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The intensive energy use is the major obstacle to deployment of CO2 capture.  

Alternative stripper configurations is one of the most promising ways to reduce the energy 

consumption of CO2 regeneration and compression.  The advanced flash stripper (AFS) 

proposed in this work provides the best energy performance among other alternatives.   

A systematic irreversibility analysis was performed instead of examining all the 

possible alternatives.  The overhead condenser and the cross exchanger were identified 

the major sources of lost work that causes process inefficiencies.  The AFS reduces the 

reboiler duty by 16% and the total equivalent work by 11% compared to the simple stripper 

using aqueous piperazine.  The AFS was demonstrated in a 0.2 MW equivalent pilot plant 

and showed over 25% of heat duty reduction compared to previous campaigns, achieving 

2.1 GJ/tonne CO2 of heat duty and 32 kJ/mol CO2 of total equivalent work.  The proposed 

bypass control strategy was successfully demonstrated and minimized the reboiler duty.   

Approximate stripper models (ASM) were developed to generalize the effect of 

solvent properties on energy performance and guide solvent selections.  High heat of 

absorption can increase partial pressure of CO2 at elevated temperature and has potential 

to reduce compression work and stripping steam heat.  The optimum heat of absorption 

was quantified as 70–125 kJ/mol CO2 at various conditions, which is generally higher than 
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existing amines with 60–80 kJ/mol.  The energy performance of AFS is not sensitive to 

the heat of absorption. 

A techno-economic analysis with process optimization that minimizes the 

annualized regeneration cost was performed to demonstrate the profitability of the AFS.  

The AFS reduces the annualized regeneration cost by 13% and the major savings come 

from the reduction of the OPEX, which counts for over 70% of the regeneration cost.  The 

compressor and the cross exchanger are the major components of the CAPEX.  The 

optimum lean loading is around 0.22 mol CO2/mol alkalinity for PZ but is flat between 

0.18 and 0.24 with less than 1% difference.  

The AFS was demonstrated as a flexible system that can be applied to a wide range 

of solvent properties and operating conditions while still maintaining remarkable energy 

performance.  Further improvement of energy efficiency by process modifications is 

expected to be marginal.  Increasing solvent capacity will give the most energy and cost 

reduction in the future. 
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Chapter 1: Introduction 

1.1 CO2 CAPTURE FROM COAL-FIRED POWER PLANTS 

The coal-fired power plant is the major source of anthropogenic carbon emissions 

(Figure 1.1)  (EPA, 2015b).  Coal-fired plants accounts for 77% of the emissions from 

electricity generation and 31% of total fossil-fuel combustions in the U.S. in 2013.  

Regulatory actions have been taken by the Environmental Protection Agency (EPA) to 

reduce carbon emissions.  The Clean Power Plan requires each state to propose a 

comprehensive plan to reduce overall CO2 emissions by 10–50% before 2030 (EPA, 

2015a).  Those states generate more electricity from coal-fired power plants will have 

higher target to achieve.  Emission limits have been set as 1400 and 1000 lb/MWh-gross 

for new-built coal-fired and natural gas-fired power plants while the average emission rates 

are around 1800 and 800 lb/MWh, respectively.  The regulation will force the power 

sectors to add carbon capture and sequestration (CCS) technology to the coal-fired power 

plant or shift to other low-carbon power generation such as natural gas firing and renewable 

energy. 

Coal is still considered the largest share (34%) of total electricity generation in 2040 

because of its abundance and low price compared to other alternatives (EIA, 2015).  CCS 

is projected to contribute 14% of carbon reduction through 2050, and coal-fired power 

plants will be the largest single application with 2/3 of them equipped with CCS (IEA, 

2013).  The actual scenario will depend on how cost-competitive the CCS can be and the 

demonstration for commercial plants.   

Figure 1.2 shows post-combustion CO2 capture for coal-fired plants.  The CO2 in 

the flue gas will be separated by the capture process and compressed up to 150 bar for 

further storage and enhanced oil recovery (EOR).   
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Figure 1.1: 2013 U.S. CO2 Emissions from fossil fuel combustion by sector (replotted 

from Figure ES-6 in EPA report, 2015).  
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Figure 1.2: Post-combustion CO2 capture from coal-fired power plant. 

1.2 AMINE SCRUBBING PROCESS 

Amine scrubbing is considered the most mature technology for CO2 capture and 

has been successfully applied to two commercial-scale coal-fired power plants (Hirata et 

al., 2014; Stéphenne, 2014).  A typical amine scrubbing process includes an absorber, a 

stripper, and a cross exchanger (Figure 1.3).  Desulfurized flue gas is contacted with the 

aqueous amine in the absorber to remove 90% of the CO2.  The rich solvent carrying the 

CO2 from the bottom of the absorber is sent to the stripper and heated for CO2 regeneration.  

After condensing the water, the purified CO2 will be sent to the multi-stage compressor. 
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Figure 1.3: Amine scrubbing process. 

1.3 ENERGY USE FOR CO2 REGENERATION 

The intensive energy consumption is the major obstacle to deployment of CO2 

capture (Rochelle, 2009).  CO2 regeneration requires heat duty, which is usually supplied 

by extracting the steam from the crossover pipe between the intermediate and low pressure 

turbines in the power plant.  Other major energy requirements include the pump work and 

CO2 compression work.  Implementing CO2 capture incurs a 20–30% penalty on 

electricity output for a typical coal-fired power plant (Aroonwilas et al., 2007; Oexmann, 

2011; Romeo et al., 2008).  The reboiler duty provides heat of CO2 desorption, heat of 

stripping steam, and sensible heat. 

 Heat of CO2 desorption 

Absorbing CO2 by aqueous amines is exothermic.  Regenerating CO2 needs to 

reverse the reactions by providing heat to the rich solvent, so the heat of absorption (Habs) 

determines the least amount of heat duty requirement for CO2 stripping.  The heat of 

absorption is dependent on solvent and which type of reactions dominates.  Amine can 



 5 

react with CO2 via carbamate and bicarbonate formation reactions.  CO2 absorption 

dominated by carbamate formation (primary and secondary amines) usually gives a higher 

heat of absorption than bicarbonate formation (tertiary amines) (I. Kim et al., 2011). 

The heat of absorption can be expressed using Equation 1.1 from Lewis and Randall 

(Equation XVIII.9) (Lewis et al., 1923).  Equation 1.2 integrates the partial pressure of 

CO2 (P
*
CO2) from a reference temperature (Tref) to the operating temperature (T).  The 

P*
CO2 at elevated temperature will increase with heat of absorption and results in a high 

stripper pressure. 

∆𝐻𝑎𝑏𝑠 = −𝑅 [
𝜕𝑙𝑛𝑓𝐶𝑂2

𝜕(
1

𝑇
)

]
𝑃,𝑥

≈ −𝑅 [
𝜕𝑙𝑛𝑃𝐶𝑂2

∗

𝜕(
1

𝑇
)

]
𝑃,𝑥

             (1.1) 

𝑃𝐶𝑂2
∗(𝑇)

𝑃𝐶𝑂2
∗(𝑇𝑟𝑒𝑓)

= 𝑒𝑥𝑝 [
∆𝐻𝑎𝑏𝑠

𝑅
(

1

𝑇𝑟𝑒𝑓
−

1

𝑇
)]                (1.2) 

 Heat of stripping steam 

When the rich solvent is heated in the reboiler, water is vaporized and generate 

steam for stripping, which ultimately is condensed in the overhead condenser.  Analogous 

to the heat of absorption, the latent heat of water vaporization determines the partial 

pressure of water in the stripper as shown in Equation 1.3.   

∆𝐻𝑣𝑎𝑝 = −𝑅 [
𝜕𝑙𝑛𝑃𝐻2𝑂

∗

𝜕(
1

𝑇
)

]
𝑃,𝑥

                   (1.3) 

The difference between the heat of absorption and the heat of water vaporization 

determines the selectivity between CO2 and the water vapor as shown in Equation 1.4.  

The heat of absorption is typically greater than the heat of vaporization (around 40 kJ/mol 

H2O). 

𝑃𝐶𝑂2
∗(𝑇)

𝑃𝐻2𝑂
∗(𝑇)

=
𝑃𝐻2𝑂

∗(𝑇𝑟𝑒𝑓)

𝑃𝐶𝑂2
∗(𝑇𝑟𝑒𝑓)

𝑒𝑥𝑝 [(
∆𝐻𝑎𝑏𝑠−∆𝐻𝑣𝑎𝑝

𝑅
) (

1

𝑇𝑟𝑒𝑓
−

1

𝑇
)]       (1.4) 
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 Sensible heat 

The sensible heat is needed to heat the rich solvent from the absorber to the reboiler 

temperature.  The cross exchanger preheats the rich solvent by recovering enthalpy from 

the hot lean solvent.  The sensible heat requirement will be dependent on the solvent rate 

and the cross exchanger performance.   

1.4 PRIOR WORK OF ALTERNATIVE STRIPPERS 

Alternative strippers have been proposed to reduce the energy use for CO2 capture.  

Previous work on stripping process evaluation are summarized in Table 1.1.  Most work 

compared the energy performance by modeling alternative processes using conventional 

solvent monoethanolamine (MEA).  Rochelle’s research group have extended the 

evaluation to the advanced solvent piperazine (PZ) and used total equivalent work (Weq) 

to estimate the overall energy performance.  Previous work approached the best 

configuration by screening various alternatives.  This work will apply the irreversibility 

analysis to understand where the process inefficiencies come from and how much room 

still left to be improved. 
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Table 1.1: Prior work on alternative strippers. 

Author/year Solvent Simulation Tool 
Experiment 

Demonstration 

Performance 

Indicator 

Economic 

Analysis 

(Chang et al., 2005) DGA/MDEA Aspen Plus®  N/A Heat duty No 

(Oyenekan et al., 2007) 
K+/PZ 

MDEA/PZ 

Aspen Custom 

Modeler®  
N/A Weq No 

(Jassim et al., 2006) MEA Aspen Plus®  N/A Weq No 

(Tobiesen et al., 2006) MEA In-house code N/A Heat duty No 

(Van Wagener, 2011) PZ Aspen Plus®  Pilot-scale Weq No 

(Le Moullec et al., 2011) MEA Aspen Plus®  N/A Weq No 

(Karimi et al., 2011) MEA Unisim®  N/A Weq Yes 

(Knudsen et al., 2011) MEA N/A Pilot-scale Heat duty No 

(Fernandez et al., 2012) MEA Aspen Plus®  N/A Weq Yes 

(Ahn et al., 2013) MEA Unisim®  N/A Weq No 

(Madan, 2013) PZ Aspen Plus®  N/A Weq No 

(Fang et al., 2014) MEA N/A Lab-scale Heat duty No 

(Jung et al., 2015) MEA Aspen Plus®  N/A Weq Yes 

(Liang et al., 2015) MEA ProMax®  N/A Weq No 

(Higgins et al., 2015) MEA Aspen Plus®  N/A Heat duty No 

(Stec et al., 2015) MEA N/A Pilot-scale Heat duty No 

This work 
PZ 

generic solvent 

Aspen Plus®  

Approximate model 
Pilot-scale Updated Weq Yes 
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1.4.1 Solvent selections 

The energy improvement by alternative stripper configurations is also dependent 

on the amine solvents used.  There are four important solvent properties that have 

significance on energy performance. 

 Absorption rate 

The absorption rate determines the packing requirement in the absorber and the 

CO2 rich loading, which affects not only the solvent capacity but also the mass transfer 

driving force in the stripper.  Higher absorption rate is always beneficial. 

 Heat of desorption 

As discussed in Section 1.3, the heat of desorption must be provided by the reboiler 

to regenerate CO2 and it also affects the partial pressure of CO2 at stripper temperature.  

Higher partial pressure of CO2 can reduce compression work and improve the selectivity 

between CO2 and water vapor. 

 CO2 capacity 

The CO2 capacity is defined as the amount of CO2 can be carried per unit weight 

of solvent (mol CO2/ kg solvent).  It is solvent-specific and dependent on the difference 

of the operating lean and rich loadings.  A solvent with greater CO2 capacity needs less 

solvent circulated to reach a certain removal rate and can reduce sensible heat requirement. 

 Thermal stability 

A thermally stable solvent can be operated at a relatively higher temperature, which 

contributes to a higher CO2 partial pressure while avoiding significant degradation.  

Concentrated PZ has been characterized and regarded as a new standard solvent for 

CO2 capture (Rochelle et al., 2011).  Table 1.2 compares the solvent properties with 

MEA.  PZ has almost twice absorption rate and capacity and is more thermally stable than 
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MEA.  The downsides of PZ are the higher viscosity and the precipitation limits at lean 

loading and low temperature.     

Most of this work will use PZ as solvent to demonstrate the stripper performance.  

The viscosity and precipitation issues will be considered by using a lower concentration of 

PZ.  To generalize the effect of solvent properties on the stripper configurations, 

approximate stripper models using generic solvent will be developed. 

Table 1.2: Comparisons of solvent properties of MEA and PZ.  

Property 7 m MEA 8 m PZ 

Absorption ratea 

(10-7mol/s-Pa-m2) 
4.3 18.5 

Capacityb 

(mol CO2/mol alkalinity) 
0.5 0.86 

Tmax
c (°C) 122 163 

Heat of absorptiond 

(kJ/mol) 
72 67 

Viscositye (cP) 3 10.8 

Solid precipitationf No Yes 

a Average liquid side mass transfer rate between 0.5 and 5 kPa of P*
CO2 at 40 °C (Dugas, 2009) 

b Difference of lean and rich loading between 0.5 and 5 kPa of P*
CO2 at 40 °C (Dugas, 2009) 

c Corresponds to 2% amine loss per week (Davis, 2009; Freeman, 2011)  
d Differential heat of absorption at 1.5 kPa of P*

CO2 (Li, Voice, et al., 2013) 
e Average between 0.5 and 5 kPa of P*

CO2 at 40 °C (Amundsen et al., 2009; Freeman et al., 2011) 

1.4.2 Quantifying energy performance 

Some of the previous work used heat duty to indicate the energy performance 

without considering the electricity loss is dependent on the steam temperature and other 

energy contributors.  Also, the reported energy reduction was compared at arbitrary 

operating conditions and design specifications.  In this work, total equivalent work will 

be used to evaluate the overall energy performance with updated heat-to-work conversion 

efficiency and compressor configuration that reflect current state-of-art.  A thorough 
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analysis at a wide range of operating conditions and design specifications will be 

conducted. 

1.4.3 Demonstration of operability and profitability 

Previous work were limited in process simulation without considering potential 

increase in process complexities and capital cost for the alternative strippers.  

Demonstrating the operability and profitability is essential to scaling up to commercial 

plants in the future.  This work will test the proposed configuration in a pilot-scale 

experiment in order to demonstrate the energy performance and operability.  A rigorous 

techno-economic analysis will be performed for a commercial-scale plant in order to justify 

potential cost benefit.  An optimum design that minimizes the overall regeneration cost 

will be provided. 
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Figure 1.4: Advanced flash stripper. 
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1.5 RESEARCH SCOPE   

This work will simulate the stripping and compression process in Aspen Plus®  

using an in-house built model “Independence” for PZ (Frailie, 2014).  The absorber is out 

of the scope.  The best stripper configuration, the advanced flash stripper proposed in this 

work is shown in Figure 1.4.  The research scope will include: 

 Quantify minimum work and lost work using exergy analysis. 

 Propose new stripper configurations based on the irreversibility analysis. 

 Evaluate energy performance of alternative strippers with updated equivalent work 

and compression work calculations. 

 Identify important operating parameters and design specifications by sensitivity 

analyses. 

 Demonstrate the operability and performance of the advanced flash stripper in the 

pilot plant at the UT Austin. 

 Validate the Independence model using the pilot plant data and further explore 

optimum design using the validated model. 

 Develop approximate stripper models that can predict the energy performance for 

amine screening and generic solvent study. 

 Quantify the effect solvent properties and investigate the interactions with alternative 

stripper configurations. 

 Reduce the cost of the lean/rich solvent cross exchanger by designing at optimum 

temperature approach and pressure drop. 

 Perform techno-economic analysis including capital and energy cost for the advanced 

flash stripper.   

 Explore the optimum operating lean loading and process specifications that minimizes 

the regeneration cost.  
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Chapter 2: Modeling Methods 

2.1 STRIPPER MODELING IN ASPEN PLUS®  

Simulation results were obtained from Aspen Plus®  version 7.3.  The Electrolyte 

Non-Random Two-Liquid (e-NRTL) property method is used to describe the CO2-amine-

H2O chemistry accounting for the non-ideality in the aqueous electrolyte system (C. C. 

Chen et al., 1982, 2004).  For the gas-liquid contactor, Aspen Plus®  RateSepTM provides 

a rigorous rate-based model for heat and mass transfer using a non-equilibrium approach, 

applying two-film theory.  The application of the rate-based model to the amine scrubbing 

process has offered accurate prediction against pilot plant data (Zhang et al., 2009).   

Piperazine (PZ) will be primarily used as solvent in this work.  Concentrated PZ 

has been demonstrated as an advanced solvent that has higher reaction rate and CO2 

capacity and is more thermally stable than MEA (Dugas, 2009).  It can be used up to 150 

ºC without significant thermal degradation (Freeman, 2011).  The thermodynamic model 

used in this work is “Independence”, which was built in-house and rigorously regressed in 

Aspen Plus®  with experimental data including amine volatility, heat capacity, CO2 

solubility, and amine pKa over a range of amine concentration and CO2 loading.  Details 

of model development can be found in previous work (Frailie, 2014).  Equilibrium 

reactions are used in the stripper due to the relatively higher operating temperature.  The 

reaction set is shown in Equation 2.1.   

𝑃𝑍 + 𝐶𝑂2 + 𝑃𝑍 ⇌ 𝑃𝑍𝐻+ + 𝑃𝑍𝐶𝑂𝑂−             (2.1a) 

𝑃𝑍𝐶𝑂𝑂− + 𝐶𝑂2 + 𝑃𝑍𝐶𝑂𝑂− ⇌ 𝑃𝑍𝐻+ + 𝑃𝑍(𝐶𝑂𝑂)2
2−

        (2.1b) 

𝑃𝑍𝐶𝑂𝑂− + 𝐶𝑂2 + 𝐻2𝑂 ⇌ 𝐻+𝑃𝑍𝐶𝑂𝑂− + 𝐻𝐶𝑂3
−          (2.1c) 

𝑃𝑍 + 𝐻+𝑃𝑍𝐶𝑂𝑂− ⇌ 𝑃𝑍𝐻+ + 𝑃𝑍𝐶𝑂𝑂−             (2.1d) 
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CO2 loading is defined as mole of total CO2 per mole of alkalinity.  Equation 2.2 

is a calculation example for PZ, which has two moles equivalent alkalinity for every mole 

of amine. 

𝐶𝑂2 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (
𝑚𝑜𝑙

𝑚𝑜𝑙
) =

[𝐶𝑂2]+[𝐻𝐶𝑂3
−]+[𝑃𝑍𝐶𝑂𝑂−]+[𝐻+𝑃𝑍𝐶𝑂𝑂−]+2×[𝑃𝑍(𝐶𝑂𝑂)2

2−
]

2×([𝑃𝑍]+[𝑃𝑍𝐶𝑂𝑂−]+[𝑃𝑍(𝐶𝑂𝑂)2
2−

]+[𝑃𝑍𝐻+]+[𝐻+𝑃𝑍𝐶𝑂𝑂−])
   (2.2) 

For the stripper modeling, CO2 solubility data is the most important data input, 

which will be used to predict the equilibrium partial pressure of CO2 (P*
CO2) at high 

temperature 120–150 °C and lean loading conditions.  The predicted P*
CO2 will affect the 

stripper pressure and the amount of stripping steam produced.   

Figure 2.1 shows the partial pressure of CO2 with predicted by Independence with 

varied CO2 loading and compares with experimental data (Xu, 2011).  The predicted 

P*
CO2 tends to underestimate at temperature above 150 °C.  However, the measured P*

CO2 

data at high temperature can be scatter even at the same CO2 loading.  The model will be 

extrapolated when the CO2 loading is below 0.25 (mol CO2/mol alkalinity) because of 

lacking of data. 
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Figure 2.1: CO2 solubility at high temperature for 8 m PZ; lines: predicted by 

Independence; points: experiment data (Xu, 2011).  

2.2 CALCULATING HEAT EXCHANGER LMTD 

This work uses a rigorous way to calculate the log mean temperature difference 

(LMTD, TLM) for heat exchangers that have two-phase flows.  Previous work forced the 

rich solvent stream to stay in liquid phase and calculated the LMTD by inlet and outlet 

temperatures when heater blocks were used to simulate the cross exchanger (Van Wagener, 

2011).  The calculated LMTD could be under-predicted.  In this work, the LMTD is 

obtained by integrating the temperature profile using the HeatX block instead of relying 

solely on inlet/outlet temperatures using Equation 2.3.  The temperature profile is split 
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LMTD of each segment, respectively.  When the segment is small enough the TLM,i can 

be calculated by inlet/outlet temperature assuming the temperature profile is linear. 

  ∆𝑇𝐿𝑀 =
∑ 𝑄𝑖

𝑛
𝑖=1

∑
𝑄𝑖

∆𝑇𝐿𝑀,𝑖

𝑛
𝑖=1

                         (2.3) 

When the configuration has two cross exchangers in order to extract warm rich 

solvent from between, the average LMTD (TLM,avg) will be calculated by Equation 2.4, 

which weights the LMTD of each exchanger (TLM,1 and TLM,2) by their exchanger duties 

(Q1 and Q2).  The average LMTD will be specified. 

∆𝑇𝐿𝑀,𝑎𝑣𝑔 =
𝑄1+𝑄2

𝑄1
∆𝑇𝐿𝑀,1

+
𝑄2

∆𝑇𝐿𝑀,2

                       (2.4) 

2.3 TOTAL EQUIVALENT WORK 

The total equivalent work is a more useful metric of overall energy use than reboiler 

duty alone.  As Equation 2.5 shows, the total equivalent work consists of pump work 

(Wpump), compression work (Wcomp), and heat duty work (Wheat).  Heat duty work is 

obtained by converting the reboiler duty to electricity using Equation 2.6 by multiplying 

the Carnot cycle efficiency and the steam turbine efficiency (ηstm-tb).  The Tstm,sat is the 

saturation temperature of heating steam extracted from the power plant and the sink 

temperature (Tsink) is assumed as 313.15 K (40 °C).  The isentropic efficiency of the steam 

turbine system is set to a typical value of 90% (Bhatt, 2011; Bhatt et al., 1999).  The pump 

work is required to pressurize the rich solvent from atmospheric pressure to the stripper 

pressure (Pstrp) as calculated using Equation 2.7.  It assumes that the pump efficiency (ηp) 

is 65%.  The calculation of compression work will be discussed in Section 2.5.   

𝑊𝑒𝑞 = 𝑊ℎ𝑒𝑎𝑡 + 𝑊𝑝𝑢𝑚𝑝 + 𝑊𝑐𝑜𝑚𝑝                  (2.5) 

𝑊ℎ𝑒𝑎𝑡 = η𝑠𝑡𝑚−𝑡𝑏 (
𝑇𝑠𝑡𝑚,𝑠𝑎𝑡−𝑇𝑠𝑖𝑛𝑘

𝑇𝑠𝑡𝑚,𝑠𝑎𝑡
) 𝑄𝑟𝑒𝑏                  (2.6) 
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𝑊𝑝𝑢𝑚𝑝 =  
𝑉̇𝑟𝑖𝑐ℎ(𝑃𝑠𝑡𝑟𝑝−1 𝑏𝑎𝑟)

𝜂𝑝
                       (2.7) 

2.4 HEAT-TO-ELECTRICITY EFFICIENCY  

The Carnot cycle efficiency used in Equation 2.6 simplifies the conversion of heat 

duty to electricity without integrating the CO2 capture process with the entire power plant.  

The accuracy will be examined by comparing the heat-to-electricity efficiency (Wheat/Qreb) 

with a steam cycle simulated in Aspen Plus® .  Steam power plants are operated via 

Rankine cycle to avoid compression and expansion of two-phase flow.  Figure 2.2 shows 

the steam cycle of a typical coal-fired power plant.  The steam from the last stage of low 

pressure turbine is totally condensed to water, pumped to high pressure, and then heated 

up to above saturation temperature by the preheating system and the boiler. 

A supercritical power plant integrated with CO2 capture described in DOE Case 10 

(2010) is selected as the reference steam cycle.  The steam flow rates, outlet pressure of 

each steam turbine, and the preheating system are reproduced in the simulations.  All the 

steam turbines are assumed as 90% isentropic efficiency to be consistent with Equation 

2.6.  The steam after the last LP turbine will be condensed at 40 °C.  The outlet 

temperature of each heat exchanger in the feedwater preheating system will be maintained 

by manipulating the preheating steam flow rate at each temperature level. 

The steam extracted between the IP and LP turbines is superheated and will be de-

superheated by recycling a portion of the reboiler condensate so the sensible heat of the 

steam vapor will not be wasted.  The reboiler condensate can either go to the condenser 

or the deaerator to return back to the steam cycle. 
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Figure 2.2: Steam cycle integrated with CO2 regeneration.  

Figure 2.3 compares the heat-to-electricity efficiency obtained from the steam cycle 

simulations and Equation 2.6 at various steam saturation temperature.  The outlet pressure 

of the IP turbine was adjusted to satisfy each specified saturation temperature.  The effect 

of condensate return locations are compared.  If the condensate is returned to the 

condenser rather than the deaerator, the heat-to-electricity efficiency will increase 0.03–

0.05, which is equivalent to 11–16% increase of electricity loss because of rejecting the 

sensible heat into the condenser.   

The heat-to-electricity efficiency using Equation 2.6 is 0.01 lower than the actual 

steam cycle at 155 °C, which implies the electricity loss is underestimated by 3%.  The 

difference becomes more significant with increasing steam temperature.  The discrepancy 

comes from the use of the saturation temperature to represent the steam temperature.  The 

extracted steam is superheated and is potentially more valuable.  An average temperature 

that weights steam temperatures by their enthalpies should be more indicative.  The 

amount of latent heat of saturated steam decreases with increasing saturation temperature.  
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Less contribution of enthalpy at saturation temperature makes the average steam 

temperature shift away from the saturation temperature.   

Generally Equation 2.6 can reasonably predict the equivalent electricity loss and 

the trend with varied steam temperature. 

 

Figure 2.3: Heat-to-electricity efficiency at various steam saturation temperature. 

2.5 MULTI-STAGE COMPRESSOR 

In this work, the configuration and efficiency of the multi-stage compressor will be 

updated from previous work to reflect current state-of-art.  Van Wagener (2011) proposed 

a correlation of compression work for CO2 capture by regressing data from Aspen Plus® .  

The multi-stage compressor train employed the compressors with 72% polytropic 

efficiency, the intercoolers at 40 °C and water knock-out drums between stages.   
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2.5.1 Characteristics of CO2 compression 

The inlet pressure of the compressor train is determined by the stripper pressure, 

which is dependent on the operating lean loading and reboiler temperature.  To sequester 

the CO2 underground, the target pressure of the compressor has to be at least above its 

supercritical pressure, 74 bar, to avoid two-phase flow.  To replace the pressure loss 

during transportation, 0.4–0.5 bar/km is required.  In this work, the target pressure is set 

at 150 bar, which has been used as a standard. (NETL, 2010).  When the CO2 is in the 

supercritical phase such that its density is similar to liquid, the difference between a pump 

and a compressor for the compression task disappears and becomes a question of density 

rather than phase.  The supercritical pump is suggested for the last stage when the density 

is above 500 kg/m3 (Bergamini et al., 2011). 

To decrease the pipeline diameter, aftercooling can be applied to increase CO2 

density and reduce volumetric flow rate (Moore et al., 2008).  The aftercooler that cools 

CO2 is employed before the supercritical pump to attain a density suitable for pumping and 

to reduce the pump work from reduced volumetric flow rate.  As shown in Figure 2.4, the 

density increases dramatically around the critical region.  The aftercooling temperature is 

specified as 30 °C to obtain the major density increase.  
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Figure 2.4: Density of supercritical CO2 with varied temperature. 

2.5.2 Updated multi-stage compressor configuration 

Three types of compressor are typically used in industry: reciprocating, axial, and 

centrifugal.  The reciprocating compressor provides a wide range of pressure ratio but can 

only accommodate inlet volume flow rate up to 7000 ft3/min.  The axial compressor has 

high capacity but lower pressure ratio (1.05–1.2).  The pressure ratio and capacity of a 

centrifugal compressor is between that of a reciprocating and axial compressor.  For a 

coal-fired power plant with 593 MW gross output, the CO2 volume flow rate is around 
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pressure ratio and large capacity has been suggested for CO2 capture (Suri, 2007).  The 
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The configuration shown in Figure 2.5 will be simulated in Aspen Plus® .  The 

multi-stage compressor will compress the CO2 from the stripper pressure to 76 bar that 

includes 2 bar of net positive suction head (NPSH), and the supercritical pump will 

pressurize the supercritical CO2 to 150 bar.  It assumes no pressure drop in the 

intercoolers.  The polytropic efficiency of compressors is also updated to 86% (NETL, 

2010).  The supercritical pump efficiency is assumed as 65%.  The specifications are 

shown in Table 2.1. 

150 bar
76 bar

PR ≤ 2

knockout 
water

CO2 from stripper
4-13 bar

Intercooler Compressor

n stages

Supercritical 
pump

 

Figure 2.5: Multi-stage compressor with supercritical pump 

Table 2.1: Multi-stage compressor specifications 

Maximum pressure ratio/stage 2 

Compressor polytropic efficiency (%) 86 

Intercooling temperature (oC) 40 

Intercoolers pressure drop (bar) 0 

Aftercooling temperature (oC) 30 

Supercritical pump efficiency (%) 65 

Multi-stage compressor outlet P (bar) 76 

Final target P (bar) 150 

Figure 2.6 compares the estimated compression work from the correlation 

developed by Van Wagener (2011) and the updated compressor configuration with inlet 
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pressure 1–20 bar.  The minimum compression work is calculated from the difference of 

Gibbs free energy between inlet pressure and 150 bar at 40 °C.  The updated compression 

work is about 1 kJ/mol CO2 lower, mostly due to the higher compressor efficiency, 86% 

rather than 72%.    This demonstrates the potential energy savings from operating at high 

stripper pressure.  The stripper pressure using PZ at 150 °C can be up to 10 bar, which 

reduces the compression work by almost 50% compared to conventional stripper less than 

2 bar. 

Figure 2.7 shows the thermodynamic efficiency of CO2 compression (ηth,comp), 

which is defined as the ratio of the minimum work to the actual work.  The 

thermodynamic efficiency for the updated compressor is around 72–74% while it was less 

than 60% in previous work.   
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Figure 2.6: Compression work with updated configuration and efficiency. 
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Figure 2.7: Thermodynamic efficiency of CO2 compression. 
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Figure 2.8: CO2 compression work with inlet pressure from 1–149 bar; final pressure 150 

bar. 
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Chapter 3: Process Irreversibility Analysis 

3.1 INTRODUCTION 

Alternative stripper design is a promising means of reducing energy use.  In a 

conventional distillation column, alternative heat integration such as vapor recompression 

and the heat-integrated distillation column have been widely investigated (Luyben, 1983; 

Nakaiwa et al., 2003; Shenvi et al., 2011).  The heat of condensation in the rectifying 

section can be used to vaporize the liquid in the stripping section after the vapor is 

compressed to high pressure.  The internal heat integration strategies can significantly 

reduce the reboiler duty by 20–50% (Iwakabe et al., 2006; Y. H. Kim, 2012; Luyben, 1983).    

This design concept has been applied to alternative stripper design for CO2 capture.   

Rochelle et al. proposed the multi-pressure stripper to recover the condensation heat of 

water vapor (Jassim et al., 2006; Oyenekan et al., 2007; Van Wagener et al., 2011).  The 

lean vapor compression stripper recovers the waste heat after recompressing a portion of 

CO2 and steam that is produced from a low pressure flashing tank (Benson et al., 1979; 

Cousins et al., 2011; Fernandez et al., 2012).  It has been studied and widely applied in 

pilot-scale CO2 capture (Singh et al., 2014; Thimsen et al., 2014).  Other stripper design 

strategies such as interheated stripper, double matrix, and cold rich bypass have also been 

investigated (Madan, 2013; Van Wagener et al., 2014).  

Most previous work addressed the problem by comparing the energy performance 

of each configuration that has been proposed.  The approach does not indicate if the best 

performance has been achieved and is not time-efficient since in theory infinite alternatives 

could be applied.  If the system is already approaching maximum thermodynamic 

efficiency further process modifications will not be necessary.  A systematic examination 

that diagnoses the inefficiencies of the process is necessary to provide a better design that 
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maximizes energy efficiency and give the insights of maximum attainable energy 

efficiency.   

Instead of examining each possible configuration, exergy analysis will be used as a 

tool to identify the inefficiency of the stripping process.  Exergy analysis has been used 

to quantify the irreversibility of the amine scrubbing process (Amrollahi et al., 2011; 

Geuzebroek et al., 2004; Hanak et al., 2014; McGlashan et al., 2007; Rochedo et al., 2013).  

However, these analyses did not indicate how to reduce process irreversibility and improve 

energy efficiency.  Also, previous work only studied a single nominal case.  The 

irreversibility can vary significantly with process design and operating parameters.  

Exergy analysis with various process parameters is necessary to explore optimum design.     

Design strategies and a new stripper configuration will be proposed to reduce the 

inefficiencies based on the analysis.  The conventional simple stripper will be the base 

case.  Lean vapor compression will be used to demonstrate why the energy improvement 

using conventional approaches is limited.  Important process parameters such as CO2 lean 

loading, temperature approach of exchangers, and packing height will be varied to show 

how they affect energy efficiency.  To minimize the overall cost, economic analysis is 

required but is not in the scope of this chapter.  8 m PZ will be used as solvent. 

Another objective is to investigate the thermodynamic efficiency of the 

regeneration process.  The thermodynamic efficiency (ηth) of the separation process is 

defined as the ratio of minimum work to actual work as shown in Equation 3.1.  The actual 

work is the sum of the minimum work and the lost work (exergy loss, irreversibility).  If 

a process removes all the lost work, the thermodynamic efficiency will approach 100%.  

The thermodynamic efficiency of typical distillation is about 20% (Fitzmorris et al., 1980; 

Y. H. Kim, 2012; Yoo et al., 1988).  The thermodynamic efficiency of the stripping 
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process will be estimated to determine the efficiency of the advanced flash stripper and 

show how much room is still left for improvement.  

𝜂𝑡ℎ =
𝑊𝑚𝑖𝑛

𝑊𝑎𝑐𝑡
=

𝑊𝑚𝑖𝑛

𝑊𝑎𝑐𝑡+𝑊𝑙𝑜𝑠𝑡
                    (3.1) 

3.2 METHODS 

Simulation results were obtained from Aspen Plus®  version 7.3 using 

“Independence” for PZ with e-NRTL property method to describe the CO2-amine-H2O 

chemistry (Frailie, 2014).  The Rigorous rate-based model is used to model heat and mass 

transfer with equilibrium reactions in the boundary layer.  The stripper used 5 meter of 

the structured packing Mellapak 250X.  The Bravo Correlation was used to calculate the 

mass transfer coefficient and interfacial area of the packing in the stripper (Bravo et al., 

1985).  No correction of interfacial area will be applied in this chapter.  Table 3.1 shows 

the summary of modeling methods. 

Table 3.1: Summary of modeling methods. 

Solvent 8 m PZ 

Process modeling tool Aspen Plus®  v7.3 

Thermodynamic model Independence 

Stripper packing 5 m Mellapak 250X 

Correction factor for  

packing interfacial area 
1 

3.2.1 Process specifications 

Process specifications used in the simulations are summarized in Table 3.2.  This 

work simulates the whole amine scrubbing process except the absorber.  Plaza has shown 

that with an intercooled absorber using 8 m PZ over the range of lean loading from 0.2 to 

0.34 mol CO2/alkalinity, 90% CO2 removal can be always be attained with a finite packing 
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area (Plaza, 2011).  The rich solvent is typically at 46 ºC with 0.4 CO2 rich loading over 

the CO2 lean loading range.  The temperature and the CO2 loading of the rich solvent were 

constants.   

Operating the stripper at higher temperature is usually more energy efficient.  

However, the elevated temperature can result in significant thermal degradation of the 

amine in the reboiler.  A reasonable compromise of 150 ºC for PZ was used (Freeman, 

2011).  The condensing temperature of the heating steam is assumed 155 ºC, 5 K higher 

than the reboiler temperature.  The LMTD of the cross exchanger was specified as 5 K. 

Table 3.2: Summary of process specifications. 

Reboiler T (ºC) 150 

Steam condensing T (ºC) 155 

CO2 rich loading 

(mol CO2/mol alkalinity) 
0.40 

Rich solvent T (ºC) 46 

Cross exchanger TLM (K) 5 

Cold rich exchanger TLM (K) 20 

3.2.2 Theoretical minimum work and lost work 

The minimum work (theoretical work, reversible work) of the whole process can 

be calculated by the difference of Gibbs free energy between inlet and outlet streams 

(Equation 3.2).  The enthalpy (H) and entropy (S) of CO2 were obtained from the NIST 

Web Book.  CO2 concentration in the flue gas is assumed to be 12 mol %.  Minimum 

work is defined for this work, separation (Wmin,sep), compression (Wmin,comp), and  

regeneration (Wmin,rgn).   

𝑊𝑚𝑖𝑛 = ∆𝐺 = ∑ (𝐻 − 𝑇𝑜𝑆)𝑜𝑢𝑡 − ∑ (𝐻 − 𝑇𝑜𝑆)𝑖𝑛             (3.2) 
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The boundary conditions that define each minimum work are shown in Table 3.3.  

The minimum work of separation accounts for the amine scrubbing process.  The 

minimum work of compression represents the multi-stage compressors.  For example, the 

isothermal minimum work at 40 ºC for separating 12% CO2 at 1 bar to pure CO2 at 150 bar 

is 18.2 kJ/mol CO2.  This includes 7.3 kJ/mol CO2 separation work (12% CO2 to pure 

CO2 at 1 bar) and 10.9 kJ/mol compression work (pure CO2 from 1 bar to 150 bar).  Since 

the reboiler temperature is fixed, the stripper pressure will vary with lean loading. 

The minimum work of regeneration (Wmin,rgn) accounts for the stripping process 

only.  It is used to separate CO2 from the CO2 rich solvent to pure CO2 at given stripper 

pressure.  As Equation 3.3 shows, the minimum work of regeneration will be the 

minimum work of separation (Wmin,sep) plus the lost work of the absorber (Wlost,abs). 

𝑊𝑚𝑖𝑛,𝑟𝑔𝑛 = 𝑊𝑚𝑖𝑛,𝑠𝑒𝑝 + 𝑊𝑙𝑜𝑠𝑡,𝑎𝑏𝑠                   (3.3) 

Table 3.3: Boundary conditions of minimum work calculations. 

Minimum work Inlet Outlet 

Separation 

(Wmin,sep) 

12% CO2 

(40 ºC, 1 bar) 

Pure CO2 

(40 ºC, stripper P) 

Compression 

(Wmin,comp) 

Pure CO2 

(40 ºC, stripper P) 

Pure CO2 

(40 ºC, 150 bar) 

Regeneration 

(Wmin,rgn) 

CO2 rich solvent 

(46 ºC, 1 bar, 0.40 Ldg) 

CO2 lean solvent 

(40 ºC, 1 bar, varied Ldg) 

Pure CO2 

(40 ºC, 150 bar) 

The lost work is defined as the maximum useful work that would be obtained during 

the process if the system were brought into equilibrium with the heat sink.  The lost work 

is a result of irreversible operations.  The sources can be heat and mass transfer driving 

forces, mixing, flashing, and mechanical inefficiency.  By exergy balance using Equation 
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3.4, the lost work of the whole process or each unit operation can be calculated. The sink 

temperature, To is set at 313.15 K (40 ºC).  Tk is the temperature of the heat source or 

sink.  In this work, the heat source temperature is 155 ºC, 5 K higher than the reboiler 

temperature.  Q and W are the heat duty and work input/output.  The enthalpy and the 

entropy will be obtained from simulations in Aspen Plus® .  The minimum work is the 

thermodynamic limit, which is determined only by inlet and outlet conditions, but the 

amount of lost work (Wlost) depends on how the process is operated.  The lost work can 

be reduced by a better process design that makes the operation more reversible, and leads 

to less actual work requirement.  

𝑊𝑙𝑜𝑠𝑡 = ∑ (1 −
𝑇𝑜

𝑇𝑘
) 𝑄 + ∑ 𝑊 + ∑ (𝐻 − 𝑇𝑜𝑆)𝑖𝑛 − ∑ (𝐻 − 𝑇𝑜𝑆)𝑜𝑢𝑡      (3.4) 

3.3 PROCESS DESCRIPTIONS 

3.3.1 Simple stripper 

The simple stripper is shown in Figure 3.1.  The cold rich solvent is heated by the 

hot lean solvent in the cross exchanger and then sent to the top of the stripper.  The 

reboiler provides the sensible heat, the heat of CO2 desorption, and the heat of water 

vaporization.  The hot lean solvent from the reboiler is returned to the absorber after being 

cooled to 40 ºC by the trim cooler.  The hot CO2 vapor from the top of stripper is cooled 

to 40 ºC in the overhead condenser with loss of the latent heat of the excess water vapor. 
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Figure 3.1: Simple stripper. 

3.3.2 Lean vapor compression 

The lean vapor compression stripper (Figure 3.2) applies the conventional heat 

integration strategy that has been used in distillation.  The simple stripper is modified by 

adding a flash tank and a single compressor stage.  The hot lean solvent coming from the 

reboiler is flashed, and produces steam and CO2 in the flash tank at lower pressure.  The 

flashed vapor is pressurized by the lean vapor compressor, and sent to the bottom of the 

packing section in the stripper.  The additional stripping steam provides a heat source for 

heating the rich solvent in the stripper with packing.  Compared to the simple stripper at 

the same operating lean loading, the stripper pressure with lean vapor compression is 

higher, and the rich solvent that goes into the top of the stripper is colder.  The lean vapor 

compressor is analogous to the first stage of the multi-stage compressor for CO2 

compression.  The stripper serves as a direct contact cooler that recovers the latent heat 

of steam.   
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The temperature of the flashed vapor at the lean vapor compressor inlet is around 

140 ºC.  After compression the hot vapor is over 200 ºC, which might exceed the 

temperature limit of typical compressor materials.  The lean vapor compression work is 

included in the calculation of the total equivalent work.  The pressure ratio of the lean 

vapor compressor for each lean loading was optimized to minimize the total equivalent 

work.  With a high pressure ratio, less stripping steam heat will be lost in the higher 

pressure stripper but the lean vapor compression work will increase.   
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Figure 3.2: Lean vapor compression. 

3.4 RESULTS AND DISCUSSIONS 

3.4.1 Inefficiency of simple stripper 

3.4.1.1 Minimum work and lost work distribution 

Figure 3.3 shows the minimum work and lost work of a simple stripper using 8 m 

PZ.  The minimum work of separation purifies the inlet 12% CO2 at 1 bar to pure CO2 at 
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stripper pressure, which depends on the operating lean loading.  The minimum work of 

compression brings the pure CO2 from stripper pressure to final pressure at 150 bar.  Both 

these values vary with lean loading since the stripper pressure is not constant.  The sum 

of separation and compression minimum work is 18.2 kJ/mol CO2, which is independent 

of CO2 lean and rich loading.   

 

Figure 3.3: Minimum work and lost work of simple stripper using 8 m PZ; rich loading: 

0.4; reboiler T: 150 °C; cross exchanger ΔTLM: 5 K; 5 m packing; correction 

for interfacial area: 1. 

The lost work from the absorber, regeneration, compression, and unrecovered 

solvent pressure are also shown in Figure 3.3.  The lost work of the absorber can be 

regarded as from a typical intercooled absorber with finite packing area.  It varies with 

the CO2 lean loading since the inlet and outlet conditions of the absorber are fixed except 
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for the CO2 lean loading.  Because the CO2 partial pressure decreases with CO2 lean 

loading, a large driving force of CO2 partial pressure causes the lost work of the absorber 

to increase at a lower lean loading.  At higher lean loading, even though the minimum 

work of regeneration required is lower, the absorber may require more packing area due to 

insufficient mass transfer driving force.    

The lost work of compression is obtained from the difference between the actual 

work of compression and the isothermal minimum work of compression at 40 ºC.  The 

lost work of compression comes from the inefficiency of the compressors (86% polytropic 

efficiency is used) and non-isothermal operation.  The lost work of unrecovered solvent 

pressure shows the amount of work that the lean solvent at the stripper pressure can 

generate if it is brought to 1 bar.  Practically, the unrecovered solvent pressure of the lean 

solvent will be used to overcome the pressure drop through the cross exchangers, the trim 

cooler, and the static head of the absorber. 

The actual work required by the process is the sum of the minimum work values 

and all of the lost work.  The lost work of regeneration accounts for 60–70% of total lost 

work.  It is the major reason that the simple stripper is inefficient.  

3.4.1.2 Lost work of regeneration 

The lost work of regeneration can be distributed into the unit operations.  Figure 

3.4 shows this distribution for a simple stripper using 8 m PZ with varied lean loading.    

The lost work of the reboiler reflects the amount of heat duty and the temperature 

approach between the solvent and the heating steam.  5 K temperature approach between 

the steam and the reboiler temperature was assumed.  The lost work of the trim cooler and 

the pump increases when the lean loading increases due to decreasing solvent capacity (i.e., 

increasing solvent rate) and increasing stripper pressure.  
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Figure 3.4: Lost work of regeneration of simple stripper using 8 m PZ; rich loading: 0.4; 

reboiler T: 150 °C; cross exchanger ΔTLM: 5 K; 5 m packing; correction for 

interfacial area: 1. 

The overhead condenser and the cross exchanger are the two major lost work 

sources.  They account for over 70% of the lost work of regeneration.  When the CO2 is 

stripped out, a large amount of water vapor leaves the stripper and is removed in the 

overhead condenser.  The lost work of the condenser is mainly caused by the loss of latent 

heat of the stripping steam.  From the Gibbs-Helmholtz equation of CO2 desorption 

reaction (Equation 3.5), either increasing the regeneration temperature or using solvents 

that have higher heat of absorption (Habs) will increase the partial pressure of CO2 (P
*
CO2), 
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temperature will cause more solvent degradation and a higher pressure heating steam 

requirement.   

𝑑(𝑙𝑛𝑃𝐶𝑂2
∗ )

𝑑𝑇
=

∆𝐻𝑎𝑏𝑠

𝑅𝑇2
                       (3.5) 

The lost work of the cross exchanger is the temperature difference times the amount 

of heat exchanged between the cold rich solvent and the hot lean solvent.  Even with a 

small LMTD of 5 K, the lost work of the cross exchanger is significant because of the large 

exchanger duty, which is 2 to 5 times the reboiler duty.  It is sensitive to the lean loading 

because of the change in solvent cyclic capacity.  For example, the solvent circulation rate 

at 0.28 lean loading is around 50% of that at 0.34 lean loading.  The lower solvent flow 

rate results in a lower heat duty in the cross exchanger, so the lost work of the cross 

exchanger decreases with decreasing lean loading. 

3.4.2 Inefficiency of lean vapor compression 

There are two reasons that the lean vapor compression gives better energy 

performance than the simple stripper.  First, additional stripping steam is produced in the 

low pressure flash tank, providing the opportunity for the rich solvent to capture the extra 

heat in the stripper.  However, the stripping steam has to be pressurized before the heat is 

recovered, which requires additional compression work.  Second, similar to the multi-

pressure stripper and double matrix stripper (Jassim et al., 2006; Oyenekan et al., 2007; 

Van Wagener et al., 2011), the stripper is operated at higher pressure compared to the 

simple stripper at the same lean loading, which inherently reduces the stripping steam.            

Figure 3.5 shows the lost work of regeneration with lean vapor compression.  The 

lost work of the condenser is only reduced by 1/3.  This implies that this stripper design 

is not capable of fully recovering the waste heat from the stripping steam.  A portion of 

the lost work is shifted from the reboiler to the stripper column since the superheated 
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stripping steam is delivered into the stripper and preheats the rich solvent.  The lean vapor 

compressor and the flash tank also result in lost work. 

 

Figure 3.5: Lost work of regeneration of lean vapor compression using 8 m PZ; rich 

loading: 0.4; reboiler T: 150 °C; cross exchanger ΔTLM: 5 K; 5 m packing; 

correction for interfacial area: 1; optimum pressure ratio of lean vapor 

compressor at each lean loading. 

3.4.3 Proposed design strategies 

The significant lost work from the condenser and the cross exchanger is the primary 

reason that the simple stripper is not energy efficient.  To reduce the irreversibility, 

analysis of heat and mass transfer in the stripper and the cross exchanger will be explored.  

Alternative design strategies can be proposed accordingly.   
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3.4.3.1 Heat and mass transfer in the stripper 

The lost work of the stripper column of the simple stripper is relatively low.  It 

can be explained by the temperature profile and the CO2 concentration profile of the 

stripper column shown in Figure 3.6.  For the simple stripper, the bottom is the reboiler 

that heats the solvent up to 150 ºC.  The temperature of the rich solvent going into the top 

of the stripper is around 140 ºC, only 10 ºC higher than the bottom reboiler temperature.  

Since the liquid is hot, it cannot condense any stripping steam from the vapor phase.  The 

temperature profile shows that the pinch at the top of the stripper and most of the packing 

is wasted.   

 

Figure 3.6: Temperature and CO2 concentration profile of stripper column for simple 

stripper using 8 m PZ; lean loading: 0.24; rich loading: 0.4; reboiler T: 150 

°C; cross exchanger ΔTLM: 5 K; 5 m packing; correction for interfacial area: 
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The CO2 concentration profile shows the stripping conditions using the CO2 mole 

fraction in the vapor phase (yCO2) and the equilibrium CO2 mole fraction in the liquid phase 

(y*
CO2), which is the ratio of equilibrium partial pressure of CO2 to the stripper pressure.  

The vapor coming from the reboiler contains 30% CO2 and 70% H2O, and it leaves the 

stripper with 60% CO2 and 40% H2O.  The equilibrium CO2 partial pressure of the solvent 

depends on the CO2 loading and the solvent temperature.  Before the rich solvent goes 

into the stripper, the hot solvent flashes out a portion of CO2, so the rich solvent at the top 

is at 0.34 CO2 loading instead of 0.4.  This lower CO2 loading causes a low equilibrium 

mole fraction of CO2.   The CO2 concentration also pinches at the top.  The appearance 

of pinches for both heat and mass transfer implies that the simple stripper is a poor design 

that could not effectively condense the stripping steam and strip CO2.  To improve the 

stripper, both heat and mass transfer performance should be considered.  The rich solvent 

that goes to the stripper should be at or below its bubble point to avoid flashing.   

3.4.3.2 Self-contained heat integration using cold rich solvent 

The reasons for limited energy reduction of the lean vapor compression are clear 

from Figure 3.5.  First, the lost work of the condenser has not been fully recovered.  Over 

60% of that is still left.  Second, additional recompression work has to be provided before 

the stripping steam heat is recovered.  In fact, the vapor only needs to be compressed for 

heat integration if its dew point temperature is lower than the bubble point of the heat sink.  

If a low temperature heat sink is available, the waste heat from the vapor can still be 

recovered without being “upgraded”.   

Therefore, it is straightforward to use the cold rich solvent at 46 ºC as the heat sink 

to recover the rest of the stripping steam heat.  However, direct contact should be avoided.  

When the solvent is cold, the equilibrium partial pressure of CO2 could be lower than that 
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in the vapor coming from the stripper.  If cold rich solvent and hot CO2 vapor directly 

contact in the stripper, the CO2 will be re-absorbed to the solvent, which will cause even 

more heat duty for CO2 stripping. 

3.4.3.3 Temperature pinch of the cross exchanger 

The cross exchanger is the other major source of lost work.  A reversible heat 

exchanger should avoid severe temperature pinch, i.e., temperature-enthalpy lines of cold 

and hot streams should be parallel.  Figure 3.7 shows the minimum temperature approach 

(temperature pinch) in the cross exchanger of the simple stripper.  Since the LMTD is 

specified as 5 K, as the minimum temperature approach is closer to 5 K, the temperature 

approach can be expected to be more consistent throughout the cross exchanger.  The 

minimum temperature approach is 1.5-4 K with various lean loading.  The temperature 

approach is pinched at the cold end and wide open at the hot end.  This implies that the 

cross exchanger can be made more reversible.   

The temperature pinch is caused by the unbalanced flow heat capacity (ṁCp) of the 

hot and cold streams.  For the simple stripper, the flow heat capacity of the rich side is 

always greater than the lean side due to the loss of CO2 and water from the stripper.  The 

pinch can be relaxed by bypassing a portion of rich solvent to match similar flow heat 

capacity.    
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Figure 3.7: Pinch temperature approach of the cross exchanger of the simple stripper 

using 8 m PZ; rich loading: 0.4; reboiler T: 150 °C; cross exchanger ΔTLM: 5 

K. 

3.4.4 Advanced flash stripper 

3.4.4.1 Proposed stripper configuration 
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The cross exchanger is split into two exchangers.  The warm rich bypass is 

extracted and fed to the top of the stripper after mixing with the cold rich bypass.  The 

temperature was selected as the bubble point at the stripper operating pressure.  The 

temperature at bubble point without flashing will maximize the equilibrium partial pressure 

1

2

3

4

5

6

0.20 0.22 0.24 0.26 0.28 0.30 0.32

P
in

ch
 

T
 (

K
)

CO2 lean loading (mol CO2/mol alk)

TLM=5 K



 43 

of CO2 for stripping, while still condensing a portion of stripping steam from the vapor 

phase.     

 

Cold rich Bypass

Cold rich 
exchanger

Warm rich Bypass

Cold cross 
exchanger

Hot cross 
exchanger

Condenser

Absorber

Flue gas
12% CO2

Vented gas

Steam heater

Stripper

Multi-stage
compressor

CO2

150 bar
n

Condensate

Trim cooler

Rich solvent

Lean solvent 150 oC

4-10 bar

 

Figure 3.8: Advanced flash stripper 

The cold rich solvent serves as a low temperature heat sink to recover the rest of 

the stripping steam heat.  The heat is recovered by the rich exchanger instead of by direct 

contact in the stripper to avoid re-absorption.  The rich exchanger preheats a portion of 

the cold rich solvent by hot vapor coming out of the stripper.  The cold and warm rich 

bypass also help relax the temperature pinch in the cross exchanger. 

The optimized cold and warm rich bypass rate will maximize the potential benefits 

from the stripping steam heat recovery, the CO2 stripping performance in the stripper 

column, and the cross exchanger performance.  For each lean loading the bypasses are 

optimized to minimize the total equivalent work.  Higher bypass rates are required at low 

lean loading as more stripping steam needs to be recovered. 
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After cold and warm rich solvent bypasses, the rest of the rich solvent is heated by 

a steam heater and fed into the bottom of the stripper.  The regeneration temperature of 

the stream coming from the flash tank was 150 ºC.  The reboiler in a typical stripper is 

replaced by a steam heater, which has the same function as the reboiler except the solvent 

is heated convectively.  Since the amine tends to thermally degrade at high temperature, 

the convective steam heater with less solvent hold-up and residence time will minimize 

thermal degradation.   

3.4.4.2 Lost work of regeneration 

Figure 3.9 shows the lost work of regeneration of the advanced flash stripper using 

8 m PZ.  The lost work of the condenser is almost eliminated compared to the simple 

stripper and the lean vapor compression.  The water vapor content from the rich 

exchanger is only around 5 mol % over the lean loading range.   Figure 3.10 shows that 

the lost work of the condenser with the advanced flash stripper is 50% less than with lean 

vapor compression.  The proposed design strategies significantly reduce the 

irreversibility of the condenser.   
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Figure 3.9: Lost work of regeneration of advanced flash stripper using 8 m PZ; rich 

loading: 0.4; reboiler T: 150 °C; cross exchanger ΔTLM: 5 K; 5 m packing; 

correction for interfacial area: 1; optimum cold and warm rich bypasses. 
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Figure 3.10: Comparison of lost work of the condenser; 8 m PZ; rich loading: 0.4; 

reboiler T: 150 °C; cross exchanger ΔTLM: 5 K; 5 m packing; correction for 

interfacial area: 1; optimum pressure ratio for LVC; optimum cold and 

warm rich bypasses for AFS. 

Figure 3.11 compares the heat duty of the reboiler/steam heater.  The lean vapor 

compression reduces the heat duty by 8.4% and the advanced flash stripper reduces it by 

16.1% at the optimum lean loading compared to the simple stripper.    Figure 3.12 

compares the total equivalent work, which includes the compression work, pump work, 

equivalent work of reboiler duty, and the lean vapor compression work.  The advanced 

flash stripper reduces the total equivalent work by 11.2% at optimum lean loading while 
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Figure 3.11: Comparison of heat duty of reboiler/steam heater; 8 m PZ; rich loading: 0.4; 

reboiler T: 150 °C; cross exchanger ΔTLM: 5 K; 5 m packing; correction for 

interfacial area: 1; optimum pressure ratio for LVC; optimum cold and 

warm rich bypasses for AFS. 
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Figure 3.12: Comparison of total equivalent work; 8 m PZ; rich loading: 0.4; reboiler T: 

150 °C; cross exchanger ΔTLM: 5 K; 5 m packing; correction for interfacial 

area: 1; optimum pressure ratio for LVC; optimum cold and warm rich 

bypasses for AFS. 
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temperature profiles of the vapor and the liquid are nearly parallel.  Both heat and mass 

transfer show consistent driving force throughout the column, which implies that the 

packing is utilized more efficiently.   

 

 

Figure 3.13: Temperature and CO2 concentration profile of stripper column for the 

advanced flash stripper; 8 m PZ; lean loading: 0.24; rich loading: 0.4; 

reboiler T: 150 °C; cross exchanger ΔTLM: 5 K; 5 m packing; correction for 

interfacial area: 1; optimum cold and warm rich bypasses. 
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CO2 concentration profile in Figure 3.13, the re-absorption can be seen at the top of the 

stripper.  Even with re-absorption, this case gives the minimum reboiler duty by 

recovering more stripping steam.   

3.4.4.4 Irreversibility of the cross exchanger 

The reversibility of the cross exchanger can be understood by following the ratio 

of the flow heat capacity (ṁCp) of the rich and lean streams.  The cross exchanger will be 

reversible if the flow heat capacity between rich and lean solvent is well-matched.  To 

maximize the performance of the cross exchanger, the ratio of the flow heat capacity should 

be close to unity.   

Figure 3.14 shows the ratio of the flow heat capacity of rich to lean stream in single 

phase before the rich solvent vaporizes.  Since the specific heat capacity is similar over 

the operating conditions, the flow heat capacity is mainly affected by the solvent flow rate.  

For the simple stripper, the ratio is greater than unity, around 1.01–1.09.  The loss of water 

vapor and CO2 from the stripper results in lean solvent flow that is less than the rich solvent.  

For the advanced flash stripper, the ratio of flow heat capacity is reduced to 0.96–0.99.  

The cold rich bypass reduces the flow rate of rich solvent that goes to the cross exchanger.  

At optimized bypass rate, the flow rate of the rich solvent is even lower than the lean 

solvent, so the ratio of the flow heat capacity is less than unity.  The fact that the ratio is 

not exactly at unity implies that it is worthwhile extracting more solvent to recover the 

stripping steam heat rather than balancing the temperature approach of the cross exchanger.  
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Figure 3.14: Flow heat capacity ratio of rich solvent to lean solvent of the cold cross 

exchanger (single phase); 8 m PZ; rich loading: 0.4; reboiler T: 150 °C; 

cross exchanger ΔTLM: 5 K; optimum cold and warm rich bypasses. 

When the rich solvent starts vaporizing, the heat of vaporization makes the specific 

heat capacity at the rich side much higher than the lean side that stays in single phase.  

Figure 3.15 shows the ratio of the flow heat capacity with vaporization.  The ratio of the 

simple stripper is around 1.4–1.8, far from the desired unity.  For the advanced flash 

stripper, the ratio is reduced to 1.1–1.3.  The extraction of cold and warm rich bypass help 

balance the flow heat capacity with lower rich solvent rate in the cross exchanger.  

Generally, the advanced flash stripper provides a more reversible cross exchanger than the 

simple stripper.  
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Figure 3.15: Flow heat capacity ratio of rich solvent to lean solvent of the hot cross 

exchanger (flashing phase); 8 m PZ; rich loading: 0.4; reboiler T: 150 °C; 

cross exchanger ΔTLM: 5 K; optimum cold and warm rich bypasses. 

The lost work of the cross exchanger can be potentially reduced by using a tight 

temperature approach or increasing the solvent capacity.  However, an excessively small 

temperature difference should be avoided due to the prohibitive cost of the cross exchanger.  

Operating at lower CO2 lean loading will increase the cyclic capacity because less solvent 

will be circulating between the absorber and the stripper.  Figure 3.9 showed that 

significant lost work of the cross exchanger is avoided at low loading.  With the simple 

stripper this strategy will not be effective, as the lost work of the condenser will offset the 

reduction (Figure 3.4), but for the advanced stripper, the low lean loading region is exactly 

where the advanced flash stripper reduces the lost work of the condenser the most.      
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3.4.4.5 Irreversibility of the reboiler/steam heater 

The lost work of the reboiler (steam heater for advanced flash stripper) will increase 

with increasing steam temperature.  The relationship can be expressed by the heat duty-

equivalent work conversion factor in the total equivalent work calculation.  When the 

steam is extracted from the power plant, steam at higher temperature will cause more 

electricity loss.  For example, using steam at 180 ºC leads to an additional 15% electricity 

penalty compared to that at 155 ºC with equivalent reboiler duty.   

In this work, 5 K temperature difference is used for the reboiler.  Ideally, using 

steam with temperature as low as possible can minimize the lost work of the reboiler.  

However, an excessively small temperature approach should be avoided.  

3.4.5 Thermodynamic efficiency of regeneration 

The thermodynamic efficiency can be used to quantify the potential for energy 

improvement by comparing the actual work to the minimum work, which is defined in 

Equation 3.1.  The thermodynamic efficiency of CO2 compression is around 73% over 

the range of inlet pressure from 1 to 20 bar.   

Since this work focuses on developing the design strategies for the stripping 

process, the thermodynamic efficiency of regeneration will more adequately represent the 

performance of the regeneration process only.  Equation 3.6 defines the thermodynamic 

efficiency of regeneration (ηth,rgn) as the ratio of the minimum work of regeneration to the 

actual work of regeneration.  The minimum work of regeneration is defined in Table 3.2.  

The actual work of regeneration (Wact,rgn) includes the heat provided to the reboiler/steam 

heater and the pump work of the rich solvent pump.  This work used feasible design 

parameters to demonstrate the maximum energy efficiency that can be attained in practice.  

Unrealistic assumptions such as infinite heat/mass transfer area are avoided. 
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𝜂𝑡ℎ,𝑟𝑔𝑛 =
𝑊𝑚𝑖𝑛,𝑟𝑔𝑛

𝑊𝑎𝑐𝑡,𝑟𝑔𝑛
                       (3.6) 

   

 

Figure 3.16: Comparison of thermodynamic efficiency of regeneration; 8 m PZ; rich 

loading: 0.4; reboiler T: 150 °C; cross exchanger ΔTLM: 5 K; 5 m packing; 

correction for interfacial area: 1; optimum pressure ratio of LVS; optimum 

cold and warm rich bypasses for AFS.  

Figure 3.16 compares the thermodynamic efficiency of regeneration.  The 

efficiency of the simple stripper is 50–60% and the advanced flash stripper is 55–74% in 

the range of operating lean loading.  For the simple stripper, the low efficiency at high 

lean loading is mainly due to the dominating lost work of the cross exchanger.  At lower 

lean loading where the lost work of the condenser dominates, the efficiency is relatively 

flat because the minimum work also increases.  The advanced flash stripper is nearly 
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stripping steam free, so the efficiency is mainly driven by the lost work of the cross 

exchanger for the entire lean loading range.  The advanced flash stripper improves the 

most at lower lean loading where the stripping steam is significant.   

The advanced flash stripper gives the maximum thermodynamic efficiency at 74%.  

It is remarkable compared to typical distillation with heat integration that is only around 

20% (Fitzmorris et al., 1980; Y. H. Kim, 2012; Yoo et al., 1988).  The remaining lost 

work from the cross exchanger is difficult to reduce since PZ has already provided a 

superior solvent capacity compared to other solvents (Li, Voice, et al., 2013).  Therefore, 

the energy efficiency of the regeneration process with the advanced flash stripper using 8 

m PZ is approaching the thermodynamic limit from which further improvement is expected 

to be marginal.     

3.5 CONCLUSIONS 

 The lost work of the condenser and the cross exchanger were identified as the two 

major reasons that the simple stripper is not energy efficient.  The advanced flash 

stripper using cold and warm rich bypasses is proposed to reduce the lost work. 

 The warm rich bypass reduces the work loss associated with condensing water vapor 

resulting from the stripping steam.   

 The cold rich bypass recovers the rest of the stripping steam heat by providing a low 

temperature heat sink while avoiding CO2 re-absorption. 

 The advanced flash stripper overcomes the weaknesses of lean vapor compression and 

almost eliminates the lost work of the condenser.  The cold and warm rich bypasses 

also make the cross exchanger more reversible by balancing the flow heat capacity 

between the rich and lean streams. 
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 The advanced flash stripper reduces the reboiler duty by 16.1% and the total 

equivalent work by 11.2% compared to the simple stripper. 

 The advanced flash stripper reaches a remarkable thermodynamic efficiency at 55–

74% over a range of operating lean loading.   

 The regeneration process is close to a reversible operation compared to common 

distillation.  Further improvement of energy efficiency is expected to be limited. 
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Chapter 4: Energy Performance of Advanced Stripper Configurations 

4.1 INTRODUCTION 

The irreversibility of the condenser has been identified as the major reason that 

makes the amine scrubbing process inefficient and is responsible for over 50% of the lost 

work in the regeneration process.  Several alternative stripper configurations have been 

proposed to reduce the stripping steam heat loss.  The configurations mainly applied two 

approaches: heat integration and isothermal stripping.  Table 4.1 summarizes the 

alternative stripper configurations proposed by previous work. 

The heat integration approach uses the latent heat of the stripping steam to preheat 

the rich solvent, which needs to be heated from the absorber temperature up to the reboiler 

temperature at 120–150 °C.  Representative configurations include rich solvent bypass, 

interheated stripper, and vapor recompression.  The rich solvent bypass extracts a portion 

of rich solvent to be contacted with the hot CO2 vapor in the stripper, where the stripping 

steam is condensed with releasing the latent heat.  The interheated stripper integrates the 

lean/rich cross exchanger into the stripper column and results in a colder stripper feed than 

the conventional simple stripper.  Vapor recompression applies the heat integration 

strategy that has been used for conventional distillation.  The hot CO2 vapor with steam 

from the stripper is compressed by a multi-stage compressor to elevate the condensing 

temperature of the stripping steam.  A part of reboiler duty can be provided by the heat 

integration with the compressor intercoolers.  Most of the waste heat is obtained from the 

latent heat of water vapor so the energy improvement will be limited if the stripping steam 

has been already recovered by other approaches before entering the compressor train. 

Isothermal stripping aims at regenerating CO2 at the highest temperature possible 

throughout the stripping process.  The maximum stripping temperature is usually limited 

by the thermal degradation of the amine.  When the CO2 is stripped from rich loading to 
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lean loading, operating the stripper isothermally will lead to the highest partial pressure of 

CO2, which can improve the selectivity of CO2 over stripping steam and reduce the 

mechanical compression work.  The overall performance will depend on the efficiencies 

of thermal compression and mechanical compression.  The multi-pressure stripper 

integrates the CO2 compressor with the stripper column and operates at different pressure 

levels.  Additional compression work is required to compress the stripping steam.  The 

matrix stripper and the multi-stage flash attain high stripper pressure by providing reboiler 

duty at each stage instead compressing the CO2 vapor.  Theoretically, an isothermal 

stripper can be achieved if infinite stages are used. 

Table 4.1: Alternative stripper configurations proposed to reduce stripping steam heat 

Type Configuration Sources 

Heat integration 

Rich solvent bypass 

(Eisenberg et al., 1979) 

(Soave et al., 2002) 

(Van Wagener et al., 2014) 

(Madan, 2013) 

Interheated stripper 

(Leites et al., 1993) 

(Oyenekan et al., 2007) 

(Van Wagener et al., 2011) 

Vapor recompression (Jassim et al., 2006) 

Isothermal stripping 

Multi-pressure stripper 
(Jassim et al., 2006) 

(Oyenekan et al., 2007) 

Lean vapor compression 
(Ebnson et al., 1979) 

(Reddy et al., 2009) 

Matrix stripper (Oyenekan et al., 2007) 

Multi-stage flash (Van Wagener et al., 2011) 

This work propose new configurations that apply rich exchanger bypass.  The 

energy performance will be compared to other alternatives previously proposed using the 
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same metric.  In order to show the improvement with different solvent properties, the 

stripper configurations will be modeled using two common solvents, PZ and MEA in 

Aspen Plus® .  The overall energy performance will be indicated by the total equivalent 

work in a wide range of operating lean loading. 

4.2 SIMULATION METHODS 

8 m PZ and 9 m MEA were chosen as solvents.  The thermodynamic models used 

for MEA and PZ in this work were “Phoenix” and “Independence”, respectively.  

Modeling details can be found in Frailie (2014) and Plaza (2011).  These models have 

been regressed in Aspen Plus®  with experimental data including amine volatility, heat 

capacity, CO2 solubility, and amine pKa over a range of amine concentration and CO2 

loading.   

4.2.1 Modeling stripper with updated MEA model 

Van Wagener (2011) predicted the stripper performance for 9 m MEA using the 

thermodynamic model developed by Hilliard (Hilliard, 2008).  The Hilliard model tends 

to overestimate the partial pressure of CO2 (P
*
CO2) as amine concentration and temperature 

increase.  The error can have significant effect on predicting the stripper pressure and the 

overall energy performance.  “Phoenix” is an updated model that has fixed the problem 

and was regressed by including more high temperature data.  It showed an adequate fit 

that matches experimental data and can predict the partial pressure of CO2 over the 

temperature range from 40 to 160 °C (Plaza, 2011).  Figure 4.1 compares the partial 

pressure of CO2 predicted by the two models.  The predicted P*
CO2 by the Hilliard model 

is almost twice that predicted by the Phoenix model at 120 °C where the stripper is typically 

operated for MEA.  The stripper pressure at 120 °C can be over-predicted by 1 to 4 bar in 

the lean loading range as shown in Figure 4.2.  The over-prediction of P*
CO2 not only 
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underestimated the compression work and the stripping steam heat but also misjudged the 

optimum lean loading.  This work will demonstrate the energy performance of alternative 

strippers with an updated model for MEA. 

 

Figure 4.1: CO2 partial pressure predicted by Hilliard model (dashed line) and Phoenix 

model (solid line). 
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Figure 4.2: Over-predicted stripper pressure by Hilliard model at 120 °C. 

4.2.2 Stripping steam for PZ and MEA 

The amount of stripping steam generated will be determined by the vapor-liquid 

equilibrium between CO2, water, and amine at high temperature.  Figure 4.1 shows the 

mole fraction of CO2 in the vapor phase at stripper temperature predicted by Aspen 

models® .  The vapor phase consists of CO2 and steam since amine is relatively less 

volatile and its mole fraction is lower than 1%.  The CO2 product coming up from the 

reboiler will contain 20–80% stripping steam before being counter-currently contacted 

with solvent in the stripper. 

As indicated by Equation 1.4, the selectivity of CO2 and steam can be improved by 
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operated at 120 °C, it still provides a relatively higher CO2 mole fraction than PZ at 150 

°C since it has a higher heat of absorption.  Operating at a higher lean loading will 

significantly reduce the stripping steam but the lean loading also has impact on other 

contributors to energy use.  Exploring optimum lean loading that minimizes the total 

equivalent work will compromise between these energy tradeoffs. 

𝑃𝐶𝑂2
∗(𝑇)

𝑃𝐻2𝑂
∗(𝑇)

=
𝑃𝐻2𝑂

∗(𝑇𝑟𝑒𝑓)

𝑃𝐶𝑂2
∗(𝑇𝑟𝑒𝑓)

𝑒𝑥𝑝 [(
∆𝐻𝑎𝑏𝑠−∆𝐻𝑣𝑎𝑝

𝑅
) (

1

𝑇𝑟𝑒𝑓
−

1

𝑇
)]         (1.4) 

 

Figure 4.3: CO2 mole fraction in the vapor phase with varied lean loading predicted by 

Independence for PZ and Phoenix for MEA. 

4.2.3 Process specifications 

Process specifications used in the simulations are shown in Table 4.2.  Because 

the absorber was not simulated, typical rich solvent conditions including rich loading and 

0

0.2

0.4

0.6

0.8

1

50 500

y
C

O
2

Lean solvent P*
CO2 at 40 °C (Pa)

8 m PZ
(120 °C)

8 m PZ
(150 °C)

9 m MEA
(120 °C)

9 m MEA
(150 °C)



 63 

temperature were fixed as constants.  The total packing height in the stripper is fixed at 2 

m except for the configurations with two packing sections where 1 m is used for each 

section.  The Bravo Correlation was used to calculate the mass transfer coefficient and 

interfacial area of the packing in the stripper (Bravo et al., 1985).  Rich solvent was set at 

46 °C with CO2 loading (mol CO2/mol alkalinity) of 0.5 for MEA and 0.4 for PZ according 

to typical results with an intercooled absorber (Plaza, 2011).    

Reboiler temperature involves the tradeoff between energy efficiency and 

degradation rate.  A reasonable compromise of 150 °C for PZ and 120 °C for MEA was 

used (Davis, 2009; Freeman, 2011).  The steam temperatures used to calculate the 

equivalent work were 155 °C and 125 °C for PZ and MEA, respectively assuming a 5 K 

temperature approach. 

The LMTD of the heat exchanger was calculated rigorously as described in Chapter 

2. For the cross exchanger and the interheated exchanger, the LMTD was specified as 5 K.  

For the cold rich exchanger, which has poorer heat transfer between vapor and liquid, the 

LMTD was set at 20 K. 
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Table 4.2: Process simulation specifications. 

Solvent 8 m PZ 9 m MEA 

Process modeling tool Aspen Plus®  v7.3 

Thermodynamic model Independence Phoenix 

Rich loading 

(mol CO2/mol alkalinity) 
0.40 0.50 

Reboiler T (°C) 150 120 

Steam T (°C) 155 125 

Stripper packing 2 m Mellapak 250X 

Correction factor for 

packing interfacial area 
1 

Rich solvent T (°C) 46 

Cross exchanger LMTD (K) 5 

Cold rich exchanger LMTD (K) 20 

Interheated exchanger LMTD (K) 5 

4.3 PROCESS DESCRIPTIONS 

4.3.1 Simple stripper 

The simple stripper shown in Figure 4.4 is the base case.  The rich solvent is 

preheated in the cross exchanger and then sent to the top of stripper.  The hot lean solvent 

from the reboiler is returned to the absorber through the cross exchanger.  The hot CO2 

rich vapor from the top of stripper is cooled to 40 °C in the overhead condenser with loss 

of the latent heat of the excess water vapor. 
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Figure 4.4: Simple stripper. 

4.3.2 Conventional alternatives 

4.3.2.1 Lean vapor compression (LVC) 

The lean vapor compression (Figure 4.5) can reduce the stripping steam heat by 

operating the stripper at a higher pressure at a given lean loading compared to the simple 

stripper.  The hot lean solvent is flashed in a flash tank at lower pressure.  The flashed 

vapor is then pressurized by the lean vapor compressor, and sent to the bottom of the 

packing section in the stripper.  The stripper serves as a direct contact cooler that recovers 

the latent heat of steam by a cooler stripper feed.  The lean vapor compression was 

demonstrated in pilot plant tests and showed the savings of reboiler duty can be up to 20% 

(Knudsen et al., 2011).   

In this work the pressure ratio of the lean vapor compressor for each lean loading 

will be optimized to minimize the total equivalent work.  With a high pressure ratio, less 

stripping steam heat will be lost in the higher pressure stripper but the lean vapor 
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compression work will increase.  The additional lean vapor compression work will be 

included in the total equivalent work. 
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Figure 4.5: Lean vapor compression. 

4.3.2.2 Interheated stripper 

The interheated stripper was proposed by Leites (1993) and has been studied by 

Rochelle et al. (Oyenekan et al., 2007; Van Wagener et al., 2011).  All the solvent is 

extracted from the middle of stripper, heated by the hot lean solvent in the interheated 

exchanger, and sent back to next section of the stripper.  Van Wagener showed that the 

interheated stripper offers the best energy savings among several alternatives including 

two-stage flash, double matrix, and multi-pressure using MEA and PZ.     
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Figure 4.6: Interheated stripper. 

4.3.2.3 Cold rich bypass 

Figure 4.7 shows the simple stripper with cold rich bypass.  A portion of the cold 

rich solvent is bypassed and sent to the top of the stripper without being heated by the cross 

exchanger.  The bypassed solvent will be preheated in the stripper by condensing the 

stripping steam out of the CO2 vapor.  A pilot plant test in UT Austin applied the cold 

rich bypass to a two-stage flash stripper and showed over 20% of heat duty reduction 

(Madan et al., 2013).  The concept can be extended by extracting the rich solvent at 

different temperature levels and feeding into appropriate locations in the stripper to match 

the heat and mass transfer driving force.  In theory the stripper column can approach 

reversible operation if infinite feeds of rich solvent are applied.  However, a diminishing 

return of energy savings was observed with an increasing number of bypasses and more 

stripper packing is required to fully realize the benefits (Madan, 2013).   
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Figure 4.7: Simple stripper with cold rich bypass. 

4.3.3 Rich exchanger bypass strategy 

4.3.3.1 Simple stripper with rich exchanger bypass 

The rich exchanger bypass strategy is proposed in this work to improve the cold 

rich bypass configuration by avoiding CO2 re-absorption in the stripper.  Figure 4.8 shows 

the simple stripper with rich exchanger bypass.  An exchanger is used to recover the 

stripping steam heat instead direct contacting with the CO2 vapor in the stripper.  After 

being heated, the bypass rich solvent is mixed with the hot rich solvent and fed to the top 

of the stripper.  The cold rich bypass rate will be optimized with a minimum total 

equivalent work. 
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Figure 4.8: Simple stripper with cold rich exchanger bypass. 

4.3.3.2 Advanced reboiled stripper (ARS) 

Figure 4.7 shows the advanced reboiled stripper proposed in this work.  A 

combination of the rich exchanger bypass and the warm rich bypass is applied.  The warm 

rich bypass is drawn from the cross heat exchanger and fed to the top of stripper.  The 

temperature was selected as the bubble point temperature, which will maximize the 

equilibrium partial pressure of CO2 and increase the mass transfer driving force for CO2 

and water transfer.  The cold rich solvent serves as a low temperature heat sink to recover 

the rest of the stripping steam heat while avoiding CO2 re-absorption.  As discussed in 

Chapter 3, the cold and warm rich bypass also help relax the temperature pinch in the cross 

exchanger.   

The combination of cold and warm rich bypass is expected to work more 

efficiently.  The optimized cold and warm rich bypass rate will maximize the potential 

benefits from the stripping steam heat recovery, the CO2 stripping performance in the 

stripper column, and the cross exchanger performance.    
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Figure 4.9: Advanced reboiled stripper (ARS). 

4.3.3.3 Advanced flash stripper (AFS) 

In the advanced flash stripper (Figure 4.10), the reboiler is replaced by a convective 

steam heater in order to minimize the residence time at higher temperature, where the 

amine tends to thermally degrade the most.  The rich solvent will be heated by the steam 

heater and the vapor and liquid will be separated in the stripper sump.  The separated 

vapor will go up along the stripper and counter-currently contacted with the warm rich 

bypass while condensing stripping steam. 



 71 

Cold rich Bypass

Cold rich 
exchanger

Warm rich Bypass

Cold cross 
exchanger

Hot cross 
exchanger

Condenser

Absorber

Flue gas
12% CO2

Vented gas

Steam heater

Stripper

Multi-stage
compressor

CO2

150 bar
n

Condensate

Trim cooler

Rich solvent

Lean solvent

 

Figure 4.10: Advanced flash stripper (AFS). 

4.4 RESULTS AND DISCUSSIONS 

4.4.1 Tradeoffs of optimum lean loading  

Figures 4.11 and 4.12 compare the total equivalent work of alternative strippers at 

varied lean loading using 8 m PZ and 9 m MEA, respectively.  The optimum lean loading 

is around 0.28–0.30 for PZ and 0.36–0.38 for MEA.  Results at optimum lean loading are 

summarized in Tables 4.3 and 4.4.   

The lean loading is one of the most important operating parameters that affect the 

energy performance.  As lean loading varies, energy tradeoffs involve the stripping steam 

heat, sensible heat, compression work, and pump work.  Since the rich loading is constant 

in the simulations, the difference between the lean and the rich loading determines the 

cyclic capacity and the solvent circulation rate.  Higher lean loading can reduce the 

stripping steam heat and the compression work by enhancing the partial pressure of CO2, 

but the sensible heat increases due to reduced solvent capacity. 
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4.4.2 Energy performance of conventional alternatives 

  The conventional alternatives including the lean vapor compression, the cold rich 

bypass, and the interheated stripper provide 4–7% energy savings compared to the simple 

stripper.  The improvement is limited at higher loading because the stripping steam is 

suppressed by higher partial pressure of CO2.  The interheated stripper has the best 

performance among the conventional alternatives previously proposed.  Since a portion 

of the sensible heat from the hot lean solvent is already recovered in the interheated 

exchanger, the stripper feed becomes colder and results in a similar effect of warm rich 

bypass, which reduces the flashing at the top of the stripper. 

 

Figure 4.11: Comparison of total equivalent work of alternative strippers using 8 m PZ; 

rich loading: 0.4; cross exchanger ΔTLM: 5 K; 2 m packing; correction for 

interfacial area: 1; reboiler T: 150 °C; optimum pressure ratio for LVC; 

optimum bypass rates. 
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Figure 4.12: Comparison of total equivalent work of alternative strippers using 9 m 

MEA; rich loading: 0.5; cross exchanger ΔTLM: 5 K; 2 m packing; 

correction for interfacial area: 1; reboiler T: 120 °C; optimum bypass rates. 
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Table 4.3: Optimum results for 8 m PZ; rich loading: 0.4; cross exchanger ΔTLM: 5 K; 2 

m packing; correction for interfacial area: 1; reboiler T: 150 °C; optimum 

pressure ratio for LVC; optimum bypass rates. 

 Opt. ldg 

(mol/mol)  

Pstrp 

(bar)  

CBPS 

(%)  

WBPS 

(%)  

Energy (kJ/mol CO2) 

 Qreb Wheat Wcomp Weq 

Simple stripper 0.30 8.6 - - 105 25.4 7.4 34.0 

LVC 0.30 8.6 - - 98 23.6 7.7 32.5 

Cold rich BPS 0.30 8.6 5 - 96 23.2 7.4 31.8 

Interheated stripper 0.28 7.4 - - 94 22.7 7.9 31.5 

Rich Ex. BPS 0.30 8.6 7 - 94 22.7 7.4 31.3 

ARS 0.28 7.4 6 15 89 21.5 7.9 30.2 

AFS 0.28 7.4 6 20 89 21.6 7.9 30.3 

 

Table 4.4: Optimum results for 9 m MEA; rich loading: 0.5; cross exchanger ΔTLM: 5 K; 

2 m packing; correction for interfacial area: 1; reboiler T: 120 °C; optimum 

bypass rates. 

 Opt. ldg 

(mol/mol)  

Pstrp 

(bar)  

CBPS 

(%)  

WBPS 

(%)  

Energy (kJ/mol CO2) 

 Qreb Wheat Wcomp Weq 

Simple stripper 0.38 3.0 - - 144 27.7 11.0 39.2 

Interheated stripper 0.38 3.0 - - 134 25.7 11.0 37.2 

Rich Ex. BPS 0.38 3.0 10 - 136 26.0 11.0 37.5 

ARS 0.36 2.8 8 24 129 24.7 11.3 36.4 

AFS 0.36 2.8 7 24 129 24.9 11.3 36.5 

4.4.3 Rich exchanger bypass 

The drawback of the cold rich bypass is that the CO2 has potential to be re-absorbed 

back to the solvent since the partial pressure of CO2 at the cold rich temperature is low.  

Figure 4.13 shows the McCabe-Thiele plot of the stripper using the cold rich bypass.  The 
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CO2 loading increases from the rich loading at 0.4 to 0.44 at the top by absorbing CO2 from 

the vapor.  The highlighted area indicates the re-absorption region where the CO2 transfer 

is from vapor to solvent.  Then the CO2 loading gradually reduces to the specified lean 

loading 0.28 at the bottom.  Additional heat duty is required to regenerate the CO2 that 

was unnecessarily re-absorbed.  The rich exchanger bypass addresses the problem while 

still providing an adequate heat sink for heat recovery.   

Herrin proposed to use a heat exchanger to preheat the hot rich solvent by the 

overhead vapor (Herrin, 1989).  However, rich solvent at high temperature does not have 

the issue of CO2 re-absorption.  Feeding the hot rich solvent into the stripper should give 

a better energy performance since the CO2 can be stripped at the same time while the 

stripping steam is condensed.  The cold rich solvent is a better candidate to recover the 

stripping steam heat using a heat exchanger.  
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Figure 4.13: McCabe-Thiele plot of cold rich bypass configuration using 8 m PZ; rich 

loading: 0.5; lean loading; 0.28; cross exchanger ΔTLM: 5 K; 2 m packing; 

correction for interfacial area: 1; reboiler T: 150 °C; optimum bypass rates. 

The cold rich exchanger bypass shows 2–4% less total equivalent work compared 

the cold rich bypass using PZ.  It should be noted that the performance of the heat 

recovery depends on the specified cold rich exchanger LMTD and stripper packing height.  

The reboiler duty can be reduced with a smaller temperature approach or more packing by 

increasing heat transfer area.  An optimum design should be determined by economic 

analysis that considers the capital cost and energy cost together.  
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4.4.4 Advanced reboiled/flash stripper 

The proposed advanced reboiled/flash stripper gives the best energy performance 

among all the alternatives.  The heat duty/total equivalent work is reduced by 15%/11% 

and 10%/7%, respectively for PZ and MEA at optimum lean loading.  The ARS is slightly 

better than the AFS since it contains an extra stripper feed, which makes the stripper operate 

more counter-currently.  The difference of the total equivalent work is around 1%.   

The steam temperature was assumed as 155 °C for PZ in the equivalent work 

calculation for the AFS.  However, the actual steam temperature will depend on the actual 

solvent temperature in the steam heater.  Since 150 °C was specified at the stripper sump, 

where the hot rich solvent and solvent bypass mix, the solvent temperature at the steam 

heater outlet must exceed 150 °C.  Adjusted steam temperature that takes account of the 

actual operating temperature of the steam heater is calculated.   

Table 4.5 shows the adjusted steam temperature needed to satisfy a 5 K LMTD and 

compares the total equivalent work that calculated by assumed steam temperature (155 °C ) 

and by adjusted steam temperature.  When the bypass rate becomes higher as lean loading 

decreases, the main rich solvent stream needs to be heated to a higher temperature by the 

steam heater to achieve 150 °C at the stripper sump.  The adjusted steam temperature is 

153–157 °C in the lean loading range and results in less than 1% difference of total 

equivalent work. 
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Table 4.5: Adjusted steam temperature and total equivalent work for AFS using 8 m PZ; 

rich loading: 0.4; cross exchanger ΔTLM: 5 K; 2 m packing; correction for 

interfacial area: 1; reboiler T: 150 °C; optimum bypass rates. 

Lean loading 0.20 0.24 0.28 0.32 

Total bypass rate (%) 61 44 26 14 

Solvent T in 

(°C) 
145 142 141 141 

Solvent T out 

(°C) 
155 154 153 151 

Adjusted steam T 

(°C) 
157 155 154 153 

Weq at Tstm=155 °C 

(kJ/mol CO2) 
32.2 31.0 30.4 31.4 

Weq at adjusted Tstm 

(kJ/mol CO2) 
32.5 31.0 30.3 31.1 

4.4.5 Effect of packing height 

The sensitivity of stripper packing height is tested for the simple stripper and the 

AFS in Figure 4.14.  The AFS can obtain more energy savings by increasing packing 

height than the simple stripper.  Increasing the stripper packing height enhances the 

stripper performance and leads to less cold rich bypass.  Little energy reduction is 

obtained as the packing height increases from 5 to 10 m, which implies the driving force 

in the stripper is almost pinched.  The advanced reboiled/flash stripper with two 

adjustable bypasses is a flexible system that can maximize energy performance at various 

design specifications and operating conditions.   
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Figure 4.14: Total equivalent work with varied stripping packing height using 8 m PZ; 

rich loading: 0.4; cross exchanger ΔTLM: 5 K; correction for interfacial area: 

1; reboiler T: 150 °C; optimum bypass rates.   

4.4.6 Effect of warm rich bypass temperature  

A sensitivity analysis of the warm rich bypass temperature is tested in Figure 4.15.  

The base case is at bubble point and two other testing cases were specified at 5 K and 10 

K subcooling.  The bypass rates were optimized for each case.  In real operations, the 

temperature will be determined by the cross exchanger performance.  A colder stripper 

feed might result in CO2 re-absorption.  However, since the warm rich bypass is mixed 

with the cold rich bypass before entering the stripper, the AFS has the degree of freedom 

to self-adjust the actual feed temperature by the mixing ratio and reduces the impact of re-
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absorption.  The total equivalent work at bubble point outperforms the subcooling cases 

at lower lean loading but the difference is less than 3%. 

 

Figure 4.15: Total equivalent work with varied warm rich bypass temperature using 8 m 

PZ; rich loading: 0.4; cross exchanger ΔTLM: 5 K; 2 m packing; correction 

for interfacial area: 1; reboiler T: 150 °C; optimum bypass rates.   

4.5 OVERALL COMPARISONS 

Figure 4.16 compares the the total equivalent work of simple stripper, conventaionl 

stripper alternatives and the AFS, and the ARS proposed in this work.  Most the 

configurations target at reducing stripping steam heat but using different ways.  A major 

reduction can be seen between the simple stripper and any alternatives.  The AFS and the 

ARS provide another break through.  The ARS that has an additional stripper feed can 

give additional improvement but is marginal.  The diminishing returns suggests that 

30

31

32

33

34

35

0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34

W
e

q
(k

J/
m

o
l 

C
O

2
)

Lean loading (mol CO2/mol alkalinity)

AFS
(Warm BPS@Tbp)

AFS
(Warm BPS@Tbp -10 K)

AFS 
(Warm BPS@Tbp -5 K)



 81 

further improvement by process modifications will be limited.  Overall, the AFS reduces 

the total equivalent work by 13% using 8 m PZ. 

 

Figure 4.16: Total equivalent work of alternative stripper configurations; 8 m PZ; lean 

loading: 0.26; rich loading: 0.4; cross exchanger ΔTLM: 5 K; 2 m packing; 

correction for interfacial area: 1; reboiler T: 150 °C; optimum bypass rates.   

4.6 CONCLUSIONS 

 The cold rich bypass configuration was improved by the rich exchanger bypass to 

avoid CO2 re-absorption using a heat exchanger. 

 Compared to other alternative strippers that have been proposed to reduce the 

stripping steam heat, the advanced reboiled/flash stripper provides the best energy 
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performance.  It uses 11% less total equivalent work with 8 m PZ and 7% less with 

9 m MEA compared to the simple stripper.   

 The optimum lean loading that minimizes the total equivalent work is 0.28–0.30 for 

8 m PZ and 0.36–0.38 for 9 m MEA at constant rich loading.  The energy 

improvement is more significant at lower lean loading where the stripping steam is 

excessive. 

 The AFS needs to use a relatively higher steam temperature than the ARS when the 

bypass rate is high but the impact on the total equivalent work is less than 1% in a 

typical lean loading range. 
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Chapter 5: Pilot Plant Test of the AFS 

5.1 INTRODUCTION 

Pilot plant tests for advanced solvents and configurations are crucial as 

steppingstones to commercial-scale plants.  Several studies have tested new solvents in 

pilot-scale experiments and show over 10% energy reduction compared to the standard 

solvent, 30 wt % MEA (Bumb et al., 2014; Knudsen et al., 2009; Mangalapally et al., 2012; 

Nakamura et al., 2014; Ohashi et al., 2011).  Aqueous PZ has been considered a new 

standard solvent with twice the absorption rate and greater CO2 capacity than MEA 

(Rochelle et al., 2011).    PZ has the potential to minimize the energy requirement and 

environmental impact of CO2 capture.  8 m PZ has been tested at the Separations Research 

Program (SRP) of The University of Texas at Austin (UT Austin) (E. Chen et al., 2013; 

Plaza et al., 2013; Van Wagener et al., 2013) and the Tarong CO2 capture pilot plant in 

Australia (Cousins et al., 2015).  The lowest reboiler duty in the Tarong test was 2.9 

GJ/tonne CO2, 15% lower than 30 wt % MEA using the same facility.  The EVN power 

plant in Austria using 7 m PZ found 14% heat duty savings (Rabensteiner et al., 2015).  5 

m PZ (30 wt %) has sparked interest since it has a wider solid solubility window, lower 

viscosity, and greater rate of CO2 absorption than 8 m PZ (E. Chen et al., 2014).  5 m PZ 

has potential to be used at an over-stripping lean loading that gives greater CO2 absorption 

rate, mass transfer driving force, and cyclic CO2 capacity.  

Previous work on alternative stripper configurations focused on process 

development evaluated by computational simulations but such configurations have rarely 

been demonstrated in pilot-scale experiments.  The lean vapor compression and the 

interheated stripper have been applied in pilot plants using 30 wt % MEA with heat duty 

of 2.9–3.5 GJ/tonne CO2 (Knudsen et al., 2011; Stec et al., 2015).  UT Austin 
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demonstrated the two-stage flash with cold rich solvent bypass in 2011 and the heat duty 

was 2.7 GJ/tonne CO2 using 8 m PZ (Madan et al., 2013).   

Chapter 3 has shown that the advanced flash stripper (AFS) can effectively recover 

most of the stripping steam heat loss.  A lower rich solvent flow rate in the cross 

exchanger will also help balance the flow heat capacity between the lean and the rich 

solvent, and relieve the temperature pinch.  The improvement of energy performance 

comes from reducing the irreversibility in the overhead condenser, the stripper, and the 

cross exchanger. 

The first pilot plant test of the AFS was carried out at UT Austin in March 2015, 

and lasted 3 weeks.  The objectives of this campaign were to demonstrate reliable 

operation and energy performance using PZ.  This work will present and interpret the 

pilot plant results.  The “Independence” model for PZ developed by Frailie (Frailie, 2014) 

will be validated using pilot plant data and used to explore the optimum design and 

operating conditions.   

5.2 OVERVIEW OF SRP PILOT PLANT 

The CO2 capture pilot plant is located at the Pickle Research Campus in north 

Austin, Texas.  The integrated absorption and stripping process treats synthetic flue gas 

equivalent to a 0.1–0.2 MW coal-fired power plant, capturing around 3 tonne CO2/day.  A 

simplified flowsheet is shown in Figure 5.1.   

The flue gas was synthesized by mixing air with the CO2 recycled from the stripper 

overhead.  The CO2 inlet concentration is controlled by adjusting a CO2 makeup flow 

rate.  The absorber is packed with 6 meters of Raschig Super-Pak (RSP-250) structured 

packing divided into two beds.  The solvent is intercooled between the two beds with the 

flexibility to turn the cooling on and off.  The CO2-rich solvent from the absorber is 
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pressurized by the rich solvent pump, preheated in the cross exchangers, and further heated 

in two steam heaters in series.  The vapor and liquid are then separated in the flash tank.  

The CO2 lean solvent is sent back to the absorber after being cooled in the cross exchangers 

and the trim cooler.   
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Figure 5.1: SRP CO2 capture pilot plant with advanced flash stripper. 

Two bypasses are extracted from the rich solvent, the cold rich bypass and the warm 

rich bypass.  The cold rich bypass is preheated in the cold rich exchanger by the hot vapor 

from the stripper.  The warm rich solvent is extracted between the warm and hot cross 

exchangers, mixed with the heated cold rich bypass, and sent to the top of the stripper.  

The warm rich solvent is counter-currently contacted with the vapor in the stripper, which 

is packed with 2 m of Raschig Super-Ring No. 0.3 (RSR no. 0.3) random packing.  The 

rich solvent will condense a portion of water vapor from the CO2 in the stripper and recover 

the latent heat since the inlet solvent temperature at the top is lower than a conventional 

simple stripper.  Table 5.1 summarizes the column design and the operating conditions. 
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Table 5.1: Summary of column design and operating conditions. 

Column design 

Absorber diameter (m) 0.43 

Absorber packing type/height (m) RSP-250/6.1 

Stripper diameter (m) 0.15 

Stripper packing type/height (m) RSR no. 0.3/2 

Operating conditions 

CO2 in flue gas (%) 6 and 12 

PZ (molality) 5 and 8 

Flue gas rate (kg/hr) 1700–3500 

Solvent rate (kg/hr) 700–1100 

L/G (kg/kg) 2.3–4.9 

Capture rate (%) 68–97 

Stripper T (ºC) 135–149 

Stripper P (bara) 4.2–7.0 

Rich loading (mol CO2/mol alkalinity) 0.20–0.27 

Lean loading (mol CO2/mol alkalinity) 0.35–0.41 

The 3-week 2015 campaign included 17 runs with 5 m PZ and 4 runs with 8 m PZ.  

The test matrix is shown in Table 5.2, which included variations of flue gas rate, solvent 

flow rate, stripper temperature, stripper pressure, bypass rate, and intercooling on/off.  

The CO2 concentration of the synthetic flue gas was controlled at 12% by manipulating the 

CO2 make up flow, except in Run 19 which was at 6%.  The flue gas to solvent ratio is 

2.9–4.3 (kg/kg) and the CO2 capture rate is 68–97%.  The CO2 lean loading was varied 

by manipulating the stripper pressure while the flash tank temperature was automatically 

controlled by adjusting the steam rate.  The absorber performance determined the CO2 

rich loading, which directly affected the energy performance.     
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Table 5.2: 2015 SRP Pilot plant operating conditions using the AFS and PZ. 

Run 
PZ 

(m) 

Flue gas rate 

(kg/hr) 

Solvent rate 

(kg/hr) 

Capture 

rate (%) 

Cold BPS  

ratio (%) 

Warm BPS  

ratio (%) 

Pstrp 

(bar) 

Tstrp 

(°C) 

1 4.7 749 2265 85 8 38 4.2 140 

2 4.9 744 2489 97 7 30 4.2 140 

3 4.9 728 2491 94 10 37 5.9 149 

4 4.9 753 2490 94 10 32 5.9 149 

5 5.0 752 2491 94 10 32 5.9 149 

6 5.0 730 2957 89 7 23 5.9 145 

7 5.3 726 3442 80 6 19 5.9 145 

8 5.1 736 3443 96 8 19 5.9 145 

9 5.1 1042 3442 80 8 19 5.9 145 

10 5.0 1059 3168 87 11 19 5.9 149 

11 5.0 732 2262 89 10 31 5.9 149 

12 4.9 730 3441 94 7 18 5.9 145 

13 7.4 1039 3507 68 7 18 5.9 145 

14 8.0 1041 3539 75 8 17 5.9 145 

15 7.8 719 3534 93 8 17 5.9 145 

16 8.0 740 2574 91 8 21 6.5 149 

17 5.0 716 2482 93 11 28 6.0 149 

18 5.0 717 2485 96 0 29 6.0 148 

19 5.0 733 1721 92 6 41 4.2 135 

20 4.9 737 2080 84 13 33 5.7 149 

21 4.9 759 2507 75 5 23 7.0 149 
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The steady-state value of each operating condition was determined as the average 

over a 30-minute period.  Lean and rich solvent samples were taken in each run.  PZ was 

determined by manual acid titration of the lean solvent.  Total CO2 in the solvent was 

determined by manual titration in methanol and by estimation from on-line density 

measurements using the correlation developed by Freeman (Freeman et al., 2011).  The 

second method shows more consistent lean loading at the same stripper temperature and 

pressure throughout the campaign and also gives better CO2 mass balance closure (see 

Section 5.3.1).  The density-predicted CO2 loading is considered more reliable and will 

be used in this analysis as the measured CO2 loading. 

5.3 PILOT PLANT RESULTS 

5.3.1 Material balance 

The CO2 mass balance around the stripper can be quantified by comparing the CO2 

regenerated on the gas side and the liquid side.  The CO2 regenerated on the gas side was 

measured from the stripper overhead.  The CO2 regenerated on the liquid side (ṁCO2,L) 

was calculated using Equation 5.1, which depends on the mass flow rate (ṁrich, ṁlean) and 

the CO2 mass fraction (xCO2,rich , xCO2,lean) of the lean and the rich solvent.  Figure 5.2 

shows a good CO2 balance closure throughout the campaign with a 2.2% average error. 

𝑚̇𝐶𝑂2,𝐿 = 𝑚̇𝑟𝑖𝑐ℎ𝑥𝐶𝑂2,𝑟𝑖𝑐ℎ − 𝑚̇𝑙𝑒𝑎𝑛𝑥𝐶𝑂2,𝑙𝑒𝑎𝑛              (5.1) 
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Figure 5.2: CO2 mass balance around the stripping process; average error: 2.2%. 

5.3.2 Enthalpy balance and heat loss 

The enthalpy balance can be calculated around the stripping process including two 

cross exchangers, the steam heater, the stripper, the flash tank, the cold rich exchanger, the 

condenser, and the condensate separator.  The material streams across the boundary 

include the rich solvent entering the cold cross exchanger, the lean solvent leaving the cold 

cross exchanger, the CO2 vapor, and the condensate leaving the condensate separator.  

The enthalpy of the material streams were obtained from the Independence model for PZ, 

which provides the predictions of heat capacity and heat of CO2 absorption at measured 

temperature, pressure, and composition.  Heat input and output include the steam heater 
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calculated using the heating steam flow rate and the evaporated enthalpy at measured steam 

temperature and pressure.  The condenser cooling duty was calculated from the cooling 

water flow rate and the temperature at the inlet and outlet of the condenser.  The heat loss 

can be calculated by enthalpy balance using Equation 5.2 for each run.   

𝑄̇𝑙𝑜𝑠𝑠 = (𝐻̇𝑟𝑖𝑐ℎ − 𝐻̇𝑙𝑒𝑎𝑛 − 𝐻̇𝐶𝑂2
− 𝐻̇𝐻2𝑂) + 𝑄̇𝑠𝑡𝑚 − 𝑄̇𝑐𝑜𝑛𝑑       (5.2) 

where: 

𝐻̇𝑟𝑖𝑐ℎ: enthalpy of the rich solvent entering the cold cross exchanger 

𝐻̇𝑙𝑒𝑎𝑛: enthalpy of the lean solvent leaving the cold cross exchanger 

𝐻̇𝐶𝑂2
: enthalpy of the CO2 leaving the condensate separator 

𝐻̇𝐻2𝑂: enthalpy of the condensate leaving the separator 

𝑄̇𝑠𝑡𝑚: measured steam heater duty 

𝑄̇𝑐𝑜𝑛𝑑: measured condenser cooling duty 

The calculated heat loss can be correlated with the temperature gradient between 

the flash tank temperature (Th) and the ambient temperature (Tamb) using Equation 5.3.  

The heat loss constant, Chloss, represents the product of the exposed area and the overall 

heat transfer coefficient of heat loss.  The average Chloss of 21 runs is 102.7 W/K with 

7.5% standard deviation.  The heat loss was also calculated in the pre-start up test with 

water before the campaign.  The average Chloss during the water test is 100.8 W/K.  The 

consistent heat loss constant of the amine and the water system assures the validity of the 

calculated heat loss.  

𝑄̇𝑙𝑜𝑠𝑠 = 𝐶ℎ𝑙𝑜𝑠𝑠(𝑇ℎ − 𝑇𝑎𝑚𝑏)                    (5.3) 

5.3.3 Energy performance 

The process heat duty is obtained by subtracting the heat loss from the measured 

steam heater duty.  Figure 5.3 shows the heat loss and the process heat duty.  The process 



 91 

heat duty of the AFS is 2.1–3.0 GJ/tonne CO2 including 17 runs below 2.5 GJ/tonne CO2.  

Figure 5.4 compares the process heat duty of the 2015 campaign with previous SRP 

campaigns in 2011 using a two-stage flash and 8 m PZ (Madan et al., 2013; Van Wagener 

et al., 2013).  The AFS reduces the heat duty by over 25%.   

 

 

Figure 5.3: Heat loss and process heat duty of the AFS. 
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Figure 5.4: Process heat duty of SRP pilot plant campaigns since 2011.  

The total equivalent work (Weq) described in Chapter 2 (Equation 2.5–2.7) is used 

to indicate the overall energy performance for CO2 capture and compression, which 

includes pump work, compression work and heat duty work.   

𝑊𝑒𝑞 = 𝑊ℎ𝑒𝑎𝑡 + 𝑊𝑝𝑢𝑚𝑝 + 𝑊𝑐𝑜𝑚𝑝                  (2.5) 

Heat duty work (Equation 2.6) converts the heat duty to electricity by multiplying 

the turbine efficiency, 90%, and the Carnot cycle efficiency.  Tstm is the heating steam 

condensing temperature, which is around 10 K higher than the flash tank temperature in 

this campaign.  The Qp is the process heat duty.  The pump work is calculated using 

Equation 2.7.  V̇rich is the rich solvent volume flow rate and the Prp is the rich solvent 

pump outlet pressure.  The head provided by the rich pump was used to overcome the 
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pressure drop of the cross exchangers and the steam heaters, and reach stripper pressure.  

The total pressure drop of the heat exchangers is around 2 bar.  The pump efficiency, ηp, 

is assumed as 65%.  The compression work to 150 bar is estimated using the correlation 

(Equation 2.8) as a function of stripper pressure. 

𝑊𝐻𝑒𝑎𝑡 = 90% (
𝑇𝑠𝑡𝑚−313𝐾

𝑇𝑠𝑡𝑚
) 𝑄𝑝                  (2.6) 

𝑊𝑝𝑢𝑚𝑝 =  
𝑉̇𝑟𝑖𝑐ℎ(𝑃𝑟𝑝−1 𝑏𝑎𝑟)

𝜂𝑝
                      (2.7) 

𝑊𝑐𝑜𝑚𝑝 (
𝑘𝐽

𝑚𝑜𝑙 𝐶𝑂2
) = 15.3 − 4.6𝑙𝑛𝑃𝑖𝑛 + 0.81(𝑙𝑛𝑃𝑖𝑛)2 − 0.24(𝑙𝑛𝑃𝑖𝑛)3 + 0.03(𝑙𝑛𝑃𝑖𝑛)4  

1 𝑏𝑎𝑟 ≤ 𝑃𝑖𝑛 ≤ 149 𝑏𝑎𝑟                      (2.8) 

The breakdown of total equivalent work is shown in Figure 5.5.  Since the stripper 

pressure only varied from 4 to 7 bar, the compression work and the pump work are nearly 

constant.  The total work requirement is dominated by the heat duty work.  The lowest 

total equivalent work achieved was 32.0 kJ/mol CO2.  

The U.S. Department of Energy (DOE) reviewed amine scrubbing for CO2 capture 

and developed base cases (NETL, 2010).  The Case 10 uses MEA with a simple stripper 

at 1.6 bar to capture CO2 from coal-fired power plants.  The reported heat duty is around 

3.6 GJ/tonne CO2.  The total equivalent work calculated is 45 kJ/mol CO2, including 31.8 

kJ/mol heat duty work and 13.2 kJ/mol projected compression work.    Compared to 

DOE Case 10, the AFS with PZ reduces the total equivalent work by over 20%.  

Reduction of compression work is around 5 kJ/mol CO2 because PZ is more thermally 

stable, so the stripper can be operated at higher temperature and pressure without 

significant thermal degradation. 
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Figure 5.5: Total equivalent work of SRP pilot plant with the AFS.  
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vapor outlet temperature at 50–70 °C.  Figure 5.6 shows the results of rich solvent bypass 

control.  The total bypass ratio includes the cold and the warm rich bypass.  The water 

content from the flash tank is estimated using the Independence model at a given 

temperature and pressure.  Lower lean loading and lower flash tank temperature that 

reduce partial pressure of CO2 will result in higher water vapor content in the stripped 

vapor.  The results show that higher water content requires more bypass to maintain the 

vapor outlet temperature.  Four runs highlighted in Figure 5.6 used relatively low bypass 

rates at given water content and therefore resulted in higher vapor outlet temperature. 

 

 

Figure 5.6: Performance of rich solvent bypass; 4 runs highlighted were without bypass 

control. 
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Figure 5.7 further demonstrates the effect of bypass on the energy performance.  

There are 4 runs at identical operating conditions except the bypass ratio.  The water 

content in the vapor phase should be similar at the same flash tank temperature and lean 

loading.  The two runs on the left side of the plot that did not deliver enough bypass to 

condense the stripping steam led to a 15% increase of heat duty. 

 

 

Figure 5.7: Effect of rich solvent bypass; run 10, 11, 17, and 18; 5 m PZ; flash tank T: 

149 ºC; rich loading: 0.36; lean loading: 0.20.  
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and heat duty at constant rich loading.  Optimum lean loading was found to minimize the 

energy requirement.  Figure 5.8 shows 7 runs at identical operating conditions except the 

CO2 lean loading.  Since the rich loading is approximately constant, lower lean loading 

provides better cyclic capacity (i.e., the difference between rich and lean loading, Ldg) 

and less sensible heat requirement.  However, lower lean loading will cause more 

stripping steam to be generated and thus lower the ratio of CO2 to H2O in the stripping 

vapor.  Heat duty trade-offs between the sensible heat and the stripping steam heat are 

expected when the lean loading varies.  Diminishing returns of heat duty can be seen at 

lean loading between 0.23 and 0.25.  Based on this, it is inferred that the heat duty is 

approaching the minimum at the operating lean loadings. 

 

Figure 5.8: Effect of lean loading; run 3, 4, 5, 11, 17, 20, and 21; 5 m PZ; flash tank T: 

149 °C; rich loading: 0.39±0.01. 
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5.3.6 5 m PZ vs. 8 m PZ 

It has been demonstrated that 5 m PZ provides better solid solubility and lower 

viscosity than 8 m PZ.  Solvents with lower viscosity can provide better mass and heat 

transfer performance.  This campaign consisted of 4 runs using 8 m PZ, so direct 

comparisons can be made.  Table 5.3 shows that two comparisons are made at the same 

flash tank temperature and lean loading.  Each comparison has similar solvent capacity 

and bypass ratio.  Even though 5 m PZ has a lower equilibrium capacity (mol alkalinity/kg 

solution) than 8 m, higher liquid side mass transfer rate results in higher rich loading and 

greater cyclic capacity (Ldg).  These runs end up with approximately the same ratio of 

solvent rate to the CO2 capture rate.  The sensible heat requirement and the heat recovery 

performance are expected to be similar in each comparison.  The only reason that 5 m PZ 

outperformed 8 m PZ with a lower heat duty is the cross exchanger performance.  The 

temperature approach of the cold cross exchanger at the cold end indicates the amount of 

sensible heat recovered from the lean solvent.  A lower temperature approach implies 

higher heat transfer coefficient.  The cross exchanger performance can be quantified by 

the number of heat transfer units (NTU).  The NTU of the cold cross exchanger using 5 

m PZ is 20% greater than 8 m PZ because of lower viscosity. 

 

 

 

 

 

 

 

 



 99 

Table 5.3: Comparisons of pilot plant results of 5 m and 8 m PZ. 

 
Comparison 1 

(145 °C 0.24 lean Ldg) 

Comparison 2 

(145 °C 0.24 lean Ldg) 

Run 8 15 9 14 

PZ (m) 5 8 5 8 

Viscosity at 40 °C (cP) 3.3 9.5 3.3 9.5 

Equilibrium capacity 

(mol alkalinity/kg solution) 
7.0 9.5 7.0 9.5 

Rich loading 

(mol CO2/mol alkalinity) 
0.37 0.34 0.39 0.36 

Total bypass ratio (%) 25 24 26 24 

Cold end T of cold cross X 

(°C) 
6.5 8.4 6.4 8.7 

NTU of cold cross X 19.2 15.9 18.9 15.8 

Heat duty 

(GJ/tonne CO2) 
2.36 2.51 2.21 2.41 

5.3.7 Heat exchanger performance 

The heat transfer coefficient of heat exchangers in the stripping process is 

evaluated.  The log mean temperature difference (LMTD) is calculated from measured 

inlet/outlet temperatures even for the flashing exchangers with non-linear temperature 

profiles.  The heat transfer coefficient could be under-estimated by under-predicting the 

LMTD.  The heat duty of the cross exchangers is calculated from the lean solvent side 

with the heat capacity predicted by Aspen Plus® .  The steam heater heat duty is dependent 

on where the heat loss occurs and how much latent heat of steam is actually transferred to 

the solvent.  This analysis will report a conservative heat transfer coefficient by using the 

process heat duty as steam heater duty.  Table 5.4 summarizes the heat exchanger 

specifications and the operating temperature approaches. 

 

 



 100 

Table 5.4: Heat exchanger specifications of SRP pilot plant. 

Heat exchanger Type 
Service 

(hot/cold) 

Area 

(m2) 

LMTD 

(K) 

Cold cross exchanger Plate-and-frame solvent/solvent 40.0 3–6 

Hot cross exchanger Plate-and-frame solvent/solvent 20.4 2–5 

Low T steam heater Shell-and-tube steam/solvent 1.3 12–17 

High T steam heater Shell-and-tube steam/solvent 1.0 8–13 

Cold rich exchanger Plate-and-frame CO2 vapor/solvent 3.2 21–34 

5.3.7.1 Cross exchangers 

Figures 5.9 and 5.10 show the overall heat transfer coefficient of the cold cross 

exchanger, which is expected to have single phase on both sides.  The heat transfer 

coefficient increases with the solvent rate with a power of 1.15, which is higher than the 

empirical value 0.6–0.75 for plate-and-frame exchangers (Ayub, 2003).  This 

demonstrates that the heat transfer coefficient can be enhanced by a higher fluid velocity.  

However, the turbulence also creates higher pressure drop as shown in Figure 5.10.  A 

cross exchanger optimization that determines the optimum fluid velocity by considering 

the pumping cost and the heat exchanger cost will be performed in Chapter 8. 
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Figure 5.9: Overall heat transfer coefficient of the cold cross exchanger. 
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Figure 5.10: Pressure drops of the cold cross exchanger. 

The rich solvent is likely to flash in the hot cross exchanger when it exceeds the 
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Figure 5.11: Overall heat transfer coefficient of the hot cross exchanger 
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Figure 5.12: Pressure drop of the hot cross exchanger. 
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lower pressure creates more turbulence and leads to a higher heat transfer coefficient for 

the high temperature steam heater.   

 

Figure 5.13: Overall heat transfer coefficient of the steam heaters. 
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Figure 5.14: Overall heat transfer coefficient of cold rich exchanger. 
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stripper were developed specifically for RSR no. 0.3 packing by regression of experimental 

data collected using a pilot-scale column (Wang, 2015). 

The data reconciliation was implemented in Aspen Plus®  using the Data-Fit tool.  

Data-Fit minimizes the error of result variables between measured and modeled values by 

adjusting model-input variables.  The objective function in data reconciliation is shown 

in Equation 5.4.  The resulting variables of interest are the process heat duty and the CO2 

production rate, which indicate the energy performance and CO2 mass balance, 

respectively.   

The model-input variables from pilot plant measurements include the temperature 

and pressure of the rich solvent, PZ concentration, the lean side outlet temperature of the 

cold and hot cross exchanger, the temperature and pressure of the flash tank, the liquid side 

outlet temperature of the cold rich exchanger, and the condenser temperature.  The 

temperature and pressure measurement inputs are considered consistent and reliable, and 

so will not be adjusted.  Two adjustable parameters in the data reconciliation are the CO2 

concentration in the rich solvent (rich loading) and the correction of packing interfacial 

area for the stripper.  The rich loading was adjusted for each run and the packing 

interfacial area factor is a global parameter that uniformly applies to the whole campaign.  

Generally, the adjustment of the CO2 rich loading is responsible for CO2 mass balance 

closure, and the packing area factor will be adjusted to match the process heat duty. 

𝑀𝑖𝑛 ∑ (
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖−𝑀𝑜𝑑𝑒𝑙𝑒𝑑𝑖

𝜎𝑖
)

2
𝑛
𝑖=1                   (5.4) 

where: 

Measuredi: pilot plant measurement of variable i 

Modeledi: model prediction of variable i 

𝜎𝑖: standard deviations of pilot plant measurement of variable i 
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n: number of result variables  

5.4.2 Model validation 

Figures 5.15 and 5.16 compare the modeled and density-predicted CO2 loading.  

The modeled lean loading was determined by the vapor-liquid equilibrium at given 

temperature and pressure of the flash tank.  The modeled lean and rich loadings are 5.4% 

and 3.6% higher, respectively.   

 

Figure 5.15: Measured and modeled lean loading; average error: 5.4%. 
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Figure 5.16: Measured and modeled rich loading; average error: 3.6%. 
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the effective packing area.  It is expect that a large scale plant will reduce the wall effect 

and increase the packing wetted area. 

The diffusion coefficient of amine and reaction product predicted by the model is 

the most uncertain parameter used in the mass transfer coefficient model.  Figure 5.17 

compares the diffusivity of amine in amine solution predicted by the Independence model 

and by the Stokes-Einstein relation, which applies an analogy of viscosity as shown in 

Equation 5.5 (Snijder et al., 1993; Versteeg et al., 1988).  The diffusivity data of amine in 

water is needed (Dam-water).  The Independence model uses the same analogy to estimate 

the diffusivity of CO2 in amine solution with a power of 0.8.  The diffusion coefficient of 

amine is expected to be about half of CO2 at the stripper temperature using the modified 

Stokes-Einstein relation.  However, the predicted diffusion coefficient of amine in the 

model is 4 times greater than expected.  The over-prediction of the diffusion coefficient 

is compensated for by a small correction factor applied to the interfacial area.   

𝐷𝑎𝑚−𝑎𝑚

𝐷𝑎𝑚−𝐻2𝑂
= (

𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑎𝑚
)

0.6

                   (5.5) 
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Figure 5.17: Diffusivity of amine and CO2 in 5 m PZ solution predicted by Independence 

model and modified Stokes-Einstein relation at stripper conditions. 
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Figure 5.18: Measured and modeled process heat duty; average error: 3.0%. 
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Figure 5.19: Stripper temperature profile; run 6; open points: measured T inside the 

stripper; filled points: measured T outside the stripper; solid lines: modeled 

T at operating bypass rates; dotted lines: modeled T at optimized bypass 

rates. 
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Figure 5.20: Stripper temperature profile; run 18; open points: measured T inside the 

stripper; filled points: measured T outside the stripper; solid lines: modeled 

T at operating bypass rates; dotted lines: modeled T at optimized bypass 

rates. 
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exchanger was found for each run at operating conditions.  Second, bypass rates were 

varied to minimize the heat duty while UA was kept constant. 

Figure 5.21 shows the improvement of the heat duty and the absolute change of the 

total bypass ratio after optimizing the rich solvent bypass.  The changes of heat duty and 

bypass ratio will approach zero as the operating rich solvent bypass is at optimum.  The 

heat duty was kept within 2% of the minimum when the bypass rates were adequately 

controlled.  The change of total bypass ratio is less than 10%.  Four other runs without 

bypass control needed the bypass ratio to be increased by around 20% to minimize the heat 

duty.  Figure 5.21 also suggests that energy performance can be easily guaranteed as long 

as the bypass ratio is in the optimum range.  This demonstrates the operability and 

flexibility of a complex system by implementing a simple control strategy. 

To further justify the control strategy, temperature profiles before and after bypass 

optimization are compared in Figures 5.19 and 5.20.  The dotted lines are the modeled 

temperature profiles at optimum bypass ratio.  The operating bypass ratio of Run 6 

(Figure 5.19) was already close to optimum so the temperature profile shows little change.  

Run 18 (Figure 5.20) did not deliver enough bypass to the stripper so the temperature 

approach was different between the top (30 K) and the bottom (5 K).  The temperature 

profile becomes nearly parallel after re-optimizing the bypasses. 
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Figure 5.21: Process heat duty improvement after bypass re-optimization; circle: with 

bypass control; triangle: without bypass control. 
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(L/G), the intercooling, and the operating lean loading.  The rich loading in this campaign 

was 0.37–0.41 mol CO2/mol alkalinity.  Higher rich loading is always beneficial because 

greater cyclic capacity requires a lower solvent rate for CO2 regeneration.  

The optimum lean loading to minimize total equivalent work can be found at each 

rich loading.  The stripping steam heat and sensible heat are dominant at low and high 

lean loading, respectively.  The optimum lean loading shifts with rich loading but the 

optimum Ldg is approximately constant at 0.11 mol CO2/mol alkalinity.  The difference 

of total equivalent work between the base case and the minimum is less than 1%, which 

confirms the inference in Section 5.3.3 that the best energy performance has been reached 

using the existing facility. 
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Figure 5.22: Total equivalent work with various lean and rich loading; stripper T: 149 °C; 

packing: 2 m RSR no. 0.3; correction for interfacial area: 0.15; constant UA; 

optimized bypass rates. 
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Figure 5.23: Total equivalent work with various packing height and lean loading; 

packing: RSR no. 0.3; correction for interfacial area: 0.15; rich loading: 

0.41; stripper T: 149 °C; constant UA; optimized bypass rates. 
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Figure 5.24 shows the total equivalent work and the packing efficiency with 

increasing packing height at 0.22 and 0.28 lean loading.  The greatest reduction of total 

equivalent work is between 1 m and 5 m.  After 5 m, adding packing improves the energy 

performance by less than 2%.  The packing utilization efficiency reaches 88% with 5 m 

packing and then approaches 99% after 10 m.  The packing efficiency varies with packing 

height but not with lean loading. 

 

Figure 5.24: Packing utilization efficiency; packing: RSR no. 0.3; correction for 

interfacial area: 0.15; rich loading: 0.41; stripper T: 149 °C; constant UA; 

optimized bypass rates. 
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The sensible heat recovered from the hot lean solvent in the cross exchanger is 

typically 3–5 times the reboiler/steam heater duty.  Increasing the cross exchanger area 
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can effectively reduce the heat duty requirement.  The size and performance of the 

specific heat exchanger in the pilot plant directly affects the measured energy performance. 

Figure 5.25 shows the total equivalent work as the cross exchanger area is varied 

from 50% to 125% of the UA relative to the pilot plant.  The reduction of the total 

equivalent work by increasing the cross exchanger area is more pronounced at higher lean 

loading where the cyclic capacity is deteriorating.  An additional 25% cross exchanger 

area added to the base case reduces the total equivalent work by 4% at 0.28 lean loading.  

The cross exchanger in the SRP pilot plant is large, resulting in the minimum temperature 

approach as 2 K.  Increasing cross exchanger area will not significantly reduce the heat 

duty since the exchanger has been practically pinched.  

The average LMTD (TLM) is also indicated in Figure 5.25.  The LMTD of the 

base case is 4.3 K.  Lin and Rochelle suggest that the economic optimum cross exchanger 

LMTD is between 5 and 10 K using 8 m PZ (Lin & Rochelle, 2014).  The large exchanger 

in the existing pilot plant may result in excessive capital cost. 
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Figure 5.25: Total equivalent work with various cross exchanger UA; packing: 2 m RSR 

no. 0.3; correction for interfacial area: 0.15; rich loading: 0.41; stripper T: 

149 °C; optimized bypass rates. 

5.5 IRREVERSIBILITY ANALYSIS 

Irreversibility analysis has been used to quantify process inefficiency and potential 

energy improvement for amine scrubbing processes in Chapter 3.  By exergy balance 

using Equation 3.4, the minimum work and the lost work of each unit operation can be 

calculated.  The sink temperature, To, is set at 313.15 K (40 ºC).  Tk is the steam 

temperature.  Q and W are the heat duty and work input/output.  The enthalpy, H and 

the entropy, S were obtained from the validated Aspen Plus®  model. 
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Figure 5.26 shows the minimum work and the lost work averaged by the runs that 

achieved at least 90% capture rate and implemented bypass control.  The minimum work 

of separation (Wmin,sep) and the minimum work of compression (Wmin,comp) are the 

theoretical work required to separate CO2 from flue gas to pure CO2 at stripper pressure 

and to compress pure CO2 isothermally at 40 °C from stripper pressure to 150 bar, 

respectively. 

The lost work of each unit operation indicates irreversible operations.  The lost 

work of the absorber reflects the mass transfer driving force between the flue gas and the 

CO2-loaded solvent.  The lost work of the heat exchanger is proportional to the exchanger 

duty and the temperature approach.  The cross exchanger and the steam heater are 

responsible for most of the lost work from heat exchangers.  The exchanger duty of the 

steam heater is about 25% of the cross exchanger, however the temperature approach is 

greater.  The compressor with intercooling is at 72% overall thermodynamic efficiency.  

Other contributions include the rich pump, the stripper column, the cold rich exchanger, 

the condenser, the trim cooler, and the un-recovered lean solvent pressure.   
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Figure 5.26: Minimum work and lost work distributions of SRP pilot plant with the AFS; 

average values from the runs that achieved at least 90% capture rate and 

implemented bypass control. 

The overall thermodynamic efficiency including CO2 separation and compression 

is about 50%, which is remarkable compared to 20% for conventional separation processes 

such as distillation (Fitzmorris et al., 1980; Y. H. Kim, 2012; Yoo et al., 1988).  The 

remaining lost work is simply due to the mass and heat transfer driving force, which is 

inevitable if finite capital is used.  Further energy reduction by process modifications will 

be marginal.   

Solvents that provide greater absorption rate and capacity will be the key to better 

performance.  The lost work of the cross exchanger can only be reduced by increasing 

solvent capacity (i.e., reducing solvent circulation rate and exchanger duty) because the 
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existing cross exchanger has already achieved a small temperature approach as indicated 

in Section 5.4.6.  A higher absorption rate can effectively reduce the driving force in the 

absorber with finite packing height. 

5.6 CONCLUSIONS 

Findings of pilot plant test: 

 The CO2 mass balance was closed with 2.2% average error.  Process heat duty and 

heat loss were identified using enthalpy balance around the stripping process. 

 17 runs have process heat duty 2.1–2.5 GJ/tonne CO2 and 4 runs without enough rich 

solvent bypass are 2.5–2.9 GJ/tonne CO2.  The lowest Weq is 32.0 kJ/mol CO2. 

 The AFS shows over 25% heat duty reduction compared to previous SRP campaigns, 

and over 30% compared to the DOE base case. 

 Cold and warm rich solvent bypass were manually controlled to recover the stripping 

steam heat by maintaining the stripper vapor outlet temperature and the cold rich 

exchanger vapor outlet temperature.  Four runs that did not achieve the temperature 

target increased the process heat duty by 15%. 

 5 m PZ provides 20% greater number of heat transfer units than 8 m PZ on the cold 

cross exchanger and results in a lower process heat duty because of lower viscosity. 

Findings of simulations: 

 The “Independence” model was validated using the pilot plant data and accurately 

represents the performance of the pilot plant.  The modeled lean loading and rich 

loading show 5.4% and 3.6% average error compared to the density-predicted loading.  

The modeled and the measured process heat duty has 3% average error. 

 The validated model was used to re-optimize the bypass rates.  It confirmed that the 

bypass control strategy used during the test successfully minimized the heat duty. 
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 Increasing the stripper packing height has a more significant effect at low lean 

loading.  The packing utilization efficiency can reach 88% using 5 m of RSR no. 0.3. 

 The existing cross exchanger performed well on recovering the sensible heat from the 

lean solvent, giving around 2 K pinch temperature approach and 4.3 K TLM.  

Energy improvement by using more exchanger area will not be significant for the 

existing pilot plant. 

 The irreversibility analysis showed that the thermodynamic efficiency of the SRP pilot 

plant using the AFS is about 50%.  The absorber and the cross exchanger are the two 

major sources of lost work and can only be addressed by greater absorption rate and 

solvent capacity, respectively. 
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Chapter 6: Approximate Stripper Models (ASM) 

6.1 INTRODUCTION 

Solvent selection is one of important ways to reduce the energy requirement and 

capital cost for CO2 capture.  Solvent screening has been used to identify important 

solvent properties such as absorption rate, CO2 solubility, and thermal stability (Li, 2015).  

These measured data can be used to quantify individual energy contributions and capital 

requirement such as cyclic capacity, maximum stripper temperature, absorber packing 

requirement, and the size of cross exchanger.  Process models incorporated with solvent 

characteristics are necessary in order to evaluate the overall energy performance that 

reflects the process specifications, operating conditions, and the integration effect of 

various solvent properties.  Rigorous Aspen Plus®  models have been developed by 

regressing thermodynamic and kinetic data over a range of amine concentration and CO2 

loading, and used to simulate advanced processes and scale up (Frailie, 2014; Plaza, 2011; 

Sherman, 2016) .  However, rigorous models require extensive experimental data and are 

time-consuming to create. 

For the purpose of estimating energy performance for promising amines, shortcut 

models that can reasonably predict energy performance should be adequate.  Notz 

proposed a shortcut method that applies Kremser’s equilibrium stage approach, but the 

model was less accurate at higher lean loading due to the assumption of an isothermal 

stripper (Notz et al., 2011).  Kim developed an enthalpy balance around a simple stripper 

to approximate the regeneration heat duty assuming that the partial pressure of CO2 and 

water is equilibrium with the hot rich solvent that enters the top of the stripper (H. Kim et 

al., 2015).  The assumption does not apply to the low lean loading region since the stripper 

pinch is no longer at the top.  This previous work were all based on the conventional 

simple stripper. 
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The goal of this work is to develop an approximate stripper model (ASM) that 

captures the characteristics of the advanced flash stripper (AFS), which has shown 

remarkable energy performance and can be regarded as a representative of a highly 

reversible regeneration process.  The model will be developed in MATLAB®  with limited 

input data required.  It will be validated with existing models that were developed 

rigorously in Aspen Plus® .   

As shown in Figure 6.1, the ASM will be used to predict the overall energy 

performance for existing solvent candidates with inputs of by measured solvent properties 

and process specifications.  The prediction can provide a quantitative indicator for solvent 

selections.  The model can also be treated as a generic solvent model.  Desired solvent 

properties and process operating conditions that minimize the energy requirement can be 

identified.  A guidance for future solvent screening can be provided. 

Approximate 

Stripper Model

Solvent Properties

Process Specs

Solvent Properties

Process Specs

Overall Energy 

Performance

Overall Energy 

Performance

Existing solvent evaluation

Generic solvent modeling

 

Figure 6.1: Approximate stripper model 

6.2 MODEL DEVELOPMENT 

The ASMs were developed for the simple stripper and the AFS.  The simple 

stripper serves as the base case so the interactions between solvent properties and stripper 

configurations can be investigated.  The absorber is not in the scope of this paper and will 



 129 

not be included in the model.  Typical rich solvent conditions will be used as input to the 

model.  The ASM is algebraic-equation-based and is solved in MATLAB® .  The model 

calculates material balance, enthalpy balance, and vapor liquid equilibrium but does not 

include the rigorous mass and heat transfer calculations of the rate-based model in Aspen 

Plus® .  Instead, the ASM specifies the mass and heat transfer driving force between vapor 

and liquid at both the top and the bottom of the stripper.  The major inputs are the CO2 

solubility relationship (i.e., vapor liquid equilibrium of CO2 in loaded amine) and the heat 

capacity.  The system includes three components: CO2, amine, and water.  It assumes 

that the amine is non-volatile and CO2 is not condensable.  The CO2 equilibrium is 

described by a relation between partial pressure of CO2 and CO2 loading in solution, which 

can be obtained from experimental measurements.  The flash calculation of water applies 

Raoult’s law assuming ideal solution and ideal gas.  The saturation pressure and the heat 

of vaporization of water are obtained from the DIPPR database.   

6.2.1 Modeling specifications 

The simple stripper and the AFS are shown in Figures 6.2 and 6.3, respectively.  

Since the absorber is not included, the rich loading and temperature are specified for typical 

intercooled absorber.  The partial pressure of CO2 of the lean solvent (lean P*
CO2) was 

varied from 0.05 to 1 kPa.  Detailed equations are shown in Appendix C.  General 

modeling specifications are described in this section.   
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Figure 6.2: Simple stripper. 
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Figure 6.3: Advanced flash stripper. 

6.2.1.1 Heat exchangers 

The heat exchangers are specified by the log mean temperature difference (LMTD, 

TLM), which is a log mean average of temperature approaches at the cold end and the hot 

end assuming a linear temperature-enthalpy profile.   
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The rich solvent usually flashes and becomes two phases in the cross exchanger 

when it reaches the bubble point.  To minimize the error caused by the nonlinear 

temperature-enthalpy profile due to flashing, the LMTD calculation of the cross exchanger 

is split into two regions: the liquid phase region and the flashing region.  The heat duty 

and the LMTD of each region are calculated.  The average LMTD (TLM,crossX,avg) is then 

obtained using Equation 6.1, which weights the LMTD of each region by its exchanger 

duties.  For the advanced flash stripper, the temperature of the warm rich bypass is 

specified as bubble point temperature, which makes the LMTD calculation approach 

identical to the simple stripper.  

∆𝑇𝐿𝑀,𝑐𝑟𝑜𝑠𝑠𝑋,𝑎𝑣𝑔 =
𝑄𝑐𝑟𝑜𝑠𝑠𝑋,1+𝑄𝑐𝑟𝑜𝑠𝑠𝑋,2

𝑄𝑐𝑟𝑜𝑠𝑠𝑋,1
∆𝑇𝐿𝑀,𝑐𝑟𝑜𝑠𝑠𝑋,1

+
𝑄𝑐𝑟𝑜𝑠𝑠𝑋,2

∆𝑇𝐿𝑀,𝐶𝑟𝑜𝑠𝑠𝑋,2

                (6.1) 

6.2.1.2 Viscosity correction for cross exchanger 

The heat transfer performance of the cross exchanger can be affected by the solvent 

viscosity.  The optimum cross exchanger LMTD is a function of viscosity with a power 

of 0.175 for plate-and-frame exchanger (Li, 2015).  Viscous solvent should be designed 

with a greater LMTD to avoid the excessive capital cost of cross exchanger due to the 

degraded heat transfer coefficient.  Details of cross exchanger optimization can be found 

in Chapter 8.  To differentiate the viscosity effect on the cross exchanger performance, 

the specified cross exchanger LMTD can be adjusted based on the solvent viscosity at 40 

°C as Equation 6.2 shows.  The viscosity of 30 wt% MEA will be used as the reference 

(ref) and 5 K will be the reference LMTD of the cross exchanger (TLM,ref).   

∆𝑇𝐿𝑀,𝑐𝑟𝑜𝑠𝑠𝑋,𝑎𝑣𝑔 = ∆𝑇𝐿𝑀,𝑟𝑒𝑓 (
𝜇

𝜇𝑟𝑒𝑓
)

0.175

               (6.2) 
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6.2.1.3 Stripper column 

The model approximates the mass and heat transfer of the stripper by specifying 

the concentration and temperature driving force between the vapor and the liquid.  The 

log mean temperature difference (TLM,strp) and the log mean concentration difference 

(yLM,strp) are calculated using Equations 6.3 and 6.4, respectively.  Since the amine is 

assumed to be non-volatile, the yLM,strp of CO2 will be the same as H2O.     

∆𝑇𝐿𝑀,𝑠𝑡𝑟𝑝 =
∆𝑇𝑡𝑜𝑝−∆𝑇𝑏𝑜𝑡

𝑙𝑛(
∆𝑇𝑡𝑜𝑝

∆𝑇𝑏𝑜𝑡
)

                      (6.3) 

∆𝑦𝐿𝑀,𝑠𝑡𝑟𝑝 =
∆𝑦𝑡𝑜𝑝−∆𝑦𝑏𝑜𝑡

𝑙𝑛(
∆𝑦𝑡𝑜𝑝

∆𝑦𝑏𝑜𝑡
)

                      (6.4) 

The temperature and concentration difference indicate the heat recovery 

performance of the stripper and both are affected by the stripper packing height.  Table 

6.1 shows average temperature (Tstrp) and concentration (ystrp) driving force in the AFS 

obtained from a rigorous Aspen Plus®  model that has been validated by the pilot plant data 

in Chapter 5.  A 15% correction factor was applied to the interfacial area of the stripper 

packing in order to match the plant performance.  More packing used will reduce the 

driving forces and attain better energy performance.  5 meter of Raschig Super-Ring 

(RSR) no. 0.3 packing in the stripper will result in 5–10% yLM,strp and 5–7 K TLM,strp 

using 5 m PZ.   

The stripper pressure was determined at the specified reboiler temperature and lean 

loading, and then the bubble point temperature of the rich solvent can be calculated.  The 

cold rich bypass temperature at the cold rich exchanger outlet and the warm rich bypass 

were specified at bubble point temperature.  The cold rich bypass ratio was determined 

by the enthalpy balance around the cold rich exchanger at a given LMTD.  The warm rich 
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bypass ratio was optimized to minimize the total heat duty.  Greater bypass rates will be 

required at low lean loading because more stripping steam needs to be recovered. 

Table 6.1: Temperature and concentration driving force from Aspen Plus®  simulations 

using the AFS and 5 m PZ; 15% correction for interfacial area; reboiler T: 

150 °C; optimized bypass rates; rich loading: 0.4.  

Lean loading 

(mol CO2/mol alk) 
0.22 0.24 0.26 0.28 0.30 0.32 

2 m RSR no. 0.3 stripper packing 

Avg Tstrp (K) 11.5  12.1  11.6  10.9  9.9  8.7  

Avg ystrp (%) 16.2  15.2  13.4  11.5  9.6  7.7  

5 m RSR no. 0.3 stripper packing 

Avg Tstrp (K) 7.0  6.8  6.5  6.1  5.6  5.0  

Avg ystrp (%) 9.5  8.7  7.8  6.8  5.9  5.0  

10 m RSR no. 0.3 stripper packing 

Avg Tstrp (K) 4.3  4.2  4.0  3.8  3.5  3.2  

Avg ystrp (%) 6.3  5.8  5.3  4.8  4.2  3.7  

6.2.2 Solvent characterization 

The cyclic capacity and the heat of absorption are the most important solvent 

properties that determine energy performance. The heat of absorption can be measured 

directly by calorimetric experiments or obtained from the temperature derivative of the 

CO2 solubility measurement (I. Kim et al., 2007, 2011).  This model determines the 

differential heat of absorption (Habs) in Equation 6.5 from Lewis and Randall (Equation 

XVIII.9) (Lewis et al., 1923).  The fugacity of CO2 (fCO2) is approximated by its partial 

pressure (P*
CO2).  Equation 6.5 has been validated in predicting the calorimetric data for 

CO2 absorption in aqueous MEA at typical operating conditions (Mathias et al., 2012).  In 

this work it will be applied to a higher stripper pressure.  The fugacity coefficient of CO2 

at 150 °C is 0.95–0.99 at 1–30 bar and 0.9–0.95 at 30–60 bar (Spycher et al., 1988).  The 
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heat of absorption used in this model is only a function of CO2 loading but is not 

temperature dependent.  It represents an average heat of absorption across the operating 

temperature range.   

∆𝐻𝑎𝑏𝑠 = −𝑅 [
𝜕𝑙𝑛𝑓𝐶𝑂2

𝜕(
1

𝑇
)

]
𝑃,𝑥

≈ −𝑅 [
𝜕𝑙𝑛𝑃𝐶𝑂2

∗

𝜕(
1

𝑇
)

]
𝑃,𝑥

             (6.5) 

The slope of the solubility curve, k, will affect the cyclic capacity and is defined in 

Equation 6.6.  A flat solubility curve will increase the loading difference between the lean 

and the rich solvent at given rich and lean partial pressure of CO2.  

𝑘(𝑇, 𝛼) =
𝜕𝑙𝑛𝑃𝐶𝑂2

∗

𝜕𝛼
                      (6.6) 

The partial pressure of CO2 is characterized by the slope of the solubility curve and 

the heat of absorption as shown in Equation 6.7.  The partial pressure is integrated from 

a reference temperature (Tr) and CO2 loading (r) to the final statevia the CO2 loading 

dependence and the temperature dependence.  Figure 6.4 shows the integrating path. 

𝑙𝑛𝑃𝐶𝑂2

∗ (𝑇, 𝛼) = 𝑙𝑛𝑃𝐶𝑂2,𝑟
∗ (𝑇𝑟 , 𝛼𝑟) + ∫ 𝑘(𝑇𝑟 , 𝛼)𝑑𝛼

𝛼

𝛼𝑟
+ ∫ −

∆𝐻𝑎𝑏𝑠(𝛼)

𝑅
𝑑 (

1

𝑇
)

𝑇

𝑇𝑟
   (6.7) 
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Figure 6.4: Integration path of partial pressure of CO2 for solvent characterization. 

The CO2 solubility data is usually presented as a semi-empirical equation as a 

function of temperature and CO2 loading (Equation 6.8) (Li & Rochelle, 2013).  C1–C6 

are the regressed coefficients.  For those solvents with available solubility data, the k and 

the Habs can be expressed by Equations 6.9 and 6.10, respectively, based on the definitions 

above.  Table 6.2 shows the regressed constants for PZ and MEA using the CO2 solubility 

data in a wide range of CO2 loading and temperature from 40 to 160 °C (Xu, 2011).  They 

will be used to represent the VLE of PZ and MEA in this work and demonstrate the energy 

performance using the ASM in Section 6.3. 

𝑙𝑛𝑃𝐶𝑂2

∗ = 𝐶1 +
𝐶2

𝑇
+ 𝐶3𝛼 + 𝐶4𝛼2 + 𝐶5

𝛼

𝑇
+ 𝐶6

𝛼2

𝑇
          (6.8) 

𝑘 = 𝐶3 + 2𝐶4𝛼 +
𝐶5

𝑇
+ 2𝐶6

𝛼

𝑇
                    (6.9) 

∆𝐻𝑎𝑏𝑠 = −𝑅(𝐶2 + 𝐶5𝛼 + 𝐶6𝛼2)                  (6.10) 
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Table 6.2: Regressed constants in Equation 6.8 for MEA and PZ. 

Amine C1 C2 C3 C4 C5 C6 R2 

MEA 38.6 -12379 0 -16 3556 8702 0.994 

PZ 35.3 -11054 0 -18.9 4958 10163 0.993 

The heat capacity of the CO2 loaded solution is needed to calculate the enthalpy 

balance around the heat exchangers, which will affect the sensible heat requirement.  The 

heat capacity of the mixture is estimated by a weight fraction average of pure components 

shown in Equation 6.11 as a function of temperature.  Any enthalpy of mixing is ignored.    

The heat capacity of aqueous PZ is predicted from a group contribution model (Rayer et 

al., 2012).  The partial heat capacity of CO2 is assumed to be zero in this model and the 

sensitivity will be discussed in Section 6.3. 

𝐶𝑝,𝑚𝑖𝑥(𝑇) = 𝐶𝑝,𝑎𝑚(𝑇)𝑋𝑎𝑚 + 𝐶𝑝,𝐻2𝑂(𝑇)𝑋𝐻2𝑂 + 𝐶𝑝,𝐶𝑂2
(𝑇)𝑋𝐶𝑂2

    (6.11) 

6.3 MODEL VALIDATION AND INTERPRETATION 

6.3.1 Comparison with rigorous Aspen Plus®  model 

The ASM is compared with the rigorous Aspen Plus®  model that has been validated 

by the pilot plant data from the 2015 campaign at UT Austin using the AFS and 5 m PZ.  

Figure 6.5 shows the total equivalent work at varied lean loading.  The LMTDs of the 

cross exchanger and the cold rich exchanger are 5 K and 20 K, respectively.  The TLM,strp 

and the yLM,strp of the stripper specified in the ASM were obtained from the Aspen Plus®  

results using 5 meters of RSR no. 0.3 packing.   

The results show a 5% systematic bias between the ASM and the Aspen Plus®  

model, but have the same trend with varied lean loading.  The bias is mainly due to the 

difference in the predicted heat capacity of CO2 loaded solvent between models.  The 
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approximate model matches the Aspen Plus®  model if the partial heat capacity of CO2 is 

increased from 0 to 3 kJ/kg-K, which is close to the value predicted by Aspen Plus® .   

 

Figure 6.5: Comparison of ASM and the validated Aspen Plus®  model using AFS; 5 m 

PZ; reboiler T: 150 °C; 5 K cross exchanger ΔTLM; 5 m RSR no. 0.3 

packing; 0.15 correction factor for interfacial area used in the Aspen Plus®  

model. 

6.3.2 Uncertainties of predicted heat capacity 

The sensible heat required depends on the temperature approach of the cross 

exchanger and is sensitive to the ratio of the heat capacity of the lean and the rich solvent.  

The temperature change of the lean and the rich solvent in the cross exchanger is around 

100 K (approximately from 50 °C to 150 °C).  A 1% difference of the heat capacity 

between the lean or the rich solution will lead to a 1 K difference on the temperature 
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approach, which is 20% of sensible heat when the LMTD is 5 K.  This shows that the 

consistency of the heat capacity between lean and rich solvent is important to the cross 

exchanger design and the sensible heat estimate, especially when the cross exchanger has 

a large number of transfer units (i.e., a large temperature change and a small temperature 

approach).  The heat capacity will mainly affect the sensible heat requirement.  

The heat capacity of CO2-loaded PZ solution were measured using Differential 

Scanning Calorimeter (DSC) by Hilliard and Nguyen over a range of PZ concentration, 

CO2 loading, and temperature (Hilliard, 2008; Nguyen, 2013).  The Independence model 

attempted to predict these data but had limited success (Frailie, 2014).   

To compare the predicted partial heat capacity of CO2, which is the main factor that 

determines the heat capacity ratio of lean and rich solvent, Equation 6.11 is used as a simple 

model.  Table 6.3 compares the partial heat capacity predicted by experiment data and the 

Independence model.  The reproducibility of the experiments was obtained by running 

duplicates with DSC using water.  Hilliard’s data is more consistent than Nguyen’s, 

which potentially has up to 10% of error.  The predicted partial heat capacity of PZ are in 

the same range among the predictions by experiments and the Independence model.  But 

the predicted partial heat capacity of CO2 by the Independence model is about 10 times the 

Hilliard’s data and 1.5-3 times the Nguyen’s data.  Improving the consistency of the 

experiment measurement and the model predictions is recommended for future work in 

order to accurately predict the sensible heat. 
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Table 6.3: Partial heat capacity of CO2 of loaded PZ. 

 Hilliard (2008) Nguyen (2013) 
Independence 

model 

Data reproducibility (%) ±1% ±10% N/A 

PZ (m) 2 and 3.6 8, 10, and 12 5 and 8 

CO2 loading  

(mol CO2/mol alk) 
0.16–0.4 0.2–0.4 0.2–0.4 

Temperature (°C) 40–120 40 150 40–150 

Partial Cp of CO2 

(kJ/kg-K) 
0.3–0.5 1–2.9 3.6–4 

Partial Cp of PZ 

(kJ/kg-K) 
1.8–2.9 2.4–3.1 2.6–3 

6.3.3 Model interpretation using MEA and PZ 

The ASM is demonstrated using 9 m MEA and 8 m PZ with the simple stripper and 

the AFS in Figure 6.6.  Table 6.4 shows the process specifications.  The rich loadings 

are specified as 0.5 and 0.4 mol CO2/mol alkalinity for MEA and PZ, respectively, which 

are typical with an intercooled absorber (Plaza, 2011).  The reboiler for MEA is at 120 

°C, lower than PZ since it is less thermally stable. 

Table 6.4: Process specifications for solvent evaluation. 

Amine 9 m MEA 8 m PZ 

Reboiler temperature (°C) 120 150 

Rich loading (mol CO2/mol alkalinity) 0.5 0.4 

Rich solvent temperature (°C) 46 

TLM,crossX,avg (K) 5 

TLM,strp (K) 5 

yLM,strp (%) 5 

Cold rich exchanger TLM (K) 5 
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8 m PZ requires 13% less equivalent work than 9 m MEA, mainly a result of the 

higher capacity of PZ, which is amplified at higher lean loading where a higher circulation 

rate is required.  The AFS further reduces the total equivalent work by over 10% 

compared to the simple stripper, and the reduction is significant at lower lean loading, 

where more stripping steam heat is required.  The results show the same trends as 

previous modeling results using rigorous Aspen Plus®  models (Lin, Madan, et al., 2014), 

suggesting that the ASMs are capable of differentiating between solvents and between 

stripper configurations, and reflecting the effects of lean loading and reboiler temperature. 

 

Figure 6.6: Approximate stripper model results of 9 m MEA and 8 m PZ with the simple 

stripper and the AFS; rich loading: 0.4 for PZ and 0.5 for MEA; cross 

exchanger ΔTLM: 5 K; reboiler T: 150 °C for PZ and 120 °C for MEA. 
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6.3.4 Contributions to energy requirement 

The ASMs also quantify each contribution to the total equivalent work.  The heat 

duty work can be split into the heat of absorption (Wheat,abs), the sensible heat (Wheat,sen), 

and the stripping steam heat (Wheat,stm).  The average heat of absorption is defined in 

Equation 6.12, which integrates the differential heat of absorption from lean to rich loading.  

The stripping steam heat accounts for the latent heat of the remaining steam coming from 

the stripper (for the simple stripper) or from the cold rich exchanger (for the AFS). 

∆𝐻𝑎𝑏𝑠,𝑎𝑣𝑔 =
∫ ∆𝐻𝑎𝑏𝑠

𝛼𝑟𝑖𝑐ℎ
𝛼𝑙𝑒𝑎𝑛

𝑑𝛼

𝛼𝑟𝑖𝑐ℎ−𝛼𝑙𝑒𝑎𝑛
                     (6.12) 

Figure 6.7 shows the breakdown of the total equivalent work at lean P*
CO2 of 0.15 

kPa at 40 °C, which is used as a surrogate for lean loading.  When comparing PZ and 

MEA with the simple stripper at the same reboiler temperature, 120 °C, the major energy 

savings of PZ are from the sensible heat due to the greater capacity of PZ.  When the 

reboiler temperature is elevated to 150 °C, higher stripper pressure reduces the 

compression work but the work value of the heat duty increases with temperature.  The 

saving of compression work is almost offset by the increase in heat work, and the total 

equivalent work is about the same.  The AFS almost eliminates the stripping steam heat 

with a slight increase in the sensible heat.  When the rich solvent is bypassed to recover 

the stripping steam heat, less sensible heat can be recovered from the hot lean solvent.  

These tradeoffs were considered in optimizing the bypass rates that minimize the total 

equivalent work.   
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Figure 6.7: Breakdown of energy requirement using approximate stripper models; lean 

P*
CO2: 0.15 kPa; rich loading: 0.4 for PZ and 0.5 for MEA; cross exchanger 

ΔTLM: 5 K; reboiler T: 150 °C for PZ and 120 °C for MEA. 

6.4 SENSITIVITY ANALYSIS 

6.4.1 Effect of rich loading 

Since the absorber was not modeled in this work, a sensitivity analysis of the rich 

P*
CO2 was performed.  Figure 6.8 shows the total equivalent work and the Ldg (i.e., the 

difference between the rich and the lean loading) using 8 m PZ with a rich P*
CO2 of 3 to 7 

kPa.  The lean loading was optimized at each rich loading to minimize the total equivalent 

work.  The optimum lean loading will track the rich loading so the Ldg is almost 

constant.  The AFS has a greater optimum Ldg than the simple stripper since it makes 

use of the additional stripping steam at lower lean loading.  
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The difference in the total equivalent work between the stripper configurations is 

nearly constant in this rich loading range, which suggests that the energy savings of the 

AFS will not be affected by the absorber performance at optimum lean loadings.  The rich 

loading mainly affects the cyclic capacity and the sensible heat requirement.  

 

Figure 6.8: Sensitivity to rich loading; 8 m PZ; reboiler T: 150 °C; optimized lean 

loading. 
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can reduce the VLE slope and improves the solvent capacity (Li, Voice, et al., 2013).  

More solvent capacity interpreted by VLE data can be found. 

Table 6.5: Average slope of CO2 solubility curve at 40 °C between P*
CO2 0.1 to 5 kPa. 

Amine Average slope, k (
𝒍𝒏(𝑷𝒂)

𝒎𝒐𝒍 𝑪𝑶𝟐 𝒎𝒐𝒍 ⁄ 𝒂𝒍𝒌
) 

PZ 24.5 

MEA 21.9 

DGA 23.5 

MDEA/PZ (5m/5m) 18.7 

MDEA//PZ (7m/2m) 16.6 

 

 

Figure 6.9: Sensitivity to VLE slope, k; simple stripper with 8 m PZ-based solvent; 

reboiler T: 150 °C; rich solvent P*
CO2: 5 kPa; cross exchanger ΔTLM: 5 K. 
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Figure 6.9 shows the total equivalent with varied VLE slope (k) by ±5 using the 

simple stripper.  8 m PZ is used as the base solvent.  The rich solvent P*
CO2 is fixed at 5 

kPa and the lean P*
CO2 varies from 0.05 to 1 kPa.  The cross exchanger LMTD was 

specified as 5 K.  When the slope changes, both rich and lean loadings will shift with the 

same direction to satisfy the specified P*
CO2.  A steeper slope will result in a tighter 

window between the rich and lean loadings and increases the solvent circulation rate 

needed to attain a certain CO2 removal.  The total equivalent work across the lean loading 

range systematically increases and decreases when the VLE slope changes. 

 

Figure 6.10: Sensible heat requirement with varied VLE slope, k (ln Pa/mol CO2); simple 

stripper with 8 m PZ-based solvent; reboiler T: 150 °C; lean P*
CO2: 0.05–1 

kPa; rich solvent P*
CO2: 5 kPa; cross exchanger ΔTLM: 5 K. 
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The sensible heat requirement is mainly determined by the solvent rate and the cold 

side temperature approach of the cross exchanger, which is caused by the unbalance solvent 

rate between rich and lean.  The VLE slope will ultimately reflect on the solvent 

circulation rate.  Figure 6.10 shows that the sensible heat requirement of different VLE 

slopes are almost fall on the same line.  This suggests that predicting the sensible heat 

requirement is straightforward and can be simply estimated by the cyclic capacity and the 

temperature approach of the cross exchanger. 

6.5 CONCLUSIONS 

 Approximate stripper models (ASM) were developed to predict the energy 

performance for the simple stripper and the AFS. 

 The total equivalent work is sensitive to the predicted heat capacity of solvent 

especially when the cross exchanger has a large heat transfer unit.  Generally the 

ASM showed a similar trend that was predicted by the rigorous Aspen Plus®  model. 

 The ASMs are capable of differentiating between solvents and between stripper 

configurations, and reflecting the effects of lean loading and reboiler temperature. 

 As the rich loading varies from 3 to 7 kPa, a constant optimum Ldg was found and 

the energy savings by the AFS is not affected. 
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Chapter 7: Optimizing Heat of Absorption using the ASM 

7.1 INTRODUCTION 

Important solvent properties that affect energy performance include absorption rate, 

cyclic capacity, heat of absorption, and thermal stability.  A higher absorption rate can 

reduce the packing in the absorber and make the solvent CO2 richer, which increases the 

mass transfer driving force in the stripper.  The cyclic capacity determines the solvent 

required to achieve a certain removal.  The sensible heat needed to heat the solvent to the 

reboiler temperature will be proportional to the circulation rate.  The heat of absorption is 

used to reverse the chemical reactions and strip the CO2 from the rich solvent.  A 

thermally stable solvent can be operated at a relatively high reboiler temperature and 

stripper pressure.  High absorption rate, greater cyclic capacity, and good thermal stability 

are always desirable.   

Typically the solvent performance has been represented as the reboiler duty based 

on experimental measurements at limiting conditions.  Low heat of absorption has been 

considered advantageous in some previous solvent screening (Chowdhury et al., 2013; 

Goto et al., 2009).  However, several researchers have suggested that a lower heat of 

absorption does not always reduce overall energy use since it can affect other contributions  

(Oexmann et al., 2010; Rochelle et al., 2011).  The solvents with higher heat of absorption 

will have higher CO2 partial pressure at stripper temperature, and so will have the potential 

to reduce the stripping steam heat and the compression work.  The stripping steam heat 

has been identified as one of the major causes of irreversibility of the amine scrubbing 

process, and accounts for 30–50% of the lost work from the regeneration in Chapter 3.  

Higher CO2 partial pressure can improve the selectivity of CO2 to H2O and reduce stripping 

steam heat.  The compression work typically accounts for 1/3 of the total energy 
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requirement.  Determining the desirable heat of absorption is not as straightforward as 

determining other properties.   

The objective of this work is to quantify the optimum heat of absorption, and 

identify favorable operating conditions and stripper configurations that minimize the total 

energy requirement. Understanding the effect of the heat of absorption will facilitate 

solvent screening.  The effect of the heat of absorption was evaluated using shortcut 

models of the simple stripper.  Oyenekan and Rochelle tested the sensitivity using generic 

solvent with heat of absorption from 60 to 170 kJ/mol (Oyenekan et al., 2006).  Heat 

equivalent work and compression work were used to indicate energy performance.  

Bhown noted that the work value of the extracted steam can have a significant impact on 

the selection of heat of absorption (Heberlea et al., 2014).  Kim indicated the optimum 

heat of absorption is 60–80 kJ/mol by minimizing the reboiler duty at a constant stripper 

pressure at 1–3 bar (H. Kim et al., 2016).   However, using only the reboiler duty as the 

indicator of energy performance and limiting the stripper pressure might not fully reflect 

the actual performance.  Most previous work focused mainly on the conventional simple 

stripper but the energy requirement can be highly influenced by alternative configurations. 

Approximate stripper models (ASM) developed in Chapter 6 will be used to explore 

the effect of heat of absorption by estimating the total equivalent work.  Concentrated PZ 

will serve as the base solvent. 

7.2 MODELING METHOD 

7.2.1 ASMs with generic solvent 

  The ASMs for the simple stripper and the AFS that have been validated were 

described in Chapter 6.  PZ-based generic solvent will be used in this work.  By using 

Equation 6.7 to calculate the partial pressure of CO2, the heat of absorption can be 
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manipulated by varying the Habs while keeping the slope of VLE curve (k) unchanged at 

given temperature and CO2 loading so the solvent capacity will not be affected.  The Habs 

and k of base solvent are obtained from Equation 6.9 and 6.10, which are derived from the 

semi-empirical equation (Equation 6.8).  Table 7.1 shows the regressed constants for PZ 

using the CO2 solubility data in a wide range of CO2 loading and temperature from 40 to 

160 °C (Xu, 2011).   

𝑙𝑛𝑃𝐶𝑂2

∗ (𝑇, 𝛼) = 𝑙𝑛𝑃𝐶𝑂2,𝑟
∗ (𝑇𝑟 , 𝛼𝑟) + ∫ 𝑘(𝑇𝑟 , 𝛼)𝑑𝛼

𝛼

𝛼𝑟
+ ∫ −

∆𝐻𝑎𝑏𝑠(𝛼)

𝑅
𝑑 (

1

𝑇
)

𝑇

𝑇𝑟
   (6.7) 

𝑙𝑛𝑃𝐶𝑂2

∗ = 𝐶1 +
𝐶2

𝑇
+ 𝐶3𝛼 + 𝐶4𝛼2 + 𝐶5

𝛼

𝑇
+ 𝐶6

𝛼2

𝑇
             (6.8) 

𝑘 = 𝐶3 + 2𝐶4𝛼 +
𝐶5

𝑇
+ 2𝐶6

𝛼

𝑇
                    (6.9) 

∆𝐻𝑎𝑏𝑠 = −𝑅(𝐶2 + 𝐶5𝛼 + 𝐶6𝛼2)                 (6.10) 

Table 7.1: Regressed constants for semi-empirical Equation 6.8 for PZ. 

Amine C1 C2 C3 C4 C5 C6 R2 

PZ 35.3 -11054 0 -18.9 4958 10163 0.993 

7.2.2 Process specifications 

The simple stripper and the AFS shown in Figures 7.1 and 7.2 are representative of 

a conventional and a highly reversible regeneration process, respectively.  They will be 

compared in order to investigate the effect of alternative stripper configurations.   



 150 

Cross exchanger

Condenser

Rich solvent
P*

CO2=5 kPa
Trich=46°C 

Lean solvent
P*

CO2=0.05-1 kPa

yH2O, top

Ttop

yH2O, bot

Tbot

Condensate

Captured CO2

Absorber

Flue gas
12% CO2

Vented gas

Stripper

Treb

 

Figure 7.1: Simple stripper 
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Figure 7.2: Advanced flash stripper 

Table 6.2 shows the process specifications.  The partial pressure of CO2 of the rich 

solvent (rich P*
CO2) is fixed as 5 kPa at 40 °C assuming a reasonable driving force in the 

absorber that treats the flue gas at 12% from coal-fired power plants.  The rich solvent 

temperature is assumed to be 46 °C, a typical temperature with an intercooled absorber.  
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The partial pressure of CO2 of the lean solvent (lean P*
CO2) at 40 °C was varied from 0.05 

to 1 kPa.  The specification method of the stripper and the heat exchangers were described 

in Chapter 6.  The TLM,strp and the yLM,strp of H2O were specified as 5 K and 5%, 

respectively.  The average cross exchanger LMTD is 5 K. 

Table 7.2: Process specifications. 

Rich solvent temperature (°C) 46 

Reboiler T (°C) 150 

Rich P*
CO2 of generic solvents (kPa) 5 

Lean P*
CO2 of generic solvents (kPa) 0.05-1 

TLM,crossX,avg (K) 5 

TLM,strp (K) 5 

yLM,strp (%) 5 

Cold rich exchanger TLM (K) 5 

7.2.3 Overall energy performance 

The total equivalent work is a more useful metric of energy use than heat duty 

alone.  The total equivalent work consists of pump work (Wpump), compression work 

(Wcomp), and heat duty work (Wheat).  It assumes that the pump efficiency (ηpump) is 65% 

and the lean solvent pressure can be recovered by a hydro-turbine with 90% efficiency 

(ηhydro-tb).  The average heat of absorption is defined in Equation 6.12, which integrates 

the differential heat of absorption from lean to rich loading.  The stripping steam heat 

accounts for the latent heat of the remaining steam coming from the stripper (for the simple 

stripper) or from the cold rich exchanger (for the AFS). 

∆𝐻𝑎𝑏𝑠,𝑎𝑣𝑔 =
∫ ∆𝐻𝑎𝑏𝑠

𝛼𝑟𝑖𝑐ℎ
𝛼𝑙𝑒𝑎𝑛

𝑑𝛼

𝛼𝑟𝑖𝑐ℎ−𝛼𝑙𝑒𝑎𝑛
                    (6.12) 
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7.3 RESULTS AND DISCUSSIONS 

7.3.1 Tradeoffs of heat of absorption 

Figure 7.3 shows the effect of the heat of absorption on the total equivalent work 

using the simple stripper.  The lean P*
CO2 is 0.15 kPa and reboiler temperature is 150 °C.  

The original average heat of absorption of PZ is around 70 kJ/mol and was manually 

increased up to 100 kJ/mol.  The sensible heat stays constant since the solvent capacity 

was kept unchanged.  When the heat of absorption increases, the compression work and 

the stripping steam heat decrease due to the elevated partial pressure of CO2 and stripper 

pressure.  The strategy depends on whether the savings can compensate for the increase 

in the heat of absorption.  The energy reductions show diminishing returns and the pump 

work begins to dominate at 100 kJ/mol CO2 heat of absorption.  The compression work 

decreases linearly with heat of absorption while the pump work increases exponentially.  

The optimum heat of absorption that minimizes the total equivalent work is around 90 

kJ/mol for the simple stripper.  If only the heat duty is considered, the optimum is between 

70–80 kJ/mol.   

Figure 7.4 shows the total equivalent work of the AFS as the heat of absorption 

varies within the same range from 70 to 100 kJ/mol CO2.  The stripping steam heat is 

significantly reduced by the rich solvent bypasses and makes the total equivalent work flat 

at low heat absorption.  The optimum heat of absorption is pushed toward a lower value.  

The slight increase of the sensible heat is due to the unbalanced temperature approach of 

the cross exchanger when cold rich bypass is extracted. 

Tables 7.3 and 7.4 are the tabulated representations of Figure 7.3 and 7.4, 

respectively including the stripper pressure and reboiler duty. 
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Figure 7.3: Effect of heat of absorption for simple stripper; PZ-based generic solvent; 

reboiler T: 150 °C; rich solvent P*
CO2 at 40 °C: 5 kPa; lean solvent P*

CO2 at 

40 °C: 0.15 kPa; cross exchanger ΔTLM: 5 K. 
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Figure 7.4: Effect of heat of absorption for AFS; PZ-based generic solvent; reboiler T: 

150 °C; rich solvent P*
CO2 at 40 °C: 5 kPa; lean solvent P*

CO2 at 40 °C: 0.15 

kPa; cross exchanger ΔTLM: 5 K. 
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Table 7.3: Energy performance with varied heat of absorption using simple stripper; PZ-

based generic solvent; reboiler T: 150 °C; rich solvent P*
CO2 at 40 °C: 5 kPa; 

lean solvent P*
CO2 at 40 °C: 0.15 kPa; cross exchanger ΔTLM: 5 K. 

Heat of absorption 

(kJ/mol CO2) 
70 80 90 100 

Stripper P (bar) 6.8 11.6 24.9 60.7 

Equivalent work (kJ/mol CO2) 

Weq 34.5 32.4 31.7 33.2 

Wheat 26.0 25.5 26.6 28.8 

Wcomp 8.2 6.4 3.9 1.4 

Wpump 0.3 0.5 1.2 3.0 

Reboiler duty (kJ/mol CO2) 

Qreb 107.7 105.5 110.1 119.0 

Qstm 21.1 10.1 5.1 3.9 

Table 7.4: Energy performance with varied heat of absorption using AFS; PZ-based 

generic solvent; reboiler T: 150 °C; rich solvent P*
CO2 at 40 °C: 5 kPa; lean 

solvent P*
CO2 at 40 °C: 0.15 kPa; cross exchanger ΔTLM: 5 K. 

Heat of absorption 

(kJ/mol CO2) 
70 80 90 100 

Stripper P (bar) 6.8 11.6 24.9 60.7 

Equivalent work (kJ/mol CO2) 

Weq 30.6 30.4 30.6 32.4 

Wheat 22.1 23.5 25.5 28.0 

Wcomp 8.2  6.4  3.9  1.4  

Wpump 0.3  0.5  1.2  3.0  

Reboiler duty (kJ/mol CO2) 

Qreb 91.6 97.1 105.6 115.9 

Qstm 1.1 0.8 0.5 0.3 
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7.3.2 Effect of stripper configuration 

The stripping steam heat can be avoided by the AFS using rich solvent bypasses or 

by solvents with higher heat of absorption, which suppress the partial pressure of water.  

Figure 7.5 compares the optimum heat of absorption of both stripper configurations at 0.15 

kPa of lean P*
CO2.  The optimum heat of absorption of the AFS is around 80 kJ/mol, 

around 10 kJ/mol less than the simple stripper.  The simple stripper has higher total 

equivalent work than the AFS especially at 60-80 kJ/mol that most current solvents have.  

The total equivalent work of the AFS is less sensitive to heat of absorption, implying that 

it is a flexible system that can be applied to a wide range of heat of absorption while still 

minimizing the energy use.   

 

Figure 7.5: Sensitivity of total equivalent work to heat of absorption; PZ-based generic 

solvent; reboiler T: 150 °C; rich solvent P*
CO2 at 40 °C: 5 kPa; lean solvent 

P*
CO2 at 40 °C: 0.15 kPa; cross exchanger ΔTLM: 5 K. 
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Using the solvent at optmimum heat of absorption can be seen as the best-case 

scenario that minimize the energy requirement if the “perfect” solvent can be found.  

Figure 7.6 quantifies the potential energy improvement by comparing the total equivalent 

work of the base solvent with 70 kJ/mol and the generic solvent with an optimum heat of 

absorption.  The energy reduction by optimizing the heat of the absorption can be up to 

10% for the simple stripper but the improvement is limited for the AFS since the stripping 

steam has been already reduced by the rich solvent bypasses.  The AFS does not need a 

solvent with the optimum heat of absorption to achieve remarkable energy performance. 

 

Figure 7.6: Comparison of total equivalent work between original and optimized heat of 

absorption; PZ-based generic solvent; reboiler T: 150 °C; rich solvent P*
CO2 

at 40 °C: 5 kPa; cross exchanger ΔTLM: 5 K. 
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7.3.3 Effect of CO2 lean loading 

Lean loading is the most important operating parameter.  The absorber 

performance is better at lower lean loading because of enhanced absorption rate and mass 

transfer driving force.  To achieve optimal stripper performance, the selected lean loading 

needs to compromise on the stripping steam heat, the compression work, and the cyclic 

capacity.  In Figure 7.6, the total equivalent work is improved more at lower lean loading 

where the stripping steam heat and the compression work are the major energy 

requirement.    

Figure 7.7 shows the optimum heat of absorption ranges from 70 to 125 kJ/mol, 

which varies with the lean loading, reboiler temperature, and stripper configurations.  

Generally, the desirable heat of absorption is higher than current solvents such as MEA 

and PZ.  The average heat of absorption of the current solvent is typically 60–80 kJ/mol, 

depending on which type of reaction dominates.  Amine can react with CO2 via carbamate 

and bicarbonate formation reactions.  CO2 absorption dominated by carbamate formation 

(primary and secondary amines) usually gives a higher heat of absorption than bicarbonate 

formation (tertiary amines) (I. Kim et al., 2011).   

The simple stripper and the operating conditions at low reboiler temperature and 

low lean loading will generate significant stripping steam and should have a higher heat of 

absorption to boost the partial pressure of CO2.   
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Figure 7.7: Optimum heat of absorption with varied lean loading; PZ-based generic 

solvent; reboiler T: 120 and 150 °C; rich solvent P*
CO2 at 40 °C: 5 kPa; cross 

exchanger ΔTLM: 5 K. 

7.3.4 Effect of reboiler temperature 

Elevating the reboiler temperature is an alternative way to maximize the partial 

pressure of CO2 and further reduce the stripping steam heat and the compression work.  

This strategy determines if the weakness of a low heat of absorption can be compensated 

by elevating the reboiler temperature.  The reboiler duty will always decrease with 

increasing reboiler temperature but the equivalent work is not necessarily reduced because 

extracting high pressure/temperature steam will incur a greater electricity penalty.  The 

value of equivalent work depends on the Carnot cycle efficiency.   
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The reboiler temperature is optimized at 120–170 °C with a range of heat of 

absorption from 65 to 110 kJ/mol in Figure 7.8.  Higher reboiler temperature is needed to 

minimize the total equivalent work for the solvents with lower heat of absorption.  The 

simple stripper also needs a relatively high reboiler temperature compared to the AFS, but 

they converge to the same temperature as the heat of absorption approaches 100 kJ/mol.  

The difference of total equivalent work between the simple stripper and the AFS still exists, 

even at optimum reboiler temperature. 

 

Figure 7.8: Optimum reboiler T and total equivalent work at varied heat of absorption; 

PZ-based generic solvent; rich solvent P*
CO2 at 40 °C: 5 kPa; lean solvent 

P*
CO2 at 40 °C: 0.15 kPa; cross exchanger ΔTLM: 5 K. 
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However, the energy savings from optimizing the reboiler temperature is 

insignificant.  Figure 7.9 shows the tradeoffs.  The reduction of the compression work is 

almost the same as the increasing heat duty work when the reboiler temperature increases.  

The difference is less than 1% from 120 to 180 °C, a typical range of steam temperature 

from the IP/LP crossover pipe of a power plant.  Unlike the heat of absorption strategy, 

elevating the reboiler temperature will make the whole heat duty more expensive as work 

instead of just the heat of absorption itself.  This strategy will not be as effective as 

utilizing heat of absorption.  The capture plant will be flexible enough to use any available 

IP/LP steam from the existing power plant without degrading the energy performance.  

The thermal stability of the solvent will be the only limitation.  Higher stripper pressure 

will still be cost-effective because of the reduced size of the compressor train. 
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Figure 7.9: Effect of reboiler temperature on total equivalent work using AFS; PZ-based 

generic solvent; average heat of absorption: 70 kJ/mol; rich solvent P*
CO2 at 

40 °C: 5 kPa; lean solvent P*
CO2 at 40 °C: 0.15 kPa; cross exchanger ΔTLM: 5 

K. 

7.3.5 Effect of compression efficiency 

In this process, the CO2 can be pressurized thermally or mechanically.  The 

optimum heat of absorption is determined by compromising between thermal compression 

and mechanical compression.  Thermal compression pressurizes and heats up the solvent 

to attain a high stripper pressure.  The efficiency is determined by the heat-to-electricity 
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stages.  Using a solvent with higher heat of absorption or increasing the reboiler 

temperature will increase the thermal compression and reduce the mechanical compression.  

Optimizing heat of absorption will maximize the overall compression efficiency. 

A sensitivity analysis was performed by accounting for a wide range of thermal and 

mechanical compression efficiencies.  The base case assumes 86% compressor polytropic 

efficiency (ηcomp,poly) and 90% steam turbine isentropic efficiency (ηstm-tb).  The analysis 

covers the practical range from 72 to 99% for both the compressor and steam turbine.  The 

pump work is considered a part of thermal compression so the same discounting factor of 

steam turbine efficiency is applied to the pump.   

Figure 7.10 shows the optimum heat of absorption as a function of the product of 

the thermal and the mechanical efficiency.  The efficiencies of the base case serve as the 

reference.  Two extreme cases are indicated on the plot.  The case at 72% polytropic 

compressor efficiency and 72% steam turbine efficiency will favor thermal compression 

because the heat is relatively cheap and mechanical compression is the least efficient.  

Applying a high heat of absorption is worthwhile to increase the stripper pressure and 

reduce the mechanical compression.  On the other hand when the compressor efficiency 

and the steam turbine efficiency are both at 99%, it is advantageous to switch to mechanical 

compression.  The electricity penalty caused by the extracted steam becomes more 

pronounced when the steam turbine is more efficient.  The heat of absorption will be too 

costly to pursue high stripper pressure, so it results in a low optimum heat of absorption. 
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Figure 7.10: Sensitivity of thermal and mechanical compression efficiency; PZ-based 

generic solvent; reboiler T: 150 °C; rich solvent P*
CO2 at 40 °C: 5 kPa; lean 

solvent P*
CO2 at 40 °C: 0.15 kPa; cross exchanger ΔTLM: 5 K. 

The AFS always has a lower optimum heat of absorption than the simple stripper 

since less benefit can be obtained from increasing the heat of absorption.  At high steam 

turbine efficiency, the AFS does not need high heat of absorption but can still effectively 

reduce the stripping steam.  If the efficiency of the turbine and the compressor are 

improved, the heat of absorption of existing solvents can be closer to the optimum, 

especially for the AFS. 
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7.4 CONCLUSIONS 

 Using solvents with high heat of absorption can increase the partial pressure of CO2 

and effectively reduce the stripping steam heat and the compression work.  Optimum 

heat of absorption can be found when the energy reductions show diminishing returns 

and the increase in the pump work is dominant. 

 The optimum heat of absorption varies from 70 to 125 kJ/mol.  The simple stripper 

and the operating conditions at low reboiler temperature and low lean loading will 

need a higher optimum heat of absorption to boost the partial pressure of CO2. 

 By increasing the heat of absorption, the total equivalent work can be reduced by 10% 

for the simple stripper and less than 1% for the AFS. 

 The AFS always has a lower optimum heat of absorption than the simple stripper since 

the stripping steam heat is already eliminated by the rich solvent bypasses.   

 The AFS is a flexible system that can be applied to a wide range of heat of absorption 

while still minimizing the energy requirement.  Further reduction by increased heat 

of absorption is marginal. 

 Increasing the partial pressure of CO2 by reboiler temperature will not effectively 

reduce the total equivalent work.  The savings of compression work is almost offset 

by the increase in the heat duty work. 

 Improving the efficiency of the steam turbine and compressor will favor mechanical 

compression rather than thermal compression, and results in an optimum heat of 

absorption as low as 70–85 kJ/mol, which is close to that of available solvents. 
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Chapter 8: Optimum Design of Lean/Rich Amine Cross Exchanger 

8.1 INTRODUCTION 

In the amine scrubbing process, the lean/rich amine cross exchanger is used to 

recover the sensible heat from the hot lean solvent.  The exchanger heat duty is 3 to 5 

times the actual reboiler duty input.  Since a large amount of heat is transferred, the capital 

cost of the cross exchanger is one of the cost centers, accounting for 20–30% of capital 

cost (Lin & Rochelle, 2014).   

To reduce the cross exchanger cost, the most important design parameter, the 

LMTD should be optimized.  Furthermore, the heat transfer performance can be enhanced 

by increasing the pressure drop and using a less viscous solvent.  This chapter aims at 

investigating the pressure drop and viscosity effect on the cross exchanger performance 

and reducing the capital cost by providing an optimum design.  The plate-and-frame 

exchanger will be considered to be the type used for the cross exchanger.  Mechanical 

and structure design will not be in the scope of this work. 

8.1.1 Plate-and-frame exchanger (PHE) 

The plate-and-frame type exchanger (PHE) has become a commonly used heat 

exchanger because of the advantages over the conventional shell-and-tube exchanger: the 

compactness, high thermal efficiency, and easy maintenance and reconfiguration.  A 

typical PHE is shown in Figure 8.1.  The hot and cold fluids flow between thin plates 

where the heat transfer area is provided.  The ports on the corner of plates serve as fluid 

collectors or distributors.  The plates are sealed by gaskets or welding to avoid fluid 

mixing and leakage.  Typical maximum pressure and temperature rating for gasketed 

PHE is 20–28 bar and 100–200 °C depending on the gasket material.  Higher pressure 

and temperature can be tolerated with a welded PHE. 
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Figure 8.1: Plate-and-frame exchanger (Reppich, 1999). 

The heat transfer performance can be enhanced by corrugated plates, which 

produces additional turbulence.  Turbulent flow can be attained even at a low Reynolds 

number (Re) from 100 to 300 relative to 104 for a smooth tube.  As shown in Figure 8.2, 

the corrugation angle, , is the primary geometry variable, which can be selected between 

0 and 90º.  As the corrugation angle increases, better heat transfer coefficient can be 

obtained but the pressure drop also increases. 



 168 



 

Figure 8.2: Corrugated plate and corrugation angle, . 

8.2 LITERATURE SURVEY OF HEAT TRANSFER CORRELATION FOR PHE 

Empirical correlations developed from experimental data can be used to estimate 

the heat transfer coefficient and the pressure drop.  Table 8.1 summarizes the correlations 

from literature for the heat transfer coefficient and the pressure drop for PHE.  Two 

dimensionless groups, Nusselt number (Nu) and Fanning friction factor (f) are used to 

calculate the heat transfer coefficient (h) and the total pressure drop (P), respectively, as 

shown in Equations 8.1 and 8.2.  

ℎ = 𝑁𝑢
𝐷𝑒

𝑘
                             (8.1) 

∆𝑃 =
2𝑓𝐿𝑇𝜌𝑢2

𝐷𝑒
                            (8.2) 
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Table 8.1: Summary of empirical correlations of heat transfer and pressure drop for PHE. 

Author/year Fluid Heat transfer Pressure drop 

(Okada et al., 1972) Water 
𝑁𝑢 = 0.327𝑅𝑒0.65𝑃𝑟0.4  (𝜃 = 60) 

𝑁𝑢 = 0.157𝑅𝑒0.66𝑃𝑟0.4 (𝜃 = 30) 
 

(Rosenblad et al., 1975) Water 𝑁𝑢 = 0.289𝑅𝑒0.697𝑃𝑟0.33  

(Vaie, 1975) Water 𝑁𝑢 = 0.298(𝜙)1−0.646𝑅𝑒0.646𝑃𝑟0.316 𝑓 = (36𝜙𝑅𝑒−1 + 0.2)𝜙 

(Kumar, 1984) Water 

𝑁𝑢 = 0.348𝑅𝑒0.663𝑃𝑟0.33 (
𝜇

𝜇𝑤

)
0.17

(𝜃 = 60) 

𝑁𝑢 = 0.108𝑅𝑒0.703𝑃𝑟0.33 (
𝜇

𝜇𝑤

)
0.17

(𝜃 = 30) 

𝑓 = 2.99𝑅𝑒−0.183(𝜃 = 60) 

𝑓 = 0.76𝑅𝑒−0.215(𝜃 = 30) 

(Heavner et al., 1993) Water 

𝑁𝑢 = 0.308𝑅𝑒0.667𝑃𝑟0.33 (
𝜇

𝜇𝑤

)
0.17

(𝜃𝑎𝑣𝑔 = 56.5)  

𝑁𝑢 = 0.118𝑅𝑒0.720𝑃𝑟0.33 (
𝜇

𝜇𝑤

)
0.17

(𝜃𝑎𝑣𝑔 = 33.5) 

𝑓 = 1.441𝑅𝑒−0.1353(𝜃𝑎𝑣𝑔 = 56.5) 

𝑓 = 0.545𝑅𝑒−0.1555(𝜃𝑎𝑣𝑔 = 33.5) 

 

(Roetzel et al., 1994) Water 𝑁𝑢 = 0.371𝑅𝑒0.703𝑃𝑟0.33  

(Thonon et al., 1995)  
𝑁𝑢 = 0.2946𝑅𝑒0.7𝑃𝑟0.33 (𝜃 = 60)  
𝑁𝑢 = 0.2267𝑅𝑒0.631𝑃𝑟0.33 (𝜃 = 30)  

𝑓 = 0.37𝑅𝑒−0.172(𝜃 = 60)  
𝑓 = 0.572𝑅𝑒−0.217(𝜃 = 30) 

(Talik et al., 1995) 
Propylene 

glycol/water  
𝑁𝑢 = 0.2𝑅𝑒0.75𝑃𝑟0.4(𝜃 = 60) 𝑓 = 48.26𝑅𝑒−0.74(𝜃 = 60) 

(Manglik et al., 1995) Water 𝑁𝑢 = 0.105𝑅𝑒0.755𝑃𝑟0.33 (
𝜇

𝜇𝑤

)
0.14

(𝜃 = 45) 𝑓 = 1.274𝑅𝑒−0.15(𝜃 = 45) 

(Muley et al., 1999) Water 𝑁𝑢 = 𝐶1(𝜃)𝐶2(𝜙)𝑅𝑒𝑎(𝜃)𝑃𝑟0.33 (
𝜇

𝜇𝑤

)
0.14

 𝑓 = 𝐶3(𝜃)𝐶4(𝜙)𝑅𝑒−𝑏(𝛽𝜃) 

(Warnakulasuriya et al., 2008) Salt solution 𝑁𝑢 = 0.292𝑅𝑒0.725𝑃𝑟0.35 (
𝜇

𝜇𝑤

)
0.14

(𝛽 = 60)  𝑓 = 23.8𝑅𝑒−0.205(𝜃 = 60) 

(Khan et al., 2010) Water 

 𝑁𝑢 = 0.1368𝑅𝑒0.7424𝑃𝑟0.35 (
𝜇

𝜇𝑤

)
0.14

𝛽 = 30 

𝑁𝑢 = 0.1449𝑅𝑒0.8414𝑃𝑟0.35 (
𝜇

𝜇𝑤

)
0.14

𝛽 = 60 
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Most literature used water as the working fluid in experiments and reported heat 

transfer coefficient and pressure drop with varied fluid flow rate.  The Nusselt number 

and the Fanning friction factor are typically regressed by Equations 8.3 and 8.4 as a 

function of Reynolds number and Prandtl number (Pr).  The exponent of the Prandtl 

number, n, was typically fixed at 0.33 from the boundary layer theory, and the experimental 

data were regressed to determine the CNu and m.  The friction factor is inversely 

proportional to the Reynolds number with an exponent, p.  The most common corrugation 

angles tested were 30º and 60º.   

𝑁𝑢 = 𝐶𝑁𝑢𝑅𝑒𝑚𝑃𝑟𝑛                        (8.3) 

𝑓 = 𝐶𝑓𝑅𝑒−𝑝                           (8.4) 

The empirical correlations are applied to amine solutions to predict the potential 

performance of the cross exchanger for amine scrubbing.  The physical properties of 8 m 

PZ at typical operating conditions in the cross exchanger are shown in Table 8.2.  The 

physical properties were estimated at 90 ºC, around the average temperature of the cross 

exchanger from 50 to 140 ºC.  Applying the correlations that were regressed by 

experiment data of water to the amine system assumes the same dependence of heat transfer 

coefficient on fluid velocity even the amines are more viscous.  To understand the 

viscosity effect on the PHE, measuring the heat transfer coefficient and pressure drop for 

viscous solvent is necessary in the future.  The Prandtl number for 8 m PZ is around 70, 

which is an order of magnitude higher than water due to the viscosity.  The plate spacing 

(δ) is assumed to be 2 mm so the hydraulic diameter (De) is 4 mm.   
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  Table 8.2: Physical properties of 8 m PZ at 90 ºC and CO2 loading at 0.30. 

Viscosity  

(cP) 
3 

Thermal conductivity  

(W/m-K) 
0.15 

Heat capacity  

(kJ/kg-K) 
3.5 

Figure 8.3 shows the Nusselt number predicted by the empirical equations at varied 

Reynolds number with two common corrugation angles, 30º and 60º.   The Dittus-Boelter 

equation (Dittus et al., 1985) for smooth tube is also plotted.  The corrugated plates can 

enhance the heat transfer coefficient by 2–10 times at the same Reynolds number.  The 

PHE with 60º generally provides a higher heat transfer coefficient, which is almost twice 

of that with 30º.  At the same corrugation angle, the difference of the Nusselt number 

between correlations can vary more than 50% but the dependence on the Reynolds number 

is similar.   
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Figure 8.3: Nusselt number predicted by empirical correlations with varied Reynolds 

number using physical properties of 8 m PZ. 

8.3 VISCOSITY EFFECT ON HEAT TRANSFER COEFFICIENT 

The heat transfer coefficient can be enhanced by using a less viscous solvent.  

Based on the form of Equation 8.3, the dependence of heat transfer coefficient on viscosity 

is m-n.  Figure 8.4 shows the dependence predicted by the empirical correlations with 

varied corrugation angle.  Most of the viscosity dependence is between 0.30 and 0.40, 

which implies that reducing viscosity by 50% can save on cross exchanger cost by 20–

25%.      
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Figure 8.4: The dependence of viscosity on the exchanger cost predicted by empirical 

correlations with varied corrugation angle. 

8.4 OPTIMIZING LMTD BY SHORTCUT METHOD 

The LMTD of the cross exchanger (TLM) has the most impact on the capital cost.  

The capital cost of the cross exchanger is sensitive to the LMTD especially for the system 

that has a large number of heat transfer units (NTU).  The temperature change across the 

cross exchanger is typically around 100 K so the NTU will be 20 if the LMTD is 5 K.  

The optimum LMTD is tradeoff of energy cost and capital cost.  Li adjusted the solvent 

capacity by taking account of the viscosity effect on the cross changer cost at optimum 

LMTD (Li, Voice, et al., 2013).  A shortcut method that determines the optimum cross 

exchanger LMTD was derived with the following assumptions: 
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 The temperature change across the cross exchanger (TcrX), heat capacity (Cp), and 

steam temperature (Tstm) are independent of TLM 

 Assume the temperature change in the reboiler is the same as TLM 
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Figure 8.5: Optimization of cross exchanger LMTD. 

The optimization includes the CAPEX and OPEX of the cross exchanger and the 

reboiler as shown in Figure 8.4.  The area of the cross exchanger and the reboiler are 

calculated: 

𝐴𝑐𝑟𝑋 =
𝑄𝑐𝑟𝑋

𝑈𝑐𝑟𝑋∆𝑇𝐿𝑀
=

𝑚̇𝐶𝑝∆𝑇𝑐𝑟𝑋

𝑈𝑐𝑟𝑋∆𝑇𝐿𝑀
                     (8.5) 

𝐴𝑟𝑒𝑏 =
𝑄𝑟𝑒𝑏

𝑈𝑟𝑒𝑏(𝑇𝑠𝑡𝑚−𝑇𝑟𝑒𝑏)
=

𝑚̇𝐶𝑝∆𝑇𝐿𝑀

𝑈𝑟𝑒𝑏(𝑇𝑠𝑡𝑚−𝑇𝑟𝑒𝑏)
                    (8.6) 

The CAPEX and the OPEX are calculated: 

𝐶𝐴𝑃𝐸𝑋 = 𝐶𝑃𝐸𝐶,𝑐𝑟𝑋𝐴𝑐𝑟𝑋 + 𝐶𝑃𝐸𝐶,𝑟𝑒𝑏𝐴𝑟𝑒𝑏                       (8.7) 
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𝑂𝑃𝐸𝑋 = 𝐶𝐶𝑂𝐸𝜂𝑡𝑏 (
𝑇𝑠𝑡𝑚−𝑇𝑠𝑖𝑛𝑘

𝑇𝑠𝑡𝑚
) 𝑄𝑟𝑒𝑏 = 𝐶𝐶𝑂𝐸𝜂𝑡𝑏 (

𝑇𝑠𝑡𝑚−𝑇𝑠𝑖𝑛𝑘

𝑇𝑠𝑡𝑚
) 𝑚̇𝐶𝑝∆𝑇𝐿𝑀        (8.8) 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝐶𝑃𝐸𝐶,𝑐𝑟𝑋
𝑚̇𝐶𝑝∆𝑇𝑐𝑟𝑋

𝑈𝑐𝑟𝑋∆𝑇𝐿𝑀
+ 𝐶𝑃𝐸𝐶,𝑟𝑒𝑏

𝑚̇𝐶𝑝∆𝑇𝐿𝑀

𝑈𝑟𝑒𝑏(𝑇𝑠𝑡𝑚−𝑇𝑟𝑒𝑏)
+ 𝐶𝐶𝑂𝐸𝜂𝑡𝑏 (

𝑇𝑠𝑡𝑚−𝑇𝑠𝑖𝑛𝑘

𝑇𝑠𝑡𝑚
) 𝑚̇𝐶𝑝∆𝑇𝐿𝑀  (8.9) 

𝜕(𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡)

𝜕∆𝑇𝐿𝑀
= −𝐶𝑃𝐸𝐶,𝑐𝑟𝑋

𝑚̇𝐶𝑝∆𝑇𝑐𝑟𝑋

𝑈𝑐𝑟𝑋∆𝑇𝐿𝑀
2 + 𝐶𝑃𝐸𝐶,𝑟𝑒𝑏

𝑚̇𝐶𝑝

𝑈𝑟𝑒𝑏(𝑇𝑠𝑡𝑚−𝑇𝑟𝑒𝑏)
+ 𝐶𝐶𝑂𝐸 (

𝑇𝑠𝑡𝑚−𝑇𝑠𝑖𝑛𝑘

𝑇𝑠𝑡𝑚
) 𝑚̇𝐶𝑝  (8.10) 

At optimum LMTD (TLM,opt), the first derivative of total cost is equal to zero: 

∆𝑇𝐿𝑀,𝑜𝑝𝑡 = √
𝐶𝑃𝐸𝐶,𝑐𝑟𝑋∆𝑇𝑐𝑟𝑋

𝑈𝑐𝑟𝑋
[

𝐶𝑃𝐸𝐶,𝑟𝑒𝑏

𝑈𝑟𝑒𝑏(𝑇𝑠𝑡𝑚−𝑇𝑟𝑒𝑏)
+ 𝐶𝐶𝑂𝐸𝜂𝑡𝑏 (

𝑇𝑠𝑡𝑚−𝑇𝑠𝑖𝑛𝑘

𝑇𝑠𝑡𝑚
)]

−0.5

       (8.11) 

∆𝑇𝐿𝑀,𝑜𝑝𝑡 ∝ √
𝐶𝑃𝐸𝐶,𝑐𝑟𝑋∆𝑇𝑐𝑟𝑋

𝑈𝑐𝑟𝑋
                     (8.12) 

Equation 8.12 shows that the optimum LMTD is a function of heat transfer 

coefficient, temperature change and the cost of heat exchanger.  A greater LMTD should 

be used to prevent excessive capital cost when the NTU is large and the heat transfer 

coefficient is small.  If the heat transfer performance can be enhanced, a smaller cross 

exchanger LMTD that increases the thermal efficiency can be applied.  

8.5 OPTIMIZING FLUID VELOCITY 

When the physical properties of the fluid are given, the only degree of freedom that 

determines the heat transfer coefficient and the pressure drop is the fluid velocity.  The 

optimum fluid velocity will trade off the enhanced heat transfer performance and the 

penalty from the pressure drop.  An economic optimization can be performed by 

considering the tradeoffs including the capital cost of the cross exchanger and the cost 

associated with the pressure drop including the pumping cost and the capital cost of the 

pump (Martin, 1999).  A shortcut method that determines the optimum fluid velocity will 

be developed for the cross exchanger. 
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8.5.1 Shortcut method 

Figure 8.6 shows the flow pattern and the geometry of a PHE with a single-pass.  

The fluid velocity is determined by the cross-sectional area that is perpendicular to the flow 

direction.   

L

d

WP

 

Figure 8.6: Flow pattern and geometry of a single-pass plate-and-frame exchanger. 

If the plate spacing (d is fixed, the fluid velocity can be varied by adjusting the 

total plate width (WT), which is the width of each plate (Wp) multiplied by the total plate 

number.  The mass velocity of each side can be determined by Equation 8.13.  The ṁ 

is the mass flow rate of one side. 

𝐺 = 𝜌𝑢 =
𝑚̇

𝛿×
𝑊𝑇

2

                        (8.13) 

Equations 8.3 and 8.4 are used to calculate the heat transfer coefficient and the 

pressure drop with the empirical parameters: m, n, and p.  The pressure drop per unit 

length (P/L) is proportional to the Reynolds number with exponent 2-p (Equation 8.14).   
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Substituting the Reynolds number for pressure drop per unit length shows that the 

dependence of the pressure drop per unit length on Nusselt number is m/(2-p) (Equation 

8.15).  The dependence will determine the heat transfer enhancement by increasing the 

pressure drop.  The empirical m and p can be obtained from literature that measured heat 

transfer coefficient and pressure drop with the same experiment set.  Figure 8.7 shows the 

dependence is between 0.35 and 0.40 as predicted by empirical correlations.  This implies 

that increasing the pressure drop per unit length by twice can enhance the heat transfer 

coefficient by about 30%.  The total pressure drop (P) will also depend on the total flow 

length (LT). 

∆𝑃

𝐿
=

2𝑓𝜌𝑢2

𝐷𝑒
∝ 𝑅𝑒2−𝑝                     (8.14) 

ℎ ∝ 𝑅𝑒𝑚 ∝ (
∆𝑃

𝐿
)

𝑚

2−𝑝
                      (8.15) 
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Figure 8.7: The dependence of pressure drop per unit length on Nusselt number predicted 

by empirical correlations with varied corrugation angle. 

To optimize the fluid velocity (u) the total cost associated with the cross exchanger 

is derived.  All the dimensionless groups are taken apart and expressed as a function of 

the fluid velocity, the physical properties and the constants and exponents from the 

empirical correlations.  Equation 8.16 and 8.17 show the expression of the heat transfer 

coefficient and the total pressure drop, respectively. 

ℎ =
𝑘

𝐷𝑒
𝐶𝑁𝑢𝑅𝑒𝑚𝑃𝑟𝑛 = 𝐶𝑁𝑢𝜌𝑚𝐷𝑒

𝑚−1𝑘1−𝑛𝐶𝑝
𝑛𝑢𝑚𝜇𝑛−𝑚       (8.16) 

∆𝑃 =
2𝑓𝑓𝐿𝜌𝑢2

𝐷𝑒
= 2𝐶𝑓𝜌1−𝑝𝐷𝑒

−𝑝−1𝑢2−𝑝𝜇𝑝𝐿𝑇            (8.17) 
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If the total width is used to determine the fluid velocity, the total flow length will 

be determined by the total heat transfer area, A.  The total flow length can be related to 

the heat transfer area and the fluid velocity using Equation 8.18.  The equivalent diameter 

(De) is 2 times the plate spacing. 

𝐿𝑇 =
𝐴

𝑊𝑇
=

𝐴
𝑚̇

𝜌𝛿𝑢

=
𝜌𝐷𝑒𝑢

2𝑚̇
𝐴                   (8.18) 

The overall heat transfer coefficient, U, is approximated as one half of the heat 

transfer coefficient on one side assuming negligible thermal resistance of the plate.  

Equation 8.19 is used to relate the heat transfer area and the overall heat transfer coefficient. 

𝐴 =
𝑄

𝑈∆𝑇𝐿𝑀
=

𝑚̇𝐶𝑝∆𝑇𝑐𝑟𝑋

𝑈∆𝑇𝐿𝑀
                     (8.19) 

By rearranging Equations 8.16–19, the heat transfer area and the total pressure drop 

can be expressed by Equations 8.20 and 8.21.  The exchanger area is inversely 

proportional to the fluid velocity with a power of m, which is around 0.6–0.75 for PHE as 

literature indicated.  The magnitude of m will determine potential heat transfer 

enhancement by increasing the fluid velocity.  The dependence of the fluid velocity on 

the total pressure drop (P) is 3-m-p.  The p affects the friction factor and the m indirectly 

determines the total flow length.  A longer flow length will cause more total pressure 

drop. 

𝐴 = 𝑚̇
∆𝑇

∆𝑇𝐿𝑀

2

𝐶𝑁𝑢
𝜌−𝑚𝐷𝑒

1−𝑚𝑘𝑛−1𝐶𝑝
1−𝑛𝑢−𝑚𝜇𝑚−𝑛          (8.20) 

∆𝑃 =
∆𝑇

∆𝑇𝐿𝑀

2𝐶𝑓

𝐶𝑁𝑢
𝜌2−𝑚−𝑝𝐷𝑒

1−𝑚−𝑝𝑘𝑛−1𝐶𝑝
1−𝑛𝑢3−𝑚−𝑝𝜇𝑚−𝑛+𝑝       (8.21) 

The total cost associated with the cross exchanger optimization includes the energy 

cost of pump work and the capital cost of the pump and the cross exchanger.  The pump 

work can be calculated using Equation 8.22.  After adding the pricing parameters, 
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Equation 8.24 shows the total cost associated with the cross exchanger, which should be 

minimized.  The optimum velocity is mainly driven by the empirical parameters m and p, 

the equipment purchased cost of the exchanger and the pump (CPEC,ex, CPEC,p), the capital 

scaling and the annualizing factor,  and , and the cost of electricity, CCOE as shown in 

Equation 8.25.   

𝑊𝑝𝑢𝑚𝑝 =
𝑉̇∆𝑃

𝜂𝑝
=  

𝑚̇∆𝑃

𝜌𝜂𝑝
                      (8.22) 

𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = (𝐶𝐶𝑂𝐸 + 𝛼𝛽𝐶𝑃𝐸𝐶,𝑝)
2𝐶𝑓

𝐶𝑁𝑢

𝑚̇

𝜂𝑝

∆𝑇

∆𝑇𝐿𝑀
𝜌1−𝑚−𝑝𝐷𝑒

1−𝑚−𝑝𝑘𝑛−1𝐶𝑝
1−𝑛𝑢3−𝑚−𝑝𝜇𝑚−𝑛+𝑝 

                     +𝛼𝛽𝐶𝑃𝐸𝐶,𝑐𝑟𝑋𝑚̇
∆𝑇

∆𝑇𝐿𝑀

2

𝐶𝑁𝑢
𝜌−𝑚𝐷𝑒

1−𝑚𝑘𝑛−1𝐶𝑝
1−𝑛𝑢−𝑚𝜇𝑚−𝑛        (8.24) 

At optimum fluid velocity (uopt), 
𝜕𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙

𝜕𝑢
= 0 

𝑢𝑜𝑝𝑡 = (
𝑚

𝐶𝑓(3−𝑚−𝑝)

𝛼𝛽𝐶𝑃𝐸𝐶,𝑐𝑟𝑋

𝐶𝐶𝑂𝐸+𝛼𝛽𝐶𝑃𝐸𝐶,𝑝
𝜂𝑝𝜌𝑝−1𝐷𝑒

𝑝𝜇−𝑝)

1

3−𝑝
      (8.25) 

The optimum velocity is independent of the solvent rate, the temperature change of 

the cross exchanger, and the cross exchanger LMTD.  To maintain at optimum fluid 

velocity, the plate number needs to increase as the solvent rate increases while the plate 

length will increase as the NTU increases.  Viscous solvent will result in a lower optimum 

velocity since it causes higher pressure drop. 

  



 181 

8.5.2 Case study 

The optimum velocity in Equation 8.25 is demonstrated using typical design 

parameters shown in Table 8.3 and plotted with varied m and viscosity in Figures 8.8 and 

8.9, respectively.  Typical optimum fluid velocity is at 0.32–0.42 m/s.  The exponent of 

the Reynolds number, m determines the heat transfer enhancement with increasing fluid 

velocity.  The greater the m is, it is more efficient to reduce the heat exchanger area by 

utilizing high the pressure drop so a greater optimum velocity is obtained.  The net effect 

of viscosity on optimum velocity is with a power of –p/(3-p), which is around 0.08 for the 

base case.  Viscous solvent should apply a lower fluid velocity to minimize the total cost. 

 

Figure 8.8: Optimum velocity with varied exponent of Reynolds number, m. 
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Table 8.3: Typical design parameters for PHE. 

m 0.66 

p 0.21 

Cf 1.44 

ηp 0.65 

(kg/m3) 1000 

De (m) 0.004 

𝛼𝛽𝐶𝑃𝐸𝐶,𝑐𝑟𝑋

𝐶𝐶𝑂𝐸 + 𝛼𝛽𝐶𝑃𝐸𝐶,𝑝

 100 

(cP) 3 

 

Figure 8.9: Optimum velocity with varied solvent viscosity. 
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8.6 CONCLUSIONS 

To minimize the cross exchanger cost, shortcut methods that determine optimum 

LMTD and fluid velocity were developed.  The optimum fluid velocity is at 0.32–0.42 

m/s.  Table 8.4 summarizes the dependence between the cross exchanger LMTD, fluid 

velocity, heat transfer coefficient, and pressure drop.  The cross exchanger optimization 

will be applied to the economic analysis in Chapter 9.  

Table 8.4: Summary of dependence between heat transfer coefficient, pressure drop, and 

viscosity by shortcut method. 

Dependence x Empirical value 

∆𝑇𝐿𝑀,𝑜𝑝𝑡 ∝ ℎ𝑥 0.5 - 

ℎ ∝ 𝑢𝑥 m 0.6–0.75 

ℎ ∝ (
∆𝑃

𝐿
)

𝑥

 m/(2-p) 0.35–0.4 

ℎ ∝ ∆𝑃𝑥 m/(3-m-p) 0.3–0.35 

𝑢𝑜𝑝𝑡 ∝ 𝜇𝑥 -p/(3-p) -0.04– -0.08 

ℎ𝑜𝑝𝑡 ∝ 𝜇𝑥 m-n 0.3–0.4 

∆𝑃𝑜𝑝𝑡 ∝ 𝜇𝑥 m-n+p 0.3–0.6 

 

NOMENCLATURE 

𝐴             Heat exchanger area (m2) 

𝐶𝐶𝑂𝐸        Cost of electricity ($/W-yr) 
𝐶𝑓            Constant in pressure drop correlation 

𝐶𝑁𝑢         Constant in heat transfer correlation 

𝐶𝑝           Heat capacity (kJ/kg-K) 

𝐶𝑃𝐸𝐶,𝑐𝑟𝑋  Purchased equipment cost ($/m2) 

𝐶𝑃𝐸𝐶,𝑝      Purchased equipment cost ($/W) 

𝐷𝑒            Equivalent diameter(= 2𝛿) 

𝑓              Fanning friction factor 

ℎ              Heat transfer coefficient (W/K-m2) 

𝑘              Thermal conductivity (W/K-m2) 

𝐿𝑇            Total length of flow path (m) 

𝑁𝑢           Nusselt number (= ℎ𝐷𝑒/𝑘) 
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𝑚             Exponent of Re 

𝑚̇             Solvent mass flow rate 

𝑛              Exponent of Pr  

𝑝              Exponent in pressure drop correlation 

𝑄              Exchanger heat duty (W) 

𝑅𝑒            Reynolds number (= 𝜌𝑢𝐷𝑒/𝜇) 

𝑇𝑠𝑡𝑚        Steam temperature (K) 

𝑇𝑟𝑒𝑏         Reboiler temperature (K) 

𝑈             Overall heat transfer coefficient (W/K-m2) 

𝑉̇             Solvent volume flow rate (m3/s) 

𝑢             fluid velocity (m/s) 

𝑊𝑝          Width of each plate (m) 

𝑊𝑇          Total width of plates (m) 

Greek 

𝛼             Scaling factor (-) 

𝜃             Corrugation angle 

𝛽             Annualizing factor (1/yr) 

∆𝑃          Total pressure drop (Pa) 

∆𝑃 𝐿⁄      Pressure drop per unit length (Pa/m) 

∆𝑇𝐿𝑀      Log mean temperature difference (K) 

𝛿             Plate spacing (m) 

𝜂𝑝           Pump efficiency 

𝜂𝑡𝑏          Steam turbine efficiency 

𝜇             Solvent viscosity (Pa-s)) 

𝜌             Solvent density (kg/m3) 

Subscript 

crX    Cross exchanger 

reb    Reboiler 

p      Pump 
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Chapter 9: Techno-economic Analysis and Process Optimization 

9.1 INTRODUCTION 

Energy has been used as the primary performance indicator in previous studies of 

alternative stripper configurations.  However, the overall cost benefit is not guaranteed 

without considering the capital cost.  In order to demonstrate the potential cost benefit 

that can be brought by the advanced flash stripper (AFS), a techno-economic analysis 

accounting for both operating cost (OPEX) and capital cost expenses (CAPEX) must be 

performed.   

The major objective of previous economic analyses was to show the 

competitiveness and economic feasibility of amine scrubbing by comparing the cost of CO2 

avoided (Abu-Zahra et al., 2007; Hammond et al., 2011; Hasan et al., 2012; Huang et al., 

2010).  Abu-Zahra (2007) studied the effect of lean loading, amine concentration, and 

removal rate on the overall economics using a non-intercooled absorber and a simple 

stripper.  Most studies were focused on conventional process configurations and solvent 

(MEA), and there are few direct comparisons to advanced solvents and processes. 

Several studies compared the capital cost of alternative strippers (Karimi et al., 

2011; Lin & Rochelle, 2014; Schach et al., 2010).  Schach (2010) demonstrated the cost 

savings using absorber intercooling and the matrix stripper but the parametric study of lean 

loading was at a constant stripper pressure, which limits the possibility to reduce the 

compressor cost.  Karimi (2011) concluded that the lean vapor compression gives the 

lowest capture cost among five stripper alternatives.  However, the effect of lean loading 

and process optimization regarding capital-energy tradeoffs were not considered.  Lin and 

Rochelle (2014) evaluated the operating and capital cost for the most promising stripper 

configuration, the advanced flash stripper (AFS) at varied lean loading and stripper 

pressure.  A parametric study was performed to investigate the effect of the cross 
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exchanger LMTD and the CO2 lean loading.  Little study has been conducted for 

advanced stripper configurations with a complete process economic optimization. 

The objective of this work is to quantify the benefit of AFS by considering OPEX 

and CAPEX and compare to the conventional simple stripper.  A process optimization 

that minimizes the annualized cost will be explored to guide selection of the optimum 

equipment design and operating conditions.  The simple stripper and the AFS will be 

modeled in Aspen Plus®  using 8 m PZ.  The scope of the economics analysis includes the 

CO2 regeneration and compression highlighted in Figures 9.1 and 9.2 for the simple 

stripper and the AFS, respectively.  Since the absorber is not included, the rich solvent 

conditions will be the input to the simulation.  The rich loading will reflect the absorber 

performance. 

Cross exchanger

Condenser

Rich solvent

Lean solvent

Condensate

Multi-stage
compressor

Absorber

Flue gas
12% CO2

Vented gas

Stripper

CO2

150 bar

n

Reboiler

Trim cooler

Regeneration and compression 

4-10 bar

 

Figure 9.1: Economic analysis scope for the simple stripper. 
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exchanger

Warm rich Bypass
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exchanger
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exchanger

Condenser
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Flue gas
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Steam heater

Stripper

Multi-stage
compressor

CO2

150 bar
n

Condensate
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Figure 9.2: Economic analysis scope for the advanced flash stripper. 

9.2 MODELING METHODS 

9.2.1 Process specifications 

The capture plant is designed to capture 3.3 million tonnes of CO2 per year, which 

corresponds to a 500 MWe (gross output) coal-fired power plant with 90% removal (Fisher, 

2007).  The process specifications used in the simulations are shown in Table 9.1.  The 

rich solvent loading and temperature are assumed as 0.4 mol CO2/mol alkalinity and 46 

°C, respectively, which are typical results for an intercooled absorber with 1.1–1.2 L/G and 

finite packing (Plaza, 2011).  The effect of rich loading will be tested in Section 9.3.3 

Simulation results were obtained from Aspen Plus®  version 7.3 using the 

Independence model, which was rigorously regressed for PZ (Frailie, 2014).  The 

rigorous rate-based calculation is used in the stripper for heat and mass transfer with 

equilibrium reactions.  The interfacial area is corrected by a factor of 0.15 to agree with 
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2015 SRP pilot plant data as described in Chapter 5.  This is probably a result of an 

inaccurate value of the amine diffusion coefficient predicted by Independence model. 

Table 9.1: Summary of design specifications. 

CO2 capture rate (kg/s) 115.7 

Solvent 8 m PZ 

Process modeling tool Aspen Plus®  v7.3 

Thermodynamic model Independence 

Packing type RSR no. 0.3 

Correction factor of interfacial area 0.15 

Regeneration temperature (°C) 150 

Rich loading (mol CO2/mol alk) 0.4 

Rich solvent temperature (°C) 46 

9.2.2 Costing methods 

The annualized cost of CO2 captured in $/tonne CO2 will be used to quantify the 

capital-energy tradeoffs and justify the cost benefits.  The annualized regeneration cost 

will include the OPEX and the annualized CAPEX of unit operations included in the scope 

of Figures 9.1 and 9.2. 

 CAPEX 

  The capital cost needs to be converted to $/tonne CO2 so it can be compared with 

energy cost.  A simplified estimation method was proposed by Frailie (2014) using 

Equation 9.1.  The scaling factor  converts the purchased equipment cost (PEC) to total 

capital investment (TCI) and the annualizing factor  annualizes the TCI.  The scaling 

factor includes the direct and indirect installation cost, contingency, contractor’s fee, and 

auxiliary facilities.  Typical scaling factor for chemical processes was indicated as 4–6, 
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which depends on types of process and unit operation (Seider et al., 2003; Turton et al., 

2012).   

Various estimation methods for CO2 capture process have been reviewed by Frailie 

(2014).  It was concluded that typical scaling factor is 2–10 and annualizing factor is 0.1–

0.3.  The annualizing factor takes into account return on investment (10%), taxes (35% of 

return on investment), depreciation, and maintenance (2–3%).  The andare 

recommended as 5 and 0.2, respectively and will be used in this work.   

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝐴𝑃𝐸𝑋 (
$

𝑡𝑜𝑛𝑛𝑒 𝐶𝑂2
) =

𝛼×𝛽×𝑃𝐸𝐶

𝑡𝑜𝑛𝑛𝑒 𝐶𝑂2 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟
     (9.1) 

 OPEX 

Total equivalent work (Weq) is used to calculate the OPEX by accounting for the 

electricity penalty due to the steam extraction from the power plant, the CO2 compression 

work, and the solvent pumping work.  The rich pump work is required to overcome the 

pressure drops through heat exchangers and move the solvent from the absorber to the 

pressure of the stripper.  The lean solvent is typically at 4–10 bar at 150 °C using PZ.  

The available pressure will be taken into account when calculating the pump work 

requirement for the lean solvent. 

The operating cost is calculated using Equation 9.2.  The cost of electricity (COE) 

with post-combustion CO2 capture will increase $41/MWh due to the increased capital and 

energy consumption for capture process (IEA, 2013).  A typical levelized COE, 

$100/MWh will be used in the analysis.  The levelized COE is expected to improve as 

more commercial capture plants are built due to learning effects.  Advanced solvents and 

processes also have potential to reduce the cost.  A sensitivity analysis on  and COE 

will be performed in Section 9.3.4.  Table 9.2 summarizes the costing parameters used in 

this work. 
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𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑂𝑃𝐸𝑋 (
$

𝑡𝑜𝑛𝑛𝑒 𝐶𝑂2
) =

𝑊𝑒𝑞×COE

𝑡𝑜𝑛𝑛𝑒 𝐶𝑂2 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟
       (9.2) 

Table 9.2: Summary of costing parameters. 

Capital scaling factor,  5 

Capital annualizing factor,  0.2 

COE ($/MWh) 100 

CEPCI (2015 April) 563 

Operational time (days/yr) 329 

9.2.3 Calculating purchased equipment cost (PEC) 

The unit operations are sized using the simulation data such as pressure, 

temperature, flow rate, heat duty, and heat exchanger LMTD (TLM) obtained from Aspen 

Plus® .  The PEC of unit operations were acquired either from vendor quotes or empirical 

correlations, and then scaled to 2015 cost level by the Chemical Engineering Plant Cost 

Index (CEPCI).  Table 9.3 summarizes the equipment sizing and pricing basis. 

 Heat exchangers 

Sizing heat exchangers requires the exchanger duty, LMTD and the overall heat 

transfer coefficient (U).  The exchanger duty and LMTD are obtained from Aspen Plus®  

simulations.  The U of the cross exchangers will be optimized by considering pressure 

drop cost and the exchanger cost as described in Chapter 8.  The U of the cold rich 

exchanger and the steam heater are calculated from the 2015 SRP pilot plant results.  The 

condenser and the reboiler are considered to have the same heat transfer mechanism of the 

cold rich exchanger and the steam heater, respectively so the same values will be used.   

 Stripper column 

The stripper height consists of one packing section, a sump with 1 min residence 

time, and 2 meter auxiliary height for distributor and liquid feed.  The diameter is 

determined by 80% flooding approach. 
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Table 9.3: Summary of equipment sizing and pricing basis. 

Class Name Type Material Sizing basis Cost source 

Column Stripper Packed tower 316SS 

80% flooding 

Auxiliary height: 2 m 

Residence time: 1 min 

(Tsai, 2010) 

Heat 

exchanger 

Cross 

exchanger 
Plate-and-frame 316SS Optimized U and TLM Vendor quote 

Cold rich 

exchanger 
Plate-and-frame 316SS 

U: 250 W/K-m2 

OptimizedTLM  
Vendor quote 

Trim cooler Plate-and-frame 316SS 
U: 1500 W/K-m2 

Cooling water Tin/Tout: 16/25 °C 
Vendor quote 

Condenser Plate-and-frame 316SS 
U: 250 W/K-m2 

Cooling water Tin/Tout: 16/25 °C  
Vendor quote 

Reboiler 
Kettle type 

Shell-and-tube 
316SS 

U: 2500 W/K-m2 

Optimizedsteam 

(Seider et al., 

2003) 

Steam heater 
Fixed-head type 

Shell-and-tube 

Tube: SS 

Shell: CS 

U: 2500 W/K-m2 

Optimized steam 
Vendor quote 

Pump 

Rich pump Centrifugal 316SS Efficiency: 65% Vendor quote 

Lean pump Centrifugal 316SS Efficiency: 65% Vendor quote 

CO2 pump Centrifugal 316SS 
Efficiency: 65% 

Final P: 150 bar 
Vendor quote 

Compressor 
Multi-stage 

compressor 
Centrifugal 316SS 

Pressure ratio per stage ≤2 

Intercooling to 40 °C 

Polytropic efficiency: 86% 

Final P: 76 bar 

Aspen Icarus®  

Pressure 

vessel 

Condensate 

tank 
Vertical 316SS Residence time: 5 mins (Tsai, 2010) 
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 Pumps 

The PEC of pump is mainly determined by the pump work, which is calculated 

based on the volumetric flow rate of solvent and the head requirement.  The rich solvent 

pumps provide the head to move the solvent from 1 bar to the stripper pressure and the 

pressure drops across the heat exchangers.  A pump for the lean solvent is not necessary 

when the stripper pressure is sufficient to get the solvent through the cross exchangers, the 

trim cooler and the absorber.  The pressure drops of the steam heater and the trim cooler 

are assumed as 10 psi (0.7 bar) for each, and the static head of the absorber is assumed as 

30 m.  The pump efficiency is assumed as 65%. 

 Multi-stage compressor 

The capital cost of the multi-stage compressor consists of compressors, 

intercoolers, a motor drive, and a CO2 supercritical pump as shown in Figure 9.3.  The 

CO2 is compressed from stripper pressure to above critical pressure using the multi-stage 

compressor and further pressurized to 150 bar using the CO2 supercritical pump.  The 

CO2 is intercooled to 40 °C and aftercooled to 30 °C before entering the pump to reduce 

the volumetric flow rate.  Table 9.4 summarizes the design specifications of the multi-

stage compressor.  The configuration and specifications are identical to the simulations 

used to acquire compression work described in Chapter 2. 

The sizing uses the simulation results from Aspen Plus®  with CO2 flow rate at 116 

kg/s.  The PEC of the compressor and motor are obtained from Aspen Icarus®  as a 

function of inlet volume flow rate, pressure rating, and compression work.   
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150 bar
76 bar

PR ≤ 2

knockout 
water

CO2 from stripper
4-13 bar

Intercooler Compressor

n stages

Supercritical 
pump

 

Figure 9.3: Multi-stage compressor with supercritical pump. 

Table 9.4: Design specifications of multi-stage compressor. 

Maximum pressure ratio/stage 2 

Compressor polytropic efficiency (%) 86 

Intercooling temperature (oC) 40 

Aftercooling temperature (oC) 30 

Supercritical pump efficiency (%) 65 

Multi-stage compressor outlet P (bar) 76 

Final target P (bar) 150 

Figure 9.4 shows the PEC of the multi-stage compressor with varied inlet pressure.   

The capital cost is mainly driven by the cost of the compressor.  Step changes can be seen 

when the number of stages varies, which depends on the specified maximum pressure ratio.  

The stripper pressure for MEA at 120 °C is typically 1–4 bar and for PZ at 150 °C is 4–10 

bar.   PZ only requires 3 or 4 stages compared to MEA that that requires 5–7 stages at 

the typical operating lean loadings.  This demonstrates the potential benefit of PZ with 

higher thermal stability that can be operated at elevated temperature providing higher 

stripper pressure.   
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Figure 9.4: Purchased equipment cost of multi-stage compressor with supercritical pump 

from Aspen Icarus® ; CO2 flow rate: 116 kg/s; 2015 cost level. 

The total compressor PEC data is annualized and smoothed by a regressed 

correlation (Equation 9.3) with 0.98 of R-squared as shown in Figure 9.5.  The smooth 

curve eliminates the discontinuities and reduces the uncertainties from the specified 

maximum pressure ratio that can vary among manufacturers but still predicts the general 

trend with varied inlet pressure.   

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 𝐶𝐴𝑃𝐸𝑋 (
$

𝑡𝑜𝑛𝑛𝑒 𝐶𝑂2
) = −2.05 𝑙𝑛(𝑃𝑖𝑛) + 0.17𝑙𝑛2(𝑃𝑖𝑛) + 6.76 

1 𝑏𝑎𝑟 ≤ 𝑃𝑖𝑛 ≤ 13 𝑏𝑎𝑟                       (9.3) 

Table 9.5 compares the compressor CAPEX calculated by Equation 9.3 and from 

other sources including DOE Case 10 (NETL, 2010) and a vendor quote at corresponding 
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inlet pressures.  The cost from DOE case is slightly higher than prediction because it 

included a dehydration unit.  In general Equation 9.3 can adequately predict the 

compressor CAPEX. 

 

Figure 9.5: Annualized CAPEX of multi-stage compressor; CO2 flow rate: 116 kg/s; 

2015 cost level; =1. 
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Table 9.5: Comparison of CAPEX of compressor from sources. 

 DOE Case 10 Vendor quote 

Configuration 

6 stages centrifugal 

compressor 

+intercooling 

4 stages centrifugal 

compressor  

+intercooling  

+CO2 supercritical pump 

CO2 flow rate (kg/s) 152.6 137.6 

Inlet P (bar) 1.6 5.9 

Final P (bar) 153 150 

Annualized CAPEX 

($2015/tonne CO2) 
6.4 3.5 

Annualized CAPEX by Eq. 9.3 

($2015/tonne CO2) 
6.0 3.6 

9.2.4 Process optimization 

The CAPEX and OPEX calculations are built in the Aspen Plus®  and are calculated 

simultaneously with simulations. The optimization problem shown in Equations 9.4 and 

9.5 are solved for the simple stripper and the AFS, respectively at specified lean loading, 

rich loading, and reboiler temperature.  The decision variables include heat exchanger 

LMTD (TLM), stripper packing height (Hpkg), cold and warm rich bypass rates (Fcbp, Fwbp), 

steam saturation temperature (Tstm) and pressure drops of the cross exchangers (Pcrx). The 

lean loading will optimized by a parametric study. 

minimize
∆𝑇𝐿𝑀,𝐻𝑝𝑘𝑔,𝑇𝑠𝑡𝑚,∆𝑃𝑐𝑟𝑥

   𝑎𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑂𝑃𝐸𝑋 + 𝐶𝐴𝑃𝐸𝑋          (9.4) 

Subject to:  specified lean loading, rich loading, and Treb 

minimize
∆𝑇𝐿𝑀,𝐻𝑝𝑘𝑔,𝐹𝑐𝑏𝑝 ,𝐹𝑤𝑏𝑝,𝑇𝑠𝑡𝑚,∆𝑃𝑐𝑟𝑥

   𝑎𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑂𝑃𝐸𝑋 + 𝐶𝐴𝑃𝐸𝑋       (9.5) 

Subject to:  specified lean loading, rich loading, and Treb 



 

 

197 

The cross exchanger optimization has been discussed in Chapter 8.  The heat 

transfer coefficient can be enhanced by increasing the fluid velocity.  The optimization 

considers the tradeoffs of the reduction of cross exchanger area and the increase of pumping 

cost.  An optimum heat transfer coefficient can be found.  Equations 9.6 and 9.7 were 

recommended to estimate the heat transfer coefficient and the fanning friction factor for 

plate-and-frame exchanger (Ayub, 2003).  Even though the rich solvent will become a 

two-phase flow after it reaches the bubble point, the heat transfer calculations will assume 

single phase. Only liquid properties are used to calculate Reynolds (Re) and Prandtl 

number (Pr). 

𝑁𝑢 = 0.3𝑅𝑒0.66𝑃𝑟0.33                      (9.6) 

𝑓 = 1.44𝑅𝑒−0.21                         (9.7) 

9.3. RESULTS AND DISCUSSIONS 

9.3.1 Optimum stripper design with minimum regeneration cost 

Both the simple stripper and the AFS were simulated and optimized using 8 m PZ.  

Tables 9.6 and 9.7 summarize the equipment tables for the simple stripper and the AFS at 

0.22 lean loading, respectively.   

The stripper diameter of the AFS is smaller than the simple stripper since less 

solvent is fed to the stripper.  The warm rich bypass provides a greater driving force for 

stripping steam recovery and CO2 stripping so the optimum packing height of AFS is twice 

that of simple stripper.   

The exchanger duty of the cross exchanger is typically 3–5 times the reboiler duty 

so even a few degrees change of the cross exchanger LMTD can affect the energy 

performance significantly.  To determine the temperature approach of the cross 
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exchanger, the tradeoffs involve the capital cost and the steam use in the reboiler/steam 

heater.  The AFS has a relatively smaller LMTD of the cross exchanger than the simple 

stripper, which implies that the sensible heat from the hot lean solvent is recovered in a 

more efficient way.  Previous work showed that the cold and warm rich bypass of AFS 

can help relax the temperature pinch of the cross exchangers by balancing the mass flow 

rate between lean and rich solvent and make it more reversible (Lin et al., 2016). 

The optimum steam saturation temperatures for the simple stripper and the AFS are 

164 °C and 157 °C, respectively.  Higher steam saturation temperature can increase the 

temperature approach between the heating medium and the solvent but will lose more 

electricity per unit steam usage.  The exchanger area of the reboiler/steam heater is 

directly proportional to the heat duty and the LMTD.  The higher heat duty and capital 

cost of kettle-type reboiler make the simple stripper require a higher steam temperature in 

order to reduce the reboiler CAPEX. 
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Table 9.6: Equipment table of simple stripper at 0.22 lean loading. 

Class Name Design spec 
Annualized CAPEX 

($/tonne CO2) 

Column Stripper 

Diameter: 10 m 

Packing H: 3.9 m 

Column H: 7.2 m 

0.4 

Heat 

exchanger 

Cross exchanger 

U: 1520 W/K-m2 

TLM: 9.8 K 

Plean: 3.0 bar 

Prich: 2.1 bar 

1.8 

Reboiler 
TLM: 13.6 K 

Steam°C
1.5 

Condenser TLM: 69 K 0.2 

Trim cooler TLM: 26 K 0.1 

Pump 
Rich pump Head: 8.2 bar 0.5 

Lean pump Head: 1.3 bar 0.2 

Compressor 
Multi-stage 

compressor 
Net output: 23.5 MW 3.6 

Pressure vessel Condensate tank 
Diameter: 2.3 m 

Height: 4.6 m 
<0.1 

Annualized CAPEX 

($/tonne CO2) 
8.3 
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Table 9.7: Equipment table of AFS at 0.22 lean loading. 

Class Name Design spec 
Annualized CAPEX 

($/tonne CO2) 

Column Stripper 

Diameter: 8.4 m 

Packing H: 9.8 m 

Column H: 13.6 m 

0.6 

Heat 

exchanger 

Cold cross 

exchanger 

U: 1449 W/K-m2 

TLM: 7.9 K 

Plean: 1.8 bar 

Prich: 2.7 bar 

1.5 

Hot cross 

exchanger 

U: 1831 W/K-m2 

TLM: 6.9 K 

Plean: 0.7 bar 

Prich: 1.5 bar 

0.6 

Steam heater 
TLM: 10.2 K 

Steam°C
0.8 

Cold rich 

exchanger 
TLM: 18 K 0.3 

Condenser TLM: 35 K 0.1 

Trim cooler TLM: 27 K 0.1 

Pump 
Rich pump Head: 9.4 bar 0.6 

Lean pump Head: 1.7 bar 0.2 

Compressor 
Multi-stage 

compressor 
Net output: 23.5 MW 3.6 

Pressure vessel Condensate tank 
Diameter: 3.5 m 

Height: 1.8 m 
<0.1 

Annualized CAPEX 

($/tonne CO2) 
8.3 

The comparison of energy use is shown in Table 9.8.  The AFS reduces the heat 

duty by 20% compared to the simple stripper.  Higher steam temperature makes the 

difference as equivalent work even greater.  The pump work and the compression work 

are approximately the same at the same lean loading, which gives the same stripper 

pressure. 
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Table 9.8: Energy use of simple stripper and AFS. 

 Simple stripper AFS 

Lean loading 

(mol CO2/mol alk) 
0.22 0.22 

Stripper P 

(bar) 
5.5 5.5 

Tsteam 

(°C) 
164 157 

Heat duty 

(kJ/mol CO2) 
120.2 95.7 

Wheat  

(kJ/mol CO2) 
30.5 23.1 

Wpump 

(kJ/mol CO2) 
0.8 1.0 

Wcomp 

(kJ/mol CO2) 
8.2 8.2 

Weq 

(kJ/mol CO2) 
39.5 32.3 

Energy cost 

($/tonne CO2) 
25.4 21.1 

Figure 9.6 shows the contributions to the annualized regeneration cost at 0.22 lean 

loading.  The annualized regeneration cost is $33.7 and $29.4/tonne CO2 for the simple 

stripper and the AFS, respectively including 70% of OPEX and 30% of CAPEX.  The 

compressor and the cross exchanger are the cost centers of CAPEX.  The AFS reduces 

the annualized regeneration cost by 13% and the major savings come from the reduction 

of the steam cost.  The AFS has the same CAPEX as the simple stripper.  Even though 

the AFS splits the cross exchanger, the total exchanger area does not necessarily increase.  

Multiple plate-and-frame exchangers are needed for a full-scale plant so the exchanger 

price per unit area is not affected.  The cold rich exchanger can be simply seen as a part 

of the condenser, which is responsible to condense the stripping steam and cool the CO2 

vapor to 40 °C.  The only difference is that the temperature approach using the cold rich 
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solvent is not as large as using cooling water.  The cost savings by the AFS is equivalent 

to $12.7 million per year for a 500 MWe coal-fired power plant. 

 

Figure 9.6: Breakdown of annualized regeneration cost at 0.22 lean loading. 

9.3.2 Effect of CO2 lean loading 

CO2 lean loading is the most important operating parameter that should be 

determined and optimized.  At fixed stripper temperature, lean loading can be varied by 

manipulating the stripper pressure.  Figure 9.7 shows the annualized regeneration cost at 

varied lean loading.  The simple stripper (SS) base case specifies 5 K LMTD for the cross 

exchanger and 2 m stripper packing while optimizing other decision variables as shown in 
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Equation 9.4.  Another two cases with optimum packing height and cross exchanger 

LMTD are also presented to show each individual effect. 

The improvement from optimizing packing height becomes more significant with 

decreasing lean loading but has little effect at the higher lean loading.  Increasing packing 

height provides heat transfer area for heat recovery from the stripping steam especially at 

low lean loading region where stripping steam is significant.  2 m of packing is excessive 

for lean loadings above 0.24 and will saturate the heat and mass transfer at the top of the 

stripper so little improvement is observed.   

The optimum cross exchanger LMTD is primarily affected by solvent capacity (i.e., 

solvent circulation rate) when the lean loading varies.  The annualized regeneration cost 

is expected to be less sensitive to the cross exchanger LMTD at lower lean loadings because 

the cross exchanger CAPEX and the sensible heat requirement have less contributions at 

lower solvent rate.  Because excessive stripping steam is still left with the simple stripper, 

a greater cross exchanger LMTD makes the stripper feed colder and able to condense a 

portion of stripping steam in the stripper.  A similar effect of warm rich bypass can be 

attained by adjusting the LMTD of the cross exchanger for the simple stripper. 

The AFS consistently reduces cost by $3–4/tonne CO2 compared to the simple 

stripper throughout the lean loading range.  The optimum lean loading that minimizes the 

annualized regeneration cost is at 0.22 mol CO2/mol alkalinity.  The cost is flat for both 

configurations between lean loadings 0.18 and 0.26 with a difference less than $0.3/tonne 

CO2.  It should be noted that lower lean loading always gives better absorption 

performance and reduces the absorber packing requirement.  If the absorber CAPEX is 

included, the optimum lean loading should shift even lower.  Other considerations such 
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as PZ solid solubility, amine volatility, aerosol growth should be taken into account when 

determining the optimum lean loading. 

 

Figure 9.7: Effect of lean loading on annualized regeneration cost; rich loading: 0.4; 

reboiler T: 150 °C; correction for interfacial area: 0.15. 

Figure 9.8 shows the contributions to the annualized regeneration cost with the AFS 

with varied lean loading.  The compression work is driven by the stripper pressure, which 

varies from 4.6 to 10.2 bar in this lean loading range.  The CAPEX and OPEX of the 

compressor can be reduced by 32% ($3.2/tonne CO2) as the lean loading increases from 

0.16 to 0.32 mol CO2/mol alkalinity.  However, the savings from the compressor CAPEX 

and OPEX are not enough to compensate the increase of the sensible heat requirement and 
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the cross exchanger CAPEX.  The CAPEX of the cross exchanger increases from $1.4 to 

$5.5/tonne CO2 and is the cost most sensitive to lean loading. 

The optimum lean loading for the AFS is lower than the optimum lean loading 

considering only the total equivalent work.   Even though the OPEX accounts for over 

70% of the annualized regeneration cost, the CAPEX is more sensitive to lean loading.  

The low solvent capacity at high lean loading deteriorates both energy and capital cost, so 

the optimum is forced to lower lean loading until the compression cost and the heat loss of 

stripping steam dominate. 

 

Figure 9.8: Breakdown of the annualized regeneration cost of AFS with varied lean 

loading. 
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9.3.3 Effect of rich loading 

Since the absorber is not simulated, a sensitivity analysis of rich loading that 

represents the absorber performance is performed.  Figure 9.9 plots the annualized 

regeneration cost with varied rich loading from 0.36 to 0.40 mol CO2/mol alkalinity.  

Increasing the rich loading from 0.38 to 0.40 reduces the annualized regeneration cost by 

5–10% depending on the lean loading.  The rich loading mainly affects the cyclic capacity 

and the solvent circulation rate, which is inversely proportional to the difference of rich 

and lean loading (i.e., Ldg).  The rich loading makes the most significance at higher lean 

loading where the sensible heat requirement and the cross exchanger CAPEX dominate. 

 

Figure 9.9: Effect of rich loading on annualized regeneration cost with varied lean 

loading.  
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The cyclic capacity is isolated by plotting the annualized regeneration cost versus 

Ldg in Figure 9.10.  The Ldg increases with decreasing lean loading at a constant rich 

loading.  The costs between rich loadings converge at lower Ldg (i.e., higher lean 

loading) but there are still differences at low lean loading region.  The secondary effect 

of the rich loading is on the stripper performance.  Richer solvent with a higher partial 

pressure facilitates CO2 stripping and water condensation in the stripper by providing a 

greater driving force between solvent and vapor.  Better stripper performance reduces not 

only the stripper packing height but also the cold rich bypass and prevents a severe pinch 

in the cross exchanger.  The effects of solvent capacity and stripper performance 

dominate at higher and lower lean loadings, respectively.  

 

Figure 9.10: Effect of rich loading on annualized regeneration cost with varied ΔLdg. 
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9.3.4 Sensitivity of costing factors 

The annualized regeneration cost depends on the capital scaling factor, annualizing 

factor, and COE, which not only affect the cost value but also the emphasis of CAPEX or 

OPEX.  A sensitivity analysis was performed for the AFS by adjusting the  and the 

COE, which are 1 and $100/MWh, respectively for the base case. 

Figures 9.11 and 9.12 show the annualized regeneration cost with ±50% change of 

 and ±20% change of COE, respectively.  The change results in $4–5/tonne CO2 

systematic increase or decrease across the lean loading range.  All the cases have similar 

trends and optimum lean loadings as the base case.   

 

Figure 9.11: Sensitivity of capital costing factor on annualized regeneration cost; COE: 

$100/MWh. 
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Figure 9.12: Sensitivity of COE on annualized regeneration cost; =1. 

Figure 9.13 shows an example of how the optimum design is adjusted to adapt to 

different emphasis on CAPEX and OPEX.  The optimum cross exchanger LMTD 

decreases from 10 to 5 K when the ratio of COE to  increases from 50 to 240 (i.e., from 

80 of COE and 1.5 of  to 120 of COE and 0.5 of ).  Increasing the cross exchanger 

area is worthwhile to reduce steam consumption when the price of steam is high and the 

annualized capital cost is relatively cheaper. 
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Figure 9.13: Optimum average cross exchanger LMTD with varied COE $80 to 

120/MWh and  from 0.5 to 1.5. 

9.3.5 5 m PZ vs. 8 m PZ 

The optimum lean loading will be lower than 0.22 if the absorber CAPEX is 

included.  However, lean loading of 0.22 for 8 m PZ may not be operationally attractive 

because of the potential precipitation of PZ·6H2O solid at upset conditions or during 

shutdown when the solvent cools below 40 °C.  This possibility may require additional 

capital cost to heat trace lines and provide other means to recover from an upset.  5 m PZ 

is considered an option to extend the solid solubility window while still providing superior 

performance due to lower viscosity. 
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Figure 9.14 shows the transition temperature of precipitation for 5 m and 8 m PZ 

from prvious experimental measurement (Freeman, 2011; Li, 2015).  By assuming the 

lowest temperature that the process would encounter, the solubility line corresponds to the 

lower limit of lean loading.  The lower limit of lean loading is 0.19 for 5 m and 0.24 for 

8 m PZ assuming 25 °C is the cooling water temperature that will be used in the trim cooler, 

which is the coldest spot in the process for the lean solvent.  5 m PZ also has no rich 

solubility limit unlike 8 m. 

  

Figure 9.14: Comparison of 5 m and 8m PZ; rich loading: 0.40; stripper T: 150 °C 

(Freeman, 2011; Li, 2015).  

Both 5 and 8 m PZ were tested in the 2015 SRP pilot plant campaign using an 

intercooled absorber and the AFS.  Table 9.5 summarizes the absorber performance.  

0

10

20

30

40

50

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

T
ra

n
si

ti
o

n
 T

e
m

p
e

ra
tu

re
 (

°C
)

CO2 loading (mol CO2/mol alk)

5 m PZ

8 m PZ

Solution

PZ∙6H2O (s)



 

 

212 

The comparisons show that at the same solvent to flue gas ratio (L/G) and lean loading 5 

m PZ outperformed 8 m with a higher rich loading, which offsets the drawback in capacity 

due to lower amine concentration.  The absorber performance will be taken into account 

in the economic analysis by assuming a higher rich loading for 5 m PZ.  According to the 

pilot plant results, two sets of comparisons are made: 0.41/0.38 and 0.39/0.36 of rich 

loading for 5 m/8 m PZ. 

Table 9.9: Comparison of absorber performance between 5 m and 8 m PZ in 2015 SRP 

pilot plant 

 Comparison 1 Comparison 2 

PZ concentration (m) 5 8 5 8 

Absorber L/G 

(kg/kg) 
4.7 5 3.3 3.4 

Lean loading 

(mol CO2/mol alkalinity) 
0.24 0.24 0.24 0.24 

Rich loading 

(mol CO2/mol alkalinity) 
0.37 0.34 0.39 0.36 

   Figure 9.15 shows the annualized regeneration cost of 5 m and 8 m PZ at two 

sets of rich loading.  5 m PZ reduces the annualized regeneration cost by 6% compared to 

8 m in both comparisons.  The savings mainly come from higher rich loading and better 

heat transfer performance.  As discussed in Section 9.3.3, higher rich loading benefits the 

stripper performance and result in less cold rich bypass required to recover the stripping 

steam heat.  5 m PZ also reduces the cross exchanger CAPEX by a greater heat transfer 

coefficient.  The viscosity of 5 m PZ is 30–50% that of 8 m, which increases the transfer 

coefficient by around 40%. 
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Figure 9.15: Comparing the annualized regeneration cost of 5 m and 8 m PZ. 

Table 9.10: Summary of economic analysis for 5 m and 8 m PZ. 

 5 m PZ 8 m PZ 

Lean loading 

(mol CO2/mol alkalinity) 
0.22 0.22 

Rich loading 

(mol CO2/mol alkalinity) 
0.39 0.36 

Solvent rate (kg/s) 2482 2284 

Cold rich BPS (%) 8 12 

Warm rich BPS (%) 28 31 

Cross exchanger U 

(W/K-m2) 
2358 1615 

Avg cross exchanger TLM 

(K) 
6.1 7.7 
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9.4. ALTERNATIVE SUPERSONIC COMPRESSOR 

The Ramgen Company has been developing the Supersonic Shock Wave 

Compressor with a blade tip not limited by Mach number, so the pressure ratio can be up 

to 10 per stage (Lawlor et al., 2005).  The physical size of the compressor is smaller and 

only 1–2 stages are required.  It has been claimed that the Supersonic Shock Wave 

Compressor can save 40–50% of capital cost by reducing the physical size of the 

compressor and provide higher compression efficiency (Lupkes, 2012).  Also, the higher 

discharge temperature makes heat recovery from the intercoolers easier to implement.  

The design allows the discharge temperature to be up to 260 °C compared to 120–140 °C 

for a conventional compressor.  A single-stage supersonic compressor has been 

demonstrated with 7.7 pressure ratio, and a commercial size will be tested in the future 

(Lupkes, 2012). 

This section will simulate the compressor with the same configuration as shown in 

Figure 9.3 except with a higher pressure ratio up to 10 per stage and a higher polytropic 

efficiency 90% claimed by Ramgen Company.  With various inlet pressure, the overall 

pressure ratio will be distributed evenly to each stage.  Table 9.11 shows the design 

specifications for the supersonic compressor. 
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Table 9.11: Design specifications of supersonic compressor. 

Supersonic compressor 

Maximum pressure ratio/stage 10 

Compressor polytropic efficiency (%) 90 

Intercooling temperature (oC) 40 

Aftercooling temperature (oC) 30 

Supercritical pump efficiency (%) 65 

Multi-stage compressor outlet P (bar) 76 

Final target P (bar) 150 

Supersonic compressor integrated with AFS 

Intercooler LMTD (K) 20 

Cold rich bypass out T (°C) 150 

A greater pressure ratio implies CO2 will contain more enthalpy after each 

compressor stage.  Recovering the waste heat by a heat integration with the AFS is 

proposed in this work.  As shown in Figure 9.16, the heat in the CO2 vapor will be used 

to heat the cold rich solvent bypass from 46 °C up to 150 °C, which is assumed to be limited 

by thermal degradation.  The cold rich bypass rates are adjusted to meet the specified 20 

K LMTD of the intercooler. 

150 bar
76 bar

PR ≤ 10PR ≤ 10
Cold rich BPSCold rich BPS

CO2 from 
stripper

 

Figure 9.16: Supersonic compressor with heat integration. 
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Figure 9.17 compares the compression work of the conventional and the supersonic 

compressors.  In the loading range from 0.20 to 0.34 (5–13 bar), only one or two stages 

are required for the supersonic compressor.  A significant increase of compression work 

around 8 bar is due to the transition from two stages to one stage.  The increase in pressure 

ratio causes the elevated discharge temperature and further departure from isothermal 

operation.  Since the conventional compressor intercools more frequently, the more 

isothermal compression requires less work.  The waste heat from the intercoolers of the 

supersonic compressor can be recovered by the process itself using the cold rich bypass.   

The compression work of the supersonic compressor with heat integration is also 

presented.  The total equivalent work is calculated with and without heat integration, and 

the difference is considered the reduction of compression work.  With heat recovery, the 

supersonic compressor can have the same energy performance as the conventional 

compressor.  This demonstrates that the supersonic compressor has potential to reduce the 

overall cost from the net savings of capital and installation costs due to the compact design. 
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Figure 9.17: Comparison of supersonic and conventional multi-stage compressors. 

9.5. CONCLUSIONS 

 The annualized regeneration cost is $33.7–33.9/tonne CO2 and $29.4–30.2/tonne CO2 

for the simple stripper and the AFS, respectively with lean loading from 0.16 to 0.0.28 

using 8 m PZ.  

 The AFS reduces the annualized regeneration cost by 13% and the major savings 

come from the reduction of the steam cost.  The AFS has the same CAPEX as the 

simple stripper. 

 The OPEX accounts for over 70% of the annualized regeneration cost.  The 

compressor and the cross exchanger are the major components of the CAPEX. 
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 The annualized regeneration cost is flat between lean loadings 0.18 and 0.24 but 

increases 13% from 0.28 to 0.32 because the reduced solvent capacity increases the 

sensible heat requirement and the CAPEX of cross exchanger, which is the most 

sensitive cost when lean loading varies. 

 Rich loading that reflects the absorption performance can affect the solvent capacity 

and the stripper performance, which dominate at higher and lower lean loadings, 

respectively.   

 5 m PZ not only extends the solid solubility window but also reduces the annualized 

regeneration cost by 6% when compared to 8 m because of better absorption 

performance and a higher heat transfer coefficient of the cross exchanger. 

 The supersonic compressor with heat integration has the same energy performance as 

the conventional multi-stage compressor and potentially can reduce the capital cost 

due to the compact design. 
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Chapter 10: Conclusions and Recommendations 

10.1 SUMMARY 

10.1.1 Advanced flash stripper 

 The lost work of the condenser and the cross exchanger were identified as the two 

major sources of lost work for the simple stripper.   

 The AFS using cold and warm rich bypasses is proposed to reduce the lost work.  

The warm rich bypass reduces the work loss associated with condensing water vapor 

resulting from the stripping steam.  The cold rich bypass recovers the rest of the 

stripping steam heat by providing a low temperature heat sink while avoiding CO2 re-

absorption. 

 The rich bypasses also make the cross exchanger more reversible by balancing the 

flow heat capacity between the rich and lean streams. 

 Compared to other alternative strippers that have been proposed to reduce the 

stripping steam heat, the advanced reboiled/flash stripper provides the best energy 

performance.  It uses 11% less total equivalent work with 8 m PZ and 7% less with 

9 m MEA compared to the simple stripper. 

 The AFS reduces the reboiler duty by 16.1% and the total equivalent work by 11.2% 

compared to the simple stripper. 

 The AFS reaches a remarkable thermodynamic efficiency at 55–74% over a range of 

operating lean loading.   

 The optimum lean loading that minimizes the total equivalent work is 0.28–0.30 for 

8 m PZ and 0.36–0.38 for 9 m MEA at constant rich loading.  The energy 

improvement is more significant at lower lean loading where the stripping steam is 

excessive.   
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10.1.2 Demonstration of the AFS 

10.1.2.1 Pilot plant test 

 17 runs have process heat duty 2.1–2.5 GJ/tonne CO2 and 4 runs without adequate rich 

solvent bypass are 2.5–2.9 GJ/tonne CO2.  The lowest Weq is 32.0 kJ/mol CO2. 

 The AFS shows over 25% heat duty reduction compared to previous SRP campaigns, 

and over 30% compared to the DOE base case. 

 Cold and warm rich solvent bypass were manually controlled to recover the stripping 

steam heat by maintaining the stripper vapor outlet temperature and the cold rich 

exchanger vapor outlet temperature.  Four runs that did not achieve the temperature 

target increased the process heat duty by 15%. 

 5 m PZ provides 20% greater number of heat transfer units than 8 m PZ on the cold 

cross exchanger and results in a lower process heat duty because of lower viscosity. 

 The “Independence” model was validated using the pilot plant data and accurately 

represents the performance of the pilot plant.  The modeled lean loading and rich 

loading show 5.4% and 3.6% average error compared to the density-predicted loading.  

The modeled and the measured process heat duty has 3% average error. 

 The validated model was used to re-optimize the bypass rates.  It confirmed that the 

bypass control strategy used during the test successfully minimized the heat duty.  

 Increasing the stripper packing height has a more significant effect at low lean 

loading.  The packing utilization efficiency can reach 88% using 5 m of RSR no. 0.3. 

 The irreversibility analysis showed that the thermodynamic efficiency of the SRP pilot 

plant using the AFS is about 50%.  The absorber and the cross exchanger are the two 

major sources of lost work and can only be addressed by greater absorption rate and 

solvent capacity, respectively. 
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10.1.2.2 Economic analysis 

 The regeneration and compression costs are $33.7–37/tonne CO2 and $29.4–

33.8/tonne CO2 for the simple stripper and the AFS, respectively with lean loading 

from 0.16 to 0.32 using 8 m PZ.  

 The AFS reduces 13% of the annualized cost from the steam cost with the same 

CAPEX as the simple stripper. 

 The OPEX accounts for over 70% of the regeneration and compression cost.  The 

compressor and the cross exchanger are the major costs of the CAPEX. 

 The annualized cost is flat between lean loadings 0.18 and 0.24 but increases 13% 

from 0.28 to 0.32 because the reduced solvent capacity increases the sensible heat 

requirement and the CAPEX of cross exchanger, which is the most sensitive cost 

when lean loading varies. 

 Rich loading that reflects the absorption performance can affect the solvent capacity 

and the stripper performance, which dominate at higher and lower lean loadings, 

respectively.   

 5 m PZ not only extends the solid solubility window but also reduces the annualized 

cost by 6% when compared to 8 m because of better absorption performance and a 

higher heat transfer coefficient of the cross exchanger. 

 The supersonic compressor with heat integration has the same energy performance as 

the conventional multi-stage compressor and potentially can reduce the capital cost 

due to the compact design. 
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10.1.3 Effect of solvent properties 

 Approximate stripper model (ASM) were developed to predict the energy 

performance for the simple stripper and the AFS. 

 The total equivalent work is sensitive to the predicted heat capacity of solvent 

especially when the cross exchanger has a large heat transfer unit.  Generally the 

ASM showed a similar trend that was predicted by the rigorous Aspen Plus®  model. 

 As the rich loading varies from 3 to 7 kPa, a constant optimum Ldg was found and 

the energy savings by the AFS is not affected. 

 Using solvents with high heat of absorption can increase the partial pressure of CO2 

and effectively reduce the stripping steam heat and the compression work.  Optimum 

heat of absorption can be found when the energy reductions show diminishing returns 

and the increase in the pump work is dominant. 

 The optimum heat of absorption ranges from 70 to 125 kJ/mol.  The simple stripper 

and the operating conditions at low reboiler temperature and low lean loading will 

need a higher optimum heat of absorption to boost the partial pressure of CO2. 

 By increasing the heat of absorption, the total equivalent work can be reduced by 10% 

for the simple stripper and less than 1% for the AFS. 

 The AFS always has a lower optimum heat of absorption than the simple stripper since 

the stripping steam heat is already eliminated by the rich solvent bypasses.   

 The AFS is a flexible system that can be applied to a wide range of heat of absorption 

while still minimizing the energy requirement.  Further reduction by increased heat 

of absorption is marginal. 
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 Increasing the partial pressure of CO2 by reboiler temperature will not effectively 

reduce the total equivalent work.  The savings of compression work is almost offset 

by the increase in the heat duty work. 

 Improving the efficiency of the steam turbine and compressor will favor mechanical 

compression rather than thermal compression, and result in a heat of absorption as 

low as 70–85 kJ/mol, which is close to that of available solvents. 

10.2 RECOMMENDATIONS FOR FUTURE WORK 

10.2.1 Model improvement 

1. This work concluded that over-stripping lean loading is more cost-efficient.  The 

partial pressure of CO2 at high temperature and low lean loading predicted by 

Independence model was extrapolated because of lacking data below 0.25 mol 

CO2/mol alkalinity.  More CO2 solubility data at high temperature and over-stripping 

conditions should be measured and confirmed with model. 

2. This work showed that the heat capacity can have significant impact on predicting the 

sensible heat especially for a cross exchanger with a large number of heat transfer 

units.  The uncertainties of the predicted heat capacity come from the inconsistency 

of measurement data and a poor fit of the Independence model.  These should be 

improved in the future in order to accurately predict the sensible heat. 

3. The diffusion coefficient of amine predicted by Independence is overestimated by 

about 4 times.  It should be fixed otherwise a 0.15 correction for packing area needs 

to be used. 
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10.2.2 Heat transfer measurement 

1. Most literature that predicted the heat transfer coefficient for plate-and-frame 

exchanger used water as fluid.  Viscous fluid should be considered in the future 

measurement in order to investigate the viscosity effect.  

2. Pilot plant tests showed that the heat transfer coefficient is not sensitive to flow rate 

when the solvent starts flashes.  The nucleate boiling heat transfer is inferred as the 

dominant mechanism.  The operating regime should be confirmed by experiments.   

10.2.3 Application of the AFS 

1. At over-stripping lean loading, the AFS becomes less energy-efficient due to the 

excessive stripping steam.  The ARS that has an additional hot rich bypass is 

recommended.  The marginal effect of increasing number of bypasses should be 

investigated in the future. 

2. 5 m PZ with lower viscosity was found more cost-efficient than 8 m since better 

absorber and cross exchanger performance.  Other PZ concentrations should be 

explored in the future. 

3. Besides coal-fired power plants, other major emission sources include steel/iron plant, 

cement plant, and olefin cracking.  These CO2 concentration of these industrial 

emissions is from 3% to 20%.   

 The performance of AFS should be re-evaluated at various rich loadings that are 

determined by the absorber performance.  The optimum design and operating 

conditions of the applications should be determined. 

 The solvent performance will differ from applications because of the shifting 

VLE at various CO2 concentration range.  Solvent selections should be re-

evaluated at a wider range of CO2 concentration. 
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Appendix A: Theoretical minimum work 

 Enthalpy and entropy balance 

For a steady state flow system: 

𝐻𝑖𝑛 − 𝐻𝑜𝑢𝑡 + 𝑄 + 𝑊𝑠 = 0                       (A.1) 

𝑆𝑖𝑛 − 𝑆𝑜𝑢𝑡 + (
𝑄𝑟𝑒𝑣

𝑇
+ 𝑆𝑖𝑟𝑟) = 0                      (A.2) 

Minimum work occurs when process is reversible: 

𝑄 = 𝑄𝑟𝑒𝑣                             (A.3) 

𝑆𝑖𝑟𝑟 = 0                              (A.4) 

𝑊𝑚𝑖𝑛 = 𝑊𝑠 = ∆𝐻 − 𝑄𝑟𝑒𝑣 = ∆𝐻 − 𝑇∆𝑆 + 𝑇𝑆𝑖𝑟𝑟 = ∆𝐺 + 𝑇𝑆𝑖𝑟𝑟        (A.5) 

𝑊𝑚𝑖𝑛 = ∆𝐺                            (A.6) 

 Minimum work for CO2 regeneration and compression 

The CO2 regeneration and compression for minimum work calculation is simplified 

in Figure A.1.  The minimum work accounts for compressing CO2 from the equilibrium 

partial pressure of CO2 in the lean/rich solvent to the final pressure 150 bar.  The process 

is assumed isothermal at 40 °C. 

 
From Absorber

Rich solvent
Pi = P*

CO2,rich

Back to Absorber
Lean solvent
Pi =P*

CO2,lean

Pf =150 bar

Wmin

 

Figure A.1: Minimum work integration for CO2 regeneration process. 
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Assuming ideal gas, the minimum work can be calculated by initial pressure and 

final pressure: 

𝑊𝑚𝑖𝑛 = ∆𝐺 = 𝑅𝑇𝑙𝑛𝑃𝑓 − 𝑅𝑇𝑙𝑛𝑃𝑖 = 𝑛𝐶𝑂2𝑅𝑇𝑙𝑛
𝑃𝑓

𝑃𝑖
             (A.7) 

Since the partial pressure of CO2 changers with CO2 loading in the solvent.  The 

equation is integration from rich to lean.  

𝑑𝑊𝑚𝑖𝑛 = 𝑑(∆𝐺) = 𝑅𝑇𝑙𝑛
𝑃𝑓

𝑃𝑖
𝑑𝑛𝐶𝑂2

                  (A.8) 

 𝑇𝑜𝑡𝑎𝑙 𝑊𝑚𝑖𝑛 = ∫ 𝑑(∆𝐺) = ∫ 𝑅𝑇𝑙𝑛
𝑃𝑓

𝑃𝐶𝑂2
∗ 𝑑𝑛𝐶𝑂2

𝐿𝑒𝑎𝑛

𝑅𝑖𝑐ℎ

𝐿𝑒𝑎𝑛

𝑅𝑖𝑐ℎ
            (A.9) 

𝑊𝑚𝑖𝑛 =
∫ 𝑅𝑇𝑙𝑛

𝑃𝑓

𝑃𝐶𝑂2
∗ 𝑑𝑛𝐶𝑂2

𝐿𝑒𝑎𝑛
𝑅𝑖𝑐ℎ

∫ 𝑑𝑛𝐶𝑂2
𝐿𝑒𝑎𝑛

𝑅𝑖𝑐ℎ

=
𝑅𝑇 ∫ 𝑙𝑛𝑃𝑓𝑑𝑛𝐶𝑂2

𝐿𝑒𝑎𝑛
𝑅𝑖𝑐ℎ

∫ 𝑑𝑛𝐶𝑂2
𝐿𝑒𝑎𝑛

𝑅𝑖𝑐ℎ

−
𝑅𝑇 ∫ 𝑙𝑛𝑃𝐶𝑂2

∗ 𝑑𝑛𝐶𝑂2
𝐿𝑒𝑎𝑛

𝑅𝑖𝑐ℎ

∫ 𝑑𝑛𝐶𝑂2
𝐿𝑒𝑎𝑛

𝑅𝑖𝑐ℎ

   (A.10) 

The CO2 transferred is equal to the change of loading, 𝛼 

𝑑𝑛𝐶𝑂2 = 𝑑𝛼                       (A.11) 

𝑊𝑚𝑖𝑛 =
𝑅𝑇

∫ 𝑑𝛼
𝛼𝑙𝑒𝑎𝑛

𝛼𝑟𝑖𝑐ℎ

(∫ 𝑙𝑛𝑃𝑓𝑑𝛼
𝛼𝑙𝑒𝑎𝑛

𝛼𝑟𝑖𝑐ℎ
− ∫ 𝑙𝑛𝑃𝐶𝑂2

∗ 𝑑𝛼
𝛼𝑙𝑒𝑎𝑛

𝛼𝑟𝑖𝑐ℎ
)  

=
𝑅𝑇

(𝛼𝑙𝑒𝑎𝑛−𝛼𝑟𝑖𝑐ℎ)
[𝑙𝑛𝑃𝑓(𝛼𝑙𝑒𝑎𝑛 − 𝛼𝑟𝑖𝑐ℎ) − ∫ 𝑙𝑛𝑃𝐶𝑂2

∗ 𝑑𝛼
𝛼𝑙𝑒𝑎𝑛

𝛼𝑟𝑖𝑐ℎ
]     (A.12) 

The equilibrium partial pressure of CO2 can be expressed by the semi-empirical 

equation as a function of temperature and loading to get analytical solution. 

  

  



 

 

227 

Appendix B: Tabulated Simulation Data 

Table B.1: Simple stripper using 8 m PZ; rich loading: 0.4; cross exchanger ΔTLM: 5 K; 1 

m Mellapak 250X packing; correction for interfacial area: 1; reboiler T: 150 

°C. 

Lean ldg 

(mol/mol) 
0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 

P 

(bar) 
5.1 5.4 5.9 6.5 7.4 8.6 10.1 12.3 

Energy performance (kJ/mol CO2) 

Qreb 121.1 115.4 111.3 108.1 106.0 105.1 106.4 111.0 

Wheat 29.28 27.90 26.90 26.14 25.63 25.41 25.73 26.84 

Wpump 0.3 0.4 0.5 0.6 0.9 1.2 1.9 3.1 

Wcomp 9.2 9.0 8.7 8.3 7.9 7.4 6.8 6.1 

Weq 38.8 37.3 36.1 35.1 34.4 34.0 34.4 36.1 

Table B.2: Simple stripper using 8 m PZ; rich loading: 0.4; cross exchanger ΔTLM: 5 K; 2 

m Mellapak 250X packing; correction for interfacial area: 1; reboiler T: 150 

°C. 

Lean ldg 

(mol/mol) 
0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 

P 

(bar) 
5.1 5.4 5.9 6.5 7.4 8.6 10.1 12.3 

Energy performance (kJ/mol CO2) 

Qreb 114.9 112.1 109.7 107.6 106.0 105.1 106.0 110.9 

Wheat 27.8 27.1 26.5 26.0 25.6 25.4 25.6 26.8 

Wpump 0.3 0.4 0.5 0.6 0.9 1.2 1.9 3.1 

Wcomp 9.2 9.0 8.7 8.3 7.9 7.4 6.8 6.1 

Weq 37.3 36.5 35.7 35.0 34.4 34.0 34.3 36.0 
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Table B.3: Simple stripper using 8 m PZ; rich loading: 0.4; cross exchanger ΔTLM: 5 K; 5 

m Mellapak 250X packing; correction for interfacial area: 1; reboiler T: 150 

°C. 

Lean ldg 

(mol/mol) 
0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 

P 

(bar) 
5.1 5.4 5.9 6.5 7.4 8.6 10.1 12.3 

Energy performance (kJ/mol CO2) 

Qreb 113.2 111.4 109.6 107.5 105.8 105.0 106.1 110.9 

Wheat 27.4 26.9 26.5 25.0 25.6 25.4 25.7 26.8 

Wpump 0.3 0.4 0.5 0.6 0.9 1.2 1.9 3.1 

Wcomp 9.2 9.0 8.7 8.3 7.9 7.4 6.8 6.1 

Weq 36.9 36.3 35.7 34.0 34.4 34.0 34.3 36.0 

Table B.4: Cold rich bypass using 8 m PZ; rich loading: 0.4; cross exchanger ΔTLM: 5 K; 

2 m Mellapak 250X packing; correction for interfacial area: 1; reboiler T: 

150 °C; optimum bypass rate. 

Lean ldg 

(mol/mol) 
0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 

P 

(bar) 
5.1 5.4 5.9 6.5 7.4 8.6 10.1 12.3 

Cold BPS 

(%) 
18 14 11 9 7 5 3 2 

Energy performance (kJ/mol CO2) 

Qreb 106.3  102.1  99.0  96.9  95.8  96.0  98.2  104.4  

Wheat 25.7  24.7  23.9  23.4  23.2  23.2  23.7  25.2  

Wpump 0.3  0.4  0.5  0.7  0.9  1.2  1.9  3.1  

Wcomp 9.2  9.0  8.7  8.3  7.9  7.4  6.8  6.1  

Weq 35.2  34.0  33.1  32.4  31.9  31.8  32.4  34.5  
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Table B.5: Rich exchanger bypass using 8 m PZ; rich loading: 0.4; cross exchanger 

ΔTLM: 5 K; 2 m Mellapak 250X packing; correction for interfacial area: 1; 

reboiler T: 150 °C; optimum bypass rate. 

Lean ldg 

(mol/mol) 
0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 

P 

(bar) 
5.1 5.4 5.9 6.5 7.4 8.6 10.1 12.3 

Cold BPS 

(%) 
25 21 17 13 10 7 5 3 

Energy performance (kJ/mol CO2) 

Qreb 100.3  97.9  95.9  94.3  93.5  93.9  96.4  102.8  

Wheat 24.2  23.7  23.2  22.8  22.6  22.7  23.3  24.8  

Wpump 0.3  0.4  0.5  0.6  0.9  1.2  1.9  3.1  

Wcomp 9.2  9.0  8.7  8.3  7.9  7.4  6.8  6.1  

Weq 33.8  33.0  32.4  31.8  31.4  31.3  32.0  34.1  

Table B.6: Interheated stripper using 8 m PZ; rich loading: 0.4; cross exchanger ΔTLM: 5 

K; 2 m Mellapak 250X packing; correction for interfacial area: 1; reboiler T: 

150 °C. 

Lean ldg 

(mol/mol) 
0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 

P 

(bar) 
5.1 5.4 5.9 6.5 7.4 8.6 10.1 12.3 

Energy performance (kJ/mol CO2) 

Qreb 100.7  97.6  95.5  94.2  93.9  95.0  98.2  105.5  

Wheat 24.3  23.6  23.1  22.8  22.7  23.0  23.7  25.5  

Wpump 0.3  0.4  0.5  0.7  0.9  1.2  1.9  3.1  

Wcomp 9.2  9.0  8.7  8.3  7.9  7.4  6.8  6.1  

Weq 33.9  33.0  32.3  31.7  31.5  31.6  32.4  34.7  
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Table B.7: Lean vapor compression using 8 m PZ; rich loading: 0.4; cross exchanger 

ΔTLM: 5 K; 2 m Mellapak 250X packing; correction for interfacial area: 1; 

reboiler T: 150 °C; optimum pressure ratio. 

Lean ldg 

(mol/mol) 
0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 

Stripper P 

(bar) 
5.5  6.1  6.9  8.0  9.4  11.0  12.9  14.6  

Flash P 

(bar) 
3.2  3.6  4.1  4.7  5.5  6.9  8.6  11.2  

Energy performance (kJ/mol CO2) 

Qreb 101.7  99.8  98.2  96.9  96.2  97.5  100.4  107.9  

Wheat 24.6  24.1  23.7  23.4  23.3  23.6  24.3  26.1  

Wpump 0.3  0.4  0.5  0.7  0.9  1.2  1.9  3.1  

Wcomp 8.9  8.6  8.1  7.6  7.0  6.5  6.0  5.5  

WLV comp 1.5  1.5  1.5  1.5  1.4  1.1  0.9  0.4  

Weq 35.4  34.6  33.9  33.2  32.6  32.5  33.0  35.1  

Table B.8: Lean vapor compression using 8 m PZ; rich loading: 0.4; cross exchanger 

ΔTLM: 5 K; 5 m packing; correction for interfacial area: 1; reboiler T: 150 

°C; optimum pressure ratio. 

Lean ldg 

(mol/mol) 
0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 

Stripper P 

(bar) 
5.5 6.1 6.9 8.0 9.4 11.0 12.4 13.8 

Flash P 

(bar) 
3.2 3.6 4.1 4.7 5.5 6.9 8.8 11.5 

Energy performance (kJ/mol CO2) 

Qreb 100.5 99.3 98.0 96.9 96.2 97.5 101.4 108.9 

Wheat 24.3 24.0 23.7 23.4 23.3 23.6 24.5 26.3 

Wpump 0.4 0.5 0.6 0.8 1.2 1.6 2.3 3.5 

Wcomp 8.9 8.6 8.1 7.6 7.0 6.5 6.1 5.7 

WLV comp 1.5 1.5 1.5 1.5 1.4 1.1 0.6 0.2 

Weq 35.1 34.6 33.9 33.3 32.9 32.9 33.6 35.8 
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Table B.9: AFS using 8 m PZ; rich loading: 0.4; cross exchanger ΔTLM: 5 K; 2 m 

Mellapak 250X packing; correction for interfacial area: 1; reboiler T: 150 

°C; optimum bypass rates. 

Lean ldg 

(mol/mol) 
0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 

P 

(bar) 
5.1 5.4 5.9 6.5 7.4 8.6 10.1 12.3 

Cold BPS 

(%) 
14 12 10 8 6 5 4 2 

Warm BPS 

(%) 
46 41 34 27 20 14 10 5 

Energy performance (kJ/mol CO2) 

Qreb 93.8  91.6  90.1  89.3  89.4  90.7  94.1  101.2  

Wheat 22.7  22.1  21.8  21.6  21.6  21.9  22.8  24.5  

Wpump 0.3  0.4  0.5  0.7  0.9  1.2  1.9  3.1  

Wcomp 9.2  9.0  8.7  8.3  7.9  7.4  6.8  6.1  

Weq 32.2  31.5  31.0  30.6  30.4  30.6  31.4  33.7  

Table B.10: AFS using 8 m PZ; rich loading: 0.4; cross exchanger ΔTLM: 5 K; 5 m 

Mellapak 250X packing; correction for interfacial area: 1; reboiler T: 150 

°C; optimum bypass rates. 

Lean ldg 

(mol/mol) 
0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 

P 

(bar) 
5.1 5.4 5.9 6.5 7.4 8.6 10.1 12.3 

Cold BPS 

(%) 
11 10 9 7 6 4 3 2 

Warm BPS 

(%) 
44 36 28 22 16 12 8 6 

Energy performance (kJ/mol CO2) 

Qreb 90.1 89.0 88.4 88.1 88.6 90.3 93.8 101.3 

Wheat 21.8 21.5 21.4 21.3 21.4 21.8 22.7 24.5 

Wpump 0.3 0.4 0.5 0.7 0.9 1.2 1.9 3.1 

Wcomp 9.2 9.0 8.7 8.3 7.9 7.4 6.8 6.1 

Weq 31.3 30.9 30.5 30.3 30.2 30.5 31.4 33.7 
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Table B.11: ARS using 8 m PZ; rich loading: 0.4; cross exchanger ΔTLM: 5 K; 2 m 

Mellapak 250X packing; correction for interfacial area: 1; reboiler T: 150 

°C; optimum bypass rates. 

Lean ldg 

(mol/mol) 
0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 

P 

(bar) 
5.1 5.4 5.9 6.5 7.4 8.6 10.1 12.3 

Cold BPS 

(%) 
14 11 9 8 6 5 4 2 

Warm BPS 

(%) 
41 35 28 21 15 10 5 2 

Energy performance (kJ/mol CO2) 

Qreb 92.2  90.4  89.2  88.6  88.9  90.3  93.8  100.9  

Wheat 22.3  21.8  21.6  21.4  21.5  21.8  22.7  24.4  

Wpump 0.3  0.4  0.5  0.7  0.9  1.2  1.9  3.1  

Wcomp 9.2  9.0  8.7  8.3  7.9  7.4  6.8  6.1  

Weq 31.8  31.2  30.7  30.4  30.3  30.4  31.3  33.6  

Table B.12: Simple stripper using 9 m MEA; rich loading: 0.5; cross exchanger ΔTLM: 5 

K; 2 m Mellapak 250X packing; correction for interfacial area: 1; reboiler T: 

120 °C. 

Lean ldg 

(mol/mol) 
0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 

P 

(bar) 
2.3  2.4  2.6  2.8  3.0  3.3  3.8  4.5  

Energy performance (kJ/mol CO2) 

Qreb 147.9  146.3  145.1  144.4  144.4  145.6  148.8  157.5  

Wheat 28.4  28.1  27.9  27.7  27.7  28.0  28.6  30.3  

Wpump 0.2  0.2  0.3  0.3  0.4  0.6  0.9  1.5  

Wcomp 11.9  11.8  11.6  11.3  11.0  10.7  10.2  9.6  

Weq 40.5  40.1  39.7  39.4  39.2  39.2  39.7  41.4  
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Table B.13: Rich exchanger bypass using 9 m MEA; rich loading: 0.5; cross exchanger 

ΔTLM: 5 K; 2 m Mellapak 250X packing; correction for interfacial area: 1; 

reboiler T: 120 °C; optimum bypass rate. 

Lean ldg 

(mol/mol) 
0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 

P 

(bar) 
2.3  2.4  2.6  2.8  3.0  3.3  3.8  4.5  

Cold BPS 

(%) 
22 19 16 13 10 8 5 3 

Energy performance (kJ/mol CO2) 

Qreb 139.7  137.9  136.6  135.7  135.7  137.1  141.1  151.0  

Wheat 26.8  26.5  26.2  26.1  26.1  26.4  27.1  29.0  

Wpump 0.2  0.2  0.3  0.3  0.4  0.6  0.9  1.5  

Wcomp 11.9  11.8  11.6  11.3  11.0  10.7  10.2  9.6  

Weq 38.9  38.5  38.1  37.7  37.5  37.6  38.2  40.2  

Table B.14: Interheated stripper using 9 m MEA; rich loading: 0.5; cross exchanger 

ΔTLM: 5 K; 2 m Mellapak 250X packing; correction for interfacial area: 1; 

reboiler T: 120 °C. 

Lean ldg 

(mol/mol) 
0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 

P 

(bar) 
2.3  2.4  2.6  2.8  3.0  3.3  3.8  4.5  

Energy performance (kJ/mol CO2) 

Qreb 136.2  134.1  133.0  133.0  133.9  136.6  142.6  152.5  

Wheat 26.2  25.8  25.6  25.6  25.7  26.2  27.4  29.3  

Wpump 0.2  0.2  0.3  0.3  0.4  0.6  0.9  1.5  

Wcomp 11.9  11.8  11.6  11.3  11.0  10.7  10.2  9.6  

Weq 38.3  37.8  37.4  37.2  37.2  37.5  38.5  40.5  
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Table B.15: AFS using 9 m MEA; rich loading: 0.5; cross exchanger ΔTLM: 5 K; 2 m 

Mellapak 250X packing; correction for interfacial area: 1; reboiler T: 120 

°C; optimum bypass rates. 

Lean ldg 

(mol/mol) 
0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 

P 

(bar) 
2.3  2.4  2.6  2.8  3.0  3.3  3.8  4.5  

Cold BPS 

(%) 
13 11 10 8 7 6 4 3 

Warm BPS 

(%) 
52 46 39 31 24 16 10 5 

Energy performance (kJ/mol CO2) 

Qreb 131.4  129.9  129.3  129.4  130.6  133.2  138.3  149.1  

Wheat 25.2  25.0  24.8  24.9  25.1  25.6  26.6  28.6  

Wpump 0.2  0.2  0.3  0.3  0.4  0.6  0.9  1.5  

Wcomp 11.9  11.8  11.6  11.3  11.0  10.7  10.2  9.6  

Weq 37.3  36.9  36.7  36.5  36.6  36.9  37.7  39.8  

Table B.16: ARS using 9 m MEA; rich loading: 0.5; cross exchanger ΔTLM: 5 K; 2 m 

Mellapak 250X packing; correction for interfacial area: 1; reboiler T: 120 

°C; optimum bypass rates. 

Lean ldg 

(mol/mol) 
0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 

P 

(bar) 
2.3  2.4  2.6  2.8  3.0  3.3  3.8  4.5  

Cold BPS 

(%) 
13 11 10 8 7 6 4 3 

Warm BPS 

(%) 
46 39 32 24 16 9 4 1 

Energy performance (kJ/mol CO2) 

Qreb 130.0  128.8  128.4  128.7  129.9  132.6  137.7  148.4  

Wheat 25.0  24.7  24.7  24.7  25.0  25.5  26.5  28.5  

Wpump 0.2  0.2  0.3  0.3  0.4  0.6  0.9  1.5  

Wcomp 11.9  11.8  11.6  11.3  11.0  10.7  10.2  9.6  

Weq 37.1  36.7  36.5  36.4  36.4  36.8  37.6  39.7  
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Appendix C: Approximate Stripper Model Equations 

C.1 SIMPLE STRIPPER 

 Equilibrium partial pressure of CO2 For generic solvent 

𝑃𝐶𝑂2

∗ (𝑇, 𝛼) = 𝑒𝑥𝑝 [𝑙𝑛𝑃𝐶𝑂2,𝑟
∗ (𝑇𝑟 , 𝛼𝑟) + ∫ 𝑘(𝑇𝑟 , 𝛼)𝑑𝛼

𝛼

𝛼𝑟
+ ∫ −

∆𝐻𝑎𝑏𝑠(𝛼)

𝑅
𝑑 (

1

𝑇
)

𝑇

𝑇𝑟
] (C.1) 

 Stripper pressure calculation 

𝑃𝑠𝑡𝑟𝑝 = 𝑃𝐶𝑂2

∗ (𝑇𝑟𝑒𝑏 , 𝛼𝑙𝑒𝑎𝑛) + 𝑃𝐻2𝑂
𝑠𝑎𝑡 (𝑇𝑟𝑒𝑏)𝑥𝐻2𝑂,𝑙𝑒𝑎𝑛         (C.2) 

 Overall mass balance 

𝑚𝑟𝑖𝑐ℎ = 𝑚𝑙𝑒𝑎𝑛 + 𝑚𝑠𝑡𝑟𝑝𝑉 + 𝑚𝑟𝑖𝑐ℎℎ𝑉              (C.3) 

𝑚𝑖,𝑟𝑖𝑐ℎ = 𝑚𝑖,𝑙𝑒𝑎𝑛 + 𝑚𝑖,𝑠𝑡𝑟𝑝𝑉 + 𝑚𝑖,𝑟𝑖𝑐ℎℎ𝑉      𝑖 = 𝐻2𝑂, 𝐶𝑂2, 𝑎𝑚      (C.4) 

𝑚𝑗 = ∑ 𝑚𝑖,𝑗𝑖       𝑖 = 𝐻2𝑂, 𝐶𝑂2, 𝑎𝑚    𝑗 = 𝑎𝑛𝑦 𝑠𝑡𝑟𝑒𝑎𝑚       (C.5) 

∑ 𝑦𝑖,𝑗 = 1𝑖        𝑖 = 𝐻2𝑂, 𝐶𝑂2, 𝑎𝑚    𝑗 = 𝑎𝑛𝑦 𝑣𝑎𝑝𝑜𝑟 𝑠𝑡𝑟𝑒𝑎𝑚      (C.6) 

∑ 𝑥𝑖,𝑗 = 1𝑖        𝑖 = 𝐻2𝑂, 𝐶𝑂2, 𝑎𝑚    𝑗 = 𝑎𝑛𝑦 𝑙𝑖𝑞𝑢𝑖𝑑 𝑠𝑡𝑟𝑒𝑎𝑚      (C.7) 

𝑚𝑎𝑚,𝑗 = 𝑦𝑖,𝑗 = 0      𝑗 = 𝑎𝑛𝑦 𝑣𝑎𝑝𝑜𝑟 𝑠𝑡𝑟𝑒𝑎𝑚           (C.8) 

 Warm rich solvent flashing 

𝑃𝐶𝑂2

∗ (𝑇𝑟𝑖𝑐ℎ𝑤, 𝛼𝑟𝑖𝑐ℎ) + 𝑃𝐻2𝑂
𝑠𝑎𝑡 (𝑇𝑟𝑖𝑐ℎ𝑤)𝑥𝐻2𝑂,𝑟𝑖𝑐ℎ = 𝑃𝑠𝑡𝑟𝑝       (C.9) 

 Hot rich solvent flashing mass balance 

𝑚𝑟𝑖𝑐ℎ = 𝑚𝑟𝑖𝑐ℎℎ𝑉 + 𝑚𝑟𝑖𝑐ℎℎ𝐿                  (C.10) 

𝑚𝑖,𝑟𝑖𝑐ℎ = 𝑚𝑖,𝑟𝑖𝑐ℎℎ𝑉 + 𝑚𝑖,𝑟𝑖𝑐ℎℎ𝐿      𝑖 = 𝐻2𝑂, 𝐶𝑂2, 𝑎𝑚        (C.11) 

𝑃𝐶𝑂2

∗ (𝑇𝑟𝑖𝑐ℎℎ, 𝛼𝑟𝑖𝑐ℎℎ) + 𝑃𝐻2𝑂
𝑠𝑎𝑡 (𝑇𝑟𝑖𝑐ℎℎ)𝑥𝐻2𝑂,𝑟𝑖𝑐ℎℎ𝐿 = 𝑃𝑠𝑡𝑟𝑝       (C.12) 

 Stripper mass balance 

𝑚𝑖,𝑠𝑡𝑟𝑝𝐿 = 𝑚𝑖,𝑟𝑖𝑐ℎℎ𝐿       𝑖 = 𝐻2𝑂, 𝐶𝑂2, 𝑎𝑚             (C.13) 

𝑚𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿 + 𝑚𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝑉 = 𝑚𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿 + 𝑚𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝑉          (C.14) 

𝑚𝑖,𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿 + 𝑚𝑖,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝑉 = 𝑚𝑖,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿 + 𝑚𝑖,𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝑉         (C.15) 
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 Stripper top liquid flashing 

𝛼𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿 = 𝛼𝑟𝑖𝑐ℎℎ                       (C.16) 

𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿 = 𝑇𝑟𝑖𝑐ℎℎ                        (C.17) 

(𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿 , 𝛼𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿) + 𝑃𝐻2𝑂
𝑠𝑎𝑡 (𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿)𝑥𝐻2𝑂,𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿 = 𝑃𝑠𝑡𝑟𝑝       (C.18) 

𝑦𝐶𝑂2,𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿
∗ =

𝑃𝐶𝑂2
∗ (𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿,𝛼𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿)

𝑃𝑠𝑡𝑟𝑝
               (C.19) 

𝑦𝐻2𝑂,𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿
∗ =

𝑃𝐻2𝑂
𝑠𝑎𝑡 (𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿)𝑥𝐻2𝑂,𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿

𝑃𝑠𝑡𝑟𝑝
              (C.20) 

 Stripper bottom liquid flashing 

𝑃𝐶𝑂2

∗ (𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿 , 𝛼𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿) + 𝑃𝐻2𝑂
𝑠𝑎𝑡 (𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿)𝑥𝐻2𝑂,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿 = 𝑃𝑠𝑡𝑟𝑝     (C.21) 

𝑦𝐶𝑂2,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿
∗ =

𝑃𝐶𝑂2
∗ (𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿 ,𝛼𝑠𝑡𝑟𝑝𝑡𝑏𝑜𝑡𝐿)

𝑃𝑠𝑡𝑟𝑝
                (C.22) 

𝑦𝐻2𝑂,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿
∗ =

𝑃𝐻2𝑂
𝑠𝑎𝑡 (𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿)𝑥𝐻2𝑂,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿

𝑃𝑠𝑡𝑟𝑝
               (C.23) 

 Stripper reboiler flashing 

𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝑉 = 𝑇𝑟𝑒𝑏                       (C.24) 

𝑦𝐶𝑂2,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝑉 =
𝑃𝐶𝑂2

∗ (𝑇𝑟𝑒𝑏,𝛼𝑙𝑒𝑎𝑛)

𝑃𝑠𝑡𝑟𝑝
                  (C.25) 

𝑦𝐻2𝑂,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝑉 =
𝑃𝐻2𝑂

𝑠𝑎𝑡 (𝑇𝑟𝑒𝑏)𝑥𝐻2𝑂,𝑙𝑒𝑎𝑛

𝑃𝑠𝑡𝑟𝑝
                (C.26) 

 Enthalpy balance around cross exchanger 

𝐻̇𝑟𝑖𝑐ℎ𝑐(𝑇𝑟𝑖𝑐ℎ𝑐) − 𝐻̇𝑟𝑖𝑐ℎ𝑤(𝑇𝑟𝑖𝑐ℎ𝑤) = 𝐻̇𝑙𝑒𝑎𝑛𝑐(𝑇𝑙𝑒𝑎𝑛𝑐) − 𝐻̇𝑙𝑒𝑎𝑛𝑤(𝑇𝑙𝑒𝑎𝑛𝑤)   (C.27) 

𝐻̇𝑟𝑖𝑐ℎ𝑤(𝑇𝑟𝑖𝑐ℎ𝑤) − 𝐻̇𝑟𝑖𝑐ℎℎ(𝑇𝑟𝑖𝑐ℎℎ) = 𝐻̇𝑙𝑒𝑎𝑛𝑤(𝑇𝑙𝑒𝑎𝑛𝑤) − 𝐻̇𝑙𝑒𝑎𝑛ℎ(𝑇𝑙𝑒𝑎𝑛ℎ)   (C.28) 

 Enthalpy balance around stripper 

𝐻̇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿(𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿) − 𝐻̇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿(𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿) = 𝐻̇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝑉(𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝑉) − 𝐻̇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝑉(𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝑉) (C.29) 

 Cross LMTD calculation 
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𝑄𝑐𝑟𝑜𝑠𝑠𝑋,1 = 𝐻̇𝑙𝑒𝑎𝑛𝑤 − 𝐻̇𝑙𝑒𝑎𝑛𝑐                    (C.30) 

𝑄𝑐𝑟𝑜𝑠𝑠𝑋,2 = 𝐻̇𝑙𝑒𝑎𝑛ℎ − 𝐻̇𝑙𝑒𝑎𝑛𝑤                    (C.31) 

∆𝑇𝐿𝑀,𝑐𝑟𝑜𝑠𝑠𝑋,1 =
(𝑇𝑟𝑖𝑐ℎ𝑐−𝑇𝑙𝑒𝑎𝑛𝑐)−(𝑇𝑟𝑖𝑐ℎ𝑤−𝑇𝑙𝑒𝑎𝑛𝑤)

𝑙𝑛[
(𝑇𝑟𝑖𝑐ℎ𝑐−𝑇𝑙𝑒𝑎𝑛𝑐)

(𝑇𝑟𝑖𝑐ℎ𝑤−𝑇𝑙𝑒𝑎𝑛𝑤)
]

             (C.32) 

∆𝑇𝐿𝑀,𝑐𝑟𝑜𝑠𝑠𝑋,2 =
(𝑇𝑟𝑖𝑐ℎℎ−𝑇𝑙𝑒𝑎𝑛ℎ)−(𝑇𝑟𝑖𝑐ℎ𝑤−𝑇𝑙𝑒𝑎𝑛𝑤)

𝑙𝑛[
(𝑇𝑟𝑖𝑐ℎℎ−𝑇𝑙𝑒𝑎𝑛ℎ)

(𝑇𝑟𝑖𝑐ℎ𝑤−𝑇𝑙𝑒𝑎𝑛𝑤)
]

             (C.33) 

∆𝑇𝐿𝑀,𝑐𝑟𝑜𝑠𝑠𝑋,𝑎𝑣𝑔 =
𝑄𝑐𝑟𝑜𝑠𝑠𝑋,1+𝑄𝑐𝑟𝑜𝑠𝑠𝑋,2

𝑄𝑐𝑟𝑜𝑠𝑠𝑋,1
∆𝑇𝐿𝑀,𝑐𝑟𝑜𝑠𝑠𝑋,1

+
𝑄𝑐𝑟𝑜𝑠𝑠𝑋,2

∆𝑇𝐿𝑀,𝐶𝑟𝑜𝑠𝑠𝑋,2

               (C.34) 

 Stripper temperature and concentration driving force 

∆𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝 = 𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝑉 − 𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿                  (C.35) 

∆𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡 = 𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝑉 − 𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿                  (C.36) 

∆𝑦𝑠𝑡𝑟𝑝𝑡𝑜𝑝 = 𝑦𝑖,𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝑉 − 𝑦𝑖,𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿
∗                  (C.37) 

∆𝑦𝑠𝑡𝑟𝑝𝑏𝑜𝑡 = 𝑦𝑖,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝑉 − 𝑦𝑖,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿
∗                  (C.38) 

∆𝑇𝐿𝑀,𝑠𝑡𝑟𝑝 =
∆𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝−∆𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡

𝑙𝑛(
∆𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝

∆𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡
)

                     (C.39) 

∆𝑦𝐿𝑀,𝑠𝑡𝑟𝑝 =
∆𝑦𝑠𝑡𝑟𝑝𝑡𝑜𝑝−∆𝑦𝑠𝑡𝑟𝑝𝑏𝑜𝑡

𝑙𝑛(
∆𝑦𝑠𝑡𝑟𝑝𝑡𝑜𝑝

∆𝑦𝑠𝑡𝑟𝑝𝑏𝑜𝑡
)

                     (C.40) 

 Overall enthalpy balance 

𝑄̇𝑟𝑒𝑏 = 𝐻̇𝑙𝑒𝑎𝑛𝑐(𝑇𝑙𝑒𝑎𝑛𝑐) − 𝐻̇𝑟𝑖𝑐ℎ(𝑇𝑟𝑖𝑐ℎ𝑐) + 𝐻̇𝑠𝑡𝑟𝑝𝑉(𝑇𝑠𝑡𝑟𝑝𝑉)              (C.41) 
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C.2 ADVANCED FLASH STRIPPER 

 Equilibrium partial pressure of CO2 For generic solvent 

𝑃𝐶𝑂2

∗ (𝑇, 𝛼) = 𝑒𝑥𝑝 [𝑙𝑛𝑃𝐶𝑂2,𝑟
∗ (𝑇𝑟 , 𝛼𝑟) + ∫ 𝑘(𝑇𝑟 , 𝛼)𝑑𝛼

𝛼

𝛼𝑟
+ ∫ −

∆𝐻𝑎𝑏𝑠(𝛼)

𝑅
𝑑 (

1

𝑇
)

𝑇

𝑇𝑟
] (C.42) 

 Stripper pressure calculation 

𝑃𝑠𝑡𝑟𝑝 = 𝑃𝐶𝑂2

∗ (𝑇𝑟𝑒𝑏 , 𝛼𝑙𝑒𝑎𝑛) + 𝑃𝐻2𝑂
𝑠𝑎𝑡 (𝑇𝑟𝑒𝑏)𝑥𝐻2𝑂,𝑙𝑒𝑎𝑛         (C.43) 

 Overall mass balance 

𝑚𝑟𝑖𝑐ℎ = 𝑚𝑙𝑒𝑎𝑛 + 𝑚𝑠𝑡𝑟𝑝𝑉                    (C.44) 

𝑚𝑖,𝑟𝑖𝑐ℎ = 𝑚𝑖,𝑙𝑒𝑎𝑛 + 𝑚𝑖,𝑠𝑡𝑟𝑝𝑉 + 𝑚𝑖,𝑟𝑖𝑐ℎℎ𝑉      𝑖 = 𝐻2𝑂, 𝐶𝑂2, 𝑎𝑚      (C.45) 

𝑚𝑗 = ∑ 𝑚𝑖,𝑗𝑖       𝑖 = 𝐻2𝑂, 𝐶𝑂2, 𝑎𝑚    𝑗 = 𝑎𝑛𝑦 𝑠𝑡𝑟𝑒𝑎𝑚       (C.46) 

∑ 𝑦𝑖,𝑗 = 1𝑖        𝑖 = 𝐻2𝑂, 𝐶𝑂2, 𝑎𝑚    𝑗 = 𝑎𝑛𝑦 𝑣𝑎𝑝𝑜𝑟 𝑠𝑡𝑟𝑒𝑎𝑚      (C.47) 

∑ 𝑥𝑖,𝑗 = 1𝑖        𝑖 = 𝐻2𝑂, 𝐶𝑂2, 𝑎𝑚    𝑗 = 𝑎𝑛𝑦 𝑙𝑖𝑞𝑢𝑖𝑑 𝑠𝑡𝑟𝑒𝑎𝑚      (C.48) 

𝑚𝑎𝑚,𝑗 = 𝑦𝑖,𝑗 = 0      𝑗 = 𝑎𝑛𝑦 𝑣𝑎𝑝𝑜𝑟 𝑠𝑡𝑟𝑒𝑎𝑚           (C.49) 

 Rich solvent bypass mass balance 

𝑚𝑟𝑖𝑐ℎ = 𝑚𝑟𝑖𝑐ℎ𝑐 + 𝑚𝑐𝑏𝑝𝑠                    (C.50) 

𝑚𝑟𝑖𝑐ℎ𝑐 = 𝑚𝑟𝑖𝑐ℎ𝑤 + 𝑚𝑤𝑏𝑝𝑠                  (C.51) 

 Warm rich solvent flashing 

𝑃𝐶𝑂2

∗ (𝑇𝑟𝑖𝑐ℎ𝑤, 𝛼𝑟𝑖𝑐ℎ) + 𝑃𝐻2𝑂
𝑠𝑎𝑡 (𝑇𝑟𝑖𝑐ℎ𝑤)𝑥𝐻2𝑂,𝑟𝑖𝑐ℎ = 𝑃𝑠𝑡𝑟𝑝         (C.52) 

 Hot rich solvent flashing mass balance 

𝑚𝑟𝑖𝑐ℎ𝑤 = 𝑚𝑟𝑖𝑐ℎℎ𝑉 + 𝑚𝑟𝑖𝑐ℎℎ𝐿                  (C.53) 

𝑚𝑖,𝑟𝑖𝑐ℎ𝑤 = 𝑚𝑖,𝑟𝑖𝑐ℎℎ𝑉 + 𝑚𝑖,𝑟𝑖𝑐ℎℎ𝐿      𝑖 = 𝐻2𝑂, 𝐶𝑂2, 𝑎𝑚        (C.54) 

𝑃𝐶𝑂2

∗ (𝑇𝑟𝑖𝑐ℎℎ, 𝛼𝑟𝑖𝑐ℎℎ) + 𝑃𝐻2𝑂
𝑠𝑎𝑡 (𝑇𝑟𝑖𝑐ℎℎ)𝑥𝐻2𝑂,𝑟𝑖𝑐ℎℎ𝐿 = 𝑃𝑠𝑡𝑟𝑝       (C.55) 

 Stripper mass balance 

𝑚𝑖,𝑠𝑡𝑟𝑝𝐿 = 𝑚𝑖,𝑤𝑏𝑝𝑠       𝑖 = 𝐻2𝑂, 𝐶𝑂2, 𝑎𝑚             (C.56) 

𝑚𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿 + 𝑚𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝑉 = 𝑚𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿 + 𝑚𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝑉          (C.57) 
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𝑚𝑖,𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿 + 𝑚𝑖,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝑉 = 𝑚𝑖,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿 + 𝑚𝑖,𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝑉         (C.58) 

 Cold rich exchanger mass balance 

𝑚𝑠𝑡𝑟𝑝𝑉 = 𝑚𝑐𝑟𝑥𝑉 + 𝑚𝑐𝑟𝑥𝐿                     (C.59) 

𝑚𝑖,𝑠𝑡𝑟𝑝𝑉 = 𝑚𝑖,𝑐𝑟𝑥𝑉 + 𝑚𝑖,𝑐𝑟𝑥𝐿      𝑖 = 𝐻2𝑂, 𝐶𝑂2, 𝑎𝑚            (C.60) 

 Stripper top liquid flashing 

𝛼𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿 = 𝛼𝑟𝑖𝑐ℎ                       (C.61) 

𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿 = 𝑇𝑟𝑖𝑐ℎ𝑤                       (C.62) 

(𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿 , 𝛼𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿) + 𝑃𝐻2𝑂
𝑠𝑎𝑡 (𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿)𝑥𝐻2𝑂,𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿 = 𝑃𝑠𝑡𝑟𝑝       (C.63) 

𝑦𝐶𝑂2,𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿
∗ =

𝑃𝐶𝑂2
∗ (𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿,𝛼𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿)

𝑃𝑠𝑡𝑟𝑝
               (C.64) 

𝑦𝐻2𝑂,𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿
∗ =

𝑃𝐻2𝑂
𝑠𝑎𝑡 (𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿)𝑥𝐻2𝑂,𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿

𝑃𝑠𝑡𝑟𝑝
              (C.65) 

 Stripper bottom liquid flashing 

𝑃𝐶𝑂2

∗ (𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿 , 𝛼𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿) + 𝑃𝐻2𝑂
𝑠𝑎𝑡 (𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿)𝑥𝐻2𝑂,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿 = 𝑃𝑠𝑡𝑟𝑝     (C.66) 

𝑦𝐶𝑂2,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿
∗ =

𝑃𝐶𝑂2
∗ (𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿 ,𝛼𝑠𝑡𝑟𝑝𝑡𝑏𝑜𝑡𝐿)

𝑃𝑠𝑡𝑟𝑝
                (C.67) 

𝑦𝐻2𝑂,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿
∗ =

𝑃𝐻2𝑂
𝑠𝑎𝑡 (𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿)𝑥𝐻2𝑂,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿

𝑃𝑠𝑡𝑟𝑝
               (C.68) 

 Stripper sump flashing 

𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝑉 = 𝑇𝑟𝑒𝑏                       (C.69) 

𝑦𝐶𝑂2,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝑉 =
𝑃𝐶𝑂2

∗ (𝑇𝑟𝑒𝑏,𝛼𝑙𝑒𝑎𝑛)

𝑃𝑠𝑡𝑟𝑝
                  (C.70) 

𝑦𝐻2𝑂,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝑉 =
𝑃𝐻2𝑂

𝑠𝑎𝑡 (𝑇𝑟𝑒𝑏)𝑥𝐻2𝑂,𝑙𝑒𝑎𝑛

𝑃𝑠𝑡𝑟𝑝
                (C.71) 

 Cold rich exchanger flashing 

𝑇𝑐𝑏𝑝𝑠 = 𝑇𝑟𝑖𝑐ℎ𝑐                        (C.72) 



 

 

240 

𝑃𝐻2𝑂
𝑠𝑎𝑡 (𝑇𝑐𝑟𝑥) = 𝑃𝑠𝑡𝑟𝑝                     (C.73) 

 Enthalpy balance around cross exchangers 

𝐻̇𝑟𝑖𝑐ℎ𝑐(𝑇𝑟𝑖𝑐ℎ𝑐) − 𝐻̇𝑟𝑖𝑐ℎ𝑤(𝑇𝑟𝑖𝑐ℎ𝑤) = 𝐻̇𝑙𝑒𝑎𝑛𝑐(𝑇𝑙𝑒𝑎𝑛𝑐) − 𝐻̇𝑙𝑒𝑎𝑛𝑤(𝑇𝑙𝑒𝑎𝑛𝑤)   (C.74) 

𝐻̇𝑟𝑖𝑐ℎ𝑤(𝑇𝑟𝑖𝑐ℎ𝑤) − 𝐻̇𝑟𝑖𝑐ℎℎ(𝑇𝑟𝑖𝑐ℎℎ) = 𝐻̇𝑙𝑒𝑎𝑛𝑤(𝑇𝑙𝑒𝑎𝑛𝑤) − 𝐻̇𝑙𝑒𝑎𝑛ℎ(𝑇𝑙𝑒𝑎𝑛ℎ)   (C.75) 

 Enthalpy balance around stripper 

𝐻̇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿(𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿) − 𝐻̇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿(𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿) = 𝐻̇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝑉(𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝑉) − 𝐻̇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝑉(𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝑉) (C.76) 

 Enthalpy balance around cold rich exchanger 

𝐻̇𝑠𝑡𝑟𝑝𝑉(𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝑉) − 𝐻̇𝑐𝑟𝑥𝑉(𝑇𝑐𝑟𝑥) − 𝐻̇𝑐𝑟𝑥𝐿(𝑇𝑐𝑟𝑥) = 𝐻̇𝑐𝑏𝑝𝑠(𝑇𝑐𝑏𝑝𝑠) − 𝐻̇𝑐𝑏𝑝𝑠𝑜𝑢𝑡(𝑇𝑐𝑏𝑝𝑠𝑜𝑢𝑡) (C.77) 

 Cross LMTD calculation 

𝑄𝑐𝑟𝑜𝑠𝑠𝑋,1 = 𝐻̇𝑙𝑒𝑎𝑛𝑤 − 𝐻̇𝑙𝑒𝑎𝑛𝑐                    (C.78) 

𝑄𝑐𝑟𝑜𝑠𝑠𝑋,2 = 𝐻̇𝑙𝑒𝑎𝑛ℎ − 𝐻̇𝑙𝑒𝑎𝑛𝑤                    (C.79) 

∆𝑇𝐿𝑀,𝑐𝑟𝑜𝑠𝑠𝑋,1 =
(𝑇𝑟𝑖𝑐ℎ𝑐−𝑇𝑙𝑒𝑎𝑛𝑐)−(𝑇𝑟𝑖𝑐ℎ𝑤−𝑇𝑙𝑒𝑎𝑛𝑤)

𝑙𝑛[
(𝑇𝑟𝑖𝑐ℎ𝑐−𝑇𝑙𝑒𝑎𝑛𝑐)

(𝑇𝑟𝑖𝑐ℎ𝑤−𝑇𝑙𝑒𝑎𝑛𝑤)
]

             (C.80) 

∆𝑇𝐿𝑀,𝑐𝑟𝑜𝑠𝑠𝑋,2 =
(𝑇𝑟𝑖𝑐ℎℎ−𝑇𝑙𝑒𝑎𝑛ℎ)−(𝑇𝑟𝑖𝑐ℎ𝑤−𝑇𝑙𝑒𝑎𝑛𝑤)

𝑙𝑛[
(𝑇𝑟𝑖𝑐ℎℎ−𝑇𝑙𝑒𝑎𝑛ℎ)

(𝑇𝑟𝑖𝑐ℎ𝑤−𝑇𝑙𝑒𝑎𝑛𝑤)
]

             (C.81) 

∆𝑇𝐿𝑀,𝑐𝑟𝑜𝑠𝑠𝑋,𝑎𝑣𝑔 =
𝑄𝑐𝑟𝑜𝑠𝑠𝑋,1+𝑄𝑐𝑟𝑜𝑠𝑠𝑋,2

𝑄𝑐𝑟𝑜𝑠𝑠𝑋,1
∆𝑇𝐿𝑀,𝑐𝑟𝑜𝑠𝑠𝑋,1

+
𝑄𝑐𝑟𝑜𝑠𝑠𝑋,2

∆𝑇𝐿𝑀,𝐶𝑟𝑜𝑠𝑠𝑋,2

               (C.82) 

 Cold rich exchanger LMTD 

𝑄𝑐𝑟𝑥 = 𝐻̇𝑐𝑏𝑝𝑠𝑜𝑢𝑡 − 𝐻̇𝑐𝑏𝑝𝑠                   (C.83) 

∆𝑇𝐿𝑀,𝑐𝑟𝑥 =
(𝑇𝑐𝑏𝑝𝑠−𝑇𝑐𝑟𝑥)−(𝑇𝑐𝑏𝑝𝑠𝑜𝑢𝑡−𝑇𝑠𝑡𝑟𝑝𝑉)

𝑙𝑛[
(𝑇𝑐𝑏𝑝𝑠−𝑇𝑐𝑟𝑥)

(𝑇𝑐𝑏𝑝𝑠𝑜𝑢𝑡−𝑇𝑠𝑡𝑟𝑝𝑉)
]

               (C.84) 

 Stripper temperature and concentration driving force 

∆𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝 = 𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝑉 − 𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿                  (C.85) 

∆𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡 = 𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝑉 − 𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿                  (C.86) 
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∆𝑦𝑠𝑡𝑟𝑝𝑡𝑜𝑝 = 𝑦𝑖,𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝑉 − 𝑦𝑖,𝑠𝑡𝑟𝑝𝑡𝑜𝑝𝐿
∗                  (C.87) 

∆𝑦𝑠𝑡𝑟𝑝𝑏𝑜𝑡 = 𝑦𝑖,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝑉 − 𝑦𝑖,𝑠𝑡𝑟𝑝𝑏𝑜𝑡𝐿
∗                  (C.88) 

∆𝑇𝐿𝑀,𝑠𝑡𝑟𝑝 =
∆𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝−∆𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡

𝑙𝑛(
∆𝑇𝑠𝑡𝑟𝑝𝑡𝑜𝑝

∆𝑇𝑠𝑡𝑟𝑝𝑏𝑜𝑡
)

                     (C.89) 

∆𝑦𝐿𝑀,𝑠𝑡𝑟𝑝 =
∆𝑦𝑠𝑡𝑟𝑝𝑡𝑜𝑝−∆𝑦𝑠𝑡𝑟𝑝𝑏𝑜𝑡

𝑙𝑛(
∆𝑦𝑠𝑡𝑟𝑝𝑡𝑜𝑝

∆𝑦𝑠𝑡𝑟𝑝𝑏𝑜𝑡
)

                     (C.90) 

 Overall enthalpy balance 

𝑄̇𝑟𝑒𝑏 = 𝐻̇𝑙𝑒𝑎𝑛𝑐(𝑇𝑙𝑒𝑎𝑛𝑐) − 𝐻̇𝑟𝑖𝑐ℎ(𝑇𝑟𝑖𝑐ℎ𝑐) + 𝐻̇𝑐𝑟𝑥𝑉(𝑇𝑐𝑟𝑥) + 𝐻̇𝑐𝑟𝑥𝐿(𝑇𝑐𝑟𝑥)        (C.91) 
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NOMENCLATURE 

𝐻̇𝑗: enthalpy of stream j 

𝑚𝑗: total mass flow rate of stream j 

𝑚𝑖,𝑗: mass flow rate of component i in stream j 

𝑃𝑠𝑡𝑟𝑝: stripper pressure 

𝑃𝑖,𝑗: partial pressure of component i in vapor stream j 

𝑃𝑖,𝑗
∗ : equilibrium partial pressure of component i in liquid stream j 

𝑃𝐻2𝑂
𝑠𝑎𝑡 (𝑇): saturation pressure of water at temperature T 

𝑇𝑗: temperature of stream j 

𝑥𝑖,𝑗: mole fraction of component i in liquid stream j 

𝑦𝑖,𝑗: mole fraction of component i in vapor stream j 

Greek letter: 

𝛼𝑗: CO2 loading of stream j 

∆𝐻𝑎𝑏𝑠(𝛼): heat of absorption at CO2 loading  

∆𝑇: temperature approach 

∆𝑇𝐿𝑀: log mean temperature difference 

∆𝑦: concentration difference between y and y* 

Stream name j: 

cbps: cold rich bypass 

cbpsout: cold rich bypass at cold rich exchanger outlet 

crxL: liquid phase at cold rich exchanger out 

crxV: vapor phase at cold rich exchanger out 

lean: lean solvent 

leanc: cold lean solvent 
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leanh: hot lean solvent 

leanw: warm lean solvent 

rich: rich solvent 

richc: cold rich solvent 

richh: hot rich solvent 

richhV: vapor in hot rich solvent 

richhL: liquid in hot rich solvent 

richw: warm rich solvent 

strpbotL: liquid at bottom of stripper 

strpbotV: vapor at bottom of stripper 

strptopL: liquid at top of stripper 

strptopV: vapor at top of stripper 

strpV: total stripping vapor of stripping process 

wbps: warm rich bypass 
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