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The Coastal Domain

Galveston Bay bathymetry and example mesh1

1S.R. Brus et al. “High-order discontinuous Galerkin methods for coastal hydrodynamics applications”. In:
Computer Methods in Applied Mechanics and Engineering 355 (2019), pp. 860 –899. issn: 0045-7825.
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Mathematical Model - The 2D Shallow Water Equations

Find (ζ,u) such that:
∂ζ

∂t + ∇ · (ζu) = 0, in Ω× (0,T ]

∂u
∂t + u · (∇u)︸ ︷︷ ︸

convective

+ τb u︸︷︷︸
friction

+g∇ζ − ν∆u︸ ︷︷ ︸
viscous

= f, in Ω× (0,T ]

(1)

Corresponding Space-Time Weak Formulation:

Find (ζ,u,σ) ∈ U(ΩT ) such that:

B((ζ,u,σ), (v ,w,p)) = F (v ,w,p), ∀(v ,w,p) ∈ V (Ph)
(2)

I Test space V (Ph) is constructed using the philosophy of the
discontinuous Petrov-Galerkin method2

2Leszek Demkowicz and Jay Gopalakrishnan. “A class of discontinuous Petrov–Galerkin methods. II. Optimal
test functions”. In: Numerical Methods for Partial Differential Equations 27.1 (2011), pp. 70–105.
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Remarks
• In the corresponding finite element discretization we use

classical continuous basis functions for the trial space,
whereas the test space consist of optimal discontinuous
functions computed on-the-fly locally on each element that
guarantee discrete stability.
• The discontinuous Petrov-Galerkin philosophy leads to a linear

system of equations that is symmetric and positive definite.
• Element wise Riesz representers of the approximation error

yield error indicators that are employed to drive adaptive mesh
refinements in both space and time.
• The discontinuity of the test functions and Riesz representers

makes the method well suited for the parallel environment in
TACC computers.

I As a verification, consider a purely convective 2D stationary
problem with Ω = (0, 1)2, ζex = cos(x − y · x)
ux

ex = uy
ex = cos2(πx + y)sin(πx3 + y · x)sin(πx + y).
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Adaptive Mesh Refinement
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