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A number of proteins perform load-bearing functions in living organisms and 

often have unique mechanical properties. In recent years, there has been considerable 

effort to understand the relationships between the molecular structure of such proteins 

and their mechanical response.  Several of them have been studied in great detail through 

single molecule mechanical pulling experiments. Interpretation of these experiments 

requires the use of atomistic simulations. However typical simulation time scales are 

many orders of magnitude shorter than relevant experimental and/or physiological time 

scales. In this dissertation, we have developed a simulation methodology that provides a 

direct link between experiments and simulations and is capable of predicting the outcome 

of single molecule pulling experiments. By using this methodology, we have been able to 

understand the relationships between the molecular structure and the mechanical 

properties of a number of proteins. I report on our studies of the mechanical unfolding of 

the I27 domain of the muscle protein titin, ubiquitin, and protein G and compare them 

with the existing experimental data. The distribution of the unfolding force as well as its 

dependence on the pulling rate predicted by our simulations is found to be in good 

agreement with AFM experiments. We demonstrate that the mechanical unfolding 

pathway can be altered by changing the pulling geometry and that the presence of a 

hydrogen bonded clamp between terminal parallel strands of these domains is the key 
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property that is responsible for their high mechanical stability. We have also extended our 

studies of single protein domains to protein dimers. Our replica-exchange molecular 

dynamics simulation study of the mechanical unfolding of a segment-swapped protein G 

dimer suggests that the mechanical resistance of a protein complex may be controlled not 

only by the mechanical stability of individual domains but also by the inter-chain 

interactions between domains.  
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Chapter I 

Introduction 

 

In every living organism, there are proteins that perform “load-bearing” functions. 

Examples include the giant muscle protein titin78,79,84,99,100, tenascin90, fibronectin88,92, 

spectrin66,67,101, barnase10, nacre protein perlucin108, and spider silk5,47,48,51,91,118. These 

proteins are often unique materials that exhibit a combination of high mechanical strength 

and high elasticity. For instance, spider capture silk has tensile strength comparable to 

steel, but it is extremely elastic and can be stretched to nearly 5-10 times its original 

length5,47,48,51,91,118. In the pass ten years, there has been considerable effort to understand 

the relationships between the molecular structure of such proteins and their mechanical 

response. It has been understood that the mechanical unfolding of certain proteins is a 

key mechanisms that that accounts for the high toughness of natural materials108. 

Moreover, studies of the mechanical unfolding of proteins provide an opportunity to 

probe their energy landscapes. By using an understanding of the relationship between the 

structural and the mechanical properties of proteins, one can use certain proteins as 

building blocks for the construction of new nanomechanical materials or design 

biologically inspired polymeric materials. This dissertation reports on our studies of the 

mechanical unfolding of proteins by using molecular dynamic simulations. 

Mechanical properties of individual protein molecules can be explored by 

performing single-molecule pulling experiments5,9-11,27,32,33,42,43,59,65,69,70,84,88-90,94,99-

101,108,111,112,114,116,117,124,125, in which proteins are stretched by mechanical forces and their 

mechanical resistance is measured. Atomic force microscopy (AFM) is one such single-

molecule stretching technique and is illustrated in Figure I.1(a). In a typical AFM 

experiment, one end of a polyprotein chain, which is composed of multiple protein 

domains, is attached to a cantilever. The other end of the polyprotein chain is attached to 

a surface. The surface is moved away from the cantilever with constant velocity v. Then 

the force response of the protein, which is equal to the force response of the cantilever, is 

measured by   
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 ( )c cf k L r k x= − = .         (I.1) 

Here kc is the force constant of the cantilever, L is the distance between the cantilever and 

the surface, r is the end-to-end distance for the polyprotein chain, and x is the 

displacement of the cantilever. Figure I.1(a) shows a typical result of an AFM 

experiment100. The x-axis is the elongation of the polyprotein chain which is equal to vt. 

Here v is the stretching velocity, and t is the stretching time. The y-axis is the force 

response of the proteins calculated by eq 1. The force-elongation curve often exhibits a 

saw-tooth pattern.  Every time there is a drop of the force it reflects the unfolding event 

of an individual protein domain in the chain. The force can be measured at different 

pulling speeds and the average force is typically reported at a given pulling speed. The 

result of an AFM experiment for a 500 nm-long titin segment is shown in the Figure 

I.1(b)100. The inset at upper left is the resulting force extension curve.  It shows nine 

peaks averaging 190 pN and 130 pN when pulled at a speed of 0.5 µm/s and 0.01 µm/s, 

respectively.  The mean unfolding force often exhibits a logarithmic dependence on the 

pulling speed. 

Molecular level understanding of these single-molecular pulling experiments 

requires the use of atomistic simulations. Steered molecular dynamics (SMD) is one 

computational method commonly used to study the mechanical response of proteins. The 

method of SMD is briefly described below. One end of the polypeptide chain is attached 

to a spring, which has a force constant kc. Similar to the AFM experiment, the mechanical 

response of the protein can be measured by moving the spring. The force response of the 

protein can be calculated as the spring constant times the spring extension, 

0( )cf k R R= − .                   (I.2) 

Here R0 is the total extension, i.e.,  the distance between the two ends of the chain plus 

the extension of the spring, and R is the simulated extension of the protein itself. The total 

extension is usually increased at a linear rate:  

0 foldR R vt= + ,         (I.3) 

where Rfold is the initial extension in the folded state, v is the stretching velocity, and t is 

the stretching time. The outcome of a single SMD run is a force-extension curve f(R) of 



3 

 

(a)  

 

(b)  

Figure I.1: (a) Mechanical stretching of a polyprotein chain using the Atomic force 

microscope (AFM) and a typical force-extension curve observed in a 

stretching experiment. (b) The mean domain unfolding forces exhibit a 

logarithmic dependence on the pulling speeds.100  
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the protein for a given stretching velocity, as calculated from eqs. I.2 and I.3. In Figure 

I.2 SMD force-vs.-extension curve for the I27 domain in titin shows a single force peak 

similar to the sawtooth-shaped force profile in AFM experiments. The force required to 

unfold a protein is defined as the peak of the force curve when the force drops. This 

atomic level simulation method provides access to the internal mechanical properties of 

proteins, such as the molecular mechanism of protein unfolding, which is often difficult 

to directly observe experimentally. However, typical simulation time scales in SMD are 

about six orders of magnitude shorter than relevant experimental and/or physiological 

time scales. Consequently, it is not feasible to perform a direct molecular dynamics 

simulation of a single molecule mechanical unfolding experiment at the experimental 

pulling speed. In addition, it is impossible to extrapolate the unfolding forces extracted 

from SMD simulations to the experimental region, since the mechanical response of the 

molecule calculated in SMD simulations is dominated by dissipative, friction 

forces49,2,55,56,28 for pulling speeds as high as 0.1 – 10 Å/ps. Such a force that is assumed 

proportional to the velocity u would be negligible in the experimental studies, where u is 

some six orders of magnitude smaller. 

The main goal of the research presented in this thesis is to develop simulation 

methodology that provides a direct link between experiments and simulations and is 

capable of predicting the outcome of single molecule pulling experiments and, by using 

this methodology, to understand the relationships between the molecular structure and the 

mechanical properties of a number of proteins.  

Our general approach is to model the unfolding dynamics of a protein domain as 

diffusive motion along a single unfolding coordinate R (equal to the domain extension) in 

the presence of an external driving potential and the equilibrium potential of mean force 

G(R). The computation of G(R) is by itself a challenging task, which is accomplished by  

using a combination of several methods that are necessary to improve sampling and to 

extract maximum information from molecular dynamics trajectories.  

 Once G(R) is known, we use transition state theory to compute force-dependent 

rates for the mechanical unfolding of domains.  These rates are subsequently used to 

perform  
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Figure I.2: The force-extension profile from the Steered Molecular dynamics (SMD) 

trajectory for an I27 domain in titin.79 

 

kinetic Monte Carlo simulations and further to predict the outcome of single molecule 

AFM pulling experiments. 

Some of the theoretical predictions made by using this approach have already 

been confirmed by subsequent experimental studies.12,19  

The layout of this dissertation is as follows:  

Chapter II: Mechanical unfolding of the muscle protein titin”. In this chapter, we 

describe the procedure we have developed to predict the outcomes of the AFM pulling 

experiments based on molecular dynamics simulations, and apply this procedure to the 

mechanical unfolding of a polyprotein chain which is composed of multiple I27 domains.  

Chapter III: “Mechanical unfolding of segment ubiquitin-like protein domains.” It 

has been suggested in our paper [K. Eom, P.-C. Li, D.E. Makarov, and G.J. Rodin, J. 

Phys. Chem. B, 107 (2003) 8730] that that the “clamp” formed by the parallel strands in 

this domain represents an optimal topology maximizing the mechanical strength of cross-

linked polymer chains. The goal of the work described in this chapter was to verify this 
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hypothesis by studying the mechanical stability of non-mechanical proteins that have the 

same structural motif.  To this end, we have studied the mechanical response of two small 

globular proteins, ubiquitin and protein G IgG-binding domain III, which do not have an 

obvious mechanical function, and demonstrated that they nevertheless exhibit 

considerable mechanical stability.   

Chapter IV: “Mechanical unfolding of ubiquitin.” Biological functions of 

polyubiquitin chains are related to different linkages between individual ubiquitin 

domains. Some of these functions are believed to be related to the different mechanical 

resistance of the ubiquitin domains with respect to forces that are applied differently for 

different linkages. Motivated by the recent experimental study of the linkage dependence 

of the mechanical response of polyubiquitin chains[D. J. Brockwell et al, Nature 

Structural Biology 10, 7312003); M. Carrion-Vazquez et al, Nature Structural Biology 

10, 738 (2003)], we have used simulations to study the mechanical unfolding of ubiquitin 

and demonstrated that the mechanical unfolding pathway indeed can be altered by 

changing the pulling geometry. This study provides an excellent opportunity to probe 

different mechanical unfolding reaction pathways on the multidimensional free energy 

landscapes of proteins. Some of these pathways may potentially be relevant for chemical 

or thermal unfolding mechanisms for the same protein.  

Chapter V: “Mechanical unfolding of segment-swapped protein G dimer.” This 

chapter reports on our replica-exchange molecular dynamics simulation study of the 

mechanical unfolding of segment-swapped protein G dimer. This study provides insight 

into the mechanical properties of bulk materials, which usually involve complex 

assemblies of proteins, controlled not only by the mechanical stability of individual 

domains but also by the inter-chain interactions.  

Chapter VI contains the summary of the main results of this dissertation. 

The materials of Chapter II-IV have been published71,72,73, and that of Chapter V 

has been accepted to be published74.  
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Chapter II 

Mechanical unfolding of the muscle protein titina 

II. 1 INTRODUCTION 

Single molecule experiments, in which proteins are stretched by mechanical 

forces, reveal a wealth of information about the mechanical properties of structural 

proteins5,9-11,27,32,33,42,43,59,65,69,70,84,88-90,94,99-101,108,111,112,114,116,117,124,125, many of which are 

unique materials. Atomistic-level computer simulations10,15,49,50,56,62,68,78,79,84,92,103,107 

performed in conjunction with experiments often reveal the mechanisms of proteins’ 

response to a tensile loading. Some of the proteins well characterized both experimentally 

and computationally include titin78,79,84,99,100, fibronectin88,92, and barnase10.   

Molecular dynamics (MD) simulations have provided valuable insights into the 

mechanical response of the I27 domain of the muscle protein titin. A combination of 

experimental84,99,100,116,117 and computational78,79,84 studies have revealed the structural 

changes experienced by the I27 domain as it unfolds when the ends of the polypeptide 

chain are pulled apart. 

A direct comparison of experiments with simulations is however often impossible 

because of the disparity between their time scales. At a much faster rate of loading typical 

of MD simulations, proteins may unfold via mechanisms different from those explored in 

experimental studies81.   

 In experiments, the mean domain unfolding force usually exhibits a weak 

logarithmic dependence on the pulling speed u. This dependence is generally expected 

when unfolding is driven by thermally activated barrier crossing29. Simulated unfolding 

forces are much higher and exhibit a much stronger dependence on u78,79. An attempt to 

extrapolate the unfolding forces extracted from MD simulations to the experimental 

pulling speeds leads to a nonsensical result, as shown in Fig. II.1. One reason why this 

happens is the fact that for pulling speeds as high as 0.1 – 10 Å/ps the mechanical 

                                                 
aLarge portions of this chapter have been previously published as reference 71. 
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Figure II.1: The dependence of average unfolding force for the I27 domain of the 

muscle protein titin on the pulling velocity, as obtained from our steered 

MD simulations described in Section II.2 (solid line). An attempt to 

extrapolate these data to lower pulling velocities leads to an absurd result 

(dashed line). 

 

response of the molecule is dominated by dissipative, friction forces2,28,49,55,56. Even if the 

simulation is performed in vacuum, the energy pumped into a single degree of freedom 

associated with the molecule’s extension is dissipated into other degrees of freedom of 

the molecule itself, resulting in a Stokes-type force. Assuming that such a force is 

proportional to the velocity u, it would be negligible in the experimental studies, where u 

is some six orders of magnitude smaller. 

Several approaches have been developed recently, whose goal is to extrapolate 

single-molecule stretching data to lower pulling speeds. Jarzynski57,58 and subsequently 

Hummer and Szabo53 showed that equilibrium free energy dependences can in principle 

be reconstructed from single-molecule experiments or simulations even when those are 

performed far from equilibrium. This approach has been tested experimentally76 and by 

calculations102. Since this method involves averaging over multiple single-molecule 

trajectories, it is computationally expensive.  
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In another approach2,28,55,56, one explicitly subtracts the dissipative force to obtain 

the equilibrium potential of mean force from non-equilibrium steered molecular 

dynamics simulations by using the assumption that single-molecule trajectories are 

described by a Langevin equation. Instead of averaging over multiple trajectories, one 

smoothes single-molecule trajectories by using the moving average or another smoothing 

technique and then solves the inverse problem of reconstructing the Langevin equation 

from the simulated trajectories <R>(t) that describe the dynamics of the expectation 

value of the molecule’s extension R as a function of time t. In practice, the statistical 

errors that result from approximating the actual <R>(t) by a smoothed single-molecule 

trajectory are often large. Although these errors can be reduced by carefully choosing the 

smoothing procedure and simulation parameters (such as the pulling speed),2 the optimal 

choice of the latter often conflicts the requirement of computational feasibility.   

In this chapter, rather than extracting the molecule’s potential of mean force G(R) 

from non-equilibrium steered MD trajectories, we use an umbrella-sampling-type 

approach87 to calculate G(R) from a series of equilibrium molecular dynamics 

trajectories. We further show that with G(R) calculated in this way, steered MD 

trajectories are indeed well described by a Langevin equation as suggested in2,55,56, thus 

validating our procedure for the calculation of G(R). With the computed G(R), we then 

proceed to predict the outcome of single molecule AFM experiments and compare our 

G(R) with that inferred from the experimental studies. We find that, while our simulation 

predicts unfolding force distributions and their dependence of the pulling rate that are 

consistent with the experimental results, the position of the transition state associated 

with the maximum of G(R) is different from the value estimated from the experimental 

studies of titin69. This difference can be traced back to the assumption that the unfolding 

free energy barrier depends linearly on the force, which is commonly used in 

interpretation of experimental data and is inconsistent with the present study. However 

limitations of the reported simulations may also contribute to this discrepancy.  

The chapter is organized as follows:  In Section II.2 we report on steered 

Molecular Dynamics (SMD) simulations of the stretching of the I27 domain and describe 

an attempt to approximate our simulation results by a Langevin equation and to 
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reconstruct the parameters of the latter directly from SMD trajectories. In Section II.3 we 

describe our procedure to compute the potential of mean force for the stretched I27 

domain. In Section II.4 we return to the Langevin equation model and show that, using 

the potential of mean force computed in Section II.3, one reproduces the SMD simulation 

results thus validating both the use of the Langevin equation and the computed potential 

of mean force. In Section II.5 we use transition state theory to calculate the force-

dependent unfolding rate for the potential of mean force of Section II.3. We then perform 

kinetic Monte Carlo simulations to compute the mean unfolding force and the distribution 

of the unfolding force as a function of the pulling velocity and compare our results with 

experimental data. In Section II.6 we compare the computed force dependence of the 

unfolding rate with that deduced from AFM experiments. We show that, while the two 

dependences are close to one another in the experimental range of forces, the computed 

value of the unfolding rate extrapolated to zero force is much smaller than the one 

previously estimated from experimental data (and also smaller than the unfolding rate 

measured in chemical denaturation experiments). This discrepancy is due to the 

assumption that the unfolding barrier depends linearly on the force, which is inconsistent 

with the results of the present study.        

 

II. 2 STEERED MOLECULAR DYNAMIC SIMULATION OF I27 STRETCHING 

Our molecular dynamics simulations of the stretching of the I27 domain (pdb 

code 1TIT) were performed with Tinker molecular dynamics software126 using the 

GB/SA continuum model for solvation98 and the Charm27 force field80.  To “stretch” the 

molecule, one adds a penalty term 

(1/2) kc (R-R0(t) )2         (II.1) 

to the molecule’s energy10,49,50,78,79. Here R is the distance between the outermost α-

carbon atoms of the protein molecule and is the measure of the molecule’s extension in 

our studies. The penalty energy (1) results in a harmonic restraint that plays a role similar 

to that of a cantilever in AFM protein pulling experiments42,43,99,100,117. The force constant 

kc used in our calculations was chosen to be kc = 1.38 N/m. The time dependence of R0(t)  
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          (a)  

(b)  

Figure II.2: (a) Force-vs.-extension curves of the I27 domain observed in steered MD 

simulations for different pulling velocities u. Heavy solid line: u = 5 Å/ps. 

Dashed line: u = 1 Å/ps. Thin solid line: u = 0.1  Å/ps.  (b) Force-vs.-

extension curves for the same pulling velocities computed by using the 

Langevin equation (II.4) with the potential of mean force calculated in 

Section II.3. 
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describes the external driving and is chosen to be linear: 

 R0(t) = ut         (II.2) 

where u is the pulling velocity. In practice, R0(t) was incremented by ∆R=1Å  every ∆t= 

∆R /u picoseconds. The instantaneous stretching force is given by: 

f = kc (R0(t)-R )        (II.3) 

Prior to the stretching simulation, the minimum energy structure of I27 was determined 

via steepest descent minimization and it was equilibrated by running 100 ps of 

unconstrained molecular dynamics simulation. Force-extension curves f(R) obtained in 

this way for different values of the pulling velocity u are shown in Fig. II.2(a) As the 

pulling velocity is increased, the force tends to increase. For low pulling speeds the 

dependence f(R) shows a pronounced peak followed by a drop. This behavior is similar to 

that observed in experimental force-extension curves of titin99,100 and is due to the 

unfolding of the I27 domain78,79,99,100.  However when the pulling velocity u becomes 

larger, the unfolding peak disappears. This, together with the fact that the observed forces 

in the limit of high pulling velocities tend to be proportional to u, suggests that the 

domain’s response to the pulling is dominated by a dissipative Stokes-type force that is 

much larger than equilibrium stretching forces.   

Following previous work2,28,55,56, we attempted to model the observed single-

molecule trajectories in terms of a Langevin equation: 

( ) ( ) ( )cmR R G R k ut R f tη ′= − − + − +       (II.4) 

where η is a friction coefficient and f(t) is a random force obeying the fluctuation-

dissipation theorem: 

( ) ( ) 2 ( )Bf t f t k T t tη δ′ ′= −         (II.5) 

We further assume that the motion is overdamped such that the intertial term in the 

Langevin equation can be neglected (i.e., the lhs of Eq. II.4 is set to zero).  

In principle, both G(R) and the friction coefficient η can be determined by 

analyzing single-molecule trajectories R(t), provided that Eq. II.4 is accurate enough. By 

averaging over an ensemble of trajectories (and neglecting the lhs) in Eq. II.4 one finds: 
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0 ( ) ( )cR G R k ut Rη ′= − − + −       (II.6) 

If we write R(t) = <R(t)> + δR(t), then, to second order in δR,  

 2( ) ( ) ( ) / 2G R G R R G Rδ′ ′ ′′′≈ +          

The magnitude of 2Rδ  can be reduced by increasing the force constant kc albeit at the 

expense of increasing the corresponding magnitude of the fluctuations of the force (II.3). 
2Therefore one can choose kc such that ( )G R′  can be replaced by ( )G R′ , resulting in 

an equation of motion for ( ) ( )R t R t≡ : 

0 ( ) ( ( )) ( ( ))cR t G R t k ut R tη ′= − − + −       (II.7) 

If one knows η and ( )R t then G(R) is obtained from Eq. II.7: 

 ( ( )) ( ( ))cG R t R k ut R tη′ = − + −       (II.8) 

Unfortunately, calculating ( )R t from steered MD trajectories would imply averaging over 

a large number of single-molecule trajectories and would be computationally prohibitive. 

Instead, one can use ( )R t obtained via an appropriate smoothing procedure such as 

averaging R(t) over a time window centered around t. 2 The errors introduced by using a 

smoothed R(t) instead of the actual ( )R t depend on the type of averaging. Useful 

guidelines for choosing the smoothing procedure and minimizing the errors have been 

established and theoretically justified in ref. 2 Unfortunately, in the particular range of 

pulling speeds used in our MD simulations, we have not been able to apply this procedure 

successfully: the statistical errors in the determination of ( )G R′ were always comparable 

with the force itself.  

We now turn to the determination of the friction coefficient η. It is possible to 

obtain it by analyzing the force-force correlation function2. Alternatively, one can obtain 

the friction coefficient by comparing single-molecule trajectories recorded for two 

different values of the pulling speed u. Let 1( )R t and 2 ( )R t  be the trajectories obtained for 
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u= u1 and u2, respectively. Define functions t1(R) and t2(R) such that 1 1( ( ))R t R R=  and 

2 2( ( ))R t R R= . Then, by using Eq. II.8, we have 

1 1 1 1 1 1 1 1( ( ( ))) ( ( )) ( ( ) ( ( )))cG R t R R t R k u t R R t Rη′ = − + −     (II.9a) 

2 2 2 2 2 2 2 2( ( ( ))) ( ( )) ( ( ) ( ( )))cG R t R R t R k u t R R t Rη′ = − + −    (II.9b) 

and subtracting Eq. (II.9a) from Eq. (II.9b) one finds: 

1 1 2 2

1 1 2 2

( ) ( )
( ( )) ( ( ))

c
u t R u t Rk

R t R R t R
η −

=
−

        (II.10) 

Since the result of Eq. II.10 should be independent of the choice of R, then – in the hope 

to reduce the errors resulting from the smoothing procedure – one may write  

1 1 2 2

1 1 2 2

( ) ( )
( ( )) ( ( ))

b

a

R
c

b a R

k u t R u t RdR
R R R t R R t R

η −
=

− −∫      (II.11) 

where Rb and Ra can be arbitrarily chosen such that they lie within the range of 

extensions spanned by 1( )R t and 2 ( )R t .  

By choosing any two trajectories plotted in Fig. II.2(a) and applying Eq. II.11 we 

have calculated the friction coefficient to be η ≈ 2.8 ×10-12 (N ×s/m). Because of the 

averaging over R performed in Eq. II.11, the value of friction coefficient thus obtained is 

less sensitive to the smoothing errors than the potential G(R), which we have not been 

able to reliably determine from the data plotted in Fig. II.2(a).  

  

II. 3 THE POTENTIAL OF MEAN FORCE 

Having not been able to accurately determine G(R) from the SMD trajectories, we 

resort to an umbrella sampling type of approach87. Suppose a harmonic energy term (cf. 

Eq. II.1), V(R0) = kc(R-R0)2/2, is added to the molecule’s energy and the value R0 is fixed. 

The total free energy of the molecule (including the constraint energy) is equal to: 

0

2
0( ) ( ) (1/ 2) ( )R cG R G R k R R= + −       (II.12) 

and the equilibrium extension R of the molecule is found from 
0

/ 0RdG dR = , which gives 
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feq = kc(R0 – Req) = ( )eqG R′ ,       (II.13) 

where feq is the equilibrium stretching force on the molecule. Strictly speaking, Req and feq  

are the most probable extension and force, which have to be distinguished from the 

average values <R> and <f>. 82In practice, the difference between the most probable and 

the average values is small provided that the fluctuations of the extension described by 

the standard deviation <δR2 >= <(R – <R>)2> are sufficiently small. One can always 

suppress fluctuations (i.e., reduce <δR2 >) by choosing a sufficiently large value of kc. 

For the value of the spring constant  kc = 1.38 N/m used in our calculations, the above 

difference turns to be immaterial and for this reason in the following discussion we do 

not differentiate between the most probable and the average values of the force and the 

extension, referring to them as the equilibrium values.  

In the vicinity of Req, the probability distribution of R is given by   

0 0

2( )
( ) exp[ ( ) / ] exp ( )

2
c eq

R R B eq
B

k G R
p R G R k T R R

k T
′′+ 

∝ − ∝ − − 
 

  (II.14) 

so that the standard deviation from the equilibrium extension is given by: 

2

( )
B

c eq

k TR
k G R

δ =
′′+

        (II.15) 

We have reconstructed the potential of mean force G(R) by using the two methods below: 

 

Method 1: G(R) is equal to the equilibrium extension work.  

(i) Perform a series of equilibrium molecular dynamics simulations with different 

values of R0 = R0(i), i = 1, 2, …, N 

(ii) For each i compute Req(i) = <R> and feq(i) = kc(R0(i) – Req(i)) 

(iii) Interpolate between the points (Req(i),  feq(i)) by using, e.g., a polynomial fit, 

to obtain the dependence feq(Req) 

(iv) Obtain G(R) by integrating Eq. II.13:  

0

( ) ( )
R

eq eq eqG R f R dR= ∫         (II.16)   

Method 2: (Self-consistent histogram method31,36). 
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From Eq. II.12 we have 

 
0 0

2 2
0 0( ) ( ) (1/ 2) ( ) ln ( ) (1/ 2) ( )R c B R cG R G R k R R k T p R k R R= − − = − − − , (II.17) 

so that G(R) can in principle be found from the histogram of the extension R recorded for 

any given value of R0.  In practice, this procedure is accurate only for the values of R in 

the vicinity of R0 thus necessitating performing the simulation for different values of R0 

as in step (i) of Method 1.  In the self-consistent histogram method31,36 one combines the 

information obtained from each of these simulations and finds an optimal estimate for 

( ) exp( ( ) / )Bp R G R k T∝ −  by writing this as a linear combination of the estimates 

obtained for each R0 and minimizing the error. This approach is superior to Method 1 

because it utilizes all information contained in each distribution 
0
( )Rp R  rather than only 

its moments.  

We have computed G(R) by using both of the above methods and obtained 

identical results. The discussion below assumes using Method 1, as it is somewhat more 

intuitive.  

In performing biased MD simulations for each R0 ( step (i) ) one has to ensure that 

the molecule has achieved thermal equilibrium in each of the simulations. The 

equilibration time τeq can be roughly estimated by assuming that G(R) is harmonic such 

that ( ) (0)G R G′′ ′′= is independent of R. Then one finds2 

/( ) /eq c ck G kτ η η′′= + <        (II.18) 

For the system studied here we find / ckη ~ 2 ps so that we expect equilibration in a few 

picoseconds. In practice, we have run each simulation for a considerably longer time (50 

ps) to ensure proper equilibration and to reduce statistical errors. If one performs a 50 ps 

calculation for N=20 different values of R0 then the total trajectory time is 1 ns.   

The choice of the initial configurations of the molecule used to start each of the N 

trajectories may strongly affect the performance of the method. If, for a given R0(i),  an 

initial configuration differs considerably from equilibrium configurations, such poor 

choice of the initial condition may lead to an anomalously long equilibration time and, 

possibly, induce conformational changes in the molecule that are absent when the 
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distance between the ends of the domain is changed continuously. One may choose to 

increment R0 by the same amount in each equilibration run, i.e., set R0(i) = i ∆R and to 

use, as a starting point in the i-th run, the molecule’s configuration obtained at the end of 

the (i-1)-th run.  This procedure would be equivalent to performing a steered MD 

calculation according to Eq. II.1 with R0(t) being a stepwise function. Again, one fears 

that such stepwise changes may lead to computational artifacts.  

 In an effort to avoid these difficulties, we chose a different approach. First, we 

perform adiabatic mapping87,103 by starting from the minimum energy structure of the 

molecule, increasing R0 in small (∆R=0.1Å) increments and re-minimizing the structure 

in each step. This can be thought as a zero-temperature pulling simulation performed at 

infinitely slow pulling velocity. Because energy minimization takes much less CPU time 

than a 50 ps MD trajectory, it is not difficult to ensure that the distance increment ∆R is 

small enough that R0 is increased nearly continuously. As a result of the adiabatic 

mapping, we have (locally) minimal energy structures for each value R0; we use those as 

initial configurations for each of the MD trajectory performed in step (i) of the above 

procedure. Fig. II.3 displays MD trajectories obtained for different values of R0. We 

observe that for R0 ≤ 11.8 Å the average force <f> increases as R0 is increased (Fig. 

II.3(a)). However for R0 = 12.8 Å and higher, the equilibrium value of the force drops 

and becomes much lower (see Fig. II.3(b)). We associate this behavior with the unfolding 

of the I27 domain. Indeed, by examining the configurations of the molecule for these 

values of R0 we find that the parallel strands A and G’ become separated when R0 = 12.8 

Å (Fig. II.4) This behavior has been previously shown78,79 to correspond to the unfolding 

of the I27 domain, lowering its mechanical resistance and resulting in a sharp drop in its 

force-extension curves f(R). 

 These observations are consistent with the picture that G(R) has a maximum at R 

= R† and the force ( )f G R′= drops abruptly for R > R†. The precise location of the top of 

the barrier R† is hard to determine from our calculation because once the free energy 

G(Req) is within the thermal energy kBT from the transition state barrier G(R†) , unfolding 

via thermally activated barrier crossing can take place during the simulation. In other  



18 

(a)     

(b)  

Figure II.3: Stretching force as a function of time measured in MD simulations, in which 

a harmonic constraint was imposed on the molecule’s extension R such that 

the latter was constrained to be close to R0.  (a) Dashed line: R0 = 8.8 Å. 

Solid line: R0 = 11.8 Å. (b) R0 = 12.8 Å.  
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(a)  

(b)  

Figure II.4: Snapshots of the I27 domain obtained in the course of MD simulations for 

(a) R0 = 11.8 Å and (b) R0 = 12.8 Å. The parallel strands A’ and G shown in 

Fig.II.4(a) become separated in the case (b).  This picture was generated 

with the MOLMOL software63.  
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words, Req represents a local free energy minimum of the free energy ( )G R  and can only 

be determined if it is well separated from other minima, a condition that is violated once 

Req is close to  R† .  Thus our approach cannot yield the precise shape of the free energy 

barrier in the vicinity of R† and the magnitude of the barrier can only be determined to 

within ~kBT. In view of this and of the observation that the force drops abruptly once R0 

exceeds a critical value we model the free energy G(R) and the force f(R)  = ( )G R′  as 

discontinuous functions so that  f(R) = 0 for R > R†. Note that the lack of knowledge of 

the precise shape of G(R) to the right of the transition state R† does not affect the 

transition-state theory analysis of unfolding described in subsequent sections. Assuming 

that the critical value of the constraint, for which unfolding takes place, is R0 = 12.8 Å, 

we find R† from the equilibrium condition: kc(R0 – R†) = †( )G R′ , which gives R† ≅ 10.0 

Å. The equilibrium forces feq and extensions Req obtained from equilibrium MD 

trajectories for different values of R0 as well as a polynomial fit f(R) of these data points 

are shown in Fig. II.5. The dependence G(R) is obtained by integrating f(R) (see Eq. 

II.16). In particular, the magnitude of the unfolding free energy barrier is given by:  
†

†

0

( ) ( ) 23 kcal/mol
R

uG G R f R dR∆ ≡ = ∫ ,     (II.19) 

close to the value  Gexp = 22.2 kcal/mol inferred from experiments69.  
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Figure II.5: Average stretching force feq as a function of the average extension Req of the 

I27 domain. 

 

II. 4 LANGEVIN EQUATION MODEL: COMPARISON WITH MD SIMULATIONS 

To verify that the free energy surface G(R) obtained in Section II.3 describes the 

same unfolding pathway as the one observed in SMD simulations described in Section 

II.2, we have simulated the dynamics described by the Langevin equation (II.4) for the 

same values of the pulling speed u as the ones used in our steered MD simulations in 

Section II.2. The algorithm used to solve the Langevin equation is the same as the one 

described in ref.. 2The results are shown in Fig. II.2(b) and are to be compared with Fig. 

II.2(a). This comparison suggests that the steered MD results are well described by the 

Langevin equation model and that our inability to obtain G(R) directly from the SMD 

trajectories is not due to the Langevin equation’s failure. This further validates the 

procedure we used to compute G(R).     
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II. 5 COMPARISON WITH AFM EXPERIMENTAL DATA 

Equipped with the potential of mean force G(R) we can now theoretically predict 

AFM force-extension curves of titin.  When the pulling speed u is within the 

experimental range of 1 – 105 nm/s, the time scale associated with the changes in the 

pulling force is much slower than that of molecular motions. In this case one can assume 

that the molecule experiencing the potential  

Gf(R) = G(R) –fR        (II.20) 

is (nearly) equilibrated in this potential at any given force f .  The unfolding is then a 

thermally activated process described by a rate that can be calculated from transition state 

theory:  

 ( ) ( ) exp[ ( ) / ]u u Bk f f G f k Tν= −∆       (II.21) 

Here the free energy barrier is determined as the difference between the maximum and 

minimum values of the free energy in the presence of the force, as illustrated in Fig. 

II.6(a): 

max min max min

( ) max ( ) min ( )
( ( )) ( ( )) [ ( ) ( )]

u R f R fG f G R G R
G R f G R f f R f R f

∆ = −

= − − −
  ,   (II.22) 

where Rmin(f) and Rmax(f) are the positions of the minimum and the maximum of Gf(R), 

respectively. The force dependence of the free energy barrier, as calculated from the the 

minimum and the maximum of Gf(R) are only weakly shifted by the force f)  

The prefactor ν(f) can in principle be calculated from Kramers’ theory41:   

min max

2 2 2 2

( ) ( )
( ( ) / ) ( ( ) / )

( )
2

f fR R f R R f
G R R G R R

fν
πη

= =
∂ ∂ −∂ ∂

= ,   (II.23) 

Unfortunately, as explained above, the curvature of Gf(R) in the vicinity of its maximum 

Rmax could not be extracted from the simulation .  Using our fit for G(R), the curvature 

RRG′′  should be in the range ~10 – 50 pN/Å and thus one estimates the prefactor to be ν ~ 

1010 s-1. However because we used an implicit solvation model, the only source of energy 

dissipation in our case is that into degrees of freedom of the molecule itself. The friction 

due to the interaction with water molecules is not present in our case although it can be 

taken into account in an ad hoc manner by performing Brownian dynamics simulations87  
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(a)  

 

(b)  

Figure. II.6. (a) The free energy Gf(R) = G(R) – fR for f = 0, 100, and 200 pN. The 

freeenergy barrier ∆Gu(f)  is indicated for f = 100 pN.  (b). The free energy 

barrier ( )uG f∆  as a function of force.  
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instead of molecular dynamics.  The actual friction coefficient is then expected to be 

larger than the value of η inferred from our MD trajectories. The above estimate for ν 

only provides an upper limit for ν, although a more accurate first-principles estimate can 

in principle be obtained by including water molecules explicitly in the calculation.    

Suppose that the I27 domain is acted on by a force f(t) that is increased as a 

function of time. The probability p(t)dt that it unfolds  between t and t + dt is given 

by81,99,28,29: 

 ( )

0

( ) ( ( )) exp ( ( ))
t

t
u up t dt k f t k f t dt dt

 
′ ′= − 

 
∫      (II.24) 

and the probability distribution of the force F, at which the domain unfolds, is given by 

 ( )

( )

( )( )
/

F

f t F

p tp F dF dF
df dt

=

=       (II.25) 

The unfolding force distribution p(F)(F), as well as the mean unfolding force 
( ) ( )FF dF F p F= ∫  are the quantities usually measured in experiments and will be 

calculated here from our model. To do this, we need to know how the stretching force f(t) 

changes as a function of time.  In AFM studies, the unfolded protein domain is part of the 

titin chain that is attached to a cantilever and includes unstructured chain segments as 

well as other domains. The effective force constant of an unfolded domain is typically 

much higher than that of unstructured polypeptides and of the cantilever. Thus for the 

purpose of calculating the force f(t) acting on a domain one may neglect the domain 

extension itself. Following refs.99,100 we model the overall elastic response of the chain by 

using the wormlike chain model34,64.  In this model, the relationship between the chain 

extension x and the force g(x) is given by 

2( ) (1/ 4)(1 / ) 0.25 /B

p

k Tg x x L x L
l

− = − − +  ,     (II.26) 

where lp is the persistence length and L is the contour length of the chain. In our 

calculations, we used L = 580 Å, lp = 4Å99,100. In an AFM experiment, one end of the 

molecule is attached to a substrate while the other end is attached to a cantilever so that 
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the total displacement of the substrate is equal to the sum of the cantilever displacement 

xc and the molecule’s extension x: 

ut = xc + x =  f(t)/γc + x        (II.27) 

where γc is the cantilever force constant, taken in our calculations equal to 0.06 

N/m115,117. The time dependence of the force is then determined by numerically solving 

the equation 

 f(t) = g(x) = g(ut – f(t)/γc)       (II.28) 

Once the dependence f(t) is determined, one can compute the distributions of the 

unfolding force and time either by using Eqs. II.24, II.25 or by performing kinetic Monte 

Carlo simulations81, in which the outcome of an unfolding experiment is simulated  

according to the time-dependent unfolding probabilities determined by ku(f(t)).  

Simulated distributions of the unfolding force for different pulling velocities are shown in 

Fig. II.7.(a). The mean unfolding force, as a function of u, is presented in Fig. II.7.(b).  

Since we do not have a first principle estimate for the prefactor ν, we chose it to be 

independent of the force and equal to ν = 108 s-1, a value, for which the estimated 

unfolding forces fall within experimental range. This value is consistent with the above 

estimate for the upper limit for ν. While the choice of ν determines the magnitude of the 

unfolding force, the resulting slope in the nearly linear dependence of the mean unfolding 

force on the pulling speed crucially depends on the properties of G(R) and is found in 

Fig. II.8 to be close to that observed experimentally69,99,100. 
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(a)          

(b)  

Figure. II.7. (a) The predicted unfolding force distribution for different values of the 

pulling velocity u. (b) Average unfolding force as a function of the pulling 

velocity u. 
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II. 6 DISCUSSION 

The unfolding free energy profile G(R) is often deduced from 

experiments9,11,21,69,99 by comparing the experimental data with the results of kinetic 

Monte Carlo simulations similar to that reported in Section II.5. In doing so, one often 

assumes that the free energy barrier ( )uG f∆  changes linearly with the force. Fig. II.6 

suggests that this approximation is inaccurate and this may affect some of the conclusions 

drawn on the basis of AFM measurements. This is demonstrated below.  

In the standard two-state model that is commonly used to interpret the 

experimental unfolding data9,11,21,69,99 the unfolding rate depends on the force according 

to the equation: 

0( ) exp( / )u u Bk f f x k Tα= ∆ ,       (II.29) 

where the prefactor α0 is identified with the “intrinsic” unfolding rate ku(0) = α0 and ∆xu 

is the extension of the molecule in the transition state relative to the folded state; In other 

words, ∆xu should be the same as R†.  These two parameters have been estimated, based 

on experimental data21, to be ∆xu =2.5Å and α0 =3.3× 10−4 s-1. These estimates appear at 

first glance to disagree with our results. Specifically, in Section II.3 we have found 

R†=10Å. Further, using Eq. II.21, we estimate the “intrinsic unfolding rate” to be ku(0) = 

1.4 ×10-9 s-1, five orders of magnitude lower than the value of α0 reported experimentally. 

There is however no contradiction. Experimental measurements of ku(f) probe a limited 

range of unfolding forces. In particular, the regime of low unfolding forces is hard to 

access as it corresponds to very low unfolding probabilities.  For a relatively narrow 

range of forces f, say between f0 - ∆f and  f0 + ∆f one can replace ln ku(f)  by a linear 

dependence,  

 [ ] 0

0 0

( )
ln ( ) ln ( ) ( )

f fu
u u

B

G f
k f k f f f

k T
=

′∆
≈ − − ,    (II.30) 

which is of the form of Eq. II.29. This linearized dependence is plotted in Fig. II.8 for f0 = 

200 pN as the solid line, together with the actual ku(f)  shown as the dashed line. Fig. II.8 

suggests that for forces f within a range 150 pN < f < 250 pN it would be hard to 

distinguish between the true dependence of ln ku(f) and its linearized version described by  
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Figure. II.8. The computed force dependence of the unfolding rate constant ku(f) (dashed 

line). The solid line is obtained by linearizing ln ku(f) near f = f0 = 200 pN. 

The extrapolated value α0 = ku(0) obtained from this linearized dependence 

is different from the actual value ku(0).  

 

Eq. II.29. By comparing Eqs. II.29 and II.30, we find that the straight line in Fig. II.8 is 

described by the parameters α0 =1.02×10-4 s-1 and ∆xu = 3.77 Å, which are not too far 

from the above experimental values21. Thus for typical experimental unfolding forces f , 

the apparent values of α0 and ∆xu as estimated from our theory are in reasonable 

agreement with experimental estimates. However the “true” value of ku(0) , as well as the 

location of the transition state R†, as predicted by our theory, are quite different from and 

∆xu as the zero-force limit of the unfolding rate ku(0) and the true transition-state 

extension R†, respectively. 

One often views the equality of ku(0) and of the unfolding rate kchem measured in 

chemical denaturation experiments as an indication of equivalence of chemical and force-

induced protein unfolding pathways21. In view of the above considerations, comparison 

between the experimental values of α0 and kchem may be inconclusive. The intrinsic 

unfolding rate at zero force, ku(0),  estimated here, is much lower than the chemical 
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denaturation rate (kchem = 4.9× 10-4 s-1).21 This is consistent with the idea that at small 

forces the unfolding molecule finds a pathway with a lower free energy barrier and does 

not follow the mechanical reaction coordinate11. Of course, given the limitations of our 

MD calculation, the above numerical value of ku(0) should be taken with a grain of salt.   

We finally note that statistical errors did not allow us to resolve finer features of 

the potential of mean force G(R) such as the previously reported unfolding intermediate, 

which would manifest itself as a dip in G(R). Investigation of those finer details of the 

mechanical unfolding mechanisms may require more substantial computational effort.  
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Chapter III 

 Mechanical unfolding of segment ubiquitin-like protein domainsb  

  

III. 1 INTRODUCTION 

Single molecule pulling experiments, in which proteins are unfolded by 

mechanical forces, provide a wealth of information about the mechanical properties of 

proteins that have load-bearing functions in living organisms5,9-11,27,32,33,42,43,59,65,69,70,84,88-

90,94,99-101,108,111,112,114,116,117,124,125. Certain proteins, such as titin, can sustain large forces 

and dissipate large amounts of energy in the course of their mechanical 

unfolding78,79,84,99,100,108. This dissipated energy is often considerably larger than the free 

energy of folding106. This property is believed to account for the remarkable toughness of 

many natural materials108. On the other hand, non-mechanical proteins such as barnase 

often exhibit very little resistance to mechanical unfolding10.  

Naturally occurring load-bearing proteins often contain sequences of tandemly 

repeated domains. It is possible to incorporate domains that are not commonly found in 

natural mechanical proteins into genetically engineered “polyprotein” chains9,10,122. Such 

chains may have novel mechanical properties and have potential applications in fiber and 

tissue engineering. The overall mechanical response of natural or engineered polyproteins 

is controlled by the mechanical properties of the constituent individual domains.  

Recently we have studied25 the relationship between the topology and the 

mechanical unfolding mechanisms of cross-linked polymer chains; Viewing those as 

caricatures of proteins, we discovered that the maximum resistance to unfolding 

(measured either as the peak force or the energy dissipated in the course of unfolding) is 

achieved if the cross-links are organized into a “clamp” formed by parallel strands. It had 

been previously noticed that the high mechanical strength of the immunoglobulin-like 

domain I27 of titin is related to the presence of such a clamp in the domain11,78,79,84, 

                                                 
bLarge portions of this chapter have been previously published as reference 72. 
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suggesting that its optimality may indeed be utilized in some structural proteins. One may 

then wonder whether other protein domains, not necessarily having any mechanical 

function and exhibiting folds different from the β-sandwich fold of I27 but having a 

similar parallel strand arrangement, would also be highly mechanically resistant.  

 

 

Figure. III.1. The structures of the I27, ubiquitin and protein G domains (pdb codes 1TIT, 

1UBQ, and 2IGD, respectively). Arrows indicate at which points the force 

was applied in the simulation. This figure was generated with the 

MOLMOL software63.  
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In this chapter we present evidence that this is indeed the case. We study the 

mechanical unfolding of two mixed α+β domains, streptococcal protein G IgG-binding 

domain III (pdb code 2IGD) and ubiquitin (pdb code 1UBQ), both having a β-grasp fold, 

and show that they display high resistance to unfolding similar to that of I27 and that, as 

in the case of I27, their mechanical unfolding mechanisms involve separation of parallel 

strands. See Fig. III.1 for the structures of these two domains along with the I27 domain. 

We further predict the outcome of an AFM pulling experiment, in which an I27 domain is 

replaced by one of the above two domains. One of the two proteins, ubiquitin, has 

recently been studied experimentally20 , and the unfolding forces found in our simulation 

are close to those measured experimentally. To our knowledge, the second protein has 

not been studied experimentally so far.  

 

III. 2 METHODS 

A force f applied at the ends of a protein domain may cause it to unfold. If f is not 

too high then the domain unfolding is a thermally activated barrier crossing process that 

can be described by a force-dependent unfolding rate constant ku(f) (assuming that  

unfolding  is a first order process, which was found to be the case, e.g.,  for the I27 

domain in titin99). To calculate ku(f) one can use transition state theory. We describe the 

state of the domain by using a single reaction coordinate, the domain extension R, defined 

as the distance between its first and last α-carbon atoms. The rate constant ku(f) can be 

calculated if the free energy of the domain G(R) is known as a function of R. Further, the 

validity of the assumption that unfolding is a two-state process characterized by a single 

rate constant is related to the shape of G(R): multiple minima in G(R) would be indicative 

of unfolding intermediates.  

To compute G(R) we used the procedure described in our earlier paper71. Here we 

give a brief summary of our method: 

For a set of values R0 = R0(i), i = 1, 2, …, M, spanning the range of extensions of 

interest, we perform molecular dynamics (MD) simulations of the domain with a penalty 

term10,49,50,78,79 
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V(R, R0) = kc(R-R0)2/2                                                                                     (III.1) 

added to its energy. The force constant kc used in the calculations was equal to 1.38 N/m. 

The penalty term introduces a bias that ensures that the MD simulation efficiently 

samples extensions R in the vicinity of R0. For each value of the distance restraint R0, we 

compute the equilibrium distribution of the extension R, which is related to the potential 

of mean force G(R) according to the equation 

( )0

2
0( ) exp ( ) ( ) / 2 /R c Bp R G R k R R k T ∝ − + −  ,     (III.2) 

allowing accurate reconstruction of G(R) in the vicinity of R0: 

0

2
0( ) ln ( ) (1/ 2) ( ) constantB R cG R k T p R k R R= − − − +     (III.3) 

The optimum estimate for G(R) is obtained by using the self-consistent histogram 

method31,36, in which it is constructed as a linear combination of the estimates obtained 

for each value of R0: 

exp( ( ) / ) ( ) exp( ( ) / )opt B i i i B
i

G R k T w R z G R k T− = −∑ ,    (III.4) 

where ( ) 1i
i

w R =∑  and Gi(R) is the estimate for G(R) obtained from Eq. III.3 with R0 = R0(i). 

The normalization factors zi and the weights wi(R) are obtained by minimizing the error, 

leading to self-consistent equations 

0

1 2
( ) 0exp[ ( ) / ] ( ) / exp[ (1/ 2) ( ( )) / ]opt B R i i c B

i i
G R k T p R z k R R i k T−− = − −∑ ∑   (III.5) 

0

2 1 2
0 ( ) 0exp[ (1/ 2) ( ( )) / ] ( ) / exp[ (1/ 2) ( ( )) / ]n c B R i i c B

i i
z dR k R R n k T p R z k R R i k T−= − − − −∑ ∑∫

, which are solved iteratively.   

The initial structures for the MD runs for different R0’s were generated by using 

adiabatic mapping87,103: We have started with the X-ray structure of the molecule and 

minimized its energy. Then we added the penalty term (1) to the energy. Starting with R0 

corresponding to the extension of the minimum energy structure, R0 was increased in 

small (∆R = 0.1Å) increments and the energy of the structure was re-minimized in each 

step. This yielded locally minimal energy structures for each value R0(i), which were 

used to start each MD run. This method helps avoid potential problems caused by starting 

each simulation too far from the mechanical equilibrium. With this choice of initial 



34 

conditions, the structures were found to equilibrate in a few picoseconds in each MD run.  

For each R0, we have run 50 ps of MD simulation at 298K, with a time step of 1fs. Both 

adiabatic mapping and MD simulations were performed with Tinker software126 using the 

GB/SA solvation model98 and the CHARMM27 force field80.  

 

III. 3 RESULTS 

The potential of mean force G(R) reconstructed from MD trajectories as described in 

Section III.2 is shown in Fig. III.2 for protein G IgG-binding domain III (2IGD) and 

ubiquitin (1UBQ). In each case, after an initial rise, G(R) levels out so that the 

corresponding equilibrium force feq = ( )G R′ drops. This feature indicates that the domain 

no longer resists force and thus unfolds. Examination of the molecules’snapshots 

corresponding to the onset of this flat section of the G(R) plot (Fig. III.2) shows than in 

each case the two parallel strands become separated. This unfolding scenario has 

previously been observed in the mechanical unfolding of the I27 domain of titin71,78,79,84. 

The unfolding free energy barrier corresponding to the maximum of G(R) is ≈29 kcal/mol 

for 1UBQ and ≈17 kcal/mol for 2IGD. For comparison, the unfolding barrier for the I27 

domain was estimated to be ≈22 kcal/mol both from experimental data21 and 

simulation71.   

In a typical AFM pulling experiment, the stretching force f applied between the 

ends of the molecule varies slowly compared to the time scale of molecular motions. For 

each f the domain then sees a (nearly) static potential Gf(R) given by:  

( ) ( )fG R G R fR= −                                                                               (III.6) 

This potential is shown in Fig. III.3 for each protein for different values of the force f. As 

seen in Fig. III.3, application of a force lowers the unfolding barrier, which is defined as 

the difference between the maximum and the minimum values of the free energy Gf(R).  

( ) max[ ( )] min[ ( )]u f fG f G R G R∆ = −                                                   (III.7) 

Once the force is large enough, the free energy barrier disappears and the protein 

unfolds. For example, the barrier for 2IGD disappears when the applied force is ~250 pN.  
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Figure. III.2. The potential of mean force G(R) for 1UBQ and 2IGD. Representative 

structures corresponding to the folded state and to the unfolding transition 

state are also shown. The protein pictures were generated with the 

MOLMOL program63.  

 

(a)  (b)  

Figure. III.3. The unfolding free energy profile, Eq. III.6, for (a) 1UBQ and (b) 2IGD for 

different values of the applied force: 50pN, 100pN, 200pN and 250pN. 
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However under typical experimental conditions domains unfold at forces that are lower 

than those required to completely wipe out the barrier ∆Gu(f) because it can be 

surmounted via activated barrier crossing.  The force-dependent rate of barrier crossing is 

given by transition state theory: 

( ) ( )exp[ ( ) / ]u u Bk f v f G f k T= −∆                                                   (III.8) 

If one assumes2,55,56 that the dynamics along the reaction coordinate R(t) can be 

viewed as one-dimensional diffusive motion in the effective potential Gf(R) obeying a 

Langevin equation2,55,56 then the unfolding prefactor ν(f)  can be estimated from 

Kramers’ theory41.  In the absence of memory effects and in the overdamped limit 

it is given by41 ν(f) = 1(2 ) ( ( )) ( ( ))N TSG R f G R fπη − ′′ ′′ , where η is the friction coefficient 

and RN(f) and RTS(f)  are the positions of the “native” well and the transition state (i.e., the 

minimum and the maximum of Gf(R)). A number of methods have been proposed to 

extract the friction coefficient from MD simulations2,55,56,71; However because the present 

simulation uses an implicit solvation model it cannot provide a first principles estimate 

for η.  Here we simply chose  the unfolding prefactor ν to be the same as that estimated 

for the I27 domain in our earlier study71 , ν = 108 s-1. Figure III.4 illustrates how the 

unfolding rate constant depends on the force for each protein. 

 

 

Figure. III.4. Unfolding rate constant as a function of the applied force. 
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The mechanical unfolding of ubiquitin has been studied in single molecule pulling 

AFM experiments20. To our knowledge, there is no experimental data on the mechanical 

unfolding of 2IGD.  As previously shown71,81,99, one can use the computed unfolding 

rates ku(f) to predict the outcome of such AFM experiments. Imagine a hypothetic 

experiment, in which one of the I27 domains in the titin molecule is replaced by either 

2IGD or 1UBQ. If the molecule is stretched at a constant velocity u, the probability p(t)dt 

that the domain unfolds between time t and t + dt  is given by: 

 
0

( ) ( ( )) exp[ ( ( )) ]
t

u up t dt k f t k f t dt dt= −∫                                                 (III.9) 

and the probability distribution for the unfolding force F is found from Eq. III.9: 

 
( )

( )( )
| ( ) / | f t F

p tp F dF dF
df t dt =

=                                                              (III.10) 

In AFM experiments, one end of the chain is attached to a cantilever and the other 

end is fastened on a substrate that moves at a constant velocity u. To calculate the 

stretching force f(t) as a function of time one needs to know the compliance of the entire 

chain and the cantilever.  If the cantilever is modeled as a harmonic spring with a force 

constant γc and the wormlike chain model34,64,83 is used to describe the overall 

compliance of the chain then one finds71,81,99 f(t)  to be the solution of the equation 

2( ( ) / ) ( ( ) / )1 1( ) [ (1 ) ]
4 4

c cB

p

ut f t ut f tk Tf t
l L L

γ γ−− −
= − − +    (III.11) 

The persistence length lp = 4Å, the contour length L = 580 Å99,100, and the cantilever 

force constant γc = 0.06 N/m117,115 are chosen here to be the same as those in our previous 

study71. The predicted average unfolding force <F> = ( )dFp F F∫ is plotted as a function 

of the pulling speed u in Figure III.5, showing that 2IGD would unfold at somewhat 

lower forces than ubiquitin and it would also exhibit a stronger dependence of <F> on the 

pulling rate. For typical AFM pulling speeds u = 0.1 – 10 nm/ms the unfolding force is in 

the range 100-150 pN for 2IGD and 190-220 pN for 1UBQ. For ubiquitin, the measured 

unfolding forces20 are close to the values calculated here.  
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Figure. III.5. Predicted average unfolding force as a function of the pulling speed for 

1UBQ(•) and 2IGD (•). 

 

III. 4 DISCUSSION 

The high mechanical resistance of ubiquitin-like domains appears to be accidental 

rather than necessitated by their function. These α+β proteins display mechanical 

strength comparable to that of the β-sandwich domains implicated in load-bearing tasks 

in living organisms.  Their mechanical unfolding mechanism is also similar to that of the 

I27 domain in the muscle protein titin and involves separation of two parallel strands, 

which are seen to be the key to their high resistance to unfolding.  

It is interesting to compare the unfolding rates calculated here with those for 

thermal or chemical denaturation.  For ubiquitin, we have calculated ku(0)= 5.5×10-14s-1, 

10 orders of magnitude smaller than the unfolding rate constant under native conditions, 

kchem ~ 4.3×10-4 s-1, which was extrapolated to zero denaturant concentration from 

ubiquitin chemical denaturing experiments60. We have seen a similar situation in our 
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earlier study of the unfolding of the I27 domain in titin71. Linear extrapolation that 

assumes that the unfolding barrier is a linear function of the force f and the unfolding rate 

constant obeys the equation   

ln ku(f) = ln ku(0) − f ∆x/kBT        (III.12) 

is routinely used for interpretation of the experimental data. [Note however the recent 

experimental evidence121 that Eq. III.12 breaks down in the case of the I27 domain for 

forces below 100 pN]. Eq. III.12 implies that the plots in Fig. III.4 are straight lines, an 

obviously incorrect assumption in our case. Because AFM probes a limited range of 

unfolding forces, Eq. III.12 may be valid locally in this range. The value of ku(0)  

extrapolated from the experimental data by using Eq. III.12 would then be higher than 

ku(0) calculated here.      

A more intriguing question is why the calculated ku(0) is so much different from 

the intrinsic unfolding rate (which we identify with the chemical denaturation rate): In 

fact, the calculated mechanical unfolding rate ku(f)  is lower than kchem  for f < 90 pN. 

Given a good agreement of our simulations with experimental data in the experimental 

range of forces, it seems unlikely that simulation errors could account for such a large 

discrepancy. It is more likely that the reason is a poor choice of the unfolding coordinate. 

Our procedure here is essentially a variational transition state theory113 calculation of the 

rate, in which a reaction coordinate measuring the unfolding progress is selected and the 

free energy barrier is computed along this coordinate. Imposing a large force between the 

C- and N-termini of the chain selects a natural unfolding coordinate equal to the 

extension R.  However R may be a poor reaction coordinate when the force f is small or 

zero. In a system that has a single transition state, a poor choice of the reaction coordinate 

can only lead to an overestimate for the rate constant because transition state theory 

ignores barrier recrossing. Thus one should expect that the true rate should be even 

smaller than estimated. However if the system has multiple transition states, a poor 

choice of the reaction coordinate may lead to the sampling of the neighborhood of a 

“wrong” transition state  (i.e., not the one with the lowest free energy barrier), since a 50 

ps MD  trajectory will be unlikely to ergodically sample  the entire available 

conformational space. In other words, driven along the selected reaction coordinate, our 
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system does not have enough time to “discover” the true (i.e., the lowest) unfolding 

transition state during the course of a short-time simulation. Thus the computed barrier 

will correspond to the wrong transition state and will be higher than the correct free 

energy barrier, resulting in an underestimate for the intrinsic unfolding rate. We thus 

expect that the unfolding pathway should change as the force is lowered and that the low-

force unfolding pathway cannot be probed by the present simulation because we do not 

have a good guess for the reaction coordinate in this case.  
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Chapter IV 

Mechanical unfolding of ubiquitinc 

 

IV. 1 INTRODUCTION 

In naturally occurring polyubiquitin chains, individual ubiquitin domains are 

linked either by peptide bonds (N-C termini linkage) or by isopeptide bonds formed 

between the C-terminus of one ubiquitin domain and the Lys sidechain of the adjacent 

domain (Lys-C terminus linkage).22,93,95,96 There are 7 lysine residues in the ubiquitin 

domain and each can potentially be involved in an isopeptide bond. Isopeptide bonds 

frequently occur at the Lys11, Lys48, and Lys63 positions, Lys48-C linked polyubiquitin 

chains being the most abundant form93. Different ubiquitin linkages are believed to be 

associated with different biological functions95,96. For example, Lys48-C linked 

polyubiquitin targets protein substrates for degradation by the proteasome23 while Lys63-

C linked polyubiquitin is involved in DNA repair52, ribosome function109, and 

endocytosis of yeast plasma membrane proteins37.  

Carrion-Vazquez et al20 used atomic force microscopy (AFM) to study the 

mechanical response of N-C and Lys48-C linked polyubiquitin chains. They found that 

the ubiquitin domain shows a considerably lower mechanical resistance when a stretching 

force is applied between its Lys48 and C-terminus, as compared to the case when the 

force is applied between the N- and C- termini of the same domain. The average domain 

unfolding force for the N-C linked polyubiquitin also exhibits a stronger dependence of 

the pulling rate, as compared to that for the Lys48-C linked chain.   

In order to understand these observations, the authors of ref. 20 performed steered 

molecular dynamics simulations of the stretching of the ubiquitin domain in each case.  

They found that the unfolding of N-C ubiquitin (cf. Fig. IV.1(a)) involves separation of 

terminal parallel β−strands, a mechanism similar to that found in the much better studied 

                                                 
cLarge portions of this chapter have been previously published as reference 73. 
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mechanical unfolding of the I27 domain in the muscle protein titin11,55,78,79,84. We have 

found similar behavior in our own study of the mechanical unfolding of ubiquitin73. 

Stretching Lys48-C ubiquitin (see Fig. IV.1(b)), on the other hand, involves separation of 

a pair of antiparallel strands20.  Even though the same number of hydrogen bonds are 

broken in each unfolding scenario20 and therefore one expects the energetic cost of 

unfolding to be comparable, the forces required to unfold the domains are quite different.  

Brockwell et al. 13 studied – both experimentally and computationally – the 

mechanical unfolding of another protein, E2lip3, and demonstrated that the mechanical 

resistance of this beta-sheet protein crucially depends on the direction of the applied 

force.  

The purpose of this paper is two-fold. First, we would like to better understand 

how mechanical unfolding mechanisms depend on where the pulling forces are applied 

and thereby to gain better insight into the results of the two AFM studies13,20.  Although 

both refs.13,20 reported on simulations of their pulling experiments, those simulations 

utilized the steered molecular dynamics (SMD) method. SMD simulations provide 

invaluable insights into the mechanical unfolding mechanisms but they require proteins 

to be stretched at a rate that is several orders of magnitude higher than that in a typical 

AFM experiment.  As a result the unfolding forces are much higher than those seen 

experimentally, contain large contributions from dissipative, hydrodynamic-type forces 

that are typically negligible in an AFM experimental setup2,38,40,49,50,55,56,71, exhibit a 

pulling rate dependence that is very different from that observed in AFM experiments, 

and often cannot be straightforwardly extrapolated to the experimental regime. In the 

present study, we use umbrella sampling in combination with transition state theory in 

order to calculate the unfolding forces that can be directly compared to experimental 

measurements.  We have already applied this methodology to the I2771 and ubiquitin72 

domains.  

Secondly, forcing a protein to unfold mechanically by applying forces at different 

parts of the chain provides an intriguing opportunity to alter the unfolding reaction 

pathway. It has been previously pointed out that the mechanical unfolding coordinate 

associated with the distance between the ends of the polypeptide chain may be quite 
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different from that of chemical or thermal denaturation11,71,72,121 although the rates of 

chemical unfolding are often comparable in magnitude to those extrapolated to zero force 

from AFM experiments21. By varying the reaction coordinate we can potentially probe 

different unfolding transition states and drive the molecules along different unfolding 

pathways thus exploring different slices of multidimensional free energy landscapes of 

proteins. Some of these pathways may potentially be relevant for chemical or thermal 

unfolding mechanisms.  

 To achieve these goals, we have computed the free energy of the ubiquitin domain 

as a function of the distance between the points at which the force is applied. We have 

“pulled” the ubiquitin domain in four different ways shown in Fig. IV.1, in which the 

force is applied between (a) the N- and C-termini, (b) Lys48 and the C-terminus, (c) 

Lys11 and the C-terminus, and (d) Lys63 and the N terminus. Cases A and B have been 

studied experimentally and via steered molecular dynamics simulations20. Our results for 

case A have been previously reported in ref. 72. Here we include those previous results in 

order to provide a detailed comparison among all four cases. Lys11-C linked 

polyubiquitin chains are abundant naturally93 and so case C can in principle be studied 

experimentally with the AFM techniques as described in ref. 20 Case D represents a 

thought experiment.  We demonstrate that these 4 different unfolding experiments result 

in different unfolding scenarios: Sliding of parallel (case a) or antiparallel (case b) strands 

and unzipping of parallel strands (cases c and d). In each case we predict the outcome of 

a hypothetic AFM experiment involving the stretching of the ubiquitin domain 

incorporated within a polyprotein chain.  

This chapter is organized as follows: Section IV.2 describes the calculation 

methods. Our simulation results are described in Section IV.3. These results are 

compared with the existing experimental data in Section IV.4. Section IV.5 concludes 

with a discussion of the relevance of our results for chemical/thermal unfolding of 

proteins.   
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Figure. IV.1. Different pulling geometries used in the simulation: Ubiquitin domain 

stretched between its (a) N- and C- termini, (b) Lys48 and C terminus, (c) 

Lys11 and C-terminus, and (d) N-terminus and Lys63.  This Figure was 

generated with the MOLMOL software63. 
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IV. 2 METHODS  

To characterize the mechanical response of an ubiquitin domain we compute its 

free energy G(R) as a function of its extension R. The domain extension R is defined as 

the distance between the α-carbon atoms of the two residues, between which the 

stretching force is applied.   For example, in the case of Lys48-C polyubiquitin R is the 

distance between the α-carbons of Lys48 and Gly76. The free energy G(R) is then 

computed by the umbrella sampling36,87 method as described in our earlier papers71,72. 

Specifically, by adding a penalty term of the form V(R, R0) = γc(R-R0)2/2  to the energy of 

the molecule, we can accurately sample the free energy in the vicinity of the point R0:  

0

2
0( ) ln ( ) (1/ 2) ( ) constantB R cG R k T p R R Rγ= − − − + ,     (IV.1) 

where 
0
( )Rp R  is the equilibrium probability distribution of the extension obtained from a 

molecular dynamics simulation. Our simulations were performed with Tinker126 software 

using the GB/SA continuum solvation model98 and the CHARMM27 force field80.  

By repeating this procedure for a set of constraints R0, we get a set of overlapping 

distributions 
0
( )Rp R  and combine the data by using the method of weighted 

histograms31,36 to obtain the optimal estimate for the curve G(R).   

In a typical AFM stretching experiment the force f acting on the protein is 

changing slowly enough that one can view the domain’s dynamics as occurring in the 

static potential Gf(R) = G(R)-fR. For forces not too high, this potential typically exhibits a 

minimum corresponding to the structure of the folded domain and a maximum 

corresponding to the unfolding transition state. If there is only a single unfolding barrier 

then the unfolding kinetics can be described by a single force-dependent unfolding rate 

constant ku(f): 6 

( ) ( )exp[ ( ) / ]u u Bk f v f G f k T= −∆       (IV.2) 

where the unfolding barrier is given by ( ) max[ ( )] min[ ( )]u f fG f G R G R∆ = −  and the 

prefactor can in principle be calculated from Kramers’ theory41 . In this paper we have 

simply assumed the value ν=108s-1 previously estimated for the I27 domain.71 The 

probability distribution of the unfolding time is then given by 
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0

( ) ( ( )) exp[ ( ( )) ]
t

u up t dt k f t k f t dt dt= −∫      (IV.3) 

and the probability distribution of the unfolding force is 

( )

( )( )
| ( ) / | f t F

p tp F dF dF
df t dt =

= ,      (IV.4) 

where f(t) is the time-dependent force in the polyprotein chain that incorporates the 

domain under study. In an AFM setup, one end of the chain is attached to a cantilever and 

the other to a substrate, and the cantilever can be moved relative to the substrate at a 

constant speed u. To find f(t), one needs to know the compliance of the entire polyprotein 

chain and of the cantilever. Following previous work17,99,100, we assume that the elasticity 

of the chain can be described by the wormlike chain model34,64. For a chain with the 

persistence length lp and the contour length L and for a cantilever with a force constant γc, 

this gives a self-consistent equation for f(t): 81 

 2( ( ) / ) ( ( ) / )1 1( ) [ (1 ) ]
4 4

c cB

p

ut f t ut f tk Tf t
l L L

γ γ−− −
= − − + .   (IV.5)  

This equation can be solved numerically. In our calculations, we used lp = 4Å99 

and gc = 0.06 N/m116,117.  The contour length of the chain depends on the polyprotein 

construct and the number and the type of the domains that are already unfolded; In 

addition, it changes in the course of the AFM unfolding experiment11,81,88,125. However 

the dependence of the unfolding force on L is relatively week. Somewhat arbitrarily, we 

chose L = 580 Å here. 

  

IV. 3 RESULTS 

Figure IV.2 shows the computed potential of mean force G(R) for ubiquitin 

stretched between its (a) N- and C- termini, (b) Lys48 and C-terminus, (c) Lys11 and C-

terminus and (d) N-terminus and Lys63.  For each of these four cases shown in Fig. IV.3 

is the free energy profile in the presence of a stretching force f, Gf(R) = G(R)-fR, for 

different values of f.  
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(a)   (b)  

(c)   (d)  

Figure. IV.2. Free energy G(R) as a function of the domain extension for ubiquitin 

stretched between its (a) N- and C- termini, (b) Lys48 and C terminus, (c) 

Lys11 and C-terminus, and (d) N-terminus and Lys63.  In each case R is the 

distance between the residues at which the pulling force is applied.  

Representative snapshots of the domain structure are shown for different 

values of R. These protein representations were generated with the 

MOLMOL software63. 
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(a)   (b)  

 

(c)  (d)  

Figure. IV.3. Free energy Gf(R) = G(R)-fR as a function of the domain extension for 

different values of the pulling force f. A: N-C- ubiquitin.  B: Lys48-C 

ubiquitin. C: Lys11-C ubiquitin. D: N-Lys63 ubiquitin 
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Case a (see also ref.).72 The free energy curve G(R) exhibits a plateau for large 

values of R.  This indicates that for large enough R ( )G R′ becomes close to zero: The 

domain no longer resists force.  This can be understood more clearly by examining Fig. 

IV.3(a), which shows the unfolding free energy profile Gf(R) for different values of the 

force f. The function Gf(R) exhibits a maximum (i.e., a transition state), which is located 

at R= † 47R ≈ Å. The location of this transition state is nearly independent of the force. 

Independence of the position of the transition state of the pulling force was previously 

assumed by Hummer and Szabo54 and by us71 to introduce a simple, cusp-shaped model 

potential for G(R) for the I27 domain in titin. A snapshot of the domain structure near the 

transition state is shown in Fig. IV.2(a) indicating that crossing the unfolding barrier 

involves separation of the terminal parallel strands. This is consistent with the previous 

simulations of ubiquitin20,72. The unfolding mechanism of N-C ubiquitin is thus similar to 

that of the I27 domain in titin71,78,79,84.   

The location Rm of the minimum of Gf(R) (i.e., the most probable extension of the 

folded domain) increases linearly as the force is increased. Taking the derivative of this 

we can estimate the stiffness of the folded domain 

/N C mdf dRγ − = ≈ 0.5 N/m.       (IV.6) 

The same quantity, of course, could also be estimated from the curvature of G(R) 

near the minimum. This value of stiffness is almost an order of magnitude higher than the 

cantilever force constant γc. This justifies the assumption made in Eq. IV.5 (and also 

routinely made in kinetic Monte Carlo simulations of polyprotein unfolding) that the 

extension of a folded domain is negligible in comparison with the overall chain extension 

and the cantilever displacement; The domain has to be much softer to make a noticeable 

contribution into the overall chain elasticity. Compliance of much softer, unfolded 

domains should of course be taken into account when considering the chain elasticity.  

In the model of Hummer and Szabo54 the domain is viewed as a linear “molecular 

spring” that ruptures when its extension exceeds a critical value †R . By fitting the 

experimental data for the I27 domain21, they have been able to estimate the force constant 

of their molecular spring; the value γ=0.9 N/m54 they report is comparable to N Cγ −  
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computed here for N-C ubiquitin, which is not surprising since the two domains have 

very similar mechanical properties72.  Describing the elasticity of a domain by a single 

stiffness value is only useful if this value stays nearly constant (or, equivalently, G(R) 

remains quadratic) in an appreciable range of extensions.  For this reason, we do not 

report below the domain stiffness in cases where nonlinearity of G(R) is significant (cases 

b and d).     

As the force f is increased, the unfolding barrier 
†( ) ( ) ( )u f f mG f G R G R∆ = − becomes smaller and finally disappears for fc  320 pN, 

indicating that at forces higher than fc the domain unfolding would no longer involve 

barrier crossing and thus would be very fast. The unfolding free energy barrier in the 

limit 0f → is (0)uG∆ ≈ 29 kcal/mol.  

Case b. The free energy increases monotonically as R is increased from ~25Å to 

~60Å. The location of the transition state in the presence of a force is determined by the 

condition †( )G R f′ = . According to this equation (and as seen from Fig. IV.3(b)) the 

transition state is shifted to the left as f is increased. Unlike Case a, where the location of 

the transition state was virtually force-independent and associated with the separation of 

two parallel strands, the barrier in Case b does not seem to be associated with any 

specific molecular event. Examination of snapshots of the domain for different extensions 

reveals that two antiparallel strands come apart at R ~ 42 Å (see Fig. IV.2(b)); However 

this event is not associated with a well defined free energy barrier in Gf(R).      

The barrier between the folded and unfolded states disappears at a force fc  160 

pN, which is much lower than the force at which the domain loses its mechanical stability 

when the force is applied between its N- and C-termini.    

Case c.  In the case of Lys11-C ubiquitin, the applied force “unzips” the terminal 

parallel strands (see Fig. IV.2(c)). This process manifests itself as an abrupt change in the 

slope of G(R) and as a maximum in Gf(R).  As seen from Figs IV.2(c) and IV.3(c), the 

transition state associated with this process is located at † 40R  Å.  The free energy 

barrier associated with this process at low forces is ~13 kcal/mol, which is much lower 
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than the free energy barrier associated with separation of the same strands under shear in 

Case a. This finding is further discussed in Section 5.  

The overall “stiffness” of the folded domain with respect to the stretching force 

applied between Lys11 and the C-terminus is lower than in Case a: 

11 /K C mdf dRγ − = ≈ 0.25 N/m       (IV.7) 

The folded domain becomes mechanically unstable (i.e., the folding barrier 

disappears) for 100cf f≥ ≈ pN.   

Case d. Unzipping of the terminal parallel strands in this case proceeds via an 

intermediate at R 20Å (Fig. IV.2(d)), which is stabilized when a weak force 

( f ≥ 30pN) is applied. The unfolding barrier vanishes for a force f as low as 45 pN (see 

Fig. IV.3(d)).   

 

IV. 4 COMPARISON WITH EXPERIMENTAL DATA.  

Average unfolding force. For N-C, Lys48-C and Lys11-C ubiquitin, we have computed 

the average unfolding force that would be observed in an AFM experiment, where the 

domain is incorporated within a polyprotein chain, see Fig. IV.4. In polyubiquitin pulling 

studies20, the effective contour length L of the chain depends on the  type of linkage and 

on the number of domains that are already unfolded. Further, in a chain composed of 

several identical domains the probability of unfolding of one of them is proportional to 

the number of domains, resulting in an additional dependence of the average unfolding 

force on the number of unfolded domains81,125.   These more subtle effects that have 

nothing to do with the mechanical resistance of individual domains are not considered 

here:  Instead we assume a simpler, hypothetical AFM setup, in which a single ubiquitin 

domain is incorporated within a chain that has the same, constant contour length L = 58 

nm in each of the 3 cases.  
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Figure. IV.4. The mean unfolding force f  as a function of the pulling velocity u for N-

C ubiquitin (large symbols), Lys48-C ubiquitin (medium symbols) and 

Lys11-C ubiquitin (small symbols).  

 

For the pulling speed varying within a typical range of u = 0.1 – 10 nm/ms, we 

predict the average unfolding force <f>  for the N-C, Lys48-C, and Lys11-C ubiquitin to 

be in the range 190-220 pN, 90-110 pN, and 20-45pN, respectively. N-C ubiquitin has the 

strongest pulling rate dependence of the unfolding force and Lys48-C ubiquitin, the 

weakest.  Based on Fig. IV.3(d), we predict Lys63-N ubiquitin to have very low 

mechanical stability and to unfold at forces that may not be detectable by AFM. Because 

of the more complicated shape of Gf(R) in this case, the unfolding mechanism in this case 

would be more complex and Eqs. IV.2-3 would not be applicable.  

The unfolding forces predicted here for the N-C and Lys48-C ubiquitin are close 

to those observed experimentally.20 Further, in accord with the experimental data20, the 

slope of the curve of <f> vs. ln u is lower for Lys48-C than it is for the N-C linkage. The 

absolute value of the slope is however somewhat different, being lower than the 

experimental slope in each case, possibly in part because we have ignored the variability 

of the contour length in each case and assumed a single domain in the chain.  
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Although Lys11-C ubiquitin has not been pulled experimentally, Brockwell et al13 

studied the effect of the pulling geometry on the mechanical unfolding of a different β-

sheet protein, E2lip3, and demonstrated that unzipping of the terminal β-strands in this 

protein takes place at a very low force not detectable by AFM, an observation 

qualitatively consistent with our prediction of a low unfolding force for the unzipping of 

two strands in ubiquitin. 

The location of the transition state. By comparing the experimental data to a 

kinetic Monte Carlo simulation of mechanical unfolding21, the authors of ref. 20 have 

been able to infer the position †
mR R R∆ = − of the unfolding transition state relative to 

the folded state. The values of R∆ estimated in ref. 20 are 2.5Å and 6.3 Å for N-C and 

Lys48-C ubiquitin, respectively. To estimate R∆ from experimental data, one customarily 

assumes that the unfolding rate constant depends exponentially on the pulling force6 (or, 

equivalently, that the unfolding free energy barrier depends linearly on the force):  

0( ) exp( / )u Bk f f R k Tα= ∆ .       (IV.8) 

In a more recent study104, the unfolding rate ku(f) for the N-C ubiquitin has been 

measured directly by using single molecule force-clamp techniques. Measurements of 

this type are extremely valuable because they allow one to monitor the unfolding kinetics 

in real time and to eliminate the potential errors that arise from the need to reconstruct the 

underlying kinetics from experimental observables such as the mean unfolding force and 

the unfolding force probability distribution. The authors of ref.104 have found their data to 

be reasonably well fitted by Eq. IV.8 in the range f = 70 – 200 pN and, based on this fit, 

estimated R∆  1.4 – 1.7Å, somewhat shorter than in the previous study20. 

Here, we have estimated R∆ ≈  10Å for N-C ubiquitin at low forces while for 

Lys48-C ubiquitin we have found R∆ to have a very strong force dependence and – for 

low forces – to be considerably larger than that for N-C ubiquitin (see Fig. IV.3(a, b). At 

first glance, these results appear to contradict the experimental data of refs20,104. However 

we have argued in ref.71 that this “contradiction” is largely a consequence of the fact that 

∆R inferred from Eq. IV.8 is not the true transition-state extension. It would be if the 

unfolding barrier were a linear function of the force f, ( ) (0)u uG f G f R∆ = ∆ − ∆ . Eq. IV.8 



54 

further implies that the transition state displacement R∆ is independent of the force. 

These assumptions are not true for a general function ( )G R . For ( )G R  computed here 

the unfolding rate constant does not satisfy Eq. IV.8 and R∆ is force dependent. For 

example, for N-C ubiquitin, R∆ 7Å for f = 100 pN and R∆ 4Å for f = 250 pN (see 

Fig. IV.3(a)). Because AFM experiments probe a limited range of forces f, within this 

range the unfolding rate force dependence ( )uk f may be indistinguishable from that 

given by Eq. IV.8 (see Fig. IV.9 in ref.);71 the apparent value of R∆ can be obtained by 

linearizing the function ln ( )uk f  and is quite different from the actual transition-state 

displacement. In ref.71 we showed for the I27 domain that, although the calculated 

transition-state displacement R∆ ≈  10Å is 4 times longer than the experimental estimate 

based on Eq. IV.8, the calculated dependence ( )uk f  is close to the experimental result in 

the experimentally accessible range of forces; In this range of forces the apparent value 

of R∆ is also much closer to the experimental estimate although of course there still may 

be a discrepancy because of simulation errors. Similarly, for N-C ubiquitin, our 

simulation predicts the apparent transition state extension (estimated from the slope of 

ln ( )uk f  vs. f near f = 200 pN)  to be appR∆ 4Å, which is smaller than our estimate 

R∆ ≈  10Å for the true transition state extension. Still, our appR∆  is larger than the values 

reported in both ref. 20and ref.; 104Thus our simulation predicts a somewhat stronger force 

dependence of ( )uk f  than that seen experimentally. This remaining discrepancy between 

our simulation and the experiment may be due to simulation errors.   

The computed ( )uk f  deviates very strongly from Eq. IV.8 at low forces. This low 

force regime is discussed in more detail in the next Section.  

We also note that the value of R∆ inferred from the fit of experimental data to a 

model is strongly model dependent, i.e., sensitive to the specific choice of the shape of 

G(R). For example, Hummer and Szabo54 used a harmonic cusp-shaped potential to 

describe the unfolding of I27. Like in our case, their ( )uk f  does not obey Eq. IV.8. 

While their model reproduces all of the experimental data for titin, their estimate for the 
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transition state displacement, R∆ = 4.2Å, is also noticeably different from that obtained 

on the basis of Eq. IV.8.  

 

IV. 5 DISCUSSION 

The same two parallel strands show very different mechanical resistance 

depending on whether they are unzipped (Lys11-C ubiquitin) or slide with respect to each 

other under shear (N-C ubiquitin). The fact that the unzipping of two strands would 

require lower force is not surprising and it has been previously confirmed by molecular 

mechanics simulations103. In the case of two strands sliding with respect to one another, 

the hydrogen bonds between the strands are loaded in parallel, resulting in a high overall 

stiffness (cf. Eq. IV.6) and a high force103. This property was noted as the key to the 

mechanical stability of titin11,13,25,71,78,79 and other domains with parallel strands72.  

However if the domain is extended in a truly equilibrium fashion then the free 

energy cost of separating the two strands in the two different ways should be the same106. 

While the unfolding force in the case of unzipping is lower, the overall displacement (i.e., 

the change in R) is larger and the work done in a quasistatic process of separating the 

strands should be the same. This expectation is in stark contrast with our finding that the 

zero-force unfolding free energy barrier for N-C ubiquitin (29 kcal/mol) is much higher 

than that for Lys11-C ubiquitin (13 kcal/mol). This suggests that the distance between the 

N- and C-termini is a poor choice of the reaction coordinate for the domain unfolding in 

the absence of a stretching force. By poor choice we mean that trajectories computed by 

molecular dynamics in our umbrella sampling procedure may remain trapped in the 

neighborhood of a “wrong” transition state (i.e. saddle point) on the protein’s 

multidimensional energy landscape.   Although the time duration of molecular dynamics 

runs used in our simulations is chosen to be long enough that trajectories exhibit 

stationary behavior, it may be too short for the system to discover other, lower-energy 

basins of attraction on its multidimensional potential energy surface. Thus our sampling 

may not be truly ergodic and the domain may be driven along different unfolding 

pathways depending on the chosen reaction coordinate, leading to different unfolding free 
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energy barriers. Provided that sampling of the folded ensemble does not suffer from this 

ergodicity problem, our procedure then yields an upper bound on the lowest unfolding 

free energy barrier. It is therefore not surprising that using Eq. IV.2 with the zero-force 

unfolding barrier ∆Gu(0) = 29 kcal/mol estimated for the N-C ubiquitin, one finds the 

unfolding rate to be ku(0)= 5.5× 10-14s-1, ~10 orders of magnitude smaller than the 

reported chemical unfolding rate constant under native conditions, kchem ~ 4.3 × 10-4 s-1  
60. Interestingly, using the free energy barrier found for Lys11-C case, we estimate the 

zero-force unfolding rate to be ku(0) = 3.4 × 10-2 s-1 , which is about 2 orders of 

magnitude higher than the experimental chemical denaturation rate. Given the 

uncertainties introduced by extrapolation of the chemical unfolding rates to zero 

denaturant condition60, possible simulation errors and the uncertainty in the prefactor, the 

similarity between ku(0) and kchem is quite remarkable, suggesting that the mechanical 

unfolding of ubiquitin via unzipping of its terminal parallel strands may occur via the 

same transition state as its chemical unfolding.  

When a force f is applied, adding the term –fR to the domain energy changes the 

relative heights of different barriers on the domain’s multidimensional potential energy 

landscape. While the extension R may be a poor unfolding reaction coordinate at f=0, for 

a sufficiently high force f unfolding pathways that involve large extensions R would 

become favored energetically. This is why computations of the type reported here are 

found to be in good agreement with AFM experiments71,72, which typically probe a range 

of forces high enough to ensure that R is a good reaction coordinate.  
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Chapter V 

Mechanical unfolding of segment-swapped protein G dimerd 

  

V. 1 INTRODUCTION 

Unique mechanical properties of natural fibers, adhesives, and composites can 

often be linked to the mechanical response of individual proteins they are composed of108. 

The mechanical properties of a number of individual “load-bearing” protein domains, as 

well as other domains that have no apparent mechanical function, have been well 

characterized both experimentally (via single-molecule pulling experiments) and 

computationally (via molecular dynamics studies), see9,16,65 and the refs. therein. At the 

same time, there is a gap between our understanding of the mechanical response of 

proteins at the single-molecule level and that of the bulk materials they form. Since the 

latter usually involve complex assemblies of proteins, it is not clear to which extent their 

overall mechanical properties are controlled by the mechanical stability of individual 

domains as opposed to inter-chain interactions and the overall architecture of the 

material. Here, we study the mechanical response of the simplest possible protein 

complex, a protein dimer, when the C-terminus of one of its subunits and the N-terminus 

of the other are pulled apart. Being a dimer, in which segments of secondary structure are 

interchanged between the two monomers, its mechanical properties cannot be simply 

derived from those of its monomeric units.  

We are particularly interested in finding out whether the unique mechanical 

stability achieved by Nature in some of its load-bearing proteins10,12,13,20,25,26,71 can be 

retained when such proteins are assembled non-covalently to form complexes. There are 

very limited experimental data regarding the mechanical properties of protein complexes 

in general and dimers in particular66,105  so we have to rely on simulations. Fortunately, 

previous studies have shown that simulations can lead to quantitative predictions 

                                                 
dLarge portions of this chapter have been previously published as reference 74. 
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regarding the mechanical strength of proteins.55,71-73,78,79,92 Related simulation studies of 

forced dissociation of adhesion protein complex have recently been reported by others, 
3,4providing a different example of the mechanical response of a protein complex.  

The present study may also have implications for several other topics of current 

interest. Segment swapped dimers are often viewed as models of protein aggregation77. 

While it is now understood11,13,20,61,71,73,106 that mechanical unfolding experiments do not 

necessarily probe proteins’ thermodynamic stability and their folding and/or  

chemical/thermal denaturation pathways, they may still offer insight into the stability of 

protein aggregates. Furthermore, mechanical response of protein aggregates is of interest 

since it is believed that the cellular machinery responsible for protein degradation unfolds 

them by pulling them mechanically through narrow constrictions85,86,97, and since there is 

evidence that this machinery attempts to unfold protein aggregates85. 

Many naturally occurring protein complexes, or multimers, are assemblies of two 

to thousands of protein domains. They perform a variety of tasks including mechanical 

functions (e.g. in the case of collagen or cadherins). In segment-swapped dimers, each 

domain exchanges part of its secondary structure with neighboring domains.   

The specific case of segment swapped dimer studied here is the dimeric mutant 

(Q10) of the B1 domain of streptococcal protein G18,35, which has been engineered by 

introducing mutations in the core amino acids of the B1 domain of streptococcal protein 

G (GB1).39 The structure of this dimer (Fig. V.1) involves terminal parallel strands 

formed by exchanging the terminal β-strands of the two monomeric subunits. If a 

stretching force is applied between the N-terminus of chain A and the C-terminus of 

chain B as shown in Fig. V.1(b), the two parallel strands become loaded in a manner 

similar to that found in a pulling experiment where a single GB1 domain is stretched 

between its C- and N- termini (as shown in Fig. V.1(a)). It has been recently understood 

that this type of arrangement of parallel strands is the key structural feature responsible 

for the high mechanical stability of the I27 domain of the muscle protein titin11,71,79. 

Furthermore, it was predicted theoretically25,26,71 and established experimentally12,13,19,20 

that other domains (e.g., protein L, ubiquitin), which have no apparent mechanical 

function but feature the same terminal strand arrangement may exhibit high mechanical 
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stability comparable to that of I27. Therefore if the high mechanical resistance with 

respect to stretching typical of some individual domains can be retained by protein 

complexes, the above dimer structure appears to be a good candidate. In what follows, we 

present a comparative study of the mechanical stability of the protein G dimer stretched 

between the C-terminus of one subunit and the N-terminus of the other (Fig. V.1(b)) with 

that of the monomeric protein G.  

 

 
  (a)     (b) 

Figure V.1. (a) The NMR structure of the Immunoglobulin-binding domain B1 of 

streptococcal protein G, (PDB code 1GB1). (b) The structure of the 

segment-swapped dimeric mutant of the B1 domain of streptococcal protein 

G (PDB code 1Q10). In our simulations, the stretching force is applied 

between the α-carbons of the terminal residues shown as dark spheres. 

Labeled elements of secondary structure are the strands β1(residue 2-8), β2 

(residue 13-19), β3 (residue 42-46) and β4 (residue 51-55) for the monomer 

and the strands β1(residue 2-8), β2 (residue 13-19), β3 (residue 43-46) and 

β4 (residue 51-54) for each monomer of the dimer; the subscript labels the 

chains A/B. The location of the terminal parallel strands in each protein is 

circled. The plots were generated by the MOLMOL software63.  
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The rest of this chapter is organized as follows: In section V.2 we describe the 

details of the methods used. Our results are presented in Section V.3 and Section V.4 

concludes. 

 

V. 2 METHODS 

Recent studies71 showed that mechanical unfolding of proteins in many cases can 

be understood, quantitatively,  by using a simple one-dimensional picture, where it is 

viewed as Langevin dynamics governed by the potential of mean force  G(R) that is a 

function of the “mechanical” reaction coordinate R55. The latter is usually chosen to be 

equal to the protein extension, i.e. the distance between the residues (or, more precisely, 

between their α−carbons) between which the pulling force is applied.   The potential of 

mean force G(R) can be computed using the standard umbrella sampling method36,87, 

where a penalty term constraining the extension to a neighborhood of R is added to the 

system energy; The shape of G(R) is then obtained from a series of equilibrium molecular 

dynamics (MD) simulations performed with different constraints. By combining the data 

from such simulations via the weighted histogram method36, one can recover the global 

shape of G(R).  The technical details of this procedure as applied to protein stretching are 

described in ref. 72. 

Whenever one attempts to calculate an equilibrium property of a protein such as 

G(R), there is a concern as to whether or not the configuration space of the protein is 

sampled ergodically within the time-scale constraints of the simulation. Although it 

impossible to guarantee complete sampling in any simulation, dependence of the 

simulation result on the length of the simulation would be a clear indication of trouble.  

In our previous studies of the mechanical stretching of small domains, the results 

appeared converged with respect to the length of each equilibrium MD simulation71-73. 

However for the protein G dimer we could not obtain converged results with the 

simulation times feasible given the computer resources available to us. This urged us to 

resort the replica exchange method (REM), which provides better sampling.  The method 

is reviewed in ref. 36, and its specific implementation in MD simulations has been 
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developed in ref. 110. REM/MD involves running MD trajectories for a set of n replicas of 

the system, each at different temperature: Ti (i=1, 2,…,n), such as  T1 < T2 <…< Tn.  

The algorithm further includes Monte Carlo trial moves that attempt to “swap” 

neighboring replicas. A trial move attempting to swap the configurations ri and ri+1 of the 

replicas running at temperature Ti and Ti+1 is accepted with a probability equal to 

1 1min{1,exp[ ( )( ( ) ( ))]}i i i iU Uβ β+ +− − −r r , where U is the potential energy of the system 

and βi =1/(kBTi), where kB is Boltzmann’s constant. The velocities of each atom are 

rescaled after the trial move such that the new velocities satisfy the equipartition 

theorem110. Such trial moves satisfy detailed balance and help the low-temperature 

replicas that are trapped near local minima on the system’s potential energy landscape 

overcome barriers separating those from other regions of the configuration space.    

Using REM combined with umbrella sampling, we have reconstructed the 

potential of mean force ( )G R in the cases of the stretching of protein G (PDB code 

1GB1) and the protein G dimer (PDB code 1Q10).  The reaction coordinate R is defined 

as the distance between the α-carbons of the two terminal residues (Met1 and Glu56) in 

the case of the protein G monomer and the distance between the α-carbon of the Met1 in 

the chain A and the α-carbon of the Glu56 in the chain B in the case of the dimer. A 

harmonic penalty term 2
0( ) / 2R Rγ −  was added to the energy to constrain the protein 

extension near a specified value R0 in umbrella sampling simulations71-73, with the spring 

constant equal to g=1.38 N/m. The values of R0 used were R0 = 26.7, 27.7, 28.7, 29.7, 

30.7, 31.7, 32.7 Å for protein G, and R0 =25.8, 26.8, 27.8, 28.8, 29.8, 30.8, 31.8 Å for the 

dimer. For each R0, we have used n=10 replicas run at the temperatures (273, 285, 298, 

312, 327, 343, 361, 379, 399K, and 422 K). The results reported below are for T=298K. 

Simulations were performed with Tinker126 software using the GB/SA continuum 

solvation model98, and the AMBER99 force field119. Both the monomeric and the dimeric 

protein G remain native-like in the course of a 0.5 ns unconstrained simulation at 298K, 

using this force field/solvation model. The Rattle algorithm1 was used to fix all the bond 

lengths between hydrogen atoms and heavy atoms. The MD time step was 2.0 fs and a 

replica-swapping move was applied every 1.0 ps of the simulation. Protein configurations  
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were saved every 0.5 ps.  The total simulation time for each replica was 0.5 ns for each 

constraint and each temperature.  

 

V. 3 RESULTS 

 In Figure V.2, we show the free energy profile G(óR) as a function of the protein 

extension for the protein G monomer (GB1) and the dimer (Q10). The protein extension, 

foldR R R∆ = − < > , is defined as the distance R between the α-carbons of the terminal 

residues that are being pulled apart  relative to the average extension R< >≡ <Rfold > 

measured in the equilibrium MD simulation in the absence of force. <Rfold > is equal to 

27.61 and 27.73 Å for GB1 and Q10, respectively. The free energy of protein 

reconstructed from the REM/MD with the smallest constrain Ro is taken as the reference. 

 

  Figure V.2. The free energy of GB1 and Q10 as a function extension. The two arrows 

near each curve roughly delineate the region where the separation of the 

terminal parallel strands takes place. Domain configurations corresponding 

to these values of extension are further analyzed in Figs. V5-6.  The 

positions R∆ of the arrows are: (a) 4.1 Å, (b) 5.1 Å for GB1 and (c) 2.1 Å, 

(d) 3.1 Å for Q10.  
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The negative value of extension shown in the Fig. V.2 is simply due to the fact that  

<Rfold > is larger than the smallest constrain distances Ro (i.e. 26.7 Å and 25.8 Å for GB1 

and Q10), which are measured in the crystal structures of GB1 and Q10. The shapes of 

the two curves are very similar.  They are also similar to the free energy profiles found in 

our previous studies of ubiquitin-like domains and I2772. The free energy G(R) rises 

monotonically until it reaches a plateau value Gpl. This value is Gpl ≈ 14 kcal/mol for the 

monomer and ≈ 7 kcal/mol for the dimer. The value of Gpl ≈ 14 kcal/mol is similar to the 

value Gpl ≈ 17 kcal/mol found in our previous study of the protein G IgG-binding domain 

III, which has similar structure.72 

When the stretching force f applied to the protein is not too high, the unfolding 

dynamics can be viewed as barrier crossing6,28,29,99. Specifically, the potential of mean 

force experienced by the protein is equal to  

 ( ) ( )fG R G R fR= −         (V.1) 

This force-dependent free energy profile is shown in Fig. V.3 for both proteins at 

different values of the stretching force. Application of a force turns the global minimum 

corresponding to the native fold into a metastable state separated from the extended states 

with large R by a barrier. The height of this barrier determines the rate constant of 

mechanical unfolding, which can be estimated by using transition state theory: 

( ) exp( / )u u Bk f G k Tν= −∆ .       (V.2) 

Here 

( ) ( ) ( )u NG f G R G R≠∆ = −        (V.3) 

is the free energy barrier, i.e., the difference between ( )G R at the minimum NR  

corresponding to the native metastable state and the maximum R≠ corresponding to the 

transition state. The transition state extension NR R R≠ ≠∆ = −  determines how fast 

( )uk f changes as a function of the stretching force. It consequently impacts the pulling 

rate dependence of the average unfolding force measured in AFM pulling 

experiments28,29.  
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As seen from Fig. V.3, the values of R≠∆  are similar for both the dimer and the 

monomer.  For example, for f = 100 pN, 3R≠∆ Å in each case. As a result, the force 

dependence of the barrier ( )uG f∆ is similar in the two cases, as shown in Fig. V.4. At a 

sufficiently high force, the unfolding free energy barrier disappears altogether, rendering 

the native conformation of the protein mechanically unstable.  This critical force required 

to destabilize the native state of the protein mechanically is on the order of 200 pN for the 

dimer and ~400 pN for the monomer. 

 

 

 

 

Figure V.3. The free energy ( ) ( )fG R G R f R∆ = ∆ − ∆  for different values of the stretching 

force f.   
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Figure V.4. The unfolding free energy barrier ( )uG f∆ as a function of the applied force 

for GB1 and Q10. The barriers were calculated starting from f = 0 pN with an increment 

of 10 pN; The continuous lines were obtained by interpolation.    

 

  

To understand the unfolding mechanism better, we next consider the protein 

configurations at different stages of the unfolding process. A convenient way to represent 

an ensemble of configurations sampled by a protein is its contact map. For a given 

configuration we define the contact map as the plot of residue pairs {i,j} such that the 

distance between their respective α-carbon atoms is less than a given cutoff distance d. 

We used the value d= 7.5Ǻ here.  To see how the protein structure depends on its 

extension, we have considered equilibrium ensembles of protein structures obtained via 

the constrained equilibrium REM/MD runs as described in section V.2. For a given R0, 

for each contacting pair {i,j} we then consider the probability of observing this contact in 

the equilibrium ensemble (i.e., the fraction of configurations for which their α-carbons 

are found within the distance d). We can color-code the {i,j} map according to these 

probabilities. This results in a contact map that describes an ensemble of structures rather 

than a single structure.  

Fig. V.5(a,b) displays the contact maps for the monomeric protein G obtained for 

two different values of extension R0, which are indicated by arrows in Fig. V.2. It is 
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tempting to identify these as “pre-transition-state” and “post-transition-state” ensembles; 

However as seen in Fig. V.3, the location of the transition state generally depends on the 

applied force so the transition-state extension is not well defined. Instead, we simply 

consider the changes in the protein structure as its extension is increased. Initially, the 

contact map remains virtually unchanged and similar to the native contact map (not 

shown). In particular, the contact map shown in Fig. V.5(a) is essentially the native 

contact map indicating that the protein native structure remains intact upon initial 

stretching. As the domain extension is increased further, as in Fig. V.5(b), and the free 

energy G(R) approaches its plateau value Gpl, the contacts formed by the terminal parallel 

strands (encircled in Fig. V.5) become partially destroyed. There is no considerable 

change in the rest of the contact map. An example of a structure belonging to the partially 

unfolded ensemble corresponding to Fig. V.5(b) is shown in Fig. 6(a). Note that the entire 

ensemble cannot be generally represented by this single structure.  

Similar behavior is found in the case of the dimer (Fig. V.5(c,d)). In this case the 

contact map consists of two diagonal blocks corresponding to the contacts among 

residues within the same monomeric unit and the off-diagonal blocks, which correspond 

to the contacts formed between different monomers. Notably, the parallel strands β1 and 

β4 of protein G monomer become replaced by the parallel strands β1A(B) and β4B(A) 

formed across the monomers within the dimer. In addition to this parallel strand 

swapping, an additional pair of parallel strands (β2A and β2B) is formed (Fig. V.1). 

Similarly to the case of the protein G monomer, as the dimer is stretched initially, the 

native structure remains intact (case c in Fig. V.5). As R is further increased and G(R) 

approaches its plateau value, the terminal parallel strands become disrupted as seen in 

Fig. V.5(d) and Fig. V.6(b).  

The above unfolding mechanism proceeding via separation of the terminal 

parallel stands is similar to that observed in the simulations of I2771,78,79,84, ubiquitin72,73, 

and protein L12. This mechanism was predicted to maximize the mechanical strength of 

both proteins and toy models of cross-linked Gaussian polymers25,26 
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(a)   (b)  

(c)    (d)  

Figure V.5. The contact maps of (a,b) GB1 and (c,d) Q10 obtained from equilibrium MD 

runs with the protein extension  DR  constrained near the values indicated as 

arrows in Fig. V.2. (a)  DRa ≈ 4.1 Å; (b) DRb ≈5.1 Å;  (c)  DRc≈  2.1 Å; (d) 

DRd ≈ 3.1 Å. The terminal parallel strands shown in Fig. V.1 are indicated by 

the blue circles on each contact map.  See text for further details.  
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  (a)    (b) 

Figure V.6. Two representative configurations of partially unfolded (a) GB1 and (b) Q10 

taken from equilibrium ensembles corresponding to the situations depicted in 

Fig. V.5(b) and Fig. V.5(d), respectively.  The plots were generated by the 

MOLMOL software63.  

  

 . 

We note that the shape of G(R) for extensions much higher than those in Figs. 

V.2-3 is not readily accessible by molecular dynamics simulations. The problem is that 

once the protein is unfolded or partially unfolded, the configuration space sampled by it 

becomes much larger while the time scale of its motion becomes slower. This 

necessitates much longer simulation times that are no feasible even when enhanced 

sampling methods such as REM are used.   For these reasons, on the basis of our 

simulations alone we cannot claim that the mechanical unfolding of each of the above 

proteins is an all-or-none process with a rate limiting step being the separation of terminal 

strands.  However this picture seems to be consistent with the experimental studies of 

titin11,21,89,99,100, ubiquitin20,30,104, protein L12.  It is further consistent with Langevin 

dynamics simulations of a minimalist foldable off-lattice model of ubiquitin, which 

captures the folding time scale and allows one to map out the free energy landscape of 

this domain far from equilibrium61.   
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V. 4 DISCUSSION AND CONCLUSIONS 

All-atom studies of protein unfolding unavoidably have limitations. For example, 

the energy landscape and the native structure found from equilibrium REM simulations 

of the monomeric protein G show significant force field dependence123. The use of an 

implicit solvent model imposes another important limitation. When explicit solvent 

degrees of freedom are eliminated from the system, this results in additional effective 

solvent-induced forces7,8,14,24. These forces are not present in the standard continuum 

solvation model used here (see, e.g.45,75) Solvent-induced forces are known to be 

important when considering protein-protein interactions and protein folding/unfolding44.  

In particular, correct description of hydrogen bonding interactions within a continuum 

model requires a very careful treatment of those effects44,46. Since the rupturing of the 

hydrogen bonds between the terminal strands arguably contributes large part of the free 

energy barrier to unfolding78,79, the ability of the GB/SA solvation model to provide a 

quantitative estimate  for this barrier should be questioned. An explicit solvent 

representation would overcome this limitation.  Unfortunately its computational cost 

would be prohibitive for the present case.   

Our previous experience with using the same solvation model indicates that this 

type of calculation correctly reproduces relative mechanical stability of many proteins. In 

particular, the relative mechanical stabilities of the I27 domain of the muscle protein 

titin71, ubiquitin72, and protein G72 obtained from our simulations are in close agreement 

with experiments12,19. Moreover, the computed relative mechanical stabilities of the same 

domain with respect to different ways of pulling it73 are also in close agreement with 

experimental studies20.  We believe that the success of the method is partly due to the fact 

the mechanical stability of a protein is largely determined by its native topology25,62 (and 

pulling geometry), which is why even cruder, minimalist off-lattice models do reasonably 

good job predicting the mechanical response of proteins61,120.    

With the above caveats in mind, our main findings discussed below still await 

their experimental verification. Our calculations suggest that the protein G dimer is less 

resistant to mechanical pulling than its monomeric counterpart. Nevertheless, it exhibits 

considerable mechanical stability. Moreover, the mechanical unfolding mechanism for 
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this dimer resembles closely that observed in the I27 domain of the muscle protein titin, 

ubiquitin, and the protein G monomer. All these proteins share the same structural 

feature, the presence of terminal parallel strands, which is responsible for their high 

mechanical resistance with respect to the stretching between their C- and N-termini. The 

mechanical unfolding pathway then involves the separation of the parallel strands 

accompanied by the breaking of several hydrogen bonds. As those bonds are loaded in 

parallel, their concerted rupture requires a high force.  

The significant strength of the “clamp” formed by the terminal parallel strands 

results in the rest of the protein structure being “protected” from the stretching force until 

the strands become separated. In other words, no domain unfolding (or partial unfolding) 

occurs prior to the separation of the terminal strands. Interestingly, similar behavior was 

found in a recent simulation study of the forced dissociation of an adhesion protein 

complex in the regime where the applied force was ramped slowly enough3. 

It is not inconceivable that the mechanical response of natural fibers, adhesives 

and composites could be optimized both at the single chain level and at the mesoscopic 

level through interactions among individual chains.    

In contrast to the plethora of experimental data on the mechanical response of 

individual protein domains, single molecule pulling studies of non-covalently bound 

protein complexes have begun only recently66,105. Although recent AFM pulling studies 

of spider silk5 and other natural materials108, in principle, locally probe one or several 

polypeptide chains that are non-covalently crosslinked with other proteins, the precise 

system that is being mechanically loaded and the manner in which the loading is done is 

not well defined (and is likely to vary from pull to pull). Schwaiger et al105 have studied 

the mechanical response of the much better characterized ddFLN dimer. While their 

study mainly focused on the unfolding of individual domains within each monomer, they 

point out that the dimer bond is strong enough to stay intact while those domains are 

unfolding. They further estimate the lower bound on the average dimer separation force 

to be ~200pN at the pulling rate used in the experiments. Unfortunately, direct 

measurement of the dimer bond strength was precluded by the fact that it is hard to 

distinguish separation of the two monomers from desorption of the entire molecule from 
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ether the AFM tip or the substrate.   We hope that computational studies like this one will 

provide estimates of the unfolding forces that could be anticipated in such experiments 

and stimulate future experimental studies.        
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Chapter VI 

Summary 

In this dissertation, we have developed computational methodology that allows 

one to predict the mechanical resistance of proteins at loading rates that are comparable 

with those in single molecule pulling experiments. The computational procedure involves 

calculating the free energy profile of a protein along the mechanical unfolding coordinate 

from a series of equilibrium molecular dynamics simulations by using umbrella 

sampling/weighted histogram analysis. Our approach assumes that the mechanical 

unfolding can be viewed as one-dimensional Langevin dynamics governed by this free 

energy profile and it has been validated by comparing the computed Langevin dynamics 

with the results of steered molecular dynamics simulations.  With the calculated free 

energy profile, transition state theory is used to calculate force-dependent mechanical 

unfolding rates, and kinetic Monte Carlo simulations are subsequently performed to 

predict the outcome of single molecule AFM pulling experiments. To test our approach, 

we have studied the mechanical unfolding of the I27 domain in the muscle protein titin. 

The predicted average unfolding force as well as its dependence on the pulling rate is 

found to be in agreement with AFM experiments.  Moreover, the simulated unfolding 

free energy barrier for the I27 domain is very close to that inferred from experiments. In 

addition, we have confirmed the earlier observation that the unfolding mechanism 

involves the separation of two terminal parallel strands.71,78,79,84   

In order to understand the relationships between structure and the mechanical 

resistance of the proteins, we have studied the mechanical unfolding of two non-

mechanical proteins, ubiquitin and protein G IgG-binding domain III, which both have 

the structural motif involving terminal parallel strands, similar to those found in the I27 

domain of the muscle protein titin. We found that these two proteins also exhibit high 

force resistance comparable to that of titin. Our finding suggests that non-mechanical 

proteins with the desired structure and topology can have high mechanical stability, an 

observation that has indeed been confirmed in recent experimental studies.12,19 
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We have further examined the effect of the pulling geometry on the mechanical 

unfolding rates and demonstrated that the mechanical unfolding pathways can indeed be 

altered by changing the pulling geometry. These are in close agreement with single 

molecule pulling studies of polyubiquitin chains.  

 While the mechanical stability of individual proteins has been linked to the 

overall mechanical strength and toughness of the bulk materials they comprise, the effect 

of the inter-chain interactions is poorly understood. As a step towards the understanding 

of those, we have studied the mechanical unfolding and separation of the segment-

swapped protein G dimer and compared its mechanical stability with that of the single 

protein G domain. While the dimer is found to be less resistant to mechanical unfolding 

than its monomeric counterpart, the two proteins exhibit the same mechanical unfolding 

mechanism involving separation of the terminal parallel strands.  Our results suggest that 

the mechanical properties of natural materials may be optimized not only at a single 

molecule level but also at the mesoscopic level through the interactions among individual 

chains.  

Our simulations confirm the hypothesis that the mechanical stability of individual 

protein domains can be maximized by the presence of a hydrogen-bond clamp between 

the terminal parallel strands71,78,79,84. Since this motif is found in a number of proteins, 

both mechanical and non-mechanical, we expect that our finding may prove useful in the 

area of functional protein engineering to identify suitable building blocks for new 

materials with superior mechanical properties.  
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