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ABSTRACT

We outline an approach yielding proper motions with higher precision than exists in present catalogs for a sample
of stars in the Kepler field. To increase proper-motion precision, we combine first-moment centroids of Kepler
pixel data from a single season with existing catalog positions and proper motions. We use this astrometry to
produce improved reduced-proper-motion diagrams, analogous to a Hertzsprung–Russell (H-R) diagram, for stars
identified as Kepler objects of interest. The more precise the relative proper motions, the better the discrimination
between stellar luminosity classes. Using UCAC4 and PPMXL epoch 2000 positions (and proper motions from
those catalogs as quasi-Bayesian priors), astrometry for a single test Channel (21) and Season (0) spanning 2 yr
yields proper motions with an average per-coordinate proper-motion error of 1.0 mas yr−1, which is over a factor
of three better than existing catalogs. We apply a mapping between a reduced-proper-motion diagram and an H-R
diagram, both constructed using Hubble Space Telescope parallaxes and proper motions, to estimate Kepler object
of interest K-band absolute magnitudes. The techniques discussed apply to any future small-field astrometry as well
as to the rest of the Kepler field.
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1. INTRODUCTION

Astrometric precision, ε, in the absence of systematic error,
is proportional to N−1/2, where N is the number of observations
(van Altena 2013). Theoretically, averaging the existing vast
quantity of Kepler data might allow us to approach Hubble Space
Telescope (HST)/Fine Guidance Sensor astrometric precision,
1 ms of arc per observation. While Kepler was never designed to
be an astrometric instrument, and despite significant astrometric
systematics and the challenge of fat pixels (3.′′9757 pixel−1), we
can reach a particular goal; higher-precision proper motions for
Kepler objects of interest (KOIs) from Kepler data. Additionally,
these techniques might be useful to future astrometric users
of, for example, the Large Synoptic Survey Telescope (Ivezic
et al. 2008), when they require the highest-possible astrometric
precision for targets of interest contained on a single CCD in
the focal plane. Finally, proper-motion measurements from any
Kepler extended mission might benefit from the application of
these techniques.

In transit work, it is useful to know the luminosity class
of a host star when estimating the size of the companion.
This requires a distance, ideally provided by a measurement
of the parallax. With simple centroiding unaware of point-
spread function (PSF) structure, the season-to-season Kepler
astrometry required for parallaxes presently yields positions
with average errors exceeding 100 milliarcseconds (mas), which
is insufficient for parallaxes (Section 4.3). However, distance
is a desirable piece of information. Reduced-proper-motion
(RPM) diagrams may provide an alternative distance estimate.
The concept is simple: proper motion becomes a proxy for
distance (Stromberg 1939; Gould & Morgan 2003; Gould 2004).
Statistically, the closer any star is to us, the more likely it is to
have a larger proper motion. The RPM diagram consists of the

∗ Based on observations made with the NASA Kepler Telescope.

proper motion converted to a magnitude-like parameter plotted
against the color. The RPM diagram is thus analogous to a
Hertzsprung–Russell (H-R) diagram. While some nearby stars
might have low proper motions, giant and dwarf stars typically
are separable. The more precise the proper motions, the better
the discrimination between the stellar luminosity classes.

In the following sections, we describe our approach yielding
improved placement within an RPM for any Kepler target of
interest. In Section 2, we outline the utility of RPM diagrams,
including a calibration to absolute magnitude derived from HST
astrometry. In Section 3, we discuss Kepler data acquisition
and reduction. We present the results of a number of tests
providing insight into the many difficulties associated with
Kepler astrometry in Section 4. We describe the modeling
and proper-motion results for our selected Kepler test field in
Section 5. We compare our improved RPM with that previously
derived from existing astrometric catalogs (Section 5.8), and
discuss the astrophysical ramifications of our estimated absolute
magnitudes for the over 60 KOI’s in our test field (Section 6).
We summarize our findings in Section 7.

2. A CALIBRATED RPM DIAGRAM

In past HST astrometric investigations (e.g., Benedict et al.
2011; McArthur et al. 2010), the RPM was used to confirm
the spectrophotometric stellar spectral types and luminosity
classes of reference stars. Their estimated parallaxes are input to
the model as observations with associated errors. To minimize
absorption effects, HST astrometric investigations use HK (0) =
K(0) + 5 log(μ) for the magnitude-like parameter and (J − K)0
for the color, where the K magnitudes and (J − K) colors
(from the Two Micron All Sky Survey (2MASS); Skrutskie
et al. 2006) have been corrected for interstellar extinction. For
all of our RPMs, we use the vector length proper motion,
μ = (μ2

RA + μ2
DEC)1/2.
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Table 1
HST MK (0) and HK (0)

No. ID m − M MK (0) SpT μT
a K0 (J−K)0 HK (0) Referencesb

1 HD 213307 7.19 −0.86 B7IV 21.82 ± 0.42 6.32 −0.12 −1.98 ± 0.05 B02
2 υ AND 0.66 2.20 F8 IV–V 419.26 0.14 2.86 0.32 0.97 0.03 M10
3 HD 136118 3.59 2.00 F9V 126.31 1.20 5.60 0.34 1.11 0.03 Mr10
4 HD 33636 2.24 3.32 G0V 220.90 0.40 5.56 0.34 2.28 0.03 Ba07
5 HD 38529 3.00 1.22 G4IV 162.31 0.11 4.22 0.68 0.27 0.03 B10
6 vA 472 3.32 3.69 G5 V 104.69 0.21 7.00 0.50 2.10 0.03 M11
7 55 Cnc 0.49 3.49 G8V 539.24 1.18 3.98 0.70 2.64 0.03 SIMBAD
8 δ Cep 7.19 −4.91 F5Iab: 17.40 0.70 2.28 0.52 −6.51 0.09 B07
9 vA 645 3.79 4.11 K0V 101.81 0.76 7.90 0.77 2.93 0.03 M11
10 HD 128311 1.09 3.99 K1.5V 323.57 0.35 5.08 0.53 2.63 0.03 M13
11 γ Cep 0.67 0.37 K1IV 189.20 0.50 1.04 0.62 −2.58 0.03 B13
12 vA 627 3.31 3.86 K2 V 110.28 0.05 7.17 0.56 2.38 0.03 M11
13 ε Eri −2.47 4.24 K2V 976.54 0.10 1.78 0.45 1.72 0.03 B06
14 vA 310 3.43 4.09 K5 V 114.44 0.27 7.52 0.63 2.82 0.03 M11
15 vA 548 3.39 4.13 K5 V 105.74 0.01 7.52 0.71 2.64 0.03 M11
16 vA 622 3.09 5.13 K7V 107.28 0.05 8.22 0.84 3.38 0.03 M11
17 vA 383 3.35 5.01 M1V 102.60 0.32 8.36 0.91 3.42 0.03 M11
18 Feige 24 4.17 6.38 M2V/WD 71.10 0.60 10.55 0.69 4.81 0.03 B00a
19 GJ 791.2 −0.26 7.57 M4.5V 678.80 0.40 7.31 0.92 6.47 0.03 B00b
20 Barnard −3.68 8.21 M4Ve 10370.00 0.30 4.52 0.72 9.60 0.03 B99
21 Proxima −4.43 8.81 M5Ve 3851.70 0.10 4.38 0.97 7.31 0.03 B99
22 TV Col 7.84 4.84 WD 27.72 0.22 12.68 0.49 4.89 0.03 M01
23 DeHt5 7.69 7.84 WD 21.93 0.12 15.53 −0.07 7.24 0.03 B09
24 N7293 6.67 7.87 WD 38.99 0.24 14.54 −0.23 7.49 0.03 B09
25 N6853 8.04 2.54 WD 8.70 0.11 10.58 1.13 0.27 0.04 B09
26 A31 8.97 6.69 WD 10.49 0.13 15.66 0.25 5.77 0.04 B09
27 V603 Aql 7.20 4.12 CNe 15.71 0.19 11.32 0.31 2.30 0.04 H13
28 DQ Her 8.06 5.00 CNe 13.47 0.32 13.06 0.46 3.70 0.06 H13
29 RR Pic 8.71 3.54 CNe 5.21 0.36 12.25 0.18 0.83 0.15 H13
30 HP Lib 6.47 7.35 WD 33.59 1.54 13.82 −0.12 6.45 0.10 R07
31 CR Boo 7.64 8.59 WD 38.80 1.78 16.23 −1.52 9.17 0.10 R07
32 V803 Cen 7.70 6.12 WD 9.94 2.98 13.82 −0.10 3.81 0.65 R07
33 � Car 8.56 −7.55 G3Ib 15.20 0.50 0.99 0.55 −8.10 0.08 B07
34 ζ Gem 7.81 −5.73 G0Ibv 6.20 0.50 2.13 0.23 −8.91 0.18 B07
35 β Dor 7.50 −5.62 F6Ia 12.70 0.80 2.06 0.48 −7.42 0.14 B07
36 FF Aql 7.79 −4.39 F6Ib 7.90 0.80 3.45 0.40 −7.06 0.22 B07
37 RT Aur 8.15 −4.25 F8Ibv 15.00 0.40 3.90 0.28 −5.22 0.06 B07
38 κ Pav 6.29 −3.52 F5Ib-II: 18.10 0.10 2.71 0.62 −6.00 0.03 B11
39 VY Pyx 6.00 −0.26 F4III 31.80 0.20 5.63 0.33 −1.86 0.03 B11
40 P3179 5.65 3.02 G0V: 50.36 0.40 8.67 0.35 2.18 0.03 S05
41 P3063 5.65 4.68 K6V: 45.30 0.50 10.33 0.82 3.61 0.04 S05
42 P3030 5.65 4.97 K9V: 43.20 0.50 10.62 0.83 3.79 0.04 S05

Notes.
a μT = (μ2

RA + μ2
DEC)1/2 in mas yr−1.

b B99 = Benedict et al. (1999), B00a = Benedict et al. (2000a), B00b = Benedict et al. (2000b), B02 = Benedict et al. (2002), B06 = Benedict
et al. (2006), B07 = Benedict et al. (2007), B09 = Benedict et al. (2009), B11 = Benedict et al. (2011), Ba07 = Bean et al. (2007), H13 =
Harrison et al. (2013), Mr10 = Martioli et al. (2010), M01 = McArthur et al. (2001), M11 = McArthur et al. (2011), R07 = Roelofs et al.
(2007), S05 = Soderblom et al. (2005).

Compared to Hipparcos, HST has produced only a small
number of parallaxes and proper motions (Benedict et al.
1999, 2000a, 2000b, 2002, 2006, 2007, 2009, 2011; Harrison
et al. 2013; McArthur et al. 2001, 2010, 2011, 2014; Roelofs
et al. 2007), but with higher precision. Parallax and proper-
motion results for 42 stars with HST proper-motion and parallax
measures are collected in Table 1. Average parallax errors are
0.2 mas. Average proper-motion errors are 0.4 mas yr−1. In
Figure 1, we compare an H-R diagram and an RPM diagram
constructed with HST parallax and proper-motion results for the
targets listed in Table 1. Conspicuously absent from the RPM
diagram are the RR Lyr results from Benedict et al. (2011) with
their large proper motions due to their Halo Pop II identification.
Lines plotted on the H-R diagram show predicted loci for

10 Gyr age solar metallicity stars and 3 Gyr age metal-poor
stars from Dartmouth Stellar Evolution models (Dotter et al.
2008). These ages and metallicities encompass the majority of
what might be expected from a random sampling of stars in our
Galaxy.

Even though these targets are scattered all over the sky
and range from planetary nebula central stars to Cepheid
variables, the similarity between the H-R and RPM dia-
grams is striking. In Figure 2, we plot the extinction-corrected
K-band absolute magnitude derived from HST parallaxes
against the magnitude-like parameter HK (0). The resulting
scatter, 0.7 mag rms, suggests that precise proper motion is
a good enough proxy for distance to allow us to assign a
luminosity class.
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Figure 1. Left: Hertzsprung–Russell (H-R) diagram absolute magnitude MK (0) vs. (J−K)0, both corrected for interstellar extinction. Plotted lines show predicted loci
for 10 Gyr age solar metallicity stars (- - -) and 3 Gyr age metal-poor ([Fe/H] = −2.5) stars (-··-) from Dartmouth Stellar Evolution models (Dotter et al. 2008). Right:
RPM diagram, same targets plotted. Horizontal lines separate main sequence and sub-giants, and giants and super-giants. Star numbers are from Table 1. The color
coding denotes main-sequence stars (red), white dwarfs (blue), and super-giants (black).

(A color version of this figure is available in the online journal.)

Note that while this calibration is produced with proper
motions sampling much of the celestial sphere, the H-R diagram
and RPM main sequences are defined almost exclusively by stars
belonging to the Hyades and Pleiades clusters. This may become
an issue when we attempt to apply the calibration to a small piece
of the sky in a different location. Both the calibration sources
and a random Kepler field have systematic proper motions due to
galactic rotation (see van Leeuwen 2007, Section 6.1.5), which
may require some correction.

3. KEPLER OBSERVATIONS AND DATA REDUCTION

The primary mission of the Kepler spacecraft is high-
precision photometry which can be used to discover transiting
planets. Kepler rotates about the boresight once every 90 days to
maximize solar panel illumination. Each such pointing is iden-
tified by a season number; 0–3. Each 90 day period is identified
by a quarter number; 1–17. The CCDs in the Kepler focal plane
are identified by a channel number; 1–84. Our goal is to produce
an astrometric reference frame across a given Kepler channel
containing KOIs of interest, with the end product being KOI
proper motions which can be used to populate an RPM.

3.1. Star Data

The Kepler telescope trails the Earth in a Sun-centered orbit.
Details on the photometric performance and focal plane array

can be found in Borucki et al. (2010) and Caldwell et al. (2010a).
The following explorations restrict themselves to the so-called
long-cadence data where each subsection containing a star of
interest in the array is read out once every 30 minutes. These
subsections of the Kepler field of view (FOV; hereafter, postage
stamps) range from 4×5 pixels for fainter stars to larger than
8×8 pixels for brighter stars. Kepler pixels are a little less
than 4′′ on a side. Targets observed with long cadence generate
approximately 4700 postage stamps per star per quarter.

We obtained our Kepler data from the Space Telescope
Science Institute Multimission Archive (MAST). These data
include both pipelined positions (the *_llc.fits files, where “*”
is a global replacement marker) and postage stamp image data
(the *_lpd-targ.fits files). The Kepler Archive Manual (Fraquelli
& Thompson 2012) greatly assisted us with any access issues.

3.2. Positions from Kepler Image Data

Positions used in this paper are generated from the Kepler
postage stamp image data using a simple first-moment centering
algorithm. We calculate

MOM CENTR X =
∑

i ∗ z/
∑

i, (1)

MOM CENTR Y =
∑

j ∗ z/
∑

j, (2)

3
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b = 0.90 ± 0.02

Figure 2. Linear mapping between MK (0) and HK (0) using HST parallaxes
and proper motions for targets scattered over the entire sky. rms residual is
0.7 mag. The linear fit (MK (0) = a + b HK (0)) coefficient errors are 1σ . Stellar
classifications range from white dwarfs to Cepheids, as listed in Table 1.

(A color version of this figure is available in the online journal.)

where z = flux(i, j ) are the flux count values for each Kepler
pixel within the postage stamp. To generate positions from the
optimal aperture, any z value not in the optimal aperture is set
to zero. To reduce the computational load and to smooth out
high-frequency positional variations, normal points (NPs) are
formed by averaging the x and y positions for a specified time
span. The tests and results reported herein are based on nine
day NPs. We also only use data within an optimal aperture for
each star defined by the Kepler team. We provide an example of
an optimal aperture for a star with Kepler identification number
KID = 7031732 in Figure 3. There are positional corrections
tabulated in the MAST data products, e.g., POS_CORR1.
These corrections report the size of the differential velocity
aberration, pointing drift, and thermal effects applicable to
the region of sky recorded in the file. These corrections are
applied to our derived centroids. The final positions used in the
test are corrected using the MAST position correction values,
e.g., XY_CORR = MOM_CENTR_XY - POS_CORR_XY. We
calculate the standard deviation of each NP along each axis for
each star. The average standard deviation of these NP is typically
on the order of 1 mas, demonstrating exceptional astrometric
stability within each postage stamp. However, this small, formal
random error is a significant underestimation of the total star-
to-star astrometric quality, as we will see below in Section 4.1.

We explored utilizing PSF fitting methods to extract positions.
That approach did not resolve the issue of poor astrometric
performance over multiple quarters (see Section 4.3 below).
PSF fitting is computationally intensive and complicated given
the Kepler FOV crowded stellar field and the significant PSF
variations over that field (Bryson et al. 2010).

4. KEPLER ASTROMETRIC TESTS

These tests highlight several systematic errors and motivate
our simple strategy for dealing with them. We employ GaussFit

Figure 3. Left: KID 7031732 in a crowded field. Image from Digital Sky Survey via Aladin. Middle: postage stamp for KID 7031732. Right: optimum aperture for
KID 7031732.

(A color version of this figure is available in the online journal.)
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for all of our astrometric modeling (Jefferys et al. 1988) to
minimize χ2.

4.1. Single Channel, Single Season, Single Quarter

These tests use 95 stars located in Channel 21, Season 0,
Quarter 10 that are identified as red giants in the Kepler Input
Catalog (KIC). This initial filtering by star type potentially
minimizes any effects of proper motion over the span of one or
even two quarters. The NP generator, run on each star selected
from test Channel 21, effectively reduces the number of discrete
data sets per star from on the order of 4500 down to 9. We
assign the 9 NPs for each of the 95 stars in the test to the 9
“plates.” Each plate now contains 95 stars whose epochs are
separated in time by approximately 9 days. Using the positions
and positional errors generated by the NP code (now organized
as 9 “plates” each containing 95 star positions and associated
errors), we determine scale, rotation, and offset “plate constants”
relative to an arbitrarily adopted constraint epoch (the so-called
“master plate”) for each observation set (the positions generated
for each star within each “plate” at each of the nine NP epochs).
The solved equations of condition are

ξ = Ax + By + C, (3)

η = −Bx + Ay + F, (4)

where x and y are the measured NP coordinates from the
Kepler postage stamps. A and B are scale and rotation plate
constants, C and F are offsets. For this test spanning only
a single 90 day quarter, we ignore proper motions. When
modeling these positions, in order to approach a near-unity χ2/
DOF (DOF = degrees of freedom), the input positional errors,
standard deviations from the NP averaging process, had to be
increased by a factor of four. The final catalog of (ξ, η) positions
have average 〈σξ 〉 = 0.31 millipixel and 〈ση〉 = 0.64 millipixel
(1.23 and 2.54 mas), which is seemingly quite encouraging if
one’s goal is precision astrometry with Kepler.

However, the results of this modeling, shown in
Figure 4, exhibit large systematic effects that are well cor-
related with time. The constraint epoch for this reduction is
JD−24400000 = 15785.2, that is, the middle epoch of the nine
plotted. We tentatively blame the typically larger y residuals (y is
larger than x within each epoch) in Figure 4 with charge-transfer
smearing along the CCD column readout direction (Kozhurina-
Platais et al. 2008; Quintana et al. 2010). Our ultimate goal
is to tease out stellar positional behavior similarly correlated
with time: proper motion. We find stars 9 (=KID 6363534)
and 27 (=KID 6606001) to exhibit some of the largest and
most strikingly systematic residual patterns. Figure 5 provides
an explanation for the behavior of star 27 (a close companion
that perturbed the simple first-moment centering algorithm), and
presents a puzzle regarding star 9. This star has no bright com-
panions, yet it is a poorly behaved component of our astrometric
reference frame. We suspect that this is due to the CCD channel-
to-channel cross-talk discussed in Caldwell et al. (2010b). Four
CCDs share common readout electronics. A bright star on one
CCD can affect the measured charge in another.

To determine whether or not there might be unmodeled—but
possibly correctable—systematic effects at the 10 millipixel
level, we plotted the reference frame x and y residuals against a
number of parameters. These included the following: x, y posi-
tion within the channel; radial distance from the channel center;
reference star magnitude and color; and epoch of observation.
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Figure 4. x and y residuals as a function of time for the Q10-only four pa-
rameter modeling from Section 4.1. The residual clumps from left to right are
“plates” 1–9, the epochs of the averaged normal points. Stars are labeled with
a running number from 1 to 97. The residuals exhibit significant time depen-
dency. Regarding two of the stars with more extreme behavior, neither star 9
(=KID 6363534) nor star 27 (=KID 6606001) is a high-proper-motion object.

We saw no obvious trends, other than an expected increase in
positional uncertainty with reference star magnitude. Models
with separate x and y scales (six parameters; in Equation (2)
above, where −B and A are replaced by D and E) or color terms
(eight parameters) provided no improvement in χ2/DOF.

Given that the pipelined positions available in the _llc.fits
files are also first-moment centroids calculated from the opti-
mal apertures, we developed the capability to generate these
independently as a further test of the Kepler astrometry. The
code used to generate the positions whose residuals are plotted
in Figure 4 can also produce first-moment centroid data using
the entire postage stamp (e.g., all the flux values in the mid-
dle panel in Figure 3). By comparing the positions extracted
from the entire postage stamp against the optimal subset of
the postage stamp for Channel 21, the average absolute value
residual is reduced by 30% when using the optimal apertures.
However, tests carried out on Channel 41 (Season 0, Quarter
10) near the Kepler FOV center result in a much less significant
improvement, only 12%. This can be explained by consider-
ing the degradation in the PSF from the center to the edge
of the entire Kepler FOV (Bryson et al. 2010; Tenenbaum &
Jenkins 2010).

4.2. Other Single-channel Tests

4.2.1. Same Stars—Multiple Seasons and Quarters

To test whether or not the peculiar fan pattern in the residuals
against time seen in Figure 4 is channel-specific, we carried out
similar tests for Channels 41–44, i.e., the four central CCDs
in the Kepler focal plane. We sampled Quarters 3 through
14 using the same ∼75 stars in each channel. The results of
this four parameter modeling are provided in Figure 6. Every
quarter exhibits time-dependent residual behavior. The patterns
often repeat within the same season. For example, in Season 1,
the x residuals for star 5 (=KID 8949862) start out large and
positive and move down to large and negative over ∼90 days.

5
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Figure 5. Top: star 27 (POSS-J on the left, 2MASS on the right) obviously with a close companion that confused the first-moment centering. Bottom: star 9, similarly
illustrated. No companion to star 9 is detected. The positional shift is assumed to be instrumental.

(A color version of this figure is available in the online journal.)

However, star 5 is relatively well behaved for any other season.
A comparison of Figure 6 with Figure 5 in Barclay (2011)6 is
convincing evidence that astrometry quality and primary mirror
temperature changes are correlated. Stable temperatures at any
level yield better astrometry (smaller residuals).

4.2.2. An External Check of Single-channel, Single-season Data

We carried out a four parameter modeling of 127 randomly
chosen stars (a mix of dwarfs and giants according to the KIC)
in Channel 26 from Season 3, Quarter 5 and found residual
patterns similar to that for Season 3, Quarter 5, Channel 44
shown in Figure 6. We then extracted a subset of 10 stars, 5
with relatively well-behaved x residuals (stars 4–62) and 5 with
x residuals that are not constant with time (stars 67–106 in
Figure 7). We list these in Table 2.

To explore the hypothesis that astrophysical effects (i.e., com-
panions undetectable at the resolution of the Kepler detectors)
cause the observed residual behavior, these 10 stars were ob-
served with the Keck NIRC2-AO system (Wizinowich et al.
2004; Johansson et al. 2008) on the nights of 2013 August

6 http://archive.stsci.edu/kepler/release_notes/release_notes12/DataRelease_
12_2011113017.pdf

Table 2
Companion Test Stars

#a KID KEPMAG K FluxFracb

4 5698236 15.637 14.243 0.886
5 5698325 12.264 10.747 0.920
10 5698466 13.113 11.561 0.921
34 5783576 14.135 12.656 0.874
62 5784222 15.475 13.885 0.881
67 5784291 13.148 11.074 0.936
77 5869153 15.596 13.537 0.706
96 5869586 15.466 13.672 0.886
103 5869826 15.768 13.473 0.774
106 5870047 11.747 6.328 0.962

Notes.
a Numbering in Figure 7.
b Fraction of target flux in the Kepler project-defined optimum aperture.

19–21 UT with the NIRC2 instrument on Keck II. The targets
themselves were used as natural guide stars and observations
were performed in the K ′ filter, or the Br-γ filter if the star was
too bright for the broader K ′ filter. The native seeing on the three
nights (before adaptive optics (AO)) was approximately 0.′′6 at

6

http://archive.stsci.edu/kepler/release_notes/release_notes12/DataRelease_12_2011113017.pdf
http://archive.stsci.edu/kepler/release_notes/release_notes12/DataRelease_12_2011113017.pdf
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Figure 6. As in Figure 4, x and y residuals as a function of time for four parameter modeling of a sample of KIC-identified giants in Channels 41–44, but for 11
quarters. Top row, Quarters 3–6; middle row, Quarters 7–10; bottom row, Quarters 11–14. The top half of each box contains x residuals with y below. The y-axis
range within each coordinate half-box is ±20 millipixels with an x-axis range between 80 and 90 days. The residuals exhibit time dependency within each quarter that
correlates with focal plane temperature changes. Season 0 appears to have a larger fraction of stable astrometry.
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(Equations (3) and (4)) of 127 stars in Channel 26 from Season 3, Quarter 5.
The star numbers are identified with Kepler IDs in Table 2. Note that stars
[4,. . ., 62] are more astrometrically stable than stars [67,. . ., 106].

2 μm. The NIRC2 instrument was in the narrow field mode with
a pixel scale of approximately 0.′′009942 pixel−1 and a FOV of
approximately 10.′′1 on a side. Each data set was collected with a
three point dither pattern, avoiding the lower left quadrant of the
NIRC2 array, with five images per dither position, each shifted

1′′ from the previous. Each frame was dark subtracted and flat
fielded. The sky frames were constructed for each target from the
target frames themselves by median filtering and coadding the
15 dithered frames. Individual exposure times varied depending
on the brightness of the target but were typically 10–30 s per
frame. Data reduction was performed using a custom set of IDL
routines.

To estimate companion detection limits as a function of
distance from the selected targets, we utilized PSF planting and
cross correlation (Tanner et al. 2010). The science target was
extracted from the image, sky subtracted, and normalized. Then
it was added at random positions around the image such that
an equal number of plant positions occur in each radius bin of
0.′′1 around the science target. The flux within each planted PSF
is scaled by a random value ranging from 10−3 to 103 times
the original number of counts in the star. The counts were
determined through aperture photometry with a radius of 0.′′2
and a sky annulus of 0.′′2–0.′′3. Once added to the image, the
threshold for detection was established by cross-correlating the
planted star with the normalized PSF. A scaled and random PSF
plant was considered to be detected if the cross-correlation value

7
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Figure 8. Normalized K-band contrast curves for stars 4 and 67, along with
average contrast curves for stars 4 through 62 (Good) and 67 through 106
(Bad). Note that while star 4 is more astrometrically stable than star 67, they
have virtually identical contrast curves.

(A color version of this figure is available in the online journal.)

was above 0.5—a value determined with a “by eye” assessment.
The location and flux of those PSFs that were detected were
recorded over 5000 PSF plants. In each radius bin, the PSF
with the smallest flux was used in the resulting plot of detected
minimum magnitude difference (ΔKs) versus distance from the
science target.

We found no companion candidates in these images within a
radius of 1.′′2. Figure 8 contains the contrast curves for star
4 (constant residuals) and star 67 (time-varying residuals),
along with a fit to the normalized average contrast curves for
stars 4–62 (〈Good〉) and 67–106 (〈Bad〉). To fit the average
contrast curves, we employed an exponential function (y =
K0+K1∗exp(−(x −x0)/K2)) with offset x0. The similarity of
the average contrast curves removes small angular separation,
fainter companions as the cause of the behavior displayed in
Figure 7. Finally, the average Season 3 crowding, contamination,
and flux fraction parameters (see Fraquelli & Thompson 2012
for parameter details) of the two groups differed little.

4.2.3. Lessons Learned

With as rich a data set as produced by Kepler, our approach is
to exercise extensive editing to establish the best astrometric
reference frame: a reference frame with χ2/DOF ∼ 1 and
Gaussian distribution of residuals. If we model only epochs
3–7 in Figure 4, as shown in Figure 9, we generate a final
catalog of (ξ, η) positions with average 〈σξ 〉 = 0.22 millipixel
and 〈ση〉 = 0.46 millipixel (0.87 and 1.83 mas). The residuals
are Gaussian (Figure 10) and naturally larger than the average
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Figure 9. x and y residuals as a function of time for the Q10-only four parameter
modeling from Section 4.1. The residual clumps from left to right are “plates”
3–7, first seen in Figure 4. Stars are labeled with a running number from 1 to
97. The residuals exhibit far less time dependency. Stars 9 and 27 continue to
exhibit unmodeled behavior.

catalog errors because of the effective averaging to produce a
catalog. Again, the significantly larger residuals along the y axis
are likely due to CCD read-out issues (Kozhurina-Platais et al.
2008; Quintana et al. 2010).

4.3. Two Channels, Two Contiguous Seasons

Again restricting our test to include only stars identified as
red giants to minimize proper-motion effects, we now run a
plate overlap model for the same set of stars appearing on two
different Channels (21, 37) for Quarters 10 and 11, respectively.
Given that the average absolute value UCAC4 proper motion for
this suite of test stars is 7.5 mas yr−1 (less than 2 millipixel yr−1),
the roughly 180 day span of these data should exhibit very little
scatter due to unmodeled motions. A four parameter model (with
the constraint plate chosen to be from Channel 21) yielded a final
catalog with 〈σξ 〉 = 2.60 millipixel and 〈ση〉 = 6.6 millipixel
(10.33 and 26.23 mas), which is significantly poorer astrometric
performance than for a single channel and quarter (Section 4.1).
A six parameter model with separate scales along x and y yielded
only a 0.8% reduction in the large value of the reduced χ2/DOF.

The Kepler telescope has a Schmidt–Cassegrain design.
An effective astrometric model for such a telescope, used
successfully in the past on Palomar Schmidt photographic
plates, is introduced in Abbot et al. (1975) and used in, e.g.,
Benedict et al. (1978). That model,

ξ = Ax ′ + By ′ + Cx ′y ′ + Dx ′2 + Ey ′2

+ Fx ′(x ′2 + y ′2) + G, (5)

η = A′x ′ + B ′y ′ + C ′x ′y ′ + D′x ′2 + E′y ′2

+ F ′y ′(x ′2 + y ′2) + G′, (6)

when applied to the Channels 21 and 37 data, provided a 9.1%
reduction in reduced χ2/DOF, but a final catalog with errors
almost exactly as found for the four and six parameter models.
The run of residuals with time is shown in Figure 11. The
residuals from this modeling are on average eight times larger

8
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Figure 10. Histograms of x and y residuals for the Q10-only four parameter
modeling of only plates 3–7 (Figure 9) from Section 4.1. The residuals are well
characterized with Gaussians with 1σ dispersions as indicated.

than for Channel 21 alone. That the residuals remain large even
with a Schmidt model demonstrates that the astrometric effects
are not due to the Schmidt nature of the Kepler Telescope.
The residuals as a function of position within the Channel 37
CCD show large variations on extremely small spatial scales
(Figure 12). We have yet to identify the source of these high-
frequency spatial defects, but cannot yet rule out the individual
field flatteners atop each module containing four channels
(Tenenbaum & Jenkins 2010). This inter-channel behavior
effectively prohibits the measurement of precise parallaxes
using only Kepler data.

5. ASTROMETRY OF A KEPLER TEST FIELD

Our ultimate goal is to produce an RPM diagram including
KOIs, which would permit an estimate of their luminosity
class. This may be feasible by restricting astrometry to a single
channel and season. Essentially, we may be able to ignore the
deficiencies demonstrated in Figures 11 and 12 because each
star in any given season will be observed by the same pixels,
and the starlight is passing through the exact same region of
the field flattener. The 17 available quarters provide 3–4 same-
season observation sets for any Kepler channel. Examination of
Figure 6 supports our identification of Season 0 as one of the
more stable. Tests similar to those carried out in Section 4.1
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Figure 11. x and y residuals in millipixels as a function of time from the full
Schmidt 14 parameter modeling from Section 4.3. The residual clumps on the
left-hand side (Channel 21) from left to right are “plates” 3–7. Stars are labeled
with a running number from 1 to 97. Note the scale change along the y-axis, a
range five times larger than that in Figure 9. The residuals exhibit extreme time
dependence. Star 27 continues to show unmodeled behavior in both channels.
Virtually all stars in Channel 37 (right) exhibit unmodeled behavior.
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Figure 12. Average vector residuals in milliarcseconds (scale at lower left) as
a function of position within Channel 37 from the full Schmidt 14 parameter
modeling of Channel 21 and Channel 37 described in Section 4.3. All positions
have been re-origined to the CCD center. Note the extreme variation in vector
length and position angle over small spatial scales, for example, the grouping
consisting of stars 22 through 34 (row ∼ 50, column ∼−200). Comparing
Channel 21 with Channel 37 demonstrates serious astrometric systematics on
very small spatial scales.

yielded very poor results for Quarter 2, and hence it is unused
here.

5.1. Populating an RPM Diagram

To fully populate the HK , (J − K)0 plane of an RPM diagram,
we extract Channel 21 long-cadence image data (*lpd-targ*) for
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stars with 14 > KEPMAG > 11.6 (Quarters 6, 10, and 14, and
all Season 0):

1. Approximately 100 stars classified as red giants;
2. Approximately 100 stars with Teff > 6500 K;
3. Approximately 100 stars with 6200 > Teff > 5100 K;
4. Approximately 30 stars with Teff < 5000 K and Total_PM �

0.′′24yr−1 with any KEPMAG value; and
5. All KOIs found in Channel 21, e.g., Planetary_candidate

and Exoplanet_host_star condition flag objects. These also
have unrestricted KEPMAG.

We extract positions and generate nine day average NPs using
only the Kepler team defined optimal apertures for each star.
When including these data in our modeling with the ground-
based catalogs, we re-origin the Kepler x, y coordinate values
to (0,0) at the center of Channel 21.

5.2. Reference Star Priors

To place our relative astrometry onto a right ascension (R.A.),
declination (decl.) system, we extract J2000 positions and
proper motions from the UCAC4 (Zacharias et al. 2013) and
PPMXL (Roeser et al. 2010) catalogs. The catalog positions
scale the Kepler astrometry and provide an approximately
12 yr baseline for proper-motion determination. Additionally,
the catalog proper motions with associated errors are entered
into the modeling as quasi-Bayesian priors. These values are
not entered as hardwired quantities known to infinite precision.
The χ2 minimization is allowed to adjust the parameter values
suggested by these data values within limits defined by the data
input errors.

The input positional errors average 19 mas for the UCAC4
and 63 mas for the PPMXL. The average per-axis proper-
motion errors are 2.6 mas yr−1 for UCAC4 and 3.9 mas yr−1

for PPMXL. A comparison of the two catalogs yields an
average per-star absolute value proper-motion disagreement of
5.1 mas yr−1, indicating that there is room for improvement.
The R.A. and decl. positions from the two catalogs are used to
calculate ξ, η standard coordinates transformed from radians to
arcseconds (van de Kamp 1967) using the center of Channel 21
as the tangent point.

5.3. The Proper-motion Astrometric Model

Using the central five epochs of positions from Quarters 6,
10, and 14 from Kepler Channel 21 (the editing of each quarter
can be illustrated by comparing Figure 4 to Figure 9), spanning
2.14 yr, with standard coordinates from PPMXL and UCAC4,
and proper-motion priors from the latter two catalogs, we
determine “plate constants” relative to the UCAC4 catalog (this
catalog having smaller formal positional errors). The constraint
epoch is thus 2000.0. Our reference frame after pruning out
astrometrically misbehaving objects contains 226 stars. For this
model, we include only those stars with a restricted magnitude
range, 14 > KEPMAG > 11.6 (samples 1–3 discussed in
Section 5.1 above). The average magnitude for this magnitude-
selected reference frame is 〈KEPMAG〉 = 13.3.

Again, we employ GaussFit (Jefferys et al. 1988) to minimize
χ2. The solved condition equations for the Channel 21 field are
now

ξ = Ax ′ + By ′ + Cx ′y ′ + Dx ′2 + Ey ′2

+ Fx ′(x ′2 + y ′2) + G − μ′
xΔt, (7)

η = A′x ′ + B ′y ′ + C ′x ′y ′ + D′x ′2 + E′y ′2

+ F ′y ′(x ′2 + y ′2) + G′ − μ′
yΔt, (8)

where x′ = x − 500 and y′ = y − 500 are the re-origined
measured coordinates from Kepler and the standard coordinates
from UCAC4 and PPMXL; μx and μy are proper motions; and
Δt is the epoch difference from the mean epoch.

Based on the resulting astrometric parameters, we form a
plate scale of

S = (BA′ − AB ′)1/2, (9)

and for the 15 epochs (five for each of the three quarters) of
Kepler observations find 〈S〉 = 3.′′97664 ± 0.′′000009 pixel−1,
which is close to the nominal Kepler plate scale (van Cleve &
Caldwell 2009) and an indication that the Kepler telescope plate
scale as sampled in Channel 21 was quite constant. The scale
factor of the PPMXL catalog relative to the UCAC4 catalog was
1.000012.

5.4. Assessing the Reference Frame

Using the UCAC4 catalog as the constraint plate to achieve
a χ2/DOF ∼ 1, the Kepler NP data errors (NP standard
deviations) had to be increased by a factor of 16. Histograms of
the Kepler NP residuals were characterized by σx = 3.6 mas,
σy = 6.4 mas. The average absolute value residual for Kepler
was 4.8 mas, 24.3 mas for UCAC4, and 61.6 mas for PPMXL.
The resulting 226 star reference frame “catalog” in ξ and η
standard coordinates was determined with average positional
errors of 〈σξ,η〉 = 8.6 mas, a 55% improvement in relative
position over the UCAC4 catalog. The average proper-motion
error for the stars comprising the reference frame is 0.8 mas yr−1.

Again, to determine whether or not there might be
unmodeled—but possibly correctable—systematic effects, we
plotted the reference frame x and y residuals against a number
of parameters. These included the x, y position within the chan-
nel (Figure 13), the radial distance from the channel center, the
reference star magnitude and color, and the epoch of observa-
tion. We saw no obvious trends other than an expected increase
in positional uncertainty with reference star magnitude. Plots
of x and y residual versus pixel phase also indicated no trends.
We calculate the pixel phase, φx = x − int(x + 0.5), where int
returns the integer part of the (for example) x coordinate.

5.5. Applying the Reference Frame

To ensure that the typically fainter (and hence less valuable
contributors to the astrometric reference frame) stars do not
affect our astrometric modeling of the Channel 21 CCD, an
identical model in Section 5.3 is re-run, adding NP positions
for the K and M stars (sample 4) and KOIs (sample 5) from
Section 5.1, holding the Equations (7) and (8) coefficients A–G′
to the values determined in Section 5.3. Note that we do solve
for the positions and proper motions. This yields final catalog
positions and proper motions for 301 stars representing all the
categories listed in Section 5.1. The inclusion of fainter stars
results in a “catalog” with ξ and η standard coordinates average
relative positional errors 〈σξ,η〉 = 11.1 mas, and an average
proper-motion error for all stars of 1.0 mas yr−1. The decrease in
proper-motion precision relative to that found for the reference-
frame-only stars is driven by the inclusion of the typically
fainter K, M, and KOI stars with average 〈KEPMAG〉 = 15.1.
As shown in Section 5.7 below, the centroids of fainter stars
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Figure 13. Average vector residuals in milliarcseconds as a function of position
within Channel 21 from the full Schmidt 14 parameter modeling of three Season
0 observation sets described in Section 5.3. Other than a strong tendency for
larger residuals in the y direction, the pattern is satisfactorily random.

have lower signal to noise and, if included, would degrade our
astrometric reference frame.

We present final KOI proper motions and errors in
Table 3. These are, in a sense, absolute proper motions be-
cause of the use of prior information. To reiterate, we treated
the UCAC4 and PPMXL proper-motion priors as observations
with corresponding errors. The Table 3 KOI proper-motion
parameters (and those for the entire set of reference stars
modeled above) were adjusted by various amounts depend-
ing on the data input errors to arrive at a final result that
minimized χ2.

5.6. Reference Star Photometric Stability

Our NP generation process (Section 3.2) also produces an av-
erage magnitude. In the case of nine day NPs, all of the measured
flux values in each optimum aperture are averaged over the nine
day interval and converted to a magnitude with an arbitrary zero
point through mf = 25.768–2.5∗ log10(〈flux〉). Because we re-
stricted this test to a single channel, no background correction
is applied. The standard deviation for the 15 average mf magni-
tudes is plotted against reference star ID number in Figure 14.
Referencing Section 5.1, stars 1–99 are classified as red giants
in the KIC (sample 1), stars 100–199 are hotter stars (sample
2), stars 201–299 are intermediate temperature stars (sample 3),
stars 300–350 are selected to be more likely K and M dwarfs
(sample 4), and stars 400–452 are the KOIs found in Channel
21 (sample 5). Note that all ID numbers are not present in the
plot due to the editing process (Section 5.3) that produces the
final astrometric reference frame.

The highest maximum variability with a nine day cadence
is found in our sample of suspected giants, which was not
an unexpected result (Bastien et al. 2013). The KOIs seem
to have photometric variability characteristics most similar to
the K, M group. We note trends toward smaller variation with
increasing number within each group (as defined in Section 5.1).
This may be a function of photometric noise characteristics

Figure 14. Measured photometric dispersion (mf standard deviation) over 2.1
y with a nine day cadence for each star modeled in Section 5.3. Giants (1–100)
exhibit the highest overall variability. Other groups are the hot star sample
(101–199), mid-range Teff (201–299), the K–M star sample (300–350), and
the KOI sample (400–452). The trends to smaller photometric variation with
number within each sample group (as defined in Section 5.1) may be a function
of position within Channel 21. The lowest variations are closer (x, y) = (0, 1000)
while the highest are closer (x, y) = (1000, 0).

having positional dependence within Channel 21. The selection
process populating each group and allocating a running number
within each group always assigned the lowest numbers closer
to (x, y)=(0, 1000) and the highest closer to (x, y) = (1000,0).

5.7. Astrometry as a Diagnostic

Figure 15 contains an average absolute value Kepler x residual
for each reference star and KOI (numbering from Table 3) as a
function of mf . The residuals are calculated from the Section 5.3
modeling results. We choose the x residual as a potential
diagnostic given that the y residuals are generally systematically
larger (see Figures 10 and 13). The trend line is a quadratic fit
to the x residuals for the reference stars only (samples 1–3 in
Section 5.1). The planet-hosting KOIs over-plotted with large
font show no extreme astrometric behavior, all lying within
±3σ of the relation. However, several KOI hosting unconfirmed
planetary companions exhibit astrometric peculiarities. Both
KOI 426 and 452 were inspected in 2MASS and Palomar
Sky Survey images and showed no nearby stellar companions
or image structure indicative of close stellar companions.
In addition, KOI 452 is the most photometrically variable
(Figure 14) host candidate star. Unfortunately, given the random
eruption of astrometric peculiarity (see Figure 5), astrometry
alone cannot serve as a reliable indicator of astrophysically
interesting behavior.

5.8. RPM Diagrams: Pre- and Post-Kepler

We now have the proper motions required to generate HK (0)
values for an RPM (Section 2). K-band magnitudes, J − K
colors, and interstellar extinction values, AV , E(B − V ), were
extracted from the online Kepler target database at MAST. We
assumed (Schlegel et al. 1998) extinction-corrected by K(0) =
K − AK and (J − K)0 = (J − K)−E(J − K), with AK =
AV /9 and E(J − K)= 0.53*E(B − V ). The left-hand RPM in
Figure 16 shows HK (0) and (J − K)0 for all stars except the
KOIs and exhibits a distribution of points that appears to have a
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Table 3
Channel 21 KOI Proper Motions (μ)

ID KID KOI mf μRA
a μDEC

b μT

401 6362874 1128 13.51 −0.0063 ± 0.0008 −0.0307 ± 0.0008 0.0314 ± 0.0011
402 6364215 2404 15.66 0.0005 0.0015 −0.0056 0.0019 0.0056 0.0024
403 6364582 3456 12.99 0.0022 0.0011 0.0029 0.0005 0.0036 0.0012
404 6441738 1246 14.90 −0.0038 0.0013 0.0158 0.0012 0.0163 0.0017
405 6442340 664 13.48 0.0090 0.0009 −0.0103 0.0011 0.0137 0.0015
406 6442377 176 13.43 0.0079 0.0009 0.0096 0.0012 0.0124 0.0015
407 6520519 4749 15.61 0.0026 0.0017 −0.0061 0.0019 0.0067 0.0025
408 6520753 4504 11.20 0.0046 0.0087 −0.0535 0.0061 0.0537 0.0106
409 6521045 41 15.20 0.0205 0.0003 −0.0275 0.0006 0.0343 0.0007
410 6522242 855 15.98 0.0025 0.0037 0.0128 0.0029 0.0130 0.0047
411 6523058 4549 13.16 0.0041 0.0019 0.0024 0.0017 0.0048 0.0025
412 6523351 3117 11.38 0.0052 0.0006 −0.0021 0.0006 0.0056 0.0009
413 6603043 368 15.90 −0.0029 0.0005 −0.0018 0.0004 0.0034 0.0006
414 6604328 1736 13.80 0.0033 0.0026 0.0026 0.0021 0.0042 0.0034
415 6605493 2559 15.55 −0.0052 0.0011 −0.0076 0.0012 0.0092 0.0016
416 6606438 2860 13.42 0.0044 0.0025 0.0051 0.0020 0.0068 0.0032
419 6607447 1242 13.75 0.0087 0.0009 0.0002 0.0014 0.0087 0.0017
420 6607644 4159 14.50 −0.0070 0.0017 0.0395 0.0018 0.0402 0.0025
421 6690082 1240 14.47 −0.0027 0.0010 −0.0130 0.0012 0.0133 0.0015
422 6690171 3320 15.95 0.0060 0.0021 −0.0027 0.0015 0.0066 0.0026
423 6690836 2699 15.23 −0.0081 0.0031 −0.0026 0.0019 0.0085 0.0036
424 6691169 4890 15.77 −0.0006 0.0016 −0.0105 0.0021 0.0106 0.0026
425 6693640 1245 14.20 0.0098 0.0012 0.0059 0.0013 0.0115 0.0018
426 6773862 1868 15.22 −0.0089 0.0024 −0.0014 0.0020 0.0091 0.0031
427 6774537 2146 15.33 −0.0023 0.0014 0.0026 0.0013 0.0035 0.0019
428 6774880 2062 15.00 0.0024 0.0019 −0.0019 0.0016 0.0031 0.0025
429 6776401 1847 14.81 −0.0031 0.0014 −0.0295 0.0015 0.0297 0.0020
430 6779260 2678 11.80 0.0000 0.0006 0.0063 0.0004 0.0063 0.0007
431 6779726 3375 15.70 0.0011 0.0031 −0.0084 0.0024 0.0085 0.0040
432 6862721 1982 15.77 0.0026 0.0017 0.0051 0.0022 0.0057 0.0027
433 6863998 867 15.22 0.0076 0.0014 0.0054 0.0012 0.0093 0.0019
434 6945786 3136 15.74 0.0088 0.0018 0.0010 0.0019 0.0089 0.0026
435 6946199 1359 15.23 0.0291 0.0032 −0.0082 0.0023 0.0303 0.0040
436 6947164 3531 14.62 −0.0002 0.0009 0.0010 0.0013 0.0011 0.0016
437 6947668 3455 15.80 −0.0027 0.0015 −0.0046 0.0017 0.0054 0.0023
438 6948054 869 15.60 0.0112 0.0023 0.0097 0.0020 0.0148 0.0031
439 6948480 2975 15.31 −0.0030 0.0013 −0.0004 0.0013 0.0030 0.0018
440 6949061 1960 14.13 0.0050 0.0012 −0.0022 0.0010 0.0055 0.0015
441 6949607 870 15.04 −0.0003 0.0017 0.0216 0.0019 0.0216 0.0026
442 6949898 3031 15.27 −0.0020 0.0021 −0.0021 0.0015 0.0029 0.0026
443 7031517 871 15.22 0.0066 0.0021 −0.0072 0.0014 0.0097 0.0025
444 7032421 1747 14.79 0.0088 0.0020 0.0160 0.0026 0.0182 0.0033
445 7033233 2339 15.13 0.0102 0.0016 0.0072 0.0017 0.0125 0.0023
446 7033671 670 13.77 0.0034 0.0008 −0.0076 0.0007 0.0083 0.0011
447 7115291 3357 15.19 0.0030 0.0018 −0.0014 0.0013 0.0034 0.0023
448 7115785 672 14.00 −0.0078 0.0011 −0.0117 0.0012 0.0141 0.0016
449 7118364 873 15.02 0.0072 0.0018 −0.0040 0.0015 0.0083 0.0023
450 7199060 4152 12.97 −0.0047 0.0010 −0.0028 0.0005 0.0054 0.0011
451 7199397 75 10.78 −0.0019 0.0007 0.0265 0.0006 0.0266 0.0009
452 7199906 1739 15.13 0.0029 0.0014 0.0041 0.0018 0.0050 0.0022

Notes.
a Proper motions in arcseconds per year.
b Corrected for cosδ declination.

main sequence and an ascending sub-giant branch. The average
HK (0) error is 0.43 mag, but is dependent on the value of μvec
with an increased error toward bright values of HK (0).

The scatter in the left of Figure 16 can be due to several
causes. These causes include proper-motion accuracy, random
motions of stars, and systematic motions of stars. The HK (0)
average error bar in the figure indicates a ±0.4 mag of scatter
due to measurement errors. The amount due to random stellar
motions is unknown. Any particular star could have a large
radial component to its random motion and be erroneously

placed among the giant stars with typically lower than average
proper motions. Those two effects increase the random scatter
in an RPM. That systematic motions can corrupt an RPM is
illustrated in Benedict et al.’s (2011) Figure 3. There, the RR Lyr
variables all lie below and blueward of the broad main sequence.
These Pop II giant stars have anomalously large proper motions,
causing their erroneous placement in the RPM.

Comparing the HST-derived RPM (Figure 1, right) with the
left-hand RPM in Figure 16 yields a systematic difference.
What we identify as the locus of main-sequence stars from
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Figure 15. Average x residual from the Section 5.5 modeling plotted against
average mf , scaled in millipixel on the left and mas on the right. The solid curve
is a quadratic fit to average reference star residuals resulting from the modeling
in Section 5.3. Also plotted are the upper and lower bounds within which 99% of
the Section 5.3 reference stars are expected to fall. These stars are plotted with
the smallest ID numbers. The KOI are plotted with larger symbols. The nine
confirmed planetary system host stars are plotted with large bold symbols. All
KOI ID numbers are from Table 4. Clearly, KOI 426 and 452 are astrometrically
peculiar, and the nine planetary system host stars behave as expected.

the right of Figure 1 appears to be substantially offset toward
more negative HK (0) values by ΔHK (0) = −1.0. As a check, we
produced an RPM by averaging the measured proper motions
from the UCAC4 and PPMXL catalogs and obtain the same
offset. Averaging the proper motions from the two catalogs, the
typical HK (0) error is 1.58 mag, which is a factor of three larger
than when we include Kepler astrometry. There is also a far
greater increase in error for brighter values of HK (0).

To bring the main-sequence stars into coincidence with the
HST main sequence would require decreasing the average
μvec proper motions of the final Table 3 proper motions by
∼10 mas yr−1. This proper-motion offset is likely not from
systematic effects on the proper motion due to the space velocity
of the Sun. The Kepler field is very near the solar apex at R.A. �
287◦, decl. � +37◦ (Vityazev & Tsvetkov 2013). With most of
the vector of solar motion in the radial direction, stars near the
solar apex will exhibit very little systematic proper motion due
to solar motion. From Vityazev & Tsvetkov (2013), the average
transverse velocity of stars in the solar neighborhood toward
the Galactic center is Ū = 9 km s−1and the average transverse
velocity perpendicular to the Galactic plane is W̄ = 6 km s−1

for a systematic total velocity of Vt = 10.8 km s−1. Our sample
of F–G dwarfs has 〈K〉 = 11.85 mag with 〈MK〉 � 3 (Cox
2000), and hence an average distance of 500 pc. The expected
proper motion can be estimated from

μvec = πVt/4.74. (10)

This yields μvec = 4.6 mas yr−1, which could explain some but
not all of the positive HK (0) offset in Figure 16.

However, as mentioned above in Section 2, a systematic
effect of Galactic rotation on stellar velocities does exist.
Our HST-derived RPM main sequence is composed of stars
belonging to the Hyades and Pleiades star clusters. They have
a Galactic longitude of � ∼ 175◦. The Kepler field has
� ∼ 74◦. The velocity difference due to Galactic rotation is
∼30 km s−1, translating to a proper-motion difference, Δμvec =
12.7 mas yr−1, close to the correction needed above.
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Figure 16. Left: RPM from the results of modeling Kepler, UCAC4, and
PPMXL data. The average HK (0) and (J − K)0 ±1σ errors are indicated in
the lower left. That error is reduced by a factor of three compared to an RPM
derived by averaging proper motions from UCAC4 and PPMXL. The heavy,
tilted line is the location of the main sequence in the Figure 1 RPM derived from
all-sky HST proper motions. Note the vertical offset in HK (0) discussed in the
text. Right: RPM with a ΔHK (0) = −1.0 correction, containing the KOI, also
shifted. Plotted numbers are from Table 4. The horizontal dotted line represents
a rough demarcation between giant and dwarf stars.

We seek luminosity class differentiation, which is a relative
determination within an RPM. We ascribe the need for a
correction to bring the Channel 21 RPM into closer agreement
with the right side of Figure 1 to a mix of the random and
systematic proper motions just identified. We add the ΔHK (0) =
−1.0 and replot this time including the KOI, similarly corrected
for offset (right-hand side of Figure 16). The identification
numbers in this plot, KIC numbers, and KOI numbers are
collected in Table 4.

6. ESTIMATED ABSOLUTE MAGNITUDES
FOR CHANNEL 21 KOI

Table 4 contains the HK (0) values (corrected by ΔHK (0) =
−1.0) derived from the Table 3 KOI proper motions and K(0)
magnitudes. The listed K-band absolute magnitudes, MK(0),
are obtained using the Figure 2 calibration: MK(0) = 1.51±
0.12+(0.90 ± 0.02)×HK (0). An MK(0), (J − K)0 H-R diagram
is shown in Figure 17. An H-R diagram constructed using HK (0)
from the UCAC4 and PPMXL average proper motions has a
distribution similar to Figure 17, but with significantly increased
scatter. Nine stars in Channel 21 (Season 0) host confirmed
planetary systems. Our number 409 is Kepler-100, hosting three
confirmed planets (Marcy et al. 2014), and our number 441 is
Kepler-28, hosting two confirmed planets (Steffen et al. 2012).
Recently, Rowe et al. (2014) have statistically confirmed a
number of multi-planet systems. All exoplanet host stars and
associated companions found in the Channel 21 field are listed
in Table 5. Most of their positions in the Figure 17 H-R diagram
lie on or close to a solar-metallicity 10 Gyr old main sequence
(Dartmouth Stellar Evolution model; Dotter et al. 2008). Our
number 435 (KOI-1359) has a photometrically determined (and
hence low-precision) lowest metallicity, presented in Table 5,
that is consistent with sub-dwarf location on an H-R diagram,
as indicated in Figure 17. The other eight confirmed planetary
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Table 4
Channel 21 KOI Absolute Magnitude

ID KID KOI K0 (J − K)0 HK (0)a MK
b Statusc

401 6362874 1128 11.75 0.41 3.23 ± 0.08 4.4 ± 0.1 PC
402 6364215 2404 14.02 0.14 1.73 0.96 3.1 0.4 PC
403 6364582 3456 11.38 0.38 −1.76 0.71 −0.1 0.9 PC
404 6441738 1246 13.34 0.31 3.39 0.23 4.6 0.1 PC
405 6442340 664 11.96 0.27 1.65 0.23 3.0 0.1 Kepler-206b, c, d
406 6442377 176 12.18 0.24 1.65 0.26 3.0 0.1 PC
407 6520519 4749 13.77 0.39 1.90 0.81 3.2 0.3 PC
408 6520753 4504 13.94 0.43 6.59 0.43 7.4 0.1 PC
409 6521045 41 9.76 0.29 1.43 0.05 2.8 0.1 Kepler-100b, c, d
410 6522242 855 13.27 0.43 2.83 0.78 4.1 0.2 PC
411 6523058 4549 14.24 0.32 1.64 1.14 3.0 0.4 PC
412 6523351 3117 11.47 0.40 −0.80 0.34 0.8 1.7 PC
413 6603043 368 11.03 −0.05 −2.22 0.39 −0.5 0.3 PC
414 6604328 1736 14.24 0.38 1.37 1.73 2.7 0.7 PC
415 6605493 2559 12.30 0.27 1.12 0.38 2.5 0.2 PC
416 6606438 2860 14.04 0.23 2.19 1.03 3.5 0.3 PC
419 6607447 1242 12.43 0.20 1.14 0.42 2.5 0.2 PC
420 6607644 4159 12.60 0.47 4.62 0.14 5.7 0.1 PC
421 6690082 1240 12.81 0.39 2.41 0.26 3.7 0.1 PC
422 6690171 3320 13.79 0.53 1.88 0.85 3.2 0.3 EB; PC
423 6690836 2699 13.27 0.46 1.91 0.92 3.2 0.3 PC
424 6691169 4890 14.41 0.18 3.53 0.54 4.7 0.1 PC
425 6693640 1245 12.79 0.24 2.12 0.33 3.4 0.1 PC
426 6773862 1868 12.27 0.82 1.12 0.70 2.5 0.4 PC
427 6774537 2146 13.13 0.56 −0.15 1.16 1.4 1.3 PC
428 6774880 2062 13.45 0.26 −0.12 1.75 1.4 2.0 PC
429 6776401 1847 12.88 0.45 4.23 0.15 5.3 0.1 PC
430 6779260 2678 10.07 0.41 −1.96 0.23 −0.3 0.3 PC
431 6779726 3375 14.00 0.28 2.65 1.01 3.9 0.3 PC
432 6862721 1982 13.97 0.31 1.76 1.03 3.1 0.4 PC
433 6863998 867 13.11 0.55 1.94 0.44 3.3 0.2 PC
434 6945786 3136 13.52 0.61 2.24 0.63 3.5 0.2 PC
435 6946199 1359 13.48 0.40 4.88 0.28 5.9 0.1 R14
436 6947164 3531 13.06 0.34 −2.39 2.66 −0.6 1.8 EB; PC
437 6947668 3455 13.93 0.39 1.56 0.92 2.9 0.4 PC
438 6948054 869 13.59 0.41 3.45 0.45 4.6 0.1 Kepler-245b, c, d
439 6948480 2975 13.69 0.31 0.12 1.28 1.6 1.2 PC
440 6949061 1960 12.64 0.29 0.30 0.62 1.8 0.5 Kepler-343b, c
441 6949607 870 12.68 0.56 3.35 0.26 4.5 0.1 Kepler-28b, c
442 6949898 3031 13.61 0.28 0.02 1.83 1.5 2.1 PC
443 7031517 871 13.60 0.40 2.53 0.56 3.8 0.2 PC
444 7032421 1747 13.10 0.39 3.43 0.39 4.6 0.1 R14
445 7033233 2339 12.78 0.61 2.27 0.40 3.6 0.1 R14
446 7033671 670 12.15 0.33 0.72 0.28 2.2 0.2 PC
447 7115291 3357 13.49 0.32 0.11 1.45 1.6 1.3 EB; PC
448 7115785 672 12.32 0.37 2.04 0.25 3.3 0.1 Kepler-209b, c
449 7118364 873 13.34 0.37 1.91 0.62 3.2 0.2 PC
450 7199060 4152 11.84 0.10 −0.49 0.43 1.1 0.8 PC
451 7199397 75 9.37 0.29 0.50 0.08 2.0 0.1 PC
452 7199906 1739 13.43 0.36 1.01 0.93 2.4 0.5 PC

Notes.
a HK (0) = K(0) + 5log(μT) with ΔHK (0) = −1.0 correction.
b MK (0) = 1.51 ± 0.12 + (0.90 ± 0.02)×HK (0) from the Figure 2 calibration.
c PC = Planetary candidate, EB = eclipsing binary, FP = false positive, Kepler = designated exoplanets have
been confirmed, R14 = statistical multi-exoplanet confirmation (Rowe et al. 2014).

system hosts have locations in the H-R diagram consistent with
a main-sequence dwarf classification.

Inspection of Figure 17 suggests that a significant number of
our astrometric reference stars (and some of the KOI) appear to
be sub-giants. As with any apparent-magnitude-limited survey,
the stars observed with Kepler will have a Malmquist-like
bias, i.e., the survey will be biased toward the inclusion of

the most luminous objects in the field as a result of the greater
volume being surveyed for these intrinsically brighter objects
(Malmquist & Hufnagel 1933). Therefore, within the Kepler
field, there is a significant bias toward observing stars that are
more massive and/or more evolved.

The Kepler target selection attempted to mitigate this bias by
selecting stars identified as main-sequence solar-type dwarfs
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Table 5
Channel 21, Season 0 Planetary Systems

ID KID KOI Planeta P(days) Referenceb Teff R
 log g [Fe/H] (J − K)0 MK (0)

405 6442340 664.01 206c 13.1375 R14 5764 1.19 4.24 −0.15 0.27 3.0 ± 0.1
664.02 206b 7.7820
664.03 206d 23.4428

409 6521045 41.01 100b 12.816 Mar14 5825 1.49 4.13 +0.02 0.29 2.8 0.1
41.02 100c 6.887
41.03 100d 35.333

435 6946199 1359.01 37.101 R14 5985 0.85 4.53 −0.51 0.4 5.9 0.1
1359.02 104.8202

438 6948054 869.01 245b 7.4902 R14 5100 0.80 4.56 −0.03 0.41 4.6 0.1
869.02 245d 36.2771
869.03 245c 17.4608

440 6949061 1960.01 343b 8.9686 R14 5807 1.43 4.18 −0.14 0.29 1.8 0.5
1960.02 343c 23.2218

441 6949607 870.01 28b 5.9123 R14 4633 0.67 4.65 +0.34 0.56 4.5 0.1
870.02 28c 8.9858 Ste12

444 7032421 1747.01 20.5585 R14 5658 0.89 4.54 +0.07 0.39 4.6 0.1
1747.02 0.5673

445 7033233 2339.01 2.0323 R14 4666 0.68 4.64 +0.38 0.61 3.5 0.1
2339.02 65.1900

448 7115785 672.01 209b 41.7499 R14 5513 0.94 4.47 +0.01 0.37 3.4 0.1

Notes.
a Assigned number in the Kepler confirmed planet sequence, e.g., Kepler-206c.
b Mar14 = Marcy et al. (2014), Ste12 = Steffen et al. (2012), R14 = Rowe et al. (2014).
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Figure 17. H-R diagram for the Section 5.5 reference stars and the Table 4
KOIs. MK (0) are calculated using the Figure 2 linear mapping between MK (0)
and HK (0) after applying the Section 5.8 systematic correction to HK (0). KOI
labeling is the same as in Figure 16 on the right. Lines show predicted loci for
10 Gyr age solar metallicity stars (- - -) and 3 Gyr age metal-poor stars (-··-)
from Dartmouth Stellar Evolution models (Dotter et al. 2008). Note the large
number of KOI sub-giants.

based on their KIC values (Batalha et al. 2010). However,
significant uncertainty in KIC surface gravities make this
selection process suspect. Brown et al. (2011) concluded that
uncertainties in KIC log(g) are ∼0.4 dex, and are unreliable for
distinguishing giants/main-sequence stars for Teff � 5400 K.
Consequently, a significant fraction of Kepler target stars are
expected to be F and G spectral-type sub-giant stars (Farmer
et al. 2013; Gaidos & Mann 2013).

Finally, to argue for the added value of carrying out this
astrometry, Figure 18 plots a theoretical H-R diagram (log g
versus log T) for the astrometric reference stars (gray dots) and
the Table 4 KOI. The log g and T values are from the Kepler
Target Search results tabulated at the STScI MAST.7 There are
very few stars in the expected locus of F–G sub-giants. P. A.
Cargile et al. (in preparation) have re-measured Teff and log g for
850 KOIs using Keck HiRes archived material and they find a
sub-giant fraction among Kepler targets similar to that shown in
Figure 17. Again, in this plot we include a range of metallicities
and ages from the Dartmouth evolution models.

7. SUMMARY

1. Astrometry carried out on Kepler data yields signifi-
cant systematics in position. These systematics correlate
with time.

2. Astrometric performance correlates with Kepler telescope
temperature variations. Larger variations result in poorer
astrometry.

3. Astrometric modeling with a previously successful Schmidt
model of more than one Kepler season fails to produce
astrometric precision allowing for the measurement of
stellar parallax.

4. Combining Kepler astrometry for a single season and
channel and three quarters with existing catalog positions
and proper motions extends the time baseline to over 12 yr.

7 http://archive.stsci.edu/kepler/kepler_fov/search.php
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Figure 18. Theoretical H-R diagram for the Section 5.5 astrometric reference
stars and the Table 4 KOI. Data are from the MAST. KOI labeling is the same
as in Figure 17. The main sequence and giant branch are apparent. Lines show
the predicted loci for 10 Gyr age solar metallicity stars (- - -) and 3 Gyr age
metal-poor stars (-··-) from Dartmouth Stellar Evolution models (Dotter et al.
2008). Compared with Figure 17, existing log g values apparently do not readily
identify sub-giants.

This provides a mapping of the lower-spatial frequency
distortions over a channel, and improves the precision of
measured proper motions to 1.0 mas yr−1, over a factor of
three better than UCAC4 and PPMXL.

5. Applying that astrometric model, Kepler measurements
yield absolute proper motions for a number of KOIs
with an average proper-motion vector error of σμ =
2.3 mas yr−1, or σμ/μ = 19.4%. In contrast, averaging
the UCAC4 and PPMXL catalog proper motions provides
σμ = 5.0 mas yr−1, or σμ/μ = 43.0%.

6. An RPM diagram constructed from the proper motions
determined by our method, when compared to one based
on HST proper motions, shows a systematic offset. Much of
the offset can be attributed to the effect of Galactic rotation
on proper motions.

7. The corrected RPM parameter, HK (0), transformed to
MK (0) through an HK (0)–MK (0) relation derived from HST
proper motions and parallaxes, yields MK (0) for 50 KOIs,
including 9 stars with confirmed planetary companions, 8
now confirmed as dwarfs, and 1 a possible sub-dwarf. Six
KOIs are identified as giants or sub-giants.

The next significant improvement in KOI proper motions will
come from the space-based, all-sky astrometry mission Gaia
(Lindegren et al. 2008) with ∼20 μs of arc precision proper
motions and parallaxes for the brighter KOIs. With parallax
there will be no need for RPM diagrams. Final Gaia results are
expected early in the next decade.
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