wenliang Zhong, and Xu Guo. An explicit length

scale control approach in simp-based topology optimization. Computer

Methods in Applied Mechanics and Engineering, 282:71–86, 2014.

[66] Fengwen Wang, Boyan Stefanov Lazarov, and Ole Sigmund. On pro-

jection methods, convergence and robust formulations in topology opti-

mization. Structural and Multidisciplinary Optimization, 43(6):767–784,

2011.

[67] Andreas Griewank and Andrea Walther. Evaluating derivatives: prin-

ciples and techniques of algorithmic differentiation. Siam, 2008.

[68] Uwe Naumann. The art of differentiating computer programs: an intro-

duction to algorithmic differentiation, volume 24. Siam, 2012.

[69] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and

Paul Hovland. Adifor–generating derivative codes from fortran pro-

grams. Scientific Programming, 1(1):11–29, 1992.

[70] Ralf Giering and Thomas Kaminski. Applying taf to generate efficient

derivative code of fortran 77-95 programs. PAMM, 2(1):54–57, 2003.

[71] Andrea Walther, Andreas Griewank, and Olaf Vogel. Adol-c: Automatic

differentiation using operator overloading in c++. PAMM, 2(1):41–44,

2003.

261

[72] Robin J Hogan. Fast reverse-mode automatic differentiation using ex-

pression templates in c+ &plus. ACM Transactions on Mathemat-

ical Software (TOMS), 40(4):26, 2014.

[73] Claus Bendtsen and Ole Stauning. Fadbad, a flexible c++ package

for automatic differentiation. Department of Mathematical Modelling,

Technical University of Denmark, 1996.

[74] ET Phipps and DM Gay. Sacado automatic differentiation package,

2011.

[75] Eric T Phipps, Roscoe A Bartlett, David M Gay, and Robert J Hoek-

stra. Large-scale transient sensitivity analysis of a radiation-damaged

bipolar junction transistor via automatic differentiation. In Advances

in automatic differentiation, pages 351–362. Springer, 2008.

[76] www.coin-or.org/cppad/.

[77] Bjarne Stroustrup. The C++ programming language. Pearson Educa-

tion, 2013.

[78] Andreas Griewank. On automatic differentiation and algorithmic lin-

earization. Pesquisa Operacional, 34(3):621–645, 2014.

[79] Todd Veldhuizen. Expression templates. C++ Report, 7(5):26–31,

1995.

[80] Pierre Aubert, Nicolas Di Césaré, and Olivier Pironneau. Automatic dif-

ferentiation in c++ using expression templates and. application to a flow

control problem. Computing and Visualization in Science, 3(4):197–208,

2001.

262

[81] Eric Phipps and Roger Pawlowski. Efficient expression templates for op-

erator overloading-based automatic differentiation. In Recent Advances

in Algorithmic Differentiation, pages 309–319. Springer, 2012.

[82] Markus Towara and Uwe Naumann. A discrete adjoint model for open-

foam. Procedia Computer Science, 18:429–438, 2013.

[83] Thomas F Coleman and Arun Verma. The efficient computation of

sparse jacobian matrices using automatic differentiation. SIAM Journal

on Scientific Computing, 19(4):1210–1233, 1998.

[84] Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution

of differential equations by the finite element method: The FEniCS book,

volume 84. Springer Science & Business Media, 2012.

[85] Nicolas R Gauger, Andrea Walther, Carsten Moldenhauer, and Markus

Widhalm. Automatic differentiation of an entire design chain for aero-

dynamic shape optimization. In New Results in Numerical and Experi-

mental Fluid Mechanics VI, pages 454–461. Springer, 2007.

[86] Francisco Palacios, Michael R Colonno, Aniket C Aranake, Alejandro

Campos, Sean R Copeland, Thomas D Economon, Amrita K Lonkar,

Trent W Lukaczyk, Thomas WR Taylor, and Juan J Alonso. Stanford

university unstructured (su2): An open-source integrated computational

environment for multi-physics simulation and design. AIAA Paper,

287:2013, 2013.

[87] Nicolas R Gauger, Michael Giles, Max Gunzburger, and Uwe Naumann.

Adjoint methods in computational science, engineering, and finance.

263

2015.

[88] Henry G Weller, G Tabor, Hrvoje Jasak, and C Fureby. A tensorial

approach to computational continuum mechanics using object-oriented

techniques. Computers in physics, 12(6):620–631, 1998.

[89] Johannes Lotz, Klaus Leppkes, and Uwe Naumann. dco/c++-derivative

code by overloading in c++. Aachener Informatik Berichte (AIB-2011-

06), 2011.

[90] Shankhadeep Das. Fluid-structure interactions in microstructures. 2013.

[91] Prabhakar Marepalli. Thermal transport in low-dimensional materials.

PhD thesis, 2015.

[92] Nicolas Di Cesare. Fad: Automatic differentiation library in forward

mode using expression template, 1999.

[93] Nathan C Myers. Traits: a new and useful template technique. C++

Report, 7(5):32–35, 1995.

[94] Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoekstra, Jonathan

Hu, Tamara Kolda, Richard Lehoucq, Kevin Long, Roger Pawlowski,

Eric Phipps, Andrew Salinger, Heidi Thornquist, Ray Tuminaro, James

Willenbring, and Alan Williams. An Overview of Trilinos. Technical

Report SAND2003-2927, Sandia National Laboratories, 2003.

[95] http://www.cplusplus.com/reference/map/map/.

[96] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter

Brune, Kris Buschelman, Lisandro Dalcin, Victor Eijkhout, William D.

Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes,

264

Karl Rupp, Barry F. Smith, Stefano Zampini, Hong Zhang, and Hong

Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision

3.7, Argonne National Laboratory, 2016.

[97] Suhas V Patankar and D Brian Spalding. A calculation procedure for

heat, mass and momentum transfer in three-dimensional parabolic flows.

International journal of heat and mass transfer, 15(10):1787–1806, 1972.

[98] Antony Jameson. Aerodynamic design via control theory. Journal of

scientific computing, 3(3):233–260, 1988.

[99] Omar Ghattas and Jai-Hyeong Bark. Optimal control of two-and three-

dimensional incompressible navier–stokes flows. Journal of Computa-

tional Physics, 136(2):231–244, 1997.

[100] M Abdelwahed, M Hassine, and Mohamed Masmoudi. Optimal shape

design for fluid flow using topological perturbation technique. Journal

of Mathematical Analysis and applications, 356(2):548–563, 2009.

[101] Bijan Mohammadi and Olivier Pironneau. Applied shape optimization

for fluids. Oxford University Press, 2010.

[102] James K Guest and Jean H Prévost. Topology optimization of creeping

fluid flows using a darcy–stokes finite element. International Journal

for Numerical Methods in Engineering, 66(3):461–484, 2006.

[103] Niclas Wiker, Anders Klarbring, and Thomas Borrvall. Topology opti-

mization of regions of darcy and stokes flow. International journal for

numerical methods in engineering, 69(7):1374–1404, 2007.

[104] Laurits Højgaard Olesen, Fridolin Okkels, and Henrik Bruus. A high-

265

level programming-language implementation of topology optimization

applied to steady-state navier–stokes flow. International Journal for

Numerical Methods in Engineering, 65(7):975–1001, 2006.

[105] Ercan M Dede. Multiphysics topology optimization of heat transfer and

fluid flow systems. In proceedings of the COMSOL Users Conference,

2009.

[106] Yongbo Deng, Zhenyu Liu, and Yihui Wu. Topology optimization of

steady and unsteady incompressible navier–stokes flows driven by body

forces. Structural and Multidisciplinary Optimization, 47(4):555–570,

2013.

[107] Gil Ho Yoon. Topological design of heat dissipating structure with

forced convective heat transfer. Journal of Mechanical Science and

Technology, 24(6):1225–1233, 2010.

[108] Fridolin Okkels and Henrik Bruus. Scaling behavior of optimally struc-

tured catalytic microfluidic reactors. Physical Review E, 75(1):016301,

2007.

[109] C Othmer. A continuous adjoint formulation for the computation of

topological and surface sensitivities of ducted flows. International Jour-

nal for Numerical Methods in Fluids, 58(8):861–877, 2008.

[110] Georg Pingen, Anton Evgrafov, and Kurt Maute. Topology optimiza-

tion of flow domains using the lattice boltzmann method. Structural

and Multidisciplinary Optimization, 34(6):507–524, 2007.

[111] Shiwei Zhou and Qing Li. A variational level set method for the topology

266

optimization of steady-state navier–stokes flow. Journal of Computa-

tional Physics, 227(24):10178–10195, 2008.

[112] Vivien J Challis and James K Guest. Level set topology optimization

of fluids in stokes flow. International journal for numerical methods in

engineering, 79(10):1284–1308, 2009.

[113] Sebastian Kreissl and Kurt Maute. Levelset based fluid topology op-

timization using the extended finite element method. Structural and

Multidisciplinary Optimization, 46(3):311–326, 2012.

[114] ANSYS Fluent. 14.0 user’s manual. ANSYS Inc., Canonsburg, PA,

2011.

[115] User Guide. Star-ccm+ version 8.04. CD-adapco-2013, 2013.

[116] Robert W Fox, Alan T McDonald, and Philip J Pritchard. Introduction

to fluid mechanics, volume 7. John Wiley & Sons New York, 1985.

[117] Peter Bradshaw. An Introduction to Turbulence and Its Measurement:

Thermodynamics and Fluid Mechanics Series. Elsevier, 2013.

[118] Robert D Moser, John Kim, and Nagi N Mansour. Direct numerical

simulation of turbulent channel flow up to re= 590. Phys. Fluids,

11(4):943–945, 1999.

[119] Stephen B Pope. Turbulent flows, 2001.

[120] Robert D Moser. Lecture notes on turulence. 2015.

[121] Paul A Durbin and BA Pettersson Reif. Statistical theory and modeling

for turbulent flows. John Wiley & Sons, 2011.

267

[122] Philipe R Spalart and Stephen R Allmaras. A one equation turbulence

model for aerodinamic flows. AIAA journal, 94, 1992.

[123] EM Papoutsis-Kiachagias, EA Kontoleontos, AS Zymaris, DI Papadim-

itriou, and KC Giannakoglou. Constrained topology optimization for

laminar and turbulent flows, including heat transfer. CIRA, editor,

EUROGEN, Evolutionary and Deterministic Methods for Design, Opti-

mization and Control, Capua, Italy, 2011.

[124] E. A. Kontoleontos, E. M. Papoutsis-Kiachagias, A. S. Zymaris, D. I.

Papadimitriou, and K. C. Giannakoglou. Adjoint-based constrained

topology optimization for viscous flows, including heat transfer. Engi-

neering Optimization, 45(8):941–961, 2013.

[125] EM Papoutsis-Kiachagias and KC Giannakoglou. Continuous adjoint

methods for turbulent flows, applied to shape and topology optimiza-

tion: industrial applications. Archives of Computational Methods in

Engineering, 23(2):255–299, 2016.

[126] http://turbmodels.larc.nasa.gov/spalart.html.

[127] Paul G Tucker, Chris L Rumsey, Philippe R Spalart, Robert B Bar-

tels, and Robert T Biedron. Computations of wall distances based on

differential equations. AIAA journal, 43(3):539–549, 2005.

[128] DB Spalding. Calculation of turbulent heat transfer in cluttered spaces.

In Proc. 10th Int. Heat Transfer Conf, 1994.

[129] DB Spalding. A single formula for the “law of the wall”. Journal of

Applied Mechanics, 28(3):455–458, 1961.

268

[130] Theodore L Bergman, Frank P Incropera, David P DeWitt, and Adri-

enne S Lavine. Fundamentals of heat and mass transfer. John Wiley &

Sons, 2011.

[131] Ole Sigmund. Design of multiphysics actuators using topology optimization–

part i: One-material structures. Computer methods in applied mechan-

ics and engineering, 190(49):6577–6604, 2001.

[132] Gil Ho Yoon and Yoon Young Kim. The element connectivity param-

eterization formulation for the topology design optimization of multi-

physics systems. International Journal for Numerical Methods in Engi-

neering, 64(12):1649–1677, 2005.

[133] Luzhong Yin and GK Ananthasuresh. A novel topology design scheme

for the multi-physics problems of electro-thermally actuated compliant

micromechanisms. Sensors and Actuators A: Physical, 97:599–609,

2002.

[134] Kyungjun Lee. Topology Optimization of Convective Cooling System

Designs. PhD thesis, The University of Michigan, 2012.

[135] Adriano A Koga, Edson Comini C Lopes, Helcio F Villa Nova, Ćıcero R

de Lima, and Emı́lio Carlos Nelli Silva. Development of heat sink device

by using topology optimization. International Journal of Heat and Mass

Transfer, 64:759–772, 2013.

[136] Tadayoshi Matsumori, Tsuguo Kondoh, Atsushi Kawamoto, and Tsuyoshi

Nomura. Topology optimization for fluid–thermal interaction problems

under constant input power. Structural and Multidisciplinary Optimiza-

269

tion, 47(4):571–581, 2013.

[137] EA Kontoleontos, EM Papoutsis-Kiachagias, AS Zymaris, DI Papadim-

itriou, and KC Giannakoglou. Adjoint-based constrained topology op-

timization for viscous flows, including heat transfer. Engineering Opti-

mization, 45(8):941–961, 2013.

[138] Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12.

Springer Science & Business Media, 2012.

[139] Patrick R Amestoy, Iain S Duff, and J-Y L’Excellent. Multifrontal paral-

lel distributed symmetric and unsymmetric solvers. Computer methods

in applied mechanics and engineering, 184(2):501–520, 2000.

[140] Mukesh Agarwala, David Bourell, Joseph Beaman, Harris Marcus, and

Joel Barlow. Direct selective laser sintering of metals. Rapid Prototyp-

ing Journal, 1(1):26–36, 1995.

[141] Mingdong Zhou, Boyan S Lazarov, Fengwen Wang, and Ole Sigmund.

Minimum length scale in topology optimization by geometric constraints.

Computer Methods in Applied Mechanics and Engineering, 293:266–282,

2015.

[142] Tomás Zegard and Glaucio H Paulino. Bridging topology optimization

and additive manufacturing. Structural and Multidisciplinary Optimiza-

tion, 53(1):175–192, 2016.

[143] Anton Evgrafov, Misha Marie Gregersen, and Mads Peter Sørensen.

Convergence of cell based finite volume discretizations for problems of

control in the conduction coefficients. ESAIM: Mathematical Modelling

270

and Numerical Analysis, 45(6):1059–1080, 2011.

271

