
Copyright

by

Bryan William Reuter

2021



The Dissertation Committee for Bryan William Reuter certifies that this is the approved

version of the following dissertation:

A Reacting Jet Direct Numerical Simulation for Assessing

Combustion Model Error

Committee:

Robert D. Moser, Supervisor

Fabrizio Bisetti

Clint Dawson

Omar Ghattas

Todd Oliver



A Reacting Jet Direct Numerical Simulation for Assessing

Combustion Model Error

by

Bryan William Reuter

Dissertation

Presented to the Faculty of the Graduate School

of the University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2021



Dedicated to my parents



Acknowledgments

Firstly, I would like to thank my advisor, Dr. Robert Moser, for your wisdom and guidance

throughout my time at the Oden Institute. Your trust helped me push through the unknown

that is academic research. I will carry the principles you have instilled in me throughout

my scientific career. Thank you to Dr. Todd Oliver, who e↵ectively served as a second

advisor for this work. I am grateful for your mentorship academically, professionally, and

personally. Your thoughtful perspective turned quick questions into long discussions, which

shaped much of this work and reminded me to distill seemingly complicated problems to

their basics first. Thank you to my committee members, particularly Dr. Fabrizio Bisetti for

many lively conversations about combustion modeling and numerics.

Thanks to Gopal and Prakash for being my sounding board for many of the trickier

points in this thesis and reliable friends. Thank you to all my friends that I met in Austin

and kept my work-life balance in check – especially Melissa, Sam, Sid, Tim, Keith, Sameer,

and Travis. To my family, your trust, love, and support shaped my resiliency needed to get

to this point. I see my curiosity in my father who was always interested in the fine details

of my work. I see my work ethic in my mother who always does whatever needs doing.

Finally, I owe so much to Teresa. Nearly all of the e↵ort reflected by this document was

made with you by my side (literally). We have been partners, maturing intellectually and

growing together since meeting our first year. Your laughter and enthusiasm is infectious,

your encouragement unending, and your trust inspiring.

Computational resources were provided by the Texas Advanced Computing Center (TACC).

Thank you to Dr. Antonio Attili for supplying datasets from the reference DNS in this thesis.

iv



A Reacting Jet Direct Numerical Simulation for Assessing

Combustion Model Error

by

Bryan William Reuter, Ph.D.

The University of Texas at Austin, 2021

SUPERVISOR: Robert D. Moser

The simulation of turbulent combustion systems is a vital tool in the design and devel-

opment of new technologies for power generation, transportation, defense applications, and

industrial heating. In an engineering design cycle, modeling realistic device configurations

in a cost- and time-e↵ective manner is required. Due to their flexibility and computational

tractability, Reynolds-Averaged Navier-Stokes (RANS)-based models are most commonly

used for these purposes. However, these models are known to be inadequate. Turbulent

combustion is the coupling of two multiscale, nonlinear phenomena which individually have

many modeling challenges. Hence, it is unsurprising that the modeling ansatzes and sim-

plifying assumptions which lead to these practical RANS-based models are suspect. Since

RANS-based models will continue to be the dominant tool for turbulent combustion simu-

lation, it is necessary to improve their predictivity through a better understanding of their

deficiencies.

The are three main modeling issues for turbulent combustion: modeling the turbulent

flow, representing the chemical reactions, and capturing the interaction between the turbu-

lence and the chemistry. Model errors can easily be conflated when attempting to quantify

deficiencies in this multiphysics context where many individual models are coupled. This
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work introduces a new technique for isolating these errors through the creation of a flamelet-

based direct numerical simulation (DNS) of a nonpremixed, temporally-evolving, planar,

reacting jet. DNS is a technique which resolves all lengthscales and timescales of the tur-

bulent flow, providing high-quality data for model development but at a significant compu-

tational cost. In the turbulent combustion context, the turbulence-chemistry interaction is

also fully resolved. By closing the DNS with a steady laminar flamelet representation, a typ-

ical chemical reactions model for RANS-based simulations, RANS turbulence closures and

turbulence-chemistry interaction models can be evaluated in isolation through a priori test-

ing. Conversely, by comparing the flamelet DNS to a second DNS employing a higher-fidelity

chemistry model, the flamelet closure and its impact on the flame’s evolution can be interro-

gated directly. To obtain the DNS data, a novel algorithm for solving the variable-density,

low-Mach Navier-Stokes equations extending the method of Kim, Moin, and Moser [1] for

incompressible flow is detailed here. It is a pseudospectral Fourier/B-spline collocation ap-

proach which obtains second order accuracy in time and numerical stability for large density

ratios with an e�cient, matrix-free, iterative treatment of the scalar equations.

The a posteriori comparisons of the flamelet DNS and the complex chemistry DNS sug-

gest the flamelet model can significantly alter the evolution of the mean state of the reacting

jet; however, violations of global conservation were identified in the complex chemistry DNS.

Therefore, no strong conclusions can be made about the chemical reactions model from the

comparisons. Significant shortcomings have been identified in the a priori evaluations of

the aforementioned RANS closures for turbulent transport, scalar mixing, and turbulence-

chemistry interaction, where the flamelet model is taken to be exact. Finally, a flawed

assumption in the steady laminar flamelet approach has been directly linked to nonphysical

behavior of the density for small values of the scalar dissipation rate.
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Chapter 1

Introduction

1.1 Motivation

Turbulent combustion is a technologically critical phenomenon relevant to transportation,

weapons systems, and energy generation. Despite the increasing importance of alternate en-

ergy sources, the burning of hydrocarbons remains the dominant source for power generation

and propulsion [2–4]. In these systems, nearly all fluid flows are turbulent; hence, turbulent

combustion is a topic of significant engineering interest and importance. There are many

complicated participating physical processes including chemical reactions, turbulent mixing

and transport, and thermodynamics. A realistic chemical reaction may include hundreds of

species and elementary reactions. Additionally, both turbulence and combustion occur over

a large range of timescales and lengthscales [4] and are complex phenomena whose modeling

has seen limited success even individually. The turbulent combustion problem is inherently

multiscale, nonlinear, and multiphysics, and development of reliable models is an ongoing

research challenge [5]. Practical models are highly uncertain and have been invalidated even

in scenarios much less complex than industrially-relevant systems for which predictions of

performance and environmental impact are needed. As the combination of many complex

physical phenomena, there are many potential sources of modeling error. Predictions require

modeling of three main aspects of the turbulent combustion process: the chemical reactions,

the turbulence, and the interaction between the two.
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Currently, Reynolds-Averaged Navier-Stokes (RANS) models are the predominant tool

used in the modeling of turbulent combustion for engineering design [6]. In a recent re-

view of RANS closures for turbulence, Durbin notes higher-fidelity approaches are still not

feasible due to computational time and grid requirements, despite advances in computing

resources [7]. Those resources instead enable more realistic configurations for RANS-based

analyses. In a study comparing RANS-based computations and higher-fidelity Large Eddy

Simulation (LES)-based models for a swirled flow, a methane flame, and a turbulent di↵u-

sion flame, Sadiki et al. required a timestep ten times smaller for the LES calculations [8].

Results from the International Workshop on Measurement and Computation of Turbulent

Nonpremixed Flames (TNF) often show grid requirements are two orders of magnitude less

for RANS-based simulations versus LES for the same configuration with a similar reduction

in computational cost (see, e.g., [9, 10]). In addition to removing the computational burden

of tracking the detailed turbulent fields, RANS-based methods o↵er flexibility in simulating

complex geometries with realistic flow conditions [4]. For these reasons, RANS-based tur-

bulent combustion simulations are the only tractable approach in an engineering context.

However this tractability is gained at the cost of many simplifying assumptions to address

each of the three modeling challenges, so the reliability of these RANS-based simulations

remains poor [3–5,11].

A model of turbulent combustion must include appropriate closure relationships for tur-

bulent and molecular transport of momentum, species, and energy, as well as a description

of the relevant chemical reaction processes and a representation of boundary and initial

conditions. Typical RANS-based combustion models employ turbulence closures developed

for constant-density, nonreacting flows, rewritten in terms of Favre (density-weighted) av-

erages and coupled with a representation of mean reaction rates or a precomputed mean

thermochemical state. Turbulent transport terms are modeled with eddy-viscosity, gradient-

di↵usion closures [4]. The description of the chemistry is often based on a steady laminar
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flamelet assumption [12]. Laminar flamelet models are predicated on the assumption that

combustion occurs rapidly in flame sheets that are thin relative the scales of the turbulence.

These thin sheets, or “flamelets,” are assumed to behave like local one-dimensional, laminar

counterflow flames whose composition falls on a low-dimensional manifold. Under these as-

sumptions, a chemical reaction involving hundreds of species and many subreactions can be

described by tracking only a few conserved scalars and the flow and the chemical kinetics

are e↵ectively decoupled. This makes them attractive for practical engineering calculations,

but strong assumptions about the flame structure and species transport are needed to make

these simplifications. To complete the closure the mean thermochemical properties relevant

to the RANS equations must be related to the instantaneous thermochemical state described

by the flamelets. This is accomplished by assuming a convenient probability density function

(PDF) a priori, to describe the fluctuations of the thermochemical state [3].

Due to their prominence in the engineering-design and decision-making process, this

study will focus on evaluating these flamelet-based RANS models for turbulent combustion

in the context of a canonical flow: a nonpremixed, turbulent jet flame. Given the necessary

simplifying assumptions, it is unsurprising that these methods are known to be inadequate.

For example, they struggle to predict di↵usion flames [13–16] as well as more complicated

configurations such as a swirling burner flow [17], burners with hot coflow [18], and blu↵

body stabilized flames [19]. One avenue to improving the reliability of these engineering

turbulent combustion models is to develop a better understanding of their errors. However,

the multiphysics nature of the underlying problem makes it challenging to assess the various

errors in isolation.
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1.2 Exploiting model hierarchies to probe errors

Much more reliable than RANS simulations are direct numerical simulations (DNS). How-

ever, the computational cost of DNS is orders of magnitude greater than RANS because

in DNS all the scales of turbulence must be resolved, where as in RANS, only the mean

need be resolved. Direct numerical simulations of turbulent combustion are limited to mod-

erate Reynolds numbers and simple configurations, but are an invaluable tool to provide

high-quality data for model development and evaluation and for answering questions about

combustion physics [5]. In RANS the Navier-Stokes conservation equations are averaged,

necessitating closure relations for the turbulent fluxes, the higher moments of the velocity

field, and the mean chemical source terms or mean thermodynamic properties [3,4]. However,

because chemical reactions occur at the smallest scales [2, 11], their e↵ects must be entirely

modeled in RANS along with the interaction between the chemistry and the turbulence.

When simulating turbulence alone, there is a natural hierarchy of models in which DNS

can be trusted as a high-fidelity representation of reality and RANS models are lowest

fidelity. Hence, any discrepancies between DNS and RANS can be attributed directly to

the deficiencies of the RANS model once numerical errors are accounted for. However, for

the combustion problem there are additional model hierarchies associated with the chemistry

and turbulence-chemistry interaction. A DNS-based turbulent combustion model will always

require some form of chemistry closure as the chemical source terms are unknown. However,

the turbulence and the interaction between the turbulence and chemistry are represented

without further modeling. To represent a turbulent flame as accurately as possible, many

DNS employ a complex chemistry model that represents many intermediate chemical species

and their associated elementary reactions as well as complex multispecies di↵usion models.

Using such DNS to evaluate RANS model error is di�cult because the composite RANS-

based turbulent combustion model will di↵er in all three modeling areas. Discrepancies
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between flamelet-based RANS models and the complex chemistry DNS could arise from any

one of the model simplifications or as a result of their interaction.

Examples of nonpremixed combustion DNS are prevalent in the literature (see [20]

for a recent review of combustion DNS). For example, Hawkes et al. simulated a planar,

temporally-evolving CO/H2 jet to study mixing fields while employing a skeletal chemical

mechanism which retained 11 species [21]. Yoo et al. simulated a spatially-evolving, lifted

ethylene jet and observed flame stabilization, tracking 22 species and 18 reactions [22]. At-

tili et al. used a n-heptane planar jet DNS to study soot formation and Damköhler number

e↵ects, carrying nearly 50 species and 300 reactions in their chemical mechanism [23, 24].

Lignell et al. were also interested in Damköhler number e↵ects in the context of flame ex-

tinction and reignition when simulating a planar ethylene jet and used another skeletal

mechanism [25]. Missing from these studies is a DNS of turbulent combustion which will

enable the examination of decoupled modeling errors in this multiphysics context.

For this reason, a DNS study has been designed which will allow for the investigation

of the impact of the di↵erent modeling assumptions in steady flamelet-based RANS mod-

els for nonpremixed turbulent combustion without conflating the sources of error. In this

work, a “flamelet DNS” is introduced, whose chemistry model matches that of common

RANS combustion models (steady laminar flamelet) while representing the turbulence and

the turbulence-chemistry interactions without further modeling. A reference “complex chem-

istry DNS” (CC DNS) employs a more detailed, higher fidelity chemistry closure. This allows

for two distinct sets of model evaluations, both of which serve to isolate errors in di↵erent

aspects of the combustion problem. The model assessment framework is shown in table 1.1,

where the columns are three di↵ering multiphysics combustion models and the rows indicate

the closures introduced (if necessary). Note that the underlying chemical mechanism (the

description of the participating species and the reactions between them) on which the chem-

istry closures are based must be common among the models. That is, the flamelet model
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gives a representation of the mechanism used in the complex chemistry DNS; however, the

flamelet assumptions are much more aggressive in reducing the complexity of the chemistry

model.

RANS Flamelet DNS
Complex chemistry

DNS

Chemistry Laminar flamelet Laminar flamelet $ Complex chemistry

Turbulence
Transport and
mixing models

$ Fully resolved Fully resolved

Turbulence-chemistry
interaction

Presumed PDF $ Fully resolved Fully resolved

Table 1.1: Model hierarchies in turbulent combustion with three simulation frameworks.
Arrows show where consecutive composite models di↵er.

On one hand, the flamelet DNS data can be compared to the complex chemistry DNS

in an a posteriori sense. In both DNS cases, the turbulence and the turbulence-chemistry

interaction are fully resolved, so any discrepancies between the quantities of interest can be

directly attributed to the shortcomings of the steady laminar flamelet model. Alternatively,

a priori evaluations for the RANS closures for turbulence and the presumed PDF models

can be performed once the flamelet DNS data is appropriately averaged. The flamelet DNS

can be viewed as the true solution to the turbulence and mixing problem of the nonpremixed

jet under the assumption that the flamelet model is valid. Hence, the related RANS closures

can be assessed independent of any errors introduced from the chemistry modeling.

1.3 Numerical challenges for simulating variable-density

flows

To perform the proposed flamelet DNS, an e�cient numerical algorithm to solve the low-

Mach-number, variable-density Navier-Stokes equations with high-order spatial and temporal
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discretization is needed, which can interface with flamelet-like chemistry models. Low-speed

flows with significant density changes are common in engineering and nature, such as in

turbulent combustion, nonreacting mixing problems, the atmosphere, and the oceans. In

the low-Mach-number limit, the pressure fluctuations are decoupled from the density fluctu-

ations. The pressure can then be decomposed into a uniform background, thermodynamic

pressure and a mechanical, or dynamic, pressure. The mechanical pressure fluctuates in

space and time and acts to enforce continuity as in incompressible flow. Unlike constant-

density incompressible flow, in variable-density flow, there is a time derivative term in the

continuity constraint which presents additional numerical challenges, particularly in cases of

large density ratios.

It is natural to adapt algorithms designed for constant-density, incompressible flows to the

low-Mach-number, variable-density case due to the similar role of the mechanical pressure.

Fully compressible algorithms perform poorly at low Mach numbers, since the Navier-Stokes

equations are formally singular as Ma ! 0. Furthermore, compressible solvers are built to

handle often severe stability constraints imposed by acoustic timescales which are removed

by the low-Mach assumption. Therefore, most numerical methods for solving the low-Mach

equations are based on traditional incompressible fractional-step, projection approaches [26,

27]. These formulations di↵er based on a choice to enforce either the divergence of the

momentum or the divergence of the velocity, resulting in a constant-coe�cient or variable-

coe�cient pressure Poisson equation, respectively. In both cases, the time dependence of the

constraint necessitates particular care in enforcing the constraint in the context of the time

discretization scheme.
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1.3.1 Treatment of the mechanical pressure in fractional step

methods

Fundamental to the low-Mach Navier-Stokes equations is the time-dependent divergence

constraint on the momentum and the role of the mechanical pressure in enforcing that

constraint. Fractional-step approaches for incompressible flows solve for an intermediate

velocity or momentum field by neglecting or lagging the pressure in the momentum equations

and then projecting the result onto a divergence-free basis through the solution of a Poisson

equation derived from the governing equations. Since the momentum field is not divergence-

free for variable-density flows, standard incompressible projection methods must be modified.

Within the class of fractional-step methods for the low-Mach equations, two formulations

are commonly employed. One option is to take the divergence of the momentum equations,

giving a constant-coe�cient Poisson equation for the pressure. Upon temporal discretization,

the divergence of the momentum is related to the time derivative of the density through the

mass conservation equation. The second option involves manipulating the advective form of

the momentum equations after dividing through by the density to give a variable-coe�cient

Poisson equation. The velocity divergence is then related to the material derivative of the

density by reformulating the mass conservation equation.

The first approach has the advantage of being much easier to solve, but the evaluation of

the density time derivative can lead to instability, especially when density ratios are larger

than three [26, 28, 29]. To help alleviate this issue, predictor-corrector schemes or implicit

formulations have shown some success [30–32]. Predictor-corrector methods are attractive

in scenarios where only explicit or segregated time-stepping is practical (e.g. when spectral

methods are employed). The second approach [27, 33] does allow for higher density ratios,

but cannot take advantage of the progress made in e�ciently solving the pressure Poisson

equation in incompressible flows. The solution of the variable-coe�cient Poisson equation
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generally requires an iterative scheme, can be an order of magnitude slower, and convergence

can be hampered by large density ratios [34]. As always with such projection methods,

both approaches must specify boundary conditions for the pressure which are not formally

specified a priori and can introduce inconsistencies with the velocity field [35]. A third

option, in which the pressure is eliminated entirely from the dynamic equations, is used in

this work. This is advantageous because only a cheap, constant-coe�cient Poisson solve for

the momentum, rather than the pressure, is required. Furthermore, all boundary conditions

are well defined.

1.3.2 The redundant nature of the low-Mach equations and its

impact on numerical stability

Formally, the low-Mach Navier-Stokes equations are a partial di↵erential-algebraic system

(coupled partial di↵erential equations along with the continuity constraint and an equation

of state). However, there is a redundancy in the equations since the density must simulta-

neously obey the equation of the state and the mass conservation equation. Inconsistencies

between the scalar fields, the equation of state, and the momentum field have been identified

as numerically destabilizing as kinetic energy can be incorrectly injected into the system

nonlocally through the continuity constraint [36]. Work by Shunn and Ham [37] suggests

that scenarios where the equation of state is su�ciently nonlinear can introduce prohibitive

resolution requirements on the density even when the scalar fields are well resolved. In turn,

these underresolved features can produce a nonphysical velocity field. More generally, insta-

bility can occur due to inconsistencies that arise when using a segregated time-advancement

scheme. Knikker [26] notes that the structure of the low-Mach equations leads to redun-

dancies that make it impossible to both advance them in conservative form and satisfy

the equation of state without resorting to a temporally implicit scheme, which can be cost

prohibitive (certainly in a DNS context). Instead predictor-corrector approaches are com-

9



mon, since they presumably can lessen, but not eliminate, the degree of the discrepancies

and provide additional stability while remaining computationally cheaper. Stability is not

guaranteed as these methods are still susceptible when density gradients are steep [29].

To address these challenges of the mechanical pressure and stability in a DNS context,

where highly accurate numerics are necessary, a novel algorithm has been developed. It is

the extension of a pseudospectral method for incompressible flow [1] (recently employed for

a state-of-the-art channel DNS [38]) to variable-density scenarios. By recasting the momen-

tum equations as evolution equations for the density-weighted vorticity and the Laplacian

of the momentum, the need to solve for the pressure is removed. Additionally, a second-

order time-advancement scheme is introduced which improves robustness for flows with high

density ratios, without losing the wavenumber-by-wavenumber decoupling which makes pseu-

dospectral methods e�cient.

1.4 Objectives

This thesis will investigate the validity of flamelet-based RANS models for turbulent com-

bustion through the creation and analysis of a DNS database. The configuration chosen is

a nonpremixed, temporally-evolving, turbulent jet.

To assess model error in this multiphysics context, a novel combustion DNS is needed. A

laminar flamelet model is used to represent the chemical reactions, the same as is employed

in RANS models. This allows for the isolation of the flamelet-based RANS model error

due to turbulence and turbulence-chemistry interaction closures by using the flamelet model

in the parameter regimes for which it is assumed to be valid. This isolation is possible

because in DNS there are no further modeling assumptions, beyond the chemistry model.

Separately, by comparing with a DNS of the same problem but coupled with a complex

chemistry closure [23,24], the flamelet approximations can be assessed, since the simulations
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will only di↵er in the fidelity of the chemistry model.

To generate high-quality data, an e�cient, reliable DNS method for flows with large den-

sity variations is required. Hence, the design and implementation of a new DNS algorithm

for the low-Mach-number, variable-density Navier-Stokes equations is introduced. The algo-

rithm employs a Fourier/B-spline pseudospectral spatial scheme and an e�cient, matrix-free

iterative scheme that allows for second-order convergence in time and numerical stability for

higher density ratios while retaining the parallelizability of a purely explicit method.

In what follows, chapter 2 describes the mathematical models used here. Chapter 3 details

the development of the novel variable-density DNS algorithm used for the flamelet DNS. In

chapter 4 the impact of the laminar flamelet assumptions of the RANS quantities of interest

is examined by way of an a posteriori comparison of the flamelet DNS and a reference DNS

with high fidelity chemistry. Further, a priori evaluations of RANS closures for turbulence

and presumed PDF models for turbulence-chemistry interaction are performed. Finally,

chapter 5 provides conclusions and potential avenues for future work.
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Chapter 2

Mathematical models for nonpremixed turbulent combustion

Given the model hierarchy established in section 1.2, this chapter provides descriptions of

the three mathematical models relevant to this work: the complex chemistry DNS [23], the

flamelet DNS, and a flamelet-based RANS model. The complex chemistry DNS and flamelet

DNS solve the low-Mach-number, variable-density Navier-Stokes equations for chemically

reacting flows, introducing a higher or lower fidelity thermochemistry model, respectively,

along with molecular transport models to close the system. A posteriori comparisons of the

complex chemistry and flamelet DNS will reveal the e↵ect of the steady laminar flamelet

model on the evolution of a jet flame. The averaging procedure applied to the governing

equations to obtain the RANS model introduces the need for closures for the turbulence and

turbulence-chemistry interaction as well as the chemistry. After defining the Favre average

and presenting the RANS equations, the closures which will be examined in chapter 4 are

detailed with key assumptions and ansatzes highlighted. These direct a priori evaluations

are possible because the flamelet DNS and the RANS models of interest share the same

representation of the chemistry.

2.1 Complex chemistry direct numerical simulation

The temporally evolving, planar n-heptane/air jet DNS of Attili, Bisetti, et al. [23] was ob-

tained by solving the low-Mach-number, variable-density Navier-Stokes equations for chemi-
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cally reacting flows as is appropriate for a low-speed combustion configuration. The thermo-

chemical state in this complex chemistry DNS is described by the temperature, the species

mass fractions, the density, and a constant background thermodynamic pressure. The equa-

tions representing conservation of mass and momentum for a viscous fluid are

@⇢
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where ui is the fluid velocity, ⇢ the density, p the mechanical pressure, ⌧ij the viscous stress

tensor. For a Newtonian fluid the stress tensor is
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where µ is the fluid dynamic viscosity and �ij is the Kronecker delta. Conservation of species

and energy are expressed as
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where Y� is the mass fraction of one of the Ns participating species, V� is its di↵usion

velocity, cp,� is its specific heat at constant pressure (cp =
PNs

�=1 cp,�Y�), � is the mixture’s

thermal conductivity, and !̇� and !̇T = �
PNs

�=1 h�!̇� are source terms for the species and

temperature equations, respectively, where h� is the enthalpy per unit mass of species �. In

the complex chemistry DNS, the following modeling assumptions close the equations above:

1. the Hirschfelder-Curtiss approximation of the di↵usion velocity with correction (see
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section 1.1.4 in [4]) is used:

V� ⇡ �D�
rX�

X�
+ V c , (2.6)

where X� is the mole fraction of species �, D� is the mixture-averaged di↵usion coef-

ficient of species �, and

V c =
NsX

�=1

Dk
W�

W
rX� , (2.7)

where W� is the molecular weight of species � and W =
PNs

�=1 X�W�. The correction

velocity V c ensures that overall mass conservation is satisfied.

2. The mixture-averaged di↵usion coe�cients D� are given by

D� ⇡
1 � Y�

PNs
�=1
� 6=�

X�

D��

(2.8)

where D�� is the binary di↵usion coe�cient of species � into species �.

3. Transport properties (D��, µ, �) are obtained from Chapman-Enskog kinetic theory

(see chapter 11 in [39] for details and resulting models).

4. Thermodynamic properties (cp,�, h�, etc.) are polynomial functions of temperature as

specified in [40].

5. The chemical source terms are obtained from a reaction mechanism describing the

oxidation of n-heptane whose reaction rates are described by the Arrhenius law (see

section H.3). The mechanism contains 47 species and 290 reactions and is detailed

in [41].

6. The ideal-gas equation of state

⇢ =
p0W

RT
(2.9)
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relates the density, temperature, and mass fractions to the thermodynamic pressure

p0. In eq. (2.9) R is the universal gas constant.

2.2 Flamelet direct numerical simulation

The flamelet DNS uses a low-dimensional description of the thermochemical state derived

from the steady laminar flamelet assumptions for nonpremixed combustion. As with the

complex chemistry DNS, no models are introduced for the turbulence or turbulence-chemistry

interaction.

2.2.1 Steady laminar flamelet approximation for nonpremixed com-

bustion

In a nonpremixed flame, the fuel and oxidizer are initially either wholly separated or not

perfectly premixed upon entering the combustion chamber. Entrainment of the reactants

occurs at large lengthscales and micromixing occurs at the molecular di↵usion scale, bringing

together fuel and oxidizer in a reaction zone where the combustion occurs [11,42]. Typically,

the mixing time controls the rate of reaction in nonpremixed combustion [4, 43]. Relevant

lengthscales associated with these flames are the di↵usion layer thickness `d, the reaction

zone thickness `r, and the turbulent integral and Kolmogorov scales (`t, ⌘). The di↵usion

layer thickness is the length over which reactants are molecularly mixed and the reaction zone

thickness describes the region within the di↵usion layer where the reaction takes place [4].

Relevant timescales are the turbulent transport timescales and the reaction timescale.

Broadly, steady laminar flamelet models [12] for turbulent nonpremixed combustion pre-

sume a thermochemical state which is fully determined by two variables describing the mix-

ing with no explicit dependence on time. This is valid under strong assumptions about the

nature of the species transport and the scales of the problem. Key assumptions are:
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1. the species experience Fickian di↵usion and share the same di↵usion coe�cient D;

2. the thermal di↵usion coe�cient ↵ is equal to D;

3. `d ⇡ ⌘ and `r ⌧ `d;

4. the reaction timescale is much shorter than the timescales of the turbulence;

5. gradients normal to the flame are much larger than those along the flame front;

6. the flame evolution is quasi-steady.

The first assumption about the simplified nature of molecular transport implies that there

exists a conserved quantity z, known as the mixture fraction, that obeys the following equa-

tion:
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where ⇢Dz = ⇢D is its’ e↵ective di↵usivity. This is the first thermochemical state variable

under the flamelet approximation. The mixture fraction is a linear combination of the species

mass fractions which is zero in the oxidizer stream and one in the fuel stream (see section H.1

for the exact definition of z and derivation of eq. (2.10)). The second thermochemical state

variable is

� ⌘ 2Dz

✓
@z

@xi

@z

@xi

◆
, (2.11)

which is known as the scalar dissipation rate. It is an inverse timescale characterizing molecu-

lar di↵usion and mixing [12]. Under the steady flamelet approximation, the full thermochem-

ical state space (Y�, p0, ⇢, T ) is projected onto a two-dimensional manifold parameterized by

z and �, providing a convenient, low-dimensional description of the reactions.

Assuming the reaction lengthscale is small compared to the turbulence lengthscales im-

plies that the local flowfield surrounding the reaction zone is laminar. So, one can imagine

the turbulent flame as an ensemble of small laminar flame elements known as flamelets [12].
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Additionally, assuming the reaction timescales are much shorter than those of the turbulence

implies that the chemistry is quasi-steady and adjusts immediately to the local turbulent

flow [44]. With the final two assumptions, the so-called steady flamelet equations [4, 12]

govern the local turbulent flame structure. Their solution is a function of z parameterized

by �, where � is sensitive to characteristics of the surrounding flowfield. In practice, the

flamelet equations are solved as a preprocessing step, generating an equation of state ⇢(z;�)

as well as all other thermochemical and transport properties as functions of z and �. See

Appendix H for the flamelet equations and details on their solution.

2.2.2 Flamelet DNS governing equations

The flamelet DNS need only solve the mixture fraction transport equation in addition to the

low-Mach, variable-density Navier-Stokes equations for conservation of mass and momen-

tum. Consistent with the steady laminar flamelet model, the density, viscosity, and mixture

fraction di↵usivity are known functions of z and �. The flamelet DNS system is therefore
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(2.12)

where f , g, and h are precomputed functions determined from solutions to the flamelet

equations.
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2.2.3 Assessing model error with the flamelet DNS

Both the flamelet DNS and complex chemistry DNS provide a complete description of the

temporally-evolving, reacting n-heptane jet. Even though not explicitly carried as a state

variable in the flamelet DNS, the species mass fractions and the temperature are known

functions of mixture fraction so the entire thermochemical state (and any derived quanti-

ties) can be reconstructed in the flamelet DNS as well. On the other hand, z and � can

be computed from the species mass fractions in the complex chemistry DNS. However, in-

stantaneous comparisons between the full three-dimensional DNS fields are not meaningful

due to the chaotic nature of turbulence. Instead, comparisons of statistical quantities of

interest can be made to discern the e↵ects of the flamelet assumptions on the evolution of

the jet. More specifically, an appropriately resolved flamelet DNS provides a highly reliable

representation of a canonical nonpremixed combustion configuration under the assumptions

underlying the steady laminar flamelet model. Hence, the validity of any additional assump-

tions introduced by flamelet-based RANS turbulent combustion models can be assessed in

an a priori analysis using the flamelet DNS data.

2.3 Flamelet-based Reynolds-Averaged Navier-Stokes

models

Currently only RANS methods are practical for the wide range of geometries and flow

conditions encountered in realistic engineering configurations involving turbulent combus-

tion [4, 6, 7]. RANS models make the turbulence problem tractable by performing a sta-

tistical average of the governing equations. However, the averaged equations are unclosed,

necessitating turbulent combustion models for turbulent momentum and species transport,

molecular di↵usion, and mean thermodynamic properties.
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2.3.1 Reynolds and Favre averaging

The RANS equations for nonpremixed combustion under the steady laminar flamelet as-

sumptions are obtained by averaging the flamelet DNS equations (system (2.12)). Consider

a variable f = f(x, t) in a turbulent flow. The standard Reynolds decomposition is

f = f + f 0 (2.13)

where f ⌘ hfi is the expected value of f over the probability space of uncontrolled initial

conditions and external perturbations. This is commonly considered to be an ensemble

average

f = lim
N!1

1

N

NX

i=1

fi (2.14)

where each of the fi is from an independent instance of the turbulent flow. f is the called

the Reynolds average of f . For turbulent flows in which the turbulence is statistically homo-

geneous in one or more spatial directions, an assumption of ergodicity allows the Reynolds

average to be determined as

f = lim
Li!1

1

Li

Z Li

0

f dxi , (2.15)

where xi is the coordinate in a spatially homogeneous direction. The fluctuations about the

mean f 0 has the property f 0 = 0. For variable-density flows, a density-weighted or Favre

average is commonly used:

ef =
⇢f

⇢
(2.16)

because it simplifies the evolution equations for the average quantity. In this case, f is

decomposed as

f = ef + f 00 , (2.17)
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where ff 00 = 0, and one should note that f 00 6= 0. Favre averaging results in averaged

governing equations that appear similar to those for incompressible flow; however, mean

quantities cannot be interpreted in the same way. It follows from the definitions of the

di↵erent averages that

⇢f = (⇢+ ⇢0)
�
f + f 0� = ⇢f + ⇢f 0 + ⇢0f + ⇢0f 0

=) ⇢ ef = ⇢f = ⇢f + ⇢0f 0 .
(2.18)

Hence, Reynolds averaging in the context of variable-density flows would introduce density

fluctuation correlations like ⇢0f 0 which would need to be modeled. Note that if the density

is constant, the Reynolds and Favre averages are equivalent.

Decomposing the state variables as in eq. (2.17) and averaging the flamelet DNS equations

gives the Favre-Averaged Navier-Stokes (FANS) continuity, momentum, and mixture fraction

equations as follows:
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While the steady laminar flamelet model provides the complete instantaneous thermochem-

ical state as a function of z and �, the Reynolds averaged thermochemical state is unknown.

Typical RANS models for nonpremixed combustion represent the mean thermochemical state

in therms of a presumed PDF (see section 2.3.2) of the z fluctuations that is parameterized

in terms of the mixture fraction variance gz00z00, which then becomes part of the mean state.
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The transport equation for gz00z00 is
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In the literature, it is common to refer to models which solve Favre-averaged equations as

RANS models so this nomenclature is adopted in this text with the implicit understanding

that density-weighted averaging is appropriate in the combustion context. The averaged

equations (eqs. (2.19) to (2.22)) are exact and highly reliable in the sense that they are only

a manipulation of conservation laws; however, they are unclosed with respect to

· the Reynolds stress tensor ]u00
i u

00
j ,

· the mean density ⇢,

· the mean viscous stress tensor ⌧ ij,

· the turbulent scalar fluxes h⇢u00
i z

00
i and h⇢u00

i z
00z00i,

· the three molecular di↵usion terms in eq. (2.21) and eq. (2.22),

· the dissipation term 2h⇢Dz@z00/@xi@z00/@xii.

The remainder of this section discusses a set of modeling assumptions commonly used to

close the system, which will be the subject of the a priori testing in chapter 4.

2.3.2 Determining the mean thermochemical state

Under the laminar flamelet description the density, for example, is a highly nonlinear function

of the mixture fraction [45]. As a consequence, applying the RANS averaging operator to

a Taylor expansion of ⇢ and closing with only the first few moments is likely to result in

large errors. Including more terms in the expansion is impractical, requiring additional
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modeling e↵orts for higher and mixed moments. Instead, ⇢ can be modeled as a random

variable depending on z and �, and taking its expectation with respect to the joint density,

fz,�(z,�), gives the mean density h⇢i. The hope is the nature of the mixture fraction and

scalar dissipation rate fluctuations can be su�ciently captured by the presumed shape of the

PDF, fz,�(z,�). The modeling focus is thus shifted to prescribing the form of the PDF for

which

h⇢i =

Z 1

0

Z 1

0

⇢(z,�)fz,�(z,�)dzd� . (2.23)

The typical presumed PDF model which is evaluated in this work assumes z and � are

independently distributed and the individual PDFs are fully characterized by two parameters

[3, 4, 46]. Consistent with Favre averaging, the density-weighed mixture fraction PDF

efz(z) =
⇢fz(z)

h⇢i
(2.24)

is taken as a �-distribution (first introduced in [47]) which is dependent on ez and gz00z00 1.

Specifically,
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In eq. (2.25), ez and gz00z00 are obtained as the solutions of eqs. (2.21) and (2.22) respectively,

with additional modeling required to close the equations (see section 2.3.3). The PDF for �,

f�(�), is not density weighted and is taken as log-normal [48, 49]:

f�(�) =
1
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2⇡
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!
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1There is an inconsistency introduced by modeling efz(z). ⇢fz(z) should formally have a � dependence
from the flamelet density.
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In eq. (2.26), � is assumed to be constant, which implies the variance of the scalar dissipation

rate f�002 is linearly proportional to the square of its mean, i.e.

f�002 = e�2 �
exp

�
�2
�

� 1
�

, (2.27)

and µ� = log
�e��� �2/2. The Favre average of e� ⌘ 2/⇢⇥ h⇢Dz@z/@xi@z/@xii is the “total”

mean scalar dissipation rate [4] and is unknown. The particular model studied here assumes

that only the gradients of the mixture fraction fluctuations contribute to the mean scalar

dissipation rate, as is typical in these flamelet-based RANS models [4, 50]. That is,
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which means the “total” mean scalar dissipation rate is taken to be the same as e�p, the

dissipation of the scalar variance, gz00z00. The quantity e�p appears in the mixture fraction

variance equation as a sink and the discussion of its modeling is deferred to the following

section (see section 2.3.3.3).

2.3.3 Determining the mean mixture fraction and its variance

The mean mixture fraction and its variance are computed from their respective transport

equations. Models for unclosed terms in these equations are needed, one of which is the

mean scalar dissipation rate due to the fluctuations of z
�e�p

�
. As discussed in section 2.3.2,

ez, gz00z00, and e�p are needed as inputs into the presumed PDF models.

2.3.3.1 Gradient di↵usion models for the turbulent scalar fluxes

The turbulent scalar fluxes h⇢u00
i z

00
i and h⇢u00

i z
00z00i which appear in the ez and gz00z00 equations

are modeled using gradient di↵usion closures [4, 46]. The basis for these models is the
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assumption that the turbulent transport of a conserved quantity ⇣ is given by

h⇢u00
i ⇣

00
i ⇡ �Dt

@e⇣
@xi

(2.29)

where Dt is the turbulent di↵usivity of ⇣ [51]. The standard model for h⇢u00
i z

00
i is

h⇢u00
i z

00
i ⇡ �⇢

⌫t
Sct

@ez
@xi

(2.30)

where

⌫t = �Cµ
k2

"
(2.31)

is the turbulent kinematic viscosity (as assumed by the k-" turbulence model [52]) and Sct is

the turbulent Schmidt number (assumed to be a constant) [4]. k ⌘ 1/2]u00
l u

00
l is the turbulent

kinetic energy and " is the turbulent dissipation rate defined by

⇢" ⌘ µ

✓
@uj

@xi
+
@ui

@xj

◆
@u00

i

@xj
�

2

3

@ul

@xl

@u00
m

@xm

�
. (2.32)

As summarized by Haering et al. [53], the turbulent viscosity used for the momentum flux

⌫t can be interpreted as the product of an isotropic approximation of the velocity covariance

and the turbulent timescale k/". Hence, eq. (2.30) implicitly assumes a simple relationship

between these scales and the turbulent di↵usivity Dt. An alternative model which uses the

mixing timescale gz00z00/e�p

h⇢u00
i z

00
i ⇡ �⇢Cmix

gz00z00
e�p

k
@ez
@xi

(2.33)

and one which relaxes the isotropy assumption

h⇢u00
i z

00
i ⇡ �⇢

Cani

Scani

k

"
]u00
i u

00
j

@ez
@xj

(2.34)
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are also proposed and evaluated in chapter 4. The standard closure for h⇢u00
i z

00z00i is obtained

by simply applying the model form in eq. (2.30) to z00z00:

h⇢u00
i z

00z00i ⇡ �⇢
⌫t
Sct

@gz00z00
@xi

. (2.35)

The two alternative forms of the turbulent di↵usivity shown in eqs. (2.33) and (2.34) are

also tested in the context of this term.

2.3.3.2 Models for the molecular di↵usion terms

In the gz00z00 equation, the two molecular di↵usion terms are neglected under the assumption

that they are negligible in comparison to the turbulent transport term [4]. The molecular

di↵usion term in the ez equation is typically modeled [4] by assuming

⇢Dz
@z

@xi
⇡ ⇢Dz

@ez
@xi

(2.36)

which neglects the contributions of z fluctuations and takes h⇢Dzi ⇡ h⇢ihDzi.

2.3.3.3 Modeling the scalar dissipation rate

The interpretation of e�p as the dissipation rate of the mixture fraction variance is directly

analogous to viewing " as the dissipation rate of k. An algebraic relationship [54,55] following

this reasoning

e�p ⇡ Ce�
"

k
gz00z00 (2.37)

is commonly used [4]. The assumption behind this model is that the turbulent timescale k/"

and the mixing timescale gz00z00/e�p are proportional.

With a model for the scalar dissipation rate specified, the mean mixture fraction and

25



mixture fraction variance equations are (standard turbulent scalar flux models shown)

@⇢ez
@t

+
@

@xi
(⇢euiez) =

@
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✓
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◆
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@xi

⇣
⇢eui
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µt

Sct

@gz00z00
@xi

!
� 2

µt
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@xi

@ez
@xi

� ⇢Ce�
"

k
gz00z00

(2.38)

and are fully closed when paired with a k-"-based model.

2.3.4 Eddy Viscosity Models (EVMs) for the Reynolds stress

The most popular RANS closures for the Reynolds stress are based on the Boussinesq as-

sumption [4], wherein the Reynolds stresses are related to the mean velocity gradients by

⇢]u00
i u

00
j = �⇢⌫t

✓
@eui

@xj
+
@euj

@xi
�

2

3
�ij
@eul

@xl

◆
+

2

3
�ij⇢k . (2.39)

This assumption implies the anisotropic stress tensor, ]u00
i u

00
j � 2/3�ijk, is aligned with the

anisotropic mean strain rate tensor and thus, the Reynolds stress responds immediately to

local changes in the mean strain. Clearly, this form is similar to models derived from the

gradient di↵usion hypothesis (section 2.3.3.1). This work is concerned primarily with the

modeling which is unique to the nonpremixed combustion problem, but a brief discussion of

the widely employed k-" EVM which provides the turbulent viscosity in some of the turbulent

scalar flux models studied in this work follows.

The k-" model includes transport equations for these turbulence statistics. Exact equa-

tions for k and " can be derived but are unclosed due the presence of higher moments.

In practice, the k equation is closed with various ansatzes based on a mixture of physical

intuition, dimensional analysis, and convenience (see [52] for a summary). The resulting
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transport equation is

@⇢k

@t
+

@

@xi
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◆
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�
(2.40)

where �k is a model constant. This is a standard transport equation with a convection,

di↵usion, sink, and source term. The " equation is engineered to mimic the structure of the

closed k equation rather than through term-by-term modeling [56] such that

@⇢"

@t
+

@

@xi
(⇢eui") = �C"1

"

k
⇢]u00

i u
00
j

@eui

@xj
� C"2⇢

"2

k
+

@

@xi

✓
µ + ⇢

⌫t
�"

◆
@"

@xi

�
. (2.41)

�k, �", C"1, and C"2 are model constants. The modeling required to close the k and "

equations will not be evaluated herein.

2.3.5 Mean stress tensor

The mean stress tensor is commonly closed by assuming

⌧ ij ⇡ µ

✓
@eui

@xj
+
@euj

@xi

◆
�

2

3
�ijµ

@eul

@xl
, (2.42)

thereby neglecting fluctuations in viscosity [52]. This hypothesis is not evaluated in this

thesis but highlights that obtaining the mean viscosity is also necessary for these flamelet-

based RANS models.

2.3.6 The complete flamelet-based RANS model for nonpremixed

turbulent combustion

The model described above is summarized by tabulating the di↵erent ingredients of a RANS

model of nonpremixed combustion employing the steady laminar flamelet closure:
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1. Conservation of mass and momentum, represented by eqs. (2.19) and (2.20), for which

a representation of the Reynolds stress ]u00
i u

00
j and the mean stress tensor is needed.

2. A model for the turbulent viscosity ⌫t, supplemented with additional transport equa-

tions for the turbulence statistics k and " which themselves require multiple closure

models.

3. A scalar transport equation for the mean mixture fraction ez and a transport equation

for its variance gz00z00, represented by eqs. (2.21) and (2.22), which require further mod-

eling, including a closure for the mean scalar dissipation rate e� and turbulent scalar

fluxes.

4. An instantaneous flame structure model which is obtained from the steady laminar

flamelet assumptions.

5. A model mapping the instantaneous flame structure to mean thermodynamic quanti-

ties. Presumed PDF models relate mixture fraction statistics ez, gz00z00, and e�p to ⇢, µ,

and Dz, thereby closing the flow problem.

The analysis in chapter 4 will assess the validity of the ansatzes and modeling decisions used

in ingredients 2, 3, and 5, through the use the flamelet DNS in which all modeled terms are

resolved exactly. This is done without the conflation of errors from modeling ingredient 4,

since the DNS employs the same chemistry assumptions to capture the instantaneous flame

structure. The impact of the assumptions in ingredient 4 on the evolution of the reacting jet

can be examined separately by comparison of the flamelet DNS with the complex chemistry

DNS. Reynolds stress closures and the modeling of the k and " equations are not a focus of

this work.
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Chapter 3

Numerical method and DNS algorithm

This chapter details the development of a novel numerical scheme to solve the variable-

density, low-Mach-number Navier-Stokes equations and the associated DNS algorithm. With

the understanding that the method extends to the more general case of Ns species and an

energy equation, the following discussion will be limited to a formulation in which a single

conserved scalar is used to characterize the thermochemical state. This is the relevant case

for the flamelet DNS which is formulated in terms of a mixture fraction.

3.1 Outline of the present approach

Most algorithms for the incompressible or the low-Mach-number, variable-density Navier-

Stokes equations employ fractional-step or other projection methods, but the formulation

presented here is an extension of the scheme of Kim, Moin, and Moser (KMM) [1] devel-

oped for incompressible flows. In their scheme, equations for one component of the vorticity

and the Laplacian of the velocity are advanced, eliminating the need to solve for the pres-

sure. Herein the momentum is decomposed into divergence-free and curl-free parts. The

divergence-free momentum plays a role that is similar to the incompressible velocity in the

original KMM algorithm, and the curl-free momentum is reconstructed through the mass

conservation equation. A similar decomposition was used in the work of Almagro et al. [57].

Their scheme, however, is only first-order accurate in time despite using three Runge-Kutta
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(RK) stages and assumes constant fluid viscosity, thermal conductivity, and specific heat.

The algorithm presented here relaxes these restrictive assumptions, achieves a higher order

temporal accuracy in two stages, and a priori guarantees discrete conservation of mass. Ad-

ditionally, the scheme is made more robust to large density variations by considering the

impact of the divergence constraint on numerical stability.

As shown in section 3.4.1, the redundancy between the equation of state and the mass

conservation equation places constraints on the conserved scalar equation. Because of this,

the convective term depends on the time derivative of the conserved scalar z. The math-

ematical structure of the scalar equation is that of an implicit PDE which is linear in the

time derivative on the right-hand side. A numerical scheme accounting for this structure

thus requires the solution of an equation of the following form:

@z

@t
= L(z)

@z

@t
+ Rz (3.1)

where L(z) is a z-dependent linear operator acting on @z/@t and Rz is a convection-di↵usion

operator with convection velocity defined by the divergence-free momentum. If I � L is

nonsingular, eq. (3.1) can be written

@z

@t
= {I � L(z)}�1

Rz , (3.2)

and time-discretized using a convenient time-discretization scheme, such as an explicit RK2

scheme can be used. However, inverting I � L is not practical, especially in a DNS, as L

is nonlinear in z and dense. Instead, a matrix-free iterative scheme is introduced with the

following properties:

1. assuming the spectral radius ⇢ (L) < 1, the iterations converge to the solution of

eq. (3.2) after it has been discretized by the explicit RK2 method;
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2. the temporal order of the scheme is independent of the number of iterations;

3. iterations can be performed e�ciently on massively parallel high performance comput-

ers.

In general, it is not necessary to fully converge the scheme for stability, so the iterations can

be stopped early to minimize computational costs without sacrificing second-order accuracy

in time.

The algorithm is designed for DNS scenarios with two statistically homogeneous di-

rections that can be simulated with periodic boundary condition and one inhomogeneous

direction. Spatially, Fourier bases are employed in the homogeneous directions with a B-

spline basis [58] in the inhomogeneous direction. The equations are discretized using a mixed

Fourier/B-spline-collocation method. Special care is taken to ensure the discrete divergence

operator is exact, guaranteeing conservation of mass. Time is discretized using an explicit,

low-storage, second-order Runge-Kutta method.

This chapter is organized as follows. Section 3.2 introduces the decomposition of the

momentum used to eliminate the pressure. Details of the spatial discretization are given in

section 3.3. Section 3.4 describes the temporal discretization, its second-order convergence,

and its numerical stability. Finally, section 3.5 lays out the complete DNS algorithm and

demonstrates its e�cacy for flows with large density ratios via a single-mode Rayleigh-Taylor

test case.

3.2 Decomposition of the low-Mach-number, variable-

density equations

This thesis employs a DNS formulation based on a transformation which eliminates the

pressure from the governing equations. A Helmholtz decomposition of the momentum m =
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⇢u is used:

m = md + mc (3.3)

where md is divergence free and mc is curl free, so that mc = r for some scalar potential

 .

Inspired by the formulation of Kim, Moin, and Moser [1] (for incompressible flow), define

� ⌘ r
2md ⌦ ⌘ r ⇥ md . (3.4)

The 2-component of the curl and double curl of the momentum equations, eq. (2.2), are then

given by 8
>>>>>>>>>>><

>>>>>>>>>>>:

@⌦2

@t
=

@2

@x3@xj
(C1j + ⌧1j) �

@2

@x1@xj
(C3j + ⌧3j)

@�2

@t
=

@3

@xl@xl@xj
(C2j + ⌧2j) �

@3

@x2@xl@xj
(Clj + ⌧lj)

⌦2 =
@md

1

@x3
�
@md

3

@x1

�2 = r
2md

2

(3.5)

with Cij ⌘ �⇢uiuj, the nonlinear convective terms. The 2-component is used here because it

is the x1 and x3 directions that are assumed to be statistically homogeneous and treated with

Fourier spectral methods as in KMM. Conservation of mass relates the curl-free momentum

to the density
@⇢

@t
= �r · mc = �r

2 . (3.6)

Additionally, the scalar transport equation for z is expressed in nonconservative form

@z

@t
= �ui

@z

@xi
+

1

⇢

@⇢Dz

@xi

@z

@xi
+ Dz

@2z

@xi@xi
. (3.7)

This avoids an unnecessary coupling with the equation of state which would arise from the

material derivative even with explicit time-stepping and simplifies the formulation of L(z)
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in eq. (3.1). The density, viscosity, and scalar di↵usion coe�cient, Dz, are known functions

of z, as in system (2.12) but the � dependence is dropped for simplicity.

Finally, since system (3.5) was obtained through applications of derivative operations to

the momentum equations, they leave md averaged in the homogeneous directions undeter-

mined. Averaging the momentum equation over the homogeneous directions and denoting

such averages as ·
x1x3 gives for mx1x3

1 and mx1x3
3 :

@mx1x3
1

@t
=

@

@x2

�
C

x1x3

12 + ⌧ x1x3
12

�

@mx1x3
3

@t
=

@

@x2

�
C

x1x3

23 + ⌧ x1x3
23

� (3.8)

where mx1x3
1 = md

x1x3

1 , mx1x3
3 = md

x1x3

3 , and md
x1x3

2 = 0. The fact that @⌧ x1x3
ij /@xj collapses

to @⌧ x1x3
i2 /@x2 has also been used.

3.3 Spatial discretization

The computational domain is V = [�L1/2, L1/2]⇥ [�L2/2, L2/2]⇥ [�L3/2, L3/2]. Assuming

periodicity in the homogeneous directions, the discrete representation of a flow variable f is

expressed as a Fourier series in x1 and x3 and a B-spline series of order p, {Bp
s}, in x2, to

yield

fh(x1, x2, x3, t) =

N1
2 �1X

l=�N1
2 +1

N3
2 �1X

n=�N3
2 +1

bfln(x2, t)e
ik1x1eik3x3

=

N1
2 �1X

l=�N1
2 +1

N2�1X

j=0

N3
2 �1X

n=�N3
2 +1

fljn(t)e
ik1x1Bp

j (x2)e
ik3x3

k1 =
2⇡l

L1
k3 =

2⇡n

L3

(3.9)

with (N1 � 1) ⇥ N2 ⇥ (N3 � 1) total degrees of freedom. Note that the dependence of k1

and k3 on l and n is assumed, though not explicitly indicated. For a selected B-spline order
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p, all variables use a B-spline basis of order p with the exception of the x2 component of

momentum, which is represented with B-splines of order p + 1 (discussed in section 3.3.3)

and therefore includes one additional degree of freedom:

mh
2(x1, x2, x3, t) =

N1
2 �1X

l=�N1
2 +1

N3
2 �1X

n=�N3
2 +1

cm2,ln(x2, t)e
ik1x1eik3x3

=

N1
2 �1X

l=�N1
2 +1

N2X

j=0

N3
2 �1X

n=�N3
2 +1

m2,ljn(t)e
ik1x1Bp+1

j (x2)e
ik3x3 .

(3.10)

B-splines of order p are piecewise polynomials of degree p � 1 defined by the selection

of knot points (⇠i) which partition the domain into intervals and determine the degree of

continuity of the basis. They have minimal local support and have up to p � 2 continuous

derivatives at interval boundaries. They are attractive for the simulation of turbulent flows

[38,59–62] due to their flexibility near boundaries and on nonuniform grids, and their ability

to achieve high spatial resolution while being computationally e�cient [59, 63]. A standard

reference on B-splines is de Boor [58] and for specifics about the use of B-splines with maximal

continuity (which are chosen in this work) for fluid flows see [59].

The equations in section 3.2 are spatially discretized with a weighted residual method

[64, 65]. A mixed Fourier/B-spline-collocation pseudospectral approach with approximate

quadrature is used where test functions are of the form

' = e�ik1x1�(x2 � x0
2)e

�ik3x3 (3.11)

where � is the Dirac delta function and which exploit orthogonality of the Fourier bases

with respect to the L2 inner product. This requires selecting a set of ‘collocation points’

Y
p
coll ⌘ {x0

2,i} of size N2 at which the weighted residual is enforced [63], the Greville abscissae
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[59, 66] are used here:

x0
2,i =

1

p � 1
(⇠i + ⇠i�1 + · · · + ⇠i+p�1) x0

2,i 2 Y
p
coll . (3.12)

The result is (N1 � 1) ⇥ (N3 � 1) systems of N2 equations for each governing equation – one

system for each wavenumber pair. Spectral methods commonly employ numerical quadra-

ture with 3/2N uniformly spaced quadrature points [67] to compute the weighted residual

integrals because it is su�cient to entirely eliminate quadrature error for quadratic non-

linearities which appear in the incompressible Navier-Stokes equations [64]. Higher order

nonlinearities are present in the variable-density system, but empirical tests have found that

most of the quadrature error can be controlled with a number of quadrature points only

modestly larger than N [32]. Additionally, 3/2N quadrature was successfully employed in a

variable-density, compressible DNS [61]. Based on these findings, 3/2N quadrature is used

here. The spatially discrete equations obtained by applying the weighted residual method

are shown in section 3.3.2.

3.3.1 B-spline collocation matrices

Consider a linear di↵erential operator D and let fh = fh(x2). The B-spline collocation

method approximates the action of D on fh(x2) =
P
j

fjB
p
j (x2) by requiring

gh(x2) = D
�
fh
�

=
X

j

gjB
p0

j =
X

j

fjD
�
Bp

j

�
(3.13)

at the specified collocation points [63]. In general, the B-spline orders p and p0 may be

di↵erent. Define the B-spline collocation matrix

�
Bd

r,s

�
ij

⌘
@dBp+s

j

@xd
2

����
x2=x0

2,i

(3.14)
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where x0
2,i are the p + r order collocation points, Y

p+r
coll where s and r are either 0 or 1 to

account for the use of order p and p+1 splines (see eqs. (3.9) and (3.10)). Let cfi = fi, then,

for example, if fh is of order p + 1 and gh order p, applying the first derivative operator

requires solving

B0
0,0c

g = B1
0,1c

f (3.15)

for cg. In this case, the collocation points must be chosen as Y
p
coll (r = 0), corresponding

with the order of the unknown function gh, for well-posedness. Other discrete derivative

operators (in the x2 direction) are formed analogously.

3.3.2 Spatially discrete equations

The result of applying the weighted residual method to the variable-density Navier-Stokes

equations (see section 3.2) is summarized below. The vector of Fourier coe�cients is denoted

c
bfln for modes with k1 or k3 nonzero and cf

x1x3
⌘ {f0j0} is the vector of coe�cients of

the plane-averaged quantity. Since each system of equations is associated with a unique

wavenumber pair, the subscripts l and n will be suppressed for simplicity of notation from

this point, where appropriate. The semi-discrete ⌦2 equation is

B0
0,0

@c
b⌦2

@t
= k1k3B

0
0,0
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c
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bC11

⌘
+ ik3B
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bC23 +
⇣
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0
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cF ⌧
1 � ik1B

0
0,0c

cF ⌧
3

⌘ (3.16)

where F ⌧ = r · ⌧ is the divergence of the stress tensor which is nonlinear like C. Details of

how these nonlinear coe�cients are obtained are deferred to section 3.5; see procedure 2 in
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particular. The �2 equation is
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(3.17)

The discrete plane-averaged momentum equations are

B0
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@cm
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1
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(3.18)

where F ⌧ x1x3

1 = @⌧ x1x3
12 /@x2 and F ⌧ x1x3

3 = @⌧ x1x3
23 /@x2. The scalar transport equation for z

is comprised entirely of nonlinear products so it is of the form

B0
0,0

@cbz

@t
= B0

0,0c
\RHSz (3.19)

and it is further manipulated as detailed in section 3.4. For forming the nonlinear terms in

this equation, as well as C and F ⌧ , the discrete gradient and discrete Laplacian are block-

diagonal operators acting on coe�cients of order p B-spline expansions and are defined as

r
h
ln{·} =

2

66664
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{·} .

(3.20)

The mass conservation equation (eq. (3.6)) can be handled in two ways. A straightforward
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discretization of the Poisson operator would give
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@cb⇢

@t
=
��

k2
1 + k2

3

�
B0

0,0 � B2
0,0

 
c
b (3.21)

and the coe�cients for mc would be obtained by taking the gradient of  . Then mc would

be discretely curl free. However, because the discrete second derivative operator is not

equal to the first derivative applied twice, @⇢/@t + r · mc = 0 would not be satisfied

discretely anywhere in the domain. Instead, consider the operator C : @⇢/@t ! mc such

that r ⇥ mc = 0. In the continuous setting C = r (r2)�1 with consistent boundary

conditions. Discretizing this operator gives

B0
0,0c

\@⇢/@t = �B0
0,0

⇣
ik1c

cmc
1 + ik3c

cmc
3

⌘
� B1

0,1c
cmc
2 (3.22)

with the curl-free conditions

B1
1,0c

cmc
3 � ik3B

0
1,1c

cmc
2 = 0

k3c
cmc
1 � k1c

cmc
3 = 0

(3.23)

enforced explicitly (for k3 6= 0). It follows that the third curl-free condition

ik1B
0
1,1c

cmc
2 � B1

1,0c
cmc
1 = 0 (3.24)

is satisfied automatically. If k3 = 0, eq. (3.24) is enforced instead of the first condition in

eq. (3.23). Using this discrete operator ensures global conservation of mass in addition to

mc satisfying the conservation of mass equation at all interior collocation points. This is

contingent on expanding m2 with order p + 1 B-splines.
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3.3.3 Discrete conservation of mass

By expanding m2 with order p + 1 B-splines, the discrete divergence of m can be exactly

represented in the mixed pth-order B-spline/Fourier basis. Di↵erentiation in the homogeneous

directions results in multiplication by the imaginary unit and wavenumber components and

therefore results in an exact projection onto the discrete basis in x1 and x3. Then define the

discrete first derivative associated with the discrete divergence operator as in eq. (3.15):

N2�1X

j=0

m1
2,jB

p
j (x

0
2,i) =

N2X

j=0

m2,j
@Bp+1

m

@x2

����
x2=x0

2,i

8 x0
2,i 2 Y

p
coll (3.25)

where m1
2,j are the B-spline coe�cients of @m2/@x2. The splines represented by both the left-

hand and right-hand side coe�cients are piecewise polynomials of the same order on the same

set of knots used to partition the domain. With the appropriate number of equations relative

to the degrees of freedom, using the Greville abscissae ensures a unique spline interpolant as

each basis function has at least one collocation point within its interval of support [68]. It

follows that the equality in eq. (3.25) holds everywhere,

N2�1X

j=0

m1
2,jB

p
m(y) =

N2X

j=0

m2,j
@Bp+1

m

@x2

����
x2=y

8 y 2 [�L2/2, L2/2] (3.26)

and, therefore, r · m is exactly represented.

With this divergence operation, global conservation of mass is always satisfied. Firstly,

it must be true that r ·md = 0 discretely so that r ·m = r ·mc. This is trivially satisfied

upon the reconstruction of md from �2 and ⌦2 (shown in eq. (3.98)), akin to the guarantee of

a divergence-free velocity in KMM for incompressible Navier-Stokes [1]. Secondly, recognize

1

L1L3

Z

V

✓
@⇢

@t
+ r · mc

◆
dx1dx2dx3 =

Z L2
2

�L2
2

✓
@⇢x1x3

@t
+
@mx1x3

2

@x2

◆
dx2 (3.27)
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and periodicity of the Fourier bases in V implies

Z

V

N1
2 �1X

l=�N1
2 +1

N3
2 �1X

n=�N3
2 +1

bfln(x2, t)e
ik1x1eik3x3 dx1dx2dx3

=

Z L2
2

�L2
2

bf00(x2, t) dx2 =

Z L2
2

�L2
2

f
x1x3

(x2, t) dx2 .

(3.28)

Then for k1 = k3 = 0 eq. (3.22) simplifies to

B0
0,0c

@⇢/@t
x1x3

= �B1
0,1c

m
x1x3
2 (3.29)

where mx1x3
2 = mc x1x3

2 . This is a system of size N2 and needs to be supplemented with one

boundary condition. Therefore, @⇢x1x3/@t + @mx1x3
2 /@x2 = 0 is satisfied at all collocation

points and by eq. (3.25) it is satisfied everywhere. Combining this with eq. (3.27) implies

@

@t

Z L2
2

�L2
2

⇢x1x3 dx2 = �

Z L2
2

�L2
2

@mx1x3
2

@x2
dx2 = � (mx1x3

2 (L2/2) � mx1x3
2 (�L2/2)) (3.30)

ensuring global conservation of mass.

3.4 Temporal discretization

Fourier spectral methods rely on a wavenumber-by-wavenumber decoupling to make compu-

tation tractable. In the variable-density case, few operators in the governing equations are

linear, so explicit time integration or linearly-implicit schemes that avoid prohibitively ex-

pensive nonlinear solves are attractive. This work focuses on the DNS of flows in unbounded

domains where the timestep required for accuracy is similar to the timestep required for

stability when using an explicit method [69]. For this reason, it is based on an explicit,

low-storage, second-order Runge-Kutta scheme. Explicit time discretization also allows the
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equations for ⌦2, �2, and z to be advanced independently. However, treatment of the z

equation is complicated by the mass conservation constraint, which is particularly challeng-

ing to enforce for large density ratios. A new, robust numerical formulation for solving the

z equation is introduced below.

3.4.1 Reframing the scalar transport equation

The variable-density Navier-Stokes equations from section 3.2 are a system of partial di↵er-

ential equations along with the equation of state that makes the mass conservation equation

redundant. The equation of state relating ⇢ and z, ⇢ = f(z), and the mass conservation

equation imply
@⇢

@t
=
@f

@z

@z

@t
= �r · mc . (3.31)

The curl-free momentum mc can be written as the gradient of a scalar potential mc = r 

which obeys
@⇢

@t
= �r

2 , (3.32)

with appropriate boundary conditions. This implies

mc = �r
�
r

2
��1


@f

@z

@z

@t

�
(3.33)

where (r2)�1 is the inverse Laplacian (equivalently, C
�1 can be used as discussed in sec-

tion 3.3.2). When explicitly time advancing the equations, the conserved scalar z and the

momentum will not satisfy eq. (3.33) in general. As noted in section 1.3.2, such inconsisten-

cies are destabilizing, especially when large density gradients are present.

Evaluating the convective term (including the contribution from mc) in the z equation
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purely explicitly can result in numerical instability. Consider the evolution equation for z:

@z

@t
= �

1

⇢

�
md + mc

�
· rz +

1

⇢
r⇢Dz · rz + Dzr

2z . (3.34)

From eq. (3.33) mc is determined directly from @z/@t; therefore, treating mc explicitly

is equivalent to lagging the dependence of @z/@t on the right-hand side with respect to

the derivative on the left-hand side. This e↵ective lagging of the time derivative leads to

instabilities.

To remove the potential for numerical instability, the z equation can be reformulated as

follows: let

L(z) {·} ⌘ �
1

⇢
rz · r

�
r

2
��1


@f

@z
{·}

�
. (3.35)

L is linear in @z/@t and has a dependence on z. Then the scalar transport equation, eq. (3.7),

can be rewritten as

@z

@t
= L(z)

@z

@t
�

1

⇢
md

· rz +
1

⇢
r⇢Dz · rz + Dzr

2z . (3.36)

This makes explicit the dependence of the right-hand side on @z/@t due to the mc portion

of the convective term. Further, define

Rz ⌘ �
1

⇢
md

· rz +
1

⇢
r⇢Dz · rz + Dzr

2z (3.37)

and the z equation is of the form presented previously in eq. (3.1), rewritten here:

@z

@t
= L(z)

@z

@t
+ Rz .

If I � L is nonsingular, eq. (3.1) can be manipulated into explicit form, eq. (3.2), again
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rewritten:
@z

@t
= {I � L(z)}�1

Rz .

Time advancing eq. (3.2) would ensure consistency in the equation of state, the mass con-

servation equation, and the scalar transport equation, avoiding potential instability because

the redundant equations have been eliminated. However, inverting I � L directly is not

practical as it is nonlocal in Fourier space and dense.

Instead eq. (3.1) is solved using a fixed-point iteration which, upon convergence, would

e↵ectively solve eq. (3.2) and mitigate the stability problems. Recognizing that full conver-

gence will not be necessary for stability, the method is designed such that z will be temporally

second order, consistent with the temporal discretization of the momentum equations, re-

gardless of the number of iterations. Hence, the number of iterations is selected to reduce the

destabilizing inconsistencies between the equation of state, the mass conservation equation,

and the scalar transport equation to an appropriate level. This allows for stability while

minimizing cost.

3.4.2 Iterative, matrix-free, second-order scheme

To analyze the time discretization issues described above, consider the following system of

ODEs, designed to exhibit the challenges arising in the low-Mach-number, variable-density

equations: 8
>>>>>>>>><

>>>>>>>>>:

dz

dt
= M1(z)

dz

dt
+ M2(z)

dr

dt
= M3(r, m

c)

d⇢

dt
= G(mc)

⇢ = f(z)

(3.38)

where M1 is a potentially z-dependent operator which is linear in dz/dt, M2 has no dz/dt

dependence but also is generally nonlinear in z – this equation has the same structure
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as eq. (3.1). M3(r, mc) is potentially nonlinear in both r and mc and is a surrogate for

the transformed momentum equations. G is a linear operator acting on mc akin to the

divergence operator in the mass conservation equation. Although mc is not strictly needed

to advance the z equation, it participates in the r equation, therefore its reconstruction from

d⇢/dt = G(mc) must be compatible with the temporal discretization of the r equation in

order to achieve the desired temporal order of convergence.

The advancement of the evolution equations is built on an explicit, low-storage RK2

scheme which is described here first. Two substeps are needed to advance u where du/dt =

f(u) from time level n to n + 1:

u0 = un +
1

2
�tf(un)

un+1 = u0 + �t

⇢
f(u0) �

1

2
f(un)

� (3.39)

where the prime notation indicates the value taken at the intermediate stage and un+1 is the

estimation of u(tn+1) = u(tn + �t). Starting with un = u(tn), an evaluation of f(u) at tn,

f(un) = f (u (tn)) , (3.40)

gives an approximation of u at tn+1/2 = t + 1/2�t which is

u0 = un +
1

2
�tf(un) = u(tn) +

1

2
�tf (u (tn)) . (3.41)

This is used to estimate f(u) at tn+1/2,

f(u0) = f

✓
u(tn) +

1

2
�tf(u(tn))

◆

= f (u(tn)) +
1

2
�t

df

dt

����
u(tn)

+ O
�
�t2

�
,

(3.42)
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and obtain a second order accurate un+1:

un+1 = u0 + �t

⇢
f(u0) �

1

2
f(un)

�

= u(tn) +
1

2
�tf (u (tn))

+ �t

(
f (u(tn)) +

1

2
�t

df

dt

����
u(tn)

�
1

2
f (u (tn)) + O

�
�t2

�
)

= u(tn) + �tf (u (tn)) +
1

2
�t2

df

dt

����
u(tn)

+ O
�
�t3

�

=) un+1
� un = �t

du

dt

����
u(tn)

+
1

2
�t2

d2u

dt2

����
u(tn)

+ O
�
�t3

�
.

(3.43)

The time discretization strategy of system (3.38) is formulated to match the zeroth, first,

and second order terms of this RK2 scheme as appropriate so the entire state is second-order

accurate in time.

3.4.2.1 Advancing the z equation

For the z equation,
dz

dt
= M1(z)

dz

dt
+ M2(z) (3.44)

is equivalent to
dz

dt
= {I � M1(z)}�1

M2(z) (3.45)

assuming {I � M1(z)} is nonsingular. However, practically eq. (3.45) cannot be solved in

this form. Instead, applying the RK2 discretization to eq. (3.44) gives

z0 � zn = M1(z
⇤) (z0 � zn) +

1

2
�tM2(z

n) (3.46)

for the first stage, with z⇤ representing a potentially intermediate value. This is equivalent

to applying the same time derivative approximation on both sides of the equation with the

45



caveat being the state at which M1 is evaluated. This equation is solved with a fixed-point

iteration, where for iterate i the following is evaluated:

z0,i � zn = M1(z
⇤)
⇣
z0,i�1

� zn
⌘

+
1

2
�tM2(z

n) . (3.47)

This will converge if the spectral radius of M1 is less than one. This can be seen by rewriting

the ith iterate in terms of repeated application of eq. (3.47) to the initial guess, i = 0:

z0,k � zn = M
k
1(z

⇤)
⇣
z0,0 � zn

⌘
+

k�1X

j=0

M
j
1(z

⇤)
1

2
�tM2(z

n) . (3.48)

For ⇢(M1) < 1,

{I � M1}
�1 = I + M1 + M

2
1 + · · · =

1X

j=0

M
j
1 . (3.49)

Hence, in the limit of large k the solution to the fixed-point problem approaches a standard

RK step applied to eq. (3.45) since

M
k
1(z

⇤)
⇣
z0,0 � zn

⌘
+

k�1X

j=0

M
j
1(z

⇤)
1

2
�tM2(z

n) ���!
k!1

1

2
�t {I � M1}

�1
M2 . (3.50)

Since RK methods are zero stable, linear stability is then governed solely by the eigenvalues

of the Jacobian of the right-hand side of the modified problem, eq. (3.45). Practically, a

large number of iterations is expensive; however, for an arbitrary initial guess the scheme

becomes first order if the iterations are terminated. To avoid this, a backwards di↵erentiation

formula- (BDF)-like approximation is used to generate the initial guess. With an appropriate

selection of the intermediate stage, z⇤, it can then be shown that the desired truncation error

is recovered regardless of the number of iterations.

We desire a second-order z and assume zn = z(tn). If the BDF-like approximation
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producing z0,0 is such that

z0,0 � zn =
1

2
�t

dz

dt

����
z(tn)

+ O
�
�t3

�
(3.51)

and z⇤ = zn then

z0,k � zn = M
k
1(z

n)
⇣
z0,0 � zn

⌘
+

1

2
�t

k�1X

j=0

M
j
1(z

n)M2(z
n)

=
1

2
�t


M

k
1

dz

dt

�

z(tn)

+
1

2
�t

k�1X

j=0

⇥
M

j
1M2

⇤
z(tn)

+ O
�
�t3

�
.

(3.52)

Then splitting the sum and factoring M
k�1
1 reveals

1

2
�t


M

k
1

dz

dt

�

z(tn)

+
1

2
�t

k�1X

j=0

⇥
M

j
1M2

⇤
z(tn)

=
1

2
�tMk�1

1

(
M1

dz

dt

�

z(tn)

+ M2(z(tn))

)
+

1

2
�t

k�2X

j=0

⇥
M

j
1M2

⇤
z(tn)

=
1

2
�t


M

k�1
1

dz

dt

�

z(tn)

+
1

2
�t

k�2X

j=0

⇥
M

j
1M2

⇤
z(tn)

.

(3.53)

By recursion it follows that

z0,k � zn =
1

2
�t


M1

dz

dt

�

z(tn)

+
1

2
�tM2(z(tn)) + O

�
�t3

�

=
1

2
�t

dz

dt

����
z(tn)

+ O
�
�t3

�
,

(3.54)

which recovers eq. (3.41) up to O (�t3) as required to maintain the desired accuracy of the

scheme.
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The next step is a bit more involved due to the second order term. Starting with

zn+1
� z0 = M1(z

⇤)
�
zn+1

� z0
�

+ �tM2(z
0) �

1

2
�tM2(z

n) (3.55)

gives the fixed-point iteration

zn+1,i
� z0 = M1(z

⇤)
�
zn+1,i�1

� z0
�

+ �tM2(z
0) �

1

2
�tM2(z

n) . (3.56)

To obtain the desired error, M1 is evaluated at an intermediate stage which satisfies

z⇤ = z(tn) + �t
dz

dt

����
z(tn)

+ O
�
�t2

�
(3.57)

such that

M1

 
z(tn) + �t

dz

dt

����
z(tn)

+ O
�
�t2

�
!

= M1(z(tn)) + �t


dM1

dz

dz

dt

�

z(tn)

+ O
�
�t2

�
. (3.58)

Then if the BDF-like approximation produces

zn+1,0
� z0 =

1

2
�t

dz

dt

����
z(tn)

+
1

2
�t2

d2z

dt2

����
z(tn)

+ O
�
�t3

�
, (3.59)

it follows that, for the first iteration,

zn+1,1
� z0 =

(
M1(z(tn)) + �t


dM1

dz

dz

dt

�

z(tn)

)
⇥

(
1

2
�t

dz

dt

����
z(tn)

+
1

2
�t2

d2z

dt2

����
z(tn)

)

+ �tM2(z
0) �

1

2
�tM2(z

n) + O
�
�t3

�
.

(3.60)
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Expanding out the product and further simplification reveals

zn+1,1
� z0 =

1

2
�t


M1

dz

dt

�

z(tn)

+
1

2
�t2

"
dM1

dz

✓
dz

dt

◆2
#

z(tn)

+
1

2
�t2


M1

d2z

dt2

�

z(tn)

+ �t

(
M2(z(tn)) +

1

2
�t


dM2

dz

dz
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�

z(tn)

)
�

1

2
�tM2(z(tn))

+ O
�
�t3
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=
1
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dz
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�

z(tn)
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+
1

2
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8
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
dM2
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9
=
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+ O
�
�t3

�

=
1

2
�t

dz

dt

����
z(tn)

+
1

2
�t2

d2z

dt2

����
z(tn)

+ O
�
�t3

�
.

(3.61)

Combining this and the result of eq. (3.52) gives

zn+1,1 = z(tn) + �t
dz

dt

����
z(tn)

+
1

2
�t2

d2z

dt2

����
z(tn)

+ O
�
�t3

�
(3.62)

which indicates zn+1,1 is accurate to O (�t3) as in eq. (3.43). As with the first stage, con-

tinuing to iterate will not a↵ect the lower order terms. Hence, for any k

zn+1,k
� zn = �t

dz

dt

����
z(tn)

+
1

2
�t2

d2z

dt2

����
z(tn)

+ O
�
�t3

�
, (3.63)

such that z is second order in time.

To get the correct order at each RK stage, the initial guess for the fixed-point iteration and

the intermediate stage, z⇤, must be selected appropriately. The coe�cients for constructing

these approximations from four available evaluations of z are shown below.
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3.4.2.2 Coe�cients for fixed-point problem

Inspired by BDF methods, we seek an approximation which satisfies eq. (3.51) to initialize

the fixed-point iteration eq. (3.47). The condition on z⇤ is trivial for the first stage. At this

stage, zn, zn�1,0 , zn�1, zn�2,0 are available. Let

⇣
z0,0 � zn

⌘
= ↵0

1z
n + ↵0

2z
n�1,0 + ↵0

3z
n�1 + ↵0

4z
n�2,0 =

1

2
�t

dz

dt

����
z(tn)

+ O
�
�t3

�

z⇤0 = �0
1z

n + �0
2z

n�1,0 + �0
3z

n�1 + �0
4z

n�2,0 = z(tn)

(3.64)

then Taylor expansions show

↵0
1 = 1 ↵0

2 = �1 ↵0
3 = 0 ↵0

4 = 0

�0
1 = 1 �0

2 = 0 �0
3 = 0 �0

4 = 0 .
(3.65)

For the second stage, z0, zn, zn�1,0 , zn�1 are available and approximations which satisfy eq. (3.59)

and eq. (3.57) are required to solve eq. (3.47). Similarly, letting

�
zn+1,0

� z0
�

= ↵n+1
1 z0 + ↵n+1

2 zn + ↵n+1
3 zn�1,0 + ↵n+1

4 zn�1

=
1

2
�t

dz

dt

����
z(tn)

+
1

2
�t2

d2z

dt2

����
z(tn)

+ O
�
�t3

�

z⇤n+1 = �n+1
1 z0 + �n+1

2 zn + �n+1
3 zn�1,0 + �n+1

4 zn�1

= z(tn) + �t
dz

dt

����
z(tn)

+ O
�
�t2

�

(3.66)

and expanding gives

↵n+1
1 = 3 ↵n+1

2 = �4 ↵n+1
3 = 0 ↵n+1

4 = 1

�n+1
1 = 2 �n+1

2 = �1 �n+1
3 = 0 �n+1

4 = 0 .
(3.67)

50



3.4.2.3 Advancing r and obtaining a consistent mc

The r equation in system (3.38),

dr

dt
= M3 (r, mc) , (3.68)

is time discretized by the RK2 method (eq. (3.39)). The solution for r will be second order

if evaluations of dr/dt = M3 (r, mc) match eqs. (3.40) and (3.42) up to O (�t2). If so, the

intermediate r0 and final rn+1 will match eqs. (3.41) and (3.43) up to O (�t3), obtaining

the desired accuracy. If mc was obtained from time advancing an ODE dmc/dt = h(mc)

by the RK2 scheme, this would be trivially satisfied as eq. (3.39) extends to systems of

ODEs. However, mc is not time advanced but rather reconstructed from d⇢/dt. This means

the approximations d⇢/dt0 and d⇢/dtn+1 need only produce mc,0 = G
�1d⇢/dt0 and mc,n+1 =

G
�1d⇢/dtn+1 which are consistent with eqs. (3.41) and (3.43) up to O (�t2) so they provide

the required approximations of dr/dt. The local error is the relevant error for the accuracy of

mc because the curl-free momentum is obtained at each substep via the continuity constraint

rather than marched in time.

Di↵erentiating the equation of state with respect to time gives

d⇢

dt
=

df

dz

dz

dt
. (3.69)

In the context of the model problem above, let

M4(z) {·} = G
�1 df

dz
{·} (3.70)

so that

mc = M4(z)
dz

dt
. (3.71)
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Now, requiring mc,0 matches eq. (3.41) up to O (�t2) means

mc,0 = mc(tn) +
1

2
�t

dmc

dt

����
tn

+ O
�
�t2

�

=


M4

dz

dt

�

z(tn)

+
1

2
�t

8
<

:


M4

d2z

dt2

�

z(tn)

+

"
dM4

dz

✓
dz

dt

◆2
#

z(tn)

9
=

;

+ O
�
�t2

�
.

(3.72)

An approximation for
dz

dt
at tn+1/2 which satisfies

dz

dt

0
=

dz

dt

����
z(tn)

+
1

2
�t

d2z

dt2

����
z(tn)

+ O
�
�t2

�
(3.73)

will produce

M4 (z0)
dz

dt

0
= M4

 
z(tn) +

1

2
�t

dz

dt

����
z(tn)

+ O
�
�t2

�
!

⇥

(
dz

dt

����
z(tn)

+
1

2
�t

d2z

dt2

����
z(tn)

+ O
�
�t2

�
)

=

(
M4(z(tn)) +

1

2
�t


dM4

dz

dz

dt

�

z(tn)

+ O
�
�t2

�
)

⇥

(
dz

dt

����
z(tn)

+
1

2
�t

d2z

dt2

����
z(tn)

+ O
�
�t2

�
)

=


M4

dz

dt

�

z(tn)

+
1

2
�t

8
<

:


M4

d2z

dt2

�

z(tn)

+

"
dM4

dz

✓
dz

dt

◆2
#

z(tn)

9
=

;

+ O
�
�t2

�

(3.74)
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which is what is needed. Similarly, the second stage requires

mc,n+1 = mc(tn) + �t
dmc

dt

����
tn

+ O
�
�t2

�

=


M4

dz

dt

�

z(tn)

+ �t

8
<

:


M4

d2z

dt2

�

z(tn)

+

"
dM4

dz

✓
dz

dt

◆2
#

z(tn)

9
=

;+ O
�
�t2

�
.

(3.75)

Therefore, if
dz

dt

n+1

=
dz

dt

����
z(tn)

+ �t
d2z

dt2

����
z(tn)

+ O
�
�t2

�
(3.76)

then

M4

�
zn+1

� dz

dt

n+1

= M4

 
z + �t

dz

dt

����
z(tn)

+
1

2
�t2

d2z

dt2

����
z(tn)

+ O
�
�t3

�
!

⇥

(
dz

dt

����
z(tn)

+ �t
d2z

dt2

����
z(tn)

+ O
�
�t2

�
)

=

(
M4(z(tn)) + �t


dM4

dz

dz

dt

�

z(tn)

+ O
�
�t2

�
)

⇥

(
dz

dt

����
z(tn)

+ �t
d2z

dt2

����
z(tn)

+ O
�
�t2

�
)

=


M4

dz

dt

�

z(tn)

+ �t

8
<

:


M4

d2z

dt2

�

z(tn)

+

"
dM4

dz

✓
dz

dt

n◆2
#

z(tn)

9
=

;

+ O
�
�t2

�
.

(3.77)

This also implies mc itself is second order accurate.

For both stages, a specially constructed intermediate z⇤ is not needed when evaluating

M4, the current stage is su�cient. The coe�cients for constructing these approximations

from the four available evaluations of z are shown below.
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3.4.2.4 Coe�cients for final mc reconstruction

To form
dz

dt

0
, z0, zn, zn�1,0 , zn�1 are available. Then requiring

�t
dz

dt

0
= �01z

0 + �02z
n + �03z

n�1,0 + �04z
n�1 =

�t
dz

dt

����
z(tn)

+
1

2
�t2

d2z

dt2

����
z(tn)

+ O
�
�t3

� (3.78)

gives

�01 = 4 �02 = �5 �03 = 0 �04 = 1 . (3.79)

To form
dz

dt

n+1

, zn+1, z0, zn, zn�1,0 are available. Then requiring

�t
dz

dt

n+1

= �n+1
1 zn+1 + �n+1

2 z0 + �n+1
3 zn + �n+1

4 zn�1,0 =

�t
dz

dt

����
z(tn)

+ �t2
d2z

dt2

����
z(tn)

+ O
�
�t3

� (3.80)

gives

�n+1
1 = 2 �n+1

2 = �2 �n+1
3 = 0 �n+1

4 = 0 . (3.81)

3.4.2.5 Initial timestep

Without the appropriate time history of z at the initial timestep it is assumed the right-

hand side of eq. (3.44) can be evaluated directly (this is certainly the case in the underlying

low-Mach-number system) to obtain z0,0 for the fixed-point iteration. Then

z0,0 � z0

�t
=

dz

dt

����
z(t0)

(3.82)
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is taken and the iterative method proceeds normally. To obtain z1,0 for the second stage

fixed-point problem, a first-order approximation is used:

z1,0 � z0

�t
=

2

�t

�
z0 � z0

�
. (3.83)

For the final mc reconstruction for the initial timestep, only the first stage needs modification.

Again, a first-order approximation is used:

�t
dz

dt

0
= 2

�
z0 � z0

�
. (3.84)

3.4.3 Temporal convergence tests

To verify the order of accuracy of the temporal scheme detailed in section 3.4, numerical

solutions of system (3.38) are sought with

M1(z) = c1 (1 + sin(z)) , M2(z) = c2 exp(z) , M3(r, m
c) = c3rm

3
c ,

G(mc) = c4m
c , f(z) = z ,

(3.85)

where c1 = .6i, c2 = �1, c3 = 2 � .8i, c4 = �3 + .5i, and z0 = r0 = .5. A reference solution is

obtained by integrating with a fine �t = 1⇥10�9, an order of magnitude lower than the final

case shown here. Additionally, instead of approximating d⇢/dt as shown in section 3.4.2.2,

it is obtained directly by evaluating

d⇢

dt
=

d⇢

dz

M2

1 � M1
(3.86)

and the z equation is solved in the modified form

dz

dt
=

M2

1 � M1
(3.87)
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for the reference solution. Hence, the momentum reconstruction can be checked for con-

sistency and the reference z is obtained without employing the iterative scheme. Equa-

tion (3.86) is also used to obtain mc
0 to ensure consistency of the initial condition for all

solutions.

Figure 3.1 shows the convergence rate of z and r of the test problem for both double

and extended (long double) precision by comparing the solution at t = .1 to the reference

solution. Four iterations are used to solve the z equation at each substep. Some noise in the

error is expected close to machine precision; however, the behavior seen for small �t needs

further explanation. Round-o↵ errors in z are amplified during the estimation of dz/dt from

the time history of z. A linear combination of the four previous evaluations is scaled by

1/�t (e.g. eq. (3.78)). These errors feed into mc through the mass conservation equation

and, in turn, can start to degrade the apparent convergence rate of r or they feed into z

during the iterative solve. This is inevitable and is of no practical concern. The error in

extended precision calculations continues to decay at a second-order rate (fig. 3.1), which

demonstrates the behavior of the double precision result is solely a consequence of round-o↵

error. Hence, the approximation of mc is confirmed to be consistent with the standard RK2

scheme and the convergence of the entire state is second order.

3.4.4 Linear stability analysis

To assess the stability of this algorithm, consider a linearized system modeling the charac-

teristics of the z equation in system (3.38)

dz

dt
= h

✓
z,

dz

dt

◆
= �1

dz

dt
+ �2z (3.88)
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Figure 3.1: Temporal convergence of the iterative scheme. z (left), r (right). Solution error
at t = .1 defined against the reference case. Shown for both double precision (DP) and
extended precision (EP).

where �1,�2 2 C. Additionally, define

�⇤ =
�2

1 � �1
(3.89)

so that
dz

dt
= �⇤z (3.90)

is the underlying modified ODE (assuming �1 6= 1). In this context, setting �2 = 0 in

eq. (3.88) gives the appropriate test problem for zero stability.

Applying the temporal scheme with k fixed-point iterations to eq. (3.88) gives

z0,k � zn = �k1

⇣
zn � zn�1,0

⌘
+

1

2
�t

k�1X

j=0

�j1�2z
n

zn+1,k
� z0 = �k1

�
3z0 � 4zn + zn�1

�
+ �t

k�1X

j=0

�j1�2

✓
z0 �

1

2
zn
◆

.

(3.91)
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Taking inspiration from linear di↵erential equation analysis [70], this can be written as

z0 = A0zn

zn+1 = An+1z0

=) zn+1 = An+1A0zn = Azn

(3.92)

where

zn = [zn zn�1,0 zn�1 zn�2,0 ]T

z0 = [z0 zn zn�1,0 zn�1]T .
(3.93)

Let S =
Pk�1

j=0 �
j
1�2. Then

A0 =

2

66666664

1 + �k1 +
1

2
�tS ��k1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3

77777775

(3.94)

An+1 =

2

66666664

1 + 3�k1 + �tS �4�k1 �
1

2
�tS 0 �k1

0 1 0 0

0 0 1 0

0 0 0 1

3

77777775

. (3.95)

Then for ⇢ (A) < 1, the scheme is linearly stable. Unlike traditional explicit Runge-Kutta

methods applied to ODEs of the form dz/dt = f(z) (like eq. (3.89)), the scheme is not

zero stable. The zero stability is instead like that of a linear multistep method due to the

parasitic modes introduced by the data required to obtain the initial guesses z
0,0 and zn+1,0.

In this case, �1 has a direct impact on zero stability. As shown in fig. 3.2, the size of the

zero stability regions grows with the number of iterations. When fully converged, the zero
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Figure 3.2: Zero stability of the iterative scheme for the first few k iterations. Iteration 20
shows a nearly converged region.

stability region is a circle of radius 1, which is consistent with the scheme diverging for

⇢ (M1) � 1 and recovering the stability of the RK2 scheme otherwise.

The absolutely stability region is defined in terms of the “true” eigenvalue, �⇤, and is

plotted for di↵erent values of �1 which are growing in magnitude, see fig. 3.3. As expected,

when fully converged the absolute stability region coincides with the standard RK2 result.

For small k�1k this convergence happens quickly so that only two to three iterations would be

required to get a stability region that approaches that of RK2. As the eigenvalue magnitude

approaches one, as in fig. 3.3.d, the stability region does not approximate that of RK2
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even after twenty iterations. Figure 3.4 shows the e↵ect of the phase of �1 on the stability

region. In particular, there is a symmetry about the imaginary axis when I [�1] changes

sign. Additionally, a 180� phase change can produce dramatic changes in stability as the

eigenvalues which have large imaginary parts tend to exhibit much more erratic behavior.

One thus needs an estimate for the spectral radius of M1 to determine an appropriate

number of iterations a priori.
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Figure 3.3: Absolute stability as a function of the number of iterations for varying �1. Top
left : �1 = 2i, top right : �1 = �.02 + .42i, lower left : �1 = .5 + .5i, lower right :
�1 = .7 + .25i.
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Figure 3.4: Absolute stability as a function of the number of iterations of the for �1 of
equal magnitude but di↵erent phase. Top left : �1 = .25 + .7i, top right : �1 = .7 + .25i,
lower left : �1 = .25 � .7i, lower right : �1 = .7 � .25i.
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3.5 Low-Mach-number Navier-Stokes algorithm

This section details the time advance of the spatially discrete equations (section 3.3.2) with

the temporal scheme established in section 3.4. Given the decomposition presented in sec-

tion 3.2, the overall algorithm can be broken into two main stages:

1. a reconstruction of the momentum from its Laplacian and curl (� and ⌦, respectively)

and the mass conservation equation.

2. A time advance of the momentum equations and the conserved scalar equation.

Throughout the calculation, operations are performed on the data in either ‘wavespace’,

when it is ordered by wavenumber pair and the values of the Fourier coe�cients on the B-

spline collocation grid are stored, or in ‘realspace’, when it is evaluated on a physical grid via

discrete Fourier transforms. Time advancement and linear algebra (including di↵erentiation)

is performed in wavespace, and nonlinear operators are computed in realspace to avoid costly

convolution sums.

A natural parallel decomposition is the so-called ‘pencil’ decomposition. In wavespace,

operations are performed wavenumber pair by wavenumber pair on lines of data in the x2

direction. Transforming to realspace requires two sets of a global transpose followed by a

discrete Fourier transform. Transforming back to wavespace essentially reverses this process.

For many more details on the parallel decomposition see Lee et al. [71] who developed the

decomposition for a DNS of incompressible channel flow. It served as a basis for this work

which also uses Lee’s custom linear algebra package. The Fourier transform and associated

data transpose were shown to account for most of the cost of a timestep; therefore, the fol-

lowing algorithm was designed to minimize the total number of these operations. Additional

design constraints arise from a desire to avoid representing second derivatives in di↵usion
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terms as a repeated application of the first derivative operator in the inhomogeneous direc-

tion as this can lead to an underrepresentation of the physical dissipation as well as stability

issues1. Hence, the divergence of the stress tensor, F ⌧
i = @⌧ij/@xj, needed to advance the

momentum equations, and the molecular di↵usion term in the z equation are expanded by

the chain rule and must be assembled from products of the flow variables and their deriva-

tives. The number of fields required for this step sets the minimum memory requirements,

so the algorithm is designed to make this requirement as low as possible. See procedure 2

and eq. (3.99) for details of the assembly of these quantities.

3.5.1 Momentum reconstruction

For the continuous DNS equations described in section 3.2 the minimum state has dimension

three and is taken to be S = (�2, ⌦2, z, m
x1x3
1 , mx1x3

3 ). Note that �
x1x3

2 = ⌦
x1x3

2 = 0, so the

state only requires storage for three full 3-D fields. For the purposes of the discrete problem,

approximating @z/@t for the fixed-point problem and curl-free momentum reconstruction

requires that three previous evaluations of z are available. The computational algorithm

begins each stage with this minimal state in wavespace.

In advancing from stage s ! s+ 1, the first step is to reconstruct the momentum. To do

so, the following steps are required:

1. construct @⇢/@t and obtain mc (note again mx1x3
2 = mc x1x3

2 );

2. solve the Poisson problem to obtain md
2 from �2 and enforce the divergence-free con-

dition to obtain md.
1See, for example, the modified wavenumber analysis of Kwok et al. [63] which demonstrates the damping

of the highest wavenumbers by numerical first di↵erentiation
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3.5.1.1 Obtaining the curl-free momentum and mx1x3
2

Firstly, @⇢/@t must be formed. As discussed in section 3.4.2.3, @z/@t is approximated

from a time history of z in wavespace. For optimization purposes, derivatives of the scalar

variable (i.e. rz and r
2z) needed for the z equation are computed and moved to realspace.

Procedure 1 details the formation of the density derivative along with the evaluation of the

thermodynamic state and preparation for future computations.

Procedure 1 Evaluating the density derivative and preparing for z solve

1: Starting in wavespace, form fields needed for
@⇢

@t
from time history of z (section 3.4.2.4):

@z

@t|{z}
1 field

2: Form fields needed for Rz:

rz|{z}
3 fields

r
2z|{z}

1 field

3: Fourier transform 6 fields Wave ! Real
@z

@t
, z, rz, r

2z

4: Evaluate thermodynamic and transport properties from known functions of z:

⇢
|{z}
2 copies

⇢�1

|{z}
To stay in realspace

⇢Dz

|{z}
2 copies

µ
|{z}
2 copies

@f

@z|{z}
Needed in next step

5: Form nonlinear product:
@f

@z

@z

@t| {z }
1 field

=
@⇢

@t

6: Fourier transform 4 fields Real ! Wave

⇢, ⇢Dz, µ,
@⇢

@t
Leave a copy of ⇢, ⇢Dz, µ; leave z derivatives; leave ⇢�1 in realspace.

Then a coupled system composed of the mass conservation equation and the curl-free
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constraint, eqs. (3.22) and (3.23), is solved for the fluctuating modes of mc if k3 6= 0 (when

k3 = 0, eqs. (3.22) and (3.24) are solved instead). The x2 component of the plane-averaged

momentum is determined by solving

8
><

>:

B0
0,0c

@⇢/@t
x1x3

= �B1
0,1c

m
x1x3
2

BC: c
m

x1x3
2

N2
= 0

. (3.96)

In this case, the homogeneous Dirichlet boundary condition does not replace one of the

collocation equations but rather is needed for well-posedness since m2 carries an additional

degree of freedom. The solution is then o↵set to obey boundary conditions, if appropriate.

Since mx1x3
1 and mx1x3

3 are already known, the plane-averaged momentum reconstruction is

now complete.

3.5.1.2 The Poisson problem for md
2

To reconstruct md
2 the Poisson problem r

2md
2 = �2 is solved. In terms of the discretization

scheme, this is

B0
1,0c

b�2 = �k2B0
1,1c

cmd
2 + B2

1,1c
cmd
2 (3.97)

where k =
p

k2
1 + k2

3. Once md
2 is known, the divergence-free condition and the definition of

⌦2 are invoked to solve for md
1 and md

3:

B0
0,0c

cmd
1 =

1

k2

⇣
ik1B

1
0,1c

cmd
2 � ik3B

0
0,0c

b⌦2

⌘

B0
0,0c

cmd
3 =

1

k2

⇣
ik3B

1
0,1c

cmd
2 + ik1B

0
0,0c

b⌦2

⌘
.

(3.98)

This completely determines the momentum.
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3.5.2 Advancing the evolution equations

With the momentum known, next is advancing the ⌦2, �2, mx1x3
1 , mx1x3

3 , and z equations.

To minimize the total number of fields needed when forming the residual for the transformed

momentum equations (⌦2 and �2), the velocity is required in wavespace. For the matrix-free

iterative solve of the z equation, the velocity from the divergence-free momentum is needed

for Rz. The curl-free momentum is readily available after solving eqs. (3.22) to (3.24) and is

used along with the three components of the total momentum and the density to obtain these

fields. The following step involves mapping derivatives of the flow variables to realspace and

returning with the nonlinear terms for the �2, ⌦2, mx1x3
1 , mx1x3

2 , and z equations. This is

outlined in procedure 2. In procedure 2, the divergence of the stress tensor is constructed

as follows:

r · u =
�
ru + ruT

�
11

+
�
ru + ruT

�
22

+
�
ru + ruT

�
33

F ⌧
i = 2

�
ru + ruT

�
i1

@µ

@x1
+ 2

�
ru + ruT

�
i2

@µ

@x2
+ 2

�
ru + ruT

�
i3

@µ

@x3

+ µ
�
r

2u + 1/3 r(r · u)
�
i
�

2

3
(r · u)

@µ

@xi

(3.99)

and eqs. (3.16) and (3.17) indicate only five independent combinations of Cij are required,

(C11 � C22) (C33 � C22) C12 C13 C23 , (3.100)

so one fewer field is carried.

Appropriate derivatives are applied to cF ⌧
i and bCij to form their contributions to the

momentum equations (eqs. (3.16) to (3.18)), which are then advanced as in eq. (3.39). Then

the iterative scheme is applied to advance z as demonstrated in procedure 3. This shows

how L is applied practically, in stages. At this point, a RK substep is considered com-

pleted. Throughout the computation, current and old evaluations of the right-hand side
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Procedure 2 Computing the nonlinear terms for �2, ⌦2, mx1x3
1 , mx1x3

2 , Rz residuals

1: Starting in wavespace, form fields needed for u and md/⇢:

m|{z}
3 fields

mc
|{z}
3 fields

⇢�1

|{z}
Already in realspace

2: Fourier transform 6 fields Wave ! Real
As listed above in step 1

3: Form nonlinear products

u|{z}
3 fields, 2 copies

md/⇢| {z }
To stay in realspace

4: Fourier transform 3 fields Real ! Wave
Leave a copy of u; leave md/⇢ in realspace.

5: Form fields needed for r · ⌧ :
�
ru + ruT

�
| {z }

6 fields

rµ|{z}
3 fields

µ|{z}
Already in realspace

r
2u + 1/3 r(r · u)| {z }

3 fields

r · u| {z }
Can be formed from(ru+ruT )

6: Fields needed for Cij:

⇢|{z}
Already in realspace

u|{z}
Already in realspace

7: Form fields needed for Rz equation (if necessary):

rz|{z}
Already in realspace

r
2z|{z}

Already in realspace

r⇢Dz| {z }
3 fields

md/⇢| {z }
Already in realspace

⇢�1

|{z}
Already in realspace

8: Fourier transform 15 fields Wave ! Real
As listed above in steps 5 and 7

9: Form nonlinear products:

r · ⌧
| {z }
3 fields

Cij

|{z}
5 fields

�
1

⇢
md

· rz +
1

⇢
r⇢Dz · rz + Dzr

2z
| {z }

1 field

10: Fourier transform 9 fields Real ! Wave
Nonlinear products listed in step 9
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and the scalar fields are stored and reused per section 3.4. Although this formulation has

formally eliminated the pressure, it can be computed consistently during runtime or as a

post-processing step. See Appendix E for details.
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Procedure 3 Advancing z with the iterative scheme

1: i = 0

2: Form initial guess @z/@t0 = (zs,0 � zs�1)/�t and z⇤ from z history (section 3.4.2.2).
Form fields for the application of L (z⇤):

@z

@t

0

|{z}
BDF-like approx.

z⇤

|{z}
BDF-like approx.

rz⇤

|{z}
To stay in realspace

3: while i < iiters do

4: Fourier transform 1 field, @z/@ti Wave ! Real

5: if i = 0 then

6: Fourier transform 4 fields, z⇤ rz⇤ Wave ! Real

7: Evaluate and store fields for the application of L (z⇤):

⇢ (z⇤)�1

| {z }
To stay in realspace

@f

@z
(z⇤)

| {z }
To stay in realspace

8: end if

9: Form nonlinear product, @f/@z @z/@ti

10: Fourier transform 1 field, @⇢/@ti Real ! Wave

11: Compute mc,i as in section 3.5.1.1

12: Fourier transform 3 fields, mc,i Wave ! Real

13: Form nonlinear product, L (z⇤) @z/@ti:

�
1

⇢
mc,i

· rz⇤

| {z }
1 field

14: Fourier transform 1 field, L (z⇤) @z/@ti Real ! Wave

15: Update zs,i ! zs,i+1, @z/@ti ! @z/@ti+1

16: end while
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3.5.3 Boundary conditions

Unbounded domains which must be truncated for computational purposes are commonly en-

countered in the simulation of turbulent flows. Herein, it is assumed the domain is formally

infinite in the inhomogeneous direction. In the homogeneous directions, periodic boundary

conditions are employed consistent with the choice of Fourier expansions. In the inhomoge-

neous direction, the momentum boundary condition is an extension of the potential-matching

condition of Corral and Jiménez originally developed for incompressible flows [72]. This is

based on the assumption that the vorticity decays rapidly as x2 ! ±1, so at the boundary

of the computational domain the potential part of the velocity is consistent with an exterior

decaying irrotational field. In the variable-density case this means, for L2 su�ciently large,

⇢ ! ⇢1, r ⇥ m ! 0, and r · m ! 0.

Consider a potential-only momentum field valid for x2 > L2/2:

mp = r� . (3.101)

� =
P

ln
b�ln(x2)eik1x1eik3x3 obeys r

2� = 0 such that b�ln ⇠ e�
p

k21+k23x2 = e�kx2 for consistency

with the vanishing condition at infinity. Hence, the following relationships are satisfied for

each wavenumber pair except (0, 0):

cmp
2

��
L2
2

= �kb�
��
L2
2

=) cmp
1

��
L2
2

= �
ik1

k
cmp

2

��
L2
2

=) cmp
3

��
L2
2

= �
ik3

k
cmp

2

��
L2
2

.

(3.102)
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Furthermore, r ⇥ mp = 0 gives:

@cmp
2

��
L2
2

@x1
�

@cmp
1

��
L2
2

@x2
= 0

=) cmp
2

��
L2
2

+
1

k

@cmp
2

@x2

����
L2
2

= 0 .

(3.103)

The result is similar for x2 < �L2/2:

cmp
1

��
�L2

2
=

ik1

k
cmp

2

��
�L2

2

cmp
3

��
�L2

2
=

ik3

k
cmp

2

��
�L2

2

cmp
2

��
�L2

2
�

1

k

@cmp
2

@x2

�����L2
2

= 0 .

(3.104)

Requiring both the divergence-free and curl-free parts to obey the potential-matching con-

dition separately clearly guarantees the entire momentum does so as well. This choice is

natural and does not introduce an unnecessary coupling between the two parts through the

boundary condition.

Recall r
2md

2 = �2. Two additional boundary conditions on md
2 are needed since sys-

tem (3.5) is formally fourth order in md
2. From the potential-matching condition, it follows

that
@2cmd

2

@x2
2

����
L2
2

= �k3b�
��
L2
2

= k2cmd
2

��
L2
2

=)
cmd

2

��
L2
2

�
1

k2

@2cmd
2

@x2
2

����
L2
2

= 0 .

(3.105)

Similarly,

cmd
2

��
�L2

2
�

1

k2

@2cmd
2

@x2
2

����
�L2

2

= 0 . (3.106)

This is consistent with a divergence-free and curl-free condition at the boundaries. Given the

spatial discretization, eq. (3.106) and eq. (3.105) imply �2 must obey homogeneous Dirichlet

72



conditions for consistency. Hence, when md
2 is reconstructed from �2 via the Poisson equation

eq. (3.97), only the Robin conditions of eq. (3.103) and eq. (3.104) are explicitly enforced by

replacing the first and last equations. A homogeneous Dirichlet condition is enforced on ⌦2

which is consistent with a curl-free momentum.

Averaging the mass conservation equation over x1 and x3 implies a homogeneous Neu-

mann condition on mx1x3
2 at the boundary, since the flow is essentially incompressible there.

This means there is one remaining degree of freedom when determining mx1x3
2 which is used

to enforce a symmetry condition or set the value at a location in the domain, for example.

For the Rayleigh-Taylor problem, cases are stopped well before the front nears the boundary

so a homogeneous Dirichlet condition is used at the top of the domain as the fluid remains

at rest.

Homogeneous Neumann conditions are imposed on the streamwise and spanwise plane-

averaged momentum as well as the plane-averaged and fluctuating components of the trans-

ported scalar, z. Numerical imposition of Neumann boundary conditions is nontrivial with

explicit schemes because strong enforcement can introduce artificial discontinuities in the

solution as boundary degrees of freedom are forced to satisfy the given condition while inte-

rior degrees of freedom are set independently. This can introduce numerical discontinuities

and cause instability. Methods based on weak formulations circumvent this naturally. Here

the Neumann conditions are imposed “weakly” by building them directly into the discrete

di↵erential operators and solving the governing equations at all collocation points, includ-

ing those on the boundary. The boundary condition then only explicitly appears during

the computation of the residual. Canuto has a relevant discussion in [73] for the interested

reader. With a su�ciently large domain, a weak Neumann condition is appropriate since the

flow is allowed to relax to the freestream outflow condition. See Appendix A for full details.
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3.5.4 Results and verification

This section contains numerical results which demonstrate the algorithm described above.

A sweep over Atwood numbers (density ratios) for the single-mode Rayleigh-Taylor (RT)

instability serves as a verification exercise for the variable-density Navier-Stokes algorithm

and demonstrates its stability. Additionally, the implementation has been verified (results

not shown) with a manufactured solution created with MASA [74], a C++ library which

can generate source terms for arbitrary di↵erential equations by automatic di↵erentiation.

A solution which specifies the curl-free and divergence-free momentum separately was cre-

ated, eliminating the need to decompose the momentum field which cannot be done without

inversion of the Laplacian operator. See Appendix B for the created solution.

3.5.4.1 Single-mode Rayleigh-Taylor test problem

Following He et al. [75] who simulate a single-mode Rayleigh-Taylor instability in a rectan-

gular box with square cross section, the configuration is that of two miscible fluids of varying

density with the heavier fluid on top under the influence of gravity which is aligned with the

vertical direction (x2). In this case, the kinematic viscosity ⌫ for both fluids is the same.

The computational domain is VRT = [0, W ] ⇥ [0, 7W ] ⇥ [0, W ]. The box is seven times as

tall as it is wide to mitigate boundary e↵ects, and periodicity is assumed in the x1 and x3

directions. The initial perturbation is given by

h(x1, x3)

W
= 0.05


cos

✓
2⇡x1

W

◆
+ cos

✓
2⇡x3

W

◆�
(3.107)

with h being the interface height. This occurs slightly above the center plane at x2 = 4W

since the structures bias in the direction of gravity.

There is a slight change in the governing equations due to the presence of gravity as a
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source term in the momentum equations. The momentum equations become

@⇢ui

@t
+
@⇢uiuj

@xj
= �

@p

@xi
+
@⌧ij
@xj

� ⇢g�i2 (3.108)

which slightly alters the equation for �2,

@�2

@t
=

@3

@xl@xl@xj
(C2j + ⌧2j) �

@3

@x2@xl@xj
(Clj + ⌧lj) �

✓
@2⇢g

@x1
2

+
@2⇢g

@x3
2

◆
. (3.109)

To track the mixture, define

z =
⇢hYl + ⇢lYh � ⇢h

⇢l � ⇢h
(3.110)

where Yl and Yh are the species mass fractions of the light and heavy fluid, respectively.

Then z obeys a scalar transport equation like eq. (2.10):

@⇢z

@t
+

@

@xi
(⇢uiz) =

@

@xi

✓
⇢Dz

@z

@xi

◆
(3.111)

with ⇢Dz defined as the dynamic viscosity. The potential-matching condition is specified

at the top and bottom boundary for the fluctuating momentum, and the plane-averaged

momentum obeys a homogeneous Neumann condition for the spanwise and streamwise com-

ponents and a homogeneous Dirichlet condition for the vertical component at the top of the

box. A homogeneous Neumann condition is used for z as well. See section 3.5.3 for more

details on applying boundary conditions within the algorithm presented here. The reference

length is the box width, W , and the reference timescale is
p

W/g. The density of the lighter

fluid, ⇢l, is taken to be the reference density. This leads to a Reynolds number and Atwood

number which parameterize the problem:

Re =

p
Wg W

⌫
A =

⇢h � ⇢l
⇢h + ⇢l

. (3.112)
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Note that the density ratio is
⇢h
⇢l

=
1 + A

1 � A
(3.113)

and
⇢

⇢l
=

1 + A

1 + A � 2Az
(3.114)

is then the equation of state. Taking the Schmidt number to be one implies

µ

⇢l⌫
=

1 + A

1 + A � 2Az
(3.115)

as well.

The single-mode RT instability experiences di↵erent stages: an initial acceleration when

viscous e↵ects dominate, followed by a period of constant “bubble” velocity predicted by

potential theory before a reacceleration occurs. For validation we compare to the result of

Goncharov [76] which gives the bubble velocity, or the rate at which the light fluid penetrates

the heavy, during the potential growth as

vb =

r
2A

1 + A

g

Ck
(3.116)

where C = 1 or 3 in three- or two-dimensional flows, respectively, and k is the perturbation

wave number. Figure 3.5 shows a comparison of this theoretical result with the computa-

tion. The Reynolds number is 512 for all runs. The simulated bubble velocity is similar to

the theoretical result. Most importantly, this demonstrates the algorithm’s stability over a

wide range of density ratios. For the three-dimensional simulations shown here, the highest

Atwood number case was .875, which corresponds to a density ratio of 15.
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Figure 3.5: vb versus Atwood number for the RT problem. Goncharov’s theoretical result is
also shown.
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Chapter 4

Modeling a nonpremixed, reacting, planar jet

In this chapter we apply the numerical methods described in chapter 3 to perform a direct

numerical simulation of a nonpremixed, temporally-evolving, reacting planar jet coupled

with a steady laminar flamelet model to represent the thermochemical state. The results are

used for a posteriori comparisons to a DNS of the same configuration with a higher fidelity

chemistry model as well as a priori evaluations of flamelet-based RANS closure models. This

analysis framework, as shown in section 1.2, allows for errors from the three modeling focuses

(turbulence, chemical reactions, turbulence-chemistry interaction) to be cleanly isolated.

4.1 Complex chemistry reference DNS

The DNS of Attili, Bisetti, et al. [23] serves as the complex chemistry reference simulation

discussed previously. It is a temporally-evolving, reacting, planar jet of a n-heptane fuel

stream in co-flowing air. The chemical mechanism is described in [41] and is used here to

generate the flamelets. Forty seven species and 290 reactions are included. The reference

DNS implements this mechanism directly, solving the species and temperature equations,

whereas the flamelet DNS only queries the tabulated thermochemical state as a function of

the mixture fraction z. The complex chemistry DNS equations and assumptions are detailed

in section 2.1.
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4.2 Simulation details

The configuration of the flamelet DNS is the same as the complex chemistry DNS and is

illustrated in fig. 4.1 which shows the temperature field in the streamwise (x1) and inho-

mogeneous (x2) directions early on in the flame’s evolution. The computational domain is

rectangular (V = [�L1/2, L1/2]⇥ [�L2/2, L2/2]⇥ [�L3/2, L3/2]) and periodic in the x1 and

x3 directions. The domain extent is 105 mm in the inhomogeneous (x2) direction, 94 mm in

the x1 direction, and 47 mm in the x3 direction. The number of grid points (N1 ⇥ N2 ⇥ N3)

are selected to be the same as in the reference DNS. The collocation points are uniformly

spaced (� = .091 mm) in most of the domain (for |x2/H| . 2.8) with a slight stretching

in the x2 direction otherwise, mimicking the distribution of points in the complex chemistry

DNS which employs a high-order finite di↵erence spatial discretization. The B-spline order

is p = 8 and the knots and collocation points are explicitly defined in Appendix C.

To ensure consistency, the initial velocity field and mixture fraction are taken directly

from Attili, Bisetti, et al. and projected onto the mixed Fourier/B-spline basis. There are no

fluctuations in the initial mixture fraction field and the fuel stream and oxidizer stream have

equal and opposite mean streamwise velocity (fig. 4.2). There are turbulent fluctuations in

the velocity field which are generated from a turbulent channel flow (see [23] for details).

In the reference data, the mixture fraction is stored at cell centers and the velocity field is

staggered. Therefore, the u2, u3, and z data needs to be shifted by ��/2 in the x1 direction.

This is accomplished by a forward FFT, applying the shift theorem (multiplying the lth

coe�cient by exp(�ikl�/2)), and an inverse FFT. In the x3 direction, the u1, u2, and z data

is shifted analogously. Finally, lines of the shifted data are interpolated in the x2 direction

with fifth order splines using SciPy [77] and evaluated at the collocation points. This is

required for all fields.

Details of the boundary conditions and their application are described in section 3.5.3. As
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noted earlier, there is one remaining degree of freedom in the boundary conditions associated

with the mean momentum in the x2 direction, whose specification is problem dependent. In

the case of shear flows like the jet, it is specified as:

m2 (L2/2) = �m2 (�L2/2) . (4.1)

This expresses the symmetry of the configuration about the constant x2 plane at the center of

the jet. This condition is enforced numerically by obtaining a solution with one homogeneous

boundary condition and correcting by an appropriate o↵set. Here a particular solution mp
2

is found satisfying m2 (L2/2) = 0, then the solution satisfying eq. (4.1) is obtained as

m2 = mp
2 �

1

2
mp

2 (�L2/2) . (4.2)

The temporally-evolving jet is characterized by a Reynolds number based on the initial jet

width, H, and velocity di↵erence, �U , which is the di↵erence between the initial centerline

velocity and the co-flow velocity. This gives a jet Reynolds number Re = 15, 000, using the

kinematic viscosity of the fuel stream. The reference chemical timescale is 1/�ext = 650 s�1,

the inverse scalar dissipation rate at extinction. Extinction is possible, but rare due to the

relatively high Damköhler number, in the complex chemistry DNS.

Three iterations per Runge-Kutta step were chosen to solve the fixed-point problem,

which is outlined in procedure 3. By obtaining an estimate for the largest eigenvalues of L,

the absolute stability region as a function of iteration number was analyzed (see section 3.4.4).

One of these analyses is shown in fig. 3.3.a, which demonstrates the stability region nearly

completely coincides with the fully converged target region after three iterations. To obtain

the eigenvalue estimate, a two-dimensional (x1-x2) simulation was performed and snapshots

were used to determine the spectrum of L by employing an eigenvalue solver built with

SLEPc [78]. The two-dimensional initial condition was simply a plane taken from the full
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Domain size, (L1 ⇥ L2 ⇥ L3) (mm) 94 ⇥ 105 ⇥ 47
Reference velocity, �U (m/s) 17.48
Reference kinematic viscosity, ⌫R (m2/s) 1.7 ⇥ 10�5

Initial jet width, H (mm) 15
Reference scalar dissipation rate, �ext (1/s) 650
Stoichiometric mixture fraction, zst .147
Reference mixture fraction di↵usion coe�cient, DR (m2/s) 1.8 ⇥ 10�5

Reference temperature, TR (K) 400
Reference density, ⇢R (kg/m3) 1.17
Final simulation time, tf (ms) 20
Reynolds number, Re 15, 000
Grid points, (N1 ⇥ N2 ⇥ N3) 1024 ⇥ 1024 ⇥ 512
Mesh spacing before stretching, � (mm) .091
B-spline order, p 8

Table 4.1: Simulation parameters.

three-dimensional initial condition. The eigenvalues did not vary substantially throughout

the test run, so the number of iterations was fixed for the three-dimensional simulation.

Relevant simulation parameters are summarized in table 4.1.
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Figure 4.1: Temperature contours in a n-heptane jet in co-flowing air.
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Figure 4.2: Initial profiles of mixture fraction and streamwise velocity for the flamelet DNS
(x1/H = 0, x3/H = 0).
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4.3 Laminar flamelet closure generation

Practically, flamelet closures are obtained from precomputed libraries. The steady lami-

nar flamelet equations, system (H.32), are solved for di↵erent �lam profiles and the relevant

thermochemical and transport properties are obtained as functions of the mixture fraction.

Essentially, this results in a family of flames, �i = �
�
z;�i

lam,st

�
, where � is the thermochemi-

cal state and the flames are parameterized by the scalar dissipation rate at the stoichiometric

point (�lam,st). For this work, the flames are obtained through the use of Cantera’s [79] one-

dimensional counterflow di↵usion flame solver with di↵erent inlet mass flow rates. Cantera

does not use the flamelet equations directly but rather solves the governing equations for

axisymmetric stagnation flow in physical space. By assuming unity Lewis numbers, a unique

mixture fraction can be defined (which, in general, is not possible) and the solutions trans-

lated into mixture fraction space. This work uses Bilger’s definition of the mixture fraction

which is a normalized, weighted sum of the elemental mass fractions. The definition is

provided in section H.1.

The data obtained by this procedure cannot cover the entire (z,�) space relevant to these

simulations. For example, for z values away from 0 or 1, there is no data with low � since

it is only small when approaching the freestreams of the counterflowing flame (krzk ! 0).

Additionally, high instantaneous spikes in � can exceed the values found in the limiting “ex-

tinction” flamelet, which corresponds with the laminar flame with the highest imposed strain

rate before extinction occurs. With the presumed PDF models, both of these situations are

assigned a low probability so that the mean thermodynamic properties are insensitive to the

extrapolation used to fill in this missing data. This is not the case for the flamelet DNS which

is dynamically simulating the underlying assumed instantaneous turbulent flame, making the

extrapolation important. Discontinuities in the flamelet representation of the density will
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also introduce noise into the calculation via the divergence constraint on the momentum

which, as discussed in section 1.3.2, can quickly lead to instabilities. Even with care taken

to ensure a C
1 flamelet representation, it was found that the steady flamelet assumptions

themselves produce an unrealistic density response which causes numerical issues indepen-

dent of any artifacts of extrapolation. This is discussed in the following section and details

of the extrapolations are described in Appendix G.

To avoid these problems, the family of flames generated by Cantera is averaged in � to

create a representative mean flamelet thermochemical equation of state which only retains the

mixture fraction dependence. This is justified by the observation that the density has a much

stronger dependence on z than on �. To do the averaging, a PDF of the conditional scalar

dissipation rate at the stoichiometric point (f�st) is obtained from the reference complex

chemistry DNS data and projected onto an interpolating spline. As indicated above, the

stoichiometric scalar dissipation rate is often used to parameterize flamelet solutions so this

is a natural choice. The PDF is taken from a point in the simulation at which the mixture

fraction field is highly turbulent (t = 15 ms). As with the PDF, the �st dependence of the

Cantera flames is projected onto splines for interpolation. The averaged density, ⇢z, is then

computed as

⇢z(z) =

Z

⌦s

⇢ (z;�st) f�st (�st) d�st , (4.3)

where ⌦s is the support of f�st . Other properties are obtained similarly. The average

thermochemical state dependence on z from the flamelet is then represented with a B-spline

interpolant for use in the flamelet DNS. Evaluation is accomplished using GSL’s B-spline

functionality [80] paired with a set of Fortran wrappers, FGSL1.

1https://github.com/reinh-bader/fgsl/
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4.4 A fundamental limitation of the steady laminar

flamelet formulation

As alluded to above, flamelet-based DNS of a planar, reacting jet using a flamelet formula-

tion with a dependence on � experienced numerical instabilities. The instability originated

from sharp gradients in the density which led to jumps in the momentum through the mass

conservation equation. The sharp gradients occurred near local extrema in the mixture frac-

tion where � ! 0 (recall � ⇠ krzk2). To investigate further, the �-dependent flamelet was

used as the chemistry closure in a one-dimensional, steady, di↵usion flame whose solution

featured local extrema in the mixture fraction. As shown in fig. 4.3, the density exhibits a

bump in a narrow region centered on a minimum in z. Resolving this feature in the flamelet

DNS would require an order of magnitude finer grid than in the complex chemistry DNS.

This indicates that there is a flaw in the flamelet assumptions that produces these anoma-

lously fine-scale density features, despite a smooth mixture fraction field. In a real flame,

as the scalar dissipation rate decreases, times for relaxation to the steady thermochemical

state implied by the local (z,�) become longer. However, this relaxation is assumed to occur

instantaneously in the steady laminar flamelet model. The breakdown of this assumption

manifests itself as anomalous small-scale features in the density field. This is of little conse-

quence in flamelet-based RANS combustion modeling because the underlying instantaneous

turbulent flame is never directly simulated. However, local extrema in z are common in the

turbulent shear layer, resulting in the anomalous small-scale density features and stability

problems described above.
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Figure 4.3: Mixture fraction (left axis) and density (right axis) for a 1D di↵usion flame
coupled with the �-dependent flamelet. The density profile is magnified near a local
minimum in the mixture fraction.

4.5 Results and analysis

The flamelet DNS described above was run for 20 ms, the same simulation time as the

complex chemistry DNS (hereafter CC DNS) of Attili, Bisetti, et al. [23]. During the calcu-

lation, solution snapshots were taken for each millisecond of simulation time. Statistics are

collected twice as often. Since the DNS configuration is time-evolving, averaging occurs over

the homogeneous directions and by applying statistical symmetries in the x2 direction. The

data collected is su�cient to reproduce the terms in the Favre-averaged equations shown in

Appendix D. One-dimensional energy spectra for the state variables were also collected each

millisecond and used to ensure su�cient resolution of the turbulence (Appendix F provides

computational details and an example is shown in the appendices, fig. I.1).

To illustrate the planar jet’s development, fig. 4.4 shows the evolution of a x1-x2 plane of

the mixture fraction field at several times during the simulation. Additionally, the evolution
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Figure 4.4: Contours of mixture fraction in a x1-x2 plane of the flamelet DNS.

of profiles of the mean state appear in fig. 4.5. There are no fluctuations in the initial z

field but fluctuations develop due to the turbulence in the velocity. These are dominated

by the rollers that arise from the Kelvin-Helmholtz instability, and they lead to enhanced

mixing of the fuel jet with the co-flowing air. The jet width grows rapidly near the end of

the simulation (from 15 to 20 ms) and increasingly fine features are apparent. As the mean

mixture fraction profile broadens, the flame becomes more spatially intermittent, including

at the centerline. Any further simulation in time past 20 ms would be contaminated by

boundary e↵ects as the flame encompasses over four-fifths of the domain’s extent in the
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Figure 4.5: Evolution of the mean state variables of the flamelet DNS.

inhomogeneous direction.

4.5.1 A posteriori comparisons with complex chemistry DNS

In this section, we consider an a posteriori comparison between the flamelet DNS and the

reference CC DNS to assess the impact that the laminar flamelet approximation has on

quantities of interest in RANS. Most of the CC DNS data shown below is available at 5,

10, 15, and 20 ms but some quantities were not given for all times. First, consider the
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conditionally averaged density, and molecular di↵usivity of z, figs. 4.6 and 4.7, respectively2.

Conditioned on z, the flamelet DNS density and mixture fraction di↵usivity are independent

of time by construction, but this is not so for the CC DNS. None-the-less the conditionally

averaged quantities change only slightly over time in the latter, with an L2 variation of

only 4% in the density. Further, the conditionally averaged density and mixture fraction

di↵usivity are in good agreement between the flamelet and CC DNS. The largest discrepancy

(⇠ 5%) being in the di↵usivity around the stoichiometric value of z (zst = 0.147). One key

approximation of the steady laminar flamelet model is the projection of the thermochemical

state onto a low-dimensional manifold parameterized by z and �. These results suggest that

this approximation may be justified on average.

The conditionally averaged scalar dissipation rate evolves quantitatively similarly in both

DNS, with h�|zi increasing over time until 10 ms, and then decreasing (fig. 4.8). However,

the variation in time is larger in the complex chemistry DNS. Additionally, the dissipation

rate is larger on average for fuel rich conditions (z > 0.147) in the CC DNS for all times.

The mean z profiles (e.g. at 20 ms in fig. 4.9) are fuller for the flamelet DNS (see figs. I.3

to I.5 in Appendix I for comparisons at other times) while matching closely at the centerline

and reaching oxidizer freestream values at nearly the same location. This indicates that

the mean mixture fraction gradient is larger in the CC DNS, which may be leading to the

larger scalar dissipation rate. The mean density and velocity, also shown in fig. 4.9, are

consistent with a lower overall heat release in the flamelet DNS. The mean density is higher,

which conversely means the mean temperature is lower, the centerline streamwise velocity

deficit is larger, and the velocity in the inhomogeneous direction is lower at the boundary,

all indicating less expansion of the jet compared to the CC DNS.

To investigate the discrepancies in the evolution of the mixture fraction between the

two simulations, an analysis of the mean mixture fraction budgets was performed. The

2The complex chemistry DNS data for h⇢Dz|zi was not available for 15 and 20 ms. The conditional mean
temperature, which is not carried as part of the RANS state, is included in Appendix I, see fig. I.2.
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Figure 4.6: Conditionally averaged density, conditioned on mixture fraction for the flamelet
DNS conducted here and the complex chemistry DNS (CC DNS) of [23].

conservation equation for ⇢ez = ⇢z, the mean density-weighted mixture fraction, eq. (H.27) is

derived in Appendix H for the CC DNS. This di↵ers from eq. (2.21) in the di↵usion terms due

to the simplified transport assumptions in the steady laminar flamelet model. The integral in

time of the mean convection and turbulent transport terms in eq. (2.21) or eq. (H.27) yields

the total contribution of these terms to the temporal change in ⇢ez. At t = 20 ms (fig. 4.10),

these are in good agreement between the two DNS, with the discrepancy between them much

smaller than the discrepancy in ⇢ez (also shown in fig. 4.10). Because the initial ⇢ez is nearly

identical in the two simulations, the only other potential source of this discrepancy in ⇢ez
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Figure 4.7: Conditionally averaged molecular di↵usivity of z, conditioned on z for the
flamelet DNS conducted here and the complex chemistry DNS (CC DNS) of [23].

is the molecular di↵usion term. However, in the flamelet DNS, this makes an insignificant

contribution (fig. 4.10) so this is an unlikely explanation for the di↵erence.

The mean density-weighted mixture fraction ⇢ez is a conserved quantity for both the com-

plex chemistry and flamelet models. Thus the integral
R
⇢ez dx2 should be time independent,

since ⇢ez and its derivatives are zero at the domain boundary. However, as shown in fig. 4.11,
R
⇢ez dx2 drops o↵ by nearly 25% over time in the CC DNS, far larger than would be expected

due to nonconservative numerics in a DNS. Due to this discrepancy, it is not possible to de-

termine whether di↵erences between the two DNS can be attributed to the steady laminar

flamelet approximation or the loss of z conservation in the CC DNS.
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4.5.2 A priori evaluations of RANS closures

In this section, relevant RANS models for the nonpremixed combustion problem (see sec-

tion 2.3) are assessed in the a priori sense. That is, closure models are evaluated using

quantities from the flamelet DNS as inputs and compared to the exact terms also deter-

mined from the flamelet DNS. Many of the models assume the scalar dissipation and tur-

bulent dissipation timescales (⌧mix and ⌧turb, respectively) are proportional, either explicitly

or implicitly. To assess the validity of this assumption, the evolution of the statistics of the

turbulent velocity field (k and ") and turbulent mixing field (gz00z00 and e�p) in the flamelet

DNS are compared in fig. 4.12. These are the quantities that define the aforementioned

timescales:

⌧mix =
gz00z00
e�p

⌧turb =
k

"
.

(4.4)

The turbulent kinetic energy, turbulent dissipation rate, and scalar dissipation rate evolve

similarly, peaking halfway through the simulation and broadening throughout. On the other

hand, the mixture fraction variance continues to grow both in magnitude and breadth dur-

ing the entirety of the calculation. For additional context, the evolution of the nonzero

components of the Reynolds stress tensor appear in fig. 4.13, which indicates that there is

significant anisotropy. These figures will be relevant for much of the discussion below.

In the flamelet-based RANS context, a presumed PDF depending on the first two mo-

ments of the mixture fraction is used to obtain the mean thermochemical and transport

properties from the underlying flamelet model. In the following, closures for the mean z

equation are evaluated in section 4.5.2.1 followed by closures for the mixture fraction vari-

ance equation in section 4.5.2.2. The presumed PDF model is tested in section 4.5.2.3.

Finally, the model constants used in these comparisons are provided in table 4.2.
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Cµ 0.09
Sct 0.85
Cmix 2.35 Cµ

Cani 2 Cµ

C� 2.0
� 1.0

Table 4.2: RANS model constants.
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4.5.2.1 Mean z equation

For the planar, reacting jet the mean mixture fraction equation, eq. (2.21), simplifies to

@⇢ez
@t|{z}

temporal

+
@

@x2
(⇢eu2ez)

| {z }
convection

=
@

@x2

✓
⇢Dz

@z

@x2

◆

| {z }
molecular di↵usion

�
@

@x2

⇣
⇢]u2

00z00
⌘

| {z }
turbulent transport

. (4.5)

The two unclosed terms in this equation are the turbulent transport term,

�
@h⇢u00

2z
00
i

@x2
, (4.6)

and the molecular di↵usion term,

@

@x2

✓
⇢Dz

@z

@x2

◆
. (4.7)

The standard model for the turbulent flux

⇢]u2
00z00 = h⇢u00

2z
00
i ⇡ �⇢

⌫t
Sct

@ez
@x2

(4.8)

is evaluated below. The turbulent viscosity ⌫t = Cµk2/" is from the k-" model and Sct,

the turbulent Schmidt number, is a model constant. Additionally, two alternatives are

tested. Rather than assuming a constant turbulent Schmidt number is su�cient to obtain

the appropriate di↵usivity Dt from ⌫t as in eq. (4.8), the first is a gradient-di↵usion model

which uses the mixing timescale (⌧mix) directly instead of the turbulent timescale (⌧turb) such

that

Dt = ⇢Cmix

gz00z00
e�p

k

h⇢u00
2z

00
i ⇡ �⇢Cmix

gz00z00
e�p

k
@ez
@x2

(4.9)
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where Cmix is a constant. The second accounts for an anisotropic turbulent di↵usivity in the

style of Daly and Harrow [81], i.e.

h⇢u00
2z

00
i ⇡ �⇢

Cani

Sct

k

"
]u00
2u

00
2

@ez
@x2

, (4.10)

where Cani is a constant. For the molecular di↵usion closure, the standard model for the

molecular di↵usive flux

h⇢Dz
@z

@x2
i ⇡ h⇢ihDzi

@ez
@x2

(4.11)

is tested along with an alternative model which uses the appropriate leading order term,

h⇢Dzi
@ez
@x2

. (4.12)

To start, terms in the evolution equation for the mean mixture fraction eq. (4.5) are

shown in fig. 4.14. The convective term,

�
@⇢eu2ez
@x2

, (4.13)

and the turbulent transport term (eq. (4.6)) dominate over molecular di↵usion throughout

the evolution of the jet. Though, di↵usion does make a small contribution during the initial

stages. Of the unclosed terms in eq. (4.5), modeling the turbulent flux is the primary concern

for this configuration.

As seen in fig. 4.15, the standard gradient-di↵usion model (eq. (4.8)) overpredicts the

turbulent flux for most of the simulation then underpredicts it after 15 ms. The anisotropic

model (eq. (4.10)) performs best out of the three, matching the flamelet DNS well at 5

ms and more closely capturing the behavior from the centerline to the peak at 10 and 15

ms. None of the models are in particularly good agreement with the DNS at t = 20 ms.

Figure 4.13 indicates a significant Reynolds stress anisotropy which invalidates the isotropy
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ansatz which leads to the standard k2/" scaling of the turbulent viscosity. The anisotropic

model (eq. (4.10)) is intended to address this deficiency. Additionally, while the standard

model (eq. (4.8)) has a dependence on the strength of the velocity fluctuation u00
2u

00
2 via

k = 1/2 ]u00
i u

00
i in the turbulent di↵usivity, there is no explicit dependence on the fluctuating

mixture fraction. The scalar variance and the scalar flux are reasonably well correlated so

one might expect that the scalar variance would be a missing dependence in the standard

model. However, including this dependence in the manner of eq. (4.9) does not yield a

significant improvement.

It is appropriate to ask how the closure for the Reynolds shear stress

]u00
1u

00
2 ⇡ �Cµ

k2

"

@ eu2

@x2
(4.14)

performs since the turbulent timescale more naturally applies to the momentum flux. An a

priori evaluation is shown in fig. 4.16. The model does a good job of capturing the breadth

of the profile throughout the calculation but severely overpredicts the peak during the first

half of the jet’s development. As the flame becomes increasingly turbulent, improvement is

seen until there is good agreement with the DNS at 20 ms. However, there is no evidence

that the model would continue to perform well at later times. Certainly, it is unsatisfactory

for most of the observed flame evolution.

In fig. 4.17, the standard model for mean molecular di↵usion of z (eq. (4.11)) tends

to overpredict the peak flux by roughly a factor of two. This includes early in the jet

evolution when the mixture fraction field has only weak fluctuations and the molecular

di↵usion is nonnegligible. The alternative model (eq. (4.12)) can be derived directly by

simply neglecting the fluctuating contributions to the molecular di↵usion term. However, for

this configuration, it only performs marginally better and molecular di↵usion contributions

are small. Regardless, it seems that the alternative is preferable, since it requires fewer
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assumptions.
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4.5.2.2 Mixture fraction variance equation

For the planar, reacting jet the mixture fraction variance equation, eq. (2.22), simplifies to
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(4.15)

The unclosed terms are the turbulent transport term, the two molecular di↵usion terms,

production, and dissipation. The evolution of terms in the mixture fraction variance equation

over time are shown in fig. 4.18. Similar to the ez equation, the turbulent transport term

plays a much larger role than the molecular di↵usion terms, especially as the mixture fraction

field becomes fully turbulent. Production and dissipation are both significant throughout

the flame’s evolution.

The unclosed portion of the production is h⇢u00
2z

00
i whose modeling is evaluated in sec-

tion 4.5.2.1. RANS models neglect the contribution of molecular di↵usion, assuming it is

negligible relative to turbulent transport. The standard model for the turbulent scalar flux

is

h⇢u00
2z

00z00i ⇡ �⇢
⌫t
Sct

@gz00z00
@x2

, (4.16)

akin to eq. (4.8). As with h⇢u00
2z

00
i, it is reasonable to use the mixing timescale to define the
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turbulent di↵usivity, which gives

h⇢u00
2z

00z00i ⇡ �⇢Cmix

gz00z00
e�p

k
@gz00z00
@x2

, (4.17)

or an anisotropic turbulent di↵usivity,

h⇢u00
2z

00z00i ⇡ �⇢
Cani

Sct

k

"
]u00
2u

00
2

@gz00z00
@x2

, (4.18)

so both of these options are tested as well. Finally, the fluctuating portion of the scalar

dissipation rate e�p closes the dissipation. The standard model, which assumes ⌧turb is pro-

portional to ⌧mix,

e�p ⇡ c�gz00z00
"

k
, (4.19)

will be evaluated.

The sum of the molecular di↵usion contributions to the mixture fraction budget are

plotted along with the turbulent transport contribution in fig. 4.19. Generally, the RANS

assumption of negligible molecular di↵usion holds except at early time when the mean shear

is greatest and z fluctuations are weak. Hence, the major modeling challenge lies in repre-

senting the turbulent flux h⇢u00
2z

00z00i, h⇢u00
2z

00
i in production (see fig. 4.15 and the discussion

in section 4.5.2.1), and the fluctuating scalar dissipation rate e�p.

An a priori comparison of the evolution of the RANS closures for the turbulent scalar

flux with the flamelet DNS appears in fig. 4.20. The standard model (eq. (4.16)) does well to

capture the maxima and minima of the true profile for the first three snapshots before break-

ing down at late time. Using the mixing timescale in the turbulent di↵usivity (eq. (4.17))

does not significantly change the result. The anisotropic eddy di↵usivity model (eq. (4.18))

arguably agrees best with the DNS, as it appears to capture the minima of the profile most

closely at late time, though none of the models is particularly accurate. The better late-time
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behavior of the anisotropic model is presumably due to the evolving anisotropy of the tur-

bulent fluctuations as the large-scale jet instabilities dominate the turbulence at late time.

An a priori comparison of the evolution of the RANS closure for e�p (eq. (4.19)) with

the flamelet DNS is shown in fig. 4.21. The model consistently overpredicts the scalar

dissipation rate but tends to capture the width of the profile. The latter is unsurprising

given the jet width defined by the mixture fraction is similar to the jet width defined by

the streamwise velocity (fig. 4.22). During the first half of the calculation, the ratio of the

mixing to turbulent timescale varies throughout the jet and does not match well with the

model constant C� (fig. 4.23). This assumption breaks down further as the flame becomes

more turbulent and the mixing timescale grows more rapidly than the turbulent timescale.

At the final snapshot, the timescale ratio varies by almost an order of magnitude. All of this

is consistent with fig. 4.12 which demonstrates that the scalar mixing continues to intensify

throughout the course of the flame’s evolution whereas k peaks early on. Note also that the

timescale ratio at the center of the jet is consistent lower than near the edge of the jet. This

is presumably due to the intermittency and dominance of large scale fluctuations arising

from the Kelvin-Helmholtz instability at the edge of the jet.
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Figure 4.18: Terms in the mixture fraction variance equation over the course of the
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4.5.2.3 Presumed PDF models

The presumed PDF models used to determine mean thermochemical and transport quantities

from the statistics of z as described in section 2.3.2 are analyzed below. The � PDF is

assumed to be

f�(�) =
1

��
p

2⇡
exp

 
�

(log�� µ�)2

2�2

!

µ� = log
�e���

�2

2
� = log

 
f�002

e�2 + 1

! (4.20)

where the parameters µ� and � are obtained from moments of �. The presumed z PDF

(eq. (2.25), repeated here for convenience) is

efz(z) =
� (a + b)

� (a) � (b)
za�1(1 � z)b�1

a = ez
⇢
ez (1 � ez)
gz00z00

� 1

�
b =

a

ez � a .

Beyond the assumption of a log-normal scalar dissipation rate PDF, two further ansatzes are

posed about the turbulent fluctuations to simplify the modeling. First the contribution of

the mean gradients to the total mean scalar dissipation rate e� is negligible. This appears to

be justified except at early times (5 ms) when the mixture fraction fluctuations have not yet

fully developed (fig. 4.24). The second assumption is that the variance of � is proportional

to e�2
. This assumption is poorly supported by the a priori comparison of the two quantities

(fig. 4.25) where it is clear that the ratio of these quantities is neither constant in x2 nor time.

Even if this discrepancy is accounted for by constructing a log-normal PDF whose first two

moments match the mean and the variance of � from the flamelet DNS as shown in fig. 4.26,

the modeled scalar dissipation rate PDF compares poorly with that of the flamelet DNS for

small �. This is problematic since these are the highest probability events. Also included

in fig. 4.26 are sample PDFs of � conditioned on z from the flamelet DNS. The model has
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Figure 4.24: Evolution of the mean scalar dissipation rate. e�p is solely due to the z
fluctuations whereas e� includes the mean gradients.

no dependence on z but the conditional PDFs invalidate this assumption for � < 1 s�1,

especially when fluctuations in mixture fraction are small (t = 5 ms).

Another important modeling assumption is the presumed �-PDF of the mixture fraction

fluctuations. From fig. 4.27 it is clear that at t = 15 ms a �-PDF parameterized to match

the mean and variance of z is a good representation of the mixture fraction PDF from

the flamelet DNS in the core of the jet (smaller x2) but cannot represent the multi-modal

structure that occurs for large x2 – presumably due to intermittency at the edge of the jet, a

known challenge in the modeling of free shear flows [82–85]. At later times, the entirety of the
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Figure 4.25: A priori comparison of the closure for the scalar dissipation rate variance
from eq. (2.26).

jet is becoming more spatially intermittent, leading to a general breakdown of the �-PDF, as

indicated by comparisons of the third moment obtained from the assumed PDF and from the

flamelet DNS (fig. 4.28), since the third moment is not forced to agree. Appendix I contains

a priori comparisons of the mixture fraction PDF at other times. The PDF model agrees

most poorly with the DNS at 20 ms and best at 10 ms, perhaps because it is late enough

to have well developed mixture fraction fluctuations, while early enough that intermittency

does not dominate.

The mean density, mean mixture fraction di↵usivity, and mean viscosity close the RANS
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equations for nonpremixed combustion and are determined from the presumed �-PDF model.

The mean density and mean mixture fraction di↵usivity (see figs. 4.29 and 4.30) match very

well with the DNS at 10 ms but the density is underpredicted at 15 (⇠ 10%) and 20 ms

(⇠20%) in regions where the assumed PDFs are poor representations (figs. 4.27 and 4.28).

The mixture fraction di↵usivity is more sensitive to the errors in the �-PDF representation,

showing discrepancies at 5 (⇠20%) and 15 ms (⇠20%) and vastly underperforming (⇠ 50%)

at 20 ms. The comparison of the mean viscosity to the DNS is very similar to that of h⇢Dzi

(fig. 4.31). The inconsistencies in the thermodynamic and transport properties correlate to

how well the assumed PDF matches fz00 3 from the flamelet DNS as this is an indicator of the

inadequacy of the assumed PDF. Since molecular di↵usion is only significant at early time,

the inability of the model to reproduce the mixture fraction di↵usivity when the mixing

field is fully turbulent may not be an issue. Because of this and because the mean density

is relatively well represented, one might be tempted to conclude the �-PDF is su�cient.

However, the implied mean temperature, which does not directly enter this type of flamelet-

based RANS model, suggests there is reason for concern. As seen in fig. 4.6, the density is

lowest near the stoichiometric point and varies most rapidly with respect to mixture fraction

on the fuel lean side. Conversely, the temperature (fig. I.2) is highest near the stoichiometric

point, but also varies rapidly on the fuel lean side. These regions are near the edge of the

jet where the model struggles to represent the increasingly turbulent, intermittent behavior

as the flame evolves. Throughout the latter half of the simulation, the mean temperature

implied by the �-PDF is significantly lower than in the flamelet DNS, underestimating by

about 40% at 20 ms (fig. 4.32). Hence, the presumed PDF’s inability to map to the correct

mean state could have a large e↵ect on predicted flame temperature, which is important in

many applications.

As the flamelet used here is only z dependent, a similar analysis using the log-normal

� PDF is not possible. However, as noted in section 4.3, the equation of state has a much
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stronger dependence on mixture fraction so it is likely the errors in the �-PDF modeling are

most impactful.
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Chapter 5

Conclusions

The goal of this work was to evaluate the fidelity of steady laminar flamelet-based RANS

models for nonpremixed turbulent combustion in a manner which respected the multiphysics

nature of the modeling problem, thereby allowing for the assessment of errors from each of the

three modeling focuses (turbulence, chemical reactions, turbulence-chemistry interaction) in

isolation. To do so, a new DNS of the temporal, reacting jet of Attili, Bisetti, et al. [23]

was performed using a laminar flamelet equation of state to close the governing equations

instead of the complex chemistry model they employed.

To generate the flamelet DNS, a new pseudospectral method for the direct numerical

simulation of low-Mach-number, variable-density flows with two statistically homogeneous

directions was introduced. Based on a Helmholtz decomposition of the momentum, the ap-

proach recasts the momentum equations to eliminate the pressure. The introduction of a

matrix-free, iterative scheme for solving the resulting scalar equation allows for second-order

convergence in time and numerical stability for higher density ratios while retaining compu-

tational tractability. It was designed to address the implications of the redundancy among

the equation of state, the mass conservation equation, and the scalar transport equation.

The algorithm is optimized to minimize storage and limit data transpose and Fourier

transform operations. The novel temporal discretization scheme preserves some of the sta-

bility benefits of nonsegregated methods, without sacrificing the simple parallelizability of

purely explicit schemes, and without requiring convergence to obtain the desired truncation
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error. Additionally, the method discretely conserves mass by representing the component

of the momentum in the inhomogeneous direction with higher order B-splines, guaranteeing

the discrete divergence operation is exact. It was applied successfully to both a single-mode

Rayleigh-Taylor test problem, where the density ratio could be controlled directly, and the

temporally-evolving, reacting, planar jet. The test problem demonstrated the method was

stable for density ratios up to about 15. In the flamelet DNS, the ratio of the maximum to

minimum density is approximately 8.

A fundamental flaw in the steady laminar flamelet assumptions was identified when the

use of a flamelet representation including a dependence on � led to instabilities. For the

chemical mechanism studied in this work, the behavior of the flamelet density as scalar

dissipation rate tends to zero is nonphysical, leading to anomalous sharp features in the

density field near local extrema in the mixture fraction. These anomalous small-scale density

variations introduce instability into the calculation through the mass conservation equation

and the resulting momentum field. Instead, a �-averaged flamelet was used to simulate the

reacting jet. Since the density varies weakly with scalar dissipation rate, this simplification

does not significantly impact the model assessment conducted here.

Since the flamelet DNS employs the same chemistry closure as typical RANS composite

models for nonpremixed, turbulent combustion, an a posteriori comparison with the refer-

ence complex chemistry DNS reveals the impact of the laminar flamelet assumptions. On the

other hand, a priori evaluations of the RANS turbulence closures and associated presumed

PDF models using the flamelet DNS allows these models to be evaluated without the con-

flation of errors from the chemical modeling. The comparisons with the complex chemistry

DNS showed the mean thermodynamic properties conditioned on mixture fraction agreed

well, especially for the density. However, the mean velocity and density were consistent

with the flamelet DNS burning at a lower temperature and expanding less than the com-

plex chemistry DNS. Discrepancies in the temporal evolution of the mean mixture fraction
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between the flamelet and complex chemistry DNS were traced to violations of conservation

discovered in the complex chemistry DNS. Hence, di↵erences between the two simulations

cannot definitively be attributed to deficiencies in the steady laminar flamelet model.

The a priori tests cataloged errors in closures for the turbulent and molecular di↵usive

fluxes in the mean mixture fraction and mixture fraction variance equations, a model for

the scalar dissipation rate, and standard presumed PDF models. Gradient-di↵usion models

with an anisotropic turbulent di↵usivity performed marginally better than other closures for

the turbulent fluxes, but no model was satisfactory over the entire jet evolution. The scalar

dissipation rate model performed poorly due to an invalid assumption that the turbulent and

mixing timescales are proportional. The log-normal � PDF assumption was not accurate for

low values of scalar dissipation rate and the �-PDF for mixture fraction failed in regions with

significant intermittency, resulting in a large discrepancy in the flame’s mean temperature.

The analysis framework proposed and executed in this work is application and model

specific. However, a composite multiphysics model with a representation of the coupling be-

tween di↵erent physics is common. Therefore, the ideas behind developing an “intermediate”

fidelity model for turbulent combustion by employing a combination of low- and high-fidelity

closures can serve as inspiration for analyzing model error in other multiphysics contexts.

5.1 Recommendations for future work

The most pressing need for further work is to resolve the conservation issue in the reference

complex chemistry DNS of Attili, Bisetti, et al. [23]. It may be necessary to rerun this

simulation. It will then be possible to unambiguously evaluate the impact of the flamelet

approximation as originally envisioned for this study. This would also provide an opportunity

to apply the new DNS algorithm in a context with many reacting scalars. It seems likely

that the stability properties of the algorithm would be similar to that of the flamelet DNS
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as both share the same underlying chemical mechanism.

A new complex chemistry DNS would provide an opportunity to more closely probe the

specific steady laminar flamelet ansatzes which lead to deficiencies, using an a priori inter-

rogation of the complex chemistry DNS. A place to start is by characterizing the projection

error that results from representing the true thermochemical state on a low-dimensional

manifold, as well as the model form error that arises from the simplified di↵usive transport.

Some insight on these ideas is included in section H.2.

Ultimately, a model is not deemed adequate or inadequate without an understanding of

how deficiencies propagate to quantities of interest [86–88]. Hence, RANS simulations of

the same reacting jet using the steady laminar flamelet model are needed. In addition to a

standard a posteriori comparison to the flamelet DNS, sensitivity analysis can be performed

to rank the closure models based on their impact on the outputs. This would identify models

that require the most attention. The model errors detailed in this work could be used to

directly improve closure or, since that is not always possible or practical, to inform and

train model inadequacy representations which enhance the model’s utility for prediction by

representing uncertainty (see [86] for an overview, [87, 88] for recent examples).

The a priori analysis of flamelet-based RANS closures was primarily limited to aspects

unique to nonpremixed combustion. It would also be worthwhile to investigate the rest of

the RANS closures (i.e. models which appear in the k and " equations) and evaluate the

performance of several turbulence models (e.g. k-!) which have been tuned and developed

for incompressible flows and extended to variable-density and reacting flows through Favre

averaging. Additionally, the methodology used to evaluate models for the turbulence and the

turbulence-chemistry interaction is not limited to the closures discussed here. For example,

transported PDF models [2] solve additional PDEs instead of fixing the PDF structure

beforehand. Extensions to the standard presumed �-PDF to account for intermittency [82,

85, 89] require an indicator � (the intermittency factor) which may be determined using
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additional transport equations [83, 84] or described by moments of z [90]. Finally, large

eddy simulations, which filter the governing equations rather than averaging, require models

for the unresolved, subfilter terms and are becoming increasingly prevalent in turbulent

combustion simulation [5, 11]. Studies similar to those pursued here could be conducted

using the data from the current flamelet DNS.
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Appendix A

Enforcing Neumann boundary conditions in a weak sense

Consider a fully explicit time-stepping method advancing the equation @f/@t = h(x2, t) by

the B-spline-collocation approach. Let Y
p
coll be the collocation points associated with the

basis of order p. Let Y
p
int be the interior collocation points. See section 3.3.1 for more

notation and details. The value of the solution at the interior points is advanced without

any direct influence of the boundary conditions. Hence, strong enforcement of a Neumann

condition can result in large jumps in the solution near the boundary if the gradient implied

by the new interior values di↵ers su�ciently from the boundary value. A weak or implicit

enforcement can hopefully alleviate this issue and the numerical instability it can cause. This

can be done by advancing the boundary points in a similar manner to the interior points

using the PDE but substituting the Neumann condition when forming the residual. This is

straightforward for the discrete first derivative operator where one can simply replace the

resultant boundary values with the boundary conditions. Things are more complicated for

the second derivative. Most simply, one could form the second derivative by applying another

first derivative to the modified vector; however, the approach in this work specifically avoids

repeated di↵erentiation. Instead, the second derivative operator must be modified separately

to account for the Neumann condition.
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The unmodified second derivative is formed by solving

f 00 =
X

j

f 00
j Bp

j (x
0
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X

j
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j
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Consider first mapping f to a second function g which respects the Neumann condition,

then obtaining the second derivative by requiring the collocation rule holds for all points,

including at the boundaries. The mechanics are the same as a strong enforcement but this

occurs only for the purposes of forming the derivative; f itself will only feel the e↵ect through

the residual. Formally, take

g =
X

j
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and allow

f 00 =
X

j

f 00
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Practically, the second derivative which weakly enforces an zero Neumann condition is con-

structed by solving

B0
0,0c

f 00
= B2

0,0B
�1
N I0c

f (A.4)

where I0 is the identity matrix with the first and last rows zeroed out and BN is B0
0,0 with

the first and last rows replaced with their corresponding rows in B1
0,0.
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Appendix B

Manufactured solutions

For the purpose of code verification, a manufactured solution was created using MASA

[74], a C++ library which can easily generate sources terms for arbitrary equations by

automatic di↵erentiation. Respecting the pseudospectral nature of the algorithm, the spatial

component of the flow variables are taken to be combinations of functions like

fln(x1, x2, x3) = ↵ln(x2)⇣ln(x1, x3)

= 2↵ln(x2){ cos (klx1) cos (knx3) � sin (klx1) sin (knx3)

� sin (klx1) cos (knx3) � cos (klx1) sin (knx3)} .

(B.1)

These are purely real functions which excite one wavenumber pair (kl, kn) and (�kl, �kn)

with ↵ln 2 R selected appropriately. The computational domain is [�1, 1] in the inhomoge-

neous direction.

Take

 ln(x2) =
1

4
ax4

2 +
1

2
cx2

2 + e

a = 4ek
k + 1

k2 + 5k + 8
c = �4ek

k + 3

k2 + 5k + 8

(B.2)
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for k =
p

k2
l + k2

n 6= 0 then let mc = r ln(x2)⇣ln(x1, x3)T (t).
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The divergence-free momentum comes from
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These solutions are curl-free and divergence-free, respectively, by construction and obey the

boundary conditions which are explicitly enforced. For the mean,

hmi =

0

BBBB@

5x4
2 + 4x3

2 � 10x2
2 � 12x2

�x3
2 + 3x2

�5x4
2 � 4x3
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1
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T (t) . (B.6)

The manufactured solution carries a mixture fraction, z, which specifies the thermodynamic
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properties. To respect the divergence constraint, it follows that
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For simplicity, take ⇢(z) = Az + B, then

Z(x1, x2, x3) = �
1

A

X

ln

r · (r�ln(x2)⇣ln(x1, x3)) Tz =

Z
Tdt + C . (B.8)

Selecting T (t) = exp(Dt) and Tz(t) = 1/D exp(Dt) completes the specification of the mixture

fraction. This ensures no sources are needed to reconstruct the curl-free momentum through

the continuity constraint. Finally, it is assumed µ = ⇢ = ⇢Dz. Creating a manufactured

solution in terms of the momentum decomposition allows for much more flexibility when

unit testing portions of the code.
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Appendix C

Collocation points for flamelet DNS

The collocation points, Y
8
coll, for the eighth order B-splines (p = 8) used in the flamelet DNS

are computed by first selecting breakpoints (bj, j = 0, · · · , nb�1) which define the endpoints

of the set of intervals which partition the x2 axis. Let nb = N2 � p + 2 be the number of

breakpoints required for pth order splines with N2 basis functions. Define a growth factor

G = 1.034, then the breakpoints are specified as shown in procedure 4.

Procedure 4 Breakpoint specification

bnb/2 = �/2, bnb/2�1 = ��/2, � = �
for j = nb/2 + 1 to nb � 1 do

if bj�1 > 2.8H then
� = � ⇥ G

end if
bj = bj�1 + �, bnb�1�j = �bj

end for

The knot vector (⇠j, j = 0, · · · , N2 + p � 1) includes repeats of the breakpoints at the

boundary so the underlying B-splines have the appropriate regularity there. Hence,

⇠j =

8
>>>>><

>>>>>:

b0 j = 0, · · · , p � 1

bnb�1 j = N2, · · · , N2 + p � 1

bj�p+1 else.

(C.1)
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The collocation points are computed as the Greville abscissae:

x0
2,i =

1

p � 1
(⇠i + ⇠i�1 + · · · + ⇠i+p�1) . (C.2)

The collocation grid is homogeneous for |x2/H| . 2.8 and gradually stretched otherwise,

akin to the grid of reference complex chemistry DNS.
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Appendix D

Favre-averaged equations and statistics

The basis of Reynolds and Favre averaging techniques are described in section 2.3. Dur-

ing a calculation various quantities can be stored and later recombined to recover statistics

of interest. Specifically, the terms in the Favre-averaged conservation equations for mass,

momentum, mixture fraction, mixture fraction variance, turbulent kinetic energy, and tur-

bulent dissipation rate, as well as PDFs of mixture fraction and scalar dissipation rate are

of interest. Collecting these terms directly will allow for model error assessment with both

a priori and a posteriori techniques.

D.1 Nondimensional Favre-averaged equations

The simulations are characterized by the jet initial velocity di↵erence (�U), height (H), and

kinematic viscosity (⌫R = µR/⇢R) and the scalar dissipation rate at extinction (�ext). The

mixture fraction transport additionally introduces a reference thermal di↵usion coe�cient,

DR. For clarity, add a D superscript to indicate a dimensional quantity and consider quan-

tities without a subscript as dimensionless for the purposes of the following derivations. As

140



an example, the spatial variables xD
i = xiH. Starting with eqs. (2.19) to (2.21),
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Moving onto eq. (2.21)
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and eq. (2.22)
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Equations for the transport of the Favre-averaged Reynolds stress, ]u00
i u

00
j , and its trace, the

turbulent kinetic energy, k, can be derived as well:
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Again, substitution gives
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and
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In summary, the nondimensionalized equations are
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D.2 Sampled quantities

Hence, the following quantities are required for the mean equations:
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These can be obtained solely through raw moments through post-processing steps. Therefore,

it is su�cient to sample
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Similarly,

⇢gu00
i z

00 = ⇢ (ui � eui) (z � ez) = ⇢uiz + ⇢euiez � ⇢euiz � ⇢uiez

=) gu00
i z

00 = fuiz � euiez

⇢gz00z00 = ⇢ (z � ez)2 = ⇢z2 + ⇢ez2 � 2⇢ezz

=) gz00z00 = ez2 � ez2 .

(D.17)

These relationships can be extended for arbitrary binary arguments. Also, recognize

gfg00 = ^f (g � eg) = ffg � ffeg = ffg � efeg (D.18)
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k � êuiuju00
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Further, note that unlike Reynolds averages, Favre averages do not commute with di↵eren-

tiation. For example,
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These rules can be combined to obtain identities for the more complicated terms. For

example,
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D.3 Probability density functions (PDFs)

Presumed probability density functions play a role in RANS-based modeling for turbulent

flames when representing the interaction between the chemistry and the turbulence. Sample

PDFs can be computed from the DNS data by creating histograms for each x1-x3 plane or

the entire domain. The PDF at a point y which falls in the bin of width h is estimated as

pN(y) =
1

h

1

N

NX

i=1

1(yl,yl+h](yi) (D.23)
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where 1 is the indicator function, yl is the lower edge of the bin, yi is the ith sample, and

N is the total number of samples in the histogram. If averaging only over planes, statistical

symmetry in the x2 direction is employed which helps to lower error. For the PDFs reported

in this thesis, N = 38 was chosen and bins were uniformly spaced (� PDFs were taking in

logspace).
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Appendix E

Pressure

The DNS methodology formally eliminates the pressure from playing a dynamic role in

the momentum equations. However, for the purpose of gathering statistics or other post-

processing, the pressure is required. Taking the divergence of the momentum equations

eq. (2.2) gives
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A boundary condition on the pressure is implied by the equations as well,
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⌧2j . (E.2)

This is a Poisson problem with a Neumann condition, leading to a singular operator. To

rectify this, the mean pressure is set to zero on one side of the domain. During the calculation,

the convective and viscous contributions to the residual are formed explicitly at the same

time as the pieces for the right hand sides for ⌦2 and �2.

In line with the RK scheme used in this work, the discretized momentum equation would
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for the first stage. Solving for the pressure at time level n,
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Because the source term includes @⇢ui
0/@t, the solve cannot be completed until after the

substep is completed. Hence, copies of the velocity field and the velocity gradient tensor at

level n must be stored when statistics are requested. The constant-coe�cient Poisson equa-

tion can be solved in the same manner as in the divergence-free momentum reconstruction,

see section 3.5.1.2.
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Appendix F

Spectra and correlations

The two-point correlation of two fields, u and v, at a point x with separation r is notated as

Ruv(x, r) = hu⇤(x)v(x+r)i. For a domain V with two homogeneous directions as presented

in this work, consider separation only in the x1 and x3 directions. Then, given the spatial

discretization,

Ruv(x, r) =

R L1/2

�L1/2

R L3/2

�L3/2
u⇤(x1, x2, x3)v(x1 + r1, x2, x3 + r3) dx1dx3

R L1/2

�L1/2

R L3/2

�L3/2
dx1dx3

=
1

L1L3

Z L1/2

�L1/2

Z L3/2

�L3/2

u⇤(x1, x2, x3)v(x1 + r1, x2, x3 + r3) dx1dx3

=
1

L1L3

Z L1/2

�L1/2

Z L3/2

�L3/2

0

B@

N1
2 �1X

l=�N1
2 +1

N3
2 �1X

n=�N3
2 +1

bu ⇤
ln(x2)e

�iklx1e�iknx3

1

CA⇥

0

B@

N1
2 �1X

l0=�N1
2 +1

N3
2 �1X

n0=�N3
2 +1

bvl0n0(x2)e
ik0l(x1+r1)eik

0
n(x3+r3)

1

CA dx1dx3 .

(F.1)

Using the orthogonality of the Fourier modes means the sums collapse for l = l0, n = n0,

Ruv(x, r) =
L1L3

L1L3

N1
2 �1X

l=�N1
2 +1

N3
2 �1X

n=�N3
2 +1

bu ⇤
ln(x2)bvln(x2)e

iklr1eiknr3

=

N1
2 �1X

l=�N1
2 +1

N3
2 �1X

n=�N3
2 +1

bu ⇤
ln(x2)bvln(x2)e

iklr1eiknr3 .

(F.2)
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Hence, the two-point correlation can be calculated readily in wavespace by forming

dRuv,ln = bu ⇤
lnbvln (F.3)

and then performing the inverse Fourier transformations. Of particular interest are the one-

dimensional separations (when r3 = 0 or r1 = 0). These can be computed by summing over

one homogeneous direction then Fourier transforming in the other. That is,

Ruv(x, r1, 0, 0) = Rx1
uv(x, r1) =

N1
2 �1X

l=�N1
2 +1

N3
2 �1X

n=�N3
2 +1

bu ⇤
ln(x2)bvln(x2)e

iklr1

=) dRx1
uv,l =

N3
2 �1X

n=�N3
2 +1

bu ⇤
ln(x2)bvln(x2)

(F.4)

and

Ruv(x, 0, 0, r3) = Rx3
uv(x, r3) =

N1
2 �1X

l=�N1
2 +1

N3
2 �1X

n=�N3
2 +1

bu ⇤
ln(x2)bvln(x2)e

iknr3

=) dRx3
uv,n =

N1
2 �1X

l=�N1
2 +1

bu ⇤
ln(x2)bvln(x2) .

(F.5)

The one-dimensional energy spectrum is the Fourier transform of the two-point correlations

of fluctuations, u0 and v0. In the x1 direction,

Ex1
uv(x2, kl) =

1

2⇡

Z L1
2

�L1
2

Rx1
uv(x2)e

�iklr1dr1

=
1

2⇡

Z L1
2

�L1
2

N1
2 �1X

l0=�N1
2 +1

N3
2 �1X

n=�N3
2 +1

bu0 ⇤
l0n(x2)bv0

ln(x2)e
ik0lr1e�iklr1dr1

=
L1

2⇡

N3
2 �1X

n=�N3
2 +1

bu0 ⇤
ln(x2)bv0

ln(x2)

(F.6)

153



and similarly

Ex3
uv(x2, kn) =

L3

2⇡

N1
2 �1X

l=�N1
2 +1

bu0 ⇤
ln(x2)bv0

ln(x2) . (F.7)

The two-dimensional spectrum has an analogous relationship,

Euv(x2, kl, kn) =
L1L3

(2⇡)2
bu0 ⇤

ln(x2)bv0
ln(x2) . (F.8)

F.1 Computational considerations

In the case where u and v are real, the coe�cients obey Hermitian symmetry. Hence, from

bu�ln = bu⇤
ln (F.9)

it follows

bu ⇤
lnbvln + bu ⇤

�lnbv�ln = bu ⇤
lnbvln + bulnbv⇤

ln

= RbulnRbvln + IbulnIbvln � iIbulnRbvln + iIbvlnRbuln

+ RbulnRbvln + IbulnIbvln + iIbulnRbvln � iIbvlnRbuln

= 2 (RbulnRbvln + IbulnIbvln) .

(F.10)

Spectra are often reported in terms of the wavenumber magnitude so eq. (F.10) can be used

to simplify computation of the folded eq. (F.6). For example, if l 6= 0,

Ex1
uv(x2, |kl|) =

L1

2⇡

N3
2 �1X

n=�N3
2 +1

bu0 ⇤
ln(x2)bv0

ln(x2) + bu0 ⇤
�ln(x2)bv0�ln(x2)

=
2L1

2⇡

N3
2 �1X

n=�N3
2 +1

Rbu0
lnR

bv0
ln + I bu0

lnI
bv0
ln .

(F.11)
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When l = 0,

L1

2⇡

N3
2 �1X

n=�N3
2 +1

Rbu0
0nR

bv0
0n + I bu0

0nI
bv0
0n (F.12)

is taken (must also be real). Symmetry also collapses the sum in eq. (F.7),

N1
2 �1X

l=�N1
2 +1

bu0 ⇤
ln
bv0
ln = Rbu0

0nR
bv0
0n + I bu0

0nI
bv0
0n + 2

N1
2 �1X

l=1

Rbu0
lnR

bv0
ln + I bu0

lnI
bv0
ln . (F.13)

In an analogous sense, exploiting symmetry about the point x means we can report the

one-dimensional correlations in terms of the magnitude of the separation. That is,

Rx1
uv(x2, |r1|) =

1

2
(Rx1

uv(x2, r1) + Rx1
uv(x2, �r1))

=
1

2

N1
2 �1X
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2 +1
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�
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ln(x2) + bu0 ⇤

�ln
bv0�ln

o
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=

N3
2 �1X

n=�N3
2 +1

Rbu0
0nR

bv0
0n + I bu0

0nI
bv0
0n

+ 2

N1
2 �1X
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N3
2 �1X

n=�N3
2 +1

n
Rbu0

lnR
bv0
ln + I bu0

lnI
bv0
ln

o
cos(klr1) ,

(F.14)
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hence, Rx1
uv(x2, |r1|) is the inverse Fourier cosine transform of 2⇡/L1Ex1

uv(x2, |kl|). Similarly,

Rx3
uv(x2, |r3|) =

1

2
(Rx3

uv(x2, r3) + Rx3
uv(x2, �r3))

=

N3
2 �1X

n=�N3
2 +1

N1
2 �1X

l=�N1
2 +1

bu0 ⇤
ln
bv0
ln cos(knr3)

=

N3
2 �1X

n=�N3
2 +1

(
Rbu0

0nR
bv0
0n + I bu0

0nI
bv0
0n

+ 2

N1
2 �1X

l=1

RbulnR
bv0
ln + I bu0

lnI
bv0
ln

)
cos(knr3)

= Rbu0
00R

bv0
00 + Ibu00I

bv0
00

+

N3
2 �1X

n=1

(
Rbu0

0nR
bv0
0n + I bu0

0nI
bv0
0n + 2

N1
2 �1X

l=1

Rbu0
lnR

bv0
ln + I bu0

lnI
bv0
ln

+ Rbu0
0�nR

bv0
0�n + I bu0

0�nI
bv0
0�n

+ 2

N1
2 �1X

l=1

Rbu0
l�nR

bv0
l�n + I bu0

l�nI
bv0
l�n

)
cos(knr3) ,

(F.15)

hence, Rx3
uv(x2, |r3|) is the inverse Fourier cosine transform of 2⇡/L3Ex3

uv(x2, |kn|).

Finally, note that bu0
ln = buln unless l = n = 0. Therefore, the computations of the spectra

can be done using the full fields u and v and then the contribution of the means to the zero

modes, huihvi, can be removed.
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Appendix G

�-dependent flamelet equation of state

Unlike in a RANS simulation where flamelet solutions are integrated against a probability

density function to obtain averaged properties, the flamelet DNS directly uses the interpo-

lated/extrapolated data from a family of laminar flames. Hence, the smoothing nature of

integration does not mask discontinuities or problematic extrapolations in the (z,�) space.

The �-dependent flamelet equation of state (which revealed a fundamental flaw in the steady

laminar flamelet assumptions detailed in section 4.4) was created from the laminar flames

as follows. To avoid issues for large and small � where formally extinction occurs and where

data is not available, respectively, we are willing to alter the underlying data since modifying

the flamelet in these regions should have a negligible e↵ect on the average thermochemical

properties and is necessary since these are accessible states to the instantaneous turbulent

flame. Along these lines the raw flamelet data first undergoes an admittedly empirical trans-

formation. �⇤ = 2rz · rz is used as the second parameter instead of � to avoid an implicit

solve during runtime as � is explicitly dependent on ⌫. Firstly, the uniqueness of the map-

ping from (z,�⇤) ! ⇢ is checked by plotting contours from the laminar flame data. Then,

let y = log10(�
⇤) and ymax(z) be the y found in the flamelet with the highest strain rate.

The data is rescaled according to

log10(s) =

8
><

>:

y if y < �ymax

y ⇥ {1 + (y � �ymax)}
�.3�ymax+2.7 if y > �ymax

(G.1)
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which e↵ectively stretches the data for large �⇤, doing so more severely where ymax is rel-

atively small, but leaves the data relatively unchanged at moderate values of �⇤. Then to

handle small strain rates, define

⇣ = log(Cs + 1) (G.2)

which behaves logarithmically until s is small when ⇣ ⇡ Cs. In this case, C = 107. This

ensures the data is continuous as � ! 0. B-spline interpolation is done in the (z, ⇣) space.
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Appendix H

Chemistry modeling details

H.1 Mixture fraction equation

Let Wk be the molecular weight of species k. From Poinsot [4], the jth reaction is summarized

as
X

k

⌫
0

kjMk ⌦
X

k

⌫
00

kjMk (H.1)

where ⌫
0
kj and ⌫

00
kj are the molar stoichiometric coe�cients. Let ⌫kj = ⌫

00
kj � ⌫

0
kj; then by

conservation of mass
X

k

⌫kjWk = 0 . (H.2)

The balanced equation for n-heptane/air combustion is

C7H16 + 11O2 ! 7CO2 + 8H2O (H.3)

which gives

� =
1

7

ZC

WC
+

1

16

ZH

WH
�

1

11

ZO

WO
(H.4)

when defining Bilger’s mixture fraction [91]

z =
� � �ox

�fuel � �ox
(H.5)
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where �ox and �fuel signify the value of � in the oxidizer and fuel stream, respectively. This

definition uses the elemental mass fractions which are given by

Zp =
X

k

akp
Wp

Wk
Yk (H.6)

with akp the number of atoms of element p in species k. For convenience, let

� =
X

p

bp
Zp

Wp
(H.7)

where p indexes over the elements (C, H, O).

Under the standard steady laminar flamelet assumptions, the species all have the same

di↵usion coe�cient (D) and experience Fickian di↵usion. Hence, the kth species transport

equation is
@⇢Yk

@t
+

@

@xi
(⇢uiYk) =

@

@xi

✓
⇢D

@Yk

@xi

◆
+ !̇k (H.8)

with

dot!k =
X

j

!̇kj = Wk

X

j

⌫kjQj (H.9)

where Qj is the net progress rate of reaction j. Weighting eq. (H.8) by akpWp/Wk and

summing over k gives

@⇢Zp

@t
+

@

@xi
(⇢uiZp) =

@

@xi

✓
⇢D

@Zp

@xi

◆
+
X

k

akp
Wp

Wk
!̇k (H.10)

since, for example,

@
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@xi
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@Yk
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!
=
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k
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@

@xi

✓
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@Yk

@xi

◆
.

(H.11)
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Also,
X

k

akp
Wp

Wk
!̇k =

X

j

X

k

akp
Wp

Wk
Wk⌫kjQj

=
X

j

Qj

X

k

akp⌫kj = 0
(H.12)

because the inner sum represents conservation of elements. This means no source term

appears in this transport equation for Zp. z is a normalized linear combination of these Zp

and, in a similar manner, rescaling and combining the equations for Zp gives the mixture

fraction equation
@⇢z

@t
+

@

@xi
(⇢uiz) =

@

@xi

✓
⇢D

@z

@xi

◆
. (H.13)

The complex chemistry DNS has a di↵erent transport model and the di↵usive term in

the species equation is
@

@xi

✓
⇢Dk

Wk

W

@Xk

@xi
� ⇢V c

i Yk

◆
(H.14)

where Dk is the mixture-averaged di↵usion coe�cient, Xk is the mole fraction of species k,

and

W =
1P

k Yk/Wk
=
X

k

XkWk (H.15)

is the mean molecular weight. Also included is the Hirschfelder and Curtiss velocity correc-

tion

V c
i =

X

k

Dk
Wk

W

@Xk

@xi
(H.16)

which is used to ensure the conservation of mass equation is recovered when all the species

equations are summed. The resulting Zp equation is

@⇢Zp

@t
+

@

@xi
(⇢uiZp) =

@

@xi

 
⇢
X

k

akpDk
Wp

W

@Xk

@xi
� ⇢V c

i Zp

!
(H.17)
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which implies

@⇢z

@t
+

@

@xi
(⇢uiz) =

@

@xi
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�fuel � �ox

X

k

X
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Dk
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@xi
� ⇢V c

i z

!
. (H.18)

Sutherland et al. [92] quantify di↵erential di↵usion through examining the discrepancy be-

tween “exact” di↵usion and “approximate” di↵usion found in flamelet models, i.e.

@

@xi
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�fuel � �ox
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Dk

@Xk
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� ⇢V c

i z

!
�
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@xi

✓
⇢D

@z

@xi

◆
(H.19)

where D is chosen according to the flamelet assumptions.

H.2 Error analysis

Broadly, the flamelet assumptions result in simplified transport as identified in eq. (H.19)

as well as a projection which allows for the thermodynamic state to be described solely by

the mixture fraction field. Hence, there exist two separate sources of error present. Consider

the molecular di↵usion term in eq. (H.17). Denote a thermodynamic or transport property

(e.g. the density, species di↵usivities, mean molecular weight, and mole fractions) evaluated

with the true, full state (using the entirety of the mass fractions) with the subscript true.

Then let the subscript ztrue indicate a thermodynamic property evaluated with the true

mixture fraction (computed from the mass fractions) but with the underlying flamelet model

(i.e. z ! ⇢(z)). Then

�proj,DD =

@

@xi

 
⇢true

�fuel � �ox
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X
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bp
akp

W true
Dtrue
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@X true
k

@xi
� ⇢trueV c,true
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�fuel � �ox
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bp
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@Xztrue
k

@xi
� ⇢ztrueV c,ztrue

i ztrue

!
(H.20)
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defines the discrepancy in the di↵erential di↵usion model due to the projection of the ther-

mochemical state onto the low-dimensional flamelet manifold. Similarly, a discrepancy for

the simplified Fickian model for di↵usion used in the flamelet approach can be taken as

�proj,FD =
@

@xi

✓
⇢trueDtrue@ztrue

@xi

◆
�

@

@xi

✓
⇢ztrueDztrue @ztrue

@xi

◆
. (H.21)

As in [92], eq. (H.19) can be evaluated entirely in an a priori sense, that is

�model,diff =

@
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bp
akp
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@X true
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!
�

@

@xi

✓
⇢trueDtrue@ztrue

@xi

◆
(H.22)

defines the model form error incurred by the simplified Fickian di↵usion. The flamelet DNS

gives access to
@

@xi

✓
⇢zfDzf

@zf
@xi

◆
(H.23)

where zf is the flamelet DNS mixture fraction, which makes an a posteriori comparison

natural. Let

"diff =
@

@xi

 
⇢true
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akp

W true
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◆ (H.24)

represent the error in that case.
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H.2.1 Computational considerations

In order to do the type of analysis discussed above, it is convenient to work entirely with

the mass fractions rather than carrying both Yk and Xk. The di↵erential di↵usion di↵usive

term can be rewritten as

@
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✓
⇢Dk

Wk

W

@Xk
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� ⇢V c

i z
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=
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(H.25)

V c
i is rewritten in the same manner, i.e.

V c
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Therefore, only Yk, W , and rW are stored. Averaging eq. (H.18) gives
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(H.27)

To obtain the terms in this averaged equation the necessary raw moments are

⇢ ⇢ui ⇢z ⇢uiz ⇢
X

k
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and µ is also desired.
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H.3 Arrhenius law for progress rates

For the jth reaction in a chemical mechanism

Qj = Kfj⇧
Ns
k=1

✓
⇢

Yk

Wk

◆⌫0kj

� Krj⇧
Ns
k=1

✓
⇢

Yk

Wk

◆⌫00kj

(H.28)

where Kfj and Krj are the forward and reverse reaction rates, respectively. For solving the

steady laminar flamelet equations (system (H.32)) and the complex chemistry DNS of Attili,

Bisetti, et al. [23], the reaction rates are modeled with the Arrhenius law [4] which states

Kfj = AfjT
nj exp

✓
�

Ej

RT

◆
. (H.29)

Afj is known as the preexponential constant, nj is the temperature exponent, Ej the acti-

vation energy, and R is the universal gas constant. The reverse rate is computed as

Krj =
kfj

⇣ p0
RT

⌘PNs
k=1(⌫0kj�⌫00kj)

exp

✓
�S0

j

R
�

�H0
j

RT

◆ (H.30)

where �S0
j and �H0

j are the entropy and enthalpy change for reaction j, respectively. The

chemical source terms are computed from eq. (H.9). The coe�cients required to obtain all

necessary thermodynamic and transport properties for the chemical mechanism are included

with [41].

H.4 Laminar flamelet equations

Under the laminar flamelet assumptions, the species and temperature equations simplify

dramatically (see section 2.2.1 for the key assumptions). The direction in which the flame
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structure varies is the same direction in which the mixture fraction varies, so a coordinate

transformation can be introduced and the result is the so-called flamelet equations [4, 12],

8
>><

>>:

⇢
@Y�,lam
@t

= !̇k +
1

2
⇢lam�lam

@2Y�,lam
@zlam2

⇢
@Tlam

@t
= !̇T +

1

2
⇢lam�lam

@2Tlam

@zlam2
,

(H.31)

where Y�,lam is the �th species mass fraction and Tlam is the temperature. The subscript

“lam” emphasizes these variables are tied to the laminar flamelet problem. System (H.31)

is further simplified by assuming the laminar flamelets are steady:

8
>><

>>:

0 = !̇� +
1

2
⇢lam�lam

@2Y�,lam
@zlam2

0 = !̇T +
1

2
⇢lam�lam

@2Tlam

@zlam2
.

(H.32)

These equations have one independent variable, zlam, and the e↵ect of the surrounding tur-

bulent flowfield is encapsulated entirely by the imposed scalar dissipation rate. Hence, the

resulting laminar flame structure is described entirely by zlam and �lam. The chemical source

terms !̇� and !̇T are obtained in the same fashion as in the complex chemistry DNS and

the same chemical mechanism is employed. System (H.32) can be solved in mixture fraction

space directly or indirectly by mapping the solution of steady axisymmetric stagnation flows

(as is done in Cantera [79], see chapters 6 and 7 in [39]) to mixture fraction space. With the

latter option, opposing fuel and oxidizer streams create a solution in physical space in which

the mixture fraction increases monotonically from zero on the oxidizer side to one on the

fuel side. The flamelet library is built by solving the equations for di↵erent imposed scalar

dissipation rate profiles {�i
lam}.
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Appendix I

Supplemental figures
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Figure I.1: Energy spectra at 15 ms in the flamelet DNS.
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Figure I.2: Conditionally averaged temperature, conditioned on mixture fraction.
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Figure I.3: Profiles of the flamelet DNS mean state variables at 5 ms as a function of the
crosswise coordinate x2/H for the flamelet DNS conducted here and the complex chemistry
DNS (CC DNS) of [23].
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Figure I.4: Profiles of the flamelet DNS mean state variables at 10 ms as a function of the
crosswise coordinate x2/H for the flamelet DNS conducted here and the complex chemistry
DNS (CC DNS) of [23].
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Figure I.5: Profiles of the flamelet DNS mean state variables at 15 ms as a function of the
crosswise coordinate x2/H for the flamelet DNS conducted here and the complex chemistry
DNS (CC DNS) of [23].
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Figure I.6: Sample PDFs of mixture fraction at various x2 locations at 5 ms. Also shown is
the �-PDF (eq. (2.25)) matching the first two sample moments of z at each location.
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Figure I.7: Sample PDFs of mixture fraction at various x2 locations at 10 ms. Also shown
is the �-PDF (eq. (2.25)) matching the first two sample moments of z at each location.
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Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental algorithms for scientific computing in Python.
Nature Methods, 17:261–272, 2020.

[78] Vicente Hernandez, Jose E. Roman, and Vicente Vidal. SLEPc: A scalable and flexible
toolkit for the solution of eigenvalue problems. ACM Trans. Math. Software, 31(3):351–
362, 2005.

[79] David G. Goodwin, Raymond L. Speth, Harry K. Mo↵at, and Bryan W. Weber. Can-
tera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and
transport processes. https://www.cantera.org, 2018. Version 2.4.0.

180



[80] Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman, Patrick
Alken, Michael Booth, Fabrice Rossi, and Rhys Ulerich. GNU scientific library. Citeseer,
2002.

[81] Bart J. Daly and Francis H. Harlow. Transport equations in turbulence. The Physics
of Fluids, 13(11):2634–2649, 1970.

[82] E. E↵elsberg and N. Peters. A composite model for the conserved scalar pdf. Combustion
and Flame, 50:351–360, 1983.

[83] Ji Ryong Cho and Myung Kyoon Chung. A k-"-� equation turbulence model. Journal
of Fluid Mechanics, 237:301–322, 1992.

[84] R. F. Alvani and Michael Fairweather. Prediction of the ignition characteristics of
flammable jets using intermittency-based turbulence models and a prescribed pdf ap-
proach. Computers & Chemical Engineering, 32(3):371–381, 2008.

[85] Dominik Denker, Antonio Attili, Michael Gauding, Kai Niemietz, Mathis Bode, and
Heinz Pitsch. A new modeling approach for mixture fraction statistics based on dissi-
pation elements. Proceedings of the Combustion Institute, 2020.

[86] Todd A. Oliver, Gabriel Terejanu, Christopher S. Simmons, and Robert D. Moser. Val-
idating predictions of unobserved quantities. Computer Methods in Applied Mechanics
and Engineering, 283:1310–1335, 2015.

[87] Teresa N. Portone. Representing model-form uncertainty from missing microstructural
information. PhD thesis, The University of Texas-Austin, 2019.

[88] Rebecca E. Morrison, Todd A. Oliver, and Robert D. Moser. Representing model inad-
equacy: A stochastic operator approach. SIAM/ASA Journal on Uncertainty Quantifi-
cation, 6(2):457–496, 2018.

[89] J. Janicka and N. Peters. Prediction of turbulent jet di↵usion flame lift-o↵ using a pdf
transport equation. Symposium (International) on Combustion, 19(1):367 – 374, 1982.
Nineteenth Symposium (International) on Combustion.

[90] R. F. Alvani and M. Fairweather. Ignition characteristics of turbulent jet flows. Chemical
Engineering Research and Design, 80(8):917–923, 2002.

[91] R. W. Bilger, S. H. St̊arner, and R. J. Kee. On reduced mechanisms for methane-air
combustion in nonpremixed flames. Combustion and Flame, 80(2):135–149, 1990.

[92] J. C. Sutherland, P. J. Smith, and J. H. Chen. Quantification of di↵erential di↵usion
in nonpremixed systems. Combustion Theory and Modelling, 9(2):365–383, 2005.

181


