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The Coastal Domain
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Galveston Bay bathymetry and example mesh!
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Mathematical Model - The 2D Shallow Water Equations

Find (¢, u) such that:
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convective  friction viscous

Corresponding Space-Time Weak Formulation:

Find (¢,u, o) € U(Q27) such that:

2
B((¢,u,o),(v,w,p)) = F(v,w,p), VY(v,w,p) € V(Pp) @)

» Test space V/(Py) is constructed using the philosophy of the
discontinuous Petrov-Galerkin method?

2|eszek Demkowicz and Jay Gopalakrishnan. “A class of discontinuous Petrov—Galerkin methods. Il. Optimal
test functions”. In: Numerical Methods for Partial Differential Equations 27.1 (2011), pp. 70-105.




Remarks

e In the corresponding finite element discretization we use
classical continuous basis functions for the trial space,
whereas the test space consist of optimal discontinuous
functions computed on-the-fly locally on each element that
guarantee discrete stability.

e The discontinuous Petrov-Galerkin philosophy leads to a linear
system of equations that is symmetric and positive definite.

e Element wise Riesz representers of the approximation error
yield error indicators that are employed to drive adaptive mesh
refinements in both space and time.

e The discontinuity of the test functions and Riesz representers
makes the method well suited for the parallel environment in
TACC computers.

» As a verification, consider a purely convective 2D stationary

problem with Q = (0,1)2, (ex = cos(x — y - x)

uX, = Ut = cos?(mx + y)sin(mx3 + y - x)sin(7x + y).



Adaptive Mesh Refinement
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