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Effects of Whole Milk and Full-Fat Dairy Products on Blood Pressure and 

Vascular Function in Adults with Elevated Blood Pressure 

 

Stephen J. Roy, Ph.D. 

The University of Texas at Austin, 2018 

 

Supervisor:  Hirofumi Tanaka 

 

Addition of skim milk and non-fat dairy intake to the normal routine diet has been 

demonstrated to reduce blood pressure (BP) and improve vascular function in adults with elevated 

BP.  High consumption of whole milk and full-fat dairy products is accompanied by elevated 

saturated fat intake and an increase in plasma cholesterol concentration.  The solitary effects of 

full-fat dairy products added to the normal diet in adults with elevated BP is not known. Therefore, 

the primary aim of the present study was to determine the efficacy of reducing elevated BP and 

improving vascular function when adding whole milk and full-fat dairy products to the normal 

diet. 

Sixty participants with elevated BP underwent a randomized controlled crossover dietary 

intervention consisting of high dairy and control conditions.  Within the high dairy condition, 

participants underwent an increase in 4 daily servings of whole milk and full-fat dairy products for 

4 weeks in addition to their normal diets.  Dairy consumption was eliminated during the control 

condition for another four weeks while consuming a counterbalanced diet.  A 2-week washout 

period separated the two conditions to remove residual effects from the previous condition.  

In study 1, we sought out to determine the effects of whole milk and full-fat dairy products 

on arterial BP in adults with elevated BP.  We utilized two different but complimentary 
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assessments incorporating seated and ambulatory BP measurements.  There were no changes in 

systolic or diastolic BP measures for seated BP or ambulatory (e.g. 24-hour, daytime, and night 

time) measures.  In study 2, we studied the effects of added consumption of whole milk and full-

fat dairy to the normal routine diet on vascular function in adults with elevated BP.  No significant 

changes were seen in arterial stiffness, endothelial function, or cardiovagal baroreflex sensitivity.   

Taken together, the findings of this dissertation study demonstrate that unlike skim milk 

and non-fat dairy products, whole milk and full-fat dairy products do not exert hypotensive effects 

or improvements in vascular function.   
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Chapter 1: General Introduction 

Hypertension has been defined as a persistently elevated systolic (SBP) (>140 mmHg) 

and/or diastolic BP (DBP) (>90 mmHg) [1-3].  Approximately 1 in 3 adults over the age of 18 

years are affected by hypertension, representing an estimated 68 million adults within the United 

States [3].  The most common forms of cardiovascular disease (CVD) resulting from sustained 

hypertension include left ventricular hypertrophy and subsequent heart failure, coronary arterial 

disease, and ischemic stroke [4].  Most hypertension cases stem from unknown etiologies, and 

about 70% receive treatment with less than half being controlled [3].  Although the initial events 

leading to hypertension are unclear, vascular dysfunction seems to play a significant role in 

propagating its development.   

Hypertension can be modulated through a variety of behavioral modifications [1, 5-7].  In 

particular, high consumption of non- and low-fat dairy products has emerged as an effective 

strategy against hypertension [5, 8, 9].  We reported that non-fat dairy products not only exerted 

hypotensive effects [10] but also improved key vascular functions related to hypertension [11].  

Reduced central arterial stiffness associated with increased non-fat dairy intake is a critical finding 

as increased arterial stiffness has been viewed as a causal mechanism linked to elevated systolic 

BP as well as an independent contributor to CVD risk [12-14].  

Compared with non-fat dairy products, the effects of consuming high amounts of full-fat 

dairy products are not clear and remain controversial with data demonstrating beneficial effects 

[15, 16] or no effects on BP reduction [17, 18].  Moreover, unlike the traditional notion, recent 

meta-analytical studies have demonstrated that the overall effects of dietary saturated fatty acids 

contained in whole milk and full-fat dairy products are not associated with CVD risks [19, 20].  A 
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recent intervention study modified the original eating plan of the Dietary Approaches to Stop 

Hypertension (DASH) trial by increasing saturated fat content of the diet through replacement of 

non- and low-fat dairy for full-fat dairy products [16].  The higher-fat DASH study revealed similar 

hypotensive effects to the original DASH trial.  However, the study was unable to isolate the effects 

of the full-fat dairy products from other food items responsible for reducing BP (i.e. fruits and 

vegetables).  Currently, no studies have established a causal link of whole milk and full-fat dairy 

products on BP, or vascular function, in adults with elevated BP when added to the normal routine 

diet.   

The overall goal of the study was to determine if whole milk and full-fat dairy products 

exert hypotensive effects as seen with our previous investigation of skim milk and non-fat dairy 

products.  In addition, we evaluated changes in the arterial dynamics corresponding to changes in 

arterial BP through central thoracic arterial stiffness and endothelial function and how such arterial 

dynamics consequentially affected neurogenic factors such as baroreceptor sensitivity. 

PURPOSES AND HYPOTHESES 

Study #1: The aim of study 1 was to determine if a dietary intervention that includes whole milk 

and full-fat dairy products, reduces arterial BP in adults with elevated BP. We hypothesized that 

the solitary addition of conventional whole milk and full-fat dairy products would induce 

significant decreases in seated and ambulatory BP measures in this population.   

 

Study #2: The aim of study 2 was to determine whether the changes in arterial stiffness and/or 

endothelial vasodilatory function were key mechanisms by which dairy products may reduce BP.  

We hypothesized that the hypotensive effects of dairy products would be significantly associated 
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with the corresponding reductions in arterial stiffness and/or increases in endothelial function and 

subsequent improvements in baroreceptor sensitivity. 
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Chapter 2: Study 1 - Addition of Whole Milk and Full-Fat Dairy Products to 

the Normal Routine Diet on Blood Pressure 

ABSTRACT 

Regular consumption of low- and non-fat dairy products reduces blood pressure (BP) in 

adults with elevated BP. Currently, it is unknown if conventional full-fat dairy products exert 

similar hypotensive effects.  We aimed to determine if adding whole milk and full-fat dairy 

products to the normal routine diet would reduce BP in adults with elevated BP.  Sixty adults 

(mean age±SEM; 58±2 years) with elevated systolic BP (systolic/diastolic BP: 120-159 / <99 

mmHg) were randomized into a controlled crossover intervention trial. The trial consisted of 4 

weeks of high dairy and control conditions separated by a 2-week washout period. The high dairy 

condition consisted of +4 servings/d of conventional full-fat dairy products to the normal routine 

diet, while the control condition (with +4 servings/d of fruit and plant-based products) eliminated 

dairy products from the diet.  Seated systolic BP did not change significantly in either condition. 

When the analyses were divided into subgroups of men and women, there were no changes in 

systolic BP in either sex across either dietary period.  Ambulatory (24-hour) systolic BP did not 

change significantly in the high dairy (133±2 vs. 131±1 mmHg) and control conditions (132±2 vs. 

131±1 mmHg). No significant changes were observed for diastolic BP or pulse pressure during 

either condition for seated and ambulatory measures.  The solitary addition of whole milk and full-

fat dairy products to the normal routine diet does not exert hypotensive effects in adults with 

elevated BP.   
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INTRODUCTION 

For most adults living in industrialized societies, systolic blood pressure increases 

progressively throughout the life span [21, 22]. The increases in systolic BP with aging have 

important clinical consequences as elevated systolic BP is one of the major independent risk 

factors for cardiovascular disease (CVD) [23, 24]. To accomplish a reduction in the incidence of 

systolic hypertension, we must identify effective strategies to prevent and treat elevated systolic 

BP in aging adults. Guidelines incorporating lifestyle modifications, including dietary changes, 

are universally the first-line approach used to prevent and treat elevated BP [25].   

Observational studies suggest that high consumption of dairy products is associated with 

reduced risk of hypertension [15, 17, 26, 27]. Indeed, several interventional studies have 

specifically investigated the hypotensive effects of non- and low-fat dairy products on BP [9, 10, 

28]. We have previously demonstrated that the solitary manipulation of conventional non-fat dairy 

added to the normal routine diet reduced both seated and ambulatory (24-hour) systolic BP in 

middle-aged and older adults with elevated BP [10]. Unlike research studies evaluating low and 

non-fat dairy products on BP, the available research studies examining the effect of whole milk 

and full-fat dairy products on BP are extremely limited and are highly controversial with some 

showing no relation [29, 30] while others demonstrating benefits [31] or even increased risk of 

hypertension [17]. Most investigators have attributed the inability of full-fat dairy products to 

modulate BP to milk fat that is rich in saturated fat (>60% of milk fat), which could in turn increase 

low density lipoprotein (LDL) cholesterol and elevate cardiovascular disease risk [32, 33].  

However, the pathogenetic role of saturated fat has become controversial in recent years [20, 34, 

35] as the intake of saturated fat also increases high density lipoprotein (HDL) cholesterol 
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offsetting the adverse effects of elevated LDL-cholesterol [36].  Moreover, there are studies 

indicating that milk and milk fat do not adversely affect plasma cholesterol concentrations [16, 

37].  Recently, an abbreviated 3-week DASH study incorporating full-fat dairy products in place 

of low-fat dairy products revealed similar hypotensive effects to the original DASH diet [16].  

However, the study was limited in isolating the effects of the full-fat dairy products thereby 

preventing reduced blood pressure changes to full-fat dairy alone.  

Therefore, the purpose of the present randomized, controlled crossover dietary intervention 

was to determine the effects of adding whole milk and full-fat dairy products to the normal routine 

diet on BP in adults with elevated BP.  We hypothesized that full-fat dairy products would be 

effective in lowering both seated and ambulatory BP.  

METHODS 

Subjects:  A total of 60 subjects who were free of overt chronic diseases participated in 

the present study. During a 2-week run-in period, all eligible subjects went through screening and 

had to demonstrate a consistent resting systolic BP between 120-139 mmHg (prehypertension) or 

140-159 mmHg (stage 1 systolic hypertension) with diastolic BP of less than 99 mmHg on two 

separate occasions during the run-in periods. The BP values were set in accordance with the pre-

existing guidelines of high BP [25]. Exclusionary criteria included overt chronic disease, BMI > 

45 kg/m2, lactose intolerance, high baseline dairy intake (>3 servings/day), pregnancy or lactation, 

strenuous physical activity (>3 times/week), excessive alcohol consumption (>21 drinks/wk), or 

appearance of chronic diseases as assessed during the screening. A data safety monitoring board 

was established to monitor any adverse events. All procedures of the study were reviewed and 
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approved by the University of Texas at Austin’s Institutional Review Board. Written informed 

consent was obtained from all candidates prior to participating in any procedures. 

Experimental Protocol:  With the exception of the dairy and non-dairy food items, the 

study design was identical to our previous study investigating effects of skim milk and non-fat 

dairy products on BP [10]. A randomized, controlled, crossover dietary intervention consisting of 

a 4-week high dairy or no dairy condition was conducted with a minimal 2-week washout period 

between dietary interventions, to remove residual effects associated with the previous intervention. 

The dietary intervention was 4 weeks long as BP changes very rapidly to intervention stimuli as 

early as 2-4 weeks as in our previous dietary intervention study [10].  The random allocation to 

the intervention sequence was conducted by using a coin-flip method. Measurements took place 

at the beginning and end of each dietary intervention period. Due to the nature of the experimental 

dietary conditions, it was not possible to blind subjects or investigators to the dietary condition, 

except during analyses. In the high dairy condition, subjects were asked to consume 4 servings of 

laboratory-provided dairy per day, in addition to their baseline dairy intake.  Subjects could choose 

their 4 dairy servings from any combination of 8 fluid ounces of whole milk (Hill Country Dairies), 

6 ounces of Brown Cow yogurt with cream on top (Stonyfield Farm), and/or 1.5 ounces of Swiss 

cheese (HEB Grocery) in addition to their normal routine diet. In the no dairy (control) condition, 

subjects eliminated all dairy consumption from their routine diet to maximally differentiate dietary 

dairy intake.  In the control condition, subjects consumed 16-fluid ounces of Silk Coconut Milk 

(WhiteWave Services), 16-fluid ounces of HEB branded orange juice fortified with vitamin D and 

calcium (HEB Grocery), 2 ounces of single-serve Plantars salted peanuts (The Kraft Heinz 

Company), and 4-ounce single serve cups of Motts applesauce (Motts LLP) daily to 
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counterbalance total calories from the high dairy condition. All dairy and non-dairy products were 

provided by the investigators in daily packages. The subjects were free to consume the required 

servings spanned throughout the day or all at once. Dietary consultations were completed weekly 

by a licensed dietitian, with the exception of the 2-week washout period required to remove 

residual effects from the previous condition [10, 16].  Consultations involved dietary protocol 

instruction, compliance monitoring, and adjustment of caloric intake based on significant changes 

in body weight (±2 kg).   

Measurements were taken at the beginning and end of each dietary condition at the same 

time of day to eliminate any diurnal effects.  Subjects were asked to avoid exercise, caffeine 

consumption, and fast 12 hours prior to measurement.  Premenopausal women were tested during 

self-reported early follicular phase of the menstrual cycle in both dietary conditions of the study.  

Throughout the entire experimental protocol, subjects were instructed to maintain their normal 

lifestyle (e.g., physical activity) aside from dietary changes prescribed by the dietitian.     

Statistical Analysis:  A priori testing for statistical power of 80% and sample size 

calculations were performed using nQuery Adviser computer software (Statistical Solutions, 

Boston, MA). Sample size calculations were based on estimated effect sizes for the dependent 

variables of previous lifestyle modification studies in adults [10, 38-40]. All statistical analyses 

were conducted using SPSS 23.0 statistical software (Chicago, IL). To test the effectiveness of the 

washout period, a 2-factor (sequence x visit) mixed-model repeated measures ANOVA was 

utilized.  Prior to any statistical testing, assumptions of normality and variance were determined 

through each condition by utilizing the Shapiro-Wilk and Levene’s test, respectively. To control 

random effects occurring due to condition and major dependent variables, mixed-effect modelling 
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was used to assess statistical significance. A 2-factor mixed-model ANOVA with repeated 

measures was used to evaluate differences between each dietary condition (condition x time) for 

subject characteristics, dietary changes, and BP measures. A 3-factor mixed-model ANOVA with 

repeated measures was also utilized to evaluate sex/gender differences (sex x condition x time) on 

BP measures. Further subgroup analyses were conducted to assess whether age and menopausal 

status could influence the outcome. Partial correlation analyses were conducted to detect 

associations attributed to separate dairy elements while controlling for the other dairy products 

given to participants. To follow significant interactions, post-hoc tests were performed using the 

Bonferroni Procedure. Per-protocol analysis was implemented for all subjects that have fully 

complied with the study [10]. The alpha value was set at P<0.05 for all analyses.  Data are 

presented as means±SEM. 

Detailed Methods: 

Seated resting brachial BP  

BP recordings were made under quiet, comfortable ambient (~24ºC) laboratory conditions. 

To avoid any possibility of investigator bias, measurements were made with a semi-automated 

device (HEM-907XL; Omron Healthcare, Vernon Hills, IL), which uses an oscillometric 

technique over the brachial artery of the right arm. Recordings were made in triplicate in the seated 

position. All measurements conformed strictly to the American Heart Association guidelines [41].     

24-hour ambulatory BP  

BP was recorded over a 24-hour period of normal daily activity utilizing a noninvasive 

ambulatory monitor (Model 90217; Spacelabs Healthcare, Snoqualmie, WA). The cuff was 
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programmed to inflate automatically every 15 minutes from 6:00 AM to 11:00 PM and every 20 

minutes between 11:00 PM and 6:00 AM [10].   

Blood Samples 

Whole blood was collected by venous puncture. All plasma samples were centrifuged, 

decanted, and stored at -80ºC for future assay. Commercially available kits using enzymatic 

methods were used to determine whole blood concentrations of glucose, total cholesterol, LDL-

cholesterol, HDL-cholesterol, triglycerides, and glycated hemoglobin (DCA Systems; Siemens 

Healthcare Diagnostics, Los Angeles, CA). Quantification of plasma concentration of insulin were 

determined through enzyme-linked immunosorbent assays (Mercodia, Winston Salem, NC).  

Fasting concentrations of blood glucose and insulin were used to assess changes in insulin 

resistance utilizing homeostatic model assessment of insulin resistance (HOMA-IR) [42]. 

Dietary analyses 

Under the supervision of a licensed dietitian, self-administered 3-day dietary recall forms 

were used to capture the subjects’ diet at baseline and during the study conditions.  A 3-day dietary 

recall form was also collected during the washout period. Dietary composition and caloric intake 

were analyzed using Nutritionist Pro software (Axxya Systems, Stafford, TX). Compliance was 

monitored through laboratory provided, self-administered compliance logs. 

RESULTS 

A total of 28 males and 32 females completed the study (Table 2.1). No adverse events 

were reported throughout the study period. There were no carryover effects during the 2-week 

washout period.  Subject compliance for consuming laboratory-provided food items were 94% and 

96% in the control and high dairy conditions. No changes in body weight or BMI were observed 



 11 

 

throughout the duration of the study. There were slight but significant increases in total cholesterol 

concentrations during the high dairy condition (P < 0.05) but no changes were observed during the 

control condition. LDL-cholesterol was the main contributor to total cholesterol despite a lack of 

significance (P = 0.074) as HDL-cholesterol and triglycerides did not change. Blood glucose was 

also slightly elevated during the high dairy condition (P < 0.05).  HOMA-IR did not change 

significantly and did not differ between the two dietary conditions. 

There were no significant changes in total caloric intake after either condition (Table 2.2). 

In the high dairy condition, total dairy intake increased to 4.4±0.2 servings/day while it decreased 

to 0.0±0.1 servings/day in the control condition.  As expected, dietary saturated fat and protein 

intake increased during the high dairy condition (P < 0.001 for both). Total carbohydrate intake 

was greater in the control than the high dairy condition (P = 0.001). There were significant 

reductions in sodium intake as a main effect of time (P < 0.05) but the interaction was not 

significant.  There were no significant differences in sodium intake between the study conditions.  

Seated BP data are presented in Figure 2.2. Seated systolic BP, diastolic BP, and pulse 

pressure did not change significantly in either condition. Despite no interaction effect, a main effect 

of time was present for the seated systolic BP (P < 0.03) (Figure 2.3) suggesting equivalent 

reductions in systolic BP for both control and high dairy conditions.  No association in seated 

systolic or diastolic BP was found for whole milk (controlling for yogurt and cheese intake), yogurt 

(controlling for whole milk and cheese intake), or cheese (controlling for whole milk and yogurt 

intake). 

Subgroup analyses revealed no changes in seated or ambulatory systolic and diastolic BP 

for men or women.  When female subjects were divided into pre- and post-menopausal women, 
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premenopausal women did not exhibit different BP during baseline for seated or ambulatory 

measures from postmenopausal females and demonstrated no differential effects on any blood 

pressure with respect to dietary condition.  With respect to age, no condition or time effect was 

found.  However, as expected, the main effect of age did demonstrate significantly higher systolic 

BP values for both seated and ambulatory systolic BP values.    

Ambulatory BP data are displayed in Figure 2.4.  No significant changes in 24-hr systolic 

BP were observed in the control and high dairy conditions. The results were the same when the 

data were divided into daytime and nighttime systolic BP.  Similarly, there were no significant 

changes in ambulatory diastolic BP or pulse pressure for 24-h, daytime, and night in either 

condition. When the data were stratified for sex, there were no significant differences in 24-hour, 

daytime, and night BP in either of the dietary interventions in both males and females.  24-hour 

and daytime ambulatory systolic BP were reduced to a similar extent over time (P < 0.05) (Figure 

2.5).  No partial correlations in 24-hour, daytime, or night time ambulatory systolic or diastolic BP 

were found for whole milk (controlling for yogurt and cheese intake), yogurt (controlling for whole 

milk and cheese intake), or cheese (controlling for whole milk and yogurt intake).  
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Table 2.1 Overall changes in selected subject characteristics and blood chemistry with no dairy 

and high dairy conditions. 

All values are means±SEMs. BMI=Body Mass Index, HDL=High Density Lipoprotein, 

LDL=Low Density Lipoprotein, HOMA=Homeostasic Model Assessment. All significant 

variables were preceded by a significant interaction effect (time x condition). *P < 0.05 vs Before; 

†P < 0.05 vs After in the No Dairy condition. 

  

 No Dairy High Dairy 

Variables Before After Before After 

Age (years) 58±2 - 58±2 - 

Height (cm) 168±1 - 168±1 - 

Body mass (kg) 85±2 85±2 84±2 85±2 

BMI (kg/m2) 29.2±0.8 29.3±0.8 29.1±0.8 29.2±0.8 

Total cholesterol (mmol/L) 5.1±0.1 5.0±0.1 5.0±0.1 5.3±0.1*,† 

HDL cholesterol (mmol/L) 1.30±0.07 1.26±0.06 1.32±0.06 1.31±0.06 

LDL cholesterol (mmol/L) 3.04±0.12 3.02±0.12 3.02±0.12 3.28±0.12 

Triglycerides (mmol/L) 1.46±0.12 1.41±0.12 1.41±0.12 1.42±0.12 

Blood glucose (mmol/L) 5.29±0.10 5.27±0.10 5.27±0.10 5.46±0.10*,† 

Glycated hemoglobin (%) 5.6±0.04 5.5±0.05 5.5±0.04 5.5±0.05 

Insulin (pmol/L) 66±6 63±4 66±6 64±4 

HOMA-IR 1.25±0.12 1.19±0.08 1.24±0.12 1.22±0.08 
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Table 2.2 Overall changes in dietary intake with no dairy and high dairy conditions. 

All values are means±SEMs. All significant variables were preceded by a significant interaction 

effect (time x condition). *P < 0.05 vs Before; †P < 0.05 vs After in the No Dairy condition  

 No Dairy High Dairy 

Variables Before After Before After 

Calories (kcal/d) 1996±68 2061±60 1965±68 2106±58 

Total Fat (g/d) 83±4 89±3 85±4 96±3 

Saturated Fat (g/d) 27±1 28±1 27±1 39±1*,† 

Monounsaturated Fat (g/d) 19±1 25±1*,† 20±1 20±1 

Polyunsaturated Fat (g/d) 11±1 8±1*,† 10±1 10±1 

Carbohydrate (g/d) 222±9 233±8 220±9 213±8† 

Protein (g/d) 77±3 74±4 77±3 94±4*,† 

Alcohol (g/d) 5±1 3±1 3±1 3±1 

Sodium (mg/d) 3043±149 2558±160 3123±148 2820±157 

Potassium (mg/d) 1901±106 2651±104* 1975±106 2226±102*,† 

Calcium (mg/d) 892±56 1914±71* 817±56 1513±71*,† 

Magnesium (mg/d) 210±14 209±14 210±13 214±13 

Vitamin D (IU/d) 360±113 659±115* 369±112 449±115† 

Dairy (servings/d) 0.7±0.2 0.0±0.1* 1.5±0.2† 4.6±0.1*,† 
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Figure 2.1 Participant flow chart through the dietary intervention trial. 

  

671 Candidates contacted  

485 Excluded: 

     241 Ineligible after prescreen 

     244 Declined to participate 

  

186 Assessed by screening 

  

90 Eligible candidates proceeded to 

randomization 

  

24 Withdrew prior to start 

  

32 Randomly assigned to no dairy 

condition first 

  

34 Randomly assigned to high 

dairy condition first 

  

31 Completed no dairy  

condition 

  

1 Withdrawal 

33 Completed high dairy  

condition 

  

1 Withdrawal 

30 Completed no dairy  

condition 

  

3 Withdrawals 

  

30 Completed high dairy 

condition 

  

1 Withdrawal 

  

60 Completed study and 

included in  

analyses 

  

96 Excluded: 

     76 Ineligible after 1st screen 

     20 Ineligible after 2nd screen 
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Figure 2.2 Seated brachial systolic (A) and diastolic (B) BP before and after no dairy and high 

dairy dietary conditions. There were no significant interaction effects. 
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Figure 2.3 Main effect of time on seated brachial systolic BP. *Denotes significant main effect of 

time (P < 0.05). 

  

* 
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Figure 2.4 Ambulatory (24-hour), daytime, and night time systolic and diastolic BP before and 

after no dairy (A and C) and high dairy (B and D) conditions. There were no significant 

interaction effects. 
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Figure 2.5 Main effects of time for ambulatory (24-hour), daytime, and night time BP. *Denotes 

significant main effect of time (P < 0.05) 

 

  

* 

* 
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DISCUSSION 

The present study was the first to investigate the effects of conventional full-fat dairy 

products on seated and ambulatory BP in adults with elevated BP. We found that whole milk and 

full-fat dairy products did not lower BP significantly when consumed in addition to the normal 

routine diet. The results were consistent for both seated and ambulatory BP measures.  These 

results suggest that unlike the hypotensive effects of skim milk and non-fat dairy products 

observed in our previous study [10], the solitary manipulation of conventional full-fat dairy 

products was not effective in reducing BP in adults with elevated BP.     

We have previously demonstrated that solitary addition of skim milk and conventional non-

fat dairy products to the routine diet reduced BP in middle-aged and older adults with elevated BP 

[10].  In the present study, we used the same interventional design, similar experimental protocol, 

and identical dependent measures that were successfully implemented in our previous study.  

However, the results of the present study were in marked contrast to the our previous investigation 

as the hypotensive effects of dairy products were not replicated with whole milk and conventional 

full-fat dairy products [10]. Only one other dietary intervention study has investigated the effect 

of full-fat dairy products on BP in humans when added to the normal diet [43]. A major limitation 

of that study was that the research subjects were young, healthy normotensive college students that 

had very low (i.e., normal) BP prior to the dietary interventions.  In fact, BP was not reduced 

during the low-fat dairy condition, and the high-fat dairy condition increased BP significantly.  

The results of the present intervention study are consistent with some of the observational studies 

reporting no differences in BP between adults who consume high-fat dairy products and those who 
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do not (13-15).  Taken together, these findings suggest that the regular intake of whole milk and 

full-fat dairy products added to the normal routine diet are not associated with reduced BP.          

Similar to non- and low-fat dairy products, whole milk and full-fat dairy products contain 

similar or even greater amounts of constituents that have been implicated in the hypotensive 

effects.  Lactotripeptides (LTPs), found in fermented dairy products, can exert BP-lowering effects 

that resemble ACE inhibitors [10, 38-40].  In addition, dairy proteins may also contribute to its 

hypotensive effects [44].  The hypotensive properties of dairy products have also been ascribed to 

micronutrients including potassium, calcium, and vitamin D [30, 45, 46].  These bioactive peptides 

are present in both whole milk and full-fat dairy products as in skim milk and non-fat dairy 

products.  What then are the potential mechanisms underlying reduced BP that were not observed 

in the dietary intervention incorporating whole milk and full-fat dairy products?  The lack of 

significant BP reduction in this study may be attributed to a greater amount of milk fat that is rich 

in saturated fat leading to vascular dysfunction and the interference with the hypotensive effects.  

Animal studies have demonstrated that high consumption of saturated fats results in the elevation 

of arterial BP [32, 33], presumably mediated through insulin resistance and/or oxidative stress 

[47].  The heightened inflammatory and oxidative response also promotes the renin angiotensin 

system (RAS) to produce angiotensin II (AngII) exerting chronic vasoconstrictive restraint on the 

arterial wall [48].  Clearly, further studies are needed to determine how constituents in full-fat 

dairy products, particularly saturated fat, interfere with the BP lowering effects. 

Both pre and post measures of saturated fat consumption were lower in our previous 

investigation of non-fat dairy products [10] than in the current investigation.  As carbohydrate and 

protein consumption were similar between the non-fat dairy study [10] and the current study, 
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elevated saturated fat intake may be a primary suspect for increased caloric content.  Interestingly, 

monounsaturated fat content was significantly increased during the control condition while 

polyunsaturated fats were decreased.  Increased consumption of monounsaturated fats by 8% of 

calories is enough to significantly reduce BP by approximately 9 mmHg in adults with elevated 

BP when saturated fat content was set to 6% of calories [49].  In the current study, 

monounsaturated fats were increased during the control while saturated fat content was 

maintained.  Both protein and saturated fat content increased during the high dairy condition.  The 

monounsaturated fat and protein content of the control and high dairy condition, respectively, may 

exert hypotensive effects, thereby explaining a potential time effect for seated and ambulatory 

systolic BP.  However, the investigators were limited by nutritional labelling whereby food 

manufacturers are not required to disclose mono- and polyunsaturated fat content [50] leading to 

estimations derived from the USDA nutrient profile data bank [51].  Interestingly, several other 

studies examining the effects of engineered full-fat dairy products, incorporating elevated mono- 

and polyunsaturated fats based on altering bovine feed, have demonstrated reduced total and LDL-

cholesterol [52-55].  Unfortunately, no studies have yet examined the implications surrounding BP 

in adults with elevated BP consuming mono- and polyunsaturated-enriched dairy-based products.  

Overall, our findings suggest that protein, and other dairy constituents within generic full-fat dairy 

products, were unable to overcome the negative effects of saturated fat. 

Non- and low-fat dairy products have been widely recommended for the prevention of 

hypertension and CVD.  However, a concern has been raised that full-fat dairy products may 

increase the risk of hypertension and CVD due to a high-fat content in dairy products.  Indeed, 

increases in systolic BP have been reported with the consumption of saturated fats in experimental 
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studies [56, 57]. In the present study, total cholesterol concentration increased significantly in the 

high dairy condition.  However, the duration of the present dietary interventions was relatively 

brief by design as BP responds robustly to dietary changes.  It is not known if longer-term 

consumption of high-fat dairy products raises plasma cholesterol and BP thereby elevating the 

risks of CVD.      

A major strength of the present study is the solitary addition of whole milk and full-fat 

dairy products to the normal routine diet.  We reason that such conventional approach would be 

more applicable to the general population.  A major limitation of the study may be varying degree 

of differences in macro- and micronutrients between the high dairy and non-dairy conditions. 

There were no differences in total calories, total fat, and sodium intake but carbohydrate, protein, 

and potassium intake were different between the dietary conditions.  The no-dairy condition was 

created to be closely matched to the high dairy condition in terms of calories (e.g., whole milk vs. 

coconut milk).  It should be noted that the primary intent of the control condition was to 

demonstrate that dependent measures (i.e. seated and ambulatory BP) would remain stable during 

the control condition.  Another major limitation of the study was the different treatment for 

subgroup of subjects. Though premenopausal females were expected to get their baseline measures 

during their early follicular phase, the investigators did not validate the claims made by the 

participants.  Some might further argue that subjects being non-compliant with the diet might 

confirm lack of significant findings.  However, one could argue that the consumption of whole 

milk and full-fat dairy products from participants may be validated by increases in total cholesterol 

and blood glucose concentrations that would be expected with increases in saturated fat content, 

thereby validating.  
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Rising blood glucose and total cholesterol levels are to be expected with increasing 

saturated fat intake.  In animal models, short-term responses to saturated fat intake have 

demonstrated reduced glucose clearance [47, 58]. Over a 24-hour period, saturated, 

monounsaturated, and polyunsaturated fats decrease glucose clearance by impairing insulin 

secretion and with saturated fat decreasing insulin sensitivity in overweight and obese non-diabetic 

humans [59].  In lean healthy volunteers, an increase in saturated fat consumption over a 4-week 

period did not induce changes in insulin resistance [60].  In contrast, a 3-month isoenergetic diet 

demonstrated reduced insulin resistance [61] when compared with a diets rich in monounsaturated 

fats.  Therefore, it appears that elevated saturated fat consumption may exert greater effects over 

time in lean individuals.  Within the current study, we did not observe increases in insulin 

resistance over a 4-week span based on HOMA calculations, but it may be likely that our dietary 

intervention might be too short.  With respect to dairy protein, whey is effective in reducing insulin 

resistance in overweight and obese individuals over the span of 6 and 12 weeks [62].  Therefore, 

the dairy protein may offset the negative cardiometabolic effects of the saturated fats, but such 

effect may be dependent upon the adiposity of the individuals.  One trend that is clear is that an 

increase in total cholesterol was seen in both shorter and longer-term studies with increase 

saturated fat intake with lean individuals [60, 61] thereby increasing CVD risk.  

 Further subgroup analyses did not provide any new further insights in the present study.  

In our first analysis, BP differences between males and females were assessed.  When compared 

to males, females generally demonstrate a pronounced systolic BP at the seventh decade of life, as 

BP in males is typically higher until the sixth decade [21, 63].  However, sex differences were not 

seen in our study.  A lack of sex differences was also demonstrated in our previous investigation 
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examining non-fat dairy products [10].  Studies demonstrating reduced BP with estrogen therapy 

in post-menopausal women suggest lack of estrogen is responsible for increasing BP in post-

menopause [64, 65].  To further investigate potential impacts of estrogen, we assessed baseline 

and post-test BP measures between pre- and post-menopausal females.  However, no significant 

differences were observed.  Overall main effects of age were seen for both sexes with respect to 

elevated diastolic BP in the older (i.e. 6th and 7th decades) compared with the younger age groups 

(i.e. 2nd, 4th, and 5th decades).  Yet, such differences between age groups are to be expected as there 

is a decrease in diastolic BP after the 5th decade of life [22]. 

Several unanswered questions have risen regarding the hypotensive properties of full-fat 

dairy products. What is the physiological mechanism as to how full-fat dairy products interfere 

with hypotensive effects of dairy products?  Could elevated BP be attenuated when saturated fat 

in dairy is replaced with mono- and polyunsaturated fats?  Could the increase in total cholesterol 

and glucose concentrations exert potential hypertensive effects if the duration of the dietary 

intervention was prolonged for 8-12 weeks? 

In conclusion, the present dietary intervention study demonstrated that the incorporation of 

whole milk and full-fat dairy products into the normal routine diet did not reduce BP on adults 

with elevated BP.  The present findings are in marked contrast to the dietary intervention study 

that we conducted using skim milk and non-fat dairy products with very similar experimental 

conditions.  These findings are not consistent with the recommendations that all dairy products are 

beneficial in lowering BP. 
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Chapter 3: Study 1 - Effects of Whole Milk and Full-Fat Dairy Products on 

Subclinical Vascular Function in Adults with Elevated Blood Pressure 

ABSTRACT 

High consumption of low- and non-fat dairy products improves vascular dysfunction 

associated with elevated arterial blood pressure (BP).  Currently, it is unknown if conventional 

full-fat dairy products mediate similar vascular responses.  To determine if adding whole milk and 

full-fat dairy products to the normal routine diet improves vascular function in adults with elevated 

BP.  Sixty adults (age±SEM; 58±2 years) with elevated blood pressure (systolic/diastolic; 120-

159/<99 mmHg) were randomized into a controlled crossover intervention trial consisting of two 

4-week dietary periods.  The high dairy condition consisted of adding 4 daily servings of whole 

milk or full-fat dairy products to the normal diet and eliminated all dairy intake during the 

alternative condition.  A 2-week washout period separated the dietary conditions.  Carotid-femoral 

pulse wave velocity (cfPWV) did not change significantly in the high dairy (11.3±0.3 vs. 10.9±0.3 

m/sec) and control conditions (11.2±0.3 vs. 11.0±0.3 m/sec).  The results were consistent when 

ultrasound-derived vascular distension measures (arterial compliance, beta-stiffness index, and 

elastic modulus) were evaluated.  Cardiovagal baroreceptor sensitivity (via Valsalva maneuver) 

demonstrated no significant change for either dietary condition.  Brachial arterial flow-mediated 

dilation (FMD), a measure of endothelium-dependent vasodilation, did not change significantly 

during the high dairy (5.7±0.5 vs. 5.4±0.6%) and control conditions (6.5±0.5 vs. 5.6±0.6%).  The 

solitary addition of whole milk and full-fat dairy products has no effect on subclinical vascular 

function in adults with elevated BP. 
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INTRODUCTION 

The vasculature can be compartmentalized into a compliance function in the large elastic 

arteries and a conduit function residing in more downstream arteries.  Accordingly, the 

elasticity/stiffness and the contractile state of the arterial wall are the primary components that 

determine vascular function.  Inability of the vasculature to change its geometry in response to 

various stimuli (e.g., pulsatile flow, shear stress) is an indicator of declining arterial function.  Age-

associated increases in arterial stiffness contribute to the rise in arterial systolic blood pressure 

(BP) and overall cardiovascular disease (CVD) risk [12, 66].  Arterial stiffening, in turn, blunts 

the sensitivity of baroreceptors and attenuates beat-by-beat mechanisms for regulating arterial BP 

[38, 67, 68].  Additionally, the degree of endothelial dysfunction is closely associated with the 

severity of hypertension [69] although whether endothelial dysfunction initiates hypertension, or 

exists as a consequence thereof, remains highly controversial [70].  Therefore, strategies to 

improve vascular function should lead to better BP control and reduced CVD risks.   

Dietary behavior is known to modulate vascular function associated with reduced arterial 

BP [71, 72].  In particular, regular dairy intake has been associated with reduced arterial stiffness 

and improved endothelial function [11, 71, 73].  Dietary interventional studies have documented 

that non- and low-fat dairy products would lead to improvements in subclinical vascular functions 

[11, 71, 74].  We have previously reported reduced arterial stiffness, increased endothelial 

function, and enhanced cardiovagal baroreflex sensitivity following the solitary addition of skim 

milk and non-fat dairy products to the normal routine diet [11].  However, whether whole milk 

and full-fat dairy products could exert similar effects on vascular function remain unclear.  Due to 

the negative implications surrounding saturated fat contained in full-fat dairy products, some have 
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called for the replacement of full-fat with lower dairy fat alternatives.  However, elevations in 

CVD-risk with saturated fat intake have not been supported by recent studies [20, 34, 35].  More 

importantly, no dietary interventional study has assessed the effects of adding whole milk and full-

fat dairy products to the normal routine diet on vascular function.   

Accordingly, the primary aim of the present study was to determine the effects of whole 

milk and full-fat dairy products on vascular function when added to the normal routine diet in 

adults with elevated BP.  We hypothesized that dietary intervention consisting of full-fat dairy 

products would result in improved vascular function as determined by arterial stiffness, endothelial 

function, and cardiovagal baroreflex sensitivity. 

METHODS 

Subjects:  A total of 60 adults (53% female) with elevated BP (137±1/83±1 mmHg) 

completed the study.  Exclusion criteria were: overt chronic diseases, pregnancy or lactation, 

smoking, type I or II diabetes, milk allergy or lactose intolerance, high baseline dairy intake (>3 

servings/d), BMI >45 kg/m2, or strenuous physical activity (>3 times/wk).  All eligible participants 

were screened during a 2-week run-in period to ensure a consistently elevated systolic BP at rest 

of 120-159 mmHg and diastolic BP of <99 mmHg on two separate occasions [25].  Prior to the 

participation, informed consent was obtained from all subjects in accordance with the University 

of Texas at Austin’s Institutional Review Board. 

Experimental Design:  As depicted in Figure 3.1, participants were randomized into a 

high dairy or no dairy (control) condition for the first 4 weeks and performed the alternative 

condition for the final four weeks with a minimal 2-week washout period.  For premenopausal 

women, a 4-week washout period was used to ensure that baseline measures were started in the 
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same early follicular phase for both dietary conditions.  During the high dairy condition, subjects 

chose their 4 daily servings from a list of dairy items provided by investigators: 8 fluid ounces of 

generic Hill Country whole milk (Hill Country Dairies, Austin, TX), 6 ounces of single-serve 

container of Brown Cow yogurt with cream on top (Stonyfield Farm, Londonderry, NH) and 1.5 

ounces of HEB branded Swiss cheese (HEB Grocers, San Antonio, TX).  During the no-dairy 

condition, an isocaloric plant-based control for the dairy products were provided by investigators: 

16 fluid ounces of HEB branded orange juice fortified with vitamin D and calcium (HEB Grocers, 

San Antonio, TX), 16 fluid ounces of Silk coconut milk (WhiteWave Services, Inc., Broomfield, 

CO), 2 ounces of Plantar salted peanuts (Kraft Heinz Company, Glenview, IL), and 4 ounces of 

Motts applesauce (Motts LLP, Plano, TX).  In the control condition, subjects eliminated all the 

dairy consumptions from their diet in order to maximize the differential dairy intake between the 

two dietary conditions.  All the dairy products were provided in daily packages by the 

investigators.  Milk was provided by the gallon with measuring cups.  Yogurt and cheese products 

were in single-serve packaging.  The subjects were free to consume the required servings at any 

time of day as a single dose or all at once.  Throughout the entire experimental period, the subjects 

were instructed to maintain their body weight, physical activity, as well as their usual diet other 

than those prescribed by the dietitian.  All subjects met weekly with a licensed dietitian to measure 

body weight, receive weekly dietary food items, and ensure compliance.  All measurements were 

taken before and after the dietary protocol following a 12-hour overnight fast (e.g., no caffeine, 

alcohol, food, or exercise). 

Statistical Analyses:  A priori testing was performed to determine sample size based on 

the effect size of previous interventional studies on similar vascular outcome measures (nQuery 
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Advisor, Statsols, Boston, MA) [11, 39, 40].  To control for random effects, two-factor (condition 

x time) mixed-model ANOVA with repeated measures were used assessed all subject 

characteristics and main dependent variables. Because there were no sex/gender-related 

differences, sex was dropped from one of the factors.  To identify significant interactions, Tukey’s 

Least Significant Difference (LSD) post hoc tests were performed.  Pearson correlation 

coefficients were calculated for additional subgroup analysis. Partial correlation was utilized to 

assess associations in individual dairy elements while controlling for the other dairy products in 

the study for the main dependent variables. All statistical analyses were performed using SPSS 

23.0 statistical software (SPSS, Inc., Chicago, IL).  The alpha value was set at P<0.05 for all 

analyses.  Data were presented as means±SEM. 

Detailed Methods: 

Blood Samples   

All blood samples were taken from the antecubital fossa by venous acupuncture by a 

certified phlebotomist.  Whole blood samples were collected, centrifuged, then the plasma was 

aliquoted and stored at -80ºC for future analyses.  Plasma concentrations of endothelin-1 (R&D 

Systems, Minneapolis, MN), total nitric oxide (NOx) consisted of nitrite/nitrate (ENZO Life 

Sciences, Farmingdale, NY), and epinephrine/norepinephrine (Abnova, Taipei City, Taiwan) were 

determined via enzyme-linked immunosorbent assays to evaluate changes in circulating vasoactive 

factors in response to dietary interventions.   

Pulse Wave Velocity and Blood Pressure  

Participants were required to get their seated blood pressure readings weekly when they 

came in to receive their weekly portion of food.  Measurements were taken in triplicate by an 
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automated device (HEM-907XL; Omron Healthcare, Vernon Hills, IL) in a dimly lit room.  All 

blood pressure measurements were in accordance with the American Heart Association guidelines 

[41].  Supine brachial blood pressure was measured with the participants in the supine position 

using oscillometric automated sphygmomanometer (VP-1000 Plus, Omron Healthcare, Kyoto, 

Japan) to assess brachial-ankle index during the pre and post testing visits. Carotid-femoral pulse 

wave velocity, an index of arterial stiffness, and carotid artery pressure waveforms were obtained 

using an automatic vascular screening device (VP-1000 Plus, Omron Healthcare, Kyoto, Japan) as 

previously described [11]. 

Carotid Artery Compliance 

The combination of ultrasound imaging of a common carotid with simultaneous 

tonometric-obtained arterial pressure waveforms from the contralateral artery permitted 

noninvasive determination of carotid artery compliance [75]. Arterial diameter was measured from 

the images derived from an ultrasound machine (iE33 Ultrasound System, Phillips, Bothel, WA) 

equipped with a high-resolution linear-array transducer as previously described [75].  A 

longitudinal image of the cephalic portion of the common carotid artery was acquired 1-2 cm 

proximal to the carotid bulb with the transducer placed at 90 degrees to the vessel.  All image 

acquisitions were performed in duplicate, for data quality assurance, by a trained technician.  All 

ultrasound-derived diameter data was analyzed utilizing automated image analysis software 

(Carotid Analyzer, Medical Imaging Applications, Coralville, IA) by the same investigator who 

was blinded to the dietary conditions.  Arterial pressure waveforms were obtained using the arterial 

tonometry placed on the carotid artery and recorded on a data acquisition software (Windaq 2000, 
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Dataq Instruments, Akron, OH).  Intima-media thickness was measured at end diastole as 

previously described [76]. 

To ensure comprehensibility, we characterized arterial mechanical properties of the carotid 

artery through several measures including compliance, arterial distension, elastic modulus, and 

beta-stiffness index.  Arterial compliance is a measure of absolute change of cross-sectional area 

following blood pressure changes whereas arterial distension is a relative change of cross-sectional 

area following blood pressure changes [77, 78].  Beta-stiffness index controls for distension 

pressures brought about by changes in blood pressure [79].  Elastic modulus is a theoretical 

measure assessing the amount of pressure needed for a 100% stretch of the arterial wall [77]. 

Flow-Mediated Dilatation (FMD) 

FMD is a non-invasive method to assess vascular endothelium-derived vasodilatory 

function as previously described [80, 81].  Brachial artery diameters and blood flow velocity was 

measured with an ultrasound machine equipped with a high-resolution linear array transducer 

(Phillips iE33 Ultrasound System, Bothel, WA).  A longitudinal image of the brachial artery was 

acquired 5-10 cm proximal to the antecubital fossa.  A BP cuff was placed on the forearm 3-5 cm 

distal to the antecubital fossa and inflated to 100 mmHg above resting systolic BP for 5 minutes 

using a rapid cuff inflator (E20, D.E. Hoakanson, Bellvue, WA).  After cuff deflation, brachial 

artery diameters and blood velocity were measured for 3 minutes.  All ultrasound-derived diameter 

data were analyzed by the same investigator who was blinded to dietary conditions, using 

automated image analysis software (Brachial Analyzer, Medical Imaging Applications, Coralville, 

IA).  FMD was calculated as a percent change in brachial artery diameter from baseline to peak 

diameter.  
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Cardiovagal Baroreflex Sensitivity (BRS)   

Cardiovagal BRS was determined using Valsava maneuver technique as previously 

described [82].  After deep inspiration, subject performed forced expiration though a mouthpiece 

with 1-inch diameter.  An expiratory mouth pressure was maintained at 40 mmHg for 10 seconds 

using visual feedback (Windaq, Dataq Instruments).  Measurements of R-R interval (ECG) and 

beat-to-beat arterial blood pressure (Portapres, Ohmeda) were collected throughout the testing 

period.  Cardiovagal BRS was analyzed using the phase IV of the Valsalva maneuver.  The R-R 

interval was regressed on the systolic blood pressure, the slope of this relation (ms/mmHg) 

represented the cardiovagal BRS if the linear regression coefficient (r) greater than 0.80. 

RESULTS 

 Participants maintained body mass throughout the duration of the study.  Dropout rate from 

the study after randomization and completing the first baseline visit was 10%.  Overall, no sex-

related differences between dietary conditions were found for any dependent variable.  When 

females were divided into pre- and post-menopause, postmenopausal females exhibited greater 

central arterial stiffness than premenopausal females (P<0.05) despite no effects from time or 

treatment effects.  Furthermore, BP medication had no impact on the dietary intervention. 

During the intervention, total dairy intake was reduced from baseline to post testing visits 

during the control condition (0.7 ± 0.2 vs. 0.0 ± 0.1 servings/d; P < 0.05) and increased during the 

high dairy condition (1.5 ± 0.2 vs. 4.6 ± 0.1 servings/d; P < 0.05).  The rise in dairy intake during 

the high dairy condition was significantly greater than during the control condition (P < 0.05).  An 

in-depth analysis corresponding to macro- and micronutrient profiles for each of the dietary 

interventions has been published elsewhere. 
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Arterial stiffness parameters including brachial-ankle PWV and carotid augmentation 

index (Table 3.2) exhibited no changes.  Central arterial distensibility measures encompassing 

carotid arterial compliance, distensibility, and elastic modulus remained consistent throughout the 

duration of the study. Interestingly, an interaction effect was seen approaching significant levels 

for beta stiffness index (P = 0.052), demonstrating elevated stiffness after the high dairy condition 

when compared to the control condition with respect to pairwise post hoc comparisons (P = 0.049).  

Central arterial stiffness did not exhibit changes between the dietary conditions (Figure 3.2A) as 

measured by cfPWV but did demonstrate significant reductions as a main effect of time (P = 0.004) 

(Figure 3.3). When divided by decade of age, a main effect of age was also present for cfPWV (P 

< 0.001).  In addition, a positive relationship was demonstrated between cfPWV and age (r = 0.46; 

P < 0.001).  Partial correlation did not reveal any associations between cfPWV and whole milk 

(controlling for yogurt and cheese intake), yogurt (controlling for whole milk and cheese intake), 

or cheese (controlling for whole milk and yogurt intake). Due to the poor quality of data, few 

participants were eliminated from analysis of the ultrasound-derived distensibility measures 

including arterial compliance, distension, beta-stiffness, and elastic modulus (total analyzed; 

n=58) and the arterial stiffness measure cfPWV (total analyzed; n=55). 

As depicted in Figure 2.2B, endothelial function, as measured through FMD, did not 

change across both dietary conditions.  Partial correlation between FMD and whole milk 

(controlling for yogurt and cheese intake), yogurt (controlling for whole milk and cheese intake), 

or cheese (controlling for whole milk and yogurt intake). In addition, consistent with the findings 

of central arterial stiffness and endothelial function, BRS also remained unchanged throughout the 

duration of the study (Table 3.2).  However, a main effect of age was present for BRS (P < 0.001).  
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An inverse trend was also noted between age and BRS (r = 0.35; P < 0.001). Surprisingly, partial 

correlations revealed negative association between BRS and whole milk (controlling for yogurt 

and cheese intake)(r = -0.30; P < 0.05), yogurt (controlling for whole milk and cheese intake)(r = 

-0.29; P < 0.05), and cheese approaching significance (controlling for whole milk and yogurt 

intake)(r = -0.26; P = 0.056). Endothelial-derived factors, including endothelin-1 (vasoconstrictor) 

and total nitric oxide (vasodilator), remained unchanged across both dietary interventions (Table 

3.3).  Due to the inability to attain blood from every participant during each visit, a few participants 

were left out of the analysis (total analyzed; n=53). 
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Table 3.1 Selected subject characteristics. 

Values are means±SEM.  There were no significant changes with either dietary condition. 

  

Variables No Dairy High Dairy 

Age (years) 58±2 58±2 

Height (cm) 169±1 169±1 

Body mass (kg) 85±2 85±2 

BMI (kg/m2) 29.3±0.8 29.2±0.8 

Heart rate (bpm) 61±1 62±1 



 37 

 

Table 3.2 Changes in subject vascular profile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values are means±SEM. There were no significant changes. PWV=pulse wave velocity, FMD=flow-mediated dilation, Ep=Peterson 

elastic modulus, IMT=intima media thickness, BRS=baroreflex sensitivity. 

 No Dairy High Dairy 

Variables Before After Before After 

Ankle-brachial index 1.13±0.01 1.13±0.01 1.14±0.01 1.13±0.01 

Brachial-ankle PWV (m/sec) 14.9±0.3 14.6±0.3 14.9±0.3 14.5±0.3 

Carotid augmentation index (%) 23±2 23±2 24±2 21±2 

Baseline brachial artery diameter (mm) 3.97±0.10 4.00±0.10 4.00±0.10 3.98±0.10 

Peak brachial artery diameter (mm) 4.21±0.10 4.21±0.10 4.21±0.10 4.21±0.10 

Absolute FMD (mm) 0.25±0.02 0.21±0.02 0.23±0.02 0.21±0.02 

Carotid arterial compliance (mm2/mmHg x 10-1)  0.88±0.06 0.89±0.08 0.89±0.06 0.84±0.08 

Arterial distensibility (mmHg-1 x 10-3)  3.43±0.17 3.57±0.22 3.36±0.17 3.37±0.22 

β-stiffness index (U) 4.2±0.4 4.1±0.5 4.1±0.4 4.5±0.5 

Ep (mmHg)  697±34 692±42 679±34 728±42 

Carotid IMT (mm)  0.52±0.02 0.49±0.02 0.52±0.02 0.52±0.02 

Cardiovagal BRS (ms/mmHg)  8.3±0.8 9.5±0.7 9.5±0.8 8.2±0.7 
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Table 3.3 Changes in plasma concentrations of vasoactive factors with the dietary interventions. 

 

Values are means±SEM. There were no significant changes with either dietary condition. 

 

 

 

  

 No Dairy High Dairy 

Variables Before After Before After 

Endothelin-1 (pg/mL)  1.91±0.05 1.85±0.06 1.79±0.05 1.87±0.06 

Nitric oxide (µmol/L)  29.3±1.9 30.1±2.6 25.3±2.0 32.1±2.7 

Epinephrine (ng/mL) 21.9±5.3 25.5±4.0 30.4±5.3 28.4±4.0 

Norepinephrine (ng/mL) 551±45 591±44 573±46 627±44 
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Figure 3.1 Overview of the randomized controlled crossover dietary intervention design. 
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Figure 3.2 Carotid-femoral pulse wave velocity (cfPWV) (A) and brachial artery flow-mediated 

dilation (FMD) (B) before and after no dairy and high dairy conditions.   

There were no significant interaction effects. 
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Figure 3.3 Main effect of time for carotid-femoral pulse wave velocity (cfPWV). *Denotes 

significant main effect of time (P < 0.05). 

  

* 
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DISCUSSION 

 The findings of the present study indicate that whole milk and full-fat dairy products added 

to the normal routine diet do not improve key vascular functions implicated in elevating BP.  

Specifically, the vascular stiffness measures implemented in the present study did not change 

during the dietary intervention.  No changes in endothelium-dependent vasodilation and 

cardiovagal baroreflex sensitivity were observed.  A lack of dietary effects on vascular function 

may be perceived as negative findings but may also suggest that saturated fat contained in whole 

milk and full-fat dairy do not impair vascular function.  The current investigation is the first dietary 

investigation study to determine the relationship between full-fat dairy products and arterial wall 

properties in adults with elevated BP. 

An increase in the stiffness of the large elastic arteries located in the cardiothoracic 

circulation is thought to be the primary mechanism underlying the age-associated increase in 

systolic BP.  In marked contrast to our previous investigation evaluating skim milk and non-fat 

dairy products [11], the present study utilizing the identical experimental protocol did not replicate 

the destiffening effects of dairy products as our whole milk and full-fat dairy products added to 

the normal routine diet did not induce changes in arterial stiffness.  To assess arterial wall 

properties as comprehensively as possible, we implemented a variety of methods in the present 

study.  Both propagation models (e.g., pulse wave velocity) and distention models (e.g., arterial 

compliance) consistently indicate that arterial stiffness did not change with either dietary 

intervention.  Our findings corroborate with the findings of previous studies indicating no 

detrimental effects of dairy products on central arterial stiffness [73, 83].  Given these findings 

over the short time span of the investigation (i.e. 4 weeks), it remains unknown whether longer-
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term full-fat dairy products might negatively impact the elastic mechanical properties of the arterial 

walls.   

Arterial baroreceptor-mediated changes in BP parallel changes in heart rate as a way to 

control BP on a beat-to-beat basis [84].  The sensitivity of these cardiovagal baroreceptors are 

blunted in adults with elevated blood pressure [85].  In our previous investigation, regular intake 

of skim milk and non-fat dairy products improved the sensitivity of the baroreceptors, and such 

changes were correlated to reductions in central arterial stiffness [10].  However, full-fat dairy 

products did not induce changes in BRS in the present investigation.  This finding may not be 

surprising given the lack of changes in arterial stiffness.  The compliance of carotid arteries and 

aorta in which arterial baroreceptors are located is closely associated with cardiovagal BRS 

through the ability of these reflexogenic regions to transduce signals [38].  

Reduced nitric oxide bioavailability appear to be responsible, at least in part, for the age-

associated augmentation in the vasoconstrictor tone of large conduit arteries [86].  Regular non- 

and low-fat dairy intake can produce significant improvements in endothelial function [9, 11].  

However, increased consumption of full-fat dairy products did not elicit similar improvements in 

endothelial function as estimated by FMD in the present study.  Follow-up analyses of plasma 

endothelium-dependent biomarkers NOx are consistent with the results in FMD.  Taken together, 

the regular consumption of whole milk and full-fat dairy products added to the normal routine diet 

does not appear to improve endothelial function in adults with elevated BP. 

Dairy micronutrients (e.g., potassium) and small peptides (e.g., lactotripeptides) contained 

in the milk and dairy products have been shown to have bioactive properties that affect vascular 

function [39, 40, 87].  Lactotripeptides (LTPs), formed from fermented dairy proteins, improve 
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endothelial function and central arterial compliance [39, 40] and also exert greater hypotensive 

effects with hypertensive than pre-hypertensive patients [88].  Mechanistically, LTPs have been 

shown to upregulate endothelial nitric oxide synthase in the aorta of spontaneously hypertensive 

rats [89].  Considering the fact that both non-fat and full-fat dairy products include these bioactive 

elements, what explains the discrepancy between non-fat and full-fat dairy products on the 

influence on vascular function?  We could only speculate on this but it is plausible that saturated 

fat in the full-fat dairy products may act to negate the beneficial effects of these bioactive 

compounds.  Indeed, protein consumption in combination with saturated fats eliminate the 

negative vascular effects attributable to the saturated fats [48, 90, 91].  Clearly, more research is 

necessary to investigate this mechanism.  

Even though we lack statistical power to properly conduct subgroup analyses, such 

analyses were undertaken.  However, they did not provide any new insight into the research 

findings.  Central arterial stiffness generally increases as a function of age [92], and arterial 

stiffening is known to reduce BRS as one advances in age [38].  Despite seeing no effects of sex, 

significant reductions in central arterial stiffness were seen among premenopausal females when 

compared with postmenopausal females.  Premenopausal females generally have reduced arterial 

stiffness than their postmenopausal counterparts as estrogen is responsible for maintaining 

elasticity of the arterial walls [93].  With respect to partial correlational analyses, it was surprising 

to show significant negative associations between BRS and increased whole milk and yogurt 

intake.  Such data suggests that less consumption of full-fat dairy products may protect baroreflex 

sensitivity. 



 45 

 

A lack of significant change in vascular function may be considered a negative finding 

with respect to dietary intake of whole milk and full-fat dairy products.  However, one may argue 

that no significant changes in vascular function may be perceived as a rather positive message 

given the negative ideology surrounding dairy fats and CVD risk.  Consistent with the present 

study, acute and longer-term effects elevating intakes of full-fat fermented and non-fermented 

dairy products have demonstrated no significant increases in pro- inflammatory, oxidative, or 

atherogenic biomarkers [94, 95].  Since an increasing number of investigators have recently begun 

to question the validity of the dietary recommendation to replace whole milk with reduced-fat 

milk, it may be clinically relevant to understand the interaction between isolated dairy elements 

and their impact on CVD risk.   

In summary, unlike nonfat dairy products demonstrating improvements in vascular 

function, whole milk and full-fat dairy products failed to improve vascular function in adults with 

elevated BP.  However, our findings also suggest that there are no negative effects involved in 

consuming full-fat dairy products on key vascular functions that are involved in the pathogenesis 

of CVD.  Based on our findings, four weeks of consuming full-fat dairy products do not contribute 

to vascular dysfunction.  Such knowledge is beneficial for future investigations examining the 

effects of long-term studies assessing full-fat dairy products for other therapeutic modalities.  
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Chapter 4: Review of Literature 

EPIDEMIOLOGY OF CARDIOVASCULAR DISEASE 

Cardiovascular disease (CVD) is responsible for 1 in every 4 deaths, amounting to an 

annual death rate of 600,000 persons within the United States alone [96].  CVD is the leading cause 

of death not only within the United States [96] but on a global scale [63, 97], most notably within 

economically developed countries [98].  Despite these trends, CVD-related mortality has been 

declining over the past half-century worldwide [99, 100].  Such progress is not surprising as the 

decline in mortality can be attributed to more effective diagnoses, treatment, and accessibility to 

healthcare.  Developed countries are at the forefront of medicinal-based research affording 

therapeutic strategies to offset CVD risk.  The U.S. has taken a leadership role in educating the 

public about effective strategies to reduce the pronouncement of disease within a clinical setting 

[101-103].  Adopting such strategies through educational reform and governmental regulations 

toward reducing risk factors has effectively lowered prevalence and incidence of CVD-related 

mortality within other countries [104, 105].  Currently, lifestyle modifications are the first 

approaches to lower risks of cardiovascular disease [2].  Behavioral modifications are inexpensive 

and have the potential to improve cardiovascular health and to help counteract disproportionate 

factors and/or predispositions to CVD. 

Although a number of CVD risk factors can be reduced, several unmodifiable risk factors 

for progressing CVD exist: age, sex, race, and genetics.  Chronological aging is strongly associated 

with advanced stroke and heart disease risk [106, 107].  However, referencing chronological age 

as a risk factor for CVD does not adequately portray biological parameters of the arterial 

vasculature that is a more accurate and more precise determinant of CVD risk [108].    In younger 
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ages, males demonstrate a greater death rate from CVD than females [106], whereas the death rate 

attributed to females surpasses males after the fifth decade [63, 109] as estrogen is believed to 

confer vascular protection during pre-menopause [110]. However, estrogen therapy to lessen CVD 

risk [111] is controversial for postmenopausal women as estrogen supplementation has been linked 

to development of breast cancer [112].  Family history of CVD further increases the risk of CVD-

related events [113].  With respect to race, the Centers for Disease Control named CVD as the 

leading cause of death among non-Hispanic whites, non-Hispanic blacks, American Indians, and 

Alaskan Natives [96].  Although mortality rates from heart disease are similar among non-Hispanic 

whites and blacks, non-Hispanic blacks are more susceptible to stroke and diabetes [114].  A 

genetic predisposition may not entirely represent an underlying cause of CVD, as other 

disproportionate factors may play a role, particularly non-Hispanic blacks who have an overall 

lower socioeconomic status thereby limiting access to healthcare [115, 116].   

HYPERTENSION AS A RISK FACTOR FOR CVD 

Elevated BP is one of the leading risk factors for CVD-related mortality [23, 117] 

embodied as one of the many metrics to establish cardiovascular health [118].  Isolated systolic 

hypertension is the prevailing form of elevated BP when compared with systolic and diastolic 

hypertension or isolated diastolic hypertension [119].  Isolated systolic hypertension is accredited 

to consistently rising systolic BP with age and a concomitant reduction in diastolic BP after the 

fifth decade [22].  Furthermore, systolic BP is a greater predictor of CVD than diastolic BP [120].  

A systolic goal of <140 mmHg has been linked to lower CVD events and mortality risks [121-

123] and was a basis for the former cutoff value of stage I hypertension [1].  However, the most 

recent guidelines have established the cutoff for stage I hypertension as 130-139 mmHg in systolic 
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BP [124], which establishes the clinical relevance of controlling systolic BP to moderate CVD 

risk.  For the purpose of this review, preexisting guidelines established at the onset of this study 

will be utilized [1].   

Hypertension has been grouped into two etiological categories: primary and secondary 

hypertension.  Primary, or essential, hypertension exists when its origin remains unknown whereas 

a preceding event characterizes secondary, or incidental, hypertension.  Primary hypertension is 

often detectable in adolescents prior to being clinically diagnosed in young adulthood [125, 126].  

Due to the progressing nature of untreated hypertension with time [126], adolescents will carryover 

formerly developed CVD risk factors associated with elevated brachial systolic BP [127, 128] into 

adulthood.  Failure to diagnose a pronounced BP within children during the initial stages [129, 

130] counters the ability to recognize appropriate origins. Though the etiology of primary 

hypertension may not be attributed to a single known cause, excessive levels of sympathetic 

nervous system activity, salt intake, and genetics are suspected to be some of the principal factors 

[131-134].  Lifestyle modifications in the form of diet and exercise are a first line approach in the 

management of elevated BP [1, 2].  Inability to regulate primary hypertension will further damage 

vascular and organ tissue augmenting BP in what earlier investigators phrased ‘the vicious circle 

of hypertension’ [135], or chronic hypertension.  Sustained hypertension is a major contributable 

risk factor of hypertensive heart disease [4], a form of CVD resulting in left ventricular 

hypertrophy and eventual heart failure [136, 137].   

In the recent two decades, the hypertension-related death rate has been steadily increasing 

within the U.S., while all-cause mortality has been declining [138].  Susceptible groups of 

hypertensive-related mortality include women over the age of 85 years, Hispanics, non-Hispanic 
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whites, and non-Hispanic blacks; despite a reducing trend in non-Hispanic blacks that nevertheless 

demonstrate a majority cause of death associated with hypertension [138].   Additionally, 67% of 

adults over the age of 60 years have been diagnosed with hypertension [63], and 90% of the 

normotensive population at the age of 55 years is expected to develop hypertension at some point 

in their lifetime [1].  Hypertension is projected to heighten its incidence from 972 million in 2000 

to 1.56 billion in 2025, thereby increasing the global economic burden [139].   Every 20 or 10 

mmHg increase in systolic BP or diastolic BP, respectively, doubles CVD risk [1].  Reducing the 

level of hypertension is of paramount clinical importance in moderating CVD risk.   

LIFESTYLE MODIFICATIONS TO REDUCE HYPERTENSIVE RISK 

In 2010, a statement from the American Heart Association (AHA) issued a national goal 

to further reduce CVD mortality by 20% by the year 2020 [118].  To achieve this goal, a follow-

up study revealed a necessary shift in the population to meet “ideal cardiovascular health” 

qualifications, which appeared in approximately 0.1% of participants during the ARIC 

(Atherosclerosis Risk in Communities) study between 1987 and 1989 [140], demanding greater 

preventative efforts.  The seven metrics assessing cardiovascular health include health measures 

(total cholesterol, BP, blood sugar) and behavioral factors (nonsmoking, BMI, physical activity, 

healthy diet score).  A greater total number of ideal metrics corresponds to lower CVD risk [140].  

For this review, dieting strategies and BP will be mainly emphasized. 

The Mediterranean diet pattern was endorsed by the AHA, as part of the 2020 goals, to 

lower CVD risk – a dietary regimen rich in polyunsaturated fats, lean meats, and fiber-rich fruits, 

vegetables, nuts and whole-grains with diminished intake of saturated fats and sweetened 

beverages [118].  Although adherence to the Mediterranean diet is advantageous to reduce CVD-
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related mortality [141, 142], higher risk individuals are less likely to comply with such a dietary 

regimen [143, 144].  The U.S. is the lowest ranked country practicing such dietary habits [145].  

Yet, another study validated hypotensive effects of the DASH diet within the pre- and hypertensive 

community when compared against western and vegetarian diets [8].   Epidemiological studies 

have demonstrated associations with DASH dietary compliance and improved cardiovascular 

health [146].  The original DASH eating plan integrated fruits, vegetables, lean meats, whole-

grains, low-fat dairy and less intake of sweets and saturated fats, encompassing some similarities 

to the Mediterranean diet without elevated dietary fats.  Counseling patients within the primary 

care setting is a strong impetus for hypertensive patients to increase fruit, vegetable, low-fat dairy 

intake, and lower BP [147].  However, the effectiveness of reducing BP is limited when relying 

upon patient compliance opposed to clinical-based dietary provisions. 

Variations of the DASH diet incorporating reduced levels of sodium intake [148, 149] are 

equivalently effective as monotherapeutic antihypertensive medication [150, 151].  The reported 

mean intake of sodium within the U.S. in 2010 was estimated around 3.6 g/d and a global 

consumption of approximately 3.95 g/d [152] contributing to 1.65 million annual CVD-related 

deaths [153].   Excessive dietary sodium intake acts in a dose-dependent manner in raising systolic 

BP and portrays hypersensitivity among older, hypertensive, and general black communities [153].  

Individuals with sustained hypertension are affected more by a low-sodium DASH diet than those 

with lower BP levels [154].  Therefore, the AHA threshold for sodium consumption has been set 

to 1.5 g/d to lower BP within these sensitive groups and 2.3 g/d for unspecified groups [118] based 

on the DASH-sodium trial [148].  While there are multiple dietary sources containing sodium 

[155], roughly 77% has been attributed to processed foods [156] within the American diet.  
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Physiologically, abnormal kidney function, associated with advancing age and hypertension [157], 

causes inadequate processing of excessive sodium levels resulting in greater retention of water and 

subsequent volume overload heightening BP [132]. Consumption of unprocessed foods, 

ascertained by the low-sodium DASH eating plan [148], is appropriate and should be considered 

as a habitual practice among Americans’ eating habits. 

Aerobic exercise incorporated into a calorie-restricted DASH diet is also a practical 

approach in facilitating improved reductions of BP within an pre-, stage 1, and stage 2 hypertensive 

overweight population [71].  Body mass index (BMI), a surrogate measure of body fat, serves as 

a major cardiometabolic risk factor when classified as overweight [158, 159].  The AHA conceded 

to the BMI terms of the National Heart, Lung, and Blood Institute of 18.5-24.9 kg/m2 despite 

disease events occurring the least when the BMI range is 18.5-22 kg/m2 [118].  The prevalence of 

those meeting AHA’s BMI requirements within the U.S. has been steadily declining for adults and 

adolescents [63] indicative of a proportional increase of overweight individuals [160].  Overweight 

children are at greater risk of developing other comorbidities, including hypertension, diabetes, 

and cholesterol, during their adolescence than normal weight children [161] carrying over into 

their adult years [162].  Regular aerobic exercise has been identified to reduce body fat in 

overweight children [163] and adults [164] when compared to their sedentary counterparts.  

Moreover, cardiorespiratory fitness has been established to decrease hypertensive risk [165], even 

among adults who exercised regularly during their former upbringing and have diminished 

physical activity later in adulthood [166, 167].  Due to varying responses of aerobic exercising, 

calorie-restricted dieting is a more favorable strategy to reduce body weight [168, 169].  The 

macronutrient profile of any calorie-restricted diet can be modified to effectively lose weight [170] 
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even to target traditional risk factors attributable to CVD risk [169].  Combining calorie-restricted 

diets and exercise strategies exerts additive effects to lower CVD risk and body weight [71, 169].  

The efficacy of lifestyle modifications, through dieting and exercise to lessen CVD risk, has been 

advocated among several organizations [2, 5, 171].    

Manipulation of the macronutrient profile, or routine dietary foods without calorie 

restriction, also effectively reduces CVD risk.  The original DASH diet, rich in carbohydrates from 

natural sources [8], was responsible for cutting out refined sugars, which have been linked to 

hypertension [172, 173].  Multiple accommodative eating plans exist that similarly lower BP and 

CVD risk through enriched complex carbohydrate meals (i.e. DASH diet), or by partial 

replacement of carbohydrates with unsaturated fats (i.e. Mediterranean diet) or protein [49, 174].  

However, other dieting strategies manipulate regular eating habits by adding specific food items 

to the regular diet to determine health benefits maintaining isocaloric conditions. The original 

DASH trial popularized low- and non-fat dairy consumption but ineffectively segregated its 

hypotensive features from the rest of the diet [8].  Observational studies have since demonstrated 

inverse associations of low-fat dairy intake and BP [17, 175]. Furthermore, randomized clinical 

trials have attributed hypotensive effects to 3-4 daily servings of low- [9] or non-fat dairy products 

[10] to improve vascular function associated with elevated BP [11] when added to the normal 

routine diet opposed to a diet where dairy was absent.  Prior to these studies, the AHA cautiously 

refrained from including low-fat dairy as a dietary recommendation due to lacking causal evidence 

in 2010 [118], but have recently encouraged low-fat dairy consumption as part of a heart-healthy 

diet [176]. 
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HYPOTENSIVE EFFECTS OF DAIRY CONSTITUENTS 

The heart-healthy properties arising from non- and low-fat dairy products has been ascribed 

to the dairy proteins.  The two major dairy proteins, casein and whey, compose 80% and 20% of 

total protein, respectively [177].   Compared to a normalized diet with varying protein sources, a 

three-month semi-isolated protein diet high in whey and casein, separately, revealed distinguishing 

elevations in glutathione, an antioxidant scavenger, within heart tissue of aged mice [178].  The 

effectiveness of whey protein to enhance intracellular glutathione is attributed to its enriched 

cysteine content [177], formerly identified as a rate-limiting substrate of glutathione synthesis 

[179].  Additionally, casein, rich in methionine [177], stimulates endogenous production of the 

intermediary byproduct homocysteine [180] before yielding cysteine and subsequent glutathione 

[44].  Excessive methionine intake [180], or reduced homocysteine flux, through deficient levels 

of choline [181], folate, B6 and B12 [182], are likely to result in hyperhomocysteinemia, an 

independent risk factor of CVD [183] responsible for oxidative damage [184] and vascular 

dysfunction [185].  Dairy products are a significant source of choline, folate, B6 and B12 [51] to 

negate the effects of copious levels of methionine alone.  The DASH diet revealed significant 

reductions in serum homocysteine levels when contrasted against a western and vegetarian diet 

[186].  Therefore, dairy proteins assist expanding the glutathione pool demonstrating antioxidative 

characteristics and protection against vascular dysfunction. 

Intriguingly, constituents of dairy proteins also accommodate antihypertensive and other 

advantageous vascular properties that lessen hypertensive risk. Casein-derived peptides, 

isoleucine-proline-proline and valine-proline-proline, or lactotripeptides, are the most common 

and potent peptides in dairy capable of reducing elevated systolic and diastolic BP [88, 187, 188].  
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Specifically, a LTP-based therapeutic intervention, analyzed against a placebo group, significantly 

lowered systolic BP, cardiac workload, and arterial vascular stiffening associated with CVD [189].  

Improvements in arterial stiffness and endothelial function corresponding to LTP ingestion is 

associated with parallel reductions in BP [39, 40].   Aside from LTPs, other nutraceutical features 

of dairy proteins include relaxation of vascular smooth muscle cells [190, 191], and suppression 

of vasoconstricting peptide hormones [192], vasoconstriction-responding receptors [193], and 

proinflammatory markers [194, 195] linked to early atherosclerotic plaque development [196].  

The capabilities of dairy protein supplementation to lower elevated BP while concomitantly 

promoting antioxidative status, should be regarded as an appropriate dieting strategy to modify 

CVD risk. 

Nevertheless, general saturated fat intake has been established as a cause of elevating 

systolic BP when compared to consuming unsaturated fatty acids [32, 33].  The mechanisms 

involving saturated fats contributing to elevated BP have been linked to reduced insulin sensitivity 

[60, 197] and increased oxidative stress promoting vascular dysfunction [198], increasing 

proinflammatory cytokines, and the RAS response that is associated with elevated BP [47, 48].  

Prolonging exposure of saturated fats within the circulation through reduced insulin sensitivity, 

especially among overweight and obese individuals, aggravates the renin angiotensin response 

through oxidative mechanisms [48].  Dietary proteins have been demonstrated to offset the 

oxidative effects to exert vascular protective effects [91, 199].  However, no study has yet 

demonstrated the degree to which dairy proteins may offset the hypertensive effects contributable 

to saturated fats found in dairy. 



 55 

 

Saturated fatty acids emanating from dairy sources are emerging as potential candidates 

for cardiovascular health.  In an abbreviated 3-week high-fat DASH trial [16], whole-fat dairy 

products were substituted in place of low- and non-fat dairy products and found to comparably 

lower BP as the original DASH eating plan.  However, data surrounding saturated fat in dairy has 

been mixed and inconclusive as observational studies have demonstrated inverse trends of BP and 

levels of whole-fat dairy consumption [15, 27, 175] or no relationship [17, 30].  The lack of 

sensitivity to detect hypotensive trends with whole-fat dairy intake may be limited from the 

blending of low- and whole-fat dairy consumers, often ingesting higher levels of low-fat dairy 

compared to whole-fat dairy [17, 30], or not accounting for distinctive dietary patterns linking low-

fat than whole-fat dairy consumers with healthier eating habits [17].   

However, saturated fats indicative of heart healthy benefits has challenged conventional 

thought in context of heart-healthy benefits.  Two saturated fats from dairy, pentadecanoate 

(C15:0) and transpalmitoleate (C16:1n-7) [200-202], endogenously produced in bovine milk, have 

demonstrated favorable BP effects despite a miniscule presence.  Self-reported data based on dairy 

fat intake revealed significant reductions in systolic and diastolic BP when compared from the 

lowest to highest quintiles of C15:0 and C16:1n-7 [203].  Other observational studies establishing 

associations in BP between low and high dairy fat intake have shown either no significant 

reductions in BP for C16:1n-7 [204], C15:0 [202], or positive findings for reduced BP with 

C16:1n-7 [205].  The previously mentioned studies finding no hypotensive trends [202, 204], also 

did not demonstrate hypertensive effects as other common saturated dairy fats such as myristic 

acid [203], stearic acid [32], or coconut oil rich in lauric acid [33].  Therefore, the effectiveness of 
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two fatty acids to lower BP may be limited in their ability to attenuate the hypertensive properties 

of alternative saturated fats identified in whole milk products.   

SATURATED FAT CONSUMPTION AND CVD RISK 

Conventional understanding of dietary saturated fat intake linked with CVD risk has been 

controversial.  Ancel Keys is identified for establishing the relationship between heart disease and 

overnutrition by total dietary fat and consequential elevation of total cholesterol [206, 207].  Early 

in Keys’ career, he discovered a strong association between dietary fat and CVD mortality, 

postulating evidence in support of a low-fat dietary regimen [208].  Some viewed Keys’ 

conclusions as valid [209] while others proved the study insufficient when held up to scrutiny 

[210].  Keys’ findings were simply dismissed based on several revelations: 1) weaker association 

when investigator bias was eliminated by including all countries opposed to a select few, 2) limited 

significance as the measure for total dietary fat intake was based on amounts available for 

consumption rather than what was actually consumed, and 3) lack of specificity as total protein 

available revealed similar relationships to CVD mortality in comparison to total fat [210].  Later, 

Keys’ differentiated between the hypo- and hypercholesterolemic effects of polyunsaturated and 

saturated fats, respectively [211, 212], establishing saturated fats from dairy and meat sources as 

the major contributors of total cholesterol and subsequent CVD risk [212].  Yet, extensive study 

of the cholesterol-lowering properties of polyunsaturated fat, particularly vegetable oils rich in 

linoleic acid [211, 213], has established no clear benefits to corresponding CVD risk [214, 215].  

Vascular consequences of excessive dietary linoleic acid intake may originate from a natural 

proclivity towards oxidized metabolites.  Oxidized linoleic acid derivatives have been established 

to be a major factor concerning oxidized LDL particles [216, 217] mechanistically releasing 



 57 

 

proatherogenic compounds [218].  Given the little relevant scientific knowledge of dietary fats at 

the time, Keys was a significant figure to put the arguments forward despite surmising findings in 

a “blunt and cocksure manner [206].”  Ensuing debates that argued for greater scientific relevance 

prior to making presumptuous claims concerning saturated fats and CVD risk [219] were dismissed 

by Keys [220].  Despite debates among the scientific community, declining whole- and inclining 

low- and non-fat milk sales have spoken to the consensus among Americans since 1975 [221].  

Since the mid-2000’s, butter sales have also increased [222] as well as whole-fat milk in 2015-

2016 [221], suggesting a potential rise in dairy fat consumption. 

In 1977, the release of the first U.S. dietary guidelines endorsing a low-fat diet and 

replacement of fats for carbohydrates [223] has seemingly prompted additional health issues over 

time.  Since that time, diabetic and obesity prevalence accelerated [224, 225] along with ingestion 

of refined carbohydrates in place of complex carbohydrates [225].  Validation for such trends may 

be due to greater satiety levels following a meal with high saturated fat content than a 

carbohydrate-enriched meal [226] as endorsed by the 1977 guidelines.  Tradeoffs in the 

macronutrient profile of saturated fat for carbohydrates yields unfavorable health outcomes as 

refined sugars promote a greater CVD risk than saturated fats or carbohydrates from whole-grain 

products [35].  Furthermore, it has been well established that progression from the lowest to highest 

quintiles of saturated fat consumption, also among high-fat dairy consumption [227], is not 

associated with elevated CVD risk [20, 34, 35].  While the dining habits of Americans cannot be 

firmly ascribed to the 1977 guidelines, saturated fat may not be the exclusive culprit responsible 

for elevated CVD risk. 
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The integration of certain dietary habits through incorporation of heart-healthy foods may 

be the key to further offset potential CVD risk when consuming saturated fat.  Two European 

countries, Finland and France, are infamous consumers of saturated fat being among the highest 

worldwide [228].  Yet, despite similarly elevated cholesterol [229] and BP levels [229, 230], 

France has the lowest CVD mortality risk than any other country [228], formerly identified as the 

“French paradox”.  Several dietary trends may explain the existence of the French paradox 

including daily moderate wine consumption to prevent platelet aggregation [229, 231], high 

consumption of vegetable and whole food items [228], and small portion sizes [232].  In contrast, 

the Finnish had a dietary regimen rich in saturated fat, protein, carbohydrates [228, 233], and 

sodium [104] with little vegetable and fruit sources.  Since the late 1970s, CVD risk has been 

reduced among the Finnish [234] when it was first identified by Keys as a high risk country [235].  

Although high dairy fat consumption is associated with greater CVD risk among the Finnish [228], 

the French have lower risk undeterred by similar levels of dairy fat intake as other developed 

countries [229].  Therefore, all contributable dietary CVD risk factors should be assessed with 

their complementary or uncomplimentary roles in conjunction with saturated fat.  

Results from studies revealing that saturated fats have minimal cardiovascular consequence 

[20, 34, 35], and reduced prevalence of hypertension in populations consuming high amounts of 

whole-fat dairy products [15, 27, 175], has many advocates jumping onto the “butter is back!” 

campaign.  However, current understanding is still very limited, and navigation of potential health 

implications is ongoing.  Due to LDL cholesterol being a major CVD risk factor, <7% of total 

energy provided by saturated fats are recommended by the AHA based on previous literature 

linking saturated fats to increased cholesterol levels [118].  The negative hypercholesterolemic 
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effects of saturated fat consumption are offset by increasing HDL cholesterol levels [36].  

Partitioning saturated fatty acids according to chain length also has varying effects on cholesterol.  

Specifically, shorter fatty acids markedly raise LDL and HDL cholesterol levels to a greater degree 

than longer saturated fatty acids [36, 236].  Palmitic acid (16:0), which constitutes the highest 

concentration of saturated fats in dairy [51], has demonstrated hypocholesterolemic properties in 

men and women with normal cholesterol levels [237, 238].  Moreover, the 

thromboxane/prostacyclin ratio, respectively platelet aggregate promoter/platelet aggregate 

inhibitor ratio [239, 240], was demonstrated to be quite favorable in participants consuming 

palmitic-rich oils in comparison to coconut or olive oils [237].  The singular effects of other major 

saturated fatty acids found in dairy, differentially affect cholesterol levels by respectively exerting 

no effects or decreases in LDL and HDL cholesterol with stearic acid supplementation (18:0) [241] 

and increases in both LDL and HDL cholesterol with myristic supplementation (14:0) [242] when 

compared to baseline in healthy participants.  Additional nutrients in particular foods may also 

play a role in reducing cholesterol levels such as dairy calcium reducing absorption of fats in the 

gut associated with lowered LDL serum cholesterol levels when analyzed against a controlled 

isocaloric diet [243].  Thus, the contrasting hyper- and hypocholesterolemic effects of solitary 

saturated fatty acids, among other nutrients, could potentially counterbalance the heart health 

paradigm. 

Overall, the cardiovascular benefits associated with whole-fat dairy product consumption 

seem optimistic.  However, a lack of causal evidence remains to determine the efficacy of whole-

fat dairy on adults with elevated BP.  The high-fat DASH trial, which substituted non- and low-fat 

for whole-fat dairy products, effectively demonstrated a similar hypotensive response to the 
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normal DASH eating plan [16].  From these results, it could be argued that a reduction in BP was 

the result of a holistic nutritive approach that incorporated whole foods to increase ingestion of 

complex carbs, vegetables, and fruits apart from the normalized eating patterns of western 

civilization.  Therefore, to assess the potential hypotensive properties of whole-fat dairy, studies 

that provide additional whole-fat dairy products to the normal routine diet are necessary.   

VASCULAR FUNCTIONS ASSOCIATED WITH AGING, HYPERTENSION, AND DAIRY CONSUMPTION 

BP is the measure of circumferential force exerted on the arterial wall perpendicular to 

blood flow.  Under pulsatile conditions, the corresponding distension and recoil properties of the 

arteries, from the respective aftereffects of contraction (systole) and relaxation (diastole) of the 

myocardium [244], responsible for controlling the conductance of blood, diminish with advancing 

age.  The distension of the arterial wall acts as a buffer to the systolic pressure by storing blood to 

be later released during recoil, or diastole, also known as the Windkessel model [245].  Sustained 

forces from chronic hypertension cause eventual fatigue the elastic components of the arterial wall 

[246], a property of the central arterial elastic arteries [77], leading to enhanced collagen synthesis 

and overall arterial stiffness [247-249].  Aside from fatiguing elastic lamellae of the arterial wall, 

elevated cholesterol bolsters arterial stiffness through plaque calcification [250].  Yet, arterial 

stiffness and elevated BP can be lowered through cholesterol reduction  [251].  Arterial stiffness 

is an independent predictor of CVD mortality [12], particularly among the hypertensive population 

[252].  Inherent arterial stiffening is also subsequently associated with incidental systolic 

hypertensive risk [66], demonstrating the potential elastic properties of the arterial wall to affect 

BP.  Advancing age is also directly associated with rising BP and arterial stiffness [92, 253, 254].  
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Therefore, therapeutic intervention trials aimed at reducing hypertension may inadvertently reduce 

arterial stiffness.   

The endothelium is the innermost lining of the arterial wall and serves as the first-line 

defense against atherogenesis [110].  Responsible for the balance between vasoconstriction and 

vasodilation, the simple squamous layer of cells produce nitric oxide  (NO) [255], a potent 

vasodilator, and endothelin-1 (ET-1) [256, 257], a powerful vasoconstrictor.  Due to their 

proximity of the lumen, endothelial cells are primary targets for cellular destruction from reactive 

oxygen species and inflammatory markers [258-260].  Studies have validated endothelial 

dysfunction progressing with arterial stiffness [67, 68] and arterial stiffness promoting endothelial 

dysfunction [261].  Therefore, maintaining arterial elasticity is important for endothelial function 

despite origins of pathology.  Additional initiating factors contributing to endothelial dysfunction 

has been linked to hypertension, atherosclerosis, thrombus development, and myocardial 

infarctions from plaque buildup in the coronary arteries [110, 258, 259, 262].  Patients with 

apparent CVD risk factors exhibit reduced blood flow in comparison with healthy individuals 

[263].  Blood flow is important for arterial vasomotor activity [264], particularly in the production 

of endothelium-dependent NO [265, 266] to inhibit ET-1 production and subsequent platelet 

aggregation [267, 268].  Therefore, reductions in blood flow are significantly associated with 

CVD-related events compared to those with adequate blood flow [260]. Clinical research has 

demonstrated reversal of hypertensive-associated endothelial dysfunction through 

antihypertensive treatments [269], suggesting the importance of regulating elevated BP to 

modulate endothelial function.  Age-associated endothelial dysfunction naturally decreases to a 



 62 

 

similar magnitude for normo- and hypertensive individuals [270, 271], but a greater degree of 

impairment is visible with the aging hypertensive population [270].   

Together, endothelial dysfunction, arterial stiffness, and hypertension are factors that blunt 

baroreceptor sensitivity (BRS).  With nerve endings located within the medial layer of the carotid 

arteries and aorta [272], baroreceptors are sensitive to excessive distension of the arterial wall from 

short-term elevated systolic BP [132].  The baroreceptors mediate sympathetic output regulating 

vessel diameter [273].  Sustained hypertension results in a heightened operational threshold of the 

baroreceptors [132] resulting in reduced function of the baroreceptors [85].  Moreover, arterial 

stiffening is an independent risk factor of impaired BRS [274], limiting the functional capacity of 

the baroreceptors by reducing afferent inputs [275].  In animal models, prostaglandins released 

from endothelial cells stimulate baroreceptors during episodic hypertension to promote 

vasodilation in a paracrine manner [276, 277].  Thus, endothelial dysfunction results in less 

prostaglandins released contributing to an impaired BRS, especially in animal models with chronic 

hypertension [277, 278].  Based on these functional components of BRS, impairment has been 

classified as a strong prognostic indicator of CVD-related mortality [279]. 

Dietary intervention strategies have been used to improve vascular function and overall 

CVD risk.  Aimed at reducing elevated BP, clinical trials have also demonstrated favorable effects 

toward vascular functional parameters.  The original DASH eating plan validated the effectiveness 

of the diet to improve central arterial stiffness [71] and endothelial function [71, 280] in contrast 

to those consuming a typical western diet.  Moreover, addition of non-fat dairy products to the 

normal routine diet improved central arterial stiffness, endothelial function, and BRS while 

concomitantly reducing elevated BP when compared to an isocaloric control [11].  Despite positive 
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findings surrounding non-fat dairy consumption, the controversial data surrounding whole-fat 

dairy product consumption has not been thoroughly examined.  To date, observational studies have 

provided mixed results concerning whole-fat dairy consumption by demonstrating increased 

central arterial stiffness compared to no consumption [74], or no effect when examined across the 

lowest and highest quartiles [83].  Aside from observational studies, no clinical investigations have 

yet assessed the efficacy of whole-fat dairy intake on the vascular function profile.  

NERVOUS SYSTEM INVOLVEMENT IN HYPERTENSION 

Excessive sympathetic nervous system activity has been demonstrated to be directly related 

to advancing age [281-283] and hypertension [284], contributing to the increased essential 

hypertension with aging.  Furthermore, blunted sensitivity to inhibitory sympatholytic drugs 

within the aged [285], represents a predicament that the geriatric population faces in overpowering 

such sympathetic outflow [286]. Systemically, elevated whole blood norepinephrine 

concentrations, from sympathetic neuronal spillover or low reuptake [286, 287], activates 

downstream α-adrenergic receptors to intensify vasoconstrictor tone and subsequent BP.  The 

ability to modify arterial stiffness is believed to be partly due to the contractile state of 

vasoconstrictor tone exerted by the smooth muscle cells in the arterial wall [288-290].  Therefore, 

suppression of vascular tone, via augmented NO bioavailability, is likely to reduce arterial 

stiffening in hypertensive individuals by promoting elasticity [291, 292].  Other factors including 

weight gain [293] and saturated fat intake [48] are also associated with increased sympathetic 

activity further contributing to an elevated BP response. 

Systemic sympathetic nervous system activity is modulated through the central nervous 

system.  Baroreceptors are the primary mediators relaying elevated BP to central command, 
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dampening sudden rises through a feedback loop mechanism within the central nervous system 

[132, 294].  Episodic elevations in BP exceeding the set point of the baroreceptors generates 

afferent sympathetic signals to the nucleus tractus solitaries (NTS).  From the NTS, the neuronal 

tracts bifurcate into the parasympathetic branch of the heart to reduce cardiac output [273] and 

inhibitory interneurons within the caudal ventrolateral medulla [295].  In turn, the caudal 

ventrolateral medulla exerts inhibitory effects on tonically-active neurons within the rostral 

ventrolateral medulla (RVLM) inducing reduced arterial vasoconstrictor tone [296].  Majority of 

neurons within the RVLM are glutamatergic and synthesize adrenaline thereby continuously 

evoking sympathetic efferent signals when uninhibited [297, 298].  The RVLM also selectively 

facilitates the production of norepinephrine from neuroendocrine cells located within the adrenal 

medulla.  Unlike epinephrine adrenal preganglionic neurons that are insensitive to the baroreflex, 

the norepinephrine neurons are inhibited upon the BRS reflex [299].  At rest, sympathetic signals 

arising from the RVLM are unlikely to raise BP unless other sympathoexcitatory stressors are 

present.   

The central nervous system is also responsible for regulation of blood volume regulation 

through the kidneys.  The paraventricular nucleus of the hypothalamus, responsible for detecting 

increases in blood osmolality from water deprivation, contains sympathetic afferent projections to 

the RVLM [300, 301].  The RVLM then sends efferent inputs to the kidney glands promoting renin 

production to preserve BP to end-target organs from blood volume loss [302, 303], initiating RAS.  

Renin activates angiotensinogen to advance AngII production [304, 305] stimulating the release 

of aldosterone from the adrenal glands to reuptake sodium and induce arterial vasoconstriction to 

maintain blood perfusion to end-target organs [306].  In turn, circulating AngII elevates 
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sympathetic efferents arising from the RVLM [307] and is appropriately regarded as a sympathetic 

modulator of BP.  Moreover, AngII has exhibited pressure-independent resetting of carotid 

baroceptor regulation of mean arterial BP and heart rate [308].  Therefore, AngII blunts 

baroreceptor sensitivity to detect changes in BP thereby exerting central pressor effects.  AngII 

release can propagate other issues such as suppressing production of NO by obstructing the uptake 

of its precursor into the endothelial cells [89, 309].   Additionally, AngII fosters collagen synthesis 

[89] and inflammation associated with atherosclerotic lesion development [310, 311] and 

successive arterial stiffness.  Angiotensin converting enzyme (ACE), responsible for converting 

AngI to AngII, has been viewed as an essential component of AngII-induced hypertension and 

targeted for inhibition as a strategy to lower hypertensive and CVD risk [89, 312].   

Antihypertensive casein-derived proteins found in dairy products contain ACE inhibiting 

properties, known as LTPs.  Despite a multitude of ACE inhibitory-like proteins found in dairy 

[313-315], the most common and potent lactotripeptides are isoleucine-proline-proline and valine-

proline-proline [88].  Long-term pharmaceutical ACE inhibitors have demonstrated similar 

properties in comparison to vasodilators [316] reducing BP, vascular resistance, intima media 

thickness, and left ventricular hypertrophy [317].  LTPs were among the first biopeptides to 

enlighten the scientific community regarding health implications from diminished BP [187].  In 

vitro analyses have validated that LTPs are advantageous toward increasing NO levels to reduce 

vasoconstrictor tone [89, 318].  With respect to sympathetic neuronal activity, a 12-week 

hypocaloric DASH trial demonstrated significantly reduced sympathetic nerve activity among 

hypertensive individuals and reduced norepinephrine levels compared to baseline [319].  Yet, the 

participants also demonstrated 12-week weight loss, which has also been associated to reduced 
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sympathetic nerve activity, reduced norepinephrine, and restored baroreflex function [320].  Full-

fat dairy products have not been thoroughly examined with respect to sympathetic nerve activity.  

It would be reasonable to assume that increased whole-fat dairy would elicit similar effects to LTP-

isolated nutraceuticals or low-fat dairy intake as they contain similar hypotensive constituents.  

However, previous studies have established a compromised norepinephrine uptake [321] and 

release [322] impairing storage and release in rats.  A diet high in saturated fat has been shown to 

increase oxidation to diminish endothelial function and subsequent NO production [323].  As 

oxidation increases AngII production, saturated fat most likely contributes to arterial smooth 

muscle tone to elevate BP. 

BLOOD PRESSURE MEASURES 

Accurate methodology surrounding BP measurements is of imperative importance when 

assessing CVD risk to avoid false readings.  Despite mercury sphygmomanometers being 

identified as the gold standard for BP determination, automated devices have increased in 

popularity within the clinical setting [41].  Automated devices have been shown to provide similar 

accuracy to mercury sphygmomanometers [324, 325] while limiting inter-individual variability.  

Due to the ease of use, home-based measurements by the patient are highly encouraged to avoid 

false readings associated with white coat hypertension [124].  Seated BP measurements are 

notorious for misdiagnosing hypertension by providing false readings due to patient anxiety, 

known as “white coat hypertension”, which occurs among 20-40% of patients [326-328].  

Physicians are more likely to trigger alarm in patients than nurses during office visits, especially 

within the geriatric population [329]. Home and 24-hour ambulatory BP monitoring are better 

prognostic indicators of CVD risk than office-based measurements [41, 330-332].   
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Precision and accuracy are not the only benefits to wearing a 24-hour ambulatory BP 

monitor, as other CVD risk factors may also be detected.  Generally, the circadian rhythms cause 

BP to steadily rise from early morning hours and remain elevated until late afternoon when BP 

starts to fall and dips while sleeping [333].  Dipping patterns in BP are important when considering 

CVD risk as higher CVD-related events and mortality have been linked to non-dipping individuals 

[334], which is more typical among non-Hispanic blacks than whites [335].  Patients with dipping 

BP are more likely to experience a sudden increase upon awakening, known as the “morning 

surge” [336],  which is associated with higher CVD risk than those whose rise is slower and more 

steady [333, 337].  Comparatively, it is unknown whether morning surgers or non-dipping 

individuals are at a greater CVD risk, but therapeutic interventions can reverse non-dippers into 

dippers to help eliminate morning surge, especially when hypertensive medication is taken upon 

awakening [333, 334].  Hormonal regulators follow circadian BP patterns such as plasma 

norepinephrine has been linked to postural changes that occur upon awakening [338, 339].  The 

same effect is also seen with plasma renin levels [340].   
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Chapter 5: Summary and Future Directions 

SUMMARY 

Lifestyle modifications in the form of diet are the first line approach to manage elevated 

BP [25].  A diet high in dairy intake, especially non- and low-fat dairy products, have been 

demonstrated to lessen hypertension risk [8-10].  However, the effects of whole milk and full-fat 

dairy intake on blood pressure were unknown from an interventional perspective. 

The DASH eating plan is a widely recommended dietary approach to reduce elevated blood 

pressure [8].  The DASH study demonstrated that a combined diet of fruits and vegetables with 

low-fat dairy products resulted in a greater magnitude of BP reduction than a diet rich in fruits and 

vegetables.  Based on such results, we conducted a randomized controlled dietary intervention trial 

adding skim milk and non-fat dairy products to the normal routine diet of adults with elevated 

blood pressure [10].  Subjects reduced blood pressure by solitarily adding 4 daily servings of dairy 

for 4 weeks.  Further, the effects of skim milk and non-fat dairy products also improved vascular 

function by reducing central arterial stiffening, improving endothelial function, and increasing 

baroreceptor sensitivity [11].  The results from that previous investigation are consistent with the 

findings from observational studies [17, 175] demonstrating the effectiveness of non-fat dairy to 

reduce BP in adults with elevated BP. 

A modified higher-fat DASH diet incorporating full-fat dairy products in place of non- and 

low-fat dairy products from the original DASH diet [16], reduced blood pressure to a similar 

degree as the original DASH.  Among observational cohort studies, there are mixed and 

inconclusive results demonstrating no reductions in BP [29, 30] to some showing significant 

reductions in blood pressure with higher intake of full-fat dairy [15, 27].  To determine the causal 
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implications of full-fat dairy, we performed a randomized controlled dietary intervention study to 

assess the effects of whole milk and full-fat dairy products on adults with elevated BP.  The results 

from the current dissertational study did not demonstrate a hypotensive trend through the solitary 

addition of 4 daily servings of full-fat dairy for 4 weeks.  In addition, there were no improvements 

in central arterial stiffness, endothelial function, or cardiovagal baroreceptor sensitivity.   

Based on these findings, the solitary addition of whole milk and full-fat dairy consumption 

are not consistent with the previous investigations showing the hypotensive impacts of skim milk 

and non-fat dairy in adults with elevated blood pressure.  Therefore, adding full-dairy products to 

the normal routine diet is not a recommended approach to reduce BP in adults with elevated BP.   

FUTURE DIRECTIONS 

The research design of the current dissertational project was chosen given the success of 

our previous investigation of non-fat dairy products eliciting hypotensive effects [10, 11].  

However, our current understanding of the isolated interaction between dairy fat and protein are 

still not understood.  Previous investigations have noted acute postprandial effects of saturated fats 

to increase RAS, proinflammatory markers, and oxidative species to promote endothelial 

dysfunction [48, 60, 198].  When proteins are added to a meal rich in saturated fat, the effects of 

endothelial dysfunction from elevated saturated intake are ameliorated [91, 199].  Based on the 

limitation of the current investigations to isolate the effects of the various dairy constituents, 

mechanistic factors attributable to various dairy constituents could not be examined.  Future 

investigations should study the mechanistic effects of acute postprandial effects of isolated dairy 

fat and protein in adults with elevated blood pressure.  Such investigations would aid further 

understanding concerning how saturated fat interferes with the hypotensive properties of dairy.  
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Given the negative attributes of saturated fat on the blood pressure and the vasculature, it is also 

of interest to understand if lowering the saturated fat content of dairy through incorporation of both 

low- and full-fat dairy products to the normal routine diet exert hypotensive effects and 

improvements in vascular function. 
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Appendix A: Abbreviations and Acronyms 

ACE = angiotensin converting enzyme 

Ang = angiotensin  

ANOVA = analysis of variance 

BMI = body mass index 

BP = blood pressure 

BRS = baroreflex sensitivity 

cfPWV = carotid-femoral pulse wave velocity 

CVD = cardiovascular disease 

DASH = dietary approaches to stop hypertension 

ET-1 = endothelin-1 

FMD = flow-mediated dilation 

HbA1c = glycated hemoglobin 

HDL = high density lipoprotein 

JNC = Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High 

Blood Pressure 

LDL = low density lipoprotein 

LTP = lactotripeptide 

NO = nitric oxide 

RAS = renin angiotensin system 

RVLM = rostral ventrolateral medulla 
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Appendix B: Research Health Questionnaire 
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Appendix C: Daily Dietary Surveys 

Dairy Study Week # 
________ 

         

Subject 
ID_______________________________ 

                      

 Date  study food picked 
up:_________________ 

Consume 4 provided dairy servings per day                                  Check 
items off list as consumed each day 

Dairy items 
# servings 
issued Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

8 oz. whole milk ______ 

              

              

              

              

8 oz. full-fat yogurt ______ 

              

              

              

              

1.5 slices Swiss cheese 
______ 

                                          

                                          

                                            

                                          
  

                     

List below any additional dairy products consumed that were not provided by laboratory 

  
                     

Non-Laboratory Provided Dairy items Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

                

                

                

                

                

                  
  

                     
  

                     
  

                     

Date & Time for next study food pick 
up: 
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Dairy Study Week # 
________ 

         

Subject 
ID_______________________________ 

                      

 Date study food picked 
up:_________________ 

Consume 4 provided fruit servings per day                                   Check 
items off list as consumed each day 

Fruit items 
# servings 
issued Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

8 oz. Coconut Milk ______ 

              

              

              

              

8 oz. Orange Juice ______ 

              

              

              

              

Peanuts or Sunflower 
Seeds 

______ 

              

              

Fruit Cup 
              

              
  

                     

List below any fruit/fruit juice consumed that was not provided by laboratory  

  
                     

Non-Laboratory Provided Fruit items Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

                

                

                

                

                

                  
  

                                                                   

Date & Time for next study food pick up: 

  



 80 

 

Appendix D: Three-Day Dietary Record 

 

3-Day Food Intake Record Instructions 

 

1. Record day of the week and date for everything you eat and drink for three days (two week 

days & one weekend day) prior to arriving at your appointment.   

2. Include the time, amount and type of food/beverage consumed. Provide as much detail as 

possible, including brand names when available. For example, instead of recording “cereal 

with milk”, record “1.5 cups Kashi GoLean cereal with 6 oz low-fat milk”. Instead of “1 

slice wheat toast with jam”, record “1 slice Orowheat 100% whole-wheat toast with 1tsp 

Smucker’s low-sugar strawberry preserves”. See sample food log for more examples.  

3. For combination foods such as chili, soup, casseroles, sandwiches, list all items in the food 

and amounts of each item.   

4. For dairy products (milk, cheese, yogurt, etc) record whether, regular (whole), lowfat (1%), 

reduced fat (2%), or nonfat (skim).  

5. Include sweeteners (sugar, honey, syrup, etc) and fats (cream, half&half, milk, etc) added 

to coffee, tea, etc; as well as spreads on breads and dressings on salads.  

6. For meats, indicate type (ground, sirloin, etc) and % lean, if known.  
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Sample 3 Day Food Intake Day of Week: Date: 

 
 
Time 

 

Amount Brand Food/Beverage 

  8am 8 oz  Nonfat milk (in cereal) 

 12 oz  Black coffee 

 1 Tsp  Sugar in coffee 

 1.5 Cups Nature’s Path Heritage Heirloom Whole Grains Cereal 

 1 T Sun-Maid Fruit bits 

 1 medium  Cara Cara navel orange 

12pm 

1.3  Cups Homemade Chili: ½ Cup 70% lean ground beef, 1 T onion, 2 T 

garbanzo beans, 2T black beans, 2 T red sweet 

pepper 

 3 T  Grated cheddar/jack cheese, regular 

 ½ Cup  Fresh strawberries 

 ½ Cup Stoneyfield Lowfat vanilla yogurt 

 2 T  Raw almonds 

3pm 1 Cliff Chocolate Builder’s Bar 

6pm 5 oz  Grilled chicken breast, skinless 

 
¾ Cup  Slaw:  ¼ cup cabbage, ¼ grated carrots, ¼ 

broccoli, 1 tsp olive oil, 1 tsp cider vinegar 

 
1 piece Kirkland 

Signature 

Multigrain bread 

 2 tsp  honey 

 ½ tsp  butter 

 
¾ Cup  Grilled vegetables:  ¼ cup yellow squash, ¼ red 

pepper, ¼ cup eggplant 
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Day ___ 

3 Day Food Intake Day of Week: Date: 

Time 

 

 

Amount Brand Food / Beverage 

   
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

   
   

    

    

    

    

    

    

 
   

    

    

    

    

    

     

    



 83 

 

Appendix E: Supplemental Data 

Table E.1 Changes in select subject characteristics and blood chemistry. 

  No Dairy Condition First (n=30) High Dairy Condition First (n=30) 

  No Dairy High Dairy High Dairy No Dairy 

Variables Before After Before After Before After Before After 

Height (cm) 168±2 - 168±2 - 170±2 - 170±2 - 

Body mass (kg) 85.7±3.6 86.3±3.5 86.4±3.6 86.9±3.5 82.9±3.5 83.3±3.4 83.5±3.5 83.7±3.4 

BMI (kg/m2) 30.3±1.1 30.5±1.1 30.5±1.1 30.6±1.1 28.8±1.1 29.1±1.1 29.2±1.1 29.3±1.1 

Total cholesterol (mmol/L) 5.2±0.2 5.1±0.2 5.1±0.2 5.4±0.2 5.0±0.2 5.0±0.2 5.0±0.2 4.9±0.2 

HDL cholesterol (mmol/L) 1.4±0.1 1.3±0.1 1.3±0.1 1.4±0.1 1.3±0.1 1.3±0.1 1.3±0.1 1.2±0.1 

LDL cholesterol (mmol/L) 3.1±0.2 3.0±0.2 3.1±0.2 3.4±0.2 3.0±0.2 3.2±0.2 3.0±0.2 3.1±0.2 

Triglycerides (mmol/L) 1.5±0.2 1.5±0.2 1.3±0.3 1.5±0.2 1.5±0.2 1.5±0.2 1.6±0.3 1.3±0.3 

Blood glucose (mmol/L) 5.3±0.1 5.3±0.1 5.2±0.1 5.5±0.1 5.3±0.1 5.5±0.1 5.3±0.1 5.2±0.1 

Glycated hemoglobin (%) 5.6±0.1 5.6±0.1 5.6±0.1 5.6±0.1 5.5±0.1 5.6±0.1 5.6±0.1 5.6±0.1 

Insulin (pmol/L) 66.5±9.5 63.3±6.4 68.6±7.8 65.8±6.1 64.9±6.1 66.6±6.4 64.7±7.6 63.4±6.0 

Systolic BP (mmHg) 139±2 130±2 135±2 133±2 136±2 132±2 134±2 135±2 

Diastolic BP (mmHg) 81±2 79±2 81±2 80±2 85±2 84±2 84±2 85±2 

Values are means±SEM. 
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Table E.2 Changes in dietary composition. 

Values are means±SEM. 

  

  No Dairy Condition First (n=30) High Dairy Condition First (n=30) 

  No Dairy High Dairy High Dairy No Dairy 

Variables Before After Before After Before After Before After 

Calories (kcal/d) 2086±97 1986±93 1968±97 2103±104 1960±95 2081±89 1899±96 2023±103 

Total_Fat (g/d) 88±5 91±4 89±5 98±5 81±5 94±4 79±5 88±5 

Sat_Fat (g/d) 28±2 30±2 27±2 40±2 27±2 38±2 27±2 27±2 

Monounsat (g/d) 21±2 25±1 21±2 20±1 20±2 20±1 19±2 24±1 

Polyunsat (g/d) 12±1 10±1 12±1 11±1 10±1 10±1 10±1 9±1 

Total_CHO (g/d) 239±15 234±11 229±14 205±13 216±14 216±10 210±14 237±13 

Total Fiber (g/d) 20±2 21±1 19±1 17±1 19±2 17±1 18±1 20±1 

Total_Sugar (g/d) 99±8 114±8 89±8 83±7 82±8 86±7 81±8 110±6 

Total_Pro (g/d) 82±5 72±7 78±4 92±5 77±5 96±5 73±4 74±5 

Alcohol (g/d) 7±3 5±2 4±2 4±2 4±3 3±2 5±2 2±2 

Sodium (mg/d) 3052±205 2326±205 3010±226 2692±272 3188±201 2929±196 3009±223 2968±269 

Potassium (mg/d) 2147±166 2602±161 2072±144 2284±142 1965±163 2232±154 1769±142 2733±140 

Calcium (mg/d) 818±75 2083±179 786±86 1530±79 866±74 1412±170 994±85 1894±79 

Magnesium (mg/d) 218±20 200±21 219±19 209±19 201±19 219±20 202±19 217±18 

Vit_D (IU/d) 470±202 796±207 424±193 496±164 537±196 608±200 514±188 591±161 
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Table E.3 Changes in blood pressure for blood pressure medication users and non-users. 

  No Dairy High Dairy 

Variables Before After Before After 

Antihypertensive Drugs (n=23)         

Systolic BP (mmHg) 137±2 132±2 138±2 135±2 

Diastolic BP (mmHg) 82±3 80±2 83±2 83±2 

No Drugs (n=37)         

Systolic BP (mmHg) 136±2 134±2 134±2 131±2 

Diastolic BP (mmHg) 83±2 83±2 83±2 81±2 

Values are means±SEM. 
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