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Abstract 

 

Rock Classification from Conventional Well Logs in Hydrocarbon-

Bearing Shale 

 

Andrew Christopher Popielski, M.S.E. 

The University of Texas at Austin, 2011 

 

Supervisor:  Carlos Torres-Verdín  

 

This thesis introduces a rock typing method for application in shale gas reservoirs 

using conventional well logs and core data. Shale gas reservoirs are known to be highly 

heterogeneous and often require new or modified petrophysical techniques for accurate 

reservoir evaluation. In the past, petrophysical description of shale gas reservoirs with 

well logs has been focused to quantifying rock composition and organic-matter 

concentration. These solutions often require many assumptions and ad-hoc correlations 

where the interpretation becomes a core matching exercise. Scale effects on 

measurements are typically neglected in core matching. Rock typing in shale gas 

provides an alternative description by segmenting the reservoir into petrophysically-

similar groups with k-means cluster analysis which can then be used for ranking and 

detailed analysis of depth zones favorable for production.  

A synthetic example illustrates the rock typing method for an idealized sequence 

of beds penetrated by a vertical well. Results and analysis from the synthetic example 

show that rock types from inverted log properties correctly identify the most organic-rich 



 vi 

model types better than rock types detected from well logs in thin beds. Also, estimated 

kerogen concentration is shown to be most reliable in an under-determined problem.  

Field cases in the Barnett and Haynesville shale gas plays show the importance of 

core data for supplementing well logs and identifying correlations for desirable reservoir 

properties (kerogen/TOC concentration, gas saturation, and porosity). Qualitative rock 

classes are formed and verified using inverted estimates of kerogen concentration as a 

rock-quality metric. Inverted log properties identify 40% more of a high-kerogen rock 

type over well-log based rock types in the Barnett formation. A case in the Haynesville 

formation suggests the possibility of identifying depositional environments as a result of 

rock attributes that produce distinct groupings from k-means cluster analysis with well 

logs. Core data and inversion results indicate homogeneity in the Haynesville formation 

case. However, the distributions of rock types show a 50% occurrence between two rock 

types over 90 ft vertical-extent of reservoir. Rock types suggest vertical distributions that 

exhibit similar rock attributes with characteristic properties (porosity, organic 

concentration and maturity, and gas saturation).  

This method does not directly quantify reservoir parameters and would not serve 

the purpose of quantifying gas-in-place. Rock typing in shale gas with conventional well 

logs forms qualitative rock classes which can be used to calculate net-to-gross, validate 

conventional interpretation methods, perform well-to-well correlations, and establish 

facies distributions for integrated reservoir modeling in hydrocarbon-bearing shale. 
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Chapter 1: Introduction 

The composition of shale gas reservoirs is known to be highly heterogeneous in the 

vertical direction as a result of variable and complex rock components. These reservoirs exist as 

self-contained petroleum systems, serving as the source, seal, and reservoir for natural gas. 

Petrophysical analyses are complicated by the finely dispersed assortment of unique solid and 

fluid constituents that result from the sourcing organic matter, cracked oil and gas, and low 

energy depositional environments. Permeability is extremely low in shale gas formations and the 

economic production of hydrocarbon is possible in large part by the advent of horizontal drilling 

and modern completions technologies. However, the identification of zones that are likely to 

provide the maximum output over the life of a well cannot be treated without due consideration. 

A comprehensive analysis of pilot-hole well logs is crucial to evaluate the potential of a well.  

According to a study published by the National Petroleum Council, identifying shale 

facies using geochemical source analysis and well logs has been listed as a moderately 

significant technology anticipated to be developed by the year 2020. The outcome of accurate 

facies identification is intended to facilitate an increase in the exploration success rate in shale 

gas formations (Perry et al., 2007). This thesis focuses on facies identification, also known as 

rock typing or rock classification, in shale gas reservoirs. A successful application of rock typing 

can assist in determining net-to-gross (NTG) and contribute to reservoir description for 

application in integrated reservoir models. 

1.1 BACKGROUND 

The objective for any shale gas prospect is to effectively fracture and produce 

hydrocarbons from organic-rich strata (Chong et al., 2010). Rock types represent rocks in and 

around a potentially productive reservoir which are grouped based on a set of similar properties. 

These properties should identify attributes which correspond to reservoir quality. Previous rock 

typing methods in conventional reservoirs have been based on the grouping of rocks with similar 

storage and flow capacity. Storage and flow capacity were represented by permeability and 
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porosity, respectively (Winland and Pittman, 1992; Amaefule et al., 1993). Unconventional 

reservoirs require a different approach due to the aforementioned complexities. Kale et al. (2010) 

developed a rock typing method for shale gas based on core measurements over a wide range of 

reservoir rock in the Newark East field of the Barnett shale gas play (800 core plugs over 1600 ft 

of core from four wells). They measured porosity, total organic carbon (TOC), mineralogy, and 

mercury injection capillary pressure at discrete core points. These properties were used to assign 

rock types over the intervals of study, partly through statistical methods. 

Hammes (2010) suggests that rock attributes such as mineralogy, organic matter 

abundance, organic matter type/maturity, and pore size are related to depositional environments. 

These depositional environments may be predictable from facies distribution models which can 

then be related to reservoir characteristics. 

Petrophysical evaluation in shale gas relies on log-based multi-mineral estimation. Such 

interpretations generally require calibration and validation with core data (Quirein et al., 2010). 

Spears and Jackson (2009) describe the importance of accurate estimation of volumetric mineral 

concentrations, organic content, and porosity. They identify organic content, measured by TOC 

or kerogen concentration, as measures of gas-shale quality. Heidari et al. (2010, 2011) developed 

a deterministic nonlinear inversion method to estimate volumetric concentrations of rock 

components for applications in conventional reservoirs and shale gas reservoirs. This method 

was shown to produce reliable quantitative estimates of mineralogy, porosity, kerogen 

concentration, and saturation when compared to core data. Rock-composition quantities 

presented in this thesis are calculated with the code developed for shale gas applications by 

Heidari et al. (2011). 

 

1.2 OBJECTIVES 

Literature does not provide an instance, to the author’s knowledge, of a log-based rock 

typing approach specifically applied to shale gas. The methods presented in this thesis are 
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closely tied to core, but attempt to extend core observations to the reservoir as a whole using well 

logs. The nonlinear multi-mineral inversion technique developed by Heidari et al. (2011) is 

assumed to be a valid method for the estimation of mineralogy from conventional well logs. 

Rock typing attempts to extend the concept of an earth model of layered beds with unique 

compositions and resultant physical properties. Figure 1.1a shows a microscopic thin-section of 

an organic-rich black shale layer overlying a calcite-rich layer. The demarcation between facies 

is clear and provides an example of separate rock types that exhibit layering. Figure 1.1b shows a 

backscattered SEM image of an organic-rich section that contains pyrite, dolomite, calcite, illite, 

mica, and kerogen. This picture provides evidence of dispersed kerogen and the compositionally 

variable matrix that must be explained in petrophysical analysis. 
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Figure 1.1: Microscopic views of kerogen-rich rock: (a) thin section at 0.5 mm and (b) 

backscattered SEM at 30 μm. Kerogen appears black in (b).  

The rock typing method described in this thesis is founded upon existing trends in core 

data. Core data are used to identify correlations and provide a connection to the interpretation of 

well logs. Statistical techniques are utilized with well logs to expose associations between well 

logs. These statistical techniques are k-means cluster analysis and factor analysis. Such 

(a) 

(b) 
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techniques are useful to analyze large amounts of complex data which are typically available in 

shale gas exploratory wells. 

1.3 OUTLINE 

Chapter 2 of this thesis outlines the methods, assumptions, and approach considered for 

rock typing in shale gas formations. Chapter 3 describes a synthetic case to illustrate rock typing 

and its limitations with application to field logs, inverted bed properties, and mineralogy. 

Chapter 4 introduces field cases from the lower Barnett and Haynesville formations with an 

initial emphasis on core data; inferences are made to establish an association with well logs.  

Well logs and inverted properties are classified using k-means cluster analysis. Chapter 5 

discusses the importance of fractures, mechanical properties, and kerogen maturity of 

hydrocarbon-bearing shales as they impact rock typing.  The outcomes, potential applications, 

and recommendations for future work are presented in Chapter 6. Appendix A is dedicated to a 

concise description of concepts and application of the nonlinear inversion developed by Heidari 

et al. (2011). Appendix B is an overview of Passey et al.’s (1990) method for TOC estimation.  
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Chapter 2: Methods 

Rock typing in shale gas is applied under the assumption that a combination of well logs 

can identify rock groups that exhibit similar compositional attributes. Statistical techniques are 

well-suited for the analysis of shale gas reservoirs since trends may be obscured by 

heterogeneity. When applied to conventional well logs, statistical techniques are impacted by 

shoulder-bed effects, differences in vertical resolution, and depth alignment. Data quality can be 

enriched with inversion techniques. The objective in this study is to ascertain whether: (a) well 

logs can be used to perform rock typing in shale gas, and (b) whether inversion of layer 

properties provides an advantage in rock typing by the minimization of shoulder-bed effects and 

vertical resolution refinement. The procedure to address the points above is performed by: (1) 

log and core alignment, (2) implementation of inversion to estimate layer properties (true 

resistivity (Rt), migration length (Lm), photoelectric factor (PEF), density) and subsequent 

estimates of rock compositions, (3) exploring relationships between core data and well logs and 

performing k-means cluster analysis for well-log-based rock typing, (4) validating the log-based 

rock types with rock-composition estimates obtained from inversion. Figure 2.1 is a flow chart of 

the procedures detailed below. 
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Figure 2.1: Flow chart summarizing the procedures advanced in this thesis to perform rock 

typing from well logs. 

2.1 WELL-LOG AND CORE ALIGNMENT 

Log and core alignment are prerequisites for well log analysis. Alignment corrections 

ensure that all downhole measurements are representative of the same point along the wellbore. 

Log responses tend to lose coherence with each other in cases of: (a) averaging due to thin beds, 

(b) caliper irregularities, (c) noise, and (d) filtering. Although automatic depth-alignment 

software is available, the best results are usually achieved with manual adjustment. In many 

Depth-shift well logs 

Identify reservoir 
section

Choose bed 
boundaries and 

perform inversion

Depth-shift core data

Analyze core data:
• Identify correlations 
and groupings
•Identify properties 
which indicate the best 
reservoir (TOC, porosity, 
gas saturation, etc.)

Identify dominant 
compositions for a mineral 

model

Identify patterns in core data 
which relate to well logs

Compare to mineral concentrations from 
inversion and validate optimal sections

Perform k-means cluster analysis for 
rock typing with:

•Well logs
•Inverted bed properties
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cases, optimal alignment cannot be detected; in this case the measurements were not altered to 

avoid creating physically misrepresentative logs. Core data are usually delivered from a 

laboratory in a depth-uncorrected state due to differing wireline and coring depth measurements. 

Wireline and core depth must be reconciled for calibration, comparison, and model development. 

Typically, a core gamma-ray log is generated from the whole-core section and then depth-

matched to the wireline gamma-ray response.  

2.2 MODEL DEVELOPMENT AND INVERSION 

Inversion techniques provide estimates of formation properties that are crucial to the 

evaluation of shale gas reservoirs. Heidari et al. (2011) produced and successfully applied a two-

step inversion technique that is utilized in this thesis.  Layer properties estimated from the joint 

inversion of well logs are the outputs of the first inversion step and are used for rock typing. The 

second inversion produces volumetric concentrations of rock components, subsequently used for 

verification of rock types. The inversion process is referred to as ‘nonlinear inversion’; Appendix 

A briefly explains the nonlinear inversion method implemented in this thesis 

2.2.1 Bed-Boundary Selection 

The concept of stacked bedding is representative of geological depositional processes in 

sedimentary rock, including organic shale, in the absence of folding and other tectonic alteration. 

Conventional multi-mineral solvers perform a point-by-point inversion through a defined 

interval. Nonlinear inversion as implemented in this thesis first performs inversion to estimate 

bed-by-bed properties from the collection of point-by-point measurements within a layer model. 

The basis of the layering model should be chosen from the well log with the highest vertical 

resolution; corresponding responses from all other logs should be included in the same bed. 

Figure 2.2 shows the hypothetical application of bed boundaries (dashed green lines) to field 

measurements overlain on a high-resolution formation image (FMI).  

 



 9 

 

Figure 2.2: Well logs underlain with the corresponding electrical image log (FMI) and 

hypothetical bed boundaries (dashed green lines).  Logs are arranged in order of 

highest to lowest vertical resolution from left to right. Track 1: Depth. Track 2: 

Resistivity and formation image. Track 3: Gamma ray and formation image. Track 

4: Neutron porosity (in limestone units) and formation image. Track 5: Bulk density 

and formation image. 

2.2.2 Mineral Model Development 

A review of quantitative mineral analysis from X-ray diffraction (XRD) was used to 

determine the mineral model and provide a reference for inversion results. The mineral model 

assumes that matrix minerals, clay, and kerogen are part of the solid portion of rock, and gas and 

water share the pore space as fluid components. Clay may be a fixed-ratio mixture of more than 

one clay mineral. Each component must be assigned a molecular composition, density, etc. 

Kerogen is a complex and highly variable molecule, even within the same formation. Table A.1 

lists the formula assumed for kerogen in this thesis (Yen and Chilingarian, 1976). 

X600

X620
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2.2.3 Inversion Results 

The first step in the inversion process estimates true layer properties from input logs. 

Input logs are density, neutron porosity, resistivity, and PEF. Estimates of true layer properties 

are formation bulk density, neutron migration length (Lm), true resistivity (Rt), and PEF. The 

second step in the inversion uses the estimates of true layer properties to further estimate 

mineralogy, porosity, and saturations based on an assumed mineral model. Even when diligently 

performed, inherent drawbacks of multi-mineral inversion are: 

 the assumption of mineral constituents in the reservoir, 

 non-uniqueness of solutions, and 

 under-determined formulations of the multi-mineral model. 

Multi-mineral models are often calibrated to core-derived saturations and mineral compositions. 

The mineral model assumption constrains the solution to include elements that may not be 

present in the formation and may discount the contribution of minerals which may have an 

impact on the accurate determination of rock properties. Rock typing can be employed as an 

alternative method or for verification of a multi-mineral solution.  

2.3 CORE RELATIONSHIPS AND LOG-BASED ROCK TYPING 

Core relationships with well logs provide the geological basis necessary for developing 

results from log-based rock typing. The parameters of interest regarding reservoir storage 

capacity in shale gas wells are typically kerogen/TOC concentration, porosity, and gas 

saturation. Heterogeneity of rock compositions, even between wells in the same play, make core 

correlations a crucial step to understanding associations between measured properties within an 

individual well. Relationships between laboratory-measured core properties provide a connection 

to the interpretation of petrophysical properties from field measurements.  In other words, core 

data provide petrophysical viability to groupings inferred from well log data. 
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2.4 ROCK TYPING 

Cluster analysis is a statistical technique used to determine groupings in data.  This 

technique was applied with a commercial software package, Interactive Petrophysics™, which 

utilizes the k-means method widely used for similarity grouping. MacQueen (1967), the first 

author to term ‘k-means’ clustering, explains the intended use of this method: 

The point of view taken in this application is not to find some unique, definitive grouping, 

but rather to simply aid the investigator in obtaining qualitative and quantitative 

understanding of large amounts of N-dimensional data by providing him with reasonably 

good similarity groups. The method should be used in close interaction with theory and 

intuition. 

As with many statistical techniques, inappropriate usage can lead to unreliable results. A 

geological interpretation should, ideally, accompany rock typing to make sure that the detection 

of groups is performed in the same depositional environment. Without knowledge of the 

depositional environment, an initial cluster analysis can be performed to identify an appropriate 

reservoir interval. Choosing a depth section in the same depositional environment is crucial to 

ensure that a grouped analysis is applicable since different depositional environments have 

unique well-log signatures (Zinsner and Pellerin, 2007).  The extent of the depth interval should 

be small enough to avoid including bias from depth effects on log responses. However, the depth 

interval should be long enough to ensure a sufficient sample size. 

The number of clusters, or groups, that are specified should be grounded in some 

geological knowledge of the formation. We assume that rocks with similar compositions and 

characteristics should fall into groups upon a detailed application of cluster analysis. The number 

of groups can be chosen from a priori knowledge, geological studies, or from a minimization of 

cluster randomness. In this thesis, the number of cluster groupings was adjusted in the process of 

the analysis to verify the stability of results. The goal of cluster analysis is to seek structures in 

large amounts of data rather than imposing structure. To this end, large numbers of variable 

dimensions (in this case the number of well logs) were avoided in the study. 
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Factor analysis was applied to reduce the dimensionality, or specifically the plurality, of 

well logs used for cluster analysis. MATLAB
®

 contains functions which can perform factor 

analysis within its Statistics Toolbox™. This method assumes that a multivariate set of data has a 

relationship with an inexplicit underlying factor, referred to as a latent factor. Factor analysis 

attempts to exploit patterns of covariance between the measured data; measurements that are 

highly correlated are likely influenced by the same factors (DeCoster, 1998). Factor analysis 

proved useful for two purposes: (a) determining which logs should be used for cluster analysis, 

and (b) confirming that the inversion uses logs which respond to unique elements in shale gas.  

If resistivity and sonic logs are used in the cluster analysis, it is important to address the 

nonlinear response inherent to these measurements. K-means cluster analysis is best performed 

when data correlations are linearized. Sonic slownesses and resistivity logs often display 

nonlinear correlations with other well logs. These correlations can be linearized by either taking 

the inverse of sonic and/or resistivity (returning to electrical conductivities and sonic velocities) 

or by taking their logarithm.  

2.5 ROCK TYPING VALIDATION WITH ROCK COMPOSITIONAL RESULTS FROM INVERSION 

Rock-composition estimates from nonlinear inversion provide an opportunity for the 

evaluation of rock types determined from well logs and inverted bed-property estimates. These 

compositional estimates are used to show that clustered log responses (rock types) group 

together because of compositional similarities, especially kerogen concentration. Rock types are 

then further developed and categorized; core data provide substantiation for the proposed rock 

types.  
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Chapter 3: Synthetic Case 

A synthetic case was generated to explore: (a) the effect that averaging of bed-level 

properties has on well logs and subsequent well-log-based rock types, (b) the benefits of 

inversion for resolving properties in well logs and mineral compositions, and (c) what extent of 

data manipulation (un-inverted well logs, inverted well log properties, inverted mineral 

compositions) produces the most practical inputs for rock typing. The model assumes that 

individual beds in a formation are homogeneous and horizontally layered. Beds are often layered 

horizontally in shale gas, particularly those encountered in the Barnett and Haynesville shale 

formations, which are field examples in this thesis (Chapter 4).  

3.1 DEVELOPMENT AND RESULTS OF THE SYNTHETIC CASE 

The synthetic case consists of a model populated with hypothetical layer compositions; 

composition is constant within each layer. These compositions have a unique set of physical 

properties that correspond to lithology, fluid components, and environmental conditions. 

Physical properties of interest in this synthetic case are density, photoelectric factor (PEF), 

apparent deep resistivity, and migration length. Well logs were numerically simulated at a 

sampling rate of 0.5 ft to represent measured bulk density, neutron porosity, apparent resistivity, 

and PEF.  Table 3.1 summarizes the volumetric concentrations of the solid and fluid constituents 

assumed in the model. These parameters represent compositions of hypothetical rock types: a 

calcite-rich rock type (type 1), a silt-rich and organic-poor rock type (type 2), and an organic-rich 

rock type (type 3). Rock compositions in this model are based on observations from core data in 

the lower Barnett formation. 
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Lithological Components (%) 
Rock Type 1 

Calcite Rich 
Rock Type 2 

Silt Rich 

Rock Type 3 

Organic Rich 

    

Quartz 35.5 61.0 53.0 

Calcite 35.5 3.5 3.5 

Pyrite 1.5 1.5 2.0 

Illite 24.0 24.0 24.0 

Kerogen 1.5 5.0 10.5 

Pore Components (%) 

    

Porosity 2.0 5.0 7.0 

Water Saturation 80.0 40.0 20.0 

Methane Saturation 20.0 60.0 80.0 

Table 3.1: Hypothetical solid and fluid constituents for three rock types included in the shale 

gas synthetic model. Volumetric concentrations of all lithological components plus 

porosity sum to 100 %. Water and methane saturations are displayed as a 

percentage of pore space concentration.  

Numerically simulated logs from the synthetic example were inverted to assess the ability 

of inversion to reproduce model properties at different bed thicknesses. Figure 3.1 shows the 

increase in error between inverted and model properties associated with decreasing bed 

thickness. This error confirms the impact of sampling rate on inversion results. Inverted values 

are unreliable estimations of true bed properties when bed thicknesses are equal to or thinner 

than the sampling rate. As a result, inverting well logs in thin beds gives rise to large errors on 

inverted values due to bed thickness and bed placement. The benefit of performing inversion, 

however, is to reduce shoulder-bed and vertical-resolution effects enough to emphasize layer 

properties which can subsequently be used for statistical grouping.   
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Figure 3.1:  Synthetic model: average error between inverted and model properties over 

individual sections of 0.5, 1, 2, and 10 ft bed thicknesses. Tool resolution and 

sampling rate cause the error to increase with decreasing bed thickness.  

The statistical grouping technique used in this thesis is k-means cluster analysis. Figure 

3.2 shows the bed thickness for the corresponding model properties in the first track. Model 

properties are neutron, density, PEF, and resistivity. Simulated, center-bed, and inverted values 

are displayed on the track for the respective property. K-means cluster analysis was performed 

with neutron, density, PEF, and resistivity. The last four tracks of Figure 3.2 show resulting 

cluster-analysis groupings for the actual (model) rock types, inverted properties, center-bed 

values, and simulated logs. Model rock types are reproduced in order from most to least 

accurate: inverted properties, center-bed values, and un-inverted well logs. Inverted well-log 

values identify the actual rock type in beds thicker than 0.5 ft.  Center-bed values return the 

correct rock type until the 1 ft section. Simulated logs, which represent field logs, produce 

groups which are a result of thin-bed and/or shoulder-bed effects in multiple instances 

throughout the 10 ft, 2 ft, 1 ft, and 0.5 ft sections. 

Multi-mineral inversion rock-composition results give the attractive prospect of 

classifying rock types based directly on estimated mineral and fluid components. If 

concentrations of rock compositions could be estimated accurately, rock components could be 
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selected and classified to synthesize rock classes closely associated with geological facies.  

Cluster analysis for rock typing from compositional estimates is performed with kerogen, 

porosity, and quartz.  Figure 3.3 shows bed thickness for the corresponding model properties in 

the first track. Model compositions shown in the second track consist of the mineral and fluid 

constituents that define the three different rock types shown in the third track.  Track 4 shows the 

mineralogy inverted from an even-determined solution. An even-determined solution is 

generated with a number of unique inputs (well logs) to determine an equal number of outputs 

(rock components). Seven well logs were simulated from a model and include spectral gamma 

ray (Thorium, Uranium, and Potassium), resistivity, PEF, neutron porosity, and bulk density. The 

seven shale components in the solution are volumetric concentrations of quartz, calcite, clay, 

kerogen, pyrite, gas, and water.  It is found that the even-determined solution yields an accurate 

estimation of mineral compositions and rock types. An under-determined solution, shown in 

track 6, has a larger number of outputs than unique inputs. The rock-compositional estimates for 

the field cases (Chapter 4) are under-determined problems; the number of minerals generated in 

the solution is in excess of the number of well logs used to determine them. In order to illustrate 

a typical field estimation problem, an under-determined solution is displayed in the last two 

tracks of Figure 3.3. Well logs input to nonlinear inversion for the under-determined case are 

resistivity, PEF, neutron, and density. Volumetric concentrations estimated in the inversion are 

quartz, calcite, clay, kerogen, pyrite, gas, and water. The accuracy of inverted estimates is poor 

when compared to the actual mineralogy shown in track 2.
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Figure 3.2: Synthetic case showing the progression from thick beds to thin beds and the associated well logs. Track 1: Bed 

thicknesses for the corresponding interval in a progression from 10 ft beds to 0.5 ft beds. Tracks 2–5: Simulated, model, 

inverted, and center-bed values for neutron porosity (limestone units), bulk density, PEF, and resistivity, respectively. 

Tracks 6–9: Cluster analysis results for actual rock types obtained from inverted properties, center-bed values, and log 

values. 
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Figure 3.3: Synthetic case: multi-mineral inversion rock typing with model rock types, an even-determined solution, and an under-

determined solution. Track 1: Bed thicknesses within the interval. Track 2: Model composition. Track 3: Model rock 

types. Track 4: Rock-compositional estimates for an even-determined solution. Track 5: Rock types determined from k-

means cluster analysis based upon estimated mineral compositions in Track 4. Track 6: Rock-compositional estimates 

from an under-determined solution. Track 7: Rock types determined from k-means cluster analysis based upon estimated 

mineral compositions shown in Track 6.

Bed 

Thickness Model Composition Model Rock Types

Composition from 

Even-determined 

Inversion

Even-determined  

Rock Types

Composition from 

Under-determined 

Inversion
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Rock Types

0                               1 0                               1 0                               1
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Table 3.2 shows the average errors between model composition and each of the estimated 

mineral components for one- and two-foot beds. The even-determined solution exhibits small 

errors, approximately 10% or less, for all mineral components. In contrast, the under-determined 

solution yields large errors for most minerals, especially calcite, which is highly variable 

between beds.  

 

 

 

 

 

 

Table 3.2: Average error between model mineralogy and inverted mineralogy for even- and 

under-determined problems. 

Results from the under-determined case make an important point about the unique 

composition of kerogen. Kerogen has the least amount of error amongst the other minerals for 

the under-determined case. The chemical composition of kerogen (Appendix A) is unique 

because it has the lowest density and highest hydrogen index of any solid constituent. These 

properties relate to the overall bulk density and migration length which determine bulk density 

and neutron porosity well logs. The uniqueness of kerogen composition compared to that of 

other minerals in the model facilitates its quantification in the inversion process. As a result, 

even though kerogen concentration is in error, the relative concentration remains an accurate 

representation of the original model (Figure 3.3, tracks 2 and 6). 

Lithology 
Even-determined 

Error  (%) 
Under-determined 

Error  (%) 

   

Quartz 4.3 23.0 

Calcite 11.4 330.6 

Pyrite 6.5 99.4 

Clay 1.0 22.7 

Kerogen 6.3 18.0 

Porosity 8.0 37.5 



 20 

3.2 APPLICABILITY TO LOG-BASED ROCK TYPING IN THE FIELD 

The synthetic case presented here has applicability to rock typing with field 

measurements. Using cluster analysis directly on well logs or their corresponding inverted 

petrophysical properties (Figure 3.2) indicates that log properties can be used to identify rock 

types. Well logs and their corresponding rock types are susceptible to error from shoulder-bed 

effects and tool resolution, especially in thin beds. However, bed boundary locations in field 

cases may not always be perceptible and can skew rock typing in both inverted petrophysical 

properties and inverted rock-composition estimates. Due to the large errors displayed in 

estimated compositions for the under-determined case and heavily model-dependent 

requirements of the inverted rock composition solution, rock typing between logs and their 

inverted properties appears more practical.  Table 3.3 summarizes the advantages and 

disadvantages of rock typing based on the three levels of data refinement from conventional well 

logs. 

 

 Advantages Disadvantages 

 

Well Logs 

 

No data manipulation 

 

Shoulder-bed effects and 

averaging 

Inverted Bed 

Properties 

Mineral-model 

independent 

method of log 

refinement 
Reduce 

impact of 

shoulder-bed 

effects and 

averaging 

 

• Placement 

of bed 

boundaries 

• Reduction 

of sample 

size 

• Propagates 

and magnifies 

errors 

Inverted 

Mineralogy 
Intuitive grouping 

Introduces 

additional 

dimensions to an 

already under-

determined problem 

Table 3.3: Advantages and disadvantages of rock typing when using different levels of data 

refinement. 
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Chapter 4: Field Examples of Rock Typing  

Chapter 4 shows results from two field examples using the rock typing method described 

in Chapter 2. The first field example applies the rock typing method to a well in the Barnett shale 

gas play, while the second field example applies the method to a well in the Haynesville shale 

gas play. Both field examples were implemented in depth-intervals where hole quality and 

tension pulls had minimal impact on well logs. 

4.1 FIELD EXAMPLE: BARNETT SHALE GAS PLAY 

This section begins by introducing the location of the study well together with the 

corresponding geological and geochemical background. Core data correlations were related to 

well logs for the purpose of identifying the characteristics that constitute the best rock types. The 

most representative logs are chosen for rock typing based on factor-analysis results. Rock typing 

is performed using k-means cluster analysis. Resultant rock types are validated with inversion 

results. The section concludes with a comparison between conventional methods for TOC 

quantification and its implications in rock typing. 

4.1.1 Geological and Geochemical Background 

Recently, the Barnett formation has been used as an exploration model for many 

emerging shale gas plays. The well used in this study is a vertical pilot hole which penetrates the 

Barnett formation close to its thickest stratigraphic extent along the Muenster Arch. A basinal 

depositional environment was interpreted by a commercial core laboratory for the study area in 

the lower Barnett formation. The lower Barnett formation is the focus of this study since it is the 

most thermally-mature interval and, consequently, the most likely to be commercially 

productive. Common measures of kerogen maturity — vitrinite reflectance (Ro) and calculated 

maturity (via pyrolysis) — average 0.89 and 1.12, respectively. Thermal maturities from cored 

samples in the lower Barnett formation indicate a reservoir which has not matured completely. 

Corresponding gas/oil ratios range from 2.5 to 17.4, as determined by laboratory core 

measurements. 
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Papazis (2005) identified five lithological groups from a core study in the Barnett 

formation: black shale lacking in silt-size particles, silt-rich black shale, calcite-rich lithologies, 

coarse grain accumulations, and concretions. The core description produced by a professional 

core laboratory described similar features.  

4.1.2 Log Response and Rock Property Relationship 

Core measurements in this well show a strong correlation between volumetric 

concentrations of kerogen, porosity, and water saturation. Figure 4.1 shows the relationship 

between kerogen concentration, porosity, water saturation, and bulk density. Core bulk density 

trends toward lower values with increased kerogen concentration, porosity, and gas saturation. 

Figure 4.1 also shows a formation image from a thinly-bedded interval and a high-resolution 

bulk density log which emphasizes the low-densities of many of the thin beds. This behavior 

indicates that layers with the lowest densities have the highest kerogen concentration, porosity, 

and gas saturation. 
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FMI (ohm.m) 
Log Bulk Density (g/cc) 

 

Figure 4.1: The three-dimensional cross-plot shows the relationship between core-measured 

kerogen (volumetric percent), porosity (volumetric percent), and water saturation 

(Sw, percent of pore space); the color scale indicates the corresponding core-

measured bulk density. The log track (right) shows a formation image overlain by 

the bulk density well log. 

Factor analysis was then used to reduce the dimensionality of avaliable well logs. Figure 

4.2 shows a biplot of factor-analysis results performed in an organic- and gas-rich interval. Two 

latent factors were imposed for 2-dimensional visualization of groupings, which are evident in 

this case. Since factor analysis serves the purpose of identifying overlapping measurements, its 

importance lies in how the projections group rather than the latent factor value shown in Figure 

4.2. Groupings provide quantitative indication that well logs respond to separate factors in the 

shale under consideration and are appropriate for segregating different rock types. Furthermore, 

bulk density and PEF can be interpreted to have a significant relationship to shale-matrix 

components. Neutron porosity, sonic, and gamma-ray logs can be interpreted as having 
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dependency upon concentrations of organic matter and/or fluids in the pore space. Resistivity can 

be interpreted to have a relationship with fluid saturation, conductive minerals (pyrite), and 

conductive clays (smectite). The highest resolution logs from each grouping— resistivity, 

density, and neutron—were used in the application of k-means cluster analysis.  

 

Figure 4.2: Biplot for factor analysis for the lower Barnett formation. Projections are labeled 

with the corresponding well logs. Colors designate statistically significant 

relationships between groups of well logs. The projection labeled ‘Sonic’ refers to 

compressional sonic slowness.  

4.1.3 Rock Typing in the Lower Barnett Formation 

Depth bounds for the rock typing interval were chosen based on the core interval. The 

entire depth interval (90 ft) belongs to a basinal depositional environment. Core data indicate the 

presence of an organic rich rock type with high porosity and gas saturation. Cluster analysis was 

employed to explore associations between log data that would suggest a low density cluster 

corresponding to a group suggestive of gas- and organic-rich rock. Papazis (2005) suggested the 

presence of five lithofacies and Kale et al. (2009) suggested the presence of 3 petrophysical 
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facies, both applicable to the Barnett formation. The appropriate number of cluster groupings 

was narrowed, from these prior publications, to between 3 and 5 groups.  

A four-element cluster minimized cluster randomness and provided a stable set of groups. 

The stability of groupings was determined by adjusting the number of cluster groups to observe 

if the solution, i.e. groupings, changed appreciably. Figure 4.3 shows cross-plots between 

density, neutron, and resistivity as generated by k-means cluster analysis for both the inverted 

log properties and well logs. Resultant clusters for inverted properties and well logs are similar to 

each other and identify: (a) a low-medium resistivity, low density, high neutron group shown in 

red, (b) a mid-range density, mid-range resistivity, mid-range neutron porosity group in green, 

(c) a low density, high resistivity, mid-range neutron porosity group in blue, and (d) a high 

density, low neutron porosity, high resistivity group in yellow. Inverted well log properties 

(Figure 4.3b) represent a smaller sample size and reduce shoulder-bed effects. As a result, 

inverted properties provide a clearer visualization of cluster groupings. This behavior confirms 

that the number of clusters chosen does not represent arbitrary groupings.  
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Figure 4.3: Cross-plots and histograms of cluster groupings: (a) well log measurements of 

resistivity, bulk density, and neutron porosity (in limestone units) and (b) inverted 

properties for resistivity, bulk density, and migration length (Lm). 

 

(a) 

(b) 



 27 

Bulk density has been shown to exhibit correlation with kerogen concentration, porosity, 

and gas saturation in Figure 4.1. Also, the synthetic example (Chapter 3) indicated that neutron 

porosity is heavily influenced by kerogen concentration. Nonlinear inversion is used to associate 

rock compositions (i.e. mineral concentations) with rock types (Figure 4.6, track 5) Table 4.1 

summarizes these groups and their interpreted rock type.  

Rock 

Types 
Log Response 

Proposed 

Rock Type 
Thin Section 

Volumetric 

Composition 

(%) 

Rock 

Type 1 

Low density, high 

neutron porosity, low-

medium resistivity 

Organic rich, 

high 

porosity, 

high gas 

saturation 

 

Gas-filled 

porosity: 4.48 

Quartz: 46.2 

Carbonate: 3.2 

Kerogen: 11.1 

Rock 

Type 2 

Mid-range density, 

mid-range resistivity, 

mid-range neutron 

porosity 

Silt rich, 

organic lean, 

lower 

porosity 

 

Gas-filled 

porosity: 2.62 

Quartz: 57.3 

Carbonate: 4.0 

Kerogen: 6.8 

Rock 

Type 3 

Low density, high 

resistivity, mid-range 

neutron porosity 

Organic rich, 

high gas 

saturation, 

higher 

carbonate 

content 

 

Gas-filled 

porosity: 3.89 

Quartz: 46.2 

Carbonate: 7.7 

Kerogen: 12.2 

Rock 

Type 4 

High density, low 

neutron porosity, high 

resistivity 

Non-

reservoir, 

carbonates or 

concretions 

 

Gas-filled 

porosity: 0.8 

Quartz: 65.3 

Carbonate: 20.4 

Kerogen: 4.3 

Table 4.1: Proposed rock types based on the cluster analysis of well logs and validated with 

multi-mineral inversion results. Thin section images and corresponding 

compositions are included for the proposed rock types. 
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Figure 4.4 shows the logs and inverted log values used for rock typing as well as the 

formation image and corresponding rock types. The formation image confirms the presence of 

thin beds. Below X590 ft (relative depth), the rock types alternate frequently. From the log 

responses and proposed rock types, the blue- and red-colored rock types likely synthesize the 

best reservoir properties as a result of groupings with the lowest density and highest neutron 

response. Rock types identified from well log and inverted well-log properties are similar. The 

thinly-bedded section between depths X600 and X630 ft contains the largest number of depth 

samples belonging to rock type 1. Rock type 1 occupies 40% more reservoir height with the 

inverted-property rock types than with well-log-based rock types over the entire 90 ft depth 

interval. 
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Figure 4.4:  Inverted log properties, formation image, rock typing, and mineralogy. Track 1: 

Relative depth. Track 2: Apparent resistivity and inverted resistivity. Track 3: 

Neutron porosity (in limestone units) and inverted migration length. Track 4: PEF 

and inverted PEF. Track 5: Bulk density and inverted density. Track 6: Electrical 

image. Track 7: Log-based rock types. Track 8: Rock types from inverted 

properties. 

Kerogen concentration was the least error-prone inverted rock component from the 

synthetic case (Chapter 3). Because core correlations show a positive trend between kerogen 

concentration, porosity, and gas saturation, inverted kerogen concentrations are used as a rock-

quality metric. Figure 4.5 shows that interpreted rock types (Table 4.1) are valid in terms of 
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organic richness. Rock quality ranking in terms of kerogen concentration from highest to lowest 

is: (I) rock type 1, (II) rock type 3, (III) rock type 2, and (IV) rock type 4.  

 

 

Figure 4.5: Average volumetric concentration of kerogen for different rock types; kerogen 

concentration is estimated with nonlinear inversion. 

4.1.4 Significance of Resolution and Rock Typing 

Conventional methods and commercial software tend to show average values of kerogen 

and saturation across a given depth interval. Most conventional quantitative evaluations of 

organic shale use multiple logs without correction for shoulder-bed effects and depth of 

investigation. Furthermore, lower-resolution logs such as sonic and resistivity can obscure the 

presence of thin beds. Figure 4.6 shows well-log-based rock types compared to inverted TOC, 

TOC from Passey’s method (Passey et al., 1990), and core TOC. Additionally, nonlinear 

inversion rock-composition results are compared to results obtained with a commercial software. 

Figure 4.6 shows the likelihood that the rock types identify compositionally similar rock types 

that suggest an organic-rich/organic-poor alternating sequence. Results from conventional 

techniques suggest a more homogeneous section with less frequent rock-composition variation 

with depth.  
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Passey’s method is calculated from bulk density and deep apparent resistivity logs using 

the method introduced by Passey et al. (1990). The assumption made in Passey’s formula is that 

the increase in kerogen/TOC concentration causes a corresponding decrease in sonic velocity or 

bulk density and an increase in apparent deep resistivity. The lower Barnett formation well 

studied in this thesis suggests that bulk density and sonic velocity decrease with increasing 

organic content, but resistivity does not always exhibit a corresponding increase. Such behavior 

may be due to the presence of fractures, undermature kerogen, and bound water that provides a 

conductive path with increasing pore and pore-throat space in the organic rich zone. 

Furthermore, Passey’s method tends to yield average trends when compared to core-measured 

TOC. Rock types shown in the third and fourth track of Figure 4.6 identify a unique set of rock 

types and nonlinear inversion validates the rankings of organic richness. It is important to note 

that TOC concentration estimated with the multi-mineral code (‘Inverted TOC’, track 2) in the 

zone from X595–X610 ft is highly affected by noise and is therefore susceptible to error.  
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Figure 4.6: Thin beds and comparison of kerogen volumetric concentration estimated from 

inversion and conventional methods. Track 1: Relative depth. Track 2: Comparison 

of TOC derived with Passey’s method (Passey et al., 1990), nonlinear inversion, 

and laboratory core. Track 3: Log-based rock types. Track 4: Inverted-property-

based rock types. Track 5: Mineralogy estimated with nonlinear inversion. Track 6: 

Mineralogy estimated with a commercial linear solver. 
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4.2 FIELD EXAMPLE IN THE HAYNESVILLE FORMATION 

This section introduces the basic geology and location of the Haynesville shale gas play. 

Core data are associated with well logs for the purpose of identifying specific properties that 

constitute the best rock types. The most representative logs are chosen for rock typing based on 

factor analysis. Rock typing is performed using k-means cluster analysis.  

4.2.1 Geological Background 

The Haynesville shale gas play is an organic-rich shale which extends areally through 

part of northeast Texas and northwest Louisiana. It is bounded by the Bossier shale formation 

above and either the Haynesville Limestone or Smackover Limestone beneath (Buller et al., 

2010). The geological age of the formation is interpreted to be Upper-Jurassic (Johnston et al., 

2000). The well in this study is located in Panola County, Texas.  A core description for the 90 ft 

study interval was included in the available data. In this 90 ft interval, the core description 

interprets massive to faintly laminated geological facies interpreted to belong between a subtidal-

slope to basinal depositional environment.  

4.2.2 Well Log Response and Rock-Property Relationships 

Ideally, rock classification should be performed in a specific type of depositional 

environment due to its unique well log signatures. This example describes the application of rock 

classification to a transitional zone. Figure 4.7 shows the relationship between TOC, porosity, 

water saturation, and bulk density throughout the entire cored depth-interval of 240 ft. As with 

the Barnett formation example, the figure indicates that layers with the highest TOC 

concentration also exhibit the highest porosity and gas saturation. Furthermore, core bulk density 

trends toward lower values with increased TOC concentration, porosity, and gas saturation. 

Figure 4.7 also shows the range of points belonging to the 90 ft study interval within a blue oval. 

The circled core properties are closely grouped when compared to the range of porosity, water 

saturation, and TOC concentrations throughout the entire cored interval. 
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Figure 4.7: Three-dimensional cross-plot showing the relationship between core-measured 

TOC (weight percent), porosity (volumetric percent), and water saturation (Sw, 

percent of pore space); the color scale identifies the corresponding core-measured 

bulk density. The blue oval designates the core points within the studied depth-

interval.  

Table 4.2 shows the standard deviations of core data and well logs belonging to the 

Haynesville formation and Barnett formation study intervals. These standard deviations are 

computed from well logs (apparent resistivity, bulk density, and neutron porosity) and core 

measurements (water saturation, bulk density, TOC concentration, and porosity). The low 

standard deviations of the Haynesville formation—relative to the standard deviations from the 

Barnett formation—suggest a vertically-homogenous formation. 
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 Standard Deviations 

Core Data 

Haynesville 

Formation Study 

Interval (90 ft) 

Barnett Formation 

Study Interval 

(90 ft) 

TOC (wt. %) 0.67 1.54 

Porosity (volumetric %) 0.49 1.84 

Water Saturation (pore space %) 2.41 18.24 

Bulk Density (g/cc) 0.01 0.05 

Well Logs 

Resistivity (ohm.m) 10.43 107.04 

Neutron Porosity (limestone units, %) 1.82 4.90 

Bulk Density (g/cc) 0.02 0.04 

Table 4.2:  Standard deviations of well logs used in the cluster analysis and pertinent core data 

(TOC, porosity, water saturation, and bulk density).  

Factor analysis is used to reduce the plurality of well logs for cluster analysis. Figure 4.8 

shows the results of factor analysis performed on the Haynesville formation well. Two latent 

factors were imposed to aid in the visualization of groupings; groupings are less distinct in the 

Haynesville formation application than in the Barnett formation example (Section 4.1). However, 

the groupings provide quantitative support for the covariance between types of well logs. 

Resistivity, bulk density, and neutron porosity were chosen as inputs to k-means clustering. 
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Figure 4.8: Factor analysis for the depth interval within the Haynesville shale gas play. Colors 

designate statistically significant relationships between logs. 

Figure 4.9 shows cluster cross-plots between bulk density, neutron porosity, and 

resistivity. Two cluster groups were chosen to reduce cluster randomness for both well logs and 

inverted properties. The selection of two groups was not supported by previous studies or 

geological knowledge of dominant facies. However, the groupings do not appear to be 

unfounded based on the exhibited clustering shown in Figure 4.9. The red group (rock type 1) 

trends toward values of low density porosity, high neutron porosity, and low apparent resistivity. 

On the other hand, the green group (rock type 2) trends toward values of low neutron porosity, 

high density, and high resistivity. Groupings are similar between well logs (Figure 4.9a) and 

inverted well log properties (Figure 4.9b). Inverted well log properties represent a smaller 

sample size and reduce shoulder-bed effects. Consequently, inverted properties provide a clearer 

visualization of cluster groupings. 
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Figure 4.9: Cross-plots and histograms of cluster groupings: (a) well logs for apparent deep 

resistivity, bulk density, and neutron porosity (in limestone units) and (b) inverted 

properties for resistivity, bulk density, and migration length (Lm). 

Figure 4.10 shows well logs and inverted properties, core data, and corresponding rock 

types within the 90 ft study interval. The core data shown do not vary widely within the interval. 

Well-log-based rock types and inverted well-log properties show a similar distribution pattern of 

(a) 

(b) 



 38 

rock types with depth. From well-log-based rock types, rock type 1 constitutes 46.4% of the 

reservoir while rock type 2 constitutes the remaining 53.6%. For inverted well-log properties, 

each rock type constitutes approximately half of the reservoir. This difference may be attributed 

to shoulder-bed effects; however the placement of bed boundaries is often uncertain and can 

result in errors in rock types inferred from inverted well-log properties. 

This depth interval was interpreted to belong between a subtidal-slope to basinal 

depositional environment based on a geological interpretation. Depositional environments impact 

rock attributes which, in turn, affect well logs. Table 4.3 shows the proposed interpretation of 

rock types. Hammes (2010) showed that TOC concentration increases distally and decreases 

proximally in the Jurassic. Basinal depositional environments are distal to the proximal subtidal-

slope depositional environment. TOC concentration is directly related to kerogen concentration 

and they are both measures of organic-matter concentration. Because the average kerogen 

composition for rock type 1 is 1.6% above rock type 2, rock type 1 is interpreted to be associated 

with a distal-trending depositional environment.
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Figure 4.10:  Inverted log properties and well logs, core data, rock typing, and mineralogy. Track 1: Relative depth. Track 2: Neutron 

porosity (in limestone units) and inverted migration length. Track 3: Bulk density and inverted bulk density. Track 4: 

Apparent deep resistivity and inverted resistivity. Track 5: Core TOC. Track 6: Core porosity. Track 7: Core saturation. 

Track 8: Rock types from well logs. Track 9: Rock types from inverted log properties. Track 10: Rock-composition 

estimates obtained from nonlinear inversion 
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Rock 

Types 
Well Log Response 

Proposed 

Rock Type 

Proposed 

Depositional 

Environment 

Average 

Kerogen 

Concentration 

from Inversion 

(Vol. %) 

Rock 

Type 1 

Low- to medium-

range density, high 

neutron porosity, low- 

to medium-range 

resistivity 

Organic rich, 

high 

porosity, 

high gas 

saturation 

Distal, basinal 7.0% 

Rock 

Type 2 

Mid- to high-range 

density, mid- to high-

range resistivity, low-

range neutron porosity 

Organic lean, 

lower 

porosity 

Proximal, slope 5.4% 

Table 4.3: Proposed rock types based on cluster analysis of well logs and inverted 

kerogen concentration. 
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Chapter 5: Discussion 

This chapter addresses reservoir characteristics that were considered but not 

integrated into the rock typing criteria advanced in the thesis. Topics addressed are: (a) 

mechanical properties and their contribution to the fracture-ability of shale reservoirs, (b) 

fractures and their contribution to production enhancement but detriment to resistivity-log 

reliability, and (c) kerogen maturity and the need for high frequency core sampling to 

advance the shale-composition/well log connection for rock typing.  

5.1 DISCUSSION ON THE IMPORTANCE OF MECHANICAL PROPERTIES AND FRACTURES 

Rock classification attempts to synthesize data to extract the most significant 

properties with which to characterize a reservoir for hydrocarbon-production capability. 

Shale reservoirs require fracture stimulation and mechanical properties must be 

quantified to assess the reservoir’s fracture potential. Petrophysical evaluations typically 

utilize sonic logs to perform in situ estimations of rock brittleness (Rickman, 2008). 

Associating rock mechanical properties in a way that could estimate 

brittleness/stimulation-potential would enrich the significance of rock classification. Core 

measurements provided the basis for well-log-based rock typing in this thesis. In the 

author’s opinion, characterization of rock brittleness from sonic logs should also be based 

on laboratory core measurements. Specifically, confined triaxial tests should be 

performed to associate the resultant static Young’s modulus and Poisson’s ratio to 

dynamic mechanical properties derived from sonic logs.  

Fractures may also be present prior to stimulation as a result of past or present 

stress fields in the form of natural or drilling-induced fractures. Both of these fracture 

types were identified in the course of the study. Figure 5.1 shows a rose diagram of 

fracture count and azimuth from drilling-induced and natural fractures within a 90 ft 
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study interval in the lower Barnett formation. The fracture count and azimuth was 

determined from an electrical image log. 

 

 

Figure 5.1: Rose diagram showing the high concentration of natural and drilling-

induced fractures in the lower Barnett formation study interval (90 ft). The 

azimuth of drilling-induced fractures indicates the maximum horizontal 

stress. 

Debate exists as to whether these fractures inhibit or enhance productivity (Gale et al., 

2007). Fractures have importance in well-log-based rock typing for two reasons: (1) their 

effect on well-log quality, and (2) the effect organic matter and maturity have on 

fracturing. The relationship between fractures and kerogen maturity was inconclusive 
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from this study. Effects of fractures on well logs, especially sonic and induction 

resistivity logs, have been well-studied (Xue et al., 2008; Vernik et al., 2011). Figure 5.2 

shows a core-slab photo with mineralized, high-angle natural fractures. The 

corresponding formation image displays dark (electrically conductive) sinusoidal features 

which are interpreted to belong to the same natural fracture type as those observed in the 

core-slab photo.  
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Figure 5.2:  A core-slab photo (left) shows mineralized, high-angle, natural fractures. At 

right: Track 1 shows the electrical formation image; Track 2 shows the 

separation of array induction resistivity logs. The formation image displays 

dark (electrically conductive) sinusoidal features which are interpreted to 

belong to the same natural fracture type as those observed in the core-slab 

photo.  

90 ft 

2 ft 
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A comparison of the core-slab photo, formation image, and resistivity logs 

indicate the possibility of fracture dilation under hydrostatic pressure from drilling fluid. 

Mineralized fractures from the core-slab photo are sealed with calcite or dolomite 

precipitated and should display high resistivity in the formation image. Instead, they 

appear conductive in the formation image and are likely fluid-filled. Array induction 

apparent resistivity logs (AIT
1
) measure formation resistivity at multiple radial lengths of 

investigation. They display characteristics of near-borehole radial alteration with 

indication that fractures have an effect on the measurements. The deep resistivity log 

(AT90) is commonly assumed to be the most representative measurement of formation 

resistivity in its unaltered state. This same assumption was made in this thesis.  

5.2 DISCUSSION ON THE IMPORTANCE OF KEROGEN MATURITY AND CORE DATA 

In addition to the effect of fractures and mechanical properties, rock classification 

could attempt to take kerogen maturity into account. Kerogen maturity cannot be 

measured directly with well logs. As a result, a large volume of the formation would have 

to be cored and sampled in order to perform frequent measurements on core plugs to 

quantify kerogen maturity. A large-scale core study could produce measurements of key 

rock properties (kerogen maturity, porosity, gas saturation, etc.) which could then be 

classified into core-based rock types. These rock types could be related to well logs for 

the development of a more comprehensive rock typing approach in shale gas plays. The 

procedures developed for this project proceeded from a limited amount of core data and 

were intended for practical applications. 

  

                                                 
1 Mark of Schlumberger 
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Chapter 6: Conclusions 

This chapter summarizes the salient conclusions of the thesis and makes 

recommendations for the advancement of rock typing using conventional well logs in 

hydrocarbon-bearing shale. 

6.1 CONCLUSIONS 

This thesis confirms the applicability of rock typing from well logs in 

hydrocarbon-bearing shale formations. A synthetic case showed the benefit of inverted 

log properties over measured logs in the detection of rock types. The quality of well logs 

is negatively affected by shoulder-bed effects and averaging, especially in beds thinner 

than 2 ft. Inverted rock compositions are helpful for providing estimates of rock 

composition. However, the synthetic case showed that large errors can result from under-

determined problems. Such under-determined problems are often encountered in practical 

applications. Furthermore, the assumptions included in a mineral model for inversion 

may be incorrect. Well logs and inverted properties are model independent (except for the 

placement of bed boundaries for inverted properties) and were reliable indicators of rock 

types in the field examples.  

Core-data analysis is a necessary preliminary step to field applications of rock 

typing. Factor analysis was useful for reducing the plurality of well logs to avoid data 

overlap, and therefore, bias in the application of k-means cluster analysis. The highest- 

resolution well logs are recommended for the interpretation of thinly-bedded intervals. 

Neutron porosity, bulk density, and resistivity logs were used in a k-means cluster 

analysis. These conventional logs contain significant information which, when used 

jointly with k-means cluster analysis, can be used to estimate rock type distributions and 

to identify rock attributes.  
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A field case in the Barnett formation showed the possibility of thinly-bedded 

organic-rich layers. Rock typing performed on inverted log properties identified 40% 

more of the organic-rich rock type than rock types inferred from conventional well logs. 

The most important outcome in the lower Barnett formation example was the ability to 

distinguish a thinly-bedded organic-rich/organic-poor alternating sequence through rock 

typing where conventional estimates suggested less variability in kerogen concentration. 

Characterizing thin beds in shale gas reservoirs could result in more accurate integrated 

reservoir modeling when contrasted to the more homogeneous characterizations 

performed with conventional techniques. 

A field case in the Haynesville formation showed a more uniform reservoir 

compared to the vertical variability observed in the Barnett formation. Only two rock 

types were identified from k-means cluster analysis. The study section in the Haynesville 

formation well belongs to a transitional slope–basin depositional environment. Rock 

types were interpreted to be a reflection of basin- or slope-trending depositional 

environments in the shale. This argument was supported by the average kerogen 

concentration, as determined from nonlinear inversion, of the respective rock types. Rock 

properties vary based on depositional environment due to composition; as a result, rock 

types can assist in determining additional reservoir characteristics based on 

formational/compositional associations. 

The rock typing method developed here has potential applications for computing 

net-to-gross, performing well-to-well correlation, and improving reservoir modeling by 

determining rock type distributions. 
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6.2 SUGGESTIONS FOR FUTURE WORK 

A necessity for successful shale gas projects is integration and optimization in a 

feedback loop cycle (Chong et al., 2010). Thorough geological verification would be 

appropriate to validate the rock types and production data would be necessary to confirm 

the highest-productivity zones. The effect of kerogen maturity on well logs and resultant 

rock classes would assist in identifying rock types which have generated the highest 

amount of hydrocarbon. A study on the effect of kerogen maturity on well logs would 

require large amounts of core data with which to definitively measure kerogen maturity.  

Additionally, a larger-scale core study could also classify core-based rock types 

based on a variety of factors (mineralogy, organic content and maturity, pore size, 

saturation, etc.). Core-based rock types could be compared to well logs and well-log-

based rock types. This approach could advance understanding of relationships between 

rock properties (measured in a laboratory) and well logs (measured in the wellbore) for 

the purpose of rock classification. 

Mechanical properties have a significant impact on the fracture-stimulation 

potential and productivity of shale gas wells (Sondergeld et al., 2010). Considering the 

importance of mechanical properties, performing a supplementary analysis of mechanical 

properties and their relationship to fracture-prone shale would serve to enhance the value 

of rock typing for reservoir characterization.  
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Appendix A: Nonlinear Joint Inversion of Well Logs 

 

Well-logging tools measure physical properties resulting from the unique 

combination of mineral and fluid constituents. Accurately estimating the volumetric 

concentration of rock components is crucial to shale gas formation evaluation. Mineral 

concentrations, fluid saturations, organic content, and porosity are indicators of the 

potential productivity of a reservoir. The spatial distribution of properties and 

compositions of organic shales vary significantly both vertically and laterally (Passey et 

al., 2010). The process of inversion in the algorithm used here treats shale as a sequence 

of stacked layers as described by Heidari et al. (2011). This method is referred to as a 

‘nonlinear inversion’ because it does not assume linear relationships between mineral and 

fluid concentrations in the inversion process. It was found that neutron porosity and PEF 

well logs respond nonlinearly in the presence of complex mineralogy and gas. The model 

developed for the nonlinear inversion method also attempts to reduce shoulder-bed 

effects and reconcile differences between the volumes of investigation inherent to 

different measurement types. 

A.1 MODEL DEVELOPMENT 

A.1.1 Bed-Boundary Selection 

The nonlinear inversion requires selection of bed boundaries to establish layers 

for a bed-by-bed estimation of properties as described in Chapter 2. The best results were 

achieved by manual selection of bed boundaries in the cases studied in this thesis. 
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A.1.2 Mineral Model 

A review of quantitative mineral analysis from X-ray diffraction (XRD) was used 

to define the mineral model and benchmark inversion results. Figure A.1 shows the 

mineral model assumed in the nonlinear inversion. 

Figure A.1: Generalized mineral model assumed for volumetric calculations in 

Haynesville formation and Barnett formation shale gas plays. 

A.2 INVERSION METHOD 

Once bed boundaries are chosen to define layers, the inversion process estimates 

bed properties. The purpose of this initial inversion is to minimize shoulder-bed effects 

on well logs. Bed property estimation is performed by minimizing the quadratic cost 

function 

 

                
           

  , (A.1) 

 

where    is a vector of layer-by-layer density, photo-electric factor (PEF), resistivity, or 

neutron porosity. The vector      designates numerically simulated values for a 

particular property and    is the corresponding vector of measurements (well logs). The 

factor   is a regularization (stabilization) parameter;     is a vector that defines the 

reference model which can be chosen from either the average or center-bed values within 
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a layer. The gamma-ray, density, and PEF logs vary linearly with variations of layer 

properties. On the other hand, resistivity and neutron measurements vary nonlinearly with 

variation of layer properties in general. In the case of resistivity and neutron property 

inversion, the cost function from equation (A.1) is minimized using the Levenberg-

Marquardt method with the numerical simulation for each respective well log performed 

to calculate the entries of the Jacobian matrix. Results from the first inversion produce 

estimates of layer-by-layer density, PEF, neutron migration length (Lm), true formation 

resistivity, and spectral gamma ray (thorium, uranium, and potassium). These estimated 

layer properties are used in a second, subsequent inversion to estimate the composition of 

shale for the model shown in Figure A.1. Schlumberger’s SNUPAR software (McKeon 

and Scott, 1989) is used to calculate PEF and migration length for mineral compositions 

and concentrations in the inversion. Shale properties are estimated by minimizing the 

quadratic cost function 

 

                       
        

  , (A.2) 

   

where   is the vector of shale properties and mineral constituents, given by 
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where    designates the volumetric concentration of the i-th mineral constituent,    is 

the data weighting matrix,       is a vector of numerically simulated properties, and     

is a vector that includes properties determined in the first inversion.   

A.3 APPLICATION OF NONLINEAR INVERSION TO THE BARNETT FORMATION FIELD 

EXAMPLE 

The nonlinear inversion described by Heidari et al. (2011) was performed on 

depth zones of interest in one well in the Barnett formation. Well logs used in the 

inversion were bulk density, neutron porosity, apparent array induction resistivity (deep), 

and photo-electric factor (PEF). Ideally, the highest resolution well logs should be used in 

the inversion to better resolve bed-level properties. Well logs that are the product of 

filtering, poorly performed processing, or adverse logging conditions are a significant 

source of error and uncertainty on inversion results.  Gamma-ray logs were not used in 

the inversion because logging-site specific calibration constants were not available. 

Furthermore, gamma radiation properties for organic matter are highly variable and could 

not be accurately estimated. 

Archie’s equation (Archie, 1942) was used in the joint inversion to estimate 

porosity and saturation with the measured deep-reading apparent resistivity log. Archie’s 

equation is given by 

 

     
 

  

 

  
 , (A.4) 

 

where     is true resistivity,    is resistivity of connate water,   is total porosity, and    

is total water saturation. The coefficient   is the tortuosity factor; m and n are the 

cementation and saturation exponents, respectively.  
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An equation has not been developed for applications in gas shales and the use of 

Archie’s equation violates some of the assumptions made in its formulation (Torres-

Verdín, 2010). Nevertheless, the lack of an appropriate model requires modification that 

should be—but is not—based on laboratory measurements. The exponents m and n were 

adjusted to match core data ( ,    ) with field-measured apparent deep resistivity 

through equation (A.4). An initial rock classification was performed using cluster 

analysis in the study interval. Core points that fell in a rock class were assigned a 

grouping. This grouping would then form the basis for variable m and n exponents. 

Figure A.2 shows the result of matching core-calculated resistivities from Archie’s 

equation (Archie, 1942) with variable m and n values to measured apparent resistivities   

The m and n values obtained from this approach were then applied in the inversion to 

estimate in situ field saturations and porosity.   
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Figure A.2: Adjustment of resistivity exponents (a, m, n) by matching core saturation, 

porosity, and estimated connate-water resistivity to available resistivity 

measurements. For Class 1: a=1, m=2.05, n=2; for Class 2: a=1, m=2.3, 

n=2; for Class 3: a=1, m=2.1, n=2; for Class 4: a=1, m=1.7, n=1.5. 

 

Figures A.3 to A.5 show results from the inversion performed in the lower Barnett 

formation. Figure A.3 shows the inverted-log layer properties as they compare to 

measured well logs. Figure A.4 shows the estimated mineral compositions (red, blocked) 

together with core data (blue circles). Figure A.5 shows the well logs simulated from the 
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inverted mineral estimates (red, dashed lines) as they compare to the original measured 

logs (blue, solid lines).  

Figure A.3: Inverted layer properties compared to field measurements. Track 1: 

Measured and inverted density. Track 2: Measured and inverted PEF. Track 

3: Measured and inverted migration length. Track 4: Measured and inverted 

deep resistivity. 
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Figure A.4: Estimated shale composition from nonlinear inversion. Track 1: Total 

porosity. Track 2: Water saturation. Track 3: Volumetric concentration of 

kerogen. Track 4: Volumetric concentration of quartz. Track 5: Volumetric 

concentration of calcite. Track 6: Volumetric concentration of pyrite. Track 

7: Volumetric concentration of clay. 
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Figure A.5: Well logs numerically simulated from estimated rock components and their 

agreement with well logs. Track 1: Measured and simulated PEF. Track 2: 

Measured and simulated bulk density. Track 3: Measured and simulated 

neutron porosity (in limestone units). Track 4: Measured and simulated 

apparent deep resistivity. 
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Minerals Chemical Formula 
Density 

(g/cc) 
Source 

Quartz SiO2 2.65 

Zinsner and Pellerin (2007) Calcite CaCO3 2.71 

Pyrite FeS2 5.01 

Illite * 2.78 

*Predefined in 

Schlumberger’s SNUPAR 

code, McKeon and Scott 

(1989). 

Kerogen C6.5H10.2N0.12S0.02O0.32 1.3 Yen and Chilingarian (1976) 

Fluids 

Water Salinity: 90,000 ppm NaCl equivalent Zhao et al. (2007) 

Gas 
Density: 0.2 g/cc 

Chemical Formula: CH4 

Estimated from 

Schlumberger Chartbook, 

Gen-8: Density and 

Hydrogen Index of Gas 

Archie’s Resistivity Parameters 

 a m n 

Class 1 1 2.05 2 

Class 2 1 2.3 2 

Class 3 1 2.1 2 

Class 4 1 1.7 1.5 

Table A.1: Mineral, fluid, and resistivity values assumed in rock-compositional 

inversion for the lower Barnett formation well. 
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Appendix B: Calculation of TOC based on Passey’s Method 

Passey’s method (Passey et al., 1990) is an empirical, well-log-based approach to 

estimate TOC. Well logs required for the estimation are resistivity in conjunction with a 

‘porosity’ well log which can be one of the following: compressional sonic, neutron 

porosity, or density. In this thesis, the estimation was performed with both compressional 

sonic and apparent resistivity as well as bulk density and apparent resistivity. The 

remainder of this section shows the procedure used to estimate TOC concentration. 

Density and resistivity logs were plotted on the same track and overlain in a non-

organic rich interval. A value must be chosen in this interval to define the baseline for 

both curves. The corresponding TOC estimate is then calculated depth-by-depth with the 

following equation 

 

              
 

         
                    , (B.1) 

 

where          quantifies the degree of separation between resistivity and density logs, 

  is apparent resistivity (ohm.m),           is the baseline resistivity (ohm.m),    is bulk 

density (g/cc), and           is the baseline bulk density (g/cc).  

In order to calculate TOC, an estimation of the level of organic maturity, or LOM, 

must be made beforehand. Figure B.1 shows a plot of S2, which is a measure of the 

remaining hydrocarbon generative potential of kerogen, versus TOC (weight percent).  
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Figure B.1: Determination of LOM from a cross-plot of S2 vs. TOC obtained from 

laboratory measurements. 

An LOM value of 11.8 was chosen from Figure B.1 based on overlay values 

(Passey et al., 1990). This LOM value is used in the calculation of TOC via the equation 

 

                                , (B.2) 

 

where     is the calculated estimate of total organic carbon (wt. %),          is 

calculated from equation (B.1), and LOM is the level of organic maturity estimated from 

Figure B.1. 

Figure B.2 shows the input well logs (bulk density and apparent deep resistivity) 

and the outputs from the TOC estimation compared to core data. The last track compares 
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density-derived TOC and compressional-sonic-derived TOC to emphasize the similarity 

between results obtained with different input well logs.  

 

Figure B.2:  Display of inputs and results from Passey’s TOC-calculation method 

(Passey et al., 1990). Track 1: Relative depth. Track 2: Resistivity and 

density logs with grey shading indicating separation between the logs. Track 

3: Delta log R calculated from the separation between density and 

resistivity. Track 4: TOC from Passey’s method compared to core data. 

Track 5: Comparison between sonic/resistivity TOC calculation and 

density/resistivity TOC calculation.  
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Glossary 

  : Archie’s tortuosity factor 

AIT  Array Induction Tool, mark of Schlumberger 

   : Volumetric concentration of the i-th mineral constituent for nonlinear 

inversion 

     : Numerically simulated values for layer properties for nonlinear inversion 

   : Vector of field measurements for nonlinear inversion 

FMI : Formation Micro Imager 

Lm : Migration Length (cm) 

LOM : Level of Organic Maturity 

m : Archie’s cementation exponent 

n : Archie’s saturation exponent 

NTG : Net To Gross 

    : Vector of layer properties for nonlinear inversion 

      : Vector of simulated properties from nonlinear inversion 

    : Vector of properties determined in the initial nonlinear inversion 

   : Vector of the reference model from nonlinear inversion 

PEF : Photoelectric Factor 

ppm : Parts per million 

  : Apparent deep resistivity (ohm.m) 

          : Apparent deep resistivity baseline for Passey’s method (ohm.m) 

   or Rt : True deep resistivity (ohm.m) 

   : Resistivity of connate water (ohm.m) 

S2 : Remaining hydrocarbon generative potential (milligrams of hydrocarbon 
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per gram of rock) 

Sg : Gas Saturation (% of pore space) 

SNUPAR : Schlumberger Nuclear Parameter Code 

   or Sw : Water saturation (% of pore space) 

TOC : Total Organic Carbon (wt. %) 

   : Data weighting matrix for nonlinear inversion 

  : Vector of shale properties for nonlinear inversion 

XRD : X-Ray Diffraction  

  : Regularization (stabilization) parameter for nonlinear inversion 

         : Quantification of the degree of separation between bulk density and 

resistivity for Passey’s method 

   : Bulk density (g/cc) 

          : Baseline bulk density for Passey’s method (g/cc) 

       : Total porosity (%) 
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