

Copyright

by

Yumin Deng

2009

The Dissertation Committee for Yumin Deng Certifies that this is the approved

version of the following dissertation:

Combining Mathematical Programming and Enhanced GRASP Metaheuristics: An

Application to Semiconductor Manufacturing

Committee:

Jonathan F. Bard, Supervisor

J. Wesley Barnes

Leon Lasdon

David P. Morton

Erhan Kutanoglu

Combining Mathematical Programming and Enhanced GRASP Metaheuristics: An

Application to Semiconductor Manufacturing

by

Yumin Deng, B. Eng; M. S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

THE UNIVERSITY OF TEXAS AT AUSTIN

December, 2009

This dissertation is dedicated to my family.

v

Acknowledgement

 There are many people who have been invaluable to me throughout my life and

especially during the years of my PhD. I wish they all could be here to share this great

moment. First, I would like to send my warmest appreciation to my grandmother for

everything she has done for me. She raised me and taught me many things to make me

become a responsible person. She is the kindest and most caring person that I have ever

met, and has suffered much criticism for defending me in difficult times. I really wish she

could be here to attend my graduation celebration. I would also like to thank my parents,

uncles and aunts for their support of my college studies. I love my little sisters, Yulin,

Yunan, Yuling, Jingfang, Chuyi, Xiaoyi and Ruobing (Xiao Bao) as well as my little

brothers Jingwen, Jingbo and Jie. Especially for Yulin, I know she has contributed a lot

to the family while I have been living in the United States attending graduate school. I

really appreciate what she has done and I wish her and my other family members long

and happy lives.

 I would like to thank my honorable advisor Dr. Jonathan F. Bard for his solid

support of my PhD research. He is a successful professor with great achievements and

has been an excellent role model for me. He has shared his extensive knowledge with me,

inspiring my research ideas and guiding me through my work over the last four years. My

experience under his supervision has transformed me from an eager student to a full-

fledged researcher. I also want to say thanks to many of my others the professors at UT:

Dr. Wesley Barnes, Dr. Leon Lasdon, Dr. David Morton, Dr. John Hasenbein, Dr. Elmira

Popova and Dr. Erhan Kutanoglu. They are excellent professors and researchers and

have always been helpful and patient with me and my fellow students.

 I would also like to take this moment to express my gratitude to Texas

Instruments for supporting me while I was doing my dissertation. Dr. Rodolfo Chacon

and Dr. John Stuber at TI were invaluable in helping to define my research, providing

data, giving me feedback on my reports, and improving my results. I would not be here

today without their extensive involvement.

 Last but not least, I am heartily grateful to my friends for their understanding and

support. We have shared great moments over the last few years and I will always be

vi

there to return their favors. I would like to send my best wishes to them and hope that

each will have a prosperous live while fulfilling all their dreams.

vii

Combining Mathematical Programming and Enhanced GRASP Metaheuristics: An

Application to Semiconductor Manufacturing

Abstract

Yumin Deng, PhD

The University of Texas at Austin, 2009

Supervisor: Jonathan F. Bard

 Planning and scheduling in semiconductor manufacturing is a difficult problem

due to long cycle times, a large number of operational steps, diversified product types,

and low-volume high-mix customer demand. This research addresses several problems

that arise in the semiconductor industry related to front-end wafer fabrication operations

and back-end assembly and test operations. The mathematical models built for these

problems turn out to be large-scale mixed integer programs and hard to solve with exact

methods. The major contribution of this research is to combine mathematical

programming with metaheuristics to find high quality solutions within the time limits

imposed by the industrial engineers who oversee the fabrication and test facilities.

 In order to reduce the size of problems that arise in practice, it is common to

cluster similar product types into groups that reflect their underlying technology. The

first part of the research is aimed at developing a greedy randomized adaptive search

procedure (GRASP) coupled with path relinking (PR) to solve the capacitated clustering

problem. The model is generic and can be applied in many different situations. The

objective is to maximize a similarity measure within each cluster such that the sum of the

weights associated with the product types does not exceed the cluster capacity in each

case. In phase I, both a heaviest weight edge (HWE) algorithm and a constrained

minimum cut (CMC) algorithm are used to select seeds for initializing the clusters.

Feasible solutions are obtained with the help of a self-adjusting restricted candidate list.

In phase II, three neighborhoods are defined and explored using the following strategies:

viii

cyclic neighborhood search, variable neighborhood descent, and randomized variable

neighborhood descent (RVND). The best solutions found are stored in an elite pool. In a

post-processing step, PR coupled with local search is applied to the pool members to

cyclically generate paths between each pair. The elite pool is updated after each iteration

and the procedure ends when no further improvement is possible.

 After grouping the product types into technologies, a new model is presented for

production planning in a high volume fab that uses quarterly commitments to define daily

target outputs. Rather than relying on due dates and priority rules to schedule lot starts

and move work in process through the shop, the objective is to minimize the sum of the

deviations between the target outputs and finished goods inventory. The model takes the

form of a large-scale linear program that is intractable for planning horizons beyond a

few days. Both Lagrangian relaxation and Benders decomposition were investigated but

each proved ineffective. As a consequence, a methodology was developed which was

more tailored to the problem’s structure. This involved creating weekly subproblems that

were myopic but could be solved to optimality within a few minutes, and then post-

processing the results with a decomposition algorithm to fully utilize the excessive

machine time. The heart of the post-processor consists of a rescheduling algorithm and a

dispatching heuristic.

 The third part of the research focuses on the combinatorial problem of machine-

tooling setup and lot assignments for performing back-end operations. A new model and

solution methodology are presented aimed at maximizing the weighted throughput of lots

undergoing assembly and test, while ensuring that critical lots are given priority. The

problem is formulated as a mixed-integer program and solved again with a GRASP that

makes use of linear programming. In phase I of the GRASP, machine-tooling

combinations are tentatively fixed and lot assignments are made iteratively to arrive at a

feasible solution. This process is repeated many times. In phase II, a novel neighborhood

search is performed on a subset of good solutions found in phase I. Using a linear

programming-Monte Carlo simulation-based algorithm, new machine-tooling

combinations are identified within the neighborhood of the solutions carried over, and

improvements are sought by optimizing the corresponding lot assignments.

ix

Table of Contents

Acknowledgement .. v

Abstract .. vii

List of Tables ... xii

List of Figures ... xv

Chapter 1. Introduction .. 1

Chapter 2. Outline of Semiconductor Manufacturing Operations 11

2.1 Wafer Fabrication (Front-end Operations) .. 11

2.2 Product Assembly and Testing (Back-end Operations) 12

Chapter 3. Capacitated Clustering ... 16

3.1 Mathematical Formulation .. 21

3.2 Solution Methodology ... 24

3.2.1 GRASP phase I .. 24

3.2.2 GRASP phase II ... 33

3.2.3 Basic GRASP... 36

3.2.4 Variable neighborhood descent ... 37

3.2.5 Randomized VND ... 37

3.2.6 Path relinking ... 38

3.3 Computational Results .. 43

3.3.1 USPS application related to clustering control points 44

3.3.2 Random test instances.. 45

3.3.3 Comparison of GRASP and PR with CPLEX ... 46

3.3.4 Application of GRASP and PR to the complete USPS dataset 52

3.3.5 GRASP performance on the benchmark problems 54

3.4 Further Discussion ... 60

Chapter 4. Midterm Planning to Minimize Deviations from Daily Target Outputs in

Semiconductor Manufacturing ... 61

4.1 Mathematical Model.. 64

4.2 Data Processing ... 67

4.3 Initial Computational Experience with Basic Decomposition 71

x

4.4 Modified Models ... 75

4.4.1 Pushing the WIP forward ... 76

4.4.2 Lagrangian relaxation .. 78

4.4.3 Benders decomposition .. 79

4.5 Decomposition Algorithm ... 83

4.5.1 Rescheduling each time period .. 84

4.5.2 Dispatching heuristic ... 88

4.5.3 Integration of algorithmic components .. 93

4.5.4 Bottleneck machines .. 94

4.6 Computational Results .. 94

4.6.1 Problem with 4-week planning horizon ... 95

4.6.2 Problem with 13-week planning horizon ... 98

4.6.3 Rolling horizon for subproblems ... 103

4.7 Further Discussion ... 104

Chapter 5. Scheduling Back-End Operations in Semiconductor Manufacturing ... 106

5.1 Mathematical Formulation .. 108

5.2 Solution Methodology ... 111

5.2.1 Lower level problem .. 112

5.2.2 Upper level problem .. 115

5.2.3 Summary of GRASP.. 120

5.3 Computational Results .. 120

5.3.1 Random test instances.. 121

5.3.2 Comparison of GRASP with CPLEX .. 121

5.4 Summary ... 123

Chapter 6. Assessment of Research .. 130

6.1 Capacitated Clustering .. 130

6.2 Midterm Planning in Semiconductor Manufacturing .. 131

6.3 Back-End Operations in Semiconductor Manufacturing 133

Appendix 1: Input Files, Data Structure and Output Files for the DMOS6 Tool ... 136

Appendix 2: Field Definitions for Input Files ... 148

Appendix 3: Data Structure .. 154

xi

Appendix 4: Solution to the 4-week Problem with Basic Decomposition Scheme ... 158

Appendix 5: Solution to the 4-week Problem with Decomposition Scheme 163

Appendix 6: Daily Input for the 13-week Problem ... 168

Appendix 7: Solution to the 13-week Problem with Decomposition Scheme 169

Appendix 8: Benders Decomposition ... 185

Appendix 9: Pseudocodes for Neighborhood Search in Capacitated Clustering 187

Appendix 10: Pseudocodes for Back-end Operations... 191

Bibliography ... 198

VITA.. 204

xii

List of Tables

Table 3.1 Example of CL .. 31

Table 3.2 Example of RCL when lRCL = 5 .. 33

Table 3.3 N1 neighborhood generated by shifting node 8 ... 34

Table 3.4 Computational results from GRASP and CPLEX for ntest = 30, p = 5, Cmin = 5

and Cmax = 8 .. 49

Table 3.5 Average performance for different phase I and phase II combinations with ntest

= 30, p = 5, Cmin = 5 and Cmax = 8 ... 50

Table 3.6 Computational results from GRASP and CPLEX for ntest = 40, p = 5, Cmin = 5

and Cmax = 9 .. 51

Table 3.7 Average performance for different phase I and phase II combinations with ntest

= 40, p = 5, Cmin = 5 and Cmax = 9 ... 52

Table 3.8 Computational results from GRASP and CPLEX for ntest = 50, p = 5, Cmin = 5

and Cmax = 12 .. 53

Table 3.9 Average performance for different phase I and phase II combinations with ntest

= 50, p = 5, Cmin = 5 and Cmax = 12 ... 54

Table 3.10 Computational results from GRASP and CPLEX for ntest = 30, Cmin = 2 and

Cmax = 15 ... 56

Table 3.11 Computational results from GRASP and CPLEX for ntest = 30, p = 5 57

Table 3.12 Computational results from GRASP and PR with PLS for complete USPS

dataset with ntest = 82, Cmin = 10 and Cmax = 20 .. 58

Table 3.13 GRASP performance on benchmark problem ... 59

Table 4.1 Problem size and memory usage for different planning horizon 72

Table 4.2 Daily input for the 4-week problem .. 73

Table 4.3 Average usage of the AP machines .. 76

Table 4.4 Example of applying the scoring scheme to machine m at time period t 90

Table 4.5 Output statistics for the 4-week problem .. 96

Table 4.6 Output statistics for the 13-week problem .. 99

Table 4.7 Bottleneck information for the 13-week problem ... 102

Table 4.8 Average usage of bottleneck machines over 91 days 103

xiii

Table 5.1 An example of CL... 116

Table 5.2 Comparison of numerical results from CPLEX and GRASP with |Ltest| = 1000

and ttest = 100 ... 124

Table 5.3 Performance of CPLEX and GRASP for |Ltest| = 1000 and ttest = 100 124

Table 5.4 Comparison of numerical results from CPLEX and GRASP with |Ltest| = 1000

and ttest = 300 ... 125

Table 5.5 Performance of CPLEX and GRASP for |Ltest| = 1000 and ttest = 300 125

Table 5.6 Comparison of numerical results from CPLEX and GRASP with |Ltest| = 1000

and ttest = 500 ... 126

Table 5.7 Performance of CPLEX and GRASP for |Ltest| = 1000 and ttest = 500 126

Table 5.8 Comparison of numerical results from CPLEX and GRASP with |Ltest| = 2000

and ttest = 100 ... 127

Table 5.9 Performance of CPLEX and GRASP for |Ltest| = 2000 and ttest = 100 127

Table 5.10 Comparison of numerical results from CPLEX and GRASP with |Ltest| = 2000

and ttest = 300 ... 128

Table 5.11 Performance of CPLEX and GRASP for |Ltest| = 2000 and ttest = 300 128

Table 5.12 Comparison of numerical results from CPLEX and GRASP with |Ltest| = 2000

and ttest = 500 ... 129

Table 5.13 Performance of CPLEX and GRASP for |Ltest| = 2000 and ttest = 500 129

Table A.1 Example of Family.csv .. 137

Table A.2 Example of Lotstarts3month.csv ... 139

Table A.3 Example of Summary.csv .. 142

Table A.4 Example of Shop_production.csv .. 142

Table A.5 Example of Machine_utilization.csv ... 143

Table A.6 Example of WIP_history(original steps).csv ... 144

Table A.7 Example of WIP_history_LogPoint.csv .. 145

Table A.8 Example of FinalWIP(reduced).csv ... 146

Table A.9 Example of Process_rate.csv ... 146

Table A.10 Summary of solution to the 4-week problem by basic decomposition 158

Table A.11 Summary of solution to the 4-week problem with rescheduling and heuristic

scheme... 163

xiv

Table A.12 Summary of the solution to the 13-week problem with rescheduling and

dispatching heuristic ... 169

xv

List of Figures

Figure 2.1 Example of a reentrant production line .. 12

Figure 2.2 High-level back-end process flow .. 14

Figure 3.1 Pseudocode for seed selection with HWE algorithm in phase I of GRASP ... 26

Figure 3.2 Example for identifying seeds with HWE ... 27

Figure 3.3 Pseudocode for seed selection with CMC algorithm in phase I of GRASP 28

Figure 3.4 Pseudocode of CMC scheme ... 30

Figure 3.5 Example used to illustrate CMC scheme... 30

Figure 3.6 Pseudocode for phase II of GRASP .. 36

Figure 3.7 Pseudocode for basic reactive GRASP.. 37

Figure 3.8 An example of path generation.. 40

Figure 3.9 Pseudocode for path generation.. 43

Figure 4.1 Hierarchical planning and scheduling at Texas Instruments 62

Figure 4.2 Initial WIP of C1 ... 73

Figure 4.3 Initial WIP of C2 ... 74

Figure 4.4 Initial WIP of C3 ... 74

Figure 4.9 Pseudocode for updating WIP in the next time period 87

Figure 4.10 Pseudocode of rescheduling algorithm ... 88

Figure 4.11 Pseudocode for score assignment procedure .. 89

Figure 4.12 Pseudocode of dispatching heuristic .. 92

Figure 4.13 Pseudocode for updating machine time assignment and current WIP 93

Figure 4.14 Pseudocode of the decomposition algorithm .. 94

Figure 4.15 WIP profile of C1 at the end of the 1st week .. 97

Figure 4.16 WIP profile of C1 at the end of the 2nd week... 97

Figure 4.17 WIP profile of C1 at the end of the 3rd week ... 97

Figure 4.18 WIP profile of C1 at the end of the 4th week ... 98

Figure 4.19 Daily shortage of C1 ... 99

Figure 4.20 Daily shortage of C2 ... 100

Figure 4.21 Daily shortage of C3 ... 100

Figure 4.22 WIP profile of C1 at the end of the 13th week ... 101

xvi

Figure 4.23 WIP profile of C2 at the end of the 13th week ... 102

Figure 4.24 WIP profile of C3 at the end of the 13th week ... 102

Figure 4.25 Rolling horizon for the subproblems .. 104

Figure A.1 Data structure of <Production> object .. 154

Figure A.2 Data structure of <Step> object ... 155

Figure A.3 Data structure of <Route> object .. 155

Figure A.4 Data structure of <Machine_Set> object ... 156

Figure A.5 Data structure of <Family> object ... 157

Figure A.6 WIP profile of C1 at the end of the 1st week ... 159

Figure A.7 WIP profile of C1 at the end of the 2nd week .. 159

Figure A 8 WIP profile of C1 at the end of the 3rd week .. 159

Figure A.9 WIP profile of C1 at the end of the 4th week ... 160

Figure A.10 WIP profile of C2 at the end of the 1st week ... 160

Figure A.11 WIP profile of C2 at the end of the 2nd week .. 160

Figure A.12 WIP profile of C2 at the end of the 3rd week .. 161

Figure A.13 WIP profile of C2 at the end of the 4th week ... 161

Figure A.14 WIP profile of C3 at the end of the 1st week ... 161

Figure A.15 WIP profile of C3 at the end of the 2nd week .. 162

Figure A.16 WIP profile of C3 at the end of the 3rd week .. 162

Figure A.17 WIP profile of C3 at the end of the 4th week ... 162

Figure A.18 WIP profile of C1 at the end of the 1st week ... 164

Figure A.19 WIP profile of C1 at the end of the 2nd week .. 164

Figure A.20 WIP profile of C1 at the end of the 3rd week .. 164

Figure A.21 WIP profile of C1 at the end of the 4th week ... 165

Figure A.22 WIP profile of C2 at the end of the 1st week ... 165

Figure A.23 WIP profile of C2 at the end of the 2nd week .. 165

Figure A.24 WIP profile of C2 at the end of the 3rd week .. 166

Figure A.25 WIP profile of C2 at the end of the 4th week ... 166

Figure A.26 WIP profile of C3 at the end of the 1st week ... 166

Figure A.27 WIP profile of C3 at the end of the 2nd week .. 167

Figure A.28 WIP profile of C3 at the end of the 3rd week .. 167

xvii

Figure A.29 WIP profile of C3 at the end of the 4th week ... 167

Figure A.30 WIP profile of C1 at the end of the 1st week ... 171

Figure A.31 WIP profile of C1 at the end of the 2nd week .. 171

Figure A.32 WIP profile of C1 at the end of the 3rd week .. 172

Figure A.33 WIP profile of C1 at the end of the 4th week ... 172

Figure A.34 WIP profile of C1 at the end of the 5th week ... 172

Figure A.35 WIP profile of C1 at the end of the 6th week ... 173

Figure A. 36 WIP profile of C1 at the end of the 7th week .. 173

Figure A. 37 WIP profile of C1 at the end of the 8th week .. 173

Figure A.38 WIP profile of C1 at the end of the 9th week ... 174

Figure A.39 WIP profile of C1 at the end of the 10th week... 174

Figure A.40 WIP profile of C1 at the end of the 11th week... 174

Figure A.41 WIP profile of C1 at the end of the 12th week... 175

Figure A.42 WIP profile of C1 at the end of the 13th week... 175

Figure A.43 WIP profile of C2 at the end of the 1st week ... 175

Figure A.44 WIP profile of C2 at the end of the 2nd week .. 176

Figure A.45 WIP profile of C2 at the end of the 3rd week .. 176

Figure A.46 WIP profile of C2 at the end of the 4th week ... 176

Figure A.47 WIP profile of C2 at the end of the 5th week ... 177

Figure A.48 WIP profile of C2 at the end of the 6th week ... 177

Figure A.49 WIP profile of C2 at the end of the 7th week ... 177

Figure A.50 WIP profile of C2 at the end of the 8th week ... 178

Figure A.51 WIP profile of C2 at the end of the 9th week ... 178

Figure A.52 WIP profile of C2 at the end of the 10th week... 178

Figure A.53 WIP profile of C2 at the end of the 11th week... 179

Figure A.54 WIP profile of C2 at the end of the 12th week... 179

Figure A.55 WIP profile of C2 at the end of the 13th week .. 179

Figure A.56 WIP profile of C3 at the end of the 1st week ... 180

Figure A.57 WIP profile of C3 at the end of the 2nd week .. 180

Figure A.58 WIP profile of C3 at the end of the 3rd week .. 180

Figure A.59 WIP profile of C3 at the end of the 4th week ... 181

xviii

Figure A.60 WIP profile of C3 at the end of the 5th week ... 181

Figure A.61 WIP profile of C3 at the end of the 6th week ... 181

Figure A.62 WIP profile of C3 at the end of the 7th week ... 182

Figure A.63 WIP profile of C3 at the end of the 8th week ... 182

Figure A.64 WIP profile of C3 at the end of the 9th week ... 182

Figure A.65 WIP profile of C3 at the end of the 10th week... 183

Figure A.66 WIP profile of C3 at the end of the 11th week... 183

Figure A.67 WIP profile of C3 at the end of the 12th week... 183

Figure A.68 WIP profile of C3 at the end of the 13th week... 184

Figure A.69 Pseudocode for local search in neighborhood N1 .. 188

Figure A.70 Pseudocode for local search in neighborhood N2 .. 190

Figure A.71 Pseudocode for local search in neighborhood N3 .. 191

Figure A.72 Notation for setup and assignment model ... 192

Figure A.73 Pseudocode for N1(x
IP) local search ... 193

Figure A.74 Pseudocode for N2(x
IP) local search ... 194

Figure A.75 Pseudocode to compute the benefit associated with machine-tooling

combination (j, λ) ... 195

Figure A.76 Pseudocode of LPLB ... 195

Figure A.77 Pseudocode of GRASP phase I ... 196

Figure A.78 Pseudocode of GRASP .. 196

Figure A.79 Pseudocode of random cases generator ... 197

1

Chapter 1

Chapter 1. Introduction

Introduction

 The process of manufacturing integrated circuits consists of four basic stages:

wafer fabrication, wafer probe, assembly or packaging, and final testing. Wafer

fabrication is the most technologically complex and capital intensive, involving a precise

sequence of processing steps that must be performed in a clean-room environment to

reduce the threat of particle contamination (Leachman 2002, Uzoy et al. 1992). Upon

completion, functionality tests are performed on the wafers using electrical probes before

packaging and final testing (Chiang et al. 2008a). The vast majority of the planning and

scheduling research in the industry has focused on wafer fabrication, generally referred to

as the front-end operation. The remaining three stages comprise the back-end operations.

 Due to increasing customer requirements and breakthrough advances in

technology, the complement of devices produced by a semiconductor manufacturer has

increased exponentially over the last decade and often includes hundreds of product types

at a single fabrication facility (fab). Developing midterm plans, collecting data and

controlling processes for each individual device requires a large amount of resources.

Fortunately, similar production routes allow us to categorize many devices by product

type and plan for an entire family at a time rather than for its individual members.

Nevertheless, during fabrication a device may visit a process many times and must be

treated differently each time since processing requirements are a function of the

operational step. In addition, the status of a device may change considerably if it fails to

pass an inspection step and is sent back to a previous step for rework. After completion,

the reworked device is newly categorized to distinguish it from identical devices that

were deemed to be defect-free. Similar situation arises when sampling for inspection and

test. The sampled devices are considered to be different from the un-sampled devices.

Also, there are several situations in which the same devices go through slightly different

processing steps.

 For management purpose, it is beneficial to group the similar devices into so-

called technologies to reduce the size of the planning problem. A technology

2

corresponds to a set of similar devices which have slightly different characteristics. To

perform the analysis, a measure is needed to describe the degree to which two devices are

similar. It is desired to cluster the devices in a way such that the total similarity within

groups (technologies) is maximized. This defines a clustering problem that we model as a

mixed integer program. One of the primary purposes of this dissertation is to develop a

heuristic for obtaining high quality solutions in reasonable time to the technology

clustering problem. Once the devices are grouped into technologies or families, the

inputs, demands as well as the routes of the devices are aggregated by family.

 Wafer fabrication is vastly complicated by the reentrant nature of its process flow.

Accompanying systems have long and unstable cycle times that make production

planning and controlling much more difficult than in discrete parts manufacturing

(Glassey and Resende 1988, Van Zant 2000). Factors that contribute to unpredictable

cycle times include unreliable equipment, long net processing times, and delays due to

batch processing and machine setups. In fabs, the total processing time for each wafer

may extend up to three months and include over 1000 operations or steps at hundreds of

workstations. When machine tools fail to perform within specifications, production flow

may be severely disrupted causing cycle times to increase or fluctuate. Similarly, when

wafers fail inspection at different points in their routes they may be scrapped or sent back

to an earlier operation for rework with a consequent increase in cycle time.

Because fabs use different fixtures and different material-handling systems for

different processes, batch sizes vary by wafer type and process. Therefore, it is not

uncommon for one batch of wafers to wait for a second batch of the right size to form at

the next operation (Lee and Kim 2002).

Since the early-1990s, there has been a growing effort to model the reentrant

nature of semiconductor manufacturing using queueing networks. Dai (1995) and Rybko

and Stolyar (1992) established that the stability of a multiclass queueing network is

implied by its deterministic fluid counterpart. Motivated by this result, researchers began

to focus on finding near-optimal scheduling polices using fluid network analysis. Weiss

(1995), for example, developed optimal draining policies for a single job class for

different objective functions.

More recently, fluid models have been used to represent relaxations of discrete

3

scheduling networks. The general approach to the scheduling problem has been to

construct a fluid model, find a solution, and then heuristically translate the solution into a

discrete scheduling policy. Dai and Weiss (2002) developed a fluid heuristic to minimize

the makespan in a job shop while deriving a probabilistic bound for the fluid translation

error. Their algorithm fully utilizes the bottleneck machines and paces the remaining

machines accordingly. Bertsimas and Sethuraman (2002) solved the same job shop

problem using the aforementioned approach. In addition, they applied a fluid

synchronization algorithm to translate the optimal solution from the fluid relaxation to a

discrete schedule and achieved asymptotically optimal solutions as the number of jobs

increased. In related work, Bertsimas et al. (2003) solved the job shop scheduling

problem to minimize the holding cost. They applied a revised version of the fluid

synchronization algorithm to derive discrete solutions, which were similarly proven to be

asymptotically optimal.

Although disruptions and uncertainty can play havoc with a schedule, it is still

necessary to develop long-term and midterm plans. As part of this dissertation a new

model is presented that can be used to plan daily operations in a fab for up to three

months at a time by taking into account expected demand, predefined starts, detailed

routings, and machine capacity limits. The work was undertaken in collaboration with

the Texas Instruments’ (TI) 300-mm facility in Dallas, Texas, referred to as DMOS6.

Recognizing that a variety of objectives are used in industry to guide production, such as

minimizing cycle time, minimizing late orders, or minimizing work in process (WIP), the

objective chosen for our project was the minimization of the total deviations from target

outputs. This is equivalent to minimizing the sum of the daily deviations from the

forecast demand for each product or device in the system over the planning horizon (cf.

Fordyce et al. 1992). The principal decision variables in the model are the WIP level and

machine time assignment for each device at each step in each time period.

Admittedly, our approach is somewhat at odds with standard practice. As

Leachman et al. (2002) point out, most semiconductor companies manage production

under the lot-dispatching paradigm (managing the cycle times of production lots). In that

approach, priority rules such as the critical-ratio rule or the least-slack rule are used to

schedule lots at each workstation. In their SLIM methodology, Lechman et al. rely on a

4

target fab-out schedule for each device that is continuous in time, rather than focusing on

lot due dates. For example, if the schedules are expressed in terms of output quantities

per day, then one quarter of the quantity of a particular device is due six hours into that

day. The primary scheduling objects in SLIM are device-step combinations instead of

individual lots. This is the approach that we take.

Because our interest is in midterm planning rather than in scheduling or

sequencing, we were able to significantly reduce the size of our problem without

sacrificing accuracy by aggregating devices by technology to create representative

families. For similar reasons, it was not necessary to consider the discrete nature of the

real-time decision process. Nevertheless, the resultant model was still not tractable for

planning horizons greater than a few days so several different decomposition schemes

were explored. A major contribution of this research centers on the use of linear

programming to obtain initial solutions and the application of a decomposition algorithm

to arrive at the final production plans. For a comprehensive review of production

planning models for wafer fabrication, see Asmundsson et al. (2006), Leachman (2002)

and Lin (1999).

 Most of the back-end operations are scheduled manually with database support to

keep track of lot status. However, the importance of these operations in meeting customer

due dates has sparked an interest in applying more sophisticated analytic techniques at

the shop floor level. Part of our work is aimed at improving the efficiency of machine

setup and lot processing during assembly and test (AT). The third major contribution of

this dissertation is the presentation of a new model and solution methodology developed

in conjunction with Texas Instruments in support of their AT facilities.

 In the most general sense, the problem in such facilities has the basic

characteristics of a job shop with multiple complexities including dynamic job arrivals,

machine unavailability, sequence-dependent setup times, alternative machine assignment

options, and batch-type processing. Since the classic job-shop problem is already NP

hard (Pinedo 2008), operating AT facilities presents an unusually difficult challenge to

line supervisors, especially when 1000s of lots have to be scheduled each day on 100s of

machines with many different tooling and temperature requirements. In the past,

management has primarily concentrated on cycle time-based objectives since production

5

lots were not typically related to a particular order in the prevailing make-to-stock

environment. However, with Application Specific Integrated Circuit (ASIC) and other

specialty processors now a major portion of the market and hence production volume, the

ability to meet due dates has become critical for profitability (Chiang et al. 2008b).

Because AT operations are closer to the customer, due date-based performance measures

are more appropriate than cycle time and WIP level objectives. In addition, design

creativity and an explosion of products now means that a given die can be packaged in

many different ways and can have different test specifications associated with it, making

the problem that much more difficult.

High investment at the back-end, pressure to provide good customer service, and

tight coupling of AT operations with the front-end manufacturing is driving the need for

more effective planning tools. In support of this need, we have developed a mathematical

model with the joint objective of maximizing the weighted sum of lots processed and

minimizing the weighted shortages of critical devices over the planning horizon. Tooling

considerations and capacity constraints are the predominant factors that limit output. For

a given set of lots, the available machines have to be set up with the proper tooling to

operate at the appropriate temperature. The model takes the form of a large-scale mixed-

integer program, which is solvable with any of the leading commercial codes when the

number of lots and tooling-temperature combinations is relatively small. For more

realistic instances, we devised a solution methodology based on two-level decomposition

that first sets up the machines and then assigns the lots. Using a GRASP (Feo and

Resende 1995), a set of high quality feasible solutions is obtained in phase I by

repeatedly applying the decomposition strategy to randomly selected machine-tooling

configurations. This is followed in phase II by a novel linear programming-Monte Carlo-

based neighborhood search scheme that makes use of local branching ideas (Fischetti and

Lodi 2003) to improve the results. The decomposition strategy is also used in phase II.

 One of the primary interests of this dissertation is to combine both mathematical

programming the metaheuristics to solve the practical problem arising from

semiconductor industries efficiently. Thus it is helpful to investigate the advantages and

disadvantages of mathematical programming and metaheuristics. A literature review is

provided here for the emerging research area named matheuristics, which intelligently

6

combine the two to enhance the overall algorithm efficiency.

 Mathematical programming has been achieving great success in solving a wide

range of problems involving production planning and scheduling, transportation and

vehicle routing, logistics and supply chain optimization, and statistical data analysis, etc.

Generally a mathematical model is built at first to represent the problem under

investigation. In some cases the model can be further enhanced by tighten some of the

constraints with techniques like lifting. Solution methodologies are then proposed based

on the analysis of the mathematical model. If the size of the problem is small then a

basic Branch and Bound (B&B) may be capable to solve the problem to optimality. For

larger instances, it is necessary and beneficial to use intelligent techniques to solve the

problems. Such techniques in literature usually involve Branch and Cut (B&C), Branch

and Price (B&P), Benders decomposition and Lagrangian Relaxation (LR), etc. These

techniques involve a master problem (MP) and a subproblem (SP), i.e., separation

problem in B&C, pricing problem in B&P, dual problem in Benders decomposition, and

subproblems in LR when some of the constraints are relaxed. Solving the subproblems

efficiently is usually critical to the overall performance of the algorithm.

 In mathematical programming, both upper bound and lower bound are usually

provided to indicate the gap between the current solution and the optimal solution. The

algorithm can be terminated earlier for a satisfactory tolerance. The quality of the

solution obtained can be asserted. In the aforementioned techniques, usually the

subproblem can be further decomposed into even smaller size problems which can be

solved efficiently. In some cases the decomposed problems are identical (e.g. identical

vehicles in the pricing problem when B&P is applied to vehicle routing problem) thus it

is not necessary to solve the pricing problem multiple times. However, there are still

disadvantages for mathematical programming. The practical problems are usually very

complicated and large scale. It can be either very hard to build a mathematical model for

these problems, or a large amount of decision variables and constraints are necessary to

represent even a medium size problem. The situation becomes more and more difficult to

mathematical programming when the size of the problem increases. Furthermore, the

subproblem can easily become very hard to solve when the aimed problem is complicated

with additional requirements.

7

 Metaheuristics, on the other hand, have been accepting increasing attention from

1980s. Instead of building a mathematical model for the problem at hand, metaheuristics

focus on the problem itself without using decision variables and constraints. Various

heuristic procedure have been proposed in literature involving GRASP, Tabu Search (TS),

Scatter Search (SS), Simulated Annealing (SA), Genetic Algorithm (GA), etc. There are

still many other procedures which are essentially the extension and combination of the

aforementioned heuristics. The idea of metaheuristics is much diversified. For example

In GRASP, feasible solutions are usually constructed in phase I and improved in phase II

iteratively. In TS, some of the movements are considered to be tabu to overcome local

optima. A tabu list is maintained in TS which is essentially memory related. Such

heuristic idea is not rigid and can always be extended for further enhancement. For

example, GRASP can be extended to GRAMP when historical information is taken into

account to guide the construction of phase I solution. Although the metaheuristics are

diversified, they do share something in common, that is, local search. In metaheuristics,

local search is an important component which achieves local optimum within the

neighborhood specified. Usually a large amount of computational effort is devoted to

local search in most of the metaheuristics.

 Metaheuristics have many advantages compared to mathematical programming.

The procedures are usually relatively easier to implement. High quality solutions can be

obtained in reasonable time even for large scale problems that cannot be solved by pure

mathematical programming. The procedure can also be enhanced easily, e.g., by

introducing a new neighborhood search. In fact, for many practical problems those need

to be solved in a specified amount of time, metaheuristics are usually a better option for

its effectiveness. However, there are still some downsides in light of its usefulness.

Since metaheuristics are problem oriented, the neighborhood definition needs to be

changed if some additional requirements (constraints) are added to the problem. The

local search procedure needs to be updated as well since some of the previous local

movement may not be feasible any more. The solutions from metaheuristics do provide a

feasibility bound on the optimal solution but the gap is still unknown. It is usually very

hard to assert the quality of the best found solution other than numerically. Furthermore,

the efficiency of metaheuristics highly relies on the performance of local search. The

8

performance of the overall algorithm can be harmed greatly if the local search step is

difficult and time consuming.

 In light of the advantages and disadvantages of both mathematical programming

and metaheuristics, a new research area focusing on combining the two approaches is

emerging and thus gains its name as matheuristics. There are a limited number of

publications in literature since matheuristics is still in its infancy. However, if we look

into matheuristics in detail, it can be found that the idea has been adopted in many

aspects both in mathematical programming and metaheuristics. Matheuristics can be

mainly divided to two categories. The first type of matheuristics follows a general

mathematical programming framework. The metaheuristics serve as an efficient

component to solve the embedded subproblems. Conversely, the second type of

matheuristics follows the paradigm of metaheuristics, and applies mathematical

programming inside the heuristic framework as a problem solver. Both these two

approaches involve mathematical programming and metaheuristics. Some other more

intrinsic procedure may switch between the two iteratively.

 The application of metaheuristics inside a mathematical programming framework

can be found in many publications. In the B&P framework, usually initial columns are

generated by constructing a high quality solution heuristically and metaheuristics are

applied to solve the subproblems for column generation, e.g., see Bard and

Rojanasoonthon (2006), Purnomo and Bard (2007) and Bard and Purnomo (2005). In the

B&C framework, the separation problems are usually solved by metaheuristics to

generate cuts, e.g., see Bard et al. (2002) and Bard et al. (1998).

 Metaheuristics can also be applied within a LR and Benders decomposition

framework. Bard and Purnomo (2007) provided a way to combine LR and heuristic idea.

Recently, Boschetti and Maniezzo (2009) investigate such application and propose a

general procedure for implementation. In the LR framework, they suggest to apply

metaheuristics when the Lagrangian multipliers are updated. If feasible solutions are

obtained, a feasibility bound can be provided. In the Benders decomposition, the authors

suggest the application of metaheuristics in two places. Metaheuristics can be applied to

solve the master problem to provide feasibility bound. At the same time the feasible

solution obtained is delivered to the subproblem to generate additional cuts that going to

9

be appended to the master problem. If the subproblem is also a mixed integer

programming, metaheuristics can then again be applied to solve the problem with an

attempt to improve the feasibility bound. The authors have applied their methodologies

to the single source capacitated facility location problem, the membership overlay

problem and the multi-mode project scheduling problem. Their approaches are quite

promising according to the reported numerical results.

 One the other hand, some researchers focus their interests on applying

mathematical programming inside a metaheuristic paradigm. Fischetti and Luzzi (2009)

illustrated a way to embed mathematical programming into a heuristic framework to

enhance the overall algorithm performance. They presented an MIP model for the

nesting problem, which places two-dimensional polygon into a rectangular container

without overlapping. The objective is to maximize the usage of the rectangular container.

The model was further enhanced by lifting the constraints and embedding a specialized

branching strategy accommodating the problem. Since the initial numerical experiments

were not encouraging, a heuristic was then developed to place the big pieces of polygons

at first. A MIP model is built and then simplified to place the small pieces of trims into

the holes of the container, which was the so-called multiple containment problem. It

turned out that the simplified model can be easily solved as an MIP. A post-procedure is

then invoked to remove any overlapping area for a feasible solution. The solutions from

the proposed algorithm were quite promising comparing to the greedy heuristic. An

average percentage improvement around 1~2% over the greedy heuristic was achieved by

the presented method.

 Hu et al. (2008) provide another way to combine the metaheuristics and

mathematical programming for the generalized minimum spanning tree problem. They

developed a variable neighborhood search (VNS) framework which sequentially

performs local search within the neighborhoods. The first two neighborhoods are

generated through either nodes exchange or edges exchange. For the third neighborhood

the authors apply MIP to optimize local parts within candidate solution trees. The

proposed approach has been tested for random instances with up to 1280 nodes. The

performance is quite encouraging according to the solutions obtained.

10

In the next chapter, semiconductor manufacturing operations are outlined for both

front-end (wafer fabrication) and back-end (assembly and test) operations. Chapter 3

provides a literature review for the clustering problem followed by a discussion of the

reactive GRASP developed to find solutions. The midterm fab planning problem is

discussed in Chapter 4 where a mathematical model is presented. After trying

Lagrangian relaxation and Benders decomposition algorithms without success, a

problem-specific decomposition approach is provided. Chapter 5 focuses on the back-

end AT operations. A two level hierarchical approach coupled with a GRASP is used to

find solutions. Numerical results are provided for Chapters 3, 4 and 5. In Chapter 6, an

assessment of the research is given and some conclusions are drawn from the

computational experience.

11

Chapter 2

Chapter 2. Outline of Semiconductor Manufacturing Operations

Outline of Semiconductor Manufacturing Operations

2.1 Wafer Fabrication (Front-end Operations)

Wafer fabrication begins with a smooth (typically silicon) wafer of a certain diameter

upon which thousands of integrated circuits are layered through successive operations.

Circuits contain between 100 and 50,000 chips. During processing, a wafer goes through

the following six primary steps multiple times: deposition, photolithography, etching, ion

implantation, photoresist strip, and inspection and measurement. The routing (process

flow) determines the actual path of a lot through the system. For more detail, see, e.g.,

Uzsoy et al. (1992).

Planning Challenges. The focus of management in the semiconductor industry is on

minimizing production costs and increasing productivity while improving both quality

and delivery time performance. Major factors affecting cost are yield, labor, materials,

inventory, equipment and facility depreciation, and the number of starts per week (Bai

and Gershwin 1994, Hughes and Shott 1986). Because of the huge initial investment

required to construct a fab, the goal is to keep it loaded at all times. Thus, the driving

force to date has been the manufacture of standard products in fairly high volumes. In

such operations, it is common to create a buffer against fluctuations in external demand

by holding inventories of probed die, referred to as die-bank inventories, between the

front-end and back-end operations. Hence wafer fabs have tended to operate in a make-

to stock mode, with production lots rarely being associated with a specific customer order

or due date. Together with the high capital costs of equipment, this has resulted in a

major emphasis on maintaining high throughput and equipment utilization, while

reducing both the mean and the variance of cycle times and inventories. This is the

situation at the TI fab.

Reentrant Flow. It is instructive to view a fab as a time-dependent multicommodity

network where each node corresponds to a buffer in front of a machine group. A separate

12

buffer, denoted by Wmli(t), can be defined for each product i that is active at time t and

whose next operation at machine group m is to be performed at level l. The “level” index

refers to the visit number of a product to a machine group during the reentrant flow. The

path taken by product i during fabrication is determined by its routing, which is part of

the input data. The number of buffers associated with a product is equal to the number of

steps that are required for its completion. Figure 2.1 illustrates a reentrant line with 3

machine groups and 11 buffers for product 1, which enters the system at buffer W111.

Finished products emerge from machine group 3 after their third visit following a wait in

W331. Every wafer in the line visits machine group 1 three times, machine group 2 five

times, and machine group 3 three times according to the deterministic routing 1 → 2 → 2

→ 2 → 3 → 3 → 2 → 1 → 1 → 2 → 3.

Figure 2.1 Example of a reentrant production line

2.2 Product Assembly and Testing (Back-end Operations)

As yield efficiencies in front-end operations have increased, the need for improving the

ability of back-end facilities to handle large volumes of product has increased

accordingly. AT outsourcing services represent a growing contribution to total industry

revenue. During assembly, integrated circuits are placed in plastic or ceramic packages

that protect them from the environment. Examples include dual in-line packages,

Machine
group 1

Machine
group 2

Machine
group 3

W111

W121

W131

W241

W221

W231

W211

W251

W311

W331

W321

13

leadless chip carriers, and pin-grid arrays. Since it is possible for a given circuit to be

packaged in many different ways, there is an explosion of product types at this stage.

Once the leads have been attached and the package sealed and tested for leaks and other

defects, the product is sent to final test. At that stage automated equipment is used to

interrogate each integrated circuit and determine whether it meets the required

specifications. The goal is to ensure that customers receive a defect free product.

Figure 2.2 depicts the major steps in back-end operations, which may include

anywhere from 20 to 40 processes (Van Zant 2000). Packaged chips are advanced

through some or all of these processes before being turned out as finished goods and

either shipped to customers or placed in inventory. Because products differ in terms of

dimensions, consumables, and process specifications, the process flows differ from

product to product.

From Figure 2.2 we see that the test component collectively includes burn-in,

electrical testing, marking/branding, baking, programming, mechanical scanning, quality

check and packaging, in this order (Freed et al. 2006, Ovacik and Uzsoy 1996). The test-

floor can be described as a flexible flow-shop (i.e., the sequence of processing operations

is fixed), each lot requires a unique subset of the operations (burn-in, marking, baking,

and programming may or may not be required), and multiple machines may be eligible

for each operation. In some cases, these machines may not be identical with respect to

processing rates or output quality, so there may be lot assignment preferences among the

set of eligible machines. Yield and lead-time variability in previous stages of the

manufacturing process (i.e., wafer fabrication and probe) result in variable lot sizes and

lot priorities at the AT stages. Lot priorities range from low when ample inventory exists,

to ‘hot’ or critical when promise dates are near or orders are past due.

 An additional concern is machine failures, which are common and unpredictable

despite a heavy emphasis on preventive maintenance. Failures are most likely to occur

during a changeover between lots that have noticeably different tooling and temperature

requirements. Further complicating the matter is the fact that changeover durations are

variable, significant (same order of magnitude as lot processing times), and sequence-

dependent (Freed et al. 2006). When planning a changeover, the skill level of the

available workers must also be taken into account. Personnel costs can be substantial due

14

to the need for extensive training, while in some locations, labor shortages bid up wages.

In general, the availability of skilled labor constrains throughput. When a single worker

is assigned to operate multiple machines, competing demand for his or her services may

lead to lost capacity.

Figure 2.2 High-level back-end process flow

In contrast to the voluminous literature on wafer fabrication, there has been little

research on AT operations. Knutson et al. (1999) investigated a problem in which lots in

an AT facility were formed to match the size of customer orders. The authors assumed

that all lots consisted of the same type of chip and that yield losses were zero. The

planning horizon was set to one day and any delivery tardiness or over supply was treated

as a penalty. The problem was formulated as a nonlinear integer program with three

objectives: maximize the satisfaction of customer demand, minimize the number of die

(chips) sent to the warehouse, and minimize delivery tardiness. To find solutions, the

model was decomposed into two stages. The first stage took the form of in a knapsack

problem with the bi-objective of maximizing facility utilization and minimizing order

tardiness. The second stage took the form of a bin (orders) covering problem aimed at

minimizing the number of chips sent to the warehouse.

Song et al. (2007) applied ant colony optimization to reduce the conversion time

of a bottleneck machine during assembly and test. Three objectives were investigated:

Tapping

Lapping

Die

Die

Molding

Marking

Plating

Trimming

Wire Forming

Packing

DC test

Pre-laser

Laser

Post-laser

Back

Inking

Inspection

Packing

Wafer Probing Packaging Final Test
Electrical Appearance

 performance inspection

Final test

Cycling

Final test

Burn-in

Laser

VM scan

Bake/packag

Post-test

Burn-in Shipping

15

minimization of unfilled customer demand, minimization of total number of machine

conversions, and minimization of total conversion time. The authors first constructed a

unidirectional graph to represent the machine scheduling problem over the planning

horizon. Each node was a triplet describing the machine status in the current time

interval. Nodes between adjacent time intervals were connected with edges weighted by

transition probabilities. A path from origin to destination represented a valid machine

schedule. Hard constraints were addressed by assigning zero probability to some edges.

This eliminated an undesirable machine conversion. Soft constraints were addressed by

penalizing violations and transition probabilities were updated each time the ants finished

their searching. The algorithm was successfully applied at an Intel AT facility and

achieved conversion time reductions of up to 20% compared to the manual approach then

being used.

Zhang et al. (2007) proposed a two-level hierarchical capacity planning

framework to reconfigure kit components in AT operations. The first level focused on

midterm planning while the second level created executable plans for individual facilities.

The authors also proposed a mixed-integer linear programming model for the first level

problem. The methodology was successfully applied at one of Intel’s AT sites, resulting

in an annual $10 million saving in the purchase of kit components.

16

Chapter 3

Chapter 3. Capacitated Clustering

Capacitated Clustering

 Clustering primarily involves the partition of objects or data points into different

groups to optimize some weighted measure of distance between them. A large variety of

applications exist in such areas as manufacturing, network design, pattern recognition,

mail delivery, habitat classification, facility location, and statistical data analysis, to name

the most prominent (e.g., see Al-Sultan and Khan1996, Bard and Jarrah 2009, Daganzo

2005, Kaufman and Roussweuw 1990, Laporte et al. 1989). In some of these

applications, the number of clusters is given while in others the objective is to find the

minimum number that satisfies a set of knapsack-type constraints. In this chapter, we

address the constrained version of the problem and present a greedy randomized adaptive

search procedure (GRASP) to find solutions. Such procedures generally have a

construction phase and an improvement phase (Kontoravdis and Bard 1995,

Rojanasoonthon and Bard 2005). In developing the methodology, we included several

options for each of these phases that markedly improved overall performance. For phase

I, we designed both a heaviest weight edge algorithm and a constrained minimum cut

scheme for constructing feasible solutions. For phase II, we explored the use of cyclic

neighborhood search, variable neighborhood descent (VND) (Hansen and Mladenovic

1997, Hu et al. 2008), and a randomized version of the latter, to achieve local optimality.

In the final step, path relinking (Glover et al. 2000) was performed on the top candidates

to see if any better solutions could be uncovered on the paths between them. The design

and integration of these features within a GRASP framework represents the major

contribution of this research.

 Although the solution methodology can be directly applied to create families of

semiconductor devices, the specific motivation arose from our collaboration with facility

planners at mail processing and distribution centers within the U.S. Postal Service

(USPS). One of their recurrent tasks is to design zones to help rationalize the bulk

movement of mail by powered industrial vehicles (PIVs). Over the course of the day,

PIVs are used to transfer mail to and from the docks and between the various workcenters.

17

Each workcenter performs a specific operation such as canceling stamps, barcoding

envelops, and sorting letters to carrier routes. The pickup and drop off locations are

called control points and can be regarded as fixed nodes in two-dimensional network. The

problem of specifying the zones can be formulated as a mixed integer program. The

difficulty in finding optimal solutions stems from its combinatorial nature. In our initial

testing, we were unable to achieve convergence with CPLEX 11.0 for instances with

more than 40 nodes. Therefore, we took a heuristic approach.

 The construction of PIV zones falls into the general area of capacitated clustering,

which is further discussed in the next section along with the related literature. In Section

3, the mathematical formulation of the problem is given followed by our solution

methodology which includes a reactive GRASP, two initiation procedures, our enhanced

neighborhood search techniques, and path relinking. In each case, the algorithm is

described and a pseudocode is given. To test the methodology, we randomly generated a

large number of instances using data provided by the USPS. The results show that high

quality solutions can be obtained for these instances, as well as for those solved by

Mehrotra and Trick (1998). An assessment of the overall approach is presented in

Section 6.

 Various versions of the clustering problem have been extensively studied since

the 1960s, with virtually all of them being NP-hard in the strong sense (Brucker 1978).

Mulvey and Beck (1984) proposed one of the first models for what has become known as

the capacity clustering problem (CCP). In the original formulation, the objective was to

find up to p capacitated clusters centered at a to-be-determined median such that the

collective dissimilarity between each customer and its median is minimized. Their

context was sales force territory design. In formulating the CCP, let yik = 1 if data point i

is in cluster k and 0 otherwise, and let zk = 1 if data point k is the median of cluster k and

0 otherwise (i = 1,…,n; k = 1,…,n). The basic model is

 Minimize
1 1

n n

ik ik
i k

c y
= =
∑ ∑ (1a)

 subject to
1

1
n

ik
k

y
=

=∑ , i = 1,…,n (1b)

18

1

n

i ik k k
i

w y C z
=

≤∑ , k = 1,…,n (1c)

z
k

k====1

n

∑∑∑∑ ≤≤≤≤ p (1d)

 yik ∈ {0,1}, zk ∈ {0,1}, i = 1,…,n; k = 1,…, n (1e)

where wi is the service demand of customer i, Ck is the capacity of cluster k, p ≥

1 1

1n n

i ki k
w C

n= == == == =

        
                

∑ ∑∑ ∑∑ ∑∑ ∑ is the number of clusters, and cik = (((())))(((())))
1/22

1

s

il kll
a a

====
−−−−∑∑∑∑ is the

dissimilarity measure between i and its median k. In the expression for cik, the vector ai ≡

(ai1,…,ais) represents the s attributes associated with data point i (or median k when

appropriate). When points on a plane are being clustered, ai is the two-dimensional

vector of their X- and Y-coordinates and cik is the Euclidean norm. Model (1) is known as

the p-median capacitated clustering problem (p-CCP) when Ck is homogeneous (Ahmadi

and Osman 2005, Lorena and Senne 2004).

 The objective function (1a) in effect minimizes the sum of the “distance” between

each pair of data points in a cluster. In the formulation, all n data points are candidates

for one of the p medians. Constraints (1b) ensure that each data point is assigned to

exactly one cluster, and constraints (1c) limit the demand of each cluster k to its capacity

Ck. Constraint (1d) restricts the number of clusters created to p and is written as an

inequality because it may not be economical to use the full capacity of the system.

Logical restrictions are placed on the variables in (1e). If the redundant constraints yik ≤

zk, (i, k = 1,…,n) are added to the model, then a stronger relaxed formulation is obtained.

In that case, when yik is integral zk will be integral as well so the binary restriction on

those variables can be replaced by zk ∈ [0,1], k = 1,…, n.

A variant of model (1) known as the p-centered capacitated clustering problem (p-

CCCP) arises when the median is replaced by the centroid (Negreiros and Palhano 2006).

This results in a nonlinear objective function because the dissimilarity weight is now cik =

2

i k−a ζζζζ , where ζζζζk
∈ℜs is a free variable that locates the geometric center of the cluster.

In either case, a wide variety of solution strategies and techniques have been developed,

19

from neural networks and genetic algorithms, to fuzzy sets, GRASP, and alternative c-

means; e.g., see Chiou and Lan (2001), and Osman and Ahmadi (2007).

Cano et al. (2002) proposed a GRASP to solve the p-centroid uncapacitated

clustering problem. Since the performance of GRASP is affected by the quality of the

partial initial solution, their first step was to generate good seed candidates, which is also

our first step. They then applied a probabilistic greedy Kaufman initialization in the

construction phase (Kaufman and Roussweuw 1990). The Kaufman procedure identifies

p dispersed points as the cluster centroids. In the improvement phase, the k-means

method was used for local search. Testing was done on eight real-world benchmark data

sets, the largest involving 2310 data points, 19 attributes and 7 clusters. The results

showed that Kaufman-based procedure outperformed its counterparts such as random

selection, Forgy’s method and MacQueen’s method [for a discussion of the

aforementioned methods, see Hansen and Mladenovic (2001) and Kaufman and

Roussweuw (1990)].

Ahmadi and Osman (2005) combined GRASP and adaptive memory

programming to solve the p-CCCP. The possible centers were ranked and placed on a

fixed length restricted candidate list (RCL). At each phase I iteration, one was selected

randomly using a probability measure that was updated to reflect the performance of the

elite (improving) solutions. The updating procedure was aimed at balancing the so-called

density and intensity of the centers. A similar idea is applied in this chapter except that

we use the probability measure to control the RCL length rather than to select nodes in

phase I (cf. Prais and Ribeiro 1999). In the improvement phase, the authors applied a

restricted 1-interchange. Intensification, diversification and aspiration were also

considered by setting criteria to determine whether an improved solution should be

placed in the elite solution pool. Five randomly generated data sets were used to test the

algorithm. The largest instances contained 150 data points and 15 clusters.

 Mehrotra and Trick (1998) used column generation and a specialized bounding

technique to solve the maximization version of CCP. Their pricing subproblem took the

form of what they called a maximum weight cluster problem; a tight upper bound was

obtained by solving a transportation problem. Branching was governed by the Ryan-

Foster rule but it was often unnecessary to go beyond the root node due to the integrality

20

of the linear programming solution. Testing was done on a DEC Alpha Model 300 using

the same data sets as Johnson et al. (1993) who investigated a compiler design problem.

The largest instance solved contained 61 nodes and 187 edges, and consumed 352 sec for

a right-hand-side value in (1c) of Ck = 450 for all k and 394 sec for Ck = 512.

 Barreto et al. (2006) used a sequential heuristic to find solutions to the capacitated

location routing problem, a combination of a facility location problem and a capacitated

vehicle routing problem. The proposed algorithm first solves a clustering problem to

group the customers (nodes), and then a vehicle routing problem (VRP) to obtain the

routes that were subsequently improved by local search. Two kinds of algorithms

(hierarchical and non-hierarchical) and six proximity metrics (single linkage, complete

linkage, group average, centroid measure, ward measure, saving measure) were proposed

and tested for the clustering problem. Optimality gaps of less than 5% were obtained, on

average, for instances as large as 318 customers and 4 distribution centers, 150 customers

and 10 distribution centers, and 117 customers and 14 distribution centers.

 In the development of algorithms for the VRP, it is common to follow the logic of

cluster first, route second. Newell and Daganzo (1986) approached the capacitated VRP

with a single depot by grouping the customers (nodes) into zones and visiting the nodes

within zones in order of their longitude coordinates. For the problems studied, the nodes

were distributed randomly with a density function δ and the zones were constructed as

wedge-shaped sectors elongated toward the depot. The overall objective was to minimize

the expected total travel distance.

 Ouyang (2007) extended the work of Newell and Daganzo (1986) by developing a

systematic approach to obtain an optimal zone design. The problem studied focused on

the construction of vehicle routing zones (VRZ) for given shape and size requirements, as

described by Newell and Daganzo. Initially, a set of wedge-shaped zones was created

satisfying these requirements. The wedges were then conformally mapped into square

zones and a disk model was applied to obtain an approximately optimal partition. Further

refinements were carried out by the weighted centroidal Voronoi tessellation algorithm to

balance the delivery loads within the zones. From the reported computations, the

proposed methodology was seen to outperform an adaptation of the Clarke-Wright

heuristic with significant advantage being evidenced for large instances.

21

3.1 Mathematical Formulation

For a given set of nodes V and connecting edges E, we wish to partition V into p clusters

such that the sum of the “benefits” associated with the edges within each cluster is

maximized and the sum of the node weights in each cluster falls with the interval [Cmin,

Cmax]. For the PIV application with n control points, the problem can be modeled on a

graph G = (V, E), where i ∈ V must appear in exactly one cluster and edge e = (i,j) ∈ E

exists in G only if there is some flow between its endpoints i and j over the week. In

creating the model, we make use of the following notation.

Indices and sets

 k index for clusters

 i,j indices for nodes; i,j ∈ V

 e index for edges in G; e ∈ E

Parameters

 ce weight of edge e ∈ G; ce ≡ cij, where i, j ∈ V such that (i,j) = e ∈ E

 wi weight of node i ∈ G

 p number of clusters to be created

 Cmax maximum permitted weight of nodes in each cluster

 Cmin minimum required weight of nodes in each cluster

Variables

 xek 1 if edge e has both its endpoints in cluster k, 0 otherwise

 yik 1 if node i is included in cluster k, 0 otherwise

Model

IPφ = Maximize
1

p

e ek
k e E

c x
= ∈

∑∑ (2a)

subject to
1

1
p

ik
k

y
=

=∑ , ∀ i ∈ V (2b)

 xek ≤ yik, xek ≤ yjk, ∀ e = (i,j) ∈ E, k = 1,…,p (2c)

 xek ≥ yik + yjk – 1, ∀ e = (i,j) ∈ E, k = 1,…,p (2d)

22

 Cmin ≤ i ik
i V

w y
∈
∑ ≤ Cmax, ∀ k = 1,…,p (2e)

 xek ∈ {0,1}, yik ∈ {0,1}, ∀ i ∈ V, e = (i,j) ∈ E, k = 1,…,p (2f)

 The objective in (2a) is to maximize the sum of the edge weights within clusters,

which is equivalent to minimizing the sum of the weights of edges between clusters. If

the endpoints of edge e are not in the same cluster, then the corresponding weight ce is

not counted. Constraints (2b) ensure that each node i is included in exactly one cluster,

while constraints (2c) and (2d) specify that edge e = (i, j) is in cluster k if and only if both

endpoints i and j are in cluster k. Constraints (2e) limit the total weight of the nodes in

cluster k to be between Cmin and Cmax. If the node weight wi = 1 for all i ∈ V, then the

summation i iki V
w y

∈∑ is the total number of nodes assigned to cluster k. If (2e) is omitted,

it is optimal to create a single cluster; i.e., all the nodes and hence edges would be in one

cluster. Binary restrictions are placed on all the variables in (2f).

 Model (2) can be reduced by observing that constraints (2d) are redundant when

the objective function is taken into account and hence can be omitted. That is, when

either yik or yjk is 0, xek is 0, which gives a feasible solution to (2d); when both yik and yjk

are 1, xek will be 1 as well since the objective is to maximize the total weight. A

secondary consequence of this result is that, xek can be treated as a continuous variable in

the range [0, 1]. Finally, the two-sided inequality (2e) can be simplified by introducing

additional slack variables sk, k = 1,…, p. With some algebra, we can rewrite (2e) as

follows:

 i ik
i V

w y
∈
∑ − sk � Cmin, ∀ k = 1,…, p (2e′)

 0 � sk ≤ Cmax – Cmin, ∀ k = 1,…, p (2e″)

where constraints (2e″) specify the bounds on the slack variables sk. For other

formulations of p-CCP, see Ferreira et al. (1998) or Mehrotra and Trick (1998).

Strength of LP relaxation. When solving an integer program, the tightness of the bound

obtained from the LP relaxation often determines the efficiency of the overall solution

procedure. With respect to model (2) the following results states for the nontrivial cases

where θ ≥ 2 and n ≥ θ that this bound is arbitrarily bad.

23

Proposition 3.1 Given a completely connected graph G = (V, E) with the objective of

partitioning the |V| = n nodes into p clusters, assume thatmod 0n p = and let /n n p=

be integral for n > p ≥ 2. If each cluster, must contain at least 1 node, then the minimum

number of edges in a solution is min
1m =

2

n
p

 
× 

 
.

Proof. Consider a solution in which the first p − 1 clusters each contains 1 node and

cluster p contains the remaining n − p + 1 nodes. In this case, there are
1

2

n p− + 
 
 

 edges

in cluster p and 0 edges in clusters 1,…p−1. If one node is removed from cluster p and

placed in cluster 1, then the total number of edges in the corresponding solution is

2

n p− 
 
 

 + 1 <
1

2

n p− + 
 
 

. Repeating this process until all the nodes are evenly

distributed among the p clusters gives the stated results. �

Corollary 3.1 Let modp n p= such that 0 < p < p. For G completely connected, the

minimum number of edges in a clustering solution is min
1m =

2

n
p

 
× 

 
 + p × n .

Proof. Evenly divide the first
n

p

 
 
 

 × p nodes into p clusters. From Proposition 1, this

gives
2

n
p

 
× 

 
 edges. Assign the remaining p nodes to the first p clusters. This

introduces n additional edges in each of those clusters. �

Proposition 3.2 In model (2) the bounds satisfy Cmin ≤
1

i
i V

w
p ∈

 
 
 
∑ ≤ Cmax.

Proof. Summing up the constraints (2e) for all clusters gives pCmin ≤
1

p

i ik
k i V

w y
= ∈

∑∑ ≤ pCmax.

The term
1

p

i ik
k i V

w y
= ∈

∑∑ =
1

p

i ik
i V k

w y
∈ =

 
 
 

∑ ∑ = i
i V

w
∈
∑ since

1

p

ik
k

y
=

∑ =1 ∀ i ∈ V. Dividing both sides

by p gives Cmin ≤
1

i
i V

w
p ∈

 
 
 
∑ ≤ Cmax. �

24

Corollary 3.2 Let φLP
 be the objective function obtained by solving (2) after relaxing the

integrality requirements on the x and y variables in (2f). Then φLP
 = ee E

c
∈∑ .

Proof. Assume that xek = 1/p, yik = 1/p, ∀ e ∈ E, i ∈ V, k = 1, 2,…,p. It can be verified

that such LP solution is feasible to model (2) with objective function value ee E
c

∈∑ .

Since this is the maximum can be obtained, the LP solution is optimal and φLP
 = ee E

c
∈∑ .

 �

3.2 Solution Methodology

Model (2) is a 0-1 integer linear program of size O(pn2). For 60 data points and 5

clusters, this translates into a problem with approximately 18,000 variables and

constraints in the worst case, which is likely to be beyond the capability of commercial

solvers. Real instances are often much larger. Our experience with CPLEX 11.0 showed

that some instances with |V| = 40 can be solved in a matter of minutes but when |V| = 50,

runtimes exceed 10 hours. This is not surprising since the linear programming relaxation

of (2) is arbitrarily bad. By setting xek = yik = 1/p for all e, i and k, the objective function

value in (2a) is ee E
c

∈∑ . In addition, symmetry plays havoc during branch and bound

because many equivalent solutions can be obtained by exchanging the cluster numbers of

any two clusters. This situation implies the existence of at least (p − 1)! alternative

optima. Also, fixing yi1 = 0 at a particular node in the search tree has very little effect

since yik, k = 2,…,p, can still be nonzero.

In light of these observations, we developed a reactive GRASP with the objective

of finding high quality solutions to (2). In phase I, good initial solutions are constructed

in a greedy manner; in phase II, they are improved by local search. In a post-processing

step, a subset of the phase II solutions are assembled in what is called an elite pool and

subject to further investigation using path relinking (PR). When no better solutions can

be found along the paths connecting any pair of pool members, the procedure terminates

and the best available solution is output.

3.2.1 GRASP phase I

During construction, our first step is to initialize the p clusters. One of two approaches is

used: the heaviest weight edges algorithm (HWE) or the constrained minimum cut

25

algorithm (CMC). With HWE, we identify the p nodes with the largest weights and

assign them in turn to the p clusters. The heaviest unassigned edges incident to these

nodes are then sequentially assigned to the corresponding clusters along with their

endpoints. The CMC approach makes use of a minimum cut algorithm to partition the

graph into p clusters that satisfy the capacity lower bound Cmin. In either case, the partial

solutions associated with the p clusters serve as seeds. The underlying motivation is to

identify nodes and edges that are not likely to be in the same cluster in an optimal

partition. After initialization, a reactive GRASP is called to construct feasible solutions.

The details are given below.

HWE approach to the selection of p seeds

The HWE algorithm is illustrated in Figure 3.1. At Step 1, sets and counters are

initialized. At Step 2, the nodes are ordered from largest to smallest, that is,

1 2 1n ni i i iw w w w
−

≥ ≥ ≥ ≥L , and the heaviest node is assigned to cluster 1, the next heaviest

to cluster 2 and so on until p clusters have been initialized or until
s ni iw w= , where s < p.

The objective is to disperse the heaviest nodes to different clusters in order to increase the

chance of getting a feasible solution when capacity is tight. When
1s s ni i iw w w

+
= = ⋅⋅⋅ = , it

becomes more effective to assign heavy edges rather than nodes as seeds.

 At Step 3, an additional node is assigned to those clusters that have been

initialized, or two nodes are assigned if the cluster is empty. In the former case, a free

node that is the most heavily connected to the existing node is selected; in the latter case,

the endpoint node of the heaviest free edge is assigned. At termination, each cluster will

contain exactly two nodes that represent a partial initial solution to the problem. The

complexity of the procedure is O(p∙|V|2).

Parameters

E0 set of unassigned edges

V0 set of unassigned nodes

Vk set of nodes assigned to cluster k

26

Procedure: Phase_I_Initialize_HWE(V, E, c, w, p, Cmin, Cmax, x′)

Input: Set of nodes V, set of edges E, number of clusters p, edge weights matrix c, node

weights vector w, and capacity bounds Cmin and Cmax

Output: Partial initial solution x′

Step 1: E0 = E; V0 = V; Vk = �, k = 1,…,p; '
ikx = 0, ∀ i ∈ V, k = 1,…,p;

Step 2: k = 1;

 while(k ≤ p and max{wi, i ∈ V0} ≠ min{wi, i ∈ V0}){

 i* ∈ argmax{wi : i ∈ V0};

 Vk � Vk 	 { i*}; V0 � V0 \ { i*}; *
'

i k
x = 1;

 k � k + 1;
 }

Step 3: for(k = 1,…,p){

 if(|Vk| = 0){

 (i*, j*) ∈ argmax{cij : i jw w+ ≤ Cmax, (i, j) ∈ E0};

 V0 � V0 \ { i*, j*}; Vk � Vk 	 { i*, j*}; *
'

i k
x = 1; *

'

j k
x = 1;

 }else{//one node already exists in cluster Vk

 j* ∈ argmax{cij : i jw w+ ≤ Cmax, i ∈ Vk, j ∈ V0};

 V0 � V0 \ { j*}; Vk � Vk 	 { j*}; *

'

j k
x = 1;

 }
 }

Figure 3.1 Pseudocode for seed selection with HWE algorithm in phase I of GRASP

 Figure 3.2 depicts the partial initial solution provided by HWE for a 9-node, 3-

cluster problem with bounds Cmin = 3 and Cmax = 5. Assume that the node weights are w4

= 3, w3 = 2, and wi = 1, ∀ i ∈ {1,2,5,6,7,8,9}, and that the edge weights are as shown in

the figure. Initially, V1 = V2 = V3 = �. The heaviest node (node 4) is assigned to cluster

V1, while the second heaviest (node 3) is assigned to cluster V2. Since the remaining

nodes all have the same weight, cluster V3 is left empty, giving V1 = {4}, V2 = {3} and V3

= �. In the next step, node 5 is placed into V1 since it is the most heavily connected to

node 4, and node 2 is placed into V2 for the same reason. Finally, edge (1,7) is assigned

27

to V3 since it has the highest edge weight among the free edges. The algorithm ends and

the initial partial solution is V1 = {4,5}, V2 = {2,3} and V3 = {1,7}.

Figure 3.2 Example for identifying seeds with HWE

Minimum cut approach to the selection of p seeds

In this approach, we apply a constrained minimum cut scheme to partition the nodes in G

= (V,E) into p subsets such that the sum of the node weights in each subset Vk , k = 1,…,p,

is at least Cmin, where
 �	��

�

� and Vk ∩ Vs = � for k ≠ s. The heaviest edge in each

cluster will serve as a seed while the remaining edges are removed.

The algorithm is outlined in Figure 3.3. The bulk of the work is done at Step 2

with the call to CMC(Vk, Ek, C
min, w, S1, S2), which is a heuristic that divides G into two

subsets, S1 and S2, such that the total weight of the edges between them is minimized

while the sum of their individual node weights is at least Cmin. The problem of finding

the global minimum cut in a graph is a special case of model (2), that is, when p = 2, Cmin

= 1 in (2e), and the upper bound Cmax � �∞. The problem becomes NP-hard when Cmin

≥ 2 and Cmax is finite. The Frank’s (1994) polynomial-time algorithm, a slight

improvement on Nagamochi and Ibaraki’s (1992) algorithm, is applied to solve the min-

cut problem [its complexity is O(|V|⋅|E|)] even though other lower polynomial-time

algorithms exist [e.g., Karger and Stein (1996) developed a heuristic for the min-cut

problem with O(|V|2(log |V|)3) complexity]. Our choice was based on the fact that in

V3

V2

V1

1

5

6

1

3

2

2

3

6

9

5

2

4

8

7

6

4

1

2 1

1

3

1

4

2

1

28

previous work we found Frank’s algorithm easy to implement and extremely efficient on

similar size graphs.

Procedure: Phase_I_Initialize_CMC(V, E, c, w, p, Cmin, Cmax, x′)

Input: Set of nodes V, set of edges E, number of clusters p, edge weights matrix c, node

weights vector w, and capacity bounds Cmin and Cmax

Output: partial initial solution x′

Step 1: V1 = V, Vk = �, k = 2,…,p; '
ikx = 0, ∀ i ∈ V, k = 1,…,p;

Step 2: while (min{|Vk| : k = 1,…,p} = 0){

 k* ∈ argmax{|Vk| : k = 1,…,p};

 //Apply constrained minimum cut heuristic to *k
V

 call CMC(*k
V , *k

E , Cmin, w, S1, S2); // see Figure 3.4

 *k
V = S1;

 k* = min{k : |Vk| = 0, k = 1,…,p}; //pick the first empty cluster

 *k
V = S2;

 }

Step 3: for (k = 1,…,p) {

 //Only keeps the heaviest edge in the cluster

 (i*, j*) ∈ argmax{cij : � ∈ Vk, j ∈ Vk};

� � �;
�←
� 	 { i*, j*}; *
'

i k
x = 1; *

'

j k
x = 1;

 }

Figure 3.3 Pseudocode for seed selection with CMC algorithm in phase I of GRASP

CMC works by first partitioning the subgraph Gk = (Vk,Ek) into S1 and S2 for the

unconstrained case, call it UMC, and checking each subset for feasibility. If the lower

bound capacity constraint associated with, say S1, is violated, a node is selected from S2

and placed in S1. At this step, the node that is most connected with the nodes in S1, as

measured by the sum of the weights of the incident edges whose endpoints are in S1, is

selected as long as the transfer does not violate the lower bound capacity constraint of S2.

29

The process is repeated until a feasible partition is obtained. The procedure is outlined in

Figure 3.4.

The same graph used to illustrate HWE will be used to illustrate

Phase_I_Initialize_CMC for p = 3. At Step 1, V1 = V and CMC is called. At Step 1 of

CMC, applying Frank’s UMC algorithm to V1 returns a minimum cut of 6 with S1 = {6},

S2 = {1, 2, 3, 4, 5, 7, 8, 9} and corresponding weights W(S1) = 1 and W(S2) = 11. At Step

2 of CMC, we have W(S1) < Cmin = 2 so a node must be transferred from S2 to S1. The

calculations indicate that node 9 in S2 is the most heavily connected to S1 so it is selected.

The updated clusters are {6, 9} and {1, 2, 3, 4, 5, 7, 8}. The operations at Step 2 stop

since both S1 and S2 satisfy the lower bound Cmin. Let V1 � S1, V2 � S2 and set S1 = �,

S2 =�. The larger set, V2, is selected for partitioning at Step 2 of Phase_I_Initialize_CMC.

Applying the UMC algorithm at Step 1 of CMC returns a minimum cut of 3 with S1 = {1,

7, 8} and S2 = {2, 3, 4, 5}, both of which satisfy the lower bound constraints. Therefore,

we put V2 � S1, V3 � S2 and set S1 = �, S2 =�. The operations at Step 2 of

Phase_I_Initialize_CMC terminate since all three clusters are filled. The heaviest edge in

each is retained and the others are removed. The final seeds for the three clusters are V1

= {6, 9}, V2 = {1, 7} and V3 = {3, 4}, as shown in Figure 3.5.

Procedure: CMC(Vk, Ek, C

min, w, S1, S2)

Input: Node set Vk, edge set Ek; lower bound on capacity Cmin; node weights vector w;

edge weights matrix c

Output: Partition of nodes into subset S1 and S2

Step 1: Apply UMC procedure of Frank to Vk

 call UMC(Vk, Ek, S1, S2);

 let W(S) = i
i S

w
∈
∑ ;

Step 2: while (min{W(S1), W(S2)} < Cmin) {

 k1 = argmin{W(Sk) : k = 1, 2};

 k2 = argmax{W(Sk) : k = 1, 2};

 //select the most beneficial move

 i* = argmax
i

{ }2 2 1
1

min min, , () , ()
k

ij k k i k ij S
c i S W S w C W S w C

∈
∀ ∈ − ≥ + ≥∑ ;

30

 Put { }
2 2

*\k kS S i← ; { }
1 1

*
k kS S i← ∪ ;

 }

Figure 3.4 Pseudocode of CMC scheme

Figure 3.5 Example used to illustrate CMC scheme

Building the candidate list

Two kinds of insertions are considered when building the candidate list (CL), the

structure used in GRASP to guide the construction of feasible solutions. The first

corresponds to an unassigned node and the second to an unassigned edge. All feasible

insertions are included in CL and sorted according to their contribution to the objective

value, as measured by total edge weight that would result if the node or edge were

actually added to a particular cluster. Candidates that violate the upper bound Cmax are

discarded.

 Let I(i,k) be the increase in the objective function value realized by inserting

node i into cluster k and let I(e,k) be the increase realized by inserting edge e to cluster k.

Starting with the partial initial solution shown in Figure 3.2 for Cmin = 3 and Cmax = 5, the

full CL is given in Table 3.1. To see how these values were calculated, consider, for

example, edge (8,9). If this edge were included in cluster 3, the objective value would be

10 (that is, c18 + c78 + c79 + c89 = 2 + 1 + 3 + 4 = 10); if included in cluster 2, the objective

value would be 7, and if included in cluster 1, the objective value would be − ∞ since

V2

V3

V1

1

5

6

1

3

2

2

3

6

9

5

2

4

8

7

6

4

1

2 1

1

3

1

4

2

1

31

this would lead to a violation of the upper bound Cmax. Hence, cluster 3 is the first choice

for (8,9). This insertion would increase the cluster weight from 2 to 4, which is less than

Cmax.

Table 3.1 Example of CL

CL
index

Edge e
or node i

Cluster
index k

I(e,k) or
I(i,k)

1 (8,9) 3 10
2 (6,9) 3 7
3 (8,9) 2 7
4 (6,8) 3 5
5 (6,9) 2 5
6 8 3 3
7 9 3 3
8 9 1 2
9 9 2 2
10 (6,8) 2 2
11 6 1 1
12 6 3 1
13 8 2 1
14 6 2 0
15 8 1 0
16 (6,8) 1 − ∞
17 (6,9) 1 − ∞
18 (8,9) 1 − ∞

Self-adjusting RCL

A fraction α of the top candidates in CL, up to some parameterized maximum number

denoted by � �
���, are used to build RCL from which the next construction step is taken.

The length of RCL, lRCL, is determined as follows:

 lRCL = min {max {αlCL, 1}, � �
���}

where lCL is the current length of CL. The value of α in this equation is adjusted during

the GRASP iterations according to the quality of observed solutions. Prais and Ribeiro

(1999) indicate that α should be within the range of (0,1] .

Let A = {α1, α2, … ,αm} be the finite set of possible values for α and let pi be the

corresponding probability of selecting αi, i =1,…,m. Initially, pi is uniformly distributed:

 pi = 1/m, i = 1,…,m

32

To see how these probabilities are adjusted, let φ* be the best solution found in all

previous GRASP iterations and let Ai be the average value of solutions obtained for α = αi.

Initially, each Ai is set to the total edge weight of the graph and 20 experiments are run by

sampling α from the above uniform distribution to get 20 additional objective function

values. Updating begins at this point by calculating the relative performance of the

algorithm under αi as follows:

*
i

i

A
q

δ

φ
 

=  
 

, i = 1,…,m

where δ is a shape parameter. For higher values of δ, qi will be lower since Ai ≤ φ*.

Normalizing gives

 /
m

i i ll
p q q= ∑ , i = 1,…,m

 When αi yields relatively high average solutions Ai, it will have a high probably pi

of being selected as the iterations progress. In the implementation, we followed the

suggestions of Prais and Ribeiro and set δ =10, m = 10, and A = {0.05, 0.1, 0.15, 0.2, 0.25,

0.3, 0.35, 0.4, 0.45, 0.5}.

Phase I initial solution construction

The partial initial solution constructed with either HWE or CMC is extended to obtain a

feasible solution by sequentially adding nodes or edges to each of the p clusters. Assume

that RCL is built with length lRCL in accordance with above procedure. Exactly one

element is randomly selected from RCL with uniformly distributed probability. The

insertion corresponding to the selected element is performed to extend the current partial

solution.

 Again starting with the partial solution shown in Figure 3.2 and with CL given in

Table 3.1, assume that lRCL is determined to be 6. The corresponding RCL is given in

Table 3.2 and is seen to contain the top 6 candidates in CL.

 If the third element is chosen, for example, then edge (8,9) is placed in cluster 2

and the partial solution is updated. Now, CL is cleared and rebuilt along with RCL. The

procedure is repeated until all nodes are assigned to one of the p clusters.

33

Table 3.2 Example of RCL when lRCL = 5

RCL
index

Edge e
or node i

Cluster
index j

I(i,j) or
I(e,j)

1 (8,9) 3 10
2 (6,9) 3 7
3 (8,9) 2 7
4 (6,8) 3 5
5 (6,9) 2 5
6 8 3 3

3.2.2 GRASP phase II

Three types of neighborhoods are explored in phase II. For current solution x, call them

N1(x), N2(x) and N3(x), let Vk(x) be the nodes in cluster k, and let Wk(x) be the

corresponding total node weight, k = 1,…,p. A description of the neighborhoods follows.

N1(x) (Extended node insertion) Pick a node i ∈ Vk(x) with Wk(x) − wi ≥ Cmin.

Choose a cluster Vs(x), k ≠ s. If Ws(x) + wi ≤ Cmax, assign i to Vs(x); otherwise,

cluster s will exceed the upper bound. For the later situation, pick another

node j ∈Vs(x), i ≠ j, and cluster s1 ≠ s, such that Cmin ≤ Ws(x) + wi – wj ≤ Cmax

and
1
()sW x + wj ≤ Cmax. Shift j from Vs(x) to

1
()sV x .

N2(x) (Extended edge insertion) Pick an edge e ∈ E with endpoints i and j. Two

cases may arise; either e is in some cluster Vk(x) or it spans two clusters.

(1) If i ∈ Vk(x), j ∈Vk(x) and Wk(x) – wi – wj ≥ Cmin, then find a cluster s ≠ k

with Ws(x) + wi + wj � Cmax and shift (i,j) from Vk(x) to Vs(x). If no such

s exists, then go to next e ∈ E. If Wk(x) – wi – wj < Cmin, removing e from

Vk(x) would violate Cmin. In this situation stop investigating the current

edge and go to next e ∈ E.

(2) If e is not an edge within a cluster, let i ∈
1
()kV x and j ∈

2
()kV x . When

1
()kW x − wi ≥ Cmin and

2
()kW x − wj ≥ Cmin, one of the following three

methods is used to extend the neighborhood: (i) find a set s ≠ k1, s ≠ k2

with Ws(x) + wi + wj ≤ Cmax and shift nodes i and j to Vs(x); (ii) if
1
()kW x +

wj ≤ Cmax, shift j from cluster k2 to k1; (iii) if
2
()kW x + wi ≤ Cmax, shift i

34

from cluster k1 to k2. If
1
()kW x − wi < Cmin or

2
()kW x − wj < Cmin, stop and

go to next e ∈ E.

N3(x) (Node exchange) For nodes i ∈ Vk(x) and j ∈ Vs(x), k ≠ s, if Cmin ≤ Wk(x) – wi

+ wj ≤ Cmax and Cmin ≤ Ws(x) – wj + wi ≤ Cmax, swap i and j. Otherwise, go to

next pair of nodes.

 The complexity of constructing these neighborhoods is a function of p, |V| and |E|.

For each case we respectively have:

N1(x) ~ O(p2 ∙|V|2)

N2(x) ~ O(p∙|E|)

N3(x) ~ O(∑ |
� !"| ∙ |
!"|
$�%#$�)

The corresponding pseudocodes are given from Figure A.69 to Figure A.71.

Continuing with the example in Figure 3.2, assume that the current solution is V1

= {4,5,9}, V2 = {2,3,8} and V3 = {1,6,7} with capacity bounds Cmin = 3 and Cmax = 5, and

node weights w4 = 3, w3 = 2, and wi = 1, ∀ i ∈ {1,2,5,6,7,8,9}. For neighborhood N1, the

consequences of reassigning node 8 from cluster 2 to either cluster 1 or 3 are shown in

Table 3.3. If cluster 1 is the target, then one of the nodes in cluster 1 must be removed to

avoid a violation of the capacity upper bound.

Table 3.3 N1 neighborhood generated by shifting node 8

Cluster to which
node 8 is moved

(s)

Node to
be shifted

(j ′)

Cluster to which
node is shifted

('
1s)

Total benefit
gained

1 4 2 − ∞
4 3 −3
5 2 0
5 3 0
9 2 −1
9 3 3

3 -- -- 3

 For neighborhood N2, assume that the algorithm is investigating edge (8,9) which

crosses clusters 1 and 2. However, node 8 cannot be inserted into cluster 1 due to Cmax.

Alternatively, if node 9 along is shifted into cluster 2, the total benefit gained will be 4

and 11 if edge (8, 9) is inserted to cluster 3.

35

 For neighborhood N3, consider a swap between node 8 and some other node.

After a simple set of calculations, we find that the best swap is between nodes 8 and 6

with benefit 1.

 Capacity bounds are maintained during local search to ensure feasibility.

Although it is possible to allow infeasible solutions as a strategy to overcome local

optimality, such an approach would greatly increase the computational effort of phase II.

In general, the GRASP philosophy is to focus the effort on phase I, not phase II. With

this in mind, diversification is introduced by accepting inferior solutions that are within

some tolerance β, a parameter that is reduced dynamically by ∆ after searching each of

the three neighborhoods. In the basic implementation, N1, N2 and N3 are explored

sequentially with β starting at 1% and decreased to 0 in steps of size ∆ = 0.2%. As β is

reduced, the effort shifts from diversification to intensification, and when β reaches 0, no

inferior solutions are accepted. A summary of phase II is given in Figure 3.6. At Step 2,

we cycle through the neighborhoods, terminating when no improvement is possible. This

is called cyclic neighborhood search (CNS).

Procedure: GRASP_Phase_II(x, w, c, β, ∆, Cmin, Cmax, x*)

Input: current solution x, node weights vector w, edge weights matrix c, capacity bounds

Cmin and Cmax, tolerance β and stepsize ∆

Output: local solution x* with respect to neighborhoods N1(x), N2(x) and N3(x).

Step 1: x* = x;

Step 2: while (β > 0) {
 Improve the current solution by local search

 call N1(x
*, w, c, β, Cmin, Cmax, x1);

 call N2(x1, w, c, β, Cmin, Cmax, x2);

 call N3(x2, w, c, β, Cmin, Cmax, x3);

 β = β – ∆;

 x* = x3;
 }

Step 3: TEW(x*) = − ∞; () ()33 1 , k

p

ijk i j V x
TEW x c

= ∈
= ∑ ∑ ; //TEW = total edge weight

Step 4: while (TEW(x3) > TEW (x*)) {

 x* = x3;

36

 call N1(x
*, w, c, 0, Cmin, Cmax, x1);

 call N2(x1, w, c, 0, Cmin, Cmax, x2);

 call N3(x2, w, c, 0, Cmin, Cmax, x3);

 () ()*

*

1 , k

p

ijk i j V x
TEW x c

= ∈
= ∑ ∑ ; () ()33 1 , k

p

ijk i j V x
TEW x c

= ∈
= ∑ ∑

 }

Figure 3.6 Pseudocode for phase II of GRASP

3.2.3 Basic GRASP

Given a graph G = (V, E), a partial initial solution is constructed with either HWE or

CMC and extended to a feasible solution using the logic surrounding RCL. Phase II is

then applied a predetermined number of times to improve the current solution within the

three neighborhoods. The best solution found is output as the optimum. The pseudocode

for the basic reactive GRASP is given in Figure 3.7 with the help of the following and

aforementioned definitions.

Parameters

NGRASP number of iterations for GRASP

I init indicator of approach to build partial initial solution: I init = 0 for HWE

approach; I init = 1 for CMC approach

iter iteration counter

Algorithm: GRASP

Input: set of nodes V, set of edges E, node weights vector w, edge weights matrix c,

number of clusters p, capacity bounds Cmin and Cmax, indicator I init, number of

iterations NGRASP

Output: heuristic solution xbest

Step 1: obtained partial initial solution x′

 if (I i nit equals 0) {

 call Phase_I_Initialize_HWE(V, E, c, w, p, Cmin, Cmax, x′);

 }else{

 call Phase_I_Initialize_CMC(V, E, c, w, p, Cmin, Cmax, x′);
 }

Step 2: TEW(xbest) = − ∞;//TEW = total edge weight

37

Step 3: for (iter =1,…, NGRASP){

 construct CL and RCL, complete x′ to initial solution x randomly;

 call GRASP_Phase_II(x, w, c, β, ∆, Cmin, Cmax, x*);

 if (TEW(xbest) < TEW(x*)){

 xbest = x*;

 TEW(xbest) = TEW(x*);
 }
 }

Figure 3.7 Pseudocode for basic reactive GRASP

3.2.4 Variable neighborhood descent

VND is a systematic approach to exploring the various neighborhoods that define the

local search (Hansen and Mladenovic 1997). Say there are umax of them indexed by u and

Nu ⊆ Nu+1, ∀ u = 1,2,…,umax−1. VND starts by searching the first neighborhood N1 (u =

1) and, in general, switches from the current neighborhood Nu to the next neighborhood

Nu + 1 when Nu fails to provide an improved solution. If a better solution is obtained from

Nu, then VND switches back to N1. The procedure terminates when VND reaches the

final neighborhood
maxuN and no improvement is possible. The last solution uncovered is

locally optimal for all umax neighborhoods.

 VND has been shown to be efficient in various applications (e.g., see Hu et al.

2008). In our case, it serves as an option in phase II to increase the performance of local

search even though the three neighborhoods defined above are not a subset of each other

– the usual situation in which VND is applied.

3.2.5 Randomized VND

According to our initial experiments, standard VND did not lead to a balanced

exploration of the three neighborhoods. Most of the effort was spent searching N1. Even

though local optimality is guaranteed, such a bias might delay convergence. To address

this issue, we adopted a probabilistic weighting scheme similar to the one used for

constructing RCL.

 Let pu be the probability of selecting neighborhood Nu after exploring the current

neighborhood. A uniform distribution for these values is assumed initially:

38

 pu = 1/umax, u = 1,…,umax

Also, let Bu be the total benefit gained by searching neighborhood Nu so far, with initial

values set as follows:

 Bu = Σe∈Ece, u = 1,…,umax

The neighborhood to be searched in the next iteration is randomly determined by the

probabilities pu. Let u* be the current neighborhood and let b be the improvement

realized from the search. The total benefit for*u
N is updated by putting

 *u
B � *u

B + b

 Note that it is possible for b < 0, which would indicate that a nonimproving

solution was selected in the diversification step of phase II. In that case,*u
B would

decrease and make*u
N a less interesting option to explore. When b > 0, *u

B will increase,

suggesting that more effort should be placed on searching*u
N . The probabilities pu are

hence updated to take into account the relative quality of solutions found in each

neighborhood. In particular,

 ()max

1
/

u

u u vv
p B B

=
= ∑ , u = 1,…,umax

 The randomized version of VND is called RVND and is run for a predetermined

number of iterations, Max_Iter. In the implementation, B is set to 1000, which is large

enough to ensure that Bu > 0, u = 1,…,umax, for the data used in the testing, and Max_Iter

is set to 10.

3.2.6 Path relinking

During phase II, solutions that are unique are saved in a pool and sorted in descending

order of their objective function values. The top Nelite members of the pool are selected

to form the elite solution set Selite. The general idea of PR is to construct a path between

pairs of elements in Selite to see if better solutions can be found. As described presently,

feasibility is maintained at each iteration, and for a problem with p clusters, at most p − 2

distinct solutions will be uncovered along each path. Those that are superior to their

generators are stored temporarily and, after all original pairs are examined, are inserted

into Selite. At the same time, the bottom elements in Selite are removed to keep | Selite |

constant. The procedure ends when the maximum number of iterations, NPR, is reached

39

or Selite becomes stable, that is, the elements in Selite do not change between two

successive iterations.

PR was first proposed by Glover et al. (2000) and is usually combined with other

metaheuristics (e.g., see Boudia et al. 2006). Given the set Selite at the end of phase II, the

first step is to select a pair of elements, say xA
 and xB, to serve as path generators. In this

context, xA is known as the initiating solution and xB as the guiding solution. In

attempting to construct a path that links xA
 to xB, let Vk(xA) be the node set for cluster k

associated with xA and let Vs(xB) be the node set for cluster s associated with xB. Now,

define a similarity measure S(k, s) for Vk(xA) and Vs(xB) as follows.

 S(k, s) =
() ()k A s B

e
e V x V x

c
∈ ∩

∑

 The value of S(k, s) is the total weight of the common edges in Vk(xA) and Vs(xB).

The two most similar clusters, call them kA and sB, associated with the elite solutions xA

and xB, are determined by

 (kA, sB) = argmax{S(k, s) : k, s ∈ {1,…,p}}

where ties are broken by selecting the clusters with the smallest indices.

 Given xA and xB, define CA and CB as the sets of clusters that are fixed at some

iteration in the procedure. Initially, CA = � and CB = �. A path from xA to xB is generated

in the following manner. First, the most similar clusters kA and sB are identified

according to the aforementioned logic. Cluster kA is then modified to be exactly the same

as cluster sB by inserting and removing nodes. The cluster to which a node is moved is

determined by a simple local search to minimize the decrease in objective function value.

After this operation is performed a new solution x1 emerges from xA. The two sets CA and

CB are updated by putting CA � CA 	{ kA} and CB � CB 	{ sB}. Solution x1 is then

improved to be *1x by local search subject to the restriction that the clusters in CA are kept

constant. Now, starting from *1x the process is repeated to get*
2x , and so on. Termination

occurs after p − 2 iterations at which time all p clusters are fixed in the sets CA and CB;

the resulting solution is exactly the same as xB. The path generated from xA to xB is as

follows.

xA � � *
2x � … *

2px − � xB *
1x

40

Finally, let { }*
*argmax () : 1,..., 2kC

x TEW x k p= = −

be the best solution found

along this path. If TEW(*C
x) > max{TEW(xA), TEW(xB)}, then it is stored and after all

pairs of elements in Selite are examined, it is inserted into Selite. If the capacity bounds are

tight, it is possible that no feasible solution will be discovered between xA to xB. In that

case, PR fails for xA and xB, and the next pair is examined.

 An example of path generation based on the graph in Figure 3.2 is given in Figure

3.8. The nodes are to be partitioned into three clusters with Cmin = 3, Cmax = 5 and w4 = 3,

w3 = 2 and wi = 1, i ∈ {1,2,5,6,7,8,9}. Assume that xA is {{1, 7, 8}, {2, 9, 4}, {3, 5, 6}}

with objective function value φA = 15 and that xB is {{1, 4, 7}, {2, 5, 6}, {3, 8, 9}} with

φB = 12. Starting with CA = � and CB = �, the goal is to generate a path from xA to xB. At

Step 1 the clusters most similar with respect to solutions xA and xB are kA = 1 and sB = 1

with S(kA, sB) = 6. Node 8 in 1()AV x is removed and inserted into 2()AV x while node 4 in

2()AV x is shifted to 1()AV x . Call the transformed solution xC, and note that cluster 1 in xC

is exactly the same as cluster 1 in xB; that is, 1()CV x = 1()BV x .

Next, the constant sets are updated giving CA = {1} and CB = {1}, and a local

search is performed on xC, which results in an improved solution xC*. At the next step,

the most similar clusters with respect to xC* and xB are determined to be kC* = 2 and sB = 3.

The sets CA and CB are now {1, 2} and {1, 3}, respectively. To make cluster 2 in xC* the

same as cluster 3 in xB, node 6 is selected and placed in *3()
C

V x while and node 3 is

shifted to *2()
C

V x . The resulting solution is exactly the same as xB.

Figure 3.8 An example of path generation

φC* = 20
kC* = 2
sB = 3
CA = {1,2}
CB = {1,3}

φC = 14
CA = {1}
CB = {1}

φA = 15
kA = 1
sB = 1
CA = �
CB = �

 1, 7, 8

2, 9, 4

3, 5, 6

 1, 4, 7

2, 9, 8

3, 5, 6

 1, 4, 7

6, 8, 9

2, 3, 5

 1, 4, 7

2, 5, 6

3, 8, 9

xA xC xC* xB

41

 The best solution found along the path is*C
x with φC* = TEW = 20. Since φC* > φA

and φC* > φB, xC* is outputted and stored for possible insertion into Selite. The pseudocode

for path generation is shown in Figure 3.9. In our implementation, | Selite | is set to 20.

For each pair of solutions xA ∈ Selite and xB ∈ Selite, two paths are generated, the first

starting from xA and approaching xB and the second taking the reverse course. For a given

Selite, the total number of paths is O(|Selite |2). When Selite becomes stable the best solution

found up to that point is output.

 A potentially inefficient aspect of PR is the application of local search to each

solution encountered along a path. Empirically, we found that a complete local search

(CLS) strategy may affect the solution quality only locally within the same basin of

attraction. In addition, the current solution may have been uncovered previously so

applying local search a second time is wasteful. One way to reduce the computational

effort is to apply local search only after encountering nPR solutions along a path, where

nPR is a parameter adjusted according to the solution quality. This strategy is referred to

as partial local search (PLS) to distinguish from CLS. For p clusters, nPR ∈ {1, 2,…,

p−2}, where nPR = 1 indicates that local search is applied to each solution in the path, nPR

= 2 indicates that it is applied to every second solution, and so on. Note that there are at

most p solutions along a path including the initiating solution and the guiding solution.

Because both of these are already locally optimal, nPR ≤ p−2.

 The value of nPR is randomly selected at the beginning of each path. The

probability function used for this purpose is based on a performance measure Pi(n
PR),

which is defined as the average objective function value over a path when the frequency

of applying local search was nPR; that is,

PFi(n
PR) = { } { }PR PR

1 1

mod mod
i iN N

ij
j j

I j n A I j n
= =

∑ ∑

where i is the index for path, Ni is the number of solutions discovered along path i, j is

the index for the solutions discovered on a path, Aij is the objective value of the jth

solution discovered on path i and { }PRmodI j n is a Boolean indicator function equals to

1 when (j mod nPR) = 0 (i.e., <true>) and 0 otherwise. The summation { }PR

1
modiN

j
I j n

=∑

42

counts the total number of times local search is applied while exploring path i. If nPR is

not selected for path i, then Pi(n
PR) = 0.

Next, we compute the accumulated performance, denoted by AP(nPR), for a

particular value of nPR by summing over all the paths already generated.

 AP(nPR) = PR

1

()
curn

i
i

P n
=
∑

Here, ncur is the number of paths that have been explored up to and including the current

path.

At the beginning of PR, the probability p(nPR) of selecting a particular value of

nPR ∈ {1, 2,…, p−2} is assigned a uniform distribution; that is,

 p(nPR) = 1/(p−2)

After exploring a path, this function is updated as follows.

 p(nPR) =
PR

2
PR PR

1

() ()
p

n

AP n AP n
−

=
∑

Thus, values of nPR corresponding to higher accumulated performance will have a higher

probability of being selected.

Procedure: path_generation(w, c, Cmin, Cmax, nPR, xA, xB, x*)

Input: node weights vector w, edge weights matrix c, capacity bounds Cmin and Cmax, PLS

parameter nPR, initiating solution xA, guiding solution xB

Output: best solution x*found along the path from xA to xB

Step 1: CA = �; CB = �; TEW* = − ∞; r = 1;

Step 2: while (xA is not the same as xB) {

 (kA, sB) = argmax{S(k, s) : k, s ∈ {1,…,p}};

 make ()
Ak AV x the same as ()

Bs BV x by inserting and removing nodes so that

xA becomes xr;

 // keeping the clusters k ∈ CA constant, if the PLS condition is satisfied

then apply local search to xr in an attempt to obtain a better solution*
rx

 if (r mode nPR + 1 equals to 0) {

 call N1(xr, w, c, 0, Cmin, Cmax, x); xr
 = x;

 call N2(xr, w, c, 0, Cmin, Cmax, x); xr
 = x;

43

 call N3(xr, w, c, 0, Cmin, Cmax, *
rx);

 }
 if (TEW(*

rx) > TEW*) {

 TEW* = TEW(*
rx); x* = *

rx ;
 }
 xA = *

rx ; r � r + 1;

 }

Figure 3.9 Pseudocode for path generation

3.3 Computational Results

The proposed methodology was implemented in C++ and run under Ubuntu Linux on a

Dell Poweredge 2950 workstation with 2 dual core hyperthreading 3.73 GHz Xeon

processors and 8 GB memory. In the testing, model (2a) − (2f) was solved, both

heuristically with the reactive GRASP and directly with CPLEX 11.0 when possible. A

comparison of the results gives insight in the quality of the GRASP solutions as well as

the limits of CPLEX.

The following settings were used for the GRASP.

• Both HWE and CMC schemes were applied in phase I to construct partial initial

solutions but in separate runs to allow for comparison

• Initial value of diversification parameter: β = 0.01 with ∆ = 0.002 in phase II

• Three options were examined for local search: (1) CNS; (2) VND; (3) RVND

• Number of GRASP iterations: NGRASP = 5 × ntest with ntest being the number of

nodes in the tests (experience has shown that the best solution is most often

uncovered within the first 150 GRASP iterations; e.g., see Rojanasoonthon and

Bard 2005)

• In PR, the maximum number of iterations is NPR = 50, the number of elite

solutions maintained is | Selite | = 20

After some experimentation, the following settings were used for CPLEX.

• Cut generators off

• Emphasis of feasibility over optimality

• Optimality tolerance EpOpt = 1E−04.

44

• Default frequency for MIP heuristics

In the experiments, the methodology was tested on three data sets. The first

contained relatively small instances that were randomly generated based on data provided

by the USPS. A single seed was used for each instance. The second contained instances

that reflected the full USPS problem. The third were obtained from Mehrotra and Trick

(1998). In the next section, we outline the USPS application and describe how the node

and edge weights were specified.

3.3.1 USPS application related to clustering control points

The cost of running a mail processing and distribution center (P&DC) is determined in

part by the size and composition of the workforce. One of management’s goals is to use

as few powered industrial vehicles (PIVs) or drivers as possible to move the mail

between workcenters, so restricting the number of control points (workcenters) that a

driver can service would be suboptimal. However, to facilitate supervision and to avoid

violating union rules, control points are first clustered into zones and then the minimum

number of PIVs required to service each zone is determined. In the clustering step, it is

necessary to take into account such factors as distance between nodes and transfer

frequencies. Two nodes are likely to be grouped together if they are directly linked in the

process flow, are relatively close to each other, and one is a frequent terminal point of the

other.

In the clustering model, it is necessary to specify a measure that numerically

captures these characteristics. Such a measure can be viewed as the edge weights, cij,

connecting pairs of nodes i and j in a directional graph. For the test cases, we used the

following formula to determine these weights.

 cij = max
ij ji

ij

f f
d

d

+
×

The parameter fij in this equation denotes the frequency of travel from node i to node j

over the planning horizon The numerator represents the traffic intensity, the denominator,

dij, the length of edge (i,j), and the parameter dmax the maximum edge length in the graph,

that is, dmax = max{dij : (i,j) ∈ E}. This value is used to normalize the distance dij. If the

demand between two nodes i and j is high and they are close together, then the

45

corresponding edge weight will have a relatively high value so the two nodes would

likely be in the same optimal partition.

 P&DCs typically have between 80 and 90 control points, each of equal weight

from management’s point of view, so we set wi = 1, ∀ i ∈ V. In the planning stage, the

number of clusters is specified by the facility manager taking into account the daily

volume, the building’s footprint, the equipment layout, and the various components of the

material handling system. In addition to PIVs, which consist of tugs and forklifts,

facilities use fixed conveyers, rolling carts, and an assortment of other mechanisms for

material handling. Mathematically, the problem is equivalent to model (2).

3.3.2 Random test instances

Instances of practical size cannot be solved optimally with commercial codes so to test

our methodology, we randomly generated a series of data sets based on the characteristics

of the Chicago P&DC. This involved the following steps.

(1) Let V be the set of control points in the original P&DC data set and let E be the

corresponding set of edges. Define the density γ of the underlying graph as

 γ = CE E

where |EC| is the number of edges when the graph is completely connected. For

the given data, the density γ is approximately 0.1626. Also, let cmax and cmin be the

maximum and minimum edge weights, respectively; that is, cmax = max{cij, (i, j) ∈

E} and cmin = min{cij, (i, j) ∈ E}.

(2) Randomly select ntest nodes from the original P&DC data set. Let Vtest be the

corresponding set of nodes and fix wi = 1, ∀ i ∈ Vtest. The number of edges in the

completely connected test graph is test test test
C (1) 2E n n= − .

(3) Define m = ()test test
C2 E nγ⋅ ⋅ . The product test

CEγ ⋅

is the number of edges in the

test graph that should be generated to maintain the same density, and m is the

average number of edges incident to each node in the test graph. In our procedure

we aim for m   rather than m incident edges. For example, if ntest = 25 and γ =

46

0.1626, then test
CE = 300 and m   = 3.9   = 3, which means that on average

each node is connected to 3 other nodes.

(4) Let Etest be the edge set of the test instance, where initially, Etest = �. For each

node i ∈ Vtest, let Ni be the set of nodes already connected to i and to begin, set Ni

= �. If |Ni| ≥ m   − 1, go to next node i in Vtest. Otherwise, let pj, ∀ j ∈ Vtest \ Ni, j

≠ i, be the probability for a node j to be connected to node i. This probability is

computed as the ratio of the remaining number of nodes to be connected to i

divided by the number of unassigned nodes: () ()test| | | | 1j i ip m N n N= − − −   .

If j is selected, Ni ← Ni 	 { j}, Etest ← Etest 	 {(i, j)}. The edge weight cij is

uniformly generated from the interval [cmin, cmax].

3.3.3 Comparison of GRASP and PR with CPLEX

In the first experiments, we compared the reactive GRASP to CPLEX using the different

phase I and phase II options for instances with ntest = 30 nodes and p = 5 clusters. Ten

instances were randomly generated in accordance with the above scheme with bounds

Cmin = 5 and Cmax = 8. The model was built with CPLEX 11.0 Concert Technology

version 25 and contained 2330 variables and 4386 constraints. The number of GRASP

iterations was set to NGRASP = 5 × ntest = 150, and was followed by PR in all cases with

either CLS or PLS. Finally, a 3600 sec time limit was placed on all CPLEX runs.

 The results are summarized in Table 3.4. The second column lists the density of

the realized graph, γtest = test test
CE E . The third and fourth columns give the results for

the two combinations (HWE, CNS) and (CMC, CNS). The upper row values report the

best solutions found by GRASP for the corresponding pair. The lower values in

parentheses report the iteration number at which the best solutions were first discovered.

Columns 5 and 6 give equivalent results for (HWE, VND) and (CMC, VND), while

columns 7 and 8 report the results for (HWE, RVND) and (CMC, RVND). With the

exception of problem no. 3 for combination (CMC, RVND), GRASP found identical

solutions with the various phase I and phase II options. Average runtimes, tavg, over the

six scenarios are given in column 9.

47

The results from PR with CLS are reported in columns 10 and 11 while the results

from PR with PLS are reported in columns 12 and 13. It can be seen that PLS achieves

the same solutions as CLS but is less time with the exception of problem no. 8. Other

than for problem no. 3, PR could not improve the GRASP solutions since they are

optimal. This is confirmed by the results from CPLEX given in columns 14 and 15. The

last column provides the gap between the PR solution and the CPLEX solution, [(φPR −

φCPLEX) /φCPLEX] × 100%, which is zero for all cases.

Table 3.5, which is derived from Table 3.4, compares the average performance of

the six phase I – phase II combinations. For j = 1,…,6, let j = 1 indicate (HWE, CNS), j

= 2 indicate (HWE, VND), j = 3 indicate (HWE, RVND), j = 4 indicate (CMC, CNS), j

= 5 indicate (CMC, VND), and j = 6 indicate (CMC, RVND). Define the average error ej

for combination j as follows

()
test

test
1

1
100% , 1,...,6

N
PR GRASP PR

j ij i i
i

e j
N

φ φ φ
=

 = − × ∀ = ∑

where Ntest = 10 is the number of instances, GRASP
ijφ is the best solution found by GRASP

only with combination j for instance i, and CPLEX
iφ is the best solution found by CPLEX

for the instance. The average error ej measures the improvement from PR over the

GRASP solutions in all instances for combination j. The higher ej , the more

improvement attained with PR.

The second column in Table 3.5 shows the average number of iterations needed to

obtain the best solution for (HWE, CNS) and (CMC, CNS), respectively. The values

were calculated by averaging the number of iterations inside parentheses in column three

for (HWE, CNS) and column four for (CMC, CNS) in Table 3.4. The third column gives

the average errors of (HWE, CNS) and (CMC, CNS), respectively. The next columns

report the same statistics for the remaining combinations. As mentioned, GRASP found

the optimal solutions with ej = 0.00, ∀ j = 1,…,5 except for the last combination (CMC,

RVND), e6 = 0.02.

Applying HWE in phase I required a greater number of iterations on average than

CMC to find the best solutions no matter which option was applied in phase II. When the

48

phase I option was fixed, VND required more iterations than its two counterparts, which

performed equally well.

The second set of initial experiments was performed on a 40-node graph for p = 5

clusters with bounds Cmin = 5 and Cmax = 9. Model (2) contained 4105 variables and

7846 constraints for each of the 10 instances investigated, and NGRASP = 200 iterations.

Once again, all instances were generated randomly from the USPS data.

The results are summarized in Table 3.6. All the GRASP − PR runs consumed

much less time than CPLEX as can be seen in columns 9, 11 and 13. For problem nos. 1,

3, 4, 5, 7 and 8, CPLEX converged to the optimum; for the remaining instances the 1-

hour time limit was reached before optimality could be confirmed. For the GRASP, PR

improved the phase II solutions in some cases, especially when VND was applied. In all

cases, CLS and PLS achieved identical solutions but PLS required slightly less time. In

addition, GRASP with PR invariably provided equivalent or better solutions than CPLEX

in much less of time.

The average performance of the phase I – phase II combinations for the 40-node

instances is reported in Table 3.7. For a given phase I option, RVND required the least

number of iterations, followed by CNS and then VND. In addition, the average error was

highest for VND, while the errors for CNS and RVND were roughly the same. When

either CNS or VND was applied in phase II there was little difference with respect to

HWE and CMC. However, when RVND was applied, CMC required 37% fewer

iterations than HWE on average.

The third set of initial experiments was performed on a 50-node graph with p = 5,

Cmin = 5 and Cmax = 12. The optimization model contained 6380 variables and 12306

constraints, while the number of GRASP iterations NGRASP = 250. Again, ten instances

were randomly generated from the original USPS data following the aforementioned

scheme.

The results are reported in Table 3.8. All of the GRASP runs finished within 10

sec while the PR runs finished within 30 sec. In all cases, the PR solutions were better

than those provided by CPLEX except for problem no. 5 where they were identical. Note

that CPLEX was never able to converge but always found feasible solutions within the

allotted time.

49

Table 3.4 Computational results from GRASP and CPLEX for ntest = 30, p = 5, Cmin = 5 and Cmax = 8

Prob
no. γtest

GRASP CPLEX

Opt
 gap
(%)

GRASP solution PR solution Best
solution
found

Time
(sec)

CNS VND RVND tavg

(sec)
PR+CLS

best
tavg

(sec)
PR+PLS

best
tavg

(sec) HWE CMC HWE CMC HWE CMC
1 0.1908 618.97

(1)
618.97
(12)

618.97
(7)

618.97
(12)

618.97
(12)

618.97
(11)

1 618.97 5 618.97 3 618.97 10 0.00

2 0.1977 691.49
(27)

691.49
(2)

691.49
(26)

691.49
(15)

691.49
(16)

691.49
(19)

1 691.49 4 691.49 3 691.49 35 0.00

3 0.1747 667.09
(18)

667.09
(3)

667.09
(18)

667.09
(3)

667.09
(3)

665.48
(7)

1 667.09

4 667.09

3 667.09 21 0.00

4 0.1839 680.54
(6)

680.54
(12)

680.54
(37)

680.54
(17)

680.54
(1)

680.54
(14)

1 680.54

4 680.54

4 680.54 13 0.00

5 0.1609 569.67
(3)

569.67
(8)

569.67
(3)

569.67
(1)

569.67
(34)

569.67
(6)

1 569.67

7 569.67

2 569.67 18 0.00

6 0.1793 642.67
(5)

642.67
(1)

642.67
(3)

642.67
(8)

642.67
(4)

642.67
(1)

1 642.67

4 642.67

1 642.67 29 0.00

7 0.1678 618.25 618.25 618.25 618.25 618.25 618.25 1 618.25 3 618.25 3 618.25 6 0.00
 (5) (1) (15) (11) (22) (8)
8 0.1609 628.91 628.91 628.91 628.91 628.91 628.91 1 628.91 2 628.91 4 628.91 7 0.00
 (1) (19) (3) (10) (4) (2)
9 0.1540 544.62 544.62 544.62 544.62 544.62 544.62 1 544.62 3 544.62 1 544.62 5 0.00
 (38) (13) (52) (74) (21) (2)

10 0.1609 598.66 598.66 598.66 598.66 598.66 598.66 1 598.66 4 598.66 2 598.66 4 0.00
 (3) (14) (6) (5) (4) (2)

50

Table 3.5 Average performance for different phase I and phase II combinations with ntest
= 30, p = 5, Cmin = 5 and Cmax = 8

Phase I

Phase II
CNS VND RVND

Avg.
number
of iter.

Avg.
error

ej
(%)

Avg.
number
of iter.

Avg.
error

ej
(%)

Avg.
number
of iter.

Avg.
error

ej
(%)

HWE 10.7 0.00 17.0 0.00 12.1 0.00
CMC 8.5 0.00 15.6 0.00 7.2 0.02

The average performance of GRASP is reported in Table 3.9 for the 50-node instances.

The average error ej > 0, j = 1,…,6, which means that PR found improved solutions for

all combinations. When the phase I option was fixed, VND had the highest error,

followed by CNS and RVND. For CNS and VND in phase II, the errors from HWE and

CMC were nearly identical. When RVND was applied, the error from HWE was less

than half of the error from CMC. With respect to the average number of iterations, VND

and RVND performed equally well, while CNS required the least number of iterations no

matter which option was used in phase I.

 In the fourth set of initial experiments we investigated the performance of GRASP

and PR as the number of clusters p was varied from 2 to 10 for the same 30-node graph

associated with problem no. 1 in Table 3.4. The bounds were set to be Cmin = 2 and Cmax

= 15 to reduce their effect on the computations. The results were reported in Table 3.10

and were similar to those already discussed. In all cases, the optimal solution was found

by GRASP and CPLEX, but runtimes differed markedly. GRASP with PR were quite

stable no matter which combination was used but CPLEX had increasing difficulty as the

number of clusters increased.

 In the fifth set of initial experiments, a parametric analysis was performed on the

bounds for p = 5 fixed. The bounds [Cmin, Cmax] were initially set to [2, 10] and then

modified in even steps to reach [6, 6]. The results were reported in Table 3.11. For all

runs, GRASP with PR was able to find the same optimum obtained by CPLEX but in

considerably less time. Similar to the fourth set of experiments, the performance of

GRASP was insensitive to the bounds while CPLEX had more difficulty as the range

shrank.

51

Table 3.6 Computational results from GRASP and CPLEX for ntest = 40, p = 5, Cmin = 5 and Cmax = 9

Prob
no. γtest

GRASP CPLEX

Opt
 gap
(%)

GRASP solution PR solution Best
solution
found

Time
(sec)

CNS VND RVND tavg
(sec)

PR+CLS
best

tavg
(sec)

PR+PLS
best

tavg
(sec) HWE CMC HWE CMC HWE CMC

1 0.1782 1043.77
(2)

1043.77
(13)

1043.77
(41)

1043.77
(4)

1043.77
(17)

1043.77
(15)

1 1043.77 10 1043.77 9 1043.77 693 0.00

2 0.2013 1127.87
(72)

1127.83
(15)

1127.87
(16)

1127.87
(1)

1127.87
(11)

1127.87
(45)

1 1127.87 10 1127.87 7 1127.87 3600 0.00

3 0.1923 1169.84
(14)

1169.84
(29)

1169.84
(182)

1158.21
(54)

1169.84
(44)

1169.84
(8)

1 1169.84

16 1169.84 7 1169.84 3260 0.00

4 0.1910 1148.93
(73)

1148.93
(42)

1148.93
(144)

1148.93
(155)

1148.93
(121)

1148.93
(20)

1 1148.93

9 1148.93 7 1148.93 1073 0.00

5 0.2026 1124.71
(104)

1125.80
(128)

1125.80
(46)

1125.80
(52)

1125.80
(10)

1125.80
(47)

3 1125.80

11 1125.80 8 1125.80 518 0.00

6 0.2090 1154.98
(77)

1158.93
(60)

1158.93
(134)

1158.93
(73)

1158.93
(145)

1158.93
(37)

4 1158.93

13 1158.93 11 1154.98 3600 0.34

7 0.1872 1065.31 1065.31 1059.64 1062.86 1065.31 1064.30 1 1065.31 9 1065.31 9 1065.31 1420 0.00
 (7) (61) (120) (191) (12) (23)
8 0.1846 1166.05 1166.05 1166.05 1166.05 1166.05 1166.05 1 1166.05 13 1166.05 9 1166.05 702 0.00
 (11) (41) (11) (79) (2) (31)
9 0.1833 1096.67 1096.67 1096.67 1096.67 1096.67 1096.67 1 1096.67 7 1096.67 5 1096.67 3600 0.00
 (44) (13) (36) (16) (6) (15)

10 0.1846 1150.02 1150.02 1150.02 1150.02 1150.02 1150.02 1 1150.02 10 1150.02 8 1150.02 3600 0.00
 (6) (30) (6) (9) (14) (7)

52

Table 3.7 Average performance for different phase I and phase II combinations with ntest
= 40, p = 5, Cmin = 5 and Cmax = 9

Phase I

Phase II
CNS VND RVND

Avg.
number
of iter.

Avg.
error

ej
(%)

Avg.
number
of iter.

Avg.
error

ej
(%)

Avg.
number
of iter.

Avg.
error

ej
(%)

HWE 41.0 0.01 73.6 0.05 38.2 0.00
CMC 43.2 0.00 63.4 0.12 24.8 0.01

3.3.4 Application of GRASP and PR to the complete USPS dataset

In the second set of tests, we applied GRASP with PR using PLS to the full USPS dataset,

which has 82 nodes and 540 edges (i.e., testV = 82 and testE = 540). The bounds were

set as follows: Cmin = 10 and Cmax = 20. The goal was to investigate the six combinations

of phase I and phase II options for a range of p values. In each run, the number of

GRASP iterations NGRASP = 410.

The results are reported in Table 3.12 for p ∈ {5, 6, 7, 8}. The first column gives

the number of clusters p. The second column indicates the options used for GRASP. The

third column, φbest, is the best solution found by GRASP and PR. The fourth column

indicates the improvement achieved by PR. In column 5, the value ibest denotes the

iteration at which the best solution was first found by GRASP. If ibest = NGRASP, the best

solution was found by PR. The column labeled tbest reports the amount of time spent to

find the best solutions while the column toverall gives the combined runtime of GRASP

and PR. For problems with 5, 6 or 8 clusters, the same objective function values were

found for all six options. For p = 7, the best solutions were found under different

combinations. In 12 out of the 18 instances associated with the datasets for p = 5, 7, 8

clusters, PR improved the GRASP solutions by up to 1.15%; for p = 6, PR offered no

improvement. In all cases, runtimes were well under 200 sec.

53

Table 3.8 Computational results from GRASP and CPLEX for ntest = 50, p = 5, Cmin = 5 and Cmax = 12

Prob
no. γtest

GRASP CPLEX

Opt
 gap
(%)

GRASP solution PR solution Best
solution
found

Time
(sec)

CNS VND RVND tavg
(sec)

PR+CLS
best

tavg
(sec)

PR+PLS
best

tavg
(sec) HWE CMC HWE CMC HWE CMC

1 0.1845 1639.22
(59)

1634.33
(5)

1631.77
(244)

1633.35
(155)

1639.22
(39)

1639.22
(30)

1 1639.22 20 1639.22 19 1602.56 3600 2.29

2 0.1869 1685.68
(176)

1685.68
(98)

1685.68
(27)

1685.68
(40)

1685.68
(139)

1685.68
(11)

5 1685.68 11 1658.68 18 1646.34 3600 2.39

3 0.1714 1560.56
(155)

1550.17
(80)

1549.55
(143)

1550.17
(37)

1560.56
(43)

1556.19
(238)

5 1560.56

25 1560.56 12 1491.93 3600 4.60

4 0.1706 1677.50
(4)

1679.90
(29)

1678.02
(20)

1678.02
(125)

1679.90
(67)

1679.90
(7)

7 1679.90

29 1679.90 32 1647.10 3600 1.99

5 0.1665 1637.83
(4)

1640.17
(90)

1640.17
(32)

1640.17
(180)

1640.17
(67)

1640.17
(198)

7 1640.17

23 1640.17 13 1640.17 3600 0.00

6 0.1837 1658.19
(55)

1662.09
(203)

1658.19
(148)

1658.19
(37)

1662.09
(212)

1658.43
(246)

2 1662.09

20 1658.19 10 1615.09 3600 2.91

7 0.1796 1670.81 1670.81 1669.95 1670.81 1670.81 1670.81 1 1670.81 12 1670.81 9 1624.56 3600 2.85
 (47) (182) (161) (103) (56) (169)
8 0.1682 1640.90 1646.57 1644.53 1646.57 1646.57 1646.57 7 1651.09 25 1651.09 11 1594.65 3600 3.54
 (57) (104) (63) (160) (206) (144)
9 0.1641 1648.39 1648.39 1648.39 1648.39 1648.39 1648.39 1 1648.39 11 1648.39 12 1643.22 3600 0.31
 (12) (66) (175) (204) (29) (42)

10 0.1747 1690.22 1690.22 1690.22 1671.89 1690.22 1690.22 2 1690.22 21 1690.22 13 1650.11 3600 2.43
 (60) (22) (72) (67) (207) (25)

54

Table 3.9 Average performance for different phase I and phase II combinations with ntest
= 50, p = 5, Cmin = 5 and Cmax = 12

Phase I

Phase II
CNS VND RVND

Avg.
number
of iter.

Avg.
error

ej
(%)

Avg.
number
of iter.

Avg.
error

ej
(%)

Avg.
number
of iter.

Avg.
error

ej
(%)

HWE 62.9 0.11 108.5 0.20 106.5 0.03
CMC 87.9 0.12 110.8 0.27 111.0 0.08

3.3.5 GRASP performance on the benchmark problems

In the final set of experiments, GRASP with PR was applied to a set of six benchmark

instances with known optimal values. The datasets were provided by Mehrotra and Trick

(1998) who solved each of them on a DEC ALPHA 3000 (Model 300) workstation with

150 MHz Alpha 21064 CPU using CPLEX 2.1 as the linear programming solver. The

largest dataset contains 61 nodes and 187 edges. In their runs the number of clusters was

not specified, so to duplicate that scenario, we set p = 12, a high enough value to ensure

that we would always have a sufficient number of clusters.

The results for option (HWE, RVND) with PR and PLS activated are reported in

Table 3.13 along with the optimal solutions for two sets of runs, the first with Cmin = 0,

Cmax = 450 and the second with Cmin = 0, Cmax = 512. The number of iterations, NGRASP,

was set to 250 in all cases. Our best solutions φbest are given in columns 4 and 10, the

iteration number at which the best solution ibest was first encountered is given in columns

5 and 11, the corresponding runtimes tbest are given in columns 6 and 12, and the total

runtimes toverall are given in columns 7 and 13.

From the table, we can see that our methodology finds the exact optimum in all

cases except the last in considerably less time than reported by Mehrotra and Trick. This,

of course, is not surprising since we are using a much faster machine. Scaling runtimes,

however, indicates that their algorithm is competitive with ours and so may be preferred

for instances of the size investigated their study since it guarantees optimality.

Nevertheless, it is difficult to compare performance of exact and heuristic methodologies,

especially across different platforms. To a large extent the computational effort of any

metaheuristic such as GRASP is proportional to the number of iterations, NGRASP here,

55

specified at the outset. A final point about the results is that PR only improved the

GRASP solution for the largest instance.

56

Table 3.10 Computational results from GRASP and CPLEX for ntest = 30, Cmin = 2 and Cmax = 15

Number
of

clusters
p

GRASP CPLEX

Optimality
gap
(%)

GRASP soln PR soln Best
soln

found
Time
(sec)

CNS VND RVND Time
(sec)

PR
optimum

Time
(sec) HWE CMC HWE CMC HWE CMC

2 824.26
(5)

824.26
(1)

824.26
(5)

824.26
(1)

824.26
(8)

824.26
(1)

< 1 824.26 < 1 824.26 < 1 0.00

3 797.22
(2)

797.22
(11)

797.22
(5)

797.22
(11)

797.22
(3)

797.22
(6)

< 1 797.22 1 797.22 < 1 0.00

4 769.15
(1)

769.15
(1)

769.15
(12)

769.15
(45)

769.15
(2)

769.15
(1)

< 1 769.15

1 769.16 3 0.00

5 734.15
(12)

734.15
(68)

730.01
(75)

730.71
(111)

734.15
(81)

733.85
(17)

< 1 734.15

2 734.15 9 0.00

6 709.38
(12)

709.38
(30)

709.38
(10)

709.38
(24)

709.38
(31)

709.38
(10)

1 709.38

2 709.38 24 0.00

7 685.51
(1)

685.51
(19)

685.51
(46)

685.51
(2)

685.51
(8)

685.51
(9)

< 1 685.51

1 685.51 48 0.00

8 655.70 655.70 655.70 655.70 655.70 655.70 < 1 655.70 1 655.70 59 0.00
 (27) (1) (21) (64) (7) (1)
9 611.23 611.23 611.23 603.96 611.23 611.23 < 1 611.23 1 611.23 627 0.00
 (4) (27) (1) (125) (6) (31)

10 549.02 549.02 549.02 538.07 549.02 549.02 < 1 549.02 3 549.02 700 0.00
 (65) (21) (54) (32) (16) (22)

57

Table 3.11 Computational results from GRASP and CPLEX for ntest = 30, p = 5

Capacity
 lower
bound
Cmin

Capacity
 upper
bound
Cmax

GRASP CPLEX

Optimality
gap
(%)

GRASP soln PR soln Best
soln

found
Time
(sec)

CNS VND RVND Time
(sec)

PR
optimum

Time
(sec) HWE CMC HWE CMC HWE CMC

2 10 679.76
(50)

673.61
(80)

672.34
(22)

679.76
(64)

679.76
(11)

679.76
(20)

1 679.76

4 679.76

11 0.00

3 9 654.50
(126)

654.50
(32)

647.12
(28)

654.50
(150)

654.50
(14)

654.50
(11)

< 1 654.50

5 654.50

12 0.00

4 8 628.73
(1)

628.73
(12)

628.73
(1)

628.73
(8)

628.73
(10)

628.73
(13)

< 1 628.73

4 628.73

31 0.00

5 7 603.34
(28)

603.34
(15)

603.34
(38)

603.34
(15)

603.34
(11)

603.34
(10)

< 1 603.34

5 603.34

66 0.00

6 6 582.37 582.37 585.28 582.37 582.37 582.37 < 1 585.28 4 585.28 70 0.00
 (113) (36) (123) (99) (22) (48)

58

Table 3.12 Computational results from GRASP and PR with PLS for complete USPS
dataset with ntest = 82, Cmin = 10 and Cmax = 20

No. of
clusters

p Phase I Phase II

GRASP & PR+PLS

φbest

PR
Impr.
(%) ibest

tbest
(sec)

toverall
(sec)

5 HWE CNS 1577.03 0.00 116 22 99
 HWE VND 1577.03 0.02 410* 69 127
 HWE RVND 1577.03 0.02 264 57 135
 CMC CNS 1577.03 0.00 41 6 93
 CMC VND 1577.03 0.00 410* 70 96
 CMC RVND 1577.03 0.00 18 5 113
6 HWE CNS 1540.76 0.00 228 34 91
 HWE VND 1540.76 0.00 185 27 79
 HWE RVND 1540.76 0.00 228 52 140
 CMC CNS 1540.76 0.00 44 7 91
 CMC VND 1540.76 0.00 3 1 83
 CMC RVND 1540.76 0.00 64 15 112
7 HWE CNS 1371.57 1.15 410* 91 104
 HWE VND 1367.32 1.02 410* 64 89
 HWE RVND 1371.57 1.15 410* 89 158
 CMC CNS 1371.57 0.99 410* 107 138
 CMC VND 1371.57 0.31 410* 55 88
 CMC RVND 1355.97 0.00 92 17 142
8 HWE CNS 1148.66 0.36 410* 80 121
 HWE VND 1148.66 0.52 410* 96 120
 HWE RVND 1148.66 0.64 410* 85 126
 CMC CNS 1148.66 0.00 227 34 80
 CMC VND 1148.66 0.26 410* 62 88
 CMC RVND 1148.66 0.13 410* 74 117

*For these instances, the best solution was found by PR in the post-processing stage after
410 GRASP iterations.

59

Table 3.13 GRASP performance on benchmark problem

Graph |V| |E|

Cmin = 0, Cmax = 450 Cmin = 0, Cmax = 512

GRASP & PR+PLS
Mehrotra
& Trick GRASP & PR+PLS

Mehrotra
& Trick

φbest ibest
tbest

(sec)
toverall
(sec) Soln

Time
(sec) φbest ibest

tbest
(sec)

toverall
(sec) Soln

Time
(sec)

1 45 98 2928 13 1 21 2928 46.9 3238 5 < 1 29 3238 79.5
2 30 56 1642 7 1 6 1642 3.0 1748 3 < 1 5 1748 3.3
3 47 101 3569 27 1 23 3569 139.5 3960 6 < 1 33 3960 115.8
4 47 99 1837 2 < 1 32 1837 201.7 1993 4 < 1 32 1993 438.4
5 30 47 1099 2 < 1 9 1099 2.5 1174 1 < 1 8 1174 3.0
6 61 187 22,216 250* 26 84 22,216 352.4 23,552 56 6 77 23,564 394.4

*Best solution was found by PR in the post-processing stage after 250 GRASP iterations.

60

3.4 Further Discussion

The reactive GRASP presented in this chapter was designed to find high quality solutions

to the p-capacitated clustering problem. In phase I, two efficient approaches (HWE and

CMC) are presented for constructing partial initial solutions, and a dynamic restricted

candidate list is proposed to then obtain feasible solutions. In the improvement phase,

three neighborhoods, i.e., CNS, VND and RVND, are considered for the local search. In

a post-processing step, PR is applied to overcome local optimality and to attempt to

uncover even better solutions. Both CLS and PLS are implemented with PR. All

components of the methodology were extensively tested on a number of instances of

practical size. According to the results, HWE and CMC were comparable when

combined with CNS in VND, while HWE combined with RVND gave the best overall

performance. However, the runtimes of the latter pair where slightly above the runtimes

of the other combinations. During PR, PLS and CLS provide similar results with the

latter being a bit more efficient.

In all instances tested, GRASP provided the same or better solutions than CPLEX.

These results offer some assurance that GRASP can find high quality solutions when

optimality cannot be established. As the number of nodes, edges, and clusters increase,

the difficulty in solving model (2) optimally increases as well, often exponentially. For

the 50-node, 5-cluster instances, CPLEX failed to converge within the imposed 1-hour

time limited so we cannot be sure that the solutions found by our methodology are

optimal. Nevertheless, that fact that we were able to optimally solve all the benchmark

problems, further attests to its effectiveness.

With respect to path relinking, we can confirm the mixed results reported by

others such as Boudia et al. (2006) who have performed similar analyses. For relatively

small problem instances, PR offered no advantage here since GRASP was able to find the

optimum without it. For larger instances, including the USPS application and some of

the benchmark datasets, post-processing the GRASP solutions led to slightly better

objective function values. However, the improvement was rarely significant, so it is

arguable whether the procedure is justified even when using PLS instead of CLS.

61

Chapter 4

Chapter 4. Midterm Planning to Minimize Deviations from Daily Target Outputs in Semiconductor

Manufacturing

Midterm Planning to Minimize Deviations from Daily Target Outputs

in Semiconductor Manufacturing

 The TI fab known as DMOS6 is a mixed-signal analog wafer fab and probe

facility producing about 2000 active devices grouped into three technologies that run on

one integrated 300-mm manufacturing line (Chacon et al. 2005). To clarify terminology,

a “device” is a specific term in the Manufacturing Execution System (MES) and is

basically the same as a product. However, a few different devices may derive from the

manufacture of the same product by using slightly different operations. For example, a

product can be split into two devices such that only one has inspection steps for particle

detection, but in the end they are the same product.

Wafer starts average 20,000 per month and reflects a highly diverse product mix.

Demand can be characterized as high-mix low-volume and very complex. Although only

5% of the demand is explicitly for low volume technologies, the demand for a majority of

devices within each high volume technology may also be low volume. As a result, it is

necessary to run many different products simultaneously. This adds to the already

challenging problem of managing daily operations, which includes ensuring that

production targets are met, minimizing WIP, re-scheduling starts, reducing cycle time,

reacting to disturbances in real time, and reducing flow variability.

 At DMOS6, planning and scheduling is done hierarchically as depicted in Figure

4.1 (this is a common approach throughout the industry; e.g., see Stray et al. 2006). The

box labeled Supply Chain represents the outside world from which orders are received.

These are passed to Fab Planning where quarterly and monthly production plans are

constructed to balance customer priorities with capacity. Manufacturing Planning is

responsible for the day-to-day activities, scheduling starts over the month, setting targets

by operation for each product being manufactured, and deciding when to move WIP

between operations. Decisions at this level are made by shop floor managers and line

supervisors. Dispatch and Execution is the recipient of daily target data and is

62

responsible for ensuring that the scheduled work is carried out. Decisions at this level

fall to the equipment operators who sequence lots and form batches at the various

machine groups.

Figure 4.1 Hierarchical planning and scheduling at Texas Instruments

 By carefully monitoring system progress, line supervisors can determine whether

daily targets are being met. Oversight is facilitated with a decision support system that

tracks performance measures such as throughput, WIP, and cycle time by operation and

product. These statistics are aggregated by log point (a stage in production such as

photolithography), loop (a group of sequential operations in the process flow within a

technology) and line to allow higher-level managers to better visualize trends. At the

operations level, deviations from target values are flagged and appropriate action is taken

when a significant gap exists. This may include reconfiguring machines that do not

typically process wafers at the bottleneck operations to do so, deprioritizing some of the

work that feeds the bottlenecks, and delaying the start of certain lots.

Shop floor data are collected in real time and fed to the information network.

Differences between planned and actual WIP are calculated for each operation and passed

 ∆ to daily, monthly,

and quarterly plans

Supply Chain

Requests Commits

Monthly plans Actual daily

production

Daily targets

by operation

 Fab Planning

Manufacturing

Planning

Dispatch and Execution

63

to Manufacturing Planning who is responsible for recovering the schedule. Daily and

weekly statistics on production volumes, delays and disruptions are passed up the

hierarchy to Fab Planning to be used to refine their models. As lots flow off the line,

commitments to customers are confirmed at the Supply Chain level. Similar hierarchical

approaches have been discussed by Rivera (2003), Zäpfel and Missbauer (1993) and

others.

 The problem addressed in this chapter falls in the domain of Manufacturing

Planning. For a given number of wafer starts per day and a set of output targets by

product, the primarily goal is to develop a model that can be used to determine when to

process wafers at each operation in their routing to ensure that those targets are met. A

related use of the model is to help managers recover from disruptions.

Whether the model is used for daily planning or recover, a solution should detail

the degree to which individual targets and overall demand can be met and the level of

WIP in the system at each machine group by log point and operation. The principle

objective is to minimize the weighted sum of the deviations from the daily production

targets subject to capacity limits, predetermined inductions, product routings, and

material flow conservation. This will tend to smooth production and keep the fab

running at an even rate (or fixed percentage of capacity), a cornerstone of the lean

philosophy (Yavuz and Akcali 2007). An appropriate mix of products at different stages

of completion must be maintained at the bottleneck machines to obtain a consistent level

of output from the facility.

In the next section, the optimization model is presented and followed in Section

4.3 by a discussion of the data processing issues necessary for implementation. In

Section 4.4 the initial computational experience is highlighted, which implied a need for

further algorithmic development. Subsequently, both Lagrangian relaxation and Benders

decomposition were tried but neither proved successful. Related experience is

summarized in Section 4.5. As an alternative, a decomposition algorithm is developed

with the description in Section 4.6. This is followed in Section 4.7 by a comprehensive

set of test results based on DMOS6 data. The data has been scaled based on the original

data to avoid revealing TI’s true production. The effectiveness of the approach is

discussed and future work is described in Section 4.8.

64

4.1 Mathematical Model

Production planning in a fab can be modeled as a multicommodity dynamic network

problem. The objective of the corresponding linear program (LP) is to schedule wafer

movement so that the total deviations are minimized. The notation used in the

developments is as follows.

Indices and sets

i index for devices; i ∈ I

j index for steps in the processing of a device; j ∈ J(i) ∪ {n(i)+1}

m index for machines; m ∈ M

d index for days; d ∈ D = {1,…,nD}

t index for time periods; t = 1,…,τ

I set of devices

J(i) set of steps for device i

M set of machines

G(i, j) set of machines that can process device i at step j

D set of days in planning horizon

T set of time periods; T = {1, 2,…,τD,τD+1,τD+2, …, 2τD,.., τ}

TD set of time periods in a day; TD = {1, 2,…,τD}

Parameters and data

∆t time interval (indicates the number of minutes within a time period)

τ planning horizon (in units of periods); τ = |Τ |

τD last period in a day; τD = |TD|

n(i) number of steps in the route of device i [n(i)+1 is dummy step for device i

associated with holding finished goods inventory]

r ijm (effective) processing rate for machine m when working on device i at step j

(wafers/ min)

STARTSid number of wafer starts for device i on day d

T_OUTid target number of wafers to produce for device i on day d

1()ij tδ 0 if j = n(i)+1 and t = dτD +1 for device i; 1 otherwise

65

2
ijδ 1 if j = 1 for device i; 0 otherwise

3
ijδ 0 if j = n(i)+1for device i; 1 otherwise

4()ij tδ 1 if j = 1 and t = (d−1)τD +1 for device i; 0 otherwise

 wi
++++ (wi

−−−−) relative weight associated with a positive (negative) deviation from the target

output for device i

wmax penalty weight for the maximum deviation from the target output over the

planning horizon

Decision variables

Wij(t) number of wafers (WIP) corresponding to device i in the jth buffer (step) in its

routing at the end of time period t, ∀ i ∈ I, j ∈ J(i) ∪ { n(i)+1}, t;

W

i ,n(i)++++1
(t)

represents finished goods inventory

Rid(t) number of wafers input to the fab of device i at the beginning of time period t

on day d, ∀ i ∈ I, t ∈ T and d ∈ D

βijm(t) fraction of the time machine m is processing device i at step j in its route in

time period t, ∀ i ∈ I, j ∈ J(i), m ∈ G(i, j), t ∈ T

 ∆ id
++++ (∆ id

−−−−) positive (negative) deviation from the target output for device i on day d, ∀ i ∈ I,

d ∈ D

max∆ maximum deviation from target output over the planning horizon

Model

Minimize ∑∑
∈ ∈

−−++ ∆+∆
Ii Dd

idiidi ww)(+ wmax∆max (3a)

subject to ()
D

id
t T

R t
∈
∑ = STARTSid, ∀ i ∈ I, d ∈ D (3b)

 1()ij tδ Wij(t−1) + 2
, 1, , 1,

(, 1)

(1) ()ij i j m i j m
m G i j

t r tδ β − −
∈ −

− ∆∑ + 4()ij tδ
, /

()Di t
R t

τ 
 

 − 3
ijδ ∑

∈

∆
),(

)(
jiGm

ijmijm trtβ = Wij(t), ∀ i ∈ I, j ∈ J(i) ∪ {n(i)+1}, t ∈ T (3c)

 1)(
)(

≤∑ ∑
∈ ∈Ii iJj

ijm tβ , ∀ m ∈ M, t ∈ T (3d)

 , () 1 , 1() _D
i n i id id id i dW d T OUTτ ∆ ∆ ∆+ − −+ − −+ − −+ − −

+ −+ −+ −+ −− + = +− + = +− + = +− + = + , ∀ i ∈ I, d ∈ D (3e)

66

 ∆max ≥ id
+∆ + id

−∆ , ∀ i ∈ I, d ∈ D (3f)

 Wij(t) ≥ 0, βijm(t) ≥ 0, ∆ id
++++ ≥ 0, ∆ id

−−−− ≥ 0, 0i∆ −−−− = 0, ∆max ≥ 0, Wij(0) given,

The first term in the objective function (3a) is designed to minimize the weighted

sum of the positive and negative deviations from the target outputs over the planning

horizon. When the objective is to minimize only the negative gaps, this can be achieved

by setting wi
++++ = 0 for all i ∈ I. The second term is aimed at minimizing the maximum

deviation, which is a surrogate for maintaining output in proportion to demand. The

variable ∆max is the maximum deviation from the target outputs and is determined by

constraints (3f); wmax is the associated penalty.

The first set of constraints (3b) ensures that the required number of wafers for

device i are started on day d. The second set of constraints (3c) represents inventory

(material) conservation at each step j at the end of period t. It is necessary to keep track

of the inventory levels of each device i separately. Finished goods are held as WIP at the

dummy step n(i) + 1 and takes the value

W

i ,n(i)++++1
(t) for device i at time t. They are

removed from the system at the end of the day by the term 1()ij tδ Wij(t−1) in (3c) by

noting that 1
, () 1()i n i tδ + = 0 for t = dτD +1, i.e., the first period of each day. With respect to

starts, the parameter 4()ij tδ multiplying
, /

()Di t
R t

τ 
 

 in (3c) takes the value of 1 only when j

corresponds to the first step for device i in its routing and t corresponds to the first time

period of the day. The index t/τD identifies the day d that includes time period t, where

x is the smallest integer greater than or equal to x.

 In fractional terms, constraints (3d) ensure that the sum of the time devoted to

each step j of device i does not exceed the available time for each machine m in each time

period t. Deviations from production targets are tracked by the equations in (3e). On the

right-hand side, T_OUTid specifies the target outputs for device i on day d while , 1i d
−

−∆

specifies the shortages from the previous day. The first variable

W

i ,n(i)++++1
(dτ D) on the

left-hand side represents the amount of finished goods inventory of device i at the end of

day d. The argument dτD corresponds to the last period of day d. The remaining two

67

variables account for the deviation from the target with id
+∆ indicating surplus andid

−∆

indicating shortage. Logically, only one of these variables can be positive in a solution

so id
+∆ × id

−∆ = 0 for all i and d. As mentioned, constraints (3f) are used to obtain the

maximum deviation from the target output of any device over the planning horizon. To

conclude the model, we note that all of the variables are nonnegative and continuous, as

indicated in (3g), and that Wij(0) must be given for all i, j.

4.2 Data Processing

A massive quantity of data is needed to initialize and solve model (3). A description of

the input and output files can be found in Appendix 1. In the fab, machines operate in

one of the following modes: batch wafer (BW), batch lot (BL), continuous wafer (CW),

inspection lot (IL), outside inspection (O) and pipeline (PL). Formulas were provided by

the semiconductor manufacturer to compute the effective processing rates r ijm in each

case.

Computing the effective processing rates

Although a machine typically has a fixed processing rate for a particular device at some

step in its routing, several additional factors must be taken into account when specifying

r ijm in a planning model. In the fab, machines operate in one of the following modes:

batch wafer (BW), batch lot (BL), continuous wafer (CW), inspection lot (IL), outside

inspection (O) and pipeline (PL). To calculate r ijm, the “K-parameters” given below are

used to modify the basic rate.

a. The machine processing mode (K803)

b. The capacity multiplier/loading factor (K852); this parameter has the effect of

amplifying the processing rate.

c. Non-machine processing time (K817); although this value is always zero in the

table, it is included in the formulation for completeness.

d. Load/unload time. Sometimes this component is included in machine processing

time, c.

e. Conditional setup time (K830)

f. Average number of wafers/lots, average number of lots/batch processed

68

g. Rework rate (K802)

h. Machine uptime (utilization) percentage (K866)

i. Most likely turn-around time (hours) (K819); time from start to finish of a lot

(1) BW Processing Mode

 /
852 (1 802) 866

812 830 817ijm

average num of wafers batch
r K K K

K K K
= × × − ×

+ +

Because no data were provided on the average number of wafers/batch this value was

estimated at 25 based on the fact that the maximum batch size K835 is usually 50

while the minimum size K836 is usually 1.

(2) BL Processing Mode

() ()

875 830 817
 852 (1 802) 866

ijm

average num of wafers per lot average num of lots per batch
r

K K K
K K K

×
=

+ +
× × − ×

Again we use 25 as the average number of wafers per lot and estimate the average

number of lots per batch as K873 × batch factor, where K873 is the maximum lot

size K873 and the batch factor is currently set to be 0.9. This gives

25 873

852 (1 802) 866
875 830 817ijm

K batch factor
r K K K

K K K

× ×
= × × − ×

+ +

(3) CW Processing Mode

This mode is associated with a machine group which acts as stand-in for a non-

processing operation. Because the given base processing rates are disproportionally

high, the corresponding steps were eliminated from the scheduling model.

(4) IL Processing Mode

Not all lots are selected for inspection and not all wafers in a selected lot are

inspected. Sampling is done at both steps. If the lost selection interval parameter

69

K850 < 1, then this value is the probability that a lot will be selected. In this case, the

number of wafers that goes through the inspection I

number of wafers = 1.0/K850 × average number of wafers per lot

If K850 ≥ 1, then it means that the K850th lot is selected. In this case, the number of

wafers that goes through the inspection is

number of wafers = K850 × average number of wafers per lot

The parameter K851 indicates the number of wafers chosen for inspection within the

selected lot. If K851 < 1, then K851 percent of the wafers in the lot are inspected. In

this case, the amount of time for inspection is

time = average number of wafers per lot × K851 × K824

If K851 ≥ 1, then this many wafers in the lot are to be inspected. For example, K851 =

2 means that two wafers are randomly selected from the lot for inspection. The value

of time will be

time = K851 × K824

giving a processing rate of

r ijm = number of wafers / time

(5) O Processing Mode

The calculation of r ijm is proportional to the inverse of the most likely turn-around

time parameter K819. Because K819 is typically small (10–4), r ijm is large so the

corresponding steps are eliminated from the model.

(6) PL Processing Mode

 / 846
852 (1 802) 866

816 830 817ijm

average num of wafers lot K
r K K K

K K K

×
= × × − ×

+ +

Representative device

A typical scheduling problem may have on the order of 100 devices and 600 machines.

The data sets that we are working with contain 76 devices and 571 machines. The number

of steps in a route is over 650 with the longest being 1190. For a planning horizon of

three months (13 weeks) and ∆t = 1 hr in model (1), the total number of time periods τ is

70

13 × 7 × 24 = 2184, which leads to a problem instance that is unsolvable. Thus some

amount of aggregation is needed to reduce the number of variables and constraints.

 The first level of aggregation involved the grouping of devices into families by

selecting a set of representative devices. In our case, three representative devices were

identified from the families C1, C2 and C3, respectively. Instead of modeling all 76

devices at the same time, only these three are considered. In the remainder of the chapter,

Ci is used to identify representative device i.

 The WIP associated with devices that belong to the same family is aggregated to

be the WIP of the representative device. In most cases, the routings of the devices are not

exactly the same as the routings of the representative devices so some log points or

operations might not be included in the model. If a log point of a device does not exist in

the representative routing, then the number of wafers at that log point is added to the first

operation of the next log point in the representative routing. If a log point exists in the

representative routing but not the operation, then the number of wafers at that operation

will be added to the WIP at the next operation of the same log point.

 The daily input of blank wafers for each family is also aggregated to be the daily

input of the representative devices. For testing purposes, the daily target output was set

to be the average daily input over the planning horizon; however, these values can be

adjusted to reflect forecasted demand.

Removing steps

Further reductions in problem size were achieved by removing inconsequential steps in

the routings, including

(1) Steps with type O processing mode

(2) Steps with an empty machine list

(3) Steps with CW mode but without any specified information on routing

(4) Steps with processing rates higher than some specified threshold

The processing rate of wafers going through the O operation is sufficiently large

so that virtually no time is required for this operation. As a consequence, no WIP is built

up in any time period; wafers simply pass through this operation “instantly.” With

respect to cases (2) and (3), no machines are involved in these steps; in the case of (4),

71

when a machine’s processing rate is above the specified threshold, e.g., 1000 wafer/min,

the corresponding operation will consume a negligibly amount of time and not affect the

end results.

4.3 Initial Computational Experience with Basic Decomposition

Model (1) was implemented in C++ and using concert technology provided by CPLEX

10.1. All computations were performed on a Dell Poweredge 2950 workstation running

Ubuntu Linux. The machine has 2 dual-core hyperthreading 3.73 GHz Xeon processors

and 8 GB memory. After some experimentation the following settings were used in

CPLEX when solving the linear programs.

(1) Primal simplex method (set RootAlg = 1)

(2) Devex pricing (set PPriInd = 1)

As an additional simplifying step, constraints (3b) were removed and the variables

Rid(t) were set as follows.

 Rid(1) = STARTid, ∀ i ∈ I, d ∈ D

 Rid(t) = 0, ∀ i ∈ I, d ∈ D, t = 2, 3,…, τD

That is, the raw materials were input to the line at the beginning of the first time period of

every day. Table 4.1 reports the size and the memory usage for problem instances for the

three representative devices and ∆t = 60 min time interval for different planning horizons.

For a 28-day (4 weeks) instance, there are 11,282,240 decision variables and 1,998,780

constraints, which consume 7.2 GB of RAM and 10.6 GB of virtual memory. The

memory requirements for a 3-month (13 weeks) instance were beyond the limits of our

hardware. Therefore, it is not possible to solve a problem of that size without some form

of decomposition. The initial approach was to create weekly instances and solve them in

sequence, initiating each with the final WIP of the preceding week. This approach is

referred to as basic decomposition to distinguish from the decomposition algorithm

proposed later in this chapter.

72

Table 4.1 Problem size and memory usage for different planning horizon

Planning
horizon
(days)

No. of
variables

No. of
constraints

RAM
(GB)

Virtual
memory

(GB)

7 2,822,411 499,695 2.4 2.9

14 5,642,354 999,390 4.6 5.5

21 8,462,297 1,499,085 6.8 8.3

28 11,282,240 1,998,780 7.2 10.6

All data used in the testing reflects the fab environment but, as mentioned, was

modified so as not to reveal the true internal production capacity. For a 4-week problem

using this basic decomposition approach, the running time was 15,571 sec or 4.33 hours.

The initial WIP profiles for C1, C2 and C3 are depicted from Figure 4.2 to Figure 4.4 with

the vertical axis for WIP level and horizontal axis for step. The cost coefficientsiw+ and

idw− in model (3) were set at 0.5 for all i ∈ I. The weight for the maximum deviation

wmax was set to 0.05. The daily inputs were specified in Table 4.2 while the daily outputs

were T_OUT1d = 328, T_OUT2d = 315 and T_OUT3d = 26 for d = 1, 2,…,28. A ∆t = 60

min time interval was used in the generation of the model, and the number of wafers per

lot was assumed to be 25.

The solution is summarized in Table A.10 where the first column lists the day

index. The remaining columns are divided into three sections: target output T_OUTid,

completed output, and deviations (surplusid
+∆ or shortage id

−∆). The number of wafers

that were actually completed each day is indicated in the second section. The last section

reports the difference between the target output and the actual output. A positive value

indicates shortage while a negative value indicates surplus. It can be seen that all demand

is satisfied for the first week but the shortages start to appear on day 8. The total shortage

TS = ()id idi I d D

+ −

∈ ∈
∆ + ∆∑ ∑ is 1070.15 wafers.

The WIP profiles for devices C1, C2 and C3 at the end of each week are depicted

in Figure A.6 − Figure A.17. In the first week, the WIP has only a few spikes but is

otherwise steady. As the weeks progress, the WIP towards the end of the route begins to

disappear while the WIP at the initial steps is seen to be piling up. Finished goods are

produced by draining the WIP close to the end of the routes without pulling the WIP from

73

the beginning. There is no WIP after step 400 at the end of the last week but there are

over 8000 wafers at the first step. The profiles for C2 were similar; for C3, the WIP

profile barely changed from week to week and all demand was met since both the input

and target output for C3 are low. The full set of results can be found in Appendix 4.

Table 4.2 Daily input for the 4-week problem

d R1d(1) R2d(1) R3d(1) d R1d(1) R2d(1) R3d(1)
1 300 300 24 15 325 300 24
2 300 300 24 16 325 275 6
3 312 300 24 17 325 300 0
4 300 299 24 18 325 350 24
5 275 450 0 19 325 300 24
6 299 349 72 20 300 312 54
7 375 249 48 21 300 324 48
8 325 287 48 22 325 325 0
9 325 300 6 23 325 325 0
10 326 300 24 24 300 325 0
11 325 425 24 25 300 300 24
12 325 300 0 26 300 300 72
13 325 300 24 27 275 387 0
14 325 175 72 28 275 375 42

Figure 4.2 Initial WIP of C1

0
100
200
300
400
500
600
700

1 2
2

4
3

6
4

8
5

1
0

6
1

2
7

1
4

8
1

6
9

1
9

0
2

1
1

2
3

2
2

5
3

2
7

4
2

9
5

3
1

6
3

3
7

3
5

8
3

7
9

4
0

0
4

2
1

4
4

2
4

6
3

4
8

4
5

0
5

5
2

6
5

4
7

5
6

8
5

8
9

6
1

0
6

3
1

6
5

2
6

7
3

W
IP

Step in routing

74

Figure 4.3 Initial WIP of C2

Figure 4.4 Initial WIP of C3

One explanation for the unbalanced WIP profiles obtained for the first two

devices is that the basic decomposed approach is myopic. Because the full problem is

broken into 1-week segments, solutions only reflect the demand for that week. The

absence of future demand in the decomposed model means that no WIP is processed

beyond the amount needed to meet the current demand. Thus, WIP piles up at the front

end of the fab as blank wafers are fed into the system in accordance with the given daily

start schedule. Once demand is satisfied for the week, the pressure on the fab to continue

running is off, even though there is still machine capacity available. The existence of

excessive machine time is verified in Table 4.3 for the AP machines, which are used for

wet cleaning and experience high usage in practice. The first column identifies the

machine index while the second column gives the average usage which is computed as

0

200

400

600

800

1000

1200

1 2
6

5
1

7
6

1
0

1
1

2
6

1
5

1
1

7
6

2
0

1
2

2
6

2
5

1
2

7
6

3
0

1
3

2
6

3
5

1
3

7
6

4
0

1
4

2
6

4
5

1
4

7
6

5
0

1
5

2
6

5
5

1
5

7
6

6
0

1
6

2
6

6
5

1
6

7
6

7
0

1
7

2
6

7
5

1
7

7
6

8
0

1
8

2
6

W
IP

Step in routing

0
100
200
300
400
500
600
700
800
900

1 3
0

5
9

8
8

1
1

7
1

4
6

1
7

5
2

0
4

2
3

3
2

6
2

2
9

1
3

2
0

3
4

9
3

7
8

4
0

7
4

3
6

4
6

5
4

9
4

5
2

3
5

5
2

5
8

1
6

1
0

6
3

9
6

6
8

6
9

7
7

2
6

7
5

5
7

8
4

8
1

3
8

4
2

8
7

1
9

0
0

9
2

9

W
IP

Step in routing

75

follows:
()

()m ijmt T i I j J i
t Tβ β

∈ ∈ ∈
= ∑ ∑ ∑ , ∀ m ∈ M. Most of the AP machines operated

less than 50% of the time from the basic decomposition approach.

In the first week it is not difficult to meet the target outputs since there are

sufficient wafers close to the end of their routes. However, once these wafers are

depleted from the line, it becomes increasingly more difficult to satisfy demand in

subsequent weeks. This phenomenon is evidenced in the solutions in Table A.10. To

reduce the shortages that appear after day 7, all WIP must be processed continually, not

only the WIP at the latter steps. The unused machine time should be assigned to different

steps to achieve some level of balance.

 A second reason for the empty tail phenomenon is that some amount of machine

starvation is inevitable when there are shifting bottlenecks, as is the case here (e.g. see

Narahari and Khan 1996, Robinson et al. 1995). Wafers cannot be processed fast enough

at upstream stations to provide sufficient WIP at downstream stations because of limited

machine capacities and the reentrant nature of the flow. A portion of upstream and

downstream stations correspond to the same machine. If the demand is much higher than

the fab’s throughput capacity, then simply inducting wafers into the system in proportion

to demand, will necessarily result in long queues. In a fab that is running 24 hours a day,

such as DMOS6, the only way to relieve this situation is to add more machines.

4.4 Modified Models

Weekly versions of model (3) only try to satisfy the current demand without looking

forward. As suggested by Figure A.9, Figure A.13 and Figure A.17, little of the WIP at

the initial steps is processed even though excess machine capacity exists. For example, at

step 1 at the end of week 3, the WIP of C1 is 6662 while at the end of week 4 it is 8762 --

an increase of 1900 wafers. During the week, 7×328 = 2296 wafers were introduced into

the system, implying that only about 396 wafers of C1 were processed at step 1. To

remedy this shortsightedness, model (3) needs to be modified.

76

Table 4.3 Average usage of the AP machines

Machine, m mβ , %

29 74.7
30 17.92
31 12.6
32 8.53
33 11.67
34 11.21
35 10.88
36 12.17
37 39.56
38 26.92

4.4.1 Pushing the WIP forward

The approach that we developed to overcome the myopic performance of the

decomposed model involves pushing the WIP forward. This is achieved by adding a

third term to the objective function (3a) that incrementally rewards the presence of WIP

at successive steps in a route. The corollary effect is to maximize machine utilization. In

this approach, the current demand is considered explicitly while the future demand is

considered implicitly.

For device i, let cij be the “benefit” of a unit of WIP at step j. Then the updated

model is

Minimize ∑∑

∈ ∈

−−++ ∆+∆
Ii Dd

idiidi ww)(+ wmax∆max −
()

()ij ij
i I j J i

c W τ
∈ ∈
∑ ∑ (4a)

subject to (3c) – (3g)

The third term in (4a),

()
()ij iji I j J i

c W τ
∈ ∈∑ ∑ , is designed to provide an incentive

for accumulating WIP at downstream stations. The variable Wij(τ) represents the WIP of

device i at step j at the end of the planning horizon τ. For the new term to have the

desired effect, it is necessary that cij < ci,j+1 ∀ i ∈ I, j ∈ J(i).

As in goal programming, the relative values of the three sets of coefficients in (4a)

determines the order in which each term is optimized. Our intent is to first minimize the

deviations from the targets, then to hold down the maximum deviation, and finally to

77

push the WIP. In the implementation, the following scheme was used to fix the reward

coefficients:

cij = 0.00001j, ∀ i ∈ I, j ∈ J(i)

 As j increases, so does the reward making it more profitable to accumulate WIP at

the downstream steps in a route. Given the maximum number of steps Jmax = max{n(i), ∀

i ∈ I} = 1190, we have cij � 0.00001Jmax = 0.0119, ∀ i ∈ I, j ∈ J(i). To some extent,

selecting the values for cij represents a tradeoff between the three objective function terms.

Since cij is defined to be much smaller than the deviation coefficients iw+ , iw− and wmax, the

new term will not influence the objective of minimizing the deviations from the targets,

or minimizing the maximum deviation. If the reward coefficients cij were set too high,

however, then the model would be more inclined to push the WIP rather than reduce the

deviations, the primary objective.

 Although the modified model is theoretically sound, implementation occasioned a

variety of numerical difficulties that could not be resolved. The increase in density of the

objective function coefficient vector due to the presence of the additional O(()
i I

J i
∈∑)

terms caused the model to become dual degenerate. Rather than the LP converging

within a few hours, the modified model required more than 40 hr for a 1-week problem.

To clarify this order of magnitude increase in runtime, we asked ILOG (the CPLEX

vendor) to investigate a 2-day instance. Using a Dual Intel Xeon 3.4 GHz processor with

6 GB RAM, and running parallel CPLEX with two threads, it took 2005.69 sec (0.56 hr)

to achieve optimality with their barrier method. Crossover to a basis required an

additional 831.6 sec. They also investigated a 7-day instance with slightly different

parameter settings using a 64bit Linux server with 3 dual core Opteron 275 CPUs (1.8

GHz 1MB cache) and 6GB of RAM. With 4 threads, it took 7422.32 sec (2.06 hr) with

the barrier method and an additional 14,459 sec (3.64 hr) to obtain an optimal basic

solution. These extremely long runtimes, even with parallel processing, could not justify

the use of model (2) directly. As a consequence, several alternative computational

schemes were explored.

78

4.4.2 Lagrangian relaxation

One of the factors that makes model (3) difficult to solve is the need to share machine

capacity among the different families of devices. Constraints (3d) tie all the devices

together. By removing these constraints and placing them in the objective function as a

penalty term, we create a problem whose remaining constraints decompose by

representative device and should be much easier to solve than the original. This approach

is called Lagrangian relaxation and for linear programs, the optimal objective function

values of both the modified problem and the original problem are the same; however, the

values of the decision variables might be different and in the case of the former, may not

be feasible to the relaxed constraints. If this is the case, then more work has to be done to

obtain the optimum.

 Let umt ≥ 0 for all m ∈ 	2∈3 4"G(i, j), t ∈ T be the Lagrange multipliers associated

with constraints (3d), where 	2∈3 4"G(i, j) is the set of machines that are required to

process device i. Then relaxed model i is

Minimize ()i id i id

d D

w w+ + − −

∈

∆ + ∆∑ + wmax∆max +
() ()

(,) () ()

()
j J i j J i

mt ijm mt
m G i j t T j J i m G i t T

u t uβ
∈ ∈

∈ ∪ ∈ ∈ ∈ ∪ ∈

−∑ ∑ ∑ ∑ ∑

 (5a)

subject to

 1()ij tδ Wij(t−1) + 2

, 1, , 1,
(, 1)

(1) ()ij i j m i j m
m G i j

t r tδ β − −
∈ −

− ∆∑ + 4()ij tδ STARTSid

 − 3
ijδ ∑

∈

∆
),(

)(
jiGm

ijmijm trtβ = Wij(t), ∀ j ∈ J(i) ∪ {n(i)+1}, t ∈ T (5b)

 , () 1 , 1() _D
i n i id id id i dW d T OUTτ ∆ ∆ ∆+ − −+ − −+ − −+ − −

+ −+ −+ −+ −− + = +− + = +− + = +− + = + , ∀ d ∈ D (5c)

 ∆max ≥ id
+∆ + id

−∆ , ∀ d ∈ D (5d)

 Wij(t) ≥ 0, βijm(t) ≥ 0, ∆ id
++++ ≥ 0, ∆ id

−−−− ≥ 0, 0i∆ −−−− = 0, max∆ ≥ 0, Wij(0) given,

 An iterative process is required to find the optimal set of Lagrange multipliers. A

typical approach is to fix the multipliers umt at some value, zero in our case, and then

solve model (5) to determine the optimal values of the original problem variables

(Wolsey 1998). As mentioned, when umt is fixed, model (5) can be solved for each device

79

i ∈ I separately. These solutions are then used to update umt with what is known as the

subgradient method. The current iteration continues until umt converges to the optimal

multiplier values. As a final step, model (5) is solved with each umt fixed at its optimal

value to determine the corresponding values of the decision variables.

 Even though Lagrangian relaxation is frequently used to solve large-scale

optimization problems, we found it to be numerical unstable and unable to converge. For

a 1-week problem, the multipliers umt never approached asymptotic values for runtimes of

up to 6 hours. This was the case for smaller instances as well.

4.4.3 Benders decomposition

A closer examination of the constraints in the original problem reveals that they exhibit a

“staircase” structure in which only the time periods overlap. This is typically the case

with inventory balance constraints similar to (3c). Benders decomposition can be used to

deal with this situation efficiently. The idea is to divide the original problem into

subproblems with each spanning a subset of the planning horizon and then solve them

iteratively, checking a set of optimality conditions at each step. The 1-week problem, for

example, can be divided into seven 1-day subproblems. At each iteration of the

algorithm, a restricted master problem representing the original problem is solved. To

populate the master problem, extreme points or extreme rays are obtained by solving the

dual of the subproblems. These solutions are then used to generate constraints that are

added to the master problem. The iterations continue until no more constraints can be

found for the master problem. At that point, optimality has been achieved. The

application of Benders decomposition to staircase problem is provided in Appendix 6.

Following this approach model (3) for the kth subproblem can be written as

Minimize ()
k

i id i id
i I d D

w w+ + − −

∈ ∈

∆ + ∆∑ ∑ + wmax∆max (6a)

subject to

 1()ij tδ Wij(t−1) + 2
, 1, , 1,

(, 1)

(1) ()ij i j m i j m
m G i j

t r tδ β − −
∈ −

− ∆∑ + 4()ij tδ
, / Di t

START
τ 

 

 − 3
ijδ ∑

∈

∆
),(

)(
jiGm

ijmijm trtβ = Wij(t), ∀ i ∈ I, j ∈ J(i) ∪ {n(i)+1}, t ∈ Tk \{1, τD|Dk|} (6b)

80

 1k
ijZ − + 2

, 1, , 1,
(, 1)

(1) (1)ij i j m i j m
m G i j

r tδ β − −
∈ −

− ∆∑ + 4

, /
(1) Dij i t

START
τ

δ
 
 

 − 3

(,)

(1)ij ijm ijm
m G i j

r tδ β
∈

∆∑ = Wij(1), ∀ i ∈ I, j ∈ J(i) ∪ {n(i)+1} (6c)

 Wij(τ
D|Dk|−1) + ()21 ijδ− ()

()
, 1, , 1,

, 1

D k
i j m i j m

m G i j

D r tβ τ− −
∈ −

∆∑

 − 3
ijδ ()

(),

D k
ijm ijm

m G i j

D r tβ τ
∈

∆∑ = k
ijZ , ∀ i ∈ I, j ∈ J(i) ∪ {n(i)+1} (6c)

 1)(
)(

≤∑ ∑
∈ ∈Ii iJj

ijm tβ , ∀ m ∈ M, t ∈ Tk (6d)

 , () 1 , 1() _D
i n i id id id i dW d T OUTτ ∆ ∆ ∆+ − −+ − −+ − −+ − −

+ −+ −+ −+ −− + = +− + = +− + = +− + = + , ∀ i ∈ I, d ∈ Dk (6e)

 ∆max ≥ id
+∆ + id

−∆ , ∀ i ∈ I, d ∈ Dk (6f)

 Wij(t) ≥ 0, βijm(t) ≥ 0, ∆ id
++++ ≥ 0, ∆ id

−−−− ≥ 0, 0i∆ −−−− = 0, max∆ ≥ 0, Wij(0) given,

where Dk = {1, 2, 3, 4, 5, 6, 7} for one week kth subproblem. The initial WIP is specified

by variables 1k
ijZ − while the final WIP is specified by variableskijZ . The original

inventory constraints (3c) are split into three sets. Constraints (6b) are the same as before

for t ∈ T \ {1, τD|Dk|}. For the first time period of the subproblem (t = 1) the inventory

constraints are shown in (6c) while the inventory constraints for the last time period (t =

τ
D|Dk|) are shown in (6d). The other constraints are the same as in model (3).

 Additional parameters and decision variables are required to write the dual of
model (6).

Parameters and data

1()tξ 0 if t = τ for device; 1 otherwise

2()ij tξ 1 if j = n(i)+1 and t = dτD for device i; 0 otherwise

3
ijξ 0 if j = n(i)+1 for device i; 1 otherwise

Dual decision variables

vijt dual variables corresponding to constraints (6b), (6c) and (6d) ∀ i ∈ I, j ∈ J(i)

∪ { n(i)+1}, d ∈ Dk, t ∈ Tk

γmt dual variables corresponding to constraints (6e) ∀m ∈ M, t ∈ Tk

ηid dual variables corresponding to constraints (6f) ∀ i ∈ I, d ∈ Dk

81

ωid dual variables corresponding to constraints (6g) ∀ i ∈ I, d ∈ Dk

Model

Maximize (_)id id
i I d D

T OUTη
∈ ∈
∑ ∑ − 1

1
()

k
ij ij

i I j J i

v Z −

∈ ∈
∑ ∑ + mt

m M t T

γ
∈ ∈
∑ ∑ +

()

k
ij ij

i I j J i

v Zτ
∈ ∈
∑ ∑ (7a)

subject to

 1 1(1) ()ij t tδ ξ++++ vij ,t+1 − vijt +
2()ij tξ ηid ≤ 0,

 ∀ i ∈ I, j ∈ J(i) ∪ { n(i)+1}, t ∈ Tk\{ τD|Dk|}, d= / Dt τ   (7b)

 2 3
1(1)ij ijδ ξ++++−−−− vi,j+1,t r ijm∆t − δij

3 vijt rijm∆t + γmt ≤ 0,

 ∀ i ∈ I, j ∈ J(i), m ∈ G(i, j), t ∈ Tk (7c)

 ηid + ωid ≥ − iw++++ , ∀ i ∈ I, d ∈ D (7d)

 ηid − ηi,d+1 − ωid ≤ iw−−−− , ∀ i ∈ I, d ∈ D (7e)

 vijt, ηid are free, γm t ≤ 0, 0 ≤ ωid ≤ wmax, ∀ i ∈ I, j ∈ J(i) ∪ { n(i)+1}, d ∈ Dk, t ∈ Tk (7f)

The Benders master problem can now be presented by introducing the following

definitions.

Sets

Ek set of extreme points of the kth dual subproblem

Rk set of extreme rays of the kth dual subproblem

Dk the set of days of the kth dual subproblem

Parameters and data

NK number of dual subproblems

Decision variables

φk auxiliary variable for the kth dual subproblem

k
ijZ final WIP of device i at step j at the end of the kth subproblem

Benders Master Problem

Minimize
1

NK

k
k

φ
=

∑

subject to φ1 ≥
1

1(_)e
id id

i I d D

T OUTη
∈ ∈
∑ ∑ − 1

1
()

(0)e
ij ij

i I j J i

v W
∈ ∈
∑ ∑ +

82

1

1e
mt

m M t T

γ
∈ ∈
∑ ∑ + 1 1

()

e
ijT ij

i I j J i

v Z
∈ ∈
∑ ∑ , ∀ e ∈ Ek, k = 1 (8a)

φk ≥ (_)
k

ek
id id

i I d D

T OUTη
∈ ∈
∑ ∑ − 1

1
()

ek k
ij ij

i I j J i

v Z −

∈ ∈
∑ ∑ +

1

ek
mt

m M t T

γ
∈ ∈
∑ ∑ +

()

ek k
ij ij

i I j J i

v Zτ
∈ ∈
∑ ∑ ,

 ∀ e ∈ Ek, k = 2 ,…, NK−1 (8b)

φNK ≥ (_)
NK

eNK
id id

i I d D

T OUTη
∈ ∈
∑ ∑ − 1

1
()

eNK NK
ij ij

i I j J i

v Z −

∈ ∈
∑ ∑ +

1

eNK
mt

m M t T

γ
∈ ∈
∑ ∑ ,

 ∀ e ∈ Ek, k = NK (8c)

0 ≥
1

1(_)r
id id

i I d D

T OUTη
∈ ∈
∑ ∑ − 1

1
()

(0)r
ij ij

i I j J i

v W
∈ ∈
∑ ∑ +

1

1r
mt

m M t T

γ
∈ ∈
∑ ∑ + 1 1

()

r
ijT ij

i I j J i

v Z
∈ ∈
∑ ∑ ,

 ∀ r ∈ Rk, k = 1 (8d)

0 ≥ (_)
k

rk
id id

i I d D

T OUTη
∈ ∈
∑ ∑ − 1

1
()

rk k
ij ij

i I j J i

v Z −

∈ ∈
∑ ∑ +

1

rk
mt

m M t T

γ
∈ ∈
∑ ∑ +

()

rk k
ijT ij

i I j J i

v Z
∈ ∈
∑ ∑ ,

 ∀ r ∈ Rk, k = 2 ,…, NK−1 (8e)

0 ≥ (_)
NK

rNK
id id

i I d D

T OUTη
∈ ∈
∑ ∑ − 1

1
()

rNK NK
ij ij

i I j J i

v Z −

∈ ∈
∑ ∑ +

1

rNK
mt

m M t T

γ
∈ ∈
∑ ∑ , ∀ r ∈ Rk, k = NK (8f)

φk free ∀ k = 1,2,…,NK, k
ijZ ≥ 0, ∀ i ∈ I, j ∈ J(i), k = 1,2,…, NK–1 (8g)

 Constraints (8a), (8b) and (8c) are the so-called optimality cuts. They are

generated from the extreme points of the dual subproblems. Attention needs to be paid to

the first subproblem and the last subproblem. For the first subproblem the initial WIP is

fixed to be Wij(0) which can be considered as a fixed end. For the last subproblem the

final WIP is not used for another subproblem thus it could be viewed as a free end. The

constraints (8d), (8e) and (8f) are the so-called feasibility cuts. They are generated from

the extreme rays of the dual subproblems.

 Benders decomposition can now be applied to the original problem. The

variables k
ijZ are initialized at first to specify the WIP information for each subproblem.

Once these variables are fixed the dual model (7) is solved for each subproblem. If the

subproblem is feasible an extreme point will be generated and hence an optimality cut

will be appended to the master problem (8). Otherwise an extreme ray will be generated

and a feasibility cut will be added to the master problem (8). When all the subproblems

are solved with the generated cuts appended to the master problem, model (8) can then be

solved to obtain the updated WIPkijZ . The solution k
ijZ is again used to specify the WIP

83

information for the subproblems and a new iteration starts. The iteration continues until

k
ijZ becomes stable and

1

NK

k
k

φ
=

∑ achieves its maximum.

 Unfortunately, numerical difficulties also arose when applying Benders to model

(3). In the computations, Benders tries to find optimal machine time assignment with

fixed initial and final WIP values for each subproblem. According to the numerical

experiments, it was likely that the primal subproblem became infeasible, that is, there was

no feasible machine assignment to achieve the targeted final WIP from the given initial

WIP. As a consequence, the subproblems only generated extreme rays (infeasibility cuts

in the master) so a feasible (never mind optimal) solution to the original problem was

never found.

4.5 Decomposition Algorithm

The inability to achieve convergence with either of the aforementioned decomposition

techniques led to the development of third approach that is more heuristic in nature. The

idea is to take advantage of the fact that model (3) can be solved relatively quickly for

short planning horizons and will process as much WIP as possible to meet current

demand. In the first step of this approach, the planning horizon is again broken into 1-

week segments and model (3) rather than model (4), is solved for each. Because the WIP

“pushing” term is not in objective function (3a), many of the machines are not fully

occupied and may have extensive idle capacity. To ensure that this capacity is not wasted,

two additional components are included in the methodology. In the first component, a

rescheduling algorithm is applied to each time period, initialized with the solution of

model (3). In the second, a score is assigned to each device-step combination, and all

remaining machine time is assigned in proportion to the scores. The final WIP in the

current week is then taken as the initial WIP of next week and the computations are

repeated. The algorithm continues in this way until all the weekly subproblems are

solved. The rescheduling and scoring procedures are now discussed.

84

4.5.1 Rescheduling each time period

For each time period t ∈ T, a scheduling problem is solved using the solution of model (3)

as input in an effort to better utilize machine capacity. The model can be formulated with

the help of the following additional definitions.

Parameters

ijw+ (ijw−) relative weight associated with a positive (negative) deviation from the

target output for device i at step j

wmax weight for the maximum deviation

WIPw weight for the positive WIP deviation

WIP_limit target WIP level

dij(t) target output of device i at step j in time period t (defined below)

()ijW t WIP of device i at step j at the end of time period t, ∀ i ∈ I, j ∈ J(i) ∪

{ n(i)+1}, t ∈ T, as indicated by the solution of model (3)

()ijm tβ fraction of the time machine m processes device i at step j in time period t,

∀ i ∈ I, j ∈ J(i), m ∈ G(i, j), t ∈ T, as indicated by the solution of model (3)

Decision variables

()ij t+∆ positive deviation from target of device i at step j in time period t, ∀ i ∈ I, j

∈ J(i)

()ij t−∆ negative deviation from target of device i at step j in time period t, ∀ i ∈ I, j

∈ J(i)

max∆ maximum output deviation

WIP
+∆ (WIP

−∆) positive (negative) deviation of Wmax from WIP_limit

Wmax maximum WIP of all device-step combinations in time period t

Model for time period t

Minimize ()
()

() ()ij ij ij ij
i I j J i

w t w t+ + − −

∈ ∈

∆ + ∆∑ ∑ + wmax∆max + WIP WIPw +∆ (9a)

subject to

85

 ()ijW t + 2(1)ijδ− (), 1,, 1, , 1,
(, 1)

() ()i j mi j m i j m
m G i j

t t r tβ β −− −
∈ −

− ∆∑

 − 3
ijδ ()

(,)

() ()ijmijm ijm
m G i j

t t r tβ β
∈

− ∆∑ = Wij(t), ∀ i ∈ I, j ∈ J(i) ∪ {n(i)+1} (9b)

 1)(
)(

≤∑ ∑
∈ ∈Ii iJj

ijm tβ , ∀ m ∈ M (9c)

(,)

()ijm ijm
m G i j

t r tβ
∈

∆∑ − ()ij t+∆ + ()ij t−∆ = dij(t) + (1)ij t−∆ − , ∀ i ∈ I, j ∈ J(i) (9d)

 ∆max ≥ ()ij t∆++++ + ()ij t∆−−−− , ∀ i ∈ I, j ∈ J(i) (9e)

 Wmax ≥ Wij(t), ∀ i ∈ I, j ∈ J(i) (9f)

 Wmax − WIP
+∆ + WIP

−∆ = WIP_limit (9g)

 βijm(t) ≥ ()ijm tβ , ∀ i ∈ I, j ∈ J(i)\{ n(i)}, m ∈ G(i, j),

 βijm(t) = ()ijm tβ , ∀ i ∈ I, j = n(i), m ∈ G(i, j)

 Wij(t) ≥ 0, βijm(t) ≥ 0, (0)ij
−∆ = 0, ()ijW t and ()ijm tβ given,

 ∀ i ∈ I, j ∈ J(i) ∪ { n(i)+1}, m ∈ M, d ∈ D (9h)

 The parameters ()ijW t and ()ijm tβ are given by the solution to model (3) and

indicate the current WIP level and machine usage in time period t for device i at step j for

machine m. Two goals are involved in the objective function. The first is reflected in the

first two terms in (9a) which minimize the sum of the total weighted deviations from the

targets in the current period t plus the weighted maximum deviation. The second goal is

to restrict the maximum WIP level to some prescribed value WIP_limit, as indicated by

the third term in (9a). Currently, WIP_limit is set to 1000 to reflect historical levels in

DMOS6. Imposing hard bounds on WIP can lead to infeasibilities. In the numerical runs,

ijw+

and ijw−

are set to 1.0, wmax is set to 0.5 and wWIP is set to 0.1 to reflect the priorities of

the goals.

 Constraints (9b) keep track of the WIP levels; the term()() ()ijmijm t t tβ β− ∆

accounts for additional processing time on machine m allocated to device i at step j in

time period t. Constraints (9c) ensure that the capacity of the machines is not violated

while constraints (9d) and (9e) are used to compute the positive, negative and maximum

86

deviations, respectively. The term
(,)

()ijm ijmm G i j
t r tβ

∈
∆∑ in (9d) indicates the output of

device i at step j in time period t; the parameter dij(t) is the target output in time period t

and is derived by uniformly apportioning the daily target output as follows.

 () _ / D
ij idd t T OUT τ= , with / Dd t τ =  

 The highest WIP level Wmax is determined by constraints (9f) while the positive

and negative WIP deviations from WIP_limit are computed in (9g). Bounds on the

decision variables are specified in (9h). For the last step n(i) of the route for device i, the

values of βijm(t) are fixed to ()ijm tβ

in order to maintain the same output specified by the

solution to model (3). Allowing these values to change can lead to infeasible solutions.

Updating the WIP

After solving model (9) for each time period t ∈ T\{ τ}, the WIP levels and machine usage

results need to be updated. This is done by putting

()ijW t ← * ()ijW t , ()ijm tβ ← * ()ijm tβ , ∀ i ∈ I, j ∈ J(i) ∪ { n(i)+1}, m ∈ M

where * ()ijW t and * ()ijm tβ are obtained from solving model (4). However, these new values

may imply that the solution to model (3) for time period t + 1, i.e., (1)ijW t+ and

(1)ijm tβ + , may no longer be feasible since ()ijW t has changed. Using Eq. (3c) to update

(1)ijW t+ , when (1)ijW t+ ≥ 0 the machine usage (1)ijm tβ + is valid so no adjustments are

necessary. When (1)ijW t+ < 0, we set it to 0 and decrease(1)ijm tβ + accordingly. This is

done by taking each machine m ∈ G(i,j) in turn and reducing (1)ijm tβ +

until the original

WIP ()ijW t is depleted. Any remaining machine usage values, (1)ijm tβ + , are set to zero.

The pseudocode for this procedure is outlined in Figure 4.5. In Step 1, the WIP is

updated. In Step 2, (1)ijm tβ + is updated when (1)ijW t+ < 0.

Time period t rescheduling algorithm

The pseudocode for the algorithm that updates the schedule incrementally is outlined in

Figure 4.6. In Step 1, model (9) is solved for each time period t ∈ T \ {τ} and the

resulting solution is then used to update the WIP levels and machine usages in Step 2.

87

The iterations continue until all time periods t ∈ T \ {τ} are investigated. The new values

of ()ijW t and ()ijm tβ give the improved WIP profiles and machine assignments.

Procedure: Update_WIP(βijm(t+1), Wij(t), Wij(t+1))

Input: Updated WIP at time period t, Wij(t); WIP at time period t + 1 from solution to

model (3), Wij(t+1); machine usage from solution to model (3), βijm(t+1)

Output: Updated WIP and machine usage at time period t+1, Wij(t+1) and βijm(t+1)

Step1: for(i ∈ I, j ∈ J(i)){

 Wij(t+1) = 1(1)ij tδ + Wij(t) + 2
, 1, , 1.

(, 1)

(1) (1)ij i j m i j m
m G i j

t r tδ β ∆− −− −− −− −
∈ −∈ −∈ −∈ −

− +− +− +− +∑∑∑∑ +

 4

, (1)/
(1) Dij i t
t STARTS

τ
δ

 + 
+ − 3

ijδ
(,)

(1)ijm ijm
m G i j

t r tβ ∆
∈∈∈∈

++++∑∑∑∑ ;

Step 2: if (Wij(t+1) < 0){

 Wij(t+1) = 0; flag = 0;

 sum = 1(1)ij tδ + Wij(t) + 2
, 1, , 1.

(, 1)

(1) (1)ij i j m i j m
m G i j

t r tδ β ∆− −− −− −− −
∈ −∈ −∈ −∈ −

− +− +− +− +∑∑∑∑ +

 4

, (1)/
(1) Dij i t
t STARTS

τ
δ

 + 
+ ;

 for (m ∈ G(i, j)){

 if (flag equals to 0){

 ATijm(t) = βijm(t+1)∆t; RTijm(t) = sum/r ijm;

 if (ATijm(t) < RTijm(t)) sum = sum − βijm(t+1)r ijm∆t;

 else βijm(t+1) = sum/(rijm∆t); sum = 0; flag = 1;

 }else{

 βijm(t+1) = 0;

 }

 }//end m

 }

 }

Figure 4.5 Pseudocode for updating WIP in the next time period

88

Procedure: Rescheduling (()ijW t , ()ijm tβ)

Input: Solution to model (1), ()ijW t and ()ijm tβ

Output: Updated solution ()ijW t and ()ijm tβ

Step 1: for (t ∈ T \ {τ}){

 Solve model (4), obtain solution* ()ijW t and * ()ijm tβ ;

Step 2: ()ijW t ← * ()ijW t , ()ijm tβ ← * ()ijm tβ , ∀ i ∈ I, j ∈ J(i) ∪ { n(i)+1}, m ∈ M;

 call update_WIP((1)ijm tβ + , ()ijW t , (1)ijW t+);

 }

Figure 4.6 Pseudocode of rescheduling algorithm

4.5.2 Dispatching heuristic

Idle machine time may still exist after running the aforementioned rescheduling

algorithm. To ensure that the machines are fully utilized, a dispatching heuristic is

applied to push the WIP forward. It makes use of a scoring scheme to assign processing

priorities to all device-step combinations.

Scoring scheme

In the design of the dispatching heuristic, the goal is determine how best to allocate the

machine capacity that remains after solving model (3) and then rescheduling each time

period. As part of the procedure, a score Sij(t) is calculated for step j of device i in time

period t, and is used to set priorities such that the remaining unused machine time is

assigned proportionally to the scores. The calculations are performed by the procedure

outlined in Figure 4.7.

Step 1 starts the iteration for the indices i and j. In Steps 2 and 3, Sij(t) is

dynamically adjusted as a function of the WIP level Wij(t). In Step 2, Sij(t) is set to zero

when the amount of WIP at the next step j + 1 exceeds WIP_limit. The aim is to restrict

processing at step j in period t when there is already ample WIP in front of the operation

performed at step j + 1. This will reduce the WIP at step j + 1 in period t + 1.

89

In Step 3, the planning horizon is implicitly divided into segments of four periods

each. In the first period of a segment (r = 1), higher scores will be assigned to steps with

larger amounts of WIP in the earlier steps of a routing (j small) to ensure that at least

some wafers are moved forward for processing at future steps. In the second and fourth

periods (r = 2 or 0), scores are calculated in such a way that unused machine time will be

allocated to those steps with large WIP. The corresponding objective is to reduce spikes.

In the calculations, the normalizing term Max_WIPi represents the highest WIP level

associated to device i at the end of period t. A second parameter δ is used to bias or

control the scores throughout a routing. The step with maximum Wij(t) in period t will

always have a score of 1; for the remaining steps, the higher the value of δ, the lower the

score. After extensive experimentation, δ was set to 10.

Procedure: Score_assignment(Wij(t), WIP_limit, δ,Sij(t))

Input: Current WIP Wij(t), parameter δ and WIP_limit;

Output: Score Sij(t), ∀ i ∈ I, j ∈ J(i) in time period t;

Step 1: for (i ∈ I, j ∈ J(i)) {

Step 2: if (Wi,j+ 1(t) ≥ WIP_limit) Sij(t) = 0;

Step 3: else

 r = t mod 4;

 if (r = 1) Sij(t) = 1/j + Wij(t);

 else if (r = 3) Sij(t) = j + Wij(t);

 else Max_WIPi = max{Wij(t): ∀ j ∈ J(i)};

 Sij(t) =
()

_
ij

i

W t

Max WIP

δ
 
 
 

;

 }//end loop

Figure 4.7 Pseudocode for score assignment procedure

In the third period (r = 3), higher scores will be assigned to steps with larger WIP

at the tail end of the routing to push wafers forward as they near completion. The scores

are assigned alternatively in a way such that both the initial and tail parts of a routing are

taken into consideration without allowing wafers to accumulate at intermediate steps.

90

A close look at the details of the calculations in Figure 4.7 reveals two contrary

objectives. The first is to push or pull the WIP forward; the second is to smooth the WIP

along the routings to avoid excessive build-ups. The procedure reflects the compromise

adopted to split the remaining capacity between the two objectives.

 The calculations are illustrated in Table 4.4 for a 1-hour time period and two

devices. After solving model (3) and the rescheduling algorithm, assume that machine m

still has 30 min of remaining capacity. Steps 1, 3, 5, 6 of device 1 and steps 2, 4, 6, 7 of

device 2 require machine m for processing. The corresponding WIP levels are shown in

the third column of the table. The parameters δ =10 and WIP_limit = 9. The total score

∑i,jSij(t) is 46.56 when r = 1, 73 when r = 3 and 1.48 when r = 2 or 0. The percentage of

time assigned is shown in the 5th, 7th and 9th columns for these cases. It can be seen that

relatively high WIP values lead to higher scores regardless of the value of r. For example,

in the highlighted line, the WIP for device 1 is 10 at step 6 and the time assignment

percentage is roughly 22% for r = 1 or 3 and 67% for r = 2 or 0. One exception is that

the score will be zero when the WIP at the next step is higher than WIP_limit, e.g., step 5

of device 1. As a consequence, no remaining machine time will be allocated to step 5

until the WIP at step 6 is less than 9.

Table 4.4 Example of applying the scoring scheme to machine m at time period t

Device i Step j
WIP
Wij(t)

r = 1 r = 2 or 0 r = 3

Score
Sij(t)

Time
assigned

(%)
Score
Sij(t)

Time
assigned

(%)
Score
Sij(t)

Time
assigned

(%)

1 1 4 5.00 10.74 10–4 0.01 5.00 6.85
1 3 7 7.33 15.74 0.028 1.90 10.00 13.70
1 5 5 0.00 0.00 0.00 0.00 0.00 0.00
1 6 10 10.17 21.84 1 67.32 16.00 21.92
2 2 4 4.50 9.66 10–4 0.01 6.00 8.22
2 4 9 9.25 19.87 0.3487 23.47 13.00 17.81
2 6 2 2.17 4.66 0.00 0.00 8.00 10.96
2 7 8 8.14 17.48 0.1074 7.23 15.00 20.55

As an aside, it should be mentioned that many dispatching rules, such as SPT,

priority critical ratio, FIFO, EDD and WINQ, have been developed over the years for

91

related problems (e.g., see Pfund et al. 2006, Saito 2007, Wein 1988). Several of these

rules have been tried but each proved ineffective.

Dispatching heuristic procedure

Figure 4.8 displays the pseudocode for the dispatching heuristic. The aforementioned

definitions along with the following symbols are used in the construction of the

pseudocodes.

fm(t) fraction of total machine time indicated in the solution of model (3) that is

assigned to machine m in period t

Sij(t) score assigned to step j of device i in time period t

SSm(t) summation of scores for the steps processed by machine m in time period t

pijmt proportion of remaining unused machine time of machine m assigned to step j of

device i in time period t

ATm(t) remaining unused machine time associated with machine m in time period t

RTijm(t) time required to process all the wafers at step j of device i by machine m in time

period t

 In Step 1, the total assigned machine time fm(t) for each machine m is calculated

to determine the machine usage. If fm(t) < 1, then excess machine time exists and the

scores Sij(t) are computed in Step 2. In Step 3, the excess machine time is then divided

proportionally to pijmt and the WIP Wij(t) at the end of the current time period is updated

accordingly in Step 4. The subroutine for updating the machine time assignments βijmt

and the WIP Wij(t) in time period t is given in Figure 4.9. If t ∈ T \ {τ}, the WIP at the

end of the next time period t + 1 needs to be updated as well using the pseudocode

displayed in Figure 4.5.

Procedure: Dispatching_heuristic(Wij(t), βijm(t), WIP_limit, δ)

Input: Current WIP movement Wij(t) and machine assignment βijm(t), ∀ i ∈ I, j ∈ J(i) ∪

{ n(i)+1}, m ∈ M; parameters WIP_limit and δ;

Output: updated Wij(t) and βijm(t), ∀ i ∈ I, j ∈ J(i) ∪ { n(i)+1}, m ∈ M;

 for (t ∈ T){

 for (m ∈ M){

92

Step 1: //Compute the total assigned time as a fraction

 fm(t) =
()

()ijmi I j J i
tβ

∈ ∈∑ ∑

 if (fm (t) < 1){

 //Compute the total score of machine m in time period t

Step 2: call Score_assignment(Wij(t), WIP_limit, δ, Sij(t));

 SSm(t) =
()

()ij
i I j J i

S t
∈ ∈
∑ ∑ ;

 //Assign the remaining machine time proportionally to the

score

Step 3: for (i ∈ I, j ∈ J(i), m ∈ G(i, j)){

 pijmt = Sij(t) / SSm(t);

 call Update_machine_time_assignment(βijm(t), pijmt,

Wij(t), r ijm);

 }

 }//end if

 }//end m loop

Step 4: if (t ∈ T \ {τ}) {

 //Update the WIP according the updated machine time assignment.

 call Update_WIP(βijm(t+1), Wij(t), Wij(t+1));

 }

 }//end t loop

Figure 4.8 Pseudocode of dispatching heuristic

Procedure: Update_machine_time_assignment(βijm(t), pijmt, Wij(t), r ijm)

ATm(t) = (1 – fm(t))∆t; RTijm(t) = Wij(t)/r ijm;

if(RTijm(t) > ATm(t)pijmt){

 Wij(t) = Wij(t) − ATm(t)pijmt rijm; Wi,j+ 1(t) = Wi,j+ 1(t) + ATm(t)pijmt rijm;

 βijm(t) = βijm(t) + ATm(t)pijmt/∆t;

}else{

 //WIP Wij(t) can be drained

 Wi,j+ 1(t) = Wi,j+ 1(t) + Wij(t); Wij(t) = 0; βijm(t) = βijm(t) + RTijm(t)/∆t;

93

}

Figure 4.9 Pseudocode for updating machine time assignment and current WIP

4.5.3 Integration of algorithmic components

In summary, the decomposition algorithm works as follows. After reading in all

parameters, the problem is decomposed into a set of weekly subproblems for a given

planning horizon. Model (3) is solved first and any unused machine time is allocated

heuristically with the help of the rescheduling algorithm and followed by the dispatching

heuristic to push WIP forward and simultaneously spread it evenly along the routes. The

WIP associated with the current solution at the end of the 7th day is taken as the initial

WIP of the next subproblem. The computations are repeated until all subproblems are

solved. The following notation is used to explain the procedure outlined in Figure 4.10.

w index for subproblems

nsub number of subproblems (each subproblem is a week but, in general, a

subproblem can be any number of days or any division of time)

ndays number of days in a subproblem

 The WIP is initialized in Step 1. Step 2 contains iteration for the subproblems.

After model (3) is solved, the excessive machine time is allocated by the dispatching

scheduling and dispatching heuristic in sequence. In Step 3, the initial WIP of each

subproblem is updated. The final solution is outputted when all the subproblems are

solved. The complexity of the composite algorithm is O(nsub⋅|T|⋅|M |⋅Σi∈IJ(i))), which can

be seen by counting the nested for loops.

Procedure: Decomposition_algorithm(Init_WIPij,WIP_limit, δ)

Input: Initial WIP at t = 0, Init_WIPij, ∀ i ∈ I, j ∈ J(i); parameters WIP_limit and δ;

Output: WIP levels * ()ijW t and machine assignments* ()ijm tβ found by the heuristics;

Step 1: //read the given initial WIP

 Wij(0) = Init_WIPij, ∀ i ∈ I, j ∈ J(i);

Step 2: for(w = 1,…, nsub){

 Solve model (1) and obtain the solutions Wij(t) and βijm(t);

 Rescheduling (Wij(t), βijm(t));

94

 Dispatching_heuristic(Wij(t), βijm(t), WIP_limit, δ);

Step 3: //Set the final WIP to be the initial WIP for the next subproblem

 Wij(0) = Wij(n
days
τ
D), ∀ i ∈ I, j ∈ J(i);

 }

 * ()ijW t = Wij(t),
* ()ijm tβ = βijm(t), ∀ i ∈ I, j ∈ J(i) ∪ { n(i)+1}, m ∈ M, t ∈ T

Figure 4.10 Pseudocode of the decomposition algorithm

4.5.4 Bottleneck machines

For our purposes, a bottleneck step is one at which the number of wafers in queue is

consistently above a prescribed threshold value (see Lozinski and Glassey (1988) for a

discussion of detection mechanisms). The machines that perform the operations at such

steps are called bottleneck machines and consistently evidence high utilization, averaging

over 97% in the TI environment. For the current problem instance, the threshold values

for devices 1 and 2 are set to 1000 wafers. For device 3 the threshold value is 500 wafers.

 It should be mentioned that in the initial runs, the metrology tools rather than

photolithography tools became bottlenecks, which is not true in practice. There are at

least two possible explanations for this discrepancy. The first is that the company’s data

records are not completely accurate; the second is that the processing rates were

underestimated due to faulty assumptions related to average lot sizes, uptime, or sampling

procedures. To reflect the true situation, a list of operations that should not be

bottlenecks is provided by the company. For the machines associated with the operations

in the list, their processing rates are increased by a factor called ProcRateInc, which

varied between 2 and 20.

4.6 Computational Results

The results obtained from running the decomposition algorithm for a 4-week (28-day)

problem are presented first and then extended out to 3 months (13 weeks). The

representative devices in the three families C1, C2 and C3 have 674, 835 and 956 steps,

respectively, in their routes. The threshold value for step reduction was set to a large

value (106) such that no steps will be removed due to high processing rates. A time

95

interval ∆t = 60 min was used in the generation of the model, and the number of wafers

per lot was assumed to be 25.

 The objective function coefficients were not changed from the settings used in the

initial runs discussed in Section 6. The daily input, denoted by the parameter STARTSid,

was generated by the program from the lot starts data provided by TI and spanned the 3-

month period from September 1 through December 1, 2007. The daily output demand,

T_OUTid , was computed as the average of the total input over the planning horizon; that

is,

T_OUTid = / | |id
d D

STARTS D
∈
∑ , ∀ i ∈ I, d ∈ D

where |D| is the number of days in the planning horizon. The initial WIP, Wij(0), was

calculated by the program to reflect the state of the fab on September 1, 2007. To avoid

unnaturally high spikes in WIP during the LP runs, we set WIP_limit = 1000.

 In the computations, model (3) was solved with the primal simplex algorithm in

CPLEX 10.1. All other options were tried but none provided comparable performance on

the 1-week problem. For example, the barrier method took approximately 270 sec to set

up the model and over 1 hr to find a solution. In addition, it required 6.5 GB of RAM

whereas the primal simplex required only 2.4 GB. Perturbing right-hand-side values and

objective function coefficients did not improve these results.

4.6.1 Problem with 4-week planning horizon

The initial WIP Wij(0) of the 4-week problem is depicted in Figure 4.2. The daily inputs

for the three devices are given in Table 4.2, with |D| = 28. The daily target output is

T_OUT1d = 312 wafers for C1, T_OUT2d = 315 wafers for C2 and T_OUT3d = 26 wafers

for C3, ∀ d ∈ D.

 The 4-week problem was solved in 2,199 sec (36.65 min). Each 1-week

subproblem contains 2,822,411 variables and 499,695 constraints. The whole set of

results are included in Appendix 5. Table 4.5 provides the output statistics by week. The

second column reports the corresponding total shortages TS = ()id idi I d D

+ −

∈ ∈
∆ + ∆∑ ∑ . The

third column tLP gives the time required by CPLEX to solve the model (1) LP, and

indicates an upward trend. The fourth column trs reports the time to run the rescheduling

96

algorithm, while the last column tdh reports the time to run the dispatching heuristic. The

statistics in the last three columns do not include the overhead time which required 2199

– 654 – 296 – 452 = 797 sec.

As seen in Table 4.5, TS = 0 for the four weeks, which implies that the solution is

optimal. The WIP profiles of C1 at the end of each week are include in Appendix 5 and

repeated here in Figure 4.11 – Figure 4.14. From these profiles we can identify where the

bottlenecks occurred along the routes. For C1, wafers accumulated at steps 57, 106, 128,

311, 368, 431 and 650 with WIP over 1000 wafers. Steps 57, 106, 128 and 311 are

associated with the AP machines (wet etching). Step 368 is associated to the VF

machines (furnace for annealing); step 431 is associated to the MP machines

(electroplating) while step 650 is associated to the ET machines (dry etching).

Table 4.5 Output statistics for the 4-week problem

Week
no. TS

tLP
(sec)

trs
(sec)

tdh
(sec)

1 0 73 47 129

2 0 86 78 109

3 0 265 83 107

4 0 230 88 107

Total 0 654 296 452

For C2, the bottleneck steps are 21, 66, 79, 141, 176, 432, 475, 527, 570, 619, 753,

796 and 835 with WIP over 1000 wafers. All the bottleneck steps except the last two are

associated to the VF machines. Step 796 requires the ET machines while step 835 is the

last step of the route and should not be counted as a bottleneck since the WIP at this step

accumulates due to the pushing logic of the decomposition algorithm. Even if it were

possible to process this WIP, the objective function in models (3) and (9), which are

designed to restrict output deviations, might discourage it.

For C3, the bottleneck steps are 511 and 956 with WIP over 500 wafers. Step 511

is associated to the HD machines (wet clean operations) while Step 956, being the last

step in the route, is once again constrained by the objective of minimizing output

deviations.

97

Figure 4.11 WIP profile of C1 at the end of the 1st week

Figure 4.12 WIP profile of C1 at the end of the 2nd week

Figure 4.13 WIP profile of C1 at the end of the 3rd week

0

500

1000

1500

2000

1 2
2

4
3

6
4

8
5

1
0

6
1

2
7

1
4

8
1

6
9

1
9

0
2

1
1

2
3

2
2

5
3

2
7

4
2

9
5

3
1

6
3

3
7

3
5

8
3

7
9

4
0

0
4

2
1

4
4

2
4

6
3

4
8

4
5

0
5

5
2

6
5

4
7

5
6

8
5

8
9

6
1

0
6

3
1

6
5

2
6

7
3

W
IP

Step in routing

0
500

1000
1500
2000
2500
3000
3500

1 2
2

4
3

6
4

8
5

1
0

6
1

2
7

1
4

8
1

6
9

1
9

0
2

1
1

2
3

2
2

5
3

2
7

4
2

9
5

3
1

6
3

3
7

3
5

8
3

7
9

4
0

0
4

2
1

4
4

2
4

6
3

4
8

4
5

0
5

5
2

6
5

4
7

5
6

8
5

8
9

6
1

0
6

3
1

6
5

2
6

7
3

W
IP

Step in routing

0

1000

2000

3000

4000

5000

6000

1 2
2

4
3

6
4

8
5

1
0

6
1

2
7

1
4

8
1

6
9

1
9

0
2

1
1

2
3

2
2

5
3

2
7

4
2

9
5

3
1

6
3

3
7

3
5

8
3

7
9

4
0

0
4

2
1

4
4

2
4

6
3

4
8

4
5

0
5

5
2

6
5

4
7

5
6

8
5

8
9

6
1

0
6

3
1

6
5

2
6

7
3

W
IP

Step in routing

98

Figure 4.14 WIP profile of C1 at the end of the 4th week

 The current solution is a significant improvement over the initial solution

discussed in Section 6 since all shortages have been eliminated. However, as can be seen

from Figure 4.11 − Figure 4.14 that there is substantial WIP buildup at various steps

which implies some instability in the system. A similar situation was observed for C2 and

C3.

4.6.2 Problem with 13-week planning horizon

The basic parameters for the 13-week problem are the initial WIP, Wij(0), which is

displayed in Figure 4.2 − Figure 4.4 and the daily input which is not listed here but can be

found in Appendix 5. The daily output targets are T_OUT1d = 328 wafers for C1,

T_OUT2d = 315 wafers for C2 and T_OUT3d = 26 wafers for C3, ∀ d ∈ D where |D| = 91.

 The solution for the 13-week problem was found in 9,030 sec (2.51 hr) and is

detailed in Appendix 6. Table 4.6 reports the output statistics by week. The second

column indicates that shortages first appear in week 8 and increase as the weeks progress.

From week 10 through week 13 they are steady at 550.20 wafers. The third column

indicates that the time to solve model (3) is well under 500 sec for each week. The time

spent on rescheduling in each period is given in the fourth column and shows an upward

trend. The final column indicates that the time spent on the dispatching heuristic is stable

at roughly 120 sec. A total of 9030 – 3027 – 3515 – 1637 = 851 sec was required for the

overhead computations.

 The total shortage TS is 2944.42 wafers. The daily shortages for the three devices

are displayed in Figure 4.15 – Figure 4.17, respectively, with positive values on the

0

2000

4000

6000

8000

1 2
2

4
3

6
4

8
5

1
0

6
1

2
7

1
4

8
1

6
9

1
9

0
2

1
1

2
3

2
2

5
3

2
7

4
2

9
5

3
1

6
3

3
7

3
5

8
3

7
9

4
0

0
4

2
1

4
4

2
4

6
3

4
8

4
5

0
5

5
2

6
5

4
7

5
6

8
5

8
9

6
1

0
6

3
1

6
5

2
6

7
3

W
IP

Step in routing

99

vertical axis associated with id
−∆ and negative values with id

+∆ . Shortages first appear at

day 52 and then fluctuate for both C1 and C2. From day 53 to day 91, the maximum daily

shortages are 60.1 wafers for C1 on day 62, 52.6 wafers for C2 on days 57, 64, 71, 78 and

85, and 26 wafers for C3 from day 60 to 91. In fact, there is no output for C3 on the last

32 days. Over the 91-day horizon, the average daily deviations for the three devices are

11.55, 11.55 and 9.26, respectively.

Table 4.6 Output statistics for the 13-week problem

Week no. TS
tLP

(sec)
trs

(sec)
tdh

(sec)

1 0.00 110 191 134

2 0.00 109 234 207

3 0.00 207 239 115

4 0.00 224 251 116

5 0.00 144 260 117

6 0.00 195 263 119

7 0.00 143 281 125

8 260.60 368 291 114

9 483.02 321 289 114

10 550.20 301 283 116

11 550.20 177 303 119

12 550.20 429 302 120

13 550.20 299 328 121

Total 2944.42 3027 3515 1637

Figure 4.15 Daily shortage of C1

0

20

40

60

80

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 7982 85 88 91

∆
fr

om
 ta

rg
et

Day in planning horizon

100

Figure 4.16 Daily shortage of C2

Figure 4.17 Daily shortage of C3

 The three WIP profiles at the end of the 13th week are displayed in Appendix 6

and also repeated here in Figure 4.18 – Figure 4.20. The bottleneck steps and the

associated machine information are reported in Table 4.7. The first three columns list the

devices, the bottleneck steps, and the corresponding machine tools. The last two columns

give the number of available machines and the associated processing rates. As in the 4-

week problem, the AP, VF and ET machines are the bottlenecks.

 A closer look at the routings reveals that the AP machines are involved in 14 steps

for C1 with an average processing rate of 0.5433 wafers/min, 14 steps for C2 with an

average processing rate of 0.4957 wafers/min and 26 steps in C3 with an average

processing rate of 0.5002 wafers/min. To get a better understanding of fab capacity,

assume that the capacities of the AP machines are assigned to the three devices in

proportional to the daily target outputs, and that for the same device, these capacities are

evenly assigned to the associated steps. The output of the fab can be estimated as follows.

 C1: 0.5433 ×
328

328 315 26+ +
×

1

14
× 9 × 60 × 24 = 246.58 wafers/day

-20.00
0.00

20.00
40.00
60.00
80.00

100.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 7982 85 88 91

∆
 fr

om
 ta

rg
et

Day in planning horizon

0.00
5.00

10.00
15.00
20.00
25.00
30.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 7982 85 88 91

∆
fr

om
 ta

rg
et

Day in planning horizon

101

 C2: 0.4957 ×
315

328 315 26+ +
×

1

14
× 9 × 60 × 24 = 216.06 wafers/day

 C3: 0.5002 ×
26

328 315 26+ +
×

1

26
× 9 × 60 × 24 = 9.96 wafers/day

 These daily outputs are lower than the daily target outputs for the three devices.

The estimated shortage is (328 + 315 + 26) – (246.58 + 216.06 + 9.96) = 196.66

wafers/day. Applying the same analysis to the VF machines, the estimated daily outputs

for the three devices are 528.97, 273.91 and 27.30 wafers, respectively. This results in a

surplus of (528.97 + 273.91 + 27.30) − (328 + 315 + 26) = 161.18 wafers/day. However,

a closer look indicates that the reason why the VF machines become bottlenecks is

because the processing rate at the steps immediately preceding the bottleneck steps is

much higher: for C2, the processing rate is 40 wafers/min at step 618 and for C3 it is

48,000 wafers/min at step 641.

 For the ET machines, this analysis is more straightforward since they are only

required for step 650 in the route of C1, step 796 in the route of C2 and step 922 in the

route of C3. The maximum output for the two ET machines is 0.205 × 2 × 60 × 24 =

590.4 wafers/day. In contrast, the daily shortage is (328 + 315 + 26) – 590.4 = 78.6

wafers while the weekly shortage is 78.6 × 7 = 550.2 wafers. This value coincides

exactly with the shortages from week 10 to week 13 as reported in Table 4.5. As such,

the daily output requirements are beyond the capacity of the available machines,

implying that the fab will eventually become unstable.

Figure 4.18 WIP profile of C1 at the end of the 13th week

0

2000

4000

6000

8000

10000

1 2
2

4
3

6
4

8
5

1
0

6
1

2
7

1
4

8
1

6
9

1
9

0
2

1
1

2
3

2
2

5
3

2
7

4
2

9
5

3
1

6
3

3
7

3
5

8
3

7
9

4
0

0
4

2
1

4
4

2
4

6
3

4
8

4
5

0
5

5
2

6
5

4
7

5
6

8
5

8
9

6
1

0
6

3
1

6
5

2
6

7
3

W
IP

Step in routing

102

Figure 4.19 WIP profile of C2 at the end of the 13th week

Figure 4.20 WIP profile of C3 at the end of the 13th week

Table 4.7 Bottleneck information for the 13-week problem

Device
(family)

Bottleneck
step(s) Tool

Number
of tools

Processing rate
(wafers/min)

C1

21
57
106
128

AP
AP
AP
AP

9
9
9
9

0.4464
0.5515
0.5515
0.4934

650 ET 2 0.2050

C2
66
619

AP
VF

9
8

0.5515
0.3729

796 ET 2 0.2050

C3

167
229

AP
AP

9
9

0.5859
0.4261

642 VF 8 0.5357
922 ET 2 0.2050

 Intuitively, the bottleneck machines should be busy most of the time. This can be

verified from the data in Table 4.8, which reports the average percent utilization for the

0

5000

10000

15000

20000

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3

W
IP

Step in routing

0

500

1000

1500

2000

2500

1 3
0

5
9

8
8

1
1

7
1

4
6

1
7

5
2

0
4

2
3

3
2

6
2

2
9

1
3

2
0

3
4

9
3

7
8

4
0

7
4

3
6

4
6

5
4

9
4

5
2

3
5

5
2

5
8

1
6

1
0

6
3

9
6

6
8

6
9

7
7

2
6

7
5

5
7

8
4

8
1

3
8

4
2

8
7

1
9

0
0

9
2

9

W
IP

Step in routing

103

AP, VF and ET machines over the 91-day planning horizon. It can be verified that these

machines are fully utilized with mβ = 100%.

Table 4.8 Average usage of bottleneck machines over 91 days

Machine
number, m

Machine
group

mβ
 (%)

Machine
number, m

Machine
group

mβ
(%)

29 AP 100 543 VF 100
30 AP 100 544 VF 100
31 AP 100 545 VF 100
32 AP 100 546 VF 100
33 AP 100 547 VF 100
34 AP 100 548 VF 100
35 AP 100 549 VF 100
36 AP 100 550 VF 100
37 AP 100 284 ET 100
38 AP 100 285 ET 100

4.6.3 Rolling horizon for subproblems

Even if no shortages exist after running the decomposition algorithm for several weeks,

the optimal solution obtained for a particular week may not be optimal when the full

problem is solved as a whole. In fact, an excessively large number of alternate optima

exist for both models (3) and (9) due to the underlying network structure of the problem.

If only a small subset of the alternate optima are robust with respect to the 13-week

problem, then it is likely that as the decomposition algorithm progresses, the subproblem

solutions will become less robust. This could lead to suboptimal final WIP values which

in turn would produce suboptimal subproblem solutions. If this occurs, the subproblem

solutions will deteriorate over time with respect to the full problem. (A similar

phenomenon is commonly observed when statistical models are used to make forecasts;

i.e., variance increases with the length of the forecast.)

 To investigate the implications of this situation, we implemented the

decomposition algorithm in a rolling horizon framework. In this approach, an s-day

problem, say, is solved but only the results for the first r days (r < s) are actually applied.

The WIP at the end of the first r days is used to initialize another s-day problem whose

104

solution again is only applied for the next r days. This process is outlined in Figure 4.21

and would be repeated indefinitely.

Figure 4.21 Rolling horizon for the subproblems

 In the implementation we set s = 9 and r = 7. For the 4-week problem, the

solution was obtained in 2,954 sec compared to 2,199 sec for the original approach and

similarly resulted in no shortages. The WIP profiles at the end of each week were almost

identical to those shown in Figure 4.11 – Figure 4.14. For the 13-week problem, the

computational time was 13,364 sec compared to 9,030 sec; however, a slightly better

solution was found with TS = 2943 wafers. In these runs, a shortage of 55.8 wafers first

appeared in week 7, increased steadily, and then stabilized again at 550.2 wafers in the

last three weeks.

The immediate observation from these results is that for the parameter settings

used in the analysis, the rolling horizon scheme consumes proportionally more time

without noticeably improving the solution. Although a larger s would make the

subproblems more robust, the shortage in the last few weeks in the 13-week problem will

eventually stay at 550.2 as indicated by the analysis of the ET machines in Section 9.2.

4.7 Further Discussion

The 4-week problem can be solved in about 37 min, which is a reasonable amount of

time, and provides results without any shortage. For the 13-week problem, the

occurrence of shortages began in week 8 and continued to the end of the planning horizon

due to the capacity limits of the available machines. Assuming that the processing rates

s days

r days s days

r days s days

r days

105

are correct, to improve throughput, either additional bottleneck machines need to be

brought on line or their processing rates need to be increased.

 The final issue concerns shift scheduling. Because the results from our model are

in aggregate form with respect to the three representative families, and are expressed as

continuous rather than discrete values, more work is needed to construct a daily plan that

takes into account the actual devices in the system, setup times between lots, tooling, and

other factors that are common in discrete manufacturing. A second model would have to

be developed for this purpose.

106

Chapter 5

Chapter 5. Scheduling Back-End Operations in Semiconductor Manufacturing

Scheduling Back-End Operations in Semiconductor Manufacturing

 At back-end facilities, finished wafers go through an extensive regimen of

inspection and testing that can take up to 3 hours at each step. Over a planning horizon

of anywhere from 8 hours to several days, hundreds of thousands of wafers, grouped into

thousands of lots must be assembled and tested. Each wafer must go through

approximately 32 discrete operations before it enters finished goods inventory. The AT

facility has hundreds of machines that are used to perform the required processes. At

each operation, a queued lot must be assigned to one of a subset of appropriate machines,

and when two successive lots consist of different devices, a setup is incurred between lots.

Setups or changeovers are performed by a crew of technicians and typically take 2 hours,

although fewer hours may be needed, depending on the tooling. If the current device on a

machine must be tested at a high temperature while its successor requires testing at room

temperature, and both use the same fixtures, then the setup time is equal to the amount of

time it takes for cool down, usually an hour. Labor is generally not a constraining factor.

Each lot contains a number of chips of the same device, ranging from a few

hundred to several thousand. Two lots may contain the same device but a different

number of chips. A lot remains in the facility until it undergoes all 32 operations. All

lots are associated with customers and have delivery due dates. When a delivery is late, a

penalty is incurred which is a function of lateness and volume. Because setups are so

time consuming, it is critical for the planners to assign lots to machines and tooling to

machines in such a way that as few setups as possible are required and due dates are

taken into account.

The age of a lot is the current time minus the time it entered the facility. For each

operation, each lot is assigned to a particular machine for processing. To be eligible, the

machine must be set up with the appropriate tooling pieces, as specified by the lot’s

routing table and must be able to operate at the required temperature. Machines are

divided into families. In most cases, two machines from the same family are identical;

however, it is possible that “identical” machines operate under different temperatures and

107

hence are not interchangeable. The limiting resource at most operations is the number of

tooling pieces. As with machines, tooling pieces are divided into tooling families and

only operate at a limited number of temperatures.

Each AT operation can be viewed as independent of the others so the

corresponding problems are separable. As such, the discussion in the remainder of the

chapter relates to an individual operation rather than the AT facility as a whole. For an

incoming lot, a particular route must be selected, if there is more than one option. A

route specifies the eligible machine family, the tooling requirements, the processing rate,

and the operating temperature. Once a route is selected, the lot is assigned to one of the

machines in the specified family and the required tooling pieces are installed. Each

assigned lot is processed completely without preemption and each machine can be set up

at most once during the planning horizon to operate at only one temperature. That is, if

machine m is set up with tooling configuration λ1 under temperature τ1, then it cannot run

with another tooling setup λ2 or under another temperature τ2 later in the planning horizon,

even when τ2 is feasible for configuration λ1.

At the beginning of each planning horizon, typically a shift or a day, a finite

number of lots are available for processing. A subset of these lots may contain what are

called key and package devices, and are singled out for special treatment. Any demand

that cannot be satisfied for these two types of devices occasion a large penalty for the

company. It is thus desirable to ensure that as many of these “hot” lots as possible are

processed over the planning horizon to avoid or reduce penalties. Regular lots are

assigned a value that depends on their age and remaining cycle time in the facility.

Problem statement. For a given planning horizon, AT operation and set of lots, determine

how each available machine should be configured with tooling to operate at a specified

temperature so that the weighted sum of the lots processed is maximized without

violating the system’s capacity. The solution should also minimize the number of key

and package devices falling short of their demand.

 In the literature, this problem is generally referred to as a parallel machine

scheduling problem with setups, due dates, and a lateness objective. Other objectives,

such as minimizing the time to complete all lots (i.e., minimize makespan), minimizing

108

the number of setups, or minimizing the number of late jobs, have similar characteristics.

In all cases, current technology limits the size of an instance that can be solved optimally

to less than a dozen machines and several hundred lots (e.g., see Bard and

Rojanasoonthon 2006).

 The optimization model is presented in the next section. The details of the

decomposition strategy and GRASP are presented in Section 5.2. Test results using data

provided by Texas Instruments reported in Section 5.3. An assessment of the model and

several suggestions for improving the methodology are provided in Section 5.4.

5.1 Mathematical Formulation

The AT facility planning problem can be modeled as a mixed-integer problem (MIP)

using the notation given in Figure A.72. Although the formulation includes only a

handful of constraints, a disproportionate amount of notation is required to correctly

account for all the machine-tooling-temperature combinations.

Maximize (((()))) 1 1 2 2
() (,)

k k p p
l s ils

i M l L i s S i l k K p P

w x w wε
∈ ∈ ∈ ∈ ∈∈ ∈ ∈ ∈ ∈∈ ∈ ∈ ∈ ∈∈ ∈ ∈ ∈ ∈

− − ∆ − ∆− − ∆ − ∆− − ∆ − ∆− − ∆ − ∆∑ ∑ ∑ ∑ ∑∑ ∑ ∑ ∑ ∑∑ ∑ ∑ ∑ ∑∑ ∑ ∑ ∑ ∑ (10a)

subject to
() (,)

1ils
i M l s S i l

x
∈ ∈

≤∑ ∑ , ∀ l ∈ L (10b)

()

1i
i

y λ
λ∈Λ

≤∑ , ∀ i ∈ M (10c)

 tooling
,

(, ,)() ()
t i t m

i M i tT n m N n

b y nλ λ
λ ττ Λ∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈

≤≤≤≤∑ ∑ ∑ ∑∑ ∑ ∑ ∑∑ ∑ ∑ ∑∑ ∑ ∑ ∑ , ∀ t ∈ T, n ∈ N (10d)

chips

(,) (, ,)

l
ils i i

l L i s S i l ils

n
x H y

r λ
λ λ∈ ∈∈ ∈∈ ∈∈ ∈

≤≤≤≤∑ ∑∑ ∑∑ ∑∑ ∑ , ∀ i ∈ M, λ ∈ Λ(i) (10e)

 chips min_chips
1

(,) (,)

k
l ils k

i M l L i k s S i l

n x C n
∈ ∈ ∈∈ ∈ ∈∈ ∈ ∈∈ ∈ ∈

+ ∆ ≥+ ∆ ≥+ ∆ ≥+ ∆ ≥∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑ , ∀ k ∈ K (10f)

chips min_chips
2

(,) (,)

p
l ils p

i M l L i p s S i l

n x C n
∈ ∈ ∈∈ ∈ ∈∈ ∈ ∈∈ ∈ ∈

+ ∆ ≥+ ∆ ≥+ ∆ ≥+ ∆ ≥∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑ , ∀ p ∈ P (10g)

 xils ∈ {0,1},∀ i ∈ M, l ∈ L(i), s ∈ S(i,l), yiλ ∈ {0,1}, ∀ i ∈ M, λ ∈ Λ(i)

 1
k∆ ≥ 0, 2

p∆ ≥ 0, ∀ k ∈ K, p ∈ P (10h)

The objective function (10a) is designed to maximize the total weighted number

of lots processed over the planning horizon and to minimize the total weighted shortages

for the key and package devices. The weight of lot l, wl = lot age + remaining cycle time

109

planned, and the weights1
kw and 2

pw are the penalties for shortages for all k ∈ K and p ∈ P.

The latter are both set to values larger than max{wl : l ∈ L}, implying that priority in the

optimization is given to minimizing shortages over maximizing the weighted sum of lots

processed. When all the weights wl have the same value and1
kw = 2

pw = 0, the problem is

equivalent to maximizing the throughput. The parameter εs in the first term of (10a) is

the penalty incurred when route s is chosen. Both prime and alternate routes exist for

some lots. To encourage the selection of prime routes when at all possible, we use the

following settings: εs = 0 for s a prime route; εs ∈ (0, min{wl : l ∈ L }) for s an alternate

route

 Constraints (10b) require that if lot l is assigned to machine i ∈ M(l), then the

tooling associated with one of the routes s ∈ S(i,l) must be set up on that machine. Lot l

cannot be assigned to more than one machine or be given more than one route. These

constraints do not require that each lot be processed but the objective function ensures

that the as many lots as possible are processed when there are a sufficient number of

machines, tooling pieces, and time available.

 Constraints (10c) limit each machine i to at most one tooling configuration from

the set Λ(i). When the number of lots |L| is small, or when the available tooling is limited,

it may not be desirable or feasible to set up all machines. Also, once the tooling

configuration λ is selected for a particular machine, changeovers are not permitted during

the planning horizon.

 Constraints (10d) restrict the total number of tooling pieces assigned to machines

from family t to the number of pieces available under temperature combination n. The

left-hand side of these constraints counts the number of tooling pieces from family t

associated with the choice of yiλ over all machines, temperatures in n, and corresponding

tooling setups. The right-hand side counts the total available number of tooling pieces in

family t under temperature combination n by summing tooling
tmn

over all combinations

()m N n∈ . For each t ∈ T, there are tooling
tmn

tooling pieces that can be used under the nth

combination if m shares some temperatures with n. Assume that there are three discrete

temperatures, that is, T = {1,2,3}, and tooling
tmn

= 1, ∀ t ∈ T, m ∈ N, and let the set of

possible temperature combinations N = {{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}. For

110

n = 4, for example, the temperature set (4)T = {1,2} and (4)N = (){1,2}N = {{1}, {2},

{1,2}, {1,3}, {2,3}, {1,2,3}} = N \ {3}. The right-hand side of (10d) under combination

n is then (4)N

= 6 for all tooling families t ∈ T.

 Constraints (10e) impose a processing time limit on each machine i ∈ M when it

is set up under configuration λ ∈ Λ(i). The left-hand side tracks the amount of time

required to process each lot l assigned to machine i following route s. The time available

for machine i depends on its status. If a machine i is active, then exactly one of the

variables yiλ = 1, for λ ∈ Λ(i), as required by constraints (10c). Thus, the available

processing time is Hi when machine i is active and 0 when it is idle. These constraints

also impose a logical relationship between xils and yiλ. When the setup variable yiλ = 0,

the lot assignment variables xils = 0, ∀ l ∈ L(i,λ), s ∈ S(i,l,λ) so any lot l requiring setup

configuration λ cannot be processed on machine i.

Constraints (10f) ensure that as many lots as possible containing key device k are

processed, at least until demand min_chips
kn is satisfied. The shortage 1

kC∆ will be positive if

some of the demand cannot be met due to limited resources. In that case, a penalty equal

to 1 1
k kw ∆∆∆∆ is incurred, where C = max{wl : l ∈ L} + 0.1Σl∈Lwl is a normalizing constant

used to ensure that the left-hand-side coefficients in (1f) are all the same order of

magnitude. A similar set of constraints (10g) is included for package devices p ∈ P. In

(10h), binary restrictions are placed on the xils and yiλ variables, and nonnegative

restrictions are placed on the shortage variables 1
k∆ and 2

p∆ .

Although it is possible to tighten the linear programming relaxation of (10) by

adding logic constraints xils � yiλ, ∀ i ∈ M, λ ∈ Λ(i), l ∈ L(i,λ), s ∈ S(i,l,λ) and removing

yiλ from the right-hand side of (10e), doing so would increase the problem size by

O(|M|⋅|Λ|⋅|L|) constraints, making it more than an order of magnitude larger. In our initial

testing with CPLEX 11, this modification vastly increased runtimes and so was not

adopted.

Proposition 5.1. The assembly and test scheduling problem (ATP) represented by model

(10) is NP-complete in the strong sense.

111

Proof. We will show that a restricted version of ATP is an instance of the bin packing

problem (BPP), which is known to be NP-complete in the strong sense (Garey and

Johnson 1979). For BPP, we have the following definition.

INSTANCE: Finite set U of items, a size su ∈ Z+ for each u ∈ U, a positive integer bin

capacity B, and a positive integer K.

QUESTION: Is there a partition of U into disjoint sets U1,U2,…,UK such that the sum of

the sizes of items in each Ui is B or less?

 To see how an instance of BPP can be reduced to an instance of ATP, we create a

simplified version of ATP where all |M| machines are identical, the available processing

time on each machine is identical, i.e., Hi = H for all i ∈ M, there are no key or package

devices, there are no tooling or setup requirements, the processing time of lot l is r l is

machine-independent, and the objective function weights wl = 1 for all l ∈ L. For BPP,

we let U = L, su = r l when u = l, B = H, K = |M|, which gives rise to the simplified ATP.

If we can find a solution such that the set U can be partitioned into K subsets such that

s

uu∈∈∈∈U i
∑∑∑∑ ≤≤≤≤ B for i = 1,…,K, then we can find a solution such that all the lots in WIP can

be processed on the |M| machines in H hours, and vice versa. The fact that BPP can be

transformed into the simplified instance of ATP in polynomial time completes the proof.

 �

5.2 Solution Methodology

Model (10) contains nvar ≅
()

(,)
i M l L i

S i l
∈ ∈∑ ∑ + ()

i M
i

∈
Λ∑ + |K| + |P| = O(|M|⋅|L|⋅|S| +

|M|⋅|Λ| + |D|) variables and ncon ≅ |L| + |M| + |T|⋅|N| + ()
i M

i
∈

Λ∑ + |K| + |P| = O(|L| +

|T|⋅|N| + |M|⋅|Λ| + |D|) constraints. Problem size is dominated by the number of lot

assignment variables xils and the number of lot assignment constraints (10b), both of

which grow linearly with |L|. For a small case with 300 lots, 5 machine families and a

total of 20 machines, 10 tooling families and a total of 50 tooling pieces, 3 operating

temperatures, and 50 devices with 40 being key or package devices, the model contains

approximately nvar = 2220 variables and ncon = 650 constraints. Such instances exhibit

optimality gaps at the root node of the search tree that average 3% and solve quickly.

112

Real instances with, say, 2000 lots contain roughly 84,000 binary variables and 3300

constraints and are much slower to converge, if they do at all.

 To ensure reasonable runtimes, we developed a heuristic, two-level

decomposition scheme and embedded it in a reactive GRASP. Our approach is based on

the observation that model (10) becomes much easier to solve when the machines setups

are given, that is, when the yiλ variables are fixed, leaving what we term the lower level

problem (LLP) in the xils variables. At the upper level, a strategic decision is made

concerning machine-tooling pairings.

Phase I of the GRASP is designed to uncover a diversity of high quality feasible

solutions by randomly selecting the y variables in accordance with an adaptive greedy

measure and then solving the resultant LLP to obtain the optimal lot assignments, x. This

process is repeated many times. In phase II, an attempt is made to improve a subset of

the candidates uncovered in phase I using a high-level neighborhood search. Before

presenting the overall analytic framework, our approach to solving the lower and upper

level problems is described.

5.2.1 Lower level problem

When the tooling setup variables yiλ are fixed at, say, iyλ , constraints (10c) and (10d) can

be dropped from model (10) and the right-hand side of (10e) becomes a constant. The

reduced model, denoted by LLP, is as follows.

Maximize () 1 1 2 2
() (,)

k k p p
l s ils

i M l L i s S i l k K p P

w x w wε
∈ ∈ ∈ ∈ ∈

− − ∆ − ∆∑ ∑ ∑ ∑ ∑ (11a)

subject to
() (,)

1ils
i M l s S i l

x
∈ ∈

≤∑ ∑ , ∀ l ∈ L (11b)

chips

(,) (, ,)

l
ils i i

l L i s S i l ils

n
x H y

r λ
λ λ∈ ∈

≤∑ ∑ , ∀ i ∈ M, λ ∈ Λ(i) (11c)

 chips min_chips
1

(,) (,)

k
l ils k

i M l L i k s S i l

n x C n
∈ ∈ ∈

+ ∆ ≥∑ ∑ ∑ , ∀ k ∈ K (11d)

chips min_chips
2

(,) (,)

p
l ils p

i M l L i p s S i l

n x C n
∈ ∈ ∈

+ ∆ ≥∑ ∑ ∑ , ∀ p ∈ P (11e)

 xils ∈ {0,1},∀ i ∈ M, l ∈ L(i), s ∈ S(i,l), 1
k∆ ≥ 0, 2

p∆ ≥ 0,

 ∀ k ∈ K, p ∈ P (11f)

113

 For iyλ = 1, let iλ be the corresponding tooling configuration for machine i. By

implication iyλ = 0 for all λ ∈ Λ(i)\{ iλ } and constraints (2c) can be written as

chips

(,) (, ,)i i

l
ils i

l L i s S i l ils

n
x H

rλ λ∈ ∈

≤∑ ∑ , ∀ i ∈ M (11c′)

with the additional restriction xils = 0, ∀ i ∈ M, λ ∈ Λ(i)\{ iλ }, l ∈ L(i,λ), s ∈ S(i,l,λ).

Model (11) contains approximately
(,)

(, ,)
i

i
i M l L i

S i l
λ

λ
∈ ∈∑ ∑ + |K| + |P| variables and |L| +

|M| + |K| + |P| constraints, which is a sizable reduction from model (10), but still a

difficult IP. Since our algorithm requires that (11) be solved repeatedly for different

values of the yiλ variables in both phases of the GRASP, we propose solving the LP

relaxation of (11) and then constructing feasible solutions guided by the results, rather

than applying an IP solver directly. In addition, we were motivated by the desire to

eliminate any dependency on a commercial product.

LP based heuristic for LLP

Let xLP be the solution to the LP relaxation of model (11). To transform xLP into an

integral solution xIP, we start by truncating the fractional lot assignments to get

 IP
ilsx = LP

ilsx for LP
ilsx integral

 IP
ilsx = 0 for LP

ilsx fractional

which empirically turns out to be a good starting point. Let L0 be the set of unassigned

lots and let Li be the set of lots assigned to machine i in accordance with IPilsx . For device

j, the output out(j) and the shortage sh(j) are defined as follows.

 out(j) = chips

()i

l
i M l L L j

n
∈ ∈ ∩
∑ ∑ , ∀ j ∈ D, sh(j) = n(j) – out(j), ∀ j ∈ D

The term n(j) is the target output for device j in constraints (11d) and (11e), that is,

min_chips
jn for j ∈ {K 	 P}, and −∞ for regular device j ∈ D\{ K 	 P}. There is no output

requirement for regular devices.

The benefit of an unassigned lot l ∈ L0 is defined by the function

 ben(l) = wl +()
ldw C ∙ { }chipsmin , ()l ln sh d ∙ { }() 0lI sh d > ∙ { }{ }lI d K P∈ ∪ (12)

114

where dl is the device contained in lot l and I{ α} is an indicator function equal to 1 if the

phrase α is “true” and 0 otherwise. The first right-hand-side term in (12) is the lot weight;

the second term measures the penalty reduction [potential gain in the objective function

(2a)] that would result if the lot contains a key or package device. In the second term,

()
ldw C is the unit shortage penalty associated with the chips in lot l. The weight

ldw =

1
kw if dl ∈ K and

ldw = 2
pw if dl ∈ P. For the indicator function I{ α}, when dl ∈ {K 	 P}

and sh(dl) > 0, { }() 0lI sh d > � { }{ }lI d K P∈ ∪ � 1. The magnitude of the penalty

reduction depends on { }chipsmin , ()l ln sh d . If chips
ln < sh(dl), then all chips

ln chips contained

in lot l go towards reducing the penalty. Otherwise, only sh(dl) of them contribute.

Using the benefit function calculated in (12), a feasible assignment of lots to

machines is given by xIP, and then is improved locally. For each machine i ∈ M, let IP
it be

the time consumed by the lots assigned to it in partial solution xIP. With these values in

mind, procedure N1(x
IP) is applied to assign as many lots as possible to the available

machines in an expedient manner, and then procedure N2(x
IP) is used to perform a

neighborhood search giving solution LLP_heur(y). The pseudocodes of the two

procedures are provided in Figure A.73 and Figure A.74.

N1(x
IP) (Greedy lot insertion) Sort the unassigned lots l ∈ L0 in nonincreasing order

according to ben(l). Pick the next lot l ∈ L0 and a machine i ∈ M. If l ∈ L(i,

iλ) and IP
it + chips

l ilsn r � Hi, where route s = argmax{r ils, s ∈ S(i,l, iλ)},

assign l to machine i and go to the next unassigned lot; otherwise, go to next

machine. If l cannot be assigned to any machine, go to the next unassigned

lot.

N2(x
IP) (Lot swap) Sort the unassigned lots l ∈ L0 in nonincreasing order according

to ben(l). Pick the next lot l ∈ L0 and a machine i ∈ M. If l ∈ L(i, iλ), pick a

lot l′ ∈ Li. Let s = argmax{r ils : s ∈ S(i,l, iλ)} and s′ = argmax{r il ′s : s ∈ S(i,l′,

iλ)}. If IP
it + chips

l ilsn r − chips
l il sn r′ ′ � Hi and ben(l) > ben(l ′), swap lots l and l ′

and go to next unassigned lot l ∈ L0; otherwise, go to next lot l′ ∈ Li. If l ∉

L(i, iλ), lot l cannot be assigned to machine i, go to next machine.

115

5.2.2 Upper level problem

The solution provided by LLP is a function of the machine setup variables y. The upper

level problem (ULP) aims to identify the optimal machine setups such that the overall

objective (10a) is maximized. The following mathematical model is used for this purpose.

Maximize LLP_heur(y) (13a)

subject to
()

1i
i

yλ
λ∈Λ

≤∑ , ∀ i ∈ M (13b)

 tooling
,

(, ,)() ()
t i t m

i M i tT n m N n

b y nλ λ
λ ττ Λ∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈

≤≤≤≤∑ ∑ ∑ ∑∑ ∑ ∑ ∑∑ ∑ ∑ ∑∑ ∑ ∑ ∑ , ∀ t ∈ T, n ∈ N (13c)

 yiλ ∈ {0,1}, ∀ i ∈ M, λ ∈ Λ(i) (13d)

Constraints (13b) – (13c) repeat (10c) – (10d) and along with (13d) define the

feasible machine-tooling pairings. However, model (13) cannot be solved directly since

the objective function (13a) is not an explicit function of y. GRASP is proposed as

follows to generate solutions. In each phase I iteration, a candidate list (CL) is built from

machine-tooling combinations and sorted according to the benefit associated with each.

A restricted candidate list (RCL) is then constructed from CL whose length is adjusted

based on the quality of solutions obtained from previous iterations. Letting SIM be the

set of identical machines, a scoring list is also maintained to grade each (j, λ) ∈ SIM ×

Λ(i). Feasible solutions are constructed by randomly selecting (j, λ) combinations from

RCL until all available capacity is used. As mentioned, a subset of solutions generated

in phase I is passed to phase II for improvement using neighborhood search.

Building the CL

Each element in CL is a triplet consisting of some j ∈ SIM, a tooling setup λ ∈ Λ(j), and

the corresponding benefit ben(j, λ, L0), where L0 is the set of unassigned lots. The benefit

is computed by solving the following knapsack problem

ben(j, λ, L0) = max
0(,)

() l
l L j L

ben l z
λ∈ ∩





∑ :
0

chips

0
(,)

, {0,1}, (,)l
l i l

l L j L ils

n
z H z l L j L

rλ

λ
∈ ∩

≤ ∈ ∀ ∈ ∩ 


∑

where ben(l) is the value calculated in (12) when lot l ∈ L0 is assigned to machine i ∈

SIMj. The term chips
l ilsn r is the time required to process lot l on machine i with tooling

116

setup λ, and route s = argmax{r ils : s ∈ S(i, l, λ)}. The decision variables zl, ∀ l ∈ L(j λ) ∩

L0 are binary such that zl = 1 when lot l is assigned to the machine i ∈ SIMj and 0

otherwise. The elements in CL are sorted in nonincreasing order of ben(j, λ, L0).

 Instead of solving the knapsack problem exactly, a heuristic is used to reduce

runtimes. The pseudocode of the heuristic is shown in Figure A.75. In Step 1, the

unassigned lots l ∈ L0 are sorted according to rate of benefit ()chips() l ilsben l n r in

nonincreasing order. In Step 2, the lots are assigned to the machine in a greedy way until

there is no more lots can be assigned due to the time limit constraint.

 An example of a CL is shown in Table 5.1. The first two columns identify the

feasible machine-tooling combinations (j,λ) while the third column gives the benefit

ben(j, λ, L0) associated with the knapsack solution. CL is sorted in nonincreasing order of

the benefit.

Table 5.1 An example of CL

SIM, j Tooling setup, λ ben(j, λ, L0)

2 1 100
2 3 90
3 2 80
1 3 70
2 2 60
1 1 50

Self-adjusted RCL

RCL is derived from CL by taking only the top elements. Since RCL guides the

construction process in phase I, its length, lRCL, must strike a balance between solution

quality and diversity. If lRCL is large then it is likely to produce many inferior initial

solutions; if it is small, many good solutions may be missed. Therefore, instead of setting

lRCL to a fixed value, it is restricted within the following range: lRCL ∈{2, 3,…, � �
���},

where � �
��� is a (predetermined) maximum length. The value of lRCL is adjusted during

the GRASP iterations according to the quality of observed solutions, as described by

Paris and Ribeiro (1999).

117

Let A = {α1, α2, … ,αm} be the set of considered values for lRCL and let pi be the

corresponding probability of selecting αi, i =1,…,m. Initially, pi is uniformly distributed;

that is,

 pi = 1/m, i = 1,…,m

To see how these probabilities are adjusted, let φ* be the best solution found in all

previous GRASP iterations and let Ai be the average value of solutions obtained for lRCL =

αi. Now, define

*
i

i

A
q

δ

φ
 

=  
 

, i = 1,…,m (14a)

to be the relative performance of the algorithm under αi, where δ is a shape parameter.

For higher values of δ, qi will be lower since Ai ≤ φ*. Normalizing gives

1

/
m

i ip q qγγ =
= ∑ , i = 1,…,m (14b)

 When αi yields relatively high average solutions, Ai it will have a high probably pi

of being selected as the iterations progress. In the implementation, we set δ =50 and A =

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Grading the (SIM, Λ) combinations

The quality of the phase I solutions strongly depends on the associated machine-tooling

pairings selected. A good (j, λ) combination is one that appears frequently in good

solutions. To identify such pairs we devised a scoring list (SL) to grade each (j, λ)

combination that arises in phase I. Each element of SL consists of the SIM index j, the

tooling setup index λ, and the score Sjλ of the corresponding (j, λ) combination. Let φk be

the objective function value in (4a) found at iteration k of phase I, let *
jλφ be the best

solution found so far using (j, λ), and let k
iy λ [for all i ∈ SIMj and λ ∈ Λ(i)] be the

corresponding machine-tooling pairings. The score Siλ is defined as a function of the

average objective function value and the best objective function value over all phase I

iterations; that is,

Sjλ = ()PhaseI

PhaseI

2() *1

()1

{ 1}

{ 1}

k
k i

i SIM jk n
jk

i
i SIM jk n

I y

c
I y

λ

λ
λ

φ
φ∈≤ ≤

∈≤ ≤

=

⋅ +
=

∑ ∑

∑ ∑
, ∀ j ∈ SIM, λ ∈ Λ(j)

118

where nPhaseI is the total number of iterations in phase I and I{ ⋅} is an indicator function.

The numerator of the fraction calculates the total objective value over all iterations when

combination (j, λ) was present while the denominator counts the total number of times the

combination was applied. The grading scheme emphasizes *
jλφ and corresponds to our

intensification strategy. The constant c is included to avoid setting Siλ = 0 when some (j,

λ) combination is never selected. In the implementation c = 1000.

 Let (j i, λi, bi) be the i th element in RCL, i = 1, 2,…,lRCL. To determine the

probability that this element will be selected we use the same procedure used to

determine the length of RCL. The relevant formulas are

 qi =
()3*

i ij
S

δ

λ

φ

 
 
 
 

, ∀ i = 1, 2,…,lRCL (15a)

1

/ RCLl

i ip q qγγ =
= ∑ , ∀ i = 1, 2,…,lRCL (15b)

where δ is again a shape parameter and is set to 50 to emphasize intensification.

According to Eqs. (15a) – (15b), setups with higher scores have a higher probability of

being part of a solution; larger values of δ increase the corresponding probabilities. To

avoid overemphasizing intensification, a lower limit of ε is imposed on the probability of

pi; that is,

 ip = ε, ∀ pi < ε, i = 1, 2,…,lRCL (15c)

 { }()
{ }1

1

1 RCL

RCL

l i
i r lr

rr

p
p I p

I p
ε ε

ε=

=

= − < ⋅
≥

∑
∑

, ∀ pi ≥ ε, i = 1, 2,…,lRCL (15d)

Equation (15c) eliminates the situation where some elements in RCL cannot be selected

due to very lower probability while equation (15d) distributes the remaining probability

proportionally to the original value pi. In the implementation, ε = 0.01 is used to allow

appropriate diversification.

Construct initial solutions in phase I

Each phase I iteration produces a feasible solution to model (10) in conjunction with CL,

RCL, SL and the aforementioned heuristic solvers. The pseudocode is given in Figure

A.77. Initialization is done in Step 1 followed by nPhaseI iterations in Step 2. At the

119

beginning of each outer iteration, we reset L0 ← L and Li ← �, ∀ i ∈ M. The benefit

function ben(l), for all l ∈ L, is then calculated according to Eq. (12) based on which lots

have already been assigned. At each inner iteration, CL is built and then truncated

according to the probability distribution in Eq. (14b) to get RCL. Exactly one element of

RCL is selected with probability based on SL and Eq. (15). The machine corresponding

to the selected element is configured with the specified tooling, and all sets, data

structures and functions are updated. An inner iteration is halted when there are no more

machines or tooling pieces available. At this point the y variables are fixed at y* and LLP

is solved to get x*. The solution (x*, y*) is appended to the set SPhaseI and the next outer

iteration is performed.

Phase II: LP-based local neighborhood search

Local branching is a technique for embedding metaheuristic concepts such as

neighborhood search, intensification and diversification, into branch and bound. The

objective is to achieve high quality solutions in reasonable time without necessarily

verifying optimality. Given a feasible reference solutiony , let Y = {(i,λ) : iyλ = 1, i ∈ M,

λ ∈ Λ(i)}. As proposed by Fischetti and Lodi (2003), we define a local branch cut as

follows:

 ∆(y, y) =
(,)

(1)i
i Y

yλ
λ ∈

−∑ � K (16)

Constraint 16" generates a neighborhood of radius K around the current solutiony . For

example, assume that there are 3 machines with solution λ1 = 1, λ2 = 3 and λ3 = 2 or 11y =

1, 23y = 1, 32y = 1 and all other iyλ = 0. The branch cut is (1 − 11y) + (1 − 23y) + (1 − 32y)

≤ K.

Note that instead of including all the binary variables in the cut, as Fischetti and Lodi do,

we only include the ULP variables, y.

 Now, at each phase II outer iteration, model (10) is solved as an LP with

constraint (16) added. Let yLP = (LP
iy λ , i ∈ M, λ ∈ Λ(i)) be the relaxed solution for the

machine setup variables in the extended model. In light of (10c), the LP
iy λ values can be

viewed as the probability of setting up machine i with tooling configuration λ. These

120

values are used at each phase II inner iteration to perform a Monte Carlo simulation.

That is, for each machine i, a tooling configuration λ is drawn from Λ(i) using

“probabilities” LP
iy λ . Once the tooling is selected for the machines, the resulting LLP is

solved by the heuristic described in Section 5.1 to obtain the best lot assignments.

 The phase II LP-based local branch (LPLB) neighborhood search can be

interpreted as a destruction-construction algorithm that works on the upper level decision

variables y. The pseudocode of the LPLB algorithm is provided in Figure A.76. The

algorithm consists of a series of nLPLB Monte Carlo replications. In replication s, the

machine setups are simulated using yLP as probabilities to get ys and, if feasible to (10d),

the resultant LLP is solved to get a feasible integer solution (xs, ys). The objective

function value, denoted by sim_obj(xs, ys), is compared to the incumbent, and when an

improvement is identified, (x*, y*) is updated. When ys is infeasible it is discarded and the

next replication performed. In the implementation nLPLB = 10.

5.2.3 Summary of GRASP

In phase I, good feasible solutions are constructed in a greedy way using a benefit

function for each lot and RCL. A subset of these solutions is improved by LPLB in phase

II. The best feasible solution found at the end of phase II is output. A high level

pseudocode is given in Figure A.78.

5.3 Computational Results

The proposed GRASP was implemented in C++ and tested under Ubuntu Linux on a Dell

Poweredge 2950 workstation with 2 dual core hyperthreading 3.73 GHz Xeon processors

and 8 GB physical memory. In the numerical experiments, the test cases were randomly

generated from a dataset provided by TI. Model (10a) – (10h) was solved heuristically

with GRASP and directly with CPLEX 11.0. The following parameter settings were used

for GRASP,

• nPhaseI = 1000

• For RCL, � �
���= 11, δ = 50

• For the grading scheme, δ = 50, c = 1000, ε = 0.01

• In phase II, K = 1, nLPLB = 10

121

• COIN CLP was used as the LP solver (http://www.coin-or.org/projects/Clp.xml)

For CPLEX, a limit of 3600 sec was imposed on all runs.

5.3.1 Random test instances

The basic data set consisted of 84 machines divided into 8 families, 2078 lots of which 80%

were either key or package devices, 106 tooling pieces divided into 28 families, and 1

temperature.

CPLEX was able to solve this problem in negligible time due to the excess capacity

relative to the number of lots. In addition, many of the routes did not require any tooling.

To create more difficult instances that better reflect the operational environment, a series

of representative cases are constructed using the following random case generator. The

pseudocode of the random cases generator is provided in Figure A.79.

5.3.2 Comparison of GRASP with CPLEX

Two datasets were generated for testing purposes. The first has |Ltest| = 1000 lots, |Mtest| =

80 machines, mg = 10 machine groups, |Ttest| = 30 tooling families, nD = 100 devices with

nK = 40 key devices and nP = 40 package devices, and ntemp = 3 operating temperatures.

The number of tooling pieces ttest was selected from the set {100, 300, 500}. Ten random

cases were generated and solved by CPLEX and GRASP for each ttest value. Table 5.2

and Table 5.3 report the results for |Ltest| = 1000 and ttest = 100. In Table 5.2, the columns

denoted by φCPX, φI and φII are the best solutions found by CPLEX, GRASP phase I and

GRASP phase II, respectively. The columns TW and TS give the total lot weights and

the total shortages of key and package devices for the best solutions. The gap ∆CPX is the

optimality gap given by CPLEX, while ∆GRASP is the percentage gap between the GRASP

and CPLEX solutions: [|φCPX − φII| / |φCPX|] × 100.

According to the results, none of the CPLEX runs converged within 3600 sec (the

average optimality gap was 17.35 %). GRASP required much less time, averaging 536

sec, and producing solutions that were 3.41% on average, as indicated by ∆GRASP. For

problem nos. 1, 2 and 7, the negative gap indicates that GRASP outperformed CPLEX.

As seen in Table 5.3, no improvement was obtained in phase II. This was due to the fact

that the tooling pieces are very limited so there are few if any good options within a

neighborhood.

122

 Table 5.3 also provides some individual performance measures for CPLEX and

GRASP. Column 2 reports the size of the search tree and column 3 indicates the node at

which the best solution was found. For all but problem no. 10, CPLEX uncovered the

best solution late in the search tree. Column 4 reports the iteration at which GRASP

found the best solution, which was similarly towards the end of the process, except for

problem no. 4. The last two columns indicate the number of phase I solutions that were

carried over to phase II and the corresponding percentage improvement. For smaller

instances than those investigated here, we generally found improvements averaging 5%,

but for the reasons previously mentioned, phase II was not successful on instances with

1000 or more lots and compatible numbers of tooling pieces.

 Table 5.4 reports the results for CPLEX and GRASP when |Ltest| = 1000 and ttest =

300. As the number of tooling pieces increase the problems become easier to solve by

CPLEX, which now exhibits gaps, ∆CPX, of less than 0.10%. In contrast, GRASP has a

harder time executing phase 1 because there are many more (j, λ) combinations to

explore. Runtimes for these instances averaged about 1000 sec, and the corresponding

solutions are with gaps less than 3% in all cases. The TS values obtained by GRASP are

identical to the values obtained by CPLEX except problem nos. 4, 5 and 6. Once again,

however, phase II provided no improvement since the tooling pieces are still limited (see

Table 5.5).

 Table 5.6 and Table 5.7 report the results for GRASP and CPLEX when |Ltest| =

1000 and ttest = 500. The TS values are identical in all cases and the gap, as measured by

∆GRASP, is well under 0.10%, although GRASP uncovered slightly better solutions for

problem nos. 1 and 7. No improvement was obtained during phase II. The average

computational time of CPLEX is 1234 sec, which is slightly more than the average

computational time of GRASP 1078 sec.

 The second set of experiments involved the same parameter settings as the first

except that |Ltest| = 2000. For ttest = 100, the computational results are reported in Table

5.8 and Table 5.9 where CPLEX is seen to have a much more difficulty time then

previously. The optimality gap ∆CPX averaged 66.27%. A large gap ∆GRASP around 20%

can be observed for problem nos. 3 and 4. However, In 7 out of the remaining 8 cases,

GRASP obtained better solutions than CPLEX in less than half the time.

123

 Table 5.10 and Table 5.11 report the results for |Ltest| = 2000 and ttest = 300. In 6

out of the 10 cases GRASP obtained better solutions than CPLEX with a maximum gap

7.80%. GRASP obtained better solutions in the rest of the cases especially for problem

no. 1 with a gap −32.89% Again, phase II failed to provide better results, this time

because the phase I solutions are almost optimal. Table 5.12 and Table 5.13 report the

results for |Ltest| = 2000 and ttest = 500. The gaps between the GRASP and CPLEX

solutions are well under 1% except that a 7.46% gap was observed in problem no. 3. The

remaining statistics and the phase II results parallel those obtained in the other

experiments.

 According to the reported results, the problem was hard to solve when the number

of tooling pieces were very limited. CPLEX always experienced a hard time to solve the

problem while the gaps ∆GRASP were big under this situation. As the number of tooling

pieces increased, the problem became easier to solve by both CPLEX and GRASP and

the gaps ∆GRASP became much smaller.

5.4 Summary

This chapter presented a mathematical model to schedule the back-end operations in

semiconductor manufacturing. To solve the problem efficiently without reliance on

third-party software, a two-level heuristic was developed within a reactive GRASP

framework. The novelty in phase I of the GRASP centered on the dynamic adjustment of

RCL in accordance with the solution quality and the use of a grading scheme to guide the

machine setups. In phase II, a neighborhood search based on local branching and Monte

Carlo sampling was devised to improve phase I solutions. Extensive testing showed that

comparable objective function values could be obtained with the GRASP, often in

significantly less time than required by CPLEX. These results confirmed that public

domain software combined with intelligent heuristics can be competitive with top

commercial products. Nevertheless, there is still room for improvement with respect to

the phase II algorithm. A post-processor such as path relinking coupled with local

branching could be applied to the set of elite solutions to increase the intensity of the

neighborhood search.

124

Table 5.2 Comparison of numerical results from CPLEX and GRASP with |Ltest| = 1000 and ttest = 100

Prob.
No.

CPLEX GRASP
Best solution found

Time
(sec)

∆CPX
(%)

Phase I solution Phase II solution
∆GRASP
(%)

φCPX
(×107) TW TS

φI
(×107) TW TS

Time
(sec)

φII
(×107) TW TS

Time
(sec)

1 −8.5697 71,900 1,695,270 3600 19.68 −8.4714 59,312 1,675,600 682 −8.4714 59,312 1,675,600 54 −1.15
2 −4.0430 59,456 1,450,580 3600 8.49 −3.9861 64,884 1,430,390 475 −3.9861 64,884 1,430,390 17 −1.41
3 −30.1709 60,872 1,494,290 3600 16.87 −30.8340 60,087 1,527,120 399 −30.8340 60,087 1,527,120 51 2.20
4 −4.4618 58,955 1,387,610 3600 20.76 −4.5520 59,972 1,415,650 458 −4.5520 59,972 1,415,650 34 2.02
5 −3.7262 47,423 1,483,700 3600 11.24 −3.9891 42,897 1,588,090 359 −3.9891 42,897 1,588,090 32 7.06
6 −31.3312 82,524 1,397,250 3600 18.20 −33.4955 69,081 1,493,690 959 −33.4955 69,081 1,493,690 52 6.91
7 −3.3032 57,451 1,236,520 3600 27.42 −3.2716 60,196 1,224,840 440 −3.2716 60,196 1,224,840 23 −0.96
8 −7.4827 56,883 1,594,640 3600 17.95 −8.1717 43,477 1,741,090 393 −8.1717 43,477 1,741,090 39 9.21
9 −26.1961 43,562 1,553,010 3600 16.24 −27.4550 44,095 1,627,630 287 −27.4550 44,095 1,627,630 14 4.81
10 −7.6735 54,413 1,439,770 3600 16.67 −8.08714 54,248 1,517,320 552 −8.08714 54,248 1,517,320 37 5.39

Table 5.3 Performance of CPLEX and GRASP for |Ltest| = 1000 and ttest = 100

Problem
no.

CPLEX GRASP
Tree
size

Node best
soln found

Iteration
best found

No. phase I
improved

Improve
(%)

1 3100 3014 956 0 0
2 3752 2719 931 0 0
3 3750 2590 965 0 0
4 5052 5047 554 0 0
5 8165 6715 780 0 0
6 2625 2604 988 0 0
7 3965 3664 925 0 0
8 15173 14585 650 0 0
9 18382 10224 698 0 0
10 7116 2506 978 0 0

125

Table 5.4 Comparison of numerical results from CPLEX and GRASP with |Ltest| = 1000 and ttest = 300

Prob.
No.

CPLEX GRASP
Best solution found

Time
(sec)

∆CPX
(%)

Phase I solution Phase II solution
∆GRASP
(%)

φCPX
(×107) TW TS

φ
(×107) TW TS

Time
(sec)

φ
(×107) TW TS

Time
(sec)

1 −5.4536 95,832 1,079,830 2798 0.01 −5.4538 93,693 1,079,830 939 −5.4538 93,693 1,079,830 24 0.00
2 −2.8628 95,897 1,029,370 942 0.01 −2.8638 94,581 1,029,380 892 −2.8638 94,581 1,029,380 32 0.03
3 −28.1722 93,791 1,395,480 428 0.00 −28.1718 97,532 1,395,480 695 −28.1718 97,532 1,395,480 30 0.00
4 −3.3378 98,460 1,039,720 2046 0.01 −3.3789 98,816 1,052,500 1091 −3.3789 98,816 1,052,500 24 1.23
5 −2.8879 89,933 1,152,030 3600 0.10 −2.8858 92,108 1,151,280 1111 −2.8858 92,108 1,151,280 39 −0.07
6 −21.0521 98,248 939,039 456 0.00 −21.5633 96,662 961,824 972 −21.5633 96,662 961,824 38 2.43
7 −2.2370 96,537 839,557 3600 0.01 −2.2368 98,120 839,557 712 −2.2368 98,120 839,557 25 −0.01
8 −4.5180 99,991 964,227 2359 0.00 −4.5180 99,972 964,227 1358 −4.5180 99,972 964,227 38 0.00
9 −15.4814 79,913 918,117 3600 0.01 −15.4806 87,262 918,117 787 −15.4806 87,262 918,117 20 −0.01
10 −4.1144 96,713 773,243 3600 0.01 −4.1145 95,562 773,243 927 −4.1145 95,562 773,243 45 0.00

Table 5.5 Performance of CPLEX and GRASP for |Ltest| = 1000 and ttest = 300

Problem
so.

CPLEX GRASP
Tree
size

Node best
soln found

Iteration
best found

No. phase I
improved

Improve
(%)

1 666 666 581 0 0.00
2 522 522 700 0 0.00
3 526 526 136 0 0.00
4 773 773 654 0 0.00
5 600 509 794 0 0.00
6 320 320 773 0 0.00
7 997 790 424 0 0.00
8 891 891 701 0 0.00
9 921 662 967 0 0.00
10 925 823 131 0 0.00

126

Table 5.6 Comparison of numerical results from CPLEX and GRASP with |Ltest| = 1000 and ttest = 500

Prob.
No.

CPLEX GRASP
Best solution found

Time
(sec)

∆CPX
(%)

Phase I solution Phase II solution
∆GRASP
(%)

φCPX
(×107) TW TS

φ
(×107) TW TS

Time
(sec)

φ
(×107) TW TS

Time
(sec)

1 −5.8021 97,052 1,148,730 439 0.01 −5.8017 101,127 1,148,730 1106 −5.8017 101,127 1,148,730 116 −0.01
2 −2.3737 96,375 853,843 1510 0.01 −2.3751 82,153 853,843 715 −2.3751 82,153 853,843 30 0.06
3 −16.1078 93,266 798,081 431 0.00 −16.1072 99,410 798,081 709 −16.1072 99,410 798,081 23 0.00
4 −2.7629 100,102 861,206 2341 0.00 −2.7628 100,195 861,206 1045 −2.7628 100,195 861,206 42 0.00
5 −2.4324 99,293 971,250 312 0.01 −2.4323 100,183 971,250 1212 −2.4323 100,183 971,250 91 0.00
6 −15.6539 87,528 698,312 2073 0.01 −15.6538 88,542 698,312 757 −15.6538 88,542 698,312 40 0.00
7 −1.7049 97,360 640,756 2704 0.01 −1.7048 98,745 640,756 1282 −1.7048 98,745 640,756 46 −0.01
8 −5.0706 100,476 1,081,930 1066 0.00 −5.0705 101,331 1,081,930 1098 −5.0705 101,331 1,081,930 29 0.00
9 −15.4451 98,403 916,078 344 0.00 −15.4450 99,634 916,078 1221 −15.4450 99,634 916,078 28 0.00
10 −4.9188 99,011 924,118 1123 0.00 −4.9187 100,863 924,118 1145 −4.9187 100,863 924,118 40 0.00

Table 5.7 Performance of CPLEX and GRASP for |Ltest| = 1000 and ttest = 500

Problem
no.

CPLEX GRASP
Tree
size

Node best
soln found

Iteration
best found

No. phase I
improved

Improve
(%)

1 280 280 717 0 0.00
2 1277 1277 345 0 0.00
3 529 529 793 0 0.00
4 811 811 477 0 0.00
5 488 488 982 0 0.00
6 848 848 979 0 0.00
7 592 592 214 0 0.00
8 502 502 58 0 0.00
9 500 500 807 0 0.00
10 499 499 44 0 0.00

127

 Table 5.8 Comparison of numerical results from CPLEX and GRASP with |Ltest| = 2000 and ttest = 100

Prob.
No.

CPLEX GRASP
Best solution found

Time
(sec)

∆CPX
(%)

Phase I solution Phase II solution
∆GRASP
(%)

φCPX
(×107) TW TS

φ
(×107) TW TS

Time
(sec)

φ
(×107) TW TS

Time
(sec)

1 −5.4864 84,540 930,132 3600 77.90 −5.5560 78,141 941,820 375 −5.5560 78,141 941,820 69 1.27
2 −3.1812 105,652 778,564 3600 49.06 −2.8638 107,835 701,186 761 −2.8638 107,835 701,186 40 −9.98
3 −27.0091 94,542 861,342 3600 49.23 −32.9753 109,566 1,051,590 539 −32.9753 109,566 1,051,590 38 22.09
4 −5.5085 125,678 643,495 3600 93.17 −6.5228 108,740 761,519 907 −6.5228 108,740 761,519 93 18.41
5 −3.4350 126,273 602,702 3600 77.25 −3.0824 121,097 540,959 1494 −3.0824 121,097 540,959 69 −10.26
6 −22.9703 108,139 862,916 3600 61.30 −22.3600 107,964 840,001 715 −22.3600 107,964 840,001 117 −2.66
7 −4.2288 108,747 916,185 3600 57.10 −3.7904 105,744 821,379 684 −3.7904 105,744 821,379 76 −10.37
8 −5.2215 91,613 1,216,760 3600 75.01 −4.6449 90,406 1,072,270 603 −4.6449 90,406 1,072,270 64 −11.04
9 −33.9759 90,762 1,523,710 3600 57.15 −32.0446 99,247 1,437,160 1112 −32.0446 99,247 1,437,160 80 −5.68
10 −4.4439 88,925 566,490 3600 65.56 −4.1040 81,656 523,155 538 −4.1040 81,656 523,155 71 −7.65

Table 5.9 Performance of CPLEX and GRASP for |Ltest| = 2000 and ttest = 100

Problem
no.

CPLEX GRASP
Tree
size

Node best
soln found

Iteration
best found

No. phase I
improved

Improve
(%)

1 1466 1427 985 0 0.00
2 1266 929 882 0 0.00
3 2457 2409 169 0 0.00
4 1295 1181 919 0 0.00
5 1160 1097 807 0 0.00
6 1483 1473 897 0 0.00
7 2370 2361 638 0 0.00
8 1421 895 787 0 0.00
9 2562 2551 196 0 0.00
10 1366 788 932 0 0.00

128

Table 5.10 Comparison of numerical results from CPLEX and GRASP with |Ltest| = 2000 and ttest = 300

Prob.
No.

CPLEX GRASP
Best solution found

Time
(sec)

∆CPX
(%)

Phase I solution Phase II solution
∆GRASP
(%)

φCPX
(×107) TW TS

φ
(×107) TW TS

Time
(sec)

φ
(×107) TW TS

Time
(sec)

1 −0.3247 173,051 57,887 3600 42.77 −0.2179 146,519 39,372 1004 −0.2179 146,519 39,372 54 −32.89
2 −2.4612 171,423 79,008 3600 0.04 −2.6532 153,240 85,071 853 −2.6532 153,240 85,071 39 7.80
3 −1.1027 169,721 130,505 3600 0.09 −1.1045 151,884 130,505 1239 −1.1045 151,884 130,505 72 0.16
4 −1.2748 193,849 226,242 3600 1.46 −1.2590 177,348 223,197 1374 −1.2590 177,348 223,197 71 −1.24
5 −4.1694 166,446 157,180 3600 3.19 −4.0393 163,231 152,283 1678 −4.0393 163,231 152,283 126 −3.12
6 −0.4257 196,148 96,233 3600 0.11 −0.4266 187,223 96,233 1892 −0.4266 187,223 96,233 115 0.21
7 −0.4784 178,110 114,333 3600 0.23 −0.4816 146,824 114,333 1121 −0.4816 146,824 114,333 75 0.67
8 −1.1708 185,760 151,310 3600 0.09 −1.1719 174,780 151,310 2682 −1.1719 174,780 151,310 119 0.09
9 −4.2825 183,949 164,267 3600 0.03 −4.2835 174,321 164,267 1533 −4.2835 174,321 164,267 93 0.02
10 −0.4556 176,590 135,321 3600 7.20 −0.4469 154,138 132,206 910 −0.4469 154,138 132,206 81 −1.91

Table 5.11 Performance of CPLEX and GRASP for |Ltest| = 2000 and ttest = 300

Problem
no.

CPLEX GRASP
Tree
size

Node best
soln found

Iteration
best found

No. phase I
improved

Improve
(%)

1 1179 1178 11 0 0.00
2 913 789 1 0 0.00
3 1082 805 960 0 0.00
4 811 711 736 0 0.00
5 1200 1131 393 0 0.00
6 1473 1471 952 0 0.00
7 900 892 920 0 0.00
8 1193 1111 632 0 0.00
9 1173 571 851 0 0.00
10 591 590 12 0 0.00

129

Table 5.12 Comparison of numerical results from CPLEX and GRASP with |Ltest| = 2000 and ttest = 500

Prob.
No.

CPLEX GRASP
Best solution found

Time
(sec)

∆CPX
(%)

Phase I solution Phase II solution
∆GRASP
(%)

φCPX
(×107) TW TS

φ
(×107) TW TS

Time
(sec)

φ
(×107) TW TS

Time
(sec)

1 −0.3732 192,442 66,433 3600 0.32 −0.3740 184,422 66,433 2599 −0.3740 184,422 66,433 140 0.21
2 −0.3094 199,924 80,345 3600 0.10 −0.3099 194,460 80,345 2447 −0.3099 194,460 80,345 456 0.16
3 −4.6566 185,417 149,042 3600 0.03 −5.0040 158,389 160,030 1108 −5.0040 158,389 160,030 69 7.46
4 −1.0001 191,310 118,789 3600 0.04 −1.0009 182,550 118,789 1618 −1.0009 182,550 118,789 222 0.08
5 −0.8423 197,065 150,688 3600 0.10 −0.8447 173,129 150,688 2057 −0.8447 173,129 150,688 287 0.28
6 −2.6890 193,261 101,693 1561 0.01 −2.6888 194.371 101,693 4169 −2.6888 194.371 101,693 227 −0.01
7 −0.9460 191,589 208,567 3600 0.10 −0.9458 193,178 208,567 2436 −0.9458 193,178 208,567 138 −0.02
8 −0.3732 190,726 90,372 3600 0.13 −0.3738 183,961 90,372 1530 −0.3738 183,961 90,372 97 0.16
9 −0.2374 193,224 32,657 3600 0.14 −0.2371 196,093 32,657 2201 −0.2371 196,093 32,657 169 −0.13
10 −2.7069 169,208 104,032 3600 0.04 −2.7083 154,934 104,032 1584 −2.7083 154,934 104,032 120 0.05

Table 5.13 Performance of CPLEX and GRASP for |Ltest| = 2000 and ttest = 500

Problem
so.

CPLEX GRASP
Tree
size

Node best
soln found

Iteration
best found

No. phase I
improved

Improve
(%)

1 1237 1115 767 0 0.00
2 1656 1359 13 0 0.00
3 947 618 12 0 0.00
4 1529 1027 102 0 0.00
5 1921 1780 18 0 0.00
6 677 677 45 0 0.00
7 1803 1601 977 0 0.00
8 951 771 959 0 0.00
9 1782 1182 691 0 0.00
10 1405 1403 649 0 0.00

130

Chapter 6

Chapter 6. Assessment of Research

Assessment of Research

 The general idea underlying this research was to determine the extent to which

exact optimization methods could be combined with metaheuristics to solve practical

problems. The work is divided into three separate but related projects corresponding to

Chapters 3, 4 and 5, respectively. In this chapter, an assessment is presented for each part

of the research. The proposed algorithms are first summarized and their numerical results

evaluated. Their weaknesses are then discussed and suggestions are made for possible

improvement. Some research experiences are also shared and future work on potential

enhancements is outlined.

6.1 Capacitated Clustering

The problem addressed in this research topic is a classical capacitated clustering problem

which has been well studied along with many variants. The contribution of this research

mainly concerns the development of an efficient and effective heuristic to solve the

problem in reasonable time compared to the commercial software package CPLEX. The

proposed methodology combines GRASP and PR, and is a mixture of various heuristic

ideas. Two approaches, HWE and CMC, are available for phase I while three options,

CNS, VND and RVND, are used to perform the phase II neighborhood search. A PR

post-processing procedure with either CLS or PLS is also implemented for potential

improvement over the GRASP elite solutions.

 The algorithm has been tested extensively on different datasets with various

parameter settings. According to the results, the performance of GRASP+PR is very

stable and always consumes much less time than CPLEX to obtain very high quality, if

not optimal, solutions. This allows application of GRASP+PR to practical problems.

However, there are still some drawbacks to the algorithm. Just like any other heuristic, it

is very difficult or even impossible to guarantee that GRASP+PR can generate good

solutions for large-scale problems. As the number of nodes to be clustered increases, the

CL, RCL as well as the size of the three neighborhoods increase exponentially. Finding a

131

good solution becomes more and more difficult as the size of the problem increases. A

bounding technique may be necessary in order to assess the performance of the algorithm

for larger cases.

 The proposed heuristic can be enhanced in several ways. Currently, the GRASP

iterations are mutually independent, that is, each subsequent iteration starts from scratch

after the previous iteration is finished. The effort spent on previous iterations is simply

ignored. In order to utilize the results from previous iterations, a memory based learning

technique can be introduced to the current algorithm. This variant of GRASP is also

referred to as Greedy Randomized Adaptive Memory Programming (GRAMP). The idea

is to synthesize the results from previous iterations to guide the algorithm at the current

iteration. As an example, the results can be used to guide the construction of CL. This

approach has actually been implemented in Chapter 5 in the form of SL to assign

probability to the CL elements. The scheme is promising according to the results. With

respect to phase II improvement, an idea common in tabu search can also be applied to

the algorithm. By restricting repeated neighborhood movements it should be possible to

overcome a local optimum.

 In any case, the proposed GRASP demonstrates that a measurable advantage can

be achieved by combining different heuristic ideas to solve the clustering problem

efficiently. The methodology can serve as a guideline for future algorithm development

for solving related optimization problems of practical size.

6.2 Midterm Planning in Semiconductor Manufacturing

The midterm planning problem in semiconductor manufacturing turns out to be a large-

scale LP which cannot be solved directly. The contribution of this research relates to the

development of a decomposition scheme to fully utilize excess machine time. In the

proposed algorithm, the full problem is divided into weekly subproblems. The final WIP

of the previous week is treated as the initial WIP of the next week. For each subproblem,

the corresponding LP is solved in an attempt to minimize the total weighted deviations

from specified targets. In light of those results, an attempt is then made to utilize any

machine time remaining by solving a rescheduling problem followed by a heuristic WIP-

pushing algorithm. As reported in Chapter 4, great improvement was realized for the 4-

132

week problem when compared to the results obtained from a pulling decomposition

approach. For the 13-week problem, the results indicated that shortages are unavoidable

due to the machine capacity constraints. However, it is still hard to evaluate the solution

to the 13-week problem since the optimal solution is unknown.

 Lagrangian relaxation and Benders decomposition were also investigated but the

results were not promising. For Lagrangian relaxation, the machine capacity constraints

(3d) were removed and appended to the objective function (3a) as a penalty term using

Lagrangian multipliers as weights. This led to individual subproblems for the device

families which solved quickly. A standard subgradient algorithm was applied to update

the multipliers at each iteration. However, it turned out to be that the multipliers never

converged due to numerical difficulties.

 Benders decomposition instead breaks the full problem into weekly subproblems.

At the beginning of Benders decomposition, the initial and final WIP values are specified

for each week. The subproblem duals are then solved one by one for the given WIP

levels to generate extreme points and extreme rays, which are appended to the master

problem. The master problem is then resolved to generate new WIP profiles for each

week. The updated WIP values are again sent to each subproblem to generate new

cuts. The algorithm iterates in this way until a stopping criterion is satisfied.

 Unfortunately, convergence was never achieved at the subproblem

level. According to the algorithm, both the initial WIP and the final WIP are fixed for

each subproblem, which is then solved to minimize the sum of the target output

deviations. However, given the initial WIP the subproblem will be infeasible when it is

not possible to schedule production over the week to meet the final WIP. In this case,

only feasibility cuts are generated by the subproblems. Experience showed that after

thousands of iterations, no optimality cuts were ever generated so the algorithm never

converged.

 One way to reduce or eliminate the infeasibility is to introduce deviation variables

into the WIP conservation constraints (6b) in the last time period of each week. In the

objective function (6a), each WIP deviation variable would be highly penalized to force a

solution that zeroed the mismatch whenever possible. In the current formulation, there

appears to be insufficient incentive for the model to narrow this gap, although the full

133

problem is feasible. The updated subproblem will always be feasible and generate

optimality cuts only, although there may still be a mismatch in WIP levels at

termination. In that situation, a heuristic would be needed to smooth the WIP while

trying to maintain the machine assignments that appear in the final solution. This

enhancement is considered future work.

6.3 Back-End Operations in Semiconductor Manufacturing

The third part of the research was aimed at determining machine-tooling combinations

and corresponding lot assignments to maximize throughput during back-end operations

while minimizing shortages of key and package devices. The mathematical model of the

problem has the characteristics of a two-level assignment problem. The contribution of

the research centered on the development of a GRASP that was shown to be comparable

in performance to CPLEX. Extensive numerical testing indicated problem instances

arising in two of Texas Instruments’ facilities could be solved quickly and provided

measurably improvement over current practice. The GRASP has been under tested for

implementation in the AT facilities in Asia recently.

 In phase I of the GRASP, the parameter δ is set to 50 when constructing both

RCL and SL. This was determined after running a set of initial experiments which

indicated that it is best to emphasize intensification in building RCL and SL in order to

achieve high quality machine-tooling combinations. The disadvantage of this setting is

that many similar solutions are generated during the run. In other words, there could be a

danger for over intensification, although diversification is built into the algorithm in the

design of the calculations in (15c) and (15d). One way to remedy this situation is to

adjust δ according to the solution. If similar solutions keep appearing then the value of δ

should be reduced. Otherwise, after a few iterations, its value should be increased until it

reaches some specified upper bound, say, 50.

 As discussed in Chapter 5, there was no improvement in phase II LBLP for the

randomly generated test cases. The primary reason can be found in the limited number of

free tooling pieces that could be paired with the machine that became available at the

given iteration; in other words, there was little room for neighborhood swaps. The value

of K in LBLP was varied in preliminary tests but the results were consistently poor. A

134

second reason for the ineffective of phase II relates to the LP relaxation of the LB

problem. Because the solution was so fractional few y-variables could be fixed and

binary sampling from the corresponding probabilities during the simulation often left

machines idle. One way to improve phase II would be to solve the resulting problem

directly as an IP rather than using LBLP but the results would depend on the performance

of the IP solver from COIN-OR. Recall that the rationale for developing the GRASP was

to use open source software.

 Branch and price (B&P) is another way to try to solve the AT problem without

relying too heavily on a commercial IP code. A master problem could be created from

model (10) so that each column represents a machine-tooling combination along with

compatible lot assignments. The objective function coefficient associated with a column

would be the benefit gained by processing the assigned lots. Initial columns could be

generated from the heuristic solution. In B&P, the master problem is solved to provide

dual prices that are used to construct the subproblem objective functions. In this

approach, the subproblems are simply knapsack problems and can be solved heuristically.

Columns that price out negatively are appended to the master problem which is then

resolved to yield new dual prices. The algorithm iterates accordingly until no new

columns are generated or until some other stopping criteria are satisfied. If the values of

the decision variables turn out to be integral then the algorithm stops and the solution

found is optimal. Otherwise, the current node is partitioned following the logic of branch

and bound and column generation is applied at each descendent node. The procedure

terminates when all the nodes in the search tree are fathomed.

 A preliminary B&P algorithm has been implemented for the AT problem and the

results are promising. The root node was solved after around 40 iterations. The

algorithmic remaining components, such as the design of a branching strategy and the use

of stabilization, are left for future work.

 In building model (10) for the back-end operations a number of assumptions were

made, the most critical being that all machines are idle at the beginning of the planning

horizon. It was further assumed that machines are to be set up once at time zero and that

the tooling allocations and temperature settings cannot be changed during the planning

horizon. Moreover, fractional lot processing is not allowed even when a machine is idle.

135

Finally, the problem is solved for a static WIP profile that is given at time zero so there is

no accounting for new arrivals or rework.

 In reality, these assumptions may not hold. First, the number of lots available for

processing changes periodically as upstream operations are completed and as downstream

operations produce reentrant flow. In the latter case, some lots may return to a particular

test area for additional testing after completing the preliminary round. Thus, the actual

WIP profile changes over time with some lots showing up repeatedly. Moreover, at the

beginning of the planning horizon most machines are occupied, and it is often necessary

to alter their setup and operating temperature if throughput is to be maximized. Because

the planning horizon defines a somewhat arbitrary cutoff point, practical considerations

dictate that machines not be left idle when there are no lots that fit completely within the

remaining time, but instead that setups be scheduled so that waiting lots can begin

processing.

 The current algorithm needs to be enhanced to accommodate the aforementioned

shortcomings. The first step is to develop an iterative scheme to capture the updated

WIP. The initial machine status can be addressed by adjusting the available machine

time. If a machine is processing lots at time zero then it is a simple matter to reduce the

available time on that machine to by the amount equal to the required processing time of

the remaining lots in queue. Factional lot processing can also be taken care by post-

processing the solution produced by the AT algorithm. However, it turns out to be

difficult to handle multiple machine setups without introducing many more binary

variables. Several heuristics are now being considered but the best way to modify the

algorithm is left to future research.

136

Appendix 1: Input Files, Data Structure and Output Files for the DMOS6 Tool

To run the program the user must provide a set of input files described below. Some of

these files need to be modified in accordance with the following instructions. This

appendix discusses the data objects, how to prepare the input files, the ways to compute

processing rates, and the output files.

Required input files

(1) Routing.csv

This file includes the routes of the different devices. Each line corresponds to a

step, which is defined as a combination of a logpoint and an operation. Thus a

step is a logpoint-operation level definition. The file also includes various “K

parameters” which are used to compute the processing rate for each step. The

fields in the table are shown in the Appendix 2.

Note:

(a) The “Facility” fields are always “DMOS6”.

(b) The table should be sorted in ascending order according to the field

“OrigRecNo” before processed by the program.

(c) When this file is read into the program the processing rate for each step is

computed. The procedures used to compute the processing rates are also

included in this appendix. A data object named “Production” is created when

this file is read.

(2) Stations.csv

The file contains information of the machines such as Misti-ID and “K

Parameters”. The fields in the table are shown in the Appendix 2. Some of the “K

Parameters” are used to compute the processing rates for the steps. A data object

named “Machine_Set” is created to store the information for the machines.

(3) Consols.csv and Family.csv

The “Consols.csv” file contains the information on the device family. The file is

not read by the program. However, the user needs to manipulate the file to

137

generate another file named “Family.csv”, which will be used by the program. It

is easy to generate the file “Family.csv” from the file “Consols.csv”. The user

only needs to choose the family he wants to process and select the devices

belonging to this family. For instance, if the user is interested in the family

“C035,” then he can select all of the devices belonging to “C035” and copy-paste

to the file “Family.csv”. A portion of a “Family.csv” is shown in Table A.1. Note

that the user needs to append some character like comma in the last column. The

appended character is used to delimitate the fields when it is read by the program.

Table A.1 Example of Family.csv

C035 C027 C021 ,
B4JRD15060BPP B5BJF761924B EZ/E771676D17 ,
B4JRD15060B4P EZ/E761536Z00 EZ/F771657A02 ,
B4JRD15075BPP EZ/E761536Z02 EZ/F771657A07 ,
B4JRD751686J4P EZ/E761541A00 EZ/F771657A08 ,
B4JRF751613D4P EZ/E761560Z00 EZ/F771657A09 ,
B4JRF751625PF EZ/E761909A16 EZ/F771657A10 ,
B4JRF751625PP EZ/F761503B23 EZ/F771657A11 ,
B4JRF7516254F EZ/F761504A02 EZ/F771657A11L ,
B4JRF7516254P EZ/F761504B08 EZ/F771657A12 ,
B4JRF751672D4P EZ/F761504B10 EZ/F771657A13 ,
B4JRF751989B4P EZ/F761522A49 EZ/F771657A14 ,
B4JSF751613HHT EZ/F761522A50 EZ/F771657Z11 ,
B4JTD15060C EZ/F761522A51 EZ/F771657Z12 ,
… ... … ,

 The file “Family.csv” is read by the program to identify the devices

belonging to the same family. For instance, Table A.1 identifies three families

with their corresponding devices. For each family a device is selected to represent

the entire family. Such a device is called the “representative device” and includes

information on the number of daily input blank wafers, the initial inventory, and

the daily output. When the file “Family.csv” is read by the program a data object

named “Family” is created to store the information.

138

(4) wip_data.txt

This file contains the information on the initial inventory or WIP in the shop. The

fields of the file are given in the Appendix 2.

For each representative device, the initial WIP of the other devices in the same

family is aggregated to be the initial WIP of the representative device. The initial

WIP is computed as follows.

Init_inventory = Prime_inv + Rework_inv + Hold_inv

Note that there is no title line in the file.

(5) Lotstarts.csv

The file “Lotstarts.csv” describes the quantity of blank wafers to be input to the

shop every day as illustrated in Table A.2. The headings are given in the

Appendix 2.

Note that an additional column name “day index” is appended to the table to

describe the index for days. In the original file provided by TI there was no such

column. The date information is described in the column “StartDate.” However,

the format of the cells in “StartDate” can’t be easily processed. The range of the

dates in this table starts from 9/1/2007 and ends at 12/01/2007. The column “day

index” treats 9/1/2007 as the 1st day and 12/01/2007 as the 91th day consecutively.

139

Table A.2 Example of Lotstarts3month.csv

Facility Item

Next

logpoint

Estimated

ShipDate Quantity StartTime StartDate

Hot-

Flag

Hold-

Flag Logpoint Lotnumber

day

index

DMOS6 P4HTF751992APW 110 25

12/30/1899

0:02:50

9/1/2007

0:00 N N 110 7244220 1 end

DMOS6 P4ITW751980CWM 110 25

12/30/1899

0:03:14

9/1/2007

0:00 N N 110 7244221 1 end

DMOS6 P4ITW751980CWM 110 25

12/30/1899

0:03:26

9/1/2007

0:00 N N 110 7244222 1 end

DMOS6 P4JTF751543ZWM 110 25

12/30/1899

0:03:49

9/1/2007

0:00 N N 110 7244223 1 end

DMOS6 TEXX/PR18KSER 110 24

12/30/1899

0:37:17

9/1/2007

0:00 N N 110 7244227 1 end

DMOS6 TEXX/PR18KSER 110 24

12/30/1899

0:37:36

9/1/2007

0:00 N N 110 7244228 1 end

DMOS6 TEXX/TELSIR 110 24

12/30/1899

0:38:11

9/1/2007

0:00 N N 110 7244229 1 end

DMOS6 TT4B/CUSEEDA 110 24

12/30/1899

0:38:39

9/1/2007

0:00 N N 110 7244230 1 end

 Note that an addition column is appended to the end of the table. All the

elements in this column are set to be string “end”. This makes it easier for the

program to read and manipulate the data.

(6) Input.txt

The file “Input.txt” describes the input parameters for running the program and

contains nine lines. As an example,

3 //number of families to run (also the number of devices to run)
C035,P4JTF751543ZWM, //Family code and the representative device
C027,P5BJF761503BM,
C021,P6GBX2057R10,
1000 //Threshold value to reduce the number of steps
60 //time interval in minutes
25 //number of wafers per lot
4 //number of subproblems
7 //number of days in each subproblem

 The first line of the file describes the number of families or representative

devices to be scheduled. In the next three lines we have the family code and the

name of the representative device. A threshold value is shown in the fifth line.

140

This value is used to reduce the number of steps before building the model. Its

units are wafer/minute. For a value of 1000, for example, any steps with

processing rates higher than 1000 wafer/minute will be eliminated from the routes

and thus will not be included in the model. The next line gives the time interval,

in minutes, that is being simulated by the program. The size of the model is

proportional to this value; e.g., reducing it by ½ doubles the size of the model.

This parameter can be set to any number of minutes that divides evenly into 60,

such as 10 min, 15 min, or is a multiple of 60 such as 120 min. The next line

shows the number of wafers per lot. The user can also change this value to reflect

the real situation. The next line shows the number of subproblems for the run.

The last line shows he number of days included in a subproblem. In the above

case 4 subproblems are run with each for 7 days. Thus the planning for 28 days

can be obtained by this setting. The user can also modify these two values to

obtain solution for other planning horizon.

Note: The sequence of the families should be the same as the sequence in the

“Family.csv” file or else there will be a mismatch of data.

(7) NonConstrainMachOpnDesc.txt

This file contains a partial list of operations that appear under the column heading

K855 in the Stations.csv file. Machines whose K855 parameter is included in this

file list are considered to be non-bottlenecks. In some instances, the computed

effective processing rate deviates from the actual processing rate, and hence may

become a bottleneck in the scheduling model. To avoid this situation, the

processing rate of all machines that perform an operation listed in this file is

multiplied by the constant “ Rate_Increase.” The default value is Rate_Increase =

20. The current list is shown in Appendix 3 and can be modified by the user to

include any operation-machine combination that should not be a bottleneck.

Note that there is no title line in the file.

Data Structure

 The following data objects are created after reading the input files.

141

(1) Production

The “Production” data object contains the routing information for all of devices in

the fab. The routing information is also stored in the data object named “Route,”

which will be described in Appendix 3.

(2) Step

A “Step” data object is defined to hold the information for a device at the

logpoint−operation level. It also holds the “K Parameters,” which are required to

compute the processing rates. Each line in the “Routing.csv” table can be viewed as

a step. The machine list information is also stored in the “Step” data objects.

(3) Route

A “Route” data object is a combination of “Step” data objects. A “Route” object

holds the information of a route for some device. Each “Route” data object

corresponds to a block of information in the “Routing.csv” file which belongs to the

same device.

(4) Machine_Set

The “Machine_Set” data object is used to hold the information for the machines.

Such information involves “Misti ID” and the “K Parameters.”

(5) Family

The “Family” object is used to hold the information for the families. For each

family, the object contains the related devices, which are given in the “Family.csv”

file.

Output Files

(1) Summary.csv

This file contains the information on finished products and the deviations

(shortages) for each time period. The time period (interval) is specified by setting

the appropriate parameter in the Input.tex file. An example is given in Table A.3,

which is divided into three sections.

142

 The first section shows the target daily output (demand) for the devices.

The “day” column gives the day index while the 2nd, 3rd and 4th columns list the

demand for the three devices. For instance, the demand for device 2 on the first

day is 316 wafers. Note that at present the demand is the same each day for a

device. The second section of the table shows the number of wafers completed.

The columns are defined in the same way. The last section gives the deviation

from the target output for each day and each device. It can be seen that the

current production schedule does not lead to any shortages for the week.

Table A.3 Example of Summary.csv

Day
Target output

Day
No. devices completed

Day
Deviations

C035 C027 C021 C035 C027 C021 C035 C027 C021
1 311 316 24 1 311 316 24 1 0 0 0
2 311 316 24 2 311 316 24 2 0 0 0
3 311 316 24 3 311 316 24 3 0 0 0
4 311 316 24 4 311 316 24 4 0 0 0
5 311 316 24 5 311 316 24 5 0 0 0
6 311 316 24 6 311 316 24 6 0 0 0
7 311 316 24 7 311 316 24 7 0 0 0

(2) Shop_production.csv

This file indicates the number of wafers to process at each logpoint-operation

during each time period. An example of this file is shown in Table A.4; the

complete file is about 8 MB in size for 4−week problem.

Table A.4 Example of Shop_production.csv

Family
index Device name Step

Logpoint
num

Operation
num

Production
at t = 1

Production
at t = 2

Production
at t = 3

Production
at t = 4

Production
at t = 5

1 P4JTF751543ZWM 1 110 301 0.05 0.04 0.06 0.03 0.06

1 P4JTF751543ZWM 2 112 6930 0.00 0.00 0.00 0.00 0.00

1 P4JTF751543ZWM 3 282 1600 0.00 0.00 0.00 0.00 0.00

1 P4JTF751543ZWM 4 282 2000 2.21 2.21 2.21 2.23 2.21

1 P4JTF751543ZWM 5 282 6640 0.00 0.59 0.60 0.66 0.69

1 P4JTF751543ZWM 6 290 2500 0.00 0.00 1.19 0.00 1.29

1 P4JTF751543ZWM 7 290 6500 0.00 0.00 0.00 0.31 0.32

1 P4JTF751543ZWM 8 300 3075 2.68 2.42 1.67 1.08 1.42

1 P4JTF751543ZWM 10 300 3600 0.78 0.86 0.83 0.75 0.54

143

1 P4JTF751543ZWM 11 300 3740 0.00 0.00 0.00 0.00 0.00

1 P4JTF751543ZWM 12 300 3750 0.00 0.00 0.00 0.00 0.00

1 P4JTF751543ZWM 13 300 6750 2.42 3.77 13.52 4.12 26.17

1 P4JTF751543ZWM 14 300 3800 0.00 0.13 0.07 0.03 0.06

 The first column identifies the index of the device. The second column

gives the device name. The third column lists the step number. The fourth and

fifth columns show the logpoint number and operation number of the step. Each

of the remaining columns gives the number of wafers that need to be processed

during the corresponding time interval -- 60 min in this case. For example, the

sixth column indicates that for device P4JTF751543ZWM, 0.0532 wafers should

be produced at step 1 in the first hour, 0.042824 in the second hour, and so on.

All values are fractional since the problem is modeled with continuous variables.

A more informative value can be obtained by rolling up production to the logpoint

level. To obtain a daily plan, either those values would have to be rounded to the

nearest integer, or a second model would have to be solved for each day or shift

that included more detail and insisted on integer production quantities.

Remark:

Some steps are not included in the “Shop_production.csv” file because they were

eliminated from the model, as mentioned in Section 4.2. Those steps, however,

must still be performed.

(3) Machine_utilization.csv

This file gives the machine usage during production. An example is shown in
Table A.5.

Table A.5 Example of Machine_utilization.csv

Machine
index

Machine
usage at

t = 1
(%)

Machine
usage at

t = 2
(%)

Machine
usage at

t = 3
(%)

Machine
usage at

t = 4
(%)

Machine
usage at

t = 5
(%)

Machine
usage at

t = 6
(%)

Machine
usage at

t = 7
(%)

19 0.14 0.00 0.07 0.00 0.05 0.00 0.04
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
21 0.00 0.00 0.00 0.00 0.00 0.00 0.00
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00

144

23 1.00 0.94 0.52 0.31 0.51 0.77 0.81
24 0.66 0.25 0.31 0.00 0.00 0.00 0.07
25 0.34 0.08 0.20 0.00 0.00 0.00 0.07
26 0.49 0.05 0.15 0.00 0.00 0.00 0.07
27 0.49 0.04 0.15 0.00 0.25 0.00 0.00
28 0.49 0.00 0.24 0.51 0.00 0.00 0.00

The first column identifies the machine index, which is the same index

listed in the “Stations.csv” file. The remaining columns, starting with the 2nd, give

the machine usage during successive time periods. All of the values in these cells

are continuous and should be interpreted as a percentage of the corresponding

time period such as an hour. For example, machine 23 (AM3001) is used 94% of

the time in the 2nd time period. It can be seen that machine 23 is quite busy, at

least during the first seven periods.

(4) WIP_history(original steps).csv

The file maintains a record of the original WIP before any steps are removed. An

example is shown in Table A.6.

Table A.6 Example of WIP_history(original steps).csv

Family
index

Step
Index

WIP at the
end of t = 1

WIP at the
end of t = 2

WIP at the
end of t = 3

WIP at the
end of t = 4

WIP at the
end of t = 5

i = 1 j = 1 0 0 0 0 0
i = 1 j = 2 300.00 0 0 0 0
i = 1 j = 3 92.96 384.98 353.33 330.60 302.95
i = 1 j = 4 107.04 115.02 141.92 134.45 113.51
i = 1 j = 5 0 0 4.75 7.70 3.60
i = 1 j = 6 0 0 0 27.25 79.95
i = 1 j = 7 0 0 0 0 0
i = 1 j = 8 300.00 300.00 273.70 260.24 174.95
i = 1 j = 9 0 0 26.31 0.00 85.29
i = 1 j = 10 113.91 109.60 101.15 137.25 127.24
i = 1 j = 11 11.09 5.70 0 3.65 0
i = 1 j = 12 0 9.69 14.16 0.00 13.66

The first two columns indicate the device index and processing step,

respectively. Each column in the remaining part of the table stands for a WIP

145

profile at the end of a time period. For example the third column gives the number

of wafers at each step at the end of the first time period. The 4th column gives the

WIP at each step at the end of the 2nd time period, and so on.

(5) WIP_history_LogPoint.csv

The file keeps a record of the WIP history at the logpoint level. An example is

shown in Table A.7. Note that in this file all of the wafers of the representative

devices are aggregated.

Table A.7 Example of WIP_history_LogPoint.csv

Logpoint
number

WIP at
end of
t = 1

WIP at
end of
t = 2

WIP at
end of
t = 3

WIP at
end of
t = 4

WIP at
end of
t = 5

WIP at
end of
t = 6

WIP at
end of
t = 7

110 0 0 0 0 0 0 0
112 300.00 0 0 0 0 0 0
282 717.00 949.50 948.00 918.30 858.85 818.75 807.65
290 455.00 471.93 434.11 463.82 523.26 563.36 533.55
300 1470.00 1495.57 1534.89 1534.89 1491.51 1459.55 1496.10
302 0 25.00 0 0 43.38 0 4.36
305 74.00 74.00 49.00 25.00 25.00 100.34 75.34
310 329.00 277.00 275.00 247.00 195.00 143.00 116.00
312 195.00 247.00 299.00 351.00 269.07 301.84 351.98
318 0 0 0 0 133.93 3.16 1.87
… … … … … … … …

The first column gives the logpoint number at each step while the second

column gives the operation number. The remaining columns indicate the WIP

profile of the three representative devices at the end of each time period. For

example, at logpoint 282 and operation 717, there are a total of 949.5 wafers in

queue. This value was obtained by summing the WIP of the three representative

devices.

(6) FinalWIP(reduced).csv

This file contains the final WIP at the end of each run. For example, if the code is

run for a 1-week problem four times in a row time instead of once for a 4 week

problem, the file will contain the WIP profiles at the end of each week. The WIP

146

profiles give the number of wafer at the reduced steps instead of the original steps.

An example is shown in Table A.8.

Table A.8 Example of FinalWIP(reduced).csv

Family Step index WIP
C035 1 0
C035 2 0
C035 3 0
C035 4 0
C035 5 0
C035 6 0
C035 7 0
C035 8 0
C035 9 0
C035 10 23.46
C035 11 21.59
C035 12 34.62

The first column indicates the index of the representative device. The

second column gives the index for the steps. The last column reports the number

of wafers of the device at the corresponding step. For example, there are 23.4577

wafers of device 1 at step 10.

(7) Process_rate.csv

This file contains the effective processing rates that were computed for each

device at each step. Table A.9 contains an example.

Table A.9 Example of Process_rate.csv

Device
index

Step
index

Machine
index

Machine
Misti ID Processing rate

i = 22 j = 21 m = 29 AP1001 r ijm = 0.45
i = 22 j = 21 m = 29 AP1002 r ijm = 0.45
i = 22 j = 21 m = 29 AP1003 r ijm = 0.45
i = 22 j = 21 m = 29 AP1004 r ijm = 0.45
i = 22 j = 21 m = 29 AP1005 r ijm = 0.45
i = 22 j = 21 m = 29 AP1006 r ijm = 0.45
i = 22 j = 21 m = 29 AP1007 r ijm = 0.45

… … … … …

147

The first column gives the index of the original devices; that is, the index

of the 76 devices in the Routing.csv file before aggregation into representative

families. The 22th device, for example, is the representative device for family

C035. The second column in the table gives the step index, the third column

indicates the machine index, while the forth column lists the machine Misti−ID.

The last column gives the processing rate r ijm in wafers/min.

148

Appendix 2: Field Definitions for Input Files

1. Fields of the “Routing.csv” file.

Facility
Device
Logpoint
Operation
OpnDesc
MachineGrp
EquivOp
OrigRecNo
Par
875
840
824
821
820
819
816
815
810
809
Date
802
949
947
874
837
844
842
814
948
All837
873
950
803
908
883
889
933
934

149

918
829
905
869
909
910
817
830
812
835
943
862Overflow
845
846
850
851
861
862
882
884
828
All817
All812
All835
All836
882Overflow
836
867
955
956
All814
All875
All873
All874

150

2. Fields of the “Stations.csv” file are shown as follows.

Facility
Misti-id
Machine Groups
Date
858
811
833
834
838
852
853
854
960
856
939
859
860
861
865
866
868
906
941
942
932
937
855

151

3. One example of “Family.csv” file is shown as follows.

C035 C027 C021 ,
B4JRD15060BPP B5BJF761924B EZ/E771676D17 ,
B4JRD15060B4P EZ/E761536Z00 EZ/F771657A02 ,
B4JRD15075BPP EZ/E761536Z02 EZ/F771657A07 ,
B4JRD751686J4P EZ/E761541A00 EZ/F771657A08 ,
B4JRF751613D4P EZ/E761560Z00 EZ/F771657A09 ,
B4JRF751625PF EZ/E761909A16 EZ/F771657A10 ,
B4JRF751625PP EZ/F761503B23 EZ/F771657A11 ,
B4JRF7516254F EZ/F761504A02 EZ/F771657A11L ,
B4JRF7516254P EZ/F761504B08 EZ/F771657A12 ,
B4JRF751672D4P EZ/F761504B10 EZ/F771657A13 ,
B4JRF751989B4P EZ/F761522A49 EZ/F771657A14 ,
B4JSF751613HHT EZ/F761522A50 EZ/F771657Z11 ,
B4JTD15060C EZ/F761522A51 EZ/F771657Z12 ,
… … … ,

4. The fields of “wip_data.txt” file are shown as follows.

Date
 Logpoint
 Operation
 Device
 Device_type
Prime_Inv
 Rewrok_Inv
 Hold_Inv
 Moves_qty
 Num_lots
plan_ct

152

5. The fields of “Lotstarts.csv” are shown as follows.

Facility

Item

NextLogpoint

EstimatedShipDate

Quantity

StartTime

StartDate

Hot-Flag

Hold-Flag

Logpoint

Lotnumber

day index

153

6. NonConstrainMachOpnDesc.txt

(List of nonbottleneck operations)

ALIGNMENT

AUTO_VISUAL_INSP

CDSEM_AMATVERITY

CDSEM_HITACHI

CDSEM_KLA8300

CD_SEM_MEASURE

INLINE_PARAMETRIC

KLA_F5_CU

KLA_F5_SCD

KLA_F5_SPECTRA100

LASER_ANNEAL

LASER_MARK

LOT_INSPECT

METAPULSE_MEAS

OPTI_PH_QUAL

OPTIPROBE

PC_CU

PC_NON_MTL

POST_CU_CMP_INSPECT

POST_LOT_MEASURE_CU

RS_MEASURE

SRT_LOT_FORM_M

SRT_LOT_FORM_NM

SRT_METAL_CU

SRT_NON_MTL

STI_CD_MEASURE

WLR

YE_AIT_ADDER

YE_COMPASS_ADDER

YE_DEFECT_REVIEW

YE_ES20_INSPECTION

YE_SEMVISION_INSPECT

YE_SEMVISION_REVIEW

YE_STEALTH_ADDER

YE_EBEAM_INSPECTION

VIPER_INSPECT

1. Production

Figure A.

 As it can be seen in the figure, the <Production> data object is an array of

the <Production_item> data object. Each <Production_item>

for one device. For each device, a <Route> object is included in the

<Production_item> object describing the route of the device. A <Route> object is

an array of <Step> object

which is a combination of log point number of operation number. More detail

information is shown in the <Step> object description.

2. Step

A step corresponds to a line in the “Routing.csv” table which can be in

the combination of log

shows the data structure of one <Step> object.

 A <Step> object includes the necessary information for one step. First it

stores all the K parameters which are used to compute the processing rates. The

154

Appendix 3: Data Structure

Figure A.1 Data structure of <Production> object

As it can be seen in the figure, the <Production> data object is an array of

the <Production_item> data object. Each <Production_item> data object stands

for one device. For each device, a <Route> object is included in the

<Production_item> object describing the route of the device. A <Route> object is

an array of <Step> objects. A <Step> object describes the process within the route,

ch is a combination of log point number of operation number. More detail

information is shown in the <Step> object description.

A step corresponds to a line in the “Routing.csv” table which can be in

the combination of logpoint number and operation number. The following figure

shows the data structure of one <Step> object.

A <Step> object includes the necessary information for one step. First it

parameters which are used to compute the processing rates. The

As it can be seen in the figure, the <Production> data object is an array of

data object stands

<Production_item> object describing the route of the device. A <Route> object is

. A <Step> object describes the process within the route,

ch is a combination of log point number of operation number. More detail

A step corresponds to a line in the “Routing.csv” table which can be indexed by

ration number. The following figure

A <Step> object includes the necessary information for one step. First it

parameters which are used to compute the processing rates. The

155

log point number and the operation number are included as a handle of a step. The

“Process Model” describes which mode the step is. The “step_index” is the order

number of a step. The “MC_vector” includes the list of machines which can be

used to process this step.

Figure A.2 Data structure of <Step> object

3. Route

A route is a combination of steps. This can be seen in the following figure.

Figure A.3 Data structure of <Route> object

4. Machine_Set

The <Machine_Set> object stores the information of the stations. Such

information comes from the “Stations.csv” table. The following figure shows the

data structure of the <Machine_Set> object.

 The “Misti ID” is the ID associated with the machine. The parameter

K852 is the capacity multiplier/loading factor which is included in the processing

rate computation. The parameters

percentage. However, currently these two parameters are not used to compute the

processing rate. Instead t

parameter K866.

Figure A.4

5. Family

The <Family> data object stores the family information of the devices. It is an

array of family structure. Each family contains the information of family code and

the names of the devices belong to this family.

156

rate computation. The parameters K833 and K834 are related to the mean uptime

percentage. However, currently these two parameters are not used to compute the

processing rate. Instead the uptime percentage is taken into account by using

4 Data structure of <Machine_Set> object

data object stores the family information of the devices. It is an

array of family structure. Each family contains the information of family code and

the names of the devices belong to this family.

834 are related to the mean uptime

percentage. However, currently these two parameters are not used to compute the

he uptime percentage is taken into account by using

data object stores the family information of the devices. It is an

array of family structure. Each family contains the information of family code and

Figure A.

157

Figure A.5 Data structure of <Family> object

158

Appendix 4: Solution to the 4-week Problem with Basic Decomposition Scheme

Table A.10 Summary of solution to the 4-week problem by basic decomposition

d
T_OUTid Num. completed id

+∆ or id
−∆

C1 C2 C3 C1 C2 C3 C1 C2 C3
1 328 315 26 328 315 26 0 0 0
2 328 315 26 328 315 26 0 0 0
3 328 315 26 328 315 26 0 0 0
4 328 315 26 328 315 26 0 0 0
5 328 315 26 328 315 26 0 0 0
6 328 315 26 328 315 26 0 0 0
7 328 315 26 328 315 26 0 0 0
8 328 315 26 328 296.85 26 0 18.15 0
9 328 315 26 322.50 267.90 26 5.50 47.10 0
10 328 315 26 330.26 260.14 26 −2.26 54.86 0
11 328 315 26 291.30 299.10 26 36.70 15.90 0
12 328 315 26 210.50 379.90 26 117.50 −64.90 0
13 328 315 26 318.57 271.83 26 9.43 43.17 0
14 328 315 26 328 262.40 26 0.00 52.60 0
15 328 315 26 275.40 315.00 26 52.60 0.00 0
16 328 315 26 290.05 300.35 26 37.95 14.65 0
17 328 315 26 260.75 329.65 26 67.25 −14.65 0
18 328 315 26 307.50 282.90 26 20.50 32.10 0
19 328 315 26 322.20 268.20 26 5.80 46.80 0
20 328 315 26 330.93 259.48 26 −2.92 55.52 0
21 328 315 26 325.08 265.33 26 2.92 49.68 0
22 328 315 26 275.91 314.49 26 52.09 0.51 0
23 328 315 26 281.60 308.80 26 46.40 6.20 0
24 328 315 26 324.76 265.64 26 3.24 49.36 0
25 328 315 26 279.64 310.76 26 48.36 4.24 0
26 328 315 26 293.99 296.42 26 34.02 18.58 0
27 328 315 26 328.53 261.88 26 −0.53 53.13 0
28 328 315 26 327.48 262.93 26 0.53 52.07 0

Total 9184 8820 728 8648.95 8284.95 728 535.08 535.07 0

159

WIP profiles of the three devices at the end of each week

Figure A.6 WIP profile of C1 at the end of the 1st week

Figure A.7 WIP profile of C1 at the end of the 2nd week

Figure A 8 WIP profile of C1 at the end of the 3rd week

0
500

1000
1500
2000
2500
3000

1 2
2

4
3

6
4

8
5

1
0

6
1

2
7

1
4

8
1

6
9

1
9

0
2

1
1

2
3

2
2

5
3

2
7

4
2

9
5

3
1

6
3

3
7

3
5

8
3

7
9

4
0

0
4

2
1

4
4

2
4

6
3

4
8

4
5

0
5

5
2

6
5

4
7

5
6

8
5

8
9

6
1

0
6

3
1

6
5

2
6

7
3

W
IP

Step in routing

0

1000

2000

3000

4000

5000

1 2
2

4
3

6
4

8
5

1
0

6
1

2
7

1
4

8
1

6
9

1
9

0
2

1
1

2
3

2
2

5
3

2
7

4
2

9
5

3
1

6
3

3
7

3
5

8
3

7
9

4
0

0
4

2
1

4
4

2
4

6
3

4
8

4
5

0
5

5
2

6
5

4
7

5
6

8
5

8
9

6
1

0
6

3
1

6
5

2
6

7
3

W
IP

Step in routing

0
1000
2000
3000
4000
5000
6000
7000

1 2
2

4
3

6
4

8
5

1
0

6
1

2
7

1
4

8
1

6
9

1
9

0
2

1
1

2
3

2
2

5
3

2
7

4
2

9
5

3
1

6
3

3
7

3
5

8
3

7
9

4
0

0
4

2
1

4
4

2
4

6
3

4
8

4
5

0
5

5
2

6
5

4
7

5
6

8
5

8
9

6
1

0
6

3
1

6
5

2
6

7
3

W
IP

Step in routing

160

Figure A.9 WIP profile of C1 at the end of the 4th week

Figure A.10 WIP profile of C2 at the end of the 1st week

Figure A.11 WIP profile of C2 at the end of the 2nd week

0

2000

4000

6000

8000

10000

1 2
2

4
3

6
4

8
5

1
0

6
1

2
7

1
4

8
1

6
9

1
9

0
2

1
1

2
3

2
2

5
3

2
7

4
2

9
5

3
1

6
3

3
7

3
5

8
3

7
9

4
0

0
4

2
1

4
4

2
4

6
3

4
8

4
5

0
5

5
2

6
5

4
7

5
6

8
5

8
9

6
1

0
6

3
1

6
5

2
6

7
3

W
IP

Step in routing

0

500

1000

1500

2000

2500

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3

W
IP

Step in routing

0

1000

2000

3000

4000

5000

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3

W
IP

Step in routing

161

Figure A.12 WIP profile of C2 at the end of the 3rd week

Figure A.13 WIP profile of C2 at the end of the 4th week

Figure A.14 WIP profile of C3 at the end of the 1st week

0
1000
2000
3000
4000
5000
6000
7000

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3

W
IP

Step in routing

0

2000

4000

6000

8000

10000

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3

W
IP

Step in routing

0

200

400

600

800

1000

1 3
0

5
9

8
8

1
1

7
1

4
6

1
7

5
2

0
4

2
3

3
2

6
2

2
9

1
3

2
0

3
4

9
3

7
8

4
0

7
4

3
6

4
6

5
4

9
4

5
2

3
5

5
2

5
8

1
6

1
0

6
3

9
6

6
8

6
9

7
7

2
6

7
5

5
7

8
4

8
1

3
8

4
2

8
7

1
9

0
0

9
2

9

W
IP

Step in routing

162

Figure A.15 WIP profile of C3 at the end of the 2nd week

Figure A.16 WIP profile of C3 at the end of the 3rd week

Figure A.17 WIP profile of C3 at the end of the 4th week

0

200

400

600

800

1000

1 3
0

5
9

8
8

1
1

7
1

4
6

1
7

5
2

0
4

2
3

3
2

6
2

2
9

1
3

2
0

3
4

9
3

7
8

4
0

7
4

3
6

4
6

5
4

9
4

5
2

3
5

5
2

5
8

1
6

1
0

6
3

9
6

6
8

6
9

7
7

2
6

7
5

5
7

8
4

8
1

3
8

4
2

8
7

1
9

0
0

9
2

9

W
IP

Step in routing

0

200

400

600

800

1000

1 3
0

5
9

8
8

1
1

7
1

4
6

1
7

5
2

0
4

2
3

3
2

6
2

2
9

1
3

2
0

3
4

9
3

7
8

4
0

7
4

3
6

4
6

5
4

9
4

5
2

3
5

5
2

5
8

1
6

1
0

6
3

9
6

6
8

6
9

7
7

2
6

7
5

5
7

8
4

8
1

3
8

4
2

8
7

1
9

0
0

9
2

9

W
IP

Step in routing

0

200

400

600

800

1000

1 3
0

5
9

8
8

1
1

7
1

4
6

1
7

5
2

0
4

2
3

3
2

6
2

2
9

1
3

2
0

3
4

9
3

7
8

4
0

7
4

3
6

4
6

5
4

9
4

5
2

3
5

5
2

5
8

1
6

1
0

6
3

9
6

6
8

6
9

7
7

2
6

7
5

5
7

8
4

8
1

3
8

4
2

8
7

1
9

0
0

9
2

9

W
IP

Step in routing

163

Appendix 5: Solution to the 4-week Problem with Decomposition Scheme

Table A.11 Summary of solution to the 4-week problem with rescheduling and heuristic

scheme

d
T_OUTid Num. completed id

+∆ or id
−∆

C1 C2 C3 C1 C2 C3 C1 C2 C3
1 328 315 26 328 315 26 0 0 0
2 328 315 26 328 315 26 0 0 0
3 328 315 26 328 315 26 0 0 0
4 328 315 26 328 315 26 0 0 0
5 328 315 26 328 315 26 0 0 0
6 328 315 26 328 315 26 0 0 0
7 328 315 26 328 315 26 0 0 0
8 328 315 26 328 315 26 0 0 0
9 328 315 26 328 315 26 0 0 0
10 328 315 26 328 315 26 0 0 0
11 328 315 26 328 315 26 0 0 0
12 328 315 26 328 315 26 0 0 0
13 328 315 26 328 315 26 0 0 0
14 328 315 26 328 315 26 0 0 0
15 328 315 26 328 315 26 0 0 0
16 328 315 26 328 315 26 0 0 0
17 328 315 26 328 315 26 0 0 0
18 328 315 26 328 315 26 0 0 0
19 328 315 26 328 315 26 0 0 0
20 328 315 26 328 315 26 0 0 0
21 328 315 26 328 315 26 0 0 0
22 328 315 26 328 315 26 0 0 0
23 328 315 26 328 315 26 0 0 0
24 328 315 26 328 315 26 0 0 0
25 328 315 26 328 315 26 0 0 0
26 328 315 26 328 315 26 0 0 0
27 328 315 26 328 315 26 0 0 0
28 328 315 26 328 315 26 0 0 0

Total 9184 8820 728 9184 8820 728 0 0 0

164

WIP profiles of the three devices at the end of each week

Figure A.18 WIP profile of C1 at the end of the 1st week

Figure A.19 WIP profile of C1 at the end of the 2nd week

Figure A.20 WIP profile of C1 at the end of the 3rd week

0

500

1000

1500

2000

1 2
0

3
9

5
8

7
7

9
6

1
1

5
1

3
4

1
5

3
1

7
2

1
9

1
2

1
0

2
2

9
2

4
8

2
6

7
2

8
6

3
0

5
3

2
4

3
4

3
3

6
2

3
8

1
4

0
0

4
1

9
4

3
8

4
5

7
4

7
6

4
9

5
5

1
4

5
3

3
5

5
2

5
7

1
5

9
0

6
0

9
6

2
8

6
4

7
6

6
6

W
IP

Step in routing

0

500

1000

1500

2000

2500

3000

3500

1 2
0

3
9

5
8

7
7

9
6

1
1

5
1

3
4

1
5

3
1

7
2

1
9

1
2

1
0

2
2

9
2

4
8

2
6

7
2

8
6

3
0

5
3

2
4

3
4

3
3

6
2

3
8

1
4

0
0

4
1

9
4

3
8

4
5

7
4

7
6

4
9

5
5

1
4

5
3

3
5

5
2

5
7

1
5

9
0

6
0

9
6

2
8

6
4

7
6

6
6

W
IP

Step in routing

0

1000

2000

3000

4000

5000

6000

1 2
0

3
9

5
8

7
7

9
6

1
1

5
1

3
4

1
5

3
1

7
2

1
9

1
2

1
0

2
2

9
2

4
8

2
6

7
2

8
6

3
0

5
3

2
4

3
4

3
3

6
2

3
8

1
4

0
0

4
1

9
4

3
8

4
5

7
4

7
6

4
9

5
5

1
4

5
3

3
5

5
2

5
7

1
5

9
0

6
0

9
6

2
8

6
4

7
6

6
6

W
IP

Step in routing

165

Figure A.21 WIP profile of C1 at the end of the 4th week

Figure A.22 WIP profile of C2 at the end of the 1st week

Figure A.23 WIP profile of C2 at the end of the 2nd week

0
1000
2000
3000
4000
5000
6000
7000
8000

1 2
0

3
9

5
8

7
7

9
6

1
1

5
1

3
4

1
5

3
1

7
2

1
9

1
2

1
0

2
2

9
2

4
8

2
6

7
2

8
6

3
0

5
3

2
4

3
4

3
3

6
2

3
8

1
4

0
0

4
1

9
4

3
8

4
5

7
4

7
6

4
9

5
5

1
4

5
3

3
5

5
2

5
7

1
5

9
0

6
0

9
6

2
8

6
4

7
6

6
6

W
IP

Step in routing

0

500

1000

1500

2000

2500

1 2
5

4
9

7
3

9
7

1
2

1
1

4
5

1
6

9
1

9
3

2
1

7
2

4
1

2
6

5
2

8
9

3
1

3
3

3
7

3
6

1
3

8
5

4
0

9
4

3
3

4
5

7
4

8
1

5
0

5
5

2
9

5
5

3
5

7
7

6
0

1
6

2
5

6
4

9
6

7
3

6
9

7
7

2
1

7
4

5
7

6
9

7
9

3
8

1
7

W
IP

Step in routing

0

500

1000

1500

2000

2500

3000

1 2
5

4
9

7
3

9
7

1
2

1
1

4
5

1
6

9
1

9
3

2
1

7
2

4
1

2
6

5
2

8
9

3
1

3
3

3
7

3
6

1
3

8
5

4
0

9
4

3
3

4
5

7
4

8
1

5
0

5
5

2
9

5
5

3
5

7
7

6
0

1
6

2
5

6
4

9
6

7
3

6
9

7
7

2
1

7
4

5
7

6
9

7
9

3
8

1
7

W
IP

Step in routing

166

Figure A.24 WIP profile of C2 at the end of the 3rd week

Figure A.25 WIP profile of C2 at the end of the 4th week

Figure A.26 WIP profile of C3 at the end of the 1st week

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

1 2
5

4
9

7
3

9
7

1
2

1
1

4
5

1
6

9
1

9
3

2
1

7
2

4
1

2
6

5
2

8
9

3
1

3
3

3
7

3
6

1
3

8
5

4
0

9
4

3
3

4
5

7
4

8
1

5
0

5
5

2
9

5
5

3
5

7
7

6
0

1
6

2
5

6
4

9
6

7
3

6
9

7
7

2
1

7
4

5
7

6
9

7
9

3
8

1
7

W
IP

Step in routing

0
1000
2000
3000
4000
5000
6000
7000
8000

1 2
5

4
9

7
3

9
7

1
2

1
1

4
5

1
6

9
1

9
3

2
1

7
2

4
1

2
6

5
2

8
9

3
1

3
3

3
7

3
6

1
3

8
5

4
0

9
4

3
3

4
5

7
4

8
1

5
0

5
5

2
9

5
5

3
5

7
7

6
0

1
6

2
5

6
4

9
6

7
3

6
9

7
7

2
1

7
4

5
7

6
9

7
9

3
8

1
7

W
IP

Step in routing

0
100
200
300
400
500
600
700
800
900

1000

1 2
8

5
5

8
2

1
0

9
1

3
6

1
6

3
1

9
0

2
1

7
2

4
4

2
7

1
2

9
8

3
2

5
3

5
2

3
7

9
4

0
6

4
3

3
4

6
0

4
8

7
5

1
4

5
4

1
5

6
8

5
9

5
6

2
2

6
4

9
6

7
6

7
0

3
7

3
0

7
5

7
7

8
4

8
1

1
8

3
8

8
6

5
8

9
2

9
1

9
9

4
6

W
IP

Step in routing

167

Figure A.27 WIP profile of C3 at the end of the 2nd week

Figure A.28 WIP profile of C3 at the end of the 3rd week

Figure A.29 WIP profile of C3 at the end of the 4th week

0

200

400

600

800

1000

1200

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3
8

5
9

8
8

5
9

1
1

9
3

7

W
IP

Step in routing

0

200

400

600

800

1000

1200

1 2
8

5
5

8
2

1
0

9
1

3
6

1
6

3
1

9
0

2
1

7
2

4
4

2
7

1
2

9
8

3
2

5
3

5
2

3
7

9
4

0
6

4
3

3
4

6
0

4
8

7
5

1
4

5
4

1
5

6
8

5
9

5
6

2
2

6
4

9
6

7
6

7
0

3
7

3
0

7
5

7
7

8
4

8
1

1
8

3
8

8
6

5
8

9
2

9
1

9
9

4
6

W
IP

Step in routing

0
100
200
300
400
500
600
700
800
900

1000

1 2
8

5
5

8
2

1
0

9
1

3
6

1
6

3
1

9
0

2
1

7
2

4
4

2
7

1
2

9
8

3
2

5
3

5
2

3
7

9
4

0
6

4
3

3
4

6
0

4
8

7
5

1
4

5
4

1
5

6
8

5
9

5
6

2
2

6
4

9
6

7
6

7
0

3
7

3
0

7
5

7
7

8
4

8
1

1
8

3
8

8
6

5
8

9
2

9
1

9
9

4
6

W
IP

Step in routing

168

Appendix 6: Daily Input for the 13-week Problem

d
R1d(1

)
R2d(1

)
R3d(1

) d
R1d(1

)
R2d(1

)
R3d(1

) d
R1d(1

)
R2d(1

)
R3d(1

)
1 300 300 24 32 300 325 120 63 375 250 72
2 300 300 24 33 250 325 0 64 300 275 144
3 312 300 24 34 250 300 24 65 400 200 72
4 300 299 24 35 250 348 24 66 400 448 0
5 275 450 0 36 275 325 0 67 399 300 0
6 299 349 72 37 275 312 12 68 400 300 0
7 375 249 48 38 275 324 48 69 400 250 0
8 325 287 48 39 300 300 96 70 312 246 24
9 325 300 6 40 300 300 48 71 375 300 0
10 326 300 24 41 325 300 0 72 400 300 0
11 325 425 24 42 300 311 72 73 400 250 48
12 325 300 0 43 300 300 6 74 424 325 24
13 325 300 24 44 300 300 12 75 400 362 0
14 325 175 72 45 300 300 0 76 400 375 24
15 325 300 24 46 350 300 36 77 374 325 48
16 325 275 6 47 325 312 96 78 308 350 51
17 325 300 0 48 350 300 60 79 300 412 0
18 325 350 24 49 337 324 24 80 300 300 0
19 325 300 24 50 300 300 0 81 300 362 24
20 300 312 54 51 300 300 0 82 400 300 24
21 300 324 48 52 325 312 0 83 400 300 0
22 325 325 0 53 325 300 24 84 400 350 48
23 325 325 0 54 337 262 24 85 300 348 24
24 300 325 0 55 300 356 24 86 400 300 0
25 300 300 24 56 300 349 54 87 400 300 24
26 300 300 72 57 300 300 0 88 300 400 12
27 275 387 0 58 400 300 0 89 300 425 0
28 275 375 42 59 300 348 0 90 400 274 24
29 275 325 0 60 300 300 0 91 429 350 48
30 300 325 0 61 400 275 24
31 300 312 24 62 350 312 72

169

Appendix 7: Solution to the 13-week Problem with Decomposition Scheme

Table A.12 Summary of the solution to the 13-week problem with rescheduling and
dispatching heuristic

d
T_OUTid Num. completed id

+∆ or id
−∆

C1 C2 C3 C1 C2 C3 C1 C2 C3
1 328 315 26 328 315 26 0 0 0
2 328 315 26 328 315 26 0 0 0
3 328 315 26 328 315 26 0 0 0
4 328 315 26 328 315 26 0 0 0
5 328 315 26 328 315 26 0 0 0
6 328 315 26 328 315 26 0 0 0
7 328 315 26 328 315 26 0 0 0
8 328 315 26 328 315 26 0 0 0
9 328 315 26 328 315 26 0 0 0
10 328 315 26 328 315 26 0 0 0
11 328 315 26 328 315 26 0 0 0
12 328 315 26 328 315 26 0 0 0
13 328 315 26 328 315 26 0 0 0
14 328 315 26 328 315 26 0 0 0
15 328 315 26 328 315 26 0 0 0
16 328 315 26 328 315 26 0 0 0
17 328 315 26 328 315 26 0 0 0
18 328 315 26 328 315 26 0 0 0
19 328 315 26 328 315 26 0 0 0
20 328 315 26 328 315 26 0 0 0
21 328 315 26 328 315 26 0 0 0
22 328 315 26 328 315 26 0 0 0
23 328 315 26 328 315 26 0 0 0
24 328 315 26 328 315 26 0 0 0
25 328 315 26 328 315 26 0 0 0
26 328 315 26 328 315 26 0 0 0
27 328 315 26 328 315 26 0 0 0
28 328 315 26 328 315 26 0 0 0
29 328 315 26 328 315 26 0 0 0
30 328 315 26 328 315 26 0 0 0
31 328 315 26 328 315 26 0 0 0
32 328 315 26 328 315 26 0 0 0
33 328 315 26 328 315 26 0 0 0
34 328 315 26 328 315 26 0 0 0
35 328 315 26 328 315 26 0 0 0
36 328 315 26 328 315 26 0 0 0

170

37 328 315 26 328 315 26 0 0 0
38 328 315 26 328 315 26 0 0 0
39 328 315 26 328 315 26 0 0 0
40 328 315 26 328 315 26 0 0 0
41 328 315 26 328 315 26 0 0 0
42 328 315 26 328 315 26 0 0 0
43 328 315 26 328 315 26 0 0 0
44 328 315 26 328 315 26 0 0 0
45 328 315 26 328 315 26 0 0 0
46 328 315 26 328 315 26 0 0 0
47 328 315 26 328 315 26 0 0 0
48 328 315 26 328 315 26 0 0 0
49 328 315 26 328 315 26 0 0 0
50 328 315 26 328 315 26 0 0 0
51 328 315 26 328 315 26 0 0 0
52 328 315 26 328 264.81 26 0 50.20 0
53 328 315 26 310.4 280 26 17.6 35 0
54 328 315 26 295.2 295.20 26 32.8 19.80 0
55 328 315 26 300.70 289.70 26 27.30 25.30 0
56 328 315 26 275.4 315 26 52.6 0 0
57 328 315 26 328 262.4 26 0 52.6 0
58 328 315 26 304.48 285.92 26 23.52 29.08 0
59 328 315 26 323.02 267.38 15.18 4.98 47.62 10.82
60 328 315 26 295.2 295.2 0 32.8 19.8 26
61 328 315 26 310.4 280 0 17.6 35 26
62 328 315 26 267.9 322.5 0 60.1 −7.5 26
63 328 315 26 282.9 307.5 0 45.1 7.5 26
64 328 315 26 328 262.4 0 0 52.6 26
65 328 315 26 301.5 288.9 0 26.5 26.1 26
66 328 315 26 315.35 275.06 0 12.65 39.95 26
67 328 315 26 295.82 294.58 0 32.18 20.42 26
68 328 315 26 308.86 281.54 0 19.14 33.46 26
69 328 315 26 286.98 303.42 0 41.02 11.58 26
70 328 315 26 275.4 315 0 52.6 0 26
71 328 315 26 328 262.4 0 0 52.6 26
72 328 315 26 302.8 287.6 0 25.2 27.4 26
73 328 315 26 322.95 267.45 0 5.05 47.55 26
74 328 315 26 291.97 298.43 0 36.03 16.57 26
75 328 315 26 308.7 281.7 0 19.3 33.3 26
76 328 315 26 282.08 308.32 0 45.92 6.68 26
77 328 315 26 275.4 315 0 52.6 0 26
78 328 315 26 328 262.4 0 0 52.6 26
79 328 315 26 300.62 289.78 0 27.38 25.22 26

171

80 328 315 26 316.8 273.6 0 11.2 41.4 26
81 328 315 26 291.97 298.43 0 36.03 16.57 26
82 328 315 26 308.7 281.7 0 19.3 33.3 26
83 328 315 26 284.21 306.19 0 43.79 8.81 26
84 328 315 26 281.6 308.8 0 46.4 6.2 26
85 328 315 26 328 262.4 0 0 52.6 26
86 328 315 26 300.7 289.7 0 27.3 25.3 26
87 328 315 26 319.43 270.97 0 8.57 44.03 26
88 328 315 26 285.38 305.02 0 42.62 9.98 26
89 328 315 26 307.29 283.11 0 20.71 31.89 26
90 328 315 26 288.2 302.2 0 39.8 12.8 26
91 328 315 26 282.9 307.5 0 45.1 7.5 26

Total 29848 28665 2366 28797.2 27614.2 1523.18 1050.8 1050.8 843

WIP profiles of the three devices at the end of each week

Figure A.30 WIP profile of C1 at the end of the 1st week

Figure A.31 WIP profile of C1 at the end of the 2nd week

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2
0

3
9

5
8

7
7

9
6

1
1

5
1

3
4

1
5

3
1

7
2

1
9

1
2

1
0

2
2

9
2

4
8

2
6

7
2

8
6

3
0

5
3

2
4

3
4

3
3

6
2

3
8

1
4

0
0

4
1

9
4

3
8

4
5

7
4

7
6

4
9

5
5

1
4

5
3

3
5

5
2

5
7

1
5

9
0

6
0

9
6

2
8

6
4

7
6

6
6

W
IP

Step in routing

0

500

1000

1500

2000

2500

3000

1 2
0

3
9

5
8

7
7

9
6

1
1

5
1

3
4

1
5

3
1

7
2

1
9

1
2

1
0

2
2

9
2

4
8

2
6

7
2

8
6

3
0

5
3

2
4

3
4

3
3

6
2

3
8

1
4

0
0

4
1

9
4

3
8

4
5

7
4

7
6

4
9

5
5

1
4

5
3

3
5

5
2

5
7

1
5

9
0

6
0

9
6

2
8

6
4

7
6

6
6

W
IP

Step in routing

172

Figure A.32 WIP profile of C1 at the end of the 3rd week

Figure A.33 WIP profile of C1 at the end of the 4th week

Figure A.34 WIP profile of C1 at the end of the 5th week

0

500

1000

1500

2000

2500

3000

3500

4000

1 2
0

3
9

5
8

7
7

9
6

1
1

5
1

3
4

1
5

3
1

7
2

1
9

1
2

1
0

2
2

9
2

4
8

2
6

7
2

8
6

3
0

5
3

2
4

3
4

3
3

6
2

3
8

1
4

0
0

4
1

9
4

3
8

4
5

7
4

7
6

4
9

5
5

1
4

5
3

3
5

5
2

5
7

1
5

9
0

6
0

9
6

2
8

6
4

7
6

6
6

W
IP

Step in routing

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

1 2
1

4
1

6
1

8
1

1
0

1
1

2
1

1
4

1
1

6
1

1
8

1
2

0
1

2
2

1
2

4
1

2
6

1
2

8
1

3
0

1
3

2
1

3
4

1
3

6
1

3
8

1
4

0
1

4
2

1
4

4
1

4
6

1
4

8
1

5
0

1
5

2
1

5
4

1
5

6
1

5
8

1
6

0
1

6
2

1
6

4
1

6
6

1

W
IP

Step in routing

0

1000

2000

3000

4000

5000

6000

7000

1 2
1

4
1

6
1

8
1

1
0

1
1

2
1

1
4

1
1

6
1

1
8

1
2

0
1

2
2

1
2

4
1

2
6

1
2

8
1

3
0

1
3

2
1

3
4

1
3

6
1

3
8

1
4

0
1

4
2

1
4

4
1

4
6

1
4

8
1

5
0

1
5

2
1

5
4

1
5

6
1

5
8

1
6

0
1

6
2

1
6

4
1

6
6

1

W
IP

Step in routing

173

Figure A.35 WIP profile of C1 at the end of the 6th week

Figure A. 36 WIP profile of C1 at the end of the 7th week

Figure A. 37 WIP profile of C1 at the end of the 8th week

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2
0

3
9

5
8

7
7

9
6

1
1

5
1

3
4

1
5

3
1

7
2

1
9

1
2

1
0

2
2

9
2

4
8

2
6

7
2

8
6

3
0

5
3

2
4

3
4

3
3

6
2

3
8

1
4

0
0

4
1

9
4

3
8

4
5

7
4

7
6

4
9

5
5

1
4

5
3

3
5

5
2

5
7

1
5

9
0

6
0

9
6

2
8

6
4

7
6

6
6

W
IP

Step in routing

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1 2
0

3
9

5
8

7
7

9
6

1
1

5
1

3
4

1
5

3
1

7
2

1
9

1
2

1
0

2
2

9
2

4
8

2
6

7
2

8
6

3
0

5
3

2
4

3
4

3
3

6
2

3
8

1
4

0
0

4
1

9
4

3
8

4
5

7
4

7
6

4
9

5
5

1
4

5
3

3
5

5
2

5
7

1
5

9
0

6
0

9
6

2
8

6
4

7
6

6
6

W
IP

Step in routing

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 2
0

3
9

5
8

7
7

9
6

1
1

5
1

3
4

1
5

3
1

7
2

1
9

1
2

1
0

2
2

9
2

4
8

2
6

7
2

8
6

3
0

5
3

2
4

3
4

3
3

6
2

3
8

1
4

0
0

4
1

9
4

3
8

4
5

7
4

7
6

4
9

5
5

1
4

5
3

3
5

5
2

5
7

1
5

9
0

6
0

9
6

2
8

6
4

7
6

6
6

W
IP

Step in routing

174

Figure A.38 WIP profile of C1 at the end of the 9th week

Figure A.39 WIP profile of C1 at the end of the 10th week

Figure A.40 WIP profile of C1 at the end of the 11th week

0

2000

4000

6000

8000

10000

12000

1 2
0

3
9

5
8

7
7

9
6

1
1

5
1

3
4

1
5

3
1

7
2

1
9

1
2

1
0

2
2

9
2

4
8

2
6

7
2

8
6

3
0

5
3

2
4

3
4

3
3

6
2

3
8

1
4

0
0

4
1

9
4

3
8

4
5

7
4

7
6

4
9

5
5

1
4

5
3

3
5

5
2

5
7

1
5

9
0

6
0

9
6

2
8

6
4

7
6

6
6

W
IP

Step in routing

0

2000

4000

6000

8000

10000

12000

1 2
0

3
9

5
8

7
7

9
6

1
1

5
1

3
4

1
5

3
1

7
2

1
9

1
2

1
0

2
2

9
2

4
8

2
6

7
2

8
6

3
0

5
3

2
4

3
4

3
3

6
2

3
8

1
4

0
0

4
1

9
4

3
8

4
5

7
4

7
6

4
9

5
5

1
4

5
3

3
5

5
2

5
7

1
5

9
0

6
0

9
6

2
8

6
4

7
6

6
6

W
IP

Step in routing

0

2000

4000

6000

8000

10000

12000

1 2
0

3
9

5
8

7
7

9
6

1
1

5
1

3
4

1
5

3
1

7
2

1
9

1
2

1
0

2
2

9
2

4
8

2
6

7
2

8
6

3
0

5
3

2
4

3
4

3
3

6
2

3
8

1
4

0
0

4
1

9
4

3
8

4
5

7
4

7
6

4
9

5
5

1
4

5
3

3
5

5
2

5
7

1
5

9
0

6
0

9
6

2
8

6
4

7
6

6
6

W
IP

Step in routing

175

Figure A.41 WIP profile of C1 at the end of the 12th week

Figure A.42 WIP profile of C1 at the end of the 13th week

Figure A.43 WIP profile of C2 at the end of the 1st week

0

2000

4000

6000

8000

10000

12000

1 2
0

3
9

5
8

7
7

9
6

1
1

5
1

3
4

1
5

3
1

7
2

1
9

1
2

1
0

2
2

9
2

4
8

2
6

7
2

8
6

3
0

5
3

2
4

3
4

3
3

6
2

3
8

1
4

0
0

4
1

9
4

3
8

4
5

7
4

7
6

4
9

5
5

1
4

5
3

3
5

5
2

5
7

1
5

9
0

6
0

9
6

2
8

6
4

7
6

6
6

W
IP

Step in routing

0

2000

4000

6000

8000

10000

1 2
0

3
9

5
8

7
7

9
6

1
1

5
1

3
4

1
5

3
1

7
2

1
9

1
2

1
0

2
2

9
2

4
8

2
6

7
2

8
6

3
0

5
3

2
4

3
4

3
3

6
2

3
8

1
4

0
0

4
1

9
4

3
8

4
5

7
4

7
6

4
9

5
5

1
4

5
3

3
5

5
2

5
7

1
5

9
0

6
0

9
6

2
8

6
4

7
6

6
6

W
IP

Step in routing

0

500

1000

1500

2000

2500

3000

1 2
4

4
7

7
0

9
3

1
1

6
1

3
9

1
6

2
1

8
5

2
0

8
2

3
1

2
5

4
2

7
7

3
0

0
3

2
3

3
4

6
3

6
9

3
9

2
4

1
5

4
3

8
4

6
1

4
8

4
5

0
7

5
3

0
5

5
3

5
7

6
5

9
9

6
2

2
6

4
5

6
6

8
6

9
1

7
1

4
7

3
7

7
6

0
7

8
3

8
0

6
8

2
9

W
IP

Step in routing

176

Figure A.44 WIP profile of C2 at the end of the 2nd week

Figure A.45 WIP profile of C2 at the end of the 3rd week

Figure A.46 WIP profile of C2 at the end of the 4th week

0

500

1000

1500

2000

2500

3000

3500

4000

1 2
5

4
9

7
3

9
7

1
2

1
1

4
5

1
6

9
1

9
3

2
1

7
2

4
1

2
6

5
2

8
9

3
1

3
3

3
7

3
6

1
3

8
5

4
0

9
4

3
3

4
5

7
4

8
1

5
0

5
5

2
9

5
5

3
5

7
7

6
0

1
6

2
5

6
4

9
6

7
3

6
9

7
7

2
1

7
4

5
7

6
9

7
9

3
8

1
7

W
IP

Step in routing

0

1000

2000

3000

4000

5000

6000

1 2
5

4
9

7
3

9
7

1
2

1
1

4
5

1
6

9
1

9
3

2
1

7
2

4
1

2
6

5
2

8
9

3
1

3
3

3
7

3
6

1
3

8
5

4
0

9
4

3
3

4
5

7
4

8
1

5
0

5
5

2
9

5
5

3
5

7
7

6
0

1
6

2
5

6
4

9
6

7
3

6
9

7
7

2
1

7
4

5
7

6
9

7
9

3
8

1
7

W
IP

Step in routing

0

1000

2000

3000

4000

5000

6000

1 2
4

4
7

7
0

9
3

1
1

6
1

3
9

1
6

2
1

8
5

2
0

8
2

3
1

2
5

4
2

7
7

3
0

0
3

2
3

3
4

6
3

6
9

3
9

2
4

1
5

4
3

8
4

6
1

4
8

4
5

0
7

5
3

0
5

5
3

5
7

6
5

9
9

6
2

2
6

4
5

6
6

8
6

9
1

7
1

4
7

3
7

7
6

0
7

8
3

8
0

6
8

2
9

W
IP

Step in routing

177

Figure A.47 WIP profile of C2 at the end of the 5th week

Figure A.48 WIP profile of C2 at the end of the 6th week

Figure A.49 WIP profile of C2 at the end of the 7th week

0

1000

2000

3000

4000

5000

6000

1 2
4

4
7

7
0

9
3

1
1

6
1

3
9

1
6

2
1

8
5

2
0

8
2

3
1

2
5

4
2

7
7

3
0

0
3

2
3

3
4

6
3

6
9

3
9

2
4

1
5

4
3

8
4

6
1

4
8

4
5

0
7

5
3

0
5

5
3

5
7

6
5

9
9

6
2

2
6

4
5

6
6

8
6

9
1

7
1

4
7

3
7

7
6

0
7

8
3

8
0

6
8

2
9

W
IP

Step in routing

0

1000

2000

3000

4000

5000

6000

7000

1 2
4

4
7

7
0

9
3

1
1

6
1

3
9

1
6

2
1

8
5

2
0

8
2

3
1

2
5

4
2

7
7

3
0

0
3

2
3

3
4

6
3

6
9

3
9

2
4

1
5

4
3

8
4

6
1

4
8

4
5

0
7

5
3

0
5

5
3

5
7

6
5

9
9

6
2

2
6

4
5

6
6

8
6

9
1

7
1

4
7

3
7

7
6

0
7

8
3

8
0

6
8

2
9

W
IP

Step in routing

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2
4

4
7

7
0

9
3

1
1

6
1

3
9

1
6

2
1

8
5

2
0

8
2

3
1

2
5

4
2

7
7

3
0

0
3

2
3

3
4

6
3

6
9

3
9

2
4

1
5

4
3

8
4

6
1

4
8

4
5

0
7

5
3

0
5

5
3

5
7

6
5

9
9

6
2

2
6

4
5

6
6

8
6

9
1

7
1

4
7

3
7

7
6

0
7

8
3

8
0

6
8

2
9

W
IP

Step in routing

178

Figure A.50 WIP profile of C2 at the end of the 8th week

Figure A.51 WIP profile of C2 at the end of the 9th week

Figure A.52 WIP profile of C2 at the end of the 10th week

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 2
5

4
9

7
3

9
7

1
2

1
1

4
5

1
6

9
1

9
3

2
1

7
2

4
1

2
6

5
2

8
9

3
1

3
3

3
7

3
6

1
3

8
5

4
0

9
4

3
3

4
5

7
4

8
1

5
0

5
5

2
9

5
5

3
5

7
7

6
0

1
6

2
5

6
4

9
6

7
3

6
9

7
7

2
1

7
4

5
7

6
9

7
9

3
8

1
7

W
IP

Step in routing

0

2000

4000

6000

8000

10000

12000

1 2
5

4
9

7
3

9
7

1
2

1
1

4
5

1
6

9
1

9
3

2
1

7
2

4
1

2
6

5
2

8
9

3
1

3
3

3
7

3
6

1
3

8
5

4
0

9
4

3
3

4
5

7
4

8
1

5
0

5
5

2
9

5
5

3
5

7
7

6
0

1
6

2
5

6
4

9
6

7
3

6
9

7
7

2
1

7
4

5
7

6
9

7
9

3
8

1
7

W
IP

Step in routing

0

2000

4000

6000

8000

10000

12000

14000

1 2
5

4
9

7
3

9
7

1
2

1
1

4
5

1
6

9
1

9
3

2
1

7
2

4
1

2
6

5
2

8
9

3
1

3
3

3
7

3
6

1
3

8
5

4
0

9
4

3
3

4
5

7
4

8
1

5
0

5
5

2
9

5
5

3
5

7
7

6
0

1
6

2
5

6
4

9
6

7
3

6
9

7
7

2
1

7
4

5
7

6
9

7
9

3
8

1
7

W
IP

Step in routing

179

Figure A.53 WIP profile of C2 at the end of the 11th week

Figure A.54 WIP profile of C2 at the end of the 12th week

Figure A.55 WIP profile of C2 at the end of the 13th week

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2
5

4
9

7
3

9
7

1
2

1
1

4
5

1
6

9
1

9
3

2
1

7
2

4
1

2
6

5
2

8
9

3
1

3
3

3
7

3
6

1
3

8
5

4
0

9
4

3
3

4
5

7
4

8
1

5
0

5
5

2
9

5
5

3
5

7
7

6
0

1
6

2
5

6
4

9
6

7
3

6
9

7
7

2
1

7
4

5
7

6
9

7
9

3
8

1
7

W
IP

Step in routing

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

1 2
5

4
9

7
3

9
7

1
2

1
1

4
5

1
6

9
1

9
3

2
1

7
2

4
1

2
6

5
2

8
9

3
1

3
3

3
7

3
6

1
3

8
5

4
0

9
4

3
3

4
5

7
4

8
1

5
0

5
5

2
9

5
5

3
5

7
7

6
0

1
6

2
5

6
4

9
6

7
3

6
9

7
7

2
1

7
4

5
7

6
9

7
9

3
8

1
7

W
IP

Step in routing

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 2
5

4
9

7
3

9
7

1
2

1
1

4
5

1
6

9
1

9
3

2
1

7
2

4
1

2
6

5
2

8
9

3
1

3
3

3
7

3
6

1
3

8
5

4
0

9
4

3
3

4
5

7
4

8
1

5
0

5
5

2
9

5
5

3
5

7
7

6
0

1
6

2
5

6
4

9
6

7
3

6
9

7
7

2
1

7
4

5
7

6
9

7
9

3
8

1
7

W
IP

Step in routing

180

Figure A.56 WIP profile of C3 at the end of the 1st week

Figure A.57 WIP profile of C3 at the end of the 2nd week

Figure A.58 WIP profile of C3 at the end of the 3rd week

0
100
200
300
400
500
600
700
800
900

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3
8

5
9

8
8

5
9

1
1

9
3

7

W
IP

Step in routing

0
100
200
300
400
500
600
700
800
900

1000

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3
8

5
9

8
8

5
9

1
1

9
3

7

W
IP

Step in routing

0
100
200
300
400
500
600
700
800
900

1000

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3
8

5
9

8
8

5
9

1
1

9
3

7

W
IP

Step in routing

181

Figure A.59 WIP profile of C3 at the end of the 4th week

Figure A.60 WIP profile of C3 at the end of the 5th week

Figure A.61 WIP profile of C3 at the end of the 6th week

0
100
200
300
400
500
600
700
800
900

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3
8

5
9

8
8

5
9

1
1

9
3

7

W
IP

Step in routing

0

100

200

300

400

500

600

700

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3
8

5
9

8
8

5
9

1
1

9
3

7

W
IP

Step in routing

0

100

200

300

400

500

600

700

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3
8

5
9

8
8

5
9

1
1

9
3

7

W
IP

Step in routing

182

Figure A.62 WIP profile of C3 at the end of the 7th week

Figure A.63 WIP profile of C3 at the end of the 8th week

Figure A.64 WIP profile of C3 at the end of the 9th week

0

100

200

300

400

500

600

700

800

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3
8

5
9

8
8

5
9

1
1

9
3

7

W
IP

Step in routing

0

100

200

300

400

500

600

700

800

900

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3
8

5
9

8
8

5
9

1
1

9
3

7

W
IP

Step in routing

0

200

400

600

800

1000

1200

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3
8

5
9

8
8

5
9

1
1

9
3

7

W
IP

Step in routing

183

Figure A.65 WIP profile of C3 at the end of the 10th week

Figure A.66 WIP profile of C3 at the end of the 11th week

Figure A.67 WIP profile of C3 at the end of the 12th week

0

200

400

600

800

1000

1200

1400

1600

1 2
8

5
5

8
2

1
0

9
1

3
6

1
6

3
1

9
0

2
1

7
2

4
4

2
7

1
2

9
8

3
2

5
3

5
2

3
7

9
4

0
6

4
3

3
4

6
0

4
8

7
5

1
4

5
4

1
5

6
8

5
9

5
6

2
2

6
4

9
6

7
6

7
0

3
7

3
0

7
5

7
7

8
4

8
1

1
8

3
8

8
6

5
8

9
2

9
1

9
9

4
6

W
IP

Step in routing

0
200
400
600
800

1000
1200
1400
1600
1800

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3
8

5
9

8
8

5
9

1
1

9
3

7

W
IP

Step in routing

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3
8

5
9

8
8

5
9

1
1

9
3

7

W
IP

Step in routing

184

Figure A.68 WIP profile of C3 at the end of the 13th week

0

500

1000

1500

2000

2500

1 2
7

5
3

7
9

1
0

5
1

3
1

1
5

7
1

8
3

2
0

9
2

3
5

2
6

1
2

8
7

3
1

3
3

3
9

3
6

5
3

9
1

4
1

7
4

4
3

4
6

9
4

9
5

5
2

1
5

4
7

5
7

3
5

9
9

6
2

5
6

5
1

6
7

7
7

0
3

7
2

9
7

5
5

7
8

1
8

0
7

8
3

3
8

5
9

8
8

5
9

1
1

9
3

7

W
IP

Step in routing

185

Appendix 8: Benders Decomposition

Model (3) contains a series of block constraints with overlapping variables, where the

blocks correspond to different time periods and a subset of the variables appears in the

adjacent blocks for periods t – 1 and t. In visual terms, the overlapping constraints form a

staircase. The general problem is called a multistage linear program and has the

following form:

 w = Minimize c0x0 + c1x1 + c2x2 + . . . + cNxN (17a)

 subject to – B0x0 + A1x1 = b1 (17b)

 – B1x1 + A2x2 = b2 (17c)

 – B2x2 + A3x3 = b3 (17d)
 O

 – BN–1xN–1 + ANxN = bN (17e)

 x0 ≥ 0, x1 ≥ 0, . . . , xN ≥ 0 (17f)

where all vectors and matrices are of appropriate dimension and Bk (k = 1,…,N–1)

reflects the overlapping or staircase nature of the constraints. To decompose model (17),

we introduce a sequence of vectors z1, z2,…,zN with the same dimensions as x1, x2, …, xN

and write each constraint as

– Bk–1zk–1 + Akxk = bk

with the restriction that Bkxk = Bkzk, k = 1,…,N. Now, if the z variables are treated the

same way that the integer variables are treated in Benders algorithm for solving mixed-

integer linear programs, we get the following N primal subproblems.

 wP(zk) = Minimize ckxk (18a)

 subject to Akxk = bk + Bk–1zk–1 (18b)

 Bkxk = Bkzk (18c)

 xk ≥ 0 (18d)

For the moment, assume that all the variables that appear in model (18) are continuous.

Letting uk and yk be the dual variables associated with constraints (18b) and (18c),

respectively, the dual of (18) is

 wD(zk) = Maximize uk(bk + Bk–1zk–1) + yk(Bkzk)

 subject to ukAk + ykBk ≤ ck (19)

186

where wD(zk) = wP(zk). Thus, model (3) is equivalent to

 ()
1

Minimize
N

D k

k

w w
=

= ∑ z (20)

To solve (20), we need to create a master problem. Let Ek be the set of extreme points

associated with the feasible region in (19) and let Rk be the set of extreme rays, k =

1,…,N. Benders’ master problem can be written as

 w = Minimize
1

N

k
k

η
=

∑ (21a)

 subject to kη ≥ uke(bk + Bk–1zk–1) + yke(Bkzk), ∀ e ∈ Ek , k = 1,…,N (21b)

 0 ≥ vkr(bk + Bk–1zk–1) + qkr(Bkzk), ∀ r ∈ Rk , k = 1,…,N (21c)

where the constraints in (21b) are called optimality cuts and those in (21c) are called

feasibility cuts. The standard Benders algorithm can now be used to solve (21), where at

each iteration, cuts are added by solving either the N dual subproblems in (19) or the N

primal subproblems (18) and then computing the corresponding dual variables uk and yk

or dual extreme rays vk and qk.

187

Appendix 9: Pseudocodes for Neighborhood Search in Capacitated Clustering

The following definitions, together with the aforementioned notation in Chapter 3, are

used to describe the phase II procedures.

Parameters

β a percentage serves as tolerance
TEW(x) sum of edge weights in every cluster of solution x
c(i, x) cluster to which node i is assigned in solution x
ben_i_s benefit obtained by shifting node i to cluster s
best_ben_i_s best benefit from ben_i_s
benefit benefit obtained by moving node i
best_ben best benefit found during the local search for all of the nodes
ibest node to be moved with best_ben
sbest cluster to which ibest is assigned in the best move
jbest node to be moved from sbest if best ()

s
W x + besti

w ≥ Cmax

best
1s cluster to which node jbest is moved to

j′, j* temporary variables for the node to be shifted
s1, '

1s , *
1s temporary variables for the cluster to which j ' and j* are shifted

∆ percentage decrement for tolerance β

Procedure: N1(x, w, c, β, Cmin, Cmax, x*)
Input: current solution x, node weights vector w, edge weights matrix c, capacity bounds

Cmin and Cmax and tolerance β.
Output: local solution x*with respect to neighborhood N1(x).
Step 1: Initialization

 TEW(x) =
1 , ()k

p

ij
k i j V x

c
= ∈

∑ ∑ ; best_ben = − ∞; x* = x;

Step 2: for every node perform an N1 local search
 for (i ∈ V){
 k = c(i, x);
 if (Wk(x) − wi ≥ Cmin){
 best_ben_i_s = − ∞;
 for (s = 1,…,p and s ≠ k){
 if (Ws(x) + wi ≤ Cmax){

 ben_i_s =
* () ()\{ }ks

ij ij
j V x j V x i

c c
∈ ∈

−∑ ∑ ;

 }else{//cluster s will exceed the upper bound
 (j ′, '

1s) =
1,

argmax
j s

{
1

()\{ } ()\{ } () ()s k s s

il il jl jl
l V x j l V x i l V x l V x

c c c c
∈ ∈ ∈ ∈

− + −∑ ∑ ∑ ∑ ,

 ∀ j ∈ Vs, j ≠ i, s1 = 1,…,p, s1 ≠ s, C
min ≤ Ws(x) + wi –

wj ≤ Cmax and
1
()sW x + wj ≤ Cmax };

188

 ben_i_s = ' '

'
'
1

()\{ } () ()()\{ } k ss s

il il j l j l
l V x i l V x l V xl V x j

c c c c
∈ ∈ ∈∈

− + −∑ ∑ ∑ ∑ ;

 }
 if (ben_i_s > best_ben_i_s){
 bes_bent_i_s = ben_i_s; s* = s; benefit = ben_i_s;
 if (* ()

s
W x + wi ≥ Cmax){

 j* = j′; * '
1 1s s= ;

 }
 }
 }//end_for_s
 if (benefit > best_ben) {
 best_ben = benefit; ibest = i; sbest = s*;
 if (best ()

s
W x + besti

w ≥ Cmax){

 jbest = j*; best *
1 1s s= ;

 }
 }
 }
 }
Step 3: if (best_ben > − β × tw(x)){
 k = c(ibest, x);
 Vk(x

*) � Vk(x) \ { ibest};

 best
*()

s
V x � best()

s
V x 	{ ibest};

 if (| best()
s

V x | = Cmax){

 best
*()

s
V x � best

*()
s

V x \ { jbest}; best
1

*()
s

V x � best
1

()
s

V x 	{ jbest};

 }
 }

Figure A.69 Pseudocode for local search in neighborhood N1

 Parameters
k1,k2,s1,s2,s3,s

* temporary variables for cluster identification
ben_e_sl temporary variable for benefit obtained, l = 1, 2, 3
ebest edge e of the move with best_ben
ibest, jbest the two endpoints of ebest
sbest cluster to which ebest is assigned in the best move

Procedure: N2(x, w, c, β, Cmin, Cmax, x*)
Input: current solution x, node weights vector w, edge weights matrix c, capacity bounds

Cmin and Cmax and tolerance β.
Output: optimal solution in neighborhood N2(x), x*

Step 1: initialization

 TEW(x) =
1 , ()k

p

ij
k i j V x

c
= ∈

∑ ∑ ; best_ben = − ∞; x* = x;

Step 2: for every edge perform an N2 local search

189

 for (e = (i,j) ∈ E) {
 k1 = c(i, x); k2 = c(j, x);
 if (k1 = k2 = k and Wk(x) – wi – wj ≥ Cmin){// e is within cluster k
 s* = argmax

s

{
() ()\{ , }

() ()
s k

il jl il jl
l V x l V x i j

c c c c
∈ ∈

+ − +∑ ∑ ,

 ∀ s ∈ {1,..,p}\{ k} and Ws(x) + wi + wj ≤ Cmax };

 benefit =
* () ()\{ , }

() ()
ks

il jl il jl
l V x l V x i j

c c c c
∈ ∈

+ − +∑ ∑ ;

 } else {
 if (− wi ≥ Cmin and − wj ≥ Cmin) {

 if (Ws(x) + wi + wj ≤ Cmax) {
 s1

 = argmax
s

{
1 2

() () ()

()
s k k

il jl ij il jl
l V x l V x l V x

c c c c c
∈ ∈ ∈

+ + − −∑ ∑ ∑ ,

 ∀ s ≠ k1, s ≠ k2};

 ben_e_s1 =
1 21

() () ()

()
s k k

il jl ij il jl
l V x l V x l V x

c c c c c
∈ ∈ ∈

+ + − −∑ ∑ ∑ ;

 }
 if (+ ≤ Cmax) {

 ben_e_s2 =
1 2
() ()k k

jl jl
l V x l V x

c c
∈ ∈

−∑ ∑ ; s2 = k1;

 }
 if (

2
()kW x +

eaw ≤ Cmax) {

 ben_e_s3 =
2 1

() ()k k

il il
l V x l V x

c c
∈ ∈

−∑ ∑ ; s3 = k2;

 }
 benefit = max {ben_e_s1, ben_e_s2, ben_e_s3};
 s* = sl, where ben_e_sl = benefit with l = 1, 2, 3;
 }
 }
 if (benefit > best_ben) {
 best_ben = benefit;
 ebest = e; sbest = s*;
 }
 }
Step 3: if (best_ben > − β × tw(x)){
 ebest = (ibest, jbest);
 k1 = c(ibest, x); k2 = c(jbest, x);
 if (k1 = k2) {

 k = k1; Vk(x
*) = Vk(x) \ { ibest, jbest}; best

*()
s

V x = best()
s

V x 	{ ibest, jbest};

 } else {
 if (sbest = k1) {

1

*()kV x =
1
()kV x 	{ jbest};

2

*()kV x =
2
()kV x \{ jbest};

 }

1
()kW x

2
()kW x

1
()kW x

ebw

190

 else if (sbest = k2) {

1

*()kV x =
1
()kV x \{ ibest};

2

*()kV x =
2
()kV x 	{ ibest};

 } else {

1

*()kV x =
1
()kV x \{ ibest};

2

*()kV x =
2
()kV x \{ jbest};

 best
*()

s
V x = best()

s
V x 	{ ibest, jbest};

 }
 }
 }

Figure A.70 Pseudocode for local search in neighborhood N2

Parameters

(ibest, jbest) nodes to be swapped corresponding to best_ben
Procedure: N3(x, w, c, β, Cmin, Cmax, x*)
Input: current solution x, node weights vector w, edge weights matrix c, capacity bounds

Cmin and Cmax and tolerance β.
Output: local solution x* with respect to neighborhood N3(x).
Step 1: initialization

 TEW(x) =
1 , ()k

p

ij
k i j V x

c
= ∈

∑ ∑ ; best_ben = − ∞; x* = x;

Step 2: for every pair of nodes perform a local search in N3
 for (k = 1,…,p){
 if (Cmin ≤ Wk(x) – wi + wj ≤ Cmax) {
 for (s = k + 1,…,p){
 if (Cmin ≤ Ws(x) – wj + wi ≤ Cmax) {
 (i*, j*) =

argmax{
() ()\{ } () ()\{ }

() ()
s k k s

il il jl jl
l V x l V x i l V x l V x j

c c c c
∈ ∈ ∈ ∈

− + −∑ ∑ ∑ ∑ :

 i ∈ Vk(x) and j ∈ Vs(x)};
 benefit = * * * *

* *() ()()\{ } ()\{ }

() ()
s kk s

i l i l j l j l
l V x l V xl V x i l V x j

c c c c
∈ ∈∈ ∈

− + −∑ ∑ ∑ ∑ ;

 if (benefit > best_ben) {
 best_ben = benefit;
 ibest = i*; jbest = j*;
 }
 }
 }
 }
 }
Step 3: if (best_ben > − β × tw(x)){
 k = c(ibest, x); s = c(jbest, x);
 Vk(x

*) = (Vk(x) \ { ibest}) 	 { jbest};
 Vs(x

*) = (Vs(x) \ { jbest}) 	 { ibest};
 }

191

Figure A.71 Pseudocode for local search in neighborhood N3

Appendix 10: Pseudocodes for Back-end Operations

Indices and sets

i index for machines; i ∈ M
j index for devices; j ∈ D
k index for key devices; k ∈ K
l index for lots; l ∈ L
p index for package devices; p ∈ P
s index for routes; s ∈ S
t index for tooling families; t ∈ T
τ index for temperature; τ ∈T
λ index for tooling setup; λ ∈ Λ
n, m index for temperature combinations; n, m ∈ N
D set of all devices, including regular devices, key devices and package

devices
K set of key devices; K D⊆
L set of lots in WIP at current operation
L(i) set of lots that can be processed on machine i
L(i,j) set of lots consisting of device j that can be processed on machine i
L(i,λ) set of lots that can be processed on machine i with tooling setup λ
M set of machines (each machine falls into a machine group)
M(l) set of machines that can process lot l
N set of feasible temperature combinations for machines and tooling

()N n set of temperature combinations that intersect combination n.
P set of package devices; P D⊆
S set of routes
S(i) set of routes that use machine i
S(i,l) set of routes that use machine i to process lot l
S(i,l,λ) set of routes that use machine i to process lot l with tooling setup λ
T set of tooling families
T set of operating temperatures

()T n set of operating temperatures that are elements of temperature combination
n

Λ set of tooling setups that used in the routs S
Λ(i) set of tooling setups that can be installed in machine i
Λ(i,t,τ) set of tooling setups that can be installed in machine i using tooling family t

under temperature τ
Parameters and data

bλt number of tooling pieces from family t required by tooling setup λ
tooling
tmn number of tooling pieces from family t available under temperature

combination m
chips
ln number of chips in lot l

192

min_chips
kn minimum number of chips associated with key device k required to be

processed over the planning period
min_chips
pn minimum number of chips associated with package device p required to be

processed over the planning period
r ils processing rate of lot l on machine i using route s (chips per hour)
wl weight (benefit) associated with processing lot l (function of lot age and the

remaining planned cycle time)

1
kw weight (penalty) associated with shortage of package device k

2
pw weight (penalty) associated with shortage of key device p

εs penalty for choosing route s
C normalizing constant associated with key and package device shortages
Hi (capacity) number of hours available on machine i over the planning period

Decision variables
xils 1 if lot l is processed by machine i with route s, 0 otherwise
yiλ 1 if machine i is using tooling setup λ, 0 otherwise

1
k∆ shortage of key device k

2
p∆ shortage of package device p

Figure A.72 Notation for setup and assignment model

Procedure: N1(x
IP, iλ , x*)

Input: Feasible IP solution xIP, current machine setupiλ , ∀ i ∈ M
Output: Local optimum x* in neighborhood N1(x

IP)
Step 1: //Initialize L0, Li , IP

it and x* according to xIP

 L0 ← �; Li ← �; IP
it = 0, ∀ i ∈ M;

 * IP
ils ilsx x= , ∀ i ∈ M, l ∈ L(i, iλ), s ∈ S(i,l, iλ);

 for (i ∈ M, l ∈ L(i, iλ), s ∈ S(i,l, iλ)) {//for each index combination
 if (IP

ilsx = 1){ // lot l is processed by machine i by route s

 //update Li and IP
it

 Li ← Li 	 { l}; IP
it � IP

it + chips
l ilsn r ;

 }
 }
 for (l ∈ L) {//for each lot
 if (l ∉ Li, ∀ i ∈ M) {//assign lot l to the set of unassigned lots L0
 L0 ← L0 	 { l};
 }
 }
Step 2: Sort the lots l ∈ L0 in nonincreasing order of ben(l)
Step 3: For (l ∈ L0) {//for each unassigned lot
 for (i ∈ M) {//for each machine

193

 if (l ∈ L(i, iλ)){//test if lot l can be assigned to machine i using setup

iλ
 //get the route associated to the highest processing rate using

tooling setup iλ

 s � argmax{r ils, s ∈ S(i,l, iλ)};
 //test if there is enough time to assign lot l to machine i
 if (IP

it + chips
l ilsn r � Hi){

 //assign lot l to machine i, update Li, L0 and IP
it

 Li ← Li 	 { l}; IP
it � IP

it + chips
l ilsn r ; L0 ← L0 \ { l}; *

ilsx = 1;
 //update output and shortage given new Li and L0
 out(dl) = out(dl) + chips

ln ; sh(dl) = n(dl) – th(dl);

 //update the lot benefit measure ben(l), l ∈ L0
 for (l ′ ∈ L0 and dl′ = dl) {

 ben(l) = wl +()
ldw C ∙ { }chipsmin , ()l ln sh d

 ∙ { }() 0lsh dI > ∙ { }{ }ld K P

I
∈ ∪

;

 }
 Re-sort the lots in L0 given updated ben(l), l ∈ L0;
 }
 }
 }
 }

Figure A.73 Pseudocode for N1(x
IP) local search

Procedure: N2(x
IP, iλ , x*)

Input: Feasible IP solution xIP, current machine setupiλ , ∀ i ∈ M
Output: Local optimum x* in neighborhood N2(x

IP)
Step 1: //Initialize L0, Li , IP

it and x* according to xIP

 L0 ← �; Li ← �; IP
it = 0, ∀ i ∈ M;

 * IP
ils ilsx x= , ∀ i ∈ M, l ∈ L(i, iλ), s ∈ S(i,l, iλ);

 for (i ∈ M, l ∈ L(i, iλ), s ∈ S(i,l, iλ)) {//for each index combination
 if (IP

ilsx = 1){ // lot l is processed by machine i by route s

 //update Li and IP
it

 Li ← Li 	 { l}; IP
it � IP

it + chips
l ilsn r ;

 }
 }
 for (l ∈ L) {//for each lot
 if (l ∉ Li, ∀ i ∈ M) {//assign lot l to the set of unassigned lots L0
 L0 ← L0 	 { l};

194

 }
 }
Step 2: Sort the lots l ∈ L0 in nonincreasing order of ben(l)
Step 3: for (l ∈ L0) {//for each unassigned lot
 for (i ∈ M) {//for each machine

 if (l ∈ L(i, iλ)){ //test if lot l can be assigned to machine i using setup

iλ
 for (l ′ ∈ Li){//for each lot assigned to machine i
 //get the route associated to the highest processing rate

using tooling setupiλ

 s � argmax{r ils, s ∈ S(i,l, iλ)};

 s′ = argmax{r il ′s, s ∈ S(i,l′, iλ)};
 //test if there is enough time to process l if the swap is

made
 if (IP

it + chips
l ilsn r − chips

l il sn r′ ′ � Hi and ben(l) > ben(l ′)){

 //swap lots l and l′, update sets L0, Li ∀ i ∈ M, IP
it

and x*
 Li ← Li \ { l′}; Li ← Li 	 { l};
 L0 ← L0 \ { l}; L0 ← L0 	 { l ′};
 IP

it � IP
it + chips

l ilsn r − chips
l il sn r′ ′ ;

 *
ilsx = 1; *

il sx ′ = 0;
 //update output and shortage given updated Li and

L0
 out(dl) = out(dl) + chips

ln ; sh(dl) = n(dl) – th(dl);

 //update the lot benefits ben(l), l ∈ L0
 for (l ∈ L) {

 ben(l) = wl +()
ldw C ∙ { }chipsmin , ()l ln sh d

 ∙ { }() 0lsh dI > ∙ { }{ }ld K P

I
∈ ∪

;

 }
 Re-sort the lots in L given new ben(l), l ∈ L;
 }
 }
 }
 }
 }

Figure A.74 Pseudocode for N2(x
IP) local search

Procedure: KP_heur(j, λ, L0, ben, L*)
Input: SIM j, tooling setup λ, set of unassigned lots L0
Output: Benefit ben from setting up the machines in SIM j with tooling λ; set of lots L*

assigned to (j, λ) combination

195

Step 1: Sort the lots in L0 according to ()chips() l ilsben l n r in nonincreasing order;

Step 2: Pick one machine i ∈ SIM j;
 t = 0; ben = 0;
 for (l ∈ L0) {
 s = argmax{r ils : s ∈ S(i, l, λ)}; //choose the route with the highest processing

rate
 if (t + chips

l ilsn r ≤ Hi) {//test if there is enough time to process lot l

 put t ← t + chips
l ilsn r ; ben ← ben + ben(l); L* ← L* 	 { l};

 }
 }
Figure A.75 Pseudocode to compute the benefit associated with machine-tooling
combination (j, λ)

Procedure: LPLB(x , y , K, x*, y*)
Input: Current IP solution (x , y), neighborhood radius K
Output: Improved solution (y*, x*)
Step 1: Construct the local branch cut ()

(,)
1 ii Y

yλλ ∈
−∑ � K;

 Include the cut into model (1) and solve as LP and obtain solution yLP;
Step 2: for (iter = 1, 2,…,nLPLB) {
 Simulate machine setups from yLP and denote as ys;
 Solve LLP to get LLP_heur(ys) and xs;
 if (sim_obj(xs, ys) > sim_obj(x , y)) {
 x* = xs; y* = ys;
 }
 }

Figure A.76 Pseudocode of LPLB

Procedure: Phase_I(L, M, T, Λ, SPhaseI)
Input: Set of lots L, set of machine M, set of tooling families T, and set of tooling setups

Λ
Output: Set of initial solutions SPhaseI
Step 1: //initialization
 Construct SIM from M;
 Initialize SL;
 SPhaseI ← �;
Step 2: for (k = 1, 2,…, nPhaseI) {
 Put L0 ← L; Li ← �, ∀ i ∈ M;
 Compute ben(l), ∀ l ∈ L;
 Sort the lots in L0 according to ben(l) in nonincreasing order;
 while (some machine i ∈ M is idle and sufficient tooling t ∈ T is

available){
 //construct CL

196

 for (all feasible (j, λ) combinations) {
 KP_heur(j, λ, L0, b, L*);
 Append the triplet (j, λ, b) to CL
 }
 Sort CL according to benefit b;
 Construct RCL;
 Assign probability to the elements in RCL according to Siλ in SL;
 Select one RCL element randomly: (j*, λ*, b*);
 //perform the machine tooling setup
 Find an available machine i ∈ SIMj*
 Set *i

y
λ

= 1; yiλ = 0, ∀ λ ∈ Λ(i) \ {λ*};

 KP_heur(j*, λ*, L0, b, L*);
 Put Li ← L*; L0 ← L0 \ L

*;
 Update SL;
 Update ben(l), l ∈ L0;
 Update machine and tooling usage;
 }
 //given the machine setups y*,
 Solve LLP to get LLP_heur(y*) and x*;
 Put SPhaseI ← SPhaseI 	 {(x*, y*)};
 }

Figure A.77 Pseudocode of GRASP phase I

Procedure: GRASP(L, M, T, Λ, x*, y*)
Input: Set of lots L, set of machines M, set of tooling families T, and set of tooling

setups Λ
Output: Best solution found to model (1), (x*, y*)
Step 1: Phase_I(L, M, T, Λ, SPhaseI);
 Select a subset of top elements in SPhaseI; denote as Ssub;
Step 2: Denote the jth element of Ssub as (xj, yj);
 //initialize (x*, y*)
 x* = x1; y* = y1;
 for (j = 1, 2,…,|Ssub|) {
 LPLB(xj, yj, K, xj*, yj*);
 if (sim_obj(xj*, yj*) > sim_obj(x*, y*)) {
 x* = xj*; y* = yj*;
 }
 }

Figure A.78 Pseudocode of GRASP

Procedure: Random_Case_Generator()
Step 1: (Parameters) Let Ltest = set of lots, Mtest = set of machines, mg = number of

machine groups, ttest = number of tooling pieces, Ttest = set of tooling families, nD

197

= number of devices, nK = number of key devices, nP = number of package

devices, ntemp = number of operating temperatures, Stest = set of routes, and Λtest =

set of tooling setups.

Step 2: (Lot generation) Generate the lot sizes uniformly in the range [n1, n2], where n1 is

the minimum lot size and n2 is the maximum lot size according to the original

dataset. Generate the lot weights uniformly in the range [wmin, wmax]. For each lot

l ∈ Ltest, randomly select one of the nD devices to be the device contained in the lot.

Step 3: (Machine generation) For each machine i ∈ Mtest, randomly select one of the mg

machine groups, select one or more operating temperatures from the ntemp

operating temperatures.

Step 4: (Tooling generation) For each tooling piece t ∈ {1, 2,…, ttest}, randomly select

one of the |Ttest| tooling families, select one or more operating temperatures from

the ntemp operating temperatures.

Step 5: (Route generation) Let Stest ← �. For a device d, randomly select one or more

machine groups. For each device-machine group combination, a new route s is

generated and Stest ← Stest 	 {s}. The corresponding processing rates are

uniformly generated from [15000, 150000] in the units of parts per hour (PPH).

Go to the next device.

Step 6: (Tooling setup generation) Let η = |Stest|/|Λtest| which is approximately 0.5 in the

original dataset. Set |Λtest| = η∙|Stest|. For each setup λ ∈ {1, 2,…,|Λtest|}, randomly

select one of the ntemp temperatures and one or more tooling families, each with

probability (1/|Ttest|). Then draw at random the number of tooling pieces from {1,

2, 3, 4} for each family realized.

Step 7: (Link Stest to Λtest) For each route s ∈ Stest, pick one of the |Λtest| setups at random.

Step 8: (Device generation) Randomly select nK devices to be key devices and another nP

devices to be package devices. For each key or package device, the minimum

output is randomly chosen from [nmin, nmax] ,where nmin is the minimum target

output and nmax is the maximum target output in the original dataset.

Figure A.79 Pseudocode of random cases generator

198

Bibliography

Ahmadi, S., Osman, I.H. (2005). Greedy random adaptive memory programming search
for the capacitated clustering problem. European Journal of Operational Research, 162(1),
30-44.

Asmundsson, J., Rardin, R.L., Uzsoy, R. (2006). Tractable nonlinear production planning
models for semiconductor wafer Fabrication Facilities. IEEE Transactions on
Semiconductor Manufacturing, 19(1), 95-111.

Bai, X., Gershwin, S.B. (1994). Scheduling manufacturing systems with work-in-process
inventory control: multiple-part-type systems. International Journal of Production
Research, 32(2), 365-385.

Bard, J.F., Jarrah, A.I. (2009). Large-scale constrained clustering for rationalizing pickup
and delivery operations. Transportation Research Part B: Methodological, 43(5), 542-
561.

Bard, J.F., Purnomo, H.W. (2005). Preference scheduling for nurses using column
generation. European Journal of Operational Research, 164(2), 510-534.

Bard, J.F., Purnomo, H.W. (2007). Cyclic preference scheduling of nurses using a
Lagrangian-based heuristic. Journal of Scheduling, 10(1), 5-23.

Bard, J.F., Rojanasoonthon, S. (2006). A branch & price algorithm for parallel machine
scheduling with time windows and job priorities. Naval Research Logistics, 53(1) 24-44.

Barreto, S., Ferreira, C., Paixao, J., Santos, B.S. (2006). Using clustering analysis in a
capacitated location-routing problem. European Journal of Operational Research, 179,
968-977.

Bertsimas, D., Sethuraman, J. (2002). From fluid relaxations to practical algorithms for
job shop scheduling: the makespan objective. Mathematical Programming, Series A, 92,
61-102.

Bertsimas, D., Gamarnik, D., Sethuraman, J. (2003). From fluid relaxations to practical
algorithms for high-multiplicity job-shop scheduling: the holding cost objective.
Operations Research, 51(5), 798-813.

Boudia, M., Louly, M.A.O., Prins, C. (2006). A reactive GRASP and path relinking for a
combined production-distribution problem. Computers & Operations Research, 34(11),
3402-3419.

Brucker, J. (1978). On the complexity of clustering problem. Lecture Notes in
Economics and Mathematical Systems, 157, 45-54, Springer, Berlin / Heidelberg.

199

Boschetti, M., Maniezzo, V. (2009). Benders decomposition, Lagrangian relaxation and
metaheuristic design. Journal of Heuristics, 15(3), 283-312.

Cano, J.R., Cardon, O., Herrera, F., Sanchez, L. (2002). A greedy randomized adaptive
search procedure applied to the clustering problem as an initialization process using k-
means as a local search procedure. Journal of Intelligent & Fuzzy Systems, 12, 235-242.

Carey, M.R., Johnson, D.S. (1979). Computers and intractability: a guide to the theory of
NP-completeness. W.H. Freeman, New York.

Chacon, G.R., Ballego, F., James, S. (2005). Manufacturing operations improvement with
loop management. Technical report no. 231, Texas Instruments, Dallas, Texas.

Chiang, T.C., Shen, Y.S., Fu, L.C. (2008a). A new paradigm for rule-based scheduling in
the wafer probe centre. International Journal of Production Research, 46(15), 4111-4133.

Chiang, D.M., Guo, R.-S., Pai, F.-Y. (2008b). Improved customer satisfaction with a
hybrid dispatching rule in semiconductor back-end factories. International Journal of
Production Research, 46(17), 4903-4923.

Chiou,Y.-C., Lan. L.W. (2001). Genetic clustering algorithms. European Journal of
Operational Research, 135(2), 413-427.

Daganzo, C.F. (2005). Logistics System Analysis, 4th Edition, Springer, Berlin.

Dai, J.G. (1995). On positive Harris recurrence of multiclass queueing networks: a
unified approach via fluid limit models. Annals of Applied Probability, 5(1), 49-77.

Dai, J.G., Weiss, G. (2002). A fluid heuristic for minimizing makespan in job-shops.
Operations Research, 50(4), 692-707.

Feo, T.A., Resende, M.G.C. (1995). Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6, 109-134.

Ferreira, C.E., Martin, A., de Souza, C.C., Weismantel, R., Wolsey, L.A. (1998). The
node capacitated graph partitioning problem: A computational study. Mathematical
Programming, 81(2), 229-256.

Fischetti, M., Lodi, A. (2003). Local branching. Mathematical Programming, 98(1) 23-47.

Fischetti, M., Luzzi, I. (2009). Mixed-integer programming models for nesting problems.
Journal of Heuristics, 15(3), 201-226.

Fordyce, K., Dalton, D., Gerard, B., Jesse, R., Sullivan, G. (1992). Daily output planning:
integrating operations research, artificial intelligence, and real-time decision support with
APL2. Expert Systems With Applications, 5, 245-256.

200

Freed, T., Doerr, K.H., Chang, T. (2006). In-house development of scheduling decision
support systems: case study for scheduling semiconductor device test operations.
International Journal of Production Research, 45(21), 5075-5093.

Frank, A. (1994). On the edge-connectivity algorithm of Nagamochi and Ibaraki.
Working paper, ARTEMIS-IMAG, Université de Grenoble, Grenoble, France.

Glassey, C.R., Resende, M.G.C. (1988). Closed-loop job release for VLSI circuit
manufacturing. IEEE Transactions on Semiconductor Manufacturing, 1(1), 36-46.

Glover, F., Laguna, M., Marti, R. (2000). Fundamentals of scatter search and path
relinking. Control and Cybernetics, 29(3), 653-684.

Johnson, E.L., Mehrotra, A., Nemhauser, G.L. (1993). Min-cut clustering. Mathematical
Programming, 62(1), 133-151.

Hansen, P., Mladenovic, N. (1997). Variable neighborhood search. Computers &
Operations Research, 24(11), 1097-1100.

Hansen, P., Mladenovic, N. (2001). J-means: a new local search heuristic for minimum
sum of squares clustering. Pattern Recognition, 34(2), 405-413.

Hu, B., Leitner, M., Raidl, G.R. (2008). Combining variable neighborhood search with
integer linear programming for the generalized minimum spanning tree problem. Journal
of Heuristics, 14(5), 473-499.

Hughes, R.A., Shott, J.D. (1986). The future of automation for high-volume wafer
fabrication and ASIC manufacturing. Proceedings of the IEEE, 74(12), 1775-1793.

Kaufman, L., Roussweuw, P. (1990). Finding Groups in Data: An Introductory to Cluster
Analysis, Wiley, New York.

Karger, D.R., Stein, C. (1996). A new approach to the minimum cut problem. Journal of
ACM, 43(4), 601-640.

Knutson, K., Kempf, K., Fowler, J.W., Carlyle, M. (1999). Lot-to-order matching for a
semiconductor assembly and test facility. IIE Transactions on Scheduling & Logistics,
31(11), 1103-1111.

Kontoravdis, G., Bard, J.F. (1995). A GRASP for the vehicle routing problem with time
windows. ORSA Journal on Computing, 7(1), 10-23.

Laporte, S., Chapleau, S., Landry, P.-E., Mercure, H. (1989). An algorithm for the design
of mailbox collection routes in urban areas. Transportation Research Part B:
Methodological, 23(4), 271-280.

201

Leachman, R.C. (2002). Application of mathematical optimization to semiconductor
production planning. In Resende, M., Pardolos, P. (eds.), Handbook of Applied
Optimization. Oxford University Press, New York, 746-762.

Leachman, R.C., Carmon (Freed), T. (1992). On capacity modeling for production
planning with alternative machine types. IIE Transactions on Scheduling & Logistics,
24(4), 62-72.

Leachman, R.C., Jeenyoung, K., Lin, V. (2002). SLIM: short cycle time and low
inventory in manufacturing at Samsung electronics. Interfaces, 32(1), 61-77.

Lee, Y.H., Kim, T. (2002). Manufacturing cycle time reduction using balance control in
the semi-conductor fabrication line. Production Planning & Control, 13:529-540.

Lin, V. (1999). Advanced semiconductor production planning. Doctoral dissertation,
Department of Industrial Engineering and Operations Research, University of California,
Berkeley.

Lorena, L.A.N., Senne, E.L.F. (2004). A column generation approach to capacitated p-
median problems. Computers & Operations Research, 31(6), 863-876.

Lozinski, C., Glassey, C.R. (1988). Bottleneck starvation indicators for shop floor control.
IEEE Transactions on Semiconductor Manufacturing, 1(4), 147-153.

Mehrotra, A., Trick, M.A. (1998). Cliques and clustering: a combinatorial approach.
Operations Research Letters, 22(1), 1-12.

Mulvey, J.M., Beck, M.P. (1984). Solving capacitated clustering problems. European
Journal of Operational Research, 18(3), 339-48.

Nagmochi, H., Ibaraki, T. (1992). Computing edge-connectivity in multigraphs and
capacitated graphs, SIAM Journal of Discrete Mathematics, 5(1), 54-66.

Narahari, Y., Khan, K. (1996). Performance analysis of scheduling policies in re-entrant
manufacturing systems. Computers & Operations Research, 23(1), 37-57.

Negreiros, M., Palhano, A. (2006). The capacitated centered clustering problem.
Computers & Operations Research, 33(6), 1639-1663.

Newell, G.F., Daganzo, C.F. (1986). Design of multiple-vehicle delivery tours – I: A
ring-radial network. Transportation Research Part B: Methodological, 20B(5), 345-363.

Osman, I.H., Ahmadi, S. (2007). Guided construction search metaheuristics for the
capacitated p-median problem with single source constraint. Journal of the Operational
Research Society, 58(1), 100-114.

202

Ouyang, Y. (2007). Design of vehicle routing zones for large-scale distribution systems.
Transportation Research Part B: Methodological, 41(10), 1079-1093.

Ovacik, I.M., Uzsoy, R. (1996). Decomposition methods for scheduling semiconductor
testing facilities. International Journal of Flexible Manufacturing Systems, 8, 357-388.

Prais, M., Ribeiro, C.C. (1999). Reactive GRASP: an application to a matrix
decomposition problem in TDMA traffic assignment. INFORMS Journal on Computing,
12(3), 164-176.

Pfund, M.E., Mason, S.J., Fowler, J.W. (2006). Semiconductor manufacturing scheduling
and dispatching. In Herrmann, J.W. (ed.), Handbook of Scheduling, Chapter 9, pp. 213-
241, Springer, Berlin.

Pinedo, M.L. (2008). Scheduling Theory, Algorithms, and Systems, Third Edition,
Springer, New York.

Purnomo, H.W., Bard, J.F. (2007). Cyclic preference scheduling for nurses using branch
and price. Naval Research Logistics, 54(2), 200-220.

Rojanasoonthon, S., Bard, J.F. (2005). A GRASP for parallel machine scheduling with
time windows. INFORMS Journal on Computing, 17(1), 32-51.

Rivera, D.E., Vargas-Villami, F.D., Kampf, K.G. (2003). A hierarchical approach to
production control of reentrant semiconductor manufacturing lines. IEEE Transaction on
Control Systems Technology, 11(4), 578-587.

Robinson, J.K., Fowler, J.W., Bard, J.F. (1995). The use of upstream and downstream
information in scheduling semiconductor batch operations. International Journal of
Production Research, 33(7), 1849-1869.

Rybko, A.N., Stolyar, A.L. (1992). Ergodicity of stochastic processes describing the
operations of open queueing networks. Problems of Information Transmission, 28, 199-
220.

Saito, K. (2007). A robust dispatching algorithm for autonomous distributed
manufacturing of mixed VLSI products. IEEE Transactions on Semiconductor
Manufacturing, 20(3), 299-305.

Song, Y., Zhang, M.T., Yi, J., Zhang, L., Zheng, L. (2007). Bottleneck station scheduling
in semiconductor assembly and test manufacturing using ant colony optimization. IEEE
Transactions on Automation Science and Engineering, 4(4), 569-578.

203

Stray, J., Fowler, J.W., Carlyle, W.M., Rastogi, A.P. (2006). Enterprise-wide
semiconductor manufacturing resource planning. IEEE Transactions on Semiconductor
Manufacturing, 19(2), 259-268.

Tu, Y.M., Chao, Y.H., Chang, S.H., You, H.C. (2005). Model to determine the backup
capacity of a wafer foundry. International Journal of Production Research, 43, 339-359.

Uzsoy, R., Lee, C.-Y., Martin-Vega, L.A. (1992). A review of production planning and
scheduling models in the semiconductor industry; part I: system characteristics,
performance evaluation and production planning. IIE Transaction on Scheduling &
Logistics, 24(4), 47-60.

Van Zant, P. (2000). Microchip Fabrication: A Practical Guide to Semiconductor
Processing, 4th Edition, McGraw-Hill, NY.

Wein, L.M. (1988). Scheduling semiconductor wafer fabrication. IEEE Transactions on
Semiconductor Manufacturing, 1(3), 115-130.

Weiss, G. (1995). On optimal draining of fluid reentrant lines. In Kelly, F.P. and
Williams, R.J., editors, Stochastic Networks, volume 71, The IMA volumes in
mathematics and its applications, Springer-Verlag, New York, 93-105.

Wolsey, L.A. (1998). Integer Programming, John Wiley & Sons, New York.

Yavuz, M., Akcali, E. (2007). Production smoothing in just-in-time manufacturing
systems: a review of the models and solution approaches. International Journal of
Production Research, 45(16), 3579-3597.

Zäpfel, G., Missbauer, H. (1993). Production planning and control (PPC) systems
including load-oriented order release – problems and research perspectives. International
Journal of Production Economics, 30, 107-122.

Zhang, M.T., Niu, S., Deng, S., Zhang, Z., Li, Q., Zheng, L. (2007). Hierarchical capacity
planning with reconfigurable kits in global semiconductor assembly and test
manufacturing. IEEE Transactions on Automation Science and Engineering, 4(4), 543-
552.

204

VITA

 Yumin Deng was born in Huizhou, Guangdong province of P. R. China on

August 19, 1980, the son of Liquan Deng and Lizhen Lin. After finishing his work in

No.1 High School of Huizhou, he entered Shanghai Jiaotong University in September

1999 for his undergraduate study with a focus on Naval Architecture and Ocean

Engineering. He received his Bachelor of Engineering from Shanghai Jiaotong

University in July 2003. Right after his undergraduate graduation he was admitted to The

University of Texas at Austin as a master student in Civil Engineering. His work was

focused on the optimal propeller design during his master research. He received his

Master of Science degree in December 2005.

 In January 2006, he started his doctoral study in Operations Research & Industrial

Engineering, The University of Texas at Austin.

Permanent Address: APT 403, No. 15, Lane 1, Jiangbian Rd.

 Xiajiao District, Huizhou, Guangdong, P. R. China, 516001

This manuscript was typed by the author.

