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Abstract

Background: Pathway discovery from gene expression data can provide important insight into the relationship
between signaling networks and cancer biology. Oncogenic signaling pathways are commonly inferred by
comparison with signatures derived from cell lines. We use the Molecular Apocrine subtype of breast cancer to
demonstrate our ability to infer pathways directly from patients' gene expression data with pattern analysis
algorithms.

Methods: We combine data from two studies that propose the existence of the Molecular Apocrine phenotype.
We use quantile normalization and XPN to minimize institutional bias in the data. We use hierarchical clustering,
principal components analysis, and comparison of gene signatures derived from Significance Analysis of
Microarrays to establish the existence of the Molecular Apocrine subtype and the equivalence of its molecular
phenotype across both institutions. Statistical significance was computed using the Fasano & Franceschini test for
separation of principal components and the hypergeometric probability formula for significance of overlap in gene
signatures. We perform pathway analysis using LeFEminer and Backward Chaining Rule Induction to identify a
signaling network that differentiates the subset. We identify a larger cohort of samples in the public domain, and
use Gene Shaving and Robust Bayesian Network Analysis to detect pathways that interact with the defining signal.

Results: We demonstrate that the two separately introduced ER- breast cancer subsets represent the same
tumor type, called Molecular Apocrine breast cancer. LeFEminer and Backward Chaining Rule Induction support
a role for AR signaling as a pathway that differentiates this subset from others. Gene Shaving and Robust Bayesian
Network Analysis detect interactions between the AR pathway, EGFR trafficking signals, and ErbB2.

Conclusion: We propose criteria for meta-analysis that are able to demonstrate statistical significance in
establishing molecular equivalence of subsets across institutions. Data mining strategies used here provide an
alternative method to comparison with cell lines for discovering seminal pathways and interactions between
signaling networks. Analysis of Molecular Apocrine breast cancer implies that therapies targeting AR might be
hampered if interactions with ErbB family members are not addressed.
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Background

Gene expression array data can be mined to provide criti-
cal insight into our understanding of the relationship
between signaling networks and the biology of cancer [1-
3]. In addition to identifying individual pathways, recent
attention has been given to "cross-talk" or interactions
that cause aberrant signaling patterns in cancer [4-6]. The
conventional method of identifying oncogenic pathways
and their interactions has been through studying cell lines
[1,2,7,8]. Our goal is to be able to identify dominant path-
ways using data mining methods that do not require
direct comparison with cell lines.

To pursue our goal we investigate a recently introduced
subtype of ER- breast cancer that is hypothesized to result
from AR signaling. We analyze the data using several dif-
ferent bioinformatics approaches to pathway discovery.
We are able to detect patterns that support the same con-
clusions reached with comparison to cell lines data by the
original authors. In addition, we introduce interactions
not previously discovered in the data that have important
therapeutic implications. Thus, our results contribute to
both bioinformatics and to breast cancer biology.

The ER- breast cancer subtype that we study here has been
termed the "molecular apocrine" subtype [8,9] and the
"ER- class A" subtype [7] in two separate studies that pro-
posed its existence. The studies were independently per-
formed, but both groups hypothesized AR signaling as a
defining feature of the transcript profile, leading us to
question whether or not they represent the same tumor
subset. One study identifies six of 16 ER- tumors as the
molecular apocrine subtype and the other study identifies
ten of 41 ER-tumors as the class A subtype. Since there has
not been a meta-analysis of both studies to actually con-
firm that the individual tumor clusters actually represent
the same breast cancer subset as defined by gene expres-
sion, we start by performing a comparative study. We call
this a test of "molecular equivalence," and we propose a
set of criteria for establishing molecular equivalence can-
cer subsets defined by gene expression data: 1) the major-
ity of the molecular phenotype should cluster together
and their combined profile should be distinct from the
remaining samples in unsupervised clustering of the com-
bined data; 2) there should be significant overlap of the
gene signatures used to classify the phenotype from each
institution; and 3) a classifier trained on data from one
institution should be able to predict the phenotype cor-
rectly in the other institution's data, and vice versa. In the
process of establishing molecular equivalence, we test dif-
ferent methods of normalizing the data to remove institu-
tional bias and we comment on their effectiveness.

Once having established the molecular equivalence of the
group, we use Learner of Functional Enrichment algo-
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rithm (LeFEminer), which is based on gene set enrich-
ment [10], and Backward Chaining Rule Induction
(BCRI), which is a de novo discovery method [11-13], to
identify pathways in the combined data. Both of these
methods incorporate existing pathway knowledge from
the literature within their methodology. Our results indi-
cate a role for AR in this breast cancer subset. Subse-
quently, we use a gene expression classifier to identify
more molecular apocrine data for discovery of pathway
interactions. We use Gene Shaving and Robust Bayesian
Network Analysis on this data because it facilitates discov-
ery of interactions that have variable prevalence in the
patient population [14,15]. We demonstrate that there are
highly prevalent interactions between AR signaling and
members of the ErbB family. We discuss the therapeutic
implications of cross-talk between AR and members of the
ErbB family in molecular apocrine type breast cancer.
Taken together, these results demonstrate that data min-
ing methods can be used to generate network information
directly from gene expression data.

Data

The data used in this study were generated on Affymetrix
U133A oligonucleotide microarrays and are publicly
available [7,8,16-18]. The cohort from Farmer et al. [8]
includes 22 ER- breast carcinoma samples with six classi-
fied as molecular apocrine. The cohort from Doane et al.
[7] includes 41 ER- breast carcinoma samples with ten
classified as molecular apocrine. We refer to data gener-
ated by Farmer et al. and Doane et al. as the "index
cohorts.” We use additional cohorts from Ivshina et al.
[16], Rouzier et al. [17], and Sotiriou et al. [18], which
contain 59, 51, and 34 ER- breast carcinoma samples,
respectively, to confirm the existence of the molecular
apocrine phenotype in larger cohorts outside the index
cohorts and to explore gene network interactions.

Results

Data Normalization

We combine the index cohorts into a single, homogene-
ous dataset with quantile normalization (QN) performed
using the dChip software package [19,20] followed by a
recently published cross-study normalization scheme
(XPN) that results in removal of persistent systematic bias
and noise [21]. Additionally, we use updated probeset
definitions [22-25]. XPN brings the two gene expression
datasets into better agreement as evidenced by improve-
ments in the expected linear relationship of median
probeset expression levels between the index cohorts after
three sequential steps: 1) QN, 2) QN + XPN, and 3) QN +
XPN with updated probeset definitions (Figure 1). The
Pearson correlation coefficient for the three steps is 0.877,
0.923, and 0.913, respectively. We note that step 2 gives
normalized data with a slightly higher coefficient than
with using updated probeset definitions (step 3). How-
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Scatter plots of Median Probeset Expression Values of Farmer et al. Data vs. Doane et al. Data. The blue symbols
represent the data after quantile normalization (QN), the green symbols represent the data after subsequent cross-study nor-
malization by XPN, and the yellow symbols represent the data after subsequent update of probeset definitions. The red line
depicts the unity line, i.e. y = x. The legend lists Pearson correlation coefficient for each normalization step. All data has been

natural-log transformed.

ever, we choose to follow recommendations in the bioin-
formatics literature to take advantage of the most up-to-
date gene sequence information for grouping and map-
ping transcript-consistent probesets [22-25]. As we pro-
ceed with our analysis, we compare our results using XPN
with results we generate using median-centering, a con-
ventional method for cross-study normalization of data
performed on a single microarray platform.

Comparison for Molecular Equivalence

When we perform XPN in addition to QN, we see signifi-
cant improvement in the removal of systematic bias using
both unsupervised hierarchical clustering (HC) and prin-
cipal components analysis (PCA). We use routines in the
GenePattern software package [20,26] and separately we
compute a p-value using the Fasano & Franceschini statis-
tical test [27]. Figures 2A and 3A demonstrate that the data

cluster by institution with QN alone. The addition of XPN
to the normalization scheme (Figures 2B and 3B) tapers
the institutional systematic bias and reveals a single
molecular apocrine cluster. The dendrogram from the HC
results shows 12 of 16 (75%) samples defined previously
as molecular apocrine in a single cluster (p < 0.0001).
Updating the probeset definitions (Figures 2C and 3C)
brings the molecular apocrine hierarchical cluster mem-
bership to 15 of 16 (94%) samples across the combined
index cohorts with improved separation by phenotype (p
<0.0001). We note that median-centering per probeset by
institution also results in statistically significant separa-
tion (p < 0.0001, see Additional File 1 -Figure S1) with 13
of 16 (81%) molecular apocrine samples clustering
together in the HC dendrogram (see Additional File 1 -Fig-
ure S2) compared to 15 of 16 (94%) samples using XPN.
We note that this difference is not statistically significant.
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Figure 2

tile normalization and natural-log transformation by dChip and using original probes sequence information provided by Affyme-

trix, (B) same as (A) with added XPN normalization step, and (C) same as (B) but using updated probe sequence information

provided by AffyProbeMiner. Phenotype is denoted by | for "molecular apocrine” or 0 for "non-molecular apocrine” preceding

the sample ID. Sample id's beginning with GSM were generated by Farmer et al. and otherwise were generated by Doane et al.

ples. The resulting gene signatures share 76 genes (see

We evaluate our second proposed criterion for determin-
ing molecular equivalence by using Significance Analysis

of Microarrays (SAM) [28] to identify the top 100 statisti-

Additional file 2), while the original two studies identified

138-gene [7] and 400-gene [8] profiles with 25 overlap-
ping genes. The extent of overlap for both results is statis-

cally significant probesets in each of the index cohorts

tically significant (both p <0.0001). For comparison, 100-

(after normalization) that differentiate the hypothesized
molecular apocrine phenotype from the remaining sam-

gene signatures derived from a median-centered dataset
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Figure 3

PCA of Combined Doane et al. and Farmer et al. Cohorts. First versus second component from Principal Components
Analysis (PCA) of the combined cohorts from Farmer et al. (asterisks) and Doane et al. (circles) showing separation of molec-
ular apocrine (green) and non-molecular apocrine (blue) tumors when performed on (A) natural-log scaled data quantile-nor-
malized using Affymetrix-provided chip definition file (CDF); p-value = 0.369, (B) same as (A) with added XPN normalization
step; p-value < 0.0001, and (C) same as (B) but using the AffyProbeMiner-provided CDF; p-value < 0.0001.

using manufacture-provided probeset definitions has 25
overlapping genes and from a median-centered dataset
using AffyProbeMiner probeset definitions has 33 over-
lapping genes (both p < 0.0001). While there is no nota-
ble difference in statistical significance, the larger number
of common genes gives us more attributes with which to
investigate the networks and gene interactions that define
this species.

We perform hierarchical clustering and PCA of the Doane
et al. [7] cohort with the 100-gene signature identified
with SAM on the Farmer et al. [8] cohort, and vice versa to
test compliance with our third criterion (see Figure 4). We
compare these results with the performance of the pub-

lished signatures on the published data as normalized by
the submitting institution. While the samples do not
group together as tightly (see Additional File 1 -Figures S3
and S4) as they do with the 100-gene signatures derived
using our normalized data, the signatures identified by
Farmer et al. and Doane et al. can indeed predict the
molecular apocrine phenotype in the other cohort with-
out cross-study normalization.

Functional Analysis of the "Molecular Apocrine"
Phenotype Using LeFEminer

Using an approach that builds upon the concept of gene
set enrichment, LeFEminer identifies a set of top-ranked
gene ontology (GO) categories in the normalized index
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PCA and Hierarchical Clustering of One Cohort using 100-Probeset Signature Generated from Second
Cohort. Plots of first versus second component of PCA shows separation of non-molecular apocrine (blue) samples from
molecular apocrine (green) samples. Dendrograms denote phenotype as 0 preceding sample number for "non-molecular apo-
crine” and | preceding sample number for "molecular apocrine”. Data presented in (A) uses gene signature from Farmer et al
to perform PCA and HC on Doane cohort and data presented in (B) uses gene signature from Doane et al to perform PCA
and HC on Farmer cohort. All data was log transformed, quantile normalized, processed by XPN, and used AffyProbeMiner

CDF.

cohorts (see Table 1). Notably, the "Androgen Up-regu-
lated Genes" (86 genes [29,30]) and "Breast Cancer Estro-
gen Signaling" (101 genes [30]) GO categories both are
identified at 0% false discovery rate, with AR presenting as
the top ranked gene in the "Breast Cancer Estrogen Signal-
ing" category; three genes overlap between the two pro-
files used to define the GO categories. Table 1 shows that
the AR and ER signal based pathways are the top two reg-
ulatory signaling pathways after metabolic and other
enzymatic pathways that are listed. These results support

the hypothesis that the molecular apocrine subtype has
molecular characteristics of a steroid hormone response
similar to that of estrogen response [6,7,31].

Network Inference Analysis of "Molecular Apocrine"
Phenotype Using Backward Chaining Rule Induction and

MetaCore
We use See5 as a rule induction method (Rulequest, St.

Ives, Australia) and MetaCore, a commercial pathways
database with analysis tool distributed by GeneGo (St.
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Table I: Top-ranking Gene Ontology categories identified by LeFEminer on the normalized index cohorts

Category. Rank

Category. Name

Category. Size

| carboxylic acid metabolism 138
| Fatty acid metabolism 47
| Fatty acid metabolism BioCarta 24
| MAP00480 Glutathione metabolism GenMAPP 18
5 organic acid metabolism 140
5 aromatic compound catabolism 6
5 MAP00350 Tyrosine metabolism GenMAPP 29
8 oxidoreductase activity, acting on CH-OH group of donors 44
9 aromatic amino acid family catabolism 5
10 electron transporter activity BioCarta 102
I Cyclic nucleotide-dependent protein kinase activity 4
11 ANDROGEN UP GENES na 56
13 tyrosine catabolism 3
13 Fatty Acid Synthesis BioCarta 14
15 regulation of locomotion 6
16 acetylgalactosaminyltransferase activity 7
16 polypeptide N-acetylgalactosaminyltransferase activity 7
16 MAP00360 Phenylalanine metabolism GenMAPP 16
19 breast cancer estrogen signalling GEArray 92
20 peroxisome 36
20 MAP00512 O Glycans biosynthesis GenMAPP 7
22 amine catabolism 23
22 cAMP-dependent protein kinase activity 4
24 regulation of cell migration 6
24 microtubule cytoskeleton organization and biogenesis 23
24 mitotic spindle checkpoint 2
24 electron transporter activity 114
24 Microbody 36
29 regulation of behaviour 6
29 neuronal lineage restriction 2

Rank determined by p-value and false discovery rate. All categories shown in table were identified with 0% false discovery rate. The Category. Size column lists the number of genes in the
pre-defined dataset representative of the GO category.
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Joseph, MI) [32] for implementation of the BCRI strategy
for network discovery [11-13]. The method is similar to
one previously used to study yeast networks [33]. We fol-
lowed the BCRI strategy for six successive iterations to
identify 17 genes whose expression could predict thresh-
old expression levels of the genes identified in the previ-
ous iteration (see Figure 5). A Transcription Regulation
Analysis by MetaCore on the 17 genes identifies AR, ESR1
(ER), HNF4-alpha, HNF1-alpha, and HNF3-beta as signif-
icant transcription factors regulating the genes identified
by BCRI (Table 2). The top 3 regulatory pathways, listed
inTable 2, are ER, HNF4-alpha, and AR. In addition, using
Dijkstra's algorithm (MetaCore function) to find the
shortest known directed paths within two nodes between
the 17 BCRI genes results in a network that clearly shows
the close relationship between AR and the BCRI genes
(Figure 6). The transcription regulation and shortest path
analyses (Table 2 and Figure 6) both also specify ER as
having a close network relationship with the BCRI genes.

Persistence of Molecularly-defined Phenotype in Larger
Dataset

At this point we have supporting evidence for a role for AR
in defining the molecular apocrine subtype using two
independent methods of network inference. We now seek
to identify the gene network and pathways that interact

Table 2: Transcription regulation analysis by GeneGo's MetaCore
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with AR. Limited sample sizes hinder this type of analysis.
Therefore, we expand our molecular apocrine gene expres-
sion data with ER- samples from Ivshina et al., Rouzier et
al., and Sotiriou et al., bringing our total to 199 [7,8,16-
18]. We normalize with QN + XPN with updated probeset
definitions. We apply SAM to the index cohorts and iden-
tify a 346-probeset signature at 0% false discovery rate to
predict molecular apocrine samples (see Additional file
3). We use these genes to perform PCA on the expanded
cohort. These results show a natural demarcation in the
larger ER- dataset where the 22 molecular apocrine sampes
in the index cohort along with an additional 46 samples
in the expanded cohort separate from the rest of the data
(see Figure 7). We refer to these 68 samples as the "model-
classifed cohort."

Network Inference Analysis of "Molecular Apocrine"
Phenotype Using Gene Shaving & Robust Bayesian
Network Analysis

First, we perform an unsupervised gene clustering using
Gene Shaving (GS), and subsequently use Robust Baye-
sian Network Analysis (RBNA) to discover relationships
between an AR-based cluster and other gene clusters
[14,15]. Note that we do not seek support for the AR path-
way as having a role in the molecular apocrine subtype in
the model classified cohort because our gene classifier

No Network GO Processes

Total nodes Root nodes p-Value

| ESRI (nuclear)

positive regulation of retinoic acid receptor signaling pathway (16.7%; 6 5 3.20E-18

1.463e-03), negative regulation of mitosis (16.7%; 2.194e-03), epithelial cell
maturation (16.7%; 2.559e-03), regulation of retinoic acid receptor signaling
pathway (16.7%; 2.925e-03), melanosome localization (16.7%; 4.019e-03)

2 HNF4-alpha

negative regulation of protein import into nucleus, translocation (16.7%;
7.318e-04), negative regulation of tyrosine phosphorylation of Stat5 protein
(16.7%; 1.463e-03), regulation of protein import into nucleus, translocation
(16.7%; 1.829e-03), ornithine metabolic process (16.7%; 2.559e-03), positive
regulation of gluconeogenesis (16.7%; 2.559e-03)

3.20E-18

3 Androgen receptor

prostate gland development (40.0%; 4.905e-06), male somatic sex
determination (20.0%; 3.050e-04), somatic sex determination (20.0%;
6.099e-04), gland development (40.0%; 7.323e-04), urogenital system
development (40.0%; 7.845e-04)

1.44E-14

4 HNFI-alpha

glucose homeostasis (66.7%; 5.376e-05), carbohydrate homeostasis (66.7%;
5.376e-05), epithelial cell maturation (33.3%; 1.280e-03), bile acid
biosynthetic process (33.3%; 1.646e-03), paraxial mesoderm formation
(33.3%; 1.829e-03)

1.89E-07

5 HNF3-beta

neuron fate specification (66.7%; 2.343e-06), positive regulation of neuron
differentiation (66.7%; 6.156e-06), neuron fate commitment (66.7%; 2.40%-
05), cell fate specification (66.7%; 3.555e-05), epithelial cell differentiation
(66.7%; 6.683e-05)

1.89E-07

Transcription regulation analysis using GeneGo's MetaCore generates sub-networks centered on transcription factors using the 17 genes

discovered by Backward Chaining Rule Induction (Figure 6). Sub-networks are ranked by a p-value and interpreted in based on Gene Ontology

(GO) categories.
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Rule Induction strategy applied to the index cohorts.

that predicts membership in the molecular apocrine sub-
type includes AR. This would have biased the network
inferences toward selecting AR.

We identified the top 200 gene clusters using unsuper-
vised GS (see Additional file 4) ranked according to their
internal cluster strength (order of how they were shaved).
The cluster containing AR was the 7th ranked cluster (see
Additional File 1 -Figure S5). Clusters 24, 29, and 7 were
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Figure 6

the top three clusters associated with the molecular apo-
crine phenotype using Kendall's tau log rank analysis (see
Methods). We selected RBNA as a network inference
method for studying interactions between AR, represented
as Cluster 7, and other gene clusters because in addition
to discovering relationships between the clusters, it pro-
vides a "global" perspective on both interaction and preva-
lence in the patient population. The top 26 clusters
correlating with the molecular apocrine phenotype analy-
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Prior Knowledge Support for Gene Relationships Identified by Backward Chaining Rule Induction. Androgen
Receptor is closely connected to the |17 genes identified by the Backward Chaining Rule Induction (BCRI) strategy as indicated
by using MetaCore to identify the closest paths connecting the genes. Circles superimposed on gene symbols identify the |7

genes from BCRI.
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Principal Components Analysis of Cross-study Nor-
malized, Five-Cohort Dataset. PCA using 346-probeset
signature derived from the combined index cohorts shows
that ER- samples from the Ivshina et al., Rouzier et al., and
Sotiriou et al. cohorts (blue symbols) associate with either
the molecular apocrine (red symbols) or the non-molecular
apocrine (green symbols) phenotypes from the index
cohorts.

sis were used in this analysis. These clusters were selected
using an absolute value of 0.5 as a cut-off for the Kendall's
tau log rank. This threshold was defined to maintain suf-
ficient correlation with the molecular apocrine pheno-
type, to allow clusters to be used which will have
interactions that may not involve the entire molecular
apocrine phenotype or may overlap with other pheno-
types, and finally to provide a sufficient number of clus-
ters for RBNA to sample in order to quantify the relative
strengths of interactions in the samples. Network associa-
tions amongst 14 of these 26 clusters were identified with
RBNA (see Additional File 1 -Figure S6). Figure 8 shows
that the AR cluster (see Additional File 1 -Figure S7) is
most strongly associated with Cluster 24 (see Additional
File 1 -Figure S8) and less so with Cluster 71 (see Addi-
tional File 1 -Figure S9). These are the only two clusters
that directly interact with the AR cluster, and we select
these two for further characterization.

Analysis of the Interacting Gene Clusters

We submit the members of the interacting clusters to both
MetaCore [32] and GeneCards [34,35] to identify associ-
ated gene ontologies and known transcription regulation
relationships. From GeneCards we identify multiple
upregulated species associated with EGFR processing in
Cluster 24, which we label as the EGFR processing cluster,
although EGFR itself is not a member of the cluster. Met-
aCore shows that Cluster 71, which contains ErbB2, also

http://www.biomedcentral.com/1755-8794/2/59

contains other EGFR-related genes. We call this cluster the
ErbB2 cluster. We also analyzed the clusters that indirectly
interact with the AR cluster. Cluster 16 is interesting
because although AR is not a member, MetaCore reveals a
large number of genes whose transcription is regulated by
AR (see Additional File 1 -Figure S10). Furthermore, Met-
aCore analysis of Cluster 16 suggests network relation-
ships related to ER, p53, and Maspin (a tumor suppressor
gene associated with breast, prostate, and pancreatic can-
cer). In addition to Cluster 16, MetaCore identifies rela-
tionships between ER and the genes in the AR and ErbB2
clusters along with clusters 56, 62, 71, 76, 80, and 92. Of
interest, ErbB3 is present in cluster 62, which has an indi-
rect link to the molecular apocrine subtype (see Addi-
tional File 1 -Figure S6).

Discussion & Conclusion
Our conclusions are pertinent to both bioinformatics in
general and to this particular breast cancer subset.

Observations of Normalization Strategies to Remove
Institutional Bias in Meta-Analysis of Gene Expression
Array Data

In the course of our investigation, we compared the effec-
tiveness of normalizing data using quantile normalzation,
conventional median-centering, and a recently published
algorithm called XPN. Although the data from the two
institutions demonstrated adequate correlation after
quantile normalization, results of the hierarchical cluster-
ing continued to be affected by institutional bias. This
may indicate a particular sensitivity of hierarchical cluster-
ing to institutional bias.

Molecular Equivalence of the "ER-Subclass A" with
"Molecular Apocrine" Breast Cancer

We have proposed three criteria for evaluating molecular
equivalence between transcript-defined subsets identified
by two or more independently conducted studies: 1) the
majority of molecularly equivalent samples should cluster
together and distinctively separate from the remaining
samples in unsupervised clustering of the combined data;
2) there should be statistically significant overlap of gene
signatures used to define the phenotype in each separate
study; and 3) a classifier trained on data from one institu-
tion should successfully predict the phenotype in the
other institution, and vice versa. We call upon the micro-
array community to consider these criteria and establish a
standard protocol for etablishing molecular equivalence.

In the course of our evaluation, we demonstrate that two
of the three criteria proposed are met even without com-
bining and normalizing the data together: the 25-gene
overlap between the signatures identified by Farmer et al.
and Doane et al. is statistically significant; and the pub-
lished signatures for each of these studies adequately pre-
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Figure 8

Robust Bayesian Network Analysis of Top Apocrine-
related Gene Clusters Identified Through Gene
Shaving Reveals Interactions with AR. Relative strength
of interactions is indicated by bolder links connecting clus-
ters. Cluster 7 (AR cluster) interacts with Cluster 29 (EGFR
processing genes) and Cluster 71 (ErbB2 cluster).

dicts the hypothesized breast cancer subset in the other
index cohort. However, not only were we able to enlarge
the extent of overlap in the signatures, but we found that
only after appropriate normalization did the samples
from the two institutions cluster together by hypothesized
phenotype using hierarchical clustering.

Role of AR Signaling in Molecular Apocrine Tumors

Both authors suggest a role for AR signaling in this sub-
type of breast cancer based on comparison to data gener-
ated by cell lines. In addition, Doane et al. suggests that
there is some overlap of the signatures with known ER*
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genes. We chose two different network inference methods
to explore causal networks in this data. LeFEminer utilizes
a gene set enrichment type approach while BCRI func-
tions as a discovery strategy supplemented by pathway
information from Metacore. We selected pathways that
were common to both strategies as highly supported. The
AR and ER signals were the two signaling pathways that
were identified by both algorithms as relevant to the
molecular apocrine phenotype. Expression of the ER
molecular profile in the molecular apocrine group, in
spite of the fact that it is ER- by immunohistochemistry,
has been described by other authors [6,7,31]. From a bio-
informatics perspective, and since BCRI is a relatively new
method of network inference, we see this result as valida-
tion of its utility in pathway discovery.

Pathways that Interact with AR in Molecular Apocrine
Breast Cancer

Our analysis shows that the molecular apocrine pheno-
type lacks an overexpression of basal cytokeratins, which
is considered to be a defining feature of basal-like breast
cancer [36,37]. Thus, we can consider molecular apocrine
tumors to be a distinct subset of ER- tumors that includes
both triple-negative and ER-/PR-/ErbB2+ tumors. Since we
started our research, two other studies have discovered
this subgroup [9,38]. One study identified it within triple-
negative tumors alone while the other identified it to
combine AR and ErbB2 signaling. We agree with the orig-
inal authors that the molecular apocrine tumors can be
either ErbB2+ or ErbB2-based on intraction studies that we
will discuss below.

Our results reveal a strong interaction between the AR
cluster and a cluster with several genes involved in EGFR
processing. Several cell lines studies have hypothesized an
interaction between EGFR and both AR and ER, suggest-
ing that together they form a complex with Src that
enhances EGFR phosphorylation of tyrosine and therefore
increases the effectiveness of EGF signaling [5,39,40].
However, this is the first study of gene expression data
using cancer tissue from patients in which this interaction
has been detected using data analysis methods.

A significant relationship is also revealed between the AR
cluster and the ErbB2 cluster. The strength of the interac-
tion between this cluster and the AR cluster is weaker than
the EGFR processing cluster. In the index studies of molec-
ular apocrine tumors, approximately half of the cases were
ErbB2+. This is consistent with the less strong, but signifi-
cant interaction between AR and ErbB2 in our analysis. In
addition to simple co-expression, actual cross-talk
between ErbB2 and AR pathways has been suggested
based on cell line studies in breast [5,6]. These studies
demonstrated an additive affect of AR inhibition in reduc-
ing ErbB2 signaling, and suggested that tumors that are
AR+/ErbB2+ might need AR inhibition in addition to tar-
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geted anti-ErbB2 therapy to completely neutralize the
effective of the ErbB2 signal.

In prostate cancer, cell lines studies have led investigators
to hyopthesize that ErbB family signaling, including EGFR
(ErbB1), ErbB2, and ErbB3, can activate AR and is respon-
sible for evolution from androgen dependent to androgen
independent tumor growth [41]. Thus, at least some
tumors with AR transcription profiles might require ther-
apy with ErbB family inihibitors.

Our results with both BCRI and GS combined with RBNA
also support the role of FOXA1 interacting with AR in this
phenotype. FOXA1 is known to have a role in potentiating
steroid receptor transcription regulation, and its associa-
tion with AR by immunohistochemistry has been
reported by several other investigators [42-48]. FOXA1 is
a member of the AR cluster and was also directly identi-
fied by BCRI (see Additional File 1 -Figure S5). Three other
genes identified directly by BCRI (i.e., SPDEF, MLPH, and
SERHL) are also part of the AR cluster, which further
emphasizes BCRI as a valid network inference strategy.

Associations between PIK3CA mutations and AR in triple-
negative tumors have been reported recently [49]. Strong
associations between a PIK3CA expressing cluster and AR
cluster were not identified. However, given that mutations
in PIK3CA may not be picked up on standard gene expres-
sion platforms, this association may not be readily discov-
ered from the data.

Clinical and Therapeutic Implications for Molecular
Apocrine Breast Cancer

We propose that therapies targeting AR activity may
present a rational strategy for managing these patients.
The concept of introducing AR blockade as a therapeutic
option for breast cancer has received more attention
recently [6-9,50-54]. Older trials of AR blockade did not
select for patients with AR dependent signaling or AR
expression and therefore may not have addressed the
question with an optimal cohort [55]. Based upon our
interaction studies, we also recommend that any thera-
peutic strategies for the molecular apocrine subgroup con-
sider combinatorial targeted therapy to include ErbB
family targets, particularly EGFR targeted therapy for the
entire molecular apocrine subtype and ErbB2 therapy for
those tumors that overexpress ErbB2.

While there is evidence to support ER response genes in
the molecular apocrine subset, anti-estrogen therapy
using tamoxifen in ER-women in general has been shown
to have too little benefit for clinical use. However, small
benefits were reported that point to the need for more
study [53]. An important question arises - is the presence
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of ER signaling inferred because AR and ER share a com-
mon pathway, or is there cross-talk where AR activation
stimulates the ER pathway? Our pathway analyses from
BCRI that demonstrate AR and ER as related signals (Fig-
ure 6), and analysis of Cluster 16 (see Additional File 1-
Figure S10), do not support a common pathway that is
activated by AR and ER. While interesting, these results are
not conclusive. We note that if cross-talk from activated
AR signaling is the cause of the ER signal activation in ER-
tumors, then AR inhibition therapy would be sufficient to
interrupt this signal.

There is little known about the survival of molecular apo-
crine tumors as they have only been recently introduced as
a subtype. Farmer et al. [8] describes poor survival in the
cohort that they identified from the literature. Weigelt et
al. [9] suggest that apocrine carinomas can expect a 10-
year survival rate of 35-50%, and Teschendorff etl al. [38]
suggest that it has the poorest outcome of all of the ER-
tumor types. Other data suggests that AR* tumors that are
otherwise triple-negative as defined by immunohisto-
chemistry may have a better prognosis than the basal sub-
type of tumors [56]. In a recent study of AR protein
expression in any type of breast cancer, an improved prog-
nosis was associated with AR expression above a certain
threshold in ER+ tumors [49]. It may be that interactions
with ErbB family members modify the survival character-
istics of AR+ tumors. This deserves further study.

Learning the Systems Biology of Cancer Using Network
Inference Methods to Analyze Gene Expression Data

Our results support the strength of using network infer-
ence to analyze gene expression array data for oncogenic
pathways and their interactions. This study demonstrates
that the discovery of oncogenic pathways and their inter-
actions does not have to rely on comparison with signa-
tures from cell lines, but can be discovered using network
inference methods. Thus our results demonstrate the rich
knowledge resource within gene expression data gener-
ated from human tissues.

Methods

Data Collection

The raw CEL files from Farmer et al. [8] are available for
download at NCBI GEO Datasets under accession
GSE1561. The raw CEL files from Doane et al. [7] are
available for download at the National Cancer Institute
caArray database. The raw CEL files from Ivshina et al.
[16] and Sotiriou et al. [18] are available for download at
NCBI GEO Datasets under accession GSE4922 and
GSE2990, respectively. The raw CEL files from Rouzier et
al. [17] are available for download at http://bioinformat

ics.mdanderson.org/pubdata.html.
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Microarray Normalization: Removing Systematic and
Institutional Bias

The Doane et al. and Farmer et al. cohorts were first quan-
tile-normalized [19] together using the default settings in
DNA-Chip Analyzer (dChip), a software package for
probe-level analysis of gene expression microarrays [20].
This process was repeated twice: the first time, the original
Affymetrix-provided chip definition file (CDF) was used,
and the second time, a transcript-consistent Affymetrix-
formatted Chip Definition File (CDF) downloaded from
AftyProbeMiner [25] was used. A recently published cross-
study normalization scheme called XPN [21] was subse-
quently implemented to further combine the quantile-
normalized datasets into a single, unified datasets with
significantly reduced systematic bias; one dataset derives
from normalization with Affymetrix' CDF and a second
dataset (the primary dataset used for analysis in this
study) derives from normalization with AffyProbeMiner's
CDF. The details regarding the normalization scheme,
referred to as XPN, have been previously described [21].
In short, the XPN algorithm is based on linking gene/sam-
ple clusters amongst given datasets. Data is scaled and
shifted according to the assumption that similar gene-sets
cluster together across multiple platforms. XPN has been
shown to successfully remove systematic bias, while
avoiding the loss of useful biological information due to
data over-correction [21].

The other cohorts were included to investigate the persist-
ence of the molecular trends identified in the Doane et al.
and Farmer et al. datasets. All five cohorts were quantile-
normalized with dChip using a transcript-consistent
Affymetrix-formatted CDF provided by AffyProbeMiner
[25]. Then, XPN was used in serial increments to bring the
five cohorts into uniform agreement by removing persist-
ent systematic bias between the datasets.

Significance Analysis of Microarrays: Modified T-Test
Significance Analysis of Microarrays (SAM) was per-
formed on the normalized Doane et al. [7] and Farmer et
al. [8] data individually to identify top 100 probesets that
classify between the molecular apocrine samples and the
remaining samples. SAM was also performed on the com-
bined Doane et al. and Farmer et al. subset of the cross-
study normalized, five-cohort data to identify a gene sig-
nature with 0% false discovery rate for classifying molec-
ular apocrine samples from the remaining samples, and
identifying similar molecular trends in the remaining
data. SAM is based on a modified T-test; details regarding
the algorithm have been previously described [28,57].

Hierarchical Clustering and Principal Components
Analysis

Hierarchical Clustering was performed using a Pairwise-
Average Linking method and Euclidian Distance as the
distance measure. Both Hierarchical Clustering and Prin-
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cipal Components Analysis were performed on the
GenePattern software package provided by the Broad
Institute [20,26]. Visualizations of the Principal Compo-
nents Analysis were performed with MATLAB (Math-
works, Natick, MA).

Two-Dimensional Kolmogorov-Smirnov Test

The Fasano & Franceschini statistical test [27], a two-
dimensional adaptation of the Kolmogorov-Smirnov test
[58], was performed on the coordinates derived from the
first two principal components using an algorithm pro-
vided by Numerical Recipes in Fortran 90 [59].

Statistical Significance of Overlap Between Gene
Signatures

The probability of finding a specified number of overlap-
ping genes between two gene signatures was calculated
using the exact hypergeometric probability formula using
a web-based tool at http://elegans.uky.edu/MA/progs
overlap stats.html based on algorithms provided by
Numerical Recipes in C [60].

Backward Chaining Rule Induction

Backward Chaining Rule Induction (BCRI) is a supervised
learning approach for identifying relationships amongst
genes that can predict for the molecular apocrine pheno-
type. In order to initialize the BCRI strategy, we use a clas-
sifier method called See5 (Rulequest, St. Ives, Australia) to
build a prediction model from the normalized gene
expression data for classifying the molecular apocrine
phenotype from the remaining samples in the index
cohorts. Successive iterations of the BCRI strategy infert
gene network relationships by predicting threshold
expression of genes from other genes. Further details
regarding the BCRI strategy have been previously
described [11-13].

Gene Shaving

To identify clusters of highly correlated genes, we used
unsupervised Gene Shaving [14]. Specifically, we used a
high-performance, parallel C implementation of the
method that was developed from the GeneClust software
package [61]. Gene Shaving was used independently on
both unweighted data and on 127 bootstrap resamples,
extracting the first 150 gene clusters in each case. In both
cases, the data was first ranked within each sample. To
obtain the unweighted data, the ranked data was ranked
again, this time across samples within each cohort. For the
bootstrap resamples, each sample within a cohort was
assigned a random weight chosen from the Bayesian boot-
strap distribution [62] and weighted rankings across sam-
ples within each cohort were computed. In both cases, the
rank of each sample was scaled by the number of samples
in the cohort, so that for each cohort the data is in the
range zero to one. Robust clusters were obtained from the
combined outputs of the Gene Shave runs by selecting
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those genes that occur frequently together in the outputs
of individual runs. We extracted the first 200 clusters with
the largest number of co-clustering genes, weighted by the
homogeneity of the clusters to which they belong.

Robust Bayesian Network Analysis

The 200 robust clusters obtained by Gene Shaving were
ranked by their correlation with their molecular apocrine
phenotype. A cluster meta-gene score was obtained for
each sample by computing the signed average mean gene.
(Unlike other gene clustering methods, Gene Shaving
clusters may include both correlated and anti-correlated
genes). The 26 clusters with the highest absolute Kendall
Tau correlation between the cluster meta-gene scores and
the molecular apocrine phenotype status were selected for
network analysis.

The network analysis included nodes for the 26 gene clus-
ters most highly correlated with molecular apocrine status
and a node for molecular apocrine status. The cluster
meta-gene scores were each discretized to three levels: the
lowest, middle, and highest thirds of the expression range
for each meta-gene. Forty thousand bootstrap resamples
of the discretized weights were obtained by randomly
weighting each sample according to the Bayesian boot-
strap distribution [62], and a high-scoring network was
found for each resample using greedy hill-climbing with
random restarts and the sparse candidate algorithm [63].
The scoring function used was DPSM with A = 1 [64].

Edges that occurred frequently (in either direction) within
the forty thousand best networks thus obtained were
selected for the final network. Edges that occurred in at
least 97.5% of the networks are drawn with a triple black
line, those that occurred in at least 95% of the networks
with a black line, and those that occurred in at least 85%
of the networks with a dashed line. Gene clusters that are
not connected by any path along such edges to the node
for molecular apocrine status are not included.
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8794-2-59-54 xls|
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