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The objective of this research was to develop a method for incorporating censored 

data into the design and analysis of test programs.  In engineering applications, it is 

common to encounter censored data.  The exact value of a censored data point is not 

known, only that it is above or below some specified threshold value.  Existing methods 

for analyzing censored data are limited and usually involve assumptions about the data, 

such as normally-distributed or statistically independent data. 

This research extends the First-Order Second-Moment (FOSM) Bayesian method 

(Gilbert 1999) to data sets that include censored data and have any type of distribution.  

This method is used for test program design and data analysis, allowing the Bayesian 

approach to be applied to practical engineering problems with large data sets and 

correlated data.  The extension for censored data was validated through numerical 

experiments. 

The method developed for analysis of censored data with a non-normal 

distribution was applied to a real site with contaminated groundwater.  The concentration 
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measurements from the site, which were taken both before and after remediation, were 

calibrated with a groundwater model.  The calibration resulted in reasonable estimates for 

the model parameters describing the physical characteristics of the site.  The calibration 

also successfully fit the non-normal distribution of the measurements.  The method was 

proven useful in considering all the complexities of the site: concentrations measured 

above and below the detection limit, the effects of remediation on the concentrations, 

measurements at many different times and locations, and correlations between 

concentrations that represent the heterogeneities at the site and the random errors in 

measurements.  The method was also used to predict future contaminant concentrations at 

the site, which is helpful in making decisions regarding monitoring and remediation. 
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Chapter 1.   Introduction 

1.1  BACKGROUND 

In engineering applications, it is common to encounter censored data.  The exact 

value of a censored data point is not known, only that it is above or below some specified 

value.  An example of a censored data point is a proof load test where the structure does 

not fail under the maximum applied load.  The capacity of the tested structure is proven 

to be greater than the applied load, but the exact capacity is unknown.  Another example 

of a censored data point is a contaminant concentration in a groundwater sample that is 

reported as below the detection limit.  The actual concentration is uncertain, since the 

contaminant may be present in the sample at a concentration below the detection limit, or 

the contaminant may be absent in the sample. 

Existing methods to analyze situations where censored data have been obtained or 

are expected are limited in their applications.   A typical method used in structural 

engineering is to treat load and resistance as random variables; however, the data are 

assumed to have a normal distribution, or a transformation of the normal distribution, and 

to be uncorrelated.  Another common method is Bayesian updating.  While non-normal 

data may be incorporated with these methods, the amount of data that can be considered 

is limited and the data must again be uncorrelated. 

In the Bayesian approach, model parameters are considered to be random 

variables, so that both the expected value of the parameter and the uncertainty in that 

value can be quantified.  Any type of information can be incorporated in estimating 

model parameters, including indirect data, such as empirical correlations, and actual 

measurements.  The model parameters are updated by accounting for prior beliefs about 

the model parameters and for collected data.  While the classical Bayesian method is 
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useful for including all relevant information and accounting for uncertainty in model 

parameters, it is difficult to apply analytically to practical problems. 

The First-Order Second-Moment (FOSM) Bayesian method developed by Gilbert 

(1999) is an analytical approximation for analyzing data and designing test programs.  

The FOSM Bayesian method provides a framework to apply the Bayesian method to 

practical problems.  Data that have already been collected may be used in this method to 

calibrate model parameters.  Test programs for collecting data to achieve the greatest 

reduction of uncertainty in the model parameters may also be designed with this method.  

The FOSM Bayesian method overcomes some of the problems with the other methods 

presented in literature, since it does not require numerical integration, Monte Carlo 

simulations, or assumptions regarding the value of the censored data, and it allows for 

correlations between censored and non-censored data.  It has been used successfully for 

data analysis both with and without censored data that are normally distributed 

(McBrayer 2000).  It has also been used for designing test programs without censored 

data (Muchard 1996), and for data analysis with non-censored, non-normally distributed 

data (Wang 2002).  This research will expand the FOSM Bayesian method to incorporate 

censored data of any distribution type into data analysis and test program design. 

 

1.2  OBJECTIVES AND APPROACH OF RESEARCH 

The objectives of this research are to: 

1. Extend the FOSM Bayesian method for test design to include censored 

data that are correlated and have a normal or non-normal distribution. 

2. Extend the FOSM Bayesian method for data analysis to include censored 

data are correlated and have a non-normal distribution. 
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3. Determine the effects of censored data on the updated means and 

covariances of model parameters. 

4. Demonstrate the new methods through application to a contaminated 

groundwater problem that includes censored data. 

 

Since the exact value of a censored data point is not known, the method for 

including censored data in the FOSM Bayesian method considers this uncertainty.  For 

data analysis, the method considers the likelihood of a censored data point, given the 

model parameters, based on the conditioned mean and standard deviation of the censored 

point.  In extending the method to test program design, the likelihood that an expected 

data point is censored, and the likelihood that it is not censored, are both considered 

appropriately.   

When considering data that are not normally distributed, a Hermite polynomial 

transform function is used to fit a general distribution to a normal distribution.    With 

both data analysis and test program design, the characteristics of the transformed non-

normal distribution are used to find the probability that a data point is censored. 

Censored data is prominent in the real contaminated site that is used as an 

application for the FOSM Bayesian method.  The method is used both to calibrate a 

groundwater model to existing groundwater data and to develop site investigation and 

monitoring plans.  The contamination at the site resulted from petrochemical and wood 

preservative wastes that were placed in an unlined lagoon approximately twenty years 

prior to investigation of the site.  A variety of remediation methods were used at the site, 

including active bioremediation of the waste lagoon, active remediation of groundwater 

consisting of pump-and-treat with injection of oxygen and nutrients, and natural 
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attenuation of groundwater.  The groundwater monitoring data available for the site is 

extensive, both before and after remediation.   

The FOSM Bayesian method is advantageous because uncertainty can be 

considered in the highly variable parameters used in the groundwater model.   The 

parameters included in the groundwater model involve the source (size, location, time of 

release), groundwater flow (seepage velocity, dispersivity), and contaminant properties 

(half-life, concentration at source).  The variance in the contaminant concentrations is 

also modeled, as are the correlations between concentration measurements (based on 

location and time of measurements).  The non-normal distribution of the measurements is 

also modeled.  For all of these model parameters, the uncertainty in the parameters is 

quantified, instead of using deterministic values for them.   

All of the complexities of the site are included in the model calibration and test 

program design with the method developed in this study.  The large amount of 

groundwater concentration measurements over time and space, including both censored 

and point measurements, are accounted for in the method.  The correlation of the data 

points and the non-normal distribution of the data set are also included.  The method is 

able to quantify the uncertainty in all of the model parameters, including the effect of the 

remediation on the groundwater conditions.    This type of analysis would not be possible 

with other available methods. 

 

1.3 ORGANIZATION OF DISSERTATION 

A description of censored data, particularly as it relates to groundwater 

applications, is contained in Chapter 2.  Literature dealing with censored data and model 

calibration in civil engineering applications involving censored data is also summarized 

in Chapter 2.    
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The basic framework of the FOSM Bayesian method, without censored data, is 

outlined in Chapter 3.  Chapter 4 explains how censored data are incorporated into the 

FOSM Bayesian method.  The method developed for including censored data in data 

analysis is derived, then extended for test program design for data with either a normal 

distribution or a general distribution.  The use of censored data in data analysis with 

generally-distributed data is also covered in Chapter 4.  The effects of including censored 

data in a test program design and in data analysis are explored in Chapter 5. 

The FOSM Bayesian analysis is applied to a groundwater contamination problem 

in Chapters 6 and 7.   The history of the site and the groundwater model used for the site 

are described in Chapter 6.  The groundwater model is calibrated to the groundwater 

concentration data collected both before and after remediation of the site, and the results 

of the calibration are discussed in Chapter 7. 

Conclusions and contributions of this research are presented in Chapter 8.  
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Chapter 2:  Censored Data Background Information 

 

2.1  INTRODUCTION 

In the field of civil engineering, censored data are commonly encountered in the 

area of proof load tests and groundwater contaminant concentrations below the detection 

limit.  The concept of censored data is introduced in this chapter through these two 

examples of censored data.  A brief survey is also provided of several methods of 

analysis using censored data in these civil engineering applications for calibrating models 

with data and designing test programs. 

 

2.2  CENSORED DATA IN CIVIL ENGINEERING APPLICATIONS 

Censored data occurs when the exact value of a measured quantity is unknown, 

and it is only known that the value is above or below a certain threshold value.  A 

common type of censored data encountered in civil engineering are proof load tests.  

With this type of test, a load is applied to a structure, such as a pile for a foundation or a 

bridge, and the structure either withstands the load or fails.  If the structure withstands the 

load, the true capacity of the structure is still unknown.  The capacity is only known to be 

more than the applied load.  This is illustrated in Figure 2.1 for a capacity with a normal 

distribution.  The expected capacity is greater than the maximum applied load, but the 

actual capacity could be anywhere in the censored region.  The capacity of the structure is 

therefore censored. 

Another frequently encountered type of censored data occurs in groundwater 

sampling when a contaminant concentration is reported as below the detection limit.  The 
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Figure 2.1.  Censoring with a proof-load test. 

 

method detection limit (MDL) is a statistical concept and is defined by the U.S. 

Environmental Protection Agency as “the minimum concentration of a substance that can 

be measured and reported with 99 percent confidence that the analyte concentration is 

greater than zero and is determined from analysis of a sample in a given matrix 

containing the analyte” (U.S. EPA 2003a).  This confidence is illustrated in Figure 2.2.  A 

sample with a concentration at the MDL will be measured as greater than zero 99 percent 

of the times it is tested.  The MDL is estimated from testing data and is therefore not an 

exact quantity (Berthouex 1993).  It may be defined with a mean and a variance, but it is 

often treated as an absolute value. 
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Figure 2.2.  Definition of method detection limit. 

 

Concentrations below the MDL are usually reported only as “not detected”, 

although more information would be conveyed with a numerical result and its precision 

(Porter et al. 1988).  A “non-detect” measurement is frequently misunderstood to be a 

concentration of zero or a concentration that is too small to measure.  Censored data, or 

contaminant concentrations below the detection limit, are expected and usually required 

in groundwater investigations.  The extent of contamination and the effect of remediation 

efforts are evaluated by determining where contaminants are absent in the groundwater.  

Since contaminant concentrations will only be reported as below the detection limit, not 

as zero, censored data are necessary for defining areas of contaminated groundwater. 

Engineers typically deal with censored groundwater measurements by making 

assumptions about the values of concentrations.  One common assumption is that a non-
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detect measurement indicates no contaminant present in the sample, and the 

concentration is set to zero.  Another common assumption is to assign an arbitrary, non-

zero value to the non-detect measurement, such as the value of the detection limit or half 

of the detection limit.  Non-detect concentrations are also sometimes excluded from an 

analysis of groundwater contamination.  All of these assumptions may lead to errors in 

estimating the mean and variance of contamination in the groundwater. 

An example of how these types of assumptions can lead to errors is illustrated in 

Figure 2.3.    This figure shows both censored measurements and non-censored,  or point,  

 

 

. 

Figure 2.3.  Censored and point measurements of benzene from a real site. 
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measurements of benzene from a well at the real site studied in this dissertation.  The 

censored data points are plotted at the concentration reported as the detection limit.  The 

detection limit was different at different sampling times, and was especially large at the 

beginning of the sampling period.  At one of these large detection limits, assuming a 

concentration of zero or half the detection limit might lead to a much smaller estimate of 

concentration present in the sample than actually exists.  Even at the smaller detection 

limits, assuming there is no benzene in the sample for a non-detect measurement may be 

erroneous.  A measurement of benzene in the sample was obtained, but the measured 

value could not be reported with 99 percent confidence that it was greater than zero. 

 

2.3  PARAMETER ESTIMATOR METHODS FOR CENSORED DATA 

This section provides a brief overview of previously applied methods of analysis 

for the censored data that occurs in proof load tests and contaminated groundwater 

concentrations.   

 

2.3.1  Analysis of Proof Load Tests 

The testing of bridges is commonly addressed as a proof load test problem; 

however, the methods are applicable to proof loads on other types of structures.  Fujino 

and Lind (1977) describe the traditional method of analyzing proof load tests, which is 

treating the resistance of the structure and the applied load as normally or lognormally-

distributed random variables.  The proof load test gives a higher reliability by eliminating 

the lower tail of the reliability distribution.  A probability of failure may then be 

calculated, as well as a reliability index.  Nowak and Tharmabala (1988) also use this 

method and discuss the difference between analytical results and actual test results.  Fu 
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and Tang (1995) address the target proof loads to minimize costs and maximize benefits 

from test data.  With all of these methods, the data are assumed to have a normal 

distribution, or a transformation of the normal distribution, and to be uncorrelated. 

Stewart and Val (1999) and Rodriguez et al. (1998) used Monte Carlo simulations 

to update the distribution of a structure’s resistance and determine the probability of 

failure based on service and proof loads.  Numerical approximations were necessary in 

these methods, and data were assumed to be normal and uncorrelated.  Umble et al. 

(1999) developed a Bayesian approach that can be used with any probability distribution 

to estimate the probability of failure under two different proof loads.  While non-normal 

data may be used in this method, the amount of data that can be considered is limited and 

the data must be uncorrelated. 

 

2.3.2  Analysis of Concentrations below the Detection Limit 

Liu et al. (1996) uses a maximum likelihood method to analyze groundwater 

contaminant concentrations reported as below the detection limit.  The censored data are 

assumed to have a normal or log-normal distribution.  Gilliom and Helsel (1986), Haas 

and Scheff (1990), and El-Shaarawi and Esterby (1992) evaluated and compared different 

techniques for analyzing concentrations below the detection limit, including log-normal 

regression, maximum likelihood estimator, and assigning a constant value to censored 

data points, such as one-half the detection limit.  Gilliom and Helsel (1986) consider 

different distributions for the censored data, while Haas and Scheff (1990) and El-

Shaarawi and Esterby (1992) consider only normally-distributed and log-normally-

distributed data.  The conclusions about the best method vary, depending on the degree of 

censoring and the distribution assumed for the data.  A disadvantage of these methods is 

that all the data are assumed to be uncorrelated.  Also, they only consider the censored 
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data obtained, and do not consider non-censored data that may also have been collected 

and may be correlated to the censored data.   

McBrayer (1999) proposes a technique for the First-Order Second-Moment 

(FOSM) Bayesian method (Gilbert 1999) to use in analyzing censored data, such as the 

kind obtained from water concentrations and from load tests.  This proposed method 

overcomes some of the problems with the other methods presented in the literature for 

analyzing censored data, since it does not require assumptions regarding the value of the 

censored data and it allows for correlations between censored and non-censored data.  

However, the proposed method only uses normally-distributed data, and it may only be 

used for data analysis, not for designing test programs.   

 

2.4  SUMMARY 

In this chapter, the concept of censored data was introduced.  Two common types 

of censored data in civil engineering, proof load tests and contaminant concentrations 

below the detection limit, were described.  A brief survey of methods used to analyze 

both of these types of problems was presented.  The previously used methods generally 

make assumptions about the data, such as statistically independent data or normally-

distributed data.  The FOSM Bayesian method does not require these assumptions, and 

was therefore chosen as the basis for this research.  The research presented in this 

dissertation develops the method proposed by McBrayer (1999) so that normally-

distributed or non-normally-distributed censored data may be used in both data analysis 

and test program design.  The framework of the FOSM Bayesian method is described in 

the next chapter, then the method to include generally-distributed censored data for use in 

data analysis and test program design is derived in Chapter 4. 
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Chapter 3.  Bayesian Method with Point Measurements 

 

1.1  INTRODUCTION 

The Bayesian approach is a framework for including all available information in a 

decision analysis.  Data that is based on physical principles or prior experience may be 

updated with data from observations or measurements.  The Bayesian approach is 

particularly useful in updating parameters that are used to model physical processes.  The 

mean values of the parameters and the uncertainty in those values may be updated as new 

knowledge is gained.  However, the Bayesian approach is difficult to apply analytically 

to situations involving multiple model parameters.  The FOSM Bayesian method (Gilbert 

1999) was developed to provide a practical Bayesian method for problems with multiple 

model parameters, large data sets, and various data distributions.  This chapter describes 

the theory behind the Bayesian approach, gives an example of its application, then 

summarizes the FOSM Bayesian method for use with data sets that have only point (non-

censored) measurements. 

 

3.2  BAYESIAN APPROACH 

The basis of all Bayesian methods is Bayes’ theorem (Greene 1997, Ang and 

Tang 1975), which is expressed in terms of the probabilities of two events, A and B.  The 

probability of event A is updated with the knowledge that event B has occurred: 

 

 ( ) ( ) ( )
( )

P B A P A
P A B

P B
=  (3.1) 
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The probability of A given that event B occurs, ( )P A B , is referred to as the posterior or 

updated probability of A.  The probability of event A before it is known if event B 

occurs, P(A), is the prior probability of A.  The probability of event B, regardless of 

whether event A occurs or not, is P(B).  The probability of event B given that event A 
occurs is ( )P B A . 

Bayes’ theorem is useful for updating model parameters with new data that are 

collected.  Each parameter is treated as a random variable, which has an expected value, a 

variance, and a probability distribution.  In terms of updating model parameters, Bayes’ 

theorem can be paraphrased as follows (Greene 1997): 

 

 ( ) ( ) ( ) ( )1P parameters data P data parameters P parameters
P data

⎡ ⎤= ⎣ ⎦  (3.2) 

 

where: 

 
( )P data parameters  = joint distribution of the observed random variables (data) 

given the model parameters (this is also referred to as the likelihood 
function) 

 
( )P parameters = prior beliefs about the model parameters 

 
( )P parameters data = updated distribution of the parameters given the current 

data   
 

( )P data = probability of the observed random variables (the data) 
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Note that the term 
( )

1
P data

 may be thought of as a normalizing constant so that 

the updated distribution, ( )P parameters data , has an area of 1.0.  This term is obtained 

with a summation over all of the possible parameter values:  
 

( ) ( ) ( )
all possible 
parameter values

P data P data parameters P parameters= ∑  

The updated probability of the parameters may be thought of as a “mixture” of the 

prior information about the parameters and the current information that the data provide 

about the parameters.   

 

3.3  EXAMPLE USE OF BAYES’ THEOREM 

An example of Bayesian updating is shown in Figure 3.1.  In this example, a 

normal distribution is used to model the variability in a random variable Y with a mean 
value of µφ  and a known standard deviation of 5.0.  This model describes the probability 

or likelihood of measuring a particular value of yi.  The likelihood is the height of the 

curve at any point in Figure 3.1(a), which is equal to the probability density function 

(PDF) for yi, denoted PDF(yi).  Multiple data points are modeled as statistically 
independent, so the correlation coefficient between data points is zero (

i jy ,y 0ρ = ).  

Therefore, the probability or likelihood of measuring multiple data points, 1 2 ny , y , y… , is 

the product of the probabilities for each yi: 

 

( ) ( ) ( ) ( )1 2 n 1 2 nP measuring data points y , y , y PDF y PDF y PDF y= × × ×… "  (3.3) 

 



 16

 

Figure 3.1.  Illustration and example of the Bayesian approach. 
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Each ( )iPDF y  value depends on the mean value, µφ , for the normal distribution 

in Figure 3.1(a).  This relationship between the data, y1 to yi, and the model parameter, 

µφ , is expressed as follows: 

 

 
( ) ( ) ( )

( )
1 2 n 1 2

n

P measuring data points y , y , y PDF y PDF y

PDF y

µ µ µ

µ

φ = φ × φ

× × φ

…

"
 (3.4) 

 
Since yi has a normal distribution with a mean of µφ  and a standard deviation of 

5.0, the PDF is iy
5.0

µ− φ⎛ ⎞
φ⎜ ⎟

⎝ ⎠
.  Therefore, the term ( )P data parameters  in Equation 3.2 is 

given by the following for this example: 

 

 

( ) ( ) ( ) ( )1 2 n

1 2 n

P data parameters PDF y PDF y PDF y

y y y
5.0 5.0 5.0

µ µ µ

µ µ µ

= φ × φ × × φ

− φ − φ − φ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= φ − φ − − φ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

"

"

 (3.5) 

  
where there are n data points and there is one model parameter to be calibrated, µφ .   

The next step is to represent prior information in the model parameter that will be 
calibrated with the data.  Previous information indicates that the prior mean value of µφ  

is 6.0, the prior standard deviation of µφ  is 1.5, and the prior distribution of µφ  is normal.  

The probability of a particular value of µφ  is therefore obtained from a normal 

distribution, and the distribution in Figure 3.1(b) provides the ( )P parameters  term in 

Equation 3.2.   
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For the next step, four data points are collected.  The collected data have a sample 

mean of 2.5.   The likelihood of obtaining these data, given the prior model parameters, is 

calculated using Equation 3.4 and is shown in Figure 3.1(a). 

The prior value of the model parameter is updated with the observed data using 
Bayes’ Theorem.  The updated distribution of the model parameter, ( )P parameter data  

in Equation 3.2, is calculated by integrating the product of 

( ) ( )P data parameters P parameters×  to find ( )P data  and then plugging it into Equation 

3.2.  The result is that µφ  has a normal distribution with a mean and standard deviation 

equal to:  

 

 ( )
( )

2
" " '

2 2' x

1 ny
µ µ µ

µ

φ φ φ

φ

⎡ ⎤⎛ ⎞
⎛ ⎞⎢ ⎥⎜ ⎟µ = σ µ + ⎜ ⎟⎢ ⎥⎜ ⎟ σ⎝ ⎠⎜ ⎟σ⎢ ⎥⎝ ⎠⎣ ⎦

 (3.6) 

 

 ( ) ( ) ( )

1

2
"

22 '
y

1 1
/ nµ

µ

−

φ

φ

⎡ ⎤
⎢ ⎥σ = +⎢ ⎥σ σ⎢ ⎥⎣ ⎦

 (3.7) 

   
 
where: 
 

"
µφµ = updated mean of the model parameter 

"
µφσ = updated standard deviation of the model parameter 

'
µφµ = prior mean of the model parameter = 6.0 

'
µφσ = prior standard deviation of the model parameter = 1.5 

y  = sample mean of the collected data = 2.5 

yσ  = sample standard deviation of the collected data = 5.0 

n = number of measured data values = 4 
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This application of Bayes’ theorem (Equations 3.3 and 3.4) results in an updated 
expected value ( "

µφµ ) of 3.93, which is between the prior mean value and the mean of the 

observed data, and an updated standard deviation ( "
µφσ ) of 0.96, which is smaller than the 

standard deviation of both the prior value and the observed data.  These results are shown 

in Figure 3.1(c) with the “Updated” distribution.  The updated distribution for the mean 

lies between the prior distribution and the likelihood function, and it is narrower than the 

prior distribution or likelihood function because of its reduced variance. 

In this example, the Bayesian updating was easy to perform because it involved 

only one model parameter and both the model parameter and the data had normal 

distributions.  Applying Bayes’ Theorem analytically to more complicated situations, 

with more model parameters and various distributions, is difficult and usually not 

attempted or, in rare cases, accomplished through numerical simulation.   

 

3.4  FOSM BAYESIAN METHOD 

The basic formulation of the FOSM Bayesian method will be described in this 

section.  A more detailed derivation may be found in Gilbert (1999).  The FOSM 

Bayesian Method is an analytical Bayesian technique that is able to incorporate multiple 

model parameters, large sets of data, and different distributions of data.  The method may 

be used for data analysis or for test program design.  In data analysis, the model 

parameters are calibrated with data that has been collected, and updated distributions for 

the model parameters are determined.  For test program design, the expected reduction in 

variance of the model parameters is determined with the data that are expected to be 

obtained from a potential test program. 

 



 20

3.4.1  Example Application of the FOSM Bayesian Method 

The basic procedure of the FOSM Bayesian method is presented here through an 

example, which is illustrated in Figure 3.2.  In this example, the physical problem of 

concern is groundwater contamination caused by a leaking underground storage tank.  

The data that have been or will be collected are concentrations of various contaminants in 

the groundwater at three monitoring wells.  The plume is in a steady-state condition, 

meaning that the concentrations at each well are not changing appreciably with time.   

The FOSM Bayesian method is used to describe the relationship between a model 

and the measured data.  The expected or mean values of the concentrations at the 

locations of the measurements are modeled with a simple, steady-state plume model 

(Charbeneau 2000).  This model contains seven model parameters: φR, φn, φDyy, φm, φb, 

φλ, and φv (retardation, porosity, dispersivity, contaminant mass, aquifer thickness, 

contaminant half-life, and seepage velocity, respectively).  Throughout this dissertation, 

the symbol “φ” will be used for model parameters.   

The standard deviation of a concentration measurement is modeled as a constant 

for all measurement locations, and it is represented by the exponent of the model 

parameter φσ.  This exponential representation insures that the standard deviation will 

have a positive value regardless of the value of the model parameter.  The correlation 

between data points at different measurement times is modeled with the parameter φρ to 

decrease exponentially with distance in time between the measurements, since 

measurements are more likely to be correlated if they are made near one another.  Finally, 

the distribution of data about the mean is modeled as a normal distribution.  For problems 

analyzed with the FOSM Bayesian method, these components of data and models for the 

mean, variance, correlation, and distribution of the data are calibrated.  Calibration means  
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Figure 3.2.  Components required for the FOSM Bayesian method. 
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that the expected values and covariances for all of the parameters (φR, φn, φDyy, φm, φb, φλ, 

φv, φσ, and φρ) are updated based on the measured data. 

 

3.4.2  Notation used in FOSM Bayesian Method 

In the remainder of this dissertation, the following notations will be used: 

 

Φ
K

 = vector of random variables that are the model parameters 

φ
K

 = vector of mean values for each model parameter 

Y
K

 = vector of random variables that are the data 

yK  = vector of numeric values of the data that are measured or expected 

 

In these terms, Bayes’ Theorem is expressed as follows: 

 
 ( ) ( ) ( )f y k L y fΦ Φφ = ⋅ φ ⋅ φK K

K K KK K  (3.8) 

where: 

 
( )f yΦ φK
K K = the updated probability density function for the model parameters, 

given the current data 
 

( )L y φ
KK  = the likelihood of obtaining the current data, given the set of model 

parameters  (the likelihood that the model parameters describe the actual 
data) 

 
( )fΦ φK
K

= the prior probability density function of the model parameters, before 
data are obtained 

 
k = a normalizing constant that makes ( )f yΦ φK

K K  a probability density function, 
with an integral of 1.0 over all possible model parameter values. 
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Note that Equation 3.8 is the same as the paraphrased version of Bayes’ Theorem 

of Equation 3.2.  The probability density functions and the likelihood function in 

Equation 3.8 are functions of vectors that produce scalar values. 

 

3.4.3  Formulation of FOSM Bayesian Method for Data Analysis 

For data analysis using the FOSM Bayesian method, the model parameters are 

calibrated with the measured data to maximize the likelihood that the model parameters 

describe the observed data.  The prior means and covariances of the model parameters 

may then be updated with the calibrated parameters.  The full derivation of the FOSM 

Bayesian method for data analysis is described by Gilbert (1999) and Muchard (1997).  

The steps of the derivation of the FOSM Bayesian method, which result in 

approximations for the updated mean and covariance of the model parameters, are 

summarized below: 

 
1. Define ( )g φ

K
 as the natural logarithm of the likelihood function: 

 
 ( ) ( )( )g ln L yφ = φ

K KK  (3.9) 

 

2. Use a second-order Taylor series, with an expansion point of *φ
K

, to 

approximate the natural logarithm of the likelihood function: 

 

 ( ) ( ) { } { }
* *

2T* * *

i i j

g 1 gg g
2

φ φ

⎡ ⎤⎧ ⎫∂ −∂⎪ ⎪ ⎢ ⎥φ ≅ φ + + φ − φ φ − φ⎨ ⎬∂φ ∂φ ∂φ⎢ ⎥⎪ ⎪⎩ ⎭ ⎣ ⎦
K K

K K K K K K
 (3.10) 
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where: 

 

*i

g

φ

⎧ ⎫∂⎪ ⎪ =⎨ ⎬∂φ⎪ ⎪⎩ ⎭K
 a vector of the first derivatives of the natural logarithm of the 

likelihood function with respect to each parameter, evaluated at the 
Taylor series expansion point 

 

*

2

i j

g

φ

⎡ ⎤−∂⎢ ⎥ =
∂φ ∂φ⎢ ⎥⎣ ⎦K

 a matrix of the negative of the second derivatives of the 

natural logarithm of the likelihood function with respect to all 
parameters, evaluated at the Taylor series expansion point 

 

3. Assume that the prior model parameters have a multivariate normal 

distribution: 

 

 ( )
( )

{ } { }T 1
1/ 2n / 2

1 1f exp C
22 C

−
Φ Φ Φ Φ

Φ

⎡ ⎤φ ≅ − φ − µ φ − µ⎢ ⎥⎣ ⎦π
K K K K

K

K K KK K  (3.11) 

 

then take the natural logarithm of this distribution: 

 

 ( )( )
( )

{ } { }T 1
1/ 2n / 2

1 1ln f ln C
22 C

−
Φ Φ Φ Φ

Φ

⎛ ⎞
⎜ ⎟φ ≅ − φ − µ φ − µ
⎜ ⎟π⎝ ⎠

K K K K
K

K K KK K  (3.12) 

 

4. Take the natural logarithm of Bayes’ Theorem (Equation 3.8): 

 

 
( ) ( ) ( ) ( )

( ) ( ) ( )
ln f y ln k ln L y ln f

ln k g ln f

Φ Φ

Φ

⎡ ⎤⎡ ⎤ ⎡ ⎤φ = + φ + φ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤= + φ + φ⎣ ⎦

K K

K

K K KK K

K K  (3.13) 
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5. By substituting the Taylor series approximation of the natural logarithm of 

the likelihood function (Equation 3.10) and the natural logarithm of the 

prior model parameters (Equation 3.12) into the natural logarithm of 

Bayes’ Theorem (Equation 3.13), the updated distribution of the model 

parameters is found: 

 

 ( ) ( ) { } { }T
1

y y y y
1ln f y ln k C
2

−
Φ Φ Φ Φ

⎡ ⎤φ ≅ − φ − µ φ − µ⎣ ⎦
K K K KK K K K
K K KK K K  (3.14) 

 
where yΦµ K K

K  and yCΦ
K K  contain the updated means and covariances of the 

model parameters, respectively, and have the following approximations: 

 

 
** *

1
2 2

1 * 1
y

i j i j i

g g gC C

−

− −
Φ Φ Φ φ

φφ φ

⎡ ⎤ ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎧ ⎫−∂ −∂ ∂⎪ ⎪ ⎪ ⎪⎢ ⎥⎢ ⎥ ⎢ ⎥µ ≅ + φ − + µ⎨ ⎨ ⎬ ⎬⎢ ⎥∂φ ∂φ ∂φ ∂φ ∂φ⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎩ ⎭

K K K KK
KK K

KK K  (3.15) 

 

 
*

1
2

1
y

i j

gC C

−

−
Φ Φ

φ

⎡ ⎤⎡ ⎤−∂⎢ ⎥⎢ ⎥≅ +
⎢ ⎥∂φ ∂φ⎢ ⎥⎣ ⎦⎣ ⎦

K KK
K

 (3.16) 

 

These are the updated moments for the model parameters that are used in a 

data analysis application of the FOSM Bayesian method. 

 

6. The expansion point for the Taylor series approximation of Equation 3.10 

is chosen so that the likelihood function is maximized and therefore the 
natural logarithm of the likelihood function, ( )g φ

K
, is also maximized.  At 

this point, 
*i

g

φ

⎧ ⎫∂⎪ ⎪
⎨ ⎬∂φ⎪ ⎪⎩ ⎭K

 is zero and Equation 3.15 becomes: 
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*

2
* 1

y y
i j

gC C−
Φ Φ Φ φ

φ

⎧ ⎫⎡ ⎤−∂⎪ ⎪⎡ ⎤ ⎢ ⎥µ ≅ φ + µ⎨ ⎬⎣ ⎦ ∂φ ∂φ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

K K K KK K
K

KK K  (3.17) 

 

The updated means and covariances of the model parameters (Equations 3.17 and 

3.16, respectively) depend on the prior means and covariances of the model parameters, 

the maximum likelihood point, and the second derivatives of the natural logarithm of the 

likelihood function.  The effects of the magnitudes of the second derivatives will be 

discussed in Section 3.4.5. 

One challenge in implementing Equations 3.16 and 3.17 is when the natural 

logarithm of the likelihood function is discontinuous near the expansion point.  In this 

case, the second derivatives in 
*

2

i j

g

φ

⎡ ⎤−∂⎢ ⎥
∂φ ∂φ⎢ ⎥⎣ ⎦K

 are difficult or impossible to obtain.  An 

alternative formulation of this approach is to use the first and second moments of the 

natural logarithm of the likelihood function: 

 

 [ ]
111

GyC C C
−−−

Φ Φ
⎡ ⎤= + ⎡ ⎤⎣ ⎦⎣ ⎦

K KK  (3.18) 

 

 [ ] 11
G Gy yC C C −−

Φ Φ Φ Φ
⎡ ⎤µ = µ + µ⎡ ⎤⎣ ⎦⎣ ⎦

K K K KK K
K K K  (3.19) 

 
where [ ]GC  is a matrix with the second central moments of the natural logarithm of the 

likelihood function and GµK  is a vector with the first central moment (center of mass) of 

the natural logarithm of the likelihood function.  Therefore, 
*

2

i j

g

φ

⎡ ⎤−∂⎢ ⎥
∂φ ∂φ⎢ ⎥⎣ ⎦K

 is replaced with 

[ ] 1
GC −  and *φ

K
 is replaced with GµK .  The advantage of this alternative formulation is that 
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maximizing the natural logarithm of the likelihood function to get *φ
K

 and then calculating 

the second derivatives to get 
*

2

i j

g

φ

⎡ ⎤−∂⎢ ⎥
∂φ ∂φ⎢ ⎥⎣ ⎦K

, which can be difficult and even impossible in 

some cases, is not necessary.  The disadvantage of the alternative formulation is that 
numerical integration is generally required to obtain GµK  and [ ]GC . 

 

3.4.4  Formulation of FOSM Bayesian Method for Test Program Design 

For test program design, data have not been collected yet, and therefore the 

updated means and covariances of the model parameters are uncertain.  Numerical 

simulation is usually used to estimate the expected values of the updated moments; 

however, the FOSM Bayesian Method can make use of analytical approximations to 

obtain the expected values.  When designing a test program with the FOSM Bayesian 

method, the amount and type of data that will be collected are first determined, then the 

expected covariances of the model parameters are updated.  By trying different test 

programs, the expected reductions in the variances of model parameters may be 

compared.  The best program may be selected by balancing the cost or difficulty of the 

test program with the benefit of variance reduction provided by the test program for the 

model parameters.   The full derivation of the FOSM Bayesian method for test program 

design is contained in Gilbert (1999) and summarized by Muchard (1997).  The steps of 

this derivation, which result in an approximation for the expected covariance of the 

model parameters, are summarized below: 

 

1. Obtain first-order approximations of the expected mean and covariance of 

the updated model parameters from Equations 3.15 and 3.16: 
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( )

( )

*

**

1
2

1
yY Y

i j

2
* 1

Y Y Y
i j i

gE E C

g gE E E C

−

−
Φ Φ

φ

−
Φ φ

φφ

⎡ ⎤⎡ ⎤−∂⎢ ⎥⎢ ⎥µ ≅ +
⎢ ⎥∂φ ∂φ⎢ ⎥⎣ ⎦⎣ ⎦

⎧ ⎫⎡ ⎤ ⎧ ⎫−∂ ∂⎪ ⎪ ⎪ ⎪⎢ ⎥ φ − + µ⎨ ⎨ ⎬ ⎬∂φ ∂φ ∂φ⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭⎣ ⎦⎩ ⎭

K K K KK
K

K K K K K
KK

K

K K
 (3.20) 

 

 

 ( )
*

1
2

1
yY Y

i j

gE C E C

−

−
Φ Φ

φ

⎡ ⎤⎡ ⎤−∂⎢ ⎥⎢ ⎥≅ +
⎢ ⎥∂φ ∂φ⎢ ⎥⎣ ⎦⎣ ⎦

K K K KK
K

 (3.21) 

 

where: 

( )YE =K the expected value with respect to the data that will be collected 

 

2. Use an approximation for the expected Taylor series expansion point 

(derived in Gilbert 1999): 

 
 ( )*

yE Φφ ≅ µ K K
K K  (3.22) 

 

This approximation indicates that the prior parameter mean values are the 

most likely values and will maximize the likelihood function.  Therefore, 

*i

gE
φ

⎧ ⎫∂⎪ ⎪
⎨ ⎬∂φ⎪ ⎪⎩ ⎭K

 is zero. 
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3. Substituting the approximation of Equation 3.22 into Equations 3.20 and 

3.21, the expected mean and covariances for the model parameters 

become: 

 
 ( )yYE Φ φµ ≅ µK K KK

K K  (3.23) 

 

 ( )
1

2
1

yY Y
i j

gE C E C
Φ

−

−
Φ Φ

µ

⎡ ⎤⎡ ⎤−∂⎢ ⎥⎢ ⎥≅ +
⎢ ⎥⎢ ⎥∂φ ∂φ

⎣ ⎦⎣ ⎦K

K K K KK

K
 (3.24) 

 
where the expected value of the second derivative of ( )g φ

K
 is evaluated by 

integrating over all possible values of the data vector, yK : 

   

 ( )
2 2

1 nY
i j i j

g gE L y  dy dy
Φ Φ

∞ ∞

Φ
−∞ −∞µ µ

⎡ ⎤−∂ −∂⎢ ⎥ = µ
⎢ ⎥∂φ ∂φ ∂φ ∂φ
⎣ ⎦

∫ ∫
K K

K K

K K

K K… …  (3.25) 

 

The expected values for the updated means of the model parameters are the same 

as the prior means of the model parameters.  Since the prior mean values are the 

parameter values that are expected to be obtained with data, it is reasonable that the 

expected updated parameters are the same as the prior values.  The expected values for 

the updated covariances of the model parameters depend on the expected values of the 

second derivatives of the natural logarithm of the likelihood function evaluated at the 

prior means.  These second derivatives are discussed in the section below. 
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3.4.5  Second Derivatives of the Natural Logarithm of the Likelihood Function 

The effect of the data on the updated covariances of the model parameters is 

determined by the matrix of second derivatives of the natural logarithm of the likelihood 

function.  To simplify notation, the matrix of second derivatives of the natural logarithm 

of the likelihood function will also be referred to as G”.  If the likelihood function is 

maximized, the vector of first derivatives is zero and G” must be negative definite.  This 

is equivalent to the second derivative test for a local maximum of a single-parameter 

function, f(x):  at a local maximum, df (x) 0
dx

=  and 
2

2

d f (x) 0
dx

< . 

Equations 3.16 and 3.24 show that the updated covariances (for data analysis) and 

the expected updated covariances (for test program design) depend on the prior 

covariances of the model parameters and on G”.  The magnitudes of the second 

derivatives in G” indicates how much is learned about the model parameters from the 

measured or expected data.  When the absolute magnitudes of the second derivatives are 

large compared to the inverse of the prior covariance matrix, G” will dominate the 

updated covariances or expected updated covariances of the model parameters.  In this 

case, the data provide a large amount of information about the model parameters and the 

updated covariances are therefore reduced significantly from the prior covariances.  

When the absolute magnitudes of the second derivatives are small compared to the 

inverse of the prior covariance matrix, the prior covariances will dominate the updated 

covariances or expected updated covariances of the model parameters.  In this case, the 

data do not provide much information about the model parameters, and the updated 

covariances are not reduced significantly from the prior.   

The effect of the magnitude of the second derivatives is illustrated for the case of 

one  model  parameter  in  Figure 3.3.    The  updated variance of the model  parameter  is  
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Figure 3.3.  Effect of the magnitude of ( )g φ  on the variance reduction for a single model 
parameter. 

 

calculated with Equation 3.16, which reduces to the following for only one model 

parameter: 

 

 

*

y 2
2

2

1C
gΦ

Φ
φ

≅
−∂

+ σ
∂φ

K  (3.26) 
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  In Figure 3.3, the updated variance divided by the prior variance is plotted as a 

function of the second derivative of natural logarithm of the likelihood function.  As the 

value of this ratio of updated to prior variance decreases, the variance of the model 

parameter is reduced more from the prior variance and therefore more is learned about 

the model parameter. The value of the second derivative is expressed as a function of the 

inverse of the prior variance of the model parameter.  When the second derivative is 0.01 

of the inverse of the prior variance of the parameter, there is virtually no variance 

reduction for the model parameter.  However, the variance of the model parameter is 

reduced rapidly as the magnitude of the second derivative increases in comparison to the 

inverse of the prior variance.   

 

3.4.6  Likelihood Function for Normally-Distributed Data 

The choice of the likelihood function, ( )L y φ
KK , to use in the FOSM Bayesian 

method  depends on the distribution of the data that have been collected or are expected.  

When the data are described by a normal distribution, or can be easily transformed to a 

normal distribution, the likelihood function has a multivariate normal distribution:   

 

 ( )
( )

{ } { }T 1
1/ 2 Y Y Yn / 2

Y

1 1L y exp y C y
22 C

−⎡ ⎤φ = − − µ − µ⎢ ⎥⎣ ⎦π
K K K

K

KK K K K K  (3.27) 

 

The natural logarithm of the likelihood function is then: 

 

 ( ) ( ) ( ) { } { }1/ 2 Tn / 2 1
Y Y Y Y

1 1g ln 2 ln C y C y
2 2

−⎡ ⎤φ = − π − − − µ − µ⎣ ⎦
K K K K

K K K K K  (3.28) 
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where: 

 
n = the number of data points measured or expected 
 

Yµ K
K = the vector of the mean data values predicted by the model that depends on φ

K
 

 
YC K = the covariance matrix of the data points predicted by the model that depends 

on φ
K

 

 

The derivation of the first and second derivatives, and the expected first and 

second derivatives, of this likelihood function are presented in Muchard (1997) and 

Gilbert (1999).   

 

3.4.6.1  Conditional Likelihood Function 

For a set of ny measurements of the variable y, the likelihood function is the joint 

distribution of the data: 

 
 ( ) ( )

1 2 nY ,Y , Y 1 2 n 1 2 nL y f y , y , y dy dy dy⋅⋅⋅φ = ⋅⋅⋅ ⋅⋅ ⋅
KK  (3.29) 

 

which can also be expressed in terms of conditional probabilities: 

 

 

( ) ( )
( )

( ) ( )
( )
( )

( ) ( )

n 1 2 n 1

yn 1 1 2 n 2

12 1

n 1 2 n 1

n 1 1 2 n 2

2 1 1

n 1 2 n 1Y Y ,Y , Y

n 1 1 2 n 2Y Y ,Y , Y

2 1 Y 1 1 2 nY Y

L y L y y , y , y

L y y , y , y

L y y L y

f y y , y , y

f y y , y , y

f y y f y dy dy dy

−

− −

−

− −

−⋅⋅⋅

− −⋅⋅⋅

φ = ⋅⋅⋅

× ⋅⋅⋅

×⋅⋅⋅× ×

= ⋅⋅⋅

× ⋅⋅⋅

×⋅⋅⋅× × × ⋅⋅⋅

KK

 (3.30) 
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The natural logarithm of the likelihood function is then: 

   

 

( ) ( )
( )

( ) ( )

n 1 2 n 1

n 1 1 2 n 2

1 y2 1

n 1 2 n 1Y Y ,Y , Y

n 1 1 2 n 2Y Y ,Y , Y

2 1 Y 1 1 2 nY Y

g ln f y y , y , y

ln f y y , y , y

ln f y y ln f y ln dy dy dy

−

− −

−⋅⋅⋅

− −⋅⋅⋅

⎡ ⎤φ = ⋅⋅⋅⎣ ⎦
⎡ ⎤+ ⋅⋅⋅⎣ ⎦

⎡ ⎤ ⎡ ⎤⎡ ⎤+ ⋅⋅⋅ + + + ⋅⋅⋅⎣ ⎦ ⎣ ⎦⎣ ⎦

K

 (3.31) 

 

The natural logarithm of the likelihood function may therefore be calculated 

sequentially for each data point using the conditional likelihood.  For each normally-

distributed data point, the conditional likelihood is: 

 

 ( ) i 1 2 i 1

i 1 2 i 1

i Y y ,y , y
i 1 2 i 1

Y y ,y , y

y
L y y , y , y PDF −

−

−

⎛ ⎞− µ
⎜ ⎟=
⎜ ⎟σ⎝ ⎠

"

"

"  (3.32) 

 

where PDF( ) is the probability distribution function for a normal distribution and  

i 1 2 i 1Y y ,y , y −
µ " and 

i 1 2 i 1Y y ,y , y −
σ "  are the moments of yi conditioned on the previously known 

data points, 1 2 i 1y , y , y −" .  These conditional moments are presented in the next section. 

 

3.4.6.2 Conditional Moments 

The likelihood function for normally-distributed data depends on the conditional 

mean and standard deviation of each data point, as shown in Equations 3.32.  Since the 

conditional probability function is calculated sequentially for each data point (Equation 

3.31), each data point is conditioned on the previously known data points.  The following 

subscripts will be used to denote the current data point and the known data points: 
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A = the current data point under consideration, iy  

B = the set of known data points, 1 2 i 1y , y , y −"  

 

The mean value for Yi conditioned on multiple known data points y1 through yi-1 

is then:  

 
 { }A AB Bi 1 2 i 1 A B Y Y B YY y ,y , y Y Y C y

−
µ = µ = µ + − µ…

K K  (3.33) 

 
 

A AB BB ABi 1 2 i 1 A B

2 2 2 1 T
Y Y Y YY y ,y , y Y Y C C C

−

−σ = σ = σ −…  (3.34) 

 

where: 

 

AYµ and 
A

2
Yσ are the model-predicted moments for the data point currently under 

evaluation: 

 
 

A iY Yµ = µ  (3.35) 

 
 

A i

2 2
Y Yσ = σ  (3.36) 

 
ByK  is the vector of previous data measurements: 

 

 

y

1

B

i 1

y
y

y −

⎧ ⎫
⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎩ ⎭

K #  (3.37) 

 
BYµK  is the vector of model-predicted mean values for the previous data points: 
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1

B

i 1

Y

Y

Y −

µ⎧ ⎫
⎪ ⎪

µ = ⎨ ⎬
⎪ ⎪µ⎩ ⎭

K #  (3.38) 

 
BBYC  is the covariance matrix for the previous data points: 

 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
BB

1 1 1 2 1 i 1

2 1 2 2 2 i 1
Y

i 1 1 i 1 2 i 1 i 1

Cov Y ,Y Cov Y ,Y Cov Y ,Y
Cov Y ,Y Cov Y ,Y Cov Y ,Y

C

Cov Y ,Y Cov Y ,Y Cov Y ,Y

−

−

− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…
"

# # # #
"

 (3.39) 

 
and 

ABYC  is the covariance between the current data point and the previous data 
points: 

 
 ( ) ( )

ABY i 1 i i 1C Cov Y ,Y Cov Y ,Y −⎡ ⎤= ⎣ ⎦"  (3.40) 

 

3.4.7  Likelihood Function for Non-Normally Distributed Data 

A method for including measured data that that do not have a normal distribution 

into the FOSM Bayesian Method is described in Gilbert and Wang (2003) and will be 

outlined in this section.  The method uses Hermite Polynomials to transform the data to a 

normal distribution, and the coefficients of the Hermite Polynomial transform function 

are treated as model parameters in the data analysis.  Two assumptions are made 

regarding the non-normally-distributed data:  (1) the probability density function has the 

same normalized shape for each data point (that is, i

i

i Y

Y

y − µ

σ
 has the same distribution for 

all i), and (2) statistical relationships between all data points are linear (described by the 
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first and second moments).  The likelihood function used for the transformed data is a 

conditional likelihood function, with each data point conditioned on the previous data 

points as shown in the previous section. 

 

3.4.7.1  Hermite Polynomial Transform Function 

Hermite Polynomials are derived from the cumulative density function for a 

standard normal distribution and are defined as follows (Journel and Huijbregts 1978):  

 

 ( )
2 2u ui

2 2
i i

dH u e e
du

−⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (3.41) 

where: 

u = a variable with a standard normal distribution 

i = the order of the Hermite Polynomial 

 

Equations and graphs for Hermite Polynomials from the zero through fifth order are 

presented in Figures 3.4 and 3.5.  Notice that the scale of the x-axis is the same in each 

plot and that although the scale of the y-axis varies, the gridlines cross the y-axis at the 

same interval on each plot.  As the order of the Hermite Polynomial increases, the tails of 

the polynomial become more sensitive to the value of u when u is small or large.  This 

indicates that a higher order of Hermite Polynomial will be required to fit the tails of non-

normal distributions. 
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Figure 3.4.  Hermite Polynomials, order zero through two. 
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Figure 3.5.  Hermite Polynomials, order three through five. 
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To fit data with a non-normal probability distribution to a standard normal 

distribution, a transform function is used:  

 
 ( )YY U= ϕ  (3.42) 

  

where: 

Y = a general random variable, with non-normal distribution 

U = a standard normal variable 

Yϕ  = the transform function 

 

A transform function using Hermite Polynomials is presented by Journel and 

Huijbergts (1978) and may be expressed as follows: 

 

 ( ) ( )
n

i
Y i

i 0

Y U H U
i !

ψ
ψ

ψ

ψ = ψ

ψ
= ϕ ≅ ∑  (3.43) 

   

where: 
nψ = the order of the transform 

iψ = the coefficient of the transform 

 

The first two coefficients of the transform function are related to the mean and 

standard deviation of the random variable, Y: 

 

 0 Yψ = µ  (3.44) 
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( )

Y
1 2'n

i

i 2

1
i!=

σ
ψ =

ψ
− + ∑

 (3.45) 

 

   

where: 
' i
i

1

ψ
ψ =

ψ  

 

The transform function may then be expressed as follows: 

 

 
( )

( ) ( )
'n
iY

1 i2
' i 2Y n
i

i 2

Y 1 H U H U
i !

1
i !

ψ
ψ

ψ

ψψ
ψ

ψ

= ψ

= ψ

⎡ ⎤ψ− µ
≅ +⎢ ⎥

σ ⎢ ⎥⎣ ⎦ψ
− +

∑

∑

 (3.46) 

  

The transform function is therefore described by the parameters Yµ , Yσ , and '
2ψ  through 

'
nψ

ψ .   

 

3.4.7.2  Likelihood Function 
 

As for normally-distributed data, the likelihood function for non-normally-

distributed data is expressed in terms of conditional probability density functions 

(Equation 3.30).  The conditional probability density functions for non-normally 

distributed data are evaluated as follows: 

 

 ( ) ( )
r

y ri 1 2 i 1

1n

i 1 2 i 1 U r uY y ,y , y
r 1

dyf y y , y , y f u
du−

−

−⋅⋅⋅
=

⎛ ⎞
⋅⋅⋅ = ⎜ ⎟

⎝ ⎠
∑  (3.47) 
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where ( )U rf u  is the standard normal probability density function and each ur is one of nr 

real roots of u for the transformed data point 
yi

y , conditioned on the previous data points: 

 

 
( )

( ) ( )i 1 2 i 1

i 1 2 i 1

'n
iY y ,y , y
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"  (3.48) 

 

The roots are the values of u that will result in the value of yi from the Hermite 

Polynomial transform.  The derivative of the above equation, evaluated at each root ur, is 

ru

dy
du

in Equation 3.47: 
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The derivatives of the Hermite Polynomials, ( )1 rdH u
du

, are as follows: 
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The first and second derivatives of the likelihood function are presented in Gilbert 

and Wang (2003).  The conditional moments for each data point that are used in 

Equations 3.48 and 3.49 are described in the next section. 

 

3.4.7.3  Conditional Moments 

The likelihood function for non-normally-distributed data depends on the 

conditional mean and standard deviation of each data point, as shown in Equations 3.48 

and 3.49.  Since the conditional probability function is calculated sequentially for each 

data point (Equation 3.31), each data point is conditioned on the previously known data 

points.   

In order to calculate the conditional moments for non-normally distributed data 

points, a linear relationship is assumed between data points.  A linear relationship for two 

data points, yi and yj, is shown in Figure 3.6.  The mean value of yi is modeled to increase 

as the value of yj increases according to a linear trend (Ang and Tang 1975):  

 
 

i j
jY y

yµ = α + β  (3.51) 

 

where α is the intercept of the line and β is the slope.   

For data points with normal distributions, this linear relationship is an inherent 

property and the values of α and β are (Ang and Tang 1975): 

 
 

i jY yα = µ −βµ  (3.52) 

 

 i

i j

Y
Y ,Y

Yj

σ
β = ρ

σ
 (3.53) 
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Figure 3.6.  Linear relationship between two data points, yi and yj.   

 

For data points with non-normal distributions, this linear relationship is still 

assumed to apply.  With this assumption, Equation 3.33 and Equation 3.34 describe the 

conditional mean and variance, respectively, of a non-normally distributed data point Yi.   

 

3.5  SUMMARY 

The basic framework of the FOSM Bayesian method was outlined in this chapter 

for data sets with only point measurements (no censored data points).  The methodology 

for the two uses of the FOSM Bayesian method, data analysis and test program design, 

were summarized.  The distribution of the data is accounted for in the likelihood function, 

i

i

i Y

Y

y − µ

σ
 

j

j
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which describes the likelihood that the data are observed given a set of model parameters.  

For normally distributed data, a multivariate normal distribution is used for the likelihood 

function.  For non-normally distributed data, a conditional distribution is used that 

includes a Hermite polynomial transformation of the data to a multivariate normal 

distribution.  These cases provide the basis for the extension of the FOSM Bayesian 

method to include censored data, which is presented in the next chapter. 
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Chapter 4.  Bayesian Method with Censored Measurements 

 

4.1  INTRODUCTION 

The FOSM Bayesian method has been applied thus far for data analysis for both 

normally-distributed and generally-distributed data sets with no censoring.  It has also 

been used in test program design for normally-distributed data sets with no censoring.  

The method was outlined briefly for these cases in the last chapter.  This research 

develops an approach proposed by McBrayer (2000) to include censored data in the 

FOSM Bayesian method.  In this chapter, the methods for including censored data in both 

data analysis and test program design are derived for normally-distributed and non-

normally-distributed data.  The definition of a censored data point is first discussed, then 

the likelihood functions used for normally-distributed and non-normally distributed data 

points are presented.  The conditional moments of the censored data points, which are 

used in the likelihood functions, and the moments of the censored region of the data 

points, which are used in the conditional moments, are derived.   

 

4.2  CENSORED DATA POINTS  

When a data point is censored, its precise value is uncertain, as discussed in 

Section 2.2.  The value of the data point is only known to lie within a censored region, 

which is generally above or below a fixed threshold.  The censored region for a data point 

yi is defined in the remainder of this dissertation as follows: 

 

yi,l = lower bound of censored region for data point yi 
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yi,u = upper bound of censored region for data point yi 

 
The subscript “ul” will be used to denote the censored region between yi,l and yi,u.   

A censored data point is illustrated in Figure 4.1 for a data point with a normal 

distribution.  In this example, the censored region is in the middle of the distribution.  

Data values between yi,l and yi,u are censored, so that their exact values are not known.  
The mean, 

iY ,ulµ , and standard deviation, 
iY ,ulσ , of Yi in the censored region are also 

shown in Figure 4.1.  Note that a point (non-censored) measurement may be thought of as 

a censored measurement when yi,l approaches yi,u and there is no censored region for that 

data point. 

It is rare for a censored region to occur in the middle of a distribution for 

engineering applications.  The censored region is usually in a tail of the distribution, as 

shown in Figures 4.2 and 4.3.  In Figure 4.2, yi,l is negative infinity and yi,u is a threshold 

value below which data are censored.  An example of this case is a contaminant 

concentration in water that is below the detection limit.  In Figure 4.3, yi,u is positive 

infinity and yi,l is a threshold value above which data are censored.  An example of this 

case is a proof load test.  The expected value of the data point may be inside or outside 

the censored region.  In Figure 4.2, the expected value of the data point is not in the 

censored region, and the data point is not expected to be censored.  In Figure 4.3, the 

censored region includes more of the distribution.  In this case, the expected value is 

within the censored region and this data point is therefore expected to be censored. 

The procedure for including censored data in the FOSM Bayesian method for data 

analysis follows the same steps as the procedure described in Section 3.4.  However, the 

likelihood function changes when a data point is censored.  The probability of obtaining a 

censored data point is the area of the censored region in the distribution of the data point: 
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Figure 4.1. Normally-distributed data point with censoring between yi,l and yi,u. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.  Normally-distributed data point censored in the lower tail of the distribution. 
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Figure 4.3.  Normally-distributed data point censored in the upper tail of the distribution. 

 

 ( ) ( ) ( )i,l i i,u Y i,u Y i,lP y Y y F y F y< ≤ = −  (4.1) 

 
where ( )YF  is the cumulative distribution function (CDF) for the data point.  Therefore, 

the likelihood function for a data point that is censored is: 

 
 ( ) ( ) ( )

B Bi B i,u B i,l BY y Y yL y y F y y F y y= −K K
K K K  (4.2) 

 

where ByK  is defined in Chapter 3 (Equation 3.37) to be the set of all available data, y1, y2, 

…., yi-1.  Note that for a point measurement: 

 

yi,l

Censored 
Region 

iYµ yi,u = ∞

PDF 
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 ( ) ( )Y i
i i i i

dF ydy dyP y Y y PDF y
2 2 dy

⎛ ⎞− < ≤ + = =⎜ ⎟
⎝ ⎠

 (4.3) 

 
The next section describes how to calculate ( )

i B i,u BY yF y yK
K  and ( )

i B i,l BY yF y yK
K  when data 

point yi is censored.   

 

4.3  LIKELIHOOD FUNCTION FOR A CENSORED DATA POINT 

When a data point is censored, the likelihood function is the probability that the 

value will be within the censored region, which is found from the cumulative distribution 

function for the data point.  In this section, the likelihood function for a normally-

distributed censored data point, which is obtained from the standard normal function, is 

first described.  The likelihood function for a non-normally-distributed censored data 

point is then presented.  This likelihood function uses the Hermite Polynomial transform 

function (Section 3.4.7.1) to evaluate the cumulative distribution function. 

 

4.3.1  Likelihood Function for a Normally-Distributed Censored Data Point  

The cumulative distribution function for a normally-distributed data point is 

obtained from the standard normal function as follows: 

 

 ( ) ( ) A B

B B

A B

A Y Y
i B A BY y Y y

Y Y

y µ
F y y F y Y Φ

σ

⎛ ⎞−
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

K K
K  (4.4) 

 

where: 

A BY Yµ = the mean value of YA conditioned on the known measurements, YB 

A BY Yσ = the standard deviation of YA conditioned on the known measurements, YB 
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( )Φ  = the standard normal function 

 

The conditional likelihood function in Equation 3.30 for a normally-distributed 

censored data point is therefore: 

 

 ( ) ( ) A B A B

A B A B

i,u i,lY Y Y Y
i B A B

Y Y Y Y

y y
L y y L Y Y

⎛ ⎞ ⎛ ⎞− µ − µ
⎜ ⎟ ⎜ ⎟= = Φ − Φ
⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠ ⎝ ⎠

K  (4.5) 

 

Note that this is similar to the conditional likelihood of Equation 3.32 for a non-censored 

point.  The probability density function for a normal distribution is used for non-censored 

data, while the cumulative distribution function is used for censored data. 

 

4.3.2  Likelihood Function for a Non-Normally Distributed Data Point 

From the Hermite Polynomial transform function described in Section 3.4.7.1, the 

cumulative distribution function is obtained as follows: 

 

 ( ) ( ) ( )
k

B

n

i B t ,k ,kY Y
k 1

F y Y u u−∞
=

⎡ ⎤= Φ − Φ⎣ ⎦∑  (4.6) 

 

where nk is the number of regions where tu u u−∞ < ≤  gives a value of iy y≤ .  The 

relationship between iy  and u is obtained from Equation 3.48.  Therefore, additional 

model parameters, iψ
ψ  for i 1ψ =  to nψ , describe the likelihood function in addition to 

those that describe 
A BY Yµ  and 

A BY Yσ .   

The calculation of the likelihood function for a non-normally-distributed, 

censored data point is illustrated in Figure 4.4.  The Hermite Polynomial transform 

function for the data point is shown, and in this case y has one root at ut.  Because there is  
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Figure 4.4.  Finding the probability that a data point is censored for non-normally 
distributed data. 

 

only one root, there is only one region where tu u u−∞ < ≤  results in iy y≤ .  The value of 

this root is found first, then it is used in Equation 4.5 to calculate the likelihood function: 

 
 ( ) ( ) ( )

B i B tY YF y Y u u−∞= Φ − Φ  (4.7) 

 
where ,1u∞ = −∞ , and then ( ) 0Φ −∞ = . 

Note that a normal distribution is a special case of the Hermite Polynomial 

transform function.  For a normal distribution, the number of additional model parameters 
to describe the likelihood function, nψ , is zero.  Since H1(u) is equal to u (Figure 3.4), 

this reduces Equation 3.48 to: 

 

u

y yi 

Hermite Polynomial 
Transform Function  

ut,1
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 A B

A B

i Y Y
2
Y Y

y
u

− µ
=

σ
 (4.8) 

 

which is the definition of a standard normal variate.   

 

4.4  CONDITIONAL MOMENTS FOR CENSORED DATA 

The likelihood functions for both normally-distributed and non-normally-

distributed censored data points depend on the conditional moments of the data point, as 

shown in Equations 4.4 and 4.5.  Each data point is related to the data points measured 

previously by using a conditional mean and standard deviation for the current data point.  
The conditional mean for a data point, 

A BY Yµ , is the model-predicted expected value for 

that point given the known measurements, and the conditional standard deviation, 
A BY Yσ , 

is the model-predicted uncertainty for that point given the known measurements.  The 

conditional mean may be inside or outside the censored region.  In this section, the 

conditional moments for a normally-distributed censored data point are derived.  These 

moments are used as an approximation for the non-normal case, and this approximation is 

evaluated.   

 

4.4.1  Conditional Moments for a Normally-Distributed Censored Data Point 

The conditional moments for a normally-distributed censored data point are 

calculated from the multivariate normal distribution.  Because the derivation of the 

conditional moments is shown most easily if ByK  only contains one known measurement, 

the conditional moments are first derived for this case of two data points. The general 

case of multiple data points in ByK  is then shown, followed by the special case of 
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independent data.  The equations for calculating the mean and variance of the censored 

region are also presented, since these quantities are necessary to calculate the conditional 

moments.  

 

4.4.1.1  Conditional Moments for One Known Data Point 

  For the case where ByK  contains only one known data point, the joint distribution 

between YA and ByK  is a bivariate normal distribution if both data points are normally 

distributed.   When ByK  is not censored, the conditional mean is obtained from the 

conditional form of the bivariate normal distribution (Ang and Tang 1975): 

 

 ( )A

A A B BA B B

B

Y
Y Y ,Y B YY Y y

Y

y=

σ
µ = µ + ρ − µ

σ
 (4.9) 

where: 

AYµ = the model-predicted mean for the data point currently under evaluation 

BYµ = the model-predicted mean for the known data point  

A BY ,Yρ = the correlation coefficient between YA and YB 

yB = the measured value of YB 

 

If the measured value of YB is censored, its exact value is not known and the 

conditional mean is therefore uncertain.  Since YB is between the upper and lower bounds 

of the censored region, an integral between yB,l and yB,u is applied to Equation 4.9 to find 

the expected value of the conditional mean: 

 

 ( )( ) ( )
B,u

A

A A B BA B,l B B,u
B B,l

y
Y

Y Y ,Y B Y BY y Y y
Y y

E y dy
≤ <

σ
µ = µ + ρ − µ

σ ∫  (4.10) 
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which gives the following result for the conditional mean when YB is censored: 

 

 ( )( ) ( )A

A A B B BA B,l B B,u
B

Y
Y Y ,Y Y ul YY y Y y

Y

E
≤ <

σ
µ = µ + ρ µ − µ

σ
 (4.11) 

 

If YB is not censored, the conditional variance is the variance of the bivariate 

normal distribution: 

 
 ( )A AA B B

2 2 2
Y YY Y y 1=σ = − ρ σ  (4.12) 

 

If YB is censored, then additional uncertainty is added because the conditional 

mean (Equation 4.11) is uncertain.  The total variance is equal to the expected value of 

the conditional variance plus the variance of the conditional mean (Ang and Tang 1975): 

  

 ( ) ( ) ( )( )A B BA B,l B B,u A B,l B B,u

2 2
Y Y yY y Y y Y y Y y

E Var=≤ < ≤ <
σ = σ + µ  (4.13) 

 

The variance of the conditional mean is the variance of Equation 4.9: 

 

 ( )( ) A

A A BA B,l B B,u
B

Y
ul Y Y ,Y BY y Y y

Y

Var Var Y
≤ <

⎡ ⎤σ
µ = µ + ρ⎢ ⎥

σ⎢ ⎥⎣ ⎦
 (4.14) 

 

Since all of the terms in the equation above are constant except for YB, the 

variance of the conditional mean is: 
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 ( )( ) A

A B BA B,l B B,u
B

2

Y 2
ul Y ,Y Y ,ulY y Y y

Y

Var
≤ <

⎡ ⎤σ
µ = ρ σ⎢ ⎥

σ⎢ ⎥⎣ ⎦
 (4.15) 

 
where 

B

2
Y ,ulσ  is the total conditional variance when YB is censored and is therefore: 

 

 ( ) ( ) A

A A A B BA B,l B B,u
B

2

Y2 2 2 2
Y Y Y ,Y Y ,ulY y Y y

Y

1
≤ <

⎡ ⎤σ
σ = − ρ σ + ρ σ⎢ ⎥

σ⎢ ⎥⎣ ⎦
 (4.16) 

 
Because 

BY ,ulσ  will be zero when the data are not censored and the censored 

region is infinitesimally small, Equation 4.9 may be used to generally express the 

conditional variance of YA, regardless of whether YB is censored or not:  

 

 ( ) A

A A A B BA B

B

2
2 Y2 2

Y Y Y ,Y Y ,ulY Y
Y

1
⎡ ⎤σ

σ = − ρ σ + ρ σ⎢ ⎥
σ⎢ ⎥⎣ ⎦

 (4.17) 

 

4.4.1.2  Conditional Moments for Multiple Known Data Points 

The results of the previous derivation of the moments for YA conditioned on a 

single data point YB may be easily extended to the case where ByK  contains multiple data 

points.  When a data point is conditioned on multiple known data points, the conditional 

mean from Equations 4.9 is expressed as: 

 

 { } { }A BB AB BA B

T1

Y Y Y B YY Yµ µ C C y µ
−

⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦
K K  (4.18) 
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The values used in ByK  are determined by whether each data point in YB is censored or 

non-censored.  The total variance of YA from Equation 4.16 is expressed as follows for 

multiple known data points in YB:   

 

 
{ }

{ } { }
A AB BB ABA B

BB AB BBul BB AB

T 12 2
Y Y Y YY Y

T1 1

Y Y Y Y Y

C C C

C C C C C

−

− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤σ = σ − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (4.19) 

 

The third term in this equation accounts for the uncertainty in the conditional mean value 

of YA when data points in YB are censored.  The vectors and matrices used in Equations 

4.10 and 4.11 are defined as follows: 

 

• The (i-1)x1 vector ByK  is the vector of values for the known data points:  
 

 
1

B

i 1

y
y

y −

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

K #  (4.20) 

 
and the value used for each jy , where j=1 to i-1, depends on if the known data 

point is censored or not.  If the data point is not censored, the measured value is 

used in this vector.  If the data point is censored, the expected value of the 
censored region for a censored measurement, 

iY ,ulµ , is used. 

  
• The (i-1)x(i-1) matrix 

BBYC⎡ ⎤⎣ ⎦  contains the model-predicted covariances between 

known data points: 
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 (4.21) 

 
• The 1x(i-1) matrix 

ABYC⎡ ⎤⎣ ⎦  contains the model-predicted covariances between the 

current data point and all previous data points: 

 
 ( ) ( )

ABY i 1 i i 1C Cov Y ,Y Cov Y ,Y −⎡ ⎤= ⎣ ⎦"  (4.22) 

 
• The (i-1)x1 vector 

BYµK  is the vector of model-predicted mean values for the 

previous data points: 
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Y

Y
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• The (i-1)x(i-1) matrix 

BBulYC⎡ ⎤⎣ ⎦  is the model-predicted covariance matrix which 

adds variability to YA only for the censored data points in the previously known 

measurements.  This matrix is calculated as follows: 

 

 
1 1 1 i 1 1

BBul 1 i 1

i 1 1 i 1 i 1 i 1

Y ,Y Y ,Y Y ,ul
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"
" # % # #

"
 (4.24) 
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where the value of
jY ,ulσ  depends on censoring.  For uncensored data points, the 

variance of the censored region is zero and no extra variability is added due to 
these points.  For censored data points, the variance of the censored region, 

i

2
Y ,ulσ  

will have a value greater than zero and will therefore increase the variance of YA. 

 

 An example of how to calculate the conditional mean and variance is shown in 

Appendix B.   

  

4.4.1.3  Conditional Moments for the Special Case of Independent Data 

The special case of independent data is presented to show the effect of assuming 

no correlation between data points on the calculation of the conditional moments.  In both 
the conditional moments, 

ABYC⎡ ⎤⎣ ⎦  is zero and all the non-diagonal components of 
BBYC⎡ ⎤⎣ ⎦  

are zero if the data points are not correlated.  The conditional moments of Equations 4.18 

and 4.19 therefore reduce to: 

 
 

AA B YY Yµ µ=  (4.25) 
 

 
AA B YY Yσ = σ  (4.26) 

 

4.4.1.4  Moments for Censored Region of a Normally-Distributed Data Point 

The mean and standard deviation of Yi in the censored region, 
iY ,ulµ  and 

iY ,ulσ , 

are illustrated in Figure 4.1.   The values for these moments are found by integrating over 

the probability density function from the lower bound to the upper bound of the censored 

region.  These moments are derived in Appendix A for a normally distributed data point.  

The resulting mean of Yi in the censored region is: 
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 (4.27) 

 

and the standard deviation of Yi in the censored region is: 
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  (4.28) 

 
where ( )i,l i i,uP y Y y≤ <  is the probability that the censored data point is in the censored 

region: 

 

 ( ) A A

A A

i,u Y i.l Y
i.l i i,u

Y Y

y y
P y Y y

⎛ ⎞ ⎛ ⎞− µ − µ
≤ < = Φ − Φ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠ ⎝ ⎠

 (4.29) 

 

4.4.2  Moments for Censored Region of a Non-Normally-Distributed Data Point 

In order to calculate the conditional moments with non-normally distributed 

censored data, the same assumption is made as for point data:  a linear relationship exists 

between the data points, as described in Section 3.4.7.3.  With this assumption, the 
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conditional moments for non-normally distributed data points may be calculated in the 

same way as the conditional moments for normally-distributed data points, as described 

in Section 4.4.1.2.   
Evaluating 

iY ,ulµ  and 
i

2
Y ,ulσ  is generally not possible for a non-normal distribution 

without numerical integration.  As an approximation, the moments of the censored region 

for a data point with a non-normal distribution may be approximated with the censored 

region of a normal distribution.  The normal distribution used for the approximation has 

the same mean and standard deviation as the non-normal distribution, and the censored 

region of the normal distribution is between the same upper and lower bounds as the 

censored region of the non-normal distribution.  In Figure 4.5, the censored region of a 

lognormal distribution is shown, as well as the corresponding censored region of the 

normal distribution used in the approximation.   

The accuracy of this approximation was tested with three different non-normal 

distributions:  a uniform distribution, a slightly skewed log-normal distribution, and a 

highly skewed log-normal distribution.  The procedure for testing the approximation was 

as follows: 

 
1. Calculate the mean and standard deviation, 

iYµ  and 
iYσ , of the non-

normal distribution.   

 

2. Set the bounds of the censored region, yi,l and yi,u, for the non-normal 

distribution.  This was done for a total of ten censored regions in each 

distribution.  For five of the censored regions, yi,l was set to negative 

infinity and yi,u was determined for probabilities of 0.01, 0.1, 0.25, 0.5, 

and 0.75 that the data point was censored.     For  the  other  five  censored  
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Figure 4.5.  Censored region of a lognormal distribution approximated with the censored 
region of a normal distribution with the same mean and standard deviation. 

Lognormal distribution with  
E(ln Y) = 0.25 and  
Var(ln Y) = 0.75, or 
µ = 1.70 and σ = 1.48. 

Normal distribution with  
µ = 1.70 and σ = 1.48. 

yi,l = 0 

yi,l = 0 yi,u = 
1.28 

yi,u = 
1.28 
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regions, yi,u was set to positive infinity and yi,l was determined for 

probabilities of 0.01, 0.1, 0.25, 0.5, and 0.75 that the data point was 

censored. 

 

3. Calculate the exact mean and variance of each censored region of the non-

normal distribution using the following integrals: 

 

 ( ) ( )
i ,u

ii i ,l i i ,u

i ,l

y

Y iY y Y y
i,l i i,u y

1 y f y dy
P y Y y≤ <

µ = ⋅
≤ < ∫  (4.30) 

 

 ( ) ( ) ( )
i ,u

ii i ,l i i ,u i i ,l i i ,u

i ,l

y 2
2

Y iY y Y y Y y Y y
i,l i i,u y

1 y f y dy
P y Y y≤ < ≤ <

σ = − µ
≤ < ∫  (4.31) 

 

 

For the uniform distribution, these integrals can be solved analytically and 

the moments are as follows: 
 

 
i i ,l i i ,u

i,u i,l
i,lY y Y y

y y
y

2≤ <

−
µ = +  (4.32) 

 

 
( )

i i ,l i i ,u

2
i,u i,l

Y y Y y

y y
12≤ <

−
σ =  (4.33) 

 

 
For log-normal distributions, these integrals are evaluated numerically. 

 

4. Calculate the approximate mean and variance of each censored region of 

the non-normal distribution.  Using Equations 4.27 and 4.28, calculate the 
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mean and variance of each censored region for a normal distribution with 
mean 

iYµ  and standard deviation 
iYσ .  The censored region is defined by 

the same yi,l and yi,u as for the non-normal distribution.  (The probability 

that the data point is censored is therefore different for the normal 

distribution than for the non-normal distribution.) 
 

The accuracy of the approximation for the mean and variance of the censored 

region depends on how well the censored region of the non-normal distribution 

corresponds to the censored region of the normal distribution.  The results for the uniform 

distribution are shown in Figures 4.6 and 4.7.  The difference between the approximate 

and exact values is shown for each censored region.  The approximate values are 

generally very close to the exact values for all cases.  The approximation is better for 

both the mean and the variance when the censored region is small.  As the probability 

that the data point is censored increases, the difference between the approximate mean 

and variance also increases.   

The results of the slightly skewed lognormal distribution are shown in Figures 4.8 

and 4.9.  The shape of this lognormal distribution is very similar to the shape of the 

normal distribution used to approximate the mean and variance of the censored region.  

The approximate and exact values for the mean of the censored region are therefore 

almost identical for censoring in both tails of the distribution.  The approximate values 

for the variance of the censored region are slightly greater than the exact values for all 

cases. 

The results for the highly skewed lognormal distribution are shown in Figures 

4.10 and 4.11.  The approximations are generally very similar to the exact values, 

especially  when  the  lognormal  distribution  is  censored in the lower tail  (Figure 4.10).   
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Figure 4.6.  Exact mean and variance for censored regions in the lower portion of a 
uniform distribution compared to an equivalent normal distribution. 
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Figure 4.7.  Exact mean and variance for censored regions in the upper portion of a 
uniform distribution compared to an equivalent normal distribution. 
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Figure 4.8.  Exact mean and variance for censored regions in the lower portion of a 
slightly skewed lognormal distribution compared to an equivalent normal 
distribution. 
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Figure 4.9.  Exact mean and variance for censored regions in the upper portion of a 
slightly skewed lognormal distribution compared to an equivalent normal 
distribution. 
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Figure 4.10.  Exact mean and variance for censored regions in the lower portion of a 
highly skewed lognormal distribution compared to an equivalent normal 
distribution. 
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Figure 4.11.  Exact mean and variance for censored regions in the upper portion of a 
highly skewed lognormal distribution compared to an equivalent normal 
distribution. 
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The differences between the approximate and the exact values for the variance increase 

as the size of the censored region increases.  When censoring is in the lower tail of the 

distribution, the approximate variance is greater than the exact value.  When censoring is 

in the upper tail of the distribution, the approximate variance is less than the exact value, 

except for the smallest probability that the data point is censored. 

These examples show that the approximation for the mean and variance of the 

censored region for a non-normally distributed data point are reasonable, even for cases 

with a highly non-normal distribution, such as a uniform distribution with finite upper 

and lower bounds and a highly skewed lognormal distribution.  The accuracy of the 

approximation depends on the shape of the non-normal distribution and the size of the 

censored region. 

 

4.5  CENSORED DATA IN TEST PROGRAM DESIGN 

When designing a test program with the FOSM Bayesian method, the amount and 

type of data that will be collected are determined and the variance of the model 

parameters may then be updated.  Test program designs are compared by determining 

how much each test program reduces the variance in the model parameters.  As derived in 

Section 3.4.4, the expected updated covariances of the model parameters depend on the 

prior covariances and the expected value of the second partial derivatives of the natural 

logarithm of the likelihood function:   

 

 ( )
1

2
1

yY Y
i j *

gE C E C

−

−
Φ Φ

φ

⎡ ⎤⎡ ⎤−∂⎢ ⎥⎢ ⎥= +
⎢ ⎥∂φ ∂φ⎢ ⎥⎣ ⎦⎣ ⎦

K K K KK
K

 (4.34) 
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The following notation will be used for the expected value of the negative second 

derivative of the natural logarithm of the likelihood function, evaluated at the Taylor 

series expansion point: 

 

 ( )
2

Y
i j *

gE G" E
φ

⎛ ⎞−∂⎜ ⎟− =
∂φ ∂φ⎜ ⎟

⎝ ⎠K
 (4.35) 

 

When E(-G”) is much larger than the prior covariances, the updated covariances 

depend mostly on the data that are expected.  When E(-G”) is much smaller than the 

inverse of the prior covariances, 1C−
Φ
K , the updated covariances depend mostly on the prior 

covariances, and therefore the reduction in the variance of the model parameters will be 

small.  Since 1C−
Φ
K  is a constant, E(-G”) is the quantity required to evaluate the reduction 

of variance for a test program design, as described in Section 3.4.5.   

Since the likelihood function is the product of the likelihoods of each individual 

data point given the known data points, the natural logarithm of the likelihood function is 

the sum of these individual likelihoods.  The second derivative of the natural logarithm of 

the likelihood function is therefore: 

 

 
( )

* *

22 n
i 1 2 i 1

i 1i j i j

g y y , y , yg −

=φ φ

∂∂
=

∂φ ∂φ ∂φ ∂φ∑
K K

"
 (4.36) 

 

and the expected value, E(G”), is then: 

 

 
( )

* *

22 n
i 1 2 i 1

Y Y
i 1i j i j

g y y , y , ygE E −

=φ φ
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⎢ ⎥∂φ ∂φ ∂φ ∂φ⎜ ⎟
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∑K K

K K

"
 (4.37) 
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Each expected value term in the summation of Equation 4.36 is found by 

considering both the possibility that the data point will be censored and the possibility 

that the data point will not be censored.  As described in Section 4.3, the likelihood 

function is different if the point is in the censored region of the distribution than if it is in 

the non-censored region.  The expectation integral is therefore taken separately over the 

censored region and the non-censored region, using the appropriate likelihood function 

for each region: 
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( ) ( )
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 (4.38) 

 

where:  

NCg = natural logarithm of the likelihood function if the point is non-censored 

Cg = natural logarithm of the likelihood function if the point is censored 

( )i NC
L y ∗φ

K
 = likelihood function if the point is non-censored 

( )i C
L y ∗φ

K
 = likelihood function if the point is censored 

 

The expected value in Equation 4.38 may only be solved analytically if 

approximations are made regarding the evaluation of the likelihood function.  For the 
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general case with any type of data distribution and correlated data, numerical integration 

must be used.  The evaluation of Equation 4.38 will be further discussed in Chapter 5. 

 

4.6  SUMMARY 

The method for including censored data in the FOSM Bayesian method was 

derived in this chapter.  The method follows the same framework as the method outlined 

in Chapter 3 for both normally-distributed and non-normally-distributed data, except that 

different likelihood functions are used for censored data points and censored data points 

are considered differently when data points are conditioned on them.  For censored data 

points, the likelihood function is the probability that the data point is actually in the 

censored region for the conditional distribution of that data point.   This probability is 

calculated directly with the standard normal cumulative density function for a normally-

distributed data point.  For a data point that does not have a normal distribution, this 

probability is calculated using the roots of the Hermite Polynomial transform function.  

The moments of the censored region of a non-normally-distributed data point, which are 

used to find the conditional moments of that data point, are approximated with the 

moments of the equivalent censored region of a normal distribution.  This approximation 

was tested for three different non-normal distributions, and the approximated moments 

were found to be reasonably close to the exact values.   
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Chapter 5.  Effect of Censored Measurements on Model Calibration 

 

5.1  INTRODUCTION 

The method for including censored data in the FOSM Bayesian method was 

derived in the previous chapter.  In this chapter, the effects of censored data in an analysis 

using the FOSM Bayesian method are determined.  The case of normally-distributed data 

is first presented, with an examination of the effects of censoring on the updated mean, 

variance, and correlation of model parameters.  Different methods for calculating the 

variance reduction achieved in test program design for normally-distributed data are then 

compared.  Finally, the effects of censoring with non-normally-distributed data are 

discussed. 

 

5.2  EFFECT OF CENSORED DATA FOR NORMALLY-DISTRIBUTED DATA 

In this section, a simple model is evaluated to illustrate the effects of censored 

data in applying the FOSM Bayesian method.  First, the estimated mean values of the 

model parameters are examined for bias.  Next, the effect of censored data on the 

standard deviation of the model parameters is determined.  Finally, the effect of censored 

data on the correlations between the model parameters is found. 

 

5.2.1  Simple Model 

The simple model used in this analysis consists of normally-distributed, 

statistically independent data points, or measurements, with the same censoring level for 

each measurement.  Three parameters, φµ, φσ, and φρ, model the mean, the standard 

deviation, and the correlation of the measurements: 
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 µµ = φ  (5.1) 

 
 ( )exp σσ = φ  (5.2) 

 

 exp
ρ

⎛ ⎞τ
ρ = −⎜ ⎟⎜ ⎟φ⎝ ⎠

 (5.3) 

 

The form of the standard deviation equation insures that the standard deviation will be a 

positive number.  In the correlation coefficient, τ is the separation distance between 

measurements.  This equation form insures that the correlation coefficient will remain 

between -1.0 and 1.0, regardless of the value of φρ. 

The actual or true values for the model parameters are defined so that each 

expected measurement has a standard normal distribution with a mean of zero and a 

standard deviation of one.  The actual values of φµ and φσ are therefore both zero.   

The actual value of φρ varies depending on the desired correlation between 

measurements.  For all cases, measurements are separated by a distance of 10.0.  Values 

of 0.1, 1.98, 2.67, and 3.55 were used for the correlation model parameter, φρ, resulting in 
correlations between adjacent measurements, adjρ , of 0.0, 0.25, 0.50, and 0.75, 

respectively.  Four different censoring levels were used for each correlation case.  The 

distribution was censored in the lower tail, so that yi,l was negative infinity for each case.  

The censoring level determines the amount of censored data expected, with the amount of 
expected censored data equal to ( )i i,uP y y≤ .  Censoring levels of −∞ , -0.6745, 0, and 

0.6745 were used, resulting in 0, 25, 50 and 75 percent of the measurements expected to 

be censored, respectively.   
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5.2.2  Method of Evaluation 

The updated covariances of the model parameters depend only on the negative 

second derivatives of the natural logarithm of the likelihood function, E(-G”), and the 

prior covariances, CΦ
K , of the model parameters (Equation 3.21).  When there is no prior 

information about the model parameters, the prior covariance matrix in infinite and the 

inverse of the prior covariance matrix, 1C−
Φ
K , is a zero matrix.   The expected updated 

means and covariances of the model parameters (Equation 3.20 and 3.21) therefore 

reduce to: 

 

 ( )
*

2
*

Yy yY
i j

gE E CΦ Φ

φ

⎛ ⎞⎧ ⎫⎡ ⎤−∂⎪ ⎪⎜ ⎟⎡ ⎤ ⎢ ⎥µ = φ⎨ ⎬⎣ ⎦⎜ ⎟∂φ ∂φ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭⎝ ⎠

K K KK K
K

KK  (5.4) 
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1
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yY Y
i j

gE C E

−

Φ

φ

⎡ ⎤⎛ ⎞−∂⎢ ⎥⎜ ⎟=
⎢ ⎥∂φ ∂φ⎜ ⎟

⎝ ⎠⎣ ⎦

K K KK
K

 (5.5) 

 

For the alternative formulation described in Section 3.4.3, an infinite prior covariance 

matrix makes the expected updated means and covariances of the model parameters 

(Equations 3.18 and 3.19) reduce to: 

 
 ( ) ( )GyY YE EΦµ = µK K KK

K K  (5.6) 

 
 ( ) ( )GyY YE C E CΦ =K K KK  (5.7) 
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As discussed in Section 4.5, the natural logarithm of the likelihood function is the 

sum of the individual likelihoods for each data point.  The expected value of the second 

derivative of the natural logarithm of the likelihood function for an individual data point 

is given in Equation 4.38.  For test program design, values for the individual data point 

and the data points on which it is conditioned are unknown.  Therefore, all possible data 

sets must be considered in calculating E(-G”) as follows:   

 

 ( )
*

2 2
*

1 2 nY
i j i jall y

g gE  L y dy dy dy
φ

⎡ ⎤⎛ ⎞−∂ −∂⎢ ⎥= φ⎜ ⎟⎜ ⎟∂φ ∂φ ∂φ ∂φ⎢ ⎥⎝ ⎠ ⎣ ⎦
∫ ∫K
K K

KK… …  (5.8) 

 

or, using the alternative formulation in Equations 5.6 and 5.7: 

 
 ( ) [ ] ( )*

G G 1 2 nY
all y

E C C  L y dy dy dy= φ∫ ∫K
K

KK… …  (5.9) 

 

The integral of Equation 5.8 is approximated with the following steps: 

 

1. Consider a possible data set, iyK .   

 

2. Find the set of model parameters, *φ
K

, that maximizes the likelihood 

function for this data set. 

 

3. Evaluate the negative second derivative of the natural logarithm of the 

likelihood function at *φ
K

, 
*

2

i j

g

φ

⎛ ⎞−∂⎜ ⎟
∂φ ∂φ⎜ ⎟

⎝ ⎠K
, for each data set using the Taylor 

series approximation for the likelihood function shown in Chapter 3. 
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4. Weight 
*

2

i j

g

φ

⎛ ⎞−∂⎜ ⎟
∂φ ∂φ⎜ ⎟

⎝ ⎠K
 by the probability of obtaining that data set with the 

model parameters set to the expansion point, ( )*L y φ
KK . 

 
5. Calculate GyΦµ = µK K

K K  and GyC CΦ =K K . 

 

6. Repeat Steps 1 through 4 for all possible data sets. 

 

These steps may be performed numerically with a Monte Carlo simulation.  The 

Monte Carlo simulation randomly generates data sets for Step 1 based on the prior means 

and standard deviations of the model parameters.  For this study of normally-distributed 

data, 1000 sets of data were simulated for each censoring and correlation case.  Since the 

1000 sets of generated data do not represent all possible data sets, the average result 

found with the Monte Carlo simulation is an approximation.  One way to consider the 

accuracy of this approximation is with confidence intervals.  The 95-percent confidence 

interval about the average result is calculated as follows: 

 

 
0.95

1.96 1.96x ,  x
n n
σ σ⎛ ⎞µ = − +⎜ ⎟

⎝ ⎠
 (5.10) 

 

where: 
 

0.95
µ = 95-percent confidence bounds 

 x  = average value of the Monte Carlo simulation results 

 σ  = standard deviation of the Monte Carlo simulation results 

  n = number of data sets used in the Monte Carlo simulation 
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The 95-percent confidence bounds indicate that there is a 95 percent probability that the 

true mean value will be within this interval around the average value found with the 

Monte Carlo simulations. 

  

5.2.3  Effect of Data Set Size 

 The effect of the data set size used in the Monte Carlo simulations was 

determined by calculating the expected variance for the mean of the simple model, 

( )2
YE yµσ , for data sets of 25, 50, and 100 points.  The amount of censored data was 

varied between 0 percent and 100 percent for each data set size.  The expected updated 

variance was smallest for the case of no censored data and 100 data points, meaning that 

more was learned about the mean with this case than with any other case.  To compare 

the different cases and show how data set size and censoring affects the amount learned 

about the mean, a ratio was calculated as follows: 

 

 
( )

( )
2

100 pts, Non-CensY

2
Y

E y

E y
µ

µ

σ

σ
 (5.11) 

 

As the expected updated variance increases in comparison to the case of 100 data points 

and no censored data, the amount learned about the mean decreases. 

The results of the comparison between data set sizes are shown in Figure 5.1.  The 

amount learned about the mean decreases as the size of the data set decreases, since more 

can be learned with more data points.  However, the size of the data set matters less as the 

amount of censored data increases.  The amount learned about the mean decreases as the 

amount  of  censored  data  increases.    This is because the exact value of a censored data  
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Figure 5.1.   Effect of data set size for the simple model. 

 

point is not known, and it provides less information that a non-censored data point.  At 

100 percent censored data, nothing new is learned about the mean regardless of the size 

of the data set, and the expected updated variance is equal to the prior variance. 

Because the effects of censored data are most dramatic with larger data sets, a 

data set of 100 points was chosen to examine the effect of censored data on the estimated 

means, variances, and correlations of the model parameters. 
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5.2.4  Effect of Censored Data on Estimated Mean Values 

To determine if the method described in Chapter 4 for including censored data in 

the FOSM Bayesian method is biased, the expected mean values of the mean (µ ), 

standard deviation ( σ ), and correlation (ρ ) of the simple model (Equation 5.1 through 

5.3) are compared to the true means.  If the expected mean and true mean are the same at 

all censoring levels, then censoring does not cause bias (systematic overestimation or 

underestimation) of the mean model parameters.   

The expected means of the modeled variables (µ , σ , and ρ ) are found with first-

order approximations as follows: 

 
 ( ) ( )YE E yµµ = φK

K  (5.12) 

 
 ( ) ( )YE exp E yσ⎡ ⎤σ = φ⎣ ⎦K

K  (5.13) 

 

 ( )
( )Y

E exp
exp E yρ

⎡ ⎤−τ⎢ ⎥ρ =
⎢ ⎥⎡ ⎤φ⎣ ⎦⎣ ⎦

K
K  (5.14) 

  

The results at different censoring and correlation levels for the mean, µ , are 

shown in Figure 5.2.  The estimated mean values are very close to the true mean value of 

zero for all cases.  At a high level of correlation (correlation coefficient of 0.75 between 

adjacent data points), the estimate of the mean value of the parameter moves slightly 

further away from the true mean with increasing censored data than at lower levels of 

correlation.  However, the 95-percent confidence bounds on the estimated mean values 

include the true mean in all cases. 
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Figure 5.2.  Estimated mean values of the mean, yµµ K , with 95 percent confidence 
intervals. 
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Similar results were obtained for the estimated mean values of the standard 

deviation, σ , as shown in Figure 5.3.  The 95-percent confidence bounds for the standard 

deviation are so close to the estimated mean values that they are not visible with the scale 

of the graphs in Figure 5.3.  The estimated mean values are very close to the true mean 

value of 1.0 for all cases.  However, for the case of a correlation coefficient of 0.75 

between adjacent data points, the 95-percent confidence bounds of the estimated mean 

value do not include the true mean value.  This is an error caused by the correlation, not 

by the censoring, since the error does not consistently increase with censoring.   

The same effect is found for the estimated mean values of the correlation between 
adjacent data points, adjρ , which are shown in Figure 5.4.  As the correlation coefficient 

increases, the discrepancies between the estimated and true mean values increases.  

However, it is important to note the scale of the vertical axes in both Figure 5.3 and 

Figure 5.4.  The differences between the estimated and true mean values are very small in 

all cases. 

 

5.2.5  Effect of Censored Data on Estimated Standard Deviations of Model 
Parameters 

Censored data affects how much is expected to be learned about the model 

variables, µ, σ, and ρ.  The expected standard deviation of a model variable indicates how 

much is learned about the variable from the data.  The magnitude of the expected 

standard deviation is proportional to the uncertainty in the value of the model parameter.  

Lower values of the expected standard deviation therefore indicate that more has been 

learned about the model variable.  The expected standard deviations of the model 

parameters are calculated with first-order approximations as follows: 
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Figure 5.3.  Estimated mean values of the standard deviation, yσµ K  with 95 percent 
confidence intervals. 
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Figure 5.4.  Estimated mean values of the correlation between adjacent data points, yρµ K  
with 95 percent confidence intervals. 
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 ( ) ( )Y YE y E y
µµ φσ = σ  (5.15) 

 
 ( ) ( ) ( )Y Y YE y E y exp E y

σσ φ σ⎡ ⎤σ = σ φ⎣ ⎦  (5.16) 

 

 ( ) ( ) ( ) ( )Y Y Y
Y

10E y 10 E y exp exp E y
E yρρ φ ρ

ρ

⎡ ⎤− ⎡ ⎤σ = ⋅ σ ⋅ ⎢ ⎥ ⋅ φ⎣ ⎦φ⎢ ⎥⎣ ⎦
 (5.17) 

 
The value of ( )YE yµσ  for the case of no censored data and statistically 

independent data is used to determine how censoring and correlation affects the amount 

learned about µ .  A ratio is calculated as follows: 

 

 
( )

( )
Non-Cens, SIY

Y

E y

E y
µ

µ

σ

σ
 (5.18) 

 
As ( )YE yµσ  becomes larger in comparison to the case of no censored data and 

statistically independent data, the value of this ratio decreases and the amount learned 

about µ  also decreases.  The same ratio is also calculated for the expected standard 

deviation for σ : 

 

 
( )

( )
Non-Cens, SIY

Y

E y

E y
σ

σ

σ

σ
 (5.19) 

 

The results of this comparison for the mean of the simple model, µ, and the 

standard deviation of the simple model, σ, are shown in Figures 5.5 and 5.6, respectively.     
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Figure 5.5.   Expected updated standard deviations for the mean of the simple model. 
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Figure 5.6.   Expected updated standard deviations for the standard deviation of the 
simple model. 
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As the level of censoring increases,  less  is  learned  about  the  mean  and standard 

deviation.  This is because the exact value of a censored measurement is not known, and 

it provides less information than a point measurement.  As the correlation between data 

points increases, less is learned about each model parameter.  This is because a data point 

that is correlated with other data points provides less information than a statistically 

independent data point.  Correlation between data points essentially reduces the amount 

of data available, causing the same effect seen by decreased data set size in Figure 5.1.   

A similar ratio is used to compare the effects of censoring on the correlation 
between adjacent data points, adjρ : 

 

 
( )

( )
adj adj

adj

Non-Cens, =0.25 Y

Y

E y

E y

ρ ρ

ρ

σ

σ
 (5.20) 

 

For the case of statistically independent data, there is no correlation between data points 

and nothing new can be learned about the correlation; therefore, the expected updated 

standard deviations are all zero.  For this comparison, the value of the numerator in 

Equation 5.20 was ( )adj adjNo Cens, 0.25YE yρ ρ =σ , which is the expected value of the standard 

deviation of the correlation for the case of the correlation between adjacent data points 

equal to 0.25.  The results of the comparison for the correlation between adjacent points 
for the simple model, adjρ , are shown in Figure 5.7.  With correlations between data 

points, the amount learned about the correlation decreases as the amount of censoring 

increases.  This is again because the exact value of a censored measurement is not 

known, and it provides less information than a non-censored measurement.   
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Figure 5.7.   Expected updated standard deviations for the correlation between adjacent 
points for the simple model. 
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5.2.6  Effect of Censored Data on Estimated Correlations between Model 
Parameters 

The effects of censoring on the correlation coefficients between the model 

parameters are shown in Table 5.1.  The significant correlation coefficients (|ρ| > 0.75) 
are shaded in this table.  A significant negative correlation between µφ  and σφ  occurs 

with 75 percent censored data for statistically independent data.  This negative correlation 

occurs because the standard deviation of a distribution with a set amount of censored data 

must be decreased if the mean is increased to keep the same amount of censored data in 

the distribution.  This is illustrated in Figure 5.8 with three normal distributions that have  

75 percent censored data.  As the value of the distribution is increased, the standard 

deviation must decrease so that the censored region remains in the lower 75 percent of 

the distribution.  As the amount of censored data is reduced, the negative correlation 
between µφ  and σφ  becomes less significant, since the censored region of the distribution 

will be smaller and shifting the mean will have less effect on the amount of censored data 

in the distribution for the same standard deviation. 
Significant positive correlations between σφ  and ρφ  occurred with no censored 

data and with 25 percent censored data for a correlations of 0.75 between adjacent 

measurements, indicating that the standard deviation and correlation parameters tend to 

increase together.  With less correlation between measurements, the model that is fit to 

the measurements has more freedom to adjust to the measurements, and therefore the 

standard deviation in the model will be smaller.  With more correlated measurements, the 

standard deviation parameter must be larger to explain the variability in the 

measurements. 
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Table 5.1.  Correlations between model parameters at varying censored levels, with 
significant correlations highlighted.   

Amount of 
Censored Data ,µ σφ φρ  ,µ ρφ φρ  ,σ ρφ φρ  

Correlation between Adjacent Data Points = 0 

0% 0 0 0 

25% -0.17 0 0 

50% -0.44 0 0 

75% -0.76 0 0 

Correlation between Adjacent Data Points = 0.25 

0% 0 0 0.32 

25% -0.13 0 0.27 

50% -0.36 -0.02 0.23 

75% -0.71 -0.06 0.17 

Correlation between Adjacent Data Points = 0.50 

0% 0 0 0.60 

25% -0.07 0.02 0.53 

50% -0.25 -0.01 0.47 

75% -0.58 -0.01 0.41 

Correlation between Adjacent Data Points = 0.75 

0% 0 0 0.81 

25% 0.02 0.07 0.76 

50% -0.16 -0.01 0.68 

75% -0.52 -0.24 0.64 
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Figure 5.8.  Illustration of the negative correlation between mean and standard deviation 
with 75 percent censored data. 
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5.3  METHODS FOR EVALUATING EXPECTED CENSORED DATA 

In the previous section, the updated moments of the model parameters were 

calculated using a Taylor series approximation for the natural logarithm of the likelihood 

function, as described in Section 5.2.2.  Alternative methods for calculating the moments 

are compared in this section. 

 

5.3.1  Complete Numerical Integration 

One alternative method to evaluating the updated covariances of the model 

parameters follows the same procedure outlined in Section 5.2.2, except the 
*

2

i j

g

φ

⎛ ⎞−∂⎜ ⎟
∂φ ∂φ⎜ ⎟

⎝ ⎠K
 

terms in Equations 5.4 and 5.5 are evaluated with numerical integration instead of using 

the Taylor series approximation for the natural logarithm of the likelihood function.  This 

numerical integration method was compared to the Taylor series approximation method 

with a data set consisting of 100 normally-distributed, statistically independent, non-

censored data points.  The simple model of Equations 5.1 through 5.3 was used for the 

mean, standard deviation, and correlation coefficient.  For each method, 1000 data sets 

were generated for the Monte Carlo simulation.  The numerical integration was 

performed with a Monte Carlo simulation using 1000 model parameters generated for 

each data set.  The resulting updated standard deviations for each model parameter for the 

two methods are presented in Table 5.2.  The two methods gave the same results.  The 

major difference between the two methods is the required computation time.  The large 

number of simulations required for the numerical integration, which is more exact, 

greatly increases the computation time of this method.  The computation time for the 

numerical integration is about 10 times greater than for the Taylor  series  approximation.  
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Table 5.2.  Results compared to exact solutions for independent, non-censored data.  

 Numerical Integration of 
Likelihood Function 

Taylor series approximation 
of Likelihood Function 

( )YE y
µφσ K  0.10 0.10 

( )YE y
σφσ K  0.07 0.07 

( )YE y
ρφσ K  100.0 100.0 

 

The Taylor series approximation is therefore preferable to the numerical integration 

method for finding *φ
K

 to maximize the likelihood function.   

 

5.3.2  Using Prior Mean Model Parameters 

Another method of evaluating E(-G”) in Equations 5.4 and 5.5 is available by 

assuming that *φ
K

 does not depend on the data, yK , and is equal to the prior mean values of 

the model parameters, Φµ K
K .  The same procedure outlined in Section 5.2.2 is followed, 

except that 
*

2

i j

g

φ

⎛ ⎞−∂⎜ ⎟
∂φ ∂φ⎜ ⎟

⎝ ⎠K
 is evaluated at *φ

K
= Φµ K
K .  Although this approximate method still 

requires simulation of numerous sets of measurements in order to obtain a reasonable 

estimate of G”, the computation time is less than for the Taylor series approximation.  

This is because the values of *φ
K

 are assumed and the step of finding *φ
K

 to maximize the 

likelihood function is eliminated.  These two methods were compared with the simple 

model described in Section 5.2.2.  For each method, 1000 sets of 100 data points were 

simulated.   The expected updated standard deviations for each of the three model 

parameters were calculated to compare the two methods, and the results are shown in 

Tables 5.3 through 5.5.  The discrepancies between the two methods tend to increase with 

increasing correlation coefficient and increasing amount of censored data.  Therefore, the 
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Taylor series approximation method is preferable to using the prior mean values of the 

model parameters. 

 

5.3.3  Complete Analytical Approximation  

An analytical approximation may be developed by making two assumptions:  (1) 
*φ
K

 does not depend on the data, yK , and is equal to the prior mean values of the model 

parameters, Φµ K
K , and (2) censored data points are equal to the mean of the censored region 

for that data point, 
jY ,ulµ , when calculating the conditional moments.  The derivation of 

the analytical method using these assumptions is presented in Appendix D.  The 

advantage of this analytical method is that it does not involve any numerical simulations, 

therefore greatly reducing the required computation time. 

The complete analytical method and the Taylor series approximation method were 

compared using the simple model described in Section 5.2.2.  The expected updated 

standard deviations for each of the three model parameters were calculated to compare 

the two methods, and the results are shown in Tables 5.3 through 5.5.  The discrepancy of 

the complete analytical approximation results compared to the Taylor series 

approximation increases with increasing correlation coefficient and increasing amount of 

censored data.  Therefore, the Taylor series approximation is preferable for all cases 

except non-censored, statistically independent data.  
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Table 5.3.  Expected updated standard deviation of mean model parameter, µφ , evaluated 
with different methods. 

Amount of 
Censored 

Data 

Correlation 
between 
Adjacent 

Measurements 

Numerical 
Simulation 

with *φ
K

 
Maximizing 
Likelihood 

Numerical 
Simulation 

with *φ
K

 = Φµ K
K  

Analytical 
Approximation

0.0 0.1 0.1 0.10 

0.25 0.13 0.13 0.12 

0.50 0.17 0.17 0.16 0% 

0.75 0.26 0.26 0.22 

0.0 0.10 0.10 0.10 
0.25 0.13 0.13 0.13 

0.50 0.18 0.17 0.16 25% 

0.75 0.26 0.25 0.21 

0.0 0.12 0.12 0.12 
0.25 0.16 0.15 0.14 

0.50 0.21 0.18 0.17 50% 

0.75 0.38 0.25 0.21 

0.0 0.20 0.20 0.18 
0.25 0.20 0.22 0.19 

0.50 0.20 0.24 0.21 75% 

0.75 0.23 0.29 0.23 

 



 99

Table 5.4.  Updated standard deviation of the standard deviation model parameter, σφ , 
evaluated with different methods. 

Amount of 
Censored 

Data 

Correlation 
between 
Adjacent 

Measurements 

Numerical 
Simulation with 

*φ
K

 Maximizing 
Likelihood 

Numerical 
Simulation 

with *φ
K

 = Φµ K
K  

Analytical 
Approximation 

0.0 0.07 0.07 0.07 
0.25 0.08 0.07 0.08 
0.50 0.09 0.09 0.09 

0% 

0.75 0.13 0.13 0.12 
0.0 0.09 0.09 0.09 
0.25 0.09 0.09 0.09 
0.50 0.11 0.10 0.10 

25% 

0.75 0.15 0.13 0.13 
0.0 0.11 0.11 0.11 
0.25 0.12 0.11 0.11 
0.50 0.14 0.12 0.12 

50% 

0.75 0.25 0.16 0.15 
0.0 0.17 0.17 0.16 
0.25 0.17 0.17 0.16 
0.50 0.18 0.18 0.17 

75% 

0.75 0.21 0.21 0.20 

 



 100

Table 5.5.  Updated standard deviation of correlation model parameter, ρφ , evaluated 
with different methods. 

Amount of 
Censored 

Data 

Correlation 
between 
Adjacent 

Measurements 

Numerical 
Simulation 

with *φ
K

 
Maximizing 
Likelihood 

Numerical 
Simulation 

with *φ
K

 = Φµ K
K  

Analytical 
Approximation

0.0 100 100 100 
0.25 0.28 0.28 0.29 
0.50 0.25 0.25 0.25 

0% 

0.75 0.31 0.30 0.29 
0.0 100 100 100 
0.25 0.32 0.30 0.31 
0.50 0.28 0.26 0.26 

25% 

0.75 0.33 0.30 0.29 
0.0 100 100 100 
0.25 0.40 0.34 0.36 
0.50 0.35 0.29 0.30 

50% 

0.75 0.52 0.34 0.33 
0.0 100 100 100 
0.25 0.57 0.45 0.49 
0.50 0.56 0.39 0.40 

75% 

0.75 0.86 0.45 0.43 
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5.4  EFFECT OF CENSORED DATA FOR NON-NORMALLY-DISTRIBUTED DATA 

The approximate methods described in Section 5.3 for normally-distributed data 

were also tested for non-normally-distributed data.  These approximate methods did not 

work for non-normally-distributed data, and therefore the only method available for 

evaluating the expected updated moments of model parameters for non-normally-

distributed data is the numerical integration method described in Section 5.3.3.   

To evaluate the effect of censored data with the case of non-normally-distributed 

data, a standard lognormal distribution was evaluated.  The standard lognormal 

distribution is highly skewed, as shown in Figure 5.9.  A standard lognormal distribution 

has the following properties: 

 

λ = E(ln X) = 0 

ζ 2 = Var(ln X) = 1  

 

The mean and standard deviation of the standard lognormal distribution are therefore 

1.647 and 2.162, respectively.  The simple model described in Section 5.2.1 was used to 

model the mean, standard deviation, and correlation coefficient between measurements.  
The values of µφ  and σφ  are therefore 1.647 and 0.771, respectively.  The value of the 

correlation parameter, ρφ , depends on the desired correlation between measurements.  A 

value of 0.1 was used for no correlation between measurements, and a value of 1.98 was 

used for a correlation of 0.25 between adjacent data points.  

A fifth-order Hermite Polynomial was used to transform this non-normal 

distribution into a normal distribution  (Section 3.3.7.1).   The  values  for  the  fifth-order 
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Figure 5.9.  Comparison of standard normal distribution and standard lognormal 
distribution. 
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Three cases were considered for the lognormal distribution:  (1) statistically 

independent data with no censoring, (2) data with a correlation of 0.25 between adjacent 

points and no censored data, and (3) data with a correlation of 0.25 between adjacent 

points and 25 percent censored data.  As for normally-distributed data, the estimated 

mean values of the model parameters were examined for bias and the effect of censored 

data on the standard deviations of the model parameters was determined.   

 The results for the mean values of the model parameters are shown in Table 5.6.  

The 95-percent confidence intervals for the mean values are also shown in this table.  

These results for the lognormal distributions are similar to the results for the normal 

distributions, with no bias in the estimated mean values of the model parameters for the 

mean, standard deviation, and correlation model parameters.  The estimated values of the 

Hermite Polynomial coefficients tend to be slightly different than the true model values.  

This is due to the nature of the Hermite Polynomials, since different values for the 

coefficients can result in similarly shaped distributions.  The standard normal inverses of 

the cumulative distribution functions for the lognormal distributions are shown in Figures 

5.10 through 5.12.  These figures show that the shape of the estimated distributions, 

which are determined by the Hermite Polynomial model parameters, follow the 

distribution of the true model almost exactly.   

The probability distributions for the lognormal distributions, as shown in the 
standard  normal  inverse of the  cumulative  distribution,  ( )1

YF y− ⎡ ⎤Φ ⎣ ⎦ ,  in  Figures 5.10 

through  5.12  may be used to find percentile values.    For  example,  the standard normal 
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Table 5.6.  Estimated mean values and 95 percent confidence intervals for the mean 
values for lognormal distributions. 

Model 
Parameter 

 
True Model 

Values 

Case 1:  
No Censored 
Data, ρadj=0 

Case 2: 
No Censored 

Data, ρadj=0.25 

Case 3: 
25% Censored 
Data, ρadj=0.25 

µφ  1.647 1.68 
(1.64, 1.72) 

1.66 
(1.61, 1.70) 

1.73 
(1.67, 1.79) 

σφ  0.771 0.76 
(0.73, 0.80) 

0.74 
(0.71, 0.78) 

0.78 
(0.75, 0.81) 

ρφ  0.1 for ρadj=0 
1.98 for ρadj=0.25 

-8.11 
(-8.61, -7.61) 

1.99 
(1.96. 2.02) 

2.00 
(1.95, 2.05) 

'
2ψ

φ  -1.003 -1.24 
(-1.29, -1.19) 

-1.23 
(-1.28, -1.19) 

-1.26 
(-1.34, -1.18) 

'
3ψ

φ  0.916 0.91 
(0.86, 0.95) 

0.90 
(0.86, 0.94) 

0.94 
(0.89, 0.99) 

'
4ψ

φ  -0.645 -1.05 
(-1.22, -0.88) 

-1.01 
(-1.21, -0.81) 

-0.92 
(-1.21, -0.63) 

'
5ψ

φ  0.252 0.65 
(0.34, 0.96) 

0.64 
(0.35, 0.93) 

1.20 
(0.83, 1.57) 

 

 

inverse of 0.90 is 1.28.  The 90th percentile value, y0.90, is the value of y that corresponds 
to the ( )1

YF y− ⎡ ⎤Φ ⎣ ⎦  value of 1.28.  The y0.90 for Case 1 (Figure 5.10) is therefore 3.18.  

The 95-percent confidence bounds on the estimated mean model values are also shown in 

Figures 5.10 through 5.12.  For the y0.90 value for Case 1, the lower 95-percent 

confidence bound is 2.69 and the upper bound is 4.27.  In all three cases of the standard 

lognormal distribution the 95-percent confidence interval becomes wider in the right tail 

of the distribution.  This means that the ability to predict a percentile value decreases as 

the percentile increases.   
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Figure 5.10.  Probability distribution for Case 1, a standard lognormal distribution with 
no censored data and statistically independent data. 
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Figure 5.11.  Probability distribution for Case 2, a standard lognormal distribution with 
no censored data and correlated data. 
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Figure 5.12.  Probability distribution for Case 3, a standard lognormal distribution with 
censored and correlated data. 
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The confidence bounds for the 99th percentile value, y0.99, are shown in Table 5.7 

for the three lognormal cases.  The width of the 95-percent confidence interval is smaller 

for Case 2 than for Case 1, indicating that correlated data increase the confidence in the 

percentile estimates.  The width of the 95-percent confidence interval is greatest for Case 

3, which is censored, correlated data.  This indicates that censoring decreases the 

confidence in the percentile estimates. 

 

Table 5.7.  Confidence in 99th percentile estimates for the standard lognormal 
distribution. 

 

Case 1:  
No Censored Data, 

ρadj=0 

Case 2: 
No Censored Data, 

ρadj=0.25 

Case 3: 
25% Censored Data, 

ρadj=0.25 
99th percentile value, 

y0.99 
10.68 10.34 10.61 

Lower 95-percent 
confidence bound 8.23 8.30 8.09 

Upper 95-percent 
confidence bound 13.14 12.38 13.13 

Width of 95-percent 
confidence interval 4.91 4.07 5.03 
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5.5  SUMMARY 

The effects of censoring on both normally-distributed and non-normally 

distributed  data  were  discussed  in this chapter.   Censoring  does  not  cause  bias in the 

estimated mean values of the model parameters found with the FOSM Bayesian method.  

The amount learned about the model parameters from the data decreases as the amount of 

censoring increases, due to the uncertainty in the value of the censored data.  Different 

methods for evaluating the expected updated variance in model parameters with censored 

data were compared.  For normally-distributed data, the method that uses a Taylor series 

approximation for the natural logarithm of the likelihood function was found to be the 

most accurate and the most practical in terms of computation time.  However, for non-

normally-distributed data, this approximate method does not work and numerical 

integration must be used.   
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Chapter 6.  Case Study Application – Model for Measured    
Contaminant Concentrations 

 

6.1  INTRODUCTION  

The French Limited site, a Superfund site located near Houston, Texas, was 

selected as an application for the FOSM Bayesian method developed for censored data.  

Censored data occur at this site in the form of groundwater concentrations that are 

reported as below the detection limit.  These censored data play an important role at the 

site in determining the extent of contamination and the effect of remediation.  The 

concentrations of benzene, a major contaminant of concern at the French Limited site, are 

modeled so that the model parameters may be calibrated with measurements from the 

site.  In this chapter, background information is given about the French Limited site, 

including the history, hydrogeologic characteristics, investigation, and remediation of the 

site.  The model used for the mean benzene concentrations before remediation is 

presented, along with the modifications to the model that account for the effects of 

remediation by source removal and biodegradation.  The models used for the covariances 

and distributionn of benzene concentrations in the groundwater at the site are also 

presented.   

 

6.2  FRENCH LIMITED SITE 

In this section, background information about the French limited site is presented, 

beginning with a general description of the site.  The hydrogeology of the site is 

described, as well as the investigation and remediation efforts that have occurred at the 

site. 
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6.2.1  Site Description 

The French Limited site is located in Harris County, Texas.  The site and vicinity 

are shown in Figure 6.1.  The main feature of the 22.5-acre site is a 7.3-acre lagoon, 

which was formed by sand-mining operations conducted from the late 1950s through 

1965.  The lagoon was then operated as a permitted, unlined waste disposal facility 

between 1966 and 1972.  The facility received a variety of petrochemical and wood 

preservative wastes, as well as other unknown materials.  Operators estimate that 

80,000,000 gallons (96,000 m3) of waste were placed in the lagoon during the facility’s 

active life.   The wastes formed a sludge layer at the bottom of the lagoon with high 

concentrations of organic compounds and metals.  The site was placed on the National 

Priority List in 1982 and was designated for remediation under the Comprehensive 

Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), also 

known as “Superfund.”    

Contamination spread beyond the triangular-shaped boundaries of the site, 

particularly to the south.  The responsible parties were given access rights to the 

properties south of the actual property boundaries of the French Limited site, with the 

access rights extending 30 years post-closure.  For the remainder of this study, the term 

“site” will refer to the entire contaminated or monitored area within and beyond the 

actual property boundaries. 

 

6.2.2  Site Hydrogeology 

The French Limited site lies within the 100-year floodplain of the San Jacinto 

River.  Floods occurred in 1969, 1973, 1979, and 1983 that resulted in overflowing of the  
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Figure 6.1.   Map of French Limited site and vicinity (from Applied Hydrology 
Associates, 1989). 
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lagoon, releasing its contents into surrounding areas.  A sheet-pile wall was constructed 

around the waste lagoon in 1989 to provide containment of the lagoon contents during 

flood events.   

The site is located in an abandoned meander belt of the San Jacinto River, which 

contains alluvial deposits consisting of poorly consolidated sands, silty sands, gravels, 

and clay (Applied Hydrology Associates, 1989).   The alluvial deposits range in depth 

from 6 to 17 m and are mostly saturated.  Groundwater in this shallow aquifer system 

generally flows to the south.    The Beaumont clay formation underlies the alluvial zone, 

forming a 20 to 30 m thick confining layer.   

Although conditions throughout the site, both laterally and vertically, are quite 

heterogeneous, the upper alluvial zone has been divided into four distinct strata, from the 

surface downwards: 

 

UNC – uncompacted stratum consisting mostly of loose silty sands 

S1 – sandy stratum with some gravel 

C1 – clay stratum 

INT – interbedded silts, clays, and sands 

 

The UNC, S1, and INT strata are essentially continuous over the French Limited 

site, while the C1 stratum is absent in some areas of the site.   

 

6.2.3  Groundwater Investigation 

Investigation of the French Limited site began in 1981.  Between 1981 and 1989, 

approximately 40 monitoring wells were sampled periodically, and the samples were 

tested for a variety of contaminants.  During the 1980s, benzene was the primary 
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contaminant of concern and was chosen as an indicator contaminant due to its high 

solubility, mobility, and carcinogenic character.  Other contaminants found in the 

groundwater include toluene, vinyl chloride, acetone, 1,2-dichlorethane, arsenic, and 

lead.   

Monitoring wells installed at the French Limited site are shown in Figure 6.2.  

During the 1980s, the entire upper alluvial zone was considered as one aquifer.  

Monitoring wells were screened over long intervals and often included multiple strata.  

Wells installed in the 1980s are labeled ERT, REI, and GW.   During the 1990s, the S1 

and INT strata were considered as separate aquifers.  Monitoring wells installed during 

this time were screened over one of these strata, and were labeled accordingly with S1 or 

INT. 

In 1992, a dense non-aqueous phase liquid (DNAPL) was discovered in three 

wells south of the lagoon.  After further investigation, a sheet-pile containment wall was 

constructed around the DNAPL source area. 

 

6.2.4  Site Remediation 

Active remediation of the French Limited site occurred between January 1992 and 

December 1995.  The main component of remediation consisted of bioremediation of the 

lagoon contents, which began in 1992 and was completed in 1993.  The lagoon was then 

backfilled with clean soil in October 1994.   

Active remediation of the groundwater to the south of the lagoon occurred 

between February 1992 and December 1995.  The remediation method for the 

groundwater at the site was chosen based on the monitoring data from the ERT, REI, and 

GW wells.   Traditional pump-and-treat remediation was performed using 54 withdrawal 

wells in the INT stratum and 48 withdrawal wells in the S1 stratum.  Treated groundwater  
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Figure 6.2.  Monitoring wells at French Limited site. 
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was re-injected with 19 injection wells in the INT stratum and 9 wells in the S1 stratum.  

These injection wells also supplied oxygen, nitrogen, and potassium to the groundwater 

to promote biodegradation of the contaminants (ENSR 1991).  All active remediation 

activities ended in December 1995.   

Contamination remained in the shallow groundwater at the end of active 

remediation.  Natural attenuation was chosen as the remediation method for the 

remaining contamination.   The natural attenuation of the groundwater will be further 

discussed in Chapter 7.   

 

6.3  MODEL FOR BENZENE CONCENTRATIONS 

The model developed for the distribution of measured concentrations at the 

French Limited site is presented in this section.  The model consists of three components:  

the mean, covariance, and distribution of the concentration measurements.  The 

Horizontal Plane Source model (Galya 1987) was chosen to model the mean benzene 

concentrations at the site.  The equations and parameters used in this model, as well as 

the modifications to the model to account for the effects of remediation on contaminant 

concentrations, are described.  The model for the covariance of the data from the site, 

which considers correlations with measurement distance and time and also accounts for 

random errors in sampling, is then presented.  Finally, the model for the distribution of 

the measurements is described.    These models were developed based on the models used 

by McBrayer (1999) and Muchard (1997). 
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6.3.1  Model for Mean Concentrations 

The mean contaminant concentrations in the groundwater at the French Limited 

site were modeled with a Horizontal Plane Source (HPS) model (Galya 1987).   The 

probable source of contamination at the site was the waste lagoon, which covers a large 

area (7.3 acres).  The plane source more accurately models this large probable 

contaminant source area than a point or line source.  Also, the HPS model assumes 

constant aquifer properties and is therefore simple enough to be practically implemented 

in model calibration. 

The concentration of a contaminant at any time and at any point in an aquifer is 

expressed as follows (Galya 1997): 

 
c

0

t

S c 0 c c 0 c c 0 c c
T

1C(x, y, z, t) M ( )D(t )X (x , t )Y (y , t )Z (z , t )d
nR

= τ − τ − τ − τ − τ τ∫  (6.1) 

 

The parameters used in the functions of this equation and throughout the rest of this 

chapter are listed in Table 6.1.   

A parameter, θ, was introduced to the model so that the groundwater flow could 

be in any direction away from the plane source.  The geometric parameters of the model 

are illustrated in Figure 6.3 and equations for calculating these parameters are as follows: 

 
 ( ) ( )c s sx x X cos y Y sin= − θ+ − θ  (6.2) 

 
 ( ) ( )c s sy x X sin y Y cos= − − θ+ − θ  (6.3) 

 

 c sz Z z= −  (6.4) 
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Table 6.1.  Summary of parameters used in the Horizontal Plane Source model. 

Parameter Description 
x X-Coordinate at which the concentration is evaluated 
y Y-Coordinate at which the concentration is evaluated 
z Z-Coordinate at which the concentration is evaluated 
t Time at which the concentration is evaluated 

Xs X-Coordinate at center of plane source 
Ys Y-Coordinate at center of plane source 
Zs Z-Coordinate at plane source 
T0 Contaminant release start time 
xc Longitudinal distance between source center and evaluation point  
yc Transverse distance between source center and evaluation point 
zc Vertical distance between plane source and evaluation point 
tc Time between evaluation time and contaminant release start time 

θ Groundwater flow direction 

τ Time variable for integration 
Tr Time that remediation occurs 
k First-order decay coefficient for contaminant 
k1 First-order decay coefficient for contaminant before remediation 
kr First-order decay coefficient for contaminant after remediation 

T1/2 Contaminant half-life 
T1/2,1 Contaminant half-life before remediation 
T1/2,r Contaminant half-life after remediation 
Co Contaminant concentration at source 
L Source length (in x-direction) 
W Source width (in y-direction) 
B Aquifer thickness 

Hw Well height 
n Aquifer porosity 
R Contaminant retardation Factor 
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Table 6.1 (continued) 
 

v Groundwater seepage velocity 
aL Longitudinal dispersivity (parallel to direction of groundwater flow) 
aT Transverse dispersivity (perpendicular to direction of groundwater flow) 
aV Vertical dispersivity  
Er Fraction of source remaining after remediation 

 

       In Equation 6.1, MS(τ) refers to the mass release rate at time τ.  For the French 

Limited site, the mass release rate was considered constant in the time period before 

remediation and in the time period after remediation.  Johnson and Pankow (1992) give 

the following function for the surface-area average rate of mass release from a pool of 

solvent: 

 

 
2

V
S o

4a vM C nLW
L

=
π

 (6.5) 

 

Although this equation was intended for mass release from a pool of solvent, the 

derivation of the equation is not unique to solvents and may be used for any contaminant 

release from a rectangular source into groundwater.  Equation 6.5 was therefore used as 

the mass release rate for the contaminant source at the French Limited site.     

The D term in Equation 6.1 is a function to represent the decay of contaminants 

due to biodegradation or chemical reactions.  For first-order decay, the function is 

expressed in terms of the first-order decay coefficient, k: 
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Figure 6.3.  Geometric parameters of the Horizontal Plane Source model. 
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 ( )cD exp kt= −  (6.6) 

 

where k is a function of the half-life of the contaminant: 

 

 1/ 2ln Tk
2

=  (6.7) 

 

X0 and Y0 are Green’s function solutions for a horizontal plane source, found by 

integrating a point source solution over the length and width of the plane source.  The x-

direction is the direction of groundwater flow, or longitudinal direction, while the y-

direction is perpendicular to the groundwater flow, or the transverse direction.  The 

Green’s function solutions are presented by Galya as follows: 

 

 

c c
c s c s

0
L c L c

vt vtL Lx X x X
1 2 R 2 RX erf erf

2L 4a vt 4a vt
R R

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − − − + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥= +
⎢ ⎥
⎢ ⎥⎣ ⎦

 (6.8) 

 
 

 
c s c s

0
T c T

W Wy Y y Y
1 2 2Y erf erf

2W 4a vt 4a vt
RR

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥= +
⎢ ⎥
⎢ ⎥⎣ ⎦

 (6.9) 

 

The Z0 term is the Green’s function solution in the vertical direction for an aquifer 

of thickness b, as obtained by Carslaw and Jaeger (1959) by adding an infinite number of 

image sources: 
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2 2

V c s
0 2

i 1

i a vt i z i Z1Z 1 2 exp cos cos
b b R b b

∞

=

⎡ ⎤⎛ ⎞π π π⎛ ⎞ ⎛ ⎞= + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

∑  (6.10) 

 

The number of terms used in the summation in the above equation may be 

determined as follows: 

 

 
( )V

b 25RN 1
a v t∞

⎛ ⎞= + ⎜ ⎟π − τ⎝ ⎠
 (6.11) 

 

The Galya model finds the contaminant concentration at a discrete point in the 

aquifer.  Since monitoring wells are screened over a vertical interval, the concentration 

found in the well may be approximated by averaging the concentrations of the discrete 

points in the vertical interval of the well screen.  This average is calculated by integrating 

the concentration along the screen interval of the well, Hw: 

 
 

 
w c

0

H t

S c 0 c c 0 c c 0 c c
w 0 T

1C(x, y,z, t) M ( )D(t )X (x , t )Y (y , t )Z (z , t )dτdz
H nR

= τ − τ − τ − τ − τ∫ ∫ (6.12) 

 

The concept of the time variable for integration, τ , for the convolution integral of 

Equations 6.1 and 6.12 is illustrated in Figure 6.4.   The integral is evaluated for τ  values 

between the initial time of contaminant release, T0, to the evaluation time of the 

concentration, tc.  In Figure 6.4, three τ  values are shown, whereas an infinite number of 

τ  values would theoretically be used in the integration.  At each time τ , a contaminant 

mass release rate from the source, Ms( τ ), is determined.  The travel time of the 

contaminant   released  at  time  τ   is  ( )ct − τ .     The  advection  and  dispersion  of   the  
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Figure 6.4.   Conceptual illustration of convolution integral for calculating contaminant 
concentration. 
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contaminant mass released during time dτ is therefore calculated with the Green’s 
function evaluated with the travel time, ( )ct − τ .  The decay of the contaminant mass 

released over dτ is calculated with the decay function for the travel time of the 
contaminant mass, ( )ct − τ .  By integrating from T0 to tc, the advection, dispersion, and 

decay of the contaminant released over that time are effectively summed to determine the 

contaminant concentration at a particular location and time.  Since Equation 6.12 may not 

be integrated analytically, the Gauss-Kronrod Quadrature method for numerical 

integration was used for the integration.   

As discussed in McBrayer (1999) and Muchard (1997), the approximations used 

in the FOSM Bayesian method are more exact with more linear models, and the natural 

logarithm of the model-predicted concentrations is more likely to be linear than the non-

transformed concentrations.  Also, using the natural logarithm of the concentration 

prevents predictions of negative concentrations.  Therefore, the natural logarithms of the 

benzene concentration measurements from the French Limited site are calibrated with the 

natural logarithms of the concentrations modeled with Equation 6.12.   The natural 

logarithm of a benzene measurement is denoted as Yi: 

 
 ( )i i i i iY ln C x , y , z , t⎡ ⎤= ⎣ ⎦  (6.13) 

 

 

6.3.2  Model Parameters for Remediation Effects 

This study considered the effects of remediation at the French Limited site.  The 

groundwater model therefore needed to consider conditions both before and after 

remediation.  Both the mass release rate, Ms, and the first-order decay coefficient, k, are 

expected to change after remediation.  The subscript “1” will refer to conditions at the 
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site before remediation, and the subscript “r” will refer to conditions at the site after 

remediation.   

The mass release rate before remediation, Ms1, is found with the mass release rate 

of Equation 6.5: 

 

 
2

V
s1 o

4a vM C nLW
L

=
π

 (6.14) 

 

A main component of the remediation of the French Limited site was 

bioremediation of the lagoon contents, which attempted to remove the source of 

contamination.  A new parameter, Er, was introduced to represent the effectiveness of the 

remediation in removing the contaminant source.  This parameter represents the fraction 

of the source remaining after remediation.  For example, if Er is 0.10, then the mass 

release rate after remediation is reduced to only ten percent of the mass release rate 

before remediation.  The mass release rate after remediation, Msr, is therefore: 

 

 
2

V
sr r s1 r o

4a vM E M E C nLW
L

= =
π

 (6.15) 

 

At the French Limited site, it was believed that bioremediation of the 

contaminants in the groundwater would increase after remediation.  The first-order decay 

coefficient before remediation, k1, is determined by the half-life of the contaminant 

before remediation, T1/2,1: 

 

 1/ 2,1
1

ln T
k

2
=  (6.16) 
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To account for the expected increased bioremediation after remediation, a 

contaminant half-life for the condition after remediation was introduced as T1/2,r.  The 

degradation after remediation is then: 

 

 1/ 2,r
r

ln T
k

2
=  (6.17) 

 

These remediation factors are incorporated in the convolution integral of Equation 

6.12 by considering if the time at which the concentration is evaluated, tc, and the value 

of the time variable for integration, τ, are before or after the time of remediation, Tr.  The 

relation of these times to the remediation factors is shown in Figure 6.5.  Since the mass 

release rate term in Equation 6.12 is a function of τ, the appropriate mass release rate to 

use while integrating is determined by whether or not τ is before or after the time of 

remediation: 

 

 ( ) s1 r
s

sr r

M     if T
M

M     if T  
τ ≤⎧

τ = ⎨ τ >⎩
 (6.18) 

 

  The decay term in Equation 6.12 is a function of contaminant travel time, (tc - τ).  

The first-order decay coefficient used in the D(tc - τ) term must therefore be determined 

by whether or not the interval of (tc - τ) is entirely before Tr, entirely after Tr, or spans Tr.  

If (tc - τ) is entirely before Tr, k1 is used in D(tc - τ), while if (tc - τ) is entirely after Tr, kr 

is used in D(tc - τ).  When the span of (tc - τ) includes Tr, the first-order decay coefficient 

used in D(tc - τ) is a weighted average of k1 and kr.  The first-order decay coefficient may 

therefore be determined as follows: 
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Figure 6.5.   Illustration of remediation factors used to calculate contaminant 
concentration. 
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6.3.3  Model for Covariance of Data 

The covariance between the groundwater measurements is determined by the 

variance of each groundwater measurement and by the correlation between different 

measurements.  Since the natural logarithm of the benzene measurements is calibrated 

with the natural logarithm of the modeled concentration (Section 6.3.1 and Equation 

6.13), the covariances are calculated between the natural logarithm of measurements.  

The covariance between the natural logarithm of two of measurements, Yi and Yj, is 

found as follows: 

 
 ( ) ( ) ( )i j i, j i jCov Y , Y Var Y Var Y= ρ  (6.20) 

 

The variance for each measurement is found as the variance in the natural 

logarithm of the concentration, Yi: 

 
 ( ) ( )2 2

i iVar Y L= δ Γ  (6.21) 

 

The δ2 term in this equation represents the uncertainty in the model-calculated 

concentrations.  It is important to note that the variance for the natural logarithm of 

concentration is constant for a given value of δ.  This means that the coefficient of 
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variation for the concentration itself (not transformed with the natural logarithm) will be 

approximately constant and the variance will increase with increasing concentration. 

Since the wells are screened over a vertical interval and the concentrations are 

calculated by averaging over this interval (Equation 6.12), the variance in the natural 

logarithm of the concentration is smaller than it would be for a point measurement.  A 

variance reduction factor is therefore used due to vertical averaging in the well 

(Vanmarcke 1983): 

 

 ( )
2

2 z i i
i 2

i z z

2L 2LL exp 1
2L

⎛ ⎞⎛ ⎞λ
Γ = + − −⎜ ⎟⎜ ⎟λ λ⎝ ⎠⎝ ⎠

 (6.22) 

 

where: 

Li = length of well screen i 

λz = vertical scale of fluctuation for a point measurement 

 

The scale of fluctuation in the vertical dimension, and in other dimensions, is the 

separation distance at which the two measurements will both be consistently greater than 

or less than the model-predicted values.   

 Concentration measurements may be correlated with one another based on their 

separation with distance in the longitudinal (x), transverse (y), vertical (z), and temporal 

(t) dimensions.  The correlation may be reduced because of random error (e).  Also, 

measurements may be correlated on the basis of whether they were taken before or after 

remediation (r).  A separable correlation structure (Vanmarcke 1983) is used to combine 

all of these possible measurement correlations: 
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 i, j x y z t e rρ = ρ ρ ρ ρ ρ ρ  (6.23) 

 

where: 

ρi,j = correlation between measurement i and measurement j 

ρx = spatial correlation coefficient for the longitudinal direction 

ρy = spatial correlation coefficient for the transverse direction 

ρz = spatial correlation coefficient for the vertical direction 

ρt = temporal correlation coefficient  

ρe = correlation coefficient due to random error 

ρr = correlation coefficient for measurements before/after remediation 

 

The longitudinal, transverse, and temporal correlation coefficients were calculated 

with an exponential function that keeps the correlation coefficient between –1.0 and +1.0.  

The correlation depends on the distance between the two measurements in dimension D 

and the scale of fluctuation, λD, in that dimension: 

 

 D
D

D

exp 2
⎛ τ ⎞

ρ = −⎜ ⎟λ⎝ ⎠
 (6.24) 

 

where: 

ρD = spatial correlation coefficient for the longitudinal, transverse, or temporal 

dimension 

τD = distance between the measurements in dimension D 

λD = scale of fluctuation for the longitudinal, transverse, or temporal dimension 
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Figure 6.6 shows sample correlations for different scales of fluctuation according 

to separation distance or time between measurements.  At the same separation between 

two measurements in distance or time, the correlation coefficient increases as the scale of 

fluctuation increases. 

The vertical correlation coefficient used for the correlation between two screened 

wells is the correlation coefficient for two vertical averages defined by Vanmarcke 

(1983): 

 

 
( ) ( )

( ) ( )

3
k 2

k k
k 0

z 2 2
i i i j

1 T T
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=

− Γ
ρ =

Γ Γ

∑
 (6.25) 

 

where: 

Li = length of well screen i 

Lj = length of well screen j 

Γ2 = variance reduction factor defined in Equation 5.17 

T0 = distance between bottom of screen i and top of screen j 

T1 = distance between top of screen i and top of screen j 

T2 = distance between top of screen i and bottom of screen j 

T3 = distance between bottom of screen i and bottom of screen j 

 

The T0 through T3 terms of this equation are illustrated in Figure 6.7.   

Random error due to natural variability in subsurface conditions, sampling 

variation, and measurement variations may occur.  When two samples are taken at the 

same time from the same well, it is unusual for the concentrations to be identical.  A 

reduction  in  the  correlation  between  measurements  is  therefore  included,   so that the  
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Figure 6.6.  Correlation coefficients for longitudinal, transverse, and temporal 
dimensions. 
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Figure 6.7.  T parameters for vertical averaging correlation coefficient. 
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correlation may be less than 1.0 even if two measurements are taken at the same location 

and same time.  An exponential function is used for this correlation: 

 

 e
e

1exp
⎛ ⎞

ρ = −⎜ ⎟λ⎝ ⎠
 (6.26) 

 

In this correlation function, λe determines the magnitude of the random error and 

is inversely proportional to the random error.  A high value of λe gives a high correlation 

coefficient, indicating a low random error and a small reduction in correlation due to 

random error.  At low values of λe, the correlation coefficient is small, indicating a large 

random error.  The effect of λe on the correlation coefficient is illustrated in Figure 6.8. 

Since the contamination conditions at the site are likely to be very different after 

remediation than before remediation, the correlation is reduced between a measurement 

that is made before remediation of the site and a measurement that is made after 

remediation of the site.  The correlation is not reduced for measurements that are both 

before remediation or both after remediation.  The resulting correlation function to 

account for remediation is: 

 
 

 r
r

r

exp
⎛ ⎞τ

ρ = −⎜ ⎟λ⎝ ⎠
 (6.27) 

where:  

 

r

0   if both measurements are before or after remediation
1   if one measurement is before remediation and one is after remediation

⎧
τ = ⎨

⎩
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Figure 6.8.  Correlation reduction due to random variability or remediation status. 
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6.3.4  Distribution for Natural Logarithm of Measurements 

The distribution of the natural logarithm of the benzene concentration 

measurements is modeled as a potentially non-normal distribution.  A fifth-order Hermite 

Polynomial transform function (Section 3.4.7) was used to allow a non-normal 

distribution of the natural logarithm of the concentrations.  Therefore, four additional 

model parameters were added: '
2ψ  through '

5ψ . 

 

6.4  SUMMARY 

In this chapter, background information about the French Limited site was given.  

This site has extensive contamination from a variety of chemicals.  Benzene was chosen 

as the contaminant to be studied for this application, due to the amount of concentration 

measurements available and its recalcitrant and carcinogenic characteristics.  The 

Horizontal Plane Source model (Galya 1987) for concentration of a contaminant in an 

aquifer was chosen as the model for the mean benzene concentrations.  This model 

includes steady advection, mixing in three dimensions, and degradation of the 

contaminant.  Since data are available for both before and after remediation of the site, 

the groundwater model was modified to account for the effects of source reduction and 

enhanced bioremediation of the contaminant.  The covariances of the data from the site 

were modeled, considering correlations with measurement distance and time and also 

accounting for random errors in sampling.  Also, the distribution of the data was modeled 

so that the data could have a normal or a non-normal distribution. 



 137

Chapter 7.   Case Study Application – Calibration of            
Groundwater Model 

 

7.1  INTRODUCTION 

In the previous chapter, the French Limited site was described and models were 

developed for the mean, variance, correlation, and distribution of the benzene 

concentrations in the groundwater at the site.  In this chapter, these models are calibrated 

with the concentration measurements from the site using the FOSM Bayesian method for 

data analysis (including censored measurements and allowing for non-normal data 

distribution), and the results of the model calibration are discussed.   

 

7.2   MODEL CALIBRATION 

This section discusses the data used in the calibration, the model parameters 

calibrated, and the method of calibration.  Data from the French Limited site were 

calibrated to the models in Chapter 6 for the mean, covariances, and distribution of 

contaminant concentrations in groundwater.  The calibration was performed using a 

computer program for the FOSM Bayesian method for data analysis, incorporating the 

censored data and allowing the data to have a non-normal distribution.  Benzene was 

chosen as the contaminant modeled because it was the major contaminant of concern at 

the site.   As one of the most recalcitrant of the contaminants present at the site, benzene 

is a good indicator of the extent of contamination.  Also, more benzene concentration 

measurements were available than for any other contaminant at the site. 
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7.2.1  Data from the French Limited Site 

Data for the calibration consisted of benzene concentrations measured in samples 

from monitoring wells at the French Limited site.  The well locations are shown in Figure 

6.2.   

Data were available from 36 wells that were sampled prior to remediation of the 

site.  There were 233 total measurements from these wells, including 68 (29 percent) 

censored measurements.  The sampling dates ranged between 1981 and 1989.  These 36 

wells were not sampled after remediation.   

Active remediation of the groundwater at the site occurred from 1992 to 1995.  

The remediation of the groundwater consisted of withdrawal of groundwater for 

treatment, re-injection of treated groundwater, and injection of oxygen and nutrients to 

promote biodegradation.  Concentration measurements taken during remediation were not 

used in the model calibration due to the disrupted groundwater flow during this time 

period. 

For the post-remediation period, data were available from 28 wells that were 

sampled quarterly beginning in January 1996.  The original post-remediation plan for the 

groundwater was to let natural attenuation complete the remediation process.  However, 

contaminant concentrations did not decrease as quickly as expected.  In April 1998, 

oxygen and nutrients were once again added to the aquifer to promote increased rates of 

biodegradation.  The model calibration therefore used quarterly monitoring data through 

February 1998.  Of the 281 post-remediation measurements used in the calibration, 196 

(70 percent) were censored.  A comparison of the total number of measurements and the 

number of censored measurements in the periods before and after remediation is shown 

in Figure 7.1. 
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Figure 7.1.  Summary of benzene concentration data available from the French Limited 
site. 

 

The well locations and screened intervals for the wells used in this study are 
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with the data include parameters for the HPS model to find the mean values of the natural 

logarithm of the concentration, and parameters for the variance in the natural logarithm of 

the concentrations.  Parameters for the Hermite Polynomial transform function, which 

accounts for the non-normality of the data, were also calibrated.   

Prior mean and standard deviation values for the mean and covariance model 

parameters were based on judgment, measurements from the site, and values found by 

McBrayer (1999).  A large value was used for the standard deviation when the prior mean 

value was considered very uncertain.  The prior values for the Hermite Polynomial 

parameters were set to zero, so that the prior distribution of the data for the natural 

logarithm of the concentration was a normal distribution.  Large prior standard deviations 

were used for the covariance and Hermite Polynomial parameters because these 

parameters were considered very uncertain for the data set to be calibrated.  The prior 

values and a brief definition of the calibrated parameters are given in Table 7.1. 

For most of these model parameters, it is physically impossible for their value to 

be below zero.  A lognormal distribution was therefore used to describe these model 

parameters, since the lognormal distribution does not allow negative values for a 

parameter.  All parameters had a lognormal distribution except Xs, Ys, Zs, θ, and ϕ2 

through ϕ5.   For these seven parameters, a normal distribution was used.   

The parameters listed in Table 7.2 appear in the HPS model, or are necessary for 

calculating parameters in the HPS model, but were not calibrated.  Initial attempts at 

calibrating these parameters showed that the model was not sensitive to these parameters 

and therefore these parameter values could be changed to physically unrealistic values.  

For example, based on soil properties found in borings, the porosity of the soil at the 

French Limited site should not be less than 0.15 or greater than 0.35.  The aquifer 

thickness and water table elevation at the site are reasonably well-known from site 
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exploration, averaging about 34 m and -4.6 m, respectively.  During the calibration 

process, the water table elevation would be moved to an elevation above the ground 

surface, or the aquifer thickness would become unreasonably small, without significantly 

influencing the model results.  The initial contaminant release time was based on the time 

that waste materials were initially dumped in the lagoon at the French Limited site, and 

the remediation start time was based on the date that remediation of the lagoon began.  

The exact dates that waste disposal and remediation of the lagoon affected the 

groundwater at the site are unknown; however, the calibration process would adjust these 

dates to times before waste disposal or remediation activities began, which is not 

physically possible.  The parameters listed in Table 7.2 were therefore kept constant 

throughout the calibration.   

Two model parameters that were calibrated, source elevation (Zs) and retardation 

(R), were initially kept constant at their prior values because they would also easily move 

to physically unrealistic values during the calibration process.  However, once a 

reasonable calibration of the other model parameters was completed, these two model 

parameters could be added and calibrated. 
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Table 7.1.  Prior values of model parameters used in calibration. 

Model 
Parameter 

Prior 
Mean 
Value 

Prior 
Standard 
Deviation Units Definition of Parameter 

Mean Model Parameters 
Xs 780 100 m X-Coordinate of source center 
Ys 350 50 m Y-Coordinate of source center 
Ls 29.1 25 m Source length 
Ws 415.7 100 m Source width 
θ 90 10 degrees Groundwater flow direction 
Co 15.8 100 g/m3 Concentration at source 
aL 21.3 10 m Longitudinal dispersivity 
aT 4.3 10 m Transverse dispersivity 
aV 0.6 10 m Vertical dispersivity 

T1/2 1825 10,000 days Half-life before remediation 
v 0.015 0.1 m/day Seepage velocity 
Er 0.01 100 -- Effect of remediation on source 

T1/2r 365 1000 days Half-life after remediation 
R 3 3 -- Retardation 
ZS -11 100 m MSL  Source elevation 

Covariance Parameters 
δ 2.56 1000 ln (g/m3) Component of variance of ln(C) 
λe 6.89 1000 -- Random variability in C 
λt 54.6 1000 days Temporal scale of fluctuation 
λx 19.0 1000 m Longitudinal scale of fluctuation 
λy 20.7 1000 m Transverse scale of fluctuation 
λz 1.47 1000 m Vertical scale of fluctuation 

λr 0.22 1000 -- Variability due to remediation 
status 

Data Distribution Parameters 
ψ2 0 100 -- Second-order Hermite coefficient 
ψ3 0 100 -- Third-order Hermite coefficient 
ψ4 0 100 -- Fourth-order Hermite coefficient 
ψ5 0 100 -- Fifth-order Hermite coefficient 
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Table 7.2.  Constant values used during calibration. 

Constant Value Units Definition of Constant 
n 0.25 -- Porosity 
b 34 m Aquifer thickness 

Zelev -4.6 m Water table elevation 
T0 6/30/1965 date Initial contaminant release time 
Tr 1/1/1992 date Remediation start time 

 

 

7.3   CALIBRATION PROCESS 

The natural logarithms of the benzene concentrations from the French Limited 

site were calibrated with the natural logarithm of the horizontal plane source model 

(Equation 6.12) using a computer program written in Visual C++.  The prior model 

parameters were first calibrated with the 233 measurements taken at the site prior to 

remediation.   This smaller data set, rather than the entire data set of 514 measurements, 

was used initially to determine which model parameters should be kept constant and not 

calibrated.  As discussed in Section 7.2.2, five model parameters (shown in Table 7.2) 

were kept constant during the calibration since the model was not sensitive to their 

values.   Two additional model parameters (source elevation and retardation) were kept 

constant until the other model parameters were calibrated.  

After determining which model parameters to calibrate, an iterative process was 

used, following the steps outlined in Section 3.4.  Each iteration consists of testing 

different sets of model parameters to find the maximum likelihood, then calculating the 

second derivatives of the natural logarithm of the likelihood function.  For the 233 

measurements before remediation, each iteration took approximately 20 minutes to run 

on a Pentium Centrino personal computer.  Seventeen iterations were performed to 



 144

determine a set of model parameters that came close to maximizing the likelihood 

function.   

This set of model parameters was then used as the starting point for calibrating the 

entire set of 514 measurements, both before and after remediation of the site.  The same 

iterative approach was used, with each iteration taking approximately 35 minutes to 

perform.  Thirty iterations were performed automatically with the computer program, 

then the model parameter values were adjusted manually to try to find the maximum 

likelihood.  None of the model parameter sets truly maximized the likelihood, as 

indicated by a negative definite matrix of the second derivative of the natural logarithm 

of the likelihood function (Section 3.4.5).  This was probably because of discontinuities 

in the likelihood function in the vicinity of the maximum.  Numerical integration was 

therefore used to find the first and second moments of the natural logarithm of the 
likelihood function, GµK and [ ]GC  (Equations 3.18 and 3.19).  The numerical integration 

was performed using a Monte Carlo simulation, with 5000 simulations of model 

parameter sets.  This numerical integration took approximately one day to calculate. 

 

7.4  CALIBRATION RESULTS 

The results of the calibration of the benzene concentrations with the model for the 

mean and covariances of the measurements are presented in this section.  The updated 

means and standard deviations of the model parameters found with the calibration are 

given, followed by discussions of the results.  The model parameters used for calculating 

the mean benzene concentrations are compared to physical characteristics of the site and 

published values for the parameters.  The model parameters for the covariances of the 

benzene concentrations are then examined to determine if they are physically reasonable, 

and the model parameters that describe the non-normal distribution of the measurements 
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are discussed.  Finally, a comparison is made of the model-predicted and measured 

concentrations. 

 

7.4.1  Updated Means and Standard Deviations of Model Parameters 

The updated mean and standard deviation for the model parameters are shown in 

Table 7.3.  For all of the parameters, the updated standard deviation is very small in 

comparison to the updated mean.  This is because the -G” values are large compared to 

the inverse of the prior covariance matrix, 1C−
Φ
K .  The updated standard deviations are 

therefore essentially the inverse of the –G” matrix and the prior covariances contribute 

very little (Section 3.4.5).  The updated mean values are also essentially the values for the 

parameters that maximize the natural logarithm of the likelihood function.   
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Table 7.3.  Updated values of model parameters used in calibration. 

Model 
Parameter 

Updated 
Mean 
Value 

Updated 
Standard 
Deviation Units Definition of Parameter 

Mean Model Parameters 
Xs 755.8 32.1 m X-Coordinate of source center 
Ys 341.9 19.4 m Y-Coordinate of source center 
Ls 79.1 25.0 m Source length 
Ws 401.9 79.8 m Source width 
θ 79.1 8.5 degrees Groundwater flow direction 
Co 4.45 0.66 g/m3 Concentration at source 
aL 17.02 4.12 m Longitudinal dispersivity 
aT 12.83 4.16 m Transverse dispersivity 
aV 0.26 0.04 m Vertical dispersivity 

T1/2 2.2x109 1.8x1010 days Half-life before remediation 
v 0.03 0.007 m/day Seepage velocity 
Er 1.7x10-7 6.16x10-7 -- Effect of remediation on source 

T1/2r 544.3 145.8 days Half-life after remediation 
R 4.09 0.56 -- Retardation 
ZS -7.12 0.43 m MSL Source elevation 

Covariance Parameters 
δ 30.1 4.98 ln (g/m3) Component of variance of ln(C) 
λe 538.0 263.8 -- Random variability in C 
λt 2528 827.2 days Temporal scale of fluctuation 
λx 0.006 0.004 m Longitudinal scale of fluctuation 
λy 0.008 0.004 m Transverse scale of fluctuation 
λz 0.10 0.029 m Vertical scale of fluctuation 

λr 8.3x10-5 1.3x10-4 -- Variability due to remediation 
status 

Data Distribution Parameters 
ψ2 0.082 0.003 -- Second-order Hermite coefficient 
ψ3 1.10 0.07 -- Third-order Hermite coefficient 
ψ4 -0.19 0.01 -- Fourth-order Hermite coefficient 
ψ5 -0.70 0.06       -- Fifth-order Hermite coefficient 
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7.4.2  Mean Model Parameters 

The mean model parameters represent physical characteristics of the groundwater 

flow and contamination at the French Limited site.  The model calibration gave 

reasonable results for these parameters, since the updated mean values for the parameters 

are within the physical limits for the characteristics they describe. 

The parameters that describe the contamination source (Xs, Ys, Ls, and Ws) place 

the updated horizontal plane source for the model roughly over the footprint of the waste 

lagoon, as shown in Figure 7.2.  Although the plane source does not precisely represent 

the leaching of contaminants from the lagoon, the plane source is expected to be in the 

area of the lagoon since the highest measured benzene concentrations were measured 

near the lagoon.  The updated mean for the concentration of benzene released at the 

source prior to remediation is 4.41 g/m3, which is well below the water solubility of 1750 

g/m3.   

The groundwater flow is described by the seepage velocity and the flow direction.  

The updated mean for seepage velocity is 0.03 m/day, which is on the same order of 

magnitude as the prior value of 0.015 m/day (Applied Hydrology Associates 1989).  The 

general direction of groundwater flow at the site, based on groundwater contour maps, is 

due south.  The updated mean for the flow direction is 79.1 degrees or 10.9 degrees east 

of due south.  The relationship of this flow direction to the plane source is shown in 

Figure 7.2.   

The updated mean dispersivity values are within recognized ranges.  The updated 

longitudinal dispersivity, aL, of 16.54 m is within the range of 1 to 100 m or more 

reported by Charbeneau (2000).  The U.S. EPA (1986) suggests that the transverse 

dispersivity  be  estimated at  one-third of aL and the vertical dispersivity be  estimated  at  
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Figure 7.2.  Updated source size, source location, and groundwater flow direction for the 
French Limited site. 
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oxygen, benzene degradation is slowest in the areas of highest contamination (i.e. 

Vroblesky and Chapelle 1994) and that benzene degrades slowly in anaerobic conditions 

(i.e. Kao et al. 1997). 

Remediation efforts at the French Limited site included bioremediation of the 

lagoon contents, pump-and-treat of groundwater, and injection of oxygen and nutrients 

into the groundwater.  The purpose of these efforts was to eliminate the sources of 

contamination and increase the degradation rate of contaminants in the groundwater.  The 

updated mean value for the effect of remediation on the source was 1.04x10-7, which 

means that the release rate of benzene decreased from 86.5 g/day to 9.0x10-6 g/day over 

the source area.  This indicates that the source was effectively removed by the 

remediation.  However, source removal was not complete at the actual French Limited 

site, since post-remediation monitoring revealed increasing benzene concentrations in 

some wells.  The horizontal plane source used in the model is a large source area, and in 

reality there were probably scattered pockets of benzene contaminant sources throughout 

the site.   

The updated mean of the half-life of benzene after remediation is 527 days, which 

is within the range of 10 to 730 days reported by Howard et al. (1991).  The calibrated 

model therefore indicates that the degradation rate of benzene was increased through the 

remediation efforts. 
 

7.4.3  Covariance Model Parameters 

The updated mean value for δ, the constant component of the variance in the 

natural logarithm of concentration, is 30.1 ln(g/m3).  The updated mean value for λz, used 

for calculating the vertical correlation coefficient, is 0.10.  These two parameters are used 

to calculate the variance in the natural logarithm of concentration (Equation 6.21), which 
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considers the averaging that occurs over the screened interval of a well.  For the largest 

screened length of a well at the French Limited site, 16.76 m, the variance in the natural 

logarithm of the concentration, Var(Yi), is 0.032 ln(g/m3).  This results in standard 

deviation in the benzene concentration of approximately 1.0 g/m3.   For the smallest 

screened length of a well at the French Limited site, 1.52 m, the Var(Yi), is 3.67 ln(g/m3).  

This results in standard deviation in the benzene concentration of approximately 6.3 g/m3.  

As the screened length of the well decreases, there is less averaging of the concentration 

over the length of the well, and therefore the variance in the measured concentration 

increases. 

The updated mean value of λe, which represents the random error in 

measurements of concentration, is large at 483.  This large value results in a high 

correlation coefficient of 0.998, which means that the random error is small and the total 

correlation between two data points will be reduced very little by the random error. 

The correlation coefficient for time is shown in Figure 7.3.   The correlation for 

measurements at the same location taken 30 days apart is 0.96.  At 1 year and 2 year 

periods between measurements, the correlations are 0.63 and 0.39, respectively.  These 

high correlations with time indicate that the difference between measured and model-

calculated concentrations is consistent over time at a particular location.  This could be 

indicative of the heterogeneities at the site.  The HPS model assumes uniform conditions 

throughout the aquifer.  However, the soil conditions in the alluvial channel that underlies 

the site are heterogeneous, and the groundwater may preferentially flow through channels 

with higher hydraulic conductivity.  In such channels, the measured benzene 

concentrations are likely to be consistently greater than the model-predicted 

concentrations, while in areas of lower hydraulic conductivity, the measured 

concentrations are likely to be consistently less than the model-predicted concentrations. 
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Figure 7.3.  Calibrated correlation with time for French Limited site. 
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m.  These small values mean that there was no correlation between measurements in 

these dimensions, which indicates that the systematic error in the model is low.    

The small updated mean of λr, the parameter that determines the correlation 

between points before and after remediation, results in a correlation coefficient of zero.  

Measurements taken before remediation are therefore not correlated at all with 

measurements taken after remediation. 

The different correlation coefficients are all multiplied to find the total correlation 

between measurements (Equation 6.23).  Since the longitudinal and transverse 

correlations are zero except for wells located at the same x- and y-coordinates, 

correlations between measurements only occur for measurements taken at the same well 

at different times, or for measurements that are taken at two different wells with the same 

x- and y-coordinates but different vertically screened intervals.  At a particular well,  ρx, 

 ρy,  ρz,  and ρr will all be equal to 1.0.  Since ρe is equal to 0.998,  the total correlation is 

dominated by  ρt. 
 

7.4.4  Data Distribution Parameters 

The Hermite Polynomial parameters, ψ2 through ψ5, determine the shape of the 

data distribution.  The natural logarithm of the concentration measurements used for the 

model calibration are non-normally distributed, as shown in Figure 7.4.  The x-axis of 

this plot is the conditioned means of the measurements normalized with the model-

predicted mean and variance.  The y-axis is the standard normal inverse of the cumulative 

density function (CDF).  A normal distribution is a straight line on this plot, and for other 

distributions, the non-linearity of the inverse of the CDF indicates the degree of non-

normality of the distribution.   
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Figure 7.4.  Measured data distribution compared to calibrated distribution. 
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distribution (greater than three standard deviations away from the mean).  The normal 

distribution would have neglected the actual distribution of the data at all other areas of 

the distribution.  The contribution of the censored measurements, which are in the lower 

tail of the distribution, would therefore have been neglected and the updated model 

parameters would less accurately represent the measured data from the site. 

 
 

7.4.5  Correlations between Model Parameters 

The correlations between model parameters determine if changing one model 

parameter has a significant effect on another model parameter.  The correlations between 

model parameters are shown in Figure 7.5.  The most significant correlation, 0.90, was 

between the x-coordinate of the center of the plane source (Xs) and the width of the plane 

source (Ws).  This means that if Xs is increased, the width of the source must also be 

increased to compensate for the effect on groundwater concentrations.  The full width of 

the plane source that extends to the east at the site is therefore necessary for the model to 

explain the measured groundwater concentrations. 

Another significant correlation, -0.74, was between the transverse dispersivity 

(aT) and the vertical dispersivity (aV).  Therefore, if the transverse dispersivity increases, 

the vertical dispersivity must decrease for the model to find the same concentrations.  

Because the variance in the natural logarithm of the concentrations depends on both the 

constant component of variation (δ) and the correlation in the vertical direction (λz), as 

shown in Equation 6.21, these two parameters have a significant negative correlation,      

-0.75.  This negative correlation allows the variance to explain variability in groundwater 

concentrations if one of the parameters is decreased, since the other parameter will then 

increase.  
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 Xs Ys Ls Ws  θ Co aL aT aV T1/2 v Er T1/2r 

Xs 1                         
Ys -0.21 1                       
Ls -0.23 -0.29 1                     
Ws 0.90 -0.30 -0.16 1                   
 θ -0.02 0.69 -0.46 -0.25 1                 
Co 0.24 -0.15 -0.34 0.06 0.16 1               
aL -0.10 -0.57 0.09 -0.07 -0.33 0.16 1             
aT 0.07 -0.14 -0.18 -0.06 0.13 0.52 0.03 1           
aV -0.03 0.08 0.08 0.01 -0.05 -0.34 0.23 -0.74 1         

T1/2 0.07 0.38 -0.23 0.04 0.27 0.01 -0.17 -0.04 -0.03 1       
v -0.10 -0.37 -0.04 -0.01 -0.31 -0.34 0.15 -0.03 -0.18 0.05 1     
Er -0.12 -0.07 -0.24 0.01 -0.03 -0.19 0.03 -0.06 -0.08 0.40 0.49 1   

T1/2r -0.23 0.15 -0.23 -0.42 0.34 0.21 0.15 0.37 -0.09 0.07 0.06 -0.06 1 
R -0.05 -0.14 0.27 0.17 -0.46 -0.29 -0.10 -0.03 -0.18 -0.06 0.35 -0.05 -0.10 
Zs 0.02 0.20 0.18 0.13 -0.03 -0.35 -0.19 -0.29 0.15 0.02 -0.24 -0.18 -0.33 
δ 0.53 0.20 -0.07 0.49 0.16 -0.16 -0.17 -0.19 0.31 -0.01 -0.27 -0.31 -0.06 
λe 0.33 0.24 -0.13 0.28 0.27 -0.25 -0.17 -0.35 0.30 0.16 -0.03 0.15 -0.22 
λt -0.13 0.41 0.06 -0.09 0.03 -0.36 -0.08 -0.41 0.45 0.22 -0.20 -0.15 -0.03 
λx 0.25 -0.05 -0.34 0.30 0.09 0.01 -0.05 -0.01 -0.13 0.39 0.40 0.53 -0.10 
λy 0.04 -0.08 0.16 0.05 -0.23 -0.01 -0.03 0.00 0.19 -0.07 -0.28 -0.26 0.11 
λz -0.55 0.20 0.05 -0.56 0.07 0.01 -0.08 0.02 -0.14 0.01 0.01 0.14 0.05 
λr -0.11 0.12 -0.07 -0.18 0.22 -0.05 -0.08 0.05 -0.04 0.08 0.27 0.20 0.10 
ψ2 0.08 -0.11 -0.17 0.08 -0.08 0.25 -0.09 0.22 -0.41 -0.07 0.26 -0.05 0.06 
ψ3 0.34 0.16 -0.07 0.27 0.14 0.11 -0.04 0.08 0.11 -0.07 -0.35 -0.31 0.17 
ψ4 -0.02 -0.12 -0.16 -0.16 0.11 0.27 0.33 0.02 0.22 -0.15 -0.14 -0.19 0.37 
ψ5 -0.17 -0.25 -0.09 -0.25 0.13 0.22 0.29 0.03 0.08 -0.23 0.04 0.02 0.23 

              
  R Zs δ λe λt λx λy λz λr ψ2 ψ3 ψ4 ψ5 

R 1                         
Zs 0.21 1                       
δ -0.03 0.45 1                     
λe -0.18 0.27 0.37 1                   
λt 0.13 0.39 0.34 0.06 1                 
λx -0.03 -0.08 -0.09 0.35 -0.12 1               
λy 0.17 0.11 0.11 -0.44 0.25 -0.46 1             
λz -0.07 -0.20 -0.75 -0.09 0.06 0.02 -0.14 1           
λr -0.06 -0.21 -0.28 0.26 -0.10 0.29 -0.34 0.37 1         
ψ2 0.22 -0.20 -0.07 0.02 -0.12 0.29 -0.31 0.03 -0.07 1       
ψ3 0.14 0.14 0.41 0.33 0.02 -0.20 0.17 -0.18 0.01 -0.09 1     
ψ4 -0.38 -0.28 0.00 -0.02 -0.15 -0.23 0.05 0.08 -0.13 -0.08 0.19 1   
ψ5 -0.34 -0.20 -0.20 -0.17 -0.37 -0.08 -0.06 0.02 0.07 -0.15 -0.24 0.39 1 

 

Figure 7.5.  Correlations between model parameters for the means and covariances of the 
benzene concentrations at the French Limited site. 
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7.4.6  Comparison of Model-Predicted and Measured Concentrations 

Comparisons of model-predicted and measured benzene concentrations are shown 

in Figure 7.6 for a well sampled before remediation, ERT-21, and in Figure 7.7 for a well 

sampled after remediation, INT-101.  Model-predicted and measured benzene 

concentrations for all of the wells at the French Limited site are shown in Appendix F.  

Two types of model-predicted concentrations were calculated.  In the first type of model 

prediction, the updated model parameters are used in Equation 6.12, without conditioning 

on previous measurements, to calculate the concentrations at the well location for the 

sample times.  In the second type of model prediction, the updated model parameters are 

used to calculate the concentrations along with the measurements from all wells collected 

before the sample time, as shown in Equation 4.18.  This conditioning process accounts 

for censored measurements and for correlations between measurements.  

Notice in both Figures 7.6 and 7.7 that the conditioned concentration for the first 

sampling date is equal to the unconditioned concentration.  This is because there are no 

previous measurements on which to condition the first measurement.  After this first 

measurement, the conditioned concentrations follow the measured concentrations closely 

due to the high correlation between measurements with time and the short time period 

between measurements.  These conditioned concentrations indicate that the calibration 

was successful in fitting the measured concentrations to the model.  These results also 

indicate that considering all collected measurements through the conditioning process 

provides better concentration predictions than simply using the determined values for 

model parameters. 



 157

0

0.1

0.2

0.3

0.4

0.5

1/1/88 6/30/88 12/28/88

Date

C
on

ce
nt

ra
tio

n 
(g

/m3 )

Measured
Concentrations

Model-Predicted
without
Conditioning

Model-Predicted,
Conditioned on
Known
Measurements

 

Figure 7.6.  Comparison of measured and model-predicted concentrations for well ERT-
21, sampled prior to remediation. 
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Figure 7.7.  Comparison of measured and model-predicted concentrations for well INT-
101, sampled after remediation. 
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7.5  CONCENTRATION PREDICTIONS 

Using the calibrated model results to predict future concentrations is useful in 

making decisions regarding the remediation and monitoring of the site.  The remedial 

objective for the groundwater at the French Limited site was to “reduce health hazards 

from the impact of waste materials in the upper alluvial aquifer groundwater” 

(Southwestern Environmental Consulting, Inc. 1996).  For benzene, a known carcinogen, 

the criterion chosen for this objective was the 1.0 x 10-6 excess cancer risk Human Health 

Criteria.  This EPA criterion is the extra risk of developing cancer due to exposure to a 

toxic substance incurred over the lifetime of an individual (U.S. EPA 2003b).  Therefore, 

the benzene concentration that meets this criterion will cause less than one in a million 

extra cases of cancer in a population.   The site closure plan stated that, “For all areas 

inside the site property line, groundwater recovery and treatment will be continued until 

modeling shows that natural attenuation will achieve these Human Health Criteria at the 

site property line in 10 years or less …. active remediation will continue until this 

criterion can be achieved at the site boundary through natural attenuation in 10 years or 

less and maintained below criteria thereafter in those areas outside the site boundary” 

(Southwestern Environmental Consulting, Inc. 1996).  In this plan, the site boundary 

refers to the actual property line of the French Limited site. 

At the time of site closure in 1996, groundwater modeling indicated that natural 

attenuation would indeed result in these standards being met in 10 years.  Active 

remediation was therefore ended at this time.  However, during the first three years of 

monitoring, benzene concentrations in some wells, such as INT-134 and S1-131, 

remained at elevated levels or perhaps even increased over time.  Therefore, active 

remediation began again in April 1998. 
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For the model calibrated in this dissertation, predictions of future groundwater 

concentrations may be made.  These predictions include not only the expected 

concentration, but also the uncertainty in that concentration, based on the uncertainty in 

the model parameters used to predict the concentration and the modeled variance of the 

concentration.  Predictions of concentrations for two wells located at the French Limited 

property line, INT-26 and S1-108A, were made for 10 years after site closure, assuming 

no further active remediation occurred after site closure.  The calculated benzene 

concentration to meet the 1.0x10-6 excess cancer risk criterion was 0.005 g/m3.  This 

includes the risk from ingestion and dermal contact with benzene-contaminated water, 

and also inhalation of vapors produced during bathing and showering.   

The probability distributions for the predicted benzene concentrations in wells 

INT-26 and S1-108A are shown in Figures 7.8 and 7.9, respectively.  For well INT-26, 

the median concentration predicted for 10 years post-closure was 0.001 g/m3.  While this 

median concentration is below the criterion concentration, the value is uncertain, and 

therefore the probability that the benzene concentration will be greater than 0.005 g/m3 

was calculated.  The probability that the benzene concentration in INT-26 will be greater 

than 0.005 g/m3 in 10 years is 22 percent.  For well S1-108A, the median concentration 

predicted for 10 years post-closure was 0.0006 g/m3.   Although this median 

concentration is well below the criterion concentration, the probability that the 

concentration at this well will be greater than 0.005 g/m3 is 17 percent.   

The predicted median benzene concentrations in wells INT-26 and S1-108A are 

below the criterion concentration, which would seem to indicate that no further active 

remediation is required and natural attenuation will result in acceptable concentrations at 

the site boundary in 10 years.  However, when the uncertainty in these predicted 

concentrations is considered, the results of natural attenuation are less clear.   There  is  a  
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Figure 7.8.  Probability distribution of predicted benzene concentration for well INT-26. 
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Figure 7.9.  Probability distribution of predicted benzene concentration for well S1-108A. 
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high probability that the concentrations in these wells will be greater than the criterion 

concentration after 10 years of natural attenuation.  If the criterion concentration is not 

met, then more remediation will be required.  The high probabilities of not meeting the 

criterion should be considered along with the potential cost of future remediation of the 

site, which could be millions of dollars.  The expected cost of future remediation is 

calculated by multiplying the probability that remediation will be needed (such as 22 

percent for well INT-26) by the cost of remediation.  This expected cost of future 

remediation can then be compared with the cost of obtaining more information about the 

contamination at the site, which could help reduce the uncertainty in the concentration 

predictions.  Considering the probability that the concentrations may not meet the 

established criteria therefore allows more informed decisions to be made regarding the 

further remediation of the site. 

 

7.6  SUMMARY 

The set of benzene measurements that was calibrated for the French Limited site 

contained a significant amount of censored data in the form of concentrations that were 

reported as below the detection limit.  The site was therefore a good application of the 

method developed for analyzing censored data.  The results from the calibration were 

reasonable for the physical characteristics of the site.  The calibration was also successful 

in fitting the non-normal distribution of the measurements.  The FOSM Bayesian method 

was proven a useful method in considering all the complexities of the site: concentrations 

measured above and below the detection limit, the effects of remediation on the 

concentrations, measurements at many different times and locations, and correlations 

between concentrations that represent the heterogeneities at the site and the random errors 

in measurements.   
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Chapter 8.  Conclusions 

 

The objective of this research was to develop a method for including censored 

data in data analysis and test program design.  An extension was developed for the FOSM 

Bayesian method that allows the inclusion of censored data that may be correlated and 

that may have a non-normal distribution.  The method developed for data analysis was 

applied to a real contaminated site to calibrate benzene concentrations in the groundwater 

to a model describing the mean, standard deviation, correlation, and distribution of the 

concentration measurements.  In this chapter, the research is summarized and the major 

conclusions reached from the work are presented, along with recommendations for future 

work. 

 

8.1  METHOD DEVELOPED FOR ANALYZING CENSORED DATA 

This research extended the FOSM Bayesian method (Gilbert 1999) to incorporate 

censored data into data analysis and test program design.  The method uses a Hermite 

Polynomial transform function so that the data may have a normal distribution or a non-

normal distribution.  The extension to the FOSM Bayesian method was derived, then it 

was tested with simple models to verify the method and determine the most effective 

calculation technique for implementing the method.  In this section, the conclusions about 

the method and recommendations for future development of the method are presented. 

 

8.1.1  Conclusions 

The FOSM Bayesian method finds updated model parameters based on data that 

have been collected or are expected with a test program.  The conditional mean and 
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variance for a data point are required in calculating the likelihood of observing the data 

given a set of model parameters.  For censored data, the moments of the censored region 

are used in calculating the conditional moments.  When a data point has a non-normal 

distribution, the moments of the censored region are approximated with the moments of 

the equivalent censored region of a normal distribution.  This approximation was 

determined to be reasonable for different non-normal distributions, including a highly 

skewed lognormal distribution and a uniform distribution. 

A simple model for normally-distributed, statistically independent data with 

varying correlations between data points and varying amounts of censored data  was used 

to determine the effects of censored data and to verify the method for test program 

design.  The model consisted of three parameters, one each for the mean, standard 

deviation, and correlation of the data points.  Increasing the size of the data set resulted in 

a decrease in the expected variance of the mean model parameter.  However, the size of 

the data set was less important as the amount of censored data increased.  This is because 

censored data provides less information about the model parameters than non-censored 

data.   

The expected mean values of the model parameters for the simple model were 

very close to the true values of the model parameters for all levels of censored data.  

Therefore, no bias resulted from including censored data in the method.  The expected 

standard deviations of the model parameters showed that as the level of censoring 

increases and as the correlation between data points increases, less information is 

provided by the data and the amount learned about the model parameters decreases.  The 

mean and the standard deviation model parameters had a negative correlation at high 

levels of censored data, but had no correlation when there was no censored data.  The 
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standard deviation and correlation model parameters were positively correlated at high 

levels of correlation between data points. 

Several different methods were tried for implementing the method with expected, 

censored data for test program design.  The most accurate methods were also the most 

computationally-intensive methods.  A complete analytical approximation is the least 

computationally-intense method, but the accuracy of the method was only acceptable for 

non-censored, statistically independent data with a normal distribution.  For normally-

distributed data, a Monte Carlo simulation using a Taylor series approximation for the 

likelihood function worked well.  However, for non-normally-distributed data, no 

approximate methods worked and numerical integration was required.   

When the method was used for data analysis with censored data, the Taylor series 

approximation for the likelihood function allowed the calibration of the model parameters 

with the data to proceed close to the maximum likelihood.  But the model parameters 

calibrated with this method did not truly maximize the likelihood, as indicated by a 

negative definite matrix of the second derivative of the likelihood function.  This was due 

to discontinuities in the likelihood function near the maximum, and numerical integration 

was therefore required to calculate the moments of the likelihood function. 

 

8.1.2  Recommendations for Future Work 

Future development of the FOSM Bayesian method for use with censored, non-

normally-distributed data should focus on addressing the discontinuities in the likelihood 

function near the maximum so that numerical integration is not required.  Approximate 

methods for test program design should also be developed so that Monte Carlo 

simulations are not required.  An approximate method is particularly needed for use with 
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data that has a non-normal distribution, since numerical integration is currently required 

with these distributions.   

 

8.2  APPLICATION OF NEW METHOD TO CONTAMINATED GROUNDWATER  

To demonstrate the usefulness of the new methodology for analyzing censored, 

non-normally-distributed data, the method was applied to a complex civil engineering 

problem.  The French Limited site, a Superfund site with contaminated groundwater, was 

chosen as a case study.  Since this site has been thoroughly investigated, a large amount 

of groundwater concentration data and other information about the site was available.  

Contamination occurred at this site due to wastes being dumped into an unlined lagoon in 

the 1960s.  Benzene was a major contaminant of concern at the site due to its high 

concentrations, recalcitrance, and carcinogenic quality.  Investigation of the site began in 

the 1980s, and active remediation of the site occurred from 1991 through 1995.  A total 

of 514 benzene concentration measurements were made before and after remediation 

from a total of 64 wells.   

The concentration measurements were calibrated to a horizontal plane source 

model for the groundwater contamination.  The variance of the measurements, correlation 

between measurements, and distribution of the measurements were also modeled.  A total 

of 26 model parameters were calibrated with the concentration measurements using the 

FOSM Bayesian method.  The method was then used to predict future benzene 

concentrations.  In this section, the conclusions drawn from this case study and 

recommendations for future research are presented. 
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8.2.1  Conclusions 

To model the mean benzene concentrations at the French Limited Site, a 

Horizontal Plane Source model (Galya 1987) was used.  The model was amended to 

account for decreased contaminant source and increased contaminant biodegradation due 

to remediation efforts.  The correlation between measurements was modeled to account 

for correlations in the longitudinal, transverse, vertical, and temporal dimensions, as well 

as correlation reductions due to random error and the effects of remediation.  The 

distribution of the measurements was modeled with using a Hermite Polynomial 

transformation so that the distribution could be non-normal.   

When the new method was used to calibrate the model parameters with the 

concentration measurements, reasonable results were obtained for the updated mean 

values of the model parameters.  The updated mean values for the parameters that 

described the physical characteristics of the groundwater flow and the benzene 

contamination were all realistic, based on published values and specific information from 

investigation of the site.  The updated source location and dimensions were similar to the 

footprint of the waste lagoon, and the groundwater velocity and flow direction were close 

to values found during site investigation.  The dispersivity values were within published 

ranges.  The extremely large half-life of benzene prior to remediation, 6x107 years, 

indicated than no degradation of benzene was occurring.  This is consistent with studies 

that show very little degradation of benzene in areas of high concentration, particularly 

under anaerobic conditions, which represent the conditions at the French Limited site 

prior to remediation. 

The remediation of the French Limited site consisted of removing the 

contaminant source, removing contaminated groundwater, and increasing biodegradation 

of the contaminant in the groundwater.  The updated mean values of the remediation 
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parameters describe the success of these remediation efforts.  The source removal was 

effective, as the benzene released from the source dropped from 86.5 g/day to only 9x10-6 

g/day over the source area.  The degradation of the benzene in the groundwater greatly 

increased after remediation, with a half-life after remediation of 544 days, due to the 

reduced contaminant concentrations in the groundwater and the introduction of dissolved 

oxygen and nutrients to promote biodegradation.  Despite the source removal and 

increased degradation, the remediation was still not effective in eliminating 

contamination at the site, as seen in both measured and model-predicted concentrations.  

The remediation efforts did not account for sources of contaminant other than the lagoon, 

or the groundwater contamination that could not be completely removed with pump-and-

treat.   

The updated mean values for the correlation parameters indicated that the only 

significant correlation occurred between measurements at the same well at different 

times, or between two wells at the same location with different vertically screened 

intervals.  Since there was no correlation between wells at different locations, the 

systematic error in the model was very low.  The high correlation with time indicates 

consistency between the measured and model-calculated measurements over time at a 

particular location.  This is probably due to the heterogeneities of the aquifer at the 

French Limited site. Preferential flow through channels with higher hydraulic 

conductivity results in measured concentrations that are consistently greater than or less 

than model-predicted concentrations. 

The Hermite Polynomial transform function successfully modeled the non-normal 

distribution of the concentration measurements.  The resulting distribution closely 

followed the measurements, and was more effective in modeling the lower tails of the 

distribution where censored data occur than a normal distribution. 
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The updated standard deviations of the model parameters were all small compared 

to the large prior standard deviations.  This means that calibrating the model parameters 

with the data greatly reduced the uncertainty in the model parameters.   

Although the uncertainty in the model parameters was reduced, the uncertainty in 

predicted concentrations was still high due to the modeled uncertainty and the remaining 

uncertainty in the model parameters.  When predictions were made of benzene 

concentrations in two wells for 10 years after the active remediation of the site ended, the 

median concentrations were below the target benzene concentration.  However, the 

probabilities that the concentrations would be above the target concentration were high, 

at approximately 20 percent for both wells.  This means that even though the primary 

remediation effort of removing the contaminant source was successful, the contamination 

at the site was not completely remediated.  The probability that concentrations would not 

meet the remediation criterion are useful in making decisions about whether further 

remediation or investigation of the site would be cost-effective. 

The updated model parameters for the correlations between measurements are 

also useful in making decisions regarding the monitoring of the site.  The high correlation 

with time at a particular location can be used to the sampling frequency at a well.  

Quarterly sampling was used at the French Limited site, but the correlation with time 

between two measurements taken 90 days apart is 0.93.  Therefore, if a concentration is 

high in a well during one quarter, it is also very likely to be high the next quarter.  Since 

the spatial correlation between wells is low, less frequent sampling at more wells might 

be more cost-effective and provide more information about the contamination of the site. 
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8.2.2  Recommendations for Future Work 

The results of the groundwater model calibration should be used to make further 

predictions of the remediation performance at the French Limited site.  The predictions 

should then be compared to the actual conditions at the site as described by post-

remediation concentration measurements.  Different monitoring plans for the 

contaminated groundwater site using the groundwater model calibration results should be 

analyzed to determine what type of monitoring plan is best based on the information it 

provides about the site and its cost and practicality. 

The method used in this research should be compared to the more simple analysis 

methods for groundwater contamination that are commonly used in practice.  The effect 

of the analysis method on the decisions made about the site should be determined, and the 

benefits of each method should be compared. 

The method developed for this research should be applied to other contaminated 

groundwater sites to determine if the models and the method give consistently reasonable 

results for sites with different characteristics. 
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Appendix A.  Derivation of Moments for Censored Normal Distribution 

 

In this appendix, the mean and standard deviation for the censored and non-

censored regions of a normally-distributed data point are derived.  A normal distribution 

with a censored region and two non-censored regions is shown in Figure 4.1.  The lower 

bound of the censored region is yi,l and the upper bound of the censored region is yi,l.  

These bounds may have any value, including positive or negative infinity.   Since only 

one data point is considered in this appendix, the lower and upper bounds of the censored 

region will be referred to as yl and yu, respectively, to simplify notation. 

For a normal distribution, the probability density function (PDF) is: 

 

 ( )
21 y

2
Y

1f y e
2

−µ⎛ ⎞− ⎜ ⎟σ⎝ ⎠=
σ π

 (A.1) 

 

For any distribution type, the integral of the PDF, when evaluated between the 

upper and lower bounds of the PDF, must be equal to one.  The censored region of a 

normal distribution is a truncated portion of the normal distribution.  When finding the 

moments of a truncated distribution, the PDF of the truncated distribution must be 

divided by the area of the truncated portion of the full distribution.  This allows the PDF 

of the truncated distribution to be equal to 1.0 when integrated between its upper and 

lower bounds.  For a normal distribution censored between yl and yu, the area of the 

censored region is: 
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( )

2
u

l

1 yy
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l u
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u l

1 e dy P y Y y
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y y

−µ⎛ ⎞− ⎜ ⎟σ⎝ ⎠ = < ≤
σ π

− µ − µ⎛ ⎞ ⎛ ⎞= Φ − Φ ⎜ ⎟⎜ ⎟σ σ⎝ ⎠⎝ ⎠

∫
 (A.2) 

 

where µ  and σ  are the mean and standard deviation of the entire normal distribution 

(without censoring). 

The area of the non-censored region is: 
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−∞

+ = ≤ ∩ >
σ π σ π

= ≤ + >

= − < ≤

∫ ∫
 (A.3) 

 

These areas will be used in the following derivations of the first and second 

moments of the censored and non-censored regions. 

 

A.1  MEAN OF CENSORED REGION 

The expected value of a random variable Y is found with the following integral 

(Ang and Tang 1975): 

 

 ( )Y Yy f y dy
∞

−∞

µ = ⋅∫  (A.4) 

 
where ( )Yf y  is the PDF of Y.   
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To find the mean of the censored region of a normal distribution, the integral in 

Equation A.4 is evaluated for a normal distribution between the upper and lower bounds 

of the censored region, then the result is divided by the area of the censored region.  For 

the censored region defined by yl and yu, the mean is: 

 

 
( )

2
u

l

1 yy
2

Y,ul
l uy

1 1u y e dy
P y Y y2

−µ⎛ ⎞− ⎜ ⎟σ⎝ ⎠
⎡ ⎤
⎢ ⎥=

< ≤σ π⎢ ⎥⎣ ⎦
∫  (A.5) 

 

The following variables are used to facilitate the integration of Equation A.5 by 

transforming the normal distribution into a standard normal distribution: 

 

 yy ' − µ
=

σ
 (A.6) 

 

 dydy ' =
σ

 (A.7) 

 

 aa ' − µ
=

σ
 (A.8) 

 

 bb ' − µ
=

σ
 (A.9) 

 

Rearranging Equation A.6: 

 

 y y '= σ + µ  (A.10) 

 

and Equation A.7: 
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 dy dy '= σ  (A.11) 

 

Substituting Equations A.6 through A.11 in Equation A.4: 

 

 ( ) ( )

( )

'
2u

'
l

y 1 y '
2

Y,ul
l uy

1 1u y ' e dy '
P y Y y2

−⎡ ⎤
= ⎢ σ + µ ⎥

< ≤π⎢ ⎥⎣ ⎦
∫  (A.12) 

 

Dividing the integral in the above equation into two parts: 

 

 
( ) ( )

( )

' '
2 2u u

' '
l l

y y1 1y' y '
2 2

Y,ul
l uy y

1 1e dy ' y 'e dy '
P y Y y2 2

− −⎡ ⎤σ
µ = ⎢µ + ⎥

< ≤π π⎢ ⎥⎣ ⎦
∫ ∫  (A.13) 

 
The first integral of Equation A.13 is equal to ( )l uP y Y y< ≤ : 
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( )

( )

'
2u

'
l

'
2u

'
l

y 1 y '
2

Y,ul l u
l uy

y 1 y'
2

l uy

1u P y Y y y 'e dy '
P y Y y2

1y 'e dy '
P y Y y2

−

−

⎡ ⎤σ
= ⎢µ < ≤ + ⎥

< ≤π⎢ ⎥⎣ ⎦

⎡ ⎤σ
= µ + ⎢ ⎥

< ≤π⎢ ⎥⎣ ⎦

∫

∫

 (A.14) 

 

The following variables are defined to facilitate the integration of Equation A.14: 

 

 ( )21v y '
2

=  (A.15) 

 

 dv y 'dy '=  (A.16) 
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 ( )2'
l l

1v y
2

=  (A.17) 

 

 ( )2'
u u

1v y
2

=  (A.18) 

 

Substituting Equation A.15 through A.18 into Equation A.14 results in: 

 

 
( )

u

l

v
v

Y,ul
l uv

1e dv
P y Y y2

−
⎡ ⎤σ

µ = µ + ⎢ ⎥
< ≤π⎢ ⎥⎣ ⎦

∫  (A.19) 

 

Integrating the above equation and evaluating the integral gives the following 

result: 

 

 

( ) ( )

( ) ( )

u

l

u l

v
v

Y,ul
l uv

v v

l u

1e
P y Y y2

1e e
P y Y y2

−

− −

⎡ ⎤σ
µ = µ + −⎢ ⎥

< ≤π⎢ ⎥⎣ ⎦

σ⎡ ⎤
= µ + − +⎢ ⎥ < ≤π⎣ ⎦

 (A.20) 

 

Equation A.20 is then rewritten in the original terms: 

 

 
( )

22
ul yy 11

22
Y,ul

l u

1u e e
P y Y y2

−µ−µ ⎛ ⎞⎛ ⎞ −− ⎜ ⎟⎜ ⎟ σσ⎝ ⎠ ⎝ ⎠
⎡ ⎤⎛ ⎞σ⎢ ⎥⎜ ⎟= µ + −
⎢ ⎥ < ≤⎜ ⎟π ⎝ ⎠⎣ ⎦

 (A.21) 

 

This is the mean of a censored region of a normal distribution. 
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A.2  VARIANCE OF CENSORED REGION 

The variance of a random variable Y is found with the following integral (Ang 

and Tang 1975): 

 

 ( ) ( )2
Y YVar(Y) x f y dy

∞

−∞

= − µ∫  (A.22) 

which may also be written as: 

 

 
( )

( )

2 2
Y

2 2
Y Y

Var Y E(Y ) u

y f y dy u
∞

−∞

= −

= −∫

 (A.23) 

 

To find the variance of the censored region of a normal distribution, the integral 

in Equation A.23 is evaluated for a normal distribution between the upper and lower 

bounds of the censored region, then the result is divided by the area of the censored 

region.  For the censored region defined by yl and yu, the variance is: 

 

 
( )

2
u

l

1 yy
2 2 22
Y,ul Y,ul

l uy

1 1y e dy
P y Y y2

−µ⎛ ⎞− ⎜ ⎟σ⎝ ⎠
⎡ ⎤
⎢ ⎥σ = − µ

< ≤σ π⎢ ⎥⎣ ⎦
∫  (A.24) 

 

The variables defined in Equations A.6 through A.11 are substituted into Equation 

A.24, resulting in the following: 

 

 ( ) ( )

( )

'
2u

'
l

y 1 y '22 22
Y,ul Y,ul

l uy

1 1y ' e dy '
P y Y y2

−⎡ ⎤
σ = ⎢ σ + µ ⎥ − µ

< ≤π⎢ ⎥⎣ ⎦
∫  (A.25) 
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Dividing the integral in the above equation into parts: 

 
 

 

( ) ( ) ( )

( )

( )

( ) ( ) ( )

( ) ( )

' '
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⎡ σ µσ
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π π⎢⎣
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∫

∫ ∫

2
l

 (A.26) 

 

The first integral in the above equation is evaluated as follows: 
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(A.27) 

 

From the derivation for the mean of the censored region, the second integral in 

Equation A.24 is: 
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− − −

= − +∫  (A.28) 

 

The variance of the censored region is therefore: 
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 (A.29) 

 

A.3  MEAN OF NON-CENSORED REGION 

The mean of the non-censored region, Y,NCµ , is found using the same derivation 

as for the censored region.  However, the integral is evaluated over the non-censored 

region, from negative infinity to yl and from yu to positive infinity: 
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∫ ∫  (A.30) 

 

Substituting Equations A.6 through A.11 into the equation above: 
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Combining the terms in Equation A.31 and simplifying: 
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 (A.32) 

 

Substituting Equations A.15 through A.18 into the equation above: 

 

 
( )

l

u

v
v v

Y,NC
l uv

1e dv e dv
1 P y Y y2

∞
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Notice that the first integral in the equation above is now evaluated beginning at 

infinity, instead of negative infinity.  Just as the upper bound of the integral is 

transformed to vu by squaring it and dividing by two (Equation A.18), the lower value of 
integration is transformed to vl (Equation A.17):  ( )20.5 −∞ , which is equal to infinity. 

Integrating and evaluating the integrals in Equation A.33: 
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The mean of the non-censored region is therefore: 
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A.4  VARIANCE OF NON-CENSORED REGION 

The variance of the non-censored region, 2
Y,NCσ , is found using the same 

derivation as for the censored region.  However, the integral is evaluated over the non-

censored region, from negative infinity to yl and from yu to positive infinity: 
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 Substituting Equations A.6 through A.11 into the equation above: 
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Integrating Equation A.37 and simplifying results in: 
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 (A.38) 

 

The variance of the non-censored region is therefore: 
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 (A.39) 

 

A.5  ALTERNATIVE EXPRESSIONS FOR MOMENTS OF NON-CENSORED REGION 

The moments for the non-censored region may be expressed in terms of the 

moments of the censored region and the moments of the total distribution (the 

distribution with no censored region).   

The mean is analagous to the centroidal distance (Ang and Tang 1975).  

Similarly, the variance is analogous to the central moment of inertia.  When a distribution 

is censored, the moments are analogous to a shape with a piece missing, which may be 

calculated as a composite shape made up of a number of parts.  The centroidal distance 

for a composite shape, xcomposite, is: 

 

 
( ) ( )

all parts
composite

all parts

Area of Part Centroid of Part
x

Area of Part

⋅
=

∑
∑

 (A.40) 
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The area for a part of the composite shape is the same as the probability of a 

region of the distribution.  The mean of the distribution is the same as the centroid of an 

area:  

 

 
( )

( )

region
all regions

composite

all regions

P region

P region

⋅µ
µ =

∑
∑

 (A.41) 

 

Therefore, the mean of the non-censored region for a distribution with a censored 

region bounded by yl and yu, is: 
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Y Y,ul l u
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P Y P y Y y
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 (A.42) 

 

which reduces to: 

 

 ( )
( )

Y Y,ul l u
Y,NC

l u

P y Y y
1 P y Y y
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− < ≤
 (A.43) 

 

The centroidal moment of inertia for a composite shape is found as follows: 

 

 
( )

composite part
all parts

I I +Area of Part

             Centroid of Part Centroid of Composite

⎡= ⋅⎣

⎤− ⎦

∑
 (A.44) 

 

For a distribution with multiple regions, the variance is: 
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 ( ) ( )22 2

composite region region composite
all regions

+P regionσ = σ ⋅ µ − µ∑  (A.45) 

 

For a censored region bounded by yl and yu, the variance of the non-censored 

region is therefore: 

 

 ( ) ( )

2 2
2 Y Y,ul2

NC Y Y.ul
l u1 P y Y y

σ − σ
σ = µ − µ +

− < ≤
 (A.46) 

 



 186

Appendix B.  Example Calculation of Conditional Moments 

 

This appendix presents an example calculation of the conditional moments of a 

data point (Equations 4.18 and 4.19).  For this example, a measurement will be 

conditioned on three previous measurements.  Therefore, Measurement 4 will be 

conditioned on Measurements 1, 2, and 3.  The measurements are shown in Table B1. 

 

Table B1.  Values for Measurements 1 through 4. 

Measurement 

Model-
predicted mean 

value,  
µY 

Measured 
Value,  

y 

Mean of 
Censored Region 

if Censored,  
µY,ul 

Variance of 
Censored Region 

if Censored,  
σY,ul  

1 7 Censored 3.96 11.25 

2 18 22 -- -- 

3 8 10 -- -- 

4 3 Not yet 
measured 2.42 2.54 

 

For this example, the standard deviation of all four measurements is 2.0, and the 

correlation between all measurements is 0.50.  The censored measurements are censored 

below 5.0, and this censoring level is used to calculate the mean and variance of the 

censored region. 

The conditional mean is found as follows (Equation 4.18): 

 

 { } { }A BB AB BA B

T1

Y Y Y B YY Yµ µ C C y µ
−

⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦
K K  (B.1) 
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Since the subscript “A” refers to the measurement that is being conditioned on the 

known measurements, “A” refers to Measurement 4.  Since the subscript “B” refers to the 

known measurements, “B” refers to Measurements 1, 2, and 3. 

The covariance between two measurements is: 

 
 i, j i, j i, j i jCOV C= = ρ σ σ  (B.2) 

 

The covariance matrices in equation B.1 are calculated as follows: 

 

 

[ ]BB

1(2)(2) 0.5(2)(2) 0.5(2)(2)
C 0.5(2)(2) 1(2)(2) 0.5(2)(2)

0.5(2)(2) 0.5(2)(2) 1(2)(2)

4 2 2
2 4 2
2 2 4

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (B.3) 

 

 

[ ]AB

0.5(2)(2)
C 0.5(2)(2)

0.5(2)(2)

2
2
2

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

 (B.4) 

 

Using the values for Measurements 1 through 4 in Equation B.1 results in: 
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A B

T1

Y Y

4 2 2 2 3.96 7
µ 3 2 4 2 2 22 18

2 2 4 2 10 8

3.74

−⎧ ⎫ −⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥= + −⎨ ⎨ ⎬⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪⎪ ⎪ ⎪⎢ ⎥ −⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎩ ⎭

=
 (B.5) 

 

The conditional mean of Measurement 4, conditioned on Measurements 1 through 

3, is therefore equal to 3.74.  This conditional mean is greater than the model-predicted 

value of 3 for Measurement 4, because Measurement 4 is correlated with Measurements 1 

through 3, and Measurements 2 and 3 have values much greater than 3. 

The conditional variance is found as follows (Equation 4.19): 

 

 
{ }

{ } { }
A AB BB ABA B

BB AB BBul BB AB

T 12 2
Y Y Y YY Y

T1 1

Y Y Y Y Y

C C C

C C C C C

−

− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤σ = σ − ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (B.6) 

 
The  

BBulYC term in Equation B.6 adds extra variability for censored data.  If the 

data point is not censored, the standard deviation used in the covariance is zero.  If the 

data point is censored, the standard deviation of the censored region is used in the 

covariance.  This term is calculated as follows for Measurements 1 through 3: 

 

 

BBulY

1(3.35)(3.35) 0.5(3.35)(0) 0.5(3.35)(0)
C 0.5(0)(0) 1(0)(0) 0.5(0)(0)

0.5(0)(0) 0.5(0)(0) 1(0)(0)

11.25 0 0
0 0 0
0 0 0

⎡ ⎤
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (B.7) 
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Using the values for Measurements 1 through 4 in Equation B.6 results in: 

 

 

A B

T 1

2 2
Y Y

T1 1

2 4 2 2 2
2 2 2 4 2 2

2 2 2 4 2

4 2 2 2 11.25 0 0 4 2 2 2
2 4 2 2 0 0 0 2 4 2 2
2 2 4 2 0 0 0 2 2 4 2

4 1.5 0.7

3.2

−

− −

⎧ ⎫⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥σ = − ⎨⎨ ⎬ ⎨ ⎬⎬⎢ ⎥
⎪⎪ ⎪ ⎪ ⎪⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎩ ⎭⎩ ⎭

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ ⎨ ⎨ ⎬⎬ ⎨ ⎨ ⎬⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎣ ⎦ ⎩ ⎭⎩ ⎭ ⎩ ⎭

= − +

=

 (B.8) 

 

The conditional mean of Measurement 4, conditioned on Measurements 1 through 

3, is therefore 3.2.  This is less than the variance of 4 that predicted for this measurement, 

since conditioning the variance on the other three measurements reduces the variability 

for this measurement. 

Notice that if the correlation between Measurement 4 and any of the other 

measurements was zero, then those measurements would not contribute to the conditional 

mean and variance of Measurement 4.  Only the measurements that are correlated with 

the measurement being conditioned will affect the conditional moments. 
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Appendix C.  Derivation of Analytical Method 

 

In this appendix, the complete analytical method of Section 5.3.3 is derived for a 

normally-distributed data point.  This method is used to evaluate the expected value of 

the second derivative of the likelihood function (Equation 4.38), which is used in 

updating the covariance of the model parameters (Equation 4.34).  As stated in Section 

5.3.3, two assumptions are made in this method.  The first assumption is that the set of 

model parameter values used for the Taylor series expansion point, *φ
K

, do not depend on 

the data and are equal to the prior mean values of the model parameters, Φµ
K .  The second 

assumption is that data points that are expected to be censored are equal to the mean of 
the censored region of that data point, 

iY ,ulµ , when calculating the conditional moments of 

the data. 

For each expected data point, the probability that the point will be censored and 

the probability that the point will not be censored are considered.  The expected value of 

the second derivative of the likelihood function in this method is therefore calculated as 

follows: 

  

 

( )

( )

22
C

Y Y l u
i j i j

2
NC

Y l u
i j

ggE E P y Y y

g    E 1 P y Y y

⎛ ⎞ ⎛ ⎞∂∂
= < ≤⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂φ ∂φ ∂φ ∂φ⎝ ⎠ ⎝ ⎠

⎛ ⎞∂
⎡ ⎤+ − < ≤⎜ ⎟ ⎣ ⎦⎜ ⎟∂φ ∂φ⎝ ⎠

 (C.1) 

 

where:  

 Cg  = the likelihood function if the data point is expected to be censored 

 NCg = the likelihood function if the data point is not expected to be censored 
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 ( )l uP y Y y< ≤  = the probability that the data point is censored 

 ( )l u1 P y Y y⎡ ⎤− < ≤⎣ ⎦  = the probability that the data point is not censored 

 

When a data point is non-censored, the likelihood function is the multivariate 

normal distribution.  The second derivative of the multivariate normal distribution for one 

data point is (Muchard 1997): 

 

 

2 2
NC Y Y Y Y Y Y Y Y

2 2
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3 2 2
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2 C 2 C C C

C C C C1
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C C

⎡∂ ∂ ∂ ∂ µ ∂µ ∂ ∂µ ∂µ
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∂φ ∂φ ∂φ ∂φ ∂φ ∂φ ∂φ ∂φ ∂φ ∂φ⎢⎣

⎤µ ∂ µ µ ∂ ∂ µ ∂ ∂µ µ ∂
− − + + ⎥

∂φ ∂φ ∂φ ∂φ ∂φ ∂φ ∂φ ∂φ ⎥⎦
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∂φ ∂φ ∂φ ∂φ⎢⎣

Y Y
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Y Y Y Y

2 2
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2
2 Y Y Y

3 2
Y i j Y i j

C C
C

C C1
C C

C C C1 1 1y
C 2 C

∂ ∂
∂φ ∂φ

⎤∂ ∂µ µ ∂
− − ⎥

∂φ ∂φ ∂φ ∂φ ⎥⎦

⎡ ⎤∂ ∂ ∂
+ − +⎢ ⎥

∂φ ∂φ ∂φ ∂φ⎢ ⎥⎣ ⎦  (C.2) 

 

where Yµ  is the modeled mean of the data point, YC  is the modeled variance of the data 

point, and the derivatives are evaluated at Φφ = µ K
K

. 

Equation C.1 may be re-written as follows: 

 

 
2

2NC

i j

g a by cy∂
= + +

∂φ ∂φ
 (C.3) 
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where: 
2

Y Y Y Y Y Y
2 2
Y i j Y i j Y i j

2 2
Y Y Y Y Y Y Y

3
Y i j Y i j Y i j

2 2
Y Y Y Y Y
2 2
Y i j Y i j

C C C C1 1 1 1a
2 C 2 C C

C C1
C C C

C C1
C 2 C

∂ ∂ ∂ µ ∂µ ∂
= − +

∂φ ∂φ ∂φ ∂φ ∂φ ∂φ

∂µ ∂µ µ ∂ µ µ ∂ ∂
− − −

∂φ ∂φ ∂φ ∂φ ∂φ ∂φ

µ ∂ ∂µ µ ∂
+ +

∂φ ∂φ ∂φ ∂φ
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Y Y Y Y Y Y
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Y i j Y i j Y i j

2
Y Y Y Y

2 2
Y i j Y i j

C C C1 1b 2
C C C

C C1
C C

∂µ ∂ ∂ µ µ ∂ ∂
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∂ ∂µ µ ∂
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Y Y Y
3 2
Y i j Y i j

C C C1 1 1c
C 2 C

∂ ∂ ∂
= − +

∂φ ∂φ ∂φ ∂φ
 

 

The expected value of the second derivative of the likelihood function for the 

non-censored region is then: 

 

 ( ) ( ) ( ) ( )
l

u

y2
2 2NC

Y Y Y
i j y

gE a by cy f y dy a by cy f y dy
∞

−∞

⎛ ⎞∂
= + + + + +⎜ ⎟⎜ ⎟∂φ ∂φ⎝ ⎠
∫ ∫  (C.4) 

 
where ( )Yf y  is the probability density function of the normal distribution. 

Separating the terms in the integrals above: 
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( ) ( )
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u

l

u

l

u
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Y Y Y
i j y

y

Y Y
y

y
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Y Y
y
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∫ ∫

∫ ∫

∫ ∫

 (C.5) 

 

Integrating Equation C.5 and evaluating the integrals results in the following: 
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2
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Y l u
i j

l ul u

2 2
l ul u

gE a P y y y y
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 (C.6) 

 

where: 

( )l uP y y y y≤ ≥∪  = the probability that y is in the non-censored regions 

( )l
E Y  = mean of the non-censored region with ly y≤  

( )u
E Y  = mean of the non-censored region with uy y≥  

( )2

l
E Y  = expected value of Y2 for the ly y≤  portion of the non-censored region   

( )2

u
E Y  = expected value of Y2 for the uy y≥  portion of the non-censored region  

 

The expected value of Y for the non-censored regions is: 

 
 ( ) ( ) Y,NCl u

E Y E Y+ = µ  (C.7) 
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where Y,NCµ  is given in Equation A.35. 

The expected value of Y2  (Ang and Tang 1976) is: 

 

 
( ) ( ) ( )22

2 2
Y Y

E Y Var Y E Y= +

= σ +µ

 (C.8) 

 

The expected value of Y2 for the non-censored region is therefore the sum of the variance 

of the non-censored region (Equation A.40) and the square of the mean of the non-

censored region (Equation A.35): 

 
 ( ) ( )2 2 2 2

Y,NC Y,NCl u
E Y E Y+ = σ +µ  (C.9) 

 

For a censored measurement, the second derivative of the likelihood function is: 
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where:   
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and 

By Yµ  and 
By Yσ  are the conditional moments of Y derived in Section 4.4.1.2.  The 

derivatives in Equation C.11 are evaluated at the prior mean values of the model 

parameters, Φµ
K . 

The second derivative of the natural logarithm of the likelihood function for a 

censored measurement in Equation C.11 does not depend on the data point, y.  Therefore, 

the expected value of the second derivative of the natural logarithm of the likelihood 

function for a censored measurement is: 

 

 
2 2

C C
Y

i j i j

g gE
⎛ ⎞∂ ∂

=⎜ ⎟⎜ ⎟∂φ ∂φ ∂φ ∂φ⎝ ⎠
 (C.11) 

 

Equations C.6 and C.11 are then substituted into Equation C.1 to find the 

expected second derivative of the natural logarithm of the likelihood function. 
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Appendix D.  Complete Results for Comparison of Methods to 
Calculate E(-G”) 

 

This appendix contains the results for the numerical simulations described in 

Chapter 5 for calculating the expected value of the negative second derivative of the 

natural logarithm of the likelihood function, 
*

2

Y
i j

gE
φ

⎛ ⎞∂⎜ ⎟
∂φ ∂φ⎜ ⎟

⎝ ⎠
, which is abbreviated as E(-

G”).  The evaluation point of E(-G”), *φ , was found with two different methods:  using 

the prior mean model parameters so that *φ = Φµ , and finding *φ  to maximize the 

likelihood function.  The mean, standard deviation, and 90 percent confidence interval 

bounds are given for each simulation conducted for each method.   
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Table D1.  Results of numerical simulations with *φ  = Φµ  for no censored data. 

Correlation 
between 

adjacent data 
points i j Mean 

Standard 
Deviation 

90% Confidence 
Interval 

0 0 100.00 0 100 - 100 
0 1 0.13 -20.06 -0.91 - 1.18 
1 1 201.05 -28.55 199.57 - 202.54 
0 2 0.00 0 0 - 0 
1 2 0.00 0 0 - 0 

0 

2 2 0.00 0 0 - 0 
0 0 60.22 -1.53E-05 60.22 - 60.22 
0 1 0.13 -15.59 -0.68 - 0.94 
1 1 201.05 -28.55 199.57 - 202.54 
0 2 0.02 -5.67 -0.28 - 0.31 
1 2 -18.17 -7.79 -18.57 - -17.76 

0.25 

2 2 14.52 -5.07 14.26 - 14.78 
0 0 33.97 0.00E+00 33.97 - 33.97 
0 1 0.13 -11.74 -0.48 - 0.74 
1 1 201.05 -28.55 199.57 - 202.54 
0 2 0.02 -5.27 -0.26 - 0.29 
1 2 -45.63 -10.39 -46.17 - -45.09 

0.5 

2 2 26.66 -6.59 26.31 - 27.00 
0 0 15.12 -2.69E-06 15.12 - 15.12 
0 1 0.12 -7.87 -0.29 - 0.53 
1 1 201.05 -28.55 199.57 - 202.54 
0 2 0.01 -3.66 -0.18 - 0.20 
1 2 -73.36 -12.27 -74.00 - -72.72 

0.75 

2 2 37.89 -7.03 37.53 - 38.26 
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Table D2.  Results of numerical simulations with *φ  = Φµ  for 25 percent censored data. 

Correlation 
between 

adjacent data 
points i j Mean 

Standard 
Deviation 

90% Confidence 
Interval 

0 0 93.94 -1.03 93.88 - 93.99 
0 1 19.23 -17.19 18.33 - 20.12 
1 1 137.95 -21.58 136.83 - 139.07 
0 2 0.00 0 0 - 0 
1 2 0.00 0 0 - 0 

0 

2 2 0.00 0 0 - 0 
0 0 58.35 -0.56 58.32 - 58.37 
0 1 11.64 -13.40 10.95 - 12.34 
1 1 137.33 -22.28 136.17 - 138.49 
0 2 -0.99 -5.36 -1.27 - -0.71 
1 2 -11.92 -5.61 -12.21 - -11.63 

0.25 

2 2 12.53 -4.06 12.32 - 12.75 
0 0 34.18 -0.37 34.16 - 34.20 
0 1 6.09 -10.26 5.56 - 6.63 
1 1 138.53 -24.08 137.28 - 139.78 
0 2 -1.76 -5.25 -2.03 - -1.49 
1 2 -30.28 -7.90 -30.69 - -29.87 

0.5 

2 2 21.72 -5.06 21.46 - 21.98 
0 0 16.08 -0.37 16.06 - 16.10 
0 1 1.79 -7.25 1.41 - 2.17 
1 1 141.08 -27.98 139.62 - 142.54 
0 2 -1.49 -3.99 -1.69 - -1.28 
1 2 -49.40 -11.42 -49.99 - -48.80 

0.75 

2 2 28.41 -5.82 28.10 - 28.71 
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Table D3.  Results of numerical simulations with *φ  = Φµ  for 50 percent censored data. 

Correlation 
between 

adjacent data 
points i j Mean 

Standard 
Deviation 

90% Confidence 
Interval 

0 0 81.87 -1.80 81.78 - 81.96 
0 1 40.33 -14.97 39.56 - 41.11 
1 1 100.66 -22.78 99.48 - 101.84 
0 2 0.00 0 0 - 0 
1 2 0.00 0 0 - 0 

0 

2 2 0.00 0 0 - 0 
0 0 53.81 -1.23 53.74 - 53.87 
0 1 26.04 -11.82 25.43 - 26.66 
1 1 94.43 -22.70 93.25 - 95.62 
0 2 -1.55 -4.63 -1.79 - -1.31 
1 2 -7.31 -4.20 -7.53 - -7.10 

0.25 

2 2 9.30 -3.06 9.14 - 9.46 
0 0 33.25 -0.85 33.21 - 33.30 
0 1 14.98 -9.14 14.50 - 15.45 
1 1 90.87 -24.20 89.61 - 92.13 
0 2 -2.81 -4.60 -3.05 - -2.57 
1 2 -18.50 -5.27 -18.77 - -18.22 

0.5 

2 2 15.37 -4.10 15.16 - 15.59 
0 0 16.47 -0.59 16.43 - 16.50 
0 1 5.91 -6.50 5.57 - 6.24 
1 1 89.32 -29.11 87.80 - 90.83 
0 2 -2.25 -3.69 -2.45 - -2.06 
1 2 -30.00 -9.02 -30.47 - -29.53 

0.75 

2 2 18.59 -5.36 18.31 - 18.87 
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Table D4.  Results of numerical simulations with *φ  = Φµ  for 75 percent censored data. 

Correlation 
between 

adjacent data 
points i j Mean 

Standard 
Deviation 

90% Confidence 
Interval 

0 0 59.97 -2.34 59.85 - 60.09 
0 1 55.70 -12.71 55.04 - 56.37 
1 1 87.98 -23.19 86.78 - 89.19 
0 2 0.00 0 0 - 0 
1 2 0.00 0 0 - 0 

0 

2 2 0.00 0 0 - 0 
0 0 43.43 -1.97 43.32 - 43.53 
0 1 40.04 -10.75 39.48 - 40.60 
1 1 73.69 -22.24 72.53 - 74.85 
0 2 -1.40 -3.31 -1.57 - -1.23 
1 2 -3.74 -3.49 -3.92 - -3.56 

0.25 

2 2 5.10 -2.14 4.99 - 5.21 
0 0 28.96 -1.59 28.88 - 29.05 
0 1 25.78 -8.71 25.33 - 26.23 
1 1 60.86 -22.21 59.71 - 62.02 
0 2 -2.53 -3.49 -2.71 - -2.35 
1 2 -9.07 -3.21 -9.24 - -8.90 

0.5 

2 2 8.05 -3.05 7.89 - 8.21 
0 0 15.25 -1.19 15.19 - 15.32 
0 1 12.09 -6.45 11.75 - 12.42 
1 1 49.42 -24.96 48.12 - 50.72 
0 2 -1.99 -2.83 -2.14 - -1.85 
1 2 -13.94 -4.97 -14.20 - -13.68 

0.75 

2 2 8.99 -4.19 8.77 - 9.21 
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Table D5.  Results of numerical simulations with *φ  maximizing the likelihood function 
for no censored data. 

Correlation 
between 

adjacent data 
points i j Mean 

Standard 
Deviation 

90% Confidence 
Interval 

0 0 102.53 -14.14 101.79 - 103.26 
0 1 0.00 -0.04 0.00 - 0.00 
1 1 200.00 -0.06 200.00 - 200.01 
0 2 0.00 0 0 - 0 
1 2 0.00 0 0 - 0 

0 

2 2 0.00 0 0 - 0 
0 0 65.56 -16.44 64.71 - 66.42 
0 1 0.00 -0.02 0.00 - 0.00 
1 1 200.02 -0.06 200.01 - 200.02 
0 2 -0.02 -0.52 -0.05 - 0.00 
1 2 -17.85 -7.91 -18.26 - -17.44 

0.25 

2 2 13.51 -4.65 13.26 - 13.75 
0 0 39.33 -13.79 38.62 - 40.05 
0 1 0.00 -0.02 0.00 - 0.00 
1 1 200.01 -0.07 200.00 - 200.01 
0 2 -0.04 -0.64 -0.07 - 0.00 
1 2 -43.46 -9.03 -43.92 - -42.99 

0.5 

2 2 25.44 -3.80 25.25 - 25.64 
0 0 20.88 -10.31 20.34 - 21.41 
0 1 0.00 -0.01 0.00 - 0.00 
1 1 200.00 -0.07 200.00 - 200.01 
0 2 -0.05 -0.68 -0.08 - -0.01 
1 2 -69.97 -7.22 -70.34 - -69.59 

0.75 

2 2 36.31 -3.09 36.15 - 36.47 
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Table D6.  Results of numerical simulations with *φ  maximizing the likelihood function 
for 25 percent censored data. 

Correlation 
between 

adjacent data 
points i j Mean 

Standard 
Deviation 

90% Confidence 
Interval 

0 0 96.56 -17.06 95.67 - 97.45 
0 1 19.07 -2.47 18.94 - 19.20 
1 1 137.31 -8.16 136.89 - 137.74 
0 2 0.00 0 0 - 0 
1 2 0.00 0 0 - 0 

0 

2 2 0.00 0 0 - 0 
0 0 63.38 -18.14 62.44 - 64.32 
0 1 12.09 -3.31 11.92 - 12.26 
1 1 136.76 -9.86 136.24 - 137.27 
0 2 -0.96 -0.75 -1.00 - -0.92 
1 2 -11.81 -6.26 -12.13 - -11.48 

0.25 

2 2 11.55 -4.40 11.32 - 11.78 
0 0 39.09 -15.65 38.27 - 39.90 
0 1 6.48 -2.93 6.33 - 6.63 
1 1 138.40 -13.69 137.69 - 139.11 
0 2 -1.73 -0.91 -1.78 - -1.68 
1 2 -29.09 -7.65 -29.49 - -28.69 

0.5 

2 2 20.81 -3.31 20.64 - 20.98 
0 0 22.03 -11.19 21.45 - 22.61 
0 1 2.32 -1.61 2.24 - 2.41 
1 1 141.83 -18.07 140.89 - 142.77 
0 2 -1.65 -1.23 -1.71 - -1.59 
1 2 -47.59 -7.76 -48.00 - -47.19 

0.75 

2 2 27.73 -3.24 27.56 - 27.90 
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Table D7.  Results of numerical simulations with *φ  maximizing the likelihood function 
for 50 percent censored data. 

Correlation 
between 

adjacent data 
points i j Mean 

Standard 
Deviation 

90% Confidence 
Interval 

0 0 85.88 -20.17 84.83 - 86.93 
0 1 40.23 -3.92 40.03 - 40.44 
1 1 100.48 -4.73 100.23 - 100.72 
0 2 0.00 0 0 - 0 
1 2 0.00 0 0 - 0 

0 

2 2 0.00 0 0 - 0 
0 0 59.73 -20.28 58.67 - 60.78 
0 1 27.34 -6.68 26.99 - 27.68 
1 1 95.08 -7.78 94.68 - 95.49 
0 2 -1.50 -0.98 -1.55 - -1.45 
1 2 -7.53 -4.45 -7.77 - -7.30 

0.25 

2 2 8.47 -3.51 8.29 - 8.66 
0 0 39.14 -15.06 38.36 - 39.92 
0 1 16.65 -6.04 16.34 - 16.97 
1 1 91.95 -11.90 91.33 - 92.57 
0 2 -2.64 -1.06 -2.70 - -2.59 
1 2 -18.07 -5.66 -18.37 - -17.78 

0.5 

2 2 14.71 -2.95 14.55 - 14.86 
0 0 23.73 -12.55 23.07 - 24.38 
0 1 8.37 -4.96 8.11 - 8.63 
1 1 92.26 -18.69 91.29 - 93.23 
0 2 -2.35 -1.38 -2.42 - -2.28 
1 2 -29.56 -8.27 -29.99 - -29.13 

0.75 

2 2 18.54 -4.08 18.33 - 18.76 
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Table D8.  Results of numerical simulations with *φ  maximizing the likelihood function 
for 75 percent censored data. 

Correlation 
between 

adjacent data 
points i j Mean 

Standard 
Deviation 

90% Confidence 
Interval 

0 0 66.90 -24.55 65.62 - 68.17 
0 1 56.95 -8.76 56.50 - 57.41 
1 1 87.45 -0.81 87.40 - 87.49 
0 2 0.00 0 0 - 0 
1 2 0.00 0 0 - 0 

0 

2 2 0.00 0 0 - 0 
0 0 50.93 -23.88 49.68 - 52.17 
0 1 42.79 -12.53 42.14 - 43.44 
1 1 75.09 -7.80 74.68 - 75.49 
0 2 -1.31 -0.94 -1.36 - -1.27 
1 2 -3.94 -2.99 -4.10 - -3.78 

0.25 

2 2 4.43 -2.56 4.30 - 4.56 
0 0 37.57 -24.32 36.31 - 38.84 
0 1 30.00 -12.64 29.34 - 30.65 
1 1 64.46 -7.65 64.06 - 64.86 
0 2 -2.27 -0.95 -2.32 - -2.22 
1 2 -8.88 -3.46 -9.06 - -8.70 

0.5 

2 2 7.58 -2.06 7.47 - 7.69 
0 0 26.47 -21.74 25.34 - 27.60 
0 1 19.09 -10.32 18.56 - 19.63 
1 1 56.92 -11.19 56.34 - 57.50 
0 2 -1.87 -1.44 -1.95 - -1.80 
1 2 -13.87 -5.81 -14.18 - -13.57 

0.75 

2 2 9.22 -3.37 9.04 - 9.39 
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Appendix E.  Groundwater Monitoring Data from French Limited Site 

 

The data from the French Limited site that were used in the model calibration in 

Chapter 6 are presented in this appendix.  The well coordinates and screened intervals are 

listed in Tables E1 and E2.  The locations of the wells are plotted in Figure 6.4.  Table E3 

contains the benzene concentrations measured at the wells, or the reported detection 

limits for censored measurements, sorted by the sampling date.  The benzene 

concentrations are plotted for each well in Appendix F, along with model-predicted 

concentrations.   
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Table E1.  Wells at the French Limited site sampled before remediation. 

Well Location Screened Interval of Well 

Well Name 
X-Coordinate 

(m) 
Y-Coordinate 

(m) 

Elevation at 
Top of Screen 

(m) 

Elevation at 
Bottom of Screen 

(m) 
ERT-1 595.4 403.0 -1.46 -10.61 

ERT-1A 599.2 403.7 3.02 -1.55 
ERT-2 564.9 380.1 -0.49 -10.39 
ERT-3 586.3 355.7 -1.04 -9.57 
ERT-4 599.2 399.9 -1.28 -9.66 

ERT-4A 603.0 399.9 2.87 -1.71 
ERT-5 568.0 378.6 -1.19 -10.33 
ERT-6 580.2 360.3 -1.22 -10.36 
ERT-7 699.0 401.4 -1.16 -9.69 

ERT-7A 702.1 398.4 2.80 -1.77 
ERT-8 699.0 401.4 -1.68 -10.67 

ERT-8A 702.1 398.4 2.77 -1.80 
ERT-9 628.9 401.4 -2.19 -11.34 

ERT-9A 632.0 402.2 2.96 -1.62 
ERT-10 628.9 398.4 -1.59 -10.73 

ERT-10A 632.0 399.2 2.96 -1.62 
ERT-20 924.6 441.1 1.28 -9.39 
ERT-21 790.5 459.4 1.04 -9.63 
ERT-22 702.1 456.3 0.49 -11.70 
ERT-23 494.8 450.2 -0.76 -12.95 
ERT-24 464.4 416.7 0.00 -10.67 
ERT-25 403.4 404.5 1.52 -10.67 
ERT-26 336.3 413.6 0.97 -11.21 
ERT-27 461.3 471.5 1.92 -10.27 
ERT-28 462.8 584.3 2.99 -13.78 
ERT-29 465.9 639.2 2.96 -12.28 
ERT-30 464.3 691.0 2.38 -11.34 
GW-3 833.1 445.6 1.89 -4.21 
GW-8 906.3 395.3 1.13 -1.92 
GW-9 577.1 395.3 0.58 -2.47 
GW-20 601.5 483.7 1.83 -4.27 
REI-3-1 772.2 596.5 -9.39 -12.44 
REI-3-2 767.6 598.0 -5.40 -6.92 
REI-3-3 758.5 599.6 0.55 -3.72 
REI-6-1 827.1 403.0 -5.43 -11.52 
REI-6-2 848.4 401.4 2.50 -3.60 

REI-10-2 615.2 425.8 -6.49 -10.70 
REI-10-3 597.7 409.1 -7.16 -10.30 
REI-10-4 619.8 409.1 -6.40 -10.30 
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Table E2.  Wells at the French Limited site sampled after remediation. 

Well Location Screened Interval of Well 

Well Name 
X-Coordinate 

(m) 
Y-Coordinate 

(m) 

Elevation at 
Top of Screen 

(m) 

Elevation at 
Bottom of Screen 

(m) 
FLTG-14 990.1 463.9 2.29 -3.81 
INT-22 564.7 447.7 -7.25 -11.83 
INT-26 695.6 435.8 -6.83 -11.40 

INT-60-P-3 731.9 421.1 -8.99 -12.04 
INT-101 523.8 419.7 -10.00 -13.05 
INT-106 881.9 441.1 -8.87 -11.92 
INT-108 769.2 439.5 -7.25 -10.30 
INT-118 202.5 413.8 -6.20 -9.20 
INT-120 823.6 406.0 -9.30 -12.25 
INT-123 858.4 402.3 -9.30 -12.25 
INT-127 848.4 421.4 -10.55 -13.50 
INT-134 462.8 461.3 -4.85 -10.94 
INT-135 462.2 512.7 -5.85 -11.95 
INT-144 366.7 520.0 -8.56 -11.61 
INT-214 595.3 447.2 -4.97 -11.06 
INT-217 596.3 508.1 -6.71 -12.80 
INT-233 588.6 423.0 -8.02 -14.11 
S1-31 582.1 409.1 -1.68 -4.72 
S1-33 558.8 448.7 -0.24 -3.29 

S1-51-P-3 691.4 453.3 -1.34 -4.39 
S1-106A 881.9 441.1 -1.55 -4.60 
S1-108A 762.2 435.0 -0.24 -4.82 
S1-118 207.5 412.8 1.37 -3.20 
S1-121 901.7 395.3 -1.31 -4.27 
S1-123 896.3 420.0 -3.35 -6.31 
S1-131 999.9 380.1 -2.93 -5.88 
S1-135 462.2 512.7 1.16 -1.89 

 

 



 208

Table E3.  Benzene concentration measurements at the French Limited site.  (For point 
measurements, the measured concentration is given.  For censored 
measurements, the detection limit is given.) 

Well Name Sample Date 

Point or 
Censored 

Measurement 

Benzene 
Concentration or 
Detection Limit 

(g/m3) 
GW-8 11/14/1981 Point 0.148 
GW-8 4/14/1983 Point 0.18 
GW-9 4/14/1983 Point 0.1 
GW-20 11/14/1983 Point 0.006 
GW-3 11/28/1983 Point 0.022 

REI-6-2 7/2/1984 Point 0.121 
REI-3-1 7/16/1984 Censored 0.005 
REI-3-2 7/16/1984 Censored 0.005 
REI-3-3 7/16/1984 Censored 0.005 
REI-6-1 7/16/1984 Point 2.5 
GW-3 7/16/1984 Censored 0.005 
ERT-1 4/20/1987 Point 1.4 
ERT-2 4/20/1987 Point 1.1 
ERT-3 4/20/1987 Point 0.31 
ERT-4 4/19/1987 Point 0.96 
ERT-5 4/19/1987 Point 0.69 
ERT-6 4/27/1987 Point 0.69 

REI-10-2 8/31/1987 Point 5.3 
REI-10-4 8/31/1987 Point 6.1 
REI-10-2 9/27/1987 Point 6.2 
REI-10-3 9/27/1987 Point 0.28 
REI-10-4 9/27/1987 Point 4.2 

ERT-7 11/5/1987 Point 0.97 
ERT-8 11/6/1987 Point 1.7 

ERT-7A 11/19/1987 Point 0.03 
ERT-8A 11/19/1987 Point 0.01 
ERT-9 11/19/1987 Point 1.8 

ERT-9A 11/19/1987 Point 0.51 
ERT-10 11/19/1987 Point 2.3 

ERT-10A 11/19/1987 Point 0.54 
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Table E3. (continued) 
 

Well Name Sample Date 

Point or 
Censored 

Measurement 

Benzene 
Concentration or 
Detection Limit 

(g/m3) 
ERT-1 1/4/1988 Point 1.3 

ERT-1A 1/4/1988 Point 1.1 
ERT-4A 1/4/1988 Point 0.61 
ERT-7 1/4/1988 Point 0.16 

ERT-7A 1/4/1988 Point 0.026 
ERT-8 1/4/1988 Point 2 

ERT-8A 1/4/1988 Point 0.018 
ERT-9 1/4/1988 Point 2.9 

ERT-9A 1/4/1988 Point 1.3 
ERT-10 1/4/1988 Point 4.3 
ERT-20 1/4/1988 Point 2.3 
ERT-21 1/4/1988 Point 0.12 
ERT-22 1/4/1988 Point 0.53 
ERT-23 1/4/1988 Censored 0.005 
ERT-24 1/4/1988 Censored 0.01 
REI-3-3 1/4/1988 Censored 0.01 

REI-10-2 1/4/1988 Point 6.6 
REI-10-3 1/4/1988 Censored 0.01 
REI-10-4 1/4/1988 Point 4.9 

ERT-1 2/4/1988 Point 1.9 
ERT-1A 2/4/1988 Point 1.1 
ERT-2 2/4/1988 Point 0.84 
ERT-3 2/4/1988 Point 0.7 

ERT-4A 2/4/1988 Point 1.3 
ERT-5 2/4/1988 Point 1.7 
ERT-6 2/4/1988 Point 0.93 
ERT-7 2/4/1988 Point 0.059 

ERT-7A 2/4/1988 Point 0.045 
ERT-8 2/4/1988 Point 2 

ERT-8A 2/4/1988 Point 0.022 
ERT-9 2/4/1988 Point 3.6 

ERT-9A 2/4/1988 Point 1.1 
ERT-10 2/4/1988 Point 3.3 
ERT-20 2/4/1988 Point 2.2 
ERT-21 2/4/1988 Point 0.11 
ERT-22 2/4/1988 Point 0.95 
ERT-23 2/4/1988 Censored 0.005 
ERT-24 2/5/1988 Censored 0.01 
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Table E3. (continued) 
 

Well Name Sample Date 

Point or 
Censored 

Measurement 

Benzene 
Concentration or 
Detection Limit 

(g/m3) 
REI-10-2 2/4/1988 Point 4.6 
REI-10-3 2/4/1988 Point 1.6 
REI-10-4 2/4/1988 Point 4.4 

ERT-1 3/3/1988 Point 1.3 
ERT-1A 3/3/1988 Point 0.91 
ERT-2 3/3/1988 Point 1.2 
ERT-3 3/3/1988 Point 0.49 

ERT-4A 3/3/1988 Point 1.4 
ERT-5 3/3/1988 Point 1.6 
ERT-6 3/3/1988 Point 1.1 
ERT-7 3/3/1988 Point 0.065 

ERT-7A 3/3/1988 Point 0.003 
ERT-8A 3/3/1988 Point 0.005 
ERT-9 3/3/1988 Point 2.7 

ERT-9A 3/3/1988 Point 0.96 
ERT-10 3/3/1988 Point 3.8 
ERT-20 3/3/1988 Point 1.8 
ERT-21 3/3/1988 Point 0.078 
ERT-22 3/3/1988 Point 1 
ERT-23 3/3/1988 Censored 0.005 
ERT-24 3/3/1988 Censored 0.005 

REI-10-2 3/3/1988 Point 5.1 
REI-10-3 3/3/1988 Point 0.49 
REI-10-4 3/3/1988 Point 0.25 

ERT-1 3/29/1988 Point 1.2 
ERT-1A 3/29/1988 Point 0.93 
ERT-2 3/29/1988 Point 0.28 
ERT-3 3/29/1988 Point 0.58 

ERT-4A 3/29/1988 Point 1.1 
ERT-5 3/29/1988 Point 1.4 
ERT-6 3/29/1988 Point 0.86 
ERT-7 3/29/1988 Point 0.044 

ERT-7A 3/29/1988 Point 0.02 
ERT-8 3/29/1988 Point 0.98 

ERT-8A 3/29/1988 Point 0.018 
ERT-9 3/29/1988 Point 3.1 

ERT-9A 3/29/1988 Point 0.61 
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Table E3. (continued) 
 

Well Name Sample Date 

Point or 
Censored 

Measurement 

Benzene 
Concentration or 
Detection Limit 

(g/m3) 
ERT-10 3/29/1988 Point 3.5 
ERT-20 3/29/1988 Point 2.5 
ERT-21 3/29/1988 Point 0.13 
ERT-22 3/29/1988 Point 1 
ERT-24 3/29/1988 Censored 0.005 
ERT-25 3/29/1988 Censored 0.005 
ERT-27 3/29/1988 Censored 0.005 
ERT-28 3/29/1988 Censored 0.005 
ERT-29 3/29/1988 Censored 0.005 
ERT-30 3/29/1988 Censored 0.005 

REI-10-2 3/29/1988 Point 5.1 
REI-10-3 3/29/1988 Point 2.2 
REI-10-4 3/29/1988 Point 0.41 
ERT-25 4/5/1988 Censored 0.005 
ERT-26 4/5/1988 Censored 0.005 
ERT-27 4/5/1988 Censored 0.005 
ERT-28 4/5/1988 Censored 0.005 
ERT-29 4/5/1988 Censored 0.005 
ERT-30 4/5/1988 Censored 0.005 
ERT-24 4/27/1988 Censored 0.005 
ERT-25 4/27/1988 Censored 0.005 
ERT-26 4/27/1988 Censored 0.005 
ERT-27 4/27/1988 Censored 0.005 
ERT-28 4/27/1988 Censored 0.005 
ERT-29 4/27/1988 Censored 0.005 
ERT-30 4/27/1988 Censored 0.005 
ERT-1 5/25/1988 Point 1.7 
ERT-2 5/25/1988 Point 1.4 
ERT-3 5/25/1988 Point 0.6 
ERT-5 5/25/1988 Point 1.5 
ERT-6 5/25/1988 Point 0.17 
ERT-7 5/25/1988 Point 0.088 
ERT-8 5/25/1988 Point 0.98 
ERT-9 5/25/1988 Point 3.6 
ERT-10 5/25/1988 Point 3.4 
ERT-20 5/25/1988 Point 2.5 
ERT-21 5/25/1988 Point 0.47 
ERT-22 5/25/1988 Point 0.84 
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Table E3. (continued) 
 

Well Name Sample Date 

Point or 
Censored 

Measurement 

Benzene 
Concentration or 
Detection Limit 

(g/m3) 
ERT-23 5/25/1988 Censored 0.005 
ERT-24 5/25/1988 Censored 0.005 
ERT-25 5/25/1988 Censored 0.005 
ERT-26 5/25/1988 Censored 0.005 
ERT-27 5/25/1988 Censored 0.005 
ERT-28 5/25/1988 Censored 0.005 
ERT-29 5/25/1988 Censored 0.005 
ERT-30 5/25/1988 Censored 0.005 

REI-10-2 5/25/1988 Point 5.6 
REI-10-3 5/25/1988 Point 2.6 
REI-10-4 5/25/1988 Point 3.4 

ERT-1 6/22/1988 Point 1.2 
ERT-2 6/22/1988 Point 1.3 
ERT-3 6/22/1988 Point 0.7 
ERT-5 6/22/1988 Point 0.89 
ERT-6 6/22/1988 Point 0.82 
ERT-7 6/22/1988 Point 0.088 
ERT-8 6/22/1988 Point 0.82 
ERT-9 6/22/1988 Point 3.2 
ERT-10 6/22/1988 Point 3.2 
ERT-20 6/22/1988 Point 2.4 
ERT-21 6/22/1988 Point 0.25 
ERT-22 6/22/1988 Point 0.89 
ERT-23 6/22/1988 Censored 0.005 
ERT-24 6/22/1988 Censored 0.005 
ERT-25 6/22/1988 Censored 0.005 
ERT-26 6/22/1988 Censored 0.005 
ERT-27 6/22/1988 Censored 0.005 
ERT-28 6/22/1988 Censored 0.005 
ERT-29 6/22/1988 Censored 0.005 
ERT-30 6/22/1988 Censored 0.005 

REI-10-2 6/22/1988 Point 4.8 
REI-10-3 6/22/1988 Point 2.5 
REI-10-4 6/22/1988 Point 3.1 
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Table E3. (continued) 
 

Well Name Sample Date 

Point or 
Censored 

Measurement 

Benzene 
Concentration or 
Detection Limit 

(g/m3) 
ERT-1 7/21/1988 Point 2.1 

ERT-1A 7/21/1988 Point 0.1 
ERT-2 7/21/1988 Point 1.3 
ERT-3 7/21/1988 Point 0.93 

ERT-4A 7/21/1988 Point 0.2 
ERT-5 7/21/1988 Point 1.3 
ERT-6 7/21/1988 Point 0.74 
ERT-7 7/21/1988 Point 0.39 

ERT-7A 7/21/1988 Point 0.04 
ERT-8 7/21/1988 Point 0.67 

ERT-8A 7/21/1988 Point 0.007 
ERT-9 7/21/1988 Point 3.5 

ERT-9A 7/21/1988 Point 2.6 
ERT-10 7/21/1988 Point 3 
ERT-20 7/21/1988 Point 2.3 
ERT-21 7/21/1988 Point 0.32 
ERT-22 7/21/1988 Point 1.1 
ERT-23 7/21/1988 Censored 0.005 
ERT-24 7/21/1988 Censored 0.005 
ERT-25 7/21/1988 Censored 0.005 
ERT-26 7/21/1988 Censored 0.005 
ERT-27 7/21/1988 Censored 0.005 
ERT-28 7/21/1988 Censored 0.005 
ERT-29 7/21/1988 Censored 0.005 
ERT-30 7/21/1988 Censored 0.005 

REI-10-2 7/21/1988 Point 6.5 
REI-10-3 7/21/1988 Point 2.6 
REI-10-4 7/21/1988 Point 4.5 

ERT-1 11/15/1988 Point 2 
ERT-2 11/18/1988 Point 1.1 
ERT-3 11/18/1988 Point 1 
ERT-8 11/18/1988 Point 1.3 
ERT-10 11/18/1988 Point 3.8 
ERT-20 11/18/1988 Point 1.8 
ERT-21 11/18/1988 Point 0.26 
ERT-22 11/18/1988 Point 1 
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Table E3. (continued) 
 

Well Name Sample Date 

Point or 
Censored 

Measurement 

Benzene 
Concentration or 
Detection Limit 

(g/m3) 
ERT-23 11/18/1988 Censored 0.005 
ERT-24 11/18/1988 Censored 0.005 
ERT-25 11/18/1988 Censored 0.005 
ERT-26 11/18/1988 Censored 0.005 
ERT-27 11/18/1988 Censored 0.005 
ERT-28 11/18/1988 Censored 0.005 
ERT-29 11/18/1988 Censored 0.005 
ERT-30 11/18/1988 Censored 0.005 

REI-10-3 11/18/1988 Point 2.4 
REI-10-4 11/18/1988 Point 3.9 

ERT-1 12/7/1989 Point 1.8 
ERT-2 12/7/1989 Point 1.0 
ERT-3 12/7/1989 Point 1.1 
ERT-8 12/7/1989 Point 0.9 
ERT-10 12/7/1989 Point 3.2 
ERT-23 12/7/1989 Censored 0.005 
ERT-24 12/7/1989 Censored 0.005 
ERT-27 12/7/1989 Censored 0.005 
ERT-28 12/7/1989 Censored 0.005 
ERT-29 12/7/1989 Censored 0.005 
INT-118 1/15/1996 Censored 0.0003 
INT-144 1/15/1996 Censored 0.0003 
S1-106A 1/15/1996 Censored 0.0003 
S1-108A 1/15/1996 Censored 0.0003 
S1-118 1/15/1996 Censored 0.0003 
S1-135 1/15/1996 Censored 0.0003 

FLTG-13 1/16/1996 Censored 0.0003 
FLTG-14 1/16/1996 Censored 0.0003 
INT-108 1/16/1996 Censored 0.0003 
INT-217 1/16/1996 Point 0.022 
S1-33 1/16/1996 Censored 0.0003 
INT-22 1/17/1996 Point 0.044 
INT-26 1/17/1996 Point 0.18 
INT-106 1/17/1996 Censored 0.0003 
INT-135 1/17/1996 Censored 0.0003 
S1-31 1/17/1996 Censored 0.0003 
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Table E3. (continued) 
 

Well Name Sample Date 

Point or 
Censored 

Measurement 

Benzene 
Concentration or 
Detection Limit 

(g/m3) 
INT-60-P-3 1/18/1996 Censored 0.0003 

INT-134 1/18/1996 Point 0.034 
INT-214 1/18/1996 Censored 0.0003 

S1-51-P-3 1/18/1996 Censored 0.0003 
S1-121 1/18/1996 Censored 0.0003 
INT-101 1/22/1996 Point 0.12 
INT-127 1/22/1996 Point 0.15 
INT-120 1/23/1996 Censored 0.015 
INT-123 1/23/1996 Censored 0.0003 
INT-233 1/23/1996 Point 0.74 
S1-123 1/23/1996 Censored 0.0003 
S1-131 1/23/1996 Point 0.008 

FLTG-13 4/12/1996 Censored 0.0003 
FLTG-14 4/12/1996 Point 0.007 
INT-22 4/12/1996 Censored 0.0003 
INT-26 4/12/1996 Point 0.098 

INT-60-P-3 4/12/1996 Point 0.025 
INT-101 4/12/1996 Point 0.036 
INT-106 4/12/1996 Point 0.006 
INT-108 4/12/1996 Censored 0.0003 
INT-118 4/12/1996 Censored 0.0003 
INT-120 4/12/1996 Point 0.005 
INT-123 4/12/1996 Censored 0.0006 
INT-127 4/12/1996 Point 0.16 
INT-134 4/12/1996 Point 0.027 
INT-135 4/12/1996 Censored 0.0003 
INT-144 4/12/1996 Censored 0.0003 
INT-214 4/12/1996 Censored 0.0003 
INT-217 4/12/1996 Point 0.051 
INT-233 4/12/1996 Point 0.37 
S1-31 4/12/1996 Censored 0.0003 
S1-33 4/12/1996 Censored 0.0003 

S1-51-P-3 4/12/1996 Censored 0.0003 
S1-106A 4/12/1996 Censored 0.0003 
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Table E3. (continued) 
 

Well Name Sample Date 

Point or 
Censored 

Measurement 

Benzene 
Concentration or 
Detection Limit 

(g/m3) 
S1-108A 4/12/1996 Point 0.004 
S1-118 4/12/1996 Censored 0.0003 
S1-121 4/12/1996 Point 0.005 
S1-123 4/12/1996 Censored 0.003 
S1-131 4/12/1996 Point 0.021 
S1-135 4/12/1996 Point 0.003 

FLTG-13 7/22/1996 Censored 0.0003 
FLTG-14 7/22/1996 Censored 0.0003 
INT-22 7/22/1996 Censored 0.0003 
INT-26 7/22/1996 Point 0.1 

INT-60-P-3 7/22/1996 Censored 0.0003 
INT-101 7/22/1996 Point 0.036 
INT-106 7/22/1996 Point 0.004 
INT-108 7/22/1996 Censored 0.0003 
INT-118 7/22/1996 Censored 0.0003 
INT-120 7/22/1996 Point 0.003 
INT-123 7/22/1996 Point 0.002 
INT-127 7/22/1996 Point 0.17 
INT-134 7/22/1996 Point 0.054 
INT-135 7/22/1996 Censored 0.0003 
INT-144 7/22/1996 Censored 0.0003 
INT-214 7/22/1996 Censored 0.0003 
INT-217 7/22/1996 Point 0.016 
INT-233 7/22/1996 Point 0.35 
S1-31 7/22/1996 Censored 0.0003 
S1-33 7/22/1996 Censored 0.0003 

S1-51-P-3 7/22/1996 Censored 0.0003 
S1-106A 7/22/1996 Censored 0.0003 
S1-108A 7/22/1996 Censored 0.0003 
S1-118 7/22/1996 Censored 0.0003 
S1-121 7/22/1996 Point 0.004 
S1-123 7/22/1996 Censored 0.003 
S1-131 7/22/1996 Point 0.031 
S1-135 7/22/1996 Censored 0.0003 
S1-118 10/4/1996 Censored 0.005 
S1-135 10/4/1996 Censored 0.005 

FLTG-13 10/7/1996 Censored 0.005 
FLTG-14 10/7/1996 Censored 0.005 
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Table E3. (continued) 
 

Well Name Sample Date 

Point or 
Censored 

Measurement 

Benzene 
Concentration or 
Detection Limit 

(g/m3) 
INT-22 10/7/1996 Point 0.004 
INT-26 10/7/1996 Point 0.075 

INT-60-P-3 10/7/1996 Censored 0.005 
INT-101 10/7/1996 Point 0.033 
INT-106 10/7/1996 Point 0.01 
INT-108 10/7/1996 Censored 0.005 
INT-118 10/7/1996 Censored 0.005 
INT-120 10/7/1996 Point 0.005 
INT-123 10/7/1996 Point 0.005 
INT-127 10/7/1996 Point 0.2 
INT-134 10/7/1996 Point 0.056 
INT-135 10/7/1996 Censored 0.005 
INT-144 10/7/1996 Censored 0.005 
INT-214 10/7/1996 Censored 0.005 
INT-217 10/7/1996 Point 0.022 
INT-233 10/7/1996 Point 0.5 
S1-31 10/7/1996 Censored 0.005 
S1-33 10/7/1996 Censored 0.005 

S1-51-P-3 10/7/1996 Censored 0.005 
S1-106A 10/7/1996 Censored 0.005 
S1-108A 10/7/1996 Censored 0.005 
S1-121 10/7/1996 Censored 0.005 
S1-123 10/7/1996 Censored 0.005 
S1-131 10/7/1996 Point 0.032 

FLTG-13 1/24/1997 Censored 0.002 
FLTG-14 1/24/1997 Censored 0.005 
INT-22 1/24/1997 Censored 0.005 
INT-26 1/24/1997 Point 0.024 

INT-60-P-3 1/24/1997 Censored 0.005 
INT-101 1/24/1997 Point 0.009 
INT-106 1/24/1997 Point 0.005 
INT-108 1/24/1997 Censored 0.005 
INT-118 1/24/1997 Censored 0.005 
INT-120 1/24/1997 Censored 0.004 
INT-123 1/24/1997 Point 0.028 
INT-127 1/24/1997 Point 0.18 
INT-134 1/24/1997 Point 0.044 
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Table E3. (continued) 
 

Well Name Sample Date 

Point or 
Censored 

Measurement 

Benzene 
Concentration or 
Detection Limit 

(g/m3) 
INT-135 1/24/1997 Censored 0.005 
INT-144 1/24/1997 Censored 0.005 
INT-214 1/24/1997 Censored 0.005 
INT-217 1/24/1997 Point 0.018 
INT-233 1/24/1997 Censored 0.005 
S1-31 1/24/1997 Censored 0.005 
S1-33 1/24/1997 Censored 0.005 

S1-51-P-3 1/24/1997 Censored 0.005 
S1-106A 1/24/1997 Censored 0.005 
S1-108A 1/24/1997 Censored 0.005 
S1-118 1/24/1997 Censored 0.005 
S1-121 1/24/1997 Censored 0.005 
S1-123 1/24/1997 Censored 0.005 
S1-131 1/24/1997 Censored 0.003 
S1-135 1/24/1997 Censored 0.005 

FLTG-13 4/14/1997 Censored 0.005 
FLTG-14 4/14/1997 Censored 0.005 

INT-60-P-3 4/14/1997 Censored 0.005 
INT-108 4/14/1997 Censored 0.005 
INT-118 4/14/1997 Censored 0.005 
INT-135 4/14/1997 Censored 0.005 
INT-144 4/14/1997 Censored 0.005 
INT-214 4/14/1997 Censored 0.005 
S1-31 4/14/1997 Censored 0.005 
S1-33 4/14/1997 Censored 0.005 

S1-51-P-3 4/14/1997 Censored 0.005 
INT-22 4/15/1997 Censored 0.005 
INT-101 4/15/1997 Censored 0.005 
INT-106 4/15/1997 Censored 0.005 
INT-120 4/15/1997 Point 0.013 
INT-217 4/15/1997 Censored 0.005 
S1-106A 4/15/1997 Censored 0.005 
S1-108A 4/15/1997 Censored 0.005 
S1-118 4/15/1997 Censored 0.005 
S1-121 4/15/1997 Point 0.012 
S1-123 4/15/1997 Censored 0.005 
S1-131 4/15/1997 Censored 0.004 
S1-135 4/15/1997 Censored 0.005 
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Table E3. (continued) 
 

Well Name Sample Date 

Point or 
Censored 

Measurement 

Benzene 
Concentration or 
Detection Limit 

(g/m3) 
INT-26 4/16/1997 Point 0.024 
INT-123 4/16/1997 Censored 0.005 
INT-127 4/16/1997 Point 0.065 
INT-134 4/16/1997 Point 0.019 
INT-233 4/16/1997 Point 0.1 
FLTG-13 7/14/1997 Censored 0.005 
FLTG-14 7/14/1997 Censored 0.005 

INT-60-P-3 7/14/1997 Censored 0.005 
INT-108 7/14/1997 Censored 0.005 
INT-118 7/14/1997 Censored 0.005 
INT-135 7/14/1997 Censored 0.005 
INT-22 7/15/1997 Censored 0.005 
INT-144 7/15/1997 Censored 0.005 
INT-214 7/15/1997 Censored 0.005 
S1-31 7/15/1997 Censored 0.005 
S1-33 7/15/1997 Censored 0.005 

S1-51-P-3 7/15/1997 Censored 0.005 
S1-106A 7/15/1997 Point 0.008 
S1-108A 7/15/1997 Censored 0.005 
S1-118 7/15/1997 Censored 0.005 
S1-121 7/15/1997 Censored 0.003 
S1-123 7/15/1997 Point 0.069 
S1-131 7/15/1997 Point 0.021 
S1-135 7/15/1997 Censored 0.005 
INT-26 7/16/1997 Point 0.038 
INT-101 7/16/1997 Point 0.011 
INT-106 7/16/1997 Censored 0.005 
INT-120 7/16/1997 Censored 0.004 
INT-123 7/16/1997 Censored 0.005 
INT-127 7/16/1997 Point 0.067 
INT-134 7/16/1997 Point 0.03 
INT-217 7/16/1997 Point 0.016 
INT-233 7/16/1997 Point 0.18 
FLTG-13 10/14/1997 Censored 0.005 
FLTG-14 10/14/1997 Censored 0.005 
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Table E3. (continued) 
 

Well Name Sample Date 

Point or 
Censored 

Measurement 

Benzene 
Concentration or 
Detection Limit 

(g/m3) 
INT-22 10/14/1997 Censored 0.005 
INT-26 10/14/1997 Point 0.089 
INT-101 10/14/1997 Point 0.009 
INT-108 10/14/1997 Censored 0.005 
INT-118 10/14/1997 Censored 0.005 
INT-134 10/14/1997 Point 0.033 
INT-135 10/14/1997 Censored 0.005 
INT-144 10/14/1997 Censored 0.005 
INT-214 10/14/1997 Censored 0.005 
S1-33 10/14/1997 Censored 0.005 

S1-51-P-3 10/14/1997 Censored 0.005 
S1-108A 10/14/1997 Censored 0.005 
S1-118 10/14/1997 Censored 0.005 
S1-135 10/14/1997 Censored 0.005 

INT-60-P-3 10/15/1997 Censored 0.005 
INT-106 10/15/1997 Censored 0.003 
INT-120 10/15/1997 Point 0.044 
INT-123 10/15/1997 Censored 0.005 
INT-127 10/15/1997 Censored 0.005 
INT-217 10/15/1997 Point 0.014 
INT-233 10/15/1997 Point 0.23 
S1-31 10/15/1997 Censored 0.005 

S1-106A 10/15/1997 Censored 0.005 
S1-123 10/15/1997 Censored 0.025 
S1-131 10/15/1997 Point 0.021 
S1-123 10/31/1997 Censored 2.5 
S1-121 11/5/1997 Censored 0.005 

FLTG-13 1/19/1998 Censored 0.005 
INT-60-P-3 1/19/1998 Censored 0.005 

INT-108 1/19/1998 Censored 0.005 
INT-118 1/19/1998 Censored 0.005 
INT-135 1/19/1998 Censored 0.005 
INT-144 1/19/1998 Censored 0.005 
INT-214 1/19/1998 Censored 0.005 
S1-31 1/19/1998 Censored 0.005 
S1-33 1/19/1998 Censored 0.005 

S1-51-P-3 1/19/1998 Censored 0.005 
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Table E3. (continued) 
 

Well Name Sample Date 

Point or 
Censored 

Measurement 

Benzene 
Concentration or 
Detection Limit 

(g/m3) 
FLTG-14 1/20/1998 Censored 0.005 
INT-22 1/20/1998 Censored 0.005 

S1-106A 1/20/1998 Censored 0.005 
S1-108A 1/20/1998 Censored 0.005 
S1-118 1/20/1998 Censored 0.005 
S1-121 1/20/1998 Censored 0.002 
S1-123 1/20/1998 Censored 0.005 
S1-135 1/20/1998 Censored 0.005 
INT-26 1/21/1998 Point 0.005 
INT-101 1/21/1998 Censored 0.005 
INT-106 1/21/1998 Censored 0.005 
INT-120 1/21/1998 Point 0.009 
INT-217 1/21/1998 Censored 0.002 
S1-131 1/21/1998 Point 0.006 
INT-123 1/22/1998 Censored 0.01 
INT-127 1/22/1998 Censored 0.005 
INT-134 1/22/1998 Point 0.025 
INT-233 1/22/1998 Point 0.24 
INT-108 2/12/1998 Censored 0.005 
INT-135 2/12/1998 Censored 0.005 
INT-214 2/12/1998 Censored 0.005 
S1-33 2/12/1998 Censored 0.005 

S1-108A 2/12/1998 Censored 0.005 
S1-135 2/12/1998 Censored 0.005 

FLTG-14 2/13/1998 Censored 0.005 
INT-22 2/13/1998 Censored 0.005 
INT-118 2/13/1998 Censored 0.005 
INT-144 2/13/1998 Censored 0.005 
S1-31 2/13/1998 Censored 0.005 

S1-51-P-3 2/13/1998 Censored 0.005 
S1-118 2/13/1998 Censored 0.005 
S1-121 2/13/1998 Censored 0.002 

FLTG-13 2/15/1998 Censored 0.005 
INT-60-P-3 2/15/1998 Censored 0.005 
S1-106A 2/15/1998 Point 0.006 
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Table E3. (continued) 
 

Well Name Sample Date 

Point or 
Censored 

Measurement 

Benzene 
Concentration or 
Detection Limit 

(g/m3) 
INT-26 2/17/1998 Point 0.049 
INT-101 2/17/1998 Point 0.005 
INT-106 2/17/1998 Censored 0.005 
INT-217 2/17/1998 Point 0.011 
S1-131 2/17/1998 Point 0.058 
INT-120 2/18/1998 Censored 0.006 
INT-127 2/18/1998 Point 0.005 
INT-134 2/18/1998 Point 0.041 
INT-233 2/18/1998 Point 0.24 
S1-123 2/18/1998 Point 0.25 
INT-123 2/19/1998 Censored 0.005 
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Appendix F.  Measured and Calculated Groundwater Concentrations 

 

This appendix contains graphs of the measured and model-predicted benzene 

concentrations for all of the wells at the French Limited site that were sampled both 

before and after remediation.  As discussed in Section 7.4.6, the model-predicted 

concentrations are calculated in two ways:  with or without conditioning on the previous 

measurements.  Without conditioning, the concentration is calculated with the 

groundwater model with the updated model parameters.  With conditioning, the 

previously measured concentrations are combined with the calculated concentration, as 

shown in Equation 4.18.  In all of the graphs in this appendix, the measured 

concentrations that were censored are plotted at the reported detection limit.  These points 

are shown on the graphs with the data marker outlined. 
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Figure F1.  Comparison of measured and calculated benzene concentrations for well 
ERT-1.  
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Figure F2.  Comparison of measured and calculated benzene concentrations for well 
ERT-1A.  
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Figure F3.  Comparison of measured and calculated benzene concentrations for well 
ERT-2.  
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Figure F4.  Comparison of measured and calculated benzene concentrations for well 
ERT-5.  
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Figure F5.  Comparison of measured and calculated benzene concentrations for well 
ERT-4.  
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Figure F6.  Comparison of measured and calculated benzene concentrations for well 
ERT-4A.  
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Figure F7.  Comparison of measured and calculated benzene concentrations for well 
ERT-6.  
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Figure F8.  Comparison of measured and calculated benzene concentrations for well 
ERT-7.  
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Figure F9.  Comparison of measured and calculated benzene concentrations for well 
ERT-7A.  
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Figure F10.  Comparison of measured and calculated benzene concentrations for well 
ERT-8.  
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Figure F11.  Comparison of measured and calculated benzene concentrations for well 
ERT-8A.  

 

ERT-9

0

1

2

3

4

4/20/87 2/14/88 12/10/88 10/6/89

Date

Co
nc

en
tr

at
io

n 
(g

/m
3 )

Measured

Calculated without
Conditioning
Calculated with
Conditioning

 

Figure F12.  Comparison of measured and calculated benzene concentrations for well 
ERT-9.  
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Figure F13.  Comparison of measured and calculated benzene concentrations for well 
ERT-9A.  

 

ERT-10

0

1

2

3

4

5

4/20/87 2/14/88 12/10/88 10/6/89

Date

C
on

ce
nt

ra
tio

n 
(g

/m
)

Measured

Calculated without
Conditioning
Calculated with
Conditioning

 

Figure F14.  Comparison of measured and calculated benzene concentrations for well 
ERT-10.  
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Figure F15.  Comparison of measured and calculated benzene concentrations for well 
ERT-20.  
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Figure F16.  Comparison of measured and calculated benzene concentrations for well 
ERT-21.  
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Figure F17.  Comparison of measured and calculated benzene concentrations for well 
ERT-22.  
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Figure F18.  Comparison of measured and calculated benzene concentrations for well 
ERT-23.  
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Figure F19.  Comparison of measured and calculated benzene concentrations for wells 
ERT-24, ERT-25, ERT-27, ERT-28, and ERT-29.  
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Figure F20.  Comparison of measured and calculated benzene concentrations for well 
REI-10-2.  
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Figure F21.  Comparison of measured and calculated benzene concentrations for well 
REI-10-3.  
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Figure F22.  Comparison of measured and calculated benzene concentrations for well 
REI-10-4.  
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Figure F23.  Comparison of measured and calculated benzene concentrations for well 
FLTG-13.  
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Figure F24.  Comparison of measured and calculated benzene concentrations for well 
FLTG-14.  
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Figure F25.  Comparison of measured and calculated benzene concentrations for well 
INT-22.  
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Figure F26.  Comparison of measured and calculated benzene concentrations for well 
INT-26.  
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Figure F27.  Comparison of measured and calculated benzene concentrations for well 
INT-60-P3.  
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Figure F28.  Comparison of measured and calculated benzene concentrations for well 
INT-101.  
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Figure F29.  Comparison of measured and calculated benzene concentrations for well 
INT-106.  
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Figure F30.  Comparison of measured and calculated benzene concentrations for well 
INT-108.  
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Figure F31.  Comparison of measured and calculated benzene concentrations for well 
INT-118.  
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Figure F32.  Comparison of measured and calculated benzene concentrations for well 
INT-120.  
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Figure F33.  Comparison of measured and calculated benzene concentrations for well 
INT-123.  
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Figure F34.  Comparison of measured and calculated benzene concentrations for well 
INT-127.  



 241

INT-134

0

0.01

0.02

0.03

0.04

0.05

0.06

1/1/96 10/27/96 8/23/97

Date

C
on

ce
nt

ra
tio

n 
(g

/m
3 )

Measured

Calculated without
Conditioning
Calculated with
Conditioning

 

Figure F35.  Comparison of measured and calculated benzene concentrations for well 
INT-134.  
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Figure F36.  Comparison of measured and calculated benzene concentrations for well 
INT-135.  
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Figure F37.  Comparison of measured and calculated benzene concentrations for well 
INT-144.  
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Figure F38.  Comparison of measured and calculated benzene concentrations for well 
INT-214.  
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Figure F39.  Comparison of measured and calculated benzene concentrations for well 
INT-217.  
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Figure F40.  Comparison of measured and calculated benzene concentrations for well 
INT-233.  



 244

S1-31

0

0.02

0.04

0.06

0.08

1/1/96 10/27/96 8/23/97

Date

Co
nc

en
tr

at
io

n 
(g

/m
3 ) Measured

Detection Limit

Calculated without
Conditioning
Calculated with
Conditioning

 

Figure F41.  Comparison of measured and calculated benzene concentrations for well S1-
31.  
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Figure F42.  Comparison of measured and calculated benzene concentrations for well S1-
33.  
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Figure F43.  Comparison of measured and calculated benzene concentrations for well S1-
51-P3.  
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Figure F44.  Comparison of measured and calculated benzene concentrations for well S1-
106A.  
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Figure F45.  Comparison of measured and calculated benzene concentrations for well S1-
108A.  
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Figure F46.  Comparison of measured and calculated benzene concentrations for well S1-
118.  
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Figure F47.  Comparison of measured and calculated benzene concentrations for well S1-
121.  
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Figure F48.  Comparison of measured and calculated benzene concentrations for well S1-
123.  
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Figure F49.  Comparison of measured and calculated benzene concentrations for well S1-
131.  
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Figure F50.  Comparison of measured and calculated benzene concentrations for well S1-
135.  
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