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tricity markets from a transmission-constrained residual demand perspective.

This dissertation generalizes the residual demand concept, widely used by

economists in general markets, to electricity markets, which are constrained

by transmission networks. The transmission-constrained residual demand is

characterized by a sensitivity analysis of the optimal power flow program,

which is the electricity market clearing engine. Methods are proposed to op-

timize a generator or generation firm’s profit utilizing the residual demand

sensitivity information, which has several advantages over existing methods.
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Chapter 1

Introduction

Restructuring has been a worldwide trend in the electric power industry

in the last two decades. Starting in Chile and UK in the 1980s, electric industry

restructuring has built electricity markets almost all over the world [39]. For

example, there are electricity markets in:1

• Europe: United Kingdom, Germany, Spain, Nordic countries (Denmark,

Finland, Norway and Sweden)

• North America: ISO-NE (New England), PJM (originally Pennsylva-

nia, New Jersey and Maryland, since expanded to other states), CAISO

(California), ERCOT (Texas), Midwest ISO, Alberta (Canada)

• South America: Chile, Brazil, Argentina, Colombia

• Asia: Japan

In this chapter, we will briefly go over the backgrounds of this significant

restructuring in the electric power industry, introduce key elements in major

electricity markets in the US, and review electricity market analysis methods.

1This is not a comprehensive list of the electricity markets in the world.
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1.1 Electric Power Industry Restructuring: From Util-
ities to Electricity Markets

The content of this section mainly comes from [41]. Historically, the

power system is managed by a traditional vertically integrated utility, which

is in charge of electricity generation, transmission and distribution. Utilities

were understood to be natural monopolies due to economies of scale, and must

be regulated since monopolies generally do not have incentives to increase

efficiency, reduce costs, or improve quality of service [41].

On the other hand, new developments in transmission technology en-

able power to be efficiently transfered over long distances. This means gener-

ators located at different physical locations, far or near from the load, could

possibly compete to serve the load. In addition, more standardized reliability

criteria are imposed to regulate utilities’ operation. This also makes electricity

more of a standardized product so that it can be priced through competitive

markets instead of regulation.

All these new developments in technology and regulation eventually

help to introduce competition in generation, because competitive markets can

potentially increase efficiency, reduce costs, and improve quality of service [41].

Electric industry restructuring started with separating out generation

from the traditional utilities, and introducing wholesale competition. Reg-

ulated utilities still own the transmission and distribution networks, but the

transmission networks are operated by an Independent System Operator (ISO),

which is under regulation to provide “open access” to all market participants.
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Newly developed electricity markets have included more ingredients than gen-

eration competition, but generation competition is still the core of all electric-

ity market design.

With more than two decades of experiences up to now, both successful

and frustrating, there is a consensus that economic theories and engineering

laws should be integrated into electricity market design, and a successful elec-

tricity market should achieve a good balance between economy and engineering

characteristics.

An electricity market cannot operate independently of the power sys-

tem. The quality of electricity energy, mainly in terms of reliability, is deter-

mined by the power system standards. Without the power system standards

for electricity reliability, electricity energy would not even be considered as a

commodity. The power system is the basis the electricity market is built upon.

The established ways power engineers maintain system reliability greatly af-

fect electricity market design. In this sense, an electricity market has the dual

nature of being a market, and being an engineering system. In other words, it

is a market operated within engineering boundaries. For example, if transmis-

sion capacity is not enough to accommodate the most economic generators to

compete at certain locations in the system, electricity markets will work out

a less economic way to serve the load within the transmission limitations.

Generally speaking, the relative importance of the two characteristics

depend on the time frame. The closer to real time system operation, the more

important the engineering nature; the longer time frame, the more prominent

3



the market nature. This is because close-to-real-time engineering boundaries

must be strictly respected in order to avoid compromising power system reli-

ability, while long-term power transactions are viewed more as market behav-

iors, and rely less on engineering practices.

1.2 Typical electricity market elements

Although the objectives for restructuring the electric power industry

are similar, that are to increase efficiency, reduce costs, and improve quality

of service [41], the restructuring has differed a lot in scope and details in their

early stage. Nowadays, with more and more experiences accumulated, the

various electricity market designs eventually show a trend toward uniformity.

The Federal Energy Regulatory Commission (FERC) even promoted a “Stan-

dard Market Design” (SMD) for electricity markets in North America based

on economic theories, engineering laws, and experiences, to offer a streamlined

best practice. After that, electricity markets in the US have tended to be de-

signed to be compatible with SMD. For example, the CAISO nodal market,

and the proposed ERCOT nodal market are both compatible with SMD, and

thus they share a lot of similarities in design.

In this dissertation, we will consider the common design elements of the

major power markets in the US, referring to them collectively as a “typical”

market compatible with FERC’s SMD. All the studies covered in the disserta-

tion focus on a typical market, so the results could be applicable and useful for

most of the existing electricity markets directly or with minor modifications.

4



Element Time Frame centralized
bilateral contract years to weeks prior no
congestion revenue right a year to a month prior partially yes
day-ahead market a day prior yes
real-time market an hour to 10 minutes prior yes

Table 1.1: Typical electricity market elements

This chapter briefly introduces the some of the most important typical

electricity market elements that are energy related. There are other key ele-

ments in electricity markets, such as ancillary services, which are not directly

related to energy, and they will not be covered here.

We will start the introduction with sorting the key electricity market

elements in chronological order as listed in Tab. 1.1 from top to bottom. A

market participant can arrange transactions going through each element from

top to bottom, and finally the electric energy is physically sold to or purchased

from the electric power grid depending on it is a generator or load.

First, we introduce the day-ahead market and real-time market, be-

cause they are where the major restructuring took place, and are also the

most important subjects of this study.

The real-time market is an offer based centralized auction market op-

erated by the ISO. As its name suggests, it operates very close to the physical

trade time, typically one hour to 10 minutes prior. Generators can submit

offers into the real-time market. A generator offer is a price function of quan-

tity specifying at each output level what is the minimal acceptable price. A

5



typical generator offer is illustrated in Fig. 1.1. The ISO uses the offers as

inputs to an optimal power flow (OPF) program clear the market. The OPF

is an optimization problem minimizing total generation cost to meet the load

forecast in the trade interval, subject to transmission constraints. The trade

interval is typically 5-minute to 15-minute granularity. The cleared offers will

get a Locational Marginal Price (LMP) that is the incremental cost to serve

one extra unit of load at the same location. The detailed formulation and

pricing mechanism will be covered in detail in chapter 3 and 4. The offers

cleared in the real-time market are financially binding.

The day-ahead market is similar to the real-time market, except that it

is a forward market that clears typically a day before the trade day. Not only

generators but also loads can bid into the day-ahead market. A typical demand

bid is also illustrated in Fig. 1.1. The day-ahead market clearing mechanism

is very similar to the real-time market except that instead of meeting the load

forecast, the ISO tries to clear as much as possible balanced generation and

demand based on the their offers and bids. From optimization point of view,

it is simply treating the demand bids as negative generation offers, and setting

the load forecast at zero. Because day-ahead market and real-time market

share the same clearing engine, the OPF, the studies in this dissertation will

be applicable to both of them. The offers and bids that are cleared in the

day-ahead market are also financially binding.

The real-time market can be viewed as a fine tuning market for the day-

ahead market. It provides the opportunity for market participants to make

6
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Figure 1.1: Offers and bids

changes to the day-ahead cleared offers. A generator cleared 100 MW in the

day-ahead at $30 /MWh, and an additional 10 MW in the real-time market

at $40 /MWh, will be paid 100 · 30 + 10 · 40 = 140 $/h. This is called the

two-settlement system.

In a longer time frame, market participants can sign bilateral contracts

with other participants several years before the physical delivery time. The

bilateral contracts represent the counterparties’ willingness to trade electric

energy, and they are purely individual decisions of the counterparties without

the ISO’s involvement. The bilateral contracts are more of a market nature,

but the transmission capabilities need to considered to avoid infeasible trans-

actions at physical delivery time. In other words, the transactions should

not overload lines or line groups under normal operation condition and cer-

tain contingency conditions. Otherwise, the transactions will be at the risk

of being curtailed to maintain power system security at delivery time. The

7



bilateral contracts will also need to go through the day-ahead market and/or

real-time market to implicitly let the ISO know the transactions. It is implicit

because the ISO only knows the offers and bids of the counterparties, but does

not know there are the bilateral contracts between them when ISO clears the

market. From the ISO’s perspective, all bids are treated the same, and will

settled at the LMP. The counterparties need to do extra settlement outside

the day-ahead market and real-time market to fulfill the contract price. For

example, a generator and a load sign a contract of 100 MW at $30 price, and

the day-ahead market clears them at $40 each. In this case, the generator

receives $10 above the contract price, and needs to refund 10 · 100 = 1000 $/h

to the load. The load pays $40 /MWh to the ISO, and receives $10 /MWh

from the generator, so its net price is $30 /MWh, which is the contract price.

However, there will be a problem if the generator and load are not at

the same location, so they get different LMPs. For example, a generator and

a load sign a contract of 100 MW at $30 /MWh price, but due to transmission

congestion, the day-ahead market settles generator at $20 /MWh and the load

at $50 /MWh. The generator receives $10 /MWh less than the contract price,

and the load pays $20 /MWh more than the contract price. The counterparties

are short by (20 + 10) · 100 = 3000 $/h to be able to fulfill the contract price.

The amount is sometimes referred as congestion cost. The congestion revenue

right (CRR) is a financial instrument to hedge to congestion cost. Nowadays,

all electricity markets, both the existing ones and those under development in

the US, have CRRs built into the market design. For example, the proposed

8



ERCOT nodal market will have two kinds of CRRs, namely point to point

rights to receive compensation according to LMP differences, and flowgate

rights (FGRs), which are path based rights to receive compensation according

to transmission shadow prices [17]. Take the point to point CRR as an exam-

ple, the ISO will pay the CRR owner the difference in LMP between the source

and sink times the CRR amount. If the counterparties own 100MW CRR with

the source at the generator location and the sink at the load location, the ISO

will pay them (50 − 20) · 100 = 3000 $/h, which is exactly the amount to

cover the congestion cost. In this case, the congestion cost is perfectly hedged

through CRR.

The ISO will auction CRR a month to a year prior to the trade day.

Only part of the capacities in the transmission network will be auctioned. The

rest of the capacities are either allocated to transmission owners as CRRs prior

to the CRR auction, or held as margins.

A generator or generation firm can sell electric energy through these

market elements in the following chronological order.

• Contact potential buyers to sign long-term bilateral contracts.

• Participate in CRR auction to procure CRR in order to hedge congestion

cost risk.

• Make offers into day-ahead market trying to fulfill the contracted amount,

and try to make more profit with the remaining capacity.

9



• Fine tune offers in real-time market if it is more profitable.

• Deliver cleared schedule into the transmission grid.

1.3 Analyzing Strategic Behaviors in Electricity Mar-
kets via Residual Demand

The electricity market is a oligopoly market from the supply side. The

majority of total electric energy is supplied by a few big generation firms. Due

to this reason, they are strategic players in the market. The main topic of this

dissertation is to study how to analyze the strategic behaviors in centralized

offer-based day-ahead market and real-time market. In the rest of the dis-

sertation, unless stated otherwise, “electricity market” is specifically used to

refer to a day-ahead market or a real-time market. In other words, “electric-

ity market” is used through the rest of the dissertation to mean centralized

offer-based electricity energy market that is cleared by an OPF program, and

priced by LMP.

We assume the generators or generation firms pursue maximum profit

in electricity markets. Their strategic behaviors are characterized by or at

least bounded by the profit maximizing strategies. One major task of this

dissertation is to find the profit maximizing strategy. The approach we are

going to take is the residual demand approach, which has been widely used by

economists in general markets, as well as electricity markets without consider-

ing the transmission constraints. For example, [26] and [40] analyze the bid-

ding behaviors in ERCOT zonal balancing market using the residual demand
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approach, [42] compares the Cournot model and supply function equilibrium

model for German electricity market using the residual demand approach, and

[5] optimizes a generators’ expected profit based on historical residual demand

curves.

Following Borenstein, Bushnell, and Stoft [11], let us consider a gen-

erator’s profit maximization problem from the residual demand point of view

in a transmission-constrained network. For simplicity, assume the generator

under consideration does not have any forward bilateral contracts or CRRs.

As discussed in [33], handling the contracts only involves shifting the offer

curve by the contracted amount. CRRs can be handled in a similar fashion as

handling the bilateral contracts.

Conceptually, each generator is facing a residual demand curve. The

residual demand curve specifies at each price level the maximum market share

left for the generator. Without transmission constraints, the residual demand

is defined by the total system demand minus the total supply for other gener-

ators. The residual demand for generator i is

Ri (p) = D (p)− S−i (p) (1.1)

where

• p is the market price,

• D (p) is the system total demand function, either price elastic or price

inelastic,

11



• S−i (p) is the aggregated supply from other generators

S−i (p) =
∑
j 6=i

Sj (p),

where Sj (p) is the supply from generator j.

For example, if at price $50/MWh, the system total demand is 1000 MW, and

the aggregated supply from other generators is 800 MW, then there is 200 MW

market share left for the generator, so the residual demand at $50/MWh is

200 MW. The price-demand pair (50, 200) is a point on the residual demand

curve.

From generator i’s point of view, the market clears at the point where

its supply meets its residual demand,

Si(pi) = Ri(pi). (1.2)

The generator i’s profit as a function of the output quantity is

Πi(qi) = Pi(qi)qi − Ci(qi), (1.3)

where Pi(qi) = R−1
i (qi). That is, Pi(•) is the inverse function of Ri(•), so that

(Pi(qi), qi) is a point on the residual demand curve.

Although this discussion has been in terms of output quantity as the

strategic variable, the choice of the generator’s strategy decision variable is

not important. For example, the generator’s strategy can be: price, as in the

Bertrand model; quantity, as in the Cournot model; or a supply function, as in

12



the supply function model.2 Without loss of generality, we choose the quantity

to be the generator’s strategic variable.

As illustrated in Fig. 1.2, at production qi, generator i’s profit Πi(qi) is

the shaded area between quantities 0 and qi, above the marginal cost function

C ′i (•) and below the price Pi(qi). Intuitively, the problem of maximizing profit

boils down to finding a point on the residual demand curve that maximizes

the shaded area.

We assume piecewise quadratic cost functions and piecewise linear offer

function such that the residual demand curve is piecewise linear, and the profit

function is piecewise quadratic. The first order necessary condition (FONC)

for maximizing generator i’s profit is

dΠi

dqi
(qi+) = Pi(qi) + P ′i (qi)qi − C ′i(qi) ≤ 0,

dΠi

dqi
(qi−) = Pi(qi) + P ′i (qi)qi − C ′i(qi) ≥ 0,

(1.4)

with the definition

dΠi

dqi
(qmax
i +) = 0,

dΠi

dqi
(qmin
i −) = 0,

where qmax
i and qmin

i are generator i’s output upper and lower limit respectively.

2Although the generator’s strategy decision variable is not important in calculating the
generator’s maximum profit, it may make a huge difference for a Nash Equilibrium model.
In other words, the Nash Equilibrium, if it exists, largely depends on the strategy space used
in the model as has been observed in many references, such as [6]. Empirically characterizing
the Nash Equilibrium of electricity markets is out of the scope of this dissertation. Latest
researches in this direction include [40] and [42].
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Figure 1.2: Profit maximization given residual demand curve

The point on the residual demand curve satisfying (1.4) maximizes the

generator’s profit. The derivative of the residual demand is especially useful

because of its role in the FONC (1.4).

The transmission constraints in electricity markets are a challenge to

characterizing the residual demand. The uniqueness of electricity markets

comes largely from the transmission network [12]. The electric transmission

network that connects the suppliers and consumers for trading electricity has

to obey physical laws. In contrast to a transportation network, electricity

cannot flow across the electric transmission network arbitrarily. The electric

power flows are governed by Kirchoff’s Current Law (KCL) and Kirchoff’s

Voltage Law (KVL).

Some studies are based on over simplified representation of the trans-

mission network. For example, [11] considers only two nodes connected by

14



a single line, and [43] models the transmission network as a transportation

network. These models are not able to capture the characteristics of a looped

electric transmission network. There are other studies circumventing the chal-

lenge of transmission constraints, and make conjectured assumptions on the

market price response or competitors’ responses to the strategic behaviors,

such as [15, 29]. Because these conjectured variation models are based on very

arbitrary assumptions, they cannot capture the characteristics of a looped

electric transmission network either. Yao and Oren propose an Equilibrium

Programming with Equilibrium Constraints (EPEC) model to calculate the

market Nash equilibrium in a transmission-constrained network [49]. They

assume the residual demand functions are explicitly given and do not change

as transmission congestion conditions change. In essence, it is the same as the

conjectured variation model.

There have been many numerical case studies that look into the impacts

of binding transmission constraints, such as [10, 12, 48]. For example, Cardell,

Hitt and Hogan use a Cournot model in a three-bus looped network, and

numerically demonstrate that strategic behaviors involving the transmission

constraints could lead to a market outcome that is different from the usual

analysis of imperfect competition [12]. Their work reinforces the need for

more rigorous characterization of the effect of the transmission constraints

on residual demand. Xu and Yu use a linear supply function model, and

calculate the transmission-constrained supply function equilibrium (SFE) [48].

They consider the impact of the transmission, and calculate the best response
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numerically. These studies have provide valuable insights, but they have not

characterized the effects of transmission constraints systematically, and are far

from practical applications.

To the other extreme, there exist many electricity market simulation

tools, which can model the market clearing process for production level sys-

tems. These tools are used in industry to support business decisions. Different

bidding strategies can be tested in simulations to find out the most profitable

ones. Because of simulation software limitations, this often involves tremen-

dous human judgment and intervention. It is true that these simulation tools

can assist in decision making, but they are black boxes incapable of providing

insights about how the market fundamentals drive the market outcomes. It is

a big challenge and of great importance for market participants and market

monitors to gain insights about how the transmission network acts as a main

driver for the market outcome, and to know how to leverage these insights.

A perfect method to study the strategic behaviors should combine the

power of two methods above:

• from the practical point of view, the method is able to handle large scale

production level systems, and it is better if the existing advanced market

simulation engines can be reused;

• from the theoretical point of view, the method is able to represent the

transmission networks to the same details as in the true market clearing

process, and systematically find the profit maximizing strategy.
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There is another type of method that aims at these two goals: the math-

ematical program with complementary constraints (MPEC) method, proposed

for application in electricity markets by Hobbs, Metzler, and Pang [23]. The

idea is to formulate a generator or generation firm’s profit maximization as a

two-level optimization problem, where the lower level is the OPF problem, and

the upper level is the generator’s own profit maximization problem. One way

to solve this problem is to add the KKT conditions for the OPF into the upper

level profit maximization as constraints, and form an integrated optimization

problem of MPEC [23]. As discussed in [23], the MPEC problem for generator

i can be formulated in the following form:

max
αi

profiti

s.t. αi ≤ αi ≤ αi,

OPF KKT conditions,

(1.5)

where αi is generator i’s strategy variable vector, and αi and αi are its lower

bound and upper bound respectively. Note that the OPF KKT conditions is

nested in the generator’s MPEC problem (1.5).

A production level security constrained OPF problem typically mod-

els hundreds of generators, thousands of buses and lines, tens to hundreds

of contingencies [13], which makes the MPEC problem beyond the computa-

tional capability of existing MPEC solvers [30]. Moreover, although there exist

advanced algorithms and software to solve the OPF, which utilize the prop-

erty that only a few transmission constraints are likely to be simultaneously

binding, it is difficult to reuse them in solving the MPEC due to the nested
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structure. The MPEC approach essentially requires power system applica-

tion developers to start from scratch in order to implement such an algorithm.

Due to these reasons, there is rarely any implementation of the MPEC method

to calculate a generator’s optimal offer in practice. The MPEC method has

difficulty in meeting the first goal satisfactorily due to this limitation.

In summary, there is no available methods that could achieve the two

goals up to now. The major contributions of this dissertation are to propose

methods to meet the two goals. The method is based on the residual demand

concept. Through the rest of the dissertation we are going to:

• generalize the residual demand concept to transmission-constrained elec-

tricity markets, and

• systematically find the profit maximizing strategy based on transmission-

constrained residual demand.
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Chapter 2

Characterizing Strategic Behaviors in

Electricity Markets Without Transmission

Constraints

Before dealing with the transmission constraints, we first review how

the residual demand can be used to characterize strategic behaviors and Nash

equilibrium in the absence of transmission constraints. The characterization

is based on the supply function Nash equilibrium (SFE) model, which is a

residual demand method in essence.

2.1 Introduction

As introduced in chapter 1, in typical restructured electricity markets,

market participants make offers into the market. The offer is a function speci-

fying the minimum acceptable prices for different output levels. Offer functions

may be fixed for an extended time horizon, and the market is cleared for ev-

ery market clearing interval in the time horizon. An example is a day-ahead

market, where the offers may be fixed for a day, and the market is cleared for

each hour of the day. Because the system demand changes over time during

the time horizon, the clearing price and quantities also change over time.
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Klemperer and Meyer introduced the supply function equilibrium (SFE)

model in [27]. It is a Nash equilibrium model to cope with demand uncertainty.

Following Green and Newbery [21], the SFE model fits the electricity market

setting if we:

1. define the supply function to be the inverse of the offer function,

2. represent the load-time profile in an electric power system as being equiv-

alent to load uncertainty in Klemperer and Meyer’s formulation, and

3. perform a Nash equilibrium model analysis for the oligopolistic electricity

market.

The SFE model treats the offer functions in electricity markets more realisti-

cally than other Nash equilibrium models such as the Cournot model and the

Bertrand model.1 Due to this advantage, the SFE model has been widely used

to study strategic behavior and market power in electricity markets. Green

and Newbery were among the first to use the SFE model in electricity market

analysis. They applied the SFE model to the electricity market in England and

Wales in [21] and [20]. Following them, SFE models gained more popularity

in electricity markets [1–4, 7–9, 18, 24, 25, 36, 40, 48].

1Von der Fehr and Harbord argued that the SFE model may not be appropriate for
piecewise constant offers. In this case, the offers have to be approximated by continuous
differentiable functions in order to apply the SFE model. The discussion in that direction
is outside the scope of this chapter.
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Klemperer & Meyer and Green & Newbery demonstrated that the SFE

can be characterized as a system of differential equations [21, 27]. The end-

point is specified by the price and quantity pair where the supply function

intersects the highest demand curve. As the end-point condition for the differ-

ential equations changes, the solutions trace out a continuum of equilibria [25].

The continuum of SFE will be illustrated in section 2.2, and the multiplicity

greatly reduces the predictive value of the SFE model. Various efforts have

been carried out in order to reduce the range of SFEs or to set up criteria to

select preferable or “focal” equilibria.

Klemperer and Meyer showed that if the support of realized prices is

infinite and there are no capacity constraints, then there is a unique SFE.

However, this is not a realistic assumption for electricity markets, because the

load is always finite [25]. We need to be able to deal with supply function

equilibria that have finite price and quantity support.

Green and Newbery chose the most profitable SFE in [21]. However,

the most profitable SFE yields predicted prices that are substantially above

actual prices [7], which greatly weakens the credibility of this kind of choice.

Holmberg considered the effect of both capacity constraints and the price cap,

and singled out a unique SFE for the special case of symmetric players with risk

of power shortage [25]. The unique SFE selected in [25] involves the end-point

of the differential equation with price equal to the price cap and quantity equal

to the generation capacity. At least for a case with symmetric suppliers, this

SFE is the most profitable one that can be achieved with the given generation
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capacity and price cap. However, with high price caps, such as $2500/MWh

in actual electricity markets,2 this method may not significantly improve over

Green and Newbery’s method.

By observing that capacity constraints can possibly invalidate some

SFEs [8, 21], Genc and Reynolds intend to eliminate part of the SFE set from

the most competitive side by considering “pivotal” market participants [18],

whose absence would result in load curtailment at the price cap. However, the

eliminated SFE set are typically very small for realistic electricity markets.

Besides the efforts to eliminate some of the SFE by considering capacity

constraints, there are other researchers pursuing the same goal by refining the

equilibrium. Anderson & Xu performed a stability analysis for a two-player

discrete SFE model in [2]. However, they found that it would be difficult to

apply their analysis to a case with more players.

Baldick and Hogan applied a stability analysis to refine the equilibrium,

and they found a unique equilibrium for the symmetric linear marginal cost

case by ruling out equilibria that were unstable to a particular perturbation [8].

However, the perturbation considered in [8] to rule out equilibria is not “fair”

enough, because one of the SFEs, the Linear SFE (LSFE), is not perturbed at

all. It turns out that the only “not unstable” SFE under the perturbation is

indeed the LSFE. If we instead choose a similar perturbation that does affect

the LSFE, then the LSFE might be unstable as well. In a sense, their stability

2The CAISO nodal market currently imposes a $2500/MWh energy price cap.
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notion is too stringent to differentiate the continuum of SFEs into stable and

unstable.

Baldick and Hogan proposed another stability analysis in [9]. They as-

sumed that the supply functions are polynomials in order to be able to analyze

stability in a finite dimensional space. However, the best response mapping is

not a self map on the space of polynomial functions, so they assumed an ap-

proximation mechanism that maps an arbitrary function back to a polynomial

function in order to study the SFE stability in the polynomial function space.

Unfortunately, by making the approximation, they introduced another prob-

lem. That is, there is only one equilibrium (fixed point) for the approximated

best response mapping, namely the LSFE. Although they argued that similar

stability analysis could be performed for other SFEs as well, the analysis is

only valid for the LSFE.

We propose a novel stability analysis method in this chapter aimed at

overcoming the difficulties in [9]. Our method can analyze the stability of every

SFE, not just the LSFE. This is a significant improvement over Baldick and

Hogan’s method in [9], because being able to scrutinize every SFE enables

characterization of the stable SFE set. This could not be carried out with

Baldick and Hogan’s method.

A variation of the method in this chapter has been reported in [47].

In [47], we considered piecewise linear function perturbations based on Taylor

expansion, but we found it very difficult to generalize the analysis to high order

polynomial function perturbations. Therefore, we further developed the new
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method of this chapter to be able to handle high order polynomial function

perturbations. In this sense, [47] should be viewed as a preliminary result, and

this chapter provides a more thorough and advanced analysis.

The organization of the rest of the chapter is as follows. Section 2.2

recalls the SFE model as well as the best response, and demonstrates the equi-

librium continuum. Section 2.3 presents the SFE stability analysis method.

Section 2.4 applies the method to a symmetric example. Section 2.5 concludes.

2.2 The SFE Model and the Equilibrium Continuum

We briefly review the SFE model in this section. We assume that

each generation company’s goal is to maximize its total profit over a time

horizon, and its profit does not only depend on its own supply function, but

also on its competitors’ supply functions. Essentially, this is a game with the

generation companies viewed as players, the supply functions as strategies,

and profits as payoffs. A Nash Equilibrium for the game, if it exists, can

be used to characterize the electricity market. This type of analysis has been

applied to the England and Wales market of the 1990s [7, 20, 21], to the Electric

Reliability Council of Texas (ERCOT) market [26, 40], and to the Germany

market [42].

2.2.1 SFE and Best response Mapping

Consider a uniform price electricity market without transmission con-

straints. Our formulation mainly follows previous literatures [8, 9, 21]. Denote
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the market price by p, the supply functions by S = (Si)i=1,2,...,n, where n is the

total number of players in the market, each Si = Si (•) is a function from price

to quantity, and the cost functions by C = (Ci)i=1,2,...,n, where each Ci = Ci (•)

is a function from quantity to cost per unit time. We assume a continuous

load-time profile following Green and Newbery’s approach in [21] to interpret

the load-time profile as being equivalent to the uncertainty in Klemperer and

Meyer’s representation in [27]. That is, the demand function is in the following

form:

D(p, t) = N(t)− γp, t ∈ [t0, t1] ,

where N(t) is the load-time profile function. The range of N is [Nmin, Nmax],

where

Nmax = max
t∈[t0,t1]

{N(t)}, Nmin = min
t∈[t0,t1]

{N(t)}.

Without loss of generality, we assume the supply functions are defined on

a finite price support [pmin, pmax] where pmin and pmax are, respectively, the

minimum and maximum realizable prices. For example, they can be the price

floor and price cap respectively if the price floor and price cap have been set

for the electricity market. We assume the supply functions are in the space of

second-order differentiable functions, i.e. (Si)i=1,2,...,n ∈ C2 ([pmin, pmax]) .

Suppose the generation marginal cost has the following linear form:

C
(1)
i (q) = ciqi + ei, ∀q > 0, ∀i = 1, 2, . . . , n. (2.1)

(Superscript (1) will be used throughout to represent first order differentia-

tion.) Each player tries to maximize its total profit over all the market clearing
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intervals. We consider a process where each generation company optimally

(profit-maximizing) updates its supply function in response to observations

of the residual demand function. The transmission-unconstrained best re-

sponse in a supply function model is characterized in [21, 27, 36]. It is the

same equation of (1.4) assuming the residual demand function is continuous

differentiable, and using the supply function instead of the offer function. We

rewrite the characterization as

Si (p) = − (p− C ′i (Si (p)))R
′
i (p) , (2.2)

where R′i (p) can be calculated by taking derivative on both sides of (1.1).

We distinguish corresponding values before and after the best response

update by adding superscripts “old” and “new” respectively, and rewrite (2.2)

in a best response form as in [21, 27]:

Snew
i (p)

p− ciSnew
i (p)− ei

= γ + S
old(1)
−i (p) , ∀p ∈ [pmin, pmax] ,

so:

Snew
i (p) =

(
γ + S

old(1)
−i (p)

)
(p− ei)

1 + ci

(
γ + S

old(1)
−i (p)

) ,

∀p ∈ [pmin, pmax] , ∀i = 1, 2, . . . , n,

(2.3)

where subscript −i means all others except i, i.e.

S
old(1)
−i =

∑
j 6=i

S
old(1)
j .

Denote the best response mapping in (2.3) by β (•) such that:

Snew = β
(
Sold

)
. (2.4)
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The domain of β (•) is (C2 ([pmin, pmax]))
n
. Every SFE S? is a fixed point of

the best response mapping β (•), i.e.:

S? = β (S?) ,

or explicitly:

S?i (p) =

(
γ + S

?(1)
−i (p)

)
(p− ei)

1 + ci

(
γ + S

?(1)
−i (p)

) ,

∀p ∈ [pmin, pmax] , ∀i = 1, . . . , n.

(2.5)

To qualify for a SFE, besides (2.5), the following must be satisfied:

1. every supply function is non-decreasing, i.e.

S
?(1)
i (p) ≥ 0, ∀p ∈ [pmin, pmax] , ∀i = 1, . . . , n,

2. every supply function satisfies the (for example, second-order sufficient)

conditions for profit maximization given all the other supply functions.

Notice that each SFE as characterized above does not depend on any specific

load-time profile N(t). Following Anderson and Hu [2], we call it a “strong”

SFE. By “strong” we mean the supply function optimality holds for every

possible price realization within the finite load support [Nmin, Nmax]. We only

consider “strong” SFEs in this chapter.
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2.2.2 SFE Continuum

As described in [8], (2.5) can be transformed into the standard form of

non-linear differential equations:

S?(1) (p) =

[
1

n− 1
11T − I

]


S?
1 (p)

p−C(1)
1 (S?

1 (p))
S?

2 (p)

p−C(1)
2 (S?

2 (p))
...

S?
n(p)

p−C(1)
n (S?

n(p))

−
γ

n− 1
1,

where:

1 =
[
1 1 · · · 1

]T
,

and I is the identity matrix.

With different end point conditions, we can trace out a continuum of

equilibria by solving (2.5) [25, 27]. For example, let us consider the simple sym-

metric SFE with quadratic cost, i.e. the symmetric SFE with linear marginal

cost case. Suppose each player has the same cost function:

C (q) =
1

2
cq2 + eq.

Then a symmetric solution to (2.5) is reduced to solving the following differ-

ential equation:

S(1) (p) =
1

n− 1

(
S (p)

p− cS (p)− e
− γ
)
. (2.6)

Klemperer and Meyer characterized the full range of the continuum of

the equilibria using the following function:

f (p, S)
∆
= S(1) (p) =

1

n− 1

(
S

p− cS − e
− γ
)
.

28



As analyzed by Klemperer and Meyer, there is a continuum of SFEs existing

between the two loci f (p, S) = 0 and f (p, S) =∞ in the p-S plane [27].

We demonstrate the continuum of SFEs in Fig. 2.1. The graph corre-

sponds to the symmetric linear marginal cost computational example we will

discuss in detail in section 2.4. In this case:

f (p, S) = 0 ⇔ p =

(
c+

1

γ

)
S + e,

f (p, S) =∞ ⇔ p = cS + e,

which define straight lines.

Every point on the line D(p) = −γp + Nmax that is between the loci

f (p, S) = ∞ and f (p, S) = 0 can be an end point to solve the differential

equation (2.6). Therefore, there is a continuum of solutions to (2.6). The

“strong” SFEs are the portion of these solutions that are between the minimum

demand D(p) = −γp+Nmin and the maximum demand D(p) = −γp+Nmax .

The boundaries of the SFE continuum are the “least competitive SFE,” whose

end point is the intersection of f (p, S) = 0 and D(p) = −γp+Nmax, and the

“most competitive SFE,” whose end point is the intersection of f (p, S) = ∞

and D(p) = −γp+Nmax.

Note that there is wide range between the “least competitive SFE”

and the “most competitive SFE,” which greatly limits the predictive value of

the SFE model. In Fig. 2.1, we plot 50 SFEs evenly distributed between the

“least competitive SFE” and the “most competitive SFE,” to represent the

SFE continuum.
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Figure 2.1: A continuum of symmetric SFEs
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2.3 Stability Analysis of SFE

We have illustrated that there exists a continuum of strong SFEs. The

multiplicity of the SFE greatly limits its predictive value. We want to refine

the SFEs by a stability analysis. The major contribution of this chapter is to

refine the equilibria for finite demand support through a stability analysis.

The idea of stability analysis is motivated by Baldick and Hogan’s pa-

per [9]. Baldick and Hogan did not study strong SFEs as we do in this chapter.

Instead, they considered supply function equilibrium in the polynomial func-

tion space. Unfortunately, they were not able to find any other equilibrium

in the polynomial function space other than the linear SFE. As a result, they

studied the stability of the linear SFE in the polynomial function space, but

were not able to apply the same analysis to other nonlinear SFEs. In contrast,

we propose a stability analysis that is applicable to all strong SFEs.

2.3.1 Piecewise polynomial perturbations

We redefine the best response in terms of deviations. Consider devia-

tions from S?,

∆S = S− S?,

we denote the best response mapping in deviations by β̂, which is characterized

by:

β̂ (∆S) = β (∆S + S?)− S?, ∀∆S ∈
(
C2 ([pmin, pmax])

)n
. (2.7)
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Or, explicitly, β̂ is derived by rewriting (2.3) in terms of polynomial deviation

functions:

∆Snew
i (p) = Snew

i (p)− S?i (p)

=

(
γ + ∆S

old(1)
i (p) + S

?(1)
i (p)

)
(p− ei)

1 + ci

(
γ + ∆S

old(1)
i (p) + S

?(1)
i (p)

) − S?i (p),
∀p ∈ [pmin, pmax] , ∀i = 1, 2, . . . , n.

(2.8)

Because S? is a fixed point of β(•), S?−S? = 0 is a fixed point of β̂(•).

Therefore, the stability problem of S? under β(•) is equivalent to the stability

problem of 0 under β̂(•).

In this chapter, we consider a specific class of perturbations to the

strong SFEs, namely perturbations specified by polynomial functions. For

each player i, the deviations ∆Si can be any order-m polynomial function,

where m is a predetermined positive integer. The polynomial deviations for

all players are in the following form:

∆S =


∆S1

∆S2
...
∆Sn−1

∆Sn

 =



∑m
`=0 α1`

(p−p0)`

`!∑m
`=0 α2`

(p−p0)`

`!
...∑m

`=0 α(n−1)`
(p−p0)`

`!∑m
`=0 αn`

(p−p0)`

`!

 . (2.9)

where p0 is a price reference.

Before we can study the SFE stability in the polynomial function de-

viation space, there is one problem that needs to be resolved. As discussed

in [9], the range of the best response map (2.2.1) is the space of all continu-

ous differentiable functions, so generally the best response applied to polyno-
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mial deviation functions will not produce polynomial deviation functions, i.e.

β̂(∆Sold) may not be a polynomial function. In order to be able to analyze

the stability, we need a self map on a Banach space. In order to make the

best response map of deviations a self map defined on the polynomial func-

tion space, following [9], we regress the true best response map β̂(∆Sold) on

the polynomial function space for observations of the true map at particular

prices p1, . . . , pk, where k ≥ m. The coefficients of the regression polynomial

αnew
i , i = 1, . . . ,m are specified by:

αnew
i· =

(
XTX

)−1
XTYi

where:

αnew
i· =


αnew
i0

αnew
i1

...
αnew
i(m−1)

αnew
im

 ,

X =



1 (p1 − p0) (p1−p0)2

2!
· · · (p1−p0)m−1

(m−1)!
(p1−p0)m

m!

1 (p2 − p0) (p2−p0)2

2!
· · · (p2−p0)m−1

(m−1)!
(p2−p0)m

m!
...

...
...

. . .
...

...

1 (pk−1 − p0) (pk−1−p0)2

2!
· · · (pk−1−p0)m−1

(m−1)!

(pk−1−p0)m

m!

1 (pk − p0) (pk−p0)2

2!
· · · (pk−p0)m−1

(m−1)!
(pk−p0)m

m!


,

Yi =


∆Snew

i (p1)
∆Snew

i (p2)
...
∆Snew

i (pk−1)
∆Snew

i (pk)

 ,
with ∆Snew

i (•) defined in (2.8). This defines the best response map in polyno-

mial deviation function space, or more precisely, in the space of the polynomial
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coefficients α ∈ Rn(m+1). Denote the map by βp(•) : Rn(m+1) → Rn(m+1), such

that:

βp(α
old) =



(
XTX

)−1
XTY1(

XTX
)−1

XTY2
...(
XTX

)−1
XTYn−1(

XTX
)−1

XTYn

 ,
where

αold =


αold

1·
αold

2·
...
αold

(n−1)·
αold
n·

 .
By definition, 0 is a fixed point of βp(•) in Rn(m+1) as shown below:

βp(0) =



(
XTX

)−1
XT0(

XTX
)−1

XT0
...(

XTX
)−1

XT0(
XTX

)−1
XT0


= 0,

since 0 is a fixed point of β̂ (•).

The analysis can be easily generalized to piecewise polynomial function

perturbations, if the regression is performed in a piecewise manner, and we

repeatedly apply the same analysis on each of the polynomial segments. We

will demonstrate this through an example in section 2.4.

2.3.2 Stability Analysis

We analyze the stability of βp(•) at 0 in Rn(m+1).
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Definition 1 (Lyapunov Stability). Let ‖ • ‖ be a norm on vector space

Rn(m+1). The n-player SFE S? is said to be Lyapunov stable to order-m poly-

nomial deviation functions, which have the coefficients α ∈ Rn(m+1) , if for

any ε > 0, there exists δ(ε) > 0 such that if ‖α‖ < δ(ε),

∥∥βtp(α)
∥∥ < ε, ∀t ∈ N. (2.10)

Definition 2 (Asymptotic Stability). The n-player SFE S? is said to be

asymptotically stable if it is Lyapunov stable and if there exists δ such that

if ‖α‖ < δ,

lim
t→∞

∥∥βtp(α)
∥∥ = 0. (2.11)

A sufficient condition for asymptotic stability is the spectral radius of

the Jacobian matrix of βp(•) evaluated at 0 is less than 1, i.e.

ρ

(
∂αnew

∂αold
(0)

)
< 1, (2.12)

where ρ (•) denotes the spectral radius. In the vicinity of 0, (2.12) implies

(2.11), and (2.11) implies the boundedness of (2.10), so that the asymptotic

stability definition is satisfied.

Similar to [9], after simplification, the partial derivatives are in the

following form:

∂αnew
i·

∂αold
i·

(0) = 0, ∀i = 1, · · · , n,

∂αnew
i·

∂αold
j·

(0) =
(
XTX

)−1
XTΛiXΦi, ∀j 6= i,

(2.13)
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where

Λi =



1(
1+ci

(
γ+S

?(1)
−i (p1)

))2 0 · · · 0

0 1(
1+ci

(
γ+S

?(1)
−i (p2)

))2 · · · 0

...
...

. . .
...

0 0 · · · 1(
1+ci

(
γ+S

?(1)
−i (pk)

))2



Φi =


0 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · m


Now we can calculate the Jacobian matrix and its spectral radius in

order to characterize the asymptotic stability.

2.4 Computational Example

In this section, we apply the stability analysis discussed in section 2.3 to

a computational example. First, we will demonstrate how the stability analysis

can effectively refine the SFEs. Then, we will also study the robustness of the

analysis against variations in regression models, which involve changes in:

• price reference,

• number of observations, and

• number of polynomial segments.
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2.4.1 Example Setup

The example is derived from [8]. All the parameters remain the same

as in [8] except the demand range [Nmin, Nmax]. The reason we change the

demand range in the example is to represent the daily load variation for an

electricity market more realistically.

The parameter values for the example are as follows. The demand

curve is D (p, t) = −γp + N (t). The parameter values are γ = 0.125, n = 3,

c = 0.5, e = 9, N (t) = 21 + 15t, t ∈ [0, 1]. The range of N(t) is [21, 36], which

represents a typical summer day load variation.3

Because there are infinitely many SFEs, it is impossible to explicitly

study the stability of every SFE. We discretize the SFE set into 50 represen-

tative SFEs by choosing 50 different end points on D(p, 1), that are evenly

distributed between f(p, S) = 0 and f(p, S) = ∞ as shown in Fig. 2.1.4 We

sort them in ascending order of competitiveness, so the “most competitive SFE

” is #1, and the “least competitive SFE” is #50. To gauge the effectiveness of

the refinement, we will consider the number of equilibria among the samples

that are asymptotically stable to perturbation under various model scenarios

of the regression model setup.

3For example, the CAISO day-ahead market load varied from 22.2 GW to 36.4 GW for
trade day July 10th, 2009.

4If the original SFE set had been discretized more finely than just 50 samples, we may
be able to observe a more accurate stable SFE distribution in the continuum, but for the
purpose of this study, a sample size of 50 seems to be large enough.
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2.4.2 Regression Model Setup

There are many ways to set up a polynomial regression model, and

it is a subjective choice. We will test the robustness of this analysis against

variations in the regression model. We will apply the same stability analysis

to several regression model scenarios that cover the following choices:

• price reference,

1. p0 = 0, 0 is a common choice for polynomial regression;

2. p0 = e, as a cost function parameter, e might be a “focal” choice;

• number of observations,

1. k = 24, assuming the observations are hourly, i.e. there are 24

observations corresponding to 24 hours of the day;

2. k = 2(m + 1), assuming the number of observations adapt to the

number of degrees of freedom in the regression but with a fixed

redundancy;

• number of polynomial segments

1. seg = 1, one piece regression;

2. seg = 3, break the supply function into 3 pieces evenly, and do

piecewise regression;

38



With each factor having 2 choices, we will explore a total of 8 scenarios for the

regression model. The scenario with p0 = 0, k = 24, and seg = 1 is referred

as the base scenario.

2.4.3 Stability Analysis Results

The asymptotically stable SFEs for various orders m in the 8 different

scenarios are summarized in Tab. 2.1 and Tab. 2.2, and are plotted in Fig. 2.2.

We also list some of the calculated spectral radius data for the Jacobian in

Tab. 2.3 5. The data in Tab. 2.3 is for the base scenario only, which corresponds

to the second column in Tab. 2.1, and we have restricted the list to SFE

#1 to #10, as all the spectral radii are greater than one for SFE # greater

than 10. With the data in Tab. 2.3, one can verify the asymptotic stability

results in the second column of Tab. 2.1, where a less than one spectral radius

in Tab. 2.3 indicates a asymptotically stable SFE in the second column of

Tab. 2.1. The asymptotically stable SFEs under the other 7 scenarios are

determined in exactly the same way, and the asymptotic stability results are

listed in Tab. 2.1 and Tab. 2.2.

The first observation is that the stability analysis is very effective in

refining the SFEs. As shown in Tab. 2.1 and Tab. 2.2, even with linear func-

5The spectral radius calculation may encounter numerical difficulties due to ill-
conditioned Jacobian matrix, especially when m is larger than 5. This is caused by the
fact that high order regressors do not add much variability to the regression, and are nearly
linearly dependent on the low order regressors. Dealing with the numerical difficulty is out
of the scope of this chapter. On the other hand, this fact suggests that it is unnecessary
to pursue unrealistically high order polynomials in the regression, because it is not going to
improve the goodness of fit.
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p0 = 0 p0 = e p0 = 0 p0 = e
m k = 24 k = 24 k = 2(m+ 1) k = 2(m+ 1)

seg = 1 seg = 1 seg = 1 seg = 1
1 #1 – #8 #1 – #8 #1 – #8 #1 – #8
2 #2 – #4 #2 – #4 #2 – #4 #2 – #4
3 #3, #4 #3, #4 #3, #4 #3, #4
≥ 4 none none none none

Table 2.1: Asymptotically stable SFEs under polynomial function (1-piece)
deviations

p0 = 0 p0 = e p0 = 0 p0 = e
m k = 24 k = 24 k = 2(m+ 1) k = 2(m+ 1)

seg = 3 seg = 3 seg = 3 seg = 3
1 #2 – #7 #2 – #7 #2 – #7 #2 – #7
2 #3 – #4 #3 – #4 #3 – #4 #3 – #4
3 #4 #4 #4 #4
≥ 4 none none none none

Table 2.2: Asymptotically stable SFEs under polynomial function (3-piece)
deviations

tion perturbations, i.e. m = 1, only 6 or 8 SFEs out of the 50 samples are

stable. Empirically, the stable SFE set shrinks as m increases, and if a SFE

is stable under higher m, it is also stable under lower m. For cubic function

perturbations, i.e. m = 3, only 1 or 2 SFEs out of the 50 samples are stable.

If m is greater or equal than 4, the stable SFE set shrinks to an empty

set. This is consistent with Baldick and Hogan’s analysis of the stability of

the linear SFE [9], and they have raised the concern whether a SFE could be

sustained in practice. We will discuss more about this in the next section.
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m #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
1 0.72 0.34 0.02 0.31 0.54 0.72 0.87 0.99 1.09 1.17
2 1.25 0.78 0.47 0.52 1.16 1.61 1.94 2.20 2.41 2.59
3 1.93 1.34 0.95 0.89 1.83 2.57 3.10 3.51 3.83 4.10
4 2.75 1.95 1.45 1.30 2.54 3.58 4.30 4.86 5.30 5.65
5 2.67 1.91 1.95 1.71 3.26 4.61 5.54 6.24 6.79 7.23

Table 2.3: Spectral radius in the base scenario

The second observation is that stable SFEs are located on the com-

petitive side of the continuum. There are no stable SFEs among the samples

with SFE # greater than 8. In other words, very uncompetitive SFEs are

unstable. This is consistent with the stability analysis in [47] and the actual

market results in [7].

The third observation is that the results are not very sensitive to the

choice of p0 and the number of observations. Let us compare different columns

in Tab. 2.1. The asymptotically stable sample SFE set does not change across

the selected different choices in price reference and number of observations.

The same phenomenon is observed in Tab. 2.2.

Compared with the price reference and the number of observations, the

results are slightly more sensitive to the number of regression segments. For

example, the m = 1 asymptotically stable SFE lower boundary in 2.1 is #1,

and the upper boundary is #8, while the m = 1 stable SFE lower boundary

in 2.2 is #2, and the upper boundary is #7.

Overall, the analysis is robust against variations in the regression model,
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Figure 2.2: Stable SFEs

which adds to its predictive value.

2.4.4 Practical Implication

We have demonstrated the effectiveness of the stability analysis method

in refining the SFEs in the previous section. However, with m greater than

or equal than 4, the stable SFE set shrinks to an empty set, which raises the

same concern as in [9] as to whether a SFE could exist in practice.

The concern boils down to the question of how the deviation functions
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are likely to be modeled in practice. Since piecewise linear functions and

piecewise quadratic functions are very common choices for approximating the

deviation functions in practice, the concern may not be a real problem, because

there exists stable SFEs that are able to withstand piecewise linear or piecewise

quadratic function perturbations.

Another factor that will further relieve the concern is the market par-

ticipants’ inertia in changing their offers in the real world. Consider a simple

model of inertia with a scalar as follows:

Snew = Sold + κ
(
β
(
Sold

)
− Sold

)
,

where κ ≤ 1, meaning that the supply function update can be slower than the

best response. Note that κ = 1 corresponds to the best response (2.4), and

smaller κ value represents larger inertia. In this case,

αnew = (1− κ)αold + κ



(
XTX

)−1
XTY1(

XTX
)−1

XTY2
...(
XTX

)−1
XTYn−1(

XTX
)−1

XTYn

 ,

so similar to (2.13), the elements in the Jacobian will be in the following form:

∂αnew
i·

∂αold
i·

(0) = (1− κ)I, ∀i = 1, · · · , n,

∂αnew
i·

∂αold
j·

(0) = κ
(
XTX

)−1
XTΛiXΦi, ∀j 6= i.

For the base scenario, the stable SFE set with κ = 0.6, κ = 0.4, κ = 0.1,

and κ = 0.01 are listed in Tab. 2.4. With some inertia, more SFEs are stable.
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m κ = 0.6 κ = 0.4 κ = 0.1 κ = 0.01
1 #1 – #8 #1 – #8 #1 – #8 #1 – #8
2 #1 – #4 #1 – #4 #1 – #4 #1 – #4
3 #1 – #4 #1 – #4 #1 – #4 #1 – #4
4 none #1 – #3 #1 – #3 #1 – #3
5 none #1 #1 – #3 #1 – #3

Table 2.4: Asymptotically stable SFEs under inertia

A small inertia of κ = 0.6 makes SFE #1 and #2 stable for m = 3, which are

unstable in Tab. 2.1. A large inertia of κ = 0.1 makes SFE #1, #2, and #3

to stand order 5 polynomial function perturbations 6, and the stable set does

not change with a larger inertia of κ = 0.01.

Because deviation functions are unlikely to be represented by high or-

der polynomials in practice, we can therefore expect SFEs to be exhibited

through market interaction, particularly if market participants are conserva-

tive in changing their offers through actions such as inertia.

2.5 Conclusion

In this chapter, we demonstrated how to use residual demand to char-

acterize the strategic behaviors and Nash equilibrium in the absence of trans-

mission constraint in a SFE model. We proposed a stability analysis method

to refine the SFEs. The system dynamics are defined by the best response

6Estimating the inertia in practice is out of the scope of this chapter. Hortaçsu and
Puller did some empirical study about the bidding behaviors in the ERCOT market [26],
which suggests that the inertia varies for different market participants.
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mapping based on the residual demand function, and the stability analysis is

performed in deviations space, i.e. we study the stability of the fixed point

0 under the best response mapping. We restrict our attention to polynomial

functions (and piecewise polynomial functions) perturbations, which result

from a regression of the true perturbation functions. We find that the stable

SFE set can be much smaller than the original set. Moreover, the method is

also very robust against variations in the regression model. This study also

implies that for practical deviations in the real world, stable SFEs can be sus-

tainable. The stability analysis method provides an effective way to refine the

SFEs, and thus improves the value of the SFE model in characterizing the

performance of electricity markets.
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Chapter 3

Characterizing Strategic Behaviors via

Transmission-Constrained Residual Demand

Derivative

In this chapter, we will generalize the residual demand concept to a

transmission-constrained network, and demonstrate how to use it to charac-

terize the strategic behaviors in electricity markets.

The organization of the rest of the chapter is as follows. Section 3.1

presents the concept of transmission-constrained residual demand, and the

analytic calculation of its derivative. Section 3.2 provides one intuitive ex-

ample and two numerical examples taken from previous papers to verify our

calculation. In addition, Appendix A provides background knowledge about

ordinary least squares (OLS) problem and weighted least squares (WLS) prob-

lem, which are used in proving some of the transmission-constrained residual

demand derivative (TCRDD) properties. Section 3.3 improves the TCRDD

calculation efficiency and practical implementation. Section 3.4 proposes a

decoupled method to maximize a generator’s profit based on the TCRDD.

Section 3.5 applies the proposed profit maximization approach to the IEEE

118 bus system. Section 3.6 concludes.
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3.1 Residual Demand and Its Derivative

In a typical electricity market, let us assume that different generators

are located at different buses, and index the generators by the bus number.

Under nodal pricing, transmission constraints will generally lead to different

nodal prices for different buses, so instead of having only one uniform market

price p, we will have a vector of nodal equilibrium prices:

p =
[
p1 p2 . . . pn

]T
assuming there are n buses in the system.

We assume that the demand at each bus depends on only its local

price, because in the short term, it is unlikely that a market participant could

shift loads between buses according to real time nodal prices. Currently, the

real-time prices are not published quickly enough to support this kind of load

response in electricity markets.

Accordingly, a generator’s residual demand will be a function of its

local nodal price. Write out the energy balance condition:

n∑
j=1

(Dj (pj)− Sj (pj)) = 0. (3.1)

By keeping a specific Si (pi)−Di (pi) on the left-hand side, and moving

all other terms to the right-hand side, we obtain

Si (pi)−Di (pi) =
n∑

j=1,j 6=i

(Dj (pj)− Sj (pj)) . (3.2)
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Before we continue, to simplify notation, we combine each generator’s

supply function with the demand curve at the same bus by treating demand

as negative supply, and this process will result in only one supply function left

at each bus so that (3.2) becomes:

Si (pi) =
n∑

j=1,j 6=i

−Sj (pj) . (3.3)

The market clearing condition for the residual market at bus i implies that

the residual demand equals supply, i.e.:

Ri (pi) = Si (pi) . (3.4)

Without loss of generality, we are going to characterize the transmission-

constrained residual demand, and its derive R′i (pi) at a specific bus i. We

choose this bus to be the slack bus, and reorder all the system buses to num-

ber this chosen bus to be bus n. That is, we want to characterize the residual

demand, and calculated its derivative R′n (pn) at the slack bus n. The cor-

responding offer cost function, whose derivative is the offer function or the

inverse supply function Si (•), is denoted by Oi (•). That is, we define Oi (•)

by

pi = O′i (Si (pi)) , ∀pi. (3.5)

Also we assume the functions Oi (•) , ∀i = 1, . . . , n are strictly convex and

twice differentiable.

Following [38], we assume the market is cleared by solving the following
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DC OPF problem:

min
q

n∑
i=1

Oi (qi) , (3.6)

s.t. Hq ≤ Z, (3.7)

qmin
n ≤ qn ≤ qmax

n , (3.8)

1Tq = 0. (3.9)

where

• bus n is the slack bus,

• q =
[
q1 q2 . . . qn

]T
is the nodal power injection quantity vector,

• (3.7) consists of the transmission constraints and the generation capacity

constraints for non-slack buses (suppose there are totally m of them),

• H is a m×n matrix consisting of the submatrix of power transfer distri-

bution factors (PTDFs) corresponding to the transmission constraints

and the submatrix representing the capacity constraints for non-slack

buses,

• Z consists of the transmission capacity limits and the generation capacity

limits for non-slack buses,

• 1 =
[

1 1 . . . 1
]︸ ︷︷ ︸

n

T
,

• (3.8) is the generation capacity constraint, that specifies the upper and

lower limits of the domain of the offer cost function at the slack bus, and
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• (3.9) is the energy balance constraint.

There are two widely used OPF formulations. One is to consider elastic

demands, and the OPF objective is to maximize total social welfare, as is used

in the day-ahead market; the other is to consider inelastic demand, and the

OPF objective is to minimize total generation cost, as is used in the real-time

market. We use the first OPF formulation in this chapter to derive the residual

demand derivative. However, we stress that the methodology is applicable to

both OPF formulations.

We intend to calculate the residual demand derivative evaluated at the

current market operating point. The current market operating point is de-

termined by the OPF solution. Therefore, the residual demand derivative

calculation is a post-OPF analysis. Given an OPF solution, we know which

constraints are binding in the OPF formulation. Given these binding OPF

constraints at the solution, we will form the Lagrangian for the OPF prob-

lem (3.6)–(3.9) including only binding constraints. Let us denote the binding

constraints by subscript “b”. The calculation needs to be separated into two

cases:

• the slack bus generation capacity constraint (3.8) is not binding, and

• the slack bus generation capacity constraint (3.8) is binding,

but we will see that the two cases result in the same expression for the residual

demand derivative.
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3.1.1 Non-binding slack bus generation capacity constraint

The Lagrangian for (3.6)–(3.9) including only the binding constraints

is as follows:

L =
n∑
i=1

Oi (qi)− λ
n∑
i=1

qi + µT
b (Hbq− Zb) . (3.10)

The first-order necessary conditions (FONCs) of (3.10) are

O′i (qi) = λ+ µT
b H̄bi, i = 1, . . . , n− 1, (3.11)

O′n (qn) = λ, (3.12)

H̄bq̄ = Zb, (3.13)

qn = −
n−1∑
i=1

qi. (3.14)

where

• H̄b is a mb × (n− 1) matrix generated by eliminating the n-th column

(all elements in this column are zeros) of Hb,

• H̄bi is the i-th column of Hb,

• q̄ is obtained from q by eliminating the n-th entry,

• Zb consists of the binding transmission capacity limits and the binding

generation capacity limits for non-slack buses, and

• by defnition, λ is the LMP for the at the slack bus n, and the right hand

side of (3.11) is the LMP for other buses.
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There are n+mb +1 equations, and n+mb +1 variables in the FONCs

(3.11)–(3.14), so the FONCs are uniquely solvable assuming regularity condi-

tions. Denote the solution by

[
q̂1 . . . q̂n λ̂ µ̂b1 . . . µ̂bmb

]T
.

The FONCs characterize a market clearing point. From the perspective

of the generator located at the slack bus, the market clearing point
(
λ̂, q̂n

)
is

the intersection of its own offer cost function and the residual demand func-

tion. If the generator located at the slack bus changes its offer function, the

market will clear at a different point, which is the new intersection point of

the changed offer function and the residual demand function. In other words,

the market clearing points generated by changing the offer function of the

generator located at the slack bus are all points on the residual demand func-

tion. Therefore, the residual demand function is characterized by the locus of

the market clearing points (λ, qn) obtained by changing the generator’s offer

function.

That is, if we remove the equations that contain the offer information

of the generator located at the slack bus from the FONCs, the remaining equa-

tions characterize the residual demand function, because the residual demand

function should not depend on a generator’s own offer information. In the

FONCs (3.11)–(3.14), (3.12) contains O′n (•), which is based on the offer cost

function of the generator located at the slack bus, so we should remove it

from the FONCs to characterize the residual demand function. With (3.12)
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removed, we have n + mb equations, namely (3.11), (3.13) and (3.14), and

n + mb + 1 variables left in the FONCs, so there is one degree of freedom.

The one degree of freedom implicitly characterizes a locus of (λ, qn), i.e. the

residual demand curve.

3.1.2 Binding slack bus generation capacity constraint

Consider that the upper generation capacity constraint is binding at

the slack bus. The Lagrangian for (3.6)–(3.9) including only the binding con-

straints is as follows:

L =
n∑
i=1

Oi (qi)− λ
n∑
i=1

qi + µT
b (Hbq− Zb) + ρmax (qn − qmax

n ) , (3.15)

where without loss of generality, we have assumed that the maximum genera-

tion capacity constraint is binding. A similar analysis applies for the minimum

generation capacity constraint. The FONCs of (3.15) are:

O′i (qi) = λ+ µT
b H̄bi, i = 1, . . . , n− 1, (3.16)

O′n (qn)− ρmax = λ, (3.17)

H̄bq̄ = Zb, (3.18)

qn = −
n−1∑
i=1

qi, (3.19)

qn = qmax
n (3.20)

Denote the solution of (3.16)–(3.20) by

[
q̂1 . . . q̂n λ̂ µ̂b1 . . . µ̂bmb

ρ̂max
]T
.
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We need to clarify that generally speaking, we could not choose a bus

with binding generation capacity constraint as the slack bus to solve problems

involving power flow. The reason why we can do this in this case is that

the OPF is already solved, so in this post-OPF analysis, from the optimality

conditions point of view, it does not matter which bus is the slack bus as long

as the FONCs (3.16)–(3.20) are satisfied.

For the same reason as in section 3.1.1, we need to remove the equations

that contain the offer information of the generator located at the slack bus from

the FONCs (3.16)–(3.20). Again, (3.17) contains O′n (•), and thus should be

removed. In this case, in addition, another equation, (3.20), should also be

removed, because it specifies the upper limit of the offer function domain, and

thus On (•) and (3.20) together characterize the offer information.

Note that if (3.17) and (3.20) are removed, the remaining equations

(3.16), (3.18) and (3.19) are exactly the same as (3.11), (3.13) and (3.14).

3.1.3 Sensitivity analysis

Now we are going to calculate the residual demand derivative at bus n

by simultaneously solving (3.11), (3.13), and (3.14), which has one degree of

freedom that characterizes a locus of (λ, qn).

Consider simultaneous equations (3.11), (3.13), and (3.14) parameter-

ized by λ. By the implicit function theorem, if second-order sufficient condi-
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tions hold, then a unique function

[
q̃1 . . . q̃n µ̃b1 . . . µ̃bmb

]T
(λ)

exists in a neighborhood of λ̂ that solves (3.11), (3.13), and (3.14). Further-

more,

[
q̃1 . . . q̃n µ̃b1 . . . µ̃bmb

]T (
λ̂
)

=
[
q̂1 . . . q̂n µ̂b1 . . . µ̂bmb

]T
.

(3.21)

Because the equations, which contain the offer information at the slack

bus, have been removed, the quantity qn in (3.14) is actually the residual

demand quantity Rn, so we replace qn by Rn in the left-hand side of (3.14),

and therefore (3.14) becomes:

Rn (λ) = −
n−1∑
i=1

q̃i (λ) . (3.22)

We are interested in the residual demand derivative, i.e. the derivative of

Rn (λ) with respect to λ evaluated at λ̂:

dRn

dλ

(
λ̂
)

= −
n−1∑
i=1

dq̃i

(
λ̂
)

dλ
. (3.23)

Sensitivity analysis enables us to calculate the derivative of

[
q̃1 . . . q̃n µ̃b1 . . . µ̃bmb

]
(λ)

with respect to λ evaluated at λ̂. It may be that the sensitivity is not defined

due to non-differentiability, and we will briefly discuss this case in section 3.1.5

below.
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From (3.11) and (3.13), we get

O′i (q̃i (λ)) = λ+ µ̃T
b (λ) H̄bi, i = 1, . . . , n− 1, (3.24)

H̄b ˜̄q (λ) = Zb, (3.25)

where

˜̄q (λ) =
[
q̃1 q̃2 . . . q̃n−1

]T
(λ) .

The vector d˜̄q
dλ

(
λ̂
)

can be calculated by totally differentiating (3.24) and (3.25)

with respect to λ to obtain O
′′
1 (q̂1) . . . 0

...
. . .

...
0 . . . O

′′
n−1 (q̂n−1)

 d˜̄q

dλ

(
λ̂
)
− H̄T

b

dµ̃b

dλ

(
λ̂
)

= 1̄, (3.26)

H̄b
d˜̄q

dλ

(
λ̂
)

= 0, (3.27)

where 1̄ =
[

1 1 . . . 1
]T︸ ︷︷ ︸

n−1

. Solving (3.26) and (3.27), we obtain

dµ̃b

dλ

(
λ̂
)

= −
(
H̄bΛH̄T

b

)−1
H̄bΛ1̄, (3.28)

d˜̄q

dλ

(
λ̂
)

= Λ
(
Ī− H̄T

b

(
H̄bΛH̄T

b

)−1
H̄bΛ

)
1̄, (3.29)

where

Λ =

 O
′′
1 (q̂1) . . . 0

...
. . .

...
0 . . . O

′′
n−1 (q̂n−1)


−1

,

=

 S ′1 (p̂1) . . . 0
...

. . .
...

0 . . . S ′n−1 (p̂n−1)

 ,
(3.30)
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and Ī is the (n− 1) × (n− 1) identity matrix. Because we assume the strict

convexity of O
′′
i (•), ∀i = 1, . . . , n, the inverse in (3.30) exists, and Λ is positive

definite. Therefore,

dR̃n

dλ

(
λ̂
)

= −1̄Td˜̄q

dλ

(
λ̂
)
,

= −1̄TΛ1̄ + 1̄TΛH̄T
b

(
H̄bΛH̄T

b

)−1
H̄bΛ1̄.

(3.31)

We need to clarify that this residual demand derivative is the residual

demand derivative for bus n as a whole, i.e. the local actual demand at bus

n has been combined with the supply at the same bus. Therefore, from the

point of view of the generator located at bus n, its residual demand derivative

is actually (3.31) plus the local demand derivative at bus n, if there is any

local demand.

For convenience in the above analysis, we calculate the residual demand

derivative at the slack bus. Notice that (3.31) indicates that the residual de-

mand derivative only depends on Λ and H̄b, which are reduced matrices (with

rows and/or columns corresponding to the slack bus deleted). For residual

demand at an arbitrary bus k, all we need to do is to reconstruct Λ and H̄b

assuming that bus k is chosen as the slack bus in order to make use of (3.31).

The approach in this chapter can also be viewed as a generalization of

the methods in [32] and [28]. References [32] and [28] calculate the sensitivities

of the generation dispatches to offer prices considering the transmission con-

straints. Our approach generalizes their methods in that we can handle any

type of offer functions and not just fixed price offers. Our emphasis is on the
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residual demand, whose derivative reveals the sensitivities of the generation

dispatch to the incremental market price changes. We demonstrated that these

sensitivities are independent of the offer functional forms but do depend on

the binding generation capacity and transmission constraints. We can handle

all these constraints without any difficulty, whereas the methods in [19] and

[20] cannot directly handle the binding generation capacity constraints.

3.1.4 Weighted least squares regression interpretation

The formula in (3.31) is the negative summed square error (SSE) of

the following linear weighted least squares (WLS) regression problem: regress

1 on each column of H̄b, and use Λ as the weight matrix. Suppose we have

n− 1 observations (Yi,Xi), ∀i = 1, . . . , n− 1, where

[
Y1 Y2 . . . Yn−1

]T
= 1̄ ≡ Y, (3.32)[

X1 X2 . . . Xn−1

]
= H̄b ≡ XT. (3.33)

The linear WLS regression problem is to find an optimal mb× 1 vector

β that minimizes the weighted sum of squared errors (see Appendix A for

details):

min
β

SSEWLS (β) =
n−1∑
i=1

wi
(
Yi −XT

i β
)2
, (3.34)

where wi, i = 1, . . . , n, satisfy
w1 0 . . . 0
0 w2 . . . 0
...

...
. . .

...
0 0 . . . wn−1

 = Λ. (3.35)
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The solution to this WLS problem is

bWLS =
(
H̄bΛH̄T

b

)−1
H̄bΛ1̄ =

∣∣∣∣dµ̃b

dλ

(
λ̂
)∣∣∣∣ , (3.36)

SSEWLS
(
bWLS

)
= 1̄TΛ1̄− 1̄TΛH̄T

b

(
H̄bΛH̄T

b

)−1
H̄bΛ1̄,

=

∣∣∣∣∣dR̃n

dλ

(
λ̂
)∣∣∣∣∣ . (3.37)

Such a least squares interpretation helps us gain insight into the orig-

inal problem. (It is interesting that least squares interpretations are widely

observed. Another example in the context of nodal prices can be found in [35],

although the specific topic is somewhat different.)

From WLS theory (see Appendix A), we know that the WLS problem

(3.34) could be transformed into an equivalent ordinary least squares (OLS)

problem. Define

Y∗ = Λ1/2Y, (3.38)

X∗ = Λ1/2X, (3.39)

where

Λ1/2 =


w

1/2
1 0 . . . 0

0 w
1/2
2 . . . 0

...
...

. . .
...

0 0 . . . w
1/2
n−1

 . (3.40)

The equivalent OLS to (3.34) is

min
β

SSEOLS (β) =
n−1∑
i=1

(
Y ∗i −X∗Ti β

)2
. (3.41)
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The solution to this OLS (3.41) problem is exactly the same as the

solution of the WLS problem (3.34):

bOLS =
(
H̄bΛH̄T

b

)−1
H̄bΛ1̄ =

∣∣∣∣dµ̃b

dλ

(
λ̂
)∣∣∣∣ , (3.42)

SSEOLS
(
bOLS

)
= 1̄TΛ1̄− 1̄TΛH̄T

b

(
H̄bΛH̄T

b

)−1
H̄bΛ1̄,

=

∣∣∣∣∣dR̃n

dλ

(
λ̂
)∣∣∣∣∣ . (3.43)

The residual of the OLS problem (3.41) with bOLS specified in (3.42) is

e∗ = Y∗ −X∗bOLS = Λ1/2

(
1̄ + H̄T

b

dµ̃b

dλ

(
λ̂
))

. (3.44)

From OLS theory (see Appendix A), we know X∗ is orthogonal to e∗,

i.e.

X∗Te∗ = 0, (3.45)

i.e.

H̄bΛ

(
1̄ + H̄T

b

dµ̃b

dλ

(
λ̂
))

= 0, (3.46)

or

H̄bΛ
(
1̄− H̄T

b

(
H̄bΛH̄T

b

)−1
H̄bΛ1̄

)
= 0, (3.47)

by substituting dµ̃b

dλ

(
λ̂
)

from (3.28). Note that (3.47) is the same as (3.27).

The orthogonality condition (3.45) produces the same equation as (3.27),

so we would like to call equation (3.27) the orthogonality equation of binding

constraints. The meaning of (3.27) is that when binding constraints do not

change, the Jacobian of the constraints (H̄b in this case) is orthogonal to the
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direction of change d˜̄q
dλ

(
λ̂
)

. In other words, the direction of change d˜̄q
dλ

(
λ̂
)

will

not change these binding constraints: no active constraints will be violated,

and no active constraints will become non-binding. It is the orthogonality

equation of binding constraints that makes possible the WLS interpretation.

In addition, from WLS theory (see Appendix A), we can deduce the

following properties about the residual demand derivative.

Proposition 3. If Λ is positive definite, then the residual demand derivative

is less than or equal to zero.

Proposition 4. Enforcing a new linearly independent binding constraint in

the OPF will reduce the residual demand derivative in absolute value if

MX∗
(
H̄Added

b

)T 6= 0, (3.48)

and

MX∗1̄
T 6= 0, (3.49)

where X∗ = Λ1/2H̄T
b as defined in (3.39),

MX∗ = Ī−X∗
(
X∗TX∗

)−1
X∗T, (3.50)

and H̄Added
b is an added row to H̄b.

In particular, if there is no transmission congestion, the residual de-

mand derivative is −1̄TΛ1̄. When transmission is congested, the residual

demand derivative decreases in absolute value, because:∣∣∣∣dRn

dλ

(
λ̂
)∣∣∣∣ = SSE∗C ≤ 1̄TΛ1̄ = SSE∗NC, (3.51)
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where the subscript “C” denotes “transmission congested,” and the subscript

“NC” denotes “transmission uncongested.” This implies that when transmis-

sion constraints bind, the players have more incentive to exert market power

because of the decrease in magnitude of the residual demand derivative.

We have assumed that there is no perfectly elastic supply at any bus

in the derivation of (3.31). If there is perfectly elastic supply at some bus

then (3.31) is not valid, because we cannot invert a singular matrix to get Λ

in (3.30). To consider perfectly elastic supply, we will analyze the limit of the

residual demand derivative as some diagonal elements of Λ go to infinity. We

are especially interested in the conditions under which the residual demand

derivative goes to infinity, i.e. the residual demand is perfectly elastic.

Theorem 5. Suppose there are l buses (i1, i2, . . . , il) each with its supply

derivative going to infinity, and denote the set composed of i1, i2, . . . , il as N. If

the following equation (3.52) has solution then the residual demand derivative

at the slack bus is bounded; otherwise, the residual demand derivative at the

slack bus goes to infinity. 
XT
i1

XT
i2

...
XT
il

β = 1l, (3.52)

where 1l =
[

1 1 . . . 1
]︸ ︷︷ ︸

l

T
.
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Proof. 1) Suppose (3.52) has a solution β̂. From (3.34), we have

min
β

SSEWLS (β) ≤ SSEWLS
(
β̂
)

=
n−1∑

i=1,i/∈N

wi

(
1−XT

i β̂
)2

. (3.53)

Therefore, if (3.52) has solution, the residual demand derivative at the

slack bus is bounded.

2) Suppose (3.52) does not have a solution. Choose any β̃ that satisfies

β̃ ∈ arg min
β

∑
i∈N

(
1−XT

i β
)2
.

By assumption, ∑
i∈N

(
1−XT

i β̃
)2

6= 0. (3.54)

From (3.34), we have

min
β

SSEWLS (β) = min
β

∑n−1
i=1 wi

(
Yi −XT

i β
)2

≥ min
β

∑
i∈Nwi

(
1−XT

i β
)2

≥ min
β

∑
i∈N

(
min
k∈N

wk

)(
1−XT

i β
)2

=

(
min
k∈N

wk

)(
min

β

∑
i∈N

(
1−XT

i β
)2
)
.

By the definition of β̃,

min
β

SSEWLS (β) ≥
(

min
k∈N

wk

)∑
i∈N

(
1−XT

i β̃
)2

. (3.55)

Therefore,

lim
wi→∞,∀i∈N

(
min

β
SSEWLS (β)

)
≥ lim

wi→∞,∀i∈N

((
min
k∈N

wk

)∑
i∈N

(
1−XT

i β̃
)2
)

=∞.
(3.56)
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Therefore, if (3.52) does not have solution, the residual demand derivative at

the slack bus is unbounded.

Generally speaking, if the number of buses with perfectly elastic supply

is greater than the number of binding constraints, then the residual demand

derivative at the slack bus is unbounded, because there are more equations

than variables in (3.52), unless enough number of equations in (3.52) are re-

dundant. When the residual demand derivative is bounded, it could be calcu-

lated from the WLS problem (3.34). Essentially, all buses that have perfectly

elastic supply must have zero residual:

e∗i = 0, ∀i ∈ N, (3.57)

in order to zero out the arbitrarily large wi, ∀i ∈ N. We will show an example

for this case in section 3.2. The WLS interpretation and the fact (3.57) have

an important implication. Increasing the quantity-price response makes the

electricity market more competitive. As shown in (3.35), larger quantity-price

response will have a larger weight in the WLS problem. However, increased

quantity-price response is not effective if binding transmission constraints pre-

vent the large quantity-price responses from “spreading out” to the whole

system. Our analysis allows the determination of the quantity-price response

in the presence of transmission constraints.
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3.1.5 Non-differentiable case

The OPF solution might be at a point of non-differentiability. In other

words, the sensitivity with respect to the slack bus price is not defined. This

occurs when there are just binding constraints, and/or the current OPF solu-

tion is at a point of non-differentiability of a supply function. If we encounter

the case where the left side and right side residual demand derivative exist,

but they are not equal, we could calculate the left side and right side residual

demand derivative, respectively. If we can determine which constraints are

binding as the price at bus n increases or decreases then the left side and right

side residual demand derivatives are specified by (3.31) or can be calculated

by the equivalent WLS problem for perfectly elastic supply/demand case with

the corresponding binding constraints. Determining the binding constraints in

general involves enumerating each possible combination of binding constraints

and, for each, checking if the solution implied by sensitivity analysis will in-

deed induce the same the set of binding constraints. Similar analysis is also

necessary in the case that the OPF solution is at a kink point of a supply

function; that is, the left side derivative does not equal right side derivative.

3.2 TCRDD Examples

In the section, we verify the TCRDD calculation in 3 examples.
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3.2.1 Example 1: intuitive 2-bus case

Consider the simplest case of a two-bus system connected by a single

transmission line, and the line is congested.

Many researchers have adopted this example to illustrate the transmis-

sion effect on the equilibrium. (For example, see Borenstein, Bushnell, and

Stoft [11].) It is observed that the market equilibrium just resembles the com-

bination of two decoupled single bus system equilibria. We will demonstrate

that the analysis in section 3.1 is consistent with this observation. We com-

pute the residual demand at bus 2, and choose it as the slack bus. Because

mb = 1 and n = 2, H̄b is a 1 × 1 matrix, and H̄b = 1. Substitute H̄b = 1

into (3.28) and (3.29), we get dµb

dλ

(
λ̂
)

= −1 and dq1
dλ

(
λ̂
)

= 0, which implies

that the supply at bus 1 is not affected by the price at bus 2. Also Substitute

H̄b = 1 into (3.31), and we get dR2

dλ

(
λ̂
)

= 0. Since we have combined the

supply and demand at bus 2, so this implies that the residual demand at bus

2 is just the derivative of the actual local demand derivative at bus 2, and

the market at bus 1 does not affect the residual demand derivative at bus 2.

Similar results hold for bus 1. These results verify the intuitive result that the

market is decoupled in this case.

3.2.2 Example 2: numerical 4-bus case

This example is illustrated in Fig. 3.1 We consider a two-loop system

from [48]. Each branch admittance equals 0.1. There are two generators

located at bus 1 and 2, and two loads located at bus 3 and 4.
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c a p a c i t y

Figure 3.1: 4-bus system

The marginal generation cost functions and demand functions in bus

order are:

Generation Load
pG1 = 10 + 0.35q1 DL3 = 200− 1.92p3

pG2 = 10 + 0.45q2 DL4 = 150− 1.54p4

Branch 1–3 has a transmission capacity limit of 30 MW, all the other

branches have transmission capacity limits of 400 MW. Following Xu and Yu,

we consider the existence of a transmission-constrained linear SFE for this

case. The transmission-constrained linear SFE

Si(pi) = βi(p− αi), i = 1, 2, · · · , n

is characterized by [48]

β∗i
1− ciβ∗i

= −R′∗i , (3.58)

α∗i = ei. (3.59)

where generator i’s linear marginal cost function is C ′i (qi) = ciqi + ei.
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tol = 0.01 Bus 1 Bus 2

β̂i 1/7.803 1/1.256

R̂′i -0.1342 -1.2407
R′∗i -0.1290 -1.1824
REi 4% 5%

β̂i 1/8.343 1/1.329

R̂′i -0.1251 -1.1377
R′∗i -0.1246 -1.1325
REi 0.4% 0.5%

β̂i 1/8.399 1/1.337

R̂′i -0.1242 -1.1274
R′∗i -0.1241 -1.1276
REi 0.08% 0.02%

Table 3.1: Results comparison

Now we demonstrate that our analysis confirms to the numerical results

in [48]. The way we verify it is as follows.

A linear supply function best response could be calculated directly from

a generator’s profit maximization problem as Xu and Yu did in [48]. Because

the supply function best response and the residual demand derivative satisfy

(2.2), we could solve for the residual demand derivative with a given supply

function best response. The solution is (3.58). We used Xu and Yu’s numerical

supply function best response solutions as input, and solved for numerical

residual demand derivatives using (3.58). Recall that we have derived the

analytical solution of the residual demand derivative in (3.31). Therefore, we

could compare our analytic solutions derived in this chapter with the numerical

solutions recovered from Xu and Yu’s results using (3.58).
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In particular, denote the output of the algorithm in [48] by β̂, which is

the input to recover R′∗i using (3.31), and denote the so recovered R′∗i by R̂′i.

Then we calculate analytically the R′∗i values evaluated at β̂, and compare R′∗i

calculated analytically to R̂′i from the output of the algorithm in [48]. The

results are summarized in Table I.

Define the relative numerical error by

REi =

∣∣∣R′∗i − R̂′i∣∣∣
|R′∗i |

× 100%. (3.60)

The smaller the REi, the more closely our results conform with Xu and Yu’s

results.

Table I shows that the relative error is in the range of 5% to 0.02%.

Moreover, as the numerical accuracy of Xu and Yu’s results increases as spec-

ified by a tolerance parameter in the stopping criterion of Xu and Yu’s algo-

rithm, REi decreases which indicates a better confirmation. The parameter

Tol is the tolerance control parameter in [48], which controls the output ac-

curacy of the bidding parameter β̂. Note that smaller Tol results in smaller

REi.

From the results we conclude that the characterization in this chapter

is consistent with the numerical results in [48].
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S ’ ( p ) = 1 0 0 0  M W / ( c e n t / k W h )

p e r f e c t l y  e l a s t i c  s u p p l y

Figure 3.2: 3-bus example with perfectly elastic supply

3.2.3 Example 3: numerical 3-bus case with perfectly elastic sup-
ply

This example is taken from [12], and we simplify it by only considering

information that is relevant to the residual demand derivative calculation. As

illustrated in Fig. 3.2, it is a three-bus system with line 2–3 having a capacity

600 MW. All other lines have very large capacity, and cannot be congested.

All three lines have the same impedance. There are three generators G1, G2,

and G3 located at the corresponding buses. G1 bids a linear supply function

with slope:

S ′1 (p) = 1000MW/ (cent/kWh) ,

and G3 has perfectly elastic supply. There is only one load, which is located

at bus 3.
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We want to calculate the residual demand derivative at bus 2, so we

designate bus 2 as the slack bus. Since there is a perfectly elastic supply at

bus 3, we can use the WLS interpretation technique to calculate the residual

demand derivative as the limit as a weight approaches infinity. We have for

this case

H̄b =
[
−1

3
−2

3

]
,

and where W2 denotes an arbitrarily large number. Form the WLS problem

as follows

min
β

SSEWLS (β) = 1000

(
1 +

1

3
β

)2

+M

(
1 +

2

3
β

)2

.

The solution of this problem is

bWLS =
−2000− 2W2

2000
3

+ 4W2

3

.

Take the limit of bWLS as W2 →∞, we have:

lim
W2→∞

bWLS = lim
W2→∞

−2000− 2W2

2000
3

+ 4W2

3

= −3

2
.

Therefore,

lim
W2→∞

(
min
β

SSEWLS (β)

)
= lim

W2→∞

(
SSEWLS

(
bWLS

))
,

= 1000

(
1 +

1

3

(
−3

2

))2

= 250.

Therefore, the residual demand derivative at bus 2 is −250.

Notice that the optimal bWLS makes

1 +
2

3
bWLS = 0.
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Generally, the optimal WLS coefficients should make the residual, correspond-

ing to a bus with perfectly elastic supply, equal to zero. Otherwise, the WLS

problem will be unbounded.

In [12], Cardell, Hitt, and Hogan characterized the inverse of the resid-

ual demand derivative at bus 2 in equation (2). Their calculation is based on

their intuitive price relationship:

p2 = 2p1 − p3.

They obtained the solution –0.004 for the inverse residual demand derivative

as indicated in equation (3.1) in [12]. Therefore, our calculation is consistent

with this solution, because

1

−0.004
= −250.

3.3 Improving TCRDD Calculation

In this section, we will discuss how to improve the TCRDD calculation

to make it practical for real applications.

3.3.1 Practical issues with the TCRDD calculation to be resolved

For simplicity, the TCRDD formula (3.31), is derived under several

assumptions. From the practical perspective, it has several limitations.

First, we assumed that each bus has at most one generator in deriving

(3.31). This is not realistic for power system. In addition, offer functions and
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marginal cost functions are typically modeled by piecewise linear functions in

practice, because piecewise linear functions balance the accuracy and compu-

tational efforts very well. Existing advanced OPF solvers can handle piecewise

linear offer functions. They typically model a piecewise linear offer function by

multiple linear segments, and each segment has an associated variable. Each

variable will have its capacity constraints to make sure it cannot go out of the

segment. In this case, we may have multiple offer segments on every bus that

may belong to different generators. Without loss of generality, we can model

each generator offer segment as a “generator,” so we may have multiple “gen-

erators” at each bus. The first generalization is to handle multiple generators

at a single bus.

Second, some electricity markets require step offer functions, such as

the California nodal market. If the offer functions are step functions, then

“generator” g will have O′′g (q̂g) = 0, which may make Λ in (3.30) undefined

because of matrix singularity. Generally speaking, this is a modeling issue, be-

cause O′′g (q̂g) is only used for calculating the TCRDD, and it is not a required

information in an OPF solver. This issue can be handled by estimating the

O′′g (q̂g) information in the TCRDD calculation. Some estimating techniques

are discussed in [44]. As illustrated in Fig. 3.3, a step offer function segment

can be approximated by a straight line connecting middle points of adjacent

segments in the TCRDD calculation, so that the dashed line will have a non-

zero O′′g (q̂g). Note that the O′′g (q̂g) estimation is only needed for post-OPF

TCRDD calculation, and does not affect the OPF solver. The TCRDD cal-
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Figure 3.3: Estimating the derivative for step offer function

culation as an OPF post-processing step is flexible as to the choice of OPF

solver and offer function approximation algorithm.

Even with slope estimation, it is still possible to have a zero O′′g (q̂g).

An example is a generator bidding all its capacity at a constant price, and it

is setting the LMP at its bus. In this case, we need to explicitly consider zero

O′′g (q̂g) in the TCRDD derivation in order to get an applicable formula.

Third, another problem arises when there are some generators’ output

binding at their capacity limit or a constant output level, in which case O′′g (q̂g)

in [44] does not exist. Treating piecewise segments as “generators” in order to

handle piecewise offer functions makes this this much more likely to happen.

For a generator with multiple offer segments, either all segments or all but one

segment will be binding at the corresponding segment size limit. We need to

explicitly consider this case in the TCRDD derivation as well.
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3.3.2 Generalizing the TCRDD Calculation

To overcome the three limitations discussed in the previous section, we

are going to derive a more general formula in this section. We consider the

following simplified DC OPF model:

min
qG

∑
g∈G

Og (qg) , (3.61)

s.t. HGqG −HLqL ≤ Z, (3.62)

qmin
G ≤ qG ≤ qmax

G , (3.63)∑
l∈L

ql −
∑
g∈G

qg = 0, (3.64)

where

• G is the set of generators, with each segment of an offer represented by

a distinct element,

• L is the set of loads,

• qG is the generator output variable vector,

• qL is the load vector,

• Og (qg) is generator g’s total offer cost function, whose derivative, O′g (qg),

is generator g’s offer function,

• HG is the generator shift factor matrix corresponding to the transmission

constraints,
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• HL is the load shift factor matrix corresponding to the transmission

constraints,

• qmin
G consists of generator output capacity lower limits,

• qmax
G consists of generator output capacity upper limits,

• Z consists of the transmission capacity limits,

• (3.62) consists of the transmission constraints,

• (3.63) is the generator capacity constraint, and

• (3.64) is the energy balance constraint.

Although this OPF model seems very simple, it is general enough to

capture the advanced features in production level OPF programs.1 Currently,

most production level OPF programs in existing and proposed nodal electric-

ity markets, are either DC, or solve AC by successive linearization, such as

the CAISO nodal market and the proposed ERCOT nodal market. For DC

OPF, our model and results are directly applicable. For AC OPF solved by

successive linearization, the typical scheme is discussed in [13], where the AC

OPF is decoupled into two subproblems, namely the optimization problem and

the network assessment problem. The network assessment problem is to solve

1This is a single interval OPF model, which is applicable to most the real-time electricity
markets in the US, such as PJM, ISO-NE, and ERCOT. Very few electricity markets, such
as the California nodal market, solve a multi-interval OPF with looking-ahead capability in
the real-time market, where they include the inter-temporal constraints, such as the ramp
constraints. Handling these inter-temporal constraints is out of the scope of this dissertation.
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the AC power flow and contingency analysis, and generate a list of overloaded

(and/or nearly overloaded) lines to be passed to the optimization problem as

constraints. It also calculates certain sensitivities, such as the shift factors, so

that the constraints can be modeled linearly in the optimization problem. The

optimization problem solves the OPF program using the linearized constraints

passed from the network assessment problem. The optimization problem and

network assessment problem will be solved iteratively, so that if the process

converges, it converges to a solution to the original OPF problem. The ad-

vantage of this decoupled method is that the optimization problem with only

linearized constraints is much easier to solve than the original problem, so this

method is able to solve large scale problem. The linearized OPF optimiza-

tion problem in production level OPF program is essentially the same as the

DC OPF problem we consider in this chapter. The security constraints and

stability constraints can be modeled in (3.62) with the HG and HL being the

outage compensated shift factors ([45] chapter 11 Appendix), and the Nomo-

gram shift factors. Therefore, the DC OPF model and results are also directly

applicable to an AC OPF solved by successive linearization.

For pure AC OPF solved by nonlinear programming, it requires extra

work to be able to use the method in this chapter. Basically, one needs to

calculate the shift factors and other sensitivities in order to formulate the

problem as (3.61) – (3.64).

Therefore, generally speaking, working with the DC OPF model (3.61)

– (3.64) is not limiting the value of this work. The purpose of this work is not
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to compete with the most advanced existing OPF programs, but to make the

best use of them to develop bidding strategies rather than start from scratch.

This OPF model is more general than the one used in section 3.1,

because multiple generators at the same bus can be explicitly modeled using

the generator shift factors instead of node shift factors. Also, we separate the

transmission constraints and generation capacity constraints here, whereas

section 3.1 considers them together.

The subsequent derivation largely follows section 3.1, and we will only

cover the steps that are different from section 3.1 in order to overcome the

three limitations discussed in the previous section.

As discussed in section 3.1, the TCRDD is a post-OPF calculation. An

OPF variable with a hat represents the OPF solution, and the binding trans-

mission constraints are denoted by a subscript “b”. We assume the market

is cleared by LMPs determined from the OPF solution. Denote the LMP at

the slack bus by λ. The OPF solves at the slack bus price λ = λ̂. Following

section 3.1, without loss of generality, we calculate the TCRDD for a generator

s located at the slack bus n. Because the TCRDD is a post-OPF calculation,

any bus can be designated as the “slack” bus for TCRDD calculation purpose,

and it is not necessary to use the same slack bus that is used in the OPF.

Partition the generators other than generator s into three subsets: the

generator segments with binding output quantities, denoted by f; the generator

segments with binding price offers, denoted by z; and the generator segments
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with offers having non-zero slopes, denoted by v, so that

qG =


qv

qf

qz

qs

 .
Accordingly, partition HGb into:

HGb =
[

Hvb Hfb Hzb 0
]
.

Similarly to section 3.1, we consider the OPF solution to be parame-

terized by the price at the slack bus λ, with the TCRDD is defined by

dRG

dλ

(
λ̂
)

=
d
(∑

l∈L ql −
∑

g∈G,g 6=s qg

)
dλ

= −
∑

g∈G,g 6=s

dqg
dλ

(
λ̂
)

= −
∑
g∈v

dqg
dλ

(
λ̂
)
−
∑
g∈f

dqg
dλ

(
λ̂
)
−
∑
g∈z

dqg
dλ

(
λ̂
)

= −1T
v

dqv

dλ

(
λ̂
)
− 1T

f

dqf

dλ

(
λ̂
)
− 1T

z

dqz

dλ

(
λ̂
)
,

(3.65)

where 1v, 1f , and 1z are column vectors of 1s whose dimensions equal the

number of generators in set v , f, and set z respectively.

Because by definition,

dqf

dλ

(
λ̂
)

= 0f, (3.66)

we only need to calculate dqv

dλ

(
λ̂
)

and dqz

dλ

(
λ̂
)

in order to compute the TCRDD.
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Construct the Lagrangian of the OPF with only the binding constraints:

L =
∑
g∈G

Og (qg) + λ

(∑
l∈L

ql −
∑
g∈G

qg

)
+ µT

b (Hvbqv + Hfbqf + Hzbqz −HLbqL − Zb)

+ ρT
max (qf − qmax

f ) + ρT
min

(
qf − qmin

f

)
.

Similarly to section 3.1, we calculate dqv

dλ

(
λ̂
)

and dqz

dλ

(
λ̂
)

as well as dµb

dλ

(
λ̂
)

from a sensitivity analysis of the following OPF first-order necessary condi-

tions:

∂L

∂qv
= 0v,

∂L

∂qz
= 0z,

∂L

∂µb

= 0b,

i.e.
O′v (qv)− λ1v −HT

vbµb = 0v,

O′z (qz)− λ1z −HT
zbµb = 0z,

Hvbqv + Hfbqf + Hzbqz −HLbqL = Zb,

(3.67)

where

• O′v (qv) = ∇qv

(∑
g∈GOg (qg)

)
,

• O′z (qz) = ∇qz

(∑
g∈GOg (qg)

)
= pz, i.e. binding offer prices,

• 0v, 0f , and 0z are column vectors of 0s whose dimensions equal the

number of generators in set v, f, and z respectively.
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Differentiate both sides of (3.67) with respect to λ, we get

O′′v
dqv

dλ
− 1v −HT

vb

dµb

dλ
= 0v,

−1z −HT
zb

dµb

dλ
= 0z,

Hvb
dqv

dλ
+ Hzb

dqz

dλ
= 0b,

(3.68)

where

O′′v = ∇2
qvqv

(∑
g∈G

Og (qg)

)
.

If the number of binding price offers in set z is less than the number

of binding transmission constraints, and the number of binding transmission

constraints is less than the number of non-binding offers in set v, then (3.68)

has a unique solution:

dqv

dλ

(
λ̂
)

= (O′′v)
−1

(
1v + HT

vb

dµb

dλ

(
λ̂
))

dqz

dλ

(
λ̂
)

= Q−11z −Q−1HT
zbM

−1Hvb (O′′v)
−1

1v,

dµb

dλ

(
λ̂
)

= −M−1

(
Hzb

dqz

dλ

(
λ̂
)

+ Hvb (O′′v)
−1

1v

) (3.69)

where

M = Hvb (O′′v)
−1

HT
vb,

Q = HT
zbM

−1Hzb.

The TCRDD can be calculated by substituting (3.66) and (3.69) into (3.65).

The whole derivation process follows section 3.1 with necessary changes

to overcome its limitations. One change is in the modeling. All generators
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except s are explicitly modeled here, and are divided into three sets, namely

the generators with binding capacity constraints, the generators with binding

price offers, and the generators with varying prices and output quantities. The

three sets of generators are treated differently. Transmission constraints and

generator capacity constraints are also treated differently. The new derivation

overcomes the limitations in section 3.1 discussed in the previous section, and

it is more widely applicable.

Another change is in the result. The new TCRDD formula only depends

on binding transmission constraints and the offers of the generators having

non-zero slopes, while the formula in section 3.1 depends on both transmis-

sion constraints and generation capacity constraints. If the offers are piecewise

linear or piecewise continuous functions, there will be a lot of binding gener-

ation capacity segments, which makes the matrix bigger and the calculation

inefficient. Comparing with the formula in section 3.1, this new formula im-

proves the computational performance.

What remains unchanged from section 3.1 is the concept of the TCRDD.

Similar to section 3.1, note that the LMP of the slack bus is a dual variable of

the OPF, so this is a variable to variable sensitivity analysis. Generator s’s of-

fer function does not factor into this sensitivity analysis (it does factor into the

OPF solution), so the sensitivities here evaluated at the OPF solution are in-

dependent of the slack bus generator’s offer function parameters. This unique

property makes this kind of sensitivity different from the ordinary variable to

parameter sensitivities, such as in [14] and [32].
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3.4 Maximize A Generator’s Profit Using the TCRDD

As discussed in section 1.3, the profit maximization can be calculated

based on the given residual demand curve, which suggests that the generator’s

profit maximization problem can be decoupled into two subproblems: the

upper subproblem of maximizing the generator’s profit based on TCRDD,

and the lower subproblem of calculating the TCRDD. This gives rise to the

new generator profit maximization approach in this chapter, and we will refer

it as the TCRDD approach hereafter. The TCRDD approach is illustrated in

Fig. 3.4. Note that in the TCRDD approach, the upper problem and lower

problem are not in nested structure, and can be solved separately. The whole

problem can be solved by iteratively solving the two subproblems. This is a

significant advantage over the MPEC approach because solving the two smaller

problems is much easier than solving the problem as a whole. In addition,

the lower subproblem is a standard OPF problem with a lightweight post-

processing step of the TCRDD calculation, so that existing advanced OPF

algorithms and solvers can be reused. This is another significant advantage

over the MPEC approach.

In this section, we propose an algorithm to maximize a generator’s

profit utilizing the TCRDD information that can be calculated in the way

discussed in section 3.3.

To make the idea easy to understand, we will illustrate the algorithm

in a very simply 4-bus system example. A larger scale 118-bus system example

will be solved and discussed in section 3.5. The 4-bus example is very similar
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Figure 3.4: Maximizing generation profit based on TCRDD
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Figure 3.5: 4-bus system
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to the one in section 3.2.2. As illustrated in Fig. 3.5, there are four generators

in the system, and each one is located at different bus. Generator 1 and 2

are 50 MW unit each. Generator 3 and 4 are 200 MW each. There are two

loads, 100 MW each, located at bus 3 and bus 4 respectively. Branch 1-3 has

a capacity limit of 30 MW. All other branches have capacities of 200 MW. All

branches have the same impedances. The generators’ cost functions are

C1(q1) = 0.175q2
1 + 10q1,

C2(q2) = 0.497q2
2 + 10q2,

C3(q3) = 0.260q2
3 + 20q3,

C4(q4) = 0.325q2
4 + 20q4.

Assume all generators bid in their true cost. We plot generator 1’s and gen-

erator 2’s profit functions and residual demand curves in Fig. 3.6 and Fig. 3.7

respectively.

From now on, to simplify notation, we drop the subscript i in all the

variables and functions, p, q, RDD, Π and P , meaning that all the variables

and functions belong to the generator under consideration by default.

Generator 2 has a linear residual demand curve. Suppose the OPF

solves at q0 and p0 = P (q0) for generator 2, and the TCRDD evaluated at q0

is RDD(q0). We represent the inverse function of the residual demand curve,

P (q), by its tangent P (q; q0) at q0:

P (q; q0) =
1

RDD(q0)
(q − q0) + p0, (3.70)
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Figure 3.6: Profit function and residual demand curve for generator 1
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Figure 3.7: Profit function and residual demand curve for generator 2
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which is the solid line in Fig. 3.7. In this case, P (q; q0) matches P (q) exactly.

We also represent generator 2’s profit Π(q) by Π(q; q0) using P (q; q0) in

(1.3):

Π(q; q0) =

(
1

RDD(q0)
(q − q0) + p0

)
q − C(q). (3.71)

In this case, Π(q; q0) also matches Π(q) exactly, which is the dashed curve

shown in Fig. 3.7. Because generator 2’s cost function is quadratic, the profit

function is also quadratic.

The situation is more complicated for generator 1, because the residual

demand curve may have kinks when the set of binding transmission constraints

changes. This is demonstrated in Fig. 3.6, if generator 1’s output is less than

43 MW, branch 1-3 is not congested; while if generator 1’s output is greater

than 43 MW, branch 1-3 is congested (i.e. a binding constraint). The kink

in the residual demand curve will also result in a kink in the profit function.

In Fig. 3.6, the profit function is composed of two quadratic pieces with the

curvature change right at the kink, qx, of the residual demand curve.

Suppose we have two solved OPFs: one OPF solves at (qlo, plo), with

qlo ≤ qx, and the TCRDD evaluated at qlo is RDD(qlo); the other OPF solves

at (qhi, phi), with qhi ≥ qx, and the TCRDD evaluated at qhi is RDD(qhi). We

represent the inverse function of generator 1’s residual demand curve, P (q),

by two tangent lines at qlo and qhi respectively:

P (q; qlo) =
1

RDD(qlo)
(q − qlo) + plo, ∀q ≤ qx,

P (q; qhi) =
1

RDD(qhi)
(q − qhi) + phi, ∀q > qx.

(3.72)
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Accordingly, we represent the profit function Π(q) by

Π̄(q; qlo) =

(
1

RDD(qlo)
(q − qlo) + plo

)
q − C(q), ∀q ≤ qx,

Π̄(q; qhi) =

(
1

RDD(qhi)
(q − qhi) + phi

)
q − C(q), ∀q > qx,

(3.73)

and the two quadratic segments intersect at qx. In this case, our representa-

tions of the residual demand curve and the profit function are both exact.

Note that in this case the profit function is still concave, but in other

cases it may end up with two local optima with each of the residual demand

segment containing one local optimum, which also makes the profit function

not concave. It is generally difficult to find the global optimizer, and the

algorithm in this section is aiming at finding a local optimizer as most other

methods do, such as the MPEC method [23]. However, the approach in this

chapter can be provided with different initial points based on knowledge of the

kink to explore a broader region in order to get closer to the global optimizer.

If the whole residual demand curve is known, the task to find a local

profit optimizer is not difficult. However, constructing the whole residual

demand curve is computationally intense when there are changing binding

constraints, because one solved OPF only produces one point on the residual

demand curve. Conceptually, one can continuously solve OPFs to trace out

the residual demand curve for a generator as we do in Fig. 3.6 and Fig. 3.7 for

the 4-bus system example, but for the purpose of profit maximization, tracing

out the whole residual demand curve is inefficient and unnecessary.

Because the decision variable for a generator is its output level, the
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problem to find a local optimum is basically a line search. There are various

existing standard inexact line search algorithms, such as the Wolfe condition

and the Armijo-Goldstein condition ([34] chapter 3), that are not designed

for finding an exact solution. An exact line search typically requires a large

number of function evaluations ([34] chapter 3), which may not be efficient for

this specific problem of a generator’s profit, because evaluating a generator’s

profit involves solving the OPF, which is computationally intense for large

scale systems.

In order to improve the performance, we developed a special algorithm

aimed at requiring less profit function evaluations. As will be demonstrated,

the algorithm will be able to find the profit optimum for generator 1 or gener-

ator 2 in the 4-bus system example within one iteration. Its performance will

be further tested in the IEEE standard 118-bus system example in section 3.5.

The algorithm we propose is a special bisection search scheme based

on approximating the residual demand curve by a two-piece linear function as

the generator 1’s residual demand curve in the 4-bus system example.

Suppose we have two output levels qlo and qhi with qlo < qhi. The resid-

ual demand curve can have many segments in [qlo, qhi] depending on the set of

binding constraints while changing its output level. Without the exact knowl-

edge of residual demand curve in [qlo, qhi], we estimate the residual demand

curve in a similar way as in (3.72). Denote the estimated two-piece quadratic

89



profit function by

Π̂ (q; qlo; qhi) = Π̄ (q; qlo) , q ∈ [qlo,max{qlo, qx}] ,

Π̂ (q; qlo; qhi) = Π̄ (q; qhi) , q ∈ [min{qhi, qx}, qhi] ,
(3.74)

where qx denotes an intersection of P (q; qlo) and P (q; qhi) if they intersect,

otherwise, let qx = qhi .

Function Π̂ (q; qlo; qhi) exactly match the profit function in the vicinity

of Π(q) at qlo and qhi, but may differ from the profit function if the residual

demand curve differ from the estimated two-piece residual demand function

evaluated at qlo and qhi respectively.

Denote the maximizer of Π̄(q; •) by 2

q̄(•) = argmax
q
{Π̄(q; •)}.

We know there exists a local maximum in [qlo, qhi] if

qlo ≤ q̄(qlo),

qhi ≥ q̄(qhi),
(3.75)

because the profit function is continuous. We also know if (3.75) is satisfied,

argmax{Π̂ (q; qlo; qhi)} ⊆ {q̄(qlo), q̄(qhi), qx}, (3.76)

because Π̂ (q; qlo; qhi) is a two-piece quadratic function. If qlo ≤ qx ≤ qhi,

argmax{Π̂ (q; qlo; qhi)} can be determined as specified in Tab. 3.2 and illus-

trated in Fig. 3.8.

2Strictly speaking, argmax{•} represents the set of maximizers, but because it is a sin-
gleton for a quadratic objective function, we use the notation the maximizer “=”argmax{•}.
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condition characteristic maximizer of Π̂ (q; qlo; qhi)
q̄(qlo) /∈ [qlo, qx], q̄(qhi) /∈ [qx, qhi] no hump qx
q̄(qlo) ∈ [qlo, qx], q̄(qhi) /∈ [qx, qhi] left hump q̄(qlo)
q̄(qlo) /∈ [qlo, qx], q̄(qhi) ∈ [qx, qhi] right hump q̄(qhi)
q̄(qlo) ∈ [qlo, qx], q̄(qhi) ∈ [qx, qhi] double hump q̄(qlo) or q̄(qhi)

Table 3.2: Determine Maximizer Of Π̂ (q; qlo; qhi)
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Figure 3.8: Determine Maximizer Of Π̂ (q; qlo; qhi)
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Based on the profit function approximation argmax{Π̂ (q; qlo; qhi)}, we

design a special bisection search to find the optimizer. It has two consecutive

parts. The first part is to search for an interval [qlo, qhi] that satisfies (3.75),

and we call this part the local optimum searching loop. The second part is to

find a point in [qlo, qhi] that satisfies (1.4) through a special bisection procedure,

and we call it the bisection loop.

The bisection procedure is special in that the bisection point is chosen

from the candidate maximizers of Π̂ (q; qlo; qhi), instead of the standard choice

of 0.5 (qlo + qhi), unless the candidate choices {q̄(qlo), q̄(qhi), qx} ⊆ {qlo, qhi} .

The whole algorithm is as follows.

Local Optimum Searching Loop:

1. Start with an initial point q = q0.

2. Solve OPF with q = q0, and calculate RDD(q0) and q̄(q0).

3. If q̄(q0) = q0, optimal solution found with q∗ = q0, stop.

Or if q0 = qmax and q̄(q0) > qmax, optimal solution found with q∗ = qmax,

stop.

Or if q0 = qmin and q̄(q0) < qmin, optimal solution found with q∗ = qmin,

stop.

4. If q̄(q0) > q0, let q1 = min{q̄(q0), qmax}, else let q1 = max{q̄(q0), qmin}.

Solve OPF with q = q1, and calculate RDD(q1) and q̄(q1).
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5. If q̄(q1) = q1, optimal solution found with q∗ = q1, stop.

Or if q1 = qmax and q̄(q1) > qmax, optimal solution found with q∗ = qmax,

stop.

Or if q1 = qmin and q̄(q1) < qmin, optimal solution found with q∗ = qmin,

stop.

6. If (q̄(q1)− q1) (q̄(q0)− q0) < 0, local optimum exists in

[
min{q0, q1},max{q0, q1}

]
.

Let qlo = min{q0, q1}, and qhi = max{q0, q1}, stop.

Otherwise, q0 = q1, and continue with step 4.

Bisection Loop:

1. If qhi − qlo < ε, where ε > 0 is the tolerance threshold, optimal solution

found with q∗ = 0.5 (qlo + qhi). Stop.

2. Calculate the bisection point qmid as follows.

• If P (q; qlo) and P (q; qhi) specify the same function, qmid = q̄(qlo).

• If P (q; qlo) and P (q; qhi) do not intersect, or they intersect at (qx, px)

with qx 6∈ [qlo, qhi], then qmid = 0.5 (qlo + qhi);

• Otherwise, determine the bisection point qmid as specified in Tab. 3.2.

For the double hump case, let

qmid = argmin
q∈{q̄(qlo),q̄(qhi)}

|q − 0.5 (qlo + qhi) |.
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3. Solve OPF with q = qmid, and calculate RDD(qmid) and q̄(qmid).

4. If q̄(qmid) = qmid, optimal solution reached with q∗ = qmid. Stop.

5. If qmid = qx and pmid = px. Do an incremental test as follows.

• If RDD(qmid) = RDD(qlo), run OPF with q = qx + ε, and calculate

RDD(qx + ε), q̄(qx + ε). If q̄(qx + ε) ≤ qx + ε, then optimal solution

reached with q∗ = qx because qx satisfies (1.4). Stop.

• If RDD(qmid) = RDD(qhi), run OPF with q = qx− ε, and calculate

RDD(qx− ε), q̄(qx− ε). If q̄(qx− ε) ≥ qx− ε, then optimal solution

reached with q∗ = qx because qx satisfies (1.4). Stop.

6. If q̄(qmid) > qmid, qlo = qmid, else qhi = qmid. Continue with step 1.

After the local optimum searching loop, we either have found a local

optimum, or we end up with two output levels qlo and qhi that satisfies (3.75)

so that we can enter the bisection loop. In the 4-bus system example, for

generator 2, the local optimum searching loop will find the maximizer in step

5 after one iteration; for generator 1, the local optimum searching loop will

find two output levels qlo and qhi that satisfies (3.75) after one iteration.

The bisection loop has a quadratic rate of convergence if the residual

demand curves that contain the local optimizer have been correctly identified.

In the 4-bus system example, for either generator 1, the bisection loop will

find the maximizer in step 5 after one iteration.
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3.5 Computational Example

In this section, we apply the algorithm to the IEEE 118 bus test system.

There are 186 branches and 54 generators in the system. The total load in the

system is 4,242 MW. We optimize the profit for generator 5 located at bus 10

with 550 MW capacity. Branches 30-17, 26-30, 38-37 have capacities 200 MW

respectively, so they are likely to be the binding transmission constraints. All

other branches have capacities large enough such that the flows will be within

their limits. We plotted the residual demand curve and the profit function in

Fig. 3.9.

From the profit curve in Fig. 3.9, one can tell the maximizer is between

344 MW and 345 MW. We start with 40 MW for the optimization, which is far

away from the optimizer. The local optimum searching loop terminates after

one iteration with qlo = 40 and qhi = 439.4. The bisection terminated after two

iterations with the optimal solution q∗ = 344.76. The first bisection iteration

is a right hump case, and the second bisection iteration is a left humb case, as

specified in Tab. 3.2. The bisection trajectory is illustrated in Fig. 3.10.

3.6 Conclusion

We characterize the residual demand at the slack bus based on the

FONCs of the OPF problem. The residual demand curve is implicitly char-

acterized by eliminating the equations in the FONCs that contain the offer

information of the generator located at the slack bus. After doing that, there

is one degree of freedom left in the FONCs that defines a locus of (λ, qn), i.e.
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the residual demand curve. We obtain the residual demand derivative formula

(3.31) by sensitivity analysis viewing the price at the slack bus as a parameter

and assuming there is no perfectly elastic supply in the system. The solution

has a suggestive WLS interpretation. Several useful properties of the residual

demand derivative are implied by WLS theory. If there is perfectly elastic sup-

ply at some bus in the system, it is convenient to use the WLS interpretation

to analyze the limit of the residual demand derivative as the quantity-price

response of the bus goes to infinity. We establish the condition under which

the residual demand derivative at another bus will be bounded or unbounded

in this case.

The correctness of the residual demand derivative analytic formulation

is verified using an intuitive 2-bus system, a numerical 4-bus 2-loop system

from [48], and a 3-bus 1-loop system from [12].

We also improved the TCRDD calculation to make more appeals for

practical applications. We use the residual demand derivative formulation

to construct optimal bidding strategies in transmission-constrained networks.

We proposed a decoupled approach, which iteratively solves the subproblem of

calculating the TCRDD, and the subproblem of calculating the optimal offer.

Due to the decoupled structure of the TCRDD approach, it is suitable for

solving large scale problems. We designed a special bisection search method to

find the profit maximization strategy, which requires less function evaluations

than standard line search algorithms. We demonstrated the effectiveness of

this method in the IEEE 118-bus system.
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Chapter 4

Characterizing Strategic Behaviors Via

Transmission-constrained Residual Demand

Jacobian Matrix

A generation firm in electricity markets may own multiple generators

located at multiple locations. To characterize a generation firm’s residual de-

mand, this chapter generalizes the concept of transmission-constrained resid-

ual demand derivative from a single generator’s perspective to the concept

of the transmission-constrained residual demand Jacobian (TCRDJ) matrix

from a generation firm’s perspective. We will derive the formula to calculate

the Jacobian matrix based on a multi-parameter sensitivity analysis of the

optimal power flow, and also demonstrate how to use the matrix to optimize

a generation firm’s profit.

The organization of the rest of the chapter is as follows. Section 4.1

derives the TCRDJ in a transmission-constrained network. Section 4.2 proves

the symmetry and negative semidefinite properties of the TCRDJ. Section 4.3

deals with binding quality offers and binding price offers. Section 4.4 proposes

a bundle trust region method to maximize a generation firm’s profit using the

TCRDJ. Section 4.5 demonstrate the effectiveness of proposed method in the

IEEE 118-bus system. Section 4.6 concludes.
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4.1 Calculating the TCRDJ

In this section, we will derive the TCRDJ formula. Following section

3.1 and section 3.3.2, we consider an offer-based electricity market. The market

is cleared by an OPF program minimizing the total generation offer cost. In

this section, We adopt the more general DC OPF model (3.61) – (3.64) used

in section 3.3.2.

Partition the generators into two sets A and Ā such that G = A ∪

Ā,A ∩ Ā = ∅, where set A consists of all the generators owned by a particular

generation firm A, and set Ā consists of all the generators that do not belong

to generation firm A.

Partition qG into sub-vectors qA and qĀ corresponding to the sets of

generators A and Ā . Consider the following optimization problem parameter-

ized by qA:

min
qĀ

∑
ā∈Ā

Oā (qā) , (4.1)

s.t. HĀqĀ ≤ Z + HLqL −HAqA, (4.2)

qmin
Ā ≤ qĀ ≤ qmax

Ā , (4.3)∑
ā∈Ā

qā =
∑
l∈L

ql −
∑
a∈A

qa. (4.4)

Denote the Lagrange multipliers corresponding to the constraints (4.2), (4.3),

and (4.4), by µ(qA), ρ(qA), and λ(qA), respectively. The optimization prob-

lem (4.1)–(4.4) implicitly defines a vector function representing the LMPs (as

99



derived in (3.11) and (3.67)) for the generators in the set A:

PA(qA) = 1Aλ(qA) + HT
Aµ(qA), (4.5)

where 1A is a column vector of 1s whose dimension equals the number of

generators in set A. By the inverse function theorem, if the Jacobian of PA(•)

is nonsingular, there exists an inverse function for PA(•) locally, which is

the vector residual demand function RA(•) faced by the generation firm, i.e.

P−1
A (•) = RA(•), and the Jacobian of RA(•) equals the inverse of the Jacobian

of PA(•).

Now we calculate the Jacobian of PA(•), evaluated at an OPF solution.

For derivation simplicity, we assume there are no generators with binding offer

quantities or binding offer prices. Dealing with those binding offer quantities

and binding offer prices is the topic of section 4.3.

Construct the Lagrangian of the optimization problem (4.1)–(4.4) with

only the binding transmission constraints:

L =
∑
ā∈Ā

Oā (qā) + λ

∑
l∈L

ql −
∑
ā∈Ā

qā −
∑
a∈A

qa


+ µT

b (Zb + HLbqL −HAbqA −HĀbqĀ) ,

where the subscript “b” means the rows or entries corresponding to binding

constraints. We assume that the second-order sufficient conditions hold.

For all a ∈ A we calculate ∂λ
∂qa

and ∂µb

∂qa
from a sensitivity analysis of the
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following first-order necessary conditions (FONCs):

∂L

∂qĀ

= 0Ā,

∂L

∂µb

= 0b,

∂L

∂λ
= 0.

Write the FONCs explicitly:

O′Ā (qĀ)− 1Āλ−HT
Ābµb = 0Ā,

HĀbqĀ = Zb + HLbqL −HAbqA,

1T
ĀqĀ = 1T

L qL − 1T
AqA,

(4.6)

where we view qĀ, µb, and λ as implicit functions of qA and

• O′
Ā

(qĀ) = ∇qĀ

(∑
ā∈ĀOā (qā)

)
,

• 0Ā is a column vector of 0s whose dimension is equal to the number of

generators in the set Ā,

• 1A, 1Ā and 1L are column vectors of 1s whose dimensions equal the

number of generators in set A, the number of generators in set Ā, and

the number of loads in L respectively.

Differentiate both sides of (4.6) with respect to qa,∀a ∈ A, we obtain:

O′′Ā
∂qĀ

∂qa
− 1Ā

∂λ

∂qa
−HT

Āb

∂µb

∂qa
= 0Ā, (4.7)

HĀb

∂qĀ

∂qa
= −Hab, (4.8)

1T
Ā

∂qĀ

∂qa
= −1, (4.9)
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where

O′′Ā = ∇2
qĀqĀ

∑
ā∈Ā

Oā (qā)

 .

Assume O′′
Ā

is positive definite (P.D.), so that it is invertible. This is

always true if there are no offers in Ā with binding quantities or prices. We

will deal with binding quantity and binding price offers in section 4.3. Now

define:

M = HĀb

(
O′′Ā
)−1

HT
Āb,

N = 1T
Ā

(
O′′Ā
)−1

1Ā.

Assume that the rows of HĀb are linearly independent and that the number of

rows is less than the number of generators in the set Ā so that M is invertible.

Multiply both sides of (4.7) on the left by HĀb

(
O′′

Ā

)−1
, substitute

in (4.8), and then multiply both sides on the left by M−1, we get

∂µb

∂qa
= −M−1Hab −M−1HĀb

(
O′′Ā
)−1

1Ā

∂λ

∂qa
. (4.10)

Multiply both sides of (4.7) on the left by 1T
Ā

(
O′′

Ā

)−1
, substitute in (4.9), we

get

−1−N ∂λ

∂qa
− 1T

Ā

(
O′′Ā
)−1

HT
Āb

∂µb

∂qa
= 0. (4.11)

Solve (4.10) and (4.11), we get

∂λ

∂qa
= V −1

(
1− 1T

Ā

(
O′′Ā
)−1

HT
ĀbM

−1Hab

)
, (4.12)

where

V = −N + 1T
Ā

(
O′′Ā
)−1

HT
ĀbM

−1HĀb

(
O′′Ā
)−1

1Ā. (4.13)
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The derivative ∂µb

∂qa
can be calculated by substituting (4.12) into (4.10).

Now we can calculate the Jacobian matrix ∂pA

∂qA
, with the (g, a) element

of the matrix defined by differentiating both sides of the g-th row of (4.5) with

respect to qa:

∂pg
∂qa

=
∂λ

∂qa
+ HT

ab

∂µb

∂qa
, ∀g, a ∈ A.

After simplification,

∂PA

∂qA
= −HT

AbM
−1HAb + UTUV −1, (4.14)

where

U = 1A −HT
AbM

−1HĀb

(
O′′Ā
)−1

1Ā.

By the inverse function theorem, the residual demand Jacobian for the

generation firm is:

∂qA

∂pA
=

(
∂PA

∂qA

)−1

. (4.15)

If the generation firm has only one generator, and the generator is

located at the slack bus s, then Hs = 0, where Hs is the column of H cor-

responding to the slack bus. In this case, Hsb = 0 in (4.12), so ∂λ
∂qa

= V −1,

where V is the TCRDD formula (3.31). This verifies the correctness of our

calculation for this special case.

4.2 Properties of the TCRDJ

As proved in [19], the TCRDJ is symmetric and negative semidefinite

(N.S.D.) if the DC OPF only models the branch flow constraints. The TCRDJ
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derivation part of the paper can be viewed as a generalization of [19], because

as discussed in section 3.3.2, our OPF formulation can include all types of

linear constraints, such as contingency constraints and Nomograms. We are

going to prove the symmetry and N.S.D. properties of the TCRDJ holds with

all constraints being linear in the OPF.

Proposition 6. The TCRDJ ∂PA

∂qA
is symmetric.

Proof. Directly from the TCRDJ ∂PA

∂qA
formula (4.14),

∂PA

∂qA
=

(
∂PA

∂qA

)T

.

Proposition 7. The TCRDJ ∂PA

∂qA
is negative semidefinite.

Proof. Because
(
O′′

Ā

)−1
is positive definite (P.D.), M is also P.D. by defini-

tion under the assumption that the rows of HĀb are linearly independent and

that the number of rows is less than the number of generators in the set Ā.

Therefore, we only need to prove V ≤ 0 to prove ∂PA

∂qA
is N.S.D. by its formula

(4.14).

Similar to section 3.1.4 where we proved the TCRDD is less than or

equal to zero, we prove V ≤ 0 by a Weighted Least Squares (WLS) formulation.

Following appendix A, consider the WLS problem specified by

X = HT
Āb,

Y = 1Ā,

W =
(
O′′Ā
)−1

.
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The Least Sum of Squares Error (SSE) is

SSEWLS = YTWY −YTWX
(
XTWX

)−1
XTWY

= 1T
Ā

(
O′′Ā
)−1

1Ā − 1T
Ā

(
O′′Ā
)−1

HT
ĀbM

−1HĀb

(
O′′Ā
)−1

1Ā

= −V

≥ 0.

Therefore, V ≤ 0, and the TCRDJ ∂PA

∂qA
is negative semidefinite.

4.3 Handling binding quantity offers and binding price
offers

Some offer functions may be binding at certain constant output levels,

such as the capacity bounds, and some other offers may be binding at constant

offer prices if they bid constant prices for some output stacks. As discussed in

section 3.4, these special cases need to be handled separately, because (4.12)

will be invalid under those circumstances. If an offer is binding at the output

limit for the market clearing conditions, then the corresponding entry in O′′
Ā

is undefined. If an offer is binding at a constant price, O′′
Ā

is not invertible.

Following section 3.4, to handle these binding offer quantities and bind-

ing offer prices, partition the generators in set Ā into three subsets: the gener-

ators with binding offer quantities, denoted by f; the generators with binding

offer prices, denoted by z; and the generators with offers having non-zero
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slopes, denoted by v, so that

qĀ =

 qv

qf

qz

 .
Accordingly, partition HĀb into:

HĀb =
[

Hvb Hfb Hzb

]
.

Rewrite the Lagrangian of the OPF with only the binding constraints:

L =
∑
g∈v

Og (qg) +
∑
g∈f

Og (qg) +
∑
g∈z

Og (qg)

+ λ

(∑
l∈L

ql −
∑
g∈v

qg −
∑
g∈f

qg −
∑
g∈z

qg −
∑
g∈A

qg

)
+ µT

b (Hvbqv + Hfbqf + Hzbqz + HAbqA −HLbqL − Zb)

+ ρT
max (qf − qmax

f ) + ρT
min

(
qf − qmin

f

)
.

By definition, at the OPF solution,

∀a ∈ A,
∂qf

∂qa
= 0f. (4.16)

Similar to section 3.1, we calculate ∂λ
∂qa

and ∂µb

∂qa
from a sensitivity anal-

ysis of the following first-order necessary conditions:

∂L

∂qv
= 0v,

∂L

∂qz
= 0z,

∂L

∂µb

= 0b,

∂L

∂λ
= 0,
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i.e.
O′v (qv)− 1vλ−HT

vbµb = 0v,

O′z (qz)− λ1z −HT
zbµb = 0z,

Hvbqv + Hzbqz = Zb −HLbqL −HAbqA,

1T
ĀqĀ = 1T

L qL − 1T
AqA,

(4.17)

where we again view qv, qz, µb, and λ as implicit function of qA, and O′z (qz),

0v, 0f , and 0z are similarly defined as in (3.67).

Differentiate both sides of (4.17) with respect to qa,∀a ∈ A, we get

O′′v
∂qv

∂qa
− 1v

∂λ

∂qa
−HT

vb

∂µb

∂qa
= 0v,

−1z
∂λ

∂qa
−HT

zb

∂µb

∂qa
= 0z,

Hvb
∂qv

∂qa
+ Hzb

∂qz

∂qa
= −Hab,

1T
v

∂qv

∂qa
+ 1T

z

∂qz

∂qa
= −1,

(4.18)

where O′′v is similarly defined as in (3.68). If the number of binding price offers

in the set z is less than the number of binding transmission constraints, and the

number of binding transmission constraints is less than the number of offers

in set v, then (4.18) has a unique solution. The TCRDJ can be calculated by

solving (4.18).

The symmetry and N.S.D. properties of the TCRDJ still hold with

binding quantity and binding price offers as a result of the implicit function

theorem. Because (4.7)–(4.9) are continuously partially differentiable in the

107



bidding slopes, under the assumption that (4.18) has a unique solution,
∂qv

∂qa
∂qz

∂qa
∂µb

∂qa
∂λ
∂qa


can be viewed as a continuous differentiable implicit function of the bidding

slopes of the generators in set z in the vicinity of 0z. If we define a sequence of

positive bidding slopes of the generators in set z, that monotonically approach

0z, then the corresponding TCRDJs, calculated by solving (4.7)–(4.9), in the

sequence are symmetric and N.S.D. as proved in section 4.2. At the limit of the

sequence, (4.7)–(4.9) converge to (4.18). Therefore, the limit of the TCRDJ in

the sequence is the TCRDJ calculated by solving (4.18), and it is symmetric

and N.S.D. as well.

4.4 Maximizing A Generation Firm’s Profit

Similar to maximizing a generator’s profit using TCRDD, we can max-

imize a generation firm’s profit using TCRDJ. In a nodal electricity market,

a generation firm may own multiple generators located at different locations.

Compared with a single generator, a generation firm has more resources to

leverage, and thus may have more profitable strategies.

Similar to optimizing a single generator’s profit based on TCRDD, one

major task is to deal with the non-differentiability in the residual demand

function. In section 3.4, we proposed a special bisection search algorithm to
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find the optimizer for a single generator. However, the algorithm does not

apply to higher dimensional residual demand function. In this chapter, we

propose a bundle method to optimize a generation firm’s bidding strategy in

the residual demand function.

4.4.1 Bundle idea

The bundle concept is widely applied to non-differentiable function op-

timization. To be consistent with the convention of most bundled method

literatures, such as [37], we model the problem as a minimization problem

min
x

f(x)

s.t. x ≤ x ≤ x.
(4.19)

where f : Rnx → R is a Lipschitz continuous non-smooth convex function,

where the decision variables are the output levels of the self-owned generators,

i.e. x = qA, and the function f(•) is the negative profit function,

f(qA) = −
∑
a∈A

(Pa(qa)qa − Ca(qa)) .

The inverse residual demand function PA(qA) may have kinks, which

may make the objective function f non-convex. Let us assume the convexity

of objective function for the current moment to introduce the bundle idea

conveniently. We will cover how to handle non-convex objective function in

section 4.4.2 when we go into the details of the algorithm.

The ∂PA

∂qA
(qA) calculation in section 4.1 provides a subgradient of pA(•).
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Therefore, one subgradient of f(•) is

g(qA) = −
(

PA(qA) +
∂PA

∂qA
(qA)qA −C′A(qA)

)
. (4.20)

The subgradient information (4.20) is crucial for a bundle method.

The bundle concept has two features [37]:

1. Make use at iteration k, the bundle information

(f(xk),g(xk)), (f(xk−1),g(xk−1)), · · · ,

collected so far to build a model of the objective function f .

2. If, due to the kinked structure of f , this model does not characterize f

accurate enough, then mobilize more subgradient information.

Feature 1 leads to the cutting plane approximation of f at xk from

below.
fCP(x)

= max
1≤j≤k

{g(xj)T(x− xj) + f(xj)}

= max
1≤j≤k

{g(xj)T(x− xk) + g(xj)T(xk − xj) + f(xj)}

= max
1≤j≤k

{g(xj)T(x− xk)− αk,j + f(xk)}

(4.21)

where

αk,j = f(xk)−
(
f(xj) + g(xj)T(xk − xj)

)
(4.22)

as defined in [37]. If f(•) is convex, fCP(•) is an approximation of f(•) from

below. It is typically a good approximation in the vicinity of xj, because it
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coincides with f at all xj. If enough bundle information has been collected, fCP

may also be a good approximation for f even for x that is far away from xj, but

without enough bundle information, fCP is likely to be a poor approximation

for f , in which case, more bundle information needs to be mobilized to improve

the approximation accuracy.

On the other hand, following section 3.4, define

P̄A(qA; qkA) =
∂PA

∂qA
(qkA)(qA − qkA) + pkA.

P̄A(•; qkA) is an approximation of PA(•) at iteration k, and it coincides with

PA(•) at qkA. Thus,

f̄(qA) = −
(
P̄T

A(qA; qkA)qA − 1T
ACA(qA)

)
,

is another approximation of f(•). In the vicinity of qA, f̄ is a better approxi-

mation than fCP, because f̄ matches both the value and curvature of f .

As f̄ is a good local approximation function, and fCP may be a good

overall approximation given enough bundle information, it will be better to

combine the power of the two. Consider the following optimization problem:

min
1

t
f̄(x) + fCP(x)

s.t. x ≤ x ≤ x.

(4.23)

where t ∈ (0, 1] is a parameter to implicitly control the step size. The idea is

to adaptively adjust t in the optimization progress, which resembles the trust

region concept, Although we adjust t instead of the trust region, the effect is

the same. If t is small, the “trust region” is small, and vice versa. If t is chosen
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properly and enough bundle information has been collected, the minimizer of

(4.23) also solves (4.19).

Problem (4.23) is equivalent to the following quadratic program

min
1

t
f̄(x) + v

s.t. v ≥ g(xj)T(x− xk)− αk,j + f(xk), ∀j ≤ k,

x ≤ x ≤ x.

(4.24)

We are going to solve (4.24) for xk+1, and depending on whether xk+1

improves f , we will adjust t, add bundle information, and make progress.

Applying the trust region to the bundle concept leads to the following

scheme [37]. If f(xk+1) is “sufficiently smaller” than f(xk), that means (4.24)

is a good approximation to the original problem, so we can make a Serious Step

from the incumbent xk to xk+1, and in the mean time, t could be increased

to enlarge the trust region. If f(xk+1) is not “sufficiently smaller” than f(xk),

that means (4.24) is not a good approximation to the original problem, so we

need to make the approximation more accurate instead of proceed to the next

step. The process is called a Null Step, which does the following: first add

gk+1 = g(xk+1) to the bundle information, then decrease t to shrink the trust

region, and stay with the incumbent xk instead of proceeding to xk+1.

4.4.2 Algorithm

To turn the bundle trust region idea into an algorithm, we needs to

qualify the “sufficiently smaller” criteria and an appropriate stopping criteria.
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These two criteria can be implemented based on the ε-optimal criteria:

if x∗ is the optimizer of f(•), then x is ε-optimal if

f(x) ≤ f(x∗) + ε‖x− x∗‖+ ε. (4.25)

Based on (4.25), we say f(xk+1) is “sufficiently smaller” than f(xk) if:

f(xk+1)− f(xk) < −ε‖xk+1 − xk‖ − ε and ‖xk+1 − xk‖ ≤ 1,

or

f(xk+1)− f(xk) < −ε and ‖xk+1 − xk‖ > 1.

The second condition above means when xk+1 is sufficiently away from xk, it

is likely the bundle information will get improved from the current model if

we proceed to xk+1, so we would like to make a Serious Step even though the

improvement in the objective function is small.

The stopping criteria needs more derivation. Lemma 2.2 in [37] is a

sufficient condition for ε-optimal. Following [37], let us work out the stopping

criteria, that satisfies Lemma 2.2 in [37], from the KKT conditions of (4.24):

λj(−v + g(xj)T(x− xk)− αk,j + f(xk)) = 0, ∀j ≤ k, (4.26)

1

t
∇f̄(x) +

∑
j

λjg(xj) = 0, (4.27)

1−
∑
j

λj = 0. (4.28)

By (4.27), ∑
j

λjg(xj) = −1

t
∇f̄(x). (4.29)
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Sum (4.26) over j, apply (4.27) and (4.28), and evaluate at x = xk+1,

∑
j

λjαk+1,j = −vk+1 −
(

1

t
∇f̄(xk+1)

)T

(xk+1 − xk) + f(xk) (4.30)

Substitute (4.29) and (4.30) into Lemma 2.2 in [37], we get the ε-optimal

stopping criteria

‖1

t
∇f̄(xk+1)‖ ≤ ε,

−vk+1 −
(

1

t
∇f̄(xk+1)

)T

(xk+1 − xk) + f(xk) ≤ ε.

(4.31)

The algorithm is as follows.

1. Let k = 0, xk = x0, and tk = 1.

2. Let k = k + 1, and solve (4.24) for xk+1.

3. If stopping criteria (4.31) is satisfied, optimal solution found with x∗ =

xk, stop.

4. If f(xk+1) is “sufficiently smaller” than f(xk), then make a Serious Step:

tk = min{1, 2tk}, compute gk+1 = g(xk+1), and continue with step 2.

Otherwise, tk = 0.5tk, and make a Null Step: compute gk+1 = g(xk+1),

let xk+1 = xk, and continue with step 2.

With minor modifications, the algorithm can handle non-convex func-

tion as well. If the objective function is non-convex, (4.21) may not be an
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generator bus qmin qmax marginal cost
1 1 0 100 0.020q + 40
2 4 0 100 0.020q + 40
3 6 0 100 0.020q + 40
4 8 0 100 0.020q + 40
5 10 0 550 0.044q + 20
30 69 0 805.2 0.039q + 20

Table 4.1: Generator data

approximation of f(•) from below. In this case, αk,j in (4.22) may be nega-

tive. As proved in section 3 of [37], as long as we replace αk,j by

βk,j = max{αk,j, ε0‖xk − xj‖} ≥ 0,

where ε0 is a very small positive number, the algorithm will be able to handle

non-convex objective function. Note that, in this case, the stopping criteria

does not imply ε-optimality, it merely means xk+1 is “almost” stationary as

pointed by in [37].

4.5 Computational Example

We apply the algorithm to the IEEE 118-bus test system, which is also

used in section 3.4. We optimize the profit for a fictitious generation firm

A, who owns two generators: generator 5 located at bus 10 with 550 MW

capacity, and generator 30 located at bus 69 with 805.2 MW capacity. Part

of the generator data is listed in Tab. 4.1. Assume all generators other than

generators 5 and 30 offer at their true marginal cost.
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4.5.1 Firm strategy vs single generator strategy

We plotted the contour of the profit function and the optimization

trajectory in Fig. 4.1, and the data is listed in Tab. 4.2. The “step” column in

Tab. 4.2 indicates a Serious Step by ’S’, a Null Step by ’N’, and optimal solution

by ’O’. The same convention also applies to other similar tables through the

rest of the chapter. After 5 iterations, the algorithm found the optimizer

q∗5 = 356.58 and q∗30 = 434.17, with a total profit of 9192.3. At the optimum,

generator 5 is making a profit of 4299.9, and generator 30 is making a profit of

4892.3, as listed in column 2 of Tab. 4.3. The power flow involves the capacity

constraints of branches 36-30, 38-26, and 51-38 binding at 200 MW each.

We also consider the case that generators 5 and generator 30 belong

two different generation firms, respectively, which do not own any other units

in the system. As listed in column 3 of Tab. 4.3, the optimal strategy for

generator 5 is q∗5 = 344.76 with profit π∗5 = 4188.88, assuming all other gen-

erators, including generator 30, offer at their marginal costs. As listed in

column 4 of Tab. 4.3, the optimal strategy for generator 30 is q∗30 = 436.44

with profit π∗30 = 4650.6, assuming all other generators, including generator 5,

offer at their marginal costs. The sum of π∗5 and π∗30 is 8839.4, which is less

than the generation firm A’s profit 9192.3. The increased profit is achieved

by decreasing q30 by 2.27 MW, which reduces generator 30’s profit, but frees

up some transmission capacity so that generator 5’s output can increase by a

larger amount, 11.82 MW, without overloading the transmission lines. This

demonstrates that a generation firm’s profit maximizing strategy may be sub-
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iter. q5 q30 profit step
0 200.00 200.00 6509.6 S
1 435.27 499.92 8260.2 S
2 313.33 412.58 9069.1 S
3 374.58 445.66 9126.5 S
4 359.47 431.98 9191.6 S
5 356.59 434.17 9192.3 O

Table 4.2: Optimization trajectory starting from (200,200)

Firm A Single Generator
g5 g30 g5 g30

q∗ 356.58 434.17 344.76 436.44
p∗ 39.98 39.68 39.68 39.11
π∗ 4299.9 4892.3 4188.88 4650.6

Table 4.3: Optimization solutions: firm vs single generator

optimal from each single generator’s perspective, but is more profitable than

unilaterally using each generator’s optimal strategy. This makes monitoring

and analyzing a generation firm’s strategic behavior more challenging.

4.5.2 Different starting points

In addition to the starting point q5 = 200 and q30 = 200, we initialized

the algorithm with other starting points to test its robustness. Including the

starting point q5 = 200 and q30 = 200, we will test four different starting

points:
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Starting point q5 q30

1 200.00 200.00
2 300.00 500.00
3 450.00 250.00
4 450.00 550.00

The optimization trajectories are listed in Tab. 4.2, Tab. 4.4, Tab. 4.5,

and Tab. 4.6 respectively. The algorithm reliably finds the optimizer for each

of the starting point within 4 to 6 iterations with run time less than 2 seconds

each.

The robustness and performance of this approach is superior to the

MPEC approach. As illustrated in [23], the MPEC approach suffers from

the non-convexity due to the complementary constraints. The MPEC cannot

reliably find the optimizer for certain starting points. As a result, one need to

run the MPEC program multiple times in order to safely conclude an optimal

solution. Our algorithm, in contrast, works with the primal variables, and

thus has less difficulties with the non-convexity. Although theoretically it is

possible that the optimization problem is non-convex, as a practical matter,

the problem is typically convex or close to convex, which helps our algorithm

to work robustly.

Another observation is that because the bundle method depends on

history, even if different optimization path intersect at a certain point, their

subsequent trajectories may not be the same. For example, iteration 1 in

Tab. 4.4 coincides with iteration 1 in Tab. 4.5, but after that, the two trajec-

tories are very different. Nevertheless, they approach the same optimizer.
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iter. q5 q30 profit step
0 300.00 500.00 9015.0 S
1 374.59 445.67 9126.4 S
2 355.56 393.19 9131.3 S
3 362.78 434.00 9191.3 S
4 356.60 434.18 9192.3 O

Table 4.4: Optimization trajectory starting from (300, 500)

iter. q5 q30 profit step
0 450.00 250.00 8293.7 S
1 374.59 445.67 9126.4 N
2 374.59 445.67 9126.4 N
3 374.59 445.67 9126.4 S
4 356.64 433.78 9191.9 S
5 356.61 433.98 9192.2 O

Table 4.5: Optimization trajectory starting from (450,250)

iter. q5 q30 profit step
0 450.00 550.00 7694.0 S
1 326.63 399.15 9084.1 S
2 374.59 445.67 9126.4 S
3 355.20 440.33 9191.5 S
4 356.60 434.18 9192.3 O

Table 4.6: Optimization trajectory starting from (450,550)
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Figure 4.1: Optimization trajectory starting from (200, 200)
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Figure 4.2: Optimization trajectory starting from (300, 500)

120



q5 (MW)

q3
0 

(M
W

)

150 200 250 300 350 400 450 500
150

200

250

300

350

400

450

500

550

600

Figure 4.3: Optimization trajectory starting from (450, 250)
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Figure 4.4: Optimization trajectory starting from (450,550)
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4.5.3 Performance Test

We test the performance of the algorithm by increasing the number of

generators owned by generation firm A from 5 generators to 30 generators.

All tests start from competitive output levels. The results are summarized

in Tab. 4.7. All these scenarios finish within 15 seconds on a 2.2GHz Intel

Core 2 Duo PC, with less than 35 total steps including both Serious Steps

and Null Steps. The number of steps also implies the number of OPFs solved,

because there is exactly one OPF solved in each step in order to evaluate the

profit function, and calculate the TCRDJ. For large scale problem, iteratively

solving the OPF is the most computationally intense part for this algorithm, so

improving the OPF solver performance will directly improve the performance

of this algorithm.

The 30 generator scenario has an infeasible OPF due to significant

withholding from generation firm A. In this case, the generation firm A is

pivotal meaning that without generators from generation firm A, the rest of

the generators in the system are not enough to meet the total system demand.

In this case, if there is no price cap in the market, generation firm A will

behave pivotally to withhold till the system is short of supply to drive the

price arbitrarily high. We can observe this phenomena in the 30 generator

scenario in Tab. 4.7. After 20 iterations, the profit has gone above 1010 $/h.

The performance of the algorithm does not directly depend on the

number of generators owned by the generation firm. For example, the 20

generators scenario requires less iterations than the 15 generators scenario.
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generators Serious Steps Null Steps run time profit
1–5 3 9 1.7 s 4.1448× 103

1–10 3 0 0.6 s 5.0231× 103

1–15 5 7 1.8 s 1.0109× 104

1–20 3 0 0.8 s 1.0454× 104

1–25 24 10 11.4 s 5.3263× 105

1–30 9 11 4.4 s 3.8379× 1010 a

aEnergy balance has been violated.

Table 4.7: Performance test

This is because sometimes when the generation firm has more generators to

leverage, some of the generator output levels can be more easily determined

to stay at the capacity bounds, which leaves fewer effective decision variables.

Another observation is that some of the generators have larger impact

on the profit than others. For example, the profit only changes about 1000 $/h

from the 5-generator scenario to the 10-generator scenario, while the profit

changes about 5000 $/h from the 10-generator scenario to the 15-generator

scenario, which implies generator 6 – 10 are not as effective as generator 11 –

15. Similarly, generator 21 - 25 seem to have very large impact on the profit.

The performance of the algorithm is affected more by the number of these

highly effective generators. Generally speaking, more iterations are needed

when highly effective generators are added to the portfolio.

4.6 Conclusion

In electricity markets, especially nodal electricity markets, a generation

firm may own multiple generators located at multiple buses and exposed to
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different LMPs. In this context, we generalize the residual demand concept

from a single generator’s perspective to a generation firm’s perspective. The

TCRDD for a single generator corresponds to a TCRDJ for a generation firm.

We derived the TCRDJ based on a multi-parameter sensitivity analysis of

the OPF. Then we proposed a bundle trust region algorithm to optimize a

generation firm’s profit based on the TCRDJ. The algorithm is applied to the

IEEE 118-bus system to demonstrate the effectiveness of the method. The

TCRDJ provides useful insights about a generation firm’s strategic behavior.

The algorithm provides an effective and promising approach for generation

firms to bid into electricity markets.
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Chapter 5

Conclusion

In the chapter, we summarize the dissertation and discuss future re-

search topics.

5.1 Summary

Through the previous chapters, we have analyzed strategic behavior

in electricity markets from a residual demand perspective. We started with

a SFE stability analysis in chapter 2, which is an application of the residual

demand method in the absence of transmission constraints, aiming at refining

the electricity market supply function Nash equilibria.

Then we devoted major effort to deal with transmission constraints in

chapters 3 and 4. We characterized the residual demand in a transmission-

constrained network from a single generator’s perspective, and then generalized

the concept to a generation firm’s perspective, which may own multiple gener-

ators located at different locations. The core of the residual demand character-

ization is the transmission-constrained residual demand derivative (TCRDD)

and the transmission-constrained residual demand Jacobian (TCRDJ), which

are very useful in characterizing the profit maximizing strategy. We not only
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defined these concepts, but also improved their calculation efficiency and prac-

tical implementation. With those improvements, the TCRDD and TCRDJ

calculation can be implemented as a light-weight OPF post-processing step.

This enables us to decouple the generator or generation firm’s profit maximiza-

tion problem into two subproblems, the lower problem of post-OPF TCRDD

or TCRDJ calculation, and the upper problem of profit maximization based

on TCRDD or TCRDJ. The decoupled structure has the advantage of being

able to reuse advanced OPF solvers, so this method is able to solve large scale

problems.

If the whole residual demand function is given, as discussed in sec-

tion 1.3, the upper problem is very easy to solve. Basically we need to find

a point on the explicitly given residual demand function that maximizes the

profit.

However, we do not have an explicit analytical representation of the

residual demand function, and it is computationally expensive to numerically

evaluate the function using the OPF. Therefore, we proposed methods to use

the TCRDD or TCRDJ to find the optimizer that only require a few evalua-

tions of OPF. In essence, the methods are based on Newton methods, as we

calculate the profit function Hessian matrix using TCRDD or TCRDJ.

Generally, the residual demand function is not continuously differen-

tiable, which results in “kinks” in the profit function. Thus another task is to

deal with these non-differentiable points. We customized the bundle trust re-

gion method by Schramm and Zowe [37] to optimize the kinked profit function
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based on TCRDJ. The idea is to build up a cutting plane approximation to the

objective function from gathered information from previous iterations, that is,

the “bundle.” We rely on the cutting plane approximation to determine the

locations of the objective function kinks.

For a single generator’s profit maximization, because there is only one

decision variable, profit maximization only involves a line search. We devel-

oped a special bisection search algorithm to find the optimizer. Considering

the algorithm in the context of the bundle idea, one can find that the algo-

rithm is building a two-piece quadratic function approximation in the interval

[qlo, qhi], so it is in essence a “quadratic bundle” method. For a scalar problem,

the quadratic bundle problem can be solved very easily because there are at

most three candidates for the optimizer. Therefore, we can use the more accu-

rate quadratic bundle. In contrast, for a generation firm’s profit maximization,

if we also use a quadratic bundle instead of the (linear) cutting plane bundle,

it will introduce quadratic constraints into the optimization problem we solve

in each iteration, and make it more difficult to solve in practice. This is why

we use the cutting plane bundle for a generation firm’s profit maximization

problem.

The contributions of the dissertation can be evaluated by the goals we

discussed in chapter 1:

• from the practical point of view, the method is able to handle large scale

production level systems, and it is better if the existing advanced market
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simulation engines can be reused;

• from the theoretical point of view, the method is able to represent the

transmission network to the same details as in the true market clearing

process, and systematically find the profit maximizing strategy.

To achieve the second goal, we have represented the transmission constraints

in the same way that the market clearing engine models them in deriving

the TCRDD and TCRDJ. To achieve the first goal, we decouple the profit

maximization problem into two easily solvable subproblems. The decoupled

structure makes the computational capability of the method close to the com-

putational capability of existing advanced OPF programs, which can solve

very large scale problems. We have tested the performance of these methods

on the IEEE 118-bus system. Our testing has been limited by the capability

of our OPF solver and available test cases. In the future, we will do further

tests in larger test systems (with thousands of buses, which is close to size of

actual power systems, such as CAISO and ERCOT.) In summary, the residual

demand approach provides a very promising methodology in achieving these

goals.

5.2 Future research

The theory and methods proposed in the dissertation have broken

ground for further research topics. This dissertation directly studies how to

find the profit maximizing strategies for a generator or generation firm. This
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can help small generation firms to participant in the market, but may also

help oligopolistic generation firms understand how to leverage transmission

constraints to exercise market power. One natural future research topic is

from a market monitor’s perspective how to monitor potential market power

in electricity markets.

The studies in this field have been very ad hoc historically. There are

two major reasons for this. One reason is that the classic market power indices,

such as the Herfindahl-Hirschman Index (HHI), do not have a solid connection

with price markups or any other tangible measures unless in a Cournot model.

The other reason is that the transmission constraints have been represented

unrealistically.

In industry, several electricity markets have used capacity-based HHI

or similar measures to monitor market power, which do not have any theoret-

ical justification [41]. Some examples of such measures include the “Element

Competitiveness Index” (ECI) [16] in the proposed ERCOT nodal market and

the “three pivotal supplier test” [31] in the PJM market. The ECI considers

each transmission line in the system separately to determine if there is enough

competition to resolve congestion from the import side and the export side

defined by positive and negative shift factors. Then the HHI is calculated for

the import side and the export side. The representation of the transmission

network model is partial in this measure in that the line-by-line examination

neglects interaction of multiple binding constraints in the system. For example,

a generator with 0.5 shift factor that is considered to be effective in resolving
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congestion in the ECI model may not actually be able to resolve the congestion

if it would then overload another line by doing so. The “three pivotal supplier

test” in the PJM market is very similar to the ECI test except it is doing a

pivotal supplier test instead of calculating the HHI. The effectiveness of these

type of methods is very questionable.

The transmission-constrained residual demand concept can be used to

derive market power indices with solid theoretical foundation. We will give

two examples with the hope of spurring ideas.

Price Markup The price markup is defined as the difference between

the strategic price and the competitive price. By (2.2), at the profit maximiz-

ing point,

p− C ′i (qi) = −P ′i (qi)qi. (5.1)

Note that the left hand side of (5.1) is the difference between the profit maxi-

mizing price and the corresponding marginal cost. This property can be used

to measure potential price markup for a generator assuming the competitive

price is higher than the marginal cost. The potential price markup character-

izes how large the incentive is for a generator to drive up the price above the

competitive level in the process of pursuing maximum profit. Similarly for a

generation firm A:

pA −C′A (qA) = −∂PA

∂qA
qA, (5.2)

so the same logic could be applied to a generation firm.

Profit Markup The profit markup is defined as the difference between

130



the profit by bidding strategically and the competitive profit. At the profit

maximizing point,

qi (p− C ′i (qi)) = −P ′i (qi)q2
i . (5.3)

Note that the left hand side of (5.3) is the output quantity multiplied by

the price markup above the marginal cost, which can be used to measure the

potential profit markup in the process of pursuing maximum profit. Similarly

for a generation firm A:

qT
A (pA −C′A (qA)) = qT

A

∂PA

∂qA
qA, (5.4)

so the same logic could be applied to a generation firm as well.

The two examples above are both sensitivity based measures. They can

be calculated with one run of the market clearing process. Similar measures

can be calculated using simulation based methods. With simulation, one can

clear the market with true cost, then clear the market with the offers and

bids, and compare the differences in prices and profits. The appropriateness

of sensitivity based measures versus simulation based measures depends on

the application. The simulation based methods are more suitable for offline

studies to determine overall market performance over time, say a month. The

sensitivity based indices above are more suitable for online operations to as-

sist market power identification and mitigation. We will continue working on

using the transmission-constrained residual demand concept to define market

power indices in assessing electricity market competitiveness, and design online

market power mitigation mechanisms.
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It is my hope to see real applications of the residual demand based

methods in electricity markets in the future.
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Appendix A

Ordinary Least Squares Problem and

Weighted Least Squares Problem

The formulation and results in this section are from [22]. An Ordinary

least squares (OLS) problem is formulated as follows. Suppose there are n

observations (Yi,Xi) , ∀i = 1, . . . , n. The objective is to find an optimal

vector β that minimizes the Sum of Squares Error (SSE):

min
β

SSEOLS (β) =
n∑
i=1

(
Yi −XT

i β
)2

The solution to this OLS problem is

bOLS =
(
XTX

)−1
XTY,

where

X =


XT

1

XT
2

...
XT
n

 ,
Y =

[
Y1 Y2 . . . Yn

]T
,

assuming there is no multicollinearity, i.e. X has linearly independent columns.

The minimal SSE is:

SSEOLS
(
bOLS

)
= YT

(
I−X

(
XTX

)−1
XT
)

Y.
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Define a projection matrix PX by:

PX = X
(
XTX

)−1
XT.

Define another projection matrix M by:

MX = I−PX.

Both matrices PX and MX are idempotent, namely:

P2
X = PX,

M2
X = MX.

In addition, both matrices P and M are positive semi-definite so that:

SSEOLS
(
bOLS

)
= YTMXY ≥ 0.

Define the residual:

e = MXY,

then:

XTe = 0.

Suppose we want to add one regressor to the problem. Now there are

n observations (Yi,Xi, zi) , ∀i = 1, . . . , n, with zi added. Again assume there

is no multicollinearity with zi added.

The objective is to find an optimal vector β and γ that minimizes the

SSE:

min
β,γ

SSEOLS (β, γ) =
n∑
i=1

(
Yi −XT

i β − ziγ
)2
.
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We have:{
min
β,γ

SSEOLS (β, γ)

}
=

{
min

β
SSEOLS (β)

}
− c2

(
zTMXz

)
,

where z =
[
z1 z2 . . . zn

]T
, and:

c =
(
zTMXz

)−1
zTMXY.

Note that if:

MXz 6= 0,

and:

MXY 6= 0,

then:

min
β,γ

SSEOLS (β, γ) < min
β

SSEOLS (β) .

If we put weights on different observations, then it is a weighted least

squares (WLS) problem with the following objective:

min
β

SSE =
n∑
i=1

wi
(
Yi −XT

i β
)2
.

The solution to this WLS problem is:

bWLS =
(
XTWX

)−1
XTWY,

where the weight matrix is defined by:

W =


W1 0 . . . 0
0 W2 . . . 0
...

...
. . .

...
0 0 . . . Wn

 .
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The minimal SSE is:

SSEWLSbWLS = YTWY −YTWX
(
XTWX

)−1
XTWY.

Let us assume W is positive semi-definite so that W1/2 exists:

W1/2W1/2 = W.

The WLS could be transformed to an equivalent OLS problem by defining:

Y∗ = W1/2Y,

X∗ = W1/2X,

where:

W1/2 =


w

1/2
1 0 . . . 0

0 w
1/2
2 . . . 0

...
...

. . .
...

0 0 . . . w
1/2
n−1

 .
The equivalent OLS to (3.34) is:

min
β

SSEOLS (β) =
n−1∑
i=1

(
Y ∗i −X∗Ti β

)2
.
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