
 

 

 

 

 

Copyright 

by 

Yong Zhou 

2005 

  

 

 

 

 

 

 

 

 

 

 

 

 



 ii

The Dissertation Committee for Yong Zhou 

certifies that this is the approved version of the following dissertation: 

 

 

High Frequency Electromagnetic Scattering Prediction 

and Scattering Feature Extraction 

 

 

Committee: 

 

________________________ 
Hao Ling, Supervisor 

________________________ 
Sean  M. Buckley 

________________________ 
Mircea  D. Driga 

________________________ 
Ross Baldick 

________________________ 
Edward J. Powers 

 

 

 

 



 iii

High Frequency Electromagnetic Scattering Prediction 

and Scattering Feature Extraction 

 

 

by 

 

Yong Zhou, BS, MSEE 

 

Dissertation 

 

Presented to the Faculty of the Graduate School of 

the University of Texas at Austin 

in Partial Fulfillment 

of the Requirements 

for the Degree of 

Doctor of Philosophy 

 

The University of Texas at Austin 

May 2005 

  

 



 iv

 

 

 

 

 

 

 

 

To my dear daughter Julia and my wife Hongxing 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v

ACKNOWLEDGEMENTS 

 

I would like to thank Professor Hao Ling, my supervisor, for his long time 

guidance in my graduate study and research. It is those frequent enlightening academic 

discussions with him that directly lead to this dissertation. His profound understanding in 

electromagnetics has deeply extended my ken and will continuously affect me for many 

years.   

I would also like to extend my appreciation to the distinguished members of my 

dissertation committee: Professor Sean Buckley in Aerospace Engineering Department, 

Professors Mercea Driga, Ross Baldick, and Edward Powers in the Department of 

Electrical and Computer Engineering, for their generous giving of their time to serve on 

my dissertation committee and for their welcomed suggestions. I also want to appreciate 

Professor Tiejun Liu, who introduced me to electromagnetic scattering analysis and 

advised me for my master thesis. 

I would like to thank Ms. Darla Rowan and Ms. Pam Campbell for their gracious 

help during my graduate studies. 

My wife and my family deserve my special thanks for their love and constant 

care, which supports me through all of my graduate studies. 

 

Yong Zhou 

The University of Texas at Austin 

December, 2004 



 vi

High Frequency Electromagnetic Scattering Prediction 

and Scattering Feature Extraction 

 

Publication No. _____________________ 

 

Yong Zhou,  Ph.D. 

The University of Texas at Austin, 2005 

 

Supervisor: Hao Ling 

 

 Three related electromagnetic scattering problems, namely, high frequency 

electromagnetic (EM) ray tracing, scattering feature extraction, and inverse scattering are 

studied in this dissertation. New approaches are presented to advance the state of the art 

in each of the areas. The presented study in electromagnetic ray tracing leads to an 

alternative ray tracing algorithm which can outperform the traditional algorithms for 

complex targets. The performance of the proposed techniques demonstrates their 

potential application to the study of high-frequency EM scattering prediction. Second, a 

genetic algorithm (GA)-based algorithm with an adaptive-feeding technique is developed 

to simultaneously extract both scattering centers and resonances. Scattering feature 

extraction algorithms are then developed with the consideration of the visibility of 

scattering centers. Inverse scattering problems with strong multiple scattering effects are 
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also studied. A GA-based method is presented to invert the shapes with multiple 

scattering effects. An approach combining hybrid GA with the tabu list idea are then 

developed to further improve the performance of the GA-based inversion algorithms. 
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CHAPTER ONE 

 

INTRODUCTION 

 

1. 1 Background Review 

1.1.1 Current Frontier in High-Frequency Electromagnetic Scattering Prediction 

Computational electromagnetics (CEM) is the solution of boundary value 

problems governed by Maxwell’s equations on a computer. The rapid progress in 

computational power in the past two decades has made possible the computer simulation 

of electromagnetic propagation and scattering phenomena in large, complex structures. In 

addition, advances in computational algorithms have also taken place in CEM. A number 

of methods have been developed based on different mathematical formulations of 

Maxwell's equations.  

There exist two main classes of methods, numerical methods and high-frequency 

methods. Numerical methods, such as the method of moments (MoM) [1], the finite 

element method (FEM) [2,3] and the finite-difference time-domain method (FDTD) [4], 

are based on the rigorous, numerical formulation of Maxwell equations. Among these 

methods, the integral-equation based MoM is the most widely utilized in CEM because of 

its high accuracy and ease of implementation. The MoM divides the structural domain 

into small elements and uses a set of basis functions to represent the induced current 

distribution on each element. The problem is then converted into a matrix equation and 
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the solution is obtained by a linear equation solver. For MoM, an approximate 

requirement of at least 10 discretized elements per wavelength has to be satisfied in order 

to achieve a stable solution. Generally, the computational complexity of the MoM for 

three-dimensional (3-D) problem is O(M3), where M is the total number of basis 

functions. For electrically large targets or applications requiring broadband frequency 

responses such as in radar cross section (RCS) prediction, the MoM can easily become 

very time-consuming.  In recent years, a number of methods including the fast Fourier 

transform (FFT) [5], the fast multipole method (FMM) [6] and the wavelet sparsification 

algorithm [7] have been proposed to speed up the MoM computation and enhance the 

capability of the MoM to solve electrically large problems. For example, the FMM can 

reduce the computational complexity for solving the discretized wave equation from 

O(M3) to O(MlogM). However, most of these numerical approaches still become 

computationally quite expensive as the frequency of interest increases. Even with today’s 

computational resources, it remains a difficult task to predict the scattering from a full-

size ground vehicle for frequencies approaching X-band (10 GHz). 

A second class of methods is termed high-frequency methods.  They are based on 

the asymptotic expansion of the solution to Maxwell equations.  As the name implies, 

these methods are applicable at high frequencies when the wavelength is very small 

compared to the size of the target. In fact, due to the nature of the asymptotic expansion, 

their accuracy is better at high frequencies, and gradually degrades as the scatterer size 

becomes smaller in terms of the wavelength.  
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The most basic of the high-frequency techniques is physical optics (PO) [8], 

which approximates the induced currents on the illuminated surface of a scatterer as 

proportional to the incident field. The PO approximation ignores the multiple interactions 

that can and often exist between different parts of a scatterer.  In the early 1990s, the Z-

buffer technique from the computer graphics community was exploited to enhance the 

performance of PO computations [9].  In particular, the hardware Z-buffer technique was 

adopted to quickly detect lit surfaces of the target and obtain the z-depth values of the lit 

surfaces. Several such computer codes such as GRECO [10] and Visage [11] had been 

developed. Although they can achieve real-time prediction for complex targets, this 

technique is limited in accuracy since it is based on PO and does not take into account 

multiple scattering effects. 

Other high-frequency methods include the geometrical theory of diffraction 

(GTD) [12] and the physical theory of diffraction (PTD) [13], which are ray-based 

methods. In addition to the physical optics contribution, they also account for higher-

order scattering effects such as multiple scattering and edge diffractions. A particular 

implementation of the ray-based algorithms is the shooting and bouncing ray (SBR) 

technique [14, 15]. It has gained wide popularity because of its applicability to complex 

computer models of realistic targets.  In this technique, millions of rays are shot at a 

computer model of the target. Each ray is traced in space until it eventually exits the 

target and the scattered field is calculated according to ray optics.  Since the rays can 

undergo multiple reflection/diffraction, multiple scattering can be accounted for.  Ray 

tracing is a key step in the implementation of this method.  
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The standard ray tracing algorithm available from computer graphics is based on 

the binary space partition (BSP) tree algorithm [16]. The BSP tree is generated by 

recursively cutting the bounding box of the target along a spatial plane. For a target 

consisting of N facets, the computational complexity of the algorithm for each ray scales 

between the optimal lower bound of O(logN) to the upper bound of O(N), depending on 

the actual spatial distribution of target facets.  Although the BSP-tree based ray tracer is 

often considered the fastest algorithm for ray tracing, its time performance still increases 

with the complexity of the target. High-frequency prediction in applications such as RCS 

design and radar target recognition demands ray tracing algorithms with even higher 

performance. 

 

1.1.2 Scattering Feature Extraction from Scattering Data 

In addition to the prediction of electromagnetic scattering from complex targets, 

an equally important problem is the extraction, interpretation and exploitation of 

different scattering features from the scattered field data. The development of effective 

algorithms for scattering feature extraction is useful in scattering data analysis, 

diagnostics and compression. It is also a key step to the development of automatic target 

recognition (ATR) algorithms. 

Many scattering feature extraction techniques have been developed in the radar 

signature community. One of the most standard models to describe scattering from 

complex targets is the scattering center model [17-23]. Basically, the scattering center 

model assumes that at high frequencies the scattering response of a target can be well 
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approximated as a sum of responses from individual point scatterers, or scattering 

centers, on the target. The model has been used with success by the radar signature 

community for over three decades. Two main approaches have been developed to locate 

the scattering centers: Fourier-based processing [24] and model-based processing [17-

23]. The Fourier approach is fast and robust, but results in limited resolution because it 

computes the inverse Fourier transform from frequency samples over a limited radar 

bandwidth. Model-based processing can achieve higher resolution than that of the 

Fourier-based process, but at the cost of time and robustness.  

 While the scattering center model has been very successfully utilized in radar, it 

has two key drawbacks.  First, the scattering center model does not take into account 

more complex frequency dependent phenomena that can be present in real targets.  One 

example is the strong frequency resonances that can arise from partially open cavities on 

a target, such as engine inlets and cockpits on an aircraft.  Therefore, improved models 

that combine both scattering centers and frequency resonances have been proposed in 

[25, 26]. Correspondingly, the parameterization problem to determine the model 

parameters (scattering center location/strength and resonant frequency/strength) also 

becomes more challenging for these more sophisticated models.  CLEAN [27], genetic 

algorithms [22, 23] and evolutionary programming-based CLEAN [28] are among some 

of the parameterization techniques that have been proposed for these more complicated 

models.  However, there still exist open problems including dynamic range limitation, 

model sparsity and convergence issues for these techniques.  
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The second major drawback of the scattering center model is that it does not take 

into account the complex angular behavior of real scattering mechanisms in targets.  The 

simple scattering center model assumes that each point scatterer is isotropic and visible 

over all angles.  Clearly this cannot be true in real targets, as scattering features tend to 

have finite regions of visibility.  For example, a trihedral corner reflector is visible only 

over a 90 degree angular sector.  Further complicating the matter is that a scattering 

feature can be shadowed over a range of angles by other parts of the target. Existing 

techniques can extract the spatial locations of the scattering centers one angle a time 

[20].  However, the correspondence of the extracted scattering centers across aspect is 

still far from satisfactory [27, 29].  A method considering both the spatial locations and 

angular visibility of the scattering centers will provide much more insight into the 

scattering features on a complex target.  However, this method does not currently exist.  

 

 

1.1.3  Inverse Scattering 

In addition to investigating the scattering phenomenology from known targets, an 

even more challenging problem is to determine information, e.g., the shape and material 

constituency, of an unknown target from the scattered fields. This class of problems is 

generally known as inverse scattering problems. 

The most common electromagnetic inverse scattering technique is called inverse 

synthetic aperture radar (ISAR) imaging [24].  ISAR imaging is based on the Fourier 

transform and can be considered as a linearized form of electromagnetic inverse 
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scattering. While the algorithm is fast and robust in obtaining the approximate shape of 

an object, it suffers from resolution limitation and image artifacts due to multiple 

scattering phenomena [30, 31]. To overcome the shortcomings of ISAR imaging, 

researchers have also tried to attack the problem by more exact inverse scattering 

methods [32-42]. These methods are usually based on a forward electromagnetic solver 

and a model describing the target shape (or material).  The problem is then cast into an 

optimization problem whereby the difference between the known scattered field from 

the target and the computed field from an assumed target model is minimized.  If the 

forward electromagnetic solver can account for more complex scattering mechanisms, 

then the potential advantage of this type of approach is that better target shape 

reconstruction and higher resolution can be achieved.  However, the price is the much 

larger computational cost to carry out the inversion.  

Typically, the optimization can be carried out by either a local search or a global 

search approach.  Local search techniques were adopted by the inverse scattering 

community in solving simple and small inverse problems [32]. While the local search 

algorithms could achieve satisfactory solutions for simple problems, they eventually 

failed when dealing with large targets or targets with more complex scattering 

mechanisms. In the past decade, the use of global search algorithms in electromagnetic 

inverse scattering became more popular.  These algorithms include genetic algorithms 

(GA) [33-39], differential evolution (DE) [40] and hybrid global-local algorithms [41-

42].  These global search approaches have a better chance at finding a satisfactory 

solution.  However, they are usually plagued by slow convergence rates. In particular, 
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large conducting targets and targets with strong multiple scattering effects are 

particularly problematic [31].   

 

1. 2 Objectives of the Dissertation  

This dissertation sets out to advance the state of the art in each of the areas we 

have reviewed above, namely, high-frequency electromagnetic scattering prediction, 

scattering feature extraction and inverse scattering algorithms. In particular, we first 

focus on the development of a new ray tracing algorithm based on the multi-platen Z-

buffer (MPZ) concept. The objective is to improve on the performance of the traditional 

binary space partition tree algorithm, as speeding up the ray tracer will fundamentally 

impact the speed of high-frequency electromagnetic prediction. 

 The second focus of the dissertation is on the development of improved scattering 

feature extraction algorithms. One objective aims at developing a new scattering center 

extraction algorithm with high accuracy and sparsity. The algorithm will be based on a 

global model with both scattering centers and resonances to represent the scattering from 

complex targets.  Another objective aims at developing a scattering feature extraction 

algorithm by considering not only feature location but also angular visibility. The 

visibility factor is an important component in identifying and interpreting scattering 

features in the data. 

 The third focus of the dissertation is on enhancing the performance of global 

inverse scattering algorithms. This research concentrates on inverse problems with strong 

multiple scattering effects, which cannot be well handled by the traditional ISAR imaging 
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technique. The objective is to explore a combination of algorithms including genetic 

algorithm, local search and tabu search to achieve a better convergence rate for this class 

of difficult inverse problems.  

 

1. 3 Organization of the Dissertation 

This dissertation is organized as follows. In Chapter Two, the multi-platen Z-

buffer ray tracing algorithm is introduced and its performance is evaluated against the 

binary space partition tree algorithm.  A multi-aspect approach is also proposed to further 

improve its performance. In Chapter Three, a global model combined with genetic 

algorithm is presented to parameterize scattering data with both scattering centers and 

resonances. Next, a scattering feature extraction algorithm that accounts for angular 

visibility is developed and tested. Chapter Four focuses on inverse scattering of metallic 

objects with strong multiple scattering effects. A genetic algorithm based approach is first 

studied.  A hybrid algorithm combining GA, local search and the tabu search concept is 

then proposed to enhance the convergence rate of the GA. Chapter Five contains the 

conclusions of this research. 
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CHAPTER TWO

RAY TRACING FOR HIGH-FREQUENCY

ELECTROMAGNETIC SCATTERING COMPUTATIONS

This chapter focuses on the development, evaluation and improvement of a

new ray tracing algorithm aimed at speeding up high-frequency electromagnetic

scattering computations. The traditional ray tracing algorithm based on the binary

space partition (BSP) tree is first introduced. The multiplaten Z-buffer (MPZ) ray

tracing algorithm is then implemented and its performance is evaluated against the

traditional BSP tree algorithm. Results indicate that the computational complexity of

the MPZ is independent of the number of facets, making it potentially attractive for

targets described by a large number of facets.  A multi-aspect MPZ (MAMPZ) is

also proposed to further enhance the speed performance of the MPZ algorithm.

Finally, the extension of the MPZ algorithm to targets described by initial graphic

exchange specification (IGES) surfaces is investigated.

2.1 Introduction

As discussed in Chapter One, frequency-domain electromagnetic solvers are

usually divided into low-frequency and high-frequency methods. Low-frequency

methods, such as the method of moments (MoM), are based on the exact formulation of

Maxwell equations. Their solutions can converge to the exact solution if the
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discretization requirement is satisfied. The main drawback of these methods is that they

usually lead to a dense and complex matrix equation. In the high frequency regime where

the scatterer is large in terms of the radar wavelength, the matrix system may contain

millions of unknowns and very large computer memory and computation time are

required to solve the system.

High-frequency methods are based on the asymptotic approximation to the

rigorous solution of Maxwell's equations and are usually based on ray tracing. In high

frequency scattering, the physical optics method is typically used in the analysis of the

first order scattering. The shooting and bouncing ray (SBR) method is a popular

technique to account for the multiple scattering. The major advantage of the SBR method

is its applicability for very high-fidelity computer models of complex targets.

Fig. 2.1  Ray tracing implementation for EM scattering computation
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In the SBR implementation, ray tracing is used to deteremine the ray trajectories

launched from a transmitter to a given target geometry (Fig. 2.1). Each ray is traced in

space and wave propagation is calculated according to ray optics. The trace terminates

until it eventually exits the target bounding box.  A large number of rays need to be

launched from the transmitter to properly interrogate the target geometry.  The ray

density is typically on the order of ten rays per wavelength.

Ray tracing is a key step for the SBR method [14, 15].  The determination of

where a ray hits the target is the most time consuming process in ray tracing. Although

the SBR method is more accurate than the physical optics computation, it is also

computational much more time consuming, especially for complex targets. The standard

ray tracing algorithm, developed by the computer graphics community, is based on the

binary space partition (BSP) tree algorithm [16]. In the standard BSP algorithm, a BSP

tree is first built based on the facet model of the target by recursively cutting the

bounding box of the object along a spatial plane. Fig. 2.2 illustrates a sample construction

showing both the geometry space and its BSP tree at successive steps. A plane is first

selected to partition the bounding box into two half-spaces (or voxels). Each half-space

contains the facets located inside that half-space. The process is continued recursively by

chosing another plane within each voxel until eventually each voxel contains only a small

number of facets. Ray tracing is then performed by traversing the BSP tree for each ray.

The traversal starts from the root of the BSP tree by finding if there is any intersection

between the ray and the bounding box. If there is, the two voxels associated with the root

voxel are checked to find which one has the intersection with the ray. The intersection is
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Balanced distribution case: O(LogN) Unbalanced distribution case:  O(N)

recursively checked down to the bottom voxel in the BSP tree and all the facets contained

in that voxel are then checked to find the exact facet with which the ray intersects.

Fig. 2.2  Sample construction of a BSP tree at successive steps

Fig. 2.3  Ray tracing performance vs. BSP tree structure

The performance of BSP tree ray tracing depends on the depth of the BSP tree.

Fig.2.3 demonstrates two sample BSP trees associated with the object with a balanced

facet distribution and the one with a highly unbalanced facet distribution (e.g., a cavity),

respectively. For a target consisting of N facets, the computation time of the BSP tree ray

tracing scales between the optimal lower bound of O(logN) for a balanced tree to the
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upper bound of O(N) for a highly unbalanced tree, depending on the actual spatial

distribution of target facets. Although the BSP-tree based ray tracer is considered the

fastest among all of the spatial subdivision approaches, its performance still increases

monotonically with the number of facets (linearly in the case of a highly unbalanced facet

distribution). A faster ray tracing algorithm is very much desirable in order to speed up

the scattering prediction from complex targets with a large number of facets.

This chapter is organized as follows.  In Section 2.2, the multiplaten Z-buffer

(MPZ) ray tracing algorithm recently proposed by Hu et al [43, 44] is first reviewed as an

alternative to the traditional BSP tree algorithm and its implementation is described.  In

Section 2.3, the performance of the MPZ is evaluated and compared against that of the

BSP algorithm based on the test results from a wide range of targets. A new multi-aspect

approach is then proposed in Section 2.4 to further speed up the computation

performance of the MPZ algorithm.  In Section 2.5, the extension of the MPZ ray tracer

to IGES parametric surfaces is investigated. Section 2.6 is the summary of this chapter.

2. 2 MPZ Algorithm and Its Implementation

 Z-buffers were originally developed to remove hidden surfaces in computer

graphics displays.  Rius et al first adopted the usage of the Z-buffer in the GRECO code

in the early 1990s to carry out physical optics calculations [9].  To set up the Z-buffer, the

target is first rotated so that the z-direction is aligned to the incident direction. A scan

conversion is then processed facet by facet.  Only the z depth closest to the observer (i.e.,

the visible surface of the target) is stored into the Z-buffer in a pixel form (Fig. 2.4, 2.5).
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At the same time, the color value, which is associated with the normal component nz of

the illuminated surface, is stored in a corresponding "frame buffer".

Fig. 2.4 Setup of single-layered Z-buffer

Fig. 2.5 Example of single-layered Z-buffer

The Z-buffer algorithm can take advantage of the high-performance graphics

hardware for surface rendering to carry out PO calculations. Specifically, the radar cross

Color ~ Z-value
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section (RCS) of a target can be quickly calculated by the equation [9]:

(Eq. 2.1)

However, higher order scattering contribution is totally omitted in this approach.

In the late 1990s, the multiplaten Z-buffer (MPZ) ray-tracing algorithm was

proposed by Hu et al [43, 44] as an alternative to the traditional ray tracing algorithm. In

the multiplaten Z-buffer approach, a multi-layered Z-buffer is first generated from the

scan conversion process. The multi-layered Z-buffer is a natural extension of the

traditional single-layer Z-buffer described above. Instead of just storing the z-coordinates

of the visible pixels as in the traditional Z-buffer process, multi-layered Z-buffers are

created to store the z-coordinates of all of the facets within each pixel during the scan

conversion (Fig. 2.6). At the same time, a frame buffer is set up to store the

corresponding facet numbers. The completed MPZ contains the three-dimensional

coordinates of the target in a view-specific coordinate system. Fig. 2.7 shows an example

of the multiplaten Z-buffer scan conversion for a simple facet model shown in Fig. 2.5.

Here, besides the visible surface (the first layer Z-buffer), another four layers are used to

store all the z values of the target.
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Fig. 2.6 Setup of the multiplaten Z-buffer

Fig. 2.7  Example of multiplaten Z-buffer

During the ray trace, the MPZ ray tracer propagates a ray along the ray direction
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pixel by pixel (Fig. 2.8). Within every pixel tube, the z depths for both the entry and exit

points are first calculated. These two z depths are then compared with all of the Z-buffer

values within the pixel to check if there are any z values between them. If not, the ray is

propagated to the next pixel tube. If yes, an intersection is reported. The closest Z-buffer

value to that of the entry point is selected and the corresponding facet number is looked

up in the frame buffer. An intersection routine is then executed to calculate the hit point

and the reflected ray direction. To calculate the intersection between a ray and a facet, the

ray is first expressed in parametric form as:

(Eq. 2.2)

where P is the starting point of the ray and is the ray direction unit vector. The

facet plane can be written as:

 (Eq. 2.3)

where Nx
2 + Ny

 2 + Nz
2 = 1 and (Nx, Ny, Nz) is the unit normal vector of the plane. The

distance from the ray's starting point P to the plane is derived by simply substituting the

expansion of equation (Eq. 2.2) in to the plane equation (Eq. 2.3) and solving for t:

 (Eq. 2.4)

To use (Eq. 2.4) more efficiently, the denominator T1  is first calculated. If T1 = 0, then

the ray is parallel to the plane and there is no intersection. Otherwise, if T1 is non-zero,

the ratio of T0 and T1 is calculated to get t. If t<0, the ray intersects the plane behind the

0,ˆ)( >⋅+= ttRPtR
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ray starting point, and thus no actual intersection occurs. Else, the intersection point can

be calculated by substituting the obtained t into (Eq. 2.2). Finally, the reflected ray

direction is calculated by:

(Eq. 2.5)

where        is the unit facet normal vector  and          is the reflected ray direction.

This procedure is repeated from pixel to pixel until the ray eventually exits the

bounding box, as shown in Fig. 2.9.

Fig. 2.8 Mechanism of the MPZ ray tracing algorithm

Fig. 2.9 Demonstration of a single ray tracing by MPZ
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2. 3 Evaluation of the MPZ Against the BSP

Although it was claimed that the MPZ algorithm should be superior to the

traditional ray-tracing process, no evaluation about its time performance was reported in

[43, 44].  Here an evaluation of the performance of the MPZ against that of the BSP

algorithm is carried out.  Multiple facet models are constructed for a straight rectangular

cavity structure of size 2m×2m×20m (open at one end and closed at the other). The

number of facets varies from 322 to 72002 (Fig. 2.10 shows two such models).  A ray

check is first carried out by running both the MPZ and the BSP ray tracer with the same

starting points and directions on the rectangular cavity. A typical ray check is shown in

Table 2.1. As shown, the check ensures that both algorithms trace the ray correctly.

Fig. 2.10 Faceted rectangular cavity structures

Both the BSP and MPZ algorithms are then run on all of the facet models to

compare and evaluate their computational performance. 300 rays are launched along the

ϕ=135° and θ=30° direction. It should be noted that only ray tracing time of the two

2882 facets

15682 facets
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algorithms are included in the comparison. The times for the BSP tree building and the

MPZ scan conversion are not included. This is because in practice, the ray tracing time of

millions of rays dominates the overhead time to set up the BSP tree or the MPZ scan

conversion. Fig. 2.11  shows  the  result  of  the  average  ray  tracing time per ray vs. the

Table 2.1 Ray check for MPZ algorithm

number of facets for both of the ray tracers. Since the cavity facets are not distributed

uniformly in space, the resulting BSP tree is highly unbalanced.  Consequently, the ray

Bounce

i           X(i)         Y(i)         Z(i)
  0         0.2880   -2.2166   13.0071

 1        -1.0000   -0.9286    9.8520

2         0.9286    1.0000    5.1280

3         1.0000    0.9286    4.9530

 4        -0.9286   -1.0000    0.2290

 5        -1.0000   -0.9286    0.0541

6         0.9286    1.0000   -4.6699

7         1.0000    0.9286   -4.8449

 8        -0.9286   -1.0000   -9.5689

 9        -1.0000   -0.9286   -9.7439

10        -0.8954   -0.8240  -10.000

11         0.9286    1.0000   -5.5321

12         1.0000    0.9286   -5.3571

13        -0.9286   -1.0000   -0.6331

14        -1.0000   -0.9286   -0.4582

15         0.9286    1.0000    4.2659

16         1.0000    0.9286    4.4408

17        -0.9286   -1.0000    9.1648

18        -1.0000   -0.9286    9.3398

     X(i)       Y(i)         Z(i)
 0.2880   -2.2166   13.0071

-1.0000   -0.9286    9.8520

 0.9286    1.0000    5.1280

 1.0000    0.9286    4.9530

-0.9286   -1.0000    0.2290

-1.0000   -0.9286    0.0541

 0.9286    1.0000   -4.6699

 1.0000    0.9286   -4.8449

-0.9286   -1.0000   -9.5689

-1.0000   -0.9286   -9.7439

-0.8954   -0.8240  -10.000

 0.9286    1.0000   -5.5321

 1.0000    0.9286   -5.3571

-0.9286   -1.0000   -0.6331

-1.0000   -0.9286   -0.4582

 0.9286    1.0000    4.2659

 1.0000    0.9286    4.4408

-0.9286   -1.0000    9.1648

-1.0000   -0.9286    9.3398

BSP MPZ
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tracing time of the BSP algorithm increases nearly linearly with the number of facets.  On

the contrary, the performance of the MPZ algorithm is almost independent of the number

of facets.  Although the crossover point between the two algorithms does not occur until

the number of facets is very large(>70000), it should be noticed that the MPZ algorithm

was implemented without any optimization, while the BSP algorithm is a standard

published routine [16].

Fig. 2.11 Performance comparison of the BSP and MPZ algorithms for the
faceted rectangular cavities

The MPZ performance should theoretically be independent of the number of

facets, but the curve from the test result in Fig. 2.11 shows small undulations.  Closer

examination reveals that a small portion of the rays are not traced correctly.  The missed

intersections are predominantly caused by the z-value gaps shown in Fig. 2.12.  These
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gaps between neighboring pixels occur after the scan conversion of a facet, and gets

larger for a facet that is nearly parallel to the Z-buffer direction. As a result, a ray can

miss the facet, especially when the ray direction is nearly perpendicular to the z-direction.

This problem will be further taken up in the next section.  Another minor cause of the

miss-traced rays is due to the pixel quantization at the facet edges. Incorrect intersections

can occur due to the serrated edge approximation by pixels as oppose to the original

linear edge of a facet. However, this problem is a minor one, as such errors decrease with

a finer pixel size.

Fig. 2.12  Missed ray at large z value gap between two adjacent pixels

Next, the effect of the number of MPZ layers on the ray tracing time is

investigated. The same rectangular cavity is used to evaluate the computation time. Since

only two Z-buffer layers are enough to describe the rectangular cavity, dummy z-values

(zeros) are used to pad the extra MPZ layers. This scheme guarantees that all the

conditions are kept the same except for the number of MPZ layers. Fig. 2.13 shows the

Zm

Zn

Pixel
m

Pixel
n

Actual facet
Ray misses the facet
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relationship between the average MPZ ray tracing time per ray and the number of MPZ

layers for the rectangular cavity. The result indicates that the ray tracing time only

increases slightly with the number of layers. This result is not surprising, since the

computational overhead to check for a ray intersection against the stored Z-buffer values

within a pixel is very small.

Fig. 2.13   Relationship between the averaged time per ray and the number of
MPZ layers

Table 2.2 shows the performance comparison between the MPZ and BSP

algorithms for nine complex targets(Fig. 2.14)  where the number of facets varies from

126 to 56556.  Because the complexity of the targets is different, the average number of

ray bounces varies from target to target and no apparent performance trend can be found.

However, the results do show a smaller performance gap between the MPZ and BSP

algorithms as the number of facets increases.
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Table 2.2 Time performance comparison between the BSP and MPZ
algorithms for complex targets

Target 1 2 3 4 5 6 7 8 9

No. of Facets 126 800 958 3992 5974 7994 10090 23988 56556

BSP Average Time
Per Ray (ms)

0.13 0.12 2.50 16.84 13.02 5.16 4.61 5.64 56.48

MPZ Average
Time Per Ray (ms)

5.35 3.46 8.98 10.04 11.00 18.45 6.14 12.91 43.66

126 facets 800 facets 958 facets

3992 facets 5974 facets 7994 facets

10090 facets 23988 facets 56566 facets

Fig. 2.14  Geometries of nine tested targets
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2. 4 Multi-aspect MPZ (MAMPZ)

While the performance of the MPZ ray tracing algorithm does not depend on the

number of facets, it does depend directly on the number of pixels a ray traverses.

Therefore, if the number of pixels a ray traverses between bounces can be reduced by

decreasing the angle between the ray and the Z-buffer directions (Fig. 2.15), the MPZ

time performance could be further improved. Here a multi-aspect MPZ (MAMPZ)

approach is proposed.  In the MAMPZ, multiple multi-layered Z-buffers are first

generated from the scan conversion process along many aspect angles.  The maximum

number of multi-layered Z-buffers is limited only by the available computer memory.

The more aspect angles that are stored, the fewer pixels a ray needs to traverse in one

bounce, and the better the time performance.  During the ray trace, the multi-layered Z-

buffer structure that has the closest aspect to the ray direction is selected to carry out the

ray tracing (Fig. 2.16). A ray is then tracked by moving along the ray direction inside this

MPZ structure pixel-by-pixel to check for possible intersections.

Fig. 2.15   Scheme for reduction of the number of pixels a ray travels across

z

z

Ray
Ray
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Fig. 2.16   Scheme of multi-aspect MPZ approach

The computation time performance of the MAMPZ ray tracer is evaluated against

that of the single-aspect MPZ and the BSP tree algorithm on the rectangular cavity.

Generally, the traced rays for an object can be along any direction. If multiple MPZs are

set up with an angular interval ∆ along both the θ and φ directions, it will guarantee that

every ray can find its closest MPZ with a maximum cross angle of ∆/2. This angular

interval ∆/2, as shown in Fig. 2.16,�  will be called the MPZ aspect resolution in the

following text. A fine aspect resolution means a large number of MPZs, which require a
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large amount of memory to store.  Nonetheless, this concept can be tested easily for the

straight rectangular cavity shown in Fig. 2.10 since the ray directions can be limited to

only two distinct directions by choosing the incident angle to be along φ=0 (θ is chosen to

be 45°). Thus, by setting up MPZs at ∆/2 away from these two ray directions (Fig. 2.17),

the performance of the algorithm with different MPZ aspect resolutions can be evaluated.

Fig. 2.17   Evaluation scheme for straight rectangular cavity

Fig. 2.18 shows the computational complexity of the MAMPZ algorithm as a

function of the number of facets for two different MPZ aspect resolutions. The

comparison indicates a 7-fold improvement in performance against that of the single-

aspect MPZ even for a 20-degree aspect resolution.  Another 14-fold improvement can be

achieved for a 1-degree aspect resolution (for a 98-fold improvement over the single-

aspect MPZ). Consequently, the new MAMPZ algorithm can outperform the BSP

algorithm for targets with as small as a few thousand facets if the aspect resolution is fine

enough. Fig. 2.19 shows the time performance of the MAMPZ algorithm for different

aspect resolutions.  The result displays a monotonic (and slightly nonlinear) decrease of

   ∆∆∆∆

MPZ 2

MPZ 1
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Fig. 2.18  Performance of the MAMPZ for two different aspect resolutions

Fig. 2.19   Time performance for different aspect resolutions of the MAMPZ
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ray tracing time versus the MAMPZ aspect resolution. The price for the improvement in

performance is the large memory requirement to store the MPZs. For a single-aspect, 24-

bit Z-buffer with 3 layers, the typical memory size is 8.6MB for a 1000×960 pixel

resolution. If an aspect resolution of 20 degrees is used to set up uniformly distributed

MPZs over all directions (note that only a hemispherical coverage is needed to cover all

angles), the required memory is 175MB. For a resolution of 1 degree, the number

becomes 70GB.

Another performance check for the MAMPZ approach is carried out on a Y cavity

structure shown in Fig. 2.20. The cavity is open at the two bottom inlets and blocked at

the upper end. Similarly, the ray directions can be limited to only six distinct directions

by choosing the incident angle to be along φ=0.  Thus, by setting up MPZs at ∆/2 away

from these six ray directions, the performance of the algorithm with different MPZ aspect

resolutions can be easily evaluated. The Y cavity structure is discretized into different

number of facets ranging from 528 to 74496. 1100 rays are launched and traced by the

BSP and MAMPZ algorithms, respectively. For the MZMPZ, two different aspect

resolution sets (5o and 10o) are checked. Fig. 2.21 shows the performance comparison

between the BSP and the MAMPZ for two different resolution cases. The performance

gain of the MAMPZ over that of the single aspect MPZ is similar to the straight

rectangular cavity case. Therefore, the MAMPZ can outperform the BSP algorithm for

targets with as few as several thousand facets if the MAMPZ aspect resolution is fine

enough.



31

Fig. 2.20  Geometry of Y cavity and typical rays in θ =0 plane

Fig. 2.21  Performance comparison for Y cavity

One important benefit of the MAMPZ algorithm is a decrease in the number of
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usually occurs when the ray direction is nearly perpendicular to the z-direction. In the

MAMPZ algorithm, since each ray is traced by choosing the closest Z-buffer, the ray

direction is always close to the z-direction (Fig. 2.22). For the straight cavity, the

percentage of miss-traced rays decreases from above one percent for the single-aspect

MPZ algorithm to below 0.2 percent for the 20-degree MAMPZ algorithm. This is an

important advantage of the multi-aspect algorithm.

Fig. 2.22  Decrease of miss-tracing for MAMPZ

2. 5 MPZ ray tracer for IGES Parametric Surfaces

High-fidelity computer models of targets are often described not by planar facets,

but by parametric curved surfaces. The MPZ ray tracer can be extended to parametric

curved surfaces by modifying the Z-buffer scan conversion and intersection calculations.

As an example, the industry standard IGES114 [45] parametric surface is expressed as:
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(Eq. 2.6)

According to the above expression, the inverse mapping from a point (x,y,z) in 3-

D coordinate system to its parameters (s, t) can not be solved analytically. Thus, the scan

conversion from the parametric surface patch into the Z-buffer values will take longer

time compared to the planar facet. In addition, the intersection between a ray and the

parametric curved surface has to be calculated numerically.

The procedure of the MPZ ray tracer for IGES parametric surface is similar to that

of the planar facet type, except for the special scan conversion for parametric patches and

the structure of the frame buffer.  To accomplish these steps, the following procedure is

proposed:

A. Scan convert IGES parametric surface patches one by one, store z

values into the z-buffer while storing the patch number and (s, t) pair into

the corresponding frame buffer (Fig. 2.23);

B. The MPZ ray tracer propagates along the ray direction pixel by

pixel to detect possible intersection;

C. When the possible intersection is detected, the algorithm looks up

the corresponding frame buffer to obtain the patch number and (s, t) pair



34

to start the numerical search for the exact intersection point and reflection

direction (Fig. 2.24);

D. The process is repeated until the ray eventually exits the bounding

box of the target.

Fig. 2.23 Scan conversion for an  inlet shape with 129 IGES114

 parametric patches

Fig. 2.24 Intersection detection between a ray and the parametric patch
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It should be noted that in step A, every patch is first finely scanned in (s, t) space.

The resulting point array in (x, y, z) space is then converted into the Z-buffer. The two-

step scan conversion for IGES surface patch is different from that for the planar facet,

which is done directly in the (x, y, z) space. In step C, the MPZ ray tracer first detects the

possible intersection inside the multi-platen Z-buffer.  A numerical search routine is then

called to achieve the exact intersection point (s, t) based on the detected approximate

location (sa, ta). The numerical search tries to detect the point on the parametric surface

which has the shortest distance to the ray, as shown in Fig. 2.24. The intersection occurs

only when the shortest distance D falls within a small tolerance. It is a minimization

problem requiring an iterative search process in (s, t) space to obtain the solution. Several

algorithms, such as the Newton iteration [46] and quasi-Newton iteration [47], have been

developed and implemented to detect an intersection on a parametric surface. In the MPZ

implementation, the quasi-Newton iteration algorithm from [47] is adopted to search for

the exact intersection point. As a numerical example, a ray trace is carried out for an inlet

cavity described by 129 IGES114 patches (Fig. 2.23).  The resulting ray history agrees

well with that of the BSP tree based ray tracer, as shown in Table 2.3.
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Table  2.3 Ray check for IGES parametric model ray tracing

Ray tracing for parametric curved surfaces is typically much more time

consuming than planar facets.  A comment is therefore in order in comparing the MPZ

ray tracer to other developed ray tracers for parametric surfaces.  Existing ray tracers for

parametric surfaces are based either on the space subdivision technique [48, 49] or the

iterative search process. The former type facetizes the parametric surface into smaller

planar facets and uses the standard planar facet ray tracer for the ray tracing, such as the

BSP tree. The latter type is similar to the MPZ procedure described above.  Usually, the

convergence rates of the iterative search algorithms are sensitive to the initial guess. Here

the MPZ ray tracing algorithm for IGES parametric surfaces has the potential advantage

in its ability to detect a very close approximate intersection point (within a pixel) as the

   i            X(i)      Y(i)        Z(i)

  0          79.91  -98.39  -18.78
  1          25.76     5.64  -55.76
  2          19.18   23.00  -41.71
  3            4.59  -21.92  -42.85
  4            3.06    -1.49  -28.13
  5           -5.72   21.45  -39.49
  6         -11.08  -14.67  -47.08
  7         -10.53  -18.81  -31.77
  8         -14.07   20.49  -34.69
  9         -15.22    -0.51  -50.41
10         -13.69  -20.43  -34.48

BSP

     X(i)        Y(i)        Z(i)

 79.91    -98.39    -18.78
 25.73       5.65    -55.75
 19.13     23.00    -41.71
   4.60    -22.00    -42.59
   2.85       1.31    -28.06
  -5.43     21.43    -39.88
-10.70    -15.08    -46.88
-10.04    -18.80    -31.81
-13.42     20.45    -34.53
-14.74       1.64    -50.41

-13.35    -20.65    -35.22

 MPZ
Bounce

No.
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initial guess for the local search.  Thus, it can speed up the local search by saving the

number of iterations required.

2. 6 Summary

In this chapter, a ray tracer based on the multiplaten Z-buffer algorithm has been

implemented and its performance has been evaluated against the standard BSP tree

algorithm.  Numerical results show that the computational complexity of the MPZ

algorithm is independent of the number of facets and is only weakly dependent on the

number of Z-buffer layers. The algorithm has been further extended by a multi-aspect

MPZ approach. Results show that the extended algorithm can dramatically improve the

ray tracing speed in comparison to the single-aspect MPZ by cutting down the number of

pixels each ray has to traverse. The MAMPZ also reduces the chance of miss-traced rays,

which are intrinsic to the Z-buffer quantization process.  One price for the improvement

in speed is the large memory requirement to store the MPZs.  For a single-aspect, 24-bit

Z-buffer with 3 layers, the typical memory size is 8.6MB for a 1000×960 pixel

resolution. If an aspect resolution of 20 degrees is used to set up uniformly distributed

MPZs over all directions (note that only a hemispherical coverage is needed to cover all

angles), the required memory is 175MB. For a resolution of 1 degree, the number

becomes 70GB.  Provided that such memory resources are available, the MAMPZ

algorithm can achieve a two order of magnitude acceleration in ray tracing time.  This

makes the algorithm quite attractive in certain modeling and simulation applications
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where speed is critical.  The MPZ algorithm was then extended to the ray tracing of IGES

parametric surfaces. The MPZ IGES parametric surface ray tracer is potentially attractive

since the numerical search for the intersection can be seeded with a very good initial

guess.
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CHAPTER THREE 

 

FEATURE EXTRACTION FROM ELECTROMAGNETIC 

SCATTERING DATA 
 

3. 1 Introduction 

 In addition to the prediction of electromagnetic scattering from complex targets, 

the problem of extraction, interpretation and exploitation of different scattering features 

from the scattered field data is currently an area of great interest in radar signal 

processing. Analyses of these problems require that target scattering features be extracted 

from the radar data. The most commonly used model to describe the scattering 

characteristics of a target at high frequencies is the scattering center model. In this model, 

it is assumed that the scattering response of a target can be well approximated as a sum of 

responses from individual point scatterers [17]:  

 

    (Eq. 3.1) 

where ti is the time delay of the ith point scatterer and ai is its strength.  ai(f) is usually a 

complex function of frequency f.  Physical scattering mechanisms derived from the 

geometrical theory of diffraction (GTD) indicate that a(f) has an f α dependence [17]. In 

most cases, the bandwidth of a radar system is less than 10% of the central frequency, 

and the frequency dependence is slow compared to the exponential function in Eq.3.1. In 

such cases, a(f) can be approximated by a complex constant.  
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Two main approaches have been developed to locate the scattering centers: fast 

Fourier transform (FFT)-based algorithms and model-based techniques. The FFT-based 

technique is the traditional method of performing scattering center extraction. The 

technique requires uniform samplings in frequency, and the sampling rate must be dense 

enough to satisfy the Nyquist sampling rate. Raw radar data are first obtained in the 

frequency domain by either measurements or by means of EM prediction algorithms. The 

time-domain response (or the range profile) can be generated by a 1-D FFT of the radar 

data. The scattering centers are found by extracting the locations and amplitude of peaks 

in the range profile.  

Though the FFT technique is computationally efficient, it has several 

disadvantages. Besides having strict requirement for the data sampling, the FFT 

technique can only achieve a range resolution limited by the Fourier limit. To extract 

high-resolution scattering features, large frequency bandwidth must be used. The 

disadvantages of the FFT technique can be reduced by model-based algorithms. 

Generally, model-based algorithms do not require even sampling. Moreover, they are 

found to be superior to the conventional FFT technique in resolution and dynamic range 

[18, 19]. However, the resolution advantage of model-based algorithms comes at the 

price of speed and robustness. 

The scattering center model has been used with success by the radar signature 

community for over three decades. However, it has two main drawbacks. First, it does not 

take into account more complex frequency dependent phenomena, such as strong 

frequency resonances that can arise from partially open cavities on a target. Though 
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improved models that combine both scattering centers and frequency resonances have 

been proposed in [25, 26], the parameterization problem to determine the model 

parameters also becomes more challenging for these more sophisticated models. 

The second drawback of the scattering center model is that the standard scattering 

center model assumes that each point scatterer is isotropic and visible over all angles and 

does not take into account the complex angular behavior of real scattering mechanisms in 

targets. Clearly, scattering features tend to have finite region of visibility.  For example, a 

trihedral corner reflector is visible only over a 90 degree section in azimuth and 

elevation. Moreover, a scattering feature can be shadowed over a range of angles by other 

parts of the target. A useful methodology for extracting the 3-D scattering centers of a 

complex target was reported in [20].  However, the scattering centers in this approach are 

extracted one angle at a time, and information on the visibility of a scattering center 

across angles is not available.  Later, research to rectify this problem was carried out but 

the results were not fully satisfactory [27, 29].  

In this chapter, a model-based method is first presented in Section 3.2 to 

parameterize scattering data from complex targets. Based on a global model with both 

scattering centers and resonances, a genetic algorithm with adaptive feeding is proposed 

for a sparse representation of the data. The algorithm, when tested with measurement 

data, shows better performance than non-global parameterization methods. In Section 

3.3, several extraction and clustering methods are investigated by considering both the 

spatial locations and angular visibility of the scattering centers. The results show that it 

is possible to categorize scattering centers by their angular visibility. Furthermore, the 
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developed methodology is capable of capturing scattering mechanisms that are not 

necessarily stationary in space, but move in a continuous fashion from angle to angle. 

 

3. 2 Sparse Parameterization of EM Scattering Data 

3.2.1  Parameterization based on combined model and community GA 

Obtaining a sparse, physical representation of electromagnetic scattering data 

from a complex target is a problem of fundamental importance in radar signature analysis 

[18-23, 25, 26, and 28]. A number of techniques, including super-resolution [18, 19], 

CLEAN [20], genetic algorithms (GA) [21-23], and evolutionary programming-based 

CLEAN [28], have been reported for determining the model parameters based on the 

scattering center model. For targets containing convex, interior structures such as 

cavities, a model combining scattering centers and resonances has been shown to be a 

more efficient and physically meaningful representation of both the exterior and interior 

scattering features [25, 26].  However, finding the model parameters in such cases is 

more challenging, because the scattering center and resonance bases have complementary 

behaviors in time and frequency. In [25], a CLEAN-based algorithm was used iteratively 

to extract one scattering center and/or resonance at a time. In [26], Prony’s method was 

first used to extract all the scattering centers and then all the resonances. One drawback 

of these methods is that the parameterization results are not very sparse because the 

scattering centers and resonances are not extracted simultaneously.  

For this research, the scattering model is assumed to comprise of responses from 

both scattering centers and resonances in the following form [26]: 
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                                                                                                              (Eq. 3.2) 

 

where M and N represent the number of scattering centers and resonances, respectively, 

and f is the frequency. For each scattering center, tm is the time delay, αm is the frequency 

dependency coefficient, and am is the complex amplitude. For each resonance of complex 

amplitude bn, fn is the resonant frequency, τn is the turn-on time, and βn is the Q-factor. 

The parameterization process can be formulated as a minimization problem as follows: 

                                                                                                                          (Eq. 3.3) 

where Em denotes the measurement data to be parameterized. The amplitudes am and bn 

are not included in the bracket as they can be derived from other unknowns using 

minimum least squares fitting.  

To improve the sparsity of the extracted parameters, the genetic algorithm (GA) 

approach is researched to parameterize complex scattering data using the combined 

scattering center and resonance model. The GA has been used in many engineering 

applications as a global optimization scheme [21-23, 33-37, 39, 41, 42].  In general, the 

GA does not operate directly on the unknown parameters, but on the coding 

representation of the unknown parameters, which is called the chromosome. Several 

operators are then performed on the code according to the concepts of selection, 

crossover, and mutation. A cost function must be defined in advance to evaluate the 

difference between the GA member and the real solution. A lower cost function value 
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means the solution it represents is a better approach to the real solution. Members with 

lower cost function values will have more chance to participate the creation of next 

generation. A simple description of the GA procession is as follows: 

a) Decide the unknown parameters of the problem and encode them to be 

chromosome. 

b) Randomly create the initial generation members. 

c) Evaluate the cost function value of each member. 

d) Perform selection, crossover and mutation procession based on the cost function 

value of each member to produce the next generation. 

The process is then continued until a global solution, which satisfies the 

termination condition, is achieved.  

For the combined scattering center and resonance model, however, it is found that 

the standard simple GA (SGA) has difficulty in converging to the desired global 

optimum. Since the energy in a resonant term is typically much lower than that in a 

scattering center, the resonant terms are easily missed in the SGA process. To overcome 

this problem, a parameterization based on a community GA (CGA) concept, which was 

previously reported in [50], together with a new adaptive feeding scheme is devised. In 

CGA, the entire population is broken up into subpopulations, known as communities. All 

of the members of a given community share the same community chromosome. For the 

problem of the combined scattering center and resonance model, different communities 

have the different composition of the number of scattering centers and resonances.  
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Fig. 3.1 illustrates the approach in extracting M scattering centers and N 

resonances. In this figure, each solid box represents a community using a different 

parameterization order number. For example, the highest-order community uses M 

scattering centers and N resonances, while the lowest-order community uses one 

scattering center and no resonance. The parameterization consists of an iteration process 

involving three steps. First, for each community, the standard GA operations, including 

selection, crossover and mutation, are utilized to reproduce members in the next 

generation for better solutions. Second, at the end of each generation, the residual signal 

of each community is calculated as the error between the best solution in the community 

and the original data Em(f). The residual signal is also parameterized with the GA. The 

order number for the residual parameterization, which is specified in the dashed box, is 

the difference between the order number of the current community and that of the next 

higher community. Third, the parameters from the best solution of a lower-order 

community and its residue are combined to form a candidate solution in the next higher-

order community. A zero-mean Gaussian perturbation is added during this step to create a 

community-level mutation.  By adaptively feeding the solutions from the lower-order 

communities forward to the higher-order communities, the convergence of the highest 

order community is significantly accelerated without sacrificing the optimality of the 

final solution.  
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Fig. 3.1  GA with adaptive feeding. The best solution from a lower-order community 
(solid box) and that from the residue (dashed box) are combined and fed into the 
next higher-order community.  The convergence of the highest-order community 
with M scattering centers and N resonances is accelerated. 

 

 

 

 

 

 

Fig. 3.2 1:30-scale VFY 218 model 

 

 

3.2.2  Examples  

The algorithm is applied to the VFY 218 measurement data [51]. The scattering 

data came from a 1:30-scale model aircraft (Fig. 3.2) using horizontal polarization in the 
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8 to 16 GHz frequency band. The look angle was at 19.6 degree from nose-on, so that 

the inlet contribution is prominent in the return. 

Fig. 3.3 Comparison of three parameterization results of the VFY 218 
measurement data    

 

Fig. 3.3 is the plot of RMS error vs. total model order number (M+N) for the three 

different methods tried: 1) CLEAN with scattering center only (dash-dotted line), 2) 

CLEAN with both scattering center and resonances (dashed line), and 3) the CGA with 

adaptive feeding (solid line). The CGA results are averaged over six runs. The CLEAN 

curve with the scattering-center-only model decreases very little after 30 terms, 

indicating the scattering center model is inefficient in modeling the resonance part of the 

data after the scattering centers are extracted. The CLEAN curve with both scattering 

center and resonance model is better; however, the rate of convergence still slows down 

considerably after the first 18 terms. The CGA with adaptive feeding curve shows the 

best sparsity. It requires only 20 terms to achieve the same accuracy as the CLEAN 
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(a) Time domain 
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approach with 40 terms. The model orders used in the CGA with adaptive feeding are 

M=14 and N=6. It is found, however, that the results are not sensitive to the model order 

selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4  Accuracy of the parameterization in time and frequency domains 

8 10 12 14 16 
-25 

-20 

-15 

-10 

-5 

 Frequency (GHz) 

A
m

pl
itu

de
 (d

B
) 

(b) Frequency domain 

                      Original VFY 218 measurement 
                       Parameterized result 



 49

To further interpret the physical significance of the GA-parameterized data, the 

extracted scattering center positions are correlated with the peaks in the target range 

profile, and they are found to line up well. Furthermore, the two strongest resonances 

extracted are at frequencies of 9.8 GHz and 11.3 GHz. This is consistent with the size of 

the rectangular engine inlet openings, which have dimensions of 2.5cm by 1.5cm. (The 

cutoff frequencies of the TE01 and TE11 modes are estimated at 10 GHz and 11.7 GHz, 

respectively.) The other four resonances at 8.6 GHz, 9.1 GHz, 9.4 GHz, and 13.3 GHz, 

are harder to interpret given the complex shape of the actual inlet structure. 

The comparisons of the parameterized result (dashed line) with the original 

measurement data (solid line) in the time and frequency domains are shown in Fig. 3.4(a) 

and 3.4(b), respectively. The two results agree fairly well. The small parameterization 

error is probably due to the model mismatch of Eq. 3.1 to the complex measurement data. 

Therefore, increasing the model order for this data does not reduce the error significantly. 

The data from 0 to 180 degrees from nose-on in 5-degree increments are also processed, 

and the CGA with adaptive feeding consistently outperforms CLEAN at all angles. 

To summarize, the testing results indicate that the proposed method can achieve 

sparser results than other non-global based methods. The resulting sparse model 

facilitates target feature interpretation and can be used for signature reconstruction in 

modeling and simulation applications. However, this algorithm processes the data one 

angle a time. The correspondence of the scattering features from angle to angle is not 

considered. In the following section, the visibility of scattering features across aspect 

angles is investigated. 
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3. 3 Feature Extraction with Visibility 

3. 3. 1 Typical angular behaviors of scattering centers 

For complex targets, most scattering features are visible only for a limited aspect 

span. Moreover, the scattering centers associated with different scattering mechanisms 

differ in their angular behaviors. Fig. 3.5 shows the different angular behaviors of several 

canonical scattering structures: a corner reflector, a tophat structure, and a plate. For the 

convenience of illustration, the 3-D spatial location of a scattering center is plotted only 

in the XY projection plane. As demonstrated, the angular behaviors of these different 

scattering mechanisms differ from each other. The angular behavior of the scattering 

center contributed by the corner reflector is stable. For the tophat structure in Fig. 3.5(b), 

the scattering center contributed by the circular dihedral moves along its base from angle 

to angle.  Although this feature is not strictly a point scatterer over a wide angle, it should 

be considered as a single scattering mechanism. As for the specular flash of the plate, it is 

visible only in a narrow angular window.  
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Fig. 3.5 Angular behavior for typical scattering mechanisms 

 
In the work by Bhalla and Ling [20], a 3-D scattering center extraction algorithm 

was developed. However, the scattering centers are extracted one angle at a time. 

Therefore, information on the visibility of a scattering center across angles is not 

identified. Such visibility information would be very important for feature identification. 

In the following sections, the specific angular behaviors of different scattering 

mechanisms are first investigated. Algorithms for identifying scattering center visibility 

are then developed to categorize the scattering centers. In Section 3.3.2, a 

parameterization algorithm based on the sinogram is described and analyzed. The 
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algorithm can successfully extract the stable features and features with circular behaviors. 

An improved segmentation algorithm in multi-dimensional space is then developed in 

Section 3.3.3. The segmentation algorithm is more general and can successfully extract 

most features with different angular behaviors. 

For convenience of analysis, the benchmark target "Slicy" is taken as a sample 

target to test the developed algorithms. The Slicy model (Fig. 3.6) consists of two circular 

cylinders on the top of a square platform. The taller cylinder has a top cover and the other 

one does not. The Slicy model is relatively smooth compared to realistic targets, but it 

includes many scattering mechanisms, such as specular reflections from flat surfaces, 

retro-reflection from trihedral and dihedral corner reflectors, and high-order multiple 

scattering from the open cavity. 

 

 

 

 

 

 

 

 

 

 

(a) Size of the Slicy model 
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 (b) View of Slicy 3-D model 

Fig. 3.6 Geometry of the Slicy model 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7 Definition of azimuth and elevation angles 
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The raw scattering data are generated by an SBR simulator [14, 20]. The data are 

collected by setting the azimuth angle from 0o to 360o and the elevation angle to 30o, as 

defined in Fig. 3.7. The frequency band is from 4.5 GHz to 14.5GHz, with a bandwidth 

of 10 GHz at the central frequency of 9.5GHz. The 3-D scattering centers are then 

extracted from angle to angle across all 360 azimuth angles by a CLEAN extraction 

algorithm with a dynamic range of 40 dB. The number of bounces and the facets that 

contribute to the specific scattering center are also recorded during the CLEAN extraction 

based on the ray history.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.8 3-D spatial location of scattering centers for the Slicy model 
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Fig. 3.8. A number of scattering mechanisms can clearly be observed, including point 

features from the trihedrals (1, 2, and 3), circular features from the tophats (4 and 5), line 

features from the edge flash (6), and higher-order features from multiple scattering (7, 8, 

and 9). However, an automated algorithm needs to be developed to separate the different 

mechanisms.  

 

3. 3. 2 Feature separation based on the sinogram 

 Scattering feature separation and parameterization is first attempted in the 

sinogram domain by using a parametric model to extract features iteratively. A sinogram 

is the range profiles of  a  target  collected  over  many  aspect  angles.  It  is  generated  

by  first   creating   the   scattered  field  data  in  frequency   for   each   angle   and   then 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9 Sinogram for the Slicy model 
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taking the inverse Fourier transform to obtain the range profile. The range profile can be 

considered as a projection of the 3-D scattering centers onto the radar line-of-sight 

(LOS). As an example, the sinogram for the Slicy model is shown in Fig. 3.9. The color 

represents the strength of the range return in dB scale. A number of range tracks with 

different angular behaviors can be observed. 

The separation and parameterization of the range tracks in the sinogram is next 

tried.  The following model is used: 

      (Eq. 3.4) 

where φ represents the azimuth angle and (r0, φ1, r1) are the parameters to be extracted. 

Basically, the model described by Eq. 3.4 assumes that each scattering center has a  

circular behavior with the azimuth angle in 3-D space. When projected from the 3-D 

space to the range domain, the trajectory of the scattering center described by Eq. 3.4 is a 

sinusoidal curve, as shown in Fig. 3.10 for four different scattering centers. 

 

 

 

 

 

 

 

 

Fig. 3.10 Trajectories of different scattering centers in the sinogram 
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For each scattering feature, its parameters (r0, ϕ1, r1) are searched by finding the 

maximum projection of the sinogram to the basis function R(φ). Here the projection value 

is calculated by simply accumulating the absolute value of the strength along the 

trajectory R(φ) in the sinogram. Once the parameters (r0, ϕ1, r1) are obtained, the inverse 

process of finding the trajectory of the 3-D location (x(φ), y(φ), z(φ)) can be obtained as 

follows:  

 

 

  (Eq. 3.5) 

 

 

where θ  is the elevation angle and R1 is an unknown. Here the unknown R1 comes from 

the loss of information during the projection from 3-D space into the 1-D range direction. 

It can be decided by a second search to match the maximum number of scattering centers 

along (x(φ), y(φ), z(φ)). The scattering centers along the trajectory (x(φ), y(φ), z(φ)) are 

then extracted from the sinogram and categorized as a scattering feature. The process is 

then iterated to extract and separate the other features.  

 The detailed procedure of the algorithm is described by the flow chart in Fig. 

3.11. As indicated in the flow chart, the algorithm identifies the movers and non-movers 

according to the variance of the tracked scattering centers. Here a non-mover represents 

the stable scattering feature whose location does not change appreciably with the aspect 

angle. A mover represents the scattering feature whose location changes with the angle. 
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Fig. 3.11 Flow chart of the sinogram-based algorithm 
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Fig. 3.12 Scattering feature extraction by sinogram-based algorithm for the Slicy  

 

The algorithm is tested on numerical simulation data from the Slicy model shown 

in Fig. 3.6. Fig. 3.12 shows the first six features extracted by the algorithm for the Slicy 

model. Compared to the original sinogram in Fig. 3.9, it can be observed that all the main 

features are successfully extracted. Fig. 3.13 shows the residual sinogram. The residual 

scattering features include the edge flash, multiple scattering from inside the cavity, and 

other weak features. The parameterized scattering features are displayed in Fig. 3.14, 

where the two tophat structures and three corner reflectors are clearly depicted.  
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Fig. 3.13 Residue sinogram after seven iterations of scattering feature  

extraction by sinogram-based algorithm for the Slicy model 
 

 

 

 

 

 

 

 

 

Fig. 3.14 Parameterized scattering features extracted for the Slicy model 
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the seven extracted features, the sum of the energy is 88.23%. It should be noted that the 

residue contains some edge flash features, which are strong but only visible in a very 

narrow angular window. Therefore, the near 90% energy for the extracted features 

indicates a good feature extraction for the Slicy model. 

 

Table  3.1 Extracted parameters of the first seven features for the Slicy model 

 

 

The model in Eq. 3.4 is not general in that it can only describe the stable 

scattering centers (non-movers) and features with circular tracks. Therefore, while this 

approach worked adequately for the test target Slicy, it would have trouble with more 

general targets, which may include some non-circular features. In the following section, a 

more general algorithm is presented to separate and categorize the scattering features 

with more general angular behaviors. 

 

 

No. r0 r1 φ1(deg.) R1 Energy% 

1 1.0103 0.2436 320.1803 0.02 23.89 

2 0.6574 0.6459 233.2750 0.29 20.06 

3 0.6591 0.6447 127.0300 0.29 12.17 

4 0.7804 0.2565 8.1173 0.02 23.28 

5 0.3426 0.4112 285.2530 0.02 8.77 

6 0.9997 0.2522 320.1726 0.09 0.01 

7 1.0001 0.2510 320.0716 0.00 0.05 



 62

3. 3. 3 Segmentation algorithm in multi-dimensional space 

The spatial separability of scattering centers is next investigated in 3-D target-

centered space. While the features shown in Fig. 3.8 for Slicy are quite revealing, their 

spatial locations alone do not offer sufficient separability to allow for a successful 

extraction of these mechanisms. The dimensionality of the feature space needs to be 

increased to enhance mechanism separability.  To accomplish this, the feature space is 

extended to higher dimensions by utilizing the bounce numbers and angular persistence 

of the scattering centers. The goal is to move to a sufficiently high-dimensional feature 

space such that the scattering mechanisms become naturally separated and can thus be 

extracted more easily. 

A multi-dimensional segmentation algorithm is next developed to implement the 

tracking and separation of scattering mechanisms. The algorithm starts at the 

discretization of the multi-dimensional space, including 3-D location (x, y, z), ray bounce 

number, and angular persistence. For the three dimensions corresponding to the location 

of scattering centers, the grid size is decided by the range resolution. Investigation 

indicates that twice the resolution cell is a good choice.  To conserve memory and 

increase computational speed, the scattering center data are first processed and separated 

into different groups by ray bounce number. The 5-dimensional space is then reduced to 

4-D after the process, namely, 3-D space (x, y, z) and angular persistence. A 

segmentation algorithm is then applied to automatically separate the different 

mechanisms. The objective of the presented segmentation algorithm is to cluster a 

collection of points (scattering centers) in multi-dimensional space into different groups. 
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The procedure of proposed multi-dimensional segmentation algorithm can be described 

as follows:  

1. Discretize the 4-D feature space into small cells. 

2. Set up an empty search list and an empty feature list. 

3. Randomly select a non-zero cell (Cell 1); put it into the feature list and set it 

to zero.  

4. Find Cell 1’s non-zero neighbor cells; put them into the feature list as well as 

the search list and then set them to be zeros. 

5. Find Cell 2 in sequence from the search list (it has been set to  zero in Step 3); 

find its non-zero neighbor cells; put them into both the feature list and search 

list; set them to zeros and then delete Cell 2 from the search list; 

6. Find the next cell in sequence from the search list. Repeat Step 4 until the 

search list is empty. The first feature is finished. 

7. Repeat Steps 2-5 to find the next feature. Eventually, all the cells in the space 

will be zeros and the algorithm exits. 

Basically, this algorithm uses the continuity of the cells in the discretized space to 

segment the scattering centers into groups.  It can be considered as a discretized version 

of the K-means clustering algorithm [52].  Because it is difficult to display a 4-D space, 

an example procedure of the algorithm is demonstrated in Fig. 3.15 for the 2-D case. The 

assumed 2-D space is first discretized into small cells, as shown in Fig. 3.15(b). The 

segmentation algorithm is then applied to separate the discretized space into different 

groups, as shown in Fig. 3.15(c). The result is a feature list, which includes the number of 
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features and the grid locations corresponding to each feature (cluster). The separation of 

different features is then completed by finding the corresponding scattering centers for 

each cluster based on the obtained grid-location information.  

 
Fig. 3.15 Example procedure of the segmentation algorithm for the 2-D case 

 

 
Fig. 3.16 Projection of scattering centers  on the XY plane after separation 

by bounce number for the Slicy data    
 

(a) 2-bounce group (b) 3-bounce group (c) 4-or-more-bounce group

(a) Original SCs in 2-D space (b) Discretization (c) Separated clusters 
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The algorithm is tested using the data from the Slicy model.  For the Slicy model, 

the original scattering centers are first separated by bounces, as shown in Fig. 3.16. The 

algorithm is then applied on each group to separate the different features.  

Table 3.2 lists the first 21 features and the corresponding number of scattering 

centers, as well as the percentage energy for each feature. The x-span, y-span, z-span, and 

angle-span for each feature are also indicated.  Here the x-, y-, and z-spans represent the 

extent of the feature in the x, y, and z directions, respectively. The angle-span means the 

angular window (in degrees) where the feature is visible. While the number of bounces 

indicates the scattering order of the feature, the x-, y-, and z-spans indicate the spatial 

extent of the feature. A feature like No. 1, which has small x-, y-, and z-spans, indicates 

that the scattering centers are focused around a point. Moreover, the 80o angle-span, the 

number of bounces (3), and the large energy content further substantiate that the feature 

corresponds to a trihedral corner reflector. Similar characteristics can be found for feature 

No. 3 and No. 5, which are also due to trihedral corner reflectors. On the other hand, 

feature No. 2 and No. 4 have large x- and y-spans and angle-spans close to 360o, 

implying that these features are visible almost from all directions. Also, they are two-

bounce features.  Indeed they correspond to the returns from the circular tophat structures 

formed by the circular cylinders and the flat top surface. The analysis can be applied for 

other features to relate each of them to the physical location on the target. The locations 

of several important features for the Slicy model are shown in Fig. 3.17.  
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Table 3.2  Scattering feature separation by multi-dimensional segmentation 
algorithm for the Slicy model     

 

 

 

Feature 
No. 

No. of 
bounce 

x-span 
(m) 

y-span 
(m) 

z-span 
(m) 

Angle 
span (o) 

No. of 
SCs 

Energy 
% 

1 3 0.0126 0.0209 0.0162 80.0 132 24.27

2 2 0.6752 0.6710 0.0506 356.0 15671 24.25

3 3 0.0115 0.0166 0.0203 80.0 130  22.24

4 2 0.6306 0.6365 0.0466 348.0 11903  13.80

5 3 0.0294 0.0165 0.0206 73.0 143    6.49

6 2 0.2955 0.0368 0.0292 32.0 890    1.48

7 2 0.2939 0.0311 0.0275 37.0 845    1.45

8 2 0.2028 0.3808 0.0170 80.0 366    1.18

9 2 0.0010 0.0016 0.0032 1.0 4    0.61

10 2 0.0029 0.0032 0.0020 2.0 10    0.57

11 2 0.0254 0.6214 0.0197 16.0 147    0.47

12 2 0.0325 0.4606 0.0189 5.0 151    0.47

13 3 0.1825 0.5955 0.0391 89.0 291    0.46

14 3 0.4558 1.0082 0.0557 51.0 1344    0.40

15 3 0.0691 0.0777 0.0404 30.0 220    0.39

16 4 1.8028 1.7706 0.0461  223.0 3975    0.16

17 2 0.0000 0.0004 0.0003 1.0 4    0.12

18 4 1.0337 0.6087 0.0444 104.0 577    0.11

19 2 0.0912 0.0944 0.0230 15.0 101    0.10

20 2 0.0312 0.2799 0.0203 17.0 209    0.06

21 2 0.2155 0.2180 0.0261 46.0 263    0.02
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Fig. 3.17 Locations of typical scattering features for the Slicy model 

 

 

 

 

 

 

 

 

 

Fig. 3.18 Percentage of scattering centers and energy for scattering features 
extracted for the Slicy model     

 

Fig. 3.18 shows the percentage of scattering centers and the percentage energy for 

the extracted scattering features from the Slicy model. The first 20 features include about 

97% of the scattering centers and 99% of the total energy, indicating that the multi-

dimensional segmentation algorithm yielded a very successful separation of the scattering 
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features. The first 20 features are shown from Fig. 3.19 to Fig. 3.38. For each figure, the 

upper left subplot shows the locations of the scattering centers for each feature in blue. 

The upper right subplot shows the corresponding sinogram for the separated feature. The 

bounce number, energy percentage, and the number of scattering centers are displayed at 

the bottom left. Finally, in the bottom right subplot, those facets with contribution to the 

separated feature are marked by color. While Table 3.2 gives an estimate to each feature 

based on some characteristic numbers, these more detailed figures provide a clearer 

understanding to the extracted features.  In Fig. 3.19, the locations of the scattering 

centers and the contributing facets indicate Feature 1 is related to the corner reflector on 

the right step. The sinogram shows that the feature is visible from around 270 o to 360o.  

In Fig. 3.20, Feature 2, which is due to the right tophat structure, is displayed. The color 

facets in the bottom right subplot indicate that the scattering is contributed by the double 

reflection between the right cylinder and the top of the base. The sinogram shows that the 

feature is almost visible in all the directions except for the blockage by the left cylinder 

around 90o. The next two features are similar to the first two discussed:  Feature 3 in Fig. 

3.21 is due to the corner reflector on the left step, and Feature 4 in Fig. 3.22 is due to the 

left tophat structure.  Fig. 3.23 shows Feature 5, which is due to the corner reflector on 

the top base. The sinogram indicates that the scattering from the reflector is visible from 

the front side of the target from -45o to +45o.  Among the weaker features, the most 

interesting one to point out is Feature 16 in Fig. 3.34.  It is due to the left open cylinder.  

Since the structure is a cavity, the number of bounces is high (4).  However, the location 

of the return moves in a very predictable manner in 3-D space and the return is visible 
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over a wide range of angles.  The feature is blocked due to the taller right cylinder around 

270o.  These results show that all the features shown in Fig. 3.8 can be satisfactorily 

separated and identified on the model.  

The testing results for the multi-dimensional segmentation algorithm indicate it is 

a very effective method to extract and separate the scattering features from the scattering 

data. Compared to the sinogram algorithm, this algorithm is more general and can extract 

features with very different angular behaviors.  The algorithm has also applied to a more 

complex ground vehicle with satisfactory results.  



 70

 

Y
[m

] 

2.0

1.0

0

-1.0

-2.0
-1 0 1 2-2

X[m] 

φ 

360

270

180

90

0
-2 0 2

Range[m]] 

No. of  bounces  = 3  

Energy  = 24.27%  

Cumulative energy = 24.27% 

No. of  SCs =    132 

Fig. 3.19   Feature 1

2.0

1.0

0

-1.0

-2.0
-1 0 1 2-2

Y
[m

] 

X[m] 

φ 

360

270

180

90

0
-2 0 2

No. of  bounces  = 2  

Energy  = 24.25%  

Cumulative energy = 48.52% 

No. of  SCs =    15671 

Fig. 3.20   Feature 2



 71
 

No. of  bounces  = 3  

Energy  = 22.24%  

Cumulative energy = 70.76% 

No. of  SCs =    130 

Fig. 3.21   Feature 3

Y
[m

] 

2.0

1.0

0

-1.0

-2.0
-1 0 1 2-2

X[m] 

φ 

360

270

180

90

0
-2 0 2

No. of  bounces  = 2  

Energy  = 13.80%  

Cumulative energy = 84.56% 

No. of  SCs =    11903 

Fig. 3.22   Feature 4

φ 

360

270

180

90

0
-2 0 2

Range[m] 

Y
[m

] 

2.0

1.0

0

-1.0

-2.0
-1 0 1 2-2

X[m] 



 72
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No. of  bounces  = 2  

Energy  = 0.61%  

Cumulative energy = 95.77% 
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No. of  bounces  = 2  

Energy  = 0.47%  
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No. of  bounces  = 3  

Energy  = 0.46%  

Cumulative energy = 97.74% 

No. of  SCs =    291 
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Cumulative energy = 98.14% 
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No. of  bounces  = 3  
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No. of  bounces  = 4  
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No. of  bounces  = 2  

Energy  = 0.06%  

Cumulative energy = 99.08% 
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3. 4 Summary 

Two problems for feature extraction from electromagnetic scattering data have 

been addressed in this chapter. Investigation found that parameterization for a model 

combining both the scattering centers and resonances is much more difficult and 

challenging. A CGA with adaptive feeding for parameterization based on the more 

complex model is first presented.  The algorithm attempts to extract all the model 

parameters simultaneously. The effectiveness of the proposed method is demonstrated 

using the VFY 218 measurement data.  It is shown that a much sparser representation 

can be obtained than the non-global parameterization approaches.  

Second, current scattering center extraction algorithms do not account for the 

visibility of the scattering centers. Such visibility information could be very useful for 

feature identification. Two scattering feature extraction algorithms, the sinogram-based 

algorithm and the multi-dimensional segmentation algorithm, are presented to account 

for visibility. The first algorithm takes advantage of known angular behaviors of 

different scattering features in the sinogram to extract and parameterize the most 

important scattering features. The limit of this parameterization model is that it requires 

known behaviors of the scattering features in the data. The multi-dimensional 

segmentation algorithm is next researched to relax this constraint. Besides the 3-D 

location of the scattering centers, it also utilizes the ray history information and visibility 

as additional dimensions to parse the different scattering features in a higher dimensional 

space. Tests on the Slicy model show the effectiveness of the algorithm. The algorithm is 

useful in signature analysis and target feature extraction. 
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CHAPTER FOUR 

 

ELECTROMAGNETIC INVERSE SCATTERING 
 

 
In Chapter Two, it is shown that for a given frequency and aspect angle, the 

scattered field data for a known target can be numerically simulated by a forward EM 

solver. Based on the scattered field data, Chapter Three discusses how scattering features 

corresponding to different physical mechanisms and locations can be identified, separated 

and categorized. There exist other scenarios in practice, however, where the target is not 

known in advance. In these cases, scattering feature analysis has to be carried out in a 

blind mode.  

One standard way to approach this type of problem is the inverse synthetic 

aperture radar (ISAR) imaging algorithm [24].  The ISAR algorithm sets out to create a 

microwave image of the target from collected radar scattering data by means of the 

inverse discrete Fourier transform (IDFT). Scattering centers can then be located by 

extracting the peaks in the obtained image. Although the technique is fast and robust in 

obtaining an approximate shape of a target, it suffers from the Fourier resolution limit 

and image artifacts due to multiple scattering phenomena [31]. More general inverse 

scattering algorithms can overcome the problems in ISAR imaging at the expense of 

much higher computational cost. Given the development of faster forward EM algorithms 

and improved computational power, these inverse scattering algorithms are worth 

pursuing because of their potentially superior performance.  
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In this chapter, the Fourier-based ISAR imaging algorithm and its difficulties in 

processing data with multiple scattering effects are first addressed. Next, an inverse 

scattering algorithm combining a forward electromagnetic solver with a genetic algorithm 

(GA) is developed to carry out the shape inversion of two-dimensional metallic objects 

with strong multiple scattering effects. An approach combining a hybrid genetic 

algorithm (HGA) with the tabu list concept is then proposed to increase the efficiency of 

the GA. Results of the shape inversion using the developed algorithm are presented for 

several Ipswich objects [38] based on both simulated and measured data. 

 

4. 1 Radar Imaging with Multiple Scattering Effects  

A radar image is the spatial distribution of the radar reflectivity of a target [24]. 

The quality of a radar image should be judged by how faithfully it reproduces the spatial 

distribution of the target reflectivity. The problem of radar imaging is to form a target 

image by processing the received radar data reflected from the target.  

Radar imaging can be considered as a linearized form of electromagnetic inverse 

scattering. In general, the scattering mechanisms on a real target are quite complex.  They 

can be found rigorously by solving a field integral equation based on fundamental 

electromagnetic theory.  The use of rigorous solutions, however, is computationally 

intensive. The simpler point-scatterer model is usually used in place of the rigorous 

solution in real radar imaging applications. In the scattering center model, the scattering 

effect of each point scatterer is assumed to be a two-way time delay and an amplitude 
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modulation. The scattered field from the target can then be written as the coherent 

summation of the scattered field from each point scatterer:  

            (Eq. 4.1) 

 
where   is the reflectivity of the ith point scatterer located at (xi, yi), k is the wave 

number of the transmitted wave, θ is the aspect angle, and Ri is the distance between the 

radar and the ith point scatterer.  

 

Fig. 4.1  Configuration of an ISAR imaging process 

 

 If the distance between the radar and the target satisfies the far-field criterion, and 

relative bandwidth and the angular extent θ  about the nominal view are sufficiently 

small, the phase term in Eq. 4.1 can be approximated as (see Fig. 4.1): 
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where kc represents the center frequency. Ignoring the R0 term, Eq. 4.1 can be rewritten as 

(Eq. 4.3) 

 
Eq. 4.3 shows that the relationship between σ(xi , yi) and the received radar data E(k,θ) 

becomes a simple 2-D Fourier transform pair.  Therefore, a radar image can be generated 

by inverse Fourier transforming the collected radar data in the frequency and angle 

domains.  

The point-scatterer model of a target is an approximation of the real scattering 

from a target. The model assumes that only first-order scattering exists for each point 

scatterer. A real target usually contains other important scattering mechanisms, such as 

resonances and multiple scattering effects. Due to the mismatch between the real 

scattering data and the simplified point-scatterer model, unfocused artifacts can occur in 

the radar image at locations not corresponding to physical features of the target [25].  

 As an example, a set of measured radar data is processed by using the Fourier-

based ISAR imaging technique combined with a motion compensation algorithm reported 

in [53]. The ISAR data were collected from the MERIC radar (a ground-based radar 

located in France) of two airplanes in flight with different flight paths (Fig. 4.2).  The 

resulting ISAR images are compared to the predicted images generated by 

electromagnetic simulation.   
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Fig. 4.2  Flight paths of two airplanes 
 

 

 

 

 

 

 

 

 
 

Fig. 4.3  Images from measured and predicted data for Target 1 

 In the actual data collection, the aircraft attitude data were also recorded by other 

motion sensors onboard the aircraft. Based on the attitude data and the geometry model 

of the target, an electromagnetic simulation is carried out by using the shooting-and-

bouncing-ray solver to create a set of predicted radar images. Sample images from the 
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measured and predicted data for the two different targets are shown in Figs. 4.3 and 4.4, 

respectively.  

 

 

 

 

 

 

 

 

Fig. 4.4  Images from measured and predicted data for Target 2 

 
As Fig. 4.3 shows, the image generated from the measured data matches well with 

the predicted image based on the computer model of the airplane. The key difference 

comes from the trailing cloud on the left side of the measured image.  This range-delayed 

artifact comes from the multiple scattering phenomenon in the inlet duct of the actual 

target.  It is absent in the simulated image since the computer model has a sealed inlet.  

This phenomenon is also observed in Fig. 4.4(a), as a trailing cloud exists along the 

down-range direction. This artifact makes the target image look a lot longer than the 

actual target.  This artifact is absent in Fig. 4.4(b) since the number of ray bounces in the 

simulation is limited to 4.  Fig. 4.5 shows the simulation results when the number of 
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bounces is increased to 50 to include all the multiple bounce rays.  The simulated image 

shows an inlet cloud in the same vicinity as that in the measured image. However, the 

simulated inlet return is much stronger than that in the measured image. This difference 

possibly indicates that the actual inlet duct has been treated by a radar absorbing material, 

while the computer model assumes perfectly conducting duct walls. 

 

 

 

 

 

 

 

 

 

Fig. 4.5   Image from predicted data including higher-order scattering for Target 2 

 

Another artifact in Fig. 4.4(a) is the cloud spreading across the aircraft nose along 

the cross-range direction. This artifact is due to the scanning antenna in the nose cone of 

the airplane.  It violates the rigid-body assumption in the imaging model and thus results 

in an unfocused image feature.  Detailed discussion of this type of Doppler artifacts can 

be found in [54]. 
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As indicated above, the ISAR image formed from the actual measured data of a 

target is not necessarily a faithful geometrical image of the target.  It may contain other 

features due to high-order scattering physics or target dynamics.  Therefore, it is desirable 

to develop better inverse scattering algorithms to overcome these limitations.  

  

4. 2 Electromagnetic Inversion of Metallic Objects 

4. 2. 1 Inverse scattering algorithms 

Electromagnetic inverse scattering entails the reconstruction of the shape or 

material of an object from its scattered field data. As a step toward overcoming the image 

artifacts in radar imaging, research described in this and the following sections attempts 

to solve the electromagnetic inverse scattering problem more rigorously. Naturally, 

rigorously solving the electromagnetic inverse scattering problem is much more 

challenging.  

The inverse problem can usually be cast into an optimization problem whereby 

the difference between the measured fields and the computed fields from a forward 

electromagnetic solver is minimized. Fig. 4.6 demonstrates the flowchart of the typical 

inverse scattering algorithm, where Es(f, θ) represents the scattered electric field from the 

target with two independent parameters, the radar frequency f and the aspect angle θ. 

Typically, the optimization problem for inverse scattering is an extremely challenging 

one since the cost surface contains many local minima, signifying the non-uniqueness of 

the solution. Local optimization algorithms usually lead to undesirable solutions.   
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Fig. 4.6  Flowchart of the typical inverse scattering algorithm 

As already discussed in Chapter Three, genetic algorithms are a good candidate 

for global optimization problems.  Some researchers have explored the use of GA 

together with computational electromagnetic solvers to attack the inverse scattering 

problem [33-37, 39-42]. The algorithm starts with a set of random initial guesses for the 

unknown target shape. The forward EM solver calculates the simulated scattered field 

from these shapes and compares them with the collected data Es(f, θ) from the real target. 

By defining a cost function, the optimizer picks out the members with better (lower) cost 

function values and produces members for the next iteration. The process is iterated until 

the cost function value for the optimized shape reaches the threshold set in advance.  The 

eventual optimized shape is considered to be a good approximation to the real target.  

 

 

4. 2. 2 Solving a 2-D inverse scattering problem for metallic objects with GA 

Inverse scattering for matellic targets is a difficult problem because of relatively 

strong scattering and complex cost surface with many local minima, especially for  
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targets with multiple scattering effects [31]. As an initial investigation, the GA in 

conjunction with a method of moments (MoM) solver is implemented to invert metallic 

objects from the Ipswich measurement data set [38], which were released for the test of 

inverse scattering algorithms.  In particular, attention is focused on concave metallic 

objects with strong multiple scattering effects.  

 

 

 

 

 

 

 

Fig. 4.7 Binary bitmap discretization for arbitrary 2-D shapes 

 

For the inversion of two-dimensional (2-D) objects, two types of geometrical 

descriptions have been used: the Fourier series scheme [33,35] and the binary bitmap 

discretization [34,36]. The Fourier series scheme is efficient in representing smooth 

convex shapes;  however, it does not work well for objects with highly concave shapes or 

disconnected parts. The binary bitmap discretization is a more general way to represent 

arbitrary 2-D shapes (Fig. 4.7).  Its main drawback is the larger degrees of freedom 

required to accurately model simple shapes.  More recently, cubic B-splines were also 

(a)  Original real shape (b)  Binary bitmap discretization 
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investigated as a way to accurately represent complex shapes [37].  In this study, the 

binary bitmap approach is used to discretize the search space.  

For the inverse problem for metallic objects, the measured scattering field E
mea

 

from the object is known, while the shape and size of the object are unknown. The MoM 

solution based on the electric field integral equation is applied to obtain the rigorously 

computed scattered field E
cal

 from each assumed shape. To evaluate the performance of 

each shape, the cost function is defined as the root-mean-square (RMS) error between 

E
mea

 and E
cal

 (normalized with respect to E
mea

): 

 

(Eq. 4.4) 

 

A genetic algorithm is applied as the searching tool to minimize the cost function. 

In the GA implementation, the initial generation is produced randomly and each object 

shape is encoded into an N×N binary array with ones representing metal and zeros 

representing free space. A 2-D median filter is used as a low-pass filter to eliminate 

unrealistic shapes consisting of isolated cells. With a fixed window size of M×M, the 

median filter slides through every cell of the binary array and sets the cell to one if the 

sum of the cell values within the window is greater than or equal to M2/2 and zero 

otherwise.  Fig. 4.8 shows a sample shape before and after the use of the described 

median filter, where the white cell represents the metal and the black is free space.  
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Fig. 4.8 Geometrical median filter for more realizable shapes 

 

The median filter is applied once every several generations so that the isolated 

cells are cleared from time to time, while the new features created by the mutation and 

crossover operations have a chance to survive in the population. 

 

 

 

 

 

 

Fig. 4.9 Two-point crossover scheme 

 
The cost function for each member is then calculated and the shapes with low cost 

values are selected as parents to produce the next generation. A 2-point crossover scheme 

involving three selected parents is used (Fig. 4.9). The process selects three parents and 

divides each parent into three parts. The three parent shapes are then intermingled to 

(a)  Original random shape (b)  After the median filter 
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produce three children shapes. This crossover scheme exhibits a more disruptive 

characteristic for regeneration than the conventional one-point or two-point crossover.  It 

serves to counteract against the median filtering effect.  The mutation operation, which is 

applied to the individual array cells, inverts the cell according to a preset mutation rate. 

The selection, crossover and mutation process is iterated until the lowest cost function in 

the population reaches a sufficiently small threshold or when the cost function does not 

decrease any further.  The procedure of the MoM-GA inverse algorithm is given in Fig. 

4.10. 

 

Fig. 4.10 Flow chart of MoM-GA inverse scattering algorithm 
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4. 2. 3 MoM-GA algorithm test 

As a simple test, a convex metallic object shown in Fig. 4.7 is first inverted by the 

implemented algorithm. The electric field data is numerically simulated by the MoM and 

collected in the single frequency and monostatic case, where the transmitter and receiver 

are at the same location. A total of 32 views are set around the target. The size of the 

target is limited to 1.1λ. A 16x16 binary array is used to represent the target shape. Fig. 

4.11 shows the actual shape and the MoM-GA reconstructed shape after 800 iterations. 

Figs. 4.12 (a) and (b) show the convergence rate and field comparison, respectively. The 

results indicate that the implemented algorithm can easily reconstructe a simple 2-D 

convex metallic shape. Both the eventual inverted shape and the field agree well with the 

real ones. 

 

Fig. 4.11     Real and MoM-GA inverted shape for convex shape  

 

 

1.1λ 

(a)  Real convex shape (b)  MoM-GA inverted shape 
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Fig. 4.12     Convergence rate and field comparison for convex shape inversion 

 
The second test is for two circular cylinders with a mutual distance of 0.46λ, a 

little less than the 0.5λ Rayleigh resolution criterion (Fig. 4.13). A radar image by the 

Fourier-based imaging method is first formed. For this purpose, the scattered data is 

collected in bistatic configuration. The image result is shown in Fig. 4.14(a). As 

predicted, the two cylinders cannot be resolved when they are too close. For the MoM-

GA shape inversion, the data is collected in the monostatic configuration along 32 

uniformly-distributed aspect angles. A 32×32 binary array is used to represent the target 

space. Fig. 4.14(b) shows the reconstructed shape by the MoM-GA for two circular 

cylinders. The MoM-GA can resolve the two close cylinders by using less sampled data 

and shows a better resolution than that of Fourier-based algorithm. 
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Fig. 4.14     Result comparison between the Fourier-based imaging algorithm and the 

MoM-GA for two close cylinders      
 

Fig. 4.15 Geometry and result comparison for the small cavity  

 

The third test addresses a small cavity with the size of 1.0λ, as shown in Fig. 

4.15(a). As in the previous test, a radar image is first formed. The image result is shown 

(a) Result of Fourier-based imaging (b)  MoM-GA inverted shape 

1λ 

(b) Result of Fourier-based imaging (c) MoM-GA inverted shape 

(a) Geometry of the small caity 



 97

in Fig. 4.15(b). The open end is hard to see because the multiple scattering effects smear 

the image. For the MoM-GA inversion, the data are collected in monostatic configuration 

along 32 uniformly distributed aspect angles. A 16×16 binary array is used to represent 

the target space. Fig. 4.15(c) shows the reconstructed shape by the MoM-GA for the 

small cavity structure. The result indicates the ability of the MoM-GA to reconstruct the 

target with strong multiple scattering effects. 

 

4. 2. 4  Shape inversion of Ipswich objects 

Three objects from the benchmark Ipswich measurements [38] are next selected 

for testing.  They include the triangular cylinder, the dihedral, and the circular cavity.  

The data are inverted by using the MoM-GA. Results based on both the MoM-simulated 

field and the measured data are obtained. The Ipswich objects were measured at a single 

frequency of 10GHz in the bistatic configuration. There was a total of 36 transmitter 

positions around the object and 18 receiver locations for each transmitter position (Fig. 

4.16). Fig. 4.17 shows the shapes and sizes of three metallic Ipswich objects selected for 

inversion.  They are labeled as Ips009, Ips004, and Ips011, respectively. For Ips009 and 

Ips011, the electric field is parallel to the axis of the target. For Ips004, the electric field 

is perpendicular to the axis of the target.  
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Fig. 4.16     Ipswich measurement setup 

 

Fig. 4.17  Real shapes of  three Ipswich objects 

 

 

 

 

 

 

 

 

Fig. 4.18  Measured data in k-space 

ky 

kx 

(a) Triangular cylinder (Ips009) (c) Circular cavity (Ips011)(b) Dihedral (Ips004)
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Imaging results for these targets are first generated using the traditional Fourier 

imaging method. The data are placed into the k-space, as shown in Fig.4.18, and are then 

interpolated into a rectangular grid. A 2-D fast Fourier transform is used to generate the 

images. The resulting images are shown in Fig. 4.19. In the results corresponding to the 

dihedral and circular cavity, image artifacts due to multiple scattering can be observed. 

For the dihedral, the multiple scattering causes strong artifacts outside the body. For the 

circular cavity, the multiple scattering effect obscures the opening of the cavity. 

Fig. 4.19     Imaging results for three Ipswich objects 

The MoM-simulated field data are first used as the input of the GA inversion 

algorithm.  In all reconstructions, the number of chromosomes in the population is set to 

100, and the crossover and mutation rates are set to 0.8 and 0.2, respectively. The search 

area is chosen to be 15cm×15cm for the dihedral, and 12cm×12cm for the triangular 

cylinder and circular cavity.  The number of cells within this area is set to 20×20.  The 

reconstructed results in Fig. 4.20(a) show the final inverted shapes of the three objects, 

which are in fairly good agreement with the real shapes.  The final RMS costs for the 

(a) Triangular cylinder (c) Circular cavity(b) Dihedral 
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three objects were found to be 3%, 38%, and 18%, respectively.  The dihedral and the 

circular cavity contain strong multiple scattering, yet their inverted shapes closely 

resemble the correct objects.  

 

Fig. 4.20  Inversion of three Ipswich objects 

 

Next, the inversion algorithm is applied to the actual measured data.  Fig. 4.20(b) 

shows the final reconstructed shapes. As shown, the inverted shape is good for the 

triangular cylinder, which has no multiple scattering effects. For the dihedral, the 

reconstructed shape is not continuous, but is quite similar to the real object. The circular 

cavity shows the most discrepancy with the real shape. The exterior and the opening of 

the cavity are correctly inverted, but the interior part of the cavity shape is not as 

satisfactory.   

(b)    Inversion based on measured complex field 

(a)    Inversion based on MoM-simulated field
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Interestingly, in all three inversions, the cost value of the final shape by GA is 

lower than that of the exact shape (38% vs. 58% RMS error for the triangular cylinder; 

82% vs. 92% for the dihedral, and 55% vs. 73% for the circular cavity).  These lower cost 

values indicate a mismatch between the measured field and the MoM-simulated field.  

Most likely, it is this difference that drove the GA to zoom onto a shape that is similar to 

the exact shape but has a lower cost value.  

The RMS error listed above is particularly high for the dihedral. The agreement 

between the measured data and the MoM-computed data for this shape is good in field 

amplitude; however, a relatively large phase difference exists (even after adjusting for the 

rotation center) between the two results. The MoM results are also checked against other 

targets in the Ipswich data set, and the phase agreement is found to be good. Therefore, 

the phase data for the dihedral (Ips004) is suspect.  As an alternative, the inversion is also 

performed based on only the amplitude of the fields, yielding the reconstructed shape  

shown in Fig. 4.21.  The quality of this reconstruction is close to that of the MoM-

simulated data shown in Fig. 4.20(a).  

 

Fig. 4.21 Inversion of the dihedral based on only the amplitude of the 
measured data     
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4. 2. 5  Shape inversion by SBR-GA scheme for large cavity structures 

 Many inverse scattering problems in the real world deal with electrically large 

targets. For electrically large targets, faster forward electromagnetic solvers have to be 

utilized in place of the MoM to compute the scattered field, such as the ray-tracing 

method discussed in Chapter Two. Not only is the ray-tracing based forward solver 

efficient for the computation of electrically large targets [14,15], it is also capable of 

obtaining multiple frequency information with little additional cost. 

 As a study, a 2-D straight cavity structure with a size of 4m×4m is   generated to 

evaluate the effect of frequency diversity. Simulated data created by the shooting and 

bouncing ray (SBR) solver is used as input. The data are collected in the monostatic case 

with 36 views uniformly distributed around the target. Two different frequency 

configurations are considered. In the first case, only single frequency data are created at 

300 MHz. In the second case, the data are created through a frequency band ranging from 

175 MHz to 425 MHz. The GA combined with SBR (SBR-GA) is then applied to invert 

the shape of the cavity. Fig. 4.22 shows the results for both the single-frequency and the 

eight-frequency cases. While the shape is successfully reconstructed in the multi-

frequency case, it fails in the single frequency case. The finding indicates that frequency 

diversity is useful in the inversion of targets with strong multiple scattering effects. This 

result is consistent with [55], which claims that possible advantages can be achieved by 

frequency diversity. 
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Fig. 4.22  Effect of frequency diversity 

 

 Four 2-D cavities with more complex inside structures and strong multiple 

scattering effects are then set up and inverted by using the SBR-GA (Fig. 4.23). The sizes 

of the cavities are over 10 wavelengths. The target space is discretized into a 20×20 

binary array. Because the goal here is to reconstruct the inside structure of each cavity, 

the three outside walls (left, right and bottom) are fixed for each cavity, only leaving the 

upper opening and the inside part (a 16×15 binary array) for reconstruction. The 

inversion uses the simulated data from 64 frequencies swept from 267 MHz to 533 MHz.  

 The inverted shapes are shown on the right column in Fig. 4.23. For the first two 

straight cavities, the inside structures are correctly reconstructed. For the other two 

cavities, which have more complex inside structures, the inverted shapes are not perfect 

but they indicate that the algorithm is trying to approach the inside structure. The results 

indicate that the SBR-GA is a promising method for inversion of large metallic targets 

with strong multiple scattering effects.  

 

4 m 

4 m 

(a) Cavity geometry (b)  Inversion based on 
       single-frequency data 

(c)  Inversion based on 
      eight-frequency data 
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Fig. 4.23  Inversion of electrically large cavities with fixed outsides  

 

4. 3 Shape Inversion by HGA-Tabu  

The main obstacle to extending the inverse scattering algorithms presented in the 

last section to complex targets in 3-D is the long computation time. The reason is that the 

Inversion results of SBR-GA 
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convergence rate of the GA scheme is usually slow for more complex targets. In this 

section, an approach combining the hybrid genetic algorithm (HGA) with the tabu list 

concept is proposed to increase the search efficiency of the GA scheme. In addition, a 

more efficient point-interpolation scheme is adopted to describe the 2-D geometry.   

 

4. 3. 1 Obstacle of the GA-based inverse scattering schemes 

While GAs are well suited in searching for the global optimum, the scheme 

presented in the previous section suffers from slow convergence and inefficient target 

geometry description.  A simple improvement to the geometry description problem is to 

use a multi-point spline interpolation scheme, as shown in Fig. 4.24. For 2-D problems, 

the number of variables is just 2N (the x and y coordinates for each point) if N points are 

used. The obtained spline curve can then be discretized into a number of points to meet 

the discretization requirement for the EM solver. 

 

 

 

 

 

 

 
Fig. 4.24  Multi-point spline interpolation scheme 
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The GA convergence problem is due to the complexity of the multi-dimensional 

cost surface.  This problem is especially acute for convex structures such as cavities.  A 

sample 2-D cost surface is demonstrated in Fig. 4.25(a).  Here five points are used to 

describe a circular cavity. If four points are fixed and only the remaining single point is 

disturbed within the square dashed-line area, a sample cost surface with many local 

minima can be observed as shown in Fig. 4.25(b). The plot indicates the complexity of 

the cost surface for even a single-point problem. The cost surface for an N-point problem 

will be much more complex, and the process of finding the real solution (the global 

minimum) would be very time-consuming. 

 

 

 

 

 

 

 

Fig. 4.25  Sample cost surface for single -point problem 

Because the evolutionary process for the standard GA to reach a cost minimum is 

generally slow in comparison to that of a local search algorithm, a natural way to speed 

up the simple GA would be to hybridize it with a local search algorithm. In fact, 

researchers in different disciplines have explored the use of this so-called hybrid GA 

(HGA) [41, 42]. While improving performance, the HGA also causes some 

∆x
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Disturb single point only

(a) Single-point problem (b) Cost surface 
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inefficiencies.  Specifically, the parent selection scheme of the GA usually gives priority 

to the best members with lower cost values, and this priority usually leads to a population 

highly clustered around the local minima (Fig. 4.26). This clustering is necessary for the 

simple GA to evolve closer to the exact minimum. For the HGA, however, since the local 

minima have been completely explored by the local search, such clustering will lead to 

the re-exploration of those regions, which is quite wasteful.  

 

  

 

 

 

 

 

Fig. 4.26  Clustering around the local minimum 

 

The tabu search (TS) is another global search strategy that has been developed for 

combinatorial problems [56, 57].  The TS is a local search algorithm with memory. The 

most important feature of the TS is that it utilizes a tabu list to prevent the revisiting of 

local minima.  The study here proposes a technique combining HGA with the tabu list 

concept to increase the efficiency of the HGA.  The tabu list is adopted to exclude those 

regions in the parameter space that have already been explored by the local search.  In 
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this manner, there will be no revisiting of the explored regions, and the GA population 

can be spread out to explore new regions, thus improving search efficiency.  

 

4. 3. 2 HGA-Tabu approach 

In the HGA-Tabu approach, the initial generation is produced randomly. The new 

population is then produced through the selection, crossover and mutation operators. 

After these standard GA processes, the best member  is selected as the initial guess 

to carry out a local search.  In this study, the gradient search reported in [31] is adopted as 

the local search algorithm. The resulting local minimum in the parameter space, denoted 

as  (see Fig. 4.27), is then placed into the new GA population. In addition, a 

gradient search is also carried out to obtain the local maximum from the same 

initial guess in order to estimate the extent of the local minimum. After both local 

searches are completed, the region that is centered at the minimum and limited by the 

radius  is defined as the "tabu region" and is recorded into a tabu list. 

Symmetry around the local minimum is assumed in this construct. In subsequent GA 

reproductions, all new members are checked against this tabu list to ensure that none is in 

the tabu regions of the sample space.  Thus, the population is forced to spread out to 

unexplored regions, resulting in higher HGA search efficiency. Further, a new tabu 

region is appended to the tabu list every time a new local minimum is explored by the 

local search.  
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Fig. 4.27     Establishment of the “tabu region” 

 

The flow chart of HGA-Tabu algorithm is shown in Fig. 4.28.  In using the 

inverse algorithm to reconstruct the shape of a cavity from its scattered field data, a set of 

randomly created shapes are first generated. These shapes are described by N ordered 

points in a two-dimensional space. The profile of the object is then obtained by using a 

spline interpolation. Next, the MoM solution to the electric field integral equation is used 

as the forward electromagnetic solver to generate the computed scattered field Ecal from 

each assumed shape. The cost function is defined by Eq. 4.4 as the root-mean-squared 

(RMS) difference between Ecal and the measured scattered field Emea.  The HGA-Tabu 

algorithm is then applied as the optimizer to minimize the cost function.  A binary-

encoded GA is used in this approach.  
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Fig. 4.28    Flow chart of HGA-Tabu algorithm 

 

4. 3. 3 HGA-Tabu evaluation  

The proposed HGA-Tabu algorithm is first evaluated on a purely mathematical 

cost function expressed as: 

(Eq. 4.5) 

 
where n is the dimension of the function and argument xi is within [0, 10]. This function 

has 10
n
 minima, and the global minimium is zero at xi =2.5. This model is ideal for 

testing the stability and efficiency of optimization algorithms. Fig. 4.29 shows the 

contour plot of the function when n=2. For the HGA-Tabu evaluation, n is set to 3 and 

the GA population is set to 100. The hybrid GA and the HGA-Tabu algorithms are then 
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run 20 times independently to obtain the averaged convergence curves plotted in Fig. 

4.30.  While the HGA never has a chance to reach the global minimum zero within 300 

generations, the HGA-Tabu algorithm shows good stability in reaching the global 

minimum. Moreover, the convergence rate of the HGA-Tabu algorithm is much faster 

than that of the HGA. 

Fig. 4.29    Contour plot of Eq. 4.5 

Fig. 4.30    Evaluation of efficiency: HGA vs HGA-Tabu 
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The HGA-Tabu algorithm is used to reconstruct the shape of a metallic, partially 

open, circular cylindrical cavity with a diameter of 10.8 cm (Ips011 in the Ipswich data 

set) [38].  The measurement was taken at a single frequency of 10 GHz in a bistatic 

configuration, as indicated in Fig. 4.16.  The electric field is parallel to the axis of the 

cylinder. The population number for the GA is set to 200, the geometry is described by 

N=5 points, and the crossover and mutation rates are set to 0.8 and 0.4, respectively. The 

search area is chosen to be 16.2 cm × 16.2 cm. The inversion algorithm is first tested by 

using MoM-simulated data as the input. The results (see Fig. 4.31) show that the HGA-

Tabu algorithm is able to converge to the correct shape after an average of 30 

generations, and the final shape is in excellent agreement with the actual shape. In 

comparison to the HGA, the HGA-Tabu showed an improvement of about 100 

generations for convergence. 

 

 

 

 

 

 

 

 

 

Fig. 4.31    Evaluation of efficiency: HGA vs HGA-Tabu 
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Next, the inversion algorithm is applied to the actual measured data for Ips011. 

Fig. 4.32 shows the convergence comparison between random search, simple GA, HGA, 

and HGA-Tabu. All the results are averaged over 10 independent runs with different 

initial populations.  As expected, the simple GA shows an improvement over the random 

search. The HGA further improves the convergence rate of the simple GA.  The best 

results are consistently obtained by the HGA-Tabu algorithm. To achieve an RMS of 

0.55, the HGA requires an average of 220 generations while the HGA-Tabu algorithm 

requires only an average of 75 generations. It should be noted that the high RMS error for 

the best result obtained by the HGA-Tabu algorithm comes from a mismatch between the 

measured field and the MoM-simulated field, as discussed earlier in Section 4.2.4.  

 

 

 

 

 

 

 

 

 

Fig. 4.32 Convergence comparison for inversion of Ips011 for random  
search, SGA, HGA, and HGA-Tabu   
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Fig. 4.33 Ips011 inversion results from measured data 

 

Fig. 4.33(a) shows the typical shape from the simple GA after 250 generations 

plotted against the real profile of the cavity. The result indicates that more iterations are 

needed for convergence. Fig. 4.33(b) shows the typical reconstructed shape from the 

HGA-Tabu after 75 generations. As shown, the inverted shape is very close to the real 

profile. The overhead of implementing the gradient search in each generation is about 

10% of the total computation cost. The time for the tabu list check is negligible, as there 

is no cost function evaluation. 

 

4. 4 Summary 

High-frequency radar imaging takes advantage of the simplicity and efficiency of 

the Fourier inversion method, but results in image artifacts from higher-order scattering 

effects. In contrast, the inverse scattering algorithm has the ability to reconstruct targets 

containing strong higher-order scattering effects. In this chapter, GA-based schemes are 

developed to address the shape inversion of convex structures containing strong multiple 

scattering effects. 
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 Investigation indicates that the slow convergence rate of the simple GA scheme 

limits its application. This problem can be partially overcome by an approach combining 

the hybrid genetic algorithm with the tabu list concept. The tabu idea is adopted to 

increase the search efficiency by forbidding revisits of local minima already explored by 

the local search.  The algorithm is tested by reconstructing the shape of a metallic cavity 

based on both simulated and measured data from the Ipswich measurement set. Inversion 

results from the HGA-Tabu show faster convergence and a higher success rate than those 

of the simple GA and the hybrid GA. The computation overhead per generation for the 

new algorithm is small. The algorithm has potential for speeding up other optimization 

problems. 
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CHAPTER FIVE 

 

CONCLUSIONS 

 

In this dissertation, three related electromagnetic scattering problems, namely, 

high frequency electromagnetic ray tracing, scattering feature extraction, and inverse 

scattering are studied. New approaches are presented to advance the state of the art in 

each of the areas. In Chapter Two, the presented study leads to an alternative ray tracing 

algorithm which can outperform the traditional algorithms for complex targets. The 

performance of the proposed techniques demonstrates their potential application to the 

study of high-frequency EM scattering prediction. In Chapter Three, a GA-based 

algorithm with an adaptive-feeding technique is first developed to simultaneously extract 

both scattering centers and resonances. Scattering feature extraction algorithms are then 

developed with the consideration of the visibility of scattering centers. In Chapter Four, 

inverse scattering problems with strong multiple scattering effects are studied. A GA-

based method is presented to invert the shapes with multiple scattering effects. An 

approach combining hybrid GA with the tabu list idea are then developed to further 

improve the performance of the GA-based inversion algorithms.  

A multiplaten Z-buffer (MPZ) ray tracing algorithm is first implemented and 

evaluated in Chapter Two. Investigation indicates that the performance of the traditional 

binary space partition (BSP) tree-based ray tracing algorithm increases monotonically 
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with the number of facets. The performance of the proposed MPZ algorithm, on the other 

hand, is independent from the number of facets describing the targets, and only slightly 

increases with the number of MPZ layers. Further study reveals that its performance is in 

fact depend on the number of pixels a ray travels across. Based on this fact, a multi-

aspect approach (MAMPZ) is proposed to further improve the performance of the MPZ 

algorithm by setting up multiple MPZs in diverse directions to reduce the number of 

pixels a ray has to travel across. Tests on the numerous targets indicate that the developed 

ray tracer can outperform the traditional standard algorithm for targets with as few as 

several thousand facets if the MPZ aspect resolution is set fine enough. The algorithm is 

also used for ray tracing on the IGES parametric surfaces. An investigation indicates that 

the MPZ ray tracer can quickly find the approximate intersection point and the 

corresponding surface parameters. Note that the exact intersection between a ray and the 

parametric surface has to be located by a numerical iterative search. The approximate 

intersection point detected by the MPZ ray tracer is very close to the exact intersection 

point (within a pixel), which makes the MPZ IGES ray tracer potentially attractive 

because the numerical search for the intersection can be seeded with a very good initial 

guess.  

As an alternative to the traditional BSP tree-based algorithm, the developed 

MAMPZ algorithm has shown a potential for speeding up the high-frequency 

electromagnetic scattering computations.  

In Chapter Three, a GA method is first developed to simultaneously extract all the 

scattering centers and resonances from scattering data. The proposed algorithm achieves 
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a better convergence by combining with an adaptive feeding idea. Tests on the measured 

data indicate that the proposed algorithm can achieve sparser results than other non-

global based methods. In addition, methods are developed to utilize the specific visibility 

of scattering centers to separate and categorize the different scattering mechanisms. 

Based on a simple parametric model, the developed sinogram-based algorithm can detect 

and separate the features such as stable scattering centers and features with circular angle 

behavior. To make the method more general to include scattering mechanisms with all 

kinds of angular behaviors, a multi-dimensional segmentation algorithm is proposed. The 

successful implementation on the test targets demonstrates its advantage. It is shown that 

the spatial locations of the scattering centers alone do not offer sufficient separability to 

allow for a successful extraction of all the scattering mechanisms. When the feature space 

is increased to higher dimensions by utilizing ray bounce numbers and angular 

persistence, the scattering mechanisms become naturally separated and can thus be 

extracted more easily. 

Radar imaging takes advantage of model simplicity and the efficiency of FFT 

technique, but it is unable to deal with high-order scattering effects. As an alternative, a 

GA-based inverse scattering algorithm is developed in Chapter Four to reconstruct the 

target shapes containing strong high-order scattering effects. Two GA-based schemes, 

MoM-GA and SBR-GA, are developed and evaluated by taking the 2-D shape inversion 

for Ipswich metallic objects and large metallic cavity structures, respectively. It is found 

that unlike the radar imaging technique, the algorithms have the potential to deal with 

objects having strong multiple scattering effects. More investigation indicates that 



 119

convergence of the inverse scattering algorithms is usually slow. Meanwhile, the MoM-

like full-wave forward solver, while accurate, becomes basically impractical for use in 

the inversion for electrically large targets, and the high-frequency approximate solver has 

to replace it.  

The slow convergence rate of the GA inversion scheme is improved by the HGA-

Tabu algorithm. This approach combines a hybrid GA with the tabu list concept, which 

increases the search efficiency by forbidding revisits of local minima. The test results 

from the HGA-Tabu algorithm show faster convergence and a higher success rate than 

those of the simple GA and hybrid GA. The computation overhead per generation for the 

new algorithm is small. The algorithm has potentially valuable use in other optimization 

problems. 
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