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 Planning and scheduling in semiconductor manufacturing is a difficult problem 

due to long cycle times, a large number of operational steps, diversified product types, 

and low-volume high-mix customer demand.  This research addresses several problems 

that arise in the semiconductor industry related to front-end wafer fabrication operations 

and back-end assembly and test operations. The mathematical models built for these 

problems turn out to be large-scale mixed integer programs and hard to solve with exact 

methods. The major contribution of this research is to combine mathematical 

programming with metaheuristics to find high quality solutions within the time limits 

imposed by the industrial engineers who oversee the fabrication and test facilities. 

 In order to reduce the size of problems that arise in practice, it is common to 

cluster similar product types into groups that reflect their underlying technology.  The 

first part of the research is aimed at developing a greedy randomized adaptive search 

procedure (GRASP) coupled with path relinking (PR) to solve the capacitated clustering 

problem. The model is generic and can be applied in many different situations.  The 

objective is to maximize a similarity measure within each cluster such that the sum of the 

weights associated with the product types does not exceed the cluster capacity in each 

case.  In phase I, both a heaviest weight edge (HWE) algorithm and a constrained 

minimum cut (CMC) algorithm are used to select seeds for initializing the clusters.  

Feasible solutions are obtained with the help of a self-adjusting restricted candidate list.  

In phase II, three neighborhoods are defined and explored using the following strategies: 
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cyclic neighborhood search, variable neighborhood descent, and randomized variable 

neighborhood descent (RVND).  The best solutions found are stored in an elite pool.  In a 

post-processing step, PR coupled with local search is applied to the pool members to 

cyclically generate paths between each pair.  The elite pool is updated after each iteration 

and the procedure ends when no further improvement is possible.   

 After grouping the product types into technologies, a new model is presented for 

production planning in a high volume fab that uses quarterly commitments to define daily 

target outputs.  Rather than relying on due dates and priority rules to schedule lot starts 

and move work in process through the shop, the objective is to minimize the sum of the 

deviations between the target outputs and finished goods inventory.  The model takes the 

form of a large-scale linear program that is intractable for planning horizons beyond a 

few days.  Both Lagrangian relaxation and Benders decomposition were investigated but 

each proved ineffective.  As a consequence, a methodology was developed which was 

more tailored to the problem’s structure.  This involved creating weekly subproblems that 

were myopic but could be solved to optimality within a few minutes, and then post-

processing the results with a decomposition algorithm to fully utilize the excessive 

machine time.  The heart of the post-processor consists of a rescheduling algorithm and a 

dispatching heuristic.  

 The third part of the research focuses on the combinatorial problem of machine-

tooling setup and lot assignments for performing back-end operations.  A new model and 

solution methodology are presented aimed at maximizing the weighted throughput of lots 

undergoing assembly and test, while ensuring that critical lots are given priority.  The 

problem is formulated as a mixed-integer program and solved again with a GRASP that 

makes use of linear programming.  In phase I of the GRASP, machine-tooling 

combinations are tentatively fixed and lot assignments are made iteratively to arrive at a 

feasible solution. This process is repeated many times.  In phase II, a novel neighborhood 

search is performed on a subset of good solutions found in phase I.  Using a linear 

programming-Monte Carlo simulation-based algorithm, new machine-tooling 

combinations are identified within the neighborhood of the solutions carried over, and 

improvements are sought by optimizing the corresponding lot assignments.   
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Chapter 1 

Chapter 1. Introduction 

Introduction 

 

 The process of manufacturing integrated circuits consists of four basic stages: 

wafer fabrication, wafer probe, assembly or packaging, and final testing.  Wafer 

fabrication is the most technologically complex and capital intensive, involving a precise 

sequence of processing steps that must be performed in a clean-room environment to 

reduce the threat of particle contamination (Leachman 2002, Uzoy et al. 1992).  Upon 

completion, functionality tests are performed on the wafers using electrical probes before 

packaging and final testing (Chiang et al. 2008a).  The vast majority of the planning and 

scheduling research in the industry has focused on wafer fabrication, generally referred to 

as the front-end operation.  The remaining three stages comprise the back-end operations. 

 Due to increasing customer requirements and breakthrough advances in 

technology, the complement of devices produced by a semiconductor manufacturer has 

increased exponentially over the last decade and often includes hundreds of product types 

at a single fabrication facility (fab).  Developing midterm plans, collecting data and 

controlling processes for each individual device requires a large amount of resources. 

Fortunately, similar production routes allow us to categorize many devices by product 

type and plan for an entire family at a time rather than for its individual members.  

Nevertheless, during fabrication a device may visit a process many times and must be 

treated differently each time since processing requirements are a function of the 

operational step.  In addition, the status of a device may change considerably if it fails to 

pass an inspection step and is sent back to a previous step for rework. After completion, 

the reworked device is newly categorized to distinguish it from identical devices that 

were deemed to be defect-free.  Similar situation arises when sampling for inspection and 

test.  The sampled devices are considered to be different from the un-sampled devices.  

Also, there are several situations in which the same devices go through slightly different 

processing steps. 

 For management purpose, it is beneficial to group the similar devices into so-

called technologies to reduce the size of the planning problem.  A technology 
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corresponds to a set of similar devices which have slightly different characteristics.  To 

perform the analysis, a measure is needed to describe the degree to which two devices are 

similar.  It is desired to cluster the devices in a way such that the total similarity within 

groups (technologies) is maximized. This defines a clustering problem that we model as a 

mixed integer program.  One of the primary purposes of this dissertation is to develop a 

heuristic for obtaining high quality solutions in reasonable time to the technology 

clustering problem.  Once the devices are grouped into technologies or families, the 

inputs, demands as well as the routes of the devices are aggregated by family.   

 Wafer fabrication is vastly complicated by the reentrant nature of its process flow.  

Accompanying systems have long and unstable cycle times that make production 

planning and controlling much more difficult than in discrete parts manufacturing 

(Glassey and Resende 1988, Van Zant 2000).  Factors that contribute to unpredictable 

cycle times include unreliable equipment, long net processing times, and delays due to 

batch processing and machine setups.  In fabs, the total processing time for each wafer 

may extend up to three months and include over 1000 operations or steps at hundreds of 

workstations.  When machine tools fail to perform within specifications, production flow 

may be severely disrupted causing cycle times to increase or fluctuate.  Similarly, when 

wafers fail inspection at different points in their routes they may be scrapped or sent back 

to an earlier operation for rework with a consequent increase in cycle time. 

Because fabs use different fixtures and different material-handling systems for 

different processes, batch sizes vary by wafer type and process.  Therefore, it is not 

uncommon for one batch of wafers to wait for a second batch of the right size to form at 

the next operation (Lee and Kim 2002).  

Since the early-1990s, there has been a growing effort to model the reentrant 

nature of semiconductor manufacturing using queueing networks.  Dai (1995) and Rybko 

and Stolyar (1992) established that the stability of a multiclass queueing network is 

implied by its deterministic fluid counterpart.  Motivated by this result, researchers began 

to focus on finding near-optimal scheduling polices using fluid network analysis. Weiss 

(1995), for example, developed optimal draining policies for a single job class for 

different objective functions.  

More recently, fluid models have been used to represent relaxations of discrete 
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scheduling networks.  The general approach to the scheduling problem has been to 

construct a fluid model, find a solution, and then heuristically translate the solution into a 

discrete scheduling policy.  Dai and Weiss (2002) developed a fluid heuristic to minimize 

the makespan in a job shop while deriving a probabilistic bound for the fluid translation 

error. Their algorithm fully utilizes the bottleneck machines and paces the remaining 

machines accordingly.  Bertsimas and Sethuraman (2002) solved the same job shop 

problem using the aforementioned approach.  In addition, they applied a fluid 

synchronization algorithm to translate the optimal solution from the fluid relaxation to a 

discrete schedule and achieved asymptotically optimal solutions as the number of jobs 

increased.  In related work, Bertsimas et al. (2003) solved the job shop scheduling 

problem to minimize the holding cost.  They applied a revised version of the fluid 

synchronization algorithm to derive discrete solutions, which were similarly proven to be 

asymptotically optimal. 

Although disruptions and uncertainty can play havoc with a schedule, it is still 

necessary to develop long-term and midterm plans.  As part of this dissertation a new 

model is presented that can be used to plan daily operations in a fab for up to three 

months at a time by taking into account expected demand, predefined starts, detailed 

routings, and machine capacity limits.  The work was undertaken in collaboration with 

the Texas Instruments’ (TI) 300-mm facility in Dallas, Texas, referred to as DMOS6.  

Recognizing that a variety of objectives are used in industry to guide production, such as 

minimizing cycle time, minimizing late orders, or minimizing work in process (WIP), the 

objective chosen for our project was the minimization of the total deviations from target 

outputs.  This is equivalent to minimizing the sum of the daily deviations from the 

forecast demand for each product or device in the system over the planning horizon (cf. 

Fordyce et al. 1992).  The principal decision variables in the model are the WIP level and 

machine time assignment for each device at each step in each time period. 

Admittedly, our approach is somewhat at odds with standard practice.  As 

Leachman et al. (2002) point out, most semiconductor companies manage production 

under the lot-dispatching paradigm (managing the cycle times of production lots).  In that 

approach, priority rules such as the critical-ratio rule or the least-slack rule are used to 

schedule lots at each workstation.  In their SLIM methodology, Lechman et al. rely on a 
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target fab-out schedule for each device that is continuous in time, rather than focusing on 

lot due dates.  For example, if the schedules are expressed in terms of output quantities 

per day, then one quarter of the quantity of a particular device is due six hours into that 

day.  The primary scheduling objects in SLIM are device-step combinations instead of 

individual lots.  This is the approach that we take. 

Because our interest is in midterm planning rather than in scheduling or 

sequencing, we were able to significantly reduce the size of our problem without 

sacrificing accuracy by aggregating devices by technology to create representative 

families.  For similar reasons, it was not necessary to consider the discrete nature of the 

real-time decision process.  Nevertheless, the resultant model was still not tractable for 

planning horizons greater than a few days so several different decomposition schemes 

were explored.  A major contribution of this research centers on the use of linear 

programming to obtain initial solutions and the application of a decomposition algorithm 

to arrive at the final production plans.  For a comprehensive review of production 

planning models for wafer fabrication, see Asmundsson et al. (2006), Leachman (2002) 

and Lin (1999). 

 Most of the back-end operations are scheduled manually with database support to 

keep track of lot status. However, the importance of these operations in meeting customer 

due dates has sparked an interest in applying more sophisticated analytic techniques at 

the shop floor level.  Part of our work is aimed at improving the efficiency of machine 

setup and lot processing during assembly and test (AT).  The third major contribution of 

this dissertation is the presentation of a new model and solution methodology developed 

in conjunction with Texas Instruments in support of their AT facilities. 

 In the most general sense, the problem in such facilities has the basic 

characteristics of a job shop with multiple complexities including dynamic job arrivals, 

machine unavailability, sequence-dependent setup times, alternative machine assignment 

options, and batch-type processing.  Since the classic job-shop problem is already NP 

hard (Pinedo 2008), operating AT facilities presents an unusually difficult challenge to 

line supervisors, especially when 1000s of lots have to be scheduled each day on 100s of 

machines with many different tooling and temperature requirements. In the past, 

management has primarily concentrated on cycle time-based objectives since production 
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lots were not typically related to a particular order in the prevailing make-to-stock 

environment. However, with Application Specific Integrated Circuit (ASIC) and other 

specialty processors now a major portion of the market and hence production volume, the 

ability to meet due dates has become critical for profitability (Chiang et al. 2008b).  

Because AT operations are closer to the customer, due date-based performance measures 

are more appropriate than cycle time and WIP level objectives.  In addition, design 

creativity and an explosion of products now means that a given die can be packaged in 

many different ways and can have different test specifications associated with it, making 

the problem that much more difficult. 

High investment at the back-end, pressure to provide good customer service, and 

tight coupling of AT operations with the front-end manufacturing is driving the need for 

more effective planning tools.  In support of this need, we have developed a mathematical 

model with the joint objective of maximizing the weighted sum of lots processed and 

minimizing the weighted shortages of critical devices over the planning horizon.  Tooling 

considerations and capacity constraints are the predominant factors that limit output.  For 

a given set of lots, the available machines have to be set up with the proper tooling to 

operate at the appropriate temperature.  The model takes the form of a large-scale mixed-

integer program, which is solvable with any of the leading commercial codes when the 

number of lots and tooling-temperature combinations is relatively small.  For more 

realistic instances, we devised a solution methodology based on two-level decomposition 

that first sets up the machines and then assigns the lots.  Using a GRASP (Feo and 

Resende 1995), a set of high quality feasible solutions is obtained in phase I by 

repeatedly applying the decomposition strategy to randomly selected machine-tooling 

configurations.  This is followed in phase II by a novel linear programming-Monte Carlo-

based neighborhood search scheme that makes use of local branching ideas (Fischetti and 

Lodi 2003) to improve the results.  The decomposition strategy is also used in phase II. 

 One of the primary interests of this dissertation is to combine both mathematical 

programming the metaheuristics to solve the practical problem arising from 

semiconductor industries efficiently.  Thus it is helpful to investigate the advantages and 

disadvantages of mathematical programming and metaheuristics. A literature review is 

provided here for the emerging research area named matheuristics, which intelligently 
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combine the two to enhance the overall algorithm efficiency. 

 Mathematical programming has been achieving great success in solving a wide 

range of problems involving production planning and scheduling, transportation and 

vehicle routing, logistics and supply chain optimization, and statistical data analysis, etc.  

Generally a mathematical model is built at first to represent the problem under 

investigation.  In some cases the model can be further enhanced by tighten some of the 

constraints with techniques like lifting.  Solution methodologies are then proposed based 

on the analysis of the mathematical model.  If the size of the problem is small then a 

basic Branch and Bound (B&B) may be capable to solve the problem to optimality.  For 

larger instances, it is necessary and beneficial to use intelligent techniques to solve the 

problems.  Such techniques in literature usually involve Branch and Cut (B&C), Branch 

and Price (B&P), Benders decomposition and Lagrangian Relaxation (LR), etc.  These 

techniques involve a master problem (MP) and a subproblem (SP), i.e., separation 

problem in B&C, pricing problem in B&P, dual problem in Benders decomposition, and 

subproblems in LR when some of the constraints are relaxed.  Solving the subproblems 

efficiently is usually critical to the overall performance of the algorithm. 

 In mathematical programming, both upper bound and lower bound are usually 

provided to indicate the gap between the current solution and the optimal solution.  The 

algorithm can be terminated earlier for a satisfactory tolerance.  The quality of the 

solution obtained can be asserted.  In the aforementioned techniques, usually the 

subproblem can be further decomposed into even smaller size problems which can be 

solved efficiently.  In some cases the decomposed problems are identical (e.g. identical 

vehicles in the pricing problem when B&P is applied to vehicle routing problem) thus it 

is not necessary to solve the pricing problem multiple times.  However, there are still 

disadvantages for mathematical programming.  The practical problems are usually very 

complicated and large scale.  It can be either very hard to build a mathematical model for 

these problems, or a large amount of decision variables and constraints are necessary to 

represent even a medium size problem.  The situation becomes more and more difficult to 

mathematical programming when the size of the problem increases.  Furthermore, the 

subproblem can easily become very hard to solve when the aimed problem is complicated 

with additional requirements.   
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 Metaheuristics, on the other hand, have been accepting increasing attention from 

1980s.  Instead of building a mathematical model for the problem at hand, metaheuristics 

focus on the problem itself without using decision variables and constraints.  Various 

heuristic procedure have been proposed in literature involving GRASP, Tabu Search (TS), 

Scatter Search (SS), Simulated Annealing (SA), Genetic Algorithm (GA), etc.  There are 

still many other procedures which are essentially the extension and combination of the 

aforementioned heuristics.  The idea of metaheuristics is much diversified.  For example 

In GRASP, feasible solutions are usually constructed in phase I and improved in phase II 

iteratively.  In TS, some of the movements are considered to be tabu to overcome local 

optima.  A tabu list is maintained in TS which is essentially memory related.  Such 

heuristic idea is not rigid and can always be extended for further enhancement.  For 

example, GRASP can be extended to GRAMP when historical information is taken into 

account to guide the construction of phase I solution.  Although the metaheuristics are 

diversified, they do share something in common, that is, local search.  In metaheuristics, 

local search is an important component which achieves local optimum within the 

neighborhood specified.  Usually a large amount of computational effort is devoted to 

local search in most of the metaheuristics. 

 Metaheuristics have many advantages compared to mathematical programming.  

The procedures are usually relatively easier to implement.  High quality solutions can be 

obtained in reasonable time even for large scale problems that cannot be solved by pure 

mathematical programming.  The procedure can also be enhanced easily, e.g., by 

introducing a new neighborhood search.  In fact, for many practical problems those need 

to be solved in a specified amount of time, metaheuristics are usually a better option for 

its effectiveness.  However, there are still some downsides in light of its usefulness.  

Since metaheuristics are problem oriented, the neighborhood definition needs to be 

changed if some additional requirements (constraints) are added to the problem.  The 

local search procedure needs to be updated as well since some of the previous local 

movement may not be feasible any more.  The solutions from metaheuristics do provide a 

feasibility bound on the optimal solution but the gap is still unknown.  It is usually very 

hard to assert the quality of the best found solution other than numerically.  Furthermore, 

the efficiency of metaheuristics highly relies on the performance of local search.  The 
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performance of the overall algorithm can be harmed greatly if the local search step is 

difficult and time consuming. 

 In light of the advantages and disadvantages of both mathematical programming 

and metaheuristics, a new research area focusing on combining the two approaches is 

emerging and thus gains its name as matheuristics.  There are a limited number of 

publications in literature since matheuristics is still in its infancy.  However, if we look 

into matheuristics in detail, it can be found that the idea has been adopted in many 

aspects both in mathematical programming and metaheuristics. Matheuristics can be 

mainly divided to two categories.  The first type of matheuristics follows a general 

mathematical programming framework. The metaheuristics serve as an efficient 

component to solve the embedded subproblems.  Conversely, the second type of 

matheuristics follows the paradigm of metaheuristics, and applies mathematical 

programming inside the heuristic framework as a problem solver.  Both these two 

approaches involve mathematical programming and metaheuristics.  Some other more 

intrinsic procedure may switch between the two iteratively.  

 The application of metaheuristics inside a mathematical programming framework 

can be found in many publications.  In the B&P framework, usually initial columns are 

generated by constructing a high quality solution heuristically and metaheuristics are 

applied to solve the subproblems for column generation, e.g., see Bard and 

Rojanasoonthon (2006), Purnomo and Bard (2007) and Bard and Purnomo (2005).  In the 

B&C framework, the separation problems are usually solved by metaheuristics to 

generate cuts, e.g., see Bard et al. (2002) and Bard et al. (1998).   

 Metaheuristics can also be applied within a LR and Benders decomposition 

framework.  Bard and Purnomo (2007) provided a way to combine LR and heuristic idea.  

Recently, Boschetti and Maniezzo (2009) investigate such application and propose a 

general procedure for implementation.  In the LR framework, they suggest to apply 

metaheuristics when the Lagrangian multipliers are updated.  If feasible solutions are 

obtained, a feasibility bound can be provided.  In the Benders decomposition, the authors 

suggest the application of metaheuristics in two places.  Metaheuristics can be applied to 

solve the master problem to provide feasibility bound.  At the same time the feasible 

solution obtained is delivered to the subproblem to generate additional cuts that going to 
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be appended to the master problem.  If the subproblem is also a mixed integer 

programming, metaheuristics can then again be applied to solve the problem with an 

attempt to improve the feasibility bound.  The authors have applied their methodologies 

to the single source capacitated facility location problem, the membership overlay 

problem and the multi-mode project scheduling problem.  Their approaches are quite 

promising according to the reported numerical results. 

 One the other hand, some researchers focus their interests on applying 

mathematical programming inside a metaheuristic paradigm.  Fischetti and Luzzi (2009) 

illustrated a way to embed mathematical programming into a heuristic framework to 

enhance the overall algorithm performance.  They presented an MIP model for the 

nesting problem, which places two-dimensional polygon into a rectangular container 

without overlapping.  The objective is to maximize the usage of the rectangular container. 

The model was further enhanced by lifting the constraints and embedding a specialized 

branching strategy accommodating the problem.  Since the initial numerical experiments 

were not encouraging, a heuristic was then developed to place the big pieces of polygons 

at first.  A MIP model is built and then simplified to place the small pieces of trims into 

the holes of the container, which was the so-called multiple containment problem.  It 

turned out that the simplified model can be easily solved as an MIP.  A post-procedure is 

then invoked to remove any overlapping area for a feasible solution.  The solutions from 

the proposed algorithm were quite promising comparing to the greedy heuristic.  An 

average percentage improvement around 1~2% over the greedy heuristic was achieved by 

the presented method. 

 Hu et al. (2008) provide another way to combine the metaheuristics and 

mathematical programming for the generalized minimum spanning tree problem.  They 

developed a variable neighborhood search (VNS) framework which sequentially 

performs local search within the neighborhoods.  The first two neighborhoods are 

generated through either nodes exchange or edges exchange.  For the third neighborhood 

the authors apply MIP to optimize local parts within candidate solution trees.  The 

proposed approach has been tested for random instances with up to 1280 nodes.  The 

performance is quite encouraging according to the solutions obtained. 
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In the next chapter, semiconductor manufacturing operations are outlined for both 

front-end (wafer fabrication) and back-end (assembly and test) operations.  Chapter 3 

provides a literature review for the clustering problem followed by a discussion of the 

reactive GRASP developed to find solutions.  The midterm fab planning problem is 

discussed in Chapter 4 where a mathematical model is presented.  After trying 

Lagrangian relaxation and Benders decomposition algorithms without success, a 

problem-specific decomposition approach is provided.  Chapter 5 focuses on the back-

end AT operations.  A two level hierarchical approach coupled with a GRASP is used to 

find solutions.  Numerical results are provided for Chapters 3, 4 and 5.  In Chapter 6, an 

assessment of the research is given and some conclusions are drawn from the 

computational experience. 
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Chapter 2 

Chapter 2. Outline of Semiconductor Manufacturing Operations 

Outline of Semiconductor Manufacturing Operations 

 

2.1 Wafer Fabrication (Front-end Operations) 

Wafer fabrication begins with a smooth (typically silicon) wafer of a certain diameter 

upon which thousands of integrated circuits are layered through successive operations.  

Circuits contain between 100 and 50,000 chips.  During processing, a wafer goes through 

the following six primary steps multiple times: deposition, photolithography, etching, ion 

implantation, photoresist strip, and inspection and measurement. The routing (process 

flow) determines the actual path of a lot through the system. For more detail, see, e.g., 

Uzsoy et al. (1992). 

 
Planning Challenges. The focus of management in the semiconductor industry is on 

minimizing production costs and increasing productivity while improving both quality 

and delivery time performance.  Major factors affecting cost are yield, labor, materials, 

inventory, equipment and facility depreciation, and the number of starts per week (Bai 

and Gershwin 1994, Hughes and Shott 1986).  Because of the huge initial investment 

required to construct a fab, the goal is to keep it loaded at all times.  Thus, the driving 

force to date has been the manufacture of standard products in fairly high volumes.  In 

such operations, it is common to create a buffer against fluctuations in external demand 

by holding inventories of probed die, referred to as die-bank inventories, between the 

front-end and back-end operations.  Hence wafer fabs have tended to operate in a make-

to stock mode, with production lots rarely being associated with a specific customer order 

or due date.  Together with the high capital costs of equipment, this has resulted in a 

major emphasis on maintaining high throughput and equipment utilization, while 

reducing both the mean and the variance of cycle times and inventories.  This is the 

situation at the TI fab. 

 
Reentrant Flow. It is instructive to view a fab as a time-dependent multicommodity 

network where each node corresponds to a buffer in front of a machine group.  A separate 
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buffer, denoted by Wmli(t), can be defined for each product i that is active at time t and 

whose next operation at machine group m is to be performed at level l.  The “level” index 

refers to the visit number of a product to a machine group during the reentrant flow.  The 

path taken by product i during fabrication is determined by its routing, which is part of 

the input data.  The number of buffers associated with a product is equal to the number of 

steps that are required for its completion. Figure 2.1 illustrates a reentrant line with 3 

machine groups and 11 buffers for product 1, which enters the system at buffer W111.  

Finished products emerge from machine group 3 after their third visit following a wait in 

W331.  Every wafer in the line visits machine group 1 three times, machine group 2 five 

times, and machine group 3 three times according to the deterministic routing 1 → 2 → 2 

→ 2 → 3 → 3 → 2 → 1 → 1 → 2 → 3. 

 

 

Figure 2.1 Example of a reentrant production line 

 
2.2 Product Assembly and Testing (Back-end Operations) 

As yield efficiencies in front-end operations have increased, the need for improving the 

ability of back-end facilities to handle large volumes of product has increased 

accordingly.  AT outsourcing services represent a growing contribution to total industry 

revenue.  During assembly, integrated circuits are placed in plastic or ceramic packages 

that protect them from the environment.  Examples include dual in-line packages, 
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leadless chip carriers, and pin-grid arrays.  Since it is possible for a given circuit to be 

packaged in many different ways, there is an explosion of product types at this stage.  

Once the leads have been attached and the package sealed and tested for leaks and other 

defects, the product is sent to final test.  At that stage automated equipment is used to 

interrogate each integrated circuit and determine whether it meets the required 

specifications.  The goal is to ensure that customers receive a defect free product. 

Figure 2.2 depicts the major steps in back-end operations, which may include 

anywhere from 20 to 40 processes (Van Zant 2000).  Packaged chips are advanced 

through some or all of these processes before being turned out as finished goods and 

either shipped to customers or placed in inventory. Because products differ in terms of 

dimensions, consumables, and process specifications, the process flows differ from 

product to product.  

From Figure 2.2 we see that the test component collectively includes burn-in, 

electrical testing, marking/branding, baking, programming, mechanical scanning, quality 

check and packaging, in this order (Freed et al. 2006, Ovacik and Uzsoy 1996). The test-

floor can be described as a flexible flow-shop (i.e., the sequence of processing operations 

is fixed), each lot requires a unique subset of the operations (burn-in, marking, baking, 

and programming may or may not be required), and multiple machines may be eligible 

for each operation.  In some cases, these machines may not be identical with respect to 

processing rates or output quality, so there may be lot assignment preferences among the 

set of eligible machines. Yield and lead-time variability in previous stages of the 

manufacturing process (i.e., wafer fabrication and probe) result in variable lot sizes and 

lot priorities at the AT stages.  Lot priorities range from low when ample inventory exists, 

to ‘hot’ or critical when promise dates are near or orders are past due. 

 An additional concern is machine failures, which are common and unpredictable 

despite a heavy emphasis on preventive maintenance.  Failures are most likely to occur 

during a changeover between lots that have noticeably different tooling and temperature 

requirements.  Further complicating the matter is the fact that changeover durations are 

variable, significant (same order of magnitude as lot processing times), and sequence-

dependent (Freed et al. 2006).  When planning a changeover, the skill level of the 

available workers must also be taken into account.  Personnel costs can be substantial due 
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to the need for extensive training, while in some locations, labor shortages bid up wages.  

In general, the availability of skilled labor constrains throughput.  When a single worker 

is assigned to operate multiple machines, competing demand for his or her services may 

lead to lost capacity. 

 
 

 

 

 

 

 

 

 

  

 

 
Figure 2.2 High-level back-end process flow 

   
In contrast to the voluminous literature on wafer fabrication, there has been little 

research on AT operations.  Knutson et al. (1999) investigated a problem in which lots in 

an AT facility were formed to match the size of customer orders.  The authors assumed 

that all lots consisted of the same type of chip and that yield losses were zero. The 

planning horizon was set to one day and any delivery tardiness or over supply was treated 

as a penalty.  The problem was formulated as a nonlinear integer program with three 

objectives: maximize the satisfaction of customer demand, minimize the number of die 

(chips) sent to the warehouse, and minimize delivery tardiness.  To find solutions, the 

model was decomposed into two stages.  The first stage took the form of in a knapsack 

problem with the bi-objective of maximizing facility utilization and minimizing order 

tardiness.  The second stage took the form of a bin (orders) covering problem aimed at 

minimizing the number of chips sent to the warehouse.  

Song et al. (2007) applied ant colony optimization to reduce the conversion time 

of a bottleneck machine during assembly and test.  Three objectives were investigated: 
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minimization of unfilled customer demand, minimization of total number of machine 

conversions, and minimization of total conversion time.  The authors first constructed a 

unidirectional graph to represent the machine scheduling problem over the planning 

horizon.  Each node was a triplet describing the machine status in the current time 

interval.  Nodes between adjacent time intervals were connected with edges weighted by 

transition probabilities.  A path from origin to destination represented a valid machine 

schedule.  Hard constraints were addressed by assigning zero probability to some edges.  

This eliminated an undesirable machine conversion.  Soft constraints were addressed by 

penalizing violations and transition probabilities were updated each time the ants finished 

their searching. The algorithm was successfully applied at an Intel AT facility and 

achieved conversion time reductions of up to 20% compared to the manual approach then 

being used. 

Zhang et al. (2007) proposed a two-level hierarchical capacity planning 

framework to reconfigure kit components in AT operations.  The first level focused on 

midterm planning while the second level created executable plans for individual facilities.  

The authors also proposed a mixed-integer linear programming model for the first level 

problem.  The methodology was successfully applied at one of Intel’s AT sites, resulting 

in an annual $10 million saving in the purchase of kit components. 
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Chapter 3 

Chapter 3. Capacitated Clustering 

Capacitated Clustering 

 

 Clustering primarily involves the partition of objects or data points into different 

groups to optimize some weighted measure of distance between them.  A large variety of 

applications exist in such areas as manufacturing, network design, pattern recognition, 

mail delivery, habitat classification, facility location, and statistical data analysis, to name 

the most prominent (e.g., see Al-Sultan and Khan1996, Bard and Jarrah 2009, Daganzo 

2005, Kaufman and Roussweuw 1990, Laporte et al. 1989).  In some of these 

applications, the number of clusters is given while in others the objective is to find the 

minimum number that satisfies a set of knapsack-type constraints.  In this chapter, we 

address the constrained version of the problem and present a greedy randomized adaptive 

search procedure (GRASP) to find solutions.  Such procedures generally have a 

construction phase and an improvement phase (Kontoravdis and Bard 1995, 

Rojanasoonthon and Bard 2005).  In developing the methodology, we included several 

options for each of these phases that markedly improved overall performance.  For phase 

I, we designed both a heaviest weight edge algorithm and a constrained minimum cut 

scheme for constructing feasible solutions.  For phase II, we explored the use of cyclic 

neighborhood search, variable neighborhood descent (VND) (Hansen and Mladenovic 

1997, Hu et al. 2008), and a randomized version of the latter, to achieve local optimality.  

In the final step, path relinking (Glover et al. 2000) was performed on the top candidates 

to see if any better solutions could be uncovered on the paths between them. The design 

and integration of these features within a GRASP framework represents the major 

contribution of this research. 

 Although the solution methodology can be directly applied to create families of 

semiconductor devices, the specific motivation arose from our collaboration with facility 

planners at mail processing and distribution centers within the U.S. Postal Service 

(USPS).  One of their recurrent tasks is to design zones to help rationalize the bulk 

movement of mail by powered industrial vehicles (PIVs).  Over the course of the day, 

PIVs are used to transfer mail to and from the docks and between the various workcenters.  
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Each workcenter performs a specific operation such as canceling stamps, barcoding 

envelops, and sorting letters to carrier routes.  The pickup and drop off locations are 

called control points and can be regarded as fixed nodes in two-dimensional network. The 

problem of specifying the zones can be formulated as a mixed integer program.  The 

difficulty in finding optimal solutions stems from its combinatorial nature.  In our initial 

testing, we were unable to achieve convergence with CPLEX 11.0 for instances with 

more than 40 nodes.  Therefore, we took a heuristic approach.   

 The construction of PIV zones falls into the general area of capacitated clustering, 

which is further discussed in the next section along with the related literature.  In Section 

3, the mathematical formulation of the problem is given followed by our solution 

methodology which includes a reactive GRASP, two initiation procedures, our enhanced 

neighborhood search techniques, and path relinking.  In each case, the algorithm is 

described and a pseudocode is given.  To test the methodology, we randomly generated a 

large number of instances using data provided by the USPS.  The results show that high 

quality solutions can be obtained for these instances, as well as for those solved by 

Mehrotra and Trick (1998).  An assessment of the overall approach is presented in 

Section 6. 

 Various versions of the clustering problem have been extensively studied since 

the 1960s, with virtually all of them being NP-hard in the strong sense (Brucker 1978).  

Mulvey and Beck (1984) proposed one of the first models for what has become known as 

the capacity clustering problem (CCP).  In the original formulation, the objective was to 

find up to p capacitated clusters centered at a to-be-determined median such that the 

collective dissimilarity between each customer and its median is minimized.  Their 

context was sales force territory design.  In formulating the CCP, let yik = 1 if data point i 

is in cluster k and 0 otherwise, and let zk = 1 if data point k is the median of cluster k and 

0 otherwise (i = 1,…,n; k = 1,…,n).  The basic model is 
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dissimilarity measure between i and its median k.  In the expression for cik, the vector ai ≡ 

(ai1,…,ais) represents the s attributes associated with data point i (or median k when 

appropriate).  When points on a plane are being clustered, ai is the two-dimensional 

vector of their X- and Y-coordinates and cik is the Euclidean norm.  Model (1) is known as 

the p-median capacitated clustering problem (p-CCP) when Ck is homogeneous (Ahmadi 

and Osman 2005, Lorena and Senne 2004). 

 The objective function (1a) in effect minimizes the sum of the “distance” between 

each pair of data points in a cluster.  In the formulation, all n data points are candidates 

for one of the p medians.  Constraints (1b) ensure that each data point is assigned to 

exactly one cluster, and constraints (1c) limit the demand of each cluster k to its capacity 

Ck.  Constraint (1d) restricts the number of clusters created to p and is written as an 

inequality because it may not be economical to use the full capacity of the system.  

Logical restrictions are placed on the variables in (1e).  If the redundant constraints yik ≤ 

zk, (i, k = 1,…,n) are added to the model, then a stronger relaxed formulation is obtained.  

In that case, when yik is integral zk will be integral as well so the binary restriction on 

those variables can be replaced by zk ∈ [0,1], k = 1,…, n.  

A variant of model (1) known as the p-centered capacitated clustering problem (p-

CCCP) arises when the median is replaced by the centroid (Negreiros and Palhano 2006).  

This results in a nonlinear objective function because the dissimilarity weight is now cik = 

2

i k−a ζζζζ , where  ζζζζk
∈ℜs  is a free variable that locates the geometric center of the cluster.  

In either case, a wide variety of solution strategies and techniques have been developed, 
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from neural networks and genetic algorithms, to fuzzy sets, GRASP, and alternative c-

means; e.g., see Chiou and Lan (2001), and Osman and Ahmadi (2007). 

Cano et al. (2002) proposed a GRASP to solve the p-centroid uncapacitated 

clustering problem.  Since the performance of GRASP is affected by the quality of the 

partial initial solution, their first step was to generate good seed candidates, which is also 

our first step.  They then applied a probabilistic greedy Kaufman initialization in the 

construction phase (Kaufman and Roussweuw 1990).  The Kaufman procedure identifies 

p dispersed points as the cluster centroids.  In the improvement phase, the k-means 

method was used for local search.  Testing was done on eight real-world benchmark data 

sets, the largest involving 2310 data points, 19 attributes and 7 clusters.  The results 

showed that Kaufman-based procedure outperformed its counterparts such as random 

selection, Forgy’s method and MacQueen’s method [for a discussion of the 

aforementioned methods, see Hansen and Mladenovic (2001) and Kaufman and 

Roussweuw (1990)]. 

Ahmadi and Osman (2005) combined GRASP and adaptive memory 

programming to solve the p-CCCP.  The possible centers were ranked and placed on a 

fixed length restricted candidate list (RCL).  At each phase I iteration, one was selected 

randomly using a probability measure that was updated to reflect the performance of the 

elite (improving) solutions.  The updating procedure was aimed at balancing the so-called 

density and intensity of the centers.  A similar idea is applied in this chapter except that 

we use the probability measure to control the RCL length rather than to select nodes in 

phase I (cf. Prais and Ribeiro 1999).  In the improvement phase, the authors applied a 

restricted 1-interchange.  Intensification, diversification and aspiration were also 

considered by setting criteria to determine whether an improved solution should be 

placed in the elite solution pool.  Five randomly generated data sets were used to test the 

algorithm.  The largest instances contained 150 data points and 15 clusters. 

 Mehrotra and Trick (1998) used column generation and a specialized bounding 

technique to solve the maximization version of CCP.  Their pricing subproblem took the 

form of what they called a maximum weight cluster problem; a tight upper bound was 

obtained by solving a transportation problem.  Branching was governed by the Ryan-

Foster rule but it was often unnecessary to go beyond the root node due to the integrality 



20 
 

of the linear programming solution.  Testing was done on a DEC Alpha Model 300 using 

the same data sets as Johnson et al. (1993) who investigated a compiler design problem.  

The largest instance solved contained 61 nodes and 187 edges, and consumed 352 sec for 

a right-hand-side value in (1c) of Ck = 450 for all k and 394 sec for Ck = 512. 

 Barreto et al. (2006) used a sequential heuristic to find solutions to the capacitated 

location routing problem, a combination of a facility location problem and a capacitated 

vehicle routing problem.  The proposed algorithm first solves a clustering problem to 

group the customers (nodes), and then a vehicle routing problem (VRP) to obtain the 

routes that were subsequently improved by local search.  Two kinds of algorithms 

(hierarchical and non-hierarchical) and six proximity metrics (single linkage, complete 

linkage, group average, centroid measure, ward measure, saving measure) were proposed 

and tested for the clustering problem.  Optimality gaps of less than 5% were obtained, on 

average, for instances as large as 318 customers and 4 distribution centers, 150 customers 

and 10 distribution centers, and 117 customers and 14 distribution centers. 

 In the development of algorithms for the VRP, it is common to follow the logic of 

cluster first, route second.  Newell and Daganzo (1986) approached the capacitated VRP 

with a single depot by grouping the customers (nodes) into zones and visiting the nodes 

within zones in order of their longitude coordinates.  For the problems studied, the nodes 

were distributed randomly with a density function δ and the zones were constructed as 

wedge-shaped sectors elongated toward the depot.  The overall objective was to minimize 

the expected total travel distance.   

 Ouyang (2007) extended the work of Newell and Daganzo (1986) by developing a 

systematic approach to obtain an optimal zone design.  The problem studied focused on 

the construction of vehicle routing zones (VRZ) for given shape and size requirements, as 

described by Newell and Daganzo.  Initially, a set of wedge-shaped zones was created 

satisfying these requirements.  The wedges were then conformally mapped into square 

zones and a disk model was applied to obtain an approximately optimal partition.  Further 

refinements were carried out by the weighted centroidal Voronoi tessellation algorithm to 

balance the delivery loads within the zones.  From the reported computations, the 

proposed methodology was seen to outperform an adaptation of the Clarke-Wright 

heuristic with significant advantage being evidenced for large instances. 
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3.1 Mathematical Formulation 

For a given set of nodes V and connecting edges E, we wish to partition V into p clusters 

such that the sum of the “benefits” associated with the edges within each cluster is 

maximized and the sum of the node weights in each cluster falls with the interval [Cmin, 

Cmax].  For the PIV application with n control points, the problem can be modeled on a 

graph G = (V, E), where i ∈ V must appear in exactly one cluster and edge e = (i,j) ∈ E 

exists in G only if there is some flow between its endpoints i and j over the week.  In 

creating the model, we make use of the following notation. 

Indices and sets 

 k index for clusters 

 i,j indices for nodes; i,j ∈ V 

 e index for edges in G; e ∈ E 

Parameters 

 ce weight of edge e ∈ G; ce ≡ cij, where i, j ∈ V such that (i,j) = e ∈ E 

 wi weight of node i ∈ G 

 p number of clusters to be created 

 Cmax maximum permitted weight of nodes in each cluster 

 Cmin minimum required weight of nodes in each cluster 

Variables 

 xek 1 if edge e has both its endpoints in cluster k, 0 otherwise 

 yik 1 if node i is included in cluster k, 0 otherwise 

Model 

IPφ  = Maximize 
1

p

e ek
k e E

c x
= ∈

∑∑  (2a) 

subject to 
1

1
p

ik
k

y
=

=∑ ,  ∀ i ∈ V (2b) 

 xek ≤ yik, xek ≤ yjk, ∀ e = (i,j) ∈ E,  k = 1,…,p (2c) 

 xek ≥ yik + yjk – 1,  ∀ e = (i,j) ∈ E,  k = 1,…,p (2d) 
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 Cmin ≤ i ik
i V

w y
∈
∑ ≤ Cmax, ∀ k = 1,…,p (2e) 

 xek ∈ {0,1}, yik ∈ {0,1},  ∀ i ∈ V,  e = (i,j) ∈ E,  k = 1,…,p (2f) 

 
 The objective in (2a) is to maximize the sum of the edge weights within clusters, 

which is equivalent to minimizing the sum of the weights of edges between clusters.  If 

the endpoints of edge e are not in the same cluster, then the corresponding weight ce is 

not counted.  Constraints (2b) ensure that each node i is included in exactly one cluster, 

while constraints (2c) and (2d) specify that edge e = (i, j) is in cluster k if and only if both 

endpoints i and j are in cluster k.  Constraints (2e) limit the total weight of the nodes in 

cluster k to be between Cmin and Cmax.   If the node weight wi = 1 for all i ∈ V, then the 

summation i iki V
w y

∈∑ is the total number of nodes assigned to cluster k.  If (2e) is omitted, 

it is optimal to create a single cluster; i.e., all the nodes and hence edges would be in one 

cluster.  Binary restrictions are placed on all the variables in (2f). 

 Model (2) can be reduced by observing that constraints (2d) are redundant when 

the objective function is taken into account and hence can be omitted.  That is, when 

either yik or yjk is 0, xek is 0, which gives a feasible solution to (2d); when both yik and yjk 

are 1, xek will be 1 as well since the objective is to maximize the total weight.  A 

secondary consequence of this result is that, xek can be treated as a continuous variable in 

the range [0, 1].  Finally, the two-sided inequality (2e) can be simplified by introducing 

additional slack variables sk, k = 1,…, p.  With some algebra, we can rewrite (2e) as 

follows: 

 i ik
i V

w y
∈
∑ − sk � Cmin,  ∀ k = 1,…, p (2e′) 

 0 � sk ≤ Cmax – Cmin,  ∀ k = 1,…, p (2e″) 

where constraints (2e″) specify the bounds on the slack variables sk.  For other 

formulations of p-CCP, see Ferreira et al. (1998) or Mehrotra and Trick (1998). 

 
Strength of LP relaxation. When solving an integer program, the tightness of the bound 

obtained from the LP relaxation often determines the efficiency of the overall solution 

procedure.  With respect to model (2) the following results states for the nontrivial cases 

where θ ≥ 2 and n ≥ θ that this bound is arbitrarily bad. 
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Proposition 3.1 Given a completely connected graph G = (V, E) with the objective of 

partitioning the |V| = n nodes into p clusters, assume thatmod 0n p =   and let  /n n p=  

be integral for n > p ≥ 2.  If each cluster, must contain at least 1 node, then the minimum 

number of edges in a solution is min
1m  = 

2

n
p

 
× 

 
. 

Proof.  Consider a solution in which the first p − 1 clusters each contains 1 node and 

cluster p contains the remaining n − p + 1 nodes.  In this case, there are 
1

2

n p− + 
 
 

 edges 

in cluster p and 0 edges in clusters 1,…p−1. If one node is removed from cluster p and 

placed in cluster 1, then the total number of edges in the corresponding solution is 

2

n p− 
 
 

 + 1 < 
1

2

n p− + 
 
 

.  Repeating this process until all the nodes are evenly 

distributed among the p clusters gives the stated results.      � 

 
Corollary 3.1 Let modp n p= such that 0 < p  < p.  For G completely connected, the 

minimum number of edges in a clustering solution is min
1m  = 

2

n
p

 
× 

 
 + p × n . 

Proof.  Evenly divide the first 
n

p

 
 
 

 × p nodes into p clusters.  From Proposition 1, this 

gives 
2

n
p

 
× 

 
 edges.  Assign the remaining p  nodes to the first p clusters.  This 

introduces n additional edges in each of those clusters.    � 

 

Proposition 3.2 In model (2) the bounds satisfy Cmin ≤
1

i
i V

w
p ∈

 
 
 
∑ ≤ Cmax. 

Proof.  Summing up the constraints (2e) for all clusters gives pCmin ≤
1

p

i ik
k i V

w y
= ∈

∑∑ ≤ pCmax.  

The term
1

p

i ik
k i V

w y
= ∈

∑∑ =
1

p

i ik
i V k

w y
∈ =

 
 
 

∑ ∑ = i
i V

w
∈
∑ since

1

p

ik
k

y
=

∑ =1 ∀ i ∈ V.  Dividing both sides 

by p gives Cmin ≤
1

i
i V

w
p ∈

 
 
 
∑ ≤ Cmax. � 
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Corollary 3.2 Let  φLP
 be the objective function obtained by solving (2) after relaxing the 

integrality requirements on the x and y variables in (2f). Then  φLP
 = ee E

c
∈∑ . 

Proof.  Assume that xek = 1/p, yik = 1/p, ∀ e ∈ E, i ∈ V, k = 1, 2,…,p.  It can be verified 

that such LP solution is feasible to model (2) with objective function value ee E
c

∈∑ .  

Since this is the maximum can be obtained, the LP solution is optimal and  φLP
 = ee E

c
∈∑ . 

 � 

3.2 Solution Methodology 

Model (2) is a 0-1 integer linear program of size O(pn2).  For 60 data points and 5 

clusters, this translates into a problem with approximately 18,000 variables and 

constraints in the worst case, which is likely to be beyond the capability of commercial 

solvers.  Real instances are often much larger.  Our experience with CPLEX 11.0 showed 

that some instances with |V| = 40 can be solved in a matter of minutes but when |V| = 50, 

runtimes exceed 10 hours.  This is not surprising since the linear programming relaxation 

of (2) is arbitrarily bad.  By setting xek = yik = 1/p for all e, i and k, the objective function 

value in (2a) is ee E
c

∈∑ .  In addition, symmetry plays havoc during branch and bound 

because many equivalent solutions can be obtained by exchanging the cluster numbers of 

any two clusters.  This situation implies the existence of at least (p − 1)! alternative 

optima.  Also, fixing yi1 = 0 at a particular node in the search tree has very little effect 

since yik, k = 2,…,p, can still be nonzero.  

In light of these observations, we developed a reactive GRASP with the objective 

of finding high quality solutions to (2).   In phase I, good initial solutions are constructed 

in a greedy manner; in phase II, they are improved by local search.  In a post-processing 

step, a subset of the phase II solutions are assembled in what is called an elite pool and 

subject to further investigation using path relinking (PR).  When no better solutions can 

be found along the paths connecting any pair of pool members, the procedure terminates 

and the best available solution is output. 

 
3.2.1 GRASP phase I 

During construction, our first step is to initialize the p clusters.  One of two approaches is 

used: the heaviest weight edges algorithm (HWE) or the constrained minimum cut 
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algorithm (CMC).  With HWE, we identify the p nodes with the largest weights and 

assign them in turn to the p clusters. The heaviest unassigned edges incident to these 

nodes are then sequentially assigned to the corresponding clusters along with their 

endpoints.  The CMC approach makes use of a minimum cut algorithm to partition the 

graph into p clusters that satisfy the capacity lower bound Cmin.  In either case, the partial 

solutions associated with the p clusters serve as seeds.  The underlying motivation is to 

identify nodes and edges that are not likely to be in the same cluster in an optimal 

partition.  After initialization, a reactive GRASP is called to construct feasible solutions.  

The details are given below. 

 
HWE approach to the selection of p seeds 

The HWE algorithm is illustrated in Figure 3.1.  At Step 1, sets and counters are 

initialized.  At Step 2, the nodes are ordered from largest to smallest, that is, 

1 2 1n ni i i iw w w w
−

≥ ≥ ≥ ≥L , and the heaviest node is assigned to cluster 1, the next heaviest 

to cluster 2 and so on until p clusters have been initialized or until 
s ni iw w= , where s < p.  

The objective is to disperse the heaviest nodes to different clusters in order to increase the 

chance of getting a feasible solution when capacity is tight.  When 
1s s ni i iw w w

+
= = ⋅⋅⋅ = , it 

becomes more effective to assign heavy edges rather than nodes as seeds.   

 At Step 3, an additional node is assigned to those clusters that have been 

initialized, or two nodes are assigned if the cluster is empty.  In the former case, a free 

node that is the most heavily connected to the existing node is selected; in the latter case, 

the endpoint node of the heaviest free edge is assigned.  At termination, each cluster will 

contain exactly two nodes that represent a partial initial solution to the problem.  The 

complexity of the procedure is O(p∙|V|2). 

Parameters 

E0 set of unassigned edges 

V0 set of unassigned nodes 

Vk set of nodes assigned to cluster k 
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Procedure: Phase_I_Initialize_HWE(V, E, c, w, p, Cmin, Cmax, x′) 

Input: Set of nodes V, set of edges E, number of clusters p, edge weights matrix c, node 

weights vector w, and capacity bounds Cmin and Cmax 

Output: Partial initial solution x′ 

Step 1: E0 = E; V0 = V; Vk = �, k = 1,…,p; '
ikx = 0, ∀ i ∈ V, k = 1,…,p; 

Step 2: k = 1; 

 while(k ≤ p and max{wi, i ∈ V0} ≠ min{wi, i ∈ V0}){ 

 i* ∈ argmax{wi : i ∈ V0}; 

 Vk � Vk 	 { i*};  V0 � V0 \ { i*}; *
'

i k
x = 1; 

 k � k + 1; 
 } 

Step 3: for(k = 1,…,p){ 

 if(|Vk| = 0){ 

 (i*, j*) ∈ argmax{cij : i jw w+ ≤ Cmax, (i, j) ∈ E0}; 

 V0 � V0 \ { i*, j*}; Vk � Vk 	 { i*, j*}; *
'

i k
x = 1; *

'

j k
x = 1; 

 }else{//one node already exists in cluster Vk 

 j* ∈ argmax{cij : i jw w+ ≤ Cmax, i ∈ Vk, j ∈ V0}; 

 V0 � V0 \ { j*}; Vk � Vk 	 { j*}; *

'

j k
x = 1; 

 } 
 } 

Figure 3.1 Pseudocode for seed selection with HWE algorithm in phase I of GRASP 
 
 Figure 3.2 depicts the partial initial solution provided by HWE for a 9-node, 3-

cluster problem with bounds Cmin = 3 and Cmax = 5.  Assume that the node weights are w4 

= 3, w3 = 2, and wi = 1, ∀ i ∈ {1,2,5,6,7,8,9}, and that the edge weights are as shown in 

the figure.  Initially, V1 = V2 = V3 = �.  The heaviest node (node 4) is assigned to cluster 

V1, while the second heaviest (node 3) is assigned to cluster V2.  Since the remaining 

nodes all have the same weight, cluster V3 is left empty, giving V1 = {4}, V2 = {3} and V3 

= �.  In the next step, node 5 is placed into V1 since it is the most heavily connected to 

node 4, and node 2 is placed into V2 for the same reason.  Finally, edge (1,7) is assigned 
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to V3 since it has the highest edge weight among the free edges.  The algorithm ends and 

the initial partial solution is V1 = {4,5}, V2 = {2,3} and V3 = {1,7}.   

 

Figure 3.2 Example for identifying seeds with HWE 

 
Minimum cut approach to the selection of p seeds 

In this approach, we apply a constrained minimum cut scheme to partition the nodes in G 

= (V,E) into p subsets such that the sum of the node weights in each subset Vk , k = 1,…,p, 

is at least Cmin, where 
 �	��

�


� and Vk ∩ Vs = � for k ≠ s.  The heaviest edge in each 

cluster will serve as a seed while the remaining edges are removed.   

The algorithm is outlined in Figure 3.3.  The bulk of the work is done at Step 2 

with the call to CMC(Vk, Ek, C
min, w, S1, S2), which is a heuristic that divides G into two 

subsets, S1 and S2, such that the total weight of the edges between them is minimized 

while the sum of their individual node weights is at least Cmin.  The problem of finding 

the global minimum cut in a graph is a special case of model (2), that is, when p = 2, Cmin 

= 1 in (2e), and the upper bound Cmax � �∞.  The problem becomes NP-hard when Cmin 

≥ 2 and Cmax is finite. The Frank’s (1994) polynomial-time algorithm, a slight 

improvement on Nagamochi and Ibaraki’s (1992) algorithm, is applied to solve the min-

cut problem [its complexity is O(|V|⋅|E|)] even though other lower polynomial-time 

algorithms exist [e.g., Karger and Stein (1996) developed a heuristic for the min-cut 

problem with O(|V|2(log |V|)3) complexity].  Our choice was based on the fact that in 
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previous work we found Frank’s algorithm easy to implement and extremely efficient on 

similar size graphs.  

 
Procedure: Phase_I_Initialize_CMC(V, E, c, w, p, Cmin, Cmax, x′) 

Input: Set of nodes V, set of edges E, number of clusters p, edge weights matrix c, node 

weights vector w, and capacity bounds Cmin and Cmax 

Output: partial initial solution x′ 

Step 1: V1 = V, Vk = �, k = 2,…,p; '
ikx = 0, ∀ i ∈ V, k = 1,…,p; 

Step 2: while (min{|Vk| : k = 1,…,p} = 0){ 

 k* ∈ argmax{|Vk| : k = 1,…,p}; 

 //Apply constrained minimum cut heuristic to *k
V  

 call CMC( *k
V , *k

E , Cmin, w, S1, S2); // see Figure 3.4 

 *k
V = S1; 

 k* = min{k : |Vk| = 0, k = 1,…,p}; //pick the first empty cluster 

 *k
V = S2; 

 } 

Step 3: for (k = 1,…,p) { 

  //Only keeps the heaviest edge in the cluster 

  (i*, j*) ∈ argmax{cij :  � ∈ Vk, j ∈ Vk}; 

  
� � �; 
�← 
� 	 { i*, j*}; *
'

i k
x = 1; *

'

j k
x = 1; 

 } 

Figure 3.3 Pseudocode for seed selection with CMC algorithm in phase I of GRASP 

 
CMC works by first partitioning the subgraph Gk = (Vk,Ek) into S1 and S2 for the 

unconstrained case, call it UMC, and checking each subset for feasibility.  If the lower 

bound capacity constraint associated with, say S1, is violated, a node is selected from S2 

and placed in S1. At this step, the node that is most connected with the nodes in S1, as 

measured by the sum of the weights of the incident edges whose endpoints are in S1, is 

selected as long as the transfer does not violate the lower bound capacity constraint of S2.  
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The process is repeated until a feasible partition is obtained.  The procedure is outlined in 

Figure 3.4. 

The same graph used to illustrate HWE will be used to illustrate 

Phase_I_Initialize_CMC for p = 3.  At Step 1, V1 = V and CMC is called. At Step 1 of 

CMC, applying Frank’s UMC algorithm to V1 returns a minimum cut of 6 with S1 = {6}, 

S2 = {1, 2, 3, 4, 5, 7, 8, 9} and corresponding weights W(S1) = 1 and W(S2) = 11.  At Step 

2 of CMC, we have W(S1) < Cmin = 2 so a node must be transferred from S2 to S1.  The 

calculations indicate that node 9 in S2 is the most heavily connected to S1 so it is selected.  

The updated clusters are {6, 9} and {1, 2, 3, 4, 5, 7, 8}.  The operations at Step 2 stop 

since both S1 and S2 satisfy the lower bound Cmin.  Let V1 � S1, V2 � S2 and set S1 = �, 

S2 =�.  The larger set, V2, is selected for partitioning at Step 2 of Phase_I_Initialize_CMC.  

Applying the UMC algorithm at Step 1 of CMC returns a minimum cut of 3 with S1 = {1, 

7, 8} and S2 = {2, 3, 4, 5}, both of which satisfy the lower bound constraints.  Therefore, 

we put V2 � S1, V3 � S2 and set S1 = �, S2 =�.  The operations at Step 2 of 

Phase_I_Initialize_CMC terminate since all three clusters are filled.  The heaviest edge in 

each is retained and the others are removed.  The final seeds for the three clusters are V1 

= {6, 9}, V2 = {1, 7} and V3 = {3, 4}, as shown in Figure 3.5. 

 
Procedure: CMC(Vk, Ek, C

min, w, S1, S2) 

Input: Node set Vk, edge set Ek; lower bound on capacity Cmin; node weights vector w; 

edge weights matrix c  

Output: Partition of nodes into subset S1 and S2 

Step 1: Apply UMC procedure of Frank to Vk 

 call UMC(Vk, Ek, S1, S2); 

 let W(S) = i
i S

w
∈
∑ ;  

Step 2: while (min{W(S1), W(S2)} < Cmin) { 

  k1 = argmin{W(Sk) : k = 1, 2}; 

  k2 = argmax{W(Sk) : k = 1, 2}; 

  //select the most beneficial move 

  i*  = argmax
i

{ }2 2 1
1

min min, , ( ) , ( )
k

ij k k i k ij S
c i S W S w C W S w C

∈
∀ ∈ − ≥ + ≥∑ ; 
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  Put { }
2 2

*\k kS S i← ; { }
1 1

*
k kS S i← ∪ ; 

 } 

Figure 3.4 Pseudocode of CMC scheme 

 

 
Figure 3.5 Example used to illustrate CMC scheme 

 
Building the candidate list 

Two kinds of insertions are considered when building the candidate list (CL), the 

structure used in GRASP to guide the construction of feasible solutions. The first 

corresponds to an unassigned node and the second to an unassigned edge.  All feasible 

insertions are included in CL and sorted according to their contribution to the objective 

value, as measured by total edge weight that would result if the node or edge were 

actually added to a particular cluster.  Candidates that violate the upper bound Cmax are 

discarded.   

 Let I(i,k) be the increase in the objective function value  realized by inserting 

node i into cluster k and let I(e,k) be the increase realized by inserting edge e to cluster k.  

Starting with the partial initial solution shown in Figure 3.2 for Cmin = 3 and Cmax = 5, the 

full CL is given in Table 3.1.  To see how these values were calculated, consider, for 

example, edge (8,9).  If this edge were included in cluster 3, the objective value would be 

10 (that is, c18 + c78 + c79 + c89 = 2 + 1 + 3 + 4 = 10); if included in cluster 2, the objective 

value would be 7, and if included in cluster 1, the objective value would be − ∞ since 

V2 

V3 

V1 

1 

5 

6 

1 

3 

2 

2 

3 

6 

9 

5 

2 

4 

8 

7 

6 

4 

1 

2 1 

1 
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2 

1 



31 
 

this would lead to a violation of the upper bound Cmax.  Hence, cluster 3 is the first choice 

for (8,9).  This insertion would increase the cluster weight from 2 to 4, which is less than 

Cmax.  

 
Table 3.1 Example of CL 

CL 
index 

Edge e 
or node i 

Cluster 
index k 

I(e,k) or 
I(i,k) 

1 (8,9) 3 10 
2 (6,9) 3 7 
3 (8,9) 2 7 
4 (6,8) 3 5 
5 (6,9) 2 5 
6 8 3 3 
7 9 3 3 
8 9 1 2 
9 9 2 2 
10 (6,8) 2 2 
11 6 1 1 
12 6 3 1 
13 8 2 1 
14 6 2 0 
15 8 1 0 
16 (6,8) 1 − ∞ 
17 (6,9) 1 − ∞ 
18 (8,9) 1 − ∞ 

 
Self-adjusting RCL 

A fraction α of the top candidates in CL, up to some parameterized maximum number 

denoted by � �
���, are used to build RCL from which the next construction step is taken.  

The length of RCL, lRCL, is determined as follows: 

 lRCL = min {max {αlCL, 1}, � �
���}  

where lCL is the current length of CL.  The value of α in this equation is adjusted during 

the GRASP iterations according to the quality of observed solutions.  Prais and Ribeiro 

(1999) indicate that α should be within the range of (0,1] .   

Let A = {α1, α2, … ,αm} be the finite set of possible values for α and let pi be the 

corresponding probability of selecting αi, i =1,…,m.  Initially, pi is uniformly distributed: 

 pi = 1/m,  i = 1,…,m  
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To see how these probabilities are adjusted, let φ* be the best solution found in all 

previous GRASP iterations and let Ai be the average value of solutions obtained for α = αi.  

Initially, each Ai is set to the total edge weight of the graph and 20 experiments are run by 

sampling α from the above uniform distribution to get 20 additional objective function 

values.  Updating begins at this point by calculating the relative performance of the 

algorithm under αi as follows: 

 
*
i

i

A
q

δ

φ
 

=  
 

,  i = 1,…,m  

where δ is a shape parameter.  For higher values of δ, qi will be lower since Ai ≤ φ*.  

Normalizing gives 

 /
m

i i ll
p q q= ∑ , i = 1,…,m  

 When αi yields relatively high average solutions Ai, it will have a high probably pi 

of being selected as the iterations progress.  In the implementation, we followed the 

suggestions of Prais and Ribeiro and set δ =10, m = 10, and A = {0.05, 0.1, 0.15, 0.2, 0.25, 

0.3, 0.35, 0.4, 0.45, 0.5}.  

 
Phase I initial solution construction 

The partial initial solution constructed with either HWE or CMC is extended to obtain a 

feasible solution by sequentially adding nodes or edges to each of the p clusters.  Assume 

that RCL is built with length lRCL in accordance with above procedure.  Exactly one 

element is randomly selected from RCL with uniformly distributed probability.  The 

insertion corresponding to the selected element is performed to extend the current partial 

solution. 

 Again starting with the partial solution shown in Figure 3.2 and with CL given in 

Table 3.1, assume that lRCL is determined to be 6.  The corresponding RCL is given in 

Table 3.2 and is seen to contain the top 6 candidates in CL.  

 If the third element is chosen, for example, then edge (8,9) is placed in cluster 2 

and the partial solution is updated.  Now, CL is cleared and rebuilt along with RCL.  The 

procedure is repeated until all nodes are assigned to one of the p clusters. 
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Table 3.2 Example of RCL when lRCL = 5 

RCL 
index 

Edge e 
or node i 

Cluster 
index j 

I(i,j) or 
I(e,j) 

1 (8,9) 3 10 
2 (6,9) 3 7 
3 (8,9) 2 7 
4 (6,8) 3 5 
5 (6,9) 2 5 
6 8 3 3 

 
  
3.2.2 GRASP phase II 

Three types of neighborhoods are explored in phase II.  For current solution x, call them 

N1(x), N2(x) and N3(x), let Vk(x) be the nodes in cluster k, and let Wk(x) be the 

corresponding total node weight, k = 1,…,p.  A description of the neighborhoods follows.   

N1(x) (Extended node insertion) Pick a node i ∈ Vk(x) with Wk(x) − wi ≥ Cmin.  

Choose a cluster Vs(x), k ≠ s.  If Ws(x) + wi ≤ Cmax, assign i to Vs(x); otherwise, 

cluster s will exceed the upper bound.  For the later situation, pick another 

node j ∈Vs(x), i ≠ j, and cluster s1 ≠ s, such that Cmin ≤ Ws(x) + wi – wj ≤ Cmax 

and
1
( )sW x + wj ≤ Cmax.  Shift j from Vs(x) to

1
( )sV x . 

N2(x) (Extended edge insertion) Pick an edge e ∈ E with endpoints i and j.  Two 

cases may arise; either e is in some cluster Vk(x) or it spans two clusters. 

(1) If i ∈ Vk(x), j ∈Vk(x) and Wk(x) – wi – wj ≥ Cmin, then find a cluster s ≠ k 

with Ws(x) + wi + wj � Cmax and shift (i,j) from Vk(x) to Vs(x).  If no such 

s exists, then go to next e ∈ E.  If Wk(x) – wi – wj < Cmin, removing e from 

Vk(x) would violate Cmin.  In this situation stop investigating the current 

edge and go to next e ∈ E. 

(2) If e is not an edge within a cluster, let i ∈ 
1
( )kV x  and j ∈

2
( )kV x .  When 

1
( )kW x − wi ≥ Cmin and 

2
( )kW x − wj ≥ Cmin, one of the following three 

methods is used to extend the neighborhood: (i) find a set s ≠ k1, s ≠ k2 

with Ws(x) + wi + wj ≤ Cmax and shift nodes i and j to Vs(x); (ii) if 
1
( )kW x + 

wj ≤ Cmax, shift j from cluster k2 to k1; (iii) if 
2
( )kW x + wi ≤ Cmax, shift i 
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from cluster k1 to k2.  If 
1
( )kW x − wi < Cmin or 

2
( )kW x − wj < Cmin, stop and 

go to next e ∈ E. 

N3(x) (Node exchange) For nodes i ∈ Vk(x) and j ∈ Vs(x), k ≠ s, if Cmin ≤ Wk(x) – wi 

+ wj ≤ Cmax and Cmin ≤ Ws(x) – wj + wi ≤ Cmax, swap i and j.  Otherwise, go to 

next pair of nodes. 

 The complexity of constructing these neighborhoods is a function of p, |V| and |E|.  

For each case we respectively have: 

N1(x) ~ O(p2 ∙|V|2) 

N2(x) ~ O(p∙|E|) 

N3(x) ~ O(∑ |
� !"| ∙ |
# !"|
$�%#$� ) 

The corresponding pseudocodes are given from Figure A.69 to Figure A.71. 

Continuing with the example in Figure 3.2, assume that the current solution is V1 

= {4,5,9}, V2 = {2,3,8} and V3 = {1,6,7} with capacity bounds Cmin = 3 and Cmax = 5, and 

node weights w4 = 3, w3 = 2, and wi = 1, ∀ i ∈ {1,2,5,6,7,8,9}.  For neighborhood N1, the 

consequences of reassigning node 8 from cluster 2 to either cluster 1 or 3 are shown in 

Table 3.3.  If cluster 1 is the target, then one of the nodes in cluster 1 must be removed to 

avoid a violation of the capacity upper bound. 

Table 3.3 N1 neighborhood generated by shifting node 8 

Cluster to which 
node 8 is moved 

(s) 

Node to 
be shifted 

( j ′) 

Cluster to which 
node is shifted 

( '
1s ) 

Total benefit 
gained 

1 4 2 − ∞ 
4 3 −3 
5 2 0 
5 3 0 
9 2 −1 
9 3 3 

3 -- -- 3 
 
 For neighborhood N2, assume that the algorithm is investigating edge (8,9) which 

crosses clusters 1 and 2.  However, node 8 cannot be inserted into cluster 1 due to Cmax.  

Alternatively, if node 9 along is shifted into cluster 2, the total benefit gained will be 4 

and 11 if edge (8, 9) is inserted to cluster 3. 
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 For neighborhood N3, consider a swap between node 8 and some other node.  

After a simple set of calculations, we find that the best swap is between nodes 8 and 6 

with benefit 1.   

 Capacity bounds are maintained during local search to ensure feasibility.  

Although it is possible to allow infeasible solutions as a strategy to overcome local 

optimality, such an approach would greatly increase the computational effort of phase II.  

In general, the GRASP philosophy is to focus the effort on phase I, not phase II.  With 

this in mind, diversification is introduced by accepting inferior solutions that are within 

some tolerance β, a parameter that is reduced dynamically by ∆ after searching each of 

the three neighborhoods.  In the basic implementation, N1, N2 and N3 are explored 

sequentially with β starting at 1% and decreased to 0 in steps of size ∆ = 0.2%.  As β is 

reduced, the effort shifts from diversification to intensification, and when β reaches 0, no 

inferior solutions are accepted.  A summary of phase II is given in Figure 3.6.  At Step 2, 

we cycle through the neighborhoods, terminating when no improvement is possible.  This 

is called cyclic neighborhood search (CNS). 

 
Procedure: GRASP_Phase_II(x, w, c, β, ∆, Cmin, Cmax, x*) 

Input: current solution x, node weights vector w, edge weights matrix c, capacity bounds 

Cmin and Cmax, tolerance β and stepsize ∆ 

Output: local solution x* with respect to neighborhoods N1(x), N2(x) and N3(x). 

Step 1: x* = x; 

Step 2: while (β > 0) { 
 Improve the current solution by local search 

 call N1(x
*, w, c, β, Cmin, Cmax, x1); 

 call N2(x1, w, c, β, Cmin, Cmax, x2); 

 call N3(x2, w, c, β, Cmin, Cmax, x3); 

 β = β – ∆; 

 x* = x3; 
 } 

Step 3: TEW(x*) = − ∞; ( ) ( )33 1 , k

p

ijk i j V x
TEW x c

= ∈
= ∑ ∑ ; //TEW = total edge weight 

Step 4: while (TEW(x3) > TEW (x*)) { 

 x* = x3; 
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 call N1(x
*, w, c, 0, Cmin, Cmax, x1); 

 call N2(x1, w, c, 0, Cmin, Cmax, x2); 

 call N3(x2, w, c, 0, Cmin, Cmax, x3); 

 ( ) ( )*

*

1 , k

p

ijk i j V x
TEW x c

= ∈
= ∑ ∑ ; ( ) ( )33 1 , k

p

ijk i j V x
TEW x c

= ∈
= ∑ ∑  

 } 

Figure 3.6 Pseudocode for phase II of GRASP 

 
3.2.3 Basic GRASP 

Given a graph G = (V, E), a partial initial solution is constructed with either HWE or 

CMC and extended to a feasible solution using the logic surrounding RCL.  Phase II is 

then applied a predetermined number of times to improve the current solution within the 

three neighborhoods.  The best solution found is output as the optimum.  The pseudocode 

for the basic reactive GRASP is given in Figure 3.7 with the help of the following and 

aforementioned definitions. 

Parameters 

NGRASP number of iterations for GRASP 

I init indicator of approach to build partial initial solution: I init = 0 for HWE 

approach; I init = 1 for CMC approach 

iter iteration counter 

Algorithm: GRASP 

Input: set of nodes V, set of edges E, node weights vector w, edge weights matrix c, 

number of clusters p, capacity bounds Cmin and Cmax, indicator I init, number of 

iterations NGRASP 

Output:  heuristic solution xbest 

Step 1: obtained partial initial solution x′ 

 if (I i nit equals 0) { 

 call Phase_I_Initialize_HWE(V, E, c, w, p, Cmin, Cmax, x′); 

 }else{ 

 call Phase_I_Initialize_CMC(V, E, c, w, p, Cmin, Cmax, x′); 
 } 

Step 2: TEW(xbest) = − ∞;//TEW = total edge weight 
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Step 3: for (iter =1,…, NGRASP){ 

 construct CL and RCL, complete x′ to initial solution x randomly; 

 call GRASP_Phase_II(x, w, c, β, ∆, Cmin, Cmax, x*); 

 if (TEW(xbest) < TEW(x*)){ 

 xbest = x*;  

 TEW(xbest) = TEW(x*); 
 } 
 } 

Figure 3.7 Pseudocode for basic reactive GRASP 

 
3.2.4 Variable neighborhood descent 

VND is a systematic approach to exploring the various neighborhoods that define the 

local search (Hansen and Mladenovic 1997).  Say there are umax of them indexed by u and 

Nu ⊆ Nu+1, ∀ u = 1,2,…,umax−1.  VND starts by searching the first neighborhood N1 (u = 

1) and, in general, switches from the current neighborhood Nu to the next neighborhood 

Nu + 1 when Nu fails to provide an improved solution.  If a better solution is obtained from 

Nu, then VND switches back to N1.  The procedure terminates when VND reaches the 

final neighborhood
maxuN and no improvement is possible.  The last solution uncovered is 

locally optimal for all umax neighborhoods.    

 VND has been shown to be efficient in various applications (e.g., see Hu et al. 

2008).  In our case, it serves as an option in phase II to increase the performance of local 

search even though the three neighborhoods defined above are not a subset of each other 

– the usual situation in which VND is applied.  

 
3.2.5 Randomized VND 

According to our initial experiments, standard VND did not lead to a balanced 

exploration of the three neighborhoods.  Most of the effort was spent searching N1.  Even 

though local optimality is guaranteed, such a bias might delay convergence.  To address 

this issue, we adopted a probabilistic weighting scheme similar to the one used for 

constructing RCL.    

 Let pu be the probability of selecting neighborhood Nu after exploring the current 

neighborhood.  A uniform distribution for these values is assumed initially: 
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 pu = 1/umax,  u = 1,…,umax  

Also, let Bu be the total benefit gained by searching neighborhood Nu so far, with initial 

values set as follows: 

 Bu = Σe∈Ece,  u = 1,…,umax   

The neighborhood to be searched in the next iteration is randomly determined by the 

probabilities pu.  Let u* be the current neighborhood and let b be the improvement 

realized from the search.  The total benefit for*u
N is updated by putting 

 *u
B  � *u

B  + b  

 Note that it is possible for b < 0, which would indicate that a nonimproving 

solution was selected in the diversification step of phase II.  In that case,*u
B would 

decrease and make*u
N a less interesting option to explore.  When b > 0, *u

B will increase, 

suggesting that more effort should be placed on searching*u
N .  The probabilities pu are 

hence updated to take into account the relative quality of solutions found in each 

neighborhood. In particular,  

 ( )max

1
/

u

u u vv
p B B

=
= ∑ , u = 1,…,umax   

 The randomized version of VND is called RVND and is run for a predetermined 

number of iterations, Max_Iter.  In the implementation, B is set to 1000, which is large 

enough to ensure that Bu > 0, u = 1,…,umax, for the data used in the testing, and Max_Iter 

is set to 10.   

 
3.2.6 Path relinking 

During phase II, solutions that are unique are saved in a pool and sorted in descending 

order of their objective function values.  The top Nelite members of the pool are selected 

to form the elite solution set Selite.  The general idea of PR is to construct a path between 

pairs of elements in Selite to see if better solutions can be found.  As described presently, 

feasibility is maintained at each iteration, and for a problem with p clusters, at most p − 2 

distinct solutions will be uncovered along each path.  Those that are superior to their 

generators are stored temporarily and, after all original pairs are examined, are inserted 

into Selite.  At the same time, the bottom elements in Selite are removed to keep | Selite | 

constant.  The procedure ends when the maximum number of iterations, NPR, is reached 
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or Selite becomes stable, that is, the elements in Selite do not change between two 

successive iterations.  

PR was first proposed by Glover et al. (2000) and is usually combined with other 

metaheuristics (e.g., see Boudia et al. 2006).  Given the set Selite at the end of phase II, the 

first step is to select a pair of elements, say xA
 and xB, to serve as path generators.  In this 

context, xA is known as the initiating solution and xB as the guiding solution.  In 

attempting to construct a path that links xA
 to xB, let Vk(xA) be the node set for cluster k 

associated with xA and let Vs(xB) be the node set for cluster s associated with xB.  Now, 

define a similarity measure S(k, s) for Vk(xA) and Vs(xB) as follows. 

 S(k, s) = 
( ) ( )k A s B

e
e V x V x

c
∈ ∩

∑    

 The value of S(k, s) is the total weight of the common edges in Vk(xA) and Vs(xB).  

The two most similar clusters, call them kA and sB, associated with the elite solutions xA
 

and xB, are determined by 

 (kA, sB) = argmax{S(k, s) : k, s ∈ {1,…,p}}   

where ties are broken by selecting the clusters with the smallest indices. 

 Given xA and xB, define CA and CB as the sets of clusters that are fixed at some 

iteration in the procedure.  Initially, CA = � and CB = �.  A path from xA to xB is generated 

in the following manner.  First, the most similar clusters kA and sB are identified 

according to the aforementioned logic.  Cluster kA is then modified to be exactly the same 

as cluster sB by inserting and removing nodes.  The cluster to which a node is moved is 

determined by a simple local search to minimize the decrease in objective function value.  

After this operation is performed a new solution x1 emerges from xA.  The two sets CA and 

CB are updated by putting CA � CA 	{ kA} and CB � CB 	{ sB}.  Solution x1 is then 

improved to be *1x  by local search subject to the restriction that the clusters in CA are kept 

constant.  Now, starting from *1x  the process is repeated to get*
2x , and so on.  Termination 

occurs after p − 2 iterations at which time all p clusters are fixed in the sets CA and CB; 

the resulting solution is exactly the same as xB.  The path generated from xA to xB is as 

follows. 

xA � � *
2x � … *

2px −  � xB *
1x
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Finally, let { }*
*argmax ( ) : 1,..., 2kC

x TEW x k p= = −
 
be the best solution found 

along this path.  If TEW( *C
x ) > max{TEW(xA), TEW(xB)}, then it is stored and after all 

pairs of elements in Selite are examined, it is inserted into Selite.  If the capacity bounds are 

tight, it is possible that no feasible solution will be discovered between xA to xB.  In that 

case, PR fails for xA and xB, and the next pair is examined. 

 An example of path generation based on the graph in Figure 3.2 is given in Figure 

3.8.  The nodes are to be partitioned into three clusters with Cmin = 3, Cmax = 5 and w4 = 3, 

w3 = 2 and wi = 1, i ∈ {1,2,5,6,7,8,9}.  Assume that xA is {{1, 7, 8}, {2, 9, 4}, {3, 5, 6}} 

with objective function value φA = 15 and that xB is {{1, 4, 7}, {2, 5, 6}, {3, 8, 9}} with 

φB = 12.  Starting with CA = � and CB = �, the goal is to generate a path from xA to xB.  At 

Step 1 the clusters most similar with respect to solutions xA and xB are kA = 1 and sB = 1 

with S(kA, sB) = 6.  Node 8 in 1( )AV x is removed and inserted into 2( )AV x  while node 4 in 

2( )AV x  is shifted to 1( )AV x .  Call the transformed solution xC, and note that cluster 1 in xC 

is exactly the same as cluster 1 in xB; that is, 1( )CV x  = 1( )BV x .   

Next, the constant sets are updated giving CA = {1} and CB = {1}, and a local 

search is performed on xC, which results in an improved solution xC*.  At the next step, 

the most similar clusters with respect to xC* and xB are determined to be kC* = 2 and sB = 3.  

The sets CA and CB are now {1, 2} and {1, 3}, respectively.  To make cluster 2 in xC* the 

same as cluster 3 in xB, node 6 is selected and placed in *3( )
C

V x  while and node 3 is 

shifted to *2( )
C

V x .  The resulting solution is exactly the same as xB. 

 

Figure 3.8 An example of path generation 

 

φC* = 20 
kC* = 2 
sB = 3 
CA = {1,2} 
CB = {1,3} 

φC = 14 
CA = {1} 
CB = {1} 

φA = 15 
kA = 1 
sB = 1 
CA = � 
CB = � 

 1, 7, 8 

2, 9, 4 

3, 5, 6 

 1, 4, 7 

2, 9, 8 

3, 5, 6 

 1, 4, 7 

6, 8, 9 

2, 3, 5 

 1, 4, 7 

2, 5, 6 

3, 8, 9 

xA xC xC* xB 
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 The best solution found along the path is*C
x with φC* = TEW = 20.  Since φC* > φA 

and φC* > φB, xC* is outputted and stored for possible insertion into Selite.  The pseudocode 

for path generation is shown in Figure 3.9.  In our implementation, | Selite | is set to 20.  

For each pair of solutions xA ∈ Selite and xB ∈ Selite, two paths are generated, the first 

starting from xA and approaching xB and the second taking the reverse course.  For a given 

Selite, the total number of paths is O(|Selite |2).  When Selite becomes stable the best solution 

found up to that point is output. 

 A potentially inefficient aspect of PR is the application of local search to each 

solution encountered along a path.  Empirically, we found that a complete local search 

(CLS) strategy may affect the solution quality only locally within the same basin of 

attraction.  In addition, the current solution may have been uncovered previously so 

applying local search a second time is wasteful.  One way to reduce the computational 

effort is to apply local search only after encountering nPR solutions along a path, where 

nPR is a parameter adjusted according to the solution quality.  This strategy is referred to 

as partial local search (PLS) to distinguish from CLS.  For p clusters, nPR ∈ {1, 2,…, 

p−2}, where nPR = 1 indicates that local search is applied to each solution in the path, nPR 

= 2 indicates that it is applied to every second solution, and so on.  Note that there are at 

most p solutions along a path including the initiating solution and the guiding solution. 

Because both of these are already locally optimal, nPR ≤ p−2. 

 The value of nPR is randomly selected at the beginning of each path.  The 

probability function used for this purpose is based on a performance measure Pi(n
PR), 

which is defined as the average objective function value over a path when the frequency 

of applying local search was nPR; that is, 

PFi(n
PR) = { } { }PR PR

1 1

mod mod
i iN N

ij
j j

I j n A I j n
= =

∑ ∑  

where i is the index for path, Ni is the number of solutions discovered along path i,  j is 

the index for the solutions discovered on a path, Aij is the objective value of the jth 

solution discovered on path i and { }PRmodI j n is a Boolean indicator function equals to 

1 when (j mod nPR) = 0 (i.e., <true>) and 0 otherwise.  The summation { }PR

1
modiN

j
I j n

=∑
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counts the total number of times local search is applied while exploring path i.  If nPR is 

not selected for path i, then Pi(n
PR) = 0. 

Next, we compute the accumulated performance, denoted by AP(nPR), for a 

particular value of nPR by summing over all the paths already generated. 

 AP(nPR) = PR

1

( )
curn

i
i

P n
=
∑  

Here, ncur is the number of paths that have been explored up to and including the current 

path.   

At the beginning of PR, the probability p(nPR) of selecting a particular value of 

nPR ∈ {1, 2,…, p−2} is assigned a uniform distribution; that is, 

 p(nPR) = 1/(p−2) 

After exploring a path, this function is updated as follows. 

 p(nPR) =
PR

2
PR PR

1

( ) ( )
p

n

AP n AP n
−

=
∑  

Thus, values of nPR corresponding to higher accumulated performance will have a higher 

probability of being selected. 

 
Procedure: path_generation(w, c, Cmin, Cmax, nPR, xA, xB, x*) 

Input: node weights vector w, edge weights matrix c, capacity bounds Cmin and Cmax, PLS 

parameter nPR, initiating solution xA, guiding solution xB 

Output: best solution x*found along the path from xA to xB 

Step 1: CA = �;  CB = �;  TEW* = − ∞;  r = 1; 

Step 2: while (xA is not the same as xB) { 

 (kA, sB) = argmax{S(k, s) : k, s ∈ {1,…,p}};  

 make ( )
Ak AV x the same as ( )

Bs BV x by inserting and removing nodes so that 

xA becomes xr; 

 // keeping the clusters k ∈ CA constant, if the PLS condition is satisfied 

then apply local search to xr in an attempt to obtain a better solution*
rx  

 if (r mode nPR + 1 equals to 0) { 

 call N1(xr, w, c, 0, Cmin, Cmax, x);  xr
 = x; 

 call N2(xr, w, c, 0, Cmin, Cmax, x);  xr
 = x; 
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 call N3(xr, w, c, 0, Cmin, Cmax, *
rx );  

 } 
 if (TEW( *

rx ) > TEW*) { 

 TEW* = TEW( *
rx );  x* = *

rx ; 
 } 
 xA = *

rx ;  r � r + 1;  

 } 

Figure 3.9 Pseudocode for path generation 

 
3.3 Computational Results 

The proposed methodology was implemented in C++ and run under Ubuntu Linux on a 

Dell Poweredge 2950 workstation with  2 dual core hyperthreading 3.73 GHz Xeon 

processors and 8 GB memory.  In the testing, model (2a) − (2f) was solved, both 

heuristically with the reactive GRASP and directly with CPLEX 11.0 when possible.  A 

comparison of the results gives insight in the quality of the GRASP solutions as well as 

the limits of CPLEX. 

The following settings were used for the GRASP. 

• Both HWE and CMC schemes were applied in phase I to construct partial initial 

solutions but in separate runs to allow for comparison 

• Initial value of diversification parameter: β = 0.01 with ∆ = 0.002 in phase II 

• Three options were examined for local search: (1) CNS; (2) VND; (3) RVND 

• Number of GRASP iterations:  NGRASP = 5 × ntest with ntest being the number of 

nodes in the tests (experience has shown that the best solution is most often 

uncovered within the first 150 GRASP iterations; e.g., see Rojanasoonthon and 

Bard 2005) 

• In PR, the maximum number of iterations is NPR = 50, the number of elite 

solutions maintained is | Selite | = 20 

After some experimentation, the following settings were used for CPLEX. 

• Cut generators off 

• Emphasis of feasibility over optimality 

• Optimality tolerance EpOpt = 1E−04. 
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• Default frequency for MIP heuristics 
 

In the experiments, the methodology was tested on three data sets.  The first 

contained relatively small instances that were randomly generated based on data provided 

by the USPS.  A single seed was used for each instance.  The second contained instances 

that reflected the full USPS problem.  The third were obtained from Mehrotra and Trick 

(1998).  In the next section, we outline the USPS application and describe how the node 

and edge weights were specified.  

 
3.3.1 USPS application related to clustering control points 

The cost of running a mail processing and distribution center (P&DC) is determined in 

part by the size and composition of the workforce.  One of management’s goals is to use 

as few powered industrial vehicles (PIVs) or drivers as possible to move the mail 

between workcenters, so restricting the number of control points (workcenters) that a 

driver can service would be suboptimal.  However, to facilitate supervision and to avoid 

violating union rules, control points are first clustered into zones and then the minimum 

number of PIVs required to service each zone is determined.  In the clustering step, it is 

necessary to take into account such factors as distance between nodes and transfer 

frequencies.  Two nodes are likely to be grouped together if they are directly linked in the 

process flow, are relatively close to each other, and one is a frequent terminal point of the 

other.   

In the clustering model, it is necessary to specify a measure that numerically 

captures these characteristics.  Such a measure can be viewed as the edge weights, cij, 

connecting pairs of nodes i and j in a directional graph.  For the test cases, we used the 

following formula to determine these weights. 

 cij = max
ij ji

ij

f f
d

d

+
×    

The parameter fij in this equation denotes the frequency of travel from node i to node j 

over the planning horizon  The numerator represents the traffic intensity, the denominator, 

dij, the length of edge (i,j), and the parameter dmax the maximum edge length in the graph, 

that is, dmax = max{dij : (i,j) ∈ E}.  This value is used to normalize the distance dij.  If the 

demand between two nodes i and j is high and they are close together, then the 
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corresponding edge weight will have a relatively high value so the two nodes would 

likely be in the same optimal partition.   

 P&DCs typically have between 80 and 90 control points, each of equal weight 

from management’s point of view, so we set wi = 1, ∀ i ∈ V.  In the planning stage, the 

number of clusters is specified by the facility manager taking into account the daily 

volume, the building’s footprint, the equipment layout, and the various components of the 

material handling system.  In addition to PIVs, which consist of tugs and forklifts, 

facilities use fixed conveyers, rolling carts, and an assortment of other mechanisms for 

material handling.  Mathematically, the problem is equivalent to model (2).  

 
3.3.2 Random test instances 

Instances of practical size cannot be solved optimally with commercial codes so to test 

our methodology, we randomly generated a series of data sets based on the characteristics 

of the Chicago P&DC.  This involved the following steps. 

(1) Let V be the set of control points in the original P&DC data set and let E be the 

corresponding set of edges.  Define the density γ  of the underlying graph as 

 γ  = CE E  

where |EC| is the number of edges when the graph is completely connected.  For 

the given data, the density γ is approximately 0.1626. Also, let cmax and cmin be the 

maximum and minimum edge weights, respectively; that is, cmax = max{cij, (i, j) ∈ 

E} and cmin = min{cij, (i, j) ∈ E}. 

(2) Randomly select ntest nodes from the original P&DC data set.  Let Vtest be the 

corresponding set of nodes and fix wi = 1, ∀ i ∈ Vtest.  The number of edges in the 

completely connected test graph is test test test
C ( 1) 2E n n= − . 

(3) Define m = ( )test test
C2 E nγ⋅ ⋅ .  The product test

CEγ ⋅
 
is the number of edges in the 

test graph that should be generated to maintain the same density, and m is the 

average number of edges incident to each node in the test graph.  In our procedure 

we aim for m    rather than m incident edges.  For example, if ntest = 25 and γ  = 
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0.1626, then test
CE = 300 and m    = 3.9    = 3, which means that on average 

each node is connected to 3 other nodes. 

(4) Let Etest be the edge set of the test instance, where initially, Etest = �.  For each 

node i ∈ Vtest, let Ni be the set of nodes already connected to i and to begin, set Ni 

= �.  If |Ni| ≥ m   − 1, go to next node i in Vtest.  Otherwise, let pj, ∀ j ∈ Vtest \ Ni, j 

≠ i, be the probability for a node j to be connected to node i.  This probability is 

computed as the ratio of the remaining number of nodes to be connected to i 

divided by the number of unassigned nodes: ( ) ( )test| | | | 1j i ip m N n N= − − −   .  

If j is selected, Ni ← Ni 	 { j}, Etest ← Etest 	 {( i, j)}.  The edge weight cij is 

uniformly generated from the interval [cmin, cmax].   

 
3.3.3 Comparison of GRASP and PR with CPLEX 

In the first experiments, we compared the reactive GRASP to CPLEX using the different 

phase I and phase II options for instances with ntest = 30 nodes and p = 5 clusters.  Ten 

instances were randomly generated in accordance with the above scheme with bounds 

Cmin = 5 and Cmax = 8.  The model was built with CPLEX 11.0 Concert Technology 

version 25 and contained 2330 variables and 4386 constraints.  The number of GRASP 

iterations was set to NGRASP = 5 × ntest = 150, and was followed by PR in all cases with 

either CLS or PLS.  Finally, a 3600 sec time limit was placed on all CPLEX runs. 

 The results are summarized in Table 3.4.  The second column lists the density of 

the realized graph, γtest = test test
CE E .  The third and fourth columns give the results for 

the two combinations (HWE, CNS) and (CMC, CNS).  The upper row values report the 

best solutions found by GRASP for the corresponding pair.  The lower values in 

parentheses report the iteration number at which the best solutions were first discovered.  

Columns 5 and 6 give equivalent results for (HWE, VND) and (CMC, VND), while 

columns 7 and 8 report the results for (HWE, RVND) and (CMC, RVND).  With the 

exception of problem no. 3 for combination (CMC, RVND), GRASP found identical 

solutions with the various phase I and phase II options.  Average runtimes, tavg, over the 

six scenarios are given in column 9.   
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The results from PR with CLS are reported in columns 10 and 11 while the results 

from PR with PLS are reported in columns 12 and 13.  It can be seen that PLS achieves 

the same solutions as CLS but is less time with the exception of problem no. 8.  Other 

than for problem no. 3, PR could not improve the GRASP solutions since they are 

optimal.  This is confirmed by the results from CPLEX given in columns 14 and 15.  The 

last column provides the gap between the PR solution and the CPLEX solution, [(φPR − 

φCPLEX) /φCPLEX] × 100%, which is zero for all cases.  

Table 3.5, which is derived from Table 3.4, compares the average performance of 

the six phase I – phase II combinations.  For j = 1,…,6, let  j = 1 indicate (HWE, CNS), j 

= 2 indicate (HWE, VND), j = 3 indicate (HWE, RVND),  j = 4 indicate (CMC, CNS), j 

= 5 indicate (CMC, VND), and j = 6 indicate (CMC, RVND).  Define the average error ej 

for combination j as follows 

( )
test

test
1

1
100% ,   1,...,6

N
PR GRASP PR

j ij i i
i

e j
N

φ φ φ
=

 = − × ∀ = ∑  

where Ntest = 10 is the number of instances, GRASP
ijφ is the best solution found by GRASP 

only with combination j for instance i, and CPLEX
iφ is the best solution found by CPLEX 

for the instance.  The average error ej measures the improvement from PR over the 

GRASP solutions in all instances for combination j.  The higher ej , the more 

improvement attained with PR.   

The second column in Table 3.5 shows the average number of iterations needed to 

obtain the best solution for (HWE, CNS) and (CMC, CNS), respectively.  The values 

were calculated by averaging the number of iterations inside parentheses in column three 

for (HWE, CNS) and column four for (CMC, CNS) in Table 3.4.  The third column gives 

the average errors of (HWE, CNS) and (CMC, CNS), respectively.  The next columns 

report the same statistics for the remaining combinations.  As mentioned, GRASP found 

the optimal solutions with ej = 0.00, ∀ j = 1,…,5 except for the last combination (CMC, 

RVND), e6 = 0.02.   

Applying HWE in phase I required a greater number of iterations on average than 

CMC to find the best solutions no matter which option was applied in phase II.  When the 
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phase I option was fixed, VND required more iterations than its two counterparts, which 

performed equally well. 

The second set of initial experiments was performed on a 40-node graph for p = 5 

clusters with bounds Cmin = 5 and Cmax = 9.  Model (2) contained 4105 variables and 

7846 constraints for each of the 10 instances investigated, and NGRASP = 200 iterations.  

Once again, all instances were generated randomly from the USPS data.   

The results are summarized in Table 3.6.  All the GRASP − PR runs consumed 

much less time than CPLEX as can be seen in columns 9, 11 and 13.  For problem nos. 1, 

3, 4, 5, 7 and 8, CPLEX converged to the optimum; for the remaining instances the 1-

hour time limit was reached before optimality could be confirmed.  For the GRASP, PR 

improved the phase II solutions in some cases, especially when VND was applied.  In all 

cases, CLS and PLS achieved identical solutions but PLS required slightly less time.  In 

addition, GRASP with PR invariably provided equivalent or better solutions than CPLEX 

in much less of time.   

The average performance of the phase I – phase II combinations for the 40-node 

instances is reported in Table 3.7.  For a given phase I option, RVND required the least 

number of iterations, followed by CNS and then VND.  In addition, the average error was 

highest for VND, while the errors for CNS and RVND were roughly the same.  When 

either CNS or VND was applied in phase II there was little difference with respect to 

HWE and CMC.  However, when RVND was applied, CMC required 37% fewer 

iterations than HWE on average. 

The third set of initial experiments was performed on a 50-node graph with p = 5, 

Cmin = 5 and Cmax = 12.  The optimization model contained 6380 variables and 12306 

constraints, while the number of GRASP iterations NGRASP = 250.  Again, ten instances 

were randomly generated from the original USPS data following the aforementioned 

scheme. 

The results are reported in Table 3.8.  All of the GRASP runs finished within 10 

sec while the PR runs finished within 30 sec.  In all cases, the PR solutions were better 

than those provided by CPLEX except for problem no. 5 where they were identical.  Note 

that CPLEX was never able to converge but always found feasible solutions within the 

allotted time. 
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Table 3.4 Computational results from GRASP and CPLEX for ntest = 30, p = 5, Cmin = 5 and Cmax = 8 

Prob  
no. γtest 

GRASP CPLEX 

Opt 
 gap 
(%) 

GRASP solution PR solution Best  
solution  
found 

Time 
(sec) 

CNS VND RVND tavg 

(sec) 
PR+CLS 

best 
tavg 

(sec) 
PR+PLS 

best 
tavg 

(sec) HWE CMC HWE CMC HWE CMC 
1 0.1908 618.97 

(1) 
618.97 
(12) 

618.97 
(7) 

618.97 
(12) 

618.97 
(12) 

618.97 
(11) 

1 618.97 5 618.97 3 618.97 10 0.00 

2 0.1977 691.49 
(27) 

691.49 
(2) 

691.49 
(26) 

691.49 
(15) 

691.49 
(16) 

691.49 
(19) 

1 691.49 4 691.49 3 691.49 35 0.00 

3 0.1747 667.09 
(18) 

667.09 
(3) 

667.09 
(18) 

667.09 
(3) 

667.09 
(3) 

665.48 
(7) 

1 667.09 
 

4 667.09 
 

3 667.09 21 0.00 

4 0.1839 680.54 
(6) 

680.54 
(12) 

680.54 
(37) 

680.54 
(17) 

680.54 
(1) 

680.54 
(14) 

1 680.54 
 

4 680.54 
 

4 680.54 13 0.00 

5 0.1609 569.67 
(3) 

569.67 
(8) 

569.67 
(3) 

569.67 
(1) 

569.67 
(34) 

569.67 
(6) 

1 569.67 
 

7 569.67 
 

2 569.67 18 0.00 

6 0.1793 642.67 
(5) 

642.67 
(1) 

642.67 
(3) 

642.67 
(8) 

642.67 
(4) 

642.67 
(1) 

1 642.67 
 

4 642.67 
 

1 642.67 29 0.00 

7 0.1678 618.25 618.25 618.25 618.25 618.25 618.25 1 618.25 3 618.25 3 618.25 6 0.00 
  (5) (1) (15) (11) (22) (8)         
8 0.1609 628.91 628.91 628.91 628.91 628.91 628.91 1 628.91 2 628.91 4 628.91 7 0.00 
  (1) (19) (3) (10) (4) (2)         
9 0.1540 544.62 544.62 544.62 544.62 544.62 544.62 1 544.62 3 544.62 1 544.62 5 0.00 
  (38) (13) (52) (74) (21) (2)         

10 0.1609 598.66 598.66 598.66 598.66 598.66 598.66 1 598.66 4 598.66 2 598.66 4 0.00 
  (3) (14) (6) (5) (4) (2)         
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Table 3.5 Average performance for different phase I and phase II combinations with ntest 
= 30, p = 5, Cmin = 5 and Cmax = 8 

Phase I 

Phase II 
CNS VND RVND 

Avg.  
number  
of iter. 

Avg.  
error 

ej 
(%) 

Avg.  
number  
of iter. 

Avg.  
error 

ej 
(%) 

Avg.  
number  
of iter. 

Avg.  
error 

ej 
(%) 

HWE 10.7 0.00 17.0 0.00 12.1 0.00 
CMC 8.5 0.00 15.6 0.00 7.2 0.02 

 

The average performance of GRASP is reported in Table 3.9 for the 50-node instances.  

The average error ej > 0, j = 1,…,6, which means that PR found improved solutions for 

all combinations.  When the phase I option was fixed, VND had the highest error, 

followed by CNS and RVND.  For CNS and VND in phase II, the errors from HWE and 

CMC were nearly identical.  When RVND was applied, the error from HWE was less 

than half of the error from CMC.  With respect to the average number of iterations, VND 

and RVND performed equally well, while CNS required the least number of iterations no 

matter which option was used in phase I.   

 In the fourth set of initial experiments we investigated the performance of GRASP 

and PR as the number of clusters p was varied from 2 to 10 for the same 30-node graph 

associated with problem no. 1 in Table 3.4.  The bounds were set to be Cmin = 2 and Cmax 

= 15 to reduce their effect on the computations.  The results were reported in Table 3.10 

and were similar to those already discussed.  In all cases, the optimal solution was found 

by GRASP and CPLEX, but runtimes differed markedly.  GRASP with PR were quite 

stable no matter which combination was used but CPLEX had increasing difficulty as the 

number of clusters increased.    

 In the fifth set of initial experiments, a parametric analysis was performed on the 

bounds for p = 5 fixed.  The bounds [Cmin, Cmax] were initially set to [2, 10] and then 

modified in even steps to reach [6, 6].  The results were reported in Table 3.11.  For all 

runs, GRASP with PR was able to find the same optimum obtained by CPLEX but in 

considerably less time.  Similar to the fourth set of experiments, the performance of 

GRASP was insensitive to the bounds while CPLEX had more difficulty as the range 

shrank.   
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Table 3.6 Computational results from GRASP and CPLEX for ntest = 40, p = 5, Cmin = 5 and Cmax = 9 

Prob  
no. γtest 

GRASP CPLEX 

Opt 
 gap 
(%) 

GRASP solution PR solution Best  
solution  
found 

Time 
(sec) 

CNS VND RVND tavg 
(sec) 

PR+CLS 
best 

tavg 
(sec) 

PR+PLS 
best 

tavg 
(sec) HWE CMC HWE CMC HWE CMC 

1 0.1782 1043.77 
(2) 

1043.77 
(13) 

1043.77 
(41) 

1043.77 
(4) 

1043.77 
(17) 

1043.77 
(15) 

1 1043.77 10 1043.77 9 1043.77 693 0.00 

2 0.2013 1127.87 
(72) 

1127.83 
(15) 

1127.87 
(16) 

1127.87 
(1) 

1127.87 
(11) 

1127.87 
(45) 

1 1127.87 10 1127.87 7 1127.87 3600 0.00 

3 0.1923 1169.84 
(14) 

1169.84 
(29) 

1169.84 
(182) 

1158.21 
(54) 

1169.84 
(44) 

1169.84 
(8) 

1 1169.84 
 

16 1169.84 7 1169.84 3260 0.00 

4 0.1910 1148.93 
(73) 

1148.93 
(42) 

1148.93 
(144) 

1148.93 
(155) 

1148.93 
(121) 

1148.93 
(20) 

1 1148.93 
 

9 1148.93 7 1148.93 1073 0.00 

5 0.2026 1124.71 
(104) 

1125.80 
(128) 

1125.80 
(46) 

1125.80 
(52) 

1125.80 
(10) 

1125.80 
(47) 

3 1125.80 
 

11 1125.80 8 1125.80 518 0.00 

6 0.2090 1154.98 
(77) 

1158.93 
(60) 

1158.93 
(134) 

1158.93 
(73) 

1158.93 
(145) 

1158.93 
(37) 

4 1158.93 
 

13 1158.93 11 1154.98 3600 0.34 

7 0.1872 1065.31 1065.31 1059.64 1062.86 1065.31 1064.30 1 1065.31 9 1065.31 9 1065.31 1420 0.00 
  (7) (61) (120) (191) (12) (23)         
8 0.1846 1166.05 1166.05 1166.05 1166.05 1166.05 1166.05 1 1166.05 13 1166.05 9 1166.05 702 0.00 
  (11) (41) (11) (79) (2) (31)         
9 0.1833 1096.67 1096.67 1096.67 1096.67 1096.67 1096.67 1 1096.67 7 1096.67 5 1096.67 3600 0.00 
  (44) (13) (36) (16) (6) (15)         

10 0.1846 1150.02 1150.02 1150.02 1150.02 1150.02 1150.02 1 1150.02 10 1150.02 8 1150.02 3600 0.00 
  (6) (30) (6) (9) (14) (7)         
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Table 3.7 Average performance for different phase I and phase II combinations with ntest 
= 40, p = 5, Cmin = 5 and Cmax = 9 

Phase I 

Phase II 
CNS VND RVND 

Avg.  
number  
of iter. 

Avg.  
error 

ej 
(%) 

Avg.  
number  
of iter. 

Avg.  
error 

ej 
(%) 

Avg.  
number  
of iter. 

Avg.  
error 

ej 
(%) 

HWE 41.0 0.01 73.6 0.05 38.2 0.00 
CMC 43.2 0.00 63.4 0.12 24.8 0.01 

 

3.3.4 Application of GRASP and PR to the complete USPS dataset 

In the second set of tests, we applied GRASP with PR using PLS to the full USPS dataset, 

which has 82 nodes and 540 edges (i.e., testV  = 82 and testE  = 540).  The bounds were 

set as follows: Cmin = 10 and Cmax = 20.  The goal was to investigate the six combinations 

of phase I and phase II options for a range of p values.  In each run, the number of 

GRASP iterations NGRASP = 410. 

The results are reported in Table 3.12 for p ∈ {5, 6, 7, 8}.  The first column gives 

the number of clusters p.  The second column indicates the options used for GRASP. The 

third column, φbest, is the best solution found by GRASP and PR. The fourth column 

indicates the improvement achieved by PR.  In column 5, the value ibest denotes the 

iteration at which the best solution was first found by GRASP.  If ibest = NGRASP, the best 

solution was found by PR.  The column labeled tbest reports the amount of time spent to 

find the best solutions while the column toverall gives the combined runtime of GRASP 

and PR.  For problems with 5, 6 or 8 clusters, the same objective function values were 

found for all six options.  For p = 7, the best solutions were found under different 

combinations.  In 12 out of the 18 instances associated with the datasets for p = 5, 7, 8 

clusters, PR improved the GRASP solutions by up to 1.15%; for p = 6, PR offered no 

improvement.  In all cases, runtimes were well under 200 sec. 
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Table 3.8 Computational results from GRASP and CPLEX for ntest = 50, p = 5, Cmin = 5 and Cmax = 12 

Prob  
no. γtest 

GRASP CPLEX 

Opt 
 gap 
(%) 

GRASP solution PR solution Best  
solution  
found 

Time 
(sec) 

CNS VND RVND tavg 
(sec) 

PR+CLS 
best 

tavg 
(sec) 

PR+PLS 
best 

tavg 
(sec) HWE CMC HWE CMC HWE CMC 

1 0.1845 1639.22 
(59) 

1634.33 
(5) 

1631.77 
(244) 

1633.35 
(155) 

1639.22 
(39) 

1639.22 
(30) 

1 1639.22 20 1639.22 19 1602.56 3600 2.29 

2 0.1869 1685.68 
(176) 

1685.68 
(98) 

1685.68 
(27) 

1685.68 
(40) 

1685.68 
(139) 

1685.68 
(11) 

5 1685.68 11 1658.68 18 1646.34 3600 2.39 

3 0.1714 1560.56 
(155) 

1550.17 
(80) 

1549.55 
(143) 

1550.17 
(37) 

1560.56 
(43) 

1556.19 
(238) 

5 1560.56 
 

25 1560.56 12 1491.93 3600 4.60 

4 0.1706 1677.50 
(4) 

1679.90 
(29) 

1678.02 
(20) 

1678.02 
(125) 

1679.90 
(67) 

1679.90 
(7) 

7 1679.90 
 

29 1679.90 32 1647.10 3600 1.99 

5 0.1665 1637.83 
(4) 

1640.17 
(90) 

1640.17 
(32) 

1640.17 
(180) 

1640.17 
(67) 

1640.17 
(198) 

7 1640.17 
 

23 1640.17 13 1640.17 3600 0.00 

6 0.1837 1658.19 
(55) 

1662.09 
(203) 

1658.19 
(148) 

1658.19 
(37) 

1662.09 
(212) 

1658.43 
(246) 

2 1662.09 
 

20 1658.19 10 1615.09 3600 2.91 

7 0.1796 1670.81 1670.81 1669.95 1670.81 1670.81 1670.81 1 1670.81 12 1670.81 9 1624.56 3600 2.85 
  (47) (182) (161) (103) (56) (169)         
8 0.1682 1640.90 1646.57 1644.53 1646.57 1646.57 1646.57 7 1651.09 25 1651.09 11 1594.65 3600 3.54 
  (57) (104) (63) (160) (206) (144)         
9 0.1641 1648.39 1648.39 1648.39 1648.39 1648.39 1648.39 1 1648.39 11 1648.39 12 1643.22 3600 0.31 
  (12) (66) (175) (204) (29) (42)         

10 0.1747 1690.22 1690.22 1690.22 1671.89 1690.22 1690.22 2 1690.22 21 1690.22 13 1650.11 3600 2.43 
  (60) (22) (72) (67) (207) (25)         
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Table 3.9 Average performance for different phase I and phase II combinations with ntest 
= 50, p = 5, Cmin = 5 and Cmax = 12 

Phase I 

Phase II 
CNS VND RVND 

Avg.  
number  
of iter. 

Avg.  
error 

ej 
(%) 

Avg.  
number  
of iter. 

Avg.  
error 

ej 
(%) 

Avg.  
number  
of iter. 

Avg.  
error 

ej 
(%) 

HWE 62.9 0.11 108.5 0.20 106.5 0.03 
CMC 87.9 0.12 110.8 0.27 111.0 0.08 

 

3.3.5 GRASP performance on the benchmark problems 

In the final set of experiments, GRASP with PR was applied to a set of six benchmark 

instances with known optimal values.  The datasets were provided by Mehrotra and Trick 

(1998) who solved each of them on a DEC ALPHA 3000 (Model 300) workstation with 

150 MHz Alpha 21064 CPU using CPLEX 2.1 as the linear programming solver.  The 

largest dataset contains 61 nodes and 187 edges.  In their runs the number of clusters was 

not specified, so to duplicate that scenario, we set p = 12, a high enough value to ensure 

that we would always have a sufficient number of clusters.   

The results for option (HWE, RVND) with PR and PLS activated are reported in 

Table 3.13 along with the optimal solutions for two sets of runs, the first with Cmin = 0, 

Cmax = 450 and the second with Cmin = 0, Cmax = 512.  The number of iterations, NGRASP, 

was set to 250 in all cases.  Our best solutions φbest are given in columns 4 and 10, the 

iteration number at which the best solution ibest was first encountered is given in columns 

5 and 11, the corresponding runtimes tbest are given in columns 6 and 12, and the total 

runtimes toverall are given in columns 7 and 13.   

From the table, we can see that our methodology finds the exact optimum in all 

cases except the last in considerably less time than reported by Mehrotra and Trick. This, 

of course, is not surprising since we are using a much faster machine.  Scaling runtimes, 

however, indicates that their algorithm is competitive with ours and so may be preferred 

for instances of the size investigated their study since it guarantees optimality.  

Nevertheless, it is difficult to compare performance of exact and heuristic methodologies, 

especially across different platforms.  To a large extent the computational effort of any 

metaheuristic such as GRASP is proportional to the number of iterations, NGRASP here, 
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specified at the outset.  A final point about the results is that PR only improved the 

GRASP solution for the largest instance.   
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Table 3.10 Computational results from GRASP and CPLEX for ntest = 30, Cmin = 2 and Cmax = 15 

Number 
of 

clusters 
p 

GRASP CPLEX 

Optimality 
gap 
(%) 

GRASP soln PR soln Best  
soln  

found 
Time 
(sec) 

CNS VND RVND Time 
(sec) 

PR 
optimum 

Time 
(sec) HWE CMC HWE CMC HWE CMC 

2 824.26 
(5) 

824.26 
(1) 

824.26 
(5) 

824.26 
(1) 

824.26 
(8) 

824.26 
(1) 

< 1 824.26 < 1 824.26 < 1 0.00 

3 797.22 
(2) 

797.22 
(11) 

797.22 
(5) 

797.22 
(11) 

797.22 
(3) 

797.22 
(6) 

< 1 797.22 1 797.22 < 1 0.00 

4 769.15 
(1) 

769.15 
(1) 

769.15 
(12) 

769.15 
(45) 

769.15 
(2) 

769.15 
(1) 

< 1 769.15 
 

1 769.16 3 0.00 

5 734.15 
(12) 

734.15 
(68) 

730.01 
(75) 

730.71 
(111) 

734.15 
(81) 

733.85 
(17) 

< 1 734.15 
 

2 734.15 9 0.00 

6 709.38 
(12) 

709.38 
(30) 

709.38 
(10) 

709.38 
(24) 

709.38 
(31) 

709.38 
(10) 

1 709.38 
 

2 709.38 24 0.00 

7 685.51 
(1) 

685.51 
(19) 

685.51 
(46) 

685.51 
(2) 

685.51 
(8) 

685.51 
(9) 

< 1 685.51 
 

1 685.51 48 0.00 

8 655.70 655.70 655.70 655.70 655.70 655.70 < 1 655.70 1 655.70 59 0.00 
 (27) (1) (21) (64) (7) (1)       
9 611.23 611.23 611.23 603.96 611.23 611.23 < 1 611.23 1 611.23 627 0.00 
 (4) (27) (1) (125) (6) (31)       

10 549.02 549.02 549.02 538.07 549.02 549.02 < 1 549.02 3 549.02 700 0.00 
 (65) (21) (54) (32) (16) (22)       
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Table 3.11 Computational results from GRASP and CPLEX for ntest = 30, p = 5 

Capacity 
 lower  
bound 
Cmin 

Capacity 
 upper  
bound 
Cmax 

GRASP CPLEX 

Optimality 
gap 
(%) 

GRASP soln PR soln Best  
soln  

found 
Time 
(sec) 

CNS VND RVND Time 
(sec) 

PR 
optimum 

Time 
(sec) HWE CMC HWE CMC HWE CMC 

2 10 679.76 
(50) 

673.61 
(80) 

672.34 
(22) 

679.76 
(64) 

679.76 
(11) 

679.76 
(20) 

1 679.76 
 

4 679.76 
 

11 0.00 

3 9 654.50 
(126) 

654.50 
(32) 

647.12 
(28) 

654.50 
(150) 

654.50 
(14) 

654.50 
(11) 

< 1 654.50 
 

5 654.50 
 

12 0.00 

4 8 628.73 
(1) 

628.73 
(12) 

628.73 
(1) 

628.73 
(8) 

628.73 
(10) 

628.73 
(13) 

< 1 628.73 
 

4 628.73 
 

31 0.00 

5 7 603.34 
(28) 

603.34 
(15) 

603.34 
(38) 

603.34 
(15) 

603.34 
(11) 

603.34 
(10) 

< 1 603.34 
 

5 603.34 
 

66 0.00 

6 6 582.37 582.37 585.28 582.37 582.37 582.37 < 1 585.28 4 585.28 70 0.00 
  (113) (36) (123) (99) (22) (48)       

  



58 
 

Table 3.12 Computational results from GRASP and PR with PLS for complete USPS 
dataset with ntest = 82, Cmin = 10 and Cmax = 20 

 

No. of 
clusters 

p Phase I Phase II 

GRASP & PR+PLS 

φbest 

PR  
Impr. 
(%) ibest 

tbest 
(sec) 

toverall 
(sec) 

5 HWE CNS 1577.03 0.00 116 22 99 
 HWE VND 1577.03 0.02 410* 69 127 
 HWE RVND 1577.03 0.02 264 57 135 
 CMC CNS 1577.03 0.00 41 6 93 
 CMC VND 1577.03 0.00 410* 70 96 
 CMC RVND 1577.03 0.00 18 5 113 
6 HWE CNS 1540.76 0.00 228 34 91 
 HWE VND 1540.76 0.00 185 27 79 
 HWE RVND 1540.76 0.00 228 52 140 
 CMC CNS 1540.76 0.00 44 7 91 
 CMC VND 1540.76 0.00 3 1 83 
 CMC RVND 1540.76 0.00 64 15 112 
7 HWE CNS 1371.57 1.15 410* 91 104 
 HWE VND 1367.32 1.02 410* 64 89 
 HWE RVND 1371.57 1.15 410* 89 158 
 CMC CNS 1371.57 0.99 410* 107 138 
 CMC VND 1371.57 0.31 410* 55 88 
 CMC RVND 1355.97 0.00 92 17 142 
8 HWE CNS 1148.66 0.36 410* 80 121 
 HWE VND 1148.66 0.52 410* 96 120 
 HWE RVND 1148.66 0.64 410* 85 126 
 CMC CNS 1148.66 0.00 227 34 80 
 CMC VND 1148.66 0.26 410* 62 88 
 CMC RVND 1148.66 0.13 410* 74 117 

*For these instances, the best solution was found by PR in the post-processing stage after 
410 GRASP iterations. 
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Table 3.13 GRASP performance on benchmark problem 

Graph |V| |E| 

Cmin = 0, Cmax = 450 Cmin = 0, Cmax = 512 

GRASP & PR+PLS 
Mehrotra  
& Trick GRASP & PR+PLS 

Mehrotra  
& Trick 

φbest ibest 
tbest 

(sec) 
toverall 
(sec) Soln 

Time 
(sec) φbest ibest 

tbest 
(sec) 

toverall 
(sec) Soln 

Time 
(sec) 

1 45 98 2928 13 1 21 2928 46.9 3238 5 < 1 29 3238 79.5 
2 30 56 1642 7 1 6 1642 3.0 1748 3 < 1 5 1748 3.3 
3 47 101 3569 27 1 23 3569 139.5 3960 6 < 1 33 3960 115.8 
4 47 99 1837 2 < 1 32 1837 201.7 1993 4 < 1 32 1993 438.4 
5 30 47 1099 2 < 1 9 1099 2.5 1174 1 < 1 8 1174 3.0 
6 61 187 22,216 250* 26 84 22,216 352.4 23,552 56 6 77 23,564 394.4 

*Best solution was found by PR in the post-processing stage after 250 GRASP iterations.
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3.4 Further Discussion 

The reactive GRASP presented in this chapter was designed to find high quality solutions 

to the p-capacitated clustering problem.  In phase I, two efficient approaches (HWE and 

CMC) are presented for constructing partial initial solutions, and a dynamic restricted 

candidate list is proposed to then obtain feasible solutions.  In the improvement phase, 

three neighborhoods, i.e., CNS, VND and RVND, are considered for the local search.  In 

a post-processing step, PR is applied to overcome local optimality and to attempt to 

uncover even better solutions.  Both CLS and PLS are implemented with PR.  All 

components of the methodology were extensively tested on a number of instances of 

practical size.  According to the results, HWE and CMC were comparable when 

combined with CNS in VND, while HWE combined with RVND gave the best overall 

performance.  However, the runtimes of the latter pair where slightly above the runtimes 

of the other combinations.  During PR, PLS and CLS provide similar results with the 

latter being a bit more efficient. 

In all instances tested, GRASP provided the same or better solutions than CPLEX.  

These results offer some assurance that GRASP can find high quality solutions when 

optimality cannot be established.  As the number of nodes, edges, and clusters increase, 

the difficulty in solving model (2) optimally increases as well, often exponentially.  For 

the 50-node, 5-cluster instances, CPLEX failed to converge within the imposed 1-hour 

time limited so we cannot be sure that the solutions found by our methodology are 

optimal.  Nevertheless, that fact that we were able to optimally solve all the benchmark 

problems, further attests to its effectiveness.  

With respect to path relinking, we can confirm the mixed results reported by 

others such as Boudia et al. (2006) who have performed similar analyses.  For relatively 

small problem instances, PR offered no advantage here since GRASP was able to find the 

optimum without it.  For larger instances, including the USPS application and some of 

the benchmark datasets, post-processing the GRASP solutions led to slightly better 

objective function values.  However, the improvement was rarely significant, so it is 

arguable whether the procedure is justified even when using PLS instead of CLS. 
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Chapter 4 

Chapter 4. Midterm Planning to Minimize Deviations from Daily Target Outputs in Semiconductor 

Manufacturing 

Midterm Planning to Minimize Deviations from Daily Target Outputs  

in Semiconductor Manufacturing 

 

 The TI fab known as DMOS6 is a mixed-signal analog wafer fab and probe 

facility producing about 2000 active devices grouped into three technologies that run on 

one integrated 300-mm manufacturing line (Chacon et al. 2005).  To clarify terminology, 

a “device” is a specific term in the Manufacturing Execution System (MES) and is 

basically the same as a product.  However, a few different devices may derive from the 

manufacture of the same product by using slightly different operations.  For example, a 

product can be split into two devices such that only one has inspection steps for particle 

detection, but in the end they are the same product. 

Wafer starts average 20,000 per month and reflects a highly diverse product mix.  

Demand can be characterized as high-mix low-volume and very complex.  Although only 

5% of the demand is explicitly for low volume technologies, the demand for a majority of 

devices within each high volume technology may also be low volume.  As a result, it is 

necessary to run many different products simultaneously.  This adds to the already 

challenging problem of managing daily operations, which includes ensuring that 

production targets are met, minimizing WIP, re-scheduling starts, reducing cycle time, 

reacting to disturbances in real time, and reducing flow variability.  

 At DMOS6, planning and scheduling is done hierarchically as depicted in Figure 

4.1 (this is a common approach throughout the industry; e.g., see Stray et al. 2006).  The 

box labeled Supply Chain represents the outside world from which orders are received.  

These are passed to Fab Planning where quarterly and monthly production plans are 

constructed to balance customer priorities with capacity.  Manufacturing Planning is 

responsible for the day-to-day activities, scheduling starts over the month, setting targets 

by operation for each product being manufactured, and deciding when to move WIP 

between operations.  Decisions at this level are made by shop floor managers and line 

supervisors.  Dispatch and Execution is the recipient of daily target data and is 
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responsible for ensuring that the scheduled work is carried out.  Decisions at this level 

fall to the equipment operators who sequence lots and form batches at the various 

machine groups.   

 

 

Figure 4.1 Hierarchical planning and scheduling at Texas Instruments 

 
 By carefully monitoring system progress, line supervisors can determine whether 

daily targets are being met.  Oversight is facilitated with a decision support system that 

tracks performance measures such as throughput, WIP, and cycle time by operation and 

product.  These statistics are aggregated by log point (a stage in production such as 

photolithography), loop (a group of sequential operations in the process flow within a 

technology) and line to allow higher-level managers to better visualize trends.  At the 

operations level, deviations from target values are flagged and appropriate action is taken 

when a significant gap exists.  This may include reconfiguring machines that do not 

typically process wafers at the bottleneck operations to do so, deprioritizing some of the 

work that feeds the bottlenecks, and delaying the start of certain lots.  

Shop floor data are collected in real time and fed to the information network.  

Differences between planned and actual WIP are calculated for each operation and passed 
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to Manufacturing Planning who is responsible for recovering the schedule.  Daily and 

weekly statistics on production volumes, delays and disruptions are passed up the 

hierarchy to Fab Planning to be used to refine their models.  As lots flow off the line, 

commitments to customers are confirmed at the Supply Chain level.  Similar hierarchical 

approaches have been discussed by Rivera (2003), Zäpfel and Missbauer (1993) and 

others. 

 The problem addressed in this chapter falls in the domain of Manufacturing 

Planning.  For a given number of wafer starts per day and a set of output targets by 

product, the primarily goal is to develop a model that can be used to determine when to 

process wafers at each operation in their routing to ensure that those targets are met.  A 

related use of the model is to help managers recover from disruptions.  

Whether the model is used for daily planning or recover, a solution should detail 

the degree to which individual targets and overall demand can be met and the level of 

WIP in the system at each machine group by log point and operation.  The principle 

objective is to minimize the weighted sum of the deviations from the daily production 

targets subject to capacity limits, predetermined inductions, product routings, and 

material flow conservation.  This will tend to smooth production and keep the fab 

running at an even rate (or fixed percentage of capacity), a cornerstone of the lean 

philosophy (Yavuz and Akcali 2007).  An appropriate mix of products at different stages 

of completion must be maintained at the bottleneck machines to obtain a consistent level 

of output from the facility.  

In the next section, the optimization model is presented and followed in Section 

4.3 by a discussion of the data processing issues necessary for implementation.  In 

Section 4.4 the initial computational experience is highlighted, which implied a need for 

further algorithmic development.  Subsequently, both Lagrangian relaxation and Benders 

decomposition were tried but neither proved successful.  Related experience is 

summarized in Section 4.5.  As an alternative, a decomposition algorithm is developed 

with the description in Section 4.6.  This is followed in Section 4.7 by a comprehensive 

set of test results based on DMOS6 data.  The data has been scaled based on the original 

data to avoid revealing TI’s true production. The effectiveness of the approach is 

discussed and future work is described in Section 4.8. 
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4.1 Mathematical Model 

Production planning in a fab can be modeled as a multicommodity dynamic network 

problem.  The objective of the corresponding linear program (LP) is to schedule wafer 

movement so that the total deviations are minimized.  The notation used in the 

developments is as follows. 

Indices and sets 

i index for devices; i ∈ I  

j index for steps in the processing of a device; j ∈ J(i) ∪ {n(i)+1} 

m index for machines;  m ∈ M 

d index for days; d ∈ D = {1,…,nD} 

t index for time periods; t = 1,…,τ 

I set of devices  

J(i) set of steps for device i  

M set of machines 

G(i, j) set of machines that can process device i at step j 

D set of days in planning horizon 

T set of time periods; T = {1, 2,…,τD,τD+1,τD+2, …, 2τD,.., τ} 

TD set of time periods in a day; TD = {1, 2,…,τD} 

Parameters and data 

∆t time interval (indicates the number of minutes within a time period) 

τ planning horizon (in units of periods); τ = |Τ | 

τD last period in a day; τD = |TD| 

n(i) number of steps in the route of device i [n(i)+1 is dummy step for device i 

associated with holding finished goods inventory] 

r ijm (effective) processing rate for machine m when working on device i at step j 

(wafers/ min) 

STARTSid number of wafer starts for device i on day d 

T_OUTid target number of wafers to produce for device i on day d  

1( )ij tδ  0 if j = n(i)+1 and t = dτD +1 for device i; 1 otherwise 
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2
ijδ  1 if j = 1 for device i; 0 otherwise 

3
ijδ  0 if j = n(i)+1for device i; 1 otherwise 

4( )ij tδ  1 if j = 1 and t = (d−1)τD +1 for device i; 0 otherwise 

 wi
++++  ( wi

−−−− ) relative weight associated with a positive (negative) deviation from the target 

output for device i 

wmax penalty weight for the maximum deviation from the target output over the 

planning horizon 

Decision variables 

Wij(t) number of wafers (WIP) corresponding to device i in the jth buffer (step) in its 

routing at the end of time period t, ∀ i ∈ I, j ∈ J(i) ∪ { n(i)+1}, t; 
  
W

i ,n( i )++++1
(t)  

represents finished goods inventory 

Rid(t) number of wafers input to the fab of device i at the beginning of time period t 

on day d, ∀ i ∈ I, t ∈ T and d ∈ D 

βijm(t) fraction of the time machine m is processing device i at step j in its route in 

time period t, ∀ i ∈ I, j ∈ J(i), m ∈ G(i, j), t ∈ T                   

 ∆ id
++++  ( ∆ id

−−−− ) positive (negative) deviation from the target output for device i on day d, ∀ i ∈ I, 

d ∈ D  

max∆  maximum deviation from target output over the planning horizon 

 
Model 

Minimize ∑∑
∈ ∈

−−++ ∆+∆
Ii Dd

idiidi ww )( + wmax∆max   (3a) 

subject to ( )
D

id
t T

R t
∈
∑ = STARTSid,   ∀ i ∈ I, d ∈ D (3b) 

 1( )ij tδ Wij(t−1) + 2
, 1, , 1,

( , 1)

(1 ) ( )ij i j m i j m
m G i j

t r tδ β − −
∈ −

− ∆∑ + 4( )ij tδ
, /

( )Di t
R t

τ 
       

 

  − 3
ijδ ∑

∈

∆
),(

)(
jiGm

ijmijm trtβ = Wij(t),    ∀ i ∈ I, j ∈ J(i) ∪ {n(i)+1}, t ∈ T (3c) 

 1)(
)(

≤∑ ∑
∈ ∈Ii iJj

ijm tβ ,   ∀ m ∈ M, t ∈ T (3d) 

 , ( ) 1 , 1( ) _D
i n i id id id i dW d T OUTτ ∆ ∆ ∆+ − −+ − −+ − −+ − −

+ −+ −+ −+ −− + = +− + = +− + = +− + = + ,   ∀ i ∈ I, d ∈ D (3e) 
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 ∆max ≥ id
+∆ + id

−∆ ,    ∀ i ∈ I, d ∈ D (3f) 

 Wij(t) ≥ 0,  βijm(t) ≥ 0,  ∆ id
++++  ≥ 0,  ∆ id

−−−−  ≥ 0, 0i∆ −−−− = 0, ∆max ≥ 0, Wij(0) given,     

 
The first term in the objective function (3a) is designed to minimize the weighted 

sum of the positive and negative deviations from the target outputs over the planning 

horizon.  When the objective is to minimize only the negative gaps, this can be achieved 

by setting  wi
++++  = 0 for all i ∈ I.  The second term is aimed at minimizing the maximum 

deviation, which is a surrogate for maintaining output in proportion to demand.  The 

variable ∆max is the maximum deviation from the target outputs and is determined by 

constraints (3f); wmax is the associated penalty.  

The first set of constraints (3b) ensures that the required number of wafers for 

device i are started on day d.  The second set of constraints (3c) represents inventory 

(material) conservation at each step j at the end of period t.  It is necessary to keep track 

of the inventory levels of each device i separately.  Finished goods are held as WIP at the 

dummy step n(i) + 1 and takes the value 
  
W

i ,n( i )++++1
(t)  for device i at time t.  They are 

removed from the system at the end of the day by the term 1( )ij tδ Wij(t−1) in (3c) by 

noting that 1
, ( ) 1( )i n i tδ + = 0 for t = dτD +1, i.e., the first period of each day.  With respect to 

starts, the parameter 4( )ij tδ  multiplying
, /

( )Di t
R t

τ 
 

 in (3c) takes the value of 1 only when j 

corresponds to the first step for device i in its routing and t corresponds to the first time 

period of the day.  The index t/τD identifies the day d that includes time period t, where 

x is the smallest integer greater than or equal to x.  

  In fractional terms, constraints (3d) ensure that the sum of the time devoted to 

each step j of device i does not exceed the available time for each machine m in each time 

period t.  Deviations from production targets are tracked by the equations in (3e).  On the 

right-hand side, T_OUTid specifies the target outputs for device i on day d while , 1i d
−

−∆  

specifies the shortages from the previous day.  The first variable 
  
W

i ,n( i )++++1
(dτ D )  on the 

left-hand side represents the amount of finished goods inventory of device i at the end of 

day d.  The argument dτD corresponds to the last period of day d.  The remaining two 
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variables account for the deviation from the target with id
+∆ indicating surplus andid

−∆

indicating shortage.  Logically, only one of these variables can be positive in a solution 

so id
+∆  × id

−∆  = 0 for all i and d.  As mentioned, constraints (3f) are used to obtain the 

maximum deviation from the target output of any device over the planning horizon. To 

conclude the model, we note that all of the variables are nonnegative and continuous, as 

indicated in (3g), and that Wij(0) must be given for all i, j.   

 
4.2 Data Processing 

A massive quantity of data is needed to initialize and solve model (3).  A description of 

the input and output files can be found in Appendix 1.  In the fab, machines operate in 

one of the following modes: batch wafer (BW), batch lot (BL), continuous wafer (CW), 

inspection lot (IL), outside inspection (O) and pipeline (PL). Formulas were provided by 

the semiconductor manufacturer to compute the effective processing rates r ijm in each 

case.   

 
Computing the effective processing rates 

Although a machine typically has a fixed processing rate for a particular device at some 

step in its routing, several additional factors must be taken into account when specifying 

r ijm in a planning model.  In the fab, machines operate in one of the following modes: 

batch wafer (BW), batch lot (BL), continuous wafer (CW), inspection lot (IL), outside 

inspection (O) and pipeline (PL). To calculate r ijm, the “K-parameters” given below are 

used to modify the basic rate. 

a. The machine processing mode (K803) 

b. The capacity multiplier/loading factor (K852); this parameter has the effect of 

amplifying the processing rate. 

c. Non-machine processing time (K817); although this value is always zero in the 

table, it is included in the formulation for completeness. 

d. Load/unload time. Sometimes this component is included in machine processing 

time, c. 

e. Conditional setup time (K830) 

f. Average number of wafers/lots, average number of lots/batch processed 



68  

g. Rework rate (K802) 

h. Machine uptime (utilization) percentage (K866) 

i. Most likely turn-around time (hours) (K819); time from start to finish of a lot 

 
(1) BW Processing Mode 

   /
852 (1 802) 866

812 830 817ijm

average num of wafers batch
r K K K

K K K
= × × − ×

+ +
 

 
Because no data were provided on the average number of wafers/batch this value was 

estimated at 25 based on the fact that the maximum batch size K835 is usually 50 

while the minimum size K836 is usually 1.   

 
(2) BL Processing Mode 

(      ) (      )

875 830 817
                                                                                          852 (1 802) 866

ijm

average num of wafers per lot average num of lots per batch
r

K K K
K K K

×
=

+ +
× × − ×

 

 
Again we use 25 as the average number of wafers per lot and estimate the average 

number of lots per batch as K873 × batch factor, where K873 is the maximum lot 

size K873 and the batch factor is currently set to be 0.9. This gives 

 
25 873  

852 (1 802) 866
875 830 817ijm

K batch factor
r K K K

K K K

× ×
= × × − ×

+ +
 

 
(3) CW Processing Mode 

This mode is associated with a machine group which acts as stand-in for a non-

processing operation.  Because the given base processing rates are disproportionally 

high, the corresponding steps were eliminated from the scheduling model. 

 
(4) IL Processing Mode 

Not all lots are selected for inspection and not all wafers in a selected lot are 

inspected. Sampling is done at both steps.  If the lost selection interval parameter 
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K850 < 1, then this value is the probability that a lot will be selected. In this case, the 

number of wafers that goes through the inspection I 

number of wafers = 1.0/K850 × average number of wafers per lot 

If K850 ≥ 1, then it means that the K850th lot is selected.  In this case, the number of 

wafers that goes through the inspection is 

number of wafers = K850 × average number of wafers per lot 

The parameter K851 indicates the number of wafers chosen for inspection within the 

selected lot. If K851 < 1, then K851 percent of the wafers in the lot are inspected. In 

this case, the amount of time for inspection is 

time = average number of wafers per lot × K851 × K824 

If K851 ≥ 1, then this many wafers in the lot are to be inspected. For example, K851 = 

2 means that two wafers are randomly selected from the lot for inspection. The value 

of time will be 

time = K851 × K824 

giving a processing rate of 

r ijm = number of wafers / time 

       
(5) O Processing Mode 

The calculation of r ijm is proportional to the inverse of the most likely turn-around 

time parameter K819.  Because K819 is typically small (10–4), r ijm is large so the 

corresponding steps are eliminated from the model. 

 
(6) PL Processing Mode 

   / 846
852 (1 802) 866

816 830 817ijm

average num of wafers lot K
r K K K

K K K

×
= × × − ×

+ +  

 
Representative device 

A typical scheduling problem may have on the order of 100 devices and 600 machines.  

The data sets that we are working with contain 76 devices and 571 machines. The number 

of steps in a route is over 650 with the longest being 1190. For a planning horizon of 

three months (13 weeks) and ∆t = 1 hr in model (1), the total number of time periods τ is 
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13 × 7 × 24 = 2184, which leads to a problem instance that is unsolvable. Thus some 

amount of aggregation is needed to reduce the number of variables and constraints. 

 The first level of aggregation involved the grouping of devices into families by 

selecting a set of representative devices.  In our case, three representative devices were 

identified from the families C1, C2 and C3, respectively. Instead of modeling all 76 

devices at the same time, only these three are considered.  In the remainder of the chapter, 

Ci is used to identify representative device i. 

 The WIP associated with devices that belong to the same family is aggregated to 

be the WIP of the representative device.  In most cases, the routings of the devices are not 

exactly the same as the routings of the representative devices so some log points or 

operations might not be included in the model.  If a log point of a device does not exist in 

the representative routing, then the number of wafers at that log point is added to the first 

operation of the next log point in the representative routing. If a log point exists in the 

representative routing but not the operation, then the number of wafers at that operation 

will be added to the WIP at the next operation of the same log point.  

 The daily input of blank wafers for each family is also aggregated to be the daily 

input of the representative devices.  For testing purposes, the daily target output was set 

to be the average daily input over the planning horizon; however, these values can be 

adjusted to reflect forecasted demand. 

 
Removing steps 

Further reductions in problem size were achieved by removing inconsequential steps in 

the routings, including 

(1) Steps with type O processing mode 

(2) Steps with an empty machine list 

(3) Steps with CW mode but without any specified information on routing 

(4) Steps with processing rates higher than some specified threshold 

The processing rate of wafers going through the O operation is sufficiently large 

so that virtually no time is required for this operation.  As a consequence, no WIP is built 

up in any time period; wafers simply pass through this operation “instantly.”  With 

respect to cases (2) and (3), no machines are involved in these steps; in the case of (4), 
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when a machine’s processing rate is above the specified threshold, e.g., 1000 wafer/min, 

the corresponding operation will consume a negligibly amount of time and not  affect the 

end results. 

 
4.3 Initial Computational Experience with Basic Decomposition 

Model (1) was implemented in C++ and using concert technology provided by CPLEX 

10.1.  All computations were performed on a Dell Poweredge 2950 workstation running 

Ubuntu Linux.  The machine has 2 dual-core hyperthreading 3.73 GHz Xeon processors 

and 8 GB memory.  After some experimentation the following settings were used in 

CPLEX when solving the linear programs. 

(1) Primal simplex method (set RootAlg = 1) 

(2) Devex pricing (set PPriInd = 1) 

As an additional simplifying step, constraints (3b) were removed and the variables 

Rid(t) were set as follows. 

 Rid(1) = STARTid,  ∀ i ∈ I, d ∈ D 

 Rid(t) = 0,  ∀ i ∈ I, d ∈ D, t = 2, 3,…, τD 

That is, the raw materials were input to the line at the beginning of the first time period of 

every day.  Table 4.1 reports the size and the memory usage for problem instances for the 

three representative devices and ∆t = 60 min time interval for different planning horizons.  

For a 28-day (4 weeks) instance, there are 11,282,240 decision variables and 1,998,780 

constraints, which consume 7.2 GB of RAM and 10.6 GB of virtual memory.  The 

memory requirements for a 3-month (13 weeks) instance were beyond the limits of our 

hardware.  Therefore, it is not possible to solve a problem of that size without some form 

of decomposition.  The initial approach was to create weekly instances and solve them in 

sequence, initiating each with the final WIP of the preceding week.  This approach is 

referred to as basic decomposition to distinguish from the decomposition algorithm 

proposed later in this chapter. 
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Table 4.1 Problem size and memory usage for different planning horizon 

Planning 
horizon 
(days) 

No. of  
variables 

No. of 
constraints 

RAM 
(GB) 

Virtual 
memory 

(GB) 

7 2,822,411 499,695 2.4 2.9 

14 5,642,354 999,390 4.6 5.5 

21 8,462,297 1,499,085 6.8 8.3 

28 11,282,240 1,998,780 7.2 10.6 
 

All data used in the testing reflects the fab environment but, as mentioned, was 

modified so as not to reveal the true internal production capacity.  For a 4-week problem 

using this basic decomposition approach, the running time was 15,571 sec or 4.33 hours.  

The initial WIP profiles for C1, C2 and C3 are depicted from Figure 4.2 to Figure 4.4 with 

the vertical axis for WIP level and horizontal axis for step.  The cost coefficientsiw+ and

idw−  in model (3) were set at 0.5 for all i ∈ I.  The weight for the maximum deviation 

wmax was set to 0.05.  The daily inputs were specified in Table 4.2 while the daily outputs 

were T_OUT1d = 328, T_OUT2d = 315 and T_OUT3d = 26 for d = 1, 2,…,28.  A ∆t = 60 

min time interval was used in the generation of the model, and the number of wafers per 

lot was assumed to be 25. 

The solution is summarized in Table A.10 where the first column lists the day 

index.  The remaining columns are divided into three sections: target output T_OUTid, 

completed output, and deviations (surplusid
+∆ or shortage id

−∆ ).  The number of wafers 

that were actually completed each day is indicated in the second section.  The last section 

reports the difference between the target output and the actual output.  A positive value 

indicates shortage while a negative value indicates surplus.  It can be seen that all demand 

is satisfied for the first week but the shortages start to appear on day 8.  The total shortage 

TS = ( )id idi I d D

+ −

∈ ∈
∆ + ∆∑ ∑ is 1070.15 wafers.   

The WIP profiles for devices C1, C2 and C3 at the end of each week are depicted 

in Figure A.6 − Figure A.17.  In the first week, the WIP has only a few spikes but is 

otherwise steady.  As the weeks progress, the WIP towards the end of the route begins to 

disappear while the WIP at the initial steps is seen to be piling up.  Finished goods are 

produced by draining the WIP close to the end of the routes without pulling the WIP from 
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the beginning.  There is no WIP after step 400 at the end of the last week but there are 

over 8000 wafers at the first step.  The profiles for C2 were similar; for C3, the WIP 

profile barely changed from week to week and all demand was met since both the input 

and target output for C3 are low.  The full set of results can be found in Appendix 4. 

 
Table 4.2 Daily input for the 4-week problem 

d R1d(1) R2d(1) R3d(1) d R1d(1) R2d(1) R3d(1) 
1 300 300 24 15 325 300 24 
2 300 300 24 16 325 275 6 
3 312 300 24 17 325 300 0 
4 300 299 24 18 325 350 24 
5 275 450 0 19 325 300 24 
6 299 349 72 20 300 312 54 
7 375 249 48 21 300 324 48 
8 325 287 48 22 325 325 0 
9 325 300 6 23 325 325 0 
10 326 300 24 24 300 325 0 
11 325 425 24 25 300 300 24 
12 325 300 0 26 300 300 72 
13 325 300 24 27 275 387 0 
14 325 175 72 28 275 375 42 

 
 

 

Figure 4.2 Initial WIP of C1 
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Figure 4.3 Initial WIP of C2 

 

 

Figure 4.4 Initial WIP of C3 

 
One explanation for the unbalanced WIP profiles obtained for the first two 

devices is that the basic decomposed approach is myopic.  Because the full problem is 

broken into 1-week segments, solutions only reflect the demand for that week.  The 

absence of future demand in the decomposed model means that no WIP is processed 

beyond the amount needed to meet the current demand.  Thus, WIP piles up at the front 

end of the fab as blank wafers are fed into the system in accordance with the given daily 

start schedule.  Once demand is satisfied for the week, the pressure on the fab to continue 

running is off, even though there is still machine capacity available.  The existence of 

excessive machine time is verified in Table 4.3 for the AP machines, which are used for 

wet cleaning and experience high usage in practice.  The first column identifies the 

machine index while the second column gives the average usage which is computed as 

0

200

400

600

800

1000

1200

1 2
6

5
1

7
6

1
0

1
1

2
6

1
5

1
1

7
6

2
0

1
2

2
6

2
5

1
2

7
6

3
0

1
3

2
6

3
5

1
3

7
6

4
0

1
4

2
6

4
5

1
4

7
6

5
0

1
5

2
6

5
5

1
5

7
6

6
0

1
6

2
6

6
5

1
6

7
6

7
0

1
7

2
6

7
5

1
7

7
6

8
0

1
8

2
6

W
IP

Step in routing

0
100
200
300
400
500
600
700
800
900

1 3
0

5
9

8
8

1
1

7
1

4
6

1
7

5
2

0
4

2
3

3
2

6
2

2
9

1
3

2
0

3
4

9
3

7
8

4
0

7
4

3
6

4
6

5
4

9
4

5
2

3
5

5
2

5
8

1
6

1
0

6
3

9
6

6
8

6
9

7
7

2
6

7
5

5
7

8
4

8
1

3
8

4
2

8
7

1
9

0
0

9
2

9

W
IP

Step in routing



75  

follows: 
( )

( )m ijmt T i I j J i
t Tβ β

∈ ∈ ∈
= ∑ ∑ ∑ , ∀ m ∈ M.  Most of the AP machines operated 

less than 50% of the time from the basic decomposition approach. 

In the first week it is not difficult to meet the target outputs since there are 

sufficient wafers close to the end of their routes.  However, once these wafers are 

depleted from the line, it becomes increasingly more difficult to satisfy demand in 

subsequent weeks.  This phenomenon is evidenced in the solutions in Table A.10.  To 

reduce the shortages that appear after day 7, all WIP must be processed continually, not 

only the WIP at the latter steps.  The unused machine time should be assigned to different 

steps to achieve some level of balance. 

 A second reason for the empty tail phenomenon is that some amount of machine 

starvation is inevitable when there are shifting bottlenecks, as is the case here (e.g. see 

Narahari and Khan 1996, Robinson et al. 1995).  Wafers cannot be processed fast enough 

at upstream stations to provide sufficient WIP at downstream stations because of limited 

machine capacities and the reentrant nature of the flow.  A portion of upstream and 

downstream stations correspond to the same machine.  If the demand is much higher than 

the fab’s throughput capacity, then simply inducting wafers into the system in proportion 

to demand, will necessarily result in long queues.  In a fab that is running 24 hours a day, 

such as DMOS6, the only way to relieve this situation is to add more machines.  

 
4.4 Modified Models 

Weekly versions of model (3) only try to satisfy the current demand without looking 

forward.  As suggested by Figure A.9, Figure A.13 and Figure A.17, little of the WIP at 

the initial steps is processed even though excess machine capacity exists.  For example, at 

step 1 at the end of week 3, the WIP of C1 is 6662 while at the end of week 4 it is 8762 -- 

an increase of 1900 wafers.  During the week, 7×328 = 2296 wafers were introduced into 

the system, implying that only about 396 wafers of C1 were processed at step 1.  To 

remedy this shortsightedness, model (3) needs to be modified. 
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Table 4.3 Average usage of the AP machines 

Machine, m mβ  , % 

29 74.7 
30 17.92 
31 12.6 
32 8.53 
33 11.67 
34 11.21 
35 10.88 
36 12.17 
37 39.56 
38 26.92 

 
4.4.1 Pushing the WIP forward 

The approach that we developed to overcome the myopic performance of the 

decomposed model involves pushing the WIP forward.  This is achieved by adding a 

third term to the objective function (3a) that incrementally rewards the presence of WIP 

at successive steps in a route.  The corollary effect is to maximize machine utilization.  In 

this approach, the current demand is considered explicitly while the future demand is 

considered implicitly.   

For device i, let cij be the “benefit” of a unit of WIP at step j.  Then the updated 

model is 

 
Minimize ∑∑

∈ ∈

−−++ ∆+∆
Ii Dd

idiidi ww )( + wmax∆max −
( )

( )ij ij
i I j J i

c W τ
∈ ∈
∑ ∑    (4a) 

subject to  (3c) – (3g) 

 
The third term in (4a),

( )
( )ij iji I j J i

c W τ
∈ ∈∑ ∑ , is designed to provide an incentive 

for accumulating WIP at downstream stations.  The variable Wij(τ) represents the WIP of 

device i at step j at the end of the planning horizon τ.   For the new term to have the 

desired effect, it is necessary that cij < ci,j+1 ∀ i ∈ I, j ∈ J(i).   

As in goal programming, the relative values of the three sets of coefficients in (4a) 

determines the order in which each term is optimized.  Our intent is to first minimize the 

deviations from the targets, then to hold down the maximum deviation, and finally to 
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push the WIP.  In the implementation, the following scheme was used to fix the reward 

coefficients: 

cij = 0.00001j, ∀ i ∈ I, j ∈ J(i) 

 As j increases, so does the reward making it more profitable to accumulate WIP at 

the downstream steps in a route.  Given the maximum number of steps Jmax = max{n(i), ∀ 

i ∈ I} = 1190, we have cij � 0.00001Jmax = 0.0119, ∀ i ∈ I, j ∈ J(i).  To some extent, 

selecting the values for cij represents a tradeoff between the three objective function terms.  

Since cij is defined to be much smaller than the deviation coefficients iw+ , iw− and wmax, the 

new term will not influence the objective of minimizing the deviations from the targets, 

or minimizing the maximum deviation.  If the reward coefficients cij were set too high, 

however, then the model would be more inclined to push the WIP rather than reduce the 

deviations, the primary objective.  

 Although the modified model is theoretically sound, implementation occasioned a 

variety of numerical difficulties that could not be resolved.  The increase in density of the 

objective function coefficient vector due to the presence of the additional O( ( )
i I

J i
∈∑ ) 

terms caused the model to become dual degenerate.  Rather than the LP converging 

within a few hours, the modified model required more than 40 hr for a 1-week problem. 

To clarify this order of magnitude increase in runtime, we asked ILOG (the CPLEX 

vendor) to investigate a 2-day instance. Using a Dual Intel Xeon 3.4 GHz processor with 

6 GB RAM, and running parallel CPLEX with two threads, it took 2005.69 sec (0.56 hr) 

to achieve optimality with their barrier method. Crossover to a basis required an 

additional 831.6 sec. They also investigated a 7-day instance with slightly different 

parameter settings using a 64bit Linux server with 3 dual core Opteron 275 CPUs (1.8 

GHz 1MB cache) and 6GB of RAM.  With 4 threads, it took 7422.32 sec (2.06 hr) with 

the barrier method and an additional 14,459 sec (3.64 hr) to obtain an optimal basic 

solution.  These extremely long runtimes, even with parallel processing, could not justify 

the use of model (2) directly.  As a consequence, several alternative computational 

schemes were explored.  
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4.4.2 Lagrangian relaxation 

One of the factors that makes model (3) difficult to solve is the need to share machine 

capacity among the different families of devices.  Constraints (3d) tie all the devices 

together.  By removing these constraints and placing them in the objective function as a 

penalty term, we create a problem whose remaining constraints decompose by 

representative device and should be much easier to solve than the original.  This approach 

is called Lagrangian relaxation and for linear programs, the optimal objective function 

values of both the modified problem and the original problem are the same; however, the 

values of the decision variables might be different and in the case of the former, may not 

be feasible to the relaxed constraints.  If this is the case, then more work has to be done to 

obtain the optimum. 

 Let umt ≥ 0 for all m ∈ 	2∈3 4"G(i, j), t ∈ T be the Lagrange multipliers associated 

with constraints (3d), where 	2∈3 4"G(i, j) is the set of machines that are required to 

process device i.  Then relaxed model i is 

 
Minimize ( )i id i id

d D

w w+ + − −

∈

∆ + ∆∑ + wmax∆max +
( ) ( )

( , ) ( ) ( )

( )
j J i j J i

mt ijm mt
m G i j t T j J i m G i t T

u t uβ
∈ ∈

∈ ∪ ∈ ∈ ∈ ∪ ∈

−∑ ∑ ∑ ∑ ∑   

 (5a) 

subject to 

 
 1( )ij tδ Wij(t−1) + 2

, 1, , 1,
( , 1)

(1 ) ( )ij i j m i j m
m G i j

t r tδ β − −
∈ −

− ∆∑ + 4( )ij tδ STARTSid  

  − 3
ijδ ∑

∈

∆
),(

)(
jiGm

ijmijm trtβ = Wij(t),   ∀ j ∈ J(i) ∪ {n(i)+1}, t ∈ T (5b) 

 , ( ) 1 , 1( ) _D
i n i id id id i dW d T OUTτ ∆ ∆ ∆+ − −+ − −+ − −+ − −

+ −+ −+ −+ −− + = +− + = +− + = +− + = + ,  ∀ d ∈ D (5c) 

 ∆max ≥ id
+∆ + id

−∆ ,  ∀ d ∈ D (5d) 

 Wij(t) ≥ 0,  βijm(t) ≥ 0,   ∆ id
++++  ≥ 0,   ∆ id

−−−−  ≥ 0,  0i∆ −−−− = 0, max∆ ≥ 0,  Wij(0) given,     

 
 An iterative process is required to find the optimal set of Lagrange multipliers.  A 

typical approach is to fix the multipliers umt at some value, zero in our case, and then 

solve model (5) to determine the optimal values of the original problem variables 

(Wolsey 1998). As mentioned, when umt is fixed, model (5) can be solved for each device 
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i ∈ I separately.  These solutions are then used to update umt with what is known as the 

subgradient method.  The current iteration continues until umt converges to the optimal 

multiplier values.  As a final step, model (5) is solved with each umt fixed at its optimal 

value to determine the corresponding values of the decision variables. 

 Even though Lagrangian relaxation is frequently used to solve large-scale 

optimization problems, we found it to be numerical unstable and unable to converge.  For 

a 1-week problem, the multipliers umt never approached asymptotic values for runtimes of 

up to 6 hours.  This was the case for smaller instances as well.  

 
4.4.3 Benders decomposition 

A closer examination of the constraints in the original problem reveals that they exhibit a 

“staircase” structure in which only the time periods overlap.  This is typically the case 

with inventory balance constraints similar to (3c).  Benders decomposition can be used to 

deal with this situation efficiently.  The idea is to divide the original problem into 

subproblems with each spanning a subset of the planning horizon and then solve them 

iteratively, checking a set of optimality conditions at each step.  The 1-week problem, for 

example, can be divided into seven 1-day subproblems.  At each iteration of the 

algorithm, a restricted master problem representing the original problem is solved.  To 

populate the master problem, extreme points or extreme rays are obtained by solving the 

dual of the subproblems.  These solutions are then used to generate constraints that are 

added to the master problem.  The iterations continue until no more constraints can be 

found for the master problem.  At that point, optimality has been achieved.  The 

application of Benders decomposition to staircase problem is provided in Appendix 6.  

Following this approach model (3) for the kth subproblem can be written as   

 

Minimize ( )
k

i id i id
i I d D

w w+ + − −

∈ ∈

∆ + ∆∑ ∑ + wmax∆max  (6a) 

subject to 

 1( )ij tδ Wij(t−1) + 2
, 1, , 1,

( , 1)

(1 ) ( )ij i j m i j m
m G i j

t r tδ β − −
∈ −

− ∆∑ + 4( )ij tδ
, / Di t

START
τ 

 
  

  − 3
ijδ ∑

∈

∆
),(

)(
jiGm

ijmijm trtβ = Wij(t),  ∀ i ∈ I, j ∈ J(i) ∪ {n(i)+1}, t ∈ Tk \{1, τD|Dk|} (6b) 
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 1k
ijZ −  + 2

, 1, , 1,
( , 1)

(1 ) (1)ij i j m i j m
m G i j

r tδ β − −
∈ −

− ∆∑ + 4

, /
(1) Dij i t

START
τ

δ
 
 

  

  − 3

( , )

(1)ij ijm ijm
m G i j

r tδ β
∈

∆∑ = Wij(1),  ∀ i ∈ I, j ∈ J(i) ∪ {n(i)+1} (6c) 

 Wij(τ
D|Dk|−1) + ( )21 ijδ− ( )

( )
, 1, , 1,

, 1

D k
i j m i j m

m G i j

D r tβ τ− −
∈ −

∆∑   

 − 3
ijδ ( )

( ),

D k
ijm ijm

m G i j

D r tβ τ
∈

∆∑ = k
ijZ , ∀ i ∈ I, j ∈ J(i) ∪ {n(i)+1} (6c) 

 1)(
)(

≤∑ ∑
∈ ∈Ii iJj

ijm tβ ,  ∀ m ∈ M, t ∈ Tk (6d) 

 , ( ) 1 , 1( ) _D
i n i id id id i dW d T OUTτ ∆ ∆ ∆+ − −+ − −+ − −+ − −

+ −+ −+ −+ −− + = +− + = +− + = +− + = + ,  ∀ i ∈ I, d ∈ Dk (6e) 

 ∆max ≥ id
+∆ + id

−∆ ,  ∀ i ∈ I, d ∈ Dk (6f) 

 Wij(t) ≥ 0,  βijm(t) ≥ 0,  ∆ id
++++  ≥ 0,  ∆ id

−−−−  ≥ 0, 0i∆ −−−− = 0, max∆ ≥ 0, Wij(0) given,     

where Dk = {1, 2, 3, 4, 5, 6, 7} for one week kth subproblem.  The initial WIP is specified 

by variables 1k
ijZ −  while the final WIP is specified by variableskijZ .  The original 

inventory constraints (3c) are split into three sets.  Constraints (6b) are the same as before 

for t ∈ T \ {1, τD|Dk|}.  For the first time period of the subproblem (t = 1) the inventory 

constraints are shown in (6c) while the inventory constraints for the last time period (t = 

τ
D|Dk|) are shown in (6d).  The other constraints are the same as in model (3).   

 Additional parameters and decision variables are required to write the dual of 
model (6). 

Parameters and data 

1( )tξ  0 if t = τ for device; 1 otherwise 

2( )ij tξ  1 if j = n(i)+1 and t = dτD for device i; 0 otherwise 

3
ijξ  0 if j = n(i)+1 for device i; 1 otherwise 

Dual decision variables 

vijt dual variables corresponding to constraints (6b), (6c) and (6d) ∀ i ∈ I, j ∈ J(i) 

∪ { n(i)+1}, d ∈ Dk, t ∈ Tk 

γmt dual variables corresponding to constraints (6e) ∀m ∈ M, t ∈ Tk 

ηid dual variables corresponding to constraints (6f) ∀ i ∈ I, d ∈ Dk 
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ωid dual variables corresponding to constraints (6g) ∀ i ∈ I, d ∈ Dk 

 
Model 

Maximize ( _ )id id
i I d D

T OUTη
∈ ∈
∑ ∑ − 1

1
( )

k
ij ij

i I j J i

v Z −

∈ ∈
∑ ∑ + mt

m M t T

γ
∈ ∈
∑ ∑ +

( )

k
ij ij

i I j J i

v Zτ
∈ ∈
∑ ∑  (7a) 

subject to   

 1 1( 1) ( )ij t tδ ξ++++  vij ,t+1 − vijt +
2( )ij tξ ηid  ≤ 0, 

 ∀ i ∈ I, j ∈ J(i) ∪ { n(i)+1}, t ∈ Tk\{  τD|Dk|}, d= / Dt τ    (7b) 

 2 3
1(1 )ij ijδ ξ++++−−−−  vi,j+1,t r ijm∆t − δij

3 vijt rijm∆t + γmt ≤ 0,    

 ∀ i ∈ I, j ∈ J(i), m ∈ G(i, j), t ∈ Tk (7c) 

 ηid + ωid ≥ − iw++++ ,   ∀ i ∈ I, d ∈ D  (7d) 

 ηid − ηi,d+1 − ωid ≤ iw−−−− ,   ∀ i ∈ I, d ∈ D  (7e) 

 vijt, ηid are free, γm t ≤ 0, 0 ≤ ωid ≤ wmax,  ∀ i ∈ I, j ∈ J(i) ∪ { n(i)+1}, d ∈ Dk, t ∈ Tk (7f) 

 
The Benders master problem can now be presented by introducing the following 

definitions. 

Sets 

Ek set of extreme points of the kth dual subproblem 

Rk set of extreme rays of the kth dual subproblem 

Dk the set of days of the kth dual subproblem 

Parameters and data 

NK number of dual subproblems  

Decision variables 

φk auxiliary variable for the kth dual subproblem 

k
ijZ  final WIP of device i at step j at the end of the kth subproblem 

 
Benders Master Problem 

Minimize 
1

NK

k
k

φ
=

∑  

subject to  φ1 ≥ 
1

1( _ )e
id id

i I d D

T OUTη
∈ ∈
∑ ∑ − 1

1
( )

(0)e
ij ij

i I j J i

v W
∈ ∈
∑ ∑ + 
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1

1e
mt

m M t T

γ
∈ ∈
∑ ∑ + 1 1

( )

e
ijT ij

i I j J i

v Z
∈ ∈
∑ ∑ ,  ∀ e ∈ Ek, k = 1 (8a) 

φk ≥ ( _ )
k

ek
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φk  free ∀ k = 1,2,…,NK, k
ijZ  ≥ 0, ∀ i ∈ I,  j ∈ J(i), k = 1,2,…, NK–1 (8g) 

 Constraints (8a), (8b) and (8c) are the so-called optimality cuts.  They are 

generated from the extreme points of the dual subproblems.  Attention needs to be paid to 

the first subproblem and the last subproblem.  For the first subproblem the initial WIP is 

fixed to be Wij(0) which can be considered as a fixed end.  For the last subproblem the 

final WIP is not used for another subproblem thus it could be viewed as a free end.  The 

constraints (8d), (8e) and (8f) are the so-called feasibility cuts.  They are generated from 

the extreme rays of the dual subproblems.   

 Benders decomposition can now be applied to the original problem.  The 

variables k
ijZ  are initialized at first to specify the WIP information for each subproblem.  

Once these variables are fixed the dual model (7) is solved for each subproblem.  If the 

subproblem is feasible an extreme point will be generated and hence an optimality cut 

will be appended to the master problem (8). Otherwise an extreme ray will be generated 

and a feasibility cut will be added to the master problem (8).  When all the subproblems 

are solved with the generated cuts appended to the master problem, model (8) can then be 

solved to obtain the updated WIPkijZ .  The solution k
ijZ  is again used to specify the WIP 
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information for the subproblems and a new iteration starts.  The iteration continues until 

k
ijZ  becomes stable and 

1

NK

k
k

φ
=

∑ achieves its maximum.  

 Unfortunately, numerical difficulties also arose when applying Benders to model 

(3).  In the computations, Benders tries to find optimal machine time assignment with 

fixed initial and final WIP values for each subproblem.  According to the numerical 

experiments, it was likely that the primal subproblem became infeasible, that is, there was 

no feasible machine assignment to achieve the targeted final WIP from the given initial 

WIP.  As a consequence, the subproblems only generated extreme rays (infeasibility cuts 

in the master) so a feasible (never mind optimal) solution to the original problem was 

never found. 

 
4.5 Decomposition Algorithm 

The inability to achieve convergence with either of the aforementioned decomposition 

techniques led to the development of third approach that is more heuristic in nature.  The 

idea is to take advantage of the fact that model (3) can be solved relatively quickly for 

short planning horizons and will process as much WIP as possible to meet current 

demand.  In the first step of this approach, the planning horizon is again broken into 1-

week segments and model (3) rather than model (4), is solved for each.  Because the WIP 

“pushing” term is not in objective function (3a), many of the machines are not fully 

occupied and may have extensive idle capacity.  To ensure that this capacity is not wasted, 

two additional components are included in the methodology.  In the first component, a 

rescheduling algorithm is applied to each time period, initialized with the solution of 

model (3).  In the second, a score is assigned to each device-step combination, and all 

remaining machine time is assigned in proportion to the scores.  The final WIP in the 

current week is then taken as the initial WIP of next week and the computations are 

repeated.  The algorithm continues in this way until all the weekly subproblems are 

solved.  The rescheduling and scoring procedures are now discussed. 
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4.5.1 Rescheduling each time period 

For each time period t ∈ T, a scheduling problem is solved using the solution of model (3) 

as input in an effort to better utilize machine capacity.  The model can be formulated with 

the help of the following additional definitions. 

Parameters 

ijw+  ( ijw− ) relative weight associated with a positive (negative) deviation from the 

target output for device i at step j 

wmax weight for the maximum deviation 

WIPw  weight for the positive WIP deviation  

WIP_limit target WIP level 

dij(t) target output of device i at step j in time period t (defined below) 

( )ijW t  WIP of device i at step j at the end of time period t, ∀ i ∈ I, j ∈ J(i) ∪ 

{ n(i)+1}, t ∈ T, as indicated by the solution of model (3) 

( )ijm tβ  fraction of the time machine m processes device i at step j in time period t, 

∀ i ∈ I, j ∈ J(i), m ∈ G(i, j), t ∈ T, as indicated by the solution of model (3) 

Decision variables 

( )ij t+∆  positive deviation from target of device i at step j in time period t, ∀ i ∈ I, j 

∈ J(i) 

( )ij t−∆  negative deviation from target of device i at step j in time period t, ∀ i ∈ I, j 

∈ J(i) 

max∆  maximum output deviation 

WIP
+∆ ( WIP

−∆ )  positive (negative) deviation of Wmax from WIP_limit 

Wmax maximum WIP of all device-step combinations in time period t 

 

Model for time period t 

Minimize ( )
( )

( ) ( )ij ij ij ij
i I j J i

w t w t+ + − −

∈ ∈

∆ + ∆∑ ∑ + wmax∆max + WIP WIPw +∆   (9a) 

subject to  
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 ( )ijW t + 2(1 )ijδ− ( ), 1,, 1, , 1,
( , 1)

( ) ( )i j mi j m i j m
m G i j

t t r tβ β −− −
∈ −

− ∆∑  

  − 3
ijδ ( )

( , )

( ) ( )ijmijm ijm
m G i j

t t r tβ β
∈

− ∆∑ = Wij(t), ∀ i ∈ I, j ∈ J(i) ∪ {n(i)+1} (9b) 

 1)(
)(

≤∑ ∑
∈ ∈Ii iJj

ijm tβ ,   ∀ m ∈ M  (9c) 

 
( , )

( )ijm ijm
m G i j

t r tβ
∈

∆∑  − ( )ij t+∆ + ( )ij t−∆ = dij(t) + ( 1)ij t−∆ − , ∀ i ∈ I, j ∈ J(i)    (9d) 

 ∆max ≥ ( )ij t∆++++ + ( )ij t∆−−−− ,   ∀ i ∈ I, j ∈ J(i) (9e) 

 Wmax ≥ Wij(t), ∀ i ∈ I, j ∈ J(i) (9f) 

 Wmax − WIP
+∆ + WIP

−∆ = WIP_limit (9g) 

 βijm(t) ≥ ( )ijm tβ , ∀ i ∈ I, j ∈ J(i)\{ n(i)}, m ∈ G(i, j),   

 βijm(t) = ( )ijm tβ , ∀ i ∈ I, j = n(i), m ∈ G(i, j)   

 Wij(t) ≥ 0,  βijm(t) ≥ 0, (0)ij
−∆ = 0, ( )ijW t and ( )ijm tβ given,  

  ∀ i ∈ I, j ∈ J(i) ∪ { n(i)+1}, m ∈ M, d ∈ D (9h) 

 The parameters ( )ijW t  and ( )ijm tβ  are given by the solution to model (3) and 

indicate the current WIP level and machine usage in time period t for device i at step j for 

machine m.  Two goals are involved in the objective function.  The first is reflected in the 

first two terms in (9a) which minimize the sum of the total weighted deviations from the 

targets in the current period t plus the weighted maximum deviation.  The second goal is 

to restrict the maximum WIP level to some prescribed value WIP_limit, as indicated by 

the third term in (9a).  Currently, WIP_limit is set to 1000 to reflect historical levels in 

DMOS6.  Imposing hard bounds on WIP can lead to infeasibilities.  In the numerical runs,

ijw+

 
and ijw−

 
are set to 1.0, wmax is set to 0.5 and wWIP is set to 0.1 to reflect the priorities of 

the goals. 

 Constraints (9b) keep track of the WIP levels; the term( )( ) ( )ijmijm t t tβ β− ∆

accounts for additional processing time on machine m allocated to device i at step j in 

time period t.  Constraints (9c) ensure that the capacity of the machines is not violated 

while constraints (9d) and (9e) are used to compute the positive, negative and maximum 
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deviations, respectively.  The term 
( , )

( )ijm ijmm G i j
t r tβ

∈
∆∑  in (9d) indicates the output of 

device i at step j in time period t; the parameter dij(t) is the target output in time period t 

and is derived by uniformly apportioning the daily target output as follows. 

 ( ) _ / D
ij idd t T OUT τ= , with / Dd t τ =    

 The highest WIP level Wmax is determined by constraints (9f) while the positive 

and negative WIP deviations from WIP_limit are computed in (9g).  Bounds on the 

decision variables are specified in (9h).  For the last step n(i) of the route for device i, the 

values of βijm(t) are fixed to ( )ijm tβ
 
in order to maintain the same output specified by the 

solution to model (3). Allowing these values to change can lead to infeasible solutions.     

 
Updating the WIP 

After solving model (9) for each time period t ∈ T\{ τ}, the WIP levels and machine usage 

results need to be updated.  This is done by putting 

( )ijW t ← * ( )ijW t , ( )ijm tβ ← * ( )ijm tβ , ∀ i ∈ I, j ∈ J(i) ∪ { n(i)+1}, m ∈ M 

where * ( )ijW t and * ( )ijm tβ are obtained from solving model (4).  However, these new values 

may imply that the solution to model (3) for time period t + 1, i.e., ( 1)ijW t+ and

( 1)ijm tβ + , may no longer be feasible since ( )ijW t has changed.  Using Eq. (3c) to update 

( 1)ijW t+ , when ( 1)ijW t+ ≥ 0  the machine usage ( 1)ijm tβ + is valid so no adjustments are 

necessary.  When ( 1)ijW t+ < 0, we set it to 0 and decrease( 1)ijm tβ +  accordingly.  This is 

done by taking each machine m ∈ G(i,j) in turn and reducing ( 1)ijm tβ +
 
until the original 

WIP ( )ijW t is depleted.  Any remaining machine usage values, ( 1)ijm tβ + , are set to zero.  

The pseudocode for this procedure is outlined in Figure 4.5.  In Step 1, the WIP is 

updated.  In Step 2, ( 1)ijm tβ +  is updated when ( 1)ijW t+ < 0. 

 
Time period t rescheduling algorithm 

The pseudocode for the algorithm that updates the schedule incrementally is outlined in 

Figure 4.6.  In Step 1, model (9) is solved for each time period t ∈ T \ {τ} and the 

resulting solution is then used to update the WIP levels and machine usages in Step 2.  
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The iterations continue until all time periods t ∈ T \ {τ} are investigated.  The new values 

of ( )ijW t  and ( )ijm tβ  give the improved WIP profiles and machine assignments. 

 
Procedure: Update_WIP(βijm(t+1), Wij(t), Wij(t+1)) 

Input: Updated WIP at time period t, Wij(t); WIP at time period t + 1 from solution to 

model (3), Wij(t+1); machine usage from solution to model (3), βijm(t+1) 

Output: Updated WIP and machine usage at time period t+1, Wij(t+1) and βijm(t+1) 

Step1: for(i ∈ I, j ∈ J(i)){ 

  Wij(t+1) = 1( 1)ij tδ + Wij(t) + 2
, 1, , 1.

( , 1)

(1 ) ( 1)ij i j m i j m
m G i j

t r tδ β ∆− −− −− −− −
∈ −∈ −∈ −∈ −

− +− +− +− +∑∑∑∑ +  

 4

, ( 1)/
( 1) Dij i t
t STARTS

τ
δ

 + 
+ − 3

ijδ
( , )

( 1)ijm ijm
m G i j

t r tβ ∆
∈∈∈∈

++++∑∑∑∑ ;  

Step 2: if (Wij(t+1) < 0){ 

 Wij(t+1) = 0;  flag = 0; 

 sum = 1( 1)ij tδ + Wij(t) + 2
, 1, , 1.

( , 1)

(1 ) ( 1)ij i j m i j m
m G i j

t r tδ β ∆− −− −− −− −
∈ −∈ −∈ −∈ −

− +− +− +− +∑∑∑∑ +  

 4

, ( 1)/
( 1) Dij i t
t STARTS

τ
δ

 + 
+ ;

 
 for (m ∈ G(i, j)){ 

 if (flag equals to 0){ 

 ATijm(t) = βijm(t+1)∆t;  RTijm(t) = sum/r ijm; 

 if (ATijm(t) < RTijm(t)) sum = sum − βijm(t+1)r ijm∆t; 

 else βijm(t+1) = sum/( rijm∆t);  sum = 0;   flag = 1; 

 }else{ 

 βijm(t+1) = 0; 

 } 

 }//end m 

 } 

 } 

Figure 4.5 Pseudocode for updating WIP in the next time period 

 



88  

Procedure: Rescheduling ( ( )ijW t , ( )ijm tβ ) 

Input: Solution to model (1), ( )ijW t and ( )ijm tβ  

Output:  Updated solution ( )ijW t and ( )ijm tβ  

Step 1: for (t ∈ T \ {τ}){ 

 Solve model (4), obtain solution* ( )ijW t and * ( )ijm tβ ; 

Step 2: ( )ijW t ← * ( )ijW t , ( )ijm tβ ← * ( )ijm tβ , ∀ i ∈ I, j ∈ J(i) ∪ { n(i)+1}, m ∈ M; 

 call update_WIP( ( 1)ijm tβ + , ( )ijW t , ( 1)ijW t+ ); 

 } 

Figure 4.6 Pseudocode of rescheduling algorithm 

 
4.5.2 Dispatching heuristic 

Idle machine time may still exist after running the aforementioned rescheduling 

algorithm.  To ensure that the machines are fully utilized, a dispatching heuristic is 

applied to push the WIP forward.  It makes use of a scoring scheme to assign processing 

priorities to all device-step combinations. 

 
Scoring scheme 

In the design of the dispatching heuristic, the goal is determine how best to allocate the 

machine capacity that remains after solving model (3) and then rescheduling each time 

period.  As part of the procedure, a score Sij(t) is calculated for step j of device i in time 

period t, and is used to set priorities such that the remaining unused machine time is 

assigned proportionally to the scores.  The calculations are performed by the procedure 

outlined in Figure 4.7.   

Step 1 starts the iteration for the indices i and j.  In Steps 2 and 3, Sij(t) is 

dynamically adjusted as a function of the WIP level Wij(t).  In Step 2, Sij(t) is set to zero 

when the amount of WIP at the next step j + 1 exceeds WIP_limit.  The aim is to restrict 

processing at step j in period t when there is already ample WIP in front of the operation 

performed at step j + 1.  This will reduce the WIP at step j + 1 in period t + 1.   
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In Step 3, the planning horizon is implicitly divided into segments of four periods 

each.  In the first period of a segment (r = 1), higher scores will be assigned to steps with 

larger amounts of WIP in the earlier steps of a routing (j small) to ensure that at least 

some wafers are moved forward for processing at future steps.  In the second and fourth 

periods (r = 2 or 0), scores are calculated in such a way that unused machine time will be 

allocated to those steps with large WIP.  The corresponding objective is to reduce spikes.  

In the calculations, the normalizing term Max_WIPi represents the highest WIP level 

associated to device i at the end of period t.  A second parameter δ is used to bias or 

control the scores throughout a routing.  The step with maximum Wij(t) in period t will 

always have a score of 1; for the remaining steps, the higher the value of δ, the lower the 

score.  After extensive experimentation, δ was set to 10.   

 
Procedure: Score_assignment(Wij(t), WIP_limit, δ,Sij(t)) 

Input: Current WIP Wij(t), parameter δ and WIP_limit; 

Output: Score Sij(t), ∀ i ∈ I, j ∈ J(i) in time period t; 

Step 1: for (i ∈ I, j ∈ J(i)) { 

Step 2: if (Wi,j+ 1(t) ≥ WIP_limit) Sij(t) = 0; 

Step 3: else 

 r = t mod 4; 

 if (r = 1) Sij(t) = 1/j + Wij(t); 

 else if (r = 3) Sij(t) = j + Wij(t); 

 else Max_WIPi = max{Wij(t): ∀ j ∈ J(i)}; 

  Sij(t) =
( )

_
ij

i

W t

Max WIP

δ
 
 
 

; 

 }//end loop 

Figure 4.7 Pseudocode for score assignment procedure 

 
In the third period (r = 3), higher scores will be assigned to steps with larger WIP 

at the tail end of the routing to push wafers forward as they near completion.  The scores 

are assigned alternatively in a way such that both the initial and tail parts of a routing are 

taken into consideration without allowing wafers to accumulate at intermediate steps. 
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A close look at the details of the calculations in Figure 4.7 reveals two contrary 

objectives.  The first is to push or pull the WIP forward; the second is to smooth the WIP 

along the routings to avoid excessive build-ups.  The procedure reflects the compromise 

adopted to split the remaining capacity between the two objectives. 

 The calculations are illustrated in Table 4.4 for a 1-hour time period and two 

devices.  After solving model (3) and the rescheduling algorithm, assume that machine m 

still has 30 min of remaining capacity.  Steps 1, 3, 5, 6 of device 1 and steps 2, 4, 6, 7 of 

device 2 require machine m for processing.  The corresponding WIP levels are shown in 

the third column of the table.  The parameters δ =10 and WIP_limit = 9.  The total score 

∑i,jSij(t) is 46.56 when r = 1, 73 when r = 3 and 1.48 when r = 2 or 0.  The percentage of 

time assigned is shown in the 5th, 7th and 9th columns for these cases.  It can be seen that 

relatively high WIP values lead to higher scores regardless of the value of r.  For example, 

in the highlighted line, the WIP for device 1 is 10 at step 6 and the time assignment 

percentage is roughly 22% for r = 1 or 3 and 67% for r = 2 or 0.  One exception is that 

the score will be zero when the WIP at the next step is higher than WIP_limit, e.g., step 5 

of device 1.  As a consequence, no remaining machine time will be allocated to step 5 

until the WIP at step 6 is less than 9. 

 
Table 4.4 Example of applying the scoring scheme to machine m at time period t 

Device i Step j 
WIP 
Wij(t) 

r = 1 r = 2 or 0 r = 3 

Score 
Sij(t) 

Time 
assigned 

(%) 
Score 
Sij(t) 

Time  
assigned 

(%) 
Score 
Sij(t) 

Time  
assigned 

(%) 

1 1 4 5.00 10.74 10–4 0.01 5.00 6.85 
1 3 7 7.33 15.74 0.028 1.90 10.00 13.70 
1 5 5 0.00 0.00 0.00 0.00 0.00 0.00 
1 6 10 10.17 21.84 1 67.32 16.00 21.92 
2 2 4 4.50 9.66 10–4 0.01 6.00 8.22 
2 4 9 9.25 19.87 0.3487 23.47 13.00 17.81 
2 6 2 2.17 4.66 0.00 0.00 8.00 10.96 
2 7 8 8.14 17.48 0.1074 7.23 15.00 20.55 

 
As an aside, it should be mentioned that many dispatching rules, such as SPT, 

priority critical ratio, FIFO, EDD and WINQ, have been developed over the years for 
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related problems (e.g., see Pfund et al. 2006, Saito 2007, Wein 1988).  Several of these 

rules have been tried but each proved ineffective. 

 
Dispatching heuristic procedure 

Figure 4.8 displays the pseudocode for the dispatching heuristic.  The aforementioned 

definitions along with the following symbols are used in the construction of the 

pseudocodes. 

fm(t) fraction of total machine time indicated in the solution of model (3) that is 

assigned to machine m in period t  

Sij(t) score assigned to step j of device i in time period t 

SSm(t) summation of scores for the steps processed by machine m in time period t 

pijmt proportion of remaining unused machine time of machine m assigned to step j of 

device i in time period t 

ATm(t) remaining unused machine time associated with machine m in time period t 

RTijm(t) time required to process all the wafers at step j of device i by machine m in time 

period t 

 In Step 1, the total assigned machine time fm(t) for each machine m is calculated 

to determine the machine usage.  If fm(t) < 1, then excess machine time exists and the 

scores Sij(t) are computed in Step 2.  In Step 3, the excess machine time is then divided 

proportionally to pijmt and the WIP Wij(t) at the end of the current time period is updated 

accordingly in Step 4.  The subroutine for updating the machine time assignments βijmt 

and the WIP Wij(t) in time period t is given in Figure 4.9.  If t ∈ T \ {τ}, the WIP at the 

end of the next time period t + 1 needs to be updated as well using the pseudocode 

displayed in Figure 4.5. 

 
Procedure: Dispatching_heuristic(Wij(t), βijm(t), WIP_limit, δ) 

Input:  Current WIP movement Wij(t) and machine assignment βijm(t), ∀ i ∈ I, j ∈ J(i) ∪ 

{ n(i)+1}, m ∈ M; parameters WIP_limit and δ; 

Output:  updated Wij(t) and βijm(t), ∀ i ∈ I, j ∈ J(i) ∪ { n(i)+1}, m ∈ M; 

 for (t ∈ T){ 

      for (m ∈ M){ 
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Step 1:              //Compute the total assigned time as a fraction  

 fm(t) = 
( )

( )ijmi I j J i
tβ

∈ ∈∑ ∑  

 if (fm (t) < 1){ 

 //Compute the total score of machine m in time period t 

Step 2: call Score_assignment(Wij(t), WIP_limit, δ, Sij(t)); 

 SSm(t) =
( )

( )ij
i I j J i

S t
∈ ∈
∑ ∑ ;  

 //Assign the remaining machine time proportionally to the 

score 

Step 3: for (i ∈ I, j ∈ J(i), m ∈ G(i, j)){ 

 pijmt = Sij(t) / SSm(t); 

 call Update_machine_time_assignment(βijm(t), pijmt, 

Wij(t), r ijm); 

 }  

 }//end if 

 }//end m loop 

Step 4: if (t ∈ T \ {τ}) { 

 //Update the WIP according the updated machine time assignment. 

 call Update_WIP(βijm(t+1), Wij(t), Wij(t+1)); 

 } 

    }//end t loop 

Figure 4.8 Pseudocode of dispatching heuristic 

 
Procedure: Update_machine_time_assignment(βijm(t), pijmt, Wij(t), r ijm) 

ATm(t) = (1 – fm(t))∆t; RTijm(t)  = Wij(t)/r ijm; 

if(RTijm(t) > ATm(t)pijmt){ 

 Wij(t) = Wij(t) − ATm(t)pijmt rijm;  Wi,j+ 1(t) = Wi,j+ 1(t) + ATm(t)pijmt rijm; 

 βijm(t) = βijm(t) + ATm(t)pijmt/∆t; 

}else{ 

 //WIP Wij(t) can be drained 

 Wi,j+ 1(t) = Wi,j+ 1(t) + Wij(t);  Wij(t) = 0;  βijm(t) = βijm(t) + RTijm(t)/∆t; 
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} 

Figure 4.9 Pseudocode for updating machine time assignment and current WIP 

 
4.5.3 Integration of algorithmic components 

In summary, the decomposition algorithm works as follows.  After reading in all 

parameters, the problem is decomposed into a set of weekly subproblems for a given 

planning horizon.  Model (3) is solved first and any unused machine time is allocated 

heuristically with the help of the rescheduling algorithm and followed by the dispatching 

heuristic to push WIP forward and simultaneously spread it evenly along the routes.  The 

WIP associated with the current solution at the end of the 7th day is taken as the initial 

WIP of the next subproblem.  The computations are repeated until all subproblems are 

solved.  The following notation is used to explain the procedure outlined in Figure 4.10. 

w index for subproblems 

nsub number of subproblems (each subproblem is a week but, in general, a 

subproblem can be any number of days or any division of time) 

ndays number of days in a subproblem 

 The WIP is initialized in Step 1.  Step 2 contains iteration for the subproblems.  

After model (3) is solved, the excessive machine time is allocated by the dispatching 

scheduling and dispatching heuristic in sequence.  In Step 3, the initial WIP of each 

subproblem is updated.  The final solution is outputted when all the subproblems are 

solved.  The complexity of the composite algorithm is O(nsub⋅|T|⋅|M |⋅Σi∈IJ(i))), which can 

be seen by counting the nested for loops. 

 
Procedure: Decomposition_algorithm(Init_WIPij,WIP_limit, δ) 

Input: Initial WIP at t = 0, Init_WIPij, ∀ i ∈ I, j ∈ J(i); parameters WIP_limit and δ; 

Output: WIP levels * ( )ijW t and machine assignments* ( )ijm tβ found by the heuristics; 

Step 1: //read the given initial WIP 

 Wij(0) = Init_WIPij, ∀ i ∈ I, j ∈ J(i); 

Step 2: for(w = 1,…, nsub){ 

 Solve model (1) and obtain the solutions Wij(t) and βijm(t); 

 Rescheduling (Wij(t), βijm(t)); 
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 Dispatching_heuristic(Wij(t), βijm(t), WIP_limit, δ); 

Step 3: //Set the final WIP to be the initial WIP for the next subproblem 

 Wij(0) = Wij(n
days
τ
D), ∀ i ∈ I, j ∈ J(i); 

 } 

 * ( )ijW t = Wij(t), 
* ( )ijm tβ = βijm(t), ∀ i ∈ I, j ∈ J(i) ∪ { n(i)+1}, m ∈ M, t ∈ T 

Figure 4.10 Pseudocode of the decomposition algorithm 

 
4.5.4 Bottleneck machines 

For our purposes, a bottleneck step is one at which the number of wafers in queue is 

consistently above a prescribed threshold value (see Lozinski and Glassey (1988) for a 

discussion of detection mechanisms).  The machines that perform the operations at such 

steps are called bottleneck machines and consistently evidence high utilization, averaging 

over 97% in the TI environment.  For the current problem instance, the threshold values 

for devices 1 and 2 are set to 1000 wafers.  For device 3 the threshold value is 500 wafers.  

 It should be mentioned that in the initial runs, the metrology tools rather than 

photolithography tools became bottlenecks, which is not true in practice.  There are at 

least two possible explanations for this discrepancy.  The first is that the company’s data 

records are not completely accurate; the second is that the processing rates were 

underestimated due to faulty assumptions related to average lot sizes, uptime, or sampling 

procedures.  To reflect the true situation, a list of operations that should not be 

bottlenecks is provided by the company.  For the machines associated with the operations 

in the list, their processing rates are increased by a factor called ProcRateInc, which 

varied between 2 and 20. 

 
4.6 Computational Results 

The results obtained from running the decomposition algorithm for a 4-week (28-day) 

problem are presented first and then extended out to 3 months (13 weeks).  The 

representative devices in the three families C1, C2 and C3 have 674, 835 and 956 steps, 

respectively, in their routes.  The threshold value for step reduction was set to a large 

value (106) such that no steps will be removed due to high processing rates.  A time 
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interval ∆t = 60 min was used in the generation of the model, and the number of wafers 

per lot was assumed to be 25. 

 The objective function coefficients were not changed from the settings used in the 

initial runs discussed in Section 6.  The daily input, denoted by the parameter STARTSid, 

was generated by the program from the lot starts data provided by TI and spanned the 3-

month period from September 1 through December 1, 2007.  The daily output demand, 

T_OUTid , was computed as the average of the total input over the planning horizon; that 

is, 

T_OUTid = / | |id
d D

STARTS D
∈
∑ ,  ∀ i ∈ I, d ∈ D 

where |D| is the number of days in the planning horizon.  The initial WIP, Wij(0), was 

calculated by the program to reflect the state of the fab on September 1, 2007.  To avoid 

unnaturally high spikes in WIP during the LP runs, we set WIP_limit = 1000. 

 In the computations, model (3) was solved with the primal simplex algorithm in 

CPLEX 10.1.  All other options were tried but none provided comparable performance on 

the 1-week problem.  For example, the barrier method took approximately 270 sec to set 

up the model and over 1 hr to find a solution.  In addition, it required 6.5 GB of RAM 

whereas the primal simplex required only 2.4 GB.  Perturbing right-hand-side values and 

objective function coefficients did not improve these results. 

 
4.6.1 Problem with 4-week planning horizon 

The initial WIP Wij(0) of the 4-week problem is depicted in Figure 4.2.  The daily inputs 

for the three devices are given in Table 4.2, with |D| = 28.  The daily target output is 

T_OUT1d = 312 wafers for C1, T_OUT2d = 315 wafers for C2 and T_OUT3d = 26 wafers 

for C3, ∀ d ∈ D. 

 The 4-week problem was solved in 2,199 sec (36.65 min).  Each 1-week 

subproblem contains 2,822,411 variables and 499,695 constraints.  The whole set of 

results are included in Appendix 5.  Table 4.5 provides the output statistics by week.  The 

second column reports the corresponding total shortages TS = ( )id idi I d D

+ −

∈ ∈
∆ + ∆∑ ∑ .  The 

third column tLP gives the time required by CPLEX to solve the model (1) LP, and 

indicates an upward trend.  The fourth column trs reports the time to run the rescheduling 
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algorithm, while the last column tdh reports the time to run the dispatching heuristic.  The 

statistics in the last three columns do not include the overhead time which required 2199 

– 654 – 296 – 452 = 797 sec.  

As seen in Table 4.5, TS = 0 for the four weeks, which implies that the solution is 

optimal.  The WIP profiles of C1 at the end of each week are include in Appendix 5 and 

repeated here in Figure 4.11 – Figure 4.14.  From these profiles we can identify where the 

bottlenecks occurred along the routes.  For C1, wafers accumulated at steps 57, 106, 128, 

311, 368, 431 and 650 with WIP over 1000 wafers.  Steps 57, 106, 128 and 311 are 

associated with the AP machines (wet etching).  Step 368 is associated to the VF 

machines (furnace for annealing); step 431 is associated to the MP machines 

(electroplating) while step 650 is associated to the ET machines (dry etching). 

 
Table 4.5 Output statistics for the 4-week problem 

Week 
no. TS 

tLP 
(sec) 

trs 
(sec) 

tdh 
(sec) 

1 0 73 47 129 

2 0 86 78 109 

3 0 265 83 107 

4 0 230 88 107 

Total 0 654 296 452 
 

For C2, the bottleneck steps are 21, 66, 79, 141, 176, 432, 475, 527, 570, 619, 753, 

796 and 835 with WIP over 1000 wafers.  All the bottleneck steps except the last two are 

associated to the VF machines.  Step 796 requires the ET machines while step 835 is the 

last step of the route and should not be counted as a bottleneck since the WIP at this step 

accumulates due to the pushing logic of the decomposition algorithm.  Even if it were 

possible to process this WIP, the objective function in models (3) and (9), which are 

designed to restrict output deviations, might discourage it. 

For C3, the bottleneck steps are 511 and 956 with WIP over 500 wafers.  Step 511 

is associated to the HD machines (wet clean operations) while Step 956, being the last 

step in the route, is once again constrained by the objective of minimizing output 

deviations. 
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Figure 4.11 WIP profile of C1 at the end of the 1st week 

 

 

Figure 4.12 WIP profile of C1 at the end of the 2nd week 

 

 

Figure 4.13 WIP profile of C1 at the end of the 3rd week 
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Figure 4.14 WIP profile of C1 at the end of the 4th week 

 
 The current solution is a significant improvement over the initial solution 

discussed in Section 6 since all shortages have been eliminated.  However, as can be seen 

from Figure 4.11 − Figure 4.14 that there is substantial WIP buildup at various steps 

which implies some instability in the system.  A similar situation was observed for C2 and 

C3.  

 

4.6.2 Problem with 13-week planning horizon 

The basic parameters for the 13-week problem are the initial WIP, Wij(0), which is 

displayed in Figure 4.2 − Figure 4.4 and the daily input which is not listed here but can be 

found in Appendix 5.  The daily output targets are T_OUT1d = 328 wafers for C1, 

T_OUT2d = 315 wafers for C2 and T_OUT3d = 26 wafers for C3, ∀ d ∈ D where |D| = 91. 

 The solution for the 13-week problem was found in 9,030 sec (2.51 hr) and is 

detailed in Appendix 6.  Table 4.6 reports the output statistics by week.  The second 

column indicates that shortages first appear in week 8 and increase as the weeks progress.  

From week 10 through week 13 they are steady at 550.20 wafers.  The third column 

indicates that the time to solve model (3) is well under 500 sec for each week. The time 

spent on rescheduling in each period is given in the fourth column and shows an upward 

trend.  The final column indicates that the time spent on the dispatching heuristic is stable 

at roughly 120 sec.  A total of 9030 – 3027 – 3515 – 1637 = 851 sec was required for the 

overhead computations. 

 The total shortage TS is 2944.42 wafers.  The daily shortages for the three devices 

are displayed in Figure 4.15 – Figure 4.17, respectively, with positive values on the 
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vertical axis associated with id
−∆  and negative values with id

+∆ .  Shortages first appear at 

day 52 and then fluctuate for both C1 and C2.  From day 53 to day 91, the maximum daily 

shortages are 60.1 wafers for C1 on day 62, 52.6 wafers for C2 on days 57, 64, 71, 78 and 

85, and 26 wafers for C3 from day 60 to 91.  In fact, there is no output for C3 on the last 

32 days.  Over the 91-day horizon, the average daily deviations for the three devices are 

11.55, 11.55 and 9.26, respectively. 

 
Table 4.6 Output statistics for the 13-week problem 

Week no.  TS 
tLP 

(sec) 
trs 

(sec) 
tdh 

(sec) 

1 0.00 110 191 134 

2 0.00 109 234 207 

3 0.00 207 239 115 

4 0.00 224 251 116 

5 0.00 144 260 117 

6 0.00 195 263 119 

7 0.00 143 281 125 

8 260.60 368 291 114 

9 483.02 321 289 114 

10 550.20 301 283 116 

11 550.20 177 303 119 

12 550.20 429 302 120 

13 550.20 299 328 121 

Total 2944.42 3027 3515 1637 
  

 

Figure 4.15 Daily shortage of C1 
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Figure 4.16 Daily shortage of C2 

 

 

Figure 4.17 Daily shortage of C3 

 
 The three WIP profiles at the end of the 13th week are displayed in Appendix 6 

and also repeated here in Figure 4.18 – Figure 4.20.  The bottleneck steps and the 

associated machine information are reported in Table 4.7.  The first three columns list the 

devices, the bottleneck steps, and the corresponding machine tools.  The last two columns 

give the number of available machines and the associated processing rates.  As in the 4-

week problem, the AP, VF and ET machines are the bottlenecks.   
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 C2:  0.4957 ×
315

328 315 26+ +
×

1

14
× 9 × 60 × 24 = 216.06 wafers/day 

 C3:  0.5002 ×
26

328 315 26+ +
×

1

26
× 9 × 60 × 24 = 9.96 wafers/day 

 These daily outputs are lower than the daily target outputs for the three devices.  

The estimated shortage is (328 + 315 + 26) – (246.58 + 216.06 + 9.96) = 196.66 

wafers/day.  Applying the same analysis to the VF machines, the estimated daily outputs 

for the three devices are 528.97, 273.91 and 27.30 wafers, respectively.  This results in a 

surplus of (528.97 + 273.91 + 27.30) − (328 + 315 + 26) = 161.18 wafers/day.  However, 

a closer look indicates that the reason why the VF machines become bottlenecks is 

because the processing rate at the steps immediately preceding the bottleneck steps is 

much higher: for C2, the processing rate is 40 wafers/min at step 618 and for C3 it is 

48,000 wafers/min at step 641. 

 For the ET machines, this analysis is more straightforward since they are only 

required for step 650 in the route of C1, step 796 in the route of C2 and step 922 in the 

route of C3.  The maximum output for the two ET machines is 0.205 × 2 × 60 × 24 = 

590.4 wafers/day.  In contrast, the daily shortage is (328 + 315 + 26) – 590.4 = 78.6 

wafers while the weekly shortage is 78.6 × 7 = 550.2 wafers.  This value coincides 

exactly with the shortages from week 10 to week 13 as reported in Table 4.5.  As such, 

the daily output requirements are beyond the capacity of the available machines, 

implying that the fab will eventually become unstable.  

 

 

Figure 4.18 WIP profile of C1 at the end of the 13th week 
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Figure 4.19 WIP profile of C2 at the end of the 13th week 

 

Figure 4.20 WIP profile of C3 at the end of the 13th week 

 
Table 4.7 Bottleneck information for the 13-week problem 

Device 
(family) 

Bottleneck 
step(s) Tool 

Number 
of tools 

Processing rate 
(wafers/min) 

C1 

21 
57 
106 
128 

AP 
AP 
AP 
AP 

9 
9 
9 
9 

0.4464 
0.5515 
0.5515 
0.4934 

650 ET 2 0.2050 

C2 
66 
619 

AP 
VF 

9 
8 

0.5515 
0.3729 

796 ET 2 0.2050 

C3 

167 
229 

AP 
AP 

9 
9 

0.5859 
0.4261 

642 VF 8 0.5357 
922 ET 2 0.2050 

 
 Intuitively, the bottleneck machines should be busy most of the time.  This can be 

verified from the data in Table 4.8, which reports the average percent utilization for the 
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AP, VF and ET machines over the 91-day planning horizon. It can be verified that these 

machines are fully utilized with mβ = 100%. 

 
Table 4.8 Average usage of bottleneck machines over 91 days 

Machine 
number, m 

Machine  
group 

mβ  
 (%) 

Machine 
number, m 

Machine 
group 

mβ  
(%) 

29 AP 100 543 VF 100 
30 AP 100 544 VF 100 
31 AP 100 545 VF 100 
32 AP 100 546 VF 100 
33 AP 100 547 VF 100 
34 AP 100 548 VF 100 
35 AP 100 549 VF 100 
36 AP 100 550 VF 100 
37 AP 100 284 ET 100 
38 AP 100 285 ET 100 

 
4.6.3 Rolling horizon for subproblems 

Even if no shortages exist after running the decomposition algorithm for several weeks, 

the optimal solution obtained for a particular week may not be optimal when the full 

problem is solved as a whole. In fact, an excessively large number of alternate optima 

exist for both models (3) and (9) due to the underlying network structure of the problem.  

If only a small subset of the alternate optima are robust with respect to the 13-week 

problem, then it is likely that as the decomposition algorithm progresses, the subproblem 

solutions will become less robust.  This could lead to suboptimal final WIP values which 

in turn would produce suboptimal subproblem solutions.  If this occurs, the subproblem 

solutions will deteriorate over time with respect to the full problem. (A similar 

phenomenon is commonly observed when statistical models are used to make forecasts; 

i.e., variance increases with the length of the forecast.) 

 To investigate the implications of this situation, we implemented the 

decomposition algorithm in a rolling horizon framework.  In this approach, an s-day 

problem, say, is solved but only the results for the first r days (r < s) are actually applied. 

The WIP at the end of the first r days is used to initialize another s-day problem whose 
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solution again is only applied for the next r days.  This process is outlined in Figure 4.21 

and would be repeated indefinitely. 

 
  

 

 

 

 

 

 

Figure 4.21 Rolling horizon for the subproblems 

  
 In the implementation we set s = 9 and r = 7.  For the 4-week problem, the 

solution was obtained in 2,954 sec compared to 2,199 sec for the original approach and 

similarly resulted in no shortages.  The WIP profiles at the end of each week were almost 

identical to those shown in Figure 4.11 – Figure 4.14.  For the 13-week problem, the 

computational time was 13,364 sec compared to 9,030 sec; however, a slightly better 

solution was found with TS = 2943 wafers.  In these runs, a shortage of 55.8 wafers first 

appeared in week 7, increased steadily, and then stabilized again at 550.2 wafers in the 

last three weeks. 

The immediate observation from these results is that for the parameter settings 

used in the analysis, the rolling horizon scheme consumes proportionally more time 

without noticeably improving the solution.  Although a larger s would make the 

subproblems more robust, the shortage in the last few weeks in the 13-week problem will 

eventually stay at 550.2 as indicated by the analysis of the ET machines in Section 9.2. 

 
4.7 Further Discussion 

The 4-week problem can be solved in about 37 min, which is a reasonable amount of 

time, and provides results without any shortage.  For the 13-week problem, the 

occurrence of shortages began in week 8 and continued to the end of the planning horizon 

due to the capacity limits of the available machines.  Assuming that the processing rates 

s days 

r days s days 

r days s days 

r days 
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are correct, to improve throughput, either additional bottleneck machines need to be 

brought on line or their processing rates need to be increased. 

 The final issue concerns shift scheduling.  Because the results from our model are 

in aggregate form with respect to the three representative families, and are expressed as 

continuous rather than discrete values, more work is needed to construct a daily plan that 

takes into account the actual devices in the system, setup times between lots, tooling, and 

other factors that are common in discrete manufacturing.  A second model would have to 

be developed for this purpose. 
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Chapter 5 

Chapter 5. Scheduling Back-End Operations in Semiconductor Manufacturing 

Scheduling Back-End Operations in Semiconductor Manufacturing 

 

 At back-end facilities, finished wafers go through an extensive regimen of 

inspection and testing that can take up to 3 hours at each step.  Over a planning horizon 

of anywhere from 8 hours to several days, hundreds of thousands of wafers, grouped into 

thousands of lots must be assembled and tested.  Each wafer must go through 

approximately 32 discrete operations before it enters finished goods inventory. The AT 

facility has hundreds of machines that are used to perform the required processes.  At 

each operation, a queued lot must be assigned to one of a subset of appropriate machines, 

and when two successive lots consist of different devices, a setup is incurred between lots.  

Setups or changeovers are performed by a crew of technicians and typically take 2 hours, 

although fewer hours may be needed, depending on the tooling.  If the current device on a 

machine must be tested at a high temperature while its successor requires testing at room 

temperature, and both use the same fixtures, then the setup time is equal to the amount of 

time it takes for cool down, usually an hour. Labor is generally not a constraining factor.   

Each lot contains a number of chips of the same device, ranging from a few 

hundred to several thousand.  Two lots may contain the same device but a different 

number of chips.  A lot remains in the facility until it undergoes all 32 operations.  All 

lots are associated with customers and have delivery due dates.  When a delivery is late, a 

penalty is incurred which is a function of lateness and volume.  Because setups are so 

time consuming, it is critical for the planners to assign lots to machines and tooling to 

machines in such a way that as few setups as possible are required and due dates are 

taken into account.  

The age of a lot is the current time minus the time it entered the facility.  For each 

operation, each lot is assigned to a particular machine for processing.  To be eligible, the 

machine must be set up with the appropriate tooling pieces, as specified by the lot’s 

routing table and must be able to operate at the required temperature.  Machines are 

divided into families.  In most cases, two machines from the same family are identical; 

however, it is possible that “identical” machines operate under different temperatures and 
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hence are not interchangeable. The limiting resource at most operations is the number of 

tooling pieces.  As with machines, tooling pieces are divided into tooling families and 

only operate at a limited number of temperatures.   

Each AT operation can be viewed as independent of the others so the 

corresponding problems are separable.  As such, the discussion in the remainder of the 

chapter relates to an individual operation rather than the AT facility as a whole.  For an 

incoming lot, a particular route must be selected, if there is more than one option.  A 

route specifies the eligible machine family, the tooling requirements, the processing rate, 

and the operating temperature.  Once a route is selected, the lot is assigned to one of the 

machines in the specified family and the required tooling pieces are installed.  Each 

assigned lot is processed completely without preemption and each machine can be set up 

at most once during the planning horizon to operate at only one temperature. That is, if 

machine m is set up with tooling configuration λ1 under temperature τ1, then it cannot run 

with another tooling setup λ2 or under another temperature τ2 later in the planning horizon, 

even when τ2 is feasible for configuration λ1.  

At the beginning of each planning horizon, typically a shift or a day, a finite 

number of lots are available for processing.  A subset of these lots may contain what are 

called key and package devices, and are singled out for special treatment.  Any demand 

that cannot be satisfied for these two types of devices occasion a large penalty for the 

company.  It is thus desirable to ensure that as many of these “hot” lots as possible are 

processed over the planning horizon to avoid or reduce penalties.  Regular lots are 

assigned a value that depends on their age and remaining cycle time in the facility.   

 
Problem statement. For a given planning horizon, AT operation and set of lots, determine 

how each available machine should be configured with tooling to operate at a specified 

temperature so that the weighted sum of the lots processed is maximized without 

violating the system’s capacity.  The solution should also minimize the number of key 

and package devices falling short of their demand. 

 
 In the literature, this problem is generally referred to as a parallel machine 

scheduling problem with setups, due dates, and a lateness objective.  Other objectives, 

such as minimizing the time to complete all lots (i.e., minimize makespan), minimizing 
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the number of setups, or minimizing the number of late jobs, have similar characteristics.  

In all cases, current technology limits the size of an instance that can be solved optimally 

to less than a dozen machines and several hundred lots (e.g., see Bard and 

Rojanasoonthon 2006). 

 The optimization model is presented in the next section.  The details of the 

decomposition strategy and GRASP are presented in Section 5.2.  Test results using data 

provided by Texas Instruments reported in Section 5.3.  An assessment of the model and 

several suggestions for improving the methodology are provided in Section 5.4. 

 
5.1 Mathematical Formulation 

The AT facility planning problem can be modeled as a mixed-integer problem (MIP) 

using the notation given in Figure A.72.  Although the formulation includes only a 

handful of constraints, a disproportionate amount of notation is required to correctly 

account for all the machine-tooling-temperature combinations. 

Maximize (((( )))) 1 1 2 2
( ) ( , )

k k p p
l s ils

i M l L i s S i l k K p P

w x w wε
∈ ∈ ∈ ∈ ∈∈ ∈ ∈ ∈ ∈∈ ∈ ∈ ∈ ∈∈ ∈ ∈ ∈ ∈

− − ∆ − ∆− − ∆ − ∆− − ∆ − ∆− − ∆ − ∆∑ ∑ ∑ ∑ ∑∑ ∑ ∑ ∑ ∑∑ ∑ ∑ ∑ ∑∑ ∑ ∑ ∑ ∑  (10a) 

subject to 
( ) ( , )

1ils
i M l s S i l

x
∈ ∈

≤∑ ∑ ,  ∀ l ∈ L (10b) 

 
( )

1i
i

y λ
λ∈Λ

≤∑ , ∀ i ∈ M (10c) 

 tooling
,

( , , )( ) ( )
t i t m

i M i tT n m N n

b y nλ λ
λ ττ Λ∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈

≤≤≤≤∑ ∑ ∑ ∑∑ ∑ ∑ ∑∑ ∑ ∑ ∑∑ ∑ ∑ ∑ ,  ∀ t ∈ T, n ∈ N (10d) 
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l L i s S i l ils
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r λ
λ λ∈ ∈∈ ∈∈ ∈∈ ∈

≤≤≤≤∑ ∑∑ ∑∑ ∑∑ ∑ ,  ∀ i ∈ M, λ ∈ Λ(i) (10e) 

 chips min_chips
1

( , ) ( , )

k
l ils k

i M l L i k s S i l

n x C n
∈ ∈ ∈∈ ∈ ∈∈ ∈ ∈∈ ∈ ∈

+ ∆ ≥+ ∆ ≥+ ∆ ≥+ ∆ ≥∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑ ,  ∀ k ∈ K (10f) 

 

chips min_chips
2

( , ) ( , )

p
l ils p

i M l L i p s S i l

n x C n
∈ ∈ ∈∈ ∈ ∈∈ ∈ ∈∈ ∈ ∈

+ ∆ ≥+ ∆ ≥+ ∆ ≥+ ∆ ≥∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑ ,  ∀ p ∈ P (10g) 

 xils ∈ {0,1},∀ i ∈ M, l ∈ L(i), s ∈ S(i,l),  yiλ ∈ {0,1}, ∀ i ∈ M, λ ∈ Λ(i) 

 1
k∆ ≥ 0, 2

p∆  ≥ 0, ∀ k ∈ K, p ∈ P (10h) 

The objective function (10a) is designed to maximize the total weighted number 

of lots processed over the planning horizon and to minimize the total weighted shortages 

for the key and package devices.  The weight of lot l, wl = lot age + remaining cycle time 
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planned, and the weights1
kw and 2

pw are the penalties for shortages for all k ∈ K and p ∈ P.  

The latter are both set to values larger than max{wl : l ∈ L}, implying that priority in the 

optimization is given to minimizing shortages over maximizing the weighted sum of lots 

processed.  When all the weights wl have the same value and1
kw = 2

pw = 0, the problem is 

equivalent to maximizing the throughput.  The parameter εs in the first term of (10a) is 

the penalty incurred when route s is chosen.  Both prime and alternate routes exist for 

some lots.  To encourage the selection of prime routes when at all possible, we use the 

following settings: εs = 0 for s a prime route; εs ∈ (0, min{wl : l ∈ L }) for s an alternate 

route 

 Constraints (10b) require that if lot l is assigned to machine i ∈ M(l), then the 

tooling associated with one of the routes s ∈ S(i,l) must be set up on that machine.  Lot l 

cannot be assigned to more than one machine or be given more than one route.  These 

constraints do not require that each lot be processed but the objective function ensures 

that the as many lots as possible are processed when there are a sufficient number of 

machines, tooling pieces, and time available. 

 Constraints (10c) limit each machine i to at most one tooling configuration from 

the set Λ(i).  When the number of lots |L| is small, or when the available tooling is limited, 

it may not be desirable or feasible to set up all machines. Also, once the tooling 

configuration λ is selected for a particular machine, changeovers are not permitted during 

the planning horizon. 

 Constraints (10d) restrict the total number of tooling pieces assigned to machines 

from family t to the number of pieces available under temperature combination n.  The 

left-hand side of these constraints counts the number of tooling pieces from family t 

associated with the choice of yiλ over all machines, temperatures in n, and corresponding 

tooling setups.  The right-hand side counts the total available number of tooling pieces in 

family t under temperature combination n by summing tooling
tmn

 
over all combinations 

( )m N n∈ .  For each t ∈ T, there are tooling
tmn

 
tooling pieces that can be used under the nth 

combination if m shares some temperatures with n.  Assume that there are three discrete 

temperatures, that is, T = {1,2,3}, and tooling
tmn

 
= 1, ∀ t ∈ T, m ∈ N, and let the set of 

possible temperature combinations N = {{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}.  For 
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n = 4, for example, the temperature set (4)T = {1,2} and (4)N = ( ){1,2}N = {{1}, {2}, 

{1,2}, {1,3}, {2,3}, {1,2,3}} = N \ {3}.  The right-hand side of (10d) under combination 

n is then (4)N
 
= 6 for all tooling families t ∈ T. 

 Constraints (10e) impose a processing time limit on each machine i ∈ M when it 

is set up under configuration λ ∈ Λ(i).  The left-hand side tracks the amount of time 

required to process each lot l assigned to machine i following route s.  The time available 

for machine i depends on its status.  If a machine i is active, then exactly one of the 

variables yiλ = 1, for λ ∈ Λ(i), as required by constraints (10c).  Thus, the available 

processing time is Hi when machine i is active and 0 when it is idle.  These constraints 

also impose a logical relationship between xils and yiλ.  When the setup variable yiλ = 0, 

the lot assignment variables xils = 0, ∀ l ∈ L(i,λ), s ∈ S(i,l,λ) so any lot l requiring setup 

configuration λ cannot be processed on machine i.   

Constraints (10f) ensure that as many lots as possible containing key device k are 

processed, at least until demand min_chips
kn is satisfied.  The shortage 1

kC∆  will be positive if 

some of the demand cannot be met due to limited resources.  In that case, a penalty equal 

to 1 1
k kw ∆∆∆∆  is incurred, where C = max{wl : l ∈ L} + 0.1Σl∈Lwl is a normalizing constant 

used to ensure that the left-hand-side coefficients in (1f) are all the same order of 

magnitude.  A similar set of constraints (10g) is included for package devices p ∈ P.  In 

(10h), binary restrictions are placed on the xils and yiλ variables, and nonnegative 

restrictions are placed on the shortage variables 1
k∆  and 2

p∆ . 

Although it is possible to tighten the linear programming relaxation of (10) by 

adding logic constraints xils � yiλ, ∀ i ∈ M, λ ∈ Λ(i), l ∈ L(i,λ), s ∈ S(i,l,λ) and removing 

yiλ from the right-hand side of (10e), doing so would increase the problem size by 

O(|M|⋅|Λ|⋅|L|) constraints, making it more than an order of magnitude larger. In our initial 

testing with CPLEX 11, this modification vastly increased runtimes and so was not 

adopted. 

 
Proposition 5.1. The assembly and test scheduling problem (ATP) represented by model 

(10) is NP-complete in the strong sense. 
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Proof. We will show that a restricted version of ATP is an instance of the bin packing 

problem (BPP), which is known to be NP-complete in the strong sense (Garey and 

Johnson 1979). For BPP, we have the following definition. 

INSTANCE: Finite set U of items, a size su ∈ Z+ for each u ∈ U, a positive integer bin 

capacity B, and a positive integer K. 

QUESTION: Is there a partition of U into disjoint sets U1,U2,…,UK such that the sum of 

the sizes of items in each Ui is B or less? 

 To see how an instance of BPP can be reduced to an instance of ATP, we create a 

simplified version of ATP where all |M| machines are identical, the available processing 

time on each machine is identical, i.e., Hi = H for all i ∈ M, there are no key or package 

devices, there are no tooling or setup requirements, the processing time of lot l is r l is 

machine-independent, and the objective function weights wl = 1 for all l ∈ L.  For BPP, 

we let U = L, su = r l when u = l, B = H, K = |M|, which gives rise to the simplified ATP.  

If we can find a solution such that the set U can be partitioned into K subsets such that 

 
s

uu∈∈∈∈U i
∑∑∑∑ ≤≤≤≤ B  for i = 1,…,K, then we can find a solution such that all the lots in WIP can 

be processed on the |M| machines in H hours, and vice versa. The fact that BPP can be 

transformed into the simplified instance of ATP in polynomial time completes the proof.    

  � 

 
5.2 Solution Methodology 

Model (10) contains nvar ≅ 
( )

( , )
i M l L i

S i l
∈ ∈∑ ∑  + ( )

i M
i

∈
Λ∑  + |K| + |P| = O(|M|⋅|L|⋅|S| + 

|M|⋅|Λ| + |D|) variables and ncon ≅ |L| + |M| + |T|⋅|N| + ( )
i M

i
∈

Λ∑  + |K| + |P| = O(|L| + 

|T|⋅|N| + |M|⋅|Λ| + |D|) constraints.  Problem size is dominated by the number of lot 

assignment variables xils and the number of lot assignment constraints (10b), both of 

which grow linearly with |L|.  For a small case with 300 lots, 5 machine families and a 

total of 20 machines, 10 tooling families and a total of 50 tooling pieces, 3 operating 

temperatures, and 50 devices with 40 being key or package devices, the model contains 

approximately nvar = 2220 variables and ncon = 650 constraints.  Such instances exhibit 

optimality gaps at the root node of the search tree that average 3% and solve quickly.  
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Real instances with, say, 2000 lots contain roughly 84,000 binary variables and 3300 

constraints and are much slower to converge, if they do at all. 

 To ensure reasonable runtimes, we developed a heuristic, two-level 

decomposition scheme and embedded it in a reactive GRASP.  Our approach is based on 

the observation that model (10) becomes much easier to solve when the machines setups 

are given, that is, when the yiλ variables are fixed, leaving what we term the lower level 

problem (LLP) in the xils variables. At the upper level, a strategic decision is made 

concerning machine-tooling pairings.   

Phase I of the GRASP is designed to uncover a diversity of high quality feasible 

solutions by randomly selecting the y variables in accordance with an adaptive greedy 

measure and then solving the resultant LLP to obtain the optimal lot assignments, x.  This 

process is repeated many times.  In phase II, an attempt is made to improve a subset of 

the candidates uncovered in phase I using a high-level neighborhood search.  Before 

presenting the overall analytic framework, our approach to solving the lower and upper 

level problems is described. 

 
5.2.1 Lower level problem 

When the tooling setup variables yiλ are fixed at, say, iyλ , constraints (10c) and (10d) can 

be dropped from model (10) and the right-hand side of (10e) becomes a constant.  The 

reduced model, denoted by LLP, is as follows. 

Maximize ( ) 1 1 2 2
( ) ( , )

k k p p
l s ils

i M l L i s S i l k K p P

w x w wε
∈ ∈ ∈ ∈ ∈

− − ∆ − ∆∑ ∑ ∑ ∑ ∑  (11a) 

subject to 
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1ils
i M l s S i l
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≤∑ ∑ ,  ∀ l ∈ L (11b) 
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 chips min_chips
1
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i M l L i k s S i l

n x C n
∈ ∈ ∈
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chips min_chips
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( , ) ( , )
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l ils p

i M l L i p s S i l

n x C n
∈ ∈ ∈

+ ∆ ≥∑ ∑ ∑ ,  ∀ p ∈ P (11e) 

 xils ∈ {0,1},∀ i ∈ M, l ∈ L(i), s ∈ S(i,l), 1
k∆ ≥ 0, 2

p∆  ≥ 0,  

  ∀ k ∈ K, p ∈ P (11f) 



113  

 For iyλ = 1, let iλ  be the corresponding tooling configuration for machine i.  By 

implication iyλ = 0 for all λ ∈ Λ(i)\{ iλ } and constraints (2c) can be written as   

 
chips

( , ) ( , , )i i

l
ils i

l L i s S i l ils

n
x H

rλ λ∈ ∈

≤∑ ∑ ,  ∀ i ∈ M (11c′) 

with the additional restriction xils = 0, ∀ i ∈ M, λ ∈ Λ(i)\{ iλ },  l ∈ L(i,λ), s ∈ S(i,l,λ).  

Model (11) contains approximately
( , )

( , , )
i

i
i M l L i

S i l
λ

λ
∈ ∈∑ ∑ + |K| + |P| variables and |L| + 

|M| + |K| + |P| constraints, which is a sizable reduction from model (10), but still a 

difficult IP.  Since our algorithm requires that (11) be solved repeatedly for different 

values of the yiλ variables in both phases of  the GRASP,  we propose solving the LP 

relaxation of (11) and then constructing feasible solutions guided by the results, rather 

than applying an IP solver directly.  In addition, we were motivated by the desire to 

eliminate any dependency on a commercial product.  

 

LP based heuristic for LLP 

Let xLP be the solution to the LP relaxation of model (11).  To transform xLP into an 

integral solution xIP, we start by truncating the fractional lot assignments to get 

  IP
ilsx = LP

ilsx  for LP
ilsx  integral 

 IP
ilsx = 0 for LP

ilsx  fractional 

which empirically turns out to be a good starting point.  Let L0 be the set of unassigned 

lots and let Li be the set of lots assigned to machine i in accordance with IPilsx .  For device 

j, the output out(j) and the shortage sh(j) are defined as follows. 

 out(j) = chips

( )i

l
i M l L L j

n
∈ ∈ ∩
∑ ∑ ,  ∀ j ∈ D,    sh(j) = n(j) – out(j),  ∀ j ∈ D 

The term n(j) is the target output for device j in constraints (11d) and (11e), that is, 

min_chips
jn for j ∈ {K 	 P}, and −∞ for regular device j ∈ D\{ K 	 P}.  There is no output 

requirement for regular devices.   

The benefit of an unassigned lot l ∈ L0 is defined by the function 

 ben(l) = wl +( )
ldw C ∙ { }chipsmin , ( )l ln sh d ∙ { }( ) 0lI sh d > ∙ { }{ }lI d K P∈ ∪  (12) 
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where dl is the device contained in lot l and I{ α} is an indicator function equal to 1 if the 

phrase α is “true” and 0 otherwise.  The first right-hand-side term in (12) is the lot weight; 

the second term measures the penalty reduction [potential gain in the objective function 

(2a)] that would result if the lot contains a key or package device.  In the second term, 

( )
ldw C is the unit shortage penalty associated with the chips in lot l.  The weight

ldw =

1
kw if dl ∈ K and

ldw = 2
pw if dl ∈ P.  For the indicator function I{ α}, when dl ∈ {K 	 P} 

and sh(dl) > 0, { }( ) 0lI sh d > � { }{ }lI d K P∈ ∪ � 1.  The magnitude of the penalty 

reduction depends on { }chipsmin , ( )l ln sh d .  If chips
ln < sh(dl), then all chips

ln  chips contained 

in lot l go towards reducing the penalty.  Otherwise, only sh(dl) of them contribute.   

Using the benefit function calculated in (12), a feasible assignment of lots to 

machines is given by xIP, and then is improved locally. For each machine i ∈ M, let IP
it  be 

the time consumed by the lots assigned to it in partial solution xIP.  With these values in 

mind, procedure N1(x
IP) is applied to assign as many lots as possible to the available 

machines in an expedient manner, and then procedure N2(x
IP) is used to perform a 

neighborhood search giving solution LLP_heur(y).  The pseudocodes of the two 

procedures are provided in Figure A.73 and Figure A.74. 

N1(x
IP) (Greedy lot insertion) Sort the unassigned lots l ∈ L0 in nonincreasing order 

according to ben(l).  Pick the next lot l ∈ L0 and a machine i ∈ M.  If l ∈ L(i,

iλ ) and IP
it + chips

l ilsn r � Hi, where route s = argmax{r ils, s ∈ S(i,l, iλ )}, 

assign l to machine i and go to the next unassigned lot; otherwise, go to next 

machine.  If l cannot be assigned to any machine, go to the next unassigned 

lot. 

N2(x
IP) (Lot swap) Sort the unassigned lots l ∈ L0 in nonincreasing order according 

to ben(l).  Pick the next lot l ∈ L0 and a machine i ∈ M.  If l ∈ L(i, iλ ), pick a 

lot l′ ∈ Li.  Let s = argmax{r ils : s ∈ S(i,l, iλ )} and s′ = argmax{r il ′s : s ∈ S(i,l′,

iλ )}.  If IP
it + chips

l ilsn r − chips
l il sn r′ ′ � Hi and ben(l) > ben(l ′), swap lots l and l ′ 

and go to next unassigned lot l ∈ L0; otherwise, go to next lot l′ ∈ Li.  If l ∉

L(i, iλ ), lot l cannot be assigned to machine i, go to next machine. 
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5.2.2 Upper level problem 

The solution provided by LLP is a function of the machine setup variables y.  The upper 

level problem (ULP) aims to identify the optimal machine setups such that the overall 

objective (10a) is maximized.  The following mathematical model is used for this purpose.  

Maximize LLP_heur(y) (13a) 

subject to 
( )

1i
i

yλ
λ∈Λ

≤∑ , ∀ i ∈ M (13b) 

 tooling
,

( , , )( ) ( )
t i t m

i M i tT n m N n

b y nλ λ
λ ττ Λ∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈

≤≤≤≤∑ ∑ ∑ ∑∑ ∑ ∑ ∑∑ ∑ ∑ ∑∑ ∑ ∑ ∑ ,  ∀ t ∈ T, n ∈ N (13c) 

 yiλ ∈ {0,1}, ∀ i ∈ M, λ ∈ Λ(i) (13d) 

 
Constraints (13b) – (13c) repeat (10c) – (10d) and along with (13d) define the 

feasible machine-tooling pairings.  However, model (13) cannot be solved directly since 

the objective function (13a) is not an explicit function of y.  GRASP is proposed as 

follows to generate solutions.  In each phase I iteration, a candidate list (CL) is built from 

machine-tooling combinations and sorted according to the benefit associated with each.  

A restricted candidate list (RCL) is then constructed from CL whose length is adjusted 

based on the quality of solutions obtained from previous iterations.  Letting SIM be the 

set of identical machines, a scoring list is also maintained to grade each (j, λ) ∈ SIM × 

Λ(i). Feasible solutions are constructed by randomly selecting (j, λ) combinations from 

RCL until all available capacity is used.   As mentioned, a subset of solutions generated 

in phase I is passed to phase II for improvement using neighborhood search. 

 

Building the CL 

Each element in CL is a triplet consisting of some j ∈ SIM, a tooling setup λ ∈ Λ(j), and 

the corresponding benefit ben(j, λ, L0), where L0 is the set of unassigned lots.  The benefit 

is computed by solving the following knapsack problem 

ben(j, λ, L0) = max
0( , )

( ) l
l L j L

ben l z
λ∈ ∩





∑ : 
0

chips

0
( , )

,  {0,1},   ( , )l
l i l

l L j L ils

n
z H z l L j L

rλ

λ
∈ ∩

≤ ∈ ∀ ∈ ∩ 


∑  

where ben(l) is the value calculated in (12) when lot l ∈ L0 is assigned to machine i ∈ 

SIMj.  The term chips
l ilsn r  is the time required to process lot l on machine i with tooling 
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setup λ, and route s = argmax{r ils : s ∈ S(i, l, λ)}.  The decision variables zl, ∀ l ∈ L(j λ) ∩ 

L0 are binary such that  zl = 1 when lot l is assigned to the machine i ∈ SIMj and 0 

otherwise.  The elements in CL are sorted in nonincreasing order of ben(j, λ, L0). 

 Instead of solving the knapsack problem exactly, a heuristic is used to reduce 

runtimes.  The pseudocode of the heuristic is shown in Figure A.75.  In Step 1, the 

unassigned lots l ∈ L0 are sorted according to rate of benefit ( )chips( ) l ilsben l n r in 

nonincreasing order.  In Step 2, the lots are assigned to the machine in a greedy way until 

there is no more lots can be assigned due to the time limit constraint.   

 An example of a CL is shown in Table 5.1.  The first two columns identify the 

feasible machine-tooling combinations (j,λ) while the third column gives the benefit 

ben(j, λ, L0) associated with the knapsack solution.  CL is sorted in nonincreasing order of 

the benefit.  

 
Table 5.1 An example of CL 

SIM, j Tooling setup, λ ben(j, λ, L0) 

2 1 100 
2 3 90 
3 2 80 
1 3 70 
2 2 60 
1 1 50 

 

Self-adjusted RCL 

RCL is derived from CL by taking only the top elements.  Since RCL guides the 

construction process in phase I, its length, lRCL, must strike a balance between solution 

quality and diversity.  If lRCL is large then it is likely to produce many inferior initial 

solutions; if it is small, many good solutions may be missed.  Therefore, instead of setting 

lRCL to a fixed value, it is restricted within the following range: lRCL ∈{2, 3,…, � �
���}, 

where � �
��� is a (predetermined) maximum length.  The value of lRCL is adjusted during 

the GRASP iterations according to the quality of observed solutions, as described by 

Paris and Ribeiro (1999). 
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Let A = {α1, α2, … ,αm} be the set of considered values for lRCL and let pi be the 

corresponding probability of selecting αi, i =1,…,m.  Initially, pi is uniformly distributed; 

that is, 

 pi = 1/m,  i = 1,…,m  

To see how these probabilities are adjusted, let φ* be the best solution found in all 

previous GRASP iterations and let Ai be the average value of solutions obtained for lRCL = 

αi.  Now, define 

 
*
i

i

A
q

δ

φ
 

=  
 

,  i = 1,…,m (14a)  

to be the relative performance of the algorithm under αi, where δ is a shape parameter.  

For higher values of δ, qi will be lower since Ai ≤ φ*.  Normalizing gives 

 
1

/
m

i ip q qγγ =
= ∑ , i = 1,…,m (14b)  

 When αi yields relatively high average solutions, Ai it will have a high probably pi 

of being selected as the iterations progress.  In the implementation, we set δ =50 and A = 

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. 

 

Grading the (SIM, Λ) combinations 

The quality of the phase I solutions strongly depends on the associated machine-tooling 

pairings selected.  A good (j, λ) combination is one that appears frequently in good 

solutions. To identify such pairs we devised a scoring list (SL) to grade each (j, λ) 

combination that arises in phase I.  Each element of SL consists of the SIM index j, the 

tooling setup index λ, and the score Sjλ of the corresponding (j, λ) combination.  Let φk be 

the objective function value in (4a) found at iteration k of phase I, let *
jλφ be the best 

solution found so far using (j, λ), and let k
iy λ  [for all i ∈ SIMj and λ ∈ Λ(i)] be the 

corresponding machine-tooling pairings.  The score Siλ is defined as a function of the 

average objective function value and the best objective function value over all phase I 

iterations; that is, 

Sjλ = ( )PhaseI

PhaseI
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, ∀ j ∈ SIM, λ ∈ Λ(j) 
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where nPhaseI is the total number of iterations in phase I and I{ ⋅} is an indicator function.  

The numerator of the fraction calculates the total objective value over all iterations when 

combination (j, λ) was present while the denominator counts the total number of times the 

combination was applied.  The grading scheme emphasizes *
jλφ and corresponds to our 

intensification strategy.  The constant c is included to avoid setting Siλ = 0 when some (j, 

λ) combination is never selected.  In the implementation c = 1000.   

 Let (j i, λi, bi) be the i th element in RCL, i = 1, 2,…,lRCL.  To determine the 

probability that this element will be selected we use the same procedure used to 

determine the length of RCL. The relevant formulas are 

 qi =
( )3*

i ij
S

δ

λ

φ

 
 
 
 

,  ∀ i = 1, 2,…,lRCL (15a) 

 
1

/ RCLl

i ip q qγγ =
= ∑ , ∀ i = 1, 2,…,lRCL (15b) 

where δ is again a shape parameter and is set to 50 to emphasize intensification.  

According to Eqs. (15a) – (15b), setups with higher scores have a higher probability of 

being part of a solution; larger values of δ increase the corresponding probabilities.  To 

avoid overemphasizing intensification, a lower limit of ε is imposed on the probability of 

pi; that is, 

 ip  = ε, ∀ pi < ε, i = 1, 2,…,lRCL (15c) 

 { }( )
{ }1

1

1 RCL

RCL

l i
i r lr

rr

p
p I p

I p
ε ε

ε=

=

= − < ⋅
≥

∑
∑

, ∀ pi ≥ ε, i = 1, 2,…,lRCL (15d) 

Equation (15c) eliminates the situation where some elements in RCL cannot be selected 

due to very lower probability while equation (15d) distributes the remaining probability 

proportionally to the original value pi.  In the implementation, ε = 0.01 is used to allow 

appropriate diversification. 

 

Construct initial solutions in phase I 

Each phase I iteration produces a feasible solution to model (10) in conjunction with CL, 

RCL, SL and the aforementioned heuristic solvers.  The pseudocode is given in Figure 

A.77.  Initialization is done in Step 1 followed by nPhaseI iterations in Step 2.  At the 
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beginning of each outer iteration, we reset L0 ← L and Li ← �, ∀ i ∈ M.  The benefit 

function ben(l), for all l ∈ L, is then calculated according to Eq. (12) based on which lots 

have already been assigned.  At each inner iteration, CL is built and then truncated 

according to the probability distribution in Eq. (14b) to get RCL.  Exactly one element of 

RCL is selected with probability based on SL and Eq. (15).  The machine corresponding 

to the selected element is configured with the specified tooling, and all sets, data 

structures and functions are updated.  An inner iteration is halted when there are no more 

machines or tooling pieces available.  At this point the y variables are fixed at y* and LLP 

is solved to get x*.  The solution (x*, y*) is appended to the set SPhaseI and the next outer 

iteration is performed. 

 

Phase II: LP-based local neighborhood search 

Local branching is a technique for embedding metaheuristic concepts such as 

neighborhood search, intensification and diversification, into branch and bound.  The 

objective is to achieve high quality solutions in reasonable time without necessarily 

verifying optimality.  Given a feasible reference solutiony , let Y  = {(i,λ) : iyλ = 1, i ∈ M, 

λ ∈ Λ(i)}.  As proposed by Fischetti and Lodi (2003), we define a local branch cut as 

follows: 

 ∆(y, y ) = 
( , )

(1 )i
i Y

yλ
λ ∈

−∑ � K (16) 

Constraint  16" generates a neighborhood of radius K around the current solutiony .  For 

example, assume that there are 3 machines with solution λ1 = 1, λ2 = 3 and λ3 = 2 or 11y = 

1, 23y = 1, 32y = 1 and all other iyλ = 0.  The branch cut is (1 − 11y ) + (1 − 23y ) + (1 − 32y ) 

≤ K.  

Note that instead of including all the binary variables in the cut, as Fischetti and Lodi do, 

we only include the ULP variables, y. 

 Now, at each phase II outer iteration, model (10) is solved as an LP with 

constraint (16) added.  Let yLP = ( LP
iy λ ,  i ∈ M, λ ∈ Λ(i)) be the relaxed solution for the 

machine setup variables in the extended model.  In light of (10c), the LP
iy λ values can be 

viewed as the probability of setting up machine i with tooling configuration λ.  These 
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values are used at each phase II inner iteration to perform a Monte Carlo simulation.  

That is, for each machine i, a tooling configuration λ is drawn from Λ(i) using 

“probabilities” LP
iy λ .  Once the tooling is selected for the machines, the resulting LLP is 

solved by the heuristic described in Section 5.1 to obtain the best lot assignments. 

 The phase II LP-based local branch (LPLB) neighborhood search can be 

interpreted as a destruction-construction algorithm that works on the upper level decision 

variables y.  The pseudocode of the LPLB algorithm is provided in Figure A.76.  The 

algorithm consists of a series of nLPLB Monte Carlo replications.  In replication s, the 

machine setups are simulated using yLP as probabilities to get ys and, if feasible to (10d), 

the resultant LLP is solved to get a feasible integer solution (xs, ys).  The objective 

function value, denoted by sim_obj(xs, ys), is compared to the incumbent, and when an 

improvement is identified, (x*, y*) is updated.  When ys is infeasible it is discarded and the 

next replication performed.  In the implementation nLPLB = 10. 

 
5.2.3 Summary of GRASP 

In phase I, good feasible solutions are constructed in a greedy way using a benefit 

function for each lot and RCL.  A subset of these solutions is improved by LPLB in phase 

II.  The best feasible solution found at the end of phase II is output.  A high level 

pseudocode is given in Figure A.78. 

 
5.3 Computational Results 

The proposed GRASP was implemented in C++ and tested under Ubuntu Linux on a Dell 

Poweredge 2950 workstation with 2 dual core hyperthreading 3.73 GHz Xeon processors 

and 8 GB physical memory.  In the numerical experiments, the test cases were randomly 

generated from a dataset provided by TI.  Model (10a) – (10h) was solved heuristically 

with GRASP and directly with CPLEX 11.0.  The following parameter settings were used 

for GRASP, 

• nPhaseI = 1000 

• For RCL, � �
���= 11, δ = 50 

• For the grading scheme, δ = 50, c = 1000, ε = 0.01 

• In phase II, K = 1, nLPLB = 10  
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• COIN CLP was used as the LP solver (http://www.coin-or.org/projects/Clp.xml) 

For CPLEX, a limit of 3600 sec was imposed on all runs.   

 
5.3.1 Random test instances 

The basic data set consisted of 84 machines divided into 8 families, 2078 lots of which 80% 

were either key or package devices, 106 tooling pieces divided into 28 families, and 1 

temperature.  

CPLEX was able to solve this problem in negligible time due to the excess capacity 

relative to the number of lots. In addition, many of the routes did not require any tooling.  

To create more difficult instances that better reflect the operational environment, a series 

of representative cases are constructed using the following random case generator. The 

pseudocode of the random cases generator is provided in Figure A.79. 

 
5.3.2 Comparison of GRASP with CPLEX 

Two datasets were generated for testing purposes.  The first has |Ltest| = 1000 lots, |Mtest| = 

80 machines, mg = 10 machine groups, |Ttest| = 30 tooling families, nD = 100 devices with 

nK = 40 key devices and nP = 40 package devices, and ntemp = 3 operating temperatures.  

The number of tooling pieces ttest was selected from the set {100, 300, 500}.  Ten random 

cases were generated and solved by CPLEX and GRASP for each ttest value.  Table 5.2 

and Table 5.3 report the results for |Ltest| = 1000 and ttest = 100.  In Table 5.2, the columns 

denoted by φCPX, φI and φII are the best solutions found by CPLEX, GRASP phase I and 

GRASP phase II, respectively.  The columns TW and TS give the total lot weights and 

the total shortages of key and package devices for the best solutions.  The gap ∆CPX is the 

optimality gap given by CPLEX, while ∆GRASP is the percentage gap between the GRASP 

and CPLEX solutions: [|φCPX − φII| / |φCPX|] × 100.   

According to the results, none of the CPLEX runs converged within 3600 sec (the 

average optimality gap was 17.35 %).  GRASP required much less time, averaging 536 

sec, and producing solutions that were 3.41% on average, as indicated by ∆GRASP.  For 

problem nos. 1, 2 and 7, the negative gap indicates that GRASP outperformed CPLEX.  

As seen in Table 5.3, no improvement was obtained in phase II.  This was due to the fact 

that the tooling pieces are very limited so there are few if any good options within a 

neighborhood.   
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 Table 5.3 also provides some individual performance measures for CPLEX and 

GRASP.  Column 2 reports the size of the search tree and column 3 indicates the node at 

which the best solution was found.  For all but problem no. 10, CPLEX uncovered the 

best solution late in the search tree.  Column 4 reports the iteration at which GRASP 

found the best solution, which was similarly towards the end of the process, except for 

problem no. 4.  The last two columns indicate the number of phase I solutions that were 

carried over to phase II and the corresponding percentage improvement.  For smaller 

instances than those investigated here, we generally found improvements averaging 5%, 

but for the reasons previously mentioned, phase II was not successful on instances with 

1000 or more lots and compatible numbers of tooling pieces. 

 Table 5.4 reports the results for CPLEX and GRASP when |Ltest| = 1000 and ttest = 

300.  As the number of tooling pieces increase the problems become easier to solve by 

CPLEX, which now exhibits gaps, ∆CPX, of less than 0.10%.  In contrast, GRASP has a 

harder time executing phase 1 because there are many more (j, λ) combinations to 

explore.  Runtimes for these instances averaged about 1000 sec, and the corresponding 

solutions are with gaps less than 3% in all cases.  The TS values obtained by GRASP are 

identical to the values obtained by CPLEX except problem nos. 4, 5 and 6.  Once again, 

however, phase II provided no improvement since the tooling pieces are still limited (see 

Table 5.5). 

 Table 5.6 and Table 5.7 report the results for GRASP and CPLEX when |Ltest| = 

1000 and ttest = 500.  The TS values are identical in all cases and the gap, as measured by 

∆GRASP, is well under 0.10%, although GRASP uncovered slightly better solutions for 

problem nos. 1 and 7.  No improvement was obtained during phase II.  The average 

computational time of CPLEX is 1234 sec, which is slightly more than the average 

computational time of GRASP 1078 sec. 

 The second set of experiments involved the same parameter settings as the first 

except that |Ltest| = 2000.  For ttest = 100, the computational results are reported in  Table 

5.8 and Table 5.9 where CPLEX is seen to have a much more difficulty time then 

previously.  The optimality gap ∆CPX averaged 66.27%.  A large gap ∆GRASP around 20% 

can be observed for problem nos. 3 and 4.  However, In 7 out of the remaining 8 cases, 

GRASP obtained better solutions than CPLEX in less than half the time.   
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 Table 5.10 and Table 5.11 report the results for |Ltest| = 2000 and ttest = 300.  In 6 

out of the 10 cases GRASP obtained better solutions than CPLEX with a maximum gap 

7.80%.  GRASP obtained better solutions in the rest of the cases especially for problem 

no. 1 with a gap −32.89% Again, phase II failed to provide better results, this time 

because the phase I solutions are almost optimal.  Table 5.12 and Table 5.13 report the 

results for |Ltest| = 2000 and ttest = 500.  The gaps between the GRASP and CPLEX 

solutions are well under 1% except that a 7.46% gap was observed in problem no. 3.  The 

remaining statistics and the phase II results parallel those obtained in the other 

experiments. 

 According to the reported results, the problem was hard to solve when the number 

of tooling pieces were very limited.  CPLEX always experienced a hard time to solve the 

problem while the gaps ∆GRASP were big under this situation.  As the number of tooling 

pieces increased, the problem became easier to solve by both CPLEX and GRASP and 

the gaps ∆GRASP became much smaller. 

 
5.4 Summary 

This chapter presented a mathematical model to schedule the back-end operations in 

semiconductor manufacturing.  To solve the problem efficiently without reliance on 

third-party software, a two-level heuristic was developed within a reactive GRASP 

framework.  The novelty in phase I of the GRASP centered on the dynamic adjustment of 

RCL in accordance with the solution quality and the use of a grading scheme to guide the 

machine setups.  In phase II, a neighborhood search based on local branching and Monte 

Carlo sampling was devised to improve phase I solutions. Extensive testing showed that 

comparable objective function values could be obtained with the GRASP, often in 

significantly less time than required by CPLEX.   These results confirmed that public 

domain software combined with intelligent heuristics can be competitive with top 

commercial products.  Nevertheless, there is still room for improvement with respect to 

the phase II algorithm.  A post-processor such as path relinking coupled with local 

branching could be applied to the set of elite solutions to increase the intensity of the 

neighborhood search.
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Table 5.2 Comparison of numerical results from CPLEX and GRASP with |Ltest| = 1000 and ttest = 100 

Prob. 
No. 

CPLEX GRASP 
Best solution found  

Time 
(sec) 

∆CPX 
(%) 

Phase I solution Phase II solution 
∆GRASP 
(%) 

φCPX 
(×107) TW TS 

φI 
(×107) TW TS 

Time 
(sec) 

φII 
(×107) TW TS 

Time 
(sec) 

1 −8.5697 71,900 1,695,270 3600 19.68 −8.4714 59,312 1,675,600 682 −8.4714 59,312 1,675,600 54 −1.15 
2 −4.0430 59,456 1,450,580 3600 8.49 −3.9861 64,884 1,430,390 475 −3.9861 64,884 1,430,390 17 −1.41 
3 −30.1709 60,872 1,494,290 3600 16.87 −30.8340 60,087 1,527,120 399 −30.8340 60,087 1,527,120 51 2.20 
4 −4.4618 58,955 1,387,610 3600 20.76 −4.5520 59,972 1,415,650 458 −4.5520 59,972 1,415,650 34 2.02 
5 −3.7262 47,423 1,483,700 3600 11.24 −3.9891 42,897 1,588,090 359 −3.9891 42,897 1,588,090 32 7.06 
6 −31.3312 82,524 1,397,250 3600 18.20 −33.4955 69,081 1,493,690 959 −33.4955 69,081 1,493,690 52 6.91 
7 −3.3032 57,451 1,236,520 3600 27.42 −3.2716 60,196 1,224,840 440 −3.2716 60,196 1,224,840 23 −0.96 
8 −7.4827 56,883 1,594,640 3600 17.95 −8.1717 43,477 1,741,090 393 −8.1717 43,477 1,741,090 39 9.21 
9 −26.1961 43,562 1,553,010 3600 16.24 −27.4550 44,095 1,627,630 287 −27.4550 44,095 1,627,630 14 4.81 
10 −7.6735 54,413 1,439,770 3600 16.67 −8.08714 54,248 1,517,320 552 −8.08714 54,248 1,517,320 37 5.39 

 
Table 5.3 Performance of CPLEX and GRASP for |Ltest| = 1000 and ttest = 100 

Problem 
no. 

CPLEX GRASP 
Tree 
size 

Node best 
soln found 

Iteration 
best found 

No. phase I 
improved 

Improve 
(%) 

1 3100 3014 956 0 0 
2 3752 2719 931 0 0 
3 3750 2590 965 0 0 
4 5052 5047 554 0 0 
5 8165 6715 780 0 0 
6 2625 2604 988 0 0 
7 3965 3664 925 0 0 
8 15173 14585 650 0 0 
9 18382 10224 698 0 0 
10 7116 2506 978 0 0 
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Table 5.4 Comparison of numerical results from CPLEX and GRASP with |Ltest| = 1000 and ttest = 300 

Prob. 
No. 

CPLEX GRASP 
Best solution found 

Time 
(sec) 

∆CPX 
(%) 

Phase I solution Phase II solution 
∆GRASP 
(%) 

φCPX 
(×107) TW TS 

φ 
(×107) TW TS 

Time 
(sec) 

φ 
(×107) TW TS 

Time 
(sec) 

1 −5.4536 95,832 1,079,830 2798 0.01 −5.4538 93,693 1,079,830 939 −5.4538 93,693 1,079,830 24 0.00 
2 −2.8628 95,897 1,029,370 942 0.01 −2.8638 94,581 1,029,380 892 −2.8638 94,581 1,029,380 32 0.03 
3 −28.1722 93,791 1,395,480 428 0.00 −28.1718 97,532 1,395,480 695 −28.1718 97,532 1,395,480 30 0.00 
4 −3.3378 98,460 1,039,720 2046 0.01 −3.3789 98,816 1,052,500 1091 −3.3789 98,816 1,052,500 24 1.23 
5 −2.8879 89,933 1,152,030 3600 0.10 −2.8858 92,108 1,151,280 1111 −2.8858 92,108 1,151,280 39 −0.07 
6 −21.0521 98,248 939,039 456 0.00 −21.5633 96,662 961,824 972 −21.5633 96,662 961,824 38 2.43 
7 −2.2370 96,537 839,557 3600 0.01 −2.2368 98,120 839,557 712 −2.2368 98,120 839,557 25 −0.01 
8 −4.5180 99,991 964,227 2359 0.00 −4.5180 99,972 964,227 1358 −4.5180 99,972 964,227 38 0.00 
9 −15.4814 79,913 918,117 3600 0.01 −15.4806 87,262 918,117 787 −15.4806 87,262 918,117 20 −0.01 
10 −4.1144 96,713 773,243 3600 0.01 −4.1145 95,562 773,243 927 −4.1145 95,562 773,243 45 0.00 

 
Table 5.5 Performance of CPLEX and GRASP for |Ltest| = 1000 and ttest = 300 

Problem 
so. 

CPLEX GRASP 
Tree  
size 

Node best 
soln found 

Iteration 
best found 

No. phase I 
improved 

Improve 
(%) 

1 666 666 581 0 0.00 
2 522 522 700 0 0.00 
3 526 526 136 0 0.00 
4 773 773 654 0 0.00 
5 600 509 794 0 0.00 
6 320 320 773 0 0.00 
7 997 790 424 0 0.00 
8 891 891 701 0 0.00 
9 921 662 967 0 0.00 
10 925 823 131 0 0.00 
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Table 5.6 Comparison of numerical results from CPLEX and GRASP with |Ltest| = 1000 and ttest = 500 

Prob. 
No. 

CPLEX GRASP 
Best solution found 

Time 
(sec) 

∆CPX 
(%) 

Phase I solution Phase II solution 
∆GRASP 
(%) 

φCPX 
(×107) TW TS 

φ 
(×107) TW TS 

Time 
(sec) 

φ 
(×107) TW TS 

Time 
(sec) 

1 −5.8021 97,052 1,148,730 439 0.01 −5.8017 101,127 1,148,730 1106 −5.8017 101,127 1,148,730 116 −0.01 
2 −2.3737 96,375 853,843 1510 0.01 −2.3751 82,153 853,843 715 −2.3751 82,153 853,843 30 0.06 
3 −16.1078 93,266 798,081 431 0.00 −16.1072 99,410 798,081 709 −16.1072 99,410 798,081 23 0.00 
4 −2.7629 100,102 861,206 2341 0.00 −2.7628 100,195 861,206 1045 −2.7628 100,195 861,206 42 0.00 
5 −2.4324 99,293 971,250 312 0.01 −2.4323 100,183 971,250 1212 −2.4323 100,183 971,250 91 0.00 
6 −15.6539 87,528 698,312 2073 0.01 −15.6538 88,542 698,312 757 −15.6538 88,542 698,312 40 0.00 
7 −1.7049 97,360 640,756 2704 0.01 −1.7048 98,745 640,756 1282 −1.7048 98,745 640,756 46 −0.01 
8 −5.0706 100,476 1,081,930 1066 0.00 −5.0705 101,331 1,081,930 1098 −5.0705 101,331 1,081,930 29 0.00 
9 −15.4451 98,403 916,078 344 0.00 −15.4450 99,634 916,078 1221 −15.4450 99,634 916,078 28 0.00 
10 −4.9188 99,011 924,118 1123 0.00 −4.9187 100,863 924,118 1145 −4.9187 100,863 924,118 40 0.00 

 
Table 5.7 Performance of CPLEX and GRASP for |Ltest| = 1000 and ttest = 500 

Problem 
no. 

CPLEX GRASP 
Tree  
size 

Node best 
soln found 

Iteration 
best found 

No. phase I 
improved 

Improve 
(%) 

1 280 280 717 0 0.00 
2 1277 1277 345 0 0.00 
3 529 529 793 0 0.00 
4 811 811 477 0 0.00 
5 488 488 982 0 0.00 
6 848 848 979 0 0.00 
7 592 592 214 0 0.00 
8 502 502 58 0 0.00 
9 500 500 807 0 0.00 
10 499 499 44 0 0.00 
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 Table 5.8 Comparison of numerical results from CPLEX and GRASP with |Ltest| = 2000 and ttest = 100 

Prob. 
No. 

CPLEX GRASP 
Best solution found 

Time 
(sec) 

∆CPX 
(%) 

Phase I solution Phase II solution 
∆GRASP 
(%) 

φCPX 
(×107) TW TS 

φ 
(×107) TW TS 

Time 
(sec) 

φ 
(×107) TW TS 

Time 
(sec) 

1 −5.4864 84,540 930,132 3600 77.90 −5.5560 78,141 941,820 375 −5.5560 78,141 941,820 69 1.27 
2 −3.1812 105,652 778,564 3600 49.06 −2.8638 107,835 701,186 761 −2.8638 107,835 701,186 40 −9.98 
3 −27.0091 94,542 861,342 3600 49.23 −32.9753 109,566 1,051,590 539 −32.9753 109,566 1,051,590 38 22.09 
4 −5.5085 125,678 643,495 3600 93.17 −6.5228 108,740 761,519 907 −6.5228 108,740 761,519 93 18.41 
5 −3.4350 126,273 602,702 3600 77.25 −3.0824 121,097 540,959 1494 −3.0824 121,097 540,959 69 −10.26 
6 −22.9703 108,139 862,916 3600 61.30 −22.3600 107,964 840,001 715 −22.3600 107,964 840,001 117 −2.66 
7 −4.2288 108,747 916,185 3600 57.10 −3.7904 105,744 821,379 684 −3.7904 105,744 821,379 76 −10.37 
8 −5.2215 91,613 1,216,760 3600 75.01 −4.6449 90,406 1,072,270 603 −4.6449 90,406 1,072,270 64 −11.04 
9 −33.9759 90,762 1,523,710 3600 57.15 −32.0446 99,247 1,437,160 1112 −32.0446 99,247 1,437,160 80 −5.68 
10 −4.4439 88,925 566,490 3600 65.56 −4.1040 81,656 523,155 538 −4.1040 81,656 523,155 71 −7.65 

 
Table 5.9 Performance of CPLEX and GRASP for |Ltest| = 2000 and ttest = 100 

Problem 
no. 

CPLEX GRASP 
Tree  
size 

Node best 
soln found 

Iteration 
best found 

No. phase I 
improved 

Improve 
(%) 

1 1466 1427 985 0 0.00 
2 1266 929 882 0 0.00 
3 2457 2409 169 0 0.00 
4 1295 1181 919 0 0.00 
5 1160 1097 807 0 0.00 
6 1483 1473 897 0 0.00 
7 2370 2361 638 0 0.00 
8 1421 895 787 0 0.00 
9 2562 2551 196 0 0.00 
10 1366 788 932 0 0.00 
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Table 5.10 Comparison of numerical results from CPLEX and GRASP with |Ltest| = 2000 and ttest = 300 

Prob. 
No. 

CPLEX GRASP 
Best solution found 

Time 
(sec) 

∆CPX 
(%) 

Phase I solution Phase II solution 
∆GRASP 
(%) 

φCPX 
(×107) TW TS 

φ 
(×107) TW TS 

Time 
(sec) 

φ 
(×107) TW TS 

Time 
(sec) 

1 −0.3247 173,051 57,887 3600 42.77 −0.2179 146,519 39,372 1004 −0.2179 146,519 39,372 54 −32.89 
2 −2.4612 171,423 79,008 3600 0.04 −2.6532 153,240 85,071 853 −2.6532 153,240 85,071 39 7.80 
3 −1.1027 169,721 130,505 3600 0.09 −1.1045 151,884 130,505 1239 −1.1045 151,884 130,505 72 0.16 
4 −1.2748 193,849 226,242 3600 1.46 −1.2590 177,348 223,197 1374 −1.2590 177,348 223,197 71 −1.24 
5 −4.1694 166,446 157,180 3600 3.19 −4.0393 163,231 152,283 1678 −4.0393 163,231 152,283 126 −3.12 
6 −0.4257 196,148 96,233 3600 0.11 −0.4266 187,223 96,233 1892 −0.4266 187,223 96,233 115 0.21 
7 −0.4784 178,110 114,333 3600 0.23 −0.4816 146,824 114,333 1121 −0.4816 146,824 114,333 75 0.67 
8 −1.1708 185,760 151,310 3600 0.09 −1.1719 174,780 151,310 2682 −1.1719 174,780 151,310 119 0.09 
9 −4.2825 183,949 164,267 3600 0.03 −4.2835 174,321 164,267 1533 −4.2835 174,321 164,267 93 0.02 
10 −0.4556 176,590 135,321 3600 7.20 −0.4469 154,138 132,206 910 −0.4469 154,138 132,206 81 −1.91 

 
Table 5.11 Performance of CPLEX and GRASP for |Ltest| = 2000 and ttest = 300 

Problem 
no. 

CPLEX GRASP 
Tree  
size 

Node best 
soln found 

Iteration 
best found 

No. phase I 
improved 

Improve 
(%) 

1 1179 1178 11 0 0.00 
2 913 789 1 0 0.00 
3 1082 805 960 0 0.00 
4 811 711 736 0 0.00 
5 1200 1131 393 0 0.00 
6 1473 1471 952 0 0.00 
7 900 892 920 0 0.00 
8 1193 1111 632 0 0.00 
9 1173 571 851 0 0.00 
10 591 590 12 0 0.00 
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Table 5.12 Comparison of numerical results from CPLEX and GRASP with |Ltest| = 2000 and ttest = 500 

Prob. 
No. 

CPLEX GRASP 
Best solution found 

Time 
(sec) 

∆CPX 
(%) 

Phase I solution Phase II solution 
∆GRASP 
(%) 

φCPX 
(×107) TW TS 

φ 
(×107) TW TS 

Time 
(sec) 

φ 
(×107) TW TS 

Time 
(sec) 

1 −0.3732 192,442 66,433 3600 0.32 −0.3740 184,422 66,433 2599 −0.3740 184,422 66,433 140 0.21 
2 −0.3094 199,924 80,345 3600 0.10 −0.3099 194,460 80,345 2447 −0.3099 194,460 80,345 456 0.16 
3 −4.6566 185,417 149,042 3600 0.03 −5.0040 158,389 160,030 1108 −5.0040 158,389 160,030 69 7.46 
4 −1.0001 191,310 118,789 3600 0.04 −1.0009 182,550 118,789 1618 −1.0009 182,550 118,789 222 0.08 
5 −0.8423 197,065 150,688 3600 0.10 −0.8447 173,129 150,688 2057 −0.8447 173,129 150,688 287 0.28 
6 −2.6890 193,261 101,693 1561 0.01 −2.6888 194.371 101,693 4169 −2.6888 194.371 101,693 227 −0.01 
7 −0.9460 191,589 208,567 3600 0.10 −0.9458 193,178 208,567 2436 −0.9458 193,178 208,567 138 −0.02 
8 −0.3732 190,726 90,372 3600 0.13 −0.3738 183,961 90,372 1530 −0.3738 183,961 90,372 97 0.16 
9 −0.2374 193,224 32,657 3600 0.14 −0.2371 196,093 32,657 2201 −0.2371 196,093 32,657 169 −0.13 
10 −2.7069 169,208 104,032 3600 0.04 −2.7083 154,934 104,032 1584 −2.7083 154,934 104,032 120 0.05 

 
Table 5.13 Performance of CPLEX and GRASP for |Ltest| = 2000 and ttest = 500 

Problem 
so. 

CPLEX GRASP 
Tree  
size 

Node best 
soln found 

Iteration 
best found 

No. phase I 
improved 

Improve 
(%) 

1 1237 1115 767 0 0.00 
2 1656 1359 13 0 0.00 
3 947 618 12 0 0.00 
4 1529 1027 102 0 0.00 
5 1921 1780 18 0 0.00 
6 677 677 45 0 0.00 
7 1803 1601 977 0 0.00 
8 951 771 959 0 0.00 
9 1782 1182 691 0 0.00 
10 1405 1403 649 0 0.00 



130  

Chapter 6 

Chapter 6. Assessment of Research 

Assessment of Research 

 

 The general idea underlying this research was to determine the extent to which 

exact optimization methods could be combined with metaheuristics to solve practical 

problems.  The work is divided into three separate but related projects corresponding to 

Chapters 3, 4 and 5, respectively.  In this chapter, an assessment is presented for each part 

of the research.  The proposed algorithms are first summarized and their numerical results 

evaluated.  Their weaknesses are then discussed and suggestions are made for possible 

improvement.  Some research experiences are also shared and future work on potential 

enhancements is outlined. 

 
6.1 Capacitated Clustering 

The problem addressed in this research topic is a classical capacitated clustering problem 

which has been well studied along with many variants.  The contribution of this research 

mainly concerns the development of an efficient and effective heuristic to solve the 

problem in reasonable time compared to the commercial software package CPLEX.  The 

proposed methodology combines GRASP and PR, and is a mixture of various heuristic 

ideas.  Two approaches, HWE and CMC, are available for phase I while three options, 

CNS, VND and RVND, are used to perform the phase II neighborhood search.  A PR 

post-processing procedure with either CLS or PLS is also implemented for potential 

improvement over the GRASP elite solutions. 

 The algorithm has been tested extensively on different datasets with various 

parameter settings.  According to the results, the performance of GRASP+PR is very 

stable and always consumes much less time than CPLEX to obtain very high quality, if 

not optimal, solutions.  This allows application of GRASP+PR to practical problems. 

However, there are still some drawbacks to the algorithm. Just like any other heuristic, it 

is very difficult or even impossible to guarantee that GRASP+PR can generate good 

solutions for large-scale problems. As the number of nodes to be clustered increases, the 

CL, RCL as well as the size of the three neighborhoods increase exponentially.  Finding a 
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good solution becomes more and more difficult as the size of the problem increases.  A 

bounding technique may be necessary in order to assess the performance of the algorithm 

for larger cases. 

 The proposed heuristic can be enhanced in several ways.  Currently, the GRASP 

iterations are mutually independent, that is, each subsequent iteration starts from scratch 

after the previous iteration is finished.  The effort spent on previous iterations is simply 

ignored.  In order to utilize the results from previous iterations, a memory based learning 

technique can be introduced to the current algorithm.  This variant of GRASP is also 

referred to as Greedy Randomized Adaptive Memory Programming (GRAMP).  The idea 

is to synthesize the results from previous iterations to guide the algorithm at the current 

iteration.  As an example, the results can be used to guide the construction of CL.  This 

approach has actually been implemented in Chapter 5 in the form of SL to assign 

probability to the CL elements.  The scheme is promising according to the results.  With 

respect to phase II improvement, an idea common in tabu search can also be applied to 

the algorithm.  By restricting repeated neighborhood movements it should be possible to 

overcome a local optimum. 

 In any case, the proposed GRASP demonstrates that a measurable advantage can 

be achieved by combining different heuristic ideas to solve the clustering problem 

efficiently.  The methodology can serve as a guideline for future algorithm development 

for solving related optimization problems of practical size. 

 
6.2 Midterm Planning in Semiconductor Manufacturing 

The midterm planning problem in semiconductor manufacturing turns out to be a large-

scale LP which cannot be solved directly.  The contribution of this research relates to the 

development of a decomposition scheme to fully utilize excess machine time.  In the 

proposed algorithm, the full problem is divided into weekly subproblems. The final WIP 

of the previous week is treated as the initial WIP of the next week.  For each subproblem, 

the corresponding LP is solved in an attempt to minimize the total weighted deviations 

from specified targets.  In light of those results, an attempt is then made to utilize any 

machine time remaining by solving a rescheduling problem followed by a heuristic WIP-

pushing algorithm.  As reported in Chapter 4, great improvement was realized for the 4-
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week problem when compared to the results obtained from a pulling decomposition 

approach.  For the 13-week problem, the results indicated that shortages are unavoidable 

due to the machine capacity constraints.  However, it is still hard to evaluate the solution 

to the 13-week problem since the optimal solution is unknown. 

 Lagrangian relaxation and Benders decomposition were also investigated but the 

results were not promising.  For Lagrangian relaxation, the machine capacity constraints 

(3d) were removed and appended to the objective function (3a) as a penalty term using 

Lagrangian multipliers as weights. This led to individual subproblems for the device 

families which solved quickly.  A standard subgradient algorithm was applied to update 

the multipliers at each iteration.  However, it turned out to be that the multipliers never 

converged due to numerical difficulties.  

 Benders decomposition instead breaks the full problem into weekly subproblems.  

At the beginning of Benders decomposition, the initial and final WIP values are specified 

for each week.  The subproblem duals are then solved one by one for the given WIP 

levels to generate extreme points and extreme rays, which are appended to the master 

problem. The master problem is then resolved to generate new WIP profiles for each 

week. The updated WIP values are again sent to each subproblem to generate new 

cuts.  The algorithm iterates in this way until a stopping criterion is satisfied. 

 Unfortunately, convergence was never achieved at the subproblem 

level.  According to the algorithm, both the initial WIP and the final WIP are fixed for 

each subproblem, which is then solved to minimize the sum of the target output 

deviations.  However, given the initial WIP the subproblem will be infeasible when it is 

not possible to schedule production over the week to meet the final WIP.  In this case, 

only feasibility cuts are generated by the subproblems.  Experience showed that after 

thousands of iterations, no optimality cuts were ever generated so the algorithm never 

converged. 

 One way to reduce or eliminate the infeasibility is to introduce deviation variables 

into the WIP conservation constraints (6b) in the last time period of each week. In the 

objective function (6a), each WIP deviation variable would be highly penalized to force a 

solution that zeroed the mismatch whenever possible. In the current formulation, there 

appears to be insufficient incentive for the model to narrow this gap, although the full 
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problem is feasible. The updated subproblem will always be feasible and generate 

optimality cuts only, although there may still be a mismatch in WIP levels at 

termination.  In that situation, a heuristic would be needed to smooth the WIP while 

trying to maintain the machine assignments that appear in the final solution. This 

enhancement is considered future work.  

 
6.3 Back-End Operations in Semiconductor Manufacturing 

The third part of the research was aimed at determining machine-tooling combinations 

and corresponding lot assignments to maximize throughput during back-end operations 

while minimizing shortages of key and package devices.  The mathematical model of the 

problem has the characteristics of a two-level assignment problem.  The contribution of 

the research centered on the development of a GRASP that was shown to be comparable 

in performance to CPLEX.  Extensive numerical testing indicated problem instances 

arising in two of Texas Instruments’ facilities could be solved quickly and provided 

measurably improvement over current practice.  The GRASP has been under tested for 

implementation in the AT facilities in Asia recently. 

 In phase I of the GRASP, the parameter δ is set to 50 when constructing both 

RCL and SL.  This was determined after running a set of initial experiments which 

indicated that it is best to emphasize intensification in building RCL and SL in order to 

achieve high quality machine-tooling combinations. The disadvantage of this setting is 

that many similar solutions are generated during the run. In other words, there could be a 

danger for over intensification, although diversification is built into the algorithm in the 

design of the calculations in (15c) and (15d).  One way to remedy this situation is to 

adjust δ according to the solution.  If similar solutions keep appearing then the value of δ 

should be reduced. Otherwise, after a few iterations, its value should be increased until it 

reaches some specified upper bound, say, 50. 

 As discussed in Chapter 5, there was no improvement in phase II LBLP for the 

randomly generated test cases.  The primary reason can be found in the limited number of 

free tooling pieces that could be paired with the machine that became available at the 

given iteration; in other words, there was little room for neighborhood swaps.  The value 

of K in LBLP was varied in preliminary tests but the results were consistently poor.  A 
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second reason for the ineffective of phase II relates to the LP relaxation of the LB 

problem.  Because the solution was so fractional few y-variables could be fixed and 

binary sampling from the corresponding probabilities during the simulation often left 

machines idle.  One way to improve phase II would be to solve the resulting problem 

directly as an IP rather than using LBLP but the results would depend on the performance 

of the IP solver from COIN-OR.  Recall that the rationale for developing the GRASP was 

to use open source software. 

 Branch and price (B&P) is another way to try to solve the AT problem without 

relying too heavily on a commercial IP code.  A master problem could be created from 

model (10) so that each column represents a machine-tooling combination along with 

compatible lot assignments.  The objective function coefficient associated with a column 

would be the benefit gained by processing the assigned lots.  Initial columns could be 

generated from the heuristic solution.  In B&P, the master problem is solved to provide 

dual prices that are used to construct the subproblem objective functions.  In this 

approach, the subproblems are simply knapsack problems and can be solved heuristically. 

Columns that price out negatively are appended to the master problem which is then 

resolved to yield new dual prices.  The algorithm iterates accordingly until no new 

columns are generated or until some other stopping criteria are satisfied. If the values of 

the decision variables turn out to be integral then the algorithm stops and the solution 

found is optimal. Otherwise, the current node is partitioned following the logic of branch 

and bound and column generation is applied at each descendent node.  The procedure 

terminates when all the nodes in the search tree are fathomed. 

 A preliminary B&P algorithm has been implemented for the AT problem and the 

results are promising.  The root node was solved after around 40 iterations.  The 

algorithmic remaining components, such as the design of a branching strategy and the use 

of stabilization, are left for future work. 

 In building model (10) for the back-end operations a number of assumptions were 

made, the most critical being that all machines are idle at the beginning of the planning 

horizon.  It was further assumed that machines are to be set up once at time zero and that 

the tooling allocations and temperature settings cannot be changed during the planning 

horizon.  Moreover, fractional lot processing is not allowed even when a machine is idle. 
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Finally, the problem is solved for a static WIP profile that is given at time zero so there is 

no accounting for new arrivals or rework.   

 In reality, these assumptions may not hold.  First, the number of lots available for 

processing changes periodically as upstream operations are completed and as downstream 

operations produce reentrant flow.   In the latter case, some lots may return to a particular 

test area for additional testing after completing the preliminary round.  Thus, the actual 

WIP profile changes over time with some lots showing up repeatedly.  Moreover, at the 

beginning of the planning horizon most machines are occupied, and it is often necessary 

to alter their setup and operating temperature if throughput is to be maximized. Because 

the planning horizon defines a somewhat arbitrary cutoff point, practical considerations 

dictate that machines not be left idle when there are no lots that fit completely within the 

remaining time, but instead that setups be scheduled so that waiting lots can begin 

processing. 

 The current algorithm needs to be enhanced to accommodate the aforementioned 

shortcomings.  The first step is to develop an iterative scheme to capture the updated 

WIP.  The initial machine status can be addressed by adjusting the available machine 

time.  If a machine is processing lots at time zero then it is a simple matter to reduce the 

available time on that machine to by the amount equal to the required processing time of 

the remaining lots in queue.  Factional lot processing can also be taken care by post-

processing the solution produced by the AT algorithm.  However, it turns out to be 

difficult to handle multiple machine setups without introducing many more binary 

variables.  Several heuristics are now being considered but the best way to modify the 

algorithm is left to future research. 
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Appendix 1: Input Files, Data Structure and Output Files for the DMOS6 Tool 

 
To run the program the user must provide a set of input files described below.  Some of 

these files need to be modified in accordance with the following instructions.  This 

appendix discusses the data objects, how to prepare the input files, the ways to compute 

processing rates, and the output files. 

 
Required input files 

(1) Routing.csv 

This file includes the routes of the different devices. Each line corresponds to a 

step, which is defined as a combination of a logpoint and an operation. Thus a 

step is a logpoint-operation level definition. The file also includes various “K 

parameters” which are used to compute the processing rate for each step. The 

fields in the table are shown in the Appendix 2. 

Note:  

(a) The “Facility” fields are always “DMOS6”.  

(b) The table should be sorted in ascending order according to the field 

“OrigRecNo” before processed by the program. 

(c) When this file is read into the program the processing rate for each step is 

computed. The procedures used to compute the processing rates are also 

included in this appendix. A data object named “Production” is created when 

this file is read. 

 
(2) Stations.csv 

The file contains information of the machines such as Misti-ID and “K 

Parameters”. The fields in the table are shown in the Appendix 2. Some of the “K 

Parameters” are used to compute the processing rates for the steps. A data object 

named “Machine_Set” is created to store the information for the machines. 

 
(3) Consols.csv  and Family.csv 

The “Consols.csv” file contains the information on the device family. The file is 

not read by the program. However, the user needs to manipulate the file to 
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generate another file named “Family.csv”, which will be used by the program. It 

is easy to generate the file “Family.csv” from the file “Consols.csv”. The user 

only needs to choose the family he wants to process and select the devices 

belonging to this family. For instance, if the user is interested in the family 

“C035,” then he can select all of the devices belonging to “C035” and copy-paste 

to the file “Family.csv”. A portion of a “Family.csv” is shown in Table A.1. Note 

that the user needs to append some character like comma in the last column. The 

appended character is used to delimitate the fields when it is read by the program. 

 
Table A.1 Example of Family.csv 

C035 C027 C021 , 
B4JRD15060BPP B5BJF761924B EZ/E771676D17 , 
B4JRD15060B4P EZ/E761536Z00 EZ/F771657A02 , 
B4JRD15075BPP EZ/E761536Z02 EZ/F771657A07 , 
B4JRD751686J4P EZ/E761541A00 EZ/F771657A08 , 
B4JRF751613D4P EZ/E761560Z00 EZ/F771657A09 , 
B4JRF751625PF EZ/E761909A16 EZ/F771657A10 , 
B4JRF751625PP EZ/F761503B23 EZ/F771657A11 , 
B4JRF7516254F EZ/F761504A02 EZ/F771657A11L , 
B4JRF7516254P EZ/F761504B08 EZ/F771657A12 , 
B4JRF751672D4P EZ/F761504B10 EZ/F771657A13 , 
B4JRF751989B4P EZ/F761522A49 EZ/F771657A14 , 
B4JSF751613HHT EZ/F761522A50 EZ/F771657Z11 , 
B4JTD15060C EZ/F761522A51 EZ/F771657Z12 , 
… ... … , 

 
 The file “Family.csv” is read by the program to identify the devices 

belonging to the same family. For instance, Table A.1 identifies three families 

with their corresponding devices. For each family a device is selected to represent 

the entire family. Such a device is called the “representative device” and includes 

information on the number of daily input blank wafers, the initial inventory, and 

the daily output.  When the file “Family.csv” is read by the program a data object 

named “Family” is created to store the information. 
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(4) wip_data.txt 

This file contains the information on the initial inventory or WIP in the shop. The 

fields of the file are given in the Appendix 2. 

For each representative device, the initial WIP of the other devices in the same 

family is aggregated to be the initial WIP of the representative device. The initial 

WIP is computed as follows. 

Init_inventory = Prime_inv + Rework_inv + Hold_inv 
 
Note that there is no title line in the file. 
 

(5) Lotstarts.csv 

The file “Lotstarts.csv” describes the quantity of blank wafers to be input to the 

shop every day as illustrated in Table A.2.  The headings are given in the 

Appendix 2. 

Note that an additional column name “day index” is appended to the table to 

describe the index for days. In the original file provided by TI there was no such 

column. The date information is described in the column “StartDate.”  However, 

the format of the cells in “StartDate” can’t be easily processed. The range of the 

dates in this table starts from 9/1/2007 and ends at 12/01/2007. The column “day 

index” treats 9/1/2007 as the 1st day and 12/01/2007 as the 91th day consecutively.  
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Table A.2 Example of Lotstarts3month.csv 

Facility Item 

Next 

logpoint 

Estimated 

ShipDate Quantity StartTime StartDate 

Hot-

Flag 

Hold-

Flag Logpoint Lotnumber 

day 

index 

DMOS6 P4HTF751992APW 110 25 

12/30/1899 

0:02:50 

9/1/2007 

0:00 N N 110 7244220 1 end 

DMOS6 P4ITW751980CWM 110 25 

12/30/1899 

0:03:14 

9/1/2007 

0:00 N N 110 7244221 1 end 

DMOS6 P4ITW751980CWM 110 25 

12/30/1899 

0:03:26 

9/1/2007 

0:00 N N 110 7244222 1 end 

DMOS6 P4JTF751543ZWM 110 25 

12/30/1899 

0:03:49 

9/1/2007 

0:00 N N 110 7244223 1 end 

DMOS6 TEXX/PR18KSER 110 24 

12/30/1899 

0:37:17 

9/1/2007 

0:00 N N 110 7244227 1 end 

DMOS6 TEXX/PR18KSER 110 24 

12/30/1899 

0:37:36 

9/1/2007 

0:00 N N 110 7244228 1 end 

DMOS6 TEXX/TELSIR 110 24 

12/30/1899 

0:38:11 

9/1/2007 

0:00 N N 110 7244229 1 end 

DMOS6 TT4B/CUSEEDA 110 24 

12/30/1899 

0:38:39 

9/1/2007 

0:00 N N 110 7244230 1 end 

 
 Note that an addition column is appended to the end of the table. All the 

elements in this column are set to be string “end”.  This makes it easier for the 

program to read and manipulate the data. 

 
(6) Input.txt 

The file “Input.txt” describes the input parameters for running the program and 

contains nine lines. As an example,  

 
3 //number of families to run (also the number of devices to run) 
C035,P4JTF751543ZWM,  //Family code and the representative device 
C027,P5BJF761503BM, 
C021,P6GBX2057R10, 
1000 //Threshold value to reduce the number of steps 
60 //time interval in minutes 
25 //number of wafers per lot 
4        //number of subproblems 
7        //number of days in each subproblem 
 
 The first line of the file describes the number of families or representative 

devices to be scheduled.  In the next three lines we have the family code and the 

name of the representative device. A threshold value is shown in the fifth line. 
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This value is used to reduce the number of steps before building the model. Its 

units are wafer/minute.  For a value of 1000, for example, any steps with 

processing rates higher than 1000 wafer/minute will be eliminated from the routes 

and thus will not be included in the model. The next line gives the time interval, 

in minutes, that is being simulated by the program. The size of the model is 

proportional to this value; e.g., reducing it by ½ doubles the size of the model.  

This parameter can be set to any number of minutes that divides evenly into 60, 

such as 10 min, 15 min, or is a multiple of 60 such as 120 min. The next line 

shows the number of wafers per lot.  The user can also change this value to reflect 

the real situation.  The next line shows the number of subproblems for the run.  

The last line shows he number of days included in a subproblem.  In the above 

case 4 subproblems are run with each for 7 days.  Thus the planning for 28 days 

can be obtained by this setting.  The user can also modify these two values to 

obtain solution for other planning horizon. 

 
Note: The sequence of the families should be the same as the sequence in the 

“Family.csv” file or else there will be a mismatch of data. 

 
(7) NonConstrainMachOpnDesc.txt 

This file contains a partial list of operations that appear under the column heading 

K855 in the Stations.csv file.  Machines whose K855 parameter is included in this 

file list are considered to be non-bottlenecks.  In some instances, the computed 

effective processing rate deviates from the actual processing rate, and hence may 

become a bottleneck in the scheduling model.  To avoid this situation, the 

processing rate of all machines that perform an operation listed in this file is 

multiplied by the constant “ Rate_Increase.”  The default value is Rate_Increase = 

20. The current list is shown in Appendix 3 and can be modified by the user to 

include any operation-machine combination that should not be a bottleneck.    

Note that there is no title line in the file. 

 
Data Structure 

   The following data objects are created after reading the input files. 
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(1) Production 

The “Production” data object contains the routing information for all of devices in 

the fab. The routing information is also stored in the data object named “Route,” 

which will be described in Appendix 3.  

 
(2) Step 

A “Step” data object is defined to hold the information for a device at the 

logpoint−operation level. It also holds the “K Parameters,” which are required to 

compute the processing rates.  Each line in the “Routing.csv” table can be viewed as 

a step. The machine list information is also stored in the “Step” data objects. 

 
(3) Route 

A “Route” data object is a combination of “Step” data objects.  A “Route” object 

holds the information of a route for some device.  Each “Route” data object 

corresponds to a block of information in the “Routing.csv” file which belongs to the 

same device. 

 
(4) Machine_Set 

The “Machine_Set” data object is used to hold the information for the machines.  

Such information involves “Misti ID” and the “K Parameters.” 

 
(5) Family 

The “Family” object is used to hold the information for the families.  For each 

family, the object contains the related devices, which are given in the “Family.csv” 

file. 

 
Output Files  

(1) Summary.csv 

This file contains the information on finished products and the deviations 

(shortages) for each time period. The time period (interval) is specified by setting 

the appropriate parameter in the Input.tex file. An example is given in Table A.3, 

which is divided into three sections. 
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 The first section shows the target daily output (demand) for the devices. 

The “day” column gives the day index while the 2nd, 3rd and 4th columns list the 

demand for the three devices. For instance, the demand for device 2 on the first 

day is 316 wafers. Note that at present the demand is the same each day for a 

device. The second section of the table shows the number of wafers completed. 

The columns are defined in the same way. The last section gives the deviation 

from the target output for each day and each device.  It can be seen that the 

current production schedule does not lead to any shortages for the week. 

 
Table A.3 Example of Summary.csv 

Day 
Target output 

Day 
No. devices completed 

Day 
Deviations 

C035 C027 C021 C035 C027 C021 C035 C027 C021 
1 311 316 24 1 311 316 24 1 0 0 0 
2 311 316 24 2 311 316 24 2 0 0 0 
3 311 316 24 3 311 316 24 3 0 0 0 
4 311 316 24 4 311 316 24 4 0 0 0 
5 311 316 24 5 311 316 24 5 0 0 0 
6 311 316 24 6 311 316 24 6 0 0 0 
7 311 316 24 7 311 316 24 7 0 0 0 

 
(2) Shop_production.csv 

This file indicates the number of wafers to process at each logpoint-operation 

during each time period. An example of this file is shown in Table A.4; the 

complete file is about 8 MB in size for 4−week problem. 

 
Table A.4 Example of Shop_production.csv 

Family 
index Device name Step 

Logpoint 
num 

Operation 
num 

Production 
at t = 1 

Production 
at t = 2 

Production 
at t = 3 

Production 
at t = 4 

Production 
at t = 5 

1 P4JTF751543ZWM 1 110 301 0.05 0.04 0.06 0.03 0.06 

1 P4JTF751543ZWM 2 112 6930 0.00 0.00 0.00 0.00 0.00 

1 P4JTF751543ZWM 3 282 1600 0.00 0.00 0.00 0.00 0.00 

1 P4JTF751543ZWM 4 282 2000 2.21 2.21 2.21 2.23 2.21 

1 P4JTF751543ZWM 5 282 6640 0.00 0.59 0.60 0.66 0.69 

1 P4JTF751543ZWM 6 290 2500 0.00 0.00 1.19 0.00 1.29 

1 P4JTF751543ZWM 7 290 6500 0.00 0.00 0.00 0.31 0.32 

1 P4JTF751543ZWM 8 300 3075 2.68 2.42 1.67 1.08 1.42 

1 P4JTF751543ZWM 10 300 3600 0.78 0.86 0.83 0.75 0.54 
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1 P4JTF751543ZWM 11 300 3740 0.00 0.00 0.00 0.00 0.00 

1 P4JTF751543ZWM 12 300 3750 0.00 0.00 0.00 0.00 0.00 

1 P4JTF751543ZWM 13 300 6750 2.42 3.77 13.52 4.12 26.17 

1 P4JTF751543ZWM 14 300 3800 0.00 0.13 0.07 0.03 0.06 
 
 The first column identifies the index of the device.  The second column 

gives the device name.  The third column lists the step number.  The fourth and 

fifth columns show the logpoint number and operation number of the step.  Each 

of the remaining columns gives the number of wafers that need to be processed 

during the corresponding time interval -- 60 min in this case.  For example, the 

sixth column indicates that for device P4JTF751543ZWM, 0.0532 wafers should 

be produced at step 1 in the first hour, 0.042824 in the second hour, and so on.  

All values are fractional since the problem is modeled with continuous variables.  

A more informative value can be obtained by rolling up production to the logpoint 

level. To obtain a daily plan, either those values would have to be rounded to the 

nearest integer, or a second model would have to be solved for each day or shift 

that included more detail and insisted on integer production quantities. 

 
Remark: 

Some steps are not included in the “Shop_production.csv” file because they were 

eliminated from the model, as mentioned in Section 4.2.  Those steps, however, 

must still be performed. 

 
(3) Machine_utilization.csv 

This file gives the machine usage during production. An example is shown in 
Table A.5. 
 

Table A.5 Example of Machine_utilization.csv 

Machine 
index 

Machine 
usage at 

t = 1 
(%) 

Machine 
usage at 

t = 2 
(%) 

Machine 
usage at 

t = 3 
(%) 

Machine 
usage at 

t = 4 
(%) 

Machine 
usage at 

t = 5 
(%) 

Machine 
usage at 

t = 6 
(%) 

Machine 
usage at 

t = 7 
(%) 

19 0.14 0.00 0.07 0.00 0.05 0.00 0.04 
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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23 1.00 0.94 0.52 0.31 0.51 0.77 0.81 
24 0.66 0.25 0.31 0.00 0.00 0.00 0.07 
25 0.34 0.08 0.20 0.00 0.00 0.00 0.07 
26 0.49 0.05 0.15 0.00 0.00 0.00 0.07 
27 0.49 0.04 0.15 0.00 0.25 0.00 0.00 
28 0.49 0.00 0.24 0.51 0.00 0.00 0.00 

 
The first column identifies the machine index, which is the same index 

listed in the “Stations.csv” file. The remaining columns, starting with the 2nd, give 

the machine usage during successive time periods. All of the values in these cells 

are continuous and should be interpreted as a percentage of the corresponding 

time period such as an hour. For example, machine 23 (AM3001) is used 94% of 

the time in the 2nd time period. It can be seen that machine 23 is quite busy, at 

least during the first seven periods. 

 
(4) WIP_history(original steps).csv 

The file maintains a record of the original WIP before any steps are removed. An 

example is shown in Table A.6. 

 
Table A.6 Example of WIP_history(original steps).csv 

Family 
index 

Step 
Index 

WIP at the 
end of t = 1 

WIP at the 
end of t = 2 

WIP at the 
end of t = 3 

WIP at the 
end of t = 4 

WIP at the 
end of t = 5 

i = 1 j = 1 0 0 0 0 0 
i = 1 j = 2 300.00 0 0 0 0 
i = 1 j = 3 92.96 384.98 353.33 330.60 302.95 
i = 1 j = 4 107.04 115.02 141.92 134.45 113.51 
i = 1 j = 5 0 0 4.75 7.70 3.60 
i = 1 j = 6 0 0 0 27.25 79.95 
i = 1 j = 7 0 0 0 0 0 
i = 1 j = 8 300.00 300.00 273.70 260.24 174.95 
i = 1 j = 9 0 0 26.31 0.00 85.29 
i = 1 j = 10 113.91 109.60 101.15 137.25 127.24 
i = 1 j = 11 11.09 5.70 0 3.65 0 
i = 1 j = 12 0 9.69 14.16 0.00 13.66 

 
The first two columns indicate the device index and processing step, 

respectively. Each column in the remaining part of the table stands for a WIP 
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profile at the end of a time period. For example the third column gives the number 

of wafers at each step at the end of the first time period. The 4th column gives the 

WIP at each step at the end of the 2nd time period, and so on. 

 
(5) WIP_history_LogPoint.csv 

The file keeps a record of the WIP history at the logpoint level. An example is 

shown in Table A.7. Note that in this file all of the wafers of the representative 

devices are aggregated. 

 
Table A.7 Example of WIP_history_LogPoint.csv 

Logpoint 
number 

WIP at 
end of 
t = 1 

WIP at 
end of 
t = 2 

WIP at 
end of 
t = 3 

WIP at 
end of 
t = 4 

WIP at 
end of 
t = 5 

WIP at 
end of 
t = 6 

WIP at 
end of 
t = 7 

110 0 0 0 0 0 0 0 
112 300.00 0 0 0 0 0 0 
282 717.00 949.50 948.00 918.30 858.85 818.75 807.65 
290 455.00 471.93 434.11 463.82 523.26 563.36 533.55 
300 1470.00 1495.57 1534.89 1534.89 1491.51 1459.55 1496.10 
302 0 25.00 0 0 43.38 0 4.36 
305 74.00 74.00 49.00 25.00 25.00 100.34 75.34 
310 329.00 277.00 275.00 247.00 195.00 143.00 116.00 
312 195.00 247.00 299.00 351.00 269.07 301.84 351.98 
318 0 0 0 0 133.93 3.16 1.87 
… … … … … … … … 
 

The first column gives the logpoint number at each step while the second 

column gives the operation number. The remaining columns indicate the WIP 

profile of the three representative devices at the end of each time period. For 

example, at logpoint 282 and operation 717, there are a total of 949.5 wafers in 

queue. This value was obtained by summing the WIP of the three representative 

devices. 

 
(6) FinalWIP(reduced).csv 

This file contains the final WIP at the end of each run. For example, if the code is 

run for a 1-week problem four times in a row time instead of once for a 4 week 

problem, the file will contain the WIP profiles at the end of each week.  The WIP 
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profiles give the number of wafer at the reduced steps instead of the original steps.  

An example is shown in Table A.8. 

 
Table A.8 Example of FinalWIP(reduced).csv 

Family Step index WIP 
C035 1 0 
C035 2 0 
C035 3 0 
C035 4 0 
C035 5 0 
C035 6 0 
C035 7 0 
C035 8 0 
C035 9 0 
C035 10 23.46 
C035 11 21.59 
C035 12 34.62 

 
The first column indicates the index of the representative device.  The 

second column gives the index for the steps.  The last column reports the number 

of wafers of the device at the corresponding step. For example, there are 23.4577 

wafers of device 1 at step 10. 

 
(7) Process_rate.csv 

This file contains the effective processing rates that were computed for each 

device at each step. Table A.9 contains an example. 

 
Table A.9 Example of Process_rate.csv 

Device 
index 

Step 
index 

Machine 
index 

Machine 
Misti ID Processing rate 

i = 22 j = 21 m = 29 AP1001 r ijm = 0.45 
i = 22 j = 21 m = 29 AP1002 r ijm = 0.45 
i = 22 j = 21 m = 29 AP1003 r ijm = 0.45 
i = 22 j = 21 m = 29 AP1004 r ijm = 0.45 
i = 22 j = 21 m = 29 AP1005 r ijm = 0.45 
i = 22 j = 21 m = 29 AP1006 r ijm = 0.45 
i = 22 j = 21 m = 29 AP1007 r ijm = 0.45 

… … … … … 
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The first column gives the index of the original devices; that is, the index 

of the 76 devices in the Routing.csv file before aggregation into representative 

families.  The 22th device, for example, is the representative device for family 

C035.  The second column in the table gives the step index, the third column 

indicates the machine index, while the forth column lists the machine Misti−ID.  

The last column gives the processing rate r ijm in wafers/min.   
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Appendix 2: Field Definitions for Input Files 
 
1. Fields of the “Routing.csv” file. 

Facility 
Device 
Logpoint 
Operation 
OpnDesc 
MachineGrp 
EquivOp 
OrigRecNo 
Par 
875 
840 
824 
821 
820 
819 
816 
815 
810 
809 
Date 
802 
949 
947 
874 
837 
844 
842 
814 
948 
All837 
873 
950 
803 
908 
883 
889 
933 
934 
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918 
829 
905 
869 
909 
910 
817 
830 
812 
835 
943 
862Overflow 
845 
846 
850 
851 
861 
862 
882 
884 
828 
All817 
All812 
All835 
All836 
882Overflow 
836 
867 
955 
956 
All814 
All875 
All873 
All874 
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2. Fields of the “Stations.csv” file are shown as follows. 
 

Facility 
Misti-id 
Machine Groups 
Date 
858 
811 
833 
834 
838 
852 
853 
854 
960 
856 
939 
859 
860 
861 
865 
866 
868 
906 
941 
942 
932 
937 
855 
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3. One example of “Family.csv” file is shown as follows. 

 
C035 C027 C021 , 
B4JRD15060BPP B5BJF761924B EZ/E771676D17 , 
B4JRD15060B4P EZ/E761536Z00 EZ/F771657A02 , 
B4JRD15075BPP EZ/E761536Z02 EZ/F771657A07 , 
B4JRD751686J4P EZ/E761541A00 EZ/F771657A08 , 
B4JRF751613D4P EZ/E761560Z00 EZ/F771657A09 , 
B4JRF751625PF EZ/E761909A16 EZ/F771657A10 , 
B4JRF751625PP EZ/F761503B23 EZ/F771657A11 , 
B4JRF7516254F EZ/F761504A02 EZ/F771657A11L , 
B4JRF7516254P EZ/F761504B08 EZ/F771657A12 , 
B4JRF751672D4P EZ/F761504B10 EZ/F771657A13 , 
B4JRF751989B4P EZ/F761522A49 EZ/F771657A14 , 
B4JSF751613HHT EZ/F761522A50 EZ/F771657Z11 , 
B4JTD15060C EZ/F761522A51 EZ/F771657Z12 , 
… … … , 

 
 

4. The fields of “wip_data.txt” file are shown as follows. 
 

Date 
 Logpoint 
 Operation 
 Device 
 Device_type 
Prime_Inv 
 Rewrok_Inv 
 Hold_Inv 
 Moves_qty 
 Num_lots 
plan_ct 
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5. The fields of “Lotstarts.csv” are shown as follows. 

 

 

  

Facility 

Item 

NextLogpoint 

EstimatedShipDate 

Quantity 

StartTime 

StartDate 

Hot-Flag 

Hold-Flag 

Logpoint 

Lotnumber 

day index 
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6. NonConstrainMachOpnDesc.txt 

(List of nonbottleneck operations) 

ALIGNMENT 

AUTO_VISUAL_INSP 

CDSEM_AMATVERITY 

CDSEM_HITACHI 

CDSEM_KLA8300 

CD_SEM_MEASURE 

INLINE_PARAMETRIC 

KLA_F5_CU 

KLA_F5_SCD 

KLA_F5_SPECTRA100 

LASER_ANNEAL 

LASER_MARK 

LOT_INSPECT 

METAPULSE_MEAS 

OPTI_PH_QUAL 

OPTIPROBE 

PC_CU 

PC_NON_MTL 

POST_CU_CMP_INSPECT 

POST_LOT_MEASURE_CU 

RS_MEASURE 

SRT_LOT_FORM_M 

SRT_LOT_FORM_NM 

SRT_METAL_CU 

SRT_NON_MTL 

STI_CD_MEASURE 

WLR 

YE_AIT_ADDER 

YE_COMPASS_ADDER 

YE_DEFECT_REVIEW 

YE_ES20_INSPECTION 

YE_SEMVISION_INSPECT 

YE_SEMVISION_REVIEW 

YE_STEALTH_ADDER 

YE_EBEAM_INSPECTION 

VIPER_INSPECT 



 
1. Production 

 

Figure A.

 As it can be seen in the figure, the <Production> data object is an array of 

the <Production_item> data object. Each <Production_item> 

for one device. For each device, a <Route> object is included in the 

<Production_item> object describing the route of the device. A <Route> object is 

an array of <Step> object

which is a combination of log point number of operation number. More detail 

information is shown in the <Step> object description.

 
2. Step 

A step corresponds to a line in the “Routing.csv” table which can be in

the combination of log

shows the data structure of one <Step> object.

 A <Step> object includes the necessary information for one step. First it 

stores all the K parameters which are used to compute the processing rates. The 
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Appendix 3: Data Structure 

Figure A.1 Data structure of <Production> object 
 

As it can be seen in the figure, the <Production> data object is an array of 

the <Production_item> data object. Each <Production_item> data object stands 

for one device. For each device, a <Route> object is included in the 

<Production_item> object describing the route of the device. A <Route> object is 

an array of <Step> objects. A <Step> object describes the process within the route, 

ch is a combination of log point number of operation number. More detail 

information is shown in the <Step> object description. 

A step corresponds to a line in the “Routing.csv” table which can be in

the combination of logpoint number and operation number. The following figure 

shows the data structure of one <Step> object. 

A <Step> object includes the necessary information for one step. First it 

parameters which are used to compute the processing rates. The 

 

As it can be seen in the figure, the <Production> data object is an array of 

data object stands 

<Production_item> object describing the route of the device. A <Route> object is 

. A <Step> object describes the process within the route, 

ch is a combination of log point number of operation number. More detail 

A step corresponds to a line in the “Routing.csv” table which can be indexed by 

ration number. The following figure 

A <Step> object includes the necessary information for one step. First it 

parameters which are used to compute the processing rates. The 
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log point number and the operation number are included as a handle of a step. The 

“Process Model” describes which mode the step is. The “step_index” is the order 

number of a step. The “MC_vector” includes the list of machines which can be 

used to process this step. 

 

 
Figure A.2 Data structure of <Step> object 

 
3. Route 

A route is a combination of steps. This can be seen in the following figure. 
 

 
Figure A.3 Data structure of <Route> object 

 
4. Machine_Set 

The <Machine_Set> object stores the information of the stations. Such 

information comes from the “Stations.csv” table. The following figure shows the 

data structure of the <Machine_Set> object. 

 The “Misti ID” is the ID associated with the machine. The parameter 

K852 is the capacity multiplier/loading factor which is included in the processing 



rate computation. The parameters 

percentage. However, currently these two parameters are not used to compute the 

processing rate. Instead t

parameter K866.  

 

Figure A.4
 

5. Family 

The <Family> data object stores the family information of the devices. It is an 

array of family structure. Each family contains the information of family code and 

the names of the devices belong to this family. 
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rate computation. The parameters K833 and K834 are related to the mean uptime 

percentage. However, currently these two parameters are not used to compute the 

processing rate. Instead the uptime percentage is taken into account by using 

4 Data structure of <Machine_Set> object 

data object stores the family information of the devices. It is an 

array of family structure. Each family contains the information of family code and 

the names of the devices belong to this family.  

834 are related to the mean uptime 

percentage. However, currently these two parameters are not used to compute the 

he uptime percentage is taken into account by using 

 

data object stores the family information of the devices. It is an 

array of family structure. Each family contains the information of family code and 



Figure A.

157  

Figure A.5 Data structure of <Family> object 
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Appendix 4: Solution to the 4-week Problem with Basic Decomposition Scheme 

 
Table A.10 Summary of solution to the 4-week problem by basic decomposition 

d 
T_OUTid Num. completed id

+∆ or id
−∆  

C1 C2 C3 C1 C2 C3 C1 C2 C3 
1 328 315 26 328 315 26 0 0 0 
2 328 315 26 328 315 26 0 0 0 
3 328 315 26 328 315 26 0 0 0 
4 328 315 26 328 315 26 0 0 0 
5 328 315 26 328 315 26 0 0 0 
6 328 315 26 328 315 26 0 0 0 
7 328 315 26 328 315 26 0 0 0 
8 328 315 26 328 296.85 26 0 18.15 0 
9 328 315 26 322.50 267.90 26 5.50 47.10 0 
10 328 315 26 330.26 260.14 26 −2.26 54.86 0 
11 328 315 26 291.30 299.10 26 36.70 15.90 0 
12 328 315 26 210.50 379.90 26 117.50 −64.90 0 
13 328 315 26 318.57 271.83 26 9.43 43.17 0 
14 328 315 26 328 262.40 26 0.00 52.60 0 
15 328 315 26 275.40 315.00 26 52.60 0.00 0 
16 328 315 26 290.05 300.35 26 37.95 14.65 0 
17 328 315 26 260.75 329.65 26 67.25 −14.65 0 
18 328 315 26 307.50 282.90 26 20.50 32.10 0 
19 328 315 26 322.20 268.20 26 5.80 46.80 0 
20 328 315 26 330.93 259.48 26 −2.92 55.52 0 
21 328 315 26 325.08 265.33 26 2.92 49.68 0 
22 328 315 26 275.91 314.49 26 52.09 0.51 0 
23 328 315 26 281.60 308.80 26 46.40 6.20 0 
24 328 315 26 324.76 265.64 26 3.24 49.36 0 
25 328 315 26 279.64 310.76 26 48.36 4.24 0 
26 328 315 26 293.99 296.42 26 34.02 18.58 0 
27 328 315 26 328.53 261.88 26 −0.53 53.13 0 
28 328 315 26 327.48 262.93 26 0.53 52.07 0 

Total 9184 8820 728 8648.95 8284.95 728 535.08 535.07 0 
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WIP profiles of the three devices at the end of each week 

 

Figure A.6 WIP profile of C1 at the end of the 1st week 
 

 

Figure A.7 WIP profile of C1 at the end of the 2nd week 

 

 

Figure A 8 WIP profile of C1 at the end of the 3rd week 
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Figure A.9 WIP profile of C1 at the end of the 4th week 

 

 

Figure A.10 WIP profile of C2 at the end of the 1st week 
 

 

 

Figure A.11 WIP profile of C2 at the end of the 2nd week 
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Figure A.12 WIP profile of C2 at the end of the 3rd week 

 

 

Figure A.13 WIP profile of C2 at the end of the 4th week 

 

 

Figure A.14 WIP profile of C3 at the end of the 1st week 
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Figure A.15 WIP profile of C3 at the end of the 2nd week 

 

 

Figure A.16 WIP profile of C3 at the end of the 3rd week 

 

 

Figure A.17 WIP profile of C3 at the end of the 4th week 
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Appendix 5: Solution to the 4-week Problem with Decomposition Scheme 

 
Table A.11 Summary of solution to the 4-week problem with rescheduling and heuristic 

scheme 

d 
T_OUTid Num. completed id

+∆ or id
−∆  

C1 C2 C3 C1 C2 C3 C1 C2 C3 
1 328 315 26 328 315 26 0 0 0 
2 328 315 26 328 315 26 0 0 0 
3 328 315 26 328 315 26 0 0 0 
4 328 315 26 328 315 26 0 0 0 
5 328 315 26 328 315 26 0 0 0 
6 328 315 26 328 315 26 0 0 0 
7 328 315 26 328 315 26 0 0 0 
8 328 315 26 328 315 26 0 0 0 
9 328 315 26 328 315 26 0 0 0 
10 328 315 26 328 315 26 0 0 0 
11 328 315 26 328 315 26 0 0 0 
12 328 315 26 328 315 26 0 0 0 
13 328 315 26 328 315 26 0 0 0 
14 328 315 26 328 315 26 0 0 0 
15 328 315 26 328 315 26 0 0 0 
16 328 315 26 328 315 26 0 0 0 
17 328 315 26 328 315 26 0 0 0 
18 328 315 26 328 315 26 0 0 0 
19 328 315 26 328 315 26 0 0 0 
20 328 315 26 328 315 26 0 0 0 
21 328 315 26 328 315 26 0 0 0 
22 328 315 26 328 315 26 0 0 0 
23 328 315 26 328 315 26 0 0 0 
24 328 315 26 328 315 26 0 0 0 
25 328 315 26 328 315 26 0 0 0 
26 328 315 26 328 315 26 0 0 0 
27 328 315 26 328 315 26 0 0 0 
28 328 315 26 328 315 26 0 0 0 

Total 9184 8820 728 9184 8820 728 0 0 0 
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WIP profiles of the three devices at the end of each week 

 

Figure A.18 WIP profile of C1 at the end of the 1st week 

 

 

Figure A.19 WIP profile of C1 at the end of the 2nd week 

 

 

Figure A.20 WIP profile of C1 at the end of the 3rd week 
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Figure A.21 WIP profile of C1 at the end of the 4th week 

 

 

Figure A.22 WIP profile of C2 at the end of the 1st week 

 

 

Figure A.23 WIP profile of C2 at the end of the 2nd week 

 

 

0
1000
2000
3000
4000
5000
6000
7000
8000

1 2
0

3
9

5
8

7
7

9
6

1
1

5
1

3
4

1
5

3
1

7
2

1
9

1
2

1
0

2
2

9
2

4
8

2
6

7
2

8
6

3
0

5
3

2
4

3
4

3
3

6
2

3
8

1
4

0
0

4
1

9
4

3
8

4
5

7
4

7
6

4
9

5
5

1
4

5
3

3
5

5
2

5
7

1
5

9
0

6
0

9
6

2
8

6
4

7
6

6
6

W
IP

Step in routing

0

500

1000

1500

2000

2500

1 2
5

4
9

7
3

9
7

1
2

1
1

4
5

1
6

9
1

9
3

2
1

7
2

4
1

2
6

5
2

8
9

3
1

3
3

3
7

3
6

1
3

8
5

4
0

9
4

3
3

4
5

7
4

8
1

5
0

5
5

2
9

5
5

3
5

7
7

6
0

1
6

2
5

6
4

9
6

7
3

6
9

7
7

2
1

7
4

5
7

6
9

7
9

3
8

1
7

W
IP

Step in routing

0

500

1000

1500

2000

2500

3000

1 2
5

4
9

7
3

9
7

1
2

1
1

4
5

1
6

9
1

9
3

2
1

7
2

4
1

2
6

5
2

8
9

3
1

3
3

3
7

3
6

1
3

8
5

4
0

9
4

3
3

4
5

7
4

8
1

5
0

5
5

2
9

5
5

3
5

7
7

6
0

1
6

2
5

6
4

9
6

7
3

6
9

7
7

2
1

7
4

5
7

6
9

7
9

3
8

1
7

W
IP

Step in routing



166  

 

Figure A.24 WIP profile of C2 at the end of the 3rd week 

 

 

Figure A.25 WIP profile of C2 at the end of the 4th week 

 

 

Figure A.26 WIP profile of C3 at the end of the 1st week 
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Figure A.27 WIP profile of C3 at the end of the 2nd week 

 

 

Figure A.28 WIP profile of C3 at the end of the 3rd week 

 

 

Figure A.29 WIP profile of C3 at the end of the 4th week 
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Appendix 6: Daily Input for the 13-week Problem 

 

d 
R1d(1

) 
R2d(1

) 
R3d(1

) d 
R1d(1

) 
R2d(1

) 
R3d(1

) d 
R1d(1

) 
R2d(1

) 
R3d(1

) 
1 300 300 24 32 300 325 120 63 375 250 72 
2 300 300 24 33 250 325 0 64 300 275 144 
3 312 300 24 34 250 300 24 65 400 200 72 
4 300 299 24 35 250 348 24 66 400 448 0 
5 275 450 0 36 275 325 0 67 399 300 0 
6 299 349 72 37 275 312 12 68 400 300 0 
7 375 249 48 38 275 324 48 69 400 250 0 
8 325 287 48 39 300 300 96 70 312 246 24 
9 325 300 6 40 300 300 48 71 375 300 0 
10 326 300 24 41 325 300 0 72 400 300 0 
11 325 425 24 42 300 311 72 73 400 250 48 
12 325 300 0 43 300 300 6 74 424 325 24 
13 325 300 24 44 300 300 12 75 400 362 0 
14 325 175 72 45 300 300 0 76 400 375 24 
15 325 300 24 46 350 300 36 77 374 325 48 
16 325 275 6 47 325 312 96 78 308 350 51 
17 325 300 0 48 350 300 60 79 300 412 0 
18 325 350 24 49 337 324 24 80 300 300 0 
19 325 300 24 50 300 300 0 81 300 362 24 
20 300 312 54 51 300 300 0 82 400 300 24 
21 300 324 48 52 325 312 0 83 400 300 0 
22 325 325 0 53 325 300 24 84 400 350 48 
23 325 325 0 54 337 262 24 85 300 348 24 
24 300 325 0 55 300 356 24 86 400 300 0 
25 300 300 24 56 300 349 54 87 400 300 24 
26 300 300 72 57 300 300 0 88 300 400 12 
27 275 387 0 58 400 300 0 89 300 425 0 
28 275 375 42 59 300 348 0 90 400 274 24 
29 275 325 0 60 300 300 0 91 429 350 48 
30 300 325 0 61 400 275 24 
31 300 312 24 62 350 312 72 
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Appendix 7: Solution to the 13-week Problem with Decomposition Scheme 

 
Table A.12 Summary of the solution to the 13-week problem with rescheduling and 
dispatching heuristic 

d 
T_OUTid Num. completed id

+∆ or id
−∆  

C1 C2 C3 C1 C2 C3 C1 C2 C3 
1 328 315 26 328 315 26 0 0 0 
2 328 315 26 328 315 26 0 0 0 
3 328 315 26 328 315 26 0 0 0 
4 328 315 26 328 315 26 0 0 0 
5 328 315 26 328 315 26 0 0 0 
6 328 315 26 328 315 26 0 0 0 
7 328 315 26 328 315 26 0 0 0 
8 328 315 26 328 315 26 0 0 0 
9 328 315 26 328 315 26 0 0 0 
10 328 315 26 328 315 26 0 0 0 
11 328 315 26 328 315 26 0 0 0 
12 328 315 26 328 315 26 0 0 0 
13 328 315 26 328 315 26 0 0 0 
14 328 315 26 328 315 26 0 0 0 
15 328 315 26 328 315 26 0 0 0 
16 328 315 26 328 315 26 0 0 0 
17 328 315 26 328 315 26 0 0 0 
18 328 315 26 328 315 26 0 0 0 
19 328 315 26 328 315 26 0 0 0 
20 328 315 26 328 315 26 0 0 0 
21 328 315 26 328 315 26 0 0 0 
22 328 315 26 328 315 26 0 0 0 
23 328 315 26 328 315 26 0 0 0 
24 328 315 26 328 315 26 0 0 0 
25 328 315 26 328 315 26 0 0 0 
26 328 315 26 328 315 26 0 0 0 
27 328 315 26 328 315 26 0 0 0 
28 328 315 26 328 315 26 0 0 0 
29 328 315 26 328 315 26 0 0 0 
30 328 315 26 328 315 26 0 0 0 
31 328 315 26 328 315 26 0 0 0 
32 328 315 26 328 315 26 0 0 0 
33 328 315 26 328 315 26 0 0 0 
34 328 315 26 328 315 26 0 0 0 
35 328 315 26 328 315 26 0 0 0 
36 328 315 26 328 315 26 0 0 0 
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37 328 315 26 328 315 26 0 0 0 
38 328 315 26 328 315 26 0 0 0 
39 328 315 26 328 315 26 0 0 0 
40 328 315 26 328 315 26 0 0 0 
41 328 315 26 328 315 26 0 0 0 
42 328 315 26 328 315 26 0 0 0 
43 328 315 26 328 315 26 0 0 0 
44 328 315 26 328 315 26 0 0 0 
45 328 315 26 328 315 26 0 0 0 
46 328 315 26 328 315 26 0 0 0 
47 328 315 26 328 315 26 0 0 0 
48 328 315 26 328 315 26 0 0 0 
49 328 315 26 328 315 26 0 0 0 
50 328 315 26 328 315 26 0 0 0 
51 328 315 26 328 315 26 0 0 0 
52 328 315 26 328 264.81 26 0 50.20 0 
53 328 315 26 310.4 280 26 17.6 35 0 
54 328 315 26 295.2 295.20 26 32.8 19.80 0 
55 328 315 26 300.70 289.70 26 27.30 25.30 0 
56 328 315 26 275.4 315 26 52.6 0 0 
57 328 315 26 328 262.4 26 0 52.6 0 
58 328 315 26 304.48 285.92 26 23.52 29.08 0 
59 328 315 26 323.02 267.38 15.18 4.98 47.62 10.82 
60 328 315 26 295.2 295.2 0 32.8 19.8 26 
61 328 315 26 310.4 280 0 17.6 35 26 
62 328 315 26 267.9 322.5 0 60.1 −7.5 26 
63 328 315 26 282.9 307.5 0 45.1 7.5 26 
64 328 315 26 328 262.4 0 0 52.6 26 
65 328 315 26 301.5 288.9 0 26.5 26.1 26 
66 328 315 26 315.35 275.06 0 12.65 39.95 26 
67 328 315 26 295.82 294.58 0 32.18 20.42 26 
68 328 315 26 308.86 281.54 0 19.14 33.46 26 
69 328 315 26 286.98 303.42 0 41.02 11.58 26 
70 328 315 26 275.4 315 0 52.6 0 26 
71 328 315 26 328 262.4 0 0 52.6 26 
72 328 315 26 302.8 287.6 0 25.2 27.4 26 
73 328 315 26 322.95 267.45 0 5.05 47.55 26 
74 328 315 26 291.97 298.43 0 36.03 16.57 26 
75 328 315 26 308.7 281.7 0 19.3 33.3 26 
76 328 315 26 282.08 308.32 0 45.92 6.68 26 
77 328 315 26 275.4 315 0 52.6 0 26 
78 328 315 26 328 262.4 0 0 52.6 26 
79 328 315 26 300.62 289.78 0 27.38 25.22 26 
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80 328 315 26 316.8 273.6 0 11.2 41.4 26 
81 328 315 26 291.97 298.43 0 36.03 16.57 26 
82 328 315 26 308.7 281.7 0 19.3 33.3 26 
83 328 315 26 284.21 306.19 0 43.79 8.81 26 
84 328 315 26 281.6 308.8 0 46.4 6.2 26 
85 328 315 26 328 262.4 0 0 52.6 26 
86 328 315 26 300.7 289.7 0 27.3 25.3 26 
87 328 315 26 319.43 270.97 0 8.57 44.03 26 
88 328 315 26 285.38 305.02 0 42.62 9.98 26 
89 328 315 26 307.29 283.11 0 20.71 31.89 26 
90 328 315 26 288.2 302.2 0 39.8 12.8 26 
91 328 315 26 282.9 307.5 0 45.1 7.5 26 

Total 29848 28665 2366 28797.2 27614.2 1523.18 1050.8 1050.8 843 
 

WIP profiles of the three devices at the end of each week 

 

Figure A.30 WIP profile of C1 at the end of the 1st week 

 

Figure A.31 WIP profile of C1 at the end of the 2nd week 
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Figure A.32 WIP profile of C1 at the end of the 3rd week 

 

 

Figure A.33 WIP profile of C1 at the end of the 4th week 

 

 

Figure A.34 WIP profile of C1 at the end of the 5th week 

 

0

500

1000

1500

2000

2500

3000

3500

4000

1 2
0

3
9

5
8

7
7

9
6

1
1

5
1

3
4

1
5

3
1

7
2

1
9

1
2

1
0

2
2

9
2

4
8

2
6

7
2

8
6

3
0

5
3

2
4

3
4

3
3

6
2

3
8

1
4

0
0

4
1

9
4

3
8

4
5

7
4

7
6

4
9

5
5

1
4

5
3

3
5

5
2

5
7

1
5

9
0

6
0

9
6

2
8

6
4

7
6

6
6

W
IP

Step in routing

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

1 2
1

4
1

6
1

8
1

1
0

1
1

2
1

1
4

1
1

6
1

1
8

1
2

0
1

2
2

1
2

4
1

2
6

1
2

8
1

3
0

1
3

2
1

3
4

1
3

6
1

3
8

1
4

0
1

4
2

1
4

4
1

4
6

1
4

8
1

5
0

1
5

2
1

5
4

1
5

6
1

5
8

1
6

0
1

6
2

1
6

4
1

6
6

1

W
IP

Step in routing

0

1000

2000

3000

4000

5000

6000

7000

1 2
1

4
1

6
1

8
1

1
0

1
1

2
1

1
4

1
1

6
1

1
8

1
2

0
1

2
2

1
2

4
1

2
6

1
2

8
1

3
0

1
3

2
1

3
4

1
3

6
1

3
8

1
4

0
1

4
2

1
4

4
1

4
6

1
4

8
1

5
0

1
5

2
1

5
4

1
5

6
1

5
8

1
6

0
1

6
2

1
6

4
1

6
6

1

W
IP

Step in routing



173  

 

Figure A.35 WIP profile of C1 at the end of the 6th week 

 

 

Figure A. 36 WIP profile of C1 at the end of the 7th week 

 

 

Figure A. 37 WIP profile of C1 at the end of the 8th week 
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Figure A.38 WIP profile of C1 at the end of the 9th week 

 

 

Figure A.39 WIP profile of C1 at the end of the 10th week 

 

 

Figure A.40 WIP profile of C1 at the end of the 11th week 
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Figure A.41 WIP profile of C1 at the end of the 12th week 

 

 

Figure A.42 WIP profile of C1 at the end of the 13th week 

 

 

Figure A.43 WIP profile of C2 at the end of the 1st week 
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Figure A.44 WIP profile of C2 at the end of the 2nd week 

 

 

Figure A.45 WIP profile of C2 at the end of the 3rd week 

 

 

Figure A.46 WIP profile of C2 at the end of the 4th week 
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Figure A.47 WIP profile of C2 at the end of the 5th week 

 

 

Figure A.48 WIP profile of C2 at the end of the 6th week 

 

 

Figure A.49 WIP profile of C2 at the end of the 7th week 
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Figure A.50 WIP profile of C2 at the end of the 8th week 

 

 

Figure A.51 WIP profile of C2 at the end of the 9th week 

 

 

Figure A.52 WIP profile of C2 at the end of the 10th week 
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Figure A.53 WIP profile of C2 at the end of the 11th week 

 

 

Figure A.54 WIP profile of C2 at the end of the 12th week 

 

 

Figure A.55 WIP profile of C2 at the end of the 13th week 
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Figure A.56 WIP profile of C3 at the end of the 1st week 

 

 

Figure A.57 WIP profile of C3 at the end of the 2nd week 

 

 

Figure A.58 WIP profile of C3 at the end of the 3rd week 

0
100
200
300
400
500
600
700
800
900

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3
8

5
9

8
8

5
9

1
1

9
3

7

W
IP

Step in routing

0
100
200
300
400
500
600
700
800
900

1000

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3
8

5
9

8
8

5
9

1
1

9
3

7

W
IP

Step in routing

0
100
200
300
400
500
600
700
800
900

1000

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3
8

5
9

8
8

5
9

1
1

9
3

7

W
IP

Step in routing



181  

 

Figure A.59 WIP profile of C3 at the end of the 4th week 

 

 

Figure A.60 WIP profile of C3 at the end of the 5th week 

 

 

Figure A.61 WIP profile of C3 at the end of the 6th week 
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Figure A.62 WIP profile of C3 at the end of the 7th week 

 

 

Figure A.63 WIP profile of C3 at the end of the 8th week 

 

 

Figure A.64 WIP profile of C3 at the end of the 9th week 
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Figure A.65 WIP profile of C3 at the end of the 10th week 

 

 

Figure A.66 WIP profile of C3 at the end of the 11th week 

 

 

Figure A.67 WIP profile of C3 at the end of the 12th week 
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Figure A.68 WIP profile of C3 at the end of the 13th week 
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Appendix 8: Benders Decomposition 

 
Model (3) contains a series of block constraints with overlapping variables, where the 

blocks correspond to different time periods and a subset of the variables appears in the 

adjacent blocks for periods t – 1 and t.  In visual terms, the overlapping constraints form a 

staircase.  The general problem is called a multistage linear program and has the 

following form: 

 w  = Minimize c0x0 + c1x1  +  c2x2  +    .  .  .   + cNxN  (17a)  

  subject to – B0x0 + A1x1 =  b1 (17b)  

   – B1x1 + A2x2 =  b2 (17c)  

    – B2x2 + A3x3 =  b3 (17d) 
  O  

   – BN–1xN–1 + ANxN =  bN  (17e) 

   x0 ≥ 0,  x1 ≥ 0, . . . , xN ≥ 0  (17f) 

where all vectors and matrices are of appropriate dimension and Bk (k = 1,…,N–1) 

reflects the overlapping or staircase nature of the constraints.  To decompose model (17), 

we introduce a sequence of vectors z1, z2,…,zN with the same dimensions as x1, x2, …, xN 

and write each constraint as  

– Bk–1zk–1 + Akxk = bk 

with the restriction that Bkxk = Bkzk, k = 1,…,N.  Now, if the z variables are treated the 

same way that the integer variables are treated in Benders algorithm for solving mixed-

integer linear programs, we get the following N primal subproblems. 

 wP(zk) = Minimize   ckxk  (18a) 

 subject to Akxk = bk + Bk–1zk–1 (18b) 

 Bkxk = Bkzk (18c) 

 xk ≥ 0 (18d) 

For the moment, assume that all the variables that appear in model (18) are continuous.  

Letting uk and yk be the dual variables associated with constraints (18b) and (18c), 

respectively, the dual of (18) is 

 wD(zk) = Maximize   uk(bk + Bk–1zk–1) + yk(Bkzk) 

  subject to ukAk + ykBk ≤ ck  (19) 
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where wD(zk) = wP(zk).  Thus, model (3) is equivalent to  

 ( )
1

Minimize 
N

D k

k

w w
=

= ∑ z  (20) 

To solve (20), we need to create a master problem.  Let Ek be the set of extreme points 

associated with the feasible region in (19) and let Rk be the set of extreme rays, k = 

1,…,N.  Benders’ master problem can be written as 

 w = Minimize 
1

 
N

k
k

η
=

∑  (21a) 

 subject to  kη ≥ uke(bk + Bk–1zk–1) + yke(Bkzk), ∀ e ∈ Ek , k = 1,…,N (21b) 

  0 ≥ vkr(bk + Bk–1zk–1) + qkr(Bkzk),  ∀ r ∈ Rk , k = 1,…,N (21c) 

where the constraints in (21b) are called optimality cuts and those in (21c) are called 

feasibility cuts.  The standard Benders algorithm can now be used to solve (21), where at 

each iteration, cuts are added by solving either the N dual subproblems in (19) or the N 

primal subproblems (18) and then computing the corresponding dual variables uk and yk 

or dual extreme rays vk and qk. 
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Appendix 9: Pseudocodes for Neighborhood Search in Capacitated Clustering 

 
The following definitions, together with the aforementioned notation in Chapter 3, are 

used to describe the phase II procedures. 

Parameters 

β a percentage serves as tolerance 
TEW(x) sum of edge weights in every cluster of solution x 
c(i, x) cluster to which node i is assigned in solution x 
ben_i_s benefit obtained by shifting node i to cluster s 
best_ben_i_s best benefit from ben_i_s 
benefit benefit obtained by moving node i 
best_ben best benefit found during the local search for all of the nodes 
ibest node to be moved with best_ben 
sbest cluster to which ibest is assigned in the best move 
jbest node to be moved from sbest if best ( )

s
W x + besti

w ≥ Cmax 

best
1s  cluster to which node jbest is moved to 

j′, j* temporary variables for the node to be shifted 
s1, '

1s , *
1s  temporary variables for the cluster to which j ' and j* are shifted 

∆ percentage decrement for tolerance β 
 

Procedure: N1(x, w, c, β, Cmin, Cmax, x*) 
Input: current solution x, node weights vector w, edge weights matrix c, capacity bounds 

Cmin and Cmax and tolerance β. 
Output: local solution x*with respect to neighborhood N1(x). 
Step 1:  Initialization 

 TEW(x) =
1 , ( )k

p

ij
k i j V x

c
= ∈

∑ ∑ ; best_ben = − ∞; x* = x; 

Step 2: for every node perform an N1 local search 
  for (i ∈ V){ 
 k = c(i, x); 
 if (Wk(x) − wi ≥ Cmin){ 
 best_ben_i_s = − ∞; 
 for (s = 1,…,p and s ≠ k){ 
 if (Ws(x) + wi ≤ Cmax){ 

 ben_i_s =
* ( ) ( )\{ }ks

ij ij
j V x j V x i

c c
∈ ∈

−∑ ∑ ;  

 }else{//cluster s will exceed the upper bound 
 (j ′, '

1s ) = 
1,

argmax
j s

{
1

( )\{ } ( )\{ } ( ) ( )s k s s

il il jl jl
l V x j l V x i l V x l V x

c c c c
∈ ∈ ∈ ∈

− + −∑ ∑ ∑ ∑ ,  

 ∀ j ∈ Vs, j ≠ i, s1 = 1,…,p, s1 ≠ s, C
min ≤ Ws(x) + wi – 

wj ≤ Cmax  and 
1
( )sW x + wj ≤ Cmax }; 
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 ben_i_s = ' '

'
'
1

( )\{ } ( ) ( )( )\{ } k ss s

il il j l j l
l V x i l V x l V xl V x j

c c c c
∈ ∈ ∈∈

− + −∑ ∑ ∑ ∑ ; 

 } 
 if (ben_i_s > best_ben_i_s){ 
 bes_bent_i_s = ben_i_s;  s* = s;  benefit = ben_i_s; 
 if ( * ( )

s
W x + wi ≥ Cmax){ 

 j* = j′; * '
1 1s s= ;  

 } 
 } 
 }//end_for_s 
 if (benefit > best_ben) { 
 best_ben = benefit;  ibest = i;  sbest = s*; 
 if ( best ( )

s
W x + besti

w ≥ Cmax){ 

 jbest = j*; best *
1 1s s= ; 

 } 
 } 
 } 
 } 
Step 3: if (best_ben > − β × tw(x)){ 
 k = c(ibest, x); 
 Vk(x

*) � Vk(x) \ { ibest};  

 best
*( )

s
V x  � best( )

s
V x 	{ ibest};  

 if (| best( )
s

V x | = Cmax){ 

 best
*( )

s
V x � best

*( )
s

V x \ { jbest}; best
1

*( )
s

V x � best
1

( )
s

V x 	{ jbest}; 

 } 
 } 

Figure A.69 Pseudocode for local search in neighborhood N1 

 Parameters 
k1,k2,s1,s2,s3,s

* temporary variables for cluster identification 
ben_e_sl temporary variable for benefit obtained, l = 1, 2, 3 
ebest edge e of the move with best_ben 
ibest, jbest the two endpoints of ebest 
sbest cluster to which ebest is assigned in the best move 

Procedure: N2(x, w, c, β, Cmin, Cmax, x*) 
Input: current solution x, node weights vector w, edge weights matrix c, capacity bounds 

Cmin and Cmax and tolerance β. 
Output: optimal solution in neighborhood N2(x), x* 

Step 1: initialization 

 TEW(x) =
1 , ( )k

p

ij
k i j V x

c
= ∈

∑ ∑ ; best_ben = − ∞; x* = x; 

Step 2: for every edge perform an N2 local search  
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 for (e = (i,j) ∈ E) { 
 k1 = c(i, x);  k2 = c(j, x); 
 if (k1 = k2 = k and Wk(x) – wi – wj ≥ Cmin){// e is within cluster k 
 s* = argmax

s

{
( ) ( )\{ , }

( ) ( )
s k

il jl il jl
l V x l V x i j

c c c c
∈ ∈

+ − +∑ ∑ ,  

 ∀ s ∈ {1,..,p}\{ k} and Ws(x) + wi + wj ≤ Cmax }; 

 benefit =
* ( ) ( )\{ , }

( ) ( )
ks

il jl il jl
l V x l V x i j

c c c c
∈ ∈

+ − +∑ ∑ ;  

 } else { 
 if (  − wi ≥ Cmin and − wj ≥ Cmin) { 

 if (Ws(x) + wi + wj ≤ Cmax) { 
 s1

 = argmax
s

{
1 2

( ) ( ) ( )

( )
s k k

il jl ij il jl
l V x l V x l V x

c c c c c
∈ ∈ ∈

+ + − −∑ ∑ ∑ ,  

 ∀ s ≠ k1, s ≠ k2}; 

 ben_e_s1 =
1 21

( ) ( ) ( )

( )
s k k

il jl ij il jl
l V x l V x l V x

c c c c c
∈ ∈ ∈

+ + − −∑ ∑ ∑ ;  

 } 
 if ( + ≤ Cmax) { 

 ben_e_s2 =
1 2
( ) ( )k k

jl jl
l V x l V x

c c
∈ ∈

−∑ ∑ ;  s2 = k1; 

 } 
 if (

2
( )kW x +

eaw ≤ Cmax) { 

 ben_e_s3 =
2 1

( ) ( )k k

il il
l V x l V x

c c
∈ ∈

−∑ ∑ ;  s3 = k2; 

 } 
 benefit = max {ben_e_s1, ben_e_s2, ben_e_s3}; 
 s* = sl, where ben_e_sl = benefit with l = 1, 2, 3; 
 } 
 } 
 if (benefit > best_ben) { 
 best_ben = benefit; 
 ebest = e;  sbest = s*; 
 } 
 } 
Step 3: if (best_ben > − β × tw(x)){ 
 ebest = (ibest, jbest); 
  k1 = c(ibest, x);  k2 = c(jbest, x); 
 if (k1 = k2) { 

 k = k1;  Vk(x
*) = Vk(x) \ { ibest, jbest};  best

*( )
s

V x  = best( )
s

V x 	{ ibest, jbest};  

 } else { 
 if (sbest = k1) { 

 
1

*( )kV x  = 
1
( )kV x 	{ jbest};  

2

*( )kV x  = 
2
( )kV x \{ jbest}; 

 } 

1
( )kW x

2
( )kW x

1
( )kW x

ebw
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 else if (sbest = k2) { 

 
1

*( )kV x  = 
1
( )kV x \{ ibest};  

2

*( )kV x  = 
2
( )kV x 	{ ibest}; 

 } else { 

 
1

*( )kV x  = 
1
( )kV x \{ ibest};  

2

*( )kV x  = 
2
( )kV x \{ jbest}; 

 best
*( )

s
V x  = best( )

s
V x 	{ ibest, jbest};  

 } 
 } 
 } 

Figure A.70 Pseudocode for local search in neighborhood N2 

 
Parameters 

(ibest, jbest) nodes to be swapped corresponding to best_ben 
Procedure: N3(x, w, c, β, Cmin, Cmax, x*) 
Input: current solution x, node weights vector w, edge weights matrix c, capacity bounds 

Cmin and Cmax and tolerance β. 
Output: local solution x* with respect to neighborhood N3(x). 
Step 1: initialization 

 TEW(x) =
1 , ( )k

p

ij
k i j V x

c
= ∈

∑ ∑ ; best_ben = − ∞; x* = x; 

Step 2: for every pair of nodes perform a local search in N3  
 for (k = 1,…,p){ 
 if (Cmin ≤ Wk(x) – wi + wj ≤ Cmax) { 
 for (s = k + 1,…,p){ 
 if (Cmin ≤ Ws(x) – wj + wi ≤ Cmax) { 
 (i*, j*) = 

argmax{
( ) ( )\{ } ( ) ( )\{ }

( ) ( )
s k k s

il il jl jl
l V x l V x i l V x l V x j

c c c c
∈ ∈ ∈ ∈

− + −∑ ∑ ∑ ∑ : 

 i ∈ Vk(x) and j ∈ Vs(x)}; 
 benefit = * * * *

* *( ) ( )( )\{ } ( )\{ }

( ) ( )
s kk s

i l i l j l j l
l V x l V xl V x i l V x j

c c c c
∈ ∈∈ ∈

− + −∑ ∑ ∑ ∑ ; 

 if (benefit > best_ben) { 
 best_ben = benefit; 
 ibest = i*; jbest = j*;  
 } 
 } 
 } 
 } 
 } 
Step 3: if (best_ben > − β × tw(x)){ 
 k = c(ibest, x); s = c(jbest, x); 
 Vk(x

*) = (Vk(x) \ { ibest}) 	 { jbest}; 
 Vs(x

*) = (Vs(x) \ { jbest}) 	 { ibest};  
 } 
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Figure A.71 Pseudocode for local search in neighborhood N3 

Appendix 10: Pseudocodes for Back-end Operations 

 
Indices and sets 

i index for machines; i ∈ M 
j index for devices; j ∈ D 
k index for key devices; k ∈ K 
l index for lots; l ∈ L 
p index for package devices; p ∈ P 
s index for routes; s ∈ S 
t index for tooling families; t ∈ T 
τ index for temperature; τ ∈T  
λ index for tooling setup; λ ∈ Λ 
n, m index for temperature combinations; n, m ∈ N 
D set of all devices, including regular devices, key devices and package 

devices 
K set of key devices; K D⊆  
L set of lots in WIP at current operation 
L(i) set of lots that can be processed on machine i 
L(i,j) set of lots consisting of device j that can be processed on machine i  
L(i,λ) set of lots that can be processed on machine i with tooling setup λ 
M set of machines (each machine falls into a machine group) 
M(l) set of machines that can process lot l 
N set of feasible temperature combinations for machines and tooling 

( )N n  set of temperature combinations that intersect combination n. 
P set of package devices; P D⊆  
S set of routes 
S(i) set of routes that use machine i 
S(i,l) set of routes that use machine i to process lot l 
S(i,l,λ) set of routes that use machine i to process lot l with tooling setup λ 
T set of tooling families 
T  set of operating temperatures 

( )T n  set of operating temperatures that are elements of temperature combination 
n 

Λ set of tooling setups that used in the routs S 
Λ(i) set of tooling setups that can be installed in machine i 
Λ(i,t,τ) set of tooling setups that can be installed in machine i using tooling family t 

under temperature τ 
Parameters and data 

bλt number of tooling pieces from family t required by tooling setup λ 
tooling
tmn  number of tooling pieces from family t available under temperature 

combination m 
chips
ln  number of chips in lot l 
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min_chips
kn  minimum number of chips associated with key device k required to be 

processed over the planning period 
min_chips
pn  minimum number of chips associated with package device p required to be 

processed over the planning period 
r ils processing rate of lot l on machine i using route s (chips per hour) 
wl weight (benefit) associated with processing lot l (function of lot age and the 

remaining planned cycle time) 

1
kw  weight (penalty) associated with shortage of package device k 

2
pw  weight (penalty) associated with shortage of key device p 

εs penalty for choosing route s 
C normalizing constant associated with key and package device shortages 
Hi (capacity) number of hours available on machine i over the planning period  

Decision variables 
xils 1 if lot l is processed by machine i with route s, 0 otherwise 
yiλ 1 if machine i is using tooling setup λ, 0 otherwise 

1
k∆  shortage of key device k 

2
p∆  shortage of package device p 

Figure A.72 Notation for setup and assignment model 

 

Procedure: N1(x
IP, iλ , x*) 

Input: Feasible IP solution xIP, current machine setupiλ , ∀ i ∈ M 
Output: Local optimum x* in neighborhood N1(x

IP) 
Step 1: //Initialize L0, Li , IP

it and x* according to xIP 

 L0 ← �; Li ← �; IP
it = 0, ∀ i ∈ M;  

 * IP
ils ilsx x= , ∀ i ∈ M, l ∈ L(i, iλ ), s ∈ S(i,l, iλ );  

 for (i ∈ M, l ∈ L(i, iλ ), s ∈ S(i,l, iλ )) {//for each index combination 
 if ( IP

ilsx = 1){ // lot l is processed by machine i by route s 

 //update Li and IP
it  

 Li ← Li 	 { l};  IP
it � IP

it + chips
l ilsn r ; 

 } 
 } 
 for (l ∈ L) {//for each lot  
 if (l ∉ Li, ∀ i ∈ M) {//assign lot l to the set of unassigned lots L0 
 L0 ← L0 	 { l};  
 } 
 } 
Step 2: Sort the lots l ∈ L0 in nonincreasing order of ben(l)  
Step 3: For (l ∈ L0) {//for each unassigned lot 
 for (i ∈ M) {//for each machine 
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 if (l ∈ L(i, iλ )){//test if lot l can be assigned to machine i using setup

iλ  
 //get the route associated to the highest processing rate using 

tooling setup iλ  

 s � argmax{r ils, s ∈ S(i,l, iλ )};  
 //test if there is enough time to assign lot l to machine i 
 if ( IP

it + chips
l ilsn r � Hi){ 

 //assign lot l to machine i, update Li, L0 and IP
it  

 Li ← Li 	 { l}; IP
it � IP

it + chips
l ilsn r ; L0 ← L0 \ { l}; *

ilsx = 1; 
 //update output and shortage given new Li and L0  
 out(dl) = out(dl) + chips

ln ; sh(dl) = n(dl) – th(dl); 

 //update the lot benefit measure ben(l), l ∈ L0 
 for (l ′ ∈ L0 and dl′ = dl) { 

 ben(l) = wl +( )
ldw C ∙ { }chipsmin , ( )l ln sh d

 
 ∙ { }( ) 0lsh dI > ∙ { }{ }ld K P

I
∈ ∪

; 

 } 
 Re-sort the lots in L0 given updated ben(l), l ∈ L0; 
 } 
 } 
 } 
 } 

Figure A.73 Pseudocode for N1(x
IP) local search 

 

Procedure: N2(x
IP, iλ , x*) 

Input: Feasible IP solution xIP, current machine setupiλ , ∀ i ∈ M 
Output: Local optimum x* in neighborhood N2(x

IP) 
Step 1: //Initialize L0, Li , IP

it and x* according to xIP 

 L0 ← �; Li ← �; IP
it = 0, ∀ i ∈ M;  

 * IP
ils ilsx x= , ∀ i ∈ M, l ∈ L(i, iλ ), s ∈ S(i,l, iλ );  

 for (i ∈ M, l ∈ L(i, iλ ), s ∈ S(i,l, iλ )) {//for each index combination 
 if ( IP

ilsx = 1){ // lot l is processed by machine i by route s 

 //update Li and IP
it  

 Li ← Li 	 { l};  IP
it � IP

it + chips
l ilsn r ; 

 } 
 } 
 for (l ∈ L) {//for each lot  
 if (l ∉ Li, ∀ i ∈ M) {//assign lot l to the set of unassigned lots L0 
 L0 ← L0 	 { l};  
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 } 
 } 
Step 2: Sort the lots l ∈ L0 in nonincreasing order of ben(l) 
Step 3: for (l ∈ L0) {//for each unassigned lot 
 for (i ∈ M) {//for each machine 

 if (l ∈ L(i, iλ )){ //test if lot l can be assigned to machine i using setup

iλ  
 for (l ′ ∈ Li){//for each lot assigned to machine i 
 //get the route associated to the highest processing rate 

using tooling setupiλ  

 s � argmax{r ils, s ∈ S(i,l, iλ )}; 

 s′ = argmax{r il ′s, s ∈ S(i,l′, iλ )}; 
 //test if there is enough time to process l if the swap is 

made 
 if ( IP

it + chips
l ilsn r − chips

l il sn r′ ′ � Hi and ben(l) > ben(l ′)){ 

 //swap lots l and l′, update sets L0, Li ∀ i ∈ M, IP
it

and x* 
 Li ← Li \ { l′}; Li ← Li 	 { l}; 
 L0 ← L0 \ { l}; L0 ← L0 	 { l ′}; 
 IP

it � IP
it + chips

l ilsn r − chips
l il sn r′ ′ ; 

 *
ilsx = 1; *

il sx ′ = 0; 
 //update output and shortage given updated Li and 

L0  
 out(dl) = out(dl) + chips

ln ; sh(dl) = n(dl) – th(dl);  

 //update the lot benefits ben(l), l ∈ L0 
 for (l ∈ L) { 

 ben(l) = wl +( )
ldw C ∙ { }chipsmin , ( )l ln sh d

 
 ∙ { }( ) 0lsh dI > ∙ { }{ }ld K P

I
∈ ∪

; 

 } 
 Re-sort the lots in L given new ben(l), l ∈ L; 
 } 
 } 
 } 
 } 
 } 

Figure A.74 Pseudocode for N2(x
IP) local search 

 
Procedure: KP_heur(j, λ, L0, ben, L*) 
Input: SIM j, tooling setup λ, set of unassigned lots L0 
Output:  Benefit ben from setting up the machines in SIM j with tooling λ; set of lots L* 

assigned to (j, λ) combination  
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Step 1: Sort the lots in L0 according to ( )chips( ) l ilsben l n r in nonincreasing order; 

Step 2: Pick one machine i ∈ SIM j; 
 t = 0; ben = 0;  
 for (l ∈ L0) { 
 s = argmax{r ils : s ∈ S(i, l, λ)}; //choose the route with the highest processing 

rate 
 if (t + chips

l ilsn r ≤ Hi) {//test if there is enough time to process lot l 

 put t ← t + chips
l ilsn r ;  ben ← ben + ben(l);  L* ← L* 	 { l}; 

 } 
 } 
Figure A.75 Pseudocode to compute the benefit associated with machine-tooling 
combination (j, λ) 

 
Procedure: LPLB( x , y , K, x*, y*) 
Input: Current IP solution (x , y ), neighborhood radius K 
Output: Improved solution (y*, x*) 
Step 1: Construct the local branch cut ( )

( , )
1 ii Y

yλλ ∈
−∑ � K; 

 Include the cut into model (1) and solve as LP and obtain solution yLP; 
Step 2: for (iter = 1, 2,…,nLPLB) { 
 Simulate machine setups from yLP and denote as ys; 
 Solve LLP to get LLP_heur(ys) and xs; 
 if (sim_obj(xs, ys) > sim_obj( x , y )) { 
 x* = xs; y* = ys; 
 } 
 } 

Figure A.76 Pseudocode of LPLB 

 
Procedure: Phase_I(L, M, T, Λ, SPhaseI) 
Input:  Set of lots L, set of machine M, set of tooling families T, and set of tooling setups 

Λ 
Output: Set of initial solutions SPhaseI 
Step 1: //initialization 
 Construct SIM from M; 
 Initialize SL; 
 SPhaseI ← �; 
Step 2: for (k = 1, 2,…, nPhaseI) { 
  Put L0 ← L; Li ← �, ∀ i ∈ M; 
 Compute ben(l), ∀ l ∈ L; 
 Sort the lots in L0 according to ben(l) in nonincreasing order; 
 while (some machine i ∈ M is idle and sufficient tooling t ∈ T is 

available){ 
 //construct CL 
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 for (all feasible (j, λ) combinations) { 
 KP_heur(j, λ, L0, b, L*); 
 Append the triplet (j, λ, b) to CL 
 } 
 Sort CL according to benefit b; 
 Construct RCL; 
 Assign probability to the elements in RCL according to Siλ in SL; 
 Select one RCL element randomly: (j*, λ*, b*); 
 //perform the machine tooling setup 
 Find an available machine i ∈ SIMj*  
 Set *i

y
λ

= 1; yiλ = 0, ∀ λ ∈ Λ(i) \ {λ*}; 

 KP_heur(j*, λ*, L0, b, L*); 
 Put Li ← L*; L0 ← L0 \ L

*; 
 Update SL; 
 Update ben(l), l ∈ L0; 
 Update machine and tooling usage; 
 } 
 //given the machine setups y*,  
 Solve LLP to get LLP_heur(y*) and x*; 
 Put SPhaseI ← SPhaseI 	 {(  x*, y*)}; 
 } 

Figure A.77 Pseudocode of GRASP phase I 

 
Procedure: GRASP(L, M, T, Λ, x*, y*) 
Input: Set of lots L, set of machines M, set of tooling families T, and set of tooling 

setups Λ 
Output:  Best solution found to model (1), (x*, y*) 
Step 1: Phase_I(L, M, T, Λ, SPhaseI); 
 Select a subset of top elements in SPhaseI; denote as Ssub; 
Step 2: Denote the jth element of Ssub as (xj, yj); 
 //initialize (x*, y*) 
 x* = x1; y* = y1; 
 for (j = 1, 2,…,|Ssub|) { 
 LPLB(xj, yj, K, xj*, yj*); 
 if (sim_obj(xj*, yj*) > sim_obj(x*, y*)) { 
 x* = xj*; y* = yj*; 
 } 
 } 

Figure A.78 Pseudocode of GRASP 

 
Procedure: Random_Case_Generator() 
Step 1: (Parameters) Let Ltest = set of lots, Mtest = set of machines, mg = number of 

machine groups, ttest = number of tooling pieces, Ttest = set of tooling families, nD 
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= number of devices, nK = number of key devices, nP = number of package 

devices, ntemp = number of operating temperatures, Stest = set of routes, and Λtest = 

set of tooling setups. 

Step 2: (Lot generation) Generate the lot sizes uniformly in the range [n1, n2], where n1 is 

the minimum lot size and n2 is the maximum lot size according to the original 

dataset. Generate the lot weights uniformly in the range [wmin, wmax].  For each lot 

l ∈ Ltest, randomly select one of the nD devices to be the device contained in the lot. 

Step 3: (Machine generation) For each machine i ∈ Mtest, randomly select one of the mg 

machine groups, select one or more operating temperatures from the ntemp 

operating temperatures.   

Step 4: (Tooling generation) For each tooling piece t ∈ {1, 2,…, ttest}, randomly select 

one of the |Ttest| tooling families, select one or more operating temperatures from 

the ntemp operating temperatures.   

Step 5: (Route generation) Let Stest ← �.  For a device d, randomly select one or more 

machine groups.  For each device-machine group combination, a new route s is 

generated and Stest ← Stest 	 {s}.  The corresponding processing rates are 

uniformly generated from [15000, 150000] in the units of parts per hour (PPH). 

Go to the next device. 

Step 6: (Tooling setup generation) Let η = |Stest|/|Λtest| which is approximately 0.5 in the 

original dataset.  Set |Λtest| = η∙|Stest|.  For each setup λ ∈ {1, 2,…,|Λtest|}, randomly 

select one of the ntemp temperatures and one or more tooling families, each with 

probability (1/|Ttest|). Then draw at random the number of tooling pieces from {1, 

2, 3, 4} for each family realized. 

Step 7: (Link Stest to Λtest) For each route s ∈ Stest, pick one of the |Λtest| setups at random. 

Step 8: (Device generation) Randomly select nK devices to be key devices and another nP 

devices to be package devices.  For each key or package device, the minimum 

output is randomly chosen from [nmin, nmax] ,where nmin is the minimum target 

output and nmax is the maximum target output in the original dataset. 

Figure A.79 Pseudocode of random cases generator 
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