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Nerella and Bhat 

ABSTRACT 
A large number of alternatives characterize the choice set in many activity and travel choice 
contexts. Analysts generally sample alternatives from the choice set in such situations because 
estimating models from the full choice set can be very expensive or even prohibitive. This paper 
undertakes numerical experiments to examine the effect of the sample size of alternatives on 
model performance for both an MNL model (for which consistency with a subset of alternatives 
is guaranteed) and a mixed multinomial logit model (for which no consistency result holds).  
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1. INTRODUCTION 
Several of the activity and travel decisions made by individuals, such as travel mode choice, 
activity participation location choice, residential location choice, and route choice, are discrete in 
nature. This recognition has led to the widespread use of discrete choice models in travel demand 
modeling. Almost all of these discrete choice models are based on the Random Utility 
Maximization (RUM) hypothesis, which assumes that a decision-making agent’s choice is a 
reflection of underlying preferences for each of the available alternatives, and that the agent 
selects the alternative with the highest preference or utility. The underlying preferences are 
random to the analyst, because s/he does not observe all the factors considered by the decision-
maker in the choice process.  

An issue that arises in the RUM-based discrete choice modeling of many activity and 
travel related dimensions is the large number of alternatives in the choice set. For example, in an 
activity participation location or residential choice situation, a decision-maker can potentially 
have anywhere between a few hundreds of choice alternatives (if an aggregate spatial unit such 
as neighborhoods or traffic analysis zones is used to characterize the alternatives) to hundreds of 
thousands of choice alternatives (if a fine spatial resolution such as land parcels is used to 
characterize the alternatives). Similarly, in a route choice decision context, a traveler potentially 
has an infinite number of routes to choose from to travel to his/her desired location for activity 
participation. In such large choice set situations, it is challenging to consider all the alternatives 
during estimation because of the substantial effort that would be entailed in assembling the 
relevant dataset. The computational burden can also be an important consideration in estimation 
with a very large set of alternatives.1

The challenge of estimating choice models with a huge set of alternatives has led 
researchers to explore and apply methods to enable consistent estimation with only a subset of 
alternatives (see Table 1 for a list of studies that have used a subset of alternatives rather than the 
complete choice set). McFadden (3) proved that, in the case of the multinomial logit model 
(MNL), it is straightforward to consistently estimate parameters from a sample of alternatives by 
maximizing a conditional likelihood function which also has an MNL form. This is a neat 
theoretical result and is associated with the independence from irrelevant alternatives (IIA) 
property of the multinomial logit model. However, there has been no systematic numerical 
analysis, to our knowledge, examining how the sample size of alternatives affects the empirical 
accuracy and efficiency of the estimated parameters.  

Another issue in choice situations with a large number of alternatives is the case when 
non-MNL models are used. The MNL model, while simple and elegant in structure, is saddled 
with the IIA property, which can be behaviorally unrealistic in many choice situations. For 
example, in an activity participation location or residential choice situation, it is possible (if not 
very likely) that the utility of spatial alternatives close to each other will have a higher degree of 
sensitivity due to common unobserved spatial elements. A common specification in the spatial 
                                                 
1 On a philosophical note, one could argue that individuals are limited information processors, and do not consider more than a 
few alternatives in any choice situation. Clearly, this is an important research issue within the broad area of understanding the 
choice set generation process. However, in the absence of a clear understanding of the choice set generation process, the most 
common practical assumption is that all alternatives in the universal choice set are available. The current paper is positioned 
within the framework of this assumption of full choice set consideration. However, it should be emphasized that the paper 
provides guidance even for modeling frameworks that incorporate choice set formation explicitly [for example, see Swait (1); 
Basar and Bhat (2)]. In such frameworks, the model takes a non-MNL form with the full choice set representing the universal 
choice set from which some alternatives are considered by the decision maker. To the extent that the universal choice set is very 
large, the analyst may want to reduce the universal choice set size to something manageable for each decision maker. This 
situation is mimicked by our analysis in this paper with non-MNL models. 
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analysis literature for capturing such spatial correlation is to allow contiguous alternatives to be 
correlated (4). Similarly, in a route choice context, routes with overlapping links are likely to 
have a higher sensitivity between each other compared to paths with little or no overlap. A 
common specification, therefore, in route choice models is to assume that the covariance of path 
utilities is proportional to the overlap length (5). In these and other choice situations, the use of 
the MNL model is clearly not appropriate, though the analytic elegance and ability to sample 
alternatives within the MNL framework has led to its continued use in the literature. Recent 
simulation-related and GEV-based model developments, however, are very rapidly liberating the 
analyst from using restrictive model forms such as the MNL. But, theoretically speaking, 
sampling of alternatives does not provide consistent parameter estimates in these more advanced 
model forms. Thus, the dilemma for the analyst is whether to impose the unrealistic MNL 
structure at the outset or use a more realistic structure and then potentially “undo” the advantage 
of the richer structure by sampling of alternatives.  

The discussion above provides the motivation for the current research. Specifically, this 
paper has two objectives. The first objective is to examine the effect of the sampling size of 
alternatives on the empirical accuracy and efficiency of estimated parameters (and other relevant 
fit statistics) in the context of the MNL model. While McFadden’s (3) result shows theoretically 
that any sample size of alternatives will provide consistent estimates in the MNL framework, the 
question of how many alternatives to select is still an empirical one. The second objective is to 
assess the impact of the sampling size of alternatives on the empirical accuracy and efficiency of 
parameter and fit statistics in the context of non-MNL models. In such models, it is theoretically 
known that sampling of alternatives does not work, but the question is: Is there a certain size of 
alternatives that makes the results from the sample of alternatives close enough (empirically 
speaking) to the true values obtained from the full choice set?  

A few notes are in order before we proceed. First, we use the mixed multinomial logit 
(MMNL) form as the representative structure for the non-MNL forms in this paper. This is 
because the MMNL model is a very flexible discrete choice structure, is easy to estimate, and is 
becoming the method of preference for accommodating behaviorally realistic structures. Second, 
our assessment of the effect of sample size of alternatives on model performance is based on 
numerical experiments. Third, the results from this paper should be viewed as providing 
guidance to the analyst when confronted with a choice situation with a large number of 
alternatives. The results should not be viewed as “absolute rules” since each empirical context is 
likely to be unique and different from others. It is simply impossible in a numerical experiment 
to consider all the situations that may arise in reality, including combinations of different sample 
sizes of observations, different numbers of alternatives in the universal choice set, different 
levels of sensitivity between pairs of alternatives, different numbers of variables used in the 
specification and their moment values, and the varying distributions of the response patterns to 
variables in the population. 

The rest of the paper is organized as follows. Section 2 discusses the MNL and MMNL 
structures and the issues involved in sampling of alternatives. Section 3 describes the design of 
the numerical experiments. Section 4 presents the empirical results and discusses the important 
findings. The final section concludes the paper. 
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2. THE MODELS 
 
2.1 The MNL Model (MNL) 
The MNL model takes the following familiar form for the probability that individual q selects 
alternative i from the set of all available alternatives C.  
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where Xqi is a vector of observed variables specific to individual q and alternative i, and β is a 
corresponding fixed parameter vector of coefficients. 

Now, consider that the analyst decides to use only a subset of alternatives, Dq, for 
individual q. Let  be the probability under the researcher’s selection mechanism of 
choosing subset D
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q given that alternative i is chosen by individual q. For estimation purposes, Dq 
should include the chosen alternative, so that )|( iDqqπ  = 0 for any Dq that does not include i. 
The conditional probability of individual q choosing alternative i conditional on the researcher 
sampling the subset Dq for the individual may be derived in a straightforward manner using 
Bayes theorem as (6, p.68): 
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The simplification in the denominator on the right side in the equation above is based on 

the fact that  = 0 for j not in D)|( jDqqπ q. Next, for the MNL model, we can use Equation (1) in 
Equation (2) to write: 
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The simplification in going from Equation (2) to Equation (3) is based on the cancellation 

of the denominators of Pqi in the MNL model (this cancellation is also fundamentally responsible 
for the IIA property). The analyst can use Equation (3) with any sampling mechanism s/he 
chooses, and only has to incorporate an additional variable )|(ln iDqqπ  in the utility of each 
alternative. The coefficient on this variable is restricted to 1 during estimation, which is based on 
maximizing the following conditional likelihood function: 
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McFadden (3) proves that maximizing the above function provides consistent estimates 
of β. In the typical case when the analyst uses a random sampling approach, the following 
uniform conditioning property holds: 

 
)|()|( jDiD qqqq ππ =              ∀i, j ∈ Dq                                                                                                                              (5) 

 
Using this uniform conditioning property, Equation (3) collapses to a standard logit 

model with a choice set Dq (a subset of C) for individual q. Thus, a random sampling of 
alternatives allows consistent parameter estimation in the standard multinomial logit model.  
 
2.2 The Mixed Multinomial Logit Model (MMNL) 
The MMNL model is a generalization of the multinomial logit (MNL) model. Specifically, it 
involves the integration of the MNL formula over the distribution of random parameters. It takes 
the structure shown below: 
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The use of the expression above in Equation (2) for the conditional probability of 

choosing alternative i given subset Dq immediately indicates that there is no simplification when 
sampling alternatives for the MMNL as for the MNL model in Equation (3). The reason is that, 
for the MNL case, a cancellation of the denominators in the probability expression takes place, 
putting the conditional probability back into the form of a tractable MNL expression. No such 
simplification occurs for the non-MNL models, because even under the assumptions of a uniform 
conditioning sampling approach, Equation (2) simplifies only to: 
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The equation above requires the probability of each alternative to be computed with 

respect to all alternatives in the choice set. Thus, no sampling strategy will work in the case of 
the MMNL model (and more generally, in the case of other non-MNL models too such as the 
GEV class of models). But, an approximation in Equation (6) simplifies the expression in 
Equation (7). Specifically, one can approximate Lqi in Equation (6) as: 
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where S is the number of alternatives in Dq (i.e., the number of sampled alternatives) and N is the 
number of alternatives in C (i.e., the number of alternatives in the universal choice set). The term 
(N/S) is a factor that expands the sum of the denominator from the sampled alternatives to the 
full choice set. Then, one can write: 
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Equation (7) then collapses to: 
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The simplification above occurs because the denominator in the first expression of Equation (10) 
is equal to 1. Thus, with the approximation in (9), the conditional probability is put back into a 
simple MMNL expression within the set of sampled alternatives. Of course, the approximation in 
(9) is the reason for the simplification. In general, the expression on the right side of Equation (9) 
is not a consistent estimator of Pqi(θ).  Further theoretical exploration of this approximation is an 
important area for future research. In the current paper, we empirically test the ability to recover 
the underlying parameters and other relevant statistics using an MMNL model with a sample of 
alternatives and the expression in Equation (10). 
 
3. EXPERIMENTAL DESIGN 
In the numerical experiments of our study, we generate two datasets, one for the multinomial 
logit model and the other for the mixed multinomial logit model. Each dataset includes five 
independent variables for 200 alternatives for each of 750 observations. The values of the five 
independent variables for each of the 200 alternatives are drawn from a standard normal 
univariate distribution with the variables of the first 100 alternatives having a mean of 1 and the 
variables of the other 100 alternatives having a mean of 0.5. 

For the multinomial logit dataset, the coefficients applied to each independent variable 
for each observation is taken as 1. The deterministic component of the utility is then calculated. 
The error term for each alternative and each observation is drawn independently from a type I 
extreme value distribution. This is achieved by obtaining draws from the uniform random 
distribution and applying the transformation -ln(-ln(u)) where u is a random number drawn from 
the uniform distribution between 0 and 1. The deterministic and the probabilistic components of 
the utilities for each alternative and each observation are added next to obtain the total utility for 
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each alternative. Finally, for each observation, the alternative with the highest utility is identified 
as the chosen alternative.  

The steps involved in the generation of the dataset for the MMNL model are very similar 
to those used in generating the dataset for the MNL case. The only difference is that two of the 
five independent variables are assumed to have random coefficients. The random coefficients are 
assumed to be distributed univariate normal. As for the MNL data generation, the mean of the 
coefficients on all five independent variables is taken as 1. However, for two of these 
coefficients, we allow randomness across observations by drawing the coefficient from a 
univariate normal distribution with a mean value of 1 and a variance of 1 (this is, of course, 
achieved by drawing from a standard univariate normal distribution and adding 1). The error 
terms for the utilities are calculated in the same way as the MNL model, and the alternative with 
the highest utility is identified as the chosen alternative. 
 
4. COMPUTATIONAL RESULTS 
 
4.1 Estimation Issues 
All the models were estimated using the GAUSS matrix programming language. The log-
likelihood function and the gradient function for both the MNL and MMNL structures were 
coded. The Halton sequences required to simulate the probabilities in the mixed multinomial 
logit case were also generated using GAUSS. 

In the first set of estimations involving the MNL model, the coefficients on the five 
independent variables in the simulated dataset were first estimated considering the full choice set 
of 200 alternatives. These results served as the benchmark to evaluate the performance of the 
random sampling of alternatives procedure. Next, we considered 6 different sample sizes for the 
number of alternatives in the random sampling: 5, 10, 25, 50, 100, and 150. For each size, the 
sampling was achieved through a GAUSS code that, for each observation, randomly selected (M-
1) alternatives (without replacement) from the full choice set except the chosen alternative, and 
then added the chosen alternative to achieve the desired size M. Further, for each sample size, the 
sampling procedure just discussed was repeated 10 times using different random seeds to 
estimate the variance due to the sampling of alternatives. 

In the second set of estimations involving the MMNL model, the same procedure as for 
the MNL was used in sampling alternatives. Unlike the MNL model, however, the maximum 
likelihood estimation of the MMNL model requires the evaluation of an analytically-intractable 
integral. The estimation is accomplished through a maximum simulated likelihood (MSL) 
approach using scrambled Halton draws with primes of 2 and 3 as the bases for the sequences 
(7). An important issue here is the number of Halton draws to use per observation. It is critical 
that the two-dimensional integral in the probability expressions of the MMNL model be 
evaluated accurately, so that the difference in model parameters between using a sample of 
alternatives and the full choice set can be attributed solely to the sampling of alternatives. In our 
MSL estimation of the MMNL model, we used 200 scrambled Halton draws based on extensive 
testing with different numbers of scrambled Halton draws. Specifically, we estimated an MMNL 
model using the MMNL dataset with 5 randomly sampled alternatives and the full choice set to 
represent the range of sample sizes of alternatives used in the experiments. For each of these two 
estimations, we estimated the model with different numbers of Halton draws, and found that the 
model parameters were basically indistinguishable beyond 200 Halton draws. 
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4.2 Evaluation Criteria 
The focus of the evaluation effort is to assess the performance of the models estimated with a 
sample of alternatives relative to the model estimated with the full choice set. This evaluation 
was based on four criteria: (a) Ability to recover model parameters, (b) Ability to estimate the 
overall log-likelihood function accurately, (c) Ability to replicate the choice probability of the 
chosen alternative for each observation (i.e., ability to reproduce the individual likelihood 
function values), and (d) Ability to reproduce the aggregate shares of the alternatives. For the 
evaluation based on the latter three criteria, we applied the estimated parameter values from each 
estimation to the full choice set to compute the estimated choice probabilities for each of the 200 
alternatives for each observation. The relevant values for the three criteria are then based on 
comparing the performance of each number of sampled alternatives on the full choice set with 
the true values computed from model estimation using the full choice set. This procedure brings 
the estimations with different sample sizes to a common platform and enables meaningful 
comparisons of model performance. 

For each of the four criteria identified above, the evaluation of the proximity of the 
estimated and true values was based on two performance measures: (a) Root mean square error 
and (b) Mean absolute percentage error. Further, for each criterion-performance measure 
combination, we computed three properties: (a) Bias, or the difference between the mean of 
estimates for each sample size of alternatives across the 10 runs and the true values, (b) 
Simulation variance, or the variance in the relevant parameters across the 10 runs for each 
sample size of alternatives, and (c) Total error, or the difference between the estimated and the 
true values across all 10 runs for each sample size of alternatives. The performance statistics 
were compared across the different sample sizes to understand the effect of random sampling in 
each of the two model structures (MNL and MMNL), and across the two model structures to 
understand the differences of the effects of random sampling between them. 
 
4.3 Performance Results 
Tables 2 through 5 present the computational results. In each table, the error measures decrease 
in magnitude as the sample size increases, except for some minor aberrations in the bias measure 
for small sample sizes. Further, in each table, the error measures are larger for the MMNL model 
compared to the MNL model for each sample size of alternatives. This is to be expected, because 
of the theoretical result that random sampling is consistent in the MNL case while no such result 
holds for the MMNL case. We next discuss the important results from each table in turn. 

Table 2 provides the measures of the ability to recover the model parameters. Several 
observations may be made from the table. First, for the MNL model, a doubling of the sample 
size of alternatives reduces the RMSE by about a fourth for sample sizes less than 50 (except for 
the decrease between 25 and 50 alternatives), and reduces the RMSE by about a half beyond 
sample sizes of 50. Similarly, for the MNL model, a doubling of the sample size of alternatives 
reduces the MAPE by about a third to a half as the sample size of alternatives is doubled, with 
the improvements in performance being steeper at higher sample sizes. These patterns are 
reflected in the bias, variance, and total error measures. Second, for the MMNL model, a 
doubling of the sample size reduces the bias and the total error of both the RMSE and MAPE by 
a fourth to a half up to a sample size of 50, but reduces these measures by half or more beyond a 
sample size of 50. The reduction in simulation variance in the MMNL model due to increasing 
sample size is more dramatic than the reduction in bias and total error measures and is rather 
consistent with a 50% reduction or more for a doubling in sample size (except for the results 
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corresponding to an increase from 50 to 100 alternatives). Third, the error measures for the 
MMNL model at a sample size of 5 are about 300-450% higher than for the MNL. However, the 
disparity between the MNL and the MMNL measures reduces to about 160-250% for sample 
sizes of 10, 25, and 50, and reduces further to about 40% beyond a sample size of 50. Further, 
the MAPE error is very high in the MMNL model for small sizes, and reduces quite substantially 
at higher sample sizes. Overall, the results suggest that it is very important to use high sample 
sizes for the MMNL model; at least a quarter of the full choice set and ideally a half of the full 
choice set or more. 

Table 3 provides the results for the overall log-likelihood function value. The table shows 
that the MMNL RMSE error measures are large at small sample sizes in both absolute terms and 
relative to the MNL error measures. However, at sample sizes of 100 alternatives or more, the 
error measures become comparable between the MNL and MMNL models. The RMSE bias in 
this table is negative because the overall data fit from applying the parameters estimated from the 
sampling of alternatives procedure to the full set of alternatives can only be worse than the fit 
obtained by using the full choice set in estimation (which is the true convergent log-likelihood 
function value). Also, the MAPE bias and error measures in Table 2 are exactly the same 
because the log-likelihood is overestimated in magnitude (relative to the true value) by each of 
the 10 runs for each sample size. 

Table 4 indicates that the MNL error measures are quite substantial at very small sample 
sizes for the individual log-likelihood function values (i.e. the probability of the chosen 
alternative). For example, the mean absolute percentage error is about 12% when a sample size 
of 5 is considered in the MNL. The percentage error is, as expected, much higher for the MMNL 
at small sample sizes. But, at larger sample sizes, it is remarkable that the MMNL error measures 
are very comparable to those from the MNL. Again, the results show that a sample size of 100 or 
more alternatives (or half the full choice set of alternatives or more) in the MMNL model 
provides good accuracy. 

Table 5 mirrors the results from the earlier tables. The values in this table for the RMSE 
are smaller than for the other tables because the shares are computed at an aggregate level. The 
MAPE measure provides a better perspective here. 

To summarize, three important observations may be drawn from Tables 2 through 5. 
First, random sampling of alternatives provides good estimates even for small sample sizes (i.e., 
small number of randomly sampled alternatives) in the MNL model. However, there is either a 
constant or increasing returns to scale in terms of accuracy and precision as the sample size is 
increased in the MNL model. Consequently, for the MNL model, the analyst would do well not 
to settle for very small sample sizes. Our results suggest a sample size of one-eighth of the full 
choice set as a minimum, and one-fourth of the full choice set as a good number of alternatives 
to target. Second, and as expected, the performance of the mixed multinomial logit model is very 
poor at small sample sizes. The good news for the analyst, however, is that the returns from 
increasing the sample size are much more dramatic in the MMNL model compared to the MNL 
model. In fact, at very high sample sizes, the accuracy of random sampling is comparable to the 
accuracy from the MNL model. As overall guidance, our recommendation based on the results 
would be that the analyst consider a sample size no less than a fourth of the full choice set and 
preferably half or more of the full choice set. The reader will note that even using half of the full 
choice set, though computationally expensive, can still lead to quite considerable savings in 
computational time compared to using the full choice set in the MMNL model. On the other 
hand, using a very small sample size may be good for computational time, but is literally 
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“garbage” from an accuracy perspective. Third, a comparison of the MAPE values from Tables 2 
and 3 show that the overall log-likelihood value is more accurately estimated than the parameter 
values, especially for the MMNL model. This suggests a rather flat log-likelihood function near 
the optimum; that is, closeness to the log-likelihood function does not necessarily imply 
closeness in model parameters too. 

In order to understand the effect of random sampling for unrestricted choice sets of 
smaller sizes than 200, we also generated datasets with 100 alternatives and 50 alternatives and 
undertook the same kind of analysis as just discussed above for the case with 200 alternatives. 
Tables 6 through 9 present the simulation results for datasets with 100 alternatives (we are not 
presenting the tables for the simulation results with 50 alternatives due to space constraints). The 
patterns of the results are similar to the case with 200 alternatives, and the same overall 
conclusions may be drawn. 

 
5. SUMMARY AND CONCLUSIONS 
Many activity and travel choice decisions made by individuals involve a large number of choice 
alternatives. Examples include activity participation location choice, residential location choice, 
and route choice. McFadden (3) proved that, if the analyst is willing to assume a simple 
multinomial logit (MNL) formulation for the behavior underlying the choice process, a sampling 
of alternatives scheme will provide consistent model parameters. Several researchers have 
exploited this result for estimations in different empirical contexts (8-12). However, there has 
been no systematic study (until this paper) of the effect of sample size on the empirical accuracy 
and efficiency of the estimated parameters. Further, with recent advances in the field, researchers 
are increasingly turning to more behaviorally realistic discrete choice models in analysis for 
which McFadden’s (3) result does not hold. At the same time, sampling of alternatives can 
reduce computational time quite substantially compared to using the full choice set in these 
advanced models. Thus, it is of value to study the effect of sample size on model performance in 
these non-MNL models. This paper develops an evaluation framework for examining the effect 
of the sample size of alternatives on model performance both in an MNL context and a mixed 
multinomial logit (MMNL) context.  

The results from this paper show the good numerical performance of the MNL model 
even with very small sample sizes. However, since the “bang for the buck” is high as one 
proceeds to larger sample sizes of alternatives, it is advisable to consider sample sizes that are 
not too small. Based on our results, we recommend the use of an eighth of the size of the full 
choice set as a minimum, and suggest a fourth of the full choice set as a desirable target. The 
performance of the MMNL model, on the other hand, is very poor at small sample sizes. 
However, the “bang for buck” is even better for the MMNL model with increasing sample sizes 
compared to the MNL case. At a minimum, we suggest using a fourth of the full choice set. 
However, we strongly suggest using one-half of the full choice set or more based on the 
numerical exercises in this paper. 

As with any numerical exercise, the usual cautions for generalizing the results apply to 
this paper too. There is certainly a need for more computational and empirical research on the 
topic of sampling of alternatives in different settings (such as different patterns of correlation 
among exogenous variables, different levels of sensitivity and heterogeneity in the sensitivity to 
variables, different numbers of variables with random coefficients, and different numbers of 
decision makers in the sample) to draw more definitive conclusions. In the meantime, the results 
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of this paper should serve as a good guide to the analyst faced with modeling choice situations 
with large choice sets. 
 A final note before closing. This paper should not be viewed as encouraging sampling of 
alternatives in a non-MNL setting. In such settings, it is always most ideal to consider the full 
choice set. But, if considering the full choice set is difficult for the MNL model, it is 
substantially more difficult for the non-MNL models. The purpose of this numerical analysis is 
to provide some guidance to analysts wanting to use non-MNL models, but are simply unable to 
consider the full choice set. The results here should be viewed as an effort to set minimum 
sample size guidelines for the MMNL model when the full choice set cannot be considered. 
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TABLE 1 Earlier Studies Using a Subset of Choice Alternatives 

Study Choice Modeled Alternatives Considered 
(Total Number) 

Sampling 
Mechanism 

Model 
Structure 

Guo and Bhat (11) Residential Location TAP Zones (900) Simple Random Sampling MNL 

Sermons and Koppelman (8) Residential Location Census Tracts (1099) Simple Random Sampling MNL 

Ben-Akiva and Bowman (12) Residential Location TAZ (787) Stratified Importance Sampling Nested Logit 

Bekhor, S. et al. (5) Route Choice Routes (50) Simple Random Sampling Kernel Logit 

Waddell (9) Residential Location TAZ (761) Simple Random Sampling Nested Logit 

Schlich et al. (14) Destination Choice  Municipal Level (555) Simple Random Sampling MNL 

Pozsgay and Bhat (15) Destination Choice TSZ (919) Simple Random Sampling MNL 

Bhat et al. (10) Attraction-end Choice  TAZ (858) Importance Sampling MNL 
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TABLE 2 Evaluation of Ability to Recover Model Parameters (with a choice set of 200 alternatives) 

Number of alternatives considered in the random sample 
Model Performance 

Measure Estimator Property 
5      10 25 50 100 150

Bias       0.0323 0.0226 0.0249 0.0194 0.0086 0.0050

Simulation Variance       0.0658 0.0488 0.0250 0.0233 0.0152 0.0075RMSE 

Total Error       0.0733 0.0538 0.0353 0.0303 0.0175 0.0090

Bias       3.1002 2.1288 2.3898 1.6856 0.8086 0.3838

Simulation Variance       5.4227 3.7539 2.0599 1.8808 1.3079 0.6065

MNL 

MAPE 

Total Error       6.0238 4.2848 2.9142 2.4236 1.5140 0.7713

Bias       0.3480 0.1587 0.1017 0.0768 0.0184 0.0080

Simulation Variance       0.2059 0.0893 0.0464 0.0233 0.0185 0.0099RMSE 

Total Error       0.4043 0.1821 0.1118 0.0802 0.0261 0.0127

Bias       23.8286 14.2235 9.3792 6.8456 1.6836 0.7006

Simulation Variance       31.4289 7.3227 3.4461 1.7203 1.4214 0.7662

MMNL 

MAPE 

Total Error       24.6240 14.8463 10.0229 7.3630 2.1272 1.0454

 

1RMSE: Root Mean Square Error 

2MAPE: Mean Absolute Percentage Error 
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TABLE 3 Evaluation of Ability to Estimate Overall Log-Likelihood Function Value (with a choice set of 200 alternatives) 

Number of alternatives considered in the random sample 
Model Performance 

Measure Estimator Property 
5      10 25 50 100 150

Bias       -8.2262 -4.2624 -1.8495 -1.2370 -0.4206 -0.1177

Simulation Variance       3.7895 3.4157 0.9942 0.8063 0.3075 0.0570RMSE1

Total Error       9.0571 5.4622 2.0998 1.4766 0.5210 0.1308

Bias       0.3591 0.1861 0.0807 0.0540 0.0184 0.0051

Simulation Variance       0.1417 0.1204 0.0369 0.0302 0.0102 0.0015

MNL 

MAPE2

Total Error       0.3591 0.1861 0.0807 0.0540 0.0184 0.0051

Bias       -67.7402 -41.4890 -15.7482 -7.3515 -0.6999 -0.1324

Simulation Variance       16.2127 13.1415 4.6363 0.7306 0.4039 0.0450RMSE1

Total Error       69.6533 43.5206 16.4165 7.3877 0.8081 0.1398

Bias       2.7927 1.7104 0.6492 0.3031 0.0289 0.0055

Simulation Variance       0.4989 0.4361 0.1562 0.0248 0.0153 0.0015

MMNL 

MAPE2

Total Error       2.7927 1.7104 0.6492 0.3031 0.0289 0.0055

 

1RMSE: Root Mean Square Error 

2MAPE: Mean Absolute Percentage Error 
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TABLE 4 Evaluation of Ability to Estimate Individual Choice Probabilities (with a choice set of 200 alternatives) 

Number of alternatives considered in the random sample 
Model Performance 

Measure Estimator Property 
5      10 25 50 100 150

Bias       0.0100 0.0065 0.0069 0.0056 0.0030 0.0017

Simulation Variance       0.0199 0.0146 0.0074 0.0073 0.0049 0.0023RMSE1

Total Error       0.0223 0.0160 0.0101 0.0092 0.0058 0.0028

Bias       5.4048 3.8059 3.9846 2.8590 1.3295 0.7826

Simulation Variance       10.1145 7.0496 3.8917 3.4659 2.2394 1.0874

MNL 

MAPE2

Total Error       11.5424 7.9121 5.4241 4.3606 2.5686 1.3812

Bias       0.0450 0.0410 0.0278 0.0201 0.0048 0.0015

Simulation Variance       0.0174 0.0157 0.0081 0.0037 0.0032 0.0015RMSE1

Total Error       0.0483 0.0439 0.0289 0.0204 0.0058 0.0021

Bias       28.0816 22.4440 14.9737 10.8548 2.6249 0.9960

Simulation Variance       11.4763 10.6652 5.1676 2.4932 2.1856 1.0523

MMNL 

MAPE2

Total Error       29.9596 24.2285 15.6463 11.0900 3.2574 1.4390

 

1RMSE: Root Mean Square Error 

2MAPE: Mean Absolute Percentage Error 
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TABLE 5 Evaluation of Ability to Estimate Aggregate Shares of Alternatives (with a choice set of 200 alternatives) 

Number of alternatives considered in the random sample 
Model Performance 

Measure Estimator Property 
5      10 25 50 100 150

Bias       5.4040E-05 3.5401E-05 4.1712E-05 3.5245E-05 1.6883E-05 9.1212E-06

Simulation Variance 1.0761E-04 8.1337E-05     4.1007E-05 4.1110E-05 2.6953E-05 1.3054E-05RMSE1

Total Error 1.2042E-04 8.8707E-05 5.8493E-05    5.4151E-05 3.1804E-05 1.5925E-05

Bias       1.3659 0.7076 1.1177 1.2655 0.7648 0.3656

Simulation Variance       2.9415 2.2135 0.9772 1.2514 0.8804 0.3892

MNL 

MAPE2

Total Error       3.3484 2.3569 1.4558 1.7745 1.0421 0.5217

Bias       3.4953E-04 3.1941E-04 2.2537E-04 1.6793E-04 4.0930E-05 1.3208E-05

Simulation Variance 1.2847E-04 9.7856E-05     5.5666E-05 2.4174E-05 2.3705E-05 1.1346E-05RMSE1

Total Error 3.7239E-04 3.3407E-04 2.3214E-04    1.6967E-04 4.7299E-05 1.7412E-05

Bias       11.6474 12.2540 9.1110 6.9274 1.7033 0.5252

Simulation Variance       3.5642 2.7321 1.5928 0.6102 0.7976 0.3325

MMNL 

MAPE2

Total Error       11.8229 12.3598 9.1469 6.9371 1.7284 0.5850

 

1RMSE: Root Mean Square Error 

2MAPE: Mean Absolute Percentage Error 
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TABLE 6 Evaluation of Ability to Recover Model Parameters (with a choice set of 100 alternatives) 

Number of alternatives considered in the random sample 
Model Performance 

Measure Estimator Property 
5     10 25 50 75

Bias      0.0558 0.0510 0.0438 0.0100 0.0052

Simulation Variance      0.0667 0.0371 0.0262 0.0182 0.0083RMSE1

Total Error      0.0860 0.0630 0.0495 0.0221 0.0101

Bias      5.0302 4.5650 3.9828 0.8414 0.3825

Simulation Variance      4.9779 2.9056 1.7038 1.6036 0.7149

MNL 

MAPE2

Total Error      6.9460 5.2267 4.2026 1.7572 0.8121

Bias      0.2370 0.2144 0.1624 0.0437 0.0064

Simulation Variance      0.1996 0.1562 0.0863 0.0628 0.0085RMSE1

Total Error      0.3098 0.2583 0.1028 0.0619 0.0153

Bias      19.3345 16.7802 7.2842 1.1252 0.3997

Simulation Variance      14.4498 9.6755 3.4824 1.9284 0.7263

MMNL 

MAPE2

Total Error      20.9486 17.8954 8.2741 2.1927 0.8462

  

1RMSE: Root Mean Square Error 

2MAPE: Mean Absolute Percentage Error 
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TABLE 7 Evaluation of Ability to Estimate Overall Log-Likelihood Function Value (with a choice set of 100 alternatives) 

Number of alternatives considered in the random sample 
Model Performance 

Measure Estimator Property 
5     10 25 50 75

Bias     -8.1384 -4.4595 -2.4939 -0.6010 -0.13653 

Simulation Variance     4.6587 1.9117 0.9511 0.3073 0.0844 RMSE1

Total Error     9.3774 4.8520 2.6691 0.6750 0.1605 

Bias     0.4295 0.2354 0.1316 0.0317 0.0072 

Simulation Variance     0.2038 0.0799 0.0408 0.0154 0.0036 

MNL 

MAPE2

Total Error     0.4295 0.2354 0.1316 0.0317 0.0072 

Bias      -55.9366 -28.5588 -10.3647 -0.8245 -0.1673

Simulation Variance      15.2852 8.1165 1.3525 0.4824 0.0926RMSE1

Total Error      57.9874 29.2065 13.2476 1.2460 0.1836

Bias      2.7778 1.4182 0.5353 0.0436 0.0012

Simulation Variance      0.6884 0.2871 0.1241 0.0356 0.0036

MMNL 

MAPE2

Total Error      2.7778 1.4182 0.5353 0.0436 0.0012

  

1RMSE: Root Mean Square Error 

2MAPE: Mean Absolute Percentage Error 
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TABLE 8 Evaluation of Ability to Estimate Individual Choice Probabilities (with a choice set of 100 alternatives) 

Number of alternatives considered in the random sample 
Model Performance 

Measure Estimator Property 
5     10 25 50 75

Bias      0.0172 0.0160 0.0139 0.0032 0.0017

Simulation Variance      0.0218 0.0122 0.0076 0.0065 0.0028RMSE1

Total Error      0.0277 0.0201 0.0158 0.0072 0.0033

Bias      6.9878 6.4866 5.4740 1.4638 0.8224

Simulation Variance      8.9242 5.2463 3.2561 2.5962 1.1896

MNL 

MAPE2

Total Error      11.0300 8.3583 6.3631 3.0116 1.4254

Bias      0.0587 0.0417 0.0267 0.0083 0.0019

Simulation Variance      0.0209 0.0149 0.0892 0.0099 0.0031RMSE1

Total Error      0.0623 0.0443 0.0272 0.0098 0.0037

Bias      25.3416 18.1166 8.2812 2.0383 0.8562

Simulation Variance      11.7932 8.7375 4.7421 3.1923 1.1899

MMNL 

MAPE2

Total Error      27.3515 19.6160 11.7294 4.2853 1.6723

  

1RMSE: Root Mean Square Error 

2MAPE: Mean Absolute Percentage Error 
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TABLE 9 Evaluation of Ability to Estimate Aggregate Shares of Alternatives (with a choice set of 100 alternatives) 

Number of alternatives considered in the random sample 
Model Performance 

Measure Estimator Property 
5     10 25 50 75

Bias      1.4643E-04 1.3196E-04 1.2070E-04 2.3040E-05 1.1947E-05

Simulation Variance      1.7681E-04 8.7414E-05 5.6720E-05 5.3854E-05 2.1934E-05RMSE1

Total Error      2.2957E-04 1.5829E-04 1.3336E-04 5.8575E-05 2.4976E-05

Bias      3.5782 3.2278 2.9787 0.2510 0.1355

Simulation Variance      3.1723 1.1710 0.7622 0.9567 0.3570

MNL 

MAPE2

Total Error      4.1769 3.3214 3.0072 1.0061 0.3792

Bias      6.5060E-04 4.8618E-04 2.8618E-04 4.8855E-05 2.1618E-05

Simulation Variance      1.7714E-04 1.2274E-04 8.2274E-05 8.2810E-05 2.3810E-05RMSE1

Total Error      6.7429E-04 5.0143E-04 3.1432E-04 6.2173E-05 2.4322E-05

Bias      12.5711 10.0086 6.0086 1.5332 0.1432

Simulation Variance      3.0459 1.8796 1.0880 0.9038 0.3779

MMNL 

MAPE2

Total Error      16.3075 11.0118 6.0118 2.1797 0.4296

  

1RMSE: Root Mean Square Error 

2MAPE: Mean Absolute Percentage Error 
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