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Machine Learning is finding applications in a wide variety of areas rang-

ing from autonomous cars to genomics. Machine learning tasks such as image

classification, speech recognition and object detection are being used in most

of the modern computing systems. In particular, Convolutional Neural Net-

works (CNNs, class of artificial neural networks) are extensively used for many

such ML applications, due to their state of the art classification accuracy at

a much lesser complexity compared to their fully connected network coun-

terpart. However, the CNN inference process requires intensive compute and

memory resources making it challenging to implement in energy constrained

edge devices. The major operation of a CNN is the Multiplication and Ac-

cumulate (MAC) operation. These operations are traditionally performed by

digital adders and multipliers, which dissipates large amount of power. In this

2-phase work, an energy efficient time-domain approach is used to perform the

MAC operation using the concept of Memory Delay Line (MDL). Phase I of
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this work implements LeNet-5 CNN to classify MNIST dataset (handwritten

digits) and is demonstrated on a commercial 40nm CMOS Test-chip. Phase II

of this work aims to scale-up this work for multi-bit weights and implements

AlexNet CNN to classify 1000-class ImageNet dataset images.
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Chapter 1

Introduction

Machine Learning (ML) approach is marching in every field and finding

application areas limited only by human imagination. As such, all computing

systems are being designed with a significant focus on a variety of ML tasks

such as image classification, speech recognition, object localization, etc [1]-

[2]. Convolutional Neural Networks (CNNs, class of artificial neural networks)

are extensively used for many such ML applications, due to their state of the

art classification accuracy at much lesser computation compared to their fully

connected network counterpart. CNN parameters (called as filter weights) are

determined by efficient training algorithms which are typically executed using

high-performance cloud resources. The trained filter weights are transferred on

to the edge compute device and are utilized during the CNN inference process

for estimating various input features. However, CNNs still require intensive

compute and memory resources making it challenging to deploy it in energy

constrained edge devices. For example, well known convolutional neural net-

works like AlexNet, VGG comprises of 60 million and 138 million parameters

respectively [3]-[4]. These parameters are used to compute 724 million and

about 15.5 billion multiply-accumulate (MAC) operations for AlexNet and

VGG networks respectively [5]. These high number of MAC operations con-
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sume a significant amount of computing power. Hence, there is a critical need

to research and develop efficient computing capabilities to perform machine

learning tasks in an edge device for improved energy efficiency, security, and

privacy.

Various analog compute techniques using charge manipulation schemes

and A/D converters have been proposed to realize efficient MAC computations

in a CNN accelerator (Fig. 1.1). Analog approaches [6]-[8] compute MAC op-

eration in analog voltage domain using SRAM array, capacitors, and data

converters. In this case, input data is encoded in the pulse-width modulated

wordline [7] or pulse amplitude modulated wordline [8]. The MAC operation

is computed as the bitline voltage which represents the sum of dot product

(SRAM bit weight * Wordline Input). This design approach [6] is suscepti-

ble to process variations of the nano-scale SRAM bitcell transistors as well as

functional failure due to bit-flips as a result of long duration wordline activa-

tion, large bitline voltage differential and possibility of corrupting a weak bit

by connecting it to a strong bit storing opposite value.

In [9]-[10], MAC operation is performed in digital domain using multi-

pliers and adders; resulting in high access energy cost due to data movement.

In [11]-[13], MAC operations are computed in frequency domain using digital

controlled oscillator (DCO) with either resistor or capacitor loading. Various

nodes of a ring oscillator are loaded with different capacitor banks to alter

the RC time constant of the oscillator. Capacitor value is controlled by the

SRAM bitcells storing the neural network weight. This approach makes the

2



Figure 1.1: Prior Work: Analog voltage domain [7]-[8] and Frequency domain
MAC [11] approach.

design sensitive to parasitic diffusion capacitances of the DCO and the added

R, C components need to be larger than this diffusion capacitances to linearly

modulate ring oscillator frequency in response to the weight change. In ad-

dition, adding capacitor at every node of a continuous running ring oscillator

increases the total switching capacitance and consequently higher power dis-

sipation. Furthermore, implementing such binary weighted capacitor banks

consumes significant layout area degrading the area efficiency of the prior fre-

quency domain approach.

In this work, a time domain MAC computing approach is proposed

by leveraging the concept of a time accumulator. In phase I1, an energy

efficient CNN engine implemented in commercial 40nm CMOS process (Fig.

1Aseem Sayal, Shirin Fathima, S.S. Teja Nibhanupudi and Jaydeep P. Kulkarni, “All-
Digital Time-Domain CNN Engine Using Bidirectional Memory Delay Lines for Energy-
Efficient Edge Computing,” in Proc. of IEEE International Solid-State Circuits Confer-
ence (ISSCC), pp.228-230, San Francisco, CA, USA, 2019. implementing time-domain
based CNN Engine. In this work, my contributions include pre-silicon functional sim-
ulation/verification of all the circuit modules, post-silicon testing and debugging to ob-
tain experimental results, and software development to implement LeNet-5 CNN in
Keras/TensorFlow.
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3.1) is demonstrated [14]. Key attributes of the proposed design are: (1) Bi-

directional Memory Delay Lines (MDL) performing time domain signed MAC

operations (2) multi-precision filter weight support (signed/unsigned 1-8bits)

(3) 16 filters each supporting 2x2 sub-sampling (max. pooling) and averaging

(4) all-digital, technology scalable design without requiring any capacitors,

A/D converters, and/or frequency generators/modulators (5) near threshold

voltage operation and 1x-16x speed-up with 4 input encoding modes. In phase

II, the proposed work is scaled up to implement AlexNet CNN supporting

multi-bit weights.

1.1 Background

This section first briefly discusses the Convolutional Neural Networks

(CNNs), specifically LeNet-5 architecture. Next, data representation in differ-

ent signal domains such as digital, analog voltage, frequency and time-domain

are discussed. Finally, concept of time-domain MAC computation is presented.

1.1.1 Convolutional Neural Networks

As discussed briefly in the previous section, a Convolutional Neural

Network (CNN) [15] is a class of deep learning artificial neural networks. Such

networks typically consist of input layer, output layer, and hidden layers, where

each hidden layer implements multiple filters. LeNet-5 CNN [16] architecture

is shown in Fig. 1.2 which is used to classify the hand-written digits (MNIST

database [16]). In the training phase, the weights of all the filters for every

4



Figure 1.2: LeNet-5 CNN Architecture [14].

layer are determined using a training algorithm (such as back-propagation

[17]-[18]) on training set of MNIST data. During inference phase, when a test

data is presented to the CNN layers, key features (e.g. lines, orientation in a

handwritten digits MNIST dataset) are extracted at each layer. The major

operation in CNNs is the Multiple and Accumulate (MAC) operation given

by (1.1) which is computed by adding of dot products of weight matrix and

input image matrix [5]. The MAC value is averaged out to compute Multiply-

Accumulate-Average (MAV) value (given by (1.2)) which ensures that output

value doesn’t go out of range.

MAC =
N∑
i=1

(
Xi ∗ wi

)
(1.1)

MAV =
1

N

N∑
i=1

(
Xi ∗ wi

)
(1.2)

where N is the number of dot products per MAC, Xi is the ith input

pixel value and wi is the ith weight value.

Typically, an activation layer is used between two consecutive convolu-
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tional layers. The Rectified Linear Unit (ReLU) is the most commonly used

activation layer which returns 0 if it receives any negative input, and returns

back the value, if it is positive. Pooling (sub-sampling) is performed to reduce

the data size feeding into the next layer [19]-[20]. Once the data size of input

feature maps is reduced after passing through convolution and pooling layers,

fully connected convolutional network (FCN) layers are used. From the energy

efficiency perspective, these networks compute millions/billions of Multiply-

Accumulate (MAC) operations which consume 90% of the total CNN energy

consumption [5]. Hence, it becomes of utmost importance to devise design

solutions for energy efficient MAC computations.

1.1.2 Motivation for Time-Domain Computation

As MAC operations constitute a significant portion of the total CNN

power budget, it is worthwhile to consider various methods for compact data

representation to improve the energy efficiency (as shown in Fig. 1.3). The

data in digital domain is represented as multi-bit digital vector. This approach

incurs large number of signal toggling resulting in high dynamic switching ca-

pacitance and consequently higher power and area. This makes it challenging

to implement such technique for energy constrained edge computing devices.

In analog voltage domain, data is represented as a continuously varying analog

signal [6]-[8]. However, finite voltage headroom and the sensitivity of circuit

parameters to slight change in analog domain signals limit the voltage scal-

ability; thereby degrading the MAC energy efficiency. In frequency domain,
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Figure 1.3: Data representation in digital bits, analog voltage, in frequency
domain and in time domain.

data is represented with signals with varying frequency using Ring oscillators

or RC loaded circuits [11]-[13]. However, accurate frequency generators and

modulators limit the performance scalability of frequency domain approaches.

In time-domain computation, a multi-bit digital bit-stream is encoded

as a single pulse-width modulated signal. It significantly reduces the toggle

activity of various signals leading to a smaller dynamic switching capacitance

(CDYN) compared to the conventional digital data representation. Unlike the

analog voltage domain approach, time domain approach is not susceptible to

reduced voltage headroom issues and can support ultra-low voltage operation.

Additionally, time domain approach doesn’t require multiple clock sources

unlike frequency domain approaches making it suitable for compact imple-

mentations. Thus, time domain processing although slow in operation, is a
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promising approach for MAC computations especially in energy constrained

edge devices.

1.1.3 Concept of Time-Domain MAC Computation

The concept of time domain MAC computation using Pulse Width

Modulated (PWM) inputs is illustrated in Fig. 1.4. In this example, the MAC

operation is performed by adding the dot-products of a 3x3 weights matrix and

input pixel matrix (Fig. 1.4.a,c). Binary weights [21]-[23] are used to simplify

the discussion. However, the time domain approach is scalable to multi-bit

weight values. An input pixel value is encoded into a PWM signal using a

Digital to Time Converter (DTC). Then, the PWM signal is connected to an

Figure 1.4: Concept of time-domain MAC operation, (a) Dot product opera-
tion of input pixel matrix and weight matrix, (b) Time-domain MAC circuit
concept, (c) MAC operation in digital domain, and (d) MAC operation in
time-domain [14].
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AND gate with the other input of the AND gate connected to a weight bit

to perform dot product multiplication. This time-encoded dot-product signal

is then passed on time accumulator circuit (Fig. 1.4.b) to compute MAC

operation in time-domain. Sequentially, all input pixel values are encoded as

PWM signals and its dot product with respective weight bit is loaded on to

the time accumulator circuit. Thus, all values are applied and the width of

time pulse gets added to realize MAC operation in time domain (Fig. 1.4.d).

The time accumulator circuit will be discussed in detail in the next section.
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Chapter 2

Design and Architecture of Time Domain

CNN Engine (Phase/Test-chip I)

This chapter deals with the design and architecture of our first test-

chip.1

2.1 Architecture Overview

The proposed idea deals with the computation of multiply-accumulate

(MAC) operation in time domain to perform energy efficient computing. Fig.

2.1 shows the high-level idea of the proposed architecture for 8-bit inputs and

1-bit weight neural network. Major components of this architecture along with

the data flow path is outlined below.

First, pulse-width modulated (PWM) signals which are generated using

a pulse generator, are selected based on the input 8-bit image pixel value. The

1Aseem Sayal, Shirin Fathima, S.S. Teja Nibhanupudi and Jaydeep P. Kulkarni, “All-
Digital Time-Domain CNN Engine Using Bidirectional Memory Delay Lines for Energy-
Efficient Edge Computing,” in Proc. of IEEE International Solid-State Circuits Confer-
ence (ISSCC), pp.228-230, San Francisco, CA, USA, 2019. implementing time-domain
based CNN Engine. In this work, my contributions include pre-silicon functional sim-
ulation/verification of all the circuit modules, post-silicon testing and debugging to ob-
tain experimental results, and software development to implement LeNet-5 CNN in
Keras/TensorFlow.
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Figure 2.1: Time domain CNN architecture using the proposed Memory Delay
Line (MDL).

pulse selector acts as Digital-to-Time (DTC) converter; converting the digital

image pixel value into time encoded signal. Higher the pixel value; larger is

the pulse-width of time encoded input. This free-running PWM signal from

the pulse generator is passed through the pulse gating logic so that this time-

encoded signal is utilized only once in the dot product calculation making sure

no repetitive dot products are added to a given MAC output.

This gated PWM signal is then multiplied with the binary weight (0

or 1 or -1) using an AND gate; performing the dot product. Multiplication

by 0 weight results in no toggling at the AND output while multiplying by

weight ±1 result in PWM output at the AND gate same as the input PWM

signal. The time-encoded dot product signal is then added using a novel bi-

directional memory delay line (MDL) to perform the signed addition of the

dot products for each MAC operation. An up-down counter is followed by

11



the MDL to convert time-encoded MAC signal into digital value. It acts as a

Time-to-Digital converter for performing post-processing in the digital domain.

Using an up-down counter, a finite length MDL can be used to perform long

duration time domain accumulation. This signal is right/left shifted using a

bi-directional barrel shifter to perform averaging after MAC operation (MAV).

This is also done to correctly scale the MAC output before feeding as the input

to the next convolution layer. Once we obtain the shifter output value from

4 MDL units for each filter, the max. pooling operation (2x2 window) [14]

is performed using 8-bit comparators. The pooled output from each filter is

stored off-chip and reused as the input to the next convolution layer.

2.2 Design of Bi-directional Memory Delay Line

The time accumulation step in the proposed time domain MAC com-

putation is based on the concept of time register and time adder.

2.2.1 Concept of Time Register

The basic goal of the time-register is to be able to store time and

retrieve it when needed. The time-register can be implemented by a series of

gated delay cells, called gated delay-line (GDL), and an OR-gate as shown in

Fig. 2.2 [24]. Unlike a conventional delay-line, a GDL has a gating property

using an enable pin (EN) connected to header/footer transistors. The EN

signal controls the propagation of the SET signal in the GDL and can be high

by either the input or the trigger signal. The phase of the GDL is increased

12



Figure 2.2: Time Register and Time Adder concept [24].

when EN is high and held to its previous value when it is low. Hence, when an

input pulse is received, the phase of the GDL is advanced by the amount of the

input pulse-width and held when input pulse goes low. When the SET signal

edge reaches the end of the GDL, a FULL signal is asserted. The capacity of

time-storage can be enlarged by simply increasing the number of delay cells.

An interesting property of the time-register is that it can also be used for time

addition & subtraction. Suppose two inputs of pulse-widths are sequentially

fed to the time-register (Fig. 2.2). The phase of the time register is advanced

by the sum of the two pulse-widths performing a time domain addition.

2.2.2 Memory Delay Line

The time-domain MAC computation in the proposed work is derived

from the time-register concept. The property of time addition of two differ-

ent input pulses is utilized to perform the MAC operations in a CNN layer.

13



Figure 2.3: Illustration of the proposed bi-directional MDL concept [14].

The time domain MAC computations are realized using a novel Bi-directional

Memory Delay Line (MDL) which accumulates the dot product of weight bit

and the time encoded input pulse-width (Fig. 2.3). Each MDL unit comprises

of two cross coupled inverter pairs, S1-S4 switches, and a Reset logic. The

time encoded dot product of input (Xi) and 1-bit weight (wi) acts as EN pulse

and controls MDL operating mode. During time-accumulation phase, EN=1

and MDL acts either as a forward delay line (for positive dot product) or a

backward delay line (for negative dot product) thus enabling bi-directional

data flow emulating signed dot products. When EN goes low, the MDL acts

as a memory storage line and retains the MDL state vector using cross-coupled

inverters. The metastability risk during EN falling transition is resolved by

the next incoming EN pulse as the MDL is transformed into a chain of cas-

caded delay cells. When the MDL state vector string progresses towards the

14



either end of MDL (node A or node E), an up- down counter is triggered which

translates time domain dot product accumulation information into digital bits

acting as a time-to-digital converter. If the accumulated dot product pulse-

width exceeds the full-scale MDL delay, an overflow condition is detected, and

propagating edge is inverted (using S5-S6) and applied at the beginning of

MDL (node A). Thus, a finite length MDL can be used to perform long du-

ration time domain accumulation using up-down counters. The calibration

unit consists of additional delay cells which can be added to original MDL to

mitigate MDL mismatch in the presence of process variations.

2.3 Design Verification and Software Implementation

The specific contributions of this thesis work are detailed in this sec-

tion. The design involved a culmination of several modules such as the pulse

generator and selector, weight shift registers, MDL, scan chain, counter, shifter

and comparators. Each of them was functionally tested at several states in-

dividually as well as a top level integrated design. The simulation graphs

for different levels of hierarchical testing are shown in this section. Fig. 2.4

shows the functional simulation graph for the pulse generator at the 4 speed-

up modes, Fig.2.6 shows a filter-level testing and Fig.2.7 shows the top level

testing for C1 layer. Major modules worth noting are as follows:
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Figure 2.4: Functional Simulation of Pulse Generator at the 4 speed up modes
- 16x, 8x, 4x and 1x.

2.3.1 Pulse generator and Selector:

In this design, the 8-bit inputs are encoded as PWM signals. 16 free-

running PWM signals denoted as td0 to td255 in Fig. 2.4 and td0 to td16 in

Fig. 2.5 are generated in pulse generator module such that the pulse width of

each signal increments by 17*to and varies in the range of 0*to to 255*to. The

minimum possible pulse width equals half period of input clock. These pulses

are generated in two phases: MSB phase and LSB phase. In MSB phase, pulse

width is incremented by 16*to whereas in LSB phase, it gets incremented by

to. The pulse selector module acts a Digital to time converter which converts

the input into time encoded PWM signal. The appropriate pulse is selected

by the pulse selector as shown in Fig. 2.5.b. A functional simulation to test all

4 speedup modes of the pulse generator has been done pre-tapeout as shown

in Fig. 2.4.
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Figure 2.5: (a) PWM signals generated by Pulse Generator module in 1x-16x
speedup modes, (b) Pulse Selector Logic [14].

2.3.2 Time to Digital Converter

A 20-bit positive edge triggered, up-down counter is used to convert

the time-encoded MAC value into digital domain. The counter value is in-

cremented when 0−→1 transition occurs at node E (if switch S7 is turned on

and SIGN=1), and is decremented when 0−→1 transition occurs at node A (if

switch S8 is turned on and SIGN=0). Fig. 2.6 shows the 4 MAC counter

values (20-bit) computed for one filter.

2.3.3 Bi-directional Barrel Shifter

The counter output value is fed to the 20-bit bi-directional barrel shifter

(supporting left shift and right shift up to 7 bits) to compute multiply-accumulate-

average (MAV) and scaling operations. The time-encoded input-pixel value
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Figure 2.6: Filter level functional testing

and counter output values are represented in different time scales. Since the

counter output value does not represent the correct MAC value, a scaling op-

eration is essential at this point to restore back the correct MAC value. This

will ensure a correct MAC output in terms of counter values to be applied

as inputs to the next convolutional layer. The counter output needs to be

multiplied by a scaling factor depending on the MDL full-scale value to reflect

the actual MAC output. The shifter gets this scaling factor into the values.

To perform the averaging operation, right shift by appropriate number

of bits is performed. It is worth mentioning that the averaging factor in the

MAV computation operation is a multiple of 2m, such that 2m ≥ N where N

is the number of dot-products in a MAC. The CNN is trained considering 2m

as an averaging factor to observe no loss in the classification accuracy during

the inference process. The shifter operation can be seen in Fig. 2.6.c-d which

shows a right shift by 2 bits.
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Figure 2.7: Top level testing for C1 layer

2.3.4 Pooling using 8-bit comparators

The sub-sampling operation using max-pooling across 2x2 window is

implemented to reduce the intermediate layer output memory footprint by

75%. This is achieved by 4 concurrent MDL operations and feeding the MDL

shifter outputs to three 8-bit comparators. The pooled output from each

filter is stored off-chip and reused as the input to the next convolution layer.

Fig.2.6.e shows the pooled output for the filter which is the maximum of the

four shifter outputs.

2.3.5 Top level

The complete flow of the design as shown in Fig. 2.1 was functionally

tested. Both C1 and C3 layers were functionally tested in the sequence the

design was expected to run. An example simulation graph is shown in Fig.

2.7 which shows the C1 layer computations with 6 filters enabled.
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2.3.6 Software Implementation

Fig. 2.8 shows the overall data flow and measurement setup of the test-

chip implemented using commercial 40nm CMOS process technology [14]. The

initial training of the MNIST data using the LeNet-5 architecture was done

using the Keras Tensor Flow [25]. These training scripts were generated for

2 different cases - pure software and hardware based. In the hardware based

simulations, the effect of residue in MDL, input quantization and bit precision

have been taken into account while training in all the 4 speed-up modes. 8-bit

fixed point input and weights were used in convolution and pooling layers,

whereas 16-bit floating point inputs and weights were used in fully connected

network (FCN) and soft-max layers. The training dumps out the required

weights that needs to be used for inference. The accuracy results obtained

through the Tensor Flow for pure software results are shown in Fig. 3.4 as

S/W. The hardware based simulations gave an accuracy exactly as the actual

experimental accuracy in all the 4 speed-up modes.

Similarly, a Keras Tensor flow approach was taken to analyse the AlexNet

architecture. The scalability analysis of the proposed time-domain MAC ap-

proach was performed for AlexNet CNN by incorporating the MDL resid-

ual delay effects and input quantization effects. 2-class subset of ImageNet

database (cats vs. dogs) was used as the dataset. 8-bit fixed point input and

weights were used in convolution and pooling layers, whereas 16-bit floating

point inputs and weights were used in fully connected network (FCN) and soft-

max layers. 8 MDLs are used to perform time-accumulation of dot-products of
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Figure 2.8: (a) Data flow of the proposed time-domain CNN engine [14].

Figure 2.9: Simulated Classification Accuracy on AlexNet over 2-class Ima-
geNet dataset for different speed-up modes [14].

8-bit weight and time-encoded input pixel value. 13% classification accuracy

loss is observed in the simulations when compared with software implementa-

tion (Fig. 2.9). This can be attributed to the fact that residue loss in timing

accumulation occurs for each weight bit, and gets added since 8 independent
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MDL operations. Moreover, residue loss is significantly high for MSB bits of

weight signal.
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Chapter 3

Experimental Results (Phase/Test-chip I)

This chapter presents the experimental results of our phase I 40nm

test-chip1 implementing time-domain CNN Engine. First, measurement setup

and test-chip summary is described. Next, experimental demonstration of

MDL, pulse-generation and gating logic modules is presented. Then, exper-

imental accuracy, throughput and energy efficiency results for LeNet-5 CNN

over MNIST dataset images are described. Finally, the comparison of the pro-

posed time-domain approach with state-of-the-art analog, digital, frequency

and time domain approaches is presented.

3.1 Measurement Setup and Test-chip Summary

Fig. 3.1 shows the measurement setup and die-micrograph of our test-

chip implemented using commercial 40nm CMOS process technology [14]. The

1Aseem Sayal, Shirin Fathima, S.S. Teja Nibhanupudi and Jaydeep P. Kulkarni, “All-
Digital Time-Domain CNN Engine Using Bidirectional Memory Delay Lines for Energy-
Efficient Edge Computing,” in Proc. of IEEE International Solid-State Circuits Con-
ference (ISSCC), pp. 228-230, San Francisco, CA, USA, 2019. implementing time-
domain based CNN Engine. In this work, my contributions include pre-silicon func-
tional simulation/verification of all the circuit modules, post-silicon testing and debugging
to obtain experimental results, and software development to implement LeNet-5 CNN in
Keras/TensorFlow.
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Figure 3.1: (a) Die micrograph, Summary and (b) Lab measurement setup of
40nm test-chip implementing time-domain CNN engine [14].

test-chip implements the LeNet-5 CNN architecture and occupies total area of

0.124mm2. The trained filter weights and validation set MNIST database im-

age pixel values are fed to the test-chip using LabVIEW-PXIe data acquisition

instruments [26].
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3.2 Test-Chip Characterization

The experimental demonstration of MDL behavior under delay phase

and memory phase for different MDL lengths (32, 48 and 64 units) is shown

in Fig. 3.2.a. The oscilloscope capture confirms successful operation of the

proposed MDL concept. During the MDL delay phase (when EN is held

high), the state vector on MDL is advanced; thereby resulting in transitions,

whereas MDL state is held constant during the memory phase (when EN is

low). The pulse gating logic waveforms are shown in Fig. 3.2.b. confirming

Figure 3.2: Measured (a) MDL waveforms demonstrating delay and memory
phases, (b) Pulse gating logic module waveforms, and (c) PWM signals gen-
erated from Pulse Generator module [14].
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Table 3.1: Parameters of LeNet-5 Convolution layer C1 and C3 layers [14].

time-encoded input pixel value is used only once in the dot product calculation.

The pulse generator module functionality is verified with the correct toggling

of MSB EN, T15, T8, and T4 outputs in 16x speed-up mode, as shown by

Fig. 3.2.c. 1x-16x speed-up in PWM input representation is validated with

multiple speed-up modes for a test-case input of 214 (Fig. 3.3). In 1x speed-up

mode, 128 input clock cycles are used to time-encode input pixel value of 214

accurately. However, pixel value 214 is encoded 4 times in 4x speed-up mode

for same number of 128 input clock cycles, thereby increasing the throughput

by 4x but with a quantization error of 2. Similarly, 16 and 8 cycles of input

clock are required in 8x and 16x speed-up modes to time-encode 214-pixel

value as 216 and 208 respectively. Thus, the PWM throughput increases with

higher speed-up mode at the expense of higher quantization error.
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Figure 3.3: Experimental demonstration of (a) 1x, (b) 4x, (c) 8x, and (d) 16x
speed-up modes [14].

Figure 3.4: Measured classification accuracy on LeNet-5 CNN over 100 MNIST
dataset test-images for 4 speed-up modes and: (a) signed/unsigned weights at
650mV, and (b) signed weights for 300mV-700mV range [14].
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3.3 Accuracy, Throughput and Energy Efficiency

The classification accuracy is measured for LeNet-5 CNN over 100

MNIST dataset images. Table 3.1 lists down key LeNet-5 network param-

eters. 8-bit fixed point input pixel values and binary signed/unsigned weights

are used in the convolution layers, whereas 16-bit floating point inputs and

weights are used in fully connected layer and software implementation. For

signed binary weights (±1), 98% classification accuracy is obtained in 1x-8x

speed-up modes whereas it gets dropped by 1% in 16x speed-up mode (Fig.

3.4.a). 16x speed-up mode resulted in lower accuracy because of input quanti-

zation and increased sensitivity of MDL residue. For unsigned weights (0 and

1), 1% drop with respect to signed weights case is observed. The measured

accuracy values are close to state-of-the-art floating point software implemen-

tation which confirms the overall functionality of the proposed MDL based

time domain MAC computing approach. Moreover, MDL supports ultra-low

voltage operation; working down till 375mV with more than 90% accuracy in

1x speed-up mode. 97% classification accuracy is observed at voltages down

till 537mV in 16x speed-up mode (Fig. 3.4.b).

For LeNet-5 CNN, both convolution layer C1 and C3 layer measured

throughput increases with higher speed-up mode and with increasing supply

voltage achieving a peak throughput of 0.38(0.128) GOPS for C3(C1) layer at

585mV (Fig. 3.5). The maximum frequency is limited to 25MHz due to the

test equipment limitation. Thus, no increase in throughput is observed above

550mV. The measured energy efficiency peaks with supply voltage scaling and
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Figure 3.5: Measured Throughput for Convolution layers C1 and C3 of LeNet-
5 CNN for different voltages and speed-up modes [14].

Figure 3.6: Measured Energy Efficiency for Convolution layers C1 and C3 of
LeNet-5 CNN for different voltages and speed-up modes [14].

reaches maximum of 13.46(4.61) TOPS/W for C3(C1) layer at 496mV (Fig.

3.6). With increase in voltage, energy efficiency first increases till 550mV and
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Table 3.2: Performance summary of proposed time-domain CNN engine im-
plementing convolution layers C1 and C3 of LeNet-5 [14].

then decreases. This trend is observed since test equipment supports maximum

input clock frequency of 25MHz, and thus power increases while throughput

remains constant above 550mV.

Table 3.2 summarizes the test-chip performance. For a supply voltage

of 537mV and input clock frequency of 24MHz, energy efficiency of 12.08

TOPS/W and throughput of 0.365 GOPS for convolution layer C3 is observed

while achieving classification accuracy of 97% in 16x speed-up mode.

3.4 Comparison with prior approaches

Table 3.3 compares the proposed time-domain approach with earlier

proposed analog [6], [8], digital [9]-[10] and time-domain [11], [13] approaches.

The comparison is made for different metrics such as technology node, in-

put/weight bit precision, chip size, low Vcc operation support, throughput,

power and energy efficiency. The proposed design is compact; occupies 0.124mm2,
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Table 3.3: Comparison of proposed time-domain CNN engine with prior En-
ergy Efficient ML Accelerators [14].

supports near-threshold voltage operation, and consumes 30µW of power.
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Chapter 4

Scaling up Time Domain CNN approach to

larger networks (Phase/Test-chip II)

In this chapter, the motivation for phase II work addressing key limi-

tations of phase I work are listed. Then, the design and architecture overview

of the proposed phase II time-domain CNN engine is presented. Finally, the

design features for all the major modules are discussed.

4.1 Motivation for Phase II Time-Domain CNN Engine

4.1.1 Supporting Multi-bit weight values

Deep neural networks like AlexNet, VGG require multi-bit inputs and

weights for state-of-art classification accuracy. In the phase I of the design,

only binary weights have been supported. In phase II of this work, the MDL,

counter and shifter design architectures have been investigated to perform

dot product of multi-bit weights and multi-bit pixel inputs at minimal MDL

residue, minimal area and power overheads, and maximizing throughput and

energy efficiency. This proposed concept to support multi-bit input pixel and

multi-bit weights will be implemented in our second 65nm test-chip.
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4.1.2 Improving throughput by asynchronous MDL operation

In the phase I MDL design, the dot product of each time-encoded input

signal with corresponding weight bit is applied for 1 full MAC CLK period

(synchronous operation); thereby slowing down the accumulation process es-

pecially when the input and/or weight is ‘0’. To improve the throughput,

MDL operation can be performed asynchronously. This means that each dot

product is not applied for fixed MAC CLK time period, but for different time

duration depending on the width of time-encoded input pixel value. Also, if

larger bit-width inputs are time encoded similar to the previous approach, each

MAC CLK needs to be 2(n−1) unit clock periods which makes time domain

approach very slow for wider bit widths. Since most of the inputs, especially in

intermediate stages, are very low values, encoding them using proposed dead

time removal approach, makes the time domain representation dependent on

input magnitude rather than the input dynamic range. Fig. 4.1 shows the

Figure 4.1: (a) Timing Diagram of (a) Phase I MDL Approach (b) Phase II
MDL Approach Dead time Removal.
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timing diagrams of phase I synchronous MDL operation and phase II asyn-

chronous MDL operation. As shown in Fig. 4.1(a), all the inputs take 1

MAC CLK period irrespective of input pulse-width. For X1*w1 case where

w1 equals 0, thus making zero pulse width of dot-product, or for Xn*wn case

where width of Xn is small, the phase I approach still consumes full MAC CLK

period. This wastage in time due to longer memory delay phase for such cases

can be reduced by asynchronous operation as shown in Fig. 4.1(b). In this

case, the width of memory delay phase is kept constant. Here, duration of

time-encoded dot-product signal applied on MDL is proportional to its width

(when signal is high); thereby speeding up process significantly.

4.2 Architecture Overview

Fig. 4.1 shows the high-level idea of the proposed architecture for 8-bit

inputs and 8-bit weight neural network. Major components of this architecture

along with the data flow path is outlined below.

First, pulse-width modulated (PWM) signals which are generated using

a pulse generator, are selected based on the 4-bit input image pixel value. Here,

8-bit input pixel value is split into 2 4-bit values (4 MSB and 4 LSB bits), and

dot-products of each MSB and LSB bits are computed separately. The pulse

selector acts as Digital-to-Time (DTC) converter; converting the 4-bit pixel

value into time encoded signal. Higher the pixel value; larger is the pulse-width

of time encoded input. To improve the throughput, free-running PWM signal

generation from the pulse generator is terminated as soon as time encoding of
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Figure 4.2: Architecture Overview of Phase II Time Domain CNN Engine.

the 4-bit input pixel value has been completed. For example, if the input pixel

value is 8, then the pulse generation is stopped after 4 clock cycles (since pulse

width of input pixel value is 8*to, where 2*to is input clock period). Once the

time-encoding for a given input value is performed, next input value (stored in

input shift register) is taken out to perform its time-encoding and dot-product

computation. This asynchronous operation improves the overall throughput

by eliminating all the dead-time (time when time-encoded input pixel value is

held low in MAC CLK period) in phase I of this work.

This PWM signal is then multiplied with the multi-bit weights sequen-

tially. Each weight bit is multiplied by this time-encoded input pixel value

using an AND gate; performing the dot product. The time-encoded dot prod-

uct signal is then added using a bi-directional memory delay line (MDL) to

perform the signed addition of the dot products for each MAC operation. An

up-down counter is followed by the MDL to convert time-encoded MAC signal
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into digital value. It acts as a Time-to-Digital converter for performing post-

processing in the digital domain. Using an up-down counter, a finite length

MDL can be used to perform long duration time domain accumulation. Once

dot-products of all the MSB bit weight values with time-encoded input pixel

values is performed, same time-encoded input pixel values are multiplied by

next to most significant weight bit. To ensure correct MAC operation, counter

MAC values for most significant weight bit are multiplied by 2 (left shift by

1 in shifter), such that time-accumulation and counter increments for next to

most significant weight bit results in correct overall MAC value. This process

is repeated till dot-products with all the 8 bits of weight are accumulated.

The final MAC value from counter is right/left shifted using a bi-directional

barrel shifter to perform averaging after MAC operation (MAV). This is also

done to correctly scale the MAC output before feeding as the input to the next

convolution layer. Once we obtain the shifter output value from 4 MDL units

for each filter, the max. pooling operation (2x2 window) is performed using

24-bit comparators. The pooled output from each filter is stored off-chip and

reused as the input to the next convolution layer of AlexNet CNN.

4.3 Design of Major Modules

In this section, the specific contributions of this thesis work have been

described.
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4.3.1 Asynchronous Pulse Generation and Selection

As mentioned earlier, 8-bit input pixel value is taken as 2 separate 4-bit

values. The dot-product of 8-bit input pixel value with 8-bit weight value is

computed in 2 phases - one with 4 MSB bits of input pixel value and another

with 4 LSB bits. Thus, only 4 bits of the input data is represented as a PWM

at a time, which consumes 8 clock cycles (for a n-bit input, 2n−1 clock cycles

are required). 16 PWM signals (Fig. 4.3) are generated to represent 16 digital

values (0 to 15), where pulse width of each PWM signal increments by to, where

2*to is the clock period. Thus, 8-bit input pixel value can be time-encoded

in 16 clock cycles (2 phases, each consuming 8 clock cycles) unlike phase I

pulse generation approach which consumes 128 clock cycles (for 8-bit input

pixel value, 28−1 clock cycles are required); thereby resulting in 8x throughput

improvement.

Moreover, throughput can be further improved by performing asyn-

chronous MDL operation (Fig. 4.1). By asynchronous operation, it is meant

that time-encoding operation for each input pixel value is not performed for

fixed time duration - MAC CLK clock period, but for different time dura-

tion which is proportional to the 4-bit input pixel value. Fig. 4.1 shows the

timing diagram for the phase I and phase II approaches. As shown in Fig.

4.1.a, each input is applied for MAC CLK clock period irrespective of input

pulse-width. For X1*w1 case where w1 equals 0, thus making zero pulse width

of dot-product, or for Xn*wn case where width of Xn is small, the phase I

approach still consumes full MAC CLK period. This wastage in time due to
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Figure 4.3: PWM signals generated by the Pulse Generator.

longer memory delay phase for such cases can be reduced by asynchronous op-

eration as shown in Fig. 4.1.b. In this case, the width of memory delay phase

is kept constant. Here, duration of time-encoded dot-product signal applied

on MDL is proportional to its width (when signal is high); thereby speeding

up process significantly.

A trigger generator module is designed which notifies PWM signal gen-

eration module that previous input value is time-encoded, and start generat-

ing the PWM signals again to perform time-encoding of next input pixel value

(Fig. 4.4). 16 PWM timing pulses are generated in pulse generation module,

one of these is selected in the pulse selector module depending of 4-bit input

pixel value. In the proposed idea, 4 input values (Fig. 4.4.a) are passed simul-

taneously (to support 2x2 pooling operation as discussed in section 2). These

4 selected pulses (Fig. 4.4.b) are then ORed together(Fig. 4.4.c) to determine
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Figure 4.4: Simulation of Pulse and Trigger Generation modules illustrating
dead time removal and zero-skipping in time-encoding of input pixel value.

the pulse with maximum pulse-width. Once the negative edge of ORed pulse

signal is detected, the trigger generator sends a trigger signal (Fig. 4.4.d) to

the pulse generator and the input/weight shift registers to start new PWM

generation, and send the next input/weight bit values respectively as shown

by simulation in Fig. 4.4. Thus, eliminating the time duration when the time-

encoded input-pixel signal is held low helps in achieving higher throughput

and energy efficiency. When all the 4 input-pixel values are zero (Fig. 4.4.e),

the dead time removal logic works in a similar way, which we term as “Zero

skipping”. In this scenario, next input pixel value is processed after waiting

for a single clock cycle.
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4.3.2 Bidirectional MDL with Multi-bit Weight Support and Residue
Loss Control

In phase II of this work, time-domain MAC computation is performed

for multi-bit weights and multi-bit input pixel values. To support the multi-bit

operation, bi-directional barrel shifter is used along with the MDL and counter.

The signed time accumulation of dot products of multi-bit input and weight

values is discussed as follows. First, the time-encoded dot product of multi-

bit input-pixel value and MSB bit of weight is applied on on a bi-directional

memory delay line (MDL) to perform the signed addition for each MAC op-

eration. An up-down counter follows the MDL to convert time-encoded MAC

signal into a digital value. Once all the dot-products of MSB bit weight val-

ues with respective time-encoded input pixel values are performed, the same

time-encoded input pixel values are multiplied by the next to most significant

weight bit. Since, the significance of this weight bit is lesser (2 times smaller),

the counter value computed with most-significant weight value is multiplied

by 2. This multiplication operation is performed by shifting left by 1 bit in

the barrel shifter, and initializing the counter value with this shifted value.

Thus, the scale of counter value is now changed to next to most significant

weight bit value. Then, dot-products for next to most significant weight bit

are accumulated and counter value is incremented/decremented. The shift-

ing operation ensures the correct MAC value is computed for each weight bit

value. This process is repeated till dot-products with all the 8 bits of weight

are accumulated. Fig. 4.5.a shows the shifter operation. The 24-bit signed
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Figure 4.5: Functional Simulation of Shifter and ReLU modules.

input 0x0059a is being left shifted by 2 bits to obtain 0x1668.

One of the issues with the above mentioned approach of sequentially

computing MAC operation with each weight bit of multi-bit value is high

residue loss. The shifter operation ensures that counter value is properly scaled

to accumulate subsequent dot-products with lower bit position of weight. How-

ever, the state-vector of MDL remains unchanged, and thus the residue time

value is not scaled 2 times. This results in residue loss during each shifter

operation; this can increase the classification accuracy loss. To minimize the

residue loss, MDL unit with set/reset logic is proposed (Fig. 4.6). The residue

controller is designed which provides the SET and RST signal values to change

the state of MDL vector. This operation can be seen as multiplying the residue

operation by appropriate scaling factor. To simplify the residue controller de-

sign, state of MDL vector is observed at start, mid and end positions of MDL

and SET/RST values are generated which reduces the residue error loss by

75%. Fig. 4.7 shows the functional simulation of this controller where the
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Figure 4.6: Proposed MDL Unit with Set/Reset Logic.

Figure 4.7: Functional Simulation of Residue Control Logic.

SET/RESET signals are fed appropriately to each MDL unit to scale residue

time on MDL.

4.3.3 Address Controllers for On-chip and Off-chip Memory Ac-
cesses

For deep neural networks such as AlexNet and VGG, millions of MAC

operations are computed. Approximately, 90% of the energy is spent in access-

ing the input pixel values and weights in and out of chip [5]. Hence, it becomes
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essential to optimize this data movement to minimize the energy spent in data

communication. In this regard, memory is divided into multiple hierarchies,

i.e. DRAM ↔ SRAM ↔ Shift Register (Fig. 4.8). The filter (processing

element) accesses weight values from weight shift registers, and pulse genera-

tion/selection module accesses the input pixel value from input shift registers.

The values in these shift registers are loaded from on-chip global SRAM buffer.

The pooled output values from each filter are also stored in this global SRAM

buffer. Since, the on-chip SRAM memory is limited, portion of input activa-

tion and weight values and their pooled output values are stored on SRAM at

a given time. Once the MAC computations for stored inputs and weights are

computed, pooled output values are stored back in off-chip DRAM. Then, the

next batch of inputs and weights are accessed from the off-chip DRAM mem-

ory. This process is repeated till all the MAC computations are performed.

In this work, DRAM memory of the Xilinx Virtex VC707 FPGA platform is

used.

The on-chip SRAM memory banks are generated using commercial

memory compiler. Fig. 4.9 shows the functional simulation of SRAM bank

demonstrating correct operation of SRAM in read, write and retention modes.

The data accesses between different memory hierarchies (DRAM↔ SRAM↔

Shift Register) are controlled by different address generators. These memory

address controllers play an important role to maintain the sequence of compu-

tations, read from and write to the correct banks of the SRAM and DRAM.

Fig. 4.10 shows the functional simulation of the weight memory address con-
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Figure 4.8: Memory Hierarchy and Architecture Overview.

Figure 4.9: Functional Simulation of SRAM Bank generated by commercial
memory compiler.

troller, which is generating the addresses to store the weights from on-chip

SRAM to weight shift registers. Fig 4.10.a shows the convolutional layer and

bit-position of the weight value which is required to be read from SRAM. Fig

4.10.c-d describes address generation process to fetch consecutive 32-bit weight

values sequentially. This controller also generates the filter enable signals (Fig.
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Figure 4.10: Functional Simulation of the Weight Memory Address Controller
(SRAM → Weight Shift Register).

4.10.b), which allows storing of the weight values in only those filter modules

for which filter enable signal is held high.

4.3.4 ReLU and Pooling Operations using Comparator

The Rectified Linear Unit (ReLU) is the most commonly used activa-

tion layer which returns 0 if it receives any negative input, and returns back

the value, if it is positive. The ReLU module is designed which receives input

from barrel shifter. If the SIGN bit is ‘1’ (negative), the output values of ReLU

module are reset (all 0’s). Otherwise, the output value is assigned same as the

input value. Fig. 4.5.b-d show the ReLU operation. When the ReLU mode is

switched on, the output goes to zero if the output shifter value is negative.

The sub-sampling operation using max-pooling across 2x2 window is

then implemented to reduce the intermediate layer output memory footprint by

75%. This is achieved by 4 concurrent MDL operations and feeding the MDL

shifter ReLU outputs to three 24-bit comparators. The pooled output from
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each filter is stored off-chip and reused as the input to the next convolution

layer.
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Chapter 5

Conclusion and Future Work

This chapter concludes the research work done in this project. The

conclusion of this work is presented in section 5.1. The scope of future work

which includes the next steps are discussed in section 5.2.

5.1 Conclusion

In this work, an energy efficient time-domain CNN engine suitable for

edge computing is presented. The proposed time-domain CNN engine deploys

a bi-directional memory delay line to perform signed accumulation of dot-

products. The fully digital and technology scaling friendly design is compact

and does not use any capacitors, and data converters (DACs and ADCs). It

supports near-threshold voltage operation; useful for low power edge comput-

ing applications. Four speed-up modes are supported to address the through-

put vs. accuracy trade-off in Phase I. The proposed design is tolerant to

process variations and the delay mismatch among MDLs are offset by cali-

bration unit. In phase I of this work, 40nm CMOS test-chip is taped-out

implementing the LeNet-5 CNN. The energy efficiency of 12.08 TOPS/W,

throughput of 0.365 GOPS and classification accuracy of 97% is achieved over
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100 MNIST images at 537mV in 16x speed-up mode. In phase II of this work,

concept of time-domain MAC computation is scaled up for bigger CNN net-

work, AlexNet to classify ImageNet dataset. The proposed bi-directional MDL

supports signed accumulation of multi-bit weights and time-encoded multi-bit

pixel value. Furthermore, throughput is improved by skipping zero-value input

activation values, and supporting asynchronous dot-product computation by

eliminating dead-time in the memory storage phase of MDL.

5.2 Scope of Future Work

The phase II of this work (supporting multi-bit weights and higher

throughput in comparison to phase I) describes the scaled-up time domain

CNN engine design in 65nm CMOS technology. The functionality of MDL,

residue controller, pulse generation and selection logic supporting zero-skipping

and dead-time removal needs to be verified experimentally once this second

65nm test-chip is taped-out. Finally, the throughput, energy efficiency and

classification accuracy results need to be measured for AlexNet network over

ImageNet validation dataset images.
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