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The objective of this research was to develop a method for incorporating censored
data into the design and analysis of test programs. In engineering applications, it is
common to encounter censored data. The exact value of a censored data point is not
known, only that it is above or below some specified threshold value. Existing methods
for analyzing censored data are limited and usually involve assumptions about the data,
such as normally-distributed or statistically independent data.

This research extends the First-Order Second-Moment (FOSM) Bayesian method
(Gilbert 1999) to data sets that include censored data and have any type of distribution.
This method is used for test program design and data analysis, allowing the Bayesian
approach to be applied to practical engineering problems with large data sets and
correlated data. The extension for censored data was validated through numerical
experiments.

The method developed for analysis of censored data with a non-normal
distribution was applied to a real site with contaminated groundwater. The concentration
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measurements from the site, which were taken both before and after remediation, were
calibrated with a groundwater model. The calibration resulted in reasonable estimates for
the model parameters describing the physical characteristics of the site. The calibration
also successfully fit the non-normal distribution of the measurements. The method was
proven useful in considering all the complexities of the site: concentrations measured
above and below the detection limit, the effects of remediation on the concentrations,
measurements at many different times and locations, and correlations between
concentrations that represent the heterogeneities at the site and the random errors in
measurements. The method was also used to predict future contaminant concentrations at

the site, which is helpful in making decisions regarding monitoring and remediation.
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Chapter 1. Introduction

1.1 BACKGROUND

In engineering applications, it is common to encounter censored data. The exact
value of a censored data point is not known, only that it is above or below some specified
value. An example of a censored data point is a proof load test where the structure does
not fail under the maximum applied load. The capacity of the tested structure is proven
to be greater than the applied load, but the exact capacity is unknown. Another example
of a censored data point is a contaminant concentration in a groundwater sample that is
reported as below the detection limit. The actual concentration is uncertain, since the
contaminant may be present in the sample at a concentration below the detection limit, or
the contaminant may be absent in the sample.

Existing methods to analyze situations where censored data have been obtained or
are expected are limited in their applications. A typical method used in structural
engineering is to treat load and resistance as random variables; however, the data are
assumed to have a normal distribution, or a transformation of the normal distribution, and
to be uncorrelated. Another common method is Bayesian updating. While non-normal
data may be incorporated with these methods, the amount of data that can be considered
is limited and the data must again be uncorrelated.

In the Bayesian approach, model parameters are considered to be random
variables, so that both the expected value of the parameter and the uncertainty in that
value can be quantified. Any type of information can be incorporated in estimating
model parameters, including indirect data, such as empirical correlations, and actual
measurements. The model parameters are updated by accounting for prior beliefs about

the model parameters and for collected data. While the classical Bayesian method is
1



useful for including all relevant information and accounting for uncertainty in model
parameters, it is difficult to apply analytically to practical problems.

The First-Order Second-Moment (FOSM) Bayesian method developed by Gilbert
(1999) is an analytical approximation for analyzing data and designing test programs.
The FOSM Bayesian method provides a framework to apply the Bayesian method to
practical problems. Data that have already been collected may be used in this method to
calibrate model parameters. Test programs for collecting data to achieve the greatest
reduction of uncertainty in the model parameters may also be designed with this method.
The FOSM Bayesian method overcomes some of the problems with the other methods
presented in literature, since it does not require numerical integration, Monte Carlo
simulations, or assumptions regarding the value of the censored data, and it allows for
correlations between censored and non-censored data. It has been used successfully for
data analysis both with and without censored data that are normally distributed
(McBrayer 2000). It has also been used for designing test programs without censored
data (Muchard 1996), and for data analysis with non-censored, non-normally distributed
data (Wang 2002). This research will expand the FOSM Bayesian method to incorporate

censored data of any distribution type into data analysis and test program design.

1.2 OBJECTIVES AND APPROACH OF RESEARCH

The objectives of this research are to:
1. Extend the FOSM Bayesian method for test design to include censored
data that are correlated and have a normal or non-normal distribution.
2. Extend the FOSM Bayesian method for data analysis to include censored

data are correlated and have a non-normal distribution.



3. Determine the effects of censored data on the updated means and
covariances of model parameters.
4. Demonstrate the new methods through application to a contaminated

groundwater problem that includes censored data.

Since the exact value of a censored data point is not known, the method for
including censored data in the FOSM Bayesian method considers this uncertainty. For
data analysis, the method considers the likelihood of a censored data point, given the
model parameters, based on the conditioned mean and standard deviation of the censored
point. In extending the method to test program design, the likelihood that an expected
data point is censored, and the likelihood that it is not censored, are both considered
appropriately.

When considering data that are not normally distributed, a Hermite polynomial
transform function is used to fit a general distribution to a normal distribution. ~ With
both data analysis and test program design, the characteristics of the transformed non-
normal distribution are used to find the probability that a data point is censored.

Censored data is prominent in the real contaminated site that is used as an
application for the FOSM Bayesian method. The method is used both to calibrate a
groundwater model to existing groundwater data and to develop site investigation and
monitoring plans. The contamination at the site resulted from petrochemical and wood
preservative wastes that were placed in an unlined lagoon approximately twenty years
prior to investigation of the site. A variety of remediation methods were used at the site,
including active bioremediation of the waste lagoon, active remediation of groundwater

consisting of pump-and-treat with injection of oxygen and nutrients, and natural



attenuation of groundwater. The groundwater monitoring data available for the site is
extensive, both before and after remediation.

The FOSM Bayesian method is advantageous because uncertainty can be
considered in the highly variable parameters used in the groundwater model.  The
parameters included in the groundwater model involve the source (size, location, time of
release), groundwater flow (seepage velocity, dispersivity), and contaminant properties
(half-life, concentration at source). The variance in the contaminant concentrations is
also modeled, as are the correlations between concentration measurements (based on
location and time of measurements). The non-normal distribution of the measurements is
also modeled. For all of these model parameters, the uncertainty in the parameters is
quantified, instead of using deterministic values for them.

All of the complexities of the site are included in the model calibration and test
program design with the method developed in this study. The large amount of
groundwater concentration measurements over time and space, including both censored
and point measurements, are accounted for in the method. The correlation of the data
points and the non-normal distribution of the data set are also included. The method is
able to quantify the uncertainty in all of the model parameters, including the effect of the
remediation on the groundwater conditions. This type of analysis would not be possible

with other available methods.

1.3 ORGANIZATION OF DISSERTATION

A description of censored data, particularly as it relates to groundwater
applications, is contained in Chapter 2. Literature dealing with censored data and model
calibration in civil engineering applications involving censored data is also summarized

in Chapter 2.



The basic framework of the FOSM Bayesian method, without censored data, is
outlined in Chapter 3. Chapter 4 explains how censored data are incorporated into the
FOSM Bayesian method. The method developed for including censored data in data
analysis is derived, then extended for test program design for data with either a normal
distribution or a general distribution. The use of censored data in data analysis with
generally-distributed data is also covered in Chapter 4. The effects of including censored
data in a test program design and in data analysis are explored in Chapter 5.

The FOSM Bayesian analysis is applied to a groundwater contamination problem
in Chapters 6 and 7. The history of the site and the groundwater model used for the site
are described in Chapter 6. The groundwater model is calibrated to the groundwater
concentration data collected both before and after remediation of the site, and the results
of the calibration are discussed in Chapter 7.

Conclusions and contributions of this research are presented in Chapter 8.



Chapter 2: Censored Data Background Information

2.1 INTRODUCTION

In the field of civil engineering, censored data are commonly encountered in the
area of proof load tests and groundwater contaminant concentrations below the detection
limit. The concept of censored data is introduced in this chapter through these two
examples of censored data. A brief survey is also provided of several methods of
analysis using censored data in these civil engineering applications for calibrating models

with data and designing test programs.

2.2 CENSORED DATA IN CIVIL ENGINEERING APPLICATIONS

Censored data occurs when the exact value of a measured quantity is unknown,
and it is only known that the value is above or below a certain threshold value. A
common type of censored data encountered in civil engineering are proof load tests.
With this type of test, a load is applied to a structure, such as a pile for a foundation or a
bridge, and the structure either withstands the load or fails. If the structure withstands the
load, the true capacity of the structure is still unknown. The capacity is only known to be
more than the applied load. This is illustrated in Figure 2.1 for a capacity with a normal
distribution. The expected capacity is greater than the maximum applied load, but the
actual capacity could be anywhere in the censored region. The capacity of the structure is
therefore censored.

Another frequently encountered type of censored data occurs in groundwater

sampling when a contaminant concentration is reported as below the detection limit. The



PDF Dlstrlbutlon
of possible
capacities

|
Maximum Applied Expected

Load Capacity

Figure 2.1. Censoring with a proof-load test.

method detection limit (MDL) is a statistical concept and is defined by the U.S.
Environmental Protection Agency as “the minimum concentration of a substance that can
be measured and reported with 99 percent confidence that the analyte concentration is
greater than zero and is determined from analysis of a sample in a given matrix
containing the analyte” (U.S. EPA 2003a). This confidence is illustrated in Figure 2.2. A
sample with a concentration at the MDL will be measured as greater than zero 99 percent
of the times it is tested. The MDL is estimated from testing data and is therefore not an
exact quantity (Berthouex 1993). It may be defined with a mean and a variance, but it is

often treated as an absolute value.
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Figure 2.2. Definition of method detection limit.

Concentrations below the MDL are usually reported only as “not detected”,
although more information would be conveyed with a numerical result and its precision
(Porter et al. 1988). A “non-detect” measurement is frequently misunderstood to be a
concentration of zero or a concentration that is too small to measure. Censored data, or
contaminant concentrations below the detection limit, are expected and usually required
in groundwater investigations. The extent of contamination and the effect of remediation
efforts are evaluated by determining where contaminants are absent in the groundwater.
Since contaminant concentrations will only be reported as below the detection limit, not
as zero, censored data are necessary for defining areas of contaminated groundwater.

Engineers typically deal with censored groundwater measurements by making

assumptions about the values of concentrations. One common assumption is that a non-



detect measurement indicates no contaminant present in the sample, and the
concentration is set to zero. Another common assumption is to assign an arbitrary, non-
zero value to the non-detect measurement, such as the value of the detection limit or half
of the detection limit. Non-detect concentrations are also sometimes excluded from an
analysis of groundwater contamination. All of these assumptions may lead to errors in
estimating the mean and variance of contamination in the groundwater.

An example of how these types of assumptions can lead to errors is illustrated in

Figure 2.3. This figure shows both censored measurements and non-censored, or point,
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Figure 2.3. Censored and point measurements of benzene from a real site.



measurements of benzene from a well at the real site studied in this dissertation. The
censored data points are plotted at the concentration reported as the detection limit. The
detection limit was different at different sampling times, and was especially large at the
beginning of the sampling period. At one of these large detection limits, assuming a
concentration of zero or half the detection limit might lead to a much smaller estimate of
concentration present in the sample than actually exists. Even at the smaller detection
limits, assuming there is no benzene in the sample for a non-detect measurement may be
erroneous. A measurement of benzene in the sample was obtained, but the measured

value could not be reported with 99 percent confidence that it was greater than zero.

2.3 PARAMETER ESTIMATOR METHODS FOR CENSORED DATA

This section provides a brief overview of previously applied methods of analysis
for the censored data that occurs in proof load tests and contaminated groundwater

concentrations.

2.3.1 Analysis of Proof Load Tests

The testing of bridges is commonly addressed as a proof load test problem;
however, the methods are applicable to proof loads on other types of structures. Fujino
and Lind (1977) describe the traditional method of analyzing proof load tests, which is
treating the resistance of the structure and the applied load as normally or lognormally-
distributed random variables. The proof load test gives a higher reliability by eliminating
the lower tail of the reliability distribution. A probability of failure may then be
calculated, as well as a reliability index. Nowak and Tharmabala (1988) also use this

method and discuss the difference between analytical results and actual test results. Fu
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and Tang (1995) address the target proof loads to minimize costs and maximize benefits
from test data. With all of these methods, the data are assumed to have a normal
distribution, or a transformation of the normal distribution, and to be uncorrelated.
Stewart and Val (1999) and Rodriguez et al. (1998) used Monte Carlo simulations
to update the distribution of a structure’s resistance and determine the probability of
failure based on service and proof loads. Numerical approximations were necessary in
these methods, and data were assumed to be normal and uncorrelated. Umble et al.
(1999) developed a Bayesian approach that can be used with any probability distribution
to estimate the probability of failure under two different proof loads. While non-normal
data may be used in this method, the amount of data that can be considered is limited and

the data must be uncorrelated.

2.3.2 Analysis of Concentrations below the Detection Limit

Liu et al. (1996) uses a maximum likelihood method to analyze groundwater
contaminant concentrations reported as below the detection limit. The censored data are
assumed to have a normal or log-normal distribution. Gilliom and Helsel (1986), Haas
and Scheff (1990), and El-Shaarawi and Esterby (1992) evaluated and compared different
techniques for analyzing concentrations below the detection limit, including log-normal
regression, maximum likelihood estimator, and assigning a constant value to censored
data points, such as one-half the detection limit. Gilliom and Helsel (1986) consider
different distributions for the censored data, while Haas and Scheff (1990) and El-
Shaarawi and Esterby (1992) consider only normally-distributed and log-normally-
distributed data. The conclusions about the best method vary, depending on the degree of
censoring and the distribution assumed for the data. A disadvantage of these methods is

that all the data are assumed to be uncorrelated. Also, they only consider the censored
11



data obtained, and do not consider non-censored data that may also have been collected
and may be correlated to the censored data.

McBrayer (1999) proposes a technique for the First-Order Second-Moment
(FOSM) Bayesian method (Gilbert 1999) to use in analyzing censored data, such as the
kind obtained from water concentrations and from load tests. This proposed method
overcomes some of the problems with the other methods presented in the literature for
analyzing censored data, since it does not require assumptions regarding the value of the
censored data and it allows for correlations between censored and non-censored data.
However, the proposed method only uses normally-distributed data, and it may only be

used for data analysis, not for designing test programs.

2.4 SUMMARY

In this chapter, the concept of censored data was introduced. Two common types
of censored data in civil engineering, proof load tests and contaminant concentrations
below the detection limit, were described. A brief survey of methods used to analyze
both of these types of problems was presented. The previously used methods generally
make assumptions about the data, such as statistically independent data or normally-
distributed data. The FOSM Bayesian method does not require these assumptions, and
was therefore chosen as the basis for this research. The research presented in this
dissertation develops the method proposed by McBrayer (1999) so that normally-
distributed or non-normally-distributed censored data may be used in both data analysis
and test program design. The framework of the FOSM Bayesian method is described in
the next chapter, then the method to include generally-distributed censored data for use in

data analysis and test program design is derived in Chapter 4.
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Chapter 3. Bayesian Method with Point Measurements

1.1 INTRODUCTION

The Bayesian approach is a framework for including all available information in a
decision analysis. Data that is based on physical principles or prior experience may be
updated with data from observations or measurements. The Bayesian approach is
particularly useful in updating parameters that are used to model physical processes. The
mean values of the parameters and the uncertainty in those values may be updated as new
knowledge is gained. However, the Bayesian approach is difficult to apply analytically
to situations involving multiple model parameters. The FOSM Bayesian method (Gilbert
1999) was developed to provide a practical Bayesian method for problems with multiple
model parameters, large data sets, and various data distributions. This chapter describes
the theory behind the Bayesian approach, gives an example of its application, then
summarizes the FOSM Bayesian method for use with data sets that have only point (hon-

censored) measurements.

3.2 BAYESIAN APPROACH

The basis of all Bayesian methods is Bayes’ theorem (Greene 1997, Ang and
Tang 1975), which is expressed in terms of the probabilities of two events, A and B. The

probability of event A is updated with the knowledge that event B has occurred:

P(BIA)P(A)

P(B)

P(A|B)= (3.1)
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The probability of A given that event B occurs, P(A|B) , 1s referred to as the posterior or

updated probability of A. The probability of event A before it is known if event B
occurs, P(A), is the prior probability of A. The probability of event B, regardless of
whether event A occurs or not, is P(B). The probability of event B given that event A
occurs 1s P(B|A).

Bayes’ theorem is useful for updating model parameters with new data that are
collected. Each parameter is treated as a random variable, which has an expected value, a
variance, and a probability distribution. In terms of updating model parameters, Bayes’

theorem can be paraphrased as follows (Greene 1997):

1
P(data)

P ( parameters |data) = [P (data |parameters) P ( parameters)} (3.2)

where:

P(data|parameters) = joint distribution of the observed random variables (data)

given the model parameters (this is also referred to as the likelihood
function)

P (parameters) = prior beliefs about the model parameters

P (parameters |data) = updated distribution of the parameters given the current
data

P (data) = probability of the observed random variables (the data)

14



Note that the term may be thought of as a normalizing constant so that

1
P(data)

the updated distribution, P(parameters|data), has an area of 1.0. This term is obtained
with a summation over all of the possible parameter values:

P(data)= > P (data |parameters) P (parameters )

all possible
parameter values

The updated probability of the parameters may be thought of as a “mixture” of the
prior information about the parameters and the current information that the data provide

about the parameters.

3.3 EXAMPLE USE OF BAYES’ THEOREM

An example of Bayesian updating is shown in Figure 3.1. In this example, a

normal distribution is used to model the variability in a random variable Y with a mean

value of ¢, and a known standard deviation of 5.0. This model describes the probability

or likelihood of measuring a particular value of y;. The likelihood is the height of the
curve at any point in Figure 3.1(a), which is equal to the probability density function

(PDF) for yj, denoted PDF(y;). Multiple data points are modeled as statistically

independent, so the correlation coefficient between data points is zero (p, ~=0).

Therefore, the probability or likelihood of measuring multiple data points, y,,y,,...y, , 1S

the product of the probabilities for each y;:

P (measuring data points y,,y,,...y, ) = PDF(y,)xPDF(y,)x:--xPDF(y,) (3.3)
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Figure 3.1. Illustration and example of the Bayesian approach.
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Each PDF(yi) value depends on the mean value, ¢, for the normal distribution

in Figure 3.1(a). This relationship between the data, y; to yi, and the model parameter,

¢, , is expressed as follows:

P(measuring data points y,,y,,...y, (1)“) = PDF(y1 ‘(I)H)X PDF(y2 ‘(I)H)

(3.4)
¢,

><---><PDF(yn

Since y; has a normal distribution with a mean of ¢, and a standard deviation of

5.0, the PDF is 4{},15;0%) Therefore, the term P(data|parameters) in Equation 3.2 is

given by the following for this example:

P (data|parameters) = PDF(y1 \¢H ) X PDF(y2 ‘(1)H ) XoeeX PDF(yn

0.)

(b ) (Y2 ) (Y,
_d{ 5.0 j (I)( 5.0 j (I)[ 5.0 j

where there are n data points and there is one model parameter to be calibrated, ¢, .

(3.5)

The next step is to represent prior information in the model parameter that will be

calibrated with the data. Previous information indicates that the prior mean value of ¢,
is 6.0, the prior standard deviation of ¢, is 1.5, and the prior distribution of ¢, is normal.
The probability of a particular value of ¢, is therefore obtained from a normal

distribution, and the distribution in Figure 3.1(b) provides the P(parameters) term in

Equation 3.2.
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For the next step, four data points are collected. The collected data have a sample
mean of 2.5. The likelihood of obtaining these data, given the prior model parameters, is
calculated using Equation 3.4 and is shown in Figure 3.1(a).

The prior value of the model parameter is updated with the observed data using
Bayes’ Theorem. The updated distribution of the model parameter, P(parameter|data)
in  Equation 3.2, is  calculated by integrating the  product of

P(data|parameters)x P(parameters) to find P(data) and then plugging it into Equation

3.2. The result is that¢, has a normal distribution with a mean and standard deviation

equal to:
w, =(c, ) |, ﬁ +?(%] (3.6)
b, x
-1
"\ 1 1
() = (o2 /n)+(6,%)2 (3.7)
where:

u¢ = updated mean of the model parameter
G;H = updated standard deviation of the model parameter
“LI>. = prior mean of the model parameter = 6.0

Glb = prior standard deviation of the model parameter = 1.5

y = sample mean of the collected data = 2.5
o, = sample standard deviation of the collected data = 5.0

n = number of measured data values = 4
18



This application of Bayes’ theorem (Equations 3.3 and 3.4) results in an updated

expected value (u;H ) of 3.93, which is between the prior mean value and the mean of the

observed data, and an updated standard deviation (0;H ) of 0.96, which is smaller than the

standard deviation of both the prior value and the observed data. These results are shown
in Figure 3.1(c) with the “Updated” distribution. The updated distribution for the mean
lies between the prior distribution and the likelihood function, and it is narrower than the
prior distribution or likelihood function because of its reduced variance.

In this example, the Bayesian updating was easy to perform because it involved
only one model parameter and both the model parameter and the data had normal
distributions. Applying Bayes’ Theorem analytically to more complicated situations,
with more model parameters and various distributions, is difficult and usually not

attempted or, in rare cases, accomplished through numerical simulation.

3.4 FOSM BAYESIAN METHOD

The basic formulation of the FOSM Bayesian method will be described in this
section. A more detailed derivation may be found in Gilbert (1999). The FOSM
Bayesian Method is an analytical Bayesian technique that is able to incorporate multiple
model parameters, large sets of data, and different distributions of data. The method may
be used for data analysis or for test program design. In data analysis, the model
parameters are calibrated with data that has been collected, and updated distributions for
the model parameters are determined. For test program design, the expected reduction in
variance of the model parameters is determined with the data that are expected to be

obtained from a potential test program.
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3.4.1 Example Application of the FOSM Bayesian Method

The basic procedure of the FOSM Bayesian method is presented here through an
example, which is illustrated in Figure 3.2. In this example, the physical problem of
concern is groundwater contamination caused by a leaking underground storage tank.
The data that have been or will be collected are concentrations of various contaminants in
the groundwater at three monitoring wells. The plume is in a steady-state condition,
meaning that the concentrations at each well are not changing appreciably with time.

The FOSM Bayesian method is used to describe the relationship between a model
and the measured data. The expected or mean values of the concentrations at the
locations of the measurements are modeled with a simple, steady-state plume model
(Charbeneau 2000). This model contains seven model parameters: Or, ¢n, Opyy, Pm, db,
¢, and ¢, (retardation, porosity, dispersivity, contaminant mass, aquifer thickness,
contaminant half-life, and seepage velocity, respectively). Throughout this dissertation,
the symbol “¢” will be used for model parameters.

The standard deviation of a concentration measurement is modeled as a constant
for all measurement locations, and it is represented by the exponent of the model
parameter ¢,. This exponential representation insures that the standard deviation will
have a positive value regardless of the value of the model parameter. The correlation
between data points at different measurement times is modeled with the parameter ¢, to
decrease exponentially with distance in time between the measurements, since
measurements are more likely to be correlated if they are made near one another. Finally,
the distribution of data about the mean is modeled as a normal distribution. For problems
analyzed with the FOSM Bayesian method, these components of data and models for the

mean, variance, correlation, and distribution of the data are calibrated. Calibration means
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Figure 3.2. Components required for the FOSM Bayesian method.
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that the expected values and covariances for all of the parameters (¢r, On, dpyy, Pm, b, Gs,

dv, ¢s, and ¢,,) are updated based on the measured data.

3.4.2 Notation used in FOSM Bayesian Method

In the remainder of this dissertation, the following notations will be used:

® = vector of random variables that are the model parameters

¢ = vector of mean values for each model parameter

Y = vector of random variables that are the data

y = vector of numeric values of the data that are measured or expected

In these terms, Bayes’ Theorem is expressed as follows:

£, (8]5)=k-L(5[6) £, (6) (3.8)
where:

fy ((T)|§/) = the updated probability density function for the model parameters,

given the current data

L(y‘d?) = the likelihood of obtaining the current data, given the set of model

parameters (the likelihood that the model parameters describe the actual
data)

fy ((T)) = the prior probability density function of the model parameters, before

data are obtained

k = a normalizing constant that makes f ((T)|§/) a probability density function,

with an integral of 1.0 over all possible model parameter values.
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Note that Equation 3.8 is the same as the paraphrased version of Bayes” Theorem
of Equation 3.2. The probability density functions and the likelihood function in

Equation 3.8 are functions of vectors that produce scalar values.

3.4.3 Formulation of FOSM Bayesian Method for Data Analysis

For data analysis using the FOSM Bayesian method, the model parameters are
calibrated with the measured data to maximize the likelithood that the model parameters
describe the observed data. The prior means and covariances of the model parameters
may then be updated with the calibrated parameters. The full derivation of the FOSM
Bayesian method for data analysis is described by Gilbert (1999) and Muchard (1997).
The steps of the derivation of the FOSM Bayesian method, which result in
approximations for the updated mean and covariance of the model parameters, are

summarized below:

1. Define g((T)) as the natural logarithm of the likelihood function:

g(9)=mn(L(5])) (3.9)
2. Use a second-order Taylor series, with an expansion point of ¢, to
approximate the natural logarithm of the likelihood function:
glo)=gld )+y = (T390 -9 (3.10)
F=s(F ) 2] 1057|522 ¥
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} = a vector of the first derivatives of the natural logarithm of the

likelihood function with respect to each parameter, evaluated at the
Taylor series expansion point

-0 g

86,00,
natural logarithm of the likelihood function with respect to all
parameters, evaluated at the Taylor series expansion point

] = a matrix of the negative of the second derivatives of the

3. Assume that the prior model parameters have a multivariate normal

distribution:

1 | T

—C¢ 7 eXp[—E{d)—u@} Cas {d)—u@}} (3.11)
- 1 | O

ln(f_ ((I))) = ln{(zn)n/Z‘ ‘1/2 J‘E{d"“@} qu {d)_“i)} (312)

(3.13)
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5. By substituting the Taylor series approximation of the natural logarithm of
the likelihood function (Equation 3.10) and the natural logarithm of the
prior model parameters (Equation 3.12) into the natural logarithm of
Bayes’ Theorem (Equation 3.13), the updated distribution of the model

parameters is found:
In| 5, (35| = 1n(1<)——{q3—g&)‘y}T Cop {6-Figy | (3.14)

where ﬁé‘y and Cé)‘y contain the updated means and covariances of the

model parameters, respectively, and have the following approximations:

- _azg -1 _azg T* ag N
[T o —<—= r+C, L (3.15)
R e T ol
-1
A2
Cyy = el ¢y (3.16)
Y| 00,00,

These are the updated moments for the model parameters that are used in a

data analysis application of the FOSM Bayesian method.

6. The expansion point for the Taylor series approximation of Equation 3.10

is chosen so that the likelihood function is maximized and therefore the

natural logarithm of the likelihood function, g(&)) , 1s also maximized. At

this point, {j_g

i

} is zero and Equation 3.15 becomes:
5
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~ —0°g o
oy =| Cp | ¥ +Co (3.17)

The updated means and covariances of the model parameters (Equations 3.17 and
3.16, respectively) depend on the prior means and covariances of the model parameters,
the maximum likelihood point, and the second derivatives of the natural logarithm of the
likelihood function. The effects of the magnitudes of the second derivatives will be
discussed in Section 3.4.5.

One challenge in implementing Equations 3.16 and 3.17 is when the natural
logarithm of the likelihood function is discontinuous near the expansion point. In this

2

—0’g
0,00,

case, the second derivatives in are difficult or impossible to obtain. An

.
alternative formulation of this approach is to use the first and second moments of the

natural logarithm of the likelihood function:
-1 -1
Capy = [[CG] +[Cs ] J (3.18)
_ -1 _ -1 _
Ay = Cay [[CG] g +[Cs u@} (3.19)

where [C,] is a matrix with the second central moments of the natural logarithm of the

likelihood function and [i; is a vector with the first central moment (center of mass) of

2
the natural logarithm of the likelihood function. Therefore,

is replaced with

it S

[CG ]_1 and ¢" is replaced with . The advantage of this alternative formulation is that
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maximizing the natural logarithm of the likelihood function to get ¢" and then calculating

2

00,00, .

the second derivatives to get , which can be difficult and even impossible in

some cases, 1S not necessary. The disadvantage of the alternative formulation is that

numerical integration is generally required to obtain fi; and [CG] .

3.4.4 Formulation of FOSM Bayesian Method for Test Program Design

For test program design, data have not been collected yet, and therefore the
updated means and covariances of the model parameters are uncertain. Numerical
simulation is usually used to estimate the expected values of the updated moments;
however, the FOSM Bayesian Method can make use of analytical approximations to
obtain the expected values. When designing a test program with the FOSM Bayesian
method, the amount and type of data that will be collected are first determined, then the
expected covariances of the model parameters are updated. By trying different test
programs, the expected reductions in the variances of model parameters may be
compared. The best program may be selected by balancing the cost or difficulty of the
test program with the benefit of variance reduction provided by the test program for the
model parameters. The full derivation of the FOSM Bayesian method for test program
design is contained in Gilbert (1999) and summarized by Muchard (1997). The steps of
this derivation, which result in an approximation for the expected covariance of the

model parameters, are summarized below:

1. Obtain first-order approximations of the expected mean and covariance of

the updated model parameters from Equations 3.15 and 3.16:
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-1
]+C;
v (3.20)

}cqj (3.21)

where:
E, ( ) =the expected value with respect to the data that will be collected

2. Use an approximation for the expected Taylor series expansion point

(derived in Gilbert 1999):
E(¢')= oy (3.22)

This approximation indicates that the prior parameter mean values are the

most likely values and will maximize the likelihood function. Therefore,

E % 1S zero.
0o, 5
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3. Substituting the approximation of Equation 3.22 into Equations 3.20 and
3.21, the expected mean and covariances for the model parameters

become:

E, (a@y) = i, (3.23)
-1
~ _azg -1
By (Cay )| By 0% C; (3.24)

where the expected value of the second derivative of g(&)) is evaluated by

integrating over all possible values of the data vector, y:

L(y[i,) dy,...dy, (3.25)

T 7 0%
__[c £a¢la¢1

E.
" o000,

The expected values for the updated means of the model parameters are the same
as the prior means of the model parameters. Since the prior mean values are the
parameter values that are expected to be obtained with data, it is reasonable that the
expected updated parameters are the same as the prior values. The expected values for
the updated covariances of the model parameters depend on the expected values of the
second derivatives of the natural logarithm of the likelihood function evaluated at the

prior means. These second derivatives are discussed in the section below.
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3.4.5 Second Derivatives of the Natural Logarithm of the Likelihood Function

The effect of the data on the updated covariances of the model parameters is
determined by the matrix of second derivatives of the natural logarithm of the likelihood
function. To simplify notation, the matrix of second derivatives of the natural logarithm
of the likelihood function will also be referred to as G”. If the likelihood function is
maximized, the vector of first derivatives is zero and G” must be negative definite. This

is equivalent to the second derivative test for a local maximum of a single-parameter
2
df (x) 0 and df(x)

X dx?

<0.

function, f(x): at a local maximum,

Equations 3.16 and 3.24 show that the updated covariances (for data analysis) and
the expected updated covariances (for test program design) depend on the prior
covariances of the model parameters and on G”. The magnitudes of the second
derivatives in G” indicates how much is learned about the model parameters from the
measured or expected data. When the absolute magnitudes of the second derivatives are
large compared to the inverse of the prior covariance matrix, G” will dominate the
updated covariances or expected updated covariances of the model parameters. In this
case, the data provide a large amount of information about the model parameters and the
updated covariances are therefore reduced significantly from the prior covariances.
When the absolute magnitudes of the second derivatives are small compared to the
inverse of the prior covariance matrix, the prior covariances will dominate the updated
covariances or expected updated covariances of the model parameters. In this case, the
data do not provide much information about the model parameters, and the updated
covariances are not reduced significantly from the prior.

The effect of the magnitude of the second derivatives is illustrated for the case of

one model parameter in Figure 3.3. The updated variance of the model parameter is
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Figure 3.3. Effect of the magnitude of g(d)) on the variance reduction for a single model

parameter.

calculated with Equation 3.16, which reduces to the following for only one model

parameter:

+0y
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In Figure 3.3, the updated variance divided by the prior variance is plotted as a
function of the second derivative of natural logarithm of the likelihood function. As the
value of this ratio of updated to prior variance decreases, the variance of the model
parameter is reduced more from the prior variance and therefore more is learned about
the model parameter. The value of the second derivative is expressed as a function of the
inverse of the prior variance of the model parameter. When the second derivative is 0.01
of the inverse of the prior variance of the parameter, there is virtually no variance
reduction for the model parameter. However, the variance of the model parameter is
reduced rapidly as the magnitude of the second derivative increases in comparison to the

inverse of the prior variance.

3.4.6 Likelihood Function for Normally-Distributed Data
The choice of the likelihood function, L(?‘d?), to use in the FOSM Bayesian

method depends on the distribution of the data that have been collected or are expected.
When the data are described by a normal distribution, or can be easily transformed to a

normal distribution, the likelihood function has a multivariate normal distribution:

—ﬁexp[_—{?—ﬁ?f C;{y_ﬁ\—(}:l (327)
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where:

n = the number of data points measured or expected

[, = the vector of the mean data values predicted by the model that depends on b

C,, = the covariance matrix of the data points predicted by the model that depends

on ¢

The derivation of the first and second derivatives, and the expected first and
second derivatives, of this likelihood function are presented in Muchard (1997) and

Gilbert (1999).

3.4.6.1 Conditional Likelihood Function

For a set of ny measurements of the variable y, the likelihood function is the joint

distribution of the data:

L(?H)) =1y v, (V1o ¥20r Y, ) dy dy, - dy, (3.29)

which can also be expressed in terms of conditional probabilities:

L(3]6) =L(¥u|y1r¥ar-¥ur)
XL(Yya| Y15 Y20 ¥
x...xL(y2|y1)xL(yl)

Y1aY2""yn—1)

(3.30)

=f (
Y, [Y, Yo Y Ya

xf.

Ynfl‘Yl ’YZ ’"'Yn—Z (Yny—l

YUYZ"“yn—z)
x-xfy o (va] vy )x By, (v) xdy,dy, - dy,
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The natural logarithm of the likelihood function is then:

g(6)=In[f, v v (Val¥oyer i)
+In [fYn,l\Yl YooY, (yn—l Yis Y2 Ya )} (3.31)

ekl £, (va]yy) [+In[ £, (v,) ]+ In] dy,dy, -+-dy, |

The natural logarithm of the likelihood function may therefore be calculated
sequentially for each data point using the conditional likelihood. For each normally-

distributed data point, the conditional likelihood is:

Yi Uy
L(yllyl,yz,---yil)—PDF{ Yy y“J (3.32)

(¢}
Y, ‘}’1 sY25 " Yia

where PDF( ) is the probability distribution function for a normal distribution and

and © are the moments of y; conditioned on the previously known

qu‘Yl!YZ > Yinl Yi‘Yl!YZ > Yinl

data points, y,,y,,--*y,,. These conditional moments are presented in the next section.

3.4.6.2 Conditional Moments

The likelihood function for normally-distributed data depends on the conditional
mean and standard deviation of each data point, as shown in Equations 3.32. Since the
conditional probability function is calculated sequentially for each data point (Equation
3.31), each data point is conditioned on the previously known data points. The following

subscripts will be used to denote the current data point and the known data points:
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A = the current data point under consideration, Yy,

B = the set of known data points, y,,y,, -y, |

The mean value for Y; conditioned on multiple known data points y; through y;;

is then:
By s =Py, =Ry, +Cy, {5~ Ry, | (3.33)
Gife\ym Y Gf{A\YB - th -Gy, C;LB CIKAB (3.34)

where:

My, and GéA are the model-predicted moments for the data point currently under

evaluation:

Hy =Hy, (3.35)
Gy, =0y, (3.36)

¥; 1s the vector of previous data measurements:

Y
Vg = : (3.37)
Vi1

fly, 1s the vector of model-predicted mean values for the previous data points:
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Ly,
iy, =1 (3.38)
My,

Cy,, 1s the covariance matrix for the previous data points:

COV(YI,YI) COV(Yl,Yz) COV(YI,YH)
Cov(Y,,Y, Cov(Y,,Y. - Cov(Y,,Y_

| covny) Cov(Ym) e Cov(Y) 530
Cov(Y_.Y,) Cov(Y_.Y,) - Cov(Y,_.Y.)

and C,  is the covariance between the current data point and the previous data

points:

Cy, =[Cov(Y.Y,) -+ Cov(Y,.Y.)] (3.40)

3.4.7 Likelihood Function for Non-Normally Distributed Data

A method for including measured data that that do not have a normal distribution
into the FOSM Bayesian Method is described in Gilbert and Wang (2003) and will be
outlined in this section. The method uses Hermite Polynomials to transform the data to a
normal distribution, and the coefficients of the Hermite Polynomial transform function
are treated as model parameters in the data analysis. Two assumptions are made

regarding the non-normally-distributed data: (1) the probability density function has the

Yi ~Hy,

same normalized shape for each data point (that is, has the same distribution for

Oy,

all 1), and (2) statistical relationships between all data points are linear (described by the
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first and second moments). The likelihood function used for the transformed data is a
conditional likelihood function, with each data point conditioned on the previous data

points as shown in the previous section.

3.4.7.1 Hermite Polynomial Transform Function

Hermite Polynomials are derived from the cumulative density function for a

standard normal distribution and are defined as follows (Journel and Huijbregts 1978):

Hi(u)=euzd—i.[euzJ (3.41)

where:
u = a variable with a standard normal distribution

1 = the order of the Hermite Polynomial

Equations and graphs for Hermite Polynomials from the zero through fifth order are
presented in Figures 3.4 and 3.5. Notice that the scale of the x-axis is the same in each
plot and that although the scale of the y-axis varies, the gridlines cross the y-axis at the
same interval on each plot. As the order of the Hermite Polynomial increases, the tails of
the polynomial become more sensitive to the value of u when u is small or large. This
indicates that a higher order of Hermite Polynomial will be required to fit the tails of non-

normal distributions.
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Figure 3.4. Hermite Polynomials, order zero through two.
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Figure 3.5. Hermite Polynomials, order three through five.
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To fit data with a non-normal probability distribution to a standard normal

distribution, a transform function is used:

Y =g, (U) (3.42)

where:

Y = a general random variable, with non-normal distribution
U = a standard normal variable

¢, = the transform function

A transform function using Hermite Polynomials is presented by Journel and

Huijbergts (1978) and may be expressed as follows:

(3.43)

where:

n, = the order of the transform

vy, = the coefficient of the transform

The first two coefficients of the transform function are related to the mean and

standard deviation of the random variable, Y:
o =y (3.44)
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(3.45)

where:

yi=—*
v

The transform function may then be expressed as follows:

Y- I 2y,
o — {1, X e, (V) 646
Y n, (Wiw) i,=2 Ly
Ly
1w:2 v

The transform function is therefore described by the parameters p,, G, and y, through

v, -

vy

3.4.7.2 Likelihood Function

As for normally-distributed data, the likelihood function for non-normally-
distributed data is expressed in terms of conditional probability density functions
(Equation 3.30). The conditional probability density functions for non-normally

distributed data are evaluated as follows:

dy
du'™

] (3.47)

in‘Yl:YZ:“'Yi—l (yiy ‘ Yir Yoo Yia ) - Z fU (ur )[

r=1
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where f (ur) is the standard normal probability density function and each u; is one of n,

real roots of u for the transformed data point y, , conditioned on the previous data points:

Oyly yroy Dy,
y, = “Yi‘yl,yz,...yiil Yx)’l,)’z’( y‘jl )2 H1 (u)+ Z:z : W' Hiw (U):| (348)
n, Wiw y=2 Ty *
1+.z e
i,=2 v

The roots are the values of u that will result in the value of y; from the Hermite

Polynomial transform. The derivative of the above equation, evaluated at each root u,, is

% in Equation 3.47:

u

ul‘

ﬂ _ GYiy‘YpYz:“'Yiyq dH] (ur) I < W;W dHi\V (ur) (349)
du|, C\2 du =1 ! du
r Iy (Wiw) v 1%
— 1+ Z ~r
=2 Ly !
. . . . dHl (ur)
The derivatives of the Hermite Polynomials, d— , are as follows:
u
0 fori, =0
di,, (u) 1? . 1 3.50
T =q—lfori, = ( ) ( (3.50)
dH, (u dH, ,(u '
-H, , (u)—u “dl: —(1W —1)# fori, >1
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The first and second derivatives of the likelihood function are presented in Gilbert
and Wang (2003). The conditional moments for each data point that are used in

Equations 3.48 and 3.49 are described in the next section.

3.4.7.3 Conditional Moments

The likelihood function for non-normally-distributed data depends on the
conditional mean and standard deviation of each data point, as shown in Equations 3.48
and 3.49. Since the conditional probability function is calculated sequentially for each
data point (Equation 3.31), each data point is conditioned on the previously known data
points.

In order to calculate the conditional moments for non-normally distributed data
points, a linear relationship is assumed between data points. A linear relationship for two
data points, y; and yj, is shown in Figure 3.6. The mean value of y; is modeled to increase

as the value of y; increases according to a linear trend (Ang and Tang 1975):

uYi‘yj = o+ Py; (3.51)

where a is the intercept of the line and J is the slope.
For data points with normal distributions, this linear relationship is an inherent

property and the values of a and 3 are (Ang and Tang 1975):

o=uy By, (3.52)
GOy

B=pyy — (3.53)
(e}

Yj
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Figure 3.6. Linear relationship between two data points, y; and y;.

For data points with non-normal distributions, this linear relationship is still
assumed to apply. With this assumption, Equation 3.33 and Equation 3.34 describe the

conditional mean and variance, respectively, of a non-normally distributed data point Y.

3.5 SUMMARY

The basic framework of the FOSM Bayesian method was outlined in this chapter
for data sets with only point measurements (no censored data points). The methodology
for the two uses of the FOSM Bayesian method, data analysis and test program design,

were summarized. The distribution of the data is accounted for in the likelihood function,
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which describes the likelihood that the data are observed given a set of model parameters.
For normally distributed data, a multivariate normal distribution is used for the likelihood
function. For non-normally distributed data, a conditional distribution is used that
includes a Hermite polynomial transformation of the data to a multivariate normal
distribution. These cases provide the basis for the extension of the FOSM Bayesian

method to include censored data, which is presented in the next chapter.
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Chapter 4. Bayesian Method with Censored Measurements

4.1 INTRODUCTION

The FOSM Bayesian method has been applied thus far for data analysis for both
normally-distributed and generally-distributed data sets with no censoring. It has also
been used in test program design for normally-distributed data sets with no censoring.
The method was outlined briefly for these cases in the last chapter. This research
develops an approach proposed by McBrayer (2000) to include censored data in the
FOSM Bayesian method. In this chapter, the methods for including censored data in both
data analysis and test program design are derived for normally-distributed and non-
normally-distributed data. The definition of a censored data point is first discussed, then
the likelihood functions used for normally-distributed and non-normally distributed data
points are presented. The conditional moments of the censored data points, which are
used in the likelihood functions, and the moments of the censored region of the data

points, which are used in the conditional moments, are derived.

4.2 CENSORED DATA POINTS

When a data point is censored, its precise value is uncertain, as discussed in
Section 2.2. The value of the data point is only known to lie within a censored region,
which is generally above or below a fixed threshold. The censored region for a data point

yi is defined in the remainder of this dissertation as follows:

yi, = lower bound of censored region for data point y;
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yiu = upper bound of censored region for data point y;

The subscript “ul” will be used to denote the censored region between yi; and yi .

A censored data point is illustrated in Figure 4.1 for a data point with a normal
distribution. In this example, the censored region is in the middle of the distribution.
Data values between y;; and y;, are censored, so that their exact values are not known.
The mean, p, ,, and standard deviation, o, ,, of Y; in the censored region are also
shown in Figure 4.1. Note that a point (non-censored) measurement may be thought of as
a censored measurement when y;; approaches yi, and there is no censored region for that
data point.

It is rare for a censored region to occur in the middle of a distribution for
engineering applications. The censored region is usually in a tail of the distribution, as
shown in Figures 4.2 and 4.3. In Figure 4.2, yi; is negative infinity and yi, is a threshold
value below which data are censored. An example of this case is a contaminant
concentration in water that is below the detection limit. In Figure 4.3, yi, is positive
infinity and yi; is a threshold value above which data are censored. An example of this
case is a proof load test. The expected value of the data point may be inside or outside
the censored region. In Figure 4.2, the expected value of the data point is not in the
censored region, and the data point is not expected to be censored. In Figure 4.3, the
censored region includes more of the distribution. In this case, the expected value is
within the censored region and this data point is therefore expected to be censored.

The procedure for including censored data in the FOSM Bayesian method for data
analysis follows the same steps as the procedure described in Section 3.4. However, the
likelihood function changes when a data point is censored. The probability of obtaining a

censored data point is the area of the censored region in the distribution of the data point:
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Figure 4.1. Normally-distributed data point with censoring between y;; and y; .
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Figure 4.2. Normally-distributed data point censored in the lower tail of the distribution.
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Figure 4.3. Normally-distributed data point censored in the upper tail of the distribution.

P(yi,l <Y, SYi,u):FY(Yi,u)_FY(}’1,1) (4.1)

where F, ( ) is the cumulative distribution function (CDF) for the data point. Therefore,

the likelihood function for a data point that is censored is:

L(y:|9s)=Fyy, (¥i [95) = Fup, (vi1 [95) (4.2)

where y; is defined in Chapter 3 (Equation 3.37) to be the set of all available data, yi, y»,

...., yi.1. Note that for a point measurement:
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dy dy) dF ()
Ply - cy <y +2 | = X\ _ppp(y. 43
(yl S <Yi<yi+ 2] iy (v:) (4.3)

The next section describes how to calculate K 5 (Yi,u S/B) and E, (Yi,l |§IB) when data

point yj is censored.

4.3 LIKELIHOOD FUNCTION FOR A CENSORED DATA POINT

When a data point is censored, the likelihood function is the probability that the
value will be within the censored region, which is found from the cumulative distribution
function for the data point. In this section, the likelihood function for a normally-
distributed censored data point, which is obtained from the standard normal function, is
first described. The likelihood function for a non-normally-distributed censored data
point is then presented. This likelihood function uses the Hermite Polynomial transform

function (Section 3.4.7.1) to evaluate the cumulative distribution function.

4.3.1 Likelihood Function for a Normally-Distributed Censored Data Point

The cumulative distribution function for a normally-distributed data point is

obtained from the standard normal function as follows:

Ya—H
FY\?B (Yi |yB) = FY\yB (YA |YB) = Q[&J (4.4)

GYA\YB

where:

Hy v, = the mean value of Y5 conditioned on the known measurements, Yz
Al'B

Oy |y, = the standard deviation of Y conditioned on the known measurements, Yy

Yyl
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cD( ) = the standard normal function

The conditional likelihood function in Equation 3.30 for a normally-distributed

censored data point is therefore:

L(3:[5s) = L(Ya[Ya) = <I>[—y“‘ - J— @(—y“ e ] (4.5)

Oy, |v, Oy, v,

Note that this is similar to the conditional likelihood of Equation 3.32 for a non-censored
point. The probability density function for a normal distribution is used for non-censored

data, while the cumulative distribution function is used for censored data.

4.3.2 Likelihood Function for a Non-Normally Distributed Data Point

From the Hermite Polynomial transform function described in Section 3.4.7.1, the

cumulative distribution function is obtained as follows:

n,

Fry, (%:]Ys) = 2| @(u)-@(u,)] (4.6)

k=1

o~

where ny is the number of regions where u_ <u<wu, gives a value of y<y.. The

relationship between y, and u is obtained from Equation 3.48. Therefore, additional
model parameters, y, for i, =1 to n,, describe the likelihood function in addition to

those that describe My, v, and Oy, v, -

The calculation of the likelihood function for a non-normally-distributed,
censored data point is illustrated in Figure 4.4. The Hermite Polynomial transform

function for the data point is shown, and in this case y has one root at u;. Because there is
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Figure 4.4. Finding the probability that a data point is censored for non-normally
distributed data.

only one root, there is only one region where u_, <u<u, resultsin y<y.. The value of

this root is found first, then it is used in Equation 4.5 to calculate the likelihood function:

Fyy, (vi]Ys) =@ (u,)-@(u_,) (4.7)

where u,, =—o0, and then ®(—0)=0.

Note that a normal distribution is a special case of the Hermite Polynomial

transform function. For a normal distribution, the number of additional model parameters

to describe the likelihood function, n,,, is zero. Since Hi(u) is equal to u (Figure 3.4),

this reduces Equation 3.48 to:
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i—H
P _y, (4.8)

Oy, v,

which is the definition of a standard normal variate.

4.4 CONDITIONAL MOMENTS FOR CENSORED DATA

The likelihood functions for both normally-distributed and non-normally-
distributed censored data points depend on the conditional moments of the data point, as
shown in Equations 4.4 and 4.5. Each data point is related to the data points measured

previously by using a conditional mean and standard deviation for the current data point.

The conditional mean for a data point, Hy, v, » is the model-predicted expected value for

that point given the known measurements, and the conditional standard deviation, Oy, v,

is the model-predicted uncertainty for that point given the known measurements. The
conditional mean may be inside or outside the censored region. In this section, the
conditional moments for a normally-distributed censored data point are derived. These
moments are used as an approximation for the non-normal case, and this approximation is

evaluated.

4.4.1 Conditional Moments for a Normally-Distributed Censored Data Point

The conditional moments for a normally-distributed censored data point are

calculated from the multivariate normal distribution. Because the derivation of the

conditional moments is shown most easily if y, only contains one known measurement,

the conditional moments are first derived for this case of two data points. The general

case of multiple data points in y, is then shown, followed by the special case of
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independent data. The equations for calculating the mean and variance of the censored
region are also presented, since these quantities are necessary to calculate the conditional

moments.

4.4.1.1 Conditional Moments for One Known Data Point
For the case where y, contains only one known data point, the joint distribution
between YA and Yy, is a bivariate normal distribution if both data points are normally

distributed. =~ When y, is not censored, the conditional mean is obtained from the

conditional form of the bivariate normal distribution (Ang and Tang 1975):

Oy,
My e =By, +Pyvy — (Y6 =1y, ) (4.9)
Oy,
where:
ty, = the model-predicted mean for the data point currently under evaluation

Hy, = the model-predicted mean for the known data point

Py v, = the correlation coefficient between Y and Yy

yB = the measured value of Y

If the measured value of Yy is censored, its exact value is not known and the
conditional mean is therefore uncertain. Since Yp is between the upper and lower bounds
of the censored region, an integral between yg; and yg, is applied to Equation 4.9 to find

the expected value of the conditional mean:

GYA YBu
E(HYA(YBJSYBQ’BM)) - MYA + pYA Yp ('5_ J. (yB N MYB )dyB (4 10)

Ys yg
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which gives the following result for the conditional mean when Y is censored:

(e)
E (HYA(YBJSYB%_U)) =ty +Py iy, (v ) (4.11)

Yg

If Yy is not censored, the conditional variance is the variance of the bivariate

normal distribution:

GiA‘YBZYB = (l_piA )GiA (412)

If Yp is censored, then additional uncertainty is added because the conditional
mean (Equation 4.11) is uncertain. The total variance is equal to the expected value of

the conditional variance plus the variance of the conditional mean (Ang and Tang 1975):
G’ =E(c52 )+Var 1) (4.13)
YA‘(YBJSYBQ’BM) YalYs=ys YA‘(YB.ISYB<YB,U)
The variance of the conditional mean is the variance of Equation 4.9:

c
Var, (HYA()'B,ISYB<yB<u) ) = Var l:HYA TPy, v, GiYB] (4.14)

Yp

Since all of the terms in the equation above are constant except for Yg, the

variance of the conditional mean is:
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2
(e}
Varul (MYA(YB,1<YB<YB,u)) - |:pYA »Yp G_YA:I Gfﬂ;:u] (415)

Yp

where Gf{s . 1s the total conditional variance when Yp is censored and is therefore:

2
2 _ 2 2 Oy, 2
GY/\‘(yB,lSYB <YB,U) - (1 B pYA )GYA + [pYAvYB (5_:| GYB ,ul (416)

Because oy , will be zero when the data are not censored and the censored

region is infinitesimally small, Equation 4.9 may be used to generally express the

conditional variance of Y4, regardless of whether Y is censored or not:

2
2 (&
GiA‘YB = (1 ~ Py, ) G%{A + [pYA,YB Gi:| Oy,.u (4.17)

4.4.1.2 Conditional Moments for Multiple Known Data Points

The results of the previous derivation of the moments for YA conditioned on a

single data point Y may be easily extended to the case where y, contains multiple data

points. When a data point is conditioned on multiple known data points, the conditional

mean from Equations 4.9 is expressed as:

T

Ry, v, = My, + {[CYBB :I_l I:CYAB J} {yB - ﬁYB} (4.18)
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The values used in y, are determined by whether each data point in Y is censored or

non-censored. The total variance of Y from Equation 4.16 is expressed as follows for

multiple known data points in Yg.

(4.19)

e Tew]) Tew e Ten )

The third term in this equation accounts for the uncertainty in the conditional mean value
of Y when data points in Y are censored. The vectors and matrices used in Equations

4.10 and 4.11 are defined as follows:

e The (i-1)x1 vector y, is the vector of values for the known data points:

Y1
Vo =1: (4.20)

Yia

<
w
|

and the value used for each y;, where j=1 to i-1, depends on if the known data

point is censored or not. If the data point is not censored, the measured value is

used in this vector. If the data point is censored, the expected value of the

censored region for a censored measurement, L, ,, is used.

e The (i-1)x(i-1) matrix [CYBB] contains the model-predicted covariances between

known data points:
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Cov(Y,.Y,) Cov(Y,Y,) ... Cov(Y,Y,)
¢, - COV(?{z’Yl) COV(SZKZ,YZ) Cov(ﬁpri_l) @21)

Cov(Y._.Y,) Cov(Y_.Y,) -+ Cov(Y_.Y,)

e The 1x(i-1) matrix [CYAJ contains the model-predicted covariances between the

current data point and all previous data points:

Cy, =[Cov(Y.Y,) -+ Cov(Y,.Y.)] (4.22)

e The (i-1)x1 vector fiy is the vector of model-predicted mean values for the

previous data points:

Hy,
iy, =1 (4.23)
MYi—l

e The (i-1)x(i-1) matrix [CYBBJ is the model-predicted covariance matrix which

adds variability to Y only for the censored data points in the previously known

measurements. This matrix is calculated as follows:

le Y, o pY1 Yo ('53(1 ul

[CYBBM :I - I:GYM” 9y 7“‘] : i (4.24)

i

pYH:Yl o pYi—l Yig GYH sul
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where the value ofc, , depends on censoring. For uncensored data points, the
i

variance of the censored region is zero and no extra variability is added due to

these points. For censored data points, the variance of the censored region, o3

will have a value greater than zero and will therefore increase the variance of Y 4.

An example of how to calculate the conditional mean and variance is shown in

Appendix B.

4.4.1.3 Conditional Moments for the Special Case of Independent Data

The special case of independent data is presented to show the effect of assuming
no correlation between data points on the calculation of the conditional moments. In both
the conditional moments, [CYAB] is zero and all the non-diagonal components of [CYBB]
are zero if the data points are not correlated. The conditional moments of Equations 4.18

and 4.19 therefore reduce to:

“YA‘YB = MYA (425)

c =0y (4.26)

Ya ‘YB A

4.4.1.4 Moments for Censored Region of a Normally-Distributed Data Point

The mean and standard deviation of Y; in the censored region, p, , and oy ,,

are illustrated in Figure 4.1. The values for these moments are found by integrating over
the probability density function from the lower bound to the upper bound of the censored
region. These moments are derived in Appendix A for a normally distributed data point.

The resulting mean of Y; in the censored region is:
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s 1 ( Yirhy, ]Z B [Yi,u —uyA] .

Y, 2( oy 2| oy
TR P A A (4.27)
Frar = Hy, V2n P(y, <Y <yi.)

and the standard deviation of Y; in the censored region is:

1 Yii—Hy, ’ 1] Yiu—Hy, ’
R Mz _“2 N 2“YAGYA 6_2{ oy, ] _ e_z{ oy, J 1
2 [ _l Yig ~Hy, ’ _l Yiu "Hy, ’
N Oy, || Yir —Hy, NEUEND Yiu ~Hy, NE 1
zn GYA GYA P(yil S Y < Yi,u)

(4.28)

where P(yi’l <Y, < yi’u) is the probability that the censored data point is in the censored

region:

P(Yi,l <Y, <Yi,u):q)[yi’u ~Hy, J_QLYU _HYA] (4.29)

Oy Oy

A A

4.4.2 Moments for Censored Region of a Non-Normally-Distributed Data Point

In order to calculate the conditional moments with non-normally distributed
censored data, the same assumption is made as for point data: a linear relationship exists

between the data points, as described in Section 3.4.7.3. With this assumption, the
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conditional moments for non-normally distributed data points may be calculated in the
same way as the conditional moments for normally-distributed data points, as described
in Section 4.4.1.2.

Evaluating p, , and Gf{i 18 generally not possible for a non-normal distribution
without numerical integration. As an approximation, the moments of the censored region
for a data point with a non-normal distribution may be approximated with the censored
region of a normal distribution. The normal distribution used for the approximation has
the same mean and standard deviation as the non-normal distribution, and the censored
region of the normal distribution is between the same upper and lower bounds as the
censored region of the non-normal distribution. In Figure 4.5, the censored region of a
lognormal distribution is shown, as well as the corresponding censored region of the
normal distribution used in the approximation.

The accuracy of this approximation was tested with three different non-normal
distributions: a uniform distribution, a slightly skewed log-normal distribution, and a
highly skewed log-normal distribution. The procedure for testing the approximation was

as follows:

1. Calculate the mean and standard deviation, p, and o, , of the non-

normal distribution.

2. Set the bounds of the censored region, yi; and yi,, for the non-normal
distribution. This was done for a total of ten censored regions in each
distribution. For five of the censored regions, yi; was set to negative
infinity and y;, was determined for probabilities of 0.01, 0.1, 0.25, 0.5,

and 0.75 that the data point was censored. ~ For the other five censored
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Lognormal distribution with

« E(nY)=025and

Var(In Y) =0.75, or
p=1.70 and c = 1.48.

- Yiu =
yiu=0 7153

Normal distribution with
p=1.70 and c = 1.48.

e

yii=0  YiuT
1.28

Figure 4.5. Censored region of a lognormal distribution approximated with the censored
region of a normal distribution with the same mean and standard deviation.
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regions, yi, was set to positive infinity and y;; was determined for
probabilities of 0.01, 0.1, 0.25, 0.5, and 0.75 that the data point was

censored.

3. Calculate the exact mean and variance of each censored region of the non-

normal distribution using the following integrals:

1 Yiu
_ £, (y,)d 430
Hbussion, P(yi,lei<yi,u)y{y w3 (%30

u

1 Yi, 2
e PR I (b, ) T )y @3D)

1

For the uniform distribution, these integrals can be solved analytically and

the moments are as follows:

Yiu —Yin
“‘[i‘yi,ISYl<YI,u =Yii + 2 (432)
_ (Yi,u ~Yil )2 433
GYi YiiSYi<yiy - 12 ( . )

For log-normal distributions, these integrals are evaluated numerically.

4. Calculate the approximate mean and variance of each censored region of

the non-normal distribution. Using Equations 4.27 and 4.28, calculate the
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mean and variance of each censored region for a normal distribution with
mean p, and standard deviation o, . The censored region is defined by
the same yi; and y;, as for the non-normal distribution. (The probability
that the data point is censored is therefore different for the normal

distribution than for the non-normal distribution.)

The accuracy of the approximation for the mean and variance of the censored
region depends on how well the censored region of the non-normal distribution
corresponds to the censored region of the normal distribution. The results for the uniform
distribution are shown in Figures 4.6 and 4.7. The difference between the approximate
and exact values is shown for each censored region. The approximate values are
generally very close to the exact values for all cases. The approximation is better for
both the mean and the variance when the censored region is small. As the probability
that the data point is censored increases, the difference between the approximate mean
and variance also increases.

The results of the slightly skewed lognormal distribution are shown in Figures 4.8
and 4.9. The shape of this lognormal distribution is very similar to the shape of the
normal distribution used to approximate the mean and variance of the censored region.
The approximate and exact values for the mean of the censored region are therefore
almost identical for censoring in both tails of the distribution. The approximate values
for the variance of the censored region are slightly greater than the exact values for all
cases.

The results for the highly skewed lognormal distribution are shown in Figures
4.10 and 4.11. The approximations are generally very similar to the exact values,

especially when the lognormal distribution is censored in the lower tail (Figure 4.10).
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Normal distribution with

N =0.5and ¢ = 0.29.

Uniform distribution with
pn=0.5and ¢ =0.29.

Lower bound of
censored region =0

_ N

-1 0 1 2
0.6
c
2
o .
= _nc: B Approximate
o 2
=202
[<b]
) N
0 i
0.01 0.1 0.25 0.5 0.75
Probability that Data Point is Censored
12
- 1 0 Exact
=3 05 - B Approximate
D .
L
S3Zg 06
2 04
[<B]
© 02
0
0.01 0.1 0.25 05 0.75

Probability that Data Point is Censored

Figure 4.6. Exact mean and variance for censored regions in the lower portion of a
uniform distribution compared to an equivalent normal distribution.
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Normal distribution with
/\x = 0.5and o = 0.29.
Uniform distribution
with u = 0.5 and ¢ =0.29.
Upper bound of
-1 0 1 2
0.05
S 004 -
o
- qa)j O Exact
o 0031 B Approximate
c 9
LS oo
= g :
S 001 -
0 [
0.01 0.1 0.25 0.5 0.75
Probability that Data Point is Censored
0.05
S 004 - @ Exact
Y
SIS .
c o
S
§ g 0.02
[<B]
O 001 1
. — [
0.01 0.1 0.25 0.5 0.75
Probability that Data Point is Censored

Figure 4.7. Exact mean and variance for censored regions in the upper portion of a
uniform distribution compared to an equivalent normal distribution.
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Lower bound of
censored region = - oo

Normal distribution with
/ p=05and 6 =0.29.

Lognormal distribution with
E(In Y) =0.75 and
Var(In Y) = 0.25.
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o1 |0 Exact
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Probability that Data Point is Censored

Figure 4.8. Exact mean and variance for censored regions in the lower portion of a
slightly skewed lognormal distribution compared to an equivalent normal
distribution.
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Lognormal distribution with
E(In'Y) =0.75 and

Var(In Y) = 0.25. ~.

Normal distribution with
/u =0.5and ¢ = 0.29.

Upper bound of
censored region = «©

o
N

Mean of
Censored Region
o
[EEN

O Exact
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Variance of
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o
[EEN

Figure 4.9. Exact mean and variance for censored regions in the upper portion of a
slightly skewed lognormal distribution compared to an equivalent normal
distribution.
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Lognormal distribution with

E(InY)=0.25and
varin¥)=0.75.

Normal distribution with
/ u=0.5and ¢ =0.29.
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censored regioy
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Figure 4.10. Exact mean and variance for censored regions in the lower portion of a
highly skewed lognormal distribution compared to an equivalent normal
distribution.
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Lognormal distribution with
E(InY) =0.25and
Var(in¥)=0.75.

S

Normal distribution with
/ pu=0.5and c =0.29.
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Figure 4.11. Exact mean and variance for censored regions in the upper portion of a
highly skewed lognormal distribution compared to an equivalent normal

distribution.
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The differences between the approximate and the exact values for the variance increase
as the size of the censored region increases. When censoring is in the lower tail of the
distribution, the approximate variance is greater than the exact value. When censoring is
in the upper tail of the distribution, the approximate variance is less than the exact value,
except for the smallest probability that the data point is censored.

These examples show that the approximation for the mean and variance of the
censored region for a non-normally distributed data point are reasonable, even for cases
with a highly non-normal distribution, such as a uniform distribution with finite upper
and lower bounds and a highly skewed lognormal distribution. The accuracy of the
approximation depends on the shape of the non-normal distribution and the size of the

censored region.

4.5 CENSORED DATA IN TEST PROGRAM DESIGN

When designing a test program with the FOSM Bayesian method, the amount and
type of data that will be collected are determined and the variance of the model
parameters may then be updated. Test program designs are compared by determining
how much each test program reduces the variance in the model parameters. As derived in
Section 3.4.4, the expected updated covariances of the model parameters depend on the
prior covariances and the expected value of the second partial derivatives of the natural

logarithm of the likelihood function:

Eq(Coy )= | B +C; (4.34)
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The following notation will be used for the expected value of the negative second
derivative of the natural logarithm of the likelihood function, evaluated at the Taylor

series expansion point:

E(-G")=E (4.35)

When E(-G”) is much larger than the prior covariances, the updated covariances
depend mostly on the data that are expected. When E(-G”) is much smaller than the

inverse of the prior covariances, Cg , the updated covariances depend mostly on the prior

covariances, and therefore the reduction in the variance of the model parameters will be
small. Since Cg is a constant, E(-G”) is the quantity required to evaluate the reduction
of variance for a test program design, as described in Section 3.4.5.

Since the likelihood function is the product of the likelihoods of each individual
data point given the known data points, the natural logarithm of the likelihood function is
the sum of these individual likelihoods. The second derivative of the natural logarithm of

the likelihood function is therefore:

g :iazg(yilypyza’--yi_l)| (436
0000, T o608, |
and the expected value, E(G”), is then:
2 n 62 . VA
2] s g(yilyiyayi) 437
0900;|,. | G ovoh; |

72



Each expected value term in the summation of Equation 4.36 is found by
considering both the possibility that the data point will be censored and the possibility
that the data point will not be censored. As described in Section 4.3, the likelihood
function is different if the point is in the censored region of the distribution than if it is in
the non-censored region. The expectation integral is therefore taken separately over the

censored region and the non-censored region, using the appropriate likelihood function

for each region:

E?(ad)iad)j} yj ey . L(v[6 )C dy
B *y
Yig ézg(yi |Y1= Y2, Yin )NC o
Llv. dv 4.38
+_'!; 6¢ia¢j o (y“d) )NC Y ( )
5y 82g(yi |Y1:Y29"'Yi—1 )NC N
L(v. dy
+y.ju( 008, ¥l (YIH) )NC y

where:

2. = natural logarithm of the likelihood function if the point is non-censored

g.= natural logarithm of the likelihood function if the point is censored

L(yi \&) = likelihood function if the point is non-censored
N

L(yi ¢ )C = likelihood function if the point is censored

The expected value in Equation 4.38 may only be solved analytically if

approximations are made regarding the evaluation of the likelihood function. For the
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general case with any type of data distribution and correlated data, numerical integration

must be used. The evaluation of Equation 4.38 will be further discussed in Chapter 5.

4.6 SUMMARY

The method for including censored data in the FOSM Bayesian method was
derived in this chapter. The method follows the same framework as the method outlined
in Chapter 3 for both normally-distributed and non-normally-distributed data, except that
different likelihood functions are used for censored data points and censored data points
are considered differently when data points are conditioned on them. For censored data
points, the likelihood function is the probability that the data point is actually in the
censored region for the conditional distribution of that data point. This probability is
calculated directly with the standard normal cumulative density function for a normally-
distributed data point. For a data point that does not have a normal distribution, this
probability is calculated using the roots of the Hermite Polynomial transform function.
The moments of the censored region of a non-normally-distributed data point, which are
used to find the conditional moments of that data point, are approximated with the
moments of the equivalent censored region of a normal distribution. This approximation
was tested for three different non-normal distributions, and the approximated moments

were found to be reasonably close to the exact values.
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Chapter 5. Effect of Censored Measurements on Model Calibration

5.1 INTRODUCTION

The method for including censored data in the FOSM Bayesian method was
derived in the previous chapter. In this chapter, the effects of censored data in an analysis
using the FOSM Bayesian method are determined. The case of normally-distributed data
is first presented, with an examination of the effects of censoring on the updated mean,
variance, and correlation of model parameters. Different methods for calculating the
variance reduction achieved in test program design for normally-distributed data are then
compared. Finally, the effects of censoring with non-normally-distributed data are

discussed.

5.2 EFFECT OF CENSORED DATA FOR NORMALLY-DISTRIBUTED DATA

In this section, a simple model is evaluated to illustrate the effects of censored
data in applying the FOSM Bayesian method. First, the estimated mean values of the
model parameters are examined for bias. Next, the effect of censore