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Abstract 

 

A Framework to Measure the Value of IoT in Spare Parts Logistics Networks 
 

 

Krishna Teja Rekapalli, M.S.E  

The University of Texas at Austin, 2017 

 

Supervisor:  Erhan Kutanoglu 

 

With increasing connectivity and declining data processing costs day-by-day, industrial 

systems hold a promising future in the wake of technologies like Internet of Things (IoT). Spare-

parts logistics networks can leverage continuous sensor data from machines to provide better 

service to their customers. This work introduces a framework to evaluate the impact of Internet of 

Things on a multi-echelon spare parts logistics network. A discrete event simulation of a stylized 

system is developed and numerical experiments are used to study the system-wide effects of 

different factors like inspection interval and replacement policy. The simulations are used to 

evaluate the costs  under different key factor settings and decision plots are derived to identify the 

cost settings under which the IoT is beneficial. The results suggest that continuous data collection 

about the part health can enable early replacement policies which result in reduced total cost. The 

study also found that in the systems with high holding cost, making inventory and replacement 

policy decisions jointly can be more beneficial.  
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Chapter 1:  Motivation 

 

1.1 THE INTERNET OF THINGS: 

Internet of Things (IoT) is a system of connected devices that can communicate with each 

other through the Internet. After the advent of internet, the way we communicate has changed by 

a great extent. The number of connected devices is increasing at a rapid pace. The IoT connects 

real world objects and creates an opportunity to impart intelligence to the system to process the 

information and make useful decisions [1]. 

 According to Gartner, there are 4.9 billion connected things worldwide and predicted that 

this number would reach 20.8 billion by 2020 [2]. Research firm Internet Data Corporation, in its 

2014 report stated that the IoT enabled smart manufacturing can deliver an additional USD 371 

billion in revenue in the next four years [3]. McKinsey Global Institute’s report on IoT predicted 

that IoT enabled manufacturing can have a potential impact of USD 1.3-3.7 Trillion per year by 

2025 [4].  The report also highlighted that less than 1% of data is being currently used for alarms 

and real-time control and more can be used for optimization and prediction. Information 

Technology & Innovation Foundation, in its 2016 update on the state of IoT [5] remarked that the 

costs of some sensing technologies reduced by 100x in the last decade.  

With so many potential gains in revenue and efficiency, the industry has already started 

investing in building the framework and infrastructure of IoT into their manufacturing processes 

and products.  

 

1.2 MACHINE MAINTENANCE SYSTEMS: 

The performance of every machine deteriorates over time subject to stress and wear. 

Maintenance should be exercised to maintain performance and production. Maintenance policies 

can be broadly categorized into three categories namely Corrective Maintenance (CM), Condition 

Based Maintenance (CBM) and Preventive Maintenance (PM). Corrective maintenance is a 
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practice where the maintenance is triggered by the machine failure. This is also known as Reactive 

Maintenance. CM generally results in lesser reliability and increased system down-time. PM on 

the other hand is a practice where maintenance is conducted at regular intervals irrespective of the 

condition of the machine. PM gives higher reliability but also results in increased maintenance 

costs. Condition based maintenance emerged as a practice that can take the good of both PM and 

CM. In CBM, maintenance is conducted based on the health condition of the machine. For CBM 

to be applied, there should be infrastructure and practices in place which can help get the machine 

health information without creating disruptions in machine performance. This information is used 

to make a decision on whether a machine needs maintenance. CBM has gained interest in the 

recent years due to improvements in monitoring techniques. IoT can be an enabler to apply CBM 

at scale for geographically dispersed equipment. This is because the health states of different 

machines in a network can be communicated to a central maintenance service provider and the 

provider can make decisions with system-wide data at hand. This application of IoT with CBM 

will be the focus of this work.  

 

1.3 SPARE PARTS LOGISTICS NETWORKS: 

Spare parts for maintaining mission-critical machines are generally distributed using a 

multi-echelon supply chain network with central warehouses in the top echelon serving stocking 

locations in the lower echelons and the stocking locations in turn serving the customers [6]. Each 

stocking location has some customers assigned such that their demand can be served in a 

reasonable amount of time so that the customers’ experienced downtimes are minimized. 

Generally, these networks are managed by single entities (maintenance service provider) and they 

serve their customers subject to service contracts.  If a machine is down beyond a certain time due 

to lack of part availability, this hurts the customers’ businesses and hence penalizes the 

maintenance providers for not honoring the service contract.  Knowing the part health beforehand 

can be a win-win situation for both the customers and maintenance providers because the 
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maintenance provider can decide to replace a part before a failure occurs and this would prevent 

the downtime. With the integration of IoT and CBM technologies, a centralized and continuous 

health data collection system can be achieved and this information can be used to optimize both 

the inventory levels of the parts used in maintenance and the conditions at which parts are replaced. 

This study focuses on impact of such system on a spare parts logistics network. 

 

 

1.4 RELATED WORKS IN LITERATURE: 

Elwany and Gebraeel [7] applied the remaining useful life distributions obtained from 

sensor data to make optimal inventory ordering and replacement decisions but the inventory is 

assumed to be held at customer location. The work considered a single machine system and the 

inventory policy followed is (S-1, S). Jardine et al. [8]  proposed an optimal maintenance policy 

by leveraging the vibration monitoring data of bearings, but the work assumed that inventory is 

always available. Eunshin et al. [9] introduced a dynamic optimization model to make optimal 

maintenance decisions for a wind turbine subjected to stochastic deterioration. The framework 

represented each turbine as a separate entity and assumed a long lead time for replacement parts 

to arrive. Merve and Djurdjanovic [10] considered integrated maintenance scheduling and 

production planning for a multiple machine flexible manufacturing system. The work used 

simulation and ‘tabu’ search methodologies to solve the problem.  

While many studies treat demand as given and ignore the maintenance planning, on the 

other end of spectrum, studies on maintenance policy ignore the inventory constraints. The 

downside of such studies is that they fail to provide a comprehensive view of the system wide 

effects. Limited studies [11] exist that jointly consider maintenance and inventory. Chen et al. [12] 

considered a multi-echelon spare part logistic network in a joint maintenance and inventory 

problem. The work applied simulation modeling to identify the joint optimal maintenance and 

inventory policy for a system with age based preventive replacement of parts. YeWei Cai [13] 
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proposed a Semi Markov Decision Process to implement condition based predictive maintenance 

for semi-conductor manufacturing processes. Olde Keizer et al. [14] modeled the joint inventory 

and part replacement decision making problem for a multiple component system as a discrete time 

Markov Decision Process and employed value iteration technique to solve the problem. However, 

the study only considered collecting health data in regular intervals but did not address the system 

under continuous monitoring. Continuous monitoring can be helpful in detecting state changes 

earlier so can result in reduced down-time. 

 

So far there is very little literature that has dealt with measuring value of IoT in spare parts 

logistics networks. Most of the literature on IoT discusses general frameworks and infrastructure 

needed to apply the technology but very few worked on analytical aspects of it.  Our goal in this 

work is to show the value of applying IoT to spare parts logistics network and identify the system 

settings where IoT is beneficial and where it is not. With the help of simulations, we attempt to 

show the cost and efficiency impacts of IoT. The objective is to provide a framework that helps 

decision makers measure the quantitative benefits of investing in IoT technology in an existing 

spare-parts logistics network. This framework can be of great help for maintenance providers to 

make strategic decisions on whether to invest in advanced technologies to monitor machine health. 

It can also be of great help in negotiating service contracts with customers. 

 

The rest of the report is organized as follows: Chapter 2 discusses the system under 

consideration and the key assumptions made. Chapter 3 describes the order of events and input 

parameters and output metrics for the discrete event simulation of the system. Chapter 4 discusses 

the numerical experiments and results. Finally, Chapter 5 presents conclusions and future scope of 

the work. 
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Chapter 2:  System Setup 

2.1 SPARE PARTS LOGISTICS (SPL) NETWORK 

In this work, we focus on studying the impact of IoT on spare parts logistic networks. We 

consider a multi-echelon spare parts logistics network that consists of a central warehouse (CW), 

multiple stocking locations (SL) each serving a group of geographically dispersed customers 

whose machines might need the spare parts in case machines in use fail. The stocking locations 

are strategically located so that they can serve customers in a reasonable amount of time to 

minimize the downtime experienced by customers. The stocking locations hold inventory of spare 

parts required by customers they serve and inventories are replenished by the central warehouse 

when required.  Figure 2.1 shows a representation of a spare parts logistics network. 

 

Figure 2.1: Representation of a two-echelon spare-parts logistics network with single 
warehouse 3 stocking locations, and 9 customers 
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Here we introduce some terms that we will be using in the rest of the report: 

Standard Shipping Time (ts): 

The standard shipping time ‘ts’ is the time taken for the part to reach the customer when shipped 

from a stocking location. 

Emergency Shipping Time (te): 

The emergency shipping time ‘te’ is the time taken for the part to reach the customer when shipped 

from the central warehouse. This happens in case of a stock-out at the stocking location trying to 

serve the customer. 

Inventory Replenishment (lead) Time (tl): 

The inventory replenishment time ‘tl’ is the time to replenish inventory at the stocking locations 

from the central warehouse, which is assumed not to stock out at all. 

Inspection Interval (ti): 

The inspection interval ‘ti’ is the time between two consecutive health/condition inspections of a 

machine at a customer’s site. 

Replacement Policy (pr): 

The replacement policy ‘pr’ is the machine state at which a replacement part is requested from the 

stocking location to the customer’s location.  

 

2.2 IOT IN SPL NETWORK 

As introduced in the previous chapter, this study focuses on identifying the right scenarios 

where applying IoT to an SPL network can be beneficial. In an SPL network with CBM and no 

IoT applied, the machines are inspected at regular intervals manually and the health information 

is communicated to the stocking locations which make a decision whether or not to send a new 

part to the customer. When IoT is applied, the health information of the machines at customer 

locations can be sent to their assigned stocking locations without the need of a manual inspection. 
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This key differentiation is what we will base on when we make an attempt to compare the costs of 

‘IoT’ and ‘no-IoT’ scenarios in this work.  

 

2.3 ASSUMPTIONS: 

The following are the key assumptions we make for the system: 

1. There is one central warehouse with unlimited inventory of parts. 

2. One machine of a single type is at use in each customer location. 

3. The machine has only one critical part which determines its health. 

4. The condition of the part is discretized to a finite number of states where: 

a. 0 corresponds to the as-good-as new condition 

b. The largest possible state corresponds to the failed condition 

5. From installation to failure the part health follows a Discrete Time Markov Process. 

6. Each stocking location uses an (s, S) policy to manage and replenish the inventory of the 

spare parts. 

7. The replenishment lead times (between the central warehouse and the stocking locations) 

are known and constant. 

8. Once the spare reaches the customer, the replacement of an old part with the new spare is 

instantaneous. 

9. The machine health state is communicated to the stocking location at each inspection 

(controlled by the inspection interval). 

10. Part failures are communicated to the stocking location immediately. 

11. Condition-based replacement policy determines the condition in which a part replacement 

is triggered. 
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In the next chapter, we describe the system simulation built considering all the assumptions stated 

in this chapter. 
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Chapter 3:  System Simulation 

3.1 DISCRETE EVENT SIMULATION 

To model the behavior of the two-echelon spare parts logistics system described in the 

previous chapter, a discrete event simulation model is built using Python programming language. 

The simulation progresses in discrete time units of one day. A key advantage the simulation study 

provides is that we can study behavior of a complex system for different policy changes. In the 

current version, the simulation model is built to run for a system with a single central warehouse, 

single stocking location, and up to two customers, each with one machine in continuous use. 

 

3.2 SIMULATION INPUTS 

Table 3.1 details the input parameters to the simulation.  
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# Name Description 

1 Length (l) The number of time units starting from zero for which the simulation is 

run 

2 Number of customers The number of customers (equal to the number of machines) 

3 Transition probability matrices For each machine present in the system, the probability transition matrix 

gives the probability mass of the next state, given the current state 

4 Replacement policies For each machine at the customer location, the machine state at which the 

customer requests a new replacement part from the stocking location (or 

the central warehouse depending on part availability) 

5 Fail states The indices of failure states for each machine in the system. This is 

generally the final state of the transition probability matrix 

6 Standard shipping times For each customer, the standard shipping time to ship a part from the 

stocking location to the customer 

7 Emergency shipping times For each customer, the time to ship a part from the central warehouse. This 

option is exercised only when the stocking facility has no on-hand 

inventory and demand from the customer arises 

8 Maximum inventory level Order-up-to level S for the stocking location and the inventory on hand at 

the beginning of the simulation 

9 Minimum inventory level Reorder point s for the stocking location 

10 Inventory replenishment time The lead time for the inventory to be replenished at the stocking location 

from the central warehouse 

11 Inspection interval This indicates how often the stocking location wants to know the states of 

different machines that it is serving 

Table 3.1: Simulation inputs 
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3.3 ORDER OF EVENTS 

Here we try to capture a screenshot of simulation at a given moment to to explain the 

overall process and order of events. Let us consider a sample scenario with one customer, one 

stocking location and one warehouse and with inspection interval set to one. At the end of day ‘t-

1’ let us assume that there are ‘I’ units of inventory at the stocking location and the machine at the 

customer location is in state ‘j1’. At the beginning of day ‘t’ suppose machine has transitioned to a 

state ‘j2’ (j2 ≥ j1). If the new state ‘j2’ is a “replacement state”, i.e.,  j2 = pr then we trigger a demand 

from the customer to the stocking location. If the stocking location has the inventory, i.e., I > 0, 

then the stocking location will dispatch a new part right away and it will take ‘ts’ units of time for 

the part to reach to the customer. Otherwise, if I = 0, the demand is passed to the central warehouse 

and the central warehouse which ships the part as an emergency shipment right away to the 

customer. In this case, the shipment will take ‘te’ amount of time for the part to reach the customer.  

During shipping (standard or emergency) the machine continues to degrade at the rate described 

by the transition probability matrix. In the case when I = s, an inventory replenishment order (with 

order size equal to the order up to level S less the reorder point s) is initiated and the central 

warehouse ships the required quantity of new parts which will arrive after ‘tl’ amount of time at 

the stocking location. Once the new replacement spare-part arrives at the customer location, the 

existing part will be replaced instantaneously with the new part (the machine may be working or 

in the fail state). After the part replacement, the machine comes back to the good-as-new condition 

(state 0) and the machine use starts with deterioration as explained earlier. 
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3.4 SIMULATION OUTPUTS 

Table 3.2 details the output measures collected from the simulation runs. Outputs can be 

used to measure how the system has performed for a combination of input parameters.  

 

# Name Description 

1 Sample state paths For each machine, throughout the length of the simulation we trace the 

state paths of the machines. For each machine, it will be a vector of 

length ‘𝑙’. The elements of the vector represent state path of the 

machine. 

2 Inventory The inventory level at the stocking location as a function of time. This 

will also be a vector of length ‘𝑙’. 

3 System down-time Sum of the number of days each machine spent in fail state during the 

simulation. 

4 Standard shipment 

timestamps 

An array of tuples with each tuple containing information on which day 

and to which customer a part was shipped from the stocking location. 

5 Emergency shipment 

timestamps 

An array of tuples with each containing information on which day and 

to which customer a part was shipped from the central warehouse. 

6 Inventory 

replenishment 

timestamps 

Timestamps indicating times when the stocking location ordered 

replenishments from the central warehouse. 

Table 3.2: Simulation outputs 

In the next chapter, we discuss how we leverage the simulation model to study the costs of 

different combinations of input parameters on the outputs.   
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Chapter 4:  Numerical Experiments and Results 

As explained in the previous chapter, the simulation study can be used to study how the 

system responds to different policy changes such as part replacement decisions and inventory 

levels, and system parameters such as shipping times and transition probability matrices. With the 

output metrics generated by the simulation, the overall costs of different policies can be compared 

by assigning costs to shipping, inventory holding, and downtime. As the system behavior is highly 

dependent on the transition probability matrix, we study example systems with different 

underlying transition probability matrices. 

For the numerical experiments, we have considered a single central warehouse, single 

stocking location. For each input factor, multiple levels are chosen and all feasible combinations 

are experimented. Each simulation run is 365 days long and is repeated 50 times and the results 

are aggregated over the repetitions. We evaluate the combinations after assigning cost parameters 

to the outputs and calculating total cost of each combination. Table 4.1 below shows the details 

about different factor levels we use in this study. Figures 4.1-4.3 show the transition matrices we 

use in the numerical experiments. The health of the critical part is assumed to have 10 discrete 

states where 0 corresponds to new and 9 corresponds to failure. The number in the parentheses 

next to the matrix name is the Mean Time to Failure (MTTF) for a new part whose health condition 

follows the given matrix.  
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Factor Levels Used 

Standard Shipping Time (ts) 1 

Emergency Shipping Time (te) 1, 5 

Inventory Replenishment Time (tl) 5 

Inspection Interval (ti) 1, 7, 15, 28, 56 

Replacement Policy (pr) 3, 4, 5, 6, 7, 8, 9 

Inventory Level Min (s) 1, 2, 3, 4, 5, 6, 7, 8, 9 

Inventory Level Max (S) 2, 3, 4, 5, 6, 7, 8, 9, 10 

Transition Matrices (P) P1, P2, P3 

Table 4.1: Factor levels used in the numerical experiments 

 

 

Figure 4.1: Transition probability matrix P3 with MTTF of 21 days 
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Figure 4.2: Transition probability matrix P2 with MTTF of 31 days 

 

 

 

 

Figure 4.3: Transition probability matrix P1 with MTTF of 62 days 

 

 



16 
 

 

We introduce some cost parameters that we will be using in the rest of this chapter to 

compare different scenarios.  

Manual Inspection Cost Rate (ri): 

As introduced in Chapter 2, ti is the inspection interval which describes how often, the stocking 

locations get information about the health of machines that they serve. In absence of IoT, the 

inspection happens manually and the information is sent to the stocking locations.  ri is the cost 

incurred per manual inspection per machine. So, this applies to ‘no-IoT’ case. 

Data Collection Cost Rate (rc): 

When IoT is applied to a system, the health information that is collected is sent to the stocking 

locations via the IoT infrastructure. There is a cost associated with collecting the data and 

processing it.  rc is the cost incurred per data collection per machine. So, this cost applies to the 

‘IoT’ case. 

Down-time Penalty Cost Rate (rd): 

Every day a machine is down because of a failed part, the maintenance provider incurs a penalty 

cost rd. 

Inventory Holding Cost Factor (rh): 

The annual inventory holding cost is calculated by multiplying the average inventory value with 

the inventory holding cost factor. The factor has a value between 0 and 1. 

Inventory Ordering Cost (co): 

The inventory ordering cost is the fixed cost incurred for every inventory replenishment order.  

New Part Cost (cN): 

Every time a part is replaced with a new one, a cost cN is incurred to the maintenance provider.  
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Annual Logistics Cost: 

The logistics cost is the sum of the shipping costs for the parts, inventory holding costs at the 

stocking location and the fixed costs for inventory orders. 

Annual Operations Cost: 

The operations cost is the sum of new parts costs, and logistics costs, and the inspection costs. 

Annual Total Cost: 

The total cost is the sum of operations cost and down-time penalty cost. 

 

   

4.1 EXAMPLE SYSTEM I: 

Here we consider a two-echelon spare parts logistics network with a single central 

warehouse, single stocking location and two customers. 

 

4.1.1 Evaluating Policies 

For every transition probability matrix mentioned above total of 2030 combinations of the 

factors are experimented. As mentioned before, we assign costs to different outputs from the 

simulation to calculate the total cost of the combination and use this to evaluate the policies against 

each other.  

Figure 4.4 shows the trends of total cost, operations cost and down-time penalty cost (all 

costs are annual, averaged over 50 simulation runs) for different inspection intervals and different 

replacement policies (machine conditions for part replacements) for IoT condition. The factors 

that are fixed are P = P3(21), te = 1, ts = 1, tl = 5, S = 10, s = 1, rc = 1, cN = 100, co = 20, rd =100, rh 

=0.25. We notice as expected that for all inspection intervals, the operations costs go down with 

increase in pr (as the part is replaced less and less frequently increasing the risk of failure) while 

the down-time penalty costs go up. The total cost which is the sum of operations cost and the 
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down-time penalty cost goes down initially and then starts to increase after a minimum in all the 

three inspection interval scenarios. 

 

 

 

Figure 4.4: The trends of operations cost, down-time penalty cost and total cost for replacement 
policy. Color shows details about inspection interval. (P = P3(21), te = 1, ts = 1, tl = 
5, S = 10, s = 1, rc = 1, cN = 100, co = 20, rd =100, rh = 0.25) 

While the total cost curve for ti = 28 is less sensitive to the replacement policy, the one for 

ti=1 is very sensitive. This is because when we have frequent information about machine health, 

we can identify the transitions to replacement state more frequently and take early actions to send 

a replacement part. The probability of identifying transitions at the right time reduces with increase 

in inspection interval. Although shorter inspection intervals increase the operations costs for each 

replacement policy, the total costs go down due to down-time costs savings that come with more 

frequent inspections. This leads to a potentially different replacement policy depending on the 
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inspection interval. For example, when the inspection interval is 7 or 28, the best condition to 

replace the part is 6 as it leads to the lowest total costs and the best condition to replace the part is 

7 when the machine condition is inspected every day.  Hence, we would choose to replace the part 

at higher condition and still achieve a lower cost when ti = 1 than in the case of ti = 28. If we change 

the underlying transition probability matrix and keep everything else the same, we get the results 

as in Figure 4.5 (P = P2(31)) and Figure 4.6 (P = P1(62)). Note that, inspecting every day (ti = 1) 

does not result in the overall minimum total cost in either of these cases.  

 

 

 

 

Figure 4.5: The trends of operations cost, down-time penalty cost and total cost for replacement 
policy. Color shows details about inspection interval. (P = P2(31), te = 1, ts = 1, tl = 
5, S = 10, s = 1, rc = 1, cN = 100, co = 20, rd =100, rh = 0.25) 
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Figure 4.6: The trends of operations cost, down-time penalty cost and total cost for replacement 
policy. Color shows details about inspection interval. (P = P1(62), te = 1, ts = 1, tl = 
5, S = 10, s = 1, rc = 1, cN = 100, co = 20, rd =100, rh = 0.25) 

This happens because as the system becomes more reliable as in the cases of Figures 4.5 

and 4.6, inspecting weekly i.e., ti = 7, may be better overall, as the costs increase due to inspecting 

more frequently would dominate the savings in the down time penalty costs. However, for systems 

like the one in Figure 4.5 (P = P3(21)), it may be more beneficial to collect data on a regular basis 

i.e., ti =1.  
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4.1.2 Comparing IoT vs non-IoT Scenarios 

In this section, we compare the total cost of IoT scenarios with non-IoT scenarios for some 

factor settings. Figure 4.7 shows the trends of total cost, operations cost and down-time penalty 

cost for different replacement policies (all costs are annual) for IoT and non-IoT conditions on the 

left and right respectively. The factors that are fixed are P = P3(21), te = 1, ts = 1, tl = 5, S = 10, s 

= 1, rc = 1, ri =6, cN = 100, co = 20, rd =100, rh =0.25.  We notice that in non-IoT scenario, the 

operations cost for the policy with minimal total cost is 5389 units and the down-time penalty cost 

is 1092 units (corresponding to replacement condition of 6). In the IoT scenario, the operations 

cost went up to 5541 units but the down-time penalty cost has come down to 0 units for the 

minimum total cost policy (corresponding to a different replacement condition, 7). Thus, the IoT 

scenario results in a reduction of the total cost from 6841 to 5541 units. That is a 19% reduction 

in total costs when compared to the non-IoT best policy. This is one example where applying IoT 

will be beneficial. 

 

Now let us consider a similar scenario with all factors except rc are kept at the same values 

as the previous example.  The factors that are fixed are P = P3(21), te = 1, ts = 1, tl = 5, S = 10, s = 

1, rc = 3, ri =6, cN = 100, co = 20, rd =100, rh =0.25. Note that rc  represents the data collection costs 

for the IoT case and its value is increased to 3 from 1 in the previous example.  Figure 4.8 shows 

the trends of total cost, operations cost and down-time penalty cost for different replacement 

policies (all costs are annual) for IoT and non-IoT conditions on the left and right, respectively. 

The non-IoT scenario’s costs stay at the same place as the previous example as we have not 

changed the value of the manual inspection cost rate, ri. The IoT scenario now results in operations 

cost of 7001 units and down-time penalty cost of 0 units. The IoT scenario now results in 

operations cost of 7001 units and down-time penalty cost of 0 units. Thus, IoT scenario results in 
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increase of the total costs from 6481 to 7001 units. That is an 8% increase of cost from the previous 

best policy. Clearly applying IoT is not very beneficial in this case. 

 

 

 

Figure 4.7: The trends of operations cost, down-time penalty cost and total cost for replacement 
policy broken down by Inspection Interval. Color shows details about IoT. (P = 
P3(21), te = 1, ts = 1, tl = 5, S = 10, s = 1, rc = 1, ri =6 cN = 100, co = 20, rd =100, rh = 
0.25) 
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Figure 4.8: The trends of operations cost, down-time penalty cost and total cost for replacement 
policy broken down by inspection interval. Color shows details about IoT. (P = 
P3(21), te = 1, ts = 1, tl = 5, S = 10, s = 1, rc = 3, ri =6, cN = 100, co = 20, rd =100, rh = 
0.25) 

4.1.3 Identifying Key Factors and Deriving Decision Plots 

From the results discussed in the previous sections we observe that the key cost factors that 

affect the IoT decisions are: 

• The Probability Transition Matrix (P) 

• New Part Price (cN) 

• Down-time Penalty Cost Rate (rd) 

• Manual Inspection Cost Rate (ri) 

• Data Collection Cost Rate (rc) 
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By varying the values of these key factors, we can create boundary plots which can help 

us identify the situations where IoT is beneficial and quantify the value. Here, we will make 

Decision Plots to help decide between ti = 1 with IoT and ti = 7 and no-IoT for different matrices 

and a range of key cost factors discussed above. Table 4.2 below shows the levels of factors used. 

For each option, i.e., ti = 1 with IoT and ti = 7 with no-IoT, and for a given combination of the 

factors, we calculate the costs and evaluate the minimum total cost for each option, and calculate 

the difference in the minima. If the IoT option results in a higher total cost than no-IoT option, 

then the recommendation is not to go for IoT. If the IoT option results in a lower total cost, then 

the recommendation is to go for IoT. 

 

Factor Levels Used 

New Part Price (cN) 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

Down-time Penalty Cost Rate (rd) 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

Manual Inspection Cost Rate (ri) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

Data Collection Cost Rate (rc) 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 

Table 4.2: Factor levels used in generating the Decision Plots 

For each option mentioned above we evaluate 10,000 combinations of the factors to 

prepare the Decision Plots. Figure 4.9 shows the Decision Plot for down-time penalty cost rate (rd) 

fixed at 10 units and manual inspection cost rate (ri) fixed at 1 unit for the system with P = P3(21), 

varying the new part cost and data collection cost rate on x and y axes, respectively. At each 

intersection of the x and y axes we have a decision, whether to choose IoT. The size of the marker 

is representative of the absolute difference of the total costs of the IoT case and the no-IoT case, 

as a percentage of the total cost of the no-IoT case (labeled as ‘abs. % premium’). The color of the 

marker is red if the total cost for the IoT case is more than the total cost for the no-IoT case. The 

color of the marker is green otherwise (i.e., meaning IoT is more beneficial). 
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Figure 4.9: New part price vs. data collection cost rate. Color shows details about IoT decision. 
Size shows details about abs. % premium. Shape shows details about IoT decision. 
The marks are labeled by % change in total cost. (P = P3(21), te = 1, ts = 1, tl = 5, S = 
10, s = 1, ri =1, rd =10, co = 20, rh = 0.25) 
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Figure 4.10: New part price vs. data collection cost rate. Color shows details about IoT decision. 
Size shows details about abs. % premium. Shape shows details about IoT decision. 
The marks are labeled by % change in total cost. (P = P3(21), te = 1, ts = 1, tl = 5, S = 
10, s = 1, ri =1, rd =100, co = 20, rh = 0.25) 

 

We notice from Figure 4.9 that when ri =1 and rd = 10, IoT case results in higher total costs 

in all the combinations tested. This is evident from all red markers in the figure. In fact, as the new 

part price goes down and/or the IoT data collection rates go up, the no IoT with manual inspection 

every 7 days becomes increasingly better.  If we increase the down time penalty, rd, to 100 from 

10 and keep everything else the same, then we get the Decision Plot in Figure 4.10. Here, when ri 

= 1 and rd = 100, the IoT case can result in lower total costs in some combinations of data collection 

cost and new part price. These combinations are marked by the green markers in the figure. If the 

data collection cost rate (rc) is 0.5 units and the new part price (cN) is 10 units then applying IoT 

can bring down the total costs by almost 27%. As the data collection costs increase, we can observe 
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the size of green markers reducing which means that IoT savings come down with increase in data 

collection costs and after certain point IoT becomes costlier than the no-IoT option. When data 

collection cost rate is 1.0 units and new part price is 20 units in Figure 4.10, we notice that the IoT 

results in savings of 6.3% but when data collection cost rate is increased to 1.5 units, IoT option 

ends up nearly 13.2% costlier. The shift that we observe in Figure 4.10 highly depends on the key 

factors. For example, if we change the underlying matrix to P2(31) and keep everything same as 

in Figure 4.10, we get a Decision Plot shown in Figure 4.11. We observe that there are fewer green 

markers in Figure 4.10 than in Figure 4.9. 

 

 

 

Figure 4.11: New part price vs. data collection cost rate. Color shows details about IoT decision. 
Size shows details about abs. % premium. Shape shows details about IoT decision. 
The marks are labeled by % change in total cost. (P = P2(31), te = 1, ts = 1, tl = 5, S = 
10, s = 1, ri =1, rd =100, co = 20, rh = 0.25) 
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To understand how the Decision Plots change with changes in the key factors, we generate 

a side by side comparison of Decision Plots by varying one factor. Figure 4.12 shows the Decision 

Plots for P = P3(21) where the down-time penalty cost rate increases from left to right. We observe 

that as the down-time penalty cost rate increases, the number of scenarios where IoT is beneficial 

also increase. In Figure 4.13 we vary the manual inspection cost rate while keeping all other factors 

fixed. Figure 4.14 shows Decision Plots for different transition probability matrices. We observe 

in Figures 4.13 and 4.14, the number of green markers increasing from left to right. From Figure 

4.14 we notice that as the system becomes more reliable, the data collection costs need to be much 

lower for the IoT to be beneficial. 

 

 

 

Figure 4.12: New part price vs. data collection cost rate broken down by down-time cost rate. 
Color shows details about IoT decision. Size shows details about abs. % premium. 
Shape shows details about IoT decision. (P = P3(21), te = 1, ts = 1, tl = 5, S = 10, s = 
1, ri =1 , co = 20, rh = 0.25) 
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Figure 4.13: New part price vs. data collection cost rate broken down by manual inspection cost 
rate. Color shows details about IoT decision. Size shows details about abs. % 
premium. Shape shows details about IoT decision. (P = P3(21), te = 1, ts = 1, tl = 5, S 
= 10, s = 1, rd =100, co = 20, rh = 0.25) 
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Figure 4.14: New part price vs. data collection cost rate broken down by matrix. Color shows 
details about IoT decision. Size shows details about abs. % premium. Shape shows 
details about IoT decision. (te = 1, ts = 1, tl = 5, S = 10, s = 1, rd =100, ri =10, co = 20, 
rh = 0.25) 

 
 
 

4.2 EXAMPLE SYSTEM II: 

In the previous sub-section, we have studied the systems which deteriorate per the 

transition probability matrices introduced in Figures 4.1-4.3. While the three matrices result in 

different MTTF, they have a similar structure. In this sub-section, we study a system with a 

transition probability matrix of a different structure.  Figure 4.15 shows the matrix P4 with MTTF 

of 28 days. The key difference between P4 and rest of the matrices i.e., P1-P3, is that in case of 

P4, there is a non-zero probability that a part can fail from any state whereas in P1-P3 the part can 

fail only in state 7 or 8.  
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Figure 4.15: Transition probability matrix P4 with MTTF of 28 days 

 

4.2.1 Analyzing Cost Curves 

For the matrix P4 introduced above, total of 2030 combinations of the factors are 

experimented. We use the simulation outputs to calculate the costs of different combinations of 

parameters.  

Figure 4.16 shows the trends of total cost, operations cost and down-time penalty cost for 

different replacement policies (all costs are annual) for the IoT case. The factors that are fixed are 

P = P4(28), te = 1, ts = 1, tl = 5, S = 10, s = 1, rc = 1, cN = 100, rd =100. We notice that for all 

inspection intervals, the operations cost goes down with increase in replacement policy while the 

down-time penalty costs go up (though the increase in down-time penalty cost is not very 

significant). The total cost for all the inspection intervals go down with increase in replacement 

policy. This means at this system settings, it is best to wait till the part fails than replacing it any 

earlier. We notice that unlike in Figure 4.4, there is no interaction between the total cost curves of 

different inspection intervals. Total cost is always higher for ti = 1 than for ti = 7 and ti = 28.   
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Figure 4.16: The trends of operations cost, down-time penalty cost and total cost for replacement 
policy. Color shows details about inspection interval. (P = P4(28), te = 1, ts = 1, tl = 
5, S = 10, s = 1, rc = 1, cN = 100, rd =100, co = 20, rh = 0.25) 

If we increase rd from 100 to 200 while keeping other parameters same as in Figure 4.16, 

we get the plot in Figure 4.17. Now we can see that the total cost reaching a minimum at pr = 7. 

Though the total cost of ti = 1 is always higher than the total cost of ti = 7 and ti = 28, there is some 

interaction between total cost curves of ti = 7 and ti = 28.  
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Figure 4.17: The trends of operations cost, down-time penalty cost and total cost for replacement 
policy. Color shows details about inspection interval. (P = P4(28), te = 1, ts = 1, tl = 
5, S = 10, s = 1, rc = 1, cN = 100, rd =200) 

 

If we decrease rc  from 1 to 0.1 while keeping other parameters same as in Figure 4.17, we 

get the plot in Figure 4.18. We observe that when rc is very low and when rd  is very high, ti = 1 

starts resulting in the minimum total cost.  
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Figure 4.18: The trends of operations cost, down-time penalty cost and total cost for replacement 
policy. Color shows details about Inspection Interval. (P = P4(28), te = 1, ts = 1, tl = 
5, S = 10, s = 1, rc = 0.1, cN = 100, rd =200, co = 20, rh = 0.25) 

 

4.2.2 Deriving Decision Plots 

By varying the values of the key cost factors mentioned in Section 4.1.3, we can create 

boundary plots for this system. Similar to Section 4.1.3, we draw Decision Plots to help decide 

between ti = 1 with IoT and ti = 7 and no-IoT for P = P4(28). Table 4.3 shows the levels of factors 

used.  
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Factor Levels Used 

New Part Price (CN) 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

Down-time Penalty Cost Rate (rd) 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 

130, 140, 150, 160, 170, 180, 190, 200 

Manual Inspection Cost Rate (ri) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

Data Collection Cost Rate (rc) 0.25, 0.50, 0.75, 1, 1.25, 1.50, 1.75, 2.0, 2.25. 2.5 

Table 4.3: Factor levels used in generating the Decision Plots 

 Figure 4.19 shows the Decision Plot for down-time penalty cost rate (rd) fixed at 10 units 

and manual inspection cost rate (ri) fixed at 7 units for the system P = P4(28). At each intersection 

of the x and y axes we have a decision whether to choose IoT. The size of the marker is 

representative of the difference of the total costs between the IoT case and the no-IoT case, as a 

percentage of the no-IoT total cost (labeled as ‘abs. % premium’). The color of the marker is red 

if the total cost for the IoT case is more than the total cost for the no-IoT case. The color of the 

marker is green otherwise. 

 

We notice from Figure 4.19 that when ri =7 and rd = 10 and rd ≤ 0.1, the IoT case results 

in lower costs than the no-IoT option. This is evident from green markers in the figure region. We 

also observe that as the value of rd decreases, the savings increase. Figure 4.20 shows side-by-side 

comparison of Decision Plots by varying the down-time penalty cost rate while keeping other 

factors fixed.  Figure 4.21 shows side-by-side comparison of Decision Plots by varying the manual 

inspection cost rate while keeping other factors fixed. In both figures we see that number of green 

markers increase from left to right. 
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Figure 4.19: New part price vs. data collection cost rate. Color shows details about IoT decision. 
Size shows details about abs. % premium. Shape shows details about IoT decision. 
The marks are labeled by % change in total cost. (P = P4(28), te = 1, ts = 1, tl = 5, S = 
10, s = 1, ri =7, rd =10, co = 20, rh = 0.25) 
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Figure 4.20: New part price vs. data collection cost rate broken down by down-time penalty cost 
rate. Color shows details about IoT decision. Size shows details about abs. % 
premium. Shape shows details about IoT decision. (P = P4(28), te = 1, ts = 1, tl = 5, S 
= 10, s = 1, ri =10, co = 20, rh = 0.25) 
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Figure 4.21: New part price vs. data collection cost rate broken down by manual inspection cost 
rate. Color shows details about IoT decision. Size shows details about abs. % 
premium. Shape shows details about IoT decision. (P = P4(28), te = 1, ts = 1, tl = 5, S 
= 10, s = 1, rd =100, co = 20, rh = 0.25) 
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4.3 INVENTORY ANALYSIS: 

In the example systems analyzed till this point, we fixed both the Inventory levels i.e., s 

and S (at the stocking location), the inventory holding cost rate, inventory ordering cost and the 

shipping costs. We have analyzed how the total cost varies with change in inspection intervals, 

replacement policies and cost factors like inspection costs, down-time penalty costs and data 

collection costs. In this sub-section, we explore how the changes in inventory policy affect the 

total cost.  

Let us consider example system I. In Figure 4.4, we have fixed P = P3(21), te = 1, ts = 1, tl 

= 5, S = 10, s = 1, rc = 1, cN = 100, co = 20, rd =100, rh =0.25 and studied the trends of total cost, 

operations cost and down-time penalty cost to find the optimal replacement policy for different 

inspection intervals in IoT case. Now let us keep all the factors at same levels as in Figure 4.4 

except S and study the trends of total cost for ti = 1. Figure 4.22 shows the trend of total cost with 

S for different replacement policies. We observe that for any given S, the total cost is minimum 

when replacement policy is 7. Within the replacement policy 7, we observe that increasing S can 

minimize the total cost further. But after a point the total cost doesn’t change much. This holds for 

any replacement policy shown in the figure. Until this point we haven’t changed any cost factor 

from system I. Now if we increase the inventory holding cost factor from 0.25 to 1, we get the 

trends shown in Figure 4.23. For a given S again replacement policy 7 is optimal but for a given 

replacement policy, we observe that S = 5 or 6 results in minimum total cost.  

By changing the underlying transition probability matrix in Figure 4.23, we generate 

Figures 4.24 and 4.25 which correspond to P = P2(31) and P = P1(62) respectively. One interesting 

aspect that we observe from Figures 4.23-4.25 is that with increase in MTTF, the sensitivity of 

total cost to S increases for a given replacement policy.  We also observe that as the MTTF 

increases, the S value that achieves minimum cost for a given replacement policy decreases. The 

reason for this behavior is as the system becomes more reliable, maintaining more inventory only 

adds to the holding costs as the demand is low.  

 



40 
 

 

 

 

Figure 4.22: The trend of total cost for order up-to level (S) broken down by replacement policy. 
(P = P3(21), te = 1, ti = 1, ts = 1, tl = 5, s = 1, rc = 1, cN = 100, co = 20, rd =100, rh = 
0.25) 
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Figure 4.23: The trend of total cost for order up-to level (S) broken down by replacement policy. 
(P = P3(21), te = 1, ti = 1, ts = 1, tl = 5, s = 1, rc = 1, cN = 100, co = 20, rd =100, rh = 
1) 
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Figure 4.24: The trend of total cost for order up-to level (S) broken down by replacement policy. 
(P = P2(31), te = 1, ti = 1, ts = 1, tl = 5, s = 1, rc = 1, cN = 100, co = 20, rd =100, rh = 
1) 
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Figure 4.25: The trend of total cost for order up-to level (S) broken down by replacement policy. 
(P = P1(62), te = 1, ti = 1, ts = 1, tl = 5, s = 1, rc = 1, cN = 100, co = 20, rd =100, rh = 
1) 
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Chapter 5:  Conclusions and Future Work 

5.1 CONCLUSIONS 

In this work, we studied the effects of applying IoT based maintenance condition 

monitoring system to decide when to replace deteriorating parts in a stylized spare parts logistics 

system. Continuous data collection about the part health can enable early replacement policies 

which result in reduced total cost. IoT becomes more beneficial in the scenarios where the down-

time costs are high and data collection costs are low. The data collection cost threshold where IoT 

becomes beneficial reduces with increase in MTTF of the parts in the system. In the systems with 

high holding cost, making inventory and replacement policy decisions jointly can be more 

beneficial.  

 

5.2 CONTRIBUTIONS 

The major contributions of this work can be summarized as follows: 

• A simulation based framework to study the effect of IoT-based maintenance condition 

monitoring system on a stylized spare-parts logistics system is introduced. 

• Decision Plots that measure either the savings by applying IoT or increase in costs due to 

IoT are introduced and derived for several example systems.  

5.3 FUTURE RESEARCH DIRECTIONS 

In this work, we assumed that there is only one critical part per machine but in real word 

there are multiple critical parts in a machine. Extending this study to multiple part types and 

considering part dependencies and commonalities will be useful in making the study more valuable 

to the industry. The current simulation results are limited to two customers, hence including 

multiple customers with different shipping times is an important practical extension. 

The current work takes a simulation based approach to find the optimum replacement 

policy for a given set of cost parameters. Developing analytical models to solve such problems can 
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give us more insight. Re-evaluating stocking locations’ location decisions after IoT is also a 

promising area to build the analytical models. 
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