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Planning and scheduling in semiconductor manufacturing is a difficult problem
due to long cycle times, a large number of operational steps, diversified prguks;t t
and low-volume high-mix customer demand. This research addresses severalproblem
that arise in the semiconductor industry related to front-end waferdtibnoperations
and back-end assembly and test operations. The mathematical models built for these
problems turn out to be large-scale mixed integer programs and hard to solveagith ex
methods. The major contribution of this research is to combine mathematical
programming with metaheuristics to find high quality solutions within the timigsli
imposed by the industrial engineers who oversee the fabrication and tese$acili

In order to reduce the size of problems that arise in practice, it is common to
cluster similar product types into groups that reflect their underlying démimn The
first part of the research is aimed at developing a greedy randomized adeatore s
procedure (GRASP) coupled with path relinking (PR) to solve the capacitatestioigist
problem. The model is generic and can be applied in many different situations. The
objective is to maximize a similarity measure within each clistehn that the sum of the
weights associated with the product types does not exceed the clustetlydapeasih
case. In phase I, both a heaviest weight edge (HWE) algorithm and a oakstrai
minimum cut (CMC) algorithm are used to select seeds for initializingltisters.
Feasible solutions are obtained with the help of a self-adjusting restractdidlate list.

In phase I, three neighborhoods are defined and explored using the followiegists:

Vii



cyclic neighborhood search, variable neighborhood descent, and randomized variable
neighborhood descent (RVND). The best solutions found are stored in an elite pool. Ina
post-processing step, PR coupled with local search is applied to the pool members to
cyclically generate paths between each pair. The elite pool is uadetedach iteration

and the procedure ends when no further improvement is possible.

After grouping the product types into technologies, a new model is presented
production planning in a high volume fab that uses quarterly commitments to define daily
target outputs. Rather than relying on due dates and priority rules to schedaledot st
and move work in process through the shop, the objective is to minimize the sum of the
deviations between the target outputs and finished goods inventory. The model takes the
form of a large-scale linear program that is intractable for planningdraibeyond a
few days. Both Lagrangian relaxation and Benders decomposition were iatesstigit
each proved ineffective. As a consequence, a methodology was developed which was
more tailored to the problem’s structure. This involved creating weekly subpsotiiam
were myopic but could be solved to optimality within a few minutes, and then post-
processing the results with a decomposition algorithm to fully utilize thesexe
machine time. The heart of the post-processor consists of a reschedulirntgralgod a
dispatching heuristic.

The third part of the research focuses on the combinatorial problem of machine-
tooling setup and lot assignments for performing back-end operations. A new model and
solution methodology are presented aimed at maximizing the weighted throughgist of |
undergoing assembly and test, while ensuring that critical lots are gieeityp The
problem is formulated as a mixed-integer program and solved again @RASP that
makes use of linear programming. In phase | of the GRASP, machine-tooling
combinations are tentatively fixed and lot assignments are made itgrédiagrive at a
feasible solution. This process is repeated many times. In phase Il, a ngkbbrigood
search is performed on a subset of good solutions found in phase I. Using a linear
programming-Monte Carlo simulation-based algorithm, new machine-tooling
combinations are identified within the neighborhood of the solutions carried over, and

improvements are sought by optimizing the corresponding lot assignments.
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Chapter 1

Introduction

The process of manufacturing integrated circuits consists of four basis:stage
wafer fabrication, wafer probe, assembly or packaging, and final tes\afer
fabrication is the most technologically complex and capital intensive, involvireceser
sequence of processing steps that must be performed in a clean-room environment to
reduce the threat of particle contamination (Leachman 2002, Uzoy et al. 1992). Upon
completion, functionality tests are performed on the wafers using e girobes before
packaging and final testing (Chiang et al. 2008a). The vast majority plathieing and
scheduling research in the industry has focused on wafer fabricationalgerederred to
as thefront-endoperation. The remaining three stages comprisbablke-endoperations.

Due to increasing customer requirements and breakthrough advances in
technology, the complement of devices produced by a semiconductor manufaurer ha
increased exponentially over the last decade and often includes hundreds of ppmsuct ty
at a single fabrication facility (fab). Developing midterm plans, ctitlg data and
controlling processes for each individual device requires a large amountmftes
Fortunately, similar production routes allow us to categorize many deyiqasduct
type and plan for an entire family at a time rather than for its individeailmars.
Nevertheless, during fabrication a device may visit a process many tiwhesust be
treated differently each time since processing requirements aretaifuof the
operational step. In addition, the status of a device may change considetdhlisito
pass an inspection step and is sent back to a previous step for rework. Aftericomplet
the reworked device is newly categorized to distinguish it from identivadaetethat
were deemed to be defect-free. Similar situation arises when sangplingdection and
test. The sampled devices are considered to be different from the un-sampded.devi
Also, there are several situations in which the same devices go thraytgly slifferent
processing steps.

For management purpose, it is beneficial to group the similar devices into so-

called technologies to reduce the size of the planning problem. A technology
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corresponds to a set of similar devices which have slightly differentatbastics. To
perform the analysis, a measure is needed to describe the degree to which tvgoadevice
similar. Itis desired to cluster the devices in a way such that theitatkarity within
groups (technologies) is maximized. This defines a clustering probknwvé model as a
mixed integer program. One of the primary purposes of this dissertation istofma
heuristic for obtaining high quality solutions in reasonable time to the technology
clustering problem. Once the devices are grouped into technologies or fatindies
inputs, demands as well as the routes of the devices are aggregatedyoy fami

Wafer fabrication is vastly complicated by the reentrant nature pfatess flow.
Accompanying systems have long and unstable cycle times that maketjmoduc
planning and controlling much more difficult than in discrete parts manufacturing
(Glassey and Resende 1988, Van Zant 2000). Factors that contribute to unpredictable
cycle times include unreliable equipment, long net processing times, and deéio
batch processing and machine setups. In fabs, the total processing time foafeach w
may extend up to three months and include over 1000 operations or steps at hundreds of
workstations. When machine tools fail to perform within specifications, production flow
may be severely disrupted causing cycle times to increase or fluc&iategarly, when
wafers fail inspection at different points in their routes they may bpmseteor sent back
to an earlier operation for rework with a consequent increase in cycle time.

Because fabs use different fixtures and different material-hansistgms for
different processes, batch sizes vary by wafer type and process. ofégta$ not
uncommon for one batch of wafers to wait for a second batch of the right size td form a
the next operation (Lee and Kim 2002).

Since the early-1990s, there has been a growing effort to model the reentrant
nature of semiconductor manufacturing using queueing networks. Dai (1995) and Rybko
and Stolyar (1992) established that the stability of a multiclass queueingy ket
implied by its deterministic fluid counterpart. Motivated by this resulgaehers began
to focus on finding near-optimal scheduling polices using fluid network analysiss We
(1995), for example, developed optimal draining policies for a single job class for
different objective functions.

More recently, fluid models have been used to represent relaxations of discrete



scheduling networks. The general approach to the scheduling problem has been to
construct a fluid model, find a solution, and then heuristically translate the solution into a
discrete scheduling policy. Dai and Weiss (2002) developed a fluid heuristic toireinim
the makespan in a job shop while deriving a probabilistic bound for the fluid translation
error. Their algorithm fully utilizes the bottleneck machines and pacesntaniag
machines accordingly. Bertsimas and Sethuraman (2002) solved the same job shop
problem using the aforementioned approach. In addition, they applied a fluid
synchronization algorithm to translate the optimal solution from the fluidaetaxto a
discrete schedule and achieved asymptotically optimal solutions as the nunalbsr of
increased. In related work, Bertsimas et al. (2003) solved the job shop scheduling
problem to minimize the holding cost. They applied a revised version of the fluid
synchronization algorithm to derive discrete solutions, which were simgeslyen to be
asymptotically optimal.

Although disruptions and uncertainty can play havoc with a schedule, it is still
necessary to develop long-term and midterm plans. As part of this disserta¢ion a
model is presented that can be used to plan daily operations in a fab for up to three
months at a time by taking into account expected demand, predefined stares] detall
routings, and machine capacity limits. The work was undertaken in collaboration wit
the Texas Instruments’ (T1) 300-mm facility in Dallas, Texas, reteto as DMOS6.
Recognizing that a variety of objectives are used in industry to guide productibmssuc
minimizing cycle time, minimizing late orders, or minimizing work in pssc@NVNIP), the
objective chosen for our project was the minimization of the total deviationsdrget t
outputs. This is equivalent to minimizing the sum of the daily deviations from the
forecast demand for each product or device in the system over the planning horizon (cf.
Fordyce et al. 1992). The principal decision variables in the model are the WIBridvel
machine time assignment for each device at each step in each time period.

Admittedly, our approach is somewhat at odds with standard practice. As
Leachman et al. (2002) point out, most semiconductor companies manage production
under the lot-dispatching paradigm (managing the cycle times of productionlfoteat
approach, priority rules such as the critical-ratio rule or the least+slecare used to

schedule lots at each workstation. In their SLIM methodology, Lechman et anraly



target fab-out schedule for each device that is continuous in time, rather thsingoan

lot due dates. For example, if the schedules are expressed in terms of outptiegjuanti
per day, then one quarter of the quantity of a particular device is due six hourstinto tha
day. The primary scheduling objects in SLIM are device-step combinatioeadrait
individual lots. This is the approach that we take.

Because our interest is in midterm planning rather than in scheduling or
sequencing, we were able to significantly reduce the size of our problem without
sacrificing accuracy by aggregating devices by technology tcecreatesentative
families. For similar reasons, it was not necessary to consider thealisatete of the
real-time decision process. Nevertheless, the resultant model was dteictaible for
planning horizons greater than a few days so several different decomposition schemes
were explored. A major contribution of this research centers on the usesof line
programming to obtain initial solutions and the application of a decomposition algorithm
to arrive at the final production plans. For a comprehensive review of production
planning models for wafer fabrication, see Asmundsson et al. (2006), Leachman (2002)
and Lin (1999).

Most of the back-end operations are scheduled manually with database support to
keep track of lot status. However, the importance of these operations in meetingecustom
due dates has sparked an interest in applying more sophisticated andiyiigues at
the shop floor level. Part of our work is aimed at improving the efficiency dfimac
setup and lot processing during assembly and test (AT). The third majobcbortr of
this dissertation is the presentation of a new model and solution methodologypéevel
in conjunction with Texas Instruments in support of their AT facilities.

In the most general sense, the problem in such facilities has the basic
characteristics of a job shop with multiple complexities including dynghiarrivals,
machine unavailability, sequence-dependent setup times, alternative masignenant
options, and batch-type processing. Since the classic job-shop problem is Eifeady
hard (Pinedo 2008), operating AT facilities presents an unusually difficulengalto
line supervisors, especially when 1000s of lots have to be scheduled each day on 100s of
machines with many different tooling and temperature requirements. In the pas

management has primarily concentrated on cycle time-based objesttigeproduction



lots were not typically related to a particular order in the prevailing fitakéock

environment. However, with Application Specific Integrated Circuit (A%ad other

specialty processors now a major portion of the market and hence production volume, the
ability to meet due dates has become critical for profitability (@het al. 2008b).

Because AT operations are closer to the customer, due date-based perfoneaswes

are more appropriate than cycle time and WIP level objectives. In additiogn desi

creativity and an explosion of products now means that a given die can be packaged in
many different ways and can have different test specifications at=buevith it, making

the problem that much more difficult.

High investment at the back-end, pressure to provide good customer service, and
tight coupling of AT operations with the front-end manufacturing is driving the foze
more effective planning tools. In support of this need, we have developed a maidlemat
model with the joint objective of maximizing the weighted sum of lots processed and
minimizing the weighted shortages of critical devices over the planning horizmting
considerations and capacity constraints are the predominant factors that lpuit dtdr
a given set of lots, the available machines have to be set up with the properttooling
operate at the appropriate temperature. The model takes the form of a éegeized-
integer program, which is solvable with any of the leading commercial eduasthe
number of lots and tooling-temperature combinations is relatively small. Fer mor
realistic instances, we devised a solution methodology based on two-level detimmposi
that first sets up the machines and then assigns the lots. Using a GRASP (Feo and
Resende 1995), a set of high quality feasible solutions is obtained in phase | by
repeatedly applying the decomposition strategy to randomly selectéiherooling
configurations. This is followed in phase Il by a novel linear programmiogt®éICarlo-
based neighborhood search scheme that makes use of local branching idead @fidchett
Lodi 2003) to improve the results. The decomposition strategy is also used in phase Il.

One of the primary interests of this dissertation is to combine both mathdmatica
programming the metaheuristics to solve the practical problem arising from
semiconductor industries efficiently. Thus it is helpful to investigate the ayesand
disadvantages of mathematical programming and metaheuristi¢sraaure review is

provided here for the emerging research area named matheuristics, whiigfenmnttel



combine the two to enhance the overall algorithm efficiency.

Mathematical programming has been achieving great success in soividg
range of problems involving production planning and scheduling, transportation and
vehicle routing, logistics and supply chain optimization, and statisticahdatgsis, etc.
Generally a mathematical model is built at first to represent the prabieer
investigation. In some cases the model can be further enhanced by tighten dmme of t
constraints with techniques like lifting. Solution methodologies are then proposed based
on the analysis of the mathematical model. If the size of the problem is lsemadl t
basic Branch and Bound (B&B) may be capable to solve the problem to optimality. For
larger instances, it is necessary and beneficial to use intelligent teefimagsolve the
problems. Such techniques in literature usually involve Branch and Cut (B&C)hBranc
and Price (B&P), Benders decomposition and Lagrangian Relaxation (LR), eke The
techniques involve a master problem (MP) and a subproblem (SP), i.e., separation
problem in B&C, pricing problem in B&P, dual problem in Benders decomposition, and
subproblems in LR when some of the constraints are relaxed. Solving the subproblems
efficiently is usually critical to the overall performance of the atbari

In mathematical programming, both upper bound and lower bound are usually
provided to indicate the gap between the current solution and the optimal solution. The
algorithm can be terminated earlier for a satisfactory tolerance. Hheyoqf the
solution obtained can be asserted. In the aforementioned techniques, usually the
subproblem can be further decomposed into even smaller size problems which can be
solved efficiently. In some cases the decomposed problems are identiciale(atigal
vehicles in the pricing problem when B&P is applied to vehicle routing problem) thus it
IS not necessary to solve the pricing problem multiple times. However, thestdlare
disadvantages for mathematical programming. The practical probleraswally very
complicated and large scale. It can be either very hard to build a mattedmetit| for
these problems, or a large amount of decision variables and constraints are nézessar
represent even a medium size problem. The situation becomes more and moretdifficult
mathematical programming when the size of the problem increases. maotbethe
subproblem can easily become very hard to solve when the aimed problem is cothplicate

with additional requirements.



Metaheuristics, on the other hand, have been accepting increasing attention from
1980s. Instead of building a mathematical model for the problem at hand, metalseuristic
focus on the problem itself without using decision variables and constraints. Various
heuristic procedure have been proposed in literature involving GRASP, €aleh{TS),
Scatter Search (SS), Simulated Annealing (SA), Genetic Algorith), @c. There are
still many other procedures which are essentially the extension and combinakien of t
aforementioned heuristics. The idea of metaheuristics is much diversified. afgplex
In GRASP, feasible solutions are usually constructed in phase | and improved il phase
iteratively. In TS, some of the movements are considered to be tabu to overcdme loca
optima. A tabu list is maintained in TS which is essentially memory relatezh Su
heuristic idea is not rigid and can always be extended for further enhancement. F
example, GRASP can be extended to GRAMP when historical information is taken into
account to guide the construction of phase | solution. Although the metaheurestics a
diversified, they do share something in common, that is, local search. In metat®uristi
local search is an important component which achieves local optimum within the
neighborhood specified. Usually a large amount of computational effort is devoted to
local search in most of the metaheuristics.

Metaheuristics have many advantages compared to mathematicahpnagg.

The procedures are usually relatively easier to implement. High gsalitifons can be
obtained in reasonable time even for large scale problems that cannot be sqluegl by
mathematical programming. The procedure can also be enhanced easily, e.g., by
introducing a new neighborhood search. In fact, for many practical problems thdse nee
to be solved in a specified amount of time, metaheuristics are usually a bettefapt

its effectiveness. However, there are still some downsides in light oeftdnesss.

Since metaheuristics are problem oriented, the neighborhood definition needs to be
changed if some additional requirements (constraints) are added to the prohlem. T
local search procedure needs to be updated as well since some of the previous local
movement may not be feasible any more. The solutions from metaheuristics do provide a
feasibility bound on the optimal solution but the gap is still unknown. It is usually very
hard to assert the quality of the best found solution other than numerically. Furdgermo

the efficiency of metaheuristics highly relies on the performance af $e@arch. The



performance of the overall algorithm can be harmed greatly if the locahsstap is
difficult and time consuming.

In light of the advantages and disadvantages of both mathematical programming
and metaheuristics, a new research area focusing on combining the two appi®ache
emerging and thus gains its name as matheuristics. There areed lnnibber of
publications in literature since matheuristics is still in its infancy. él@w, if we look
into matheuristics in detail, it can be found that the idea has been adopted in many
aspects both in mathematical programming and metaheuristics. Mathswast be
mainly divided to two categories. The first type of matheuristics follogenaral
mathematical programming framework. The metaheuristics serve Hgane
component to solve the embedded subproblems. Conversely, the second type of
matheuristics follows the paradigm of metaheuristics, and applies maitema
programming inside the heuristic framework as a problem solver. Both these two
approaches involve mathematical programming and metaheuristics. Someamther m
intrinsic procedure may switch between the two iteratively.

The application of metaheuristics inside a mathematical programmamgivork
can be found in many publications. In the B&P framework, usually initial columns are
generated by constructing a high quality solution heuristically and meistic=uare
applied to solve the subproblems for column generation, e.g., see Bard and
Rojanasoonthon (2006), Purnomo and Bard (2007) and Bard and Purnomo (2005). In the
B&C framework, the separation problems are usually solved by metalmutisti
generate cuts, e.g., see Bard et al. (2002) and Bard et al. (1998).

Metaheuristics can also be applied within a LR and Benders decomposition
framework. Bard and Purnomo (2007) provided a way to combine LR and heuristic idea.
Recently, Boschetti and Maniezzo (2009) investigate such application and propose a
general procedure for implementation. In the LR framework, they sutmapply
metaheuristics when the Lagrangian multipliers are updated. If feasiboitions are
obtained, a feasibility bound can be provided. In the Benders decomposition, the authors
suggest the application of metaheuristics in two places. Metaheuristibge egplied to
solve the master problem to provide feasibility bound. At the same time the feasible

solution obtained is delivered to the subproblem to generate additional cuts tigatbgoin



be appended to the master problem. If the subproblem is also a mixed integer
programming, metaheuristics can then again be applied to solve the problem with an
attempt to improve the feasibility bound. The authors have applied their methodologies
to the single source capacitated facility location problem, the membershigyover
problem and the multi-mode project scheduling problem. Their approaches are quite
promising according to the reported numerical results.

One the other hand, some researchers focus their interests on applying
mathematical programming inside a metaheuristic paradigm. Rismhet_uzzi (2009)
illustrated a way to embed mathematical programming into a heuratiefvork to
enhance the overall algorithm performance. They presented an MIP model for the
nesting problem, which places two-dimensional polygon into a rectangular containe
without overlapping. The objective is to maximize the usage of the rectanguatainer.

The model was further enhanced by lifting the constraints and embeddingjadizpe
branching strategy accommodating the problem. Since the initial numepiments

were not encouraging, a heuristic was then developed to place the big pipocbgois

at first. A MIP model is built and then simplified to place the small pieceswd into

the holes of the container, which was the so-called multiple containment problem. It
turned out that the simplified model can be easily solved as an MIP. A post-procedure is
then invoked to remove any overlapping area for a feasible solution. The solutions from
the proposed algorithm were quite promising comparing to the greedy heuhistic

average percentage improvement around 1~2% over the greedy heuristic easdlbii

the presented method.

Hu et al. (2008) provide another way to combine the metaheuristics and
mathematical programming for the generalized minimum spanning tbkepr. They
developed a variable neighborhood search (VNS) framework which sequentially
performs local search within the neighborhoods. The first two neighborhoods are
generated through either nodes exchange or edges exchange. For theghioorheod
the authors apply MIP to optimize local parts within candidate solution trees. The
proposed approach has been tested for random instances with up to 1280 nodes. The

performance is quite encouraging according to the solutions obtained.



In the next chapter, semiconductor manufacturing operations are outlined for both
front-end (wafer fabrication) and back-end (assembly and test) operatiorgeCha
provides a literature review for the clustering problem followed byausgson of the
reactive GRASP developed to find solutions. The midterm fab planning problem is
discussed in Chapter 4 where a mathematical model is presented. After trying
Lagrangian relaxation and Benders decomposition algorithms without success, a
problem-specific decomposition approach is provided. Chapter 5 focuses on the back-
end AT operations. A two level hierarchical approach coupled with a GRASe&disaus
find solutions. Numerical results are provided for Chapters 3, 4 and 5. In Chapter 6, an
assessment of the research is given and some conclusions are drawn from the

computational experience.
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Chapter 2

Outline of Semiconductor Manufacturing Operations

2.1 Wafer Fabrication (Front-end Operations)

Wafer fabrication begins with a smooth (typically silicon) wafer oériain diameter

upon which thousands of integrated circuits are layered through successiveonperati
Circuits contain between 100 and 50,000 chips. During processing, a wafer goes through
the following six primary steps multiple times: deposition, photolithographlyirgtcion
implantation, photoresist strip, and inspection and measurementodtire (process

flow) determines the actual path of a lot through the system. For more se¢qié.g.,

Uzsoy et al. (1992).

Planning ChallengesThe focus of management in the semiconductor industry is on
minimizing production costs and increasing productivity while improving both quality
and delivery time performance. Major factors affecting cost ard, yaddor, materials,
inventory, equipment and facility depreciation, and the number of starts pe(Baek

and Gershwin 1994, Hughes and Shott 1986). Because of the huge initial investment
required to construct a fab, the goal is to keep it loaded at all times. Thus, the driving
force to date has been the manufacture of standard products in fairly high volames. |
such operations, it is common to create a buffer against fluctuations in exteraalddem
by holding inventories of probed die, referred to as die-bank inventories, between the
front-end and back-end operations. Hence wafer fabs have tended to operate in a make-
to stock mode, with production lots rarely being associated with a specific custaiae

or due date. Together with the high capital costs of equipment, this has resulted in a
major emphasis on maintaining high throughput and equipment utilization, while
reducing both the mean and the variance of cycle times and inventories. This is the
situation at the Tl fab.

Reentrant Flowlt is instructive to view a fab as a time-dependent multicommodity

network where each node corresponds to a buffer in front of a machine group. A separate
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buffer, denoted by\Vn(t), can be defined for each produthat is active at timeand

whose next operation at machine groojs to be performed at level The “level” index

refers to the visit number of a product to a machine group during the reentrant flow. The
path taken by productduring fabrication is determined by its routing, which is part of

the input data. The number of buffers associated with a product is equal to the number of
steps that are required for its completion. Figure 2.1 illustrates a redmeawith 3

machine groups and 11 buffers for product 1, which enters the system awtjuffer

Finished products emerge from machine group 3 after their third visit followiragt an

Ws31. Every wafer in the line visits machine group 1 three times, machine group 2 five
times, and machine group 3 three times according to the deterministic routirgy3 2

—-2—>3-53->52->1-51-52->3.
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— [ W231:|:|:|:| 4\/\/311’]]]] .
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—>
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Figure 2.1 Example of a reentrant production line

2.2 Product Assembly and Testing (Back-end Operations)

As yield efficiencies in front-end operations have increased, the needdiavimg the
ability of back-end facilities to handle large volumes of product has increase
accordingly. AT outsourcing services represent a growing contribution tontbasgtry
revenue. During assembly, integrated circuits are placed in plastcaonic packages

that protect them from the environment. Examples include dual in-line packages,
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leadless chip carriers, and pin-grid arrays. Since it is possible for acgieei to be
packaged in many different ways, there is an explosion of product types aagieis st

Once the leads have been attached and the package sealed and tested for ldaks and ot
defects, the product is sent to final test. At that stage automated equipmentts us
interrogate each integrated circuit and determine whether it meetgjthede

specifications. The goal is to ensure that customers receive a deéeptdduct.

Figure 2.2 depicts the major steps in back-end operations, which may include
anywhere from 20 to 40 processes (Van Zant 2000). Packaged chips are advanced
through some or all of these processes before being turned out as finished goods and
either shipped to customers or placed in inventory. Because products differ in terms of
dimensions, consumables, and process specifications, the process flows differ from
product to product.

From Figure 2.2 we see that the test component collectively includes burn-in,
electrical testing, marking/branding, baking, programming, mechami@ahsg, quality
check and packaging, in this order (Freed et al. 2006, Ovacik and Uzsoy 1996). The test-
floor can be described as a flexible flow-shop (i.e., the sequence of processatgpope
is fixed), each lot requires a unique subset of the operations (burn-in, marking, baking,
and programming may or may not be required), and multiple machines may be eligibl
for each operation. In some cases, these machines may not be identicalpstthtoes
processing rates or output quality, so there may be lot assignment prefaraoogsthe
set of eligible machines. Yield and lead-time variability in previous staigibe
manufacturing process (i.e., wafer fabrication and probe) result in vaoakiees and
lot priorities at the AT stages. Lot priorities range from l@laen ample inventory exists,
to ‘hot’ or critical when promise dates are near or orders are past due.

An additional concern is machine failures, which are common and unpredictable
despite a heavy emphasis on preventive maintenance. Failures are mogi likelur
during a changeover between lots that have noticeably different tooling andaemger
requirements. Further complicating the matter is the fact that abngrgdurations are
variable, significant (same order of magnitude as lot processing tamels$equence-
dependent (Freed et al. 2006). When planning a changeover, the skill level of the

available workers must also be taken into account. Personnel costs can be aLdstanti
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to the need for extensive training, while in some locations, labor shortages bid up wages.
In general, the availability of skilled labor constrains throughput. When ke swogker

is assigned to operate multiple machines, competing demand for his onMersseTay

lead to lost capacity.

Wafer Probing Packaging Final Test
) ) lectrical
| DC fes | —>| Bicl« | | Taliolnc | —>| Molfma | Eeer?(t)?rilaénce App(ianasrs‘ggt?o
| Pre—laser| | Inkina | | Lanpinc | | Markina | | Final tes | —>| Laser |
v v v v v v
| Laser | | Inspectiol | b, | Die | | Platinc | | | Cvclina | | VM scar |
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| Pos-lase }— | Packinc | | Die | | Trimmina | | Final test | |Bake/oacka|
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| Wire }— | Forminc | | Burr-in | | Pos-tes |
v v
Burn-in  — Shipbinc

Figure 2.2 High-level back-end process flow

In contrast to the voluminous literature on wafer fabrication, there has been litt
research on AT operations. Knutson et al. (1999) investigated a problem in whiah lots i
an AT facility were formed to match the size of customer orders. The aagzsused
that all lots consisted of the same type of chip and that yield losses werélzer
planning horizon was set to one day and any delivery tardiness or over supply teas trea
as a penalty. The problem was formulated as a nonlinear integer prodhatnree
objectives: maximize the satisfaction of customer demand, minimize the nafrdie
(chips) sent to the warehouse, and minimize delivery tardiness. To find solutions, the
model was decomposed into two stages. The first stage took the form of in a knapsack
problem with the bi-objective of maximizing facility utilization and minimgiorder
tardiness. The second stage took the form of a bin (orders) covering problem aimed at
minimizing the number of chips sent to the warehouse.

Song et al. (2007) applied ant colony optimization to reduce the conversion time

of a bottleneck machine during assembly and test. Three objectives wereatedsti
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minimization of unfilled customer demand, minimization of total number of machine
conversions, and minimization of total conversion time. The authors first constructed a
unidirectional graph to represent the machine scheduling problem over the planning
horizon. Each node was a triplet describing the machine status in the current time
interval. Nodes between adjacent time intervals were connected withwedighted by
transition probabilities. A path from origin to destination represented a valitimeac
schedule. Hard constraints were addressed by assigning zero probabdityet@dges.

This eliminated an undesirable machine conversion. Soft constraints weresaddngs
penalizing violations and transition probabilities were updated each time tHenestisd
their searching. The algorithm was successfully applied at an Inteloifyfand

achieved conversion time reductions of up to 20% compared to the manual approach then
being used.

Zhang et al. (2007) proposed a two-level hierarchical capacity planning
framework to reconfigure kit components in AT operations. The first level focused on
midterm planning while the second level created executable plans for individiité$ac
The authors also proposed a mixed-integer linear programming model for the/Bist
problem. The methodology was successfully applied at one of Intel's AT sgeking

in an annual $10 million saving in the purchase of kit components.
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Chapter 3

Capacitated Clustering

Clustering primarily involves the partition of objects or data points intordiffe
groups to optimize some weighted measure of distance between them. A latyeofari
applications exist in such areas as manufacturing, network design, pattgnition,
mail delivery, habitat classification, facility location, and statitaata analysis, to name
the most prominent (e.g., see Al-Sultan and Khan1996, Bard and Jarrah 2009, Daganzo
2005, Kaufman and Roussweuw 1990, Laporte et al. 1989). In some of these
applications, the number of clusters is given while in others the objective is tbdind t
minimum number that satisfies a set of knapsack-type constraints. lhdbigic we
address the constrained version of the problem and present a greedy ratdoiaptse
search procedure (GRASP) to find solutions. Such procedures generally have a
construction phase and an improvement phase (Kontoravdis and Bard 1995,
Rojanasoonthon and Bard 2005). In developing the methodology, we included several
options for each of these phases that markedly improved overall performance. déor pha
I, we designed both a heaviest weight edge algorithm and a constrained minimum cut
scheme for constructing feasible solutions. For phase Il, we explored thecyséoof
neighborhood search, variable neighborhood descent (VND) (Hansen and Mladenovic
1997, Hu et al. 2008), and a randomized version of the latter, to achieve local optimality.
In the final step, path relinking (Glover et al. 2000) was performed on the top candidates
to see if any better solutions could be uncovered on the paths between them. The design
and integration of these features within a GRASP framework reprdébentsjor
contribution of this research.

Although the solution methodology can be directly applied to create families of
semiconductor devices, the specific motivation arose from our collaboratiofawiity
planners at mail processing and distribution centers within the U.S. PostakServic
(USPS). One of their recurrent tasks is to design zones to help rationalize the bulk
movement of mail by powered industrial vehicles (PIVs). Over the course of the day,

PIVs are used to transfer mail to and from the docks and between the various veoskcent
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Each workcenter performs a specific operation such as canceling stamps,ngarcodi
envelops, and sorting letters to carrier routes. The pickup and drop off locations are
called control points and can be regarded as fixed nodes in two-dimensional network. The
problem of specifying the zones can be formulated as a mixed integer program
difficulty in finding optimal solutions stems from its combinatorial natureour initial
testing, we were unable to achieve convergence with CPLEX 11.0 for instances with
more than 40 nodes. Therefore, we took a heuristic approach.

The construction of PIV zones falls into the general area of capacitatestiolys
which is further discussed in the next section along with the related literdtuSection
3, the mathematical formulation of the problem is given followed by our solution
methodology which includes a reactive GRASP, two initiation procedures, our enhanced
neighborhood search techniques, and path relinking. In each case, the algorithm is
described and a pseudocode is given. To test the methodology, we randomly generated a
large number of instances using data provided by the USPS. The results show that high
guality solutions can be obtained for these instances, as well as for those solved by
Mehrotra and Trick (1998). An assessment of the overall approach is presented in
Section 6.

Various versions of the clustering problem have been extensively studied since
the 1960s, with virtually all of them being NP-hard in the strong sense (Brucker 1978).
Mulvey and Beck (1984) proposed one of the first models for what has become known as
the capacity clustering problem (CCP). In the original formulation, the olgests to
find up top capacitated clusters centered at a to-be-determined median such that the
collective dissimilarity between each customer and its median isniagd. Their
context was sales force territory design. In formulating the CCR, fetl if data point
is in clusterk and 0 otherwise, and Igt= 1 if data poink is the median of clust&rand

0 otherwisei(=1,...n; k=1,...n). The basic model is

Minimize >’ > ¢, ¥ (1a)

i=1 k=1

subjectto >y, =1, i=1,..n (1b)

k=1
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Zn:vviyik§CK4, k=1,..n (1c)
zZ,<p (1d)
yk € {0,1}, zc € {0,1},i=1,...nk=1,...,n (1e)

wherew; is the service demand of custome®y is the capacity of clustdg p >

[ZLW/GZ:AQN is the number of clusters, and= (Z;(a1| -3, )Z)Mis the

dissimilarity measure betweemnd its mediak. In the expression fay, the vector; =
(a1,...,ais) represents theattributes associated with data paitwr mediark when
appropriate). When points on a plane are being clustgriscthe two-dimensional

vector of theirX- andY-coordinates andy is the Euclidean norm. Model (1) is known as
thep-median capacitated clustering problgQCP) wherCy is homogeneous (Ahmadi
and Osman 2005, Lorena and Senne 2004).

The objective function (1a) in effect minimizes the sum of the “distance’eeetw
each pair of data points in a cluster. In the formulatiom déita points are candidates
for one of thegp medians. Constraints (1b) ensure that each data point is assigned to
exactly one cluster, and constraints (1c) limit the demand of each #ustis capacity
Ck. Constraint (1d) restricts the number of clusters creatp@mal is written as an
inequality because it may not be economical to use the full capacity of the syste
Logical restrictions are placed on the variables in (1e). If the redunoiastraintsy <
Z, (i, k=1,...n) are added to the model, then a stronger relaxed formulation is obtained.
In that case, wheyy is integralz will be integral as well so the binary restriction on
those variables can be replacedzby [0,1], k=1,...,n.

A variant of model (1) known as tipecentered capacitated clustering problgm
CCCP) arises when the median is replaced by the centroid (NegreiroslizatbPZZ006).
This results in a nonlinear objective function because the dissimilarity weigbtvcy =

||a1. —§k||2, wherel, €R° is a free variable that locates the geometric center afiiséer.

In either case, a wide variety of solution strategies and techniques have bdepedkve
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from neural networks and genetic algorithms, to fuzzy sets, GRASP, andtaleecna
means; e.g., see Chiou and Lan (2001), and Osman and Ahmadi (2007).

Cano et al. (2002) proposed a GRASP to solvebentroid uncapacitated
clustering problem. Since the performance of GRASP is affected by they qiidhie
partial initial solution, their first step was to generate good seeddzdad] which is also
our first step. They then applied a probabilistic greedy Kaufman indiaizin the
construction phase (Kaufman and Roussweuw 1990). The Kaufman procedure identifies
p dispersed points as the cluster centroids. In the improvement phdsey¢hes
method was used for local search. Testing was done on eight real-world benchmark da
sets, the largest involving 2310 data points, 19 attributes and 7 clusters. The results
showed that Kaufman-based procedure outperformed its counterparts such as random
selection, Forgy’s method and MacQueen’s method [for a discussion of the
aforementioned methods, see Hansen and Mladenovic (2001) and Kaufman and
Roussweuw (1990)].

Ahmadi and Osman (2005) combined GRASP and adaptive memory
programming to solve th@ CCCP. The possible centers were ranked and placed on a
fixed length restricted candidate list (RCL). At each phase | ibex;abne was selected
randomly using a probability measure that was updated to reflect the pant@f the
elite (improving) solutions. The updating procedure was aimed at balancirg¢hbes
density and intensity of the centers. A similar idea is applied in this chapeptéRat
we use the probability measure to control the RCL length rather than torgedestin
phase I (cf. Prais and Ribeiro 1999). In the improvement phase, the authors applied a
restricted 1-interchange. Intensification, diversification and aspiratios algo
considered by setting criteria to determine whether an improved solution should be
placed in the elite solution pool. Five randomly generated data sets were usetheo test
algorithm. The largest instances contained 150 data points and 15 clusters.

Mehrotra and Trick (1998) used column generation and a specialized bounding
technique to solve the maximization version of CCP. Their pricing subproblem took the
form of what they called emaximum weight cluster problewrtight upper bound was
obtained by solving a transportation problem. Branching was governed by the Ryan-

Foster rule but it was often unnecessary to go beyond the root node due to the integrality
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of the linear programming solution. Testing was done on a DEC Alpha Model 300 using
the same data sets as Johnson et al. (1993) who investigated a compiler desgn probl

The largest instance solved contained 61 nodes and 187 edges, and consumed 352 sec for
a right-hand-side value in (1c) 6f = 450 for allk and 394 sec fogy = 512.

Barreto et al. (2006) used a sequential heuristic to find solutions topheteded
location routing problem, a combination of a facility location problem and a capdcitate
vehicle routing problem. The proposed algorithm first solves a clusteringpraol
group the customers (nodes), and then a vehicle routing problem (VRP) to obtain the
routes that were subsequently improved by local search. Two kinds of algorithms
(hierarchical and non-hierarchical) and six proximity metrics (siligkage, complete
linkage, group average, centroid measure, ward measure, saving measuredpasedd
and tested for the clustering problem. Optimality gaps of less than Eoiained, on
average, for instances as large as 318 customers and 4 distribution centers, 15rcustom
and 10 distribution centers, and 117 customers and 14 distribution centers.

In the development of algorithms for the VRP, it is common to follow the logic of
cluster first, route second. Newell and Daganzo (1986) approached the tegpaiRR
with a single depot by grouping the customers (nodes) into zones and visiting the nodes
within zones in order of their longitude coordinates. For the problems studied, the nodes
were distributed randomly with a density functiband the zones were constructed as
wedge-shaped sectors elongated toward the depot. The overall objective wamstpem
the expected total travel distance.

Ouyang (2007) extended the work of Newell and Daganzo (1986) by developing a
systematic approach to obtain an optimal zone design. The problem studied focused on
the construction of vehicle routing zones (VRZ) for given shape and size requseasent
described by Newell and Daganzo. Initially, a set of wedge-shaped zoneseated
satisfying these requirements. The wedges were then conformally mappeduare
zones and a disk model was applied to obtain an approximately optimal partition. Further
refinements were carried out by the weighted centroidal Voronoi tegseldgorithm to
balance the delivery loads within the zones. From the reported computations, the
proposed methodology was seen to outperform an adaptation of the Clarke-Wright

heuristic with significant advantage being evidenced for large instances.
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3.1 Mathematical Formulation
For a given set of nodésand connecting edgé&s we wish to partitiorV into p clusters
such that the sum of the “benefits” associated with the edges withinlaatdr ¢s
maximized and the sum of the node weights in each cluster falls with the if@?al
C™. For the PIV application with control points, the problem can be modeled on a
graphG = (V, E), wherei € V must appear in exactly one cluster and ezlgdi,j) € E
exists inG only if there is some flow between its endpoirasdj over the week. In
creating the model, we make use of the following notation.
Indices and sets

k  index for clusters

i,j indices for nodes;j € V

e index foredgesif; ec E
Parameters

Ce. Wweight of edgee € G; c. = Cj, wherei, j € V such thati() =ec E

w  weight of node € G

p  number of clusters to be created

C™ maximum permitted weight of nodes in each cluster

C™" minimum required weight of nodes in each cluster
Variables

Xek 1 if edgee has both its endpoints in clustei0 otherwise

yik 1 if nodei is included in clustek, O otherwise

Model
#o = Maximize Zp:Zcexek (2a)
kleE
subject to Zp:yik =1, VieV (2b)
kel
Xek < Vi, Xek< Vi, V€= (1)) € E, k=1,...p (2c)
Xek> Vi +Yi— 1, V€= (j) € E, k=1,...p (2d)
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C™ <> wy, <C™ Vk=1,.p (2e)

ieV

Xk € {0,1}, yk € {0,1}, VieV, e=(,j) €E, k=1,...p (2f)

The objective in (2a) is to maximize the sum of the edge weights withierdust
which is equivalent to minimizing the sum of the weights of edges betwe¢ersluf
the endpoints of edgeare not in the same cluster, then the corresponding wight
not counted. Constraints (2b) ensure that each inedecluded in exactly one cluster,
while constraints (2c¢) and (2d) specify that edge(i, j) is in clustek if and only if both
endpoints andj are in clustek. Constraints (2e) limit the total weight of the nodes in

clusterk to be betwee@€™" andC™  If the node weight; = 1 for alli € V, then the

summatiorEiev W Y, is the total number of nodes assigned to clustdf (2e) is omitted,

it is optimal to create a single cluster; i.e., all the nodes and hence eddd$e/@ one
cluster. Binary restrictions are placed on all the variables in (2f).

Model (2) can be reduced by observing that constraints (2d) are redundant when
the objective function is taken into account and hence can be omitted. That is, when
eitheryy oryj is 0,%ekis 0, which gives a feasible solution to (2d); when lyptandyi
are 1 X Will be 1 as well since the objective is to maximize the total weight. A
secondary conseqguence of this result is thatan be treated as a continuous variable in
the range [0, 1]. Finally, the two-sided inequality (2e) can be simplified tmdunting
additional slack variableg, k=1,...,p. With some algebra, we can rewrite (2e) as

follows:

Swy —s%=C™, Vk=1,..p (2¢€)

iev

0<§<C™_C" vk=1,..p (2¢')
where constraints (2gspecify the bounds on the slack variatdesFor other
formulations ofp-CCP, see Ferreira et al. (1998) or Mehrotra and Trick (1998).

Strength of LP relaxatioWWhen solving an integer program, the tightness of the bound
obtained from the LP relaxation often determines the efficiency of the bselaion
procedure. With respect to model (2) the following results states for the ndruzises

whered > 2 andn > 6 that this bound is arbitrarily bad.
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Proposition 3.1 Given a completely connected graphe (V, E) with the objective of

partitioning theV| =n nodes int@ clusters, assume thatnodp= 0 andletn=n/p

be integral fom >p> 2. If each cluster, must contain at least 1 node, then the minimum
. . n

number of edges in a solutionng™ = (ij p.

Proof. Consider a solution in which the figst 1 clusters each contains 1 node and

: - : n-p+1
clusterp contains the remaining— p + 1 nodes. In this case, there Ere 2p j edges

in clusterp and 0 edges in clusters 1p=1. If one node is removed from cluspeand

placed in cluster 1, then the total number of edges in the corresponding solution is

n- n-p+1
( ) pJ +1 <( 2p J Repeating this process until all the nodes are evenly

distributed among the clusters gives the stated results. [ |

Corollary 3.1 Let p= nmod psuch that 0 <p <p. ForG completely connected, the

.. . . . ; n
minimum number of edges in a clustering solutiomfs' = (ZJX p+pxn.

Proof. Evenly divide the firskﬂJ x p nodes int@ clusters. From Proposition 1, this
p

n
gives[zjx p edges. Assign the remainirg nodes to the firsp clusters. This

introducesn additional edges in each of those clusters. [ |

Proposition 3.2 In model (2) the bounds satisf;?‘@él[z“vvijé cm

iev

. P
Proof. Summing up the constraints (2e) for all clusters g@%" <> > wy, <pC™
k=1 ieV

k=1 ievV iev =1 iev k=1

The termiZwi Y :Z[vviz Y J =>w sincezp: y, =1V i e V. Dividing both sides

by p gives ¢ s%(Zwijs cmax u

iev
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Corollary 3.2 Let ¢, , be the objective function obtained by solving (2) after relaxing the
integrality requirements on theandy variables in (2f). Thew , = z C. .

ecE €

Proof. Assume thatex= 1, Yk =1, VeeE,i eV, k=1, 2,...p. It can be verified

that such LP solution is feasible to model (2) with objective function VEléleeECe .

Since this is the maximum can be obtained, the LP solution maipindg,, = > ¢

ecE €°
[

3.2 Solution M ethodology
Model (2) is a 0-1 integer linear program of s@r?). For 60 data points and 5
clusters, this translates into a problem with approximately 18,000 variables and
constraints in the worst case, which is likely to be beyond the capability of &@mam
solvers. Real instances are often much larger. Our experience Wi#XAR.0 showed
that some instances witii| |- 40 can be solved in a matter of minutes but wien 50,
runtimes exceed 10 hours. This is not surprising since the linear programlaxagioa
of (2) is arbitrarily bad. By settingx =V = 1/ for all , i andk, the objective function
value in (2a) is)__

_.C. - In addition, symmetry plays havoc during branch and bound

because many equivalent solutions can be obtained by exchanging the clustes miimber
any two clusters. This situation implies the existence of at least)! alternative
optima. Also, fixingy;; = 0 at a particular node in the search tree has very little effect
sinceyi, k= 2,...p, can still be nonzero.

In light of these observations, we developed a reactive GRASP with the objective
of finding high quality solutions to (2). In phase I, good initial solutions are cotestr
in a greedy manner; in phase Il, they are improved by local search. In@@oestsing
step, a subset of the phase Il solutions are assembled in what is callie pooland
subject to further investigation using path relinking (PR). When no better soloéions
be found along the paths connecting any pair of pool members, the procedure terminates
and the best available solution is output.

3.2.1 GRASP phasel
During construction, our first step is to initialize fhelusters. One of two approaches is
used: the heaviest weight edges algorithm (HWE) or the constrained minimum cut
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algorithm (CMC). With HWE, we identify the nodes with the largest weights and
assign them in turn to theclusters. The heaviest unassigned edges incident to these
nodes are then sequentially assigned to the corresponding clusters afotigpiwvit
endpoints. The CMC approach makes use of a minimum cut algorithm to partition the
graph intop clusters that satisfy the capacity lower bo@il. In either case, the partial
solutions associated with tipeclusters serve as seeds. The underlying motivation is to
identify nodes and edges that are not likely to be in the same cluster in an optimal
partition. After initialization, a reactive GRASP is called to constre@sible solutions.

The details are given below.

HWE approach to the selection of p seeds
The HWE algorithm is illustrated in Figure 3.1. At Step 1, sets and counters are
initialized. At Step 2, the nodes are ordered from largest to smallest, that is,

w >w >L >w >w,and the heaviest node is assigned to cluster 1, the next heaviest
to cluster 2 and so on ungiclusters have been initialized or until = w , wheres <p.

The objective is to disperse the heaviest nodes to different clusters incoim@ease the

chance of getting a feasible solution when capacity is tight. Wheaw =---=w , it

becomes more effective to assign heavy edges rather than nodes as seeds.

At Step 3, an additional node is assigned to those clusters that have been
initialized, or two nodes are assigned if the cluster is empty. In thefaase, a free
node that is the most heavily connected to the existing node is selected; iretreaksdt
the endpoint node of the heaviest free edge is assigned. At termination ustetvall
contain exactly two nodes that represent a partial initial solution forofséem. The
complexity of the procedure &(p-|V[f).

Parameters
Eo set of unassigned edges
Vo set of unassigned nodes

Vi set of nodes assigned to cluster
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Procedure Phase_|_|Initialize HWE E, ¢, w, p, C™", C™ x)
Input Set of node¥, set of edgek, number of clusterg, edge weights matrig node
weights vectow, and capacity boundd™" andC™
Output Partial initial solutiorx’
Stepl:Eg=E; Vo=V; Vk=0,k=1,...p; x,=0,VieV, k=1,..p;
Step2: k=1,
while(k < pand max{v, i € Vo} #min{w;, i € Vo}){
i" € argmax{n; 1i e Vo)

Vi € VU {i'h Vo € Vo \{i'}; X, = 1;

k&< k+1,;
}
Step3: fork = 1,... p){
if(IVil = OX
(i",]) e argmaxg; 1w, +w < C™ (i, ]) € Eo};
Vo€ Vo\{i', ik Vi€ VU {i',i'h x, =1, X\ = 1;
}else{//one node already exists in clustgr
j” € argmaxg; 1 w +w < C™ i € Vi, j € Vo),
Vo & VoMi} k€ ViU (i) X, =1
}
}

Figure 3.1 Pseudocode for seed selection with HWE algorithm in pha&RASP

Figure 3.2 depicts the partial initial solution provided by HWE for a 9-node, 3
cluster problem with boundd™" = 3 andC™ = 5. Assume that the node weights aie
=3,w;=2,andny; =1,vi€{1,2,5,6,7,8,9}, and that the edge weights are as shown in
the figure. Initially,V; =V, =V3=0. The heaviest node (node 4) is assigned to cluster
V1, while the second heaviest (node 3) is assigned to cMsteince the remaining
nodes all have the same weight, clusteis left empty, givingv; = {4}, V> = {3} and V3
=@. Inthe next step, node 5 is placed iMiasince it is the most heavily connected to

node 4, and node 2 is placed iMofor the same reason. Finally, edge (1,7) is assigned
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to Vs since it has the highest edge weight among the free edges. The algorithm ends and
the initial partial solution i1, = {4,5}, V. ={2,3} andV; = {1,7}.

Figure 3.2 Example for identifying seeds with HWE

Minimum cut approach to the selection of p seeds

In this approach, we apply a constrained minimum cut scheme to partition them@des i
= (V,E) into p subsets such that the sum of the node weights in each $ubget 1,...p,

is at leasC™, whereV =UP_, V, andVk N Vs =@ fork#s. The heaviest edge in each
cluster will serve as a seed while the remaining edges are removed.

The algorithm is outlined in Figure 3.3. The bulk of the work is done at Step 2
with the call to CMC¥j, E, C™, w, S}, S5), which is a heuristic that divid&into two
subsetsS andS, such that the total weight of the edges between them is minimized
while the sum of their individual node weights is at 1€%t. The problem of finding
the global minimum cut in a graph is a special case of model (2), that is pwh2rCc™"
=1in (2e), and the upper bouB® — +oo. The problem becomes NP-hard wi@H’
> 2 andC™®is finite. The Frank’s (1994) polynomial-time algorithm, a slight
improvement on Nagamochi and Ibaraki’'s (1992) algorithm, is applied to solverthe mi
cut problem [its complexity i®(|V|-|E|)] even though other lower polynomial-time
algorithms exist [e.g., Karger and Stein (1996) developed a heuristic forrtkeim
problem withO(VF(log M))®) complexity]. Our choice was based on the fact that in
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previous work we found Frank’s algorithm easy to implement and extremeleptfan

similar size graphs.

Procedure Phase_|_|Initialize CMG{, E, ¢, w, p, C™, C™ x)
Input Set of node¥, set of edgek, number of clusterg, edge weights matrig, node
weights vectow, and capacity boundd™" andC™

Output partial initial solutiornx’
Stepl:Vi=V,V=0,k=2,...p; X, =0,VieV,k=1,..p;
Step2: while (min{M{ : k=1,...p} = 0}

K e argmax{V :k=1,...p};

/Apply constrained minimum cut heuristic @

call CMC(V,. ,E.,C™, w, S, S); // see Figure 3.4

V. =Sy
K =min{k: M = 0,k = 1,...p}; //pick the first empty cluster
V.=

}
Step3: for k=1,...p) {

//Only keeps the heaviest edge in the cluster
(',j) € argmaxg; : i € Vi, j € i};
Vi =@ VeV UL, ) X,I*k =1, X'j*k= 1;

}

Figure 3.3 Pseudocode for seed selection with CMC algorithm in phase IABRER

CMC works by first partitioning the subgragh = (Vi Ex) into S, andS; for the
unconstrained case, call it UMC, and checking each subset for feasibilitye Idiver
bound capacity constraint associated with,Sajs violated, a node is selected fr&n
and placed irg,. At this step, the node that is most connected with the no&esas
measured by the sum of the weights of the incident edges whose endpoint§ ase in
selected as long as the transfer does not violate the lower bound capacityiroofsss.
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The process is repeated until a feasible partition is obtained. The prosedutieed in
Figure 3.4.

The same graph used to illustrate HWE will be used to illustrate
Phase_|I_Initialize_ CMC fgo = 3. At Step 1; =V and CMC is called. At Step 1 of
CMC, applying Frank’s UMC algorithm ¢, returns a minimum cut of 6 with = {6},
$={1,2,34,5,7,8, 9} and corresponding weigM&,) = 1 andWMS) = 11. At Step
2 of CMC, we hava\(S,) < C™" = 2 so a node must be transferred fi&no S,. The
calculations indicate that node 9Sxnis the most heavily connected3pso it is selected.
The updated clusters are {6, 9} and {1, 2, 3, 4, 5, 7, 8}. The operations at Step 2 stop
since bothS, andS; satisfy the lower boun@™". LetV; € S, V., € S and se6, = @,

S =@. The larger sel/,, is selected for partitioning at Step 2 of Phase_|_Initialize  CMC

Applying the UMC algorithm at Step 1 of CMC returns a minimum cut of 3 $ith{1,
7, 8} andS; = {2, 3, 4, 5}, both of which satisfy the lower bound constraints. Therefore,
we putV, € §, V3 € S and se6, =0, S, =@. The operations at Step 2 of

Phase | Initialize_ CMC terminate since all three clusterdilfed. The heaviest edge in
each is retained and the others are removed. The final seeds for théustere aré/;
={6, 9}, V. ={1, 7} andV; = {3, 4}, as shown in Figure 3.5.

Procedure CMC(Vi, Ei, C™ w, S, )
Input Node sevV, edge seE; lower bound on capaci§™: node weights vectow;
edge weights matrig
Output Partition of nodes into subsgtandS,
Stepl: Apply UMC procedure of Frank ¥
call UMC(Vy, Ex, S1, S);

et WS = 3w ;

ieS
Step2: while (MIN{W(Sy), W(S)} < C™) {
ke = argmin\WMS) : k=1, 2};
k, = argmaxfMS) : k=1, 2};
//select the most beneficial move

*

i :arg.max{ZjEsK . VieS W($)- w= C", W 9+ w T,
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s, < 5\ [1) 5 801

Figure 3.4 Pseudocode of CMC scheme

Figure 3.5 Example used to illustrate CMC scheme

Building the candidate list

Two kinds of insertions are considered when building the candidate list (CL), the
structure used in GRASP to guide the construction of feasible solutions. The first
corresponds to an unassigned node and the second to an unassigned edgebl&ll feas
insertions are included in CL and sorted according to their contribution to the objective
value, as measured by total edge weight that would result if the node or edge we
actually added to a particular cluster. Candidates that violate the upper®@ttiade
discarded.

Letl(i,K) be the increase in the objective function value realized by inserting
nodei into clusterk and letl(e k) be the increase realized by inserting eelte clusterk.
Starting with the partial initial solution shown in Figure 3.2@8f" = 3 andC™ = 5, the
full CL is given in Table 3.1. To see how these values were calculatedjeqrisr
example, edge (8,9). If this edge were included in cluster 3, the objectivemalicebe
10 (thatiscig+ Crg+Crg+Cgg=2 + 1 + 3 + 4 =10); if included in cluster 2, the objective

value would be 7, and if included in cluster 1, the objective value woultbbheince
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this would lead to a violation of the upper bo@®f*. Hence, cluster 3 is the first choice
for (8,9). This insertion would increase the cluster weight from 2 to 4, whiclsithias
Cmax.

Table 3.1 Example of CL

CL Edgee | Cluster | I(ek) or
index | ornodel | indexk 1(i,k)
1 (8,9) 3 10
2 (6,9) 3 7
3 (8,9) 2 7
4 (6,8) 3 5
5 (6,9) 2 5
6 8 3 3
7 9 3 3
8 9 1 2
9 9 2 2
10 (6,8) 2 2
11 6 1 1
12 6 3 1
13 8 2 1
14 6 2 0
15 8 1 0
16 (6,8) 1 — 0
17 (6,9) 1 —
18 (8,9) 1 — 0

Self-adjusting RCL

A fraction « of the top candidates in CL, up to some parameterized maximum number
denoted by, , are used to build RCL from which the next construction step is taken.
The length of RCLIrcy, is determined as follows:

lrcL = min {max {alcy, 1}, lrcr}

wherelc, is the current length of CL. The valuecoin this equations adjusted during
the GRASP iterations according to the quality of observed solutions. aRthRibeiro
(1999) indicate thatr should be within the range of (0,1] .
Let A ={a1, a2, .. am} be the finite set of possible values toand letp; be the
corresponding probability of selectiag i =1,...m. Initially, p; is uniformly distributed:
p=1lm i=1,...m
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To see how these probabilities are adjustedy lbe the best solution found in all

previous GRASP iterations and ltbe the average value of solutions obtained:fer;.
Initially, eachA is set to the total edge weight of the graph and 20 experiments are run by
samplinga from the above uniform distribution to get 20 additional objective function

values Updating begins at this point by calculating the relative performanite of

g :(c?j ,1=1,...m

whered is a shape parameter. For higher values gfwill be lower sinceA < ¢ .

algorithm under; as follows:

Normalizing gives

p=9q/>q,i=1..m
Wheng; yields relatively high average solutiofss it will have a high probabl,
of being selected as the iterations progress. In the implementation, eveefibihe
suggestions of Prais and Ribeiro andsse10,m = 10, andA = {0.05, 0.1, 0.15, 0.2, 0.25,
0.3, 0.35, 0.4, 0.45, 0.5}.

Phase | initial solution construction
The partial initial solution constructed with either HWE or CMC is extendedtain a
feasible solution by sequentially adding nodes or edges to eachpofltisters. Assume
that RCL is built with lengtlhrc, in accordance with above procedure. Exactly one
element is randomly selected from RCL with uniformly distributed probgbilihe
insertion corresponding to the selected element is performed to extend &me partial
solution.

Again starting with the partial solution shown in Figure 3.2 and with CL given
Table 3.1, assume thiak, is determined to be 6. The corresponding RCL is given in
Table 3.2 and is seen to contain the top 6 candidates in CL.

If the third element is chosen, for example, then edge (8,9) is placed ar Qust
and the partial solution is updated. Now, CL is cleared and rebuilt along with R@L. T

procedure is repeated until all nodes are assigned to onepfltsters.

32



Table 3.2 Example of RCL whégc, =5

RCL Edgee | Cluster | I(i,j) or
index | or nodel | index| I(e))
1 (8,9) 3 10
2 (6,9) 3 7
3 (8,9) 2 7
4 (6,8) 3 5
5 (6,9) 2 5
6 8 3 3

3.2.2 GRASP phasel|l
Three types of neighborhoods are explored in phase Il. For current sajutadhthem
N1(X), N2(xX) andN3(x), let Vi(X) be the nodes in clustkrand letW(x) be the
corresponding total node weighkts= 1,...p. A description of the neighborhoods follows.
Ni(x)  (Extended node insertion) Pick a no@eVi(x) with Wi(X) — w; > C™".
Choose a clustary(x), k#s. If Wy(X) +w < C™ assigri to V(X); otherwise,
clusters will exceed the upper bound. For the later situation, pick another
nodej €Vy(X), i #j, and clusteg, # s, such thaC™" < Wy(X) + w; —w; < C™
andW, (X +w < C™. Shiftj from Vg(x) toV, (X) .
No(X)  (Extended edge insertion) Pick an eegeE with endpoints andj. Two
cases may arise; eithers in some clustev,(x) or it spans two clusters.
(1) If i € Vi(X), ] EVW(X) andWK(X) —w; —w; > C™", then find a clustes # k
with Ws(x) +w; +w; < C™ and shift {,j) from Vi(x) to V«(X). If no such
s exists, then go to nerte E. If Wi(x) —w; —w; <C™", removinge from
Vi(X) would violateC™". In this situation stop investigating the current
edge and go to nexrte E.

(2) If eis not an edge within a cluster, et V, (X) andj €V, (X). When
W, (¥ —wi > C™ andW, (¥ —w > C™", one of the following three

methods is used to extend the neighborhood: (i) find s75kt, s # k>
with Wy(x) +w; +w; < C™and shift nodesandj to V(x); (ii) if W (X +

w; < C™ shift] from clusterk, toky; (iii) if W (¥ +w < C™ shifti
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from clusterk; tokz. If W, () —w < C™ or W,_(x) - w <C™, stop and

go to nexte € E.
N3(x) (Node exchange) For nodies Vi(X) andj € V(x), k #s, if C™™" < Wi(X) —wj
+ W < C"™*andC™" < Wy(x) —w; +w; < C™, swapi andj. Otherwise, go to
next pair of nodes.
The complexity of constructing these neighborhoods is a functipnMfand E|.
For each case we respectively have:
Ni(x) ~ O(p” - IVf)
N2(x) ~ O(p-[El)
N3(X) ~O(X1<k<s<p Vi (] - V(X))
The corresponding pseudocodes are given from Figure A.69 to Figure A.71.
Continuing with the example in Figure 3.2, assume that the current solutipn is
={4,5,9}, V» = {2,3,8} andV; = {1,6,7} with capacity bound€™" = 3 andC™* =5, and
node weightsv, = 3,wz = 2, andwy; = 1,V i € {1,2,5,6,7,8,9}. For neighborhodd,, the

consequences of reassigning node 8 from cluster 2 to either cluster 1 or 3 arenshown i

Table 3.3. If cluster 1 is the target, then one of the nodes in cluster 1 must be removed t

avoid a violation of the capacity upper bound.

Table 3.3N; neighborhood generated by shifting node 8

Cluster to which| Node to | Cluster to which
node 8 is moved| be shifted| N0d€ is shifted | 145 penefit
() (i) (s) gained
1 4 2 —
4 3 3
5 2 0
5 3 0
9 2 -1
9 3 3
3 -- -- 3

For neighborhoodil,, assume that the algorithm is investigating edge (8,9) which

crosses clusters 1 and 2. However, node 8 cannot be inserted into cluster C'§e to
Alternatively, if node 9 along is shifted into cluster 2, the total benefit gairedem

andl11 if edge (8, 9) is inserted to cluster 3.
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For neighborhoodls, consider a swap between node 8 and some other node.
After a simple set of calculations, we find that the best swap iebatmnwodes 8 and 6
with benefit 1.

Capacity bounds are maintained during local search to ensure feasibility.
Although it is possible to allow infeasible solutions as a strategy to overcoate loc
optimality, such an approach would greatly increase the computationalcfidrase I1.

In general, the GRASP philosophy is to focus the effort on phase I, not phase Il. With
this in mind, diversification is introduced by accepting inferior solutionsatteatvithin

some tolerancg, a parameter that is reduced dynamicallyfter searching each of

the three neighborhood#n the basic implementatioh;, N, andN; are explored

sequentially withs starting at 1% and decreased to O in steps ofAsiz€.2%. A is

reduced, the effort shifts from diversification to intensification, and wheaches 0, no
inferior solutions are accepted. A summary of phase Il is given urd-B)6. At Step 2,

we cycle through the neighborhoods, terminating when no improvement is possible. This
is called cyclic neighborhood search (CNS).

Procedure GRASP_Phase_k(w, c, 8, A, C™", C™ x)

Input current solutiorx, node weights vectav, edge weights matrig, capacity bounds
C™" andC™ tolerance$ and stepsiza

Output local solutionx with respect to neighborhoodis(x), Na(x) andNs(X).

Stepl: X =x;

Step2: while ¢ > 0) {
Improve the current solution by local search

callNy(X', w, ¢, B, C™ C™ xy);

call Na(xq, W, ¢, B, C™" C™ x,);

call Na(xz, W, ¢, 8, C™", C™ x);

B=B-A;

X =X3

}

Step3: TEWX ) = — oo; TEW/( %) = Zlilzi’jevk(xa) ¢ ; ITEW= total edge weight
Step4: while TEWxs) > TEW(X)) {

X =X
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call Ny(X', w, ¢, 0,C™ C™ xy);
call Na(xy, w, ¢, 0,C™", C™ x5);
call N3(Xz, w, ¢, 0,C™", C™ x3);

TEW( X) - Zlf:lZi,jevk(x*) G TEW( )§) :Zszlzi,jevk(ﬁ) &

Figure 3.6 Pseudocode for phase Il of GRASP

3.2.3Basic GRASP
Given a graplG = (V, E), a partial initial solution is constructed with either HWE or

CMC and extended to a feasible solution using the logic surrounding RCL. Plsase Il i

then applied a predetermined number of times to improve the current solution within the

three neighborhoods. The best solution found is output as the optimum. The pseudocode

for the basic reactive GRASP is given in Figure 3.7 with the help of the foljpoavid

aforementioned definitions.

Parameters
NCRASP number of iterations for GRASP
| init indicator of approach to build partial initial solutidf” = 0 for HWE
approach] ™ = 1 for CMC approach
iter iteration counter

Algorithmt GRASP

Input set of node¥, set of edgeE, node weights vectav, edge weights matrig,
number of clusterp, capacity bound€™" andC™ indicatorl ™
NGRASP

, humber of
iterations
Output heuristic solution®'
Stepl: obtained patrtial initial solutioxf
if (1'™ equals 0) {
call Phase_|_lInitialize HWE( E, c, w, p, C™", C™® x");
telsef

call Phase_|_lInitialize_ CM®( E, c, w, p, C™", C™ x):
}

Step2: TEWX®®) = — o0;// TEW= total edge weight
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Step3: for (ter =1,..., NS*ASH{
construct CL and RCL, completéto initial solutionx randomly;
call GRASP_Phase_{(w, ¢, 8, A, C™" C™ x');
if (TEWOX®S) < TEW(X)){
best__ *

X=X,

TEWX®S) = TEWX);

Figure 3.7 Pseudocode for basic reactive GRASP

3.2.4 Variable neighborhood descent

VND is a systematic approach to exploring the various neighborhoods thatttefine
local search (Hansen and Mladenovic 1997). Say therg,gref them indexed by and
Nu< Nust, VU=1,2,...unax-1. VND starts by searching the first neighborhdhdu =

1) and, in general, switches from the current neighborhfdd the next neighborhood

Nu+1 whenNj,fails to provide an improved solution. If a better solution is obtained from
Ny, then VND switches back td;. The procedure terminates when VND reaches the

final neighborhoodN, and no improvement is possible. The last solution uncovered is

locally optimal for allumax neighborhoods.

VND has been shown to be efficient in various applications (e.g., see Hu et al.
2008). In our case, it serves as an option in phase Il to increase the performaoak of |
search even though the three neighborhoods defined above are not a subset of each other

— the usual situation in which VND is applied.

3.2.5 Randomized VND
According to our initial experiments, standard VND did not lead to a balanced
exploration of the three neighborhoods. Most of the effort was spent seddghiBgen
though local optimality is guaranteed, such a bias might delay convergence. ®saddre
this issue, we adopted a probabilistic weighting scheme similar to the ahfouse
constructing RCL.

Let py be the probability of selecting neighborhddgafter exploring the current

neighborhood. A uniform distribution for these values is assumed initially:
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Pu= LMmax U=1,... Umax
Also, letBy be the total benefit gained by searching neighborab far, with initial
values set as follows:

By =ZeceCe, U=1,... Umax
The neighborhood to be searched in the next iteration is randomly determined by the
probabilitiesp,. Letu” be the current neighborhood andiédte the improvement

realized from the search. The total benefitNaris updated by putting
B. € B +b

Note that it is possible fdr < 0, which would indicate that a nonimproving

solution was selected in the diversification step of phase II. In thatR:aseuld
decrease and make. a less interesting option to explore. WHen 0, B . will increase,
suggesting that more effort should be placed on searhingThe probabilitieg, are

hence updated to take into account the relative quality of solutions found in each

neighborhood. In particular,
pu :(Bulz\u/:;x 3/) y U = l,...“max
The randomized version of VND is called RVND and is run for a predetermined
number of iterations, Max_lter. In the implementatBms set to 1000, which is large
enough to ensure thBt > 0,u = 1,... Unmax for the data used in the testing, and Max_Iter

is set to 10.

3.2.6 Path relinking

During phase I, solutions that are unique are saved in a pool and sorted in descending
order of their objective function values. The P members of the pool are selected

to form the elite solution s&". The general idea of PR is to construct a path between
pairs of elements i6°"™ to see if better solutions can be found. As described presently,
feasibility is maintained at each iteration, and for a problem puilasters, at mogi— 2
distinct solutions will be uncovered along each path. Those that are supénir to t
generators are stored temporarily and, after all original pairxarained, are inserted

into S**. At the same time, the bottom elementSili® are removed to keesf"® |
constant. The procedure ends when the maximum number of iteraiigns, reached
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or S becomes stable, that is, the elemen&ifi do not change between two
successive iterations.

PR was first proposed by Glover et al. (2000) and is usually combined with other
metaheuristics (e.g., see Boudia et al. 2006). Given t1&"Sett the end of phase II, the
first step is to select a pair of elements, %sgndxg, to serve as path generators. In this
context,xa is known as the initiating solution arglas the guiding solution. In
attempting to construct a path that lingo xg, let Vi(xa) be the node set for cluster
associated witlts and letVy(xg) be the node set for clusteassociated witls. Now,

define asimilarity measuregk, s) for Vi(xa) andVy(xg) as follows.

Sks)= > G

e\ ()N V(%)

The value o5k, 9) is the total weight of the common edge¥ifx.) andVy(Xg).
The two most similar clusters, call thésnandsgs, associated with the elite solutioxs
andxg, are determined by

(ka, s8) = argmaxg8k, s) : k, se {1,...,p}}

where ties are broken by selecting the clusters with the smallestsndi

Givenxa andxg, defineC, andCg as the sets of clusters that are fixed at some
iteration in the procedure. Initialla = @ andCg = @. A path fromxa to Xg is generated
in the following manner. First, the most similar clustgarandss are identified
according to the aforementioned logic. Clugleis then modified to be exactly the same
as clustess by inserting and removing nodes. The cluster to which a node is moved is
determined by a simple local search to minimize the decrease in objectiverfuuattie.
After this operation is performed a new solutigremerges fronxa. The two set€, and
Cg are updated by puttim@s € Ca U{ka} and Cg & Cg U{sg}. Solutionx, is then

improved to bex by local search subject to the restriction that the clusteZs are kept
constant. Now, starting from the process is repeated to getand so on. Termination

occurs aftep — 2 iterations at which time gtl clusters are fixed in the séfg andCg;
the resulting solution is exactly the same@sThe path generated froxa to xg is as

follows.

*

Xa= X 2 % = X, o Xe
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Finally, let .. =argma{TEW (x ):k= 1,...,p- P be the best solution found

along this path. MEW( x_. ) > max{TEW(xx), TEW(xg)}, then it is stored and after all

pairs of elements i8°*"® are examined, it is inserted i3, If the capacity bounds are
tight, it is possible that no feasible solution will be discovered betwetnxs. In that
case, PR fails foxa andxg, and the next pair is examined.
An example of path generation based on the graph in Figure 3.2 is given | Figur
3.8. The nodes are to be partitioned into three clustersGiithe 3,C™* =5 andw, = 3,
ws =2 andw; = 1,i € {1,2,5,6,7,8,9}. Assume tha is {{1, 7, 8}, {2, 9, 4}, {3, 5, 6}}
with objective function valugs = 15 and thaxg is {{1, 4, 7}, {2, 5, 6}, {3, 8, 9}} with
¢s = 12. Starting witlCa = @ andCg = @, the goal is to generate a path fregto xz. At
Step 1 the clusters most similar with respect to solutigasidxg areka = 1 andss = 1

with S(ka, ss) = 6. Node 8 inV,(x,)is removed and inserted int(X,) while node 4 in
V,(%,) is shifted t&/(X,). Call the transformed solutio@, and note that cluster 1 xa
is exactly the same as cluster Xgnthat is,V,(%.) = V,(%).

Next, the constant sets are updated gipg {1} and Cg = {1}, and a local
search is performed o@, which results in an improved solutiag. At the next step,
the most similar clusters with respectxto andxg are determined to be- = 2 andss = 3.
The setCp andCg are now {1, 2} and {1, 3}, respectively. To make cluster 4nthe

same as cluster 3 g, node 6 is selected and placetifx..) while and node 3 is

shifted t0/,(x..) . The resulting solution is exactly the samegas

gn =15 dc = 14 dor = 20
Xa kA: 1 Xc C/_\={1} Xc* kc*:2 XB
=1 CB={1} =3
1,7,8| co=g | L47 1,47 | ca=(12} | 1.4.7
204 <=2 598 J 6809 873 554
3,5,6 3,5,6 2,3,5 3,8,9

Figure 3.8 An example of path generation
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The best solution found along the patk iswith gc- = TEW= 20. Sincejcr > ¢

anddc- > s, Xc' is outputted and stored for possible insertion 8it6. The pseudocode

for path generation is shown in Figure 3.9. In our implementat®&t | is set to 20.

For each pair of solutiong € S andxg € S, two paths are generated, the first

starting fromx, and approachings and the second taking the reverse course. For a given
S®* the total number of paths@(|S™" ). WhenS*"® becomes stable the best solution
found up to that point is output.

A potentially inefficient aspect of PR is the application of local $etreach
solution encountered along a path. Empirically, we found that a completsdacah
(CLS) strategy may affect the solution quality only locally within theeshasin of
attraction. In addition, the current solution may have been uncovered previously so
applying local search a second time is wasteful. One way to reduce the campultat
effort is to apply local search only after encounterifigsolutions along a path, where
n"Ris a parameter adjusted according to the solution quality. This stratefgrred to
aspartial local search(PLS) to distinguish from CLS. Ferclustersn" e {1, 2,...,

p—2}, wheren™® = 1 indicates that local search is applied to each solution in thenpth,

= 2 indicates that it is applied to every second solution, and so on. Note that there are at
mostp solutions along a path including the initiating solution and the guiding solution.
Because both of these are already locally optimalg p-2.

The value ofh™Ris randomly selected at the beginning of each path. The
probability function used for this purpose is based on a performance megstife
which is defined as the average objective function value over a path whemgtrenfre
of applying local search was"; that is,

PR (" =i| {i modn®*} A il {i moch **}
=1 i=1
wherei is the index for pathy; is the number of solutions discovered along pajhs

the index for the solutions discovered on a pajhs the objective value of tHe

solution discovered on pattand | {j modn PR} is a Boolean indicator function equals to

1 when { modn™®) = 0 (i.e., <true>) and O otherwise. The summan?Qll {j moadh PR}
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counts the total number of times local search is applied while exploring péti " is
not selected for patih thenP;(n™) = 0.
Next, we compute the accumulated performance, denoté(ol), for a

hPR

particular value oh™™ by summing over all the paths already generated.

Awﬁﬁ=§em”)

Here,n" is the number of paths that have been explored up to and including the current
path.
At the beginning of PR, the probabilipin™™) of selecting a particular value of
n"Re {1, 2,...,p-2} is assigned a uniform distribution; that is,
p(n™) = 1/(p-2)
After exploring a path, this function is updated as follows.
p-2
p(n™) = AP(r?)/ > AR F)
nPR=1
Thus, values ofi”® corresponding to higher accumulated performandehese a higher

probability of being selected.

Procedure path_generatiom(, c, C™", C™ n°R xa, xg, X)
Input node weights vectar, edge weights matrig, capacity bound€™" andC™ PLS
parameten™™, initiating solutionxa, guiding solutiorks
Output best solutiorx found along the path from to Xg
Stepl:Ca=0; Cg=0@; TEW =—o0; r =1;
Step2: while ka is not the same ag) {
(ka, sg) = argmaxfik, ) : k, se{1,...,p}};
makeV, (x,)the same a¥,_ (X;) by inserting and removing nodes so that
Xa becomes;
Il keeping the clustekse Caconstant, if the PLS condition is satisfied
then apply local search #@in an attempt to obtain a better solution
if (r moden™® + 1 equals to 0) {
call Ny(x, w, ¢, 0,C™" C™ x): x =X
call No(x, w, ¢, 0,C™" C™ x); x = X;
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call Na(x,, w, ¢, 0,C™", C™ x');

}
if (TEW(X) > TEW) {

TEW =TEWX); X =X;
}

Xa=X; r€r+1;

Figure 3.9 Pseudocode for path generation

3.3 Computational Results

The proposed methodology was implemented in C++andinder Ubuntu Linux on a

Dell Poweredge 2950 workstation with 2 dual coypdnthreading 3.73 GHz Xeon

processors and 8 GB memory. In the testing, m@g} (2f) was solved, both
heuristically with the reactive GRASP and direatigh CPLEX 11.0 when possible. A
comparison of the results gives insight in the ifpaf the GRASP solutions as well as
the limits of CPLEX.

The following settings were used for the GRASP.

Both HWE and CMC schemes were applied in phasednstruct partial initial
solutions but in separate runs to allow for congmari

Initial value of diversification parametgi:= 0.01 withA = 0.002 in phase II
Three options were examined for local search: (1pQ2) VND; (3) RVND
Number of GRASP iterationdN®*" = 5 xn**'with n**'being the number of
nodes in the tests (experience has shown thaestesblution is most often
uncovered within the first 150 GRASP iterationg;, esee Rojanasoonthon and
Bard 2005)

In PR, the maximum number of iteration$Niss = 50, the number of elite

solutions maintained isf"¢| = 20

After some experimentation, the following settingsre used for CPLEX.

Cut generators off
Emphasis of feasibility over optimality

Optimality tolerance EpOpt = Hb4.
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e Default frequency for MIP heuristics

In the experiments, the methodology was tested@etdata sets. The first
contained relatively small instances that were oanlgt generated based on data provided
by the USPS. A single seed was used for eachicestalhe second contained instances
that reflected the full USPS problem. The thirdewebtained from Mehrotra and Trick
(1998). In the next section, we outline the USPSieation and describe how the node

and edge weights were specified.

3.3.1 USPS application related to clustering control points

The cost of running a mail processing and distrdmutenter (P&DC) is determined in
part by the size and composition of the workfor@mne of management’s goals is to use
as few powered industrial vehicles (PIVs) or drsvas possible to move the mail
between workcenters, so restricting the numbepnfrol points (workcenters) that a
driver can service would be suboptimal. Howewefatilitate supervision and to avoid
violating union rules, control points are first slered into zones and then the minimum
number of PIVs required to service each zone isrdehed. In the clustering step, it is
necessary to take into account such factors aandistoetween nodes and transfer
frequencies. Two nodes are likely to be groupeetteer if they are directly linked in the
process flow, are relatively close to each othed, @ne is a frequent terminal point of the
other.

In the clustering model, it is necessary to spegifgeasure that numerically
captures these characteristics. Such a measutsecaawed as the edge weiglgs,
connecting pairs of nodésndj in a directional graph. For the test cases, ved tise
following formula to determine these weights.

G = fi + f;

X

d max

ij
The parametefij in this equation denotes the frequency of tran@hfnode to nodg

over the planning horizon The numerator represietsraffic intensity, the denominator,
d;, the length of edge,|), and the parametéraxthe maximum edge length in the graph,
that is,dmax = max{d; : (i,j) € E}. This value is used to normalize the distadgef the

demand between two nodeandj is high and they are close together, then the
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corresponding edge weight will have a relativelghhwalue so the two nodes would
likely be in the same optimal partition.

P&DCs typically have between 80 and 90 controhtmieach of equal weight
from management’s point of view, so wewet 1,V i € V. In the planning stage, the
number of clusters is specified by the facility rager taking into account the daily
volume, the building’s footprint, the equipmentday, and the various components of the
material handling system. In addition to PIVs, ethconsist of tugs and forklifts,
facilities use fixed conveyers, rolling carts, ardassortment of other mechanisms for
material handling. Mathematically, the problenedgiivalent to model (2).

3.3.2 Random test instances
Instances of practical size cannot be solved ofliymath commercial codes so to test
our methodology, we randomly generated a seriesitaf sets based on the characteristics
of the Chicago P&DC. This involved the followintgps.
(1) Let V be the set of control points in the original P&D&ta set and ¢t be the
corresponding set of edges. Define the densidfthe underlying graph as

7= [El/|&]
where [Ec| is the number of edges when the graph is contpledanected. For
the given data, the densipjs approximately 0.1626. Also, let.x andcmin be the
maximum and minimum edge weights, respectivelyt i&@max= max{ci, (, ) €
E} and cmin= min{c;, (,]) € E}.
(2) Randomly seleat™®*' nodes from the original P&DC data set. V&' be the
corresponding set of nodes andviix= 1,V i € V**! The number of edges in the

completely connected test grapHE:ées‘ =n"(n"™-1)/2.

(3) Definem = (2.7/,‘Eéest

)/n"*‘. The producty-‘EéeSt is the number of edges in the

test graph that should be generated to maintaisahe density, amd is the
average number of edges incident to each nodeitet graph. In our procedure

we aim for| m | rather thanm incident edgesFor example, if*®'= 25 andy =
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0.1626, ther)Es™

=300 and m| =|3.9] = 3, which means that on average

each node is connected to 3 other nodes.
(4) Let E™'be the edge set of the test instance, wherelipjtE**'= @. For each
nodei € V! letN; be the set of nodes already connectddatmito begin, setN;

=@. If [Ni|=| m]- 1, go to next nodein V'*. Otherwise, lep;, ¥ j € V*\ N, j

# 1, be the probability for a nogeo be connected to nodeThis probability is

computed as the ratio of the remaining number desdo be connectedito

divided by the number of unassigned nodes= (| m|-| N |)/( = | N - 1).

I j is selectedN; < N; U {j}, E®'« E*'u {(i, j)}. The edge weight; is

uniformly generated from the intervaljn, Cmay.

3.3.3 Comparison of GRASP and PR with CPLEX

In the first experiments, we compared the reacBRASP to CPLEX using the different
phase | and phase Il options for instances wfith= 30 nodes and = 5 clusters. Ten
instances were randomly generated in accordanbethgtabove scheme with bounds
C™" = 5 andC™* = 8. The model was built with CPLEX 11.0 Conceethnology
version 25 and contained 2330 variables and 43B88t@nts. The number of GRASP
iterations was set td®**°P= 5 xn'®s'= 150, and was followed by PR in all cases with
either CLS or PLS. Finally, a 3600 sec time liméts placed on all CPLEX runs.

The results are summarized in Table 3.4. Therskcolumn lists the density of

the realized graph®*'= |E*

/|E&|. The third and fourth columns give the results fo

the two combinations (HWE, CNS) and (CMC, CNS).e Tipper row values report the
best solutions found by GRASP for the correspon@aig The lower values in
parentheses report the iteration number at whietbést solutions were first discovered.
Columns 5 and 6 give equivalent results for (HWEDY) and (CMC, VND), while
columns 7 and 8 report the results for (HWE, RVNDY (CMC, RVND). With the
exception of problem no. 3 for combination (CMC, RY), GRASP found identical
solutions with the various phase | and phase ibapt Average runtimes, over the

six scenarios are given in column 9.
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The results from PR with CLS are reported in colarh@ and 11 while the results
from PR with PLS are reported in columns 12 and IL8an be seen that PLS achieves
the same solutions as CLS but is less time witleoeption of problem no. 8. Other
than for problem no. 3, PR could not improve theASR solutions since they are
optimal. This is confirmed by the results from @>_Lgiven in columns 14 and 15. The
last column provides the gap between the PR solainal the CPLEX solution, ¢¢r —
depLex) [dcpiex] X 100%, which is zero for all cases.

Table 3.5, which is derived from Table 3.4, compdhe average performance of
the six phase | — phase Il combinations. jFod,...,6, letj = 1 indicate (HWE, CNS),
= 2 indicate (HWE, VND)j = 3 indicate (HWE, RVND), = 4 indicate (CMC, CNS),
= 5 indicate (CMC, VND), angl= 6 indicate (CMC, RVND). Define the average ego
for combinationy as follows

e :%f‘[MPR—QGRASF}ﬁ} "%100%),Vj = 1...,

i=1

whereN®'= 10 is the number of instancets,**"is the best solution found by GRASP

only with combinatiorj for instance, and " is the best solution found by CPLEX

for the instance. The average egameasures the improvement from PR over the
GRASP solutions in all instances for combinaiiofThe higheg , the more
improvement attained with PR.

The second column in Table 3.5 shows the averagdeuof iterations needed to
obtain the best solution for (HWE, CNS) and (CM®IS]), respectively. The values
were calculated by averaging the number of itenatiaside parentheses in column three
for (HWE, CNS) and column four for (CMC, CNS) intla 3.4. The third column gives
the average errors of (HWE, CNS) and (CMC, CNSpeetively. The next columns
report the same statistics for the remaining coatimns. As mentioned, GRASP found
the optimal solutions witg = 0.00,v j = 1,...,5 except for the last combination (CMC,
RVND), e; = 0.02.

Applying HWE in phase | required a greater numldetenations on average than
CMC to find the best solutions no matter which optwas applied in phase Il. When the
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phase | option was fixed, VND required more itenasi than its two counterparts, which
performed equally well.

The second set of initial experiments was perforored 40-node graph fpr=5
clusters with bound€™" = 5 andC™ = 9. Model (2) contained 4105 variables and
7846 constraints for each of the 10 instances tigated, andN®**°P= 200 iterations.
Once again, all instances were generated randaonty the USPS data.

The results are summarized in Table 3.6. All tiASP— PR runs consumed
much less time than CPLEX as can be seen in col@nhs and 13. For problem nos. 1,
3,4,5,7and 8, CPLEX converged to the optimwnitie remaining instances the 1-
hour time limit was reached before optimality cobk&lconfirmed. For the GRASP, PR
improved the phase Il solutions in some casescesdfyewhen VND was applied. In all
cases, CLS and PLS achieved identical solution®b8trequired slightly less time. In
addition, GRASP with PR invariably provided equerat or better solutions than CPLEX
in much less of time.

The average performance of the phase | — phasenbinations for the 40-node
instances is reported in Table 3.7. For a givaasph option, RVND required the least
number of iterations, followed by CNS and then VNID.addition, the average error was
highest for VND, while the errors for CNS and RVMRre roughly the same. When
either CNS or VND was applied in phase Il there iittle difference with respect to
HWE and CMC. However, when RVND was applied, CMGuired 37% fewer
iterations than HWE on average.

The third set of initial experiments was perforneada 50-node graph wigh= 5,
C™M" = 5 andC™* = 12. The optimization model contained 6380 \#@ds and 12306
constraints, while the number of GRASP iteratibii§8*S"= 250. Again, ten instances
were randomly generated from the original USPS fidliawing the aforementioned
scheme.

The results are reported in Table 3.8. All of BRASP runs finished within 10
sec while the PR runs finished within 30 sec. llca@ses, the PR solutions were better
than those provided by CPLEX except for problemShahere they were identical. Note
that CPLEX was never able to converge but alwayaddeasible solutions within the

allotted time.
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Table 3.4 Computational results from GRASP and ORfdE n®'= 30,p = 5,C™" = 5 andC™™ = 8

GRASP CPLEX
GRASP solution PR solution Best Opt

Prob CNS VND RVND tawg | PRTCLS| tayg PR+PLS | taygy | Solution| Time| gap

no.| ¥ | HWE | CMC | HWE | CMC | HWE | CMC/| (sec)| best | (sec)| best | (sec)| found | (sec)| (%)

1 ]0.1908 618.97| 618.97 | 618.97 | 618.97 | 618.97 | 618.97 1 618.97 5 618.97 3 618.97 10 0.00
1) (12) (7) (12) (12) (11)

2 10.1977 691.49| 691.49| 691.49| 691.49| 691.49| 691.49 1 691.49 4 691.49 3 691.49 35 0.00
(27) (2) (26) (15) (16) (19)

3 10.1747 667.09| 667.09| 667.09| 667.09 | 667.09 | 665.48 1 667.09 4 667.09 3 667.09 21 0.00
(18) 3) (18) 3) 3) (7)

4 10.1839 680.54| 680.54 | 680.54 | 680.54 | 680.54 | 680.54 1 680.54 4 680.54 4 680.54 13 0.0Q
(6) 12) (37) (17) 1) (14)

5 [0.1609 569.67| 569.67 | 569.67 | 569.67 | 569.67 | 569.67 1 569.67 7 569.67 2 569.67 18 0.0Q
3) (8) 3) 1) (34) (6)

6 |0.1793 642.67| 642.67 | 642.67 | 642.67 | 642.67 | 642.67 1 642.67 4 642.67 1 642.67 29 0.00
(5) 1) 3) (8) (4) 1)

7 |0.1678 618.25| 618.25| 618.25] 618.2% 618.25 618.25 L 618.25 618.2 3 618.25 6 0.00
(5) (1) (15) (11) (22) (8)

8 |0.1609 628.91| 628.91| 628.91] 628.91 628.91 628.91 L 628.91 @289 4 628.91 7 0.00
1) (19) 3) (10) (4) (2)

9 10.154Q0 544.62| 544.62] 544.62 544.62 544.62 54462 1 544.623 544.62 1 544.62 5 0.00
(38) (13) (52) (74) (21) (2)

10 | 0.1609 598.66| 598.66 | 598.66| 598.66 598.66 598.66 L 598.66 6986 2 598.66 4 0.00
3) (14) (6) (5) 4) (2)
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Table 3.5 Average performance for different phased phase |l combinations witff*'
=30,p=5,C"=5andC"™=8

Phase I
CNS VND RVND
Avg. Avg. Avg.
Avg. error Avg. error Avg. error
number | g number | g number | g

Phase || of iter. (%) of iter. (%) of iter. (%)
HWE 10.7 0.00 17.0 0.0Q 12.1 0.00
CMC 8.5 0.00 15.6 0.00 7.2 0.02

The average performance of GRASP is reported imeTaB for the 50-node instances.
The average errag > 0,j = 1,...,6, which means that PR found improved sohstifor

all combinations. When the phase | option wasdfjixé\ND had the highest error,
followed by CNS and RVND. For CNS and VND in phéis¢he errors from HWE and
CMC were nearly identical. When RVND was applig@, error from HWE was less
than half of the error from CMC. With respectlte average number of iterations, VND
and RVND performed equally well, while CNS requitbd least number of iterations no
matter which option was used in phase I.

In the fourth set of initial experiments we invgated the performance of GRASP
and PR as the number of clustpnwas varied from 2 to 10 for the same 30-node graph
associated with problem no. 1 in Table 3.4. Thenlds were set to K@"" = 2 andC™®
=15 to reduce their effect on the computationke flesults were reported in Table 3.10
and were similar to those already discussed. | lkaaks, the optimal solution was found
by GRASP and CPLEX, but runtimes differed markedBRASP with PR were quite
stable no matter which combination was used butE>Phad increasing difficulty as the
number of clusters increased.

In the fifth set of initial experiments, a paraneanalysis was performed on the
bounds fop = 5 fixed. The bound<J™", C™| were initially set to [2, 10] and then
modified in even steps to reach [6, 6]. The raeswkre reported in Table 3.11. For all
runs, GRASP with PR was able to find the same aptimbtained by CPLEX but in
considerably less time. Similar to the fourthaegxperiments, the performance of
GRASP was insensitive to the bounds while CPLEX made difficulty as the range
shrank.
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Table 3.6 Computational results from GRASP and ORfdE n®'= 40,p = 5,C™" = 5 andC™™>= 9

GRASP CPLEX
GRASP solution PR solution Best Opt
Prob CNS VND RVND tag | PRTCLS| tay | PR+PLS| tag | Solution| Time | gap
no. | Y*' | HWE CMC HWE CMC HWE CMC | (sec)| best | (sec)| best | (sec)| found | (sec)| (%)
1 |0.1782 1043.77| 1043.77| 1043.77| 1043.77 | 1043.77| 1043.77 1 1043.77 10 1043.7Y 9 1043.Yy7 693 0,00
(2) (13) (41) (4) (17) (15)
2 10.2013 1127.87| 1127.83| 1127.87| 1127.87 | 1127.87| 1127.87 1 1127.87 10 1127.8Y 7 1127.87 3600 0.00
(72) (15) (16) 1) (11) (45)
3 (0.1923 1169.84| 1169.84| 1169.84| 1158.21| 1169.84| 1169.84| 1 1169.84| 16 1169.84 7 1169.84 3260 0.00
(14) (29) (182) (54) (44) (8)
4 10.191Q 1148.93| 1148.93| 1148.93| 1148.93| 1148.93| 1148.93| 1 1148.93 9 1148.93 7 1148.93 1073 0.00
(73) (42) (144) (155) (121) (20)
5 10.2026 1124.71| 1125.80| 1125.80| 1125.80| 1125.80| 1125.80| 3 1125.80| 11 1125.80 8 1125.80 518 0.00
(104) (128) (46) (52) (10) (47)
6 |0.2090 1154.98| 1158.93| 1158.93| 1158.93| 1158.93| 1158.93| 4 1158.93| 13 1158.93 11 115498 3600 0.34
(77) (60) (134) (73) (145) (37)
7 10.1872 1065.31| 1065.31 1059.64 1062.86 1065.31064.30 1 1065.31 9 1065.31 9 1065(31 1420 0.00
(7) (61) (120) (191) (12) (23)
8 (0.18446 1166.05| 1166.0% 1166.05 1166.05 1166.06166.05 1 1166.085 13 1166.05 1166/05 7102 0.00
(11) (41) (11) (79) (2) (31)
9 (0.1833 1096.67| 1096.67 1096.67 1096.67 1096.61096.67 1 1096.67 7 1096.67 5 1096(67 3600 0.00
(44) (13) (36) (16) (6) (15)
10 | 0.1846 1150.02| 1150.02 1150.02 1150.02 1150.0r150.02 1 1150.02 10 1150.02 115002 3600 0.00
(6) (30) (6) 9) (14) (7)
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Table 3.7 Average performance for different phased phase |l combinations witff*
=40,p=5,C™=5andC™=9

Phase I
CNS VND RVND
Avg. Avg. Avg.
Avg. error Avg. error Avg. error
number | g number | g number | g

Phase || of iter. (%) of iter. (%) of iter. (%)
HWE 41.0 0.01 73.6 0.05 38.2 0.00
CMC 43.2 0.00 63.4 0.12 24.8 0.0

3.3.4 Application of GRASP and PR to the complete USPS dataset
In the second set of tests, we applied GRASP wRhuging PLS to the full USPS dataset,

which has 82 nodes and 540 edges q}\/é?s,‘ = 540). The bounds were

=82 anqiEteSt

set as followsC™" = 10 andC™ = 20. The goal was to investigate the six continna
of phase | and phase Il options for a rangpe wdlues. In each run, the number of
GRASP iteration®®**"= 410.

The results are reported in Table 3.12dar {5, 6, 7, 8}. The first column gives
the number of clustefs The second column indicates the options use@GRASP. The
third column,@™*! is the best solution found by GRASP and PR. Duetlh column
indicates the improvement achieved by PR. In calithe valué®®'denotes the
iteration at which the best solution was first fdury GRASP. [§°*'= NCRASP the best
solution was found by PR. The column labef§8ireports the amount of time spent to
find the best solutions while the colutfif"™ gives the combined runtime of GRASP
and PR. For problems with 5, 6 or 8 clusters sdmae objective function values were
found for all six options. Fqv = 7, the best solutions were found under different
combinations. In 12 out of the 18 instances assediwith the datasets fpr=15, 7, 8
clusters, PR improved the GRASP solutions by up16%; forp = 6, PR offered no
improvement. In all cases, runtimes were well ur2@® sec.
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Table 3.8 Computational results from GRASP and ORfdE n'®*>'= 50,p = 5,C™" = 5 andC™* = 12

GRASP CPLEX
GRASP solution PR solution Best Opt

Prob CNS VND RVND tawg | PRT¥CLS | tayg | PR+PLS| tayg solution | Time | gap

no. | ¥ | HWE CMC HWE CMC HWE CMC | (sec)| best (sec) | best | (sec)| found | (sec)| (%)

1 ]0.1845 1639.22| 1634.33| 1631.77| 1633.35| 1639.22 | 1639.22| 1 1639.22 20 1639.22 19 1602.56 3600 2,29
(59) (5) (44) | (155) | (39) (30)

2 10.1869 1685.68| 1685.68| 1685.68| 1685.68| 1685.68 | 1685.68| 5 1685.68 11 1658.68 18 1646.34 3600 239
17e) | (98) @7 | 40y | @39 | (11

3 |10.1714 1560.56| 1550.17| 1549.55| 1550.17| 1560.56 | 1556.19| 5 1560.56 | 25 1560.56 12 1491.98 3600 4.60
155) | (80) | (143) | (37) 43) | (238)

4 10.1706 1677.50| 1679.90| 1678.02| 1678.02| 1679.90| 1679.90| 7 1679.90| 29 1679.90 32 1647.10 3600 1.99
4) (29) (20) (125) (67) (7)

5 10.1665 1637.83| 1640.17| 1640.17| 1640.17| 1640.17 | 1640.17, 7 1640.17 23 1640.17 13 1640.1Y 3600 0.00
4) (90) 32) | (180) | (67) | (198)

6 [0.1837 1658.19| 1662.09| 1658.19| 1658.19| 1662.09 | 1658.43| 2 1662.09 | 20 1658.19 10 1615.09 3600 2.91
(55) | (203) | (148) | (37) | (212) | (246)

7 10.1796 1670.81| 1670.81 1669.95 1670.81 1670/81 1670.81 1670.81 12 1670.81 9 1624.56 3600 2,85
@7 | (182 | @eyn | @@o3)| (56)| (169)

8 10.1682 1640.90| 1646.57 1644.53 1646.57 1646/57 1646.57 7 651.09 25 1651.09 11 1594.65 3600 354
57) | (104) | (63) | (160)| (206)|  (144)

9 |0.1641 1648.39| 1648.39 1648.39 1648.39 1648/39 1648.39 1 648.39 11 1648.39 12 1643.22 3600 031
(12) 66) | (175) | (204)|  (29) (42)

10 {0.1747 1690.22| 1690.22 1690.22 1671.89 1690|22 1690.22 2 690.22 21 1690.27 13 1650.11 3600 2/43
(60) (22) (72) 67) | (07)| (25
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Table 3.9 Average performance for different phased phase |l combinations witff*
=50,p=5,C™"" =5 andC™® =12

Phase I
CNS VND RVND
Avg. Avg. Avg.
Avg. error Avg. error Avg. error
number | g number | g number | g

Phase || of iter. (%) of iter. (%) of iter. (%)
HWE 62.9 0.11 108.5 0.20 106.5 0.0
CMC 87.9 0.12 110.8 0.27 111.0 0.0

3.3.5 GRASP performance on the benchmark problems
In the final set of experiments, GRASP with PR apglied to a set of six benchmark
instances with known optimal values. The datasete provided by Mehrotra and Trick
(1998) who solved each of them on a DEC ALPHA 3(M0del 300) workstation with
150 MHz Alpha 21064 CPU using CPLEX 2.1 as thedingogramming solver. The
largest dataset contains 61 nodes and 187 edgéieit runs the number of clusters was
not specified, so to duplicate that scenario, w@sel2, a high enough value to ensure
that we would always have a sufficient number asters.

The results for option (HWE, RVND) with PR and PaSivated are reported in
Table 3.13 along with the optimal solutions for teets of runs, the first with™" = 0,
C™ = 450 and the second wig@"" = 0,C™ = 512. The number of iteratiorl§c**"
was set to 250 in all cases. Our best solutiffare given in columns 4 and 10, the
iteration number at which the best solutilii'was first encountered is given in columns
5 and 11, the corresponding runtint®&s'are given in columns 6 and 12, and the total

overall

runtimest are given in columns 7 and 13.

From the table, we can see that our methodologigfihe exact optimum in all
cases except the last in considerably less tinrerigg@orted by Mehrotra and Trick. This,
of course, is not surprising since we are usingiamiaster machine. Scaling runtimes,
however, indicates that their algorithm is compedivith ours and so may be preferred
for instances of the size investigated their stidge it guarantees optimality.
Nevertheless, it is difficult to compare performarmd exact and heuristic methodologies,
especially across different platforms. To a laegtent the computational effort of any

metaheuristic such as GRASP is proportional tativaber of iterationd\®**>" here,
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specified at the outset. A final point about tesults is that PR only improved the
GRASP solution for the largest instance.
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Table 3.10 Computational results from GRASP and EPfor n®s'= 30,C™" = 2 andC™* = 15

Number GRASP CPLEX
of GRASP soln PR soln Best Optimality
clusters CNS VND RVND Time PR Time soln Time gap

p HWE CMC HWE CMC HWE CMC | (sec) | optimum| (sec) | found | (sec) (%)

2 824.26 | 824.26 | 824.26 | 824.26 | 824.26 | 824.26 | <1 824.26 <1 824.26 <1 0.00
(5) (1) (5) (1) (8) (1)

3 797.22 | 797.22 | 797.22 | 797.22 | 797.22 | 797.22 | <1 797.22 1 797.22 <1 0.00
(2) (11) (5) (11) (3) (6)

4 769.15 | 769.15 | 769.15 | 769.15 | 769.15 | 769.15 | <1 769.15 1 769.16 3 0.00
1) (1) (12) (45) (2) (1)

5 734.15 | 734.15 | 730.01 | 730.71 | 734.15 | 733.85 | <1 734.15 2 734.15 9 0.00
(12) (68) (75) (111) (81) a7)

6 709.38 | 709.38 | 709.38 | 709.38 | 709.38 | 709.38 1 709.38 2 709.38 24 0.00
(12) (30) (10) (24) (31) (10)

7 685.51 | 685.51 | 685.51 | 685.51 | 68551 | 68551 | <1 685.51 1 685.51 48 0.00
(1) (19) (46) 2) (8) ©)

8 655.70 655.70 655.7¢ 655.70 655.70 655,70 <1 .7655 1 655.70 59 0.00
(27) 1) (21) (64) (7) (1)

9 611.23 611.23 611.23 603.96 611.23 611,23 <1 .26811 1 611.23| 627 0.00
4) (27) (1) (125) (6) (31)

10 549.02 549.02 549.02 538.07 549.02 54902 <1 9.024 3 549.02 | 700 0.00
(65) (21) (54) (32) (16) (22)
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Table 3.11 Computational results from GRASP andEPfor n®*'=30,p=5

Capacity Capacit GRASP CPLEX
lower | upper GRASP soln PR soln Best Optimality
bound | bound CNS VND RVND Time PR Time soln Time gap
cmn cme HWE CMC HWE CMC HWE CMC | (sec)| optimum| (sec) | found | (sec) (%)
2 10 679.76 | 673.61 | 672.34 | 679.76 | 679.76 | 679.76 1 679.76 4 679.76 | 11 0.00
(50) (80) (22) (64) (11) (20)
3 9 654.50 | 654.50 | 647.12 | 654.50 | 65450 | 654.50 | <1 654.50 5 654.50 12 0.00
(126) (32) (28) (150) (14) (11)
4 8 628.73 | 628.73 | 628.73 | 628.73 | 628.73 | 628.73 | <1 628.73 4 628.73 | 31 0.00
(1) (12) 1) (8) (10) (13)
5 7 603.34 | 603.34 | 603.34 | 603.34 | 603.34 | 603.34 | <1 603.34 5 603.34 | 66 0.00
(28) (15) (38) (15) (11) (10)
6 6 582.37 582.37 585.28 582.37 582.87 58237 < 185.28 4 585.28 70 0.00
(113) (36) (123) (99) (22) (48)
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Table 3.12 Computational results from GRASP andM®R PLS for complete USPS
dataset witm'®'= 82,C™" = 10 andC™* = 20

GRASP & PR+PLS
No. of PR
clusters Impr. goest | goverall
p Phase || Phase Il| ¢ (%) | i*' | (sec)| (sec)
5 HWE CNS 1577.03  0.00 116 22 99
HWE VND | 1577.03| 0.02| 410| 69 127
HWE | RVND | 1577.03| 0.02| 264 57 135
CMC CNS 1577.03| 0.00 41 6 93
CMC VND | 1577.03| 0.00/ 41i0| 70 96
CMC | RVND | 1577.03| 0.00 18 5 113
6 HWE CNS 1540.76 0.00 228 34 91
HWE VND | 1540.76| 0.00| 185 27 79
HWE | RVND | 1540.76| 0.00| 228 52 140
CMC CNS 1540.76| 0.00 44 7 91
CMC VND | 1540.76| 0.00 3 1 83
CMC | RVND | 1540.76| 0.00 64 15 112
7 HWE CNS 137157 1.15 410/ 91 104
HWE VND | 1367.32| 1.02| 4i0| 64 89
HWE | RVND | 1371.57| 1.15/ 4io| 89 158
CMC CNS 1371.57| 0.99 410, 107 | 138
CMC VND | 1371.57| 0.31| 41i0| 55 88
CMC | RVND | 1355.97| 0.00 92 17 142
8 HWE CNS 1148.66 0.3 410/ 80 121
HWE VND | 1148.66| 0.52| 41i0| 96 120
HWE | RVND | 1148.66| 0.64| 4i0| 85 126
CMC CNS 1148.66| 0.00 227 34 8(
CMC VND | 1148.66| 0.26| 410| 62 88
CMC | RVND | 1148.66| 0.13| 40| 74 117

"For these instances, the best solution was fourlfFbin the post-processing stage after
410 GRASP iterations.
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Table 3.13 GRASP performance on benchmark problem

C™" =0,C™ =450 C™=0,C™ =512
Mehrotra Mehrotra
GRASP & PR+PLS & Trick GRASP & PR+PLS & Trick
tbeS tOVera| TI m e tbeS tOVera| TI me

Graph| V| | E| | & | i*" | (sec) | (sec) Soln | (sec) | & | "' | (sec) | (sec) Soln | (sec)

1 45 98 2928 13 1 21 2928 46.90 3238 5 <1 29 323895 7

2 30| 56 1642 7 1 6 1642 3.0 1748 3 <n 5 1748 3.3

3 47 | 101 3569 27 1 23 3569 139.5 3960 6 <1 33 39a015.8

4 47 99 1837 2 <1 32 1837 201,7 1993 A <|1 32 199838.4

5 30 47 1099 2 <1 9 1099 2.5 1174 1 <[l 8 1174 3.0

6 61| 187| 22,216 250 26 84 22,216 352.4 23,552 56 6 77 23,564 394.4

"Best solution was found by PR in the post-procegsiage after 250 GRASP iterations.
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3.4 Further Discussion

The reactive GRASP presented in this chapter wsigiied to find high quality solutions
to thep-capacitated clustering problem. In phase I, tificient approaches (HWE and
CMC) are presented for constructing partial inisalutions, and a dynamic restricted
candidate list is proposed to then obtain feasblations. In the improvement phase,
three neighborhoods, i.e., CNS, VND and RVND, amestdered for the local search. In
a post-processing step, PR is applied to overcooa bptimality and to attempt to
uncover even better solutions. Both CLS and PESmaplemented with PR. All
components of the methodology were extensivelgtesh a number of instances of
practical size. According to the results, HWE &MC were comparable when
combined with CNS in VND, while HWE combined withVRD gave the best overall
performance. However, the runtimes of the lateer where slightly above the runtimes
of the other combinations. During PR, PLS and @t&ide similar results with the
latter being a bit more efficient.

In all instances tested, GRASP provided the sanieter solutions than CPLEX.
These results offer some assurance that GRASRmmhhigh quality solutions when
optimality cannot be established. As the numberoales, edges, and clusters increase,
the difficulty in solving model (2) optimally incases as well, often exponentially. For
the 50-node, 5-cluster instances, CPLEX failedoimverge within the imposed 1-hour
time limited so we cannot be sure that the solstfonind by our methodology are
optimal. Nevertheless, that fact that we were @blaptimally solve all the benchmark
problems, further attests to its effectiveness.

With respect to path relinking, we can confirm thixed results reported by
others such as Boudia et al. (2006) who have peddrsimilar analyses. For relatively
small problem instances, PR offered no advantagediece GRASP was able to find the
optimum without it. For larger instances, incluglthe USPS application and some of
the benchmark datasets, post-processing the GRal8#oss led to slightly better
objective function values. However, the improveimeas rarely significant, so it is
arguable whether the procedure is justified eveannlsing PLS instead of CLS.
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Chapter 4

Midterm Planning to Minimize Deviations from Daily Target Outputs

in Semiconductor Manufacturing

The TI fab known as DMOSE6 is a mixed-signal analader fab and probe
facility producing about 2000 active devices gralipgo three technologies that run on
one integrated 300-mm manufacturing line (Chacal.&005). To clarify terminology,
a “device” is a specific term in the ManufacturiBgecution System (MES) and is
basically the same as a product. However, a féerdnt devices may derive from the
manufacture of the same product by using slightfe@nt operations. For example, a
product can be split into two devices such thay onle has inspection steps for particle
detection, but in the end they are the same product

Wafer starts average 20,000 per month and refebtghly diverse product mix.
Demand can be characterized as high-mix low-volantkevery complex. Although only
5% of the demand is explicitly for low volume teokogies, the demand for a majority of
devices within each high volume technology may alsdéow volume. As a result, it is
necessary to run many different products simultaskyo This adds to the already
challenging problem of managing daily operationsicly includes ensuring that
production targets are met, minimizing WIP, re-skthieg starts, reducing cycle time,
reacting to disturbances in real time, and redutiow variability.

At DMOS6, planning and scheduling is done hieraadly as depicted in Figure
4.1 (this is a common approach throughout the imgus.g., see Stray et al. 2006). The
box labeled Supply Chain represents the outsidé&viimm which orders are received.
These are passed to Fab Planning where quartetignanthly production plans are
constructed to balance customer priorities withacéty. Manufacturing Planning is
responsible for the day-to-day activities, schedpuitarts over the month, setting targets
by operation for each product being manufactured,deciding when to move WIP
between operations. Decisions at this level argentiyy shop floor managers and line

supervisors. Dispatch and Execution is the rectmédaily target data and is
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responsible for ensuring that the scheduled wodaiged out. Decisions at this level
fall to the equipment operators who sequence ludsferm batches at the various

machine groups.

Supply Chain
Requests i T Commits

Fab Planning
Monthly plans l T Actual daily

v production
Manufacturing
Planning

Daily targets T A to daily, monthly,
by operation and quarterly plans

Dispatch and Execution

Figure 4.1 Hierarchical planning and schedulingjetas Instruments

By carefully monitoring system progress, line su®rs can determine whether
daily targets are being met. Oversight is fadgithwith a decision support system that
tracks performance measures such as throughput,ali¢Rcycle time by operation and
product. These statistics are aggregated by log festage in production such as
photolithography), loop (a group of sequential agiens in the process flow within a
technology) and line to allow higher-level managerbetter visualize trends. At the
operations level, deviations from target valuesflagged and appropriate action is taken
when a significant gap exists. This may includmrdiguring machines that do not
typically process wafers at the bottleneck openatito do so, deprioritizing some of the
work that feeds the bottlenecks, and delaying the ef certain lots.

Shop floor data are collected in real time andtéethe information network.
Differences between planned and actual WIP areilzaés for each operation and passed
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to Manufacturing Planning who is responsible faoreering the schedule. Daily and
weekly statistics on production volumes, delays disduptions are passed up the
hierarchy to Fab Planning to be used to refine tineidels. As lots flow off the line,
commitments to customers are confirmed at the SUppé&in level. Similar hierarchical
approaches have been discussed by Rivera (20Q8glZihd Missbauer (1993) and
others.

The problem addressed in this chapter falls irdtivaain of Manufacturing
Planning. For a given number of wafer starts pgrahd a set of output targets by
product, the primarily goal is to develop a modhaittcan be used to determine when to
process wafers at each operation in their routrgnisure that those targets are met. A
related use of the model is to help managers redova disruptions.

Whether the model is used for daily planning ooxee, a solution should detall
the degree to which individual targets and ovetathand can be met and the level of
WIP in the system at each machine group by logt@oid operation. The principle
objective is to minimize the weighted sum of theidgons from the daily production
targets subject to capacity limits, predetermimetlictions, product routings, and
material flow conservation. This will tend to snlm@roduction and keep the fab
running at an even rate (or fixed percentage ohci#y, a cornerstone of the lean
philosophy (Yavuz and Akcali 2007). An appropriat of products at different stages
of completion must be maintained at the bottlermaekhines to obtain a consistent level
of output from the facility.

In the next section, the optimization model is preed and followed in Section
4.3 by a discussion of the data processing isseesssary for implementation. In
Section 4.4 the initial computational experienchighlighted, which implied a need for
further algorithmic development. Subsequentlyhldagrangian relaxation and Benders
decomposition were tried but neither proved sudaesRelated experience is
summarized in Section 4.5. As an alternative,@ugosition algorithm is developed
with the description in Section 4.6. This is felled in Section 4.7 by a comprehensive
set of test results based on DMOS6 data. Thehdetdeen scaled based on the original
data to avoid revealing TI's true production. The&iveness of the approach is

discussed and future work is described in SectiBn 4
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4.1 Mathematical Model
Production planning in a fab can be modeled asldanonmodity dynamic network

problem. The objective of the corresponding lingagram (LP) is to schedule wafer

movement so that the total deviations are minimiZEde notation used in the

developments is as follows.

Indices and sets

[
j
m

index for devices; € |

index for steps in the processing of a deviieeJ(i) U {n(i)+1}
index for machinesm e M

index for daysd € D = {1,...,n°}

index for time periods;=1,...,r

set of devices

set of steps for devide

set of machines

set of machines that can process devatesteg

set of days in planning horizon

set of time periodst = {1, 2,...,.°,P+1,P+2, ..., 2P,.., o}
set of time periods in a day? = {1, 2,...,>"}

Parameters and data

At

T

2JD
n()

Fijm

STARTS
T OUTy
5; ()

time interval (indicates the number of minutes with time period)
planning horizon (in units of periods)= | 7|

last period in a day” = [T

number of steps in the route of deviga(i)+1 is dummy step for devige
associatedvith holding finished goods inventory]

(effective) processing rate for machmevhen working on deviceat steg
(wafers/ min)

number of wafer starts for devicen dayd

target number of wafers to produce for devioa dayd

0ifj =n(i)+1 andt = d° +1 for devicd; 1 otherwise
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5; 1ifj = 1 for devicd; 0 otherwise

5; 0 if j =n(i)+1for device; 1 otherwise

5 (t) 1ifj =1 andt = (d-1)7° +1 for device; 0 otherwise

w" (w") relative weight associated with a positive (negatdeviation from the target
output for device

Winax penalty weight for the maximum deviation from theget output over the
planning horizon

Decision variables

W (t) number of wafers (WIP) corresponding to devigethejth buffer (step) in its
routingat the end of time periagV i € 1, € J(i) u {n(i)+1}, t; VVi,n(i)+1(t)
represents finished goods inventory

Ria(t) number of wafers input to the fab of device the beginning of time peridd
ondayd, Vi el,te Tandd € D

Biim(t) fraction of the time machimais processing devideat steyj in its route in
time periodt, Vi € I,j € J(i), me G(i, ), te T

A}, (A3,) positive (negative) deviation from the targetpuitfor device on dayd, Vi € I,

deD
Ao maximum deviation from target output over the piag horizon
Model
Minimize > > (WA + W Ay) + Winadmax (3a)
icl deD
subjectto )’ R,(t)=STARTg, Viel,deD (3b)
teT®
Sy (1) Wi (t-1) +(1- @f)me(uzi,j_l)ﬂ"j m OF i AL+ 57 (1) R (0
=60 D B O At=Wi(0), Vieljedi)u{ni+l}, teT (3¢)
meG(i. j)
ZZ,Bijm(t)Sl, VmeM,teT (3d)
el je3()
W i (02%) =A% +Ag =T_OUT +A,,, Viel, deD (3e)
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Amax>AL+A,, Viel,deD (3f)

Wj(t) > 0, Bim(t) >0, A% =20, A7, 20, Aj;=0,Amax> 0, W;(0) given,

The first term in the objective function (3a) isdged to minimize the weighted
sum of the positive and negative deviations fromt#rget outputs over the planning
horizon. When the objective is to minimize onlg thegative gaps, this can be achieved

by settingw” =0 for alli e I. The second term is aimed at minimizing the maxm

deviation, which is a surrogate for maintainingpautin proportion to demand. The
variableAnax is the maximum deviation from the target outpuid & determined by
constraints (3f)Wmnax is the associated penalty.

The first set of constraints (3b) ensures thatég@ired number of wafers for
devicei are started on day/ The second set of constraints (3c) represewgntory
(material) conservation at each stegj the end of period It is necessary to keep track
of the inventory levels of each deviceeparately. Finished goods are held as WIP at the

dummy stem(i) + 1 and takes the VaIUNi,n(iHl(t) for devicel at timet. They are

removed from the system at the end of the day &ydim a‘ijl (t) W (t=1) in (3c) by
noting thats;,,,,(t) = 0 fort = d7° +1, i.e., the first period of each day. With resto

startsthe parameteﬁij4 (t) multiplying R (1) in (3c) takes the value of 1 only when

o15°]
corresponds to the first step for devige its routing and corresponds to the first time
period of the day. The indé¥<° | identifies the dayl that includes time periag where
[ x|is the smallest integer greater than or equal to

In fractional terms, constraints (3d) ensure thatsum of the time devoted to
each step of devicei does not exceed the available time for each machin each time

periodt. Deviations from production targets are trackedhe equations in (3e). On the

right-hand sideJ_OUTiq specifies the target outputs for deviamn dayd while A, ,

specifies the shortages from the previous day. flTi;tE\/ariabIeV\/i]n(im(er) on the

left-hand side represents the amount of finishemtlganventory of deviceat the end of

dayd. The argumerd7° corresponds to the last period of dhyThe remaining two
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variables account for the deviation from the taxgiéh A, indicating surplus and

indicating shortage. Logically, only one of thesgiables can be positive in a solution

SoA; x A, =0 foralli andd. As mentioned, constraints (3f) are used to alitze

maximum deviation from the target output of anyidewver the planning horizon. To
conclude the model, we note that all of the vaaalare nonnegative and continuous, as
indicated in (3g), and th&¥;(0) must be given for ail j.

4.2 Data Processing

A massive quantity of data is needed to initiainel solve model (3). A description of
the input and output files can be found in Apperidixn the fab, machines operate in
one of the following modes: batch wafer (BW), batah(BL), continuous wafer (CW),
inspection lot (IL), outside inspection (O) andegdipe (PL).Formulas were provided by
the semiconductor manufacturer to compute the tffeprocessing ratagm in each

case.

Computing the effective processing rates
Although a machine typically has a fixed processatg for a particular device at some
step in its routing, several additional factors traestaken into account when specifying
rim in @ planning model. In the fab, machines opdratae of the following modes:
batch wafer (BW), batch lot (BL), continuous waf€iV), inspection lot (IL), outside
inspection (O) and pipeline (PL)o calculatem, the ‘K-parameters” given below are
used to modify the basic rate.
a. The machine processing mod&303)
b. The capacity multiplier/loading factoK852); this parameter has the effect of
amplifying the processing rate.
c. Non-machine processing timk&17); although this value is always zero in the
table, it is included in the formulation for comigeess.
d. Load/unload time. Sometimes this component is awdlin machine processing
time, c.
e. Conditional setup timek@830)
f. Average number of wafers/lots, average numbertefdatch processed
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g. Rework rate K802)
h. Machine uptime (utilization) percentag€866)
i. Most likely turn-around time (hoursiK819); time from start to finish of a lot

(1) BW Processing Mode

_ average num of wafers batc):(i]< 859

[ (1-K 802xK 86!
) K812+ K 830+ K 817

Because no data were provided on the average nwhbafers/batch this value was
estimated at 25 based on the fact that the maxibatoh size<835 is usually 50
while the minimum siz&836 is usually 1.

(2) BL Processing Mode

_ (average num of wafers per Ipt( average num of lots per batch
m K875+ K 830+ K 817
xK 85% (K 802K 8¢

Again we use 25 as the average number of wafer®pand estimate the average
number of lots per batch 873 x batch factor where K873 is the maximum lot
sizeK873 and the batch factor is currently set to be Th® gives

_ 25xK 873<batch factor>< K 852x (1-K 802xK 86!

r.
o K875+ K 830+ K 817

(3) CW Processing Mode
This mode is associated with a machine group waath as stand-in for a non-
processing operation. Because the given basegwsiogerates are disproportionally

high, the corresponding steps were eliminated fileerscheduling model.

(4) IL Processing Mode
Not all lots are selected for inspection and nbivafers in a selected lot are
inspected. Sampling is done at both steps. Ifdbeselection interval parameter
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K850 < 1, then this value is the probability thédtawill be selected. In this case, the
number of wafers that goes through the inspection |
number of wafers 1.0K850 xaverage number of wafers per lot
If K850> 1, then it means that 850" ot is selected. In this case, the number of
wafers that goes through the inspection is
number of wafers K850 xaverage number of wafers per lot
The parametelk851 indicates the number of wafers chosen for ictgpe within the
selected lot. IK851 < 1, therK851 percent of the wafers in the lot are inspedted.
this case, the amount of time for inspection is
time = average number of wafers per bK851 xK824
If KB51> 1, then this many wafers in the lot are to beéespd. For exampl&851 =
2 means that two wafers are randomly selected thenfot for inspection. The value
of time will be
time= K851 xK824
giving a processing rate of

riim = number of waferstime

(5) O Processing Mode

The calculation ofjjm is proportional to the inverse of the most likelyn-around
time parameteK819. BecauskK819 is typically small (10), rijm IS large so the
corresponding steps are eliminated from the model.

(6) PL Processing Mode

[ _average num of wafers let 846
" K816+ K 830+ K 817

x K852x (1- K 802k K 86!

Representative device

A typical scheduling problem may have on the oafekO0 devices and 600 machines.
The data sets that we are working with contain&@ads and 571 machines. The number
of steps in a route is over 650 with the longestdp@190. For a planning horizon of

three months (13 weeks) antd= 1 hr in model (1), the total number of time pdgz is
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13x 7 x 24 = 2184, which leads to a problem instanceithahsolvable. Thus some
amount of aggregation is needed to reduce the nuofibariables and constraints.

The first level of aggregation involved the graupof devices into families by
selecting a set of representative devices. lrcase, three representative devices were
identified from the families ¢ G, and G, respectively. Instead of modeling all 76
devices at the same time, only these three aredsyed. In the remainder of the chapter,
Ci is used to identify representative device

The WIP associated with devices that belong testme family is aggregated to
be the WIP of the representative device. In mases, the routings of the devices are not
exactly the same as the routings of the represeatdd¢vices so some log points or
operations might not be included in the modela lbg point of a device does not exist in
the representative routing, then the number of igadethat log point is added to the first
operation of the next log point in the represemétouting. If a log point exists in the
representative routing but not the operation, themumber of wafers at that operation
will be added to the WIP at the next operatiorhef $ame log point.

The daily input of blank wafers for each familyalso aggregated to be the daily
input of the representative devices. For testingpgses, the daily target output was set
to be the average daily input over the planningzoor, however, these values can be
adjusted to reflect forecasted demand.

Removing steps
Further reductions in problem size were achievetebyving inconsequential steps in
the routings, including

(1) Steps with type O processing mode

(2) Steps with an empty machine list

(3) Steps with CW mode but without any specified infation on routing

(4) Steps with processing rates higher than some spe tifreshold

The processing rate of wafers going through thg&ation is sufficiently large
so that virtually no time is required for this oggon. As a consequence, no WIP is built
up in any time period; wafers simply pass through operation “instantly.” With
respect to cases (2) and (3), no machines arevied@h these steps; in the case of (4),
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when a machine’s processing rate is above thefggabtireshold, e.g., 1000 wafer/min,
the corresponding operation will consume a nedlgamount of time and not affect the
end results.

4.3 Initial Computational Experience with Basic Decomposition
Model (1) was implemented in C++ and using contsatinology provided by CPLEX
10.1. All computations were performed on a DelvBgedge 2950 workstation running
Ubuntu Linux. The machine has 2 dual-core hype#tiing 3.73 GHz Xeon processors
and 8 GB memory. After some experimentation thieiong settings were used in
CPLEX when solving the linear programs.
(1) Primal simplex method (set RootAlg = 1)
(2) Devex pricing (set PPrilnd = 1)

As an additional simplifying step, constraints (8®re removed and the variables

Rq(t) were set as follows.
Rd4(1) =STARTE, Viel,deD
Rq(t) =0, viel,deD,t=2,3,...7°

That is, the raw materials were input to the lintha beginning of the first time period of
every day. Table 4.1 reports the size and the mensage for problem instances for the
three representative devices aid- 60 min time interval for different planning hoons.
For a 28-day (4 weeks) instance, there are 11,282j2cision variables and 1,998,780
constraints, which consume 7.2 GB of RAM and 108d&virtual memory. The
memory requirements for a 3-month (13 weeks) itgtarere beyond the limits of our
hardware. Therefore, it is not possible to solpeablem of that size without some form
of decomposition. The initial approach was to @egeekly instances and solve them in
sequence, initiating each with the final WIP of greceding week. This approach is
referred to as basic decomposition to distinguismfthe decomposition algorithm
proposed later in this chapter.
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Table 4.1 Problem size and memory usage for diffquanning horizon

Planning Virtual

horizon No. of No. of [ RAM | memory

(days) | variables | constrainty (GB) | (GB)
7 2,822,411 499,695 2.4 2.9
14 5,642,354 999,390 4.6 55
21 8,462,297 1,499,08p 6.8 8.3
28 11,282,240 1,998,780 7.2 10.6

All data used in the testing reflects the fab esvinent but, as mentioned, was
modified so as not to reveal the true internal pobidn capacity. For a 4-week problem
using this basic decomposition approach, the rgntime was 15,571 sec or 4.33 hours.
The initial WIP profiles for @ C, and G are depicted from Figure 4.2 to Figure 4.4 with

the vertical axis for WIP level and horizontal afas step. The cost coefficiewsand

w,, in model (3) were set at 0.5 for ak |I. The weight for the maximum deviation

Wmax Was set to 0.05. The daily inputs were specifietiable 4.2 while the daily outputs
wereT_OUTyy = 328,T OUTy =315 andl_OUTzy =26 ford =1, 2,...,28. AAt =60
min time interval was used in the generation ofrtieglel, and the number of wafers per
lot was assumed to be 25.

The solution is summarized in Table A.10 wherefitse column lists the day
index. The remaining columns are divided into éhsections: target outptit OUTyg,

completed output, and deviations (surpipor shortage ;). The number of wafers

that were actually completed each day is indicatete second section. The last section
reports the difference between the target outpdtlaa actual output. A positive value
indicates shortage while a negative value indicsteglus. It can be seen that all demand

is satisfied for the first week but the shortagest$o appear on day 8. The total shortage

TS=3" >, (Ay+Ay)is 1070.15 wafers.

The WIP profiles for devices:CC, and G at the end of each week are depicted
in Figure A.6- Figure A.17. In the first week, the WIP has oalfew spikes but is
otherwise steady. As the weeks progress, the WiRrds the end of the route begins to
disappear while the WIP at the initial steps isngeebe piling up. Finished goods are
produced by draining the WIP close to the end efrtutes without pulling the WIP from
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the beginning. There is no WIP after step 400i@teind of the last week but there are
over 8000 wafers at the first step. The profitasd, were similar; for @, the WIP
profile barely changed from week to week and athdied was met since both the input
and target output for{are low. The full set of results can be foundppendix 4.

Table 4.2 Daily input for the 4-week problem

d | Rg(1) | Rog(1) | Rea(1) | d | Rig(1) | Reg(1) | Red(1)

1 300 300 24 15 325 30( 24
2 300 300 24 16 325 275 6
3 312 300 24 17 325 30( 0
4 300 299 24 18 325 35( 24
5 275 450 0 19 325 300 24
6 299 349 72 20 300 312 54
7 375 249 48 21 300 324 48
8 325 287 48 22 325 325 0
9 325 300 6 23 325 325 0

10| 326 300 24 24 300 325 0
11 325 425 24 25 300 300 24
12 325 300 0 26 300 30( 72
13| 325 300 24 21 275 387 0
14 325 175 72 28 275 375 47
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One explanation for the unbalanced WIP profilesiiatd for the first two
devices is that the basic decomposed approachapimyBecause the full problem is
broken into 1-week segments, solutions only reflleetdemand for that week. The
absence of future demand in the decomposed modeistikat no WIP is processed

beyond the amount needed to meet the current denfdngs, WIP piles up at the front

end of the fab as blank wafers are fed into théesysn accordance with the given daily

start schedule. Once demand is satisfied for #ekwthe pressure on the fab to continue

running is off, even though there is still machoapacity available. The existence of

excessive machine time is verified in Table 4.3tfar AP machines, which are used for

wet cleaning and experience high usage in praciite first column identifies the

machine index while the second column gives theamesusage which is computed as
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follows: 3, = DD Zid o Bim (t)/|T|, v me M. Most of the AP machines operated

less than 50% of the time from the basic decomipos#pproach.

In the first week it is not difficult to meet tharget outputs since there are
sufficient wafers close to the end of their routekawever, once these wafers are
depleted from the line, it becomes increasinglyenfficult to satisfy demand in
subsequent weeks. This phenomenon is evidendbd solutions in Table A.10. To
reduce the shortages that appear after day 7,1&Irist be processed continually, not
only the WIP at the latter steps. The unused mactiine should be assigned to different
steps to achieve some level of balance.

A second reason for the empty tail phenomenadmasdome amount of machine
starvation is inevitable when there are shiftingflbaecks, as is the case here (e.g. see
Narahari and Khan 1996, Robinson et al. 1995). ef¢afannot be processed fast enough
at upstream stations to provide sufficient WIP @ivdstream stations because of limited
machine capacities and the reentrant nature dfahe A portion of upstream and
downstream stations correspond to the same macHittee demand is much higher than
the fab’s throughput capacity, then simply indugtivafers into the system in proportion
to demand, will necessarily result in long queukssa fab that is running 24 hours a day,
such as DMOS6, the only way to relieve this sitwats to add more machines.

4.4 Modified Models

Weekly versions of model (3) only try to satisfetturrent demand without looking
forward. As suggested by Figure A.9, Figure A.qd8 &igure A.17, little of the WIP at
the initial steps is processed even though exces$ime capacity exists. For example, at
step 1 at the end of week 3, the WIP @isC6662 while at the end of week 4 it is 8762 --
an increase of 1900 wafers. During the weel82B = 2296 wafers were introduced into
the system, implying that only about 396 wafer€pifvere processed at step 1. To
remedy this shortsightedness, model (3) needs todakfied.
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Table 4.3Average usage of the AP machines

Machinem | Bm %
29 74.7
30 17.92
31 12.6
32 8.53
33 11.67
34 11.21
35 10.88
36 12.17
37 39.56
38 26.92

4.4.1 Pushing the WIP forward
The approach that we developed to overcome the impepformance of the
decomposed model involves pushing the WIP forwdidis is achieved by adding a
third term to the objective function (3a) that iicrentally rewards the presence of WIP
at successive steps in a route. The corollargeifeo maximize machine utilization. In
this approach, the current demand is considerelicégkpwhile the future demand is
considered implicitly.

For devicd, letc; be the “benefit” of a unit of WIP at stgp Then the updated
model is

Minimize > (WAl + W A,) + Winadmax— Y, Y. GW (7) (4a)

il deD iel jed ()

subject to (3c) — (39)

The third term in (4a_._ > W (r), is designed to provide an incentive

<90
for accumulating WIP at downstream stations. TéméableW(z) represents the WIP of
devicei at steg at the end of the planning horizean For the new term to have the
desired effect, it is necessary thak cij+1 Vi € 1, ] € J(i).

As in goal programming, the relative values of tiimee sets of coefficients in (4a)
determines the order in which each term is optithizBur intent is to first minimize the

deviations from the targets, then to hold downnttaimum deviation, and finally to
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push the WIP. In the implementation, the followsapeme was used to fix the reward
coefficients:
cj = 0.0000%, Vi e l,j € J(i)
Asj increases, so does the reward making it moretpbddi to accumulate WIP at
the downstream steps in a route. Given the maximumber of stepdnax = max{n(i), v
I €1} =1190, we have; < 0.00000ax= 0.0119V i € |,] € J(i). To some extent,
selecting the values faj; represents a tradeoff between the three objefttivation terms.

Sincec; is defined to be much smaller than the deviatmeffecientsw , w. andwmay, the

new term will not influence the objective of miniimg the deviations from the targets,
or minimizing the maximum deviation. If the rewamkfficientsc; were set too high,
however, then the model would be more inclinedushpthe WIP rather than reduce the
deviations, the primary objective.

Although the modified model is theoretically soumdplementation occasioned a

variety of numerical difficulties that could not besolved. The increase in density of the

objective function coefficient vector due to thegence of the addition@( ) |J(i)|)

terms caused the model to become dual degendRatéer than the LP converging
within a few hours, the modified model required mtran 40 hr for a 1-week problem.
To clarify this order of magnitude increase in &, we asked ILOG (the CPLEX
vendor) to investigate a 2-day instance. Using al hiel Xeon 3.4 GHz processor with
6 GB RAM, and running parallel CPLEX with two thd=a it took 2005.69 sec (0.56 hr)
to achieve optimality with their barrier methodo€sover to a basis required an
additional 831.6 sec. They also investigated ayriastance with slightly different
parameter settings using a 64bit Linux server Wittual core Opteron 275 CPUs (1.8
GHz 1MB cache) and 6GB of RAM. With 4 threaddpitk 7422.32 sec (2.06 hr) with
the barrier method and an additional 14,459 séel(8r) to obtain an optimal basic
solution. These extremely long runtimes, even wilallel processing, could not justify
the use of model (2) directly. As a consequeneeeral alternative computational

schemes were explored.
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4.4.2 Lagrangian relaxation
One of the factors that makes model (3) difficalsblve is the need to share machine
capacity among the different families of devic€onstraints (3d) tie all the devices
together. By removing these constraints and ptattiem in the objective function as a
penalty term, we create a problem whose remairongtcaints decompose by
representative device and should be much eassaive than the original. This approach
is called Lagrangian relaxation and for linear pamgs, the optimal objective function
values of both the modified problem and the origpprablem are the same; however, the
values of the decision variables might be diffemmd in the case of the former, may not
be feasible to the relaxed constraints. If thihéscase, then more work has to be done to
obtain the optimum.

Letun> O for allm € U;¢;»G(i, j), t € T be the Lagrange multipliers associated

with constraints (3d), whenrgje ;) G(i, j) is the set of machines that are required to

process device Then relaxed modeis

Minimize z (WAL + W Ay ) + WinaxAmax + Z Z Z umtﬂljm (t)- Z Z U

deD me u( G(i, j) teT jed(i) rTE u G(|) eT

(5a)

subject to

SOW(-1) +A-67) D, B m O At + 5/ (t) STARTS

meG(i, j-1)

=57 D B O At=W(t), Vjedi)u{n(i)+l},teT (5b)

meG(i, )

w(dr?)=AL +AG =T_OUT +A,,, VdeD (5¢)

i (i
Amax>AL+A,, VdeD (5d)
Wj(t) >0, Bim(t) >0, Ay >0, A, >0, A;=0, A >0, W(0) given,

An iterative process is required to find the ogtirset of Lagrange multipliers. A
typical approach is to fix the multiplietg,; at some value, zero in our case, and then

solve model (5) to determine the optimal valuetheforiginal problem variables
(Wolsey 1998). As mentioned, whag; is fixed, model (5) can be solved for each device
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i € | separately. These solutions are then used to epdatith what is known as the
subgradient method. The current iteration consrwdil u,,; converges to the optimal
multiplier values. As a final step, model (5) adv&d with eachu fixed at its optimal
value to determine the corresponding values ofldeesion variables.

Even though Lagrangian relaxation is frequentlydu® solve large-scale
optimization problems, we found it to be numerizastable and unable to converge. For
a 1-week problem, the multiplieus,; never approached asymptotic values for runtimes of

up to 6 hours. This was the case for smaller imtsta as well.

4.4.3 Bender s decomposition

A closer examination of the constraints in the io@§ problem reveals that they exhibit a
“staircase” structure in which only the time pesam/erlap. This is typically the case
with inventory balance constraints similar to (3Benders decomposition can be used to
deal with this situation efficiently. The ideat@sdivide the original problem into
subproblems with each spanning a subset of theniplginorizon and then solve them
iteratively, checking a set of optimality conditgoat each step. The 1-week problem, for
example, can be divided into seven 1-day subprablef each iteration of the

algorithm, a restricted master problem represenhegriginal problem is solved. To
populate the master problem, extreme points oemdrrays are obtained by solving the
dual of the subproblems. These solutions are tilsed to generate constraints that are
added to the master problem. The iterations coatimtil no more constraints can be
found for the master problem. At that point, ogtiity has been achieved. The
application of Benders decomposition to staircasbelpm is provided in Appendix 6.
Following this approach model (3) for tk& subproblem can be written as

Minimize " > (WA; + WAy )+ WnaAmax (6a)

iel deDX
subject to

SOW(t1) +(1-57) 2. B am OF; AL+ 57 (1) START,

me G(i, j-1) [11°]

=52 Y B At=Wi(), Viel,jei)u{ni+1}, te TYL, D} (6b)

ijm
meG(i, )
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255+ 1-0) Y Ay O+ S/ WSTART,

meG(i, j-1) { DW

~ 8 Y B @, A= WD), Viel,jedi)u{ni)+1} (60)

meG(i, j)

Wi(PID1) + (1-67) Y. By (7°[D[) s amt

me (i, j-1)

-5 mé; ,) ”m( \Dk\)r”mm— Z Viel,jedi)u{ni)+1} (6¢)
> 3 BnM)<1, VmeM, te T (6d)
iel jed(i)

W0 (dr?) =A% +A5 = T_OU +4A7,,, Viel de D" (6€)
Amax>AL +Ay, Viel, de D" (6f)

Wj(t) 20, Sim(t) >0, A =20, A7, =20, A;=0,A =0, W;(0) given,
whereD¥={1, 2, 3, 4, 5, 6, 7} for one wedk' subproblem. The initial WIP is specified
by variablesZi}“1 while the final WIP is specified by variabléﬁ. The original

inventory constraints (3c) are split into threessefonstraints (6b) are the same as before
fort e T\ {1, °|D}. For the first time period of the subproblet(1) the inventory
constraints are shown in (6c¢) while the inventaygstraints for the last time period<
°ID¥)) are shown in (6d). The other constraints agesttme as in model (3).

Additional parameters and decision variables agaired to write the dual of
model (6).

Parameters and data

E(t) 0 if t = ¢ for device; 1 otherwise
& (L) 1ifj =n(i)+1 andt = d7° for devicei; 0 otherwise
& 0 if j = n(i)+1 for devicei; 1 otherwise

Dual decision variables

Vijt dual variables corresponding to constraints (@wg) and (6d¥v i € I, ] € J(i)
u{n(i)+1},d e DX te T¢

Yt dual variables corresponding to constraints {@e)e M, t € T¢

Nid dual variables corresponding to constraints {6f)e |, d € D*
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Wid dual variables corresponding to constraints g I, d € D

Model
Maximize > > (7T _OUTy) =D 3 ViuZ ™+ 2 D 7w+ 2 Vi Z (72)
iel deD iel jel(i) meM teT iel jel (i)
subject to

S} (t+D)E (L) Vs — Vi + & () 1a <O
Viel,jedi)u{n@i)+1}, t e TV °|DY}, d:U’TDJ (7b)

(1 |J+1)§|J Vij+1t rumAt 5|J Vijt rumAt +ymt = 0,

Viel,jedi), meG(,j),teT (7¢)
Nd +wg=—-W, Viel, deD (7d)
Nid — NMigr1 — 0id <W, Viel,deD (7e)

Viit, 77ig are freeym <0, 0< wig <Wmax, Vi € l,j € J(i) U {n(i)+1}, d € D" t e T (7f)

The Benders master problem can now be presentedrbglucing the following

definitions.

Sets

EX set of extreme points of & dual subproblem
R set of extreme rays of th& dual subproblem
DX the set of days of tHd" dual subproblem

Parameters and data
NK number of dual subproblems
Decision variables

% auxiliary variable for th&™ dual subproblem

Z final WIP of device at stefj at the end of thk" subproblem

Benders Master Problem
NK
Minimize 4,
k=1
subject togi> > > (7gT _OUT,)-D . > VAW (0)+

iel deD! el jel()
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¥ ya+y Y vz, VeeE k=1 (8a)

meM teT? iel jel (i)
ez D D, (dT_OUT)=D, D VinZ/ ™+ D > v+, 2 Virg!
iel deDK iel jel () meM teT?! iel jel ()

VeeE\k=2,.,NK-1 (8b)

A=, D (g T_OUT)-> > vi“Z™ 7+ 3 3 v,

iel deD"K iel jel (i) meM teT?
VeeE k=NK (8c)
O>Z Z (74T _OUT, )~ Z Z iy (0)+ Z 27;11t+z Z iT J '
iel deD iel jel (i) meM teT? iel jel (i)
VreR k=1 (8d)
022> (g T_OUT )= 2 ViEZT+ 2 > rm* 2 2 Vin %
iel deDX iel jed () meM teT? el jed ()

VreR k=2,..,NK-1 (8e)
023 > (1g"T _OUT)=3 2 Vit 3"+ 3 3oy, vre ROk =NK (8

iel deD"K iel jel (i) meM teT?

# freev k=1,2,..NK, Z >0,Viel, jeJi), k=12,.,NK-1 (89)

Constraints (8a), (8b) and (8c) are the so-calfgdnality cuts. They are
generated from the extreme points of the dual suidems. Attention needs to be paid to
the first subproblem and the last subproblem. tReffirst subproblem the initial WIP is
fixed to beW;(0) which can be considered as a fixed end. Fofast subproblem the
final WIP is not used for another subproblem thiu®uld be viewed as a free end. The
constraints (8d), (8e) and (8f) are the so-caksibility cuts. They are generated from
the extreme rays of the dual subproblems.

Benders decomposition can now be applied to tiggnat problem. The
variablesZi}‘ are initialized at first to specify the WIP infoation for each subproblem.
Once these variables are fixed the dual modebk(gpived for each subproblem. If the
subproblem is feasible an extreme point will beggated and hence an optimality cut
will be appended to the master problem (8). Othevain extreme ray will be generated
and a feasibility cut will be added to the mastabtem (8). When all the subproblems
are solved with the generated cuts appended tméster problem, model (8) can then be

solved to obtain the updated WAP. The solutionZ; is again used to specify the WIP
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information for the subproblems and a new iterasitants. The iteration continues until

NK

Zi}‘ becomes stable anE¢k achieves its maximum.
k=1

Unfortunately, numerical difficulties also aroseem applying Benders to model
(3). In the computations, Benders tries to fintdropl machine time assignment with
fixed initial and final WIP values for each subpierh. According to the numerical
experiments, it was likely that the primal subpawblbecame infeasible, that is, there was
no feasible machine assignment to achieve thet&tdmal WIP from the given initial
WIP. As a consequence, the subproblems only gerteextreme rays (infeasibility cuts
in the master) so a feasible (never mind optin@ltsn to the original problem was

never found.

4.5 Decomposition Algorithm

The inability to achieve convergence with eithethef aforementioned decomposition
techniques led to the development of third apprabahis more heuristic in nature. The
idea is to take advantage of the fact that modet48 be solved relatively quickly for
short planning horizons and will process as mucP A4 possible to meet current
demand. In the first step of this approach, tlaaping horizon is again broken into 1-
week segments and model (3) rather than modeis(4plved for each. Because the WIP
“pushing” term is not in objective function (3a)any of the machines are not fully
occupied and may have extensive idle capacityeriBure that this capacity is not wasted,
two additional components are included in the m@dtamgy. In the first component, a
rescheduling algorithm is applied to each timegqukrinitialized with the solution of
model (3). In the second, a score is assigneddb device-step combination, and all
remaining machine time is assigned in proportioth&scores. The final WIP in the
current week is then taken as the initial WIP oftrveeek and the computations are
repeated. The algorithm continues in this waylafitthe weekly subproblems are

solved. The rescheduling and scoring proceduees@w discussed.
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4.5.1 Rescheduling each time period

For each time periote T, a scheduling problem is solved using the soluttomodel (3)

as input in an effort to better utilize machineaafy. The model can be formulated with

the help of the following additional definitions.

Parameters

W (W)

Wmax

Wip
WIP_limit
d (t)

Wi ()

Eijm (t)

relative weight associated with a positive (negatdeviation from the

target output for deviceat step
weight for the maximum deviation

weight for the positive WIP deviation

target WIP level

target output of deviceeat ste in time period (defined below)
WIP of device at steg at the end of time periadv i €1,j € J(i) v
{n(i)+1}, t € T, as indicated by the solution of model (3)

fraction of the time machinm processes deviget ste in time period,

Viel,jedi),meG(,j),teT, as indicated by the solution of model (3)

Decision variables

Ay (1)

A ()

A

max
A-*—WIP (A\_/\IIP )
Wmax

positive deviation from target of devicat steg in time period, Vi €, j
€ J(i)

negative deviation from target of devicat steg in time period, Vi € |,
€ J(i)

maximum output deviation

positive (negative) deviation 8¥ax from WIP_limit

maximum WIP of all device-step combinations indiperioct

Model for time period t

Minimize z z (WJAJ (H+ V\(Ajf(t)) + Wmax@max +WWIPA+\;\/IP (9a)

iel jal ()

subject to
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V_Vij(t)+(1—5"-2) z (lBi,j—lm(t)_Ei,j—lm(t))ri,j—lmAt

me G(i, j-1)
-8 > (ﬁijm(t)—ffum(t))n,-mAt=V\/.j(t),Vi el,jeJi)v{n@i)+1l}  (9b)
meG(i, j)

D> Bat)<1, YmeM (9c)

iel jed()
D B At — AL+ A (1) =dyt) +A; (t-1), Vi el,j e Ii) (9d)

meG(i, j)

Amax=A; () +A; (1), Viel,jedi) (9e)
Winax = W(1), Vi e 1, | e J(i) (9f)
Winax— Aye + Ayyp = WIP_limit (99)

Bim(®) = By (1), Vi € 1,j € IOUN(@)}, me G, j),
fim(®) =Bim (), Vi € 1,] =n(i), m e G(i, )
Wi(t) > 0, Bim(t) > 0, A, (0)= 0, W; (t) ands,,, (t) given,
Vieljedi)u{ni+l}, me M, deD (9h)
The parameterg/; (t) and ﬁijm (t) are given by the solution to model (3) and

indicate the current WIP level and machine usagdgria period for device at steg for
machinem. Two goals are involved in the objective functiorhe first is reflected in the
first two terms in (9a) which minimize the sum béttotal weighted deviations from the
targets in the current periogblus the weighted maximum deviation. The secaral

to restrict the maximum WIP level to some presdatibalueWIP_limit, as indicated by

the third term in (9a). CurrentlWIP_limitis set to 1000 to reflect historical levels in
DMOS6. Imposing hard bounds on WIP can lead teasibilities. In the numerical runs,

w" andw; are set to 1.0Mmaxis set to 0.5 andiye is set to 0.1 to reflect the priorities of
the goals.

Constraints (9b) keep track of the WIP Ievels;tthen( B )= Bin (t))At

accounts for additional processing time on machiradlocated to deviceat stefj in
time periodt. Constraints (9¢) ensure that the capacity ohtaehines is not violated

while constraints (9d) and (9e) are used to comih@gositive, negative and maximum
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deviations, respectively. The terE Bim (O, At in (9d) indicates the output of

meG(i, j) 7
devicei at steg in time period; the parametet(t) is the target output in time period
and is derived by uniformly apportioning the dddyget output as follows.
d, () =T_OUT, /z°, with d =[ t/7° ]
The highest WIP levélaxis determined by constraints (9f) while the peositi
and negative WIP deviations frovdlP_limitare computed in (9g). Bounds on the

decision variables are specified in (9h). Forl#se stem(i) of the route for device the

values offjm(t) are fixed tcﬁ (t) in order to maintain the same output specifiednay t

ijim

solution to model (3). Allowing these values to mipa can lead to infeasible solutions.

Updating the WIP
After solving model (9) for each time peribé T\{ 7}, the WIP levels and machine usage

results need to be updated. This is done by guttin

Wi ()« W (D), Bnt) < B @), Viel,jedi)u{ni+1}, meM
whereW, (t) andg;,, (t) are obtained from solving model (4). However, &eew values
may imply that the solution to model (3) for timerjpdt + 1, i.e.,W; (t+1)and
B (t+1), may no longer be feasible sinéé (1) has changed. Using Eg. (3c) to update
Wi (t+1), whenW; (t+1)> 0 the machine usa@@m (t+1)is valid so no adjustments are
necessary. Whew; (t+1)< 0, we set it to 0 and decrea%g (t+1) accordingly. Thisis

done by taking each machines G(i,j) in turn and reducing, . (t+1) until the original

ijm
WIP W; (1) is depleted. Any remaining machine usage valﬁ%s(tﬂ), are set to zero.
The pseudocode for this procedure is outlined guie 4.5. In Step 1, the WIP is
updated. In Step ny’ijm (t+1) is updated whekV; (t+1) < 0.

Time period t rescheduling algorithm
The pseudocode for the algorithm that updatesahedsile incrementally is outlined in
Figure 4.6. In Step 1, model (9) is solved forretme period € T\ { 7 and the

resulting solution is then used to update the WiRels and machine usages in Step 2.
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The iterations continue until all time periads T\ { 7} are investigated. The new values

of W; () and 8, (t) give the improved WIP profiles and machine assigmis

ijm

Procedure Update_WIPgim(t+1), W;(t), W (t+1))
Input Updated WIP at time periddW(t); WIP at time period + 1 from solution to
model (3),W;(t+1); machine usage from solution to model f3}(t+1)
Output Updated WIP and machine usage at time pettadW\;(t+1) andfim(t+1)
Sted.: for(i €l,j € J(i)){
Wi(t+1) = SHE+DWH®) +(L=87) Y0 A C+ D AL

meG(i, j-1)

O (+DSTARTS, ,01=8) ; An(t4 DAL

Step2: if (Wj(t+1) < 0}
Wj(t+1) = 0; flag = O;
SUM= S (t+DWi)) +A-67) Y B E+ DN, AL+

meG(i, j-1)

4 .
S} (+DSTARTS  o1;

for (me G(i, N
if (flag equals to O){
ATim(t) = Bim(t+1)AL; RTjm(t) = sundrin,;
if (ATjm(t) < RTijm(t)) sum=sum- Bijm(t+1)riimAt;
elsefm(t+1) =sumi( rjmAt); sum=0; flag = 1;
lelse{
Bim(t+1) = 0;
}
Hlend m

Figure 4.5 Pseudocode for updating WIP in the timé period
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Procedure ReschedulingW/; (), 8. (t))
Input ~ Solution to model (L)W; () andB,, (t)
Output Updated solutiowV; (t) andg,, (t)

Stepl: for ¢ € T\ {7}){
Solve model (4), obtain solutig¥ (t) ands;,, (t);

Step2: Wiy ()« W (9, Byn(®) < Bin(®), Vi € 1,j € Ji) U{n()+1}, me M;

call update WIPB. _(t+1),W; (1), W; (t+1));

ijm

Figure 4.6 Pseudocode of rescheduling algorithm

4.5.2 Dispatching heuristic

Idle machine time may still exist after running eiferementioned rescheduling
algorithm. To ensure that the machines are fulilizad, a dispatching heuristic is
applied to push the WIP forward. It makes use st@ing scheme to assign processing
priorities to all device-step combinations.

Scoring scheme

In the design of the dispatching heuristic, thel godetermine how best to allocate the
machine capacity that remains after solving mo8ea(id then rescheduling each time
period. As part of the procedure, a scj¢) is calculated for stejpof devicel in time
periodt, and is used to set priorities such that the reimgiunused machine time is
assigned proportionally to the scores. The cdicuia are performed by the procedure
outlined in Figure 4.7.

Step 1 starts the iteration for the indicesdj. In Steps 2 and &;(t) is
dynamically adjusted as a function of the WIP lalg{t). In Step 25;(t) is set to zero
when the amount of WIP at the next stepl exceed8VIP_limit The aim is to restrict
processing at stggn periodt when there is already ample WIP in front of theragion
performed at step+ 1. This will reduce the WIP at stgp 1 in periodt + 1.
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In Step 3, the planning horizon is implicitly died into segments of four periods
each. In the first period of a segment(1), higher scores will be assigned to steps with
larger amounts of WIP in the earlier steps of dinguj small) to ensure that at least
some wafers are moved forward for processing atdutteps. In the second and fourth
periods ( = 2 or 0), scores are calculated in such a wayuased machine time will be
allocated to those steps with large WIP. The spwading objective is to reduce spikes.
In the calculations, the normalizing teMax_WIP, represents the highest WIP level
associated to devigeat the end of period A second parametéris used to bias or
control the scores throughout a routing. The stéip maximumWj(t) in periodt will
always have a score of 1; for the remaining stigyeshigher the value @f the lower the

score. After extensive experimentationwyas set to 10.

Procedure Score_assignmef{(t), WIP_limit, &, §;(t))
Input Current WIPWj;(t), parameted andWIP_limit,
Output ScoreSj(t), Vi € 1,j € J(i) in time period;
Stepl: for ( € I,j € J(i)) {
Step2: if (WA« 1(t) > WIP_limif) S;(t) = 0;
Step3: else
r =t mod 4;
if (r =1) Si(t) = 14 + W (b);
elseif ¢ =3) St =] + Wy (o)

else Max WIP, = max{W;(t): v j € J(i)};
NERVICERN
50 {Max_WIFﬁ] ’
}lend loop

Figure 4.7 Pseudocode for score assignment proeedur

In the third periodr(= 3), higher scores will be assigned to steps laithper WIP
at the tail end of the routing to push wafers foxhas they near completion. The scores
are assigned alternatively in a way such that treghnitial and tail parts of a routing are
taken into consideration without allowing waferattcumulate at intermediate steps.
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A close look at the details of the calculation&igure 4.7 reveals two contrary
objectives. The first is to push or pull the Wnvward; the second is to smooth the WIP

along the routings to avoid excessive build-upke fprocedure reflects the compromise

adopted to split the remaining capacity betweerloeobjectives.

The calculations are illustrated in Table 4.4ddr-hour time period and two

devices. After solving model (3) and the reschieduhlgorithm, assume that machime

still has 30 min of remaining capacity. Steps,15,3 of device 1 and steps 2, 4, 6, 7 of

device 2 require machimafor processing. The corresponding WIP levelssa@vn in
the third column of the table. The parameterd 0 andWIP_limit=9. The total score
Yi;Si(t) is 46.56 whem = 1, 73 whem = 3 and 1.48 when= 2 or 0. The percentage of

time assigned is shown in the 5th, 7th and 9throokifor these cases. It can be seen that

relatively high WIP values lead to higher scoragardless of the value of For example,

in the highlighted line, the WIP for device 1 isdilstep 6 and the time assignment

percentage is roughly 22% foe 1 or 3 and 67% far= 2 or 0. One exception is that

the score will be zero when the WIP at the next Edigher thaWIP_limit, e.g., step 5

of device 1. As a consequence, no remaining madimme will be allocated to step 5

until the WIP at step 6 is less than 9.

Table 4.4 Example of applying the scoring schemadohinem at time period

r=1 r=2or0 r=3
Time Time Time
WIP | Score| assigned| SCOre | assigned| Score| assigned
Devicei | Stepj | Wi(t) | Sj(t) (%) Si(t) (%) Si(t) (%)
1 1 4 | 5.00| 10.74 10 0.01 500| 6.85
1 3 7 7.33 15.74 0.028 1.90 10.00 13.70
1 5 5 0.00 0.00 0.00 0.00 0.00 0.00
1 6 10 | 10.17| 21.84 1 67.32 16.00| 21.92
2 2 4 | 450 9.66 16 0.01 6.00 8.22
2 4 9 9.25 19.87 0.348Y 23.47 13.00 17.81
2 6 2 2.17 4.66 0.00 0.00 8.00 10.96
2 7 8 8.14 17.48 0.1074 7.23 15.00 20.15

As an aside, it should be mentioned that many tibpa rules, such as SPT,

priority critical ratio, FIFO, EDD and WINQ, haveén developed over the years for
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related problems (e.g., see Pfund et al. 20060 2807, Wein 1988). Several of these
rules have been tried but each proved ineffective.

Dispatching heuristic procedure
Figure 4.8 displays the pseudocode for the dispaidireuristic. The aforementioned
definitions along with the following symbols areedsn the construction of the
pseudocodes.
fm(t) fraction of total machine time indicated in tlodusion of model (3) that is
assigned to machimain periodt
Si(t) score assigned to stepf devicei in time period
SS(t) summation of scores for the steps processed lhimem in time period
Pijmt proportion of remaining unused machine time of Inmaem assigned to stgpof
devicei in time period
AT(t) remaining unused machine time associated witthinae in time period
RTim(t) time required to process all the wafers at gtEfdevicei by machinenin time
periodt
In Step 1, the total assigned machine tigfg for each machine is calculated
to determine the machine usagef(f) < 1, then excess machine time exists and the
scoresS;(t) are computed in Step 2. In Step 3, the exceshimatime is then divided
proportionally topjm: and the WIPN(t) at the end of the current time period is updated
accordingly in Step 4. The subroutine for updatimgmachine time assignmefis:
and the WIPWj(t) in time period is given in Figure 4.9. Ife T\ {1}, the WIP at the
end of the next time peridd+r 1 needs to be updated as well using the pseudocod
displayed in Figure 4.5.

Procedure Dispatching_heuristi®;(t), Sim(t), WIP_limit, 8)
Input Current WIP movemem;(t) and machine assignmefiin(t), Vi e 1, € J(i) U
{n(i)+1}, me M; parameter8VIP_limitandJ;
Output updatedN;(t) andgim(t), Vi € 1,j € (i) v {n(i)+1}, me M;
for (t € T){
for (me M){
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Stepl: //[Compute the total assigned tase fraction

fm(t) = Ziel st.](i)ﬂiim (t)
if (fm (t) < 1){
//[Compute the total score of machmen time period

Step2: call Score_assignmeW(t), WIP_limit, 6, §;(t));
SsM=2 > S(0;
iel jel()
//Assign the remaining machine time proportion&tlyhe
score
Step3: for ( €l,je i), me G(i, )}

Pimt = Sj(t) / SS(1);
call Update_machine_time_assignmgpi(t), pimt
Wi (1), Fim);
}
Hlend if
Hlend mloop
Step4: ifteT\{3){
//lUpdate the WIP according the updated machine #ssignment.
call Update_ WIRfjm(t+1), Wj(t), W(t+1));
}
Hlendt loop

Figure 4.8 Pseudocode of dispatching heuristic

Procedure Update_machine_time_assignmggt(t), Bjme, W(t), rijm)
ATn(t) = (1 —fm(®))AL; RTijm(t) = Wi (0)/Fijm;
If(RTijm(t) > ATm(®)Pimo){
Wi (1) = W (t) — ATl Pijme Fijm; WEj+1(t) = WEj+ 1(t) + ATw(t) Bijmt Fijms
Bim() = Bim(t) + ATm(t)Pijm/At;
}else{
/IWIP Wj(t) can be drained
Wije2(t) = Wijea(t) + Wi(); Wi(t) = O; Biim(t) = Bim(t) + RTim(t)/AL;
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Figure 4.9 Pseudocode for updating machine timgrasent and current WIP

4.5.3 Integration of algorithmic components
In summary, the decomposition algorithm works dieées. After reading in all
parameters, the problem is decomposed into a se¢ekly subproblems for a given
planning horizon. Model (3) is solved first andyamused machine time is allocated
heuristically with the help of the reschedulingalthm and followed by the dispatching
heuristic to push WIP forward and simultaneoushgag it evenly along the routes. The
WIP associated with the current solution at the @frttie 7th day is taken as the initial
WIP of the next subproblem. The computations epeated until all subproblems are
solved. The following notation is used to expldia procedure outlined in Figure 4.10.
w index for subproblems
nsuP number of subproblems (each subproblem is a wegkrbgeneral, a
subproblem can be any number of days or any divigidime)

nd ays

number of days in a subproblem
The WIP is initialized in Step 1. Step 2 contatasation for the subproblems.
After model (3) is solved, the excessive machimeetis allocated by the dispatching
scheduling and dispatching heuristic in sequetic&tep 3, the initial WIP of each

subproblem is updated. The final solution is ottgglwhen all the subproblems are
solved. The complexity of the composite aIgoritisr@(nS“b-|T|-|M |- Zi<id(i))), which can

be seen by counting the nestedloops.

Procedure Decomposition_algorithnir{it_WIP;, WIP_limit, 8)
Input Initial WIP att = 0, Init_WIP;, Vi € |, ] € J(i); parameter§VIP_limitandd;
Output WIP leveld\/ (t) and machine assignmertis, (t) found by the heuristics;
Stepl: //read the given initial WIP
W;(0) =Init_WIP;, Vi € l,j € J(i);

Step2: forw = 1,...,n""%{

Solve model (1) and obtain the solutidhigt) andGim(t);

ReschedulingW(t), Bim(t));
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Dispatching_heuristi®¥;(t), Sim(t), WIP_limit, 8);
Step3: //Set the final WIP to be the initial WIP fdret next subproblem
W;(0) =Wy(n™%P), Vi e 1, j e J(i);
}
W () =W(t), Bin(®)=Bim®), Viel,jedi)u{ni)+1}, meM,teT

|

Figure 4.10 Pseudocode of the decomposition algurit

4.5.4 Bottleneck machines
For our purposes, a bottleneck step is one at whielmumber of wafers in queue is
consistently above a prescribed threshold value I(eginski and Glassey (1988) for a
discussion of detection mechanisms). The machi@gperform the operations at such
steps are calledottleneck machineand consistently evidence high utilization, avergg
over 97% in the Tl environment. For the curremijem instance, the threshold values
for devices 1 and 2 are set to 1000 wafers. Farcde the threshold value is 500 wafers.
It should be mentioned that in the initial rurg tnetrology tools rather than
photolithography tools became bottlenecks, whiatistrue in practice. There are at
least two possible explanations for this discreganihe first is that the company’s data
records are not completely accurate; the secothgighe processing rates were
underestimated due to faulty assumptions related¢oage lot sizes, uptime, or sampling
procedures. To reflect the true situation, adfstperations that should not be
bottlenecks is provided by the company. For thelmmes associated with the operations
in the list, their processing rates are increased tactor calledProcRateln¢which
varied between 2 and 20.

4.6 Computational Results

The results obtained from running the decompostigorithm for a 4-week (28-day)
problem are presented first and then extendedditionths (13 weeks). The
representative devices in the three familigs@ and G have 674, 835 and 956 steps,
respectively, in their routes. The threshold vdarestep reduction was set to a large
value (16) such that no steps will be removed due to higlit@ssing rates. A time
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interval At = 60 min was used in the generation of the maudel, the number of wafers
per lot was assumed to be 25.

The objective function coefficients were not cheshdrom the settings used in the
initial runs discussed in Section 6. The dailyuhglenoted by the parame&FARTS,
was generated by the program from the lot states pl@vided by Tl and spanned the 3-
month period from September 1 through Decembe®Q7 2 The daily output demand,
T_OUTy , was computed as the average of the total ingartthe planning horizon; that
is,

T_OUTy= ) STARTS/| D, Viel, deD
deD
where P| is the number of days in the planning horizohe Thitial WIP,W;(0), was
calculated by the program to reflect the statdeffab on September 1, 2007. To avoid
unnaturally high spikes in WIP during the LP runs, setWIP_limit= 1000.

In the computations, model (3) was solved withghmal simplex algorithm in
CPLEX 10.1. All other options were tried but ngmevided comparable performance on
the 1-week problem. For example, the barrier ntetbok approximately 270 sec to set
up the model and over 1 hr to find a solutionadidition, it required 6.5 GB of RAM
whereas the primal simplex required only 2.4 GRrtitbing right-hand-side values and

objective function coefficients did not improve skeaesults.

4.6.1 Problem with 4-week planning horizon
The initial WIPW;(0) of the 4-week problem is depicted in Figure 4The daily inputs
for the three devices are given in Table 4.2, \[ilfh= 28. The daily target output is
T _OUTyy = 312 wafers for ¢ T_OUT,q = 315 wafers for €andT_OUTzy = 26 wafers
for C3, vdeD.
The 4-week problem was solved in 2,199 sec (3616. Each 1-week
subproblem contains 2,822,4tdriables and 499,6%®nstraints. The whole set of
results are included in Appendix 5. Table 4.5 mles the output statistics by week. The

second column reports the corresponding total age:ail'S:ziel zdeD(A;j +Ay ) The

third columnt'" gives the time required by CPLEX to solve the mi¢teLP, and
indicates an upward trend. The fourth colufmreports the time to run the rescheduling
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algorithm, while the last columfi” reports the time to run the dispatching heuristibe
statistics in the last three columns do not inclindeoverhead time which required 2199
— 654 — 296 — 452 = 797 sec.

As seen in Table 4.9,S= 0 for the four weeks, which implies that theusioin is
optimal. The WIP profiles of {Zat the end of each week are include in Appendird
repeated here in Figure 4.11 — Figure 4.14. Fiasd profiles we can identify where the
bottlenecks occurred along the routes. Fom@afers accumulated at steps 57, 106, 128,
311, 368, 431 and 650 with WIP over 1000 waferep$57, 106, 128 and 311 are
associated with the AP machines (wet etching)p 868 is associated to the VF
machines (furnace for annealing); step 431 is ds®utto the MP machines

(electroplating) while step 650 is associated ®EfR machines (dry etching).

Table 4.5 Output statistics for the 4-week problem

Week tLP trs tdh
no. TS| (sec)| (sec) | (sec)
1 0 73 47 129
2 0 86 78 109
3 0| 265 83 107
4 0| 230 88 107
Total | O| 654 296 | 452

For G, the bottleneck steps are 21, 66, 79, 141, 178,475, 527, 570, 619, 753,
796 and 835 with WIP over 1000 wafers. All thetleoieck steps except the last two are
associated to the VF machines. Step 796 requieeET machines while step 835 is the
last step of the route and should not be countedbadtieneck since the WIP at this step
accumulates due to the pushing logic of the decaitipo algorithm. Even if it were
possible to process this WIP, the objective fumciiromodels (3) and (9), which are
designed to restrict output deviations, might disage it.

For G, the bottleneck steps are 511 and 956 with WIFP 508 wafers. Step 511
is associated to the HD machines (wet clean op&igtiwhile Step 956, being the last
step in the route, is once again constrained byliective of minimizing output

deviations.
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Figure 4.11 WIP profile of Cat the end of the 1st week
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Figure 4.12 WIP profile of Cat the end of the 2nd week
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Figure 4.13 WIP profile of Cat the end of the 3rd week
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Figure 4.14 WIP profile of Cat the end of the 4th week
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The current solution is a significant improvemewer the initial solution
discussed in Section 6 since all shortages have dlerinated. However, as can be seen
from Figure 4.11 Figure 4.14 that there is substantial WIP builduparious steps
which implies some instability in the system. Agar situation was observed fop @nd
Cs.

4.6.2 Problem with 13-week planning horizon

The basic parameters for the 13-week problem aréttial WIP,W;(0), which is
displayed in Figure 4.2 Figure 4.4 and the daily input which is not listezte but can be
found in Appendix 5. The daily output targets &r®©UT,y = 328 wafers for ¢

T_OUTy = 315 wafers for €andT_OUTsy = 26 wafers for g; vV d € D where P| = 91.

The solution for the 13-week problem was foun@,080 sec (2.51 hr) and is
detailed in Appendix 6. Table 4.6 reports the augtatistics by week. The second
column indicates that shortages first appear irkveeand increase as the weeks progress.
From week 10 through week 13 they are steady aRB3afers.The third column
indicates that the time to solve model (3) is welller 500 sec for each week. The time
spent on rescheduling in each period is givenerfoirth column and shows an upward
trend. The final column indicates that the timergpn the dispatching heuristic is stable
at roughly 120 secA total of 9030 — 3027 — 3515 — 1637 = 851 secnsgsired for the
overhead computations.

The total shortag€&Sis 2944.42 wafersThe daily shortages for the three devices
are displayed in Figure 4.15 — Figure 4.17, respelgt with positive values on the
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vertical axis associated with;, and negative values with;, . Shortages first appear at

day 52 and then fluctuate for both &d G. From day 53 to day 91, the maximum daily
shortages are 60.1 wafers for @ day 62, 52.6 wafers for,@Gn days 57, 64, 71, 78 and
85, and 26 wafers forg@rom day 60 to 91. In fact, there is no output@g on the last

32 days. Over the 91-day horizon, the averagg dawiations for the three devices are
11.55, 11.55 and 9.26, respectively.

Table 4.6 Output statistics for the 13-week problem

tLP trs tdh
Week no.] TS | (sec)| (sec)| (sec)
1 0.00 110| 191 134
2 0.00 109| 234 207
3 0.00 207| 239 11-
4 0.00 224| 251 116
5 0.00 144| 260 117
6 0.00 195| 263 119
7 0.00 143| 281 125
8 260.60| 368 291 114
9 483.02| 321 289 114
10 550.20( 301] 283 116
11 550.20( 177 303 119
12 550.20( 429 302 120
13 550.20f 299 328 121
Total 2944.42 3027 | 3515| 1637
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Figure 4.15 Daily shortage of,C
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Figure 4.16 Daily shortage of,C
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Figure 4.17 Daily shortage okC

The three WIP profiles at the end of the 13th warekdisplayed in Appendix 6
and also repeated here in Figure 4.18 — Figure 4TP@ bottleneck steps and the
associated machine information are reported inefdid. The first three columns list the
devices, the bottleneck steps, and the correspgmaachine tools. The last two columns
give the number of available machines and the &sdcprocessing rates. As in the 4-
week problem, the AP, VF and ET machines are thidebecks.

A closer look at the routings reveals that them&thines are involved in 14 steps
for C, with an average processing rate of 0.5433 waféms/td steps for €with an
average processing rate of 0.4957 wafers/min arsleé} in @with an average
processing rate of 0.5002 wafers/min. To get a&betiderstanding of fab capacity,
assume that the capacities of the AP machinessargn&d to the three devices in
proportional to the daily target outputs, and tbathe same device, these capacities are
evenly assigned to the associated steps. Thetaftfhe fab can be estimated as follows.

Ci: 0.5433x ___ %28 X 1 X 9x 60X 24 = 246.58 wafers/day

328+ 315+ 2¢ 14
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C 0.4957><L ><i X 9x 60X 24 = 216.06 wafers/day
328+ 315+ 2¢ 14

Cs: 0.5002><L ><i X 9% 60X 24 = 9.96 wafers/day
328+ 315+ 2€ 26

These daily outputs are lower than the daily taogéputs for the three devices.
The estimated shortage is (328 + 315 + 26) — (B46.816.06 + 9.96) = 196.66
wafers/day. Applying the same analysis to the \d€immes, the estimated daily outputs
for the three devices are 528.97, 273.91 and 2¥a86rs, respectively. This results in a
surplus of (528.97 + 273.91 + 27.30§328 + 315 + 26) = 161.18 wafers/day. However,
a closer look indicates that the reason why thendghines become bottlenecks is
because the processing rate at the steps immediaésleding the bottleneck steps is
much higher: for g the processing rate is 40 wafers/min at stepaditiBfor G it is
48,000 wafers/min at step 641.

For the ET machines, this analysis is more sttighard since they are only
required for step 650 in the route of, Gtep 796 in the route ob@nd step 922 in the
route of G. The maximum output for the two ET machines 2)8x 2 x 60 x 24 =
590.4 wafers/day. In contrast, the daily shoriag828 + 315 + 26) — 590.4 = 78.6
wafers while the weekly shortage is 7&& = 550.2 wafers. This value coincides
exactly with the shortages from week 10 to weekd 8eported in Table 4.5. As such,
the daily output requirements are beyond the capatihe available machines,
implying that the fab will eventually become unséab
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Figure 4.18 WIP profile of Cat the end of the 13th week
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Figure 4.19 WIP profile of £at the end of the 13th week
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Figure 4.20 WIP profile of £at the end of the 13th week

Table 4.7 Bottleneck information for the 13-weeklgem

Device | Bottleneck Number| Processing rate
(family) | step(s) Tool| of tools (wafers/min)
21 AP 9 0.4464
57 AP 9 0.5515
C: 106 AP 9 0.5515
128 AP 9 0.4934
650 ET 2 0.2050
66 AP 9 0.5515
C 619 VF 8 0.3729
796 ET 2 0.2050
167 AP 9 0.5859
229 AP 9 0.4261
Cs 642 | VF 8 0.5357
922 ET 2 0.2050

Intuitively, the bottleneck machines should beybmest of the time. This can be

verified from the data in Table 4.8, which repdhs average percent utilization for the
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AP, VF and ET machines over the 91-day planninggbar It can be verified that these

machines are fully utilized wit_= 100%.

Table 4.8 Average usage of bottleneck machines @ivelays

Machine | Machine| A Machine | Machine| An

numberm | group (%) | numberm | group | (%)
29 AP 100 543 VF 100
30 AP 100 544 VF 100
31 AP 100 545 VF 100
32 AP 100 546 VF 100
33 AP 100 547 VF 100
34 AP 100 548 VF 100
35 AP 100 549 VF 100
36 AP 100 550 VF 100
37 AP 100 284 ET 100
38 AP 100 285 ET 100

4.6.3 Rolling horizon for subproblems
Even if no shortages exist after running the deamsitjon algorithm for several weeks,
the optimal solution obtained for a particular weeky not be optimal when the full
problem is solved as a whole. In fact, an excebslaege number of alternate optima
exist for both models (3) and (9) due to the uryilegl network structure of the problem.
If only a small subset of the alternate optimaratmist with respect to the 13-week
problem, then it is likely that as the decompositidgorithm progresses, the subproblem
solutions will become less robust. This could leaduboptimal final WIP values which
in turn would produce suboptimal subproblem sohdiolf this occurs, the subproblem
solutions will deteriorate over time with respexthe full problem. (A similar
phenomenon is commonly observed when statisticdlefsare used to make forecasts;
i.e., variance increases with the length of thedast.)

To investigate the implications of this situatiarg implemented the
decomposition algorithm in a rolling horizon franmW. In this approach, amday
problem, say, is solved but only the results ferfirstr days ( <s) are actually applied.

The WIP at the end of the firsdays is used to initialize anotreday problem whose
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solution again is only applied for the nexdays. This process is outlined in Figure 4.21
and would be repeated indefinitely.

sdays

r days sdays

r days sdays

r days

Figure 4.21 Rolling horizon for the subproblems

In the implementation we set 9 andr = 7. For the 4-week problem, the
solution was obtained in 2,954 sec compared to%2s&@ for the original approach and
similarly resulted in no shortages. The WIP pesfiat the end of each week were almost
identical to those shown in Figure 4.11 — Figudel4.For the 13-week problem, the
computational time was 13,364 sec compared to %68phowever, a slightly better
solution was found witl'S= 2943 wafers. In these runs, a shortage of Waf8rs first
appeared in week 7, increased steadily, and tiaiized again at 550.2 wafers in the
last three weeks.

The immediate observation from these results isftindhe parameter settings
used in the analysis, the rolling horizon schenresames proportionally more time
without noticeably improving the solution. Althdug largeis would make the
subproblems more robust, the shortage in thedasirfeeks in the 13-week problem will
eventually stay at 550.2 as indicated by the amsabfgshe ET machines in Section 9.2.

4.7 Further Discussion

The 4-week problem can be solved in about 37 mimghwvis a reasonable amount of
time, and provides results without any shortager. the 13-week problem, the
occurrence of shortages began in week 8 and cattitauthe end of the planning horizon

due to the capacity limits of the available mackinAssuming that the processing rates
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are correct, to improve throughput, either adddidsottleneck machines need to be
brought on line or their processing rates neecktmbreased.

The final issue concerns shift scheduling. Beedhs results from our model are
in aggregate form with respect to the three repitasiee families, and are expressed as
continuous rather than discrete values, more weorieeded to construct a daily plan that
takes into account the actual devices in the sysdetap times between lots, tooling, and
other factors that are common in discrete manufexgfu A second model would have to
be developed for this purpose.
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Chapter 5

Scheduling Back-End Operationsin Semiconductor Manufacturing

At back-end facilities, finished wafers go througghextensive regimen of
inspection and testing that can take up to 3 hauesach step. Over a planning horizon
of anywhere from 8 hours to several days, hundoétisousands of wafers, grouped into
thousands of lots must be assembled and testeth vitzfer must go through
approximately 32 discrete operations before itmsriaished goods inventory. The AT
facility has hundreds of machines that are usgzktiorm the required processes. At
each operation, a queued lot must be assignecetofasubset of appropriate machines,
and when two successive lots consist of differewiaks, a setup is incurred between lots.
Setups or changeovers are performed by a crewlofitdans and typically take 2 hours,
although fewer hours may be needed, dependingeotothing. If the current device on a
machine must be tested at a high temperature vidideiccessor requires testing at room
temperature, and both use the same fixtures, tieesdtup time is equal to the amount of
time it takes for cool down, usually an hour. Lalsogenerally not a constraining factor.

Each lot contains a number of chips of the same&dgranging from a few
hundred to several thousand. Two lots may cortkersame device but a different
number of chips. A lot remains in the facility iittundergoes all 32 operations. All
lots are associated with customers and have deldwex dates. When a delivery is late, a
penalty is incurred which is a function of latenaed volume. Because setups are so
time consuming, it is critical for the plannersagsign lots to machines and tooling to
machines in such a way that as few setups as p@ssérequired and due dates are
taken into account.

The age of a lot is the current time minus the tilheatered the facility. For each
operation, each lot is assigned to a particularhinacfor processing. To be eligible, the
machine must be set up with the appropriate togliages, as specified by the lot’s
routing tableand must be able to operate at the required teyer Machines are
divided into families. In most cases, two machifies the same family are identical;
however, it is possible that “identical” machinggrate under different temperatures and
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hence are not interchangeable. The limiting resoatenost operations is the number of
tooling pieces. As with machines, tooling piecesdivided into tooling families and
only operate at a limited number of temperatures.

Each AT operation can be viewed as independefiteobthers so the
corresponding problems are separable. As suchlisbassion in the remainder of the
chapter relates to an individual operation rathantthe AT facility as a whole. For an
incoming lot, a particular route must be selectiithere is more than one option. A
route specifies the eligible machine family, thelitay requirements, the processing rate,
and the operating temperature. Once a routeasteel, the lot is assigned to one of the
machines in the specified family and the requicading pieces are installed. Each
assigned lot is processed completely without preéim@and each machine can be set up
at most once during the planning horizon to opemaitsnly one temperature. That is, if
machinem is set up with tooling configuration under temperaturg, then it cannot run
with another tooling setujp or under another temperatusdater in the planning horizon,
even wher; is feasible for configuratio.

At the beginning of each planning horizon, typigallshift or a day, a finite
number of lots are available for processing. Asstilof these lots may contain what are
calledkeyandpackagedevices, and are singled out for special treatmany demand
that cannot be satisfied for these two types ofadsvoccasion a large penalty for the
company. It is thus desirable to ensure that as/rohthese “hot” lots as possible are
processed over the planning horizon to avoid augegyenalties. Regular lots are
assigned a value that depends on their age andniemaycle time in the facility.

Problem statemenfor a given planning horizon, AT operation andagéots, determine
how each available machine should be configurel teibling to operate at a specified
temperature so that the weighted sum of the latsgased is maximized without
violating the system’s capacity. The solution dtl@iso minimize the number of key

and package devices falling short of their demand.

In the literature, this problem is generally redelrto as a parallel machine
scheduling problem with setups, due dates, antkadas objective. Other objectives,
such as minimizing the time to complete all lots.(iminimize makespan), minimizing
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the number of setups, or minimizing the numbeat# jobs, have similar characteristics.
In all cases, current technology limits the sizaminstance that can be solved optimally
to less than a dozen machines and several hurmse(elg., see Bard and
Rojanasoonthon 2006).

The optimization model is presented in the negtise. The details of the
decomposition strategy and GRASP are presentedatiof 5.2. Test results using data
provided by Texas Instruments reported in SectiBn Bn assessment of the model and
several suggestions for improving the methodolagypaovided in Section 5.4.

5.1 Mathematical Formulation

The AT facility planning problem can be modeledhanixed-integer problem (MIP)
using the notation given in Figure A.72. Althougk formulation includes only a
handful of constraints, a disproportionate amodimodation is required to correctly

account for all the machine-tooling-temperature loim@tions.

Maximize > D > (W —&)%,— > WAT=D WA? (10a)
ieM leL (i)seS(i,l) keK peP
subjectto > > x.<1, Vlel (10b)
ieM (1)seS(i,1)
> y,<1L,VieM (10c)
AeA(i)
ZZ Z b,y, < Z ©n VteT,neN (10d)
ieM 7reT(n) AeA(it,r) me N( 9
nlchips . .
X <HY,, VieM,1eA() (10e)
leL(,2)seS(ila) Tiis
Y X + CAf 2 M, Wk e K (10f)
ieM lel (i k)seS(i,l)
Z Z Z r,Ilchips)sIS + CAS > rLmin_chips, \a p c P (109)

ieM lelL (i,p)seS(il)

Xis € {0,1},Vie M, | e L(i),se i), y» € {0,1}, Vi e M, 1 € A(i)

A¥>0,A?P>0,vkeK,peP (10h)
The objective function (10a) is designed to maxerilze total weighted number

of lots processed over the planning horizon anditomize the total weighted shortages
for the key and package devices. The weight df lgt= lot age + remaining cycle time
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planned, and the weight§ andw, are the penalties for shortagesall k € K andp € P.

The latter are both set to values larger than max{ € L}, implying that priority in the
optimization is given to minimizing shortages owaaximizing the weighted sum of lots
processed. When all the weighgshave the same value anf=wp = 0, the problem is
equivalent to maximizing the throughput. The paetar in the first term of (10a) is
the penalty incurred when rowtés chosen. Both prime and alternate routes &xist
some lots. To encourage the selection of primeesowhen at all possible, we use the
following settingszs = 0 fors a prime routess € (0, min{w; : | € L }) for san alternate
route

Constraints (10b) require that if lots assigned to machine M(l), then the
tooling associated with one of the rouses S(i,|) must be set up on that machine. Lot
cannot be assigned to more than one machine dvée more than one route. These
constraints do not require that each lot be pr@zkbst the objective function ensures
that the as many lots as possible are processedt tiveee are a sufficient number of
machines, tooling pieces, and time available.

Constraints (10c) limit each machin® at most one tooling configuration from
the setA(i). When the number of lots||is small, or when the available tooling is lirdite
it may not be desirable or feasible to set up althmnes. Also, once the tooling
configuration/ is selected for a particular machine, changecaersiot permitted during
the planning horizon.

Constraints (10d) restrict the total number ofitappieces assigned to machines
from family t to the number of pieces available under temperatombinatiom. The
left-hand side of these constraints counts the murbtooling pieces from family
associated with the choice wf over all machines, temperaturesijrand corresponding
tooling setups. The right-hand side counts tha #tailable number of tooling pieces in

family t under temperature combinatiofy summingn®®" over all combinations

me N(r). For each e T, there aren®™ tooling pieces that can be used undemthe
combination ifm shares some temperatures withAssume that there are three discrete
temperatures, that i, = {1,2,3}, andn®" = 1,v t € T, me N, and let the set of

possible temperature combinatidws {{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}.  For
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n = 4, for example, the temperature $¢8) = {1,2} and N(4)= N({1,2}) = {{1}, {2},
{1,2}, {1,3}, {2,3}, {1,2,3}} = N\{3}. The right-hand side of (10d) under comkina

nis then‘N(4)‘ = 6 for all tooling familieg € T.

Constraints (10e) impose a processing time limieach machinee M when it
is set up under configuratidre A(i). The left-hand side tracks the amount of time
required to process each lassigned to machindollowing routes. The time available
for machind depends on its status. If a machimeactive, then exactly one of the
variablesy;; = 1,for A € A(i), as required by constraints (10c). Thus, théabla
processing time ikl when machingis active and 0 when it is idle. These constgaint
also impose a logical relationship betwegrandy;,. When the setup variabjg = 0,
the lot assignment variablgg = 0,V | € L(i,A), s€ Si,l,4) so any lot requiring setup
configurationd cannot be processed on machine

Constraints (10f) ensure that as many lots as lplessontaining key devideare
processed, at least until demanft’--""is satisfied. The shortageA! will be positive if
some of the demand cannot be met due to limitemlress. In that case, a penalty equal

to W'A¥ is incurred, wher€ = max{w : | € L} + 0.1%,..w is a normalizing constant

used to ensure that the left-hand-side coefficien(sf) are all the same order of
magnitude. A similar set of constraints (10ghisliided for package devicps P. In
(10h), binary restrictions are placed on xfigandy;, variables, and nonnegative
restrictions are placed on the shortage variahfeandA?.

Although it is possible to tighten the linear praxgnming relaxation of (10) by
adding logic constraintgs < Vi, Vi € M, 1 € A(i), | € L(i,4), s€ Ki,l,A) and removing
yi, from the right-hand side of (10e), doing so waunldtease the problem size by
O(M[-|AJ-IL]) constraints, making it more than an order of mtage larger. In our initial
testing with CPLEX 11, this modification vastly neased runtimes and so was not

adopted.

Proposition 5.1. The assembly and test scheduling problem (AT esented by model
(10) is NP-complete in the strong sense.
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Proof. We will show that a restricted version of ATRaisinstance of the bin packing
problem (BPP), which is known to be NP-completéhmstrong sense (Garey and
Johnson 1979). For BPP, we have the following dedim

INSTANCE: Finite set of items, a size, € Z* for eachu € U, a positive integer bin
capacityB, and a positive integé.

QUESTION: Is there a partition &f into disjoint set$J;,U,,...,Ux such that the sum of
the sizes of items in eath is B or less?

To see how an instance of BPP can be reduceditstamce of ATP, we create a
simplified version of ATP where al\|| machines are identical, the available processing
time on each machine is identical, ild. = H for alli € M, there are no key or package
devices, there are no tooling or setup requiremémtsprocessing time of lbisr, is
machine-independent, and the objective functiorgiasiv, = 1 for alll € L. For BPP,
we letU =L, s, =r, whenu =1, B =H, K = M|, which gives rise to the simplified ATP.

If we can find a solution such that the Betan be partitioned intid subsets such that

ZUGU» s, <B fori =1,...K, then we can find a solution such that all the IntWIP can

be processed on thd||machines it hours, and vice versa. The fact that BPP can be

transformed into the simplified instance of ATRpmlynomial time completes the proof.
[

5.2 Solution M ethodology
Model (10) containg®'= »" ZleL(i)|S( LD+ > JAG)] + K|+ Pl =O(MLHS +

IM-|A| + DI) variables and™"= |L| + M| + [T}N| +>_

A@)] + KI+ Pl =0(L| +

[TFIN] + M[-|A| + PJ) constraints. Problem size is dominated by tiralyer of lot
assignment variablegs and the number of lot assignment constraints (Ifiiih of
which grow linearly withl}|. For a small case with 300 lots, 5 machine fas&nd a
total of 20 machines, 10 tooling families and altof 50 tooling pieces, 3 operating
temperatures, and 50 devices with 40 being keyaokgge devices, the model contains
approximatelyn® = 2220 variables amif®" = 650 constraints. Such instances exhibit

optimality gaps at the root node of the searchttiaeaverage 3% and solve quickly.

111



Real instances with, say, 2000 lots contain rou§dl00 binary variables and 3300
constraints and are much slower to converge, ¥ tizeat all.

To ensure reasonable runtimes, we developed &stieutwo-level
decomposition scheme and embedded it in a reaBRARSP. Our approach is based on
the observation that model (10) becomes much emsgmive when the machines setups
are given, that is, when tlyg variables are fixed, leaving what we term lineer level
problem(LLP) in thex;s variables. At the upper level, a strategic deaissomade
concerning machine-tooling pairings.

Phase | of the GRASP is designed to uncover agityesf high quality feasible
solutions by randomly selecting thieariables in accordance with an adaptive greedy
measure and then solving the resultant LLP to oliteg optimal lot assignments, This
process is repeated many times. In phase Il,tampt is made to improve a subset of
the candidates uncovered in phase | using a high-teeighborhood search. Before
presenting the overall analytic framework, our agph to solving the lower and upper
level problems is described.

5.2.1 Lower level problem
When the tooling setup variablgsare fixed at, sayy,, constraints (10c) and (10d) can

be dropped from model (10) and the right-hand sefd@0e) becomes a constant. The
reduced model, denoted by LLP, is as follows.

Maximize > > > (W —&)Xs— D> WA =D WA (11a)
ieM leL (i)seS(i,l) keK peP
subjectto > > x.<1, Vlel (11b)
ieM (1)seS(i,l)
rIIchips
r—)glséHiVM, VieM, e Al) (11c)
leL(i,A2)seS(i,I,A) lils
z Z z r,IlchipsxIS + CAI1< > rﬂ<min_chips, \a k cK (11d)
ieM leL (i k)seS(il)
z z z r,IlchipsxIS + CAS > rLmin_chips, \a p cP (119)

ieM Il (i,p)seS(il)
Xis € {0,1}, Vi e M, I € L(i), se Si,I), A;>0, A} >0,

VkeK,peP (111)
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Fory,=1, let Ai be the corresponding tooling configuration for mael. By

implication ¥, = 0 for all1 € A(i)\{ A} and constraints (2c) can be written as

chips

2. X L Xs <H, VieM (11¢)

leL(i,4i)seS(il,4i) Fiis

with the additional restrictioris = 0,V i € M, 1 € A(i){ Zi}, leL(i2),se il ).

Model (11) contains approximately. = > ZV)‘S( i, |, Ai )‘ + K| + P| variables and.| +

leL (i
M| + K| + P| constraints, which is a sizable reduction frondel@10), but still a
difficult IP. Since our algorithm requires thaflfbe solved repeatedly for different
values of they;, variables in both phases of the GRASP, we pmpotving the LP
relaxation of (11) and then constructing feasibl@tsons guided by the results, rather
than applying an IP solver directly. In additiore were motivated by the desire to
eliminate any dependency on a commercial product.

L P based heuristic for LLP
Let X" be the solution to the LP relaxation of model (1Ip transformx"" into an

integral solutionk”, we start by truncating the fractional lot assigmis to get
X =% for xJ integral
xt=0 for x! fractional
which empirically turns out to be a good startirmgnp. LetLo be the set of unassigned

lots and leL; be the set of lots assigned to mactiiimeaccordance withx” . For device
J, the outpubut(j) and the shortageh(j) are defined as follows.
out() =>. > n"™, VjeD, sKj)=n()-out]), VjeD

ieM lel;L(j)
The termn(j) is the target output for devigen constraints (11d) and (11e), that is,

n"-<"**for j € {K U P}, and—co for regular devic¢ € D{K U P}. There is no output

requirement for regular devices.

The benefit of an unassigned lat L, is defined by the function

ber(l) =w +(w, /C) - min ™, sh(d)} -1 {sh(d) >0} 1 {d, < [K UP}} (12
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whered is the device contained in Ibandl{ ¢} is an indicator function equal to 1 if the
phrasex is “true” and O otherwise. The first right-handesterm in (12) is the lot weight;
the second term measures the penalty reductioarjpak gain in the objective function
(2a)] that would result if the lot contains a keypackage device. In the second term,

(wdl / C) is the unit shortage penalty associated with thesch lotl. The weightv, =
wtif d e K andw, =w; if d € P. For the indicator functio o}, whend, € {K U P}
andsh(d) >0, | {sh(d) >0} =1 {d, e {K U P}} = 1. The magnitude of the penalty
reduction depends anin{n™"*, sh(d)} . If n"**< sh(d)), then alln®"** chips contained

in lot | go towards reducing the penalty. Otherwise, shig)) of them contribute.
Using the benefit function calculated in (12), adible assignment of lots to

machines is given by", and then is improved locally. For each machiaeM, let t” be

the time consumed by the lots assigned to it itiglaolutionx”. With these values in
mind, procedur®;(x") is applied to assign as many lots as possitileet@vailable
machines in an expedient manner, and then procé(x8) is used to perform a
neighborhood search giving solution LLP_hgur(The pseudocodes of the two
procedures are provided in Figure A.73 and Figui@&A

Ni(xX")  (Greedy lot insertion) Sort the unassigned llad , in nonincreasing order

according tdben(l). Pick the next lok € Lo and a machinee M. If | € L(i,
i) andt® +ne™*/r < H;, where route = argmaxtis, s € i, i)},

assignl to maching and go to the next unassigned lot; otherwisepgeekt
machine. I cannot be assigned to any machine, go to theumadsigned
lot.

No(x") (Lot swap) Sort the unassigned Ib&L, in nonincreasing order according
tobenl). Pick the next lot € Lo and a machinee M. Ifl € L(i,zi), pick a
lotl’ € L. Lets=argmaxfis:SE€E S(i,l,ﬁi )} and s’ = argmax{is:se il
A} I PP /r —ne™=/p < H; andber(l) > ber(l’), swap lotd andl’
and go to next unassigned la Lo; otherwise, go to next ldte L. If | ¢

L(i,4i), lot] cannot be assigned to machingo to next machine.
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5.2.2 Upper level problem

The solution provided by LLP is a function of thachine setup variablgs The upper
level problem (ULP) aims to identify the optimal chane setups such that the overall
objective (10a) is maximized. The following matleimal model is used for this purpose.

Maximize LLP_heury) (13a)
subjectto >y, <1,VieM (13b)
AeA(i)
DD D by, < D AR, vteT,neN (13c)
ieM reT(n) AeA(it,r) me N(
yiu € {0,1}, Vi e M, 1 e A(i) (13d)

Constraints (13b) — (13c) repeat (10c) — (10d)aodg with (13d) define the
feasible machine-tooling pairings. However, mddé&l) cannot be solved directly since
the objective function (13a) is not an explicitétion ofy. GRASP is proposed as
follows to generate solutions. In each phasediien, a candidate list (CL) is built from
machine-tooling combinations and sorted accordiripe benefit associated with each.
A restricted candidate list (RCL) is then constedcirom CL whose length is adjusted
based on the quality of solutions obtained fronviongs iterations. Lettin&IM be the
set of identical machines, a scoring list is alsontained to grade each {) € SIM x
A(i). Feasible solutions are constructed by randoeidcsing |, 1) combinations from
RCL until all available capacity is used. As menéd, a subset of solutions generated
in phase | is passed to phase Il for improvemenguseighborhood search.

Building the CL

Each element in CL is a triplet consisting of sgraeeSIM, a tooling setug € A(j), and

the corresponding beneberj, 1, Lo), whereL is the set of unassigned lots. The benefit
is computed by solving the following knapsack pewbl

ber(j, 4, Lo):maX{ > ben()z: Z n'ChipS; <H, ze{0,1, V le L(jA)N Lo}

leL(j,2)nLg leL(j,A) Ly lils
whereber() is the value calculated in (12) whenllat Lo is assigned to machime

SIM. The termn™"*/r, is the time required to process lan machiné with tooling
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setupl, and routes = argmax{is : S€ (i, |, 1)}. The decision variableg, V| € L(j 1) N
Loare binary such that, = 1 when lot is assigned to the machine SIM and O
otherwise. The elements in CL are sorted in naoeaming order dber(j, 4, Lo).
Instead of solving the knapsack problem exacthguaristic is used to reduce
runtimes. The pseudocode of the heuristic is shoviaigure A.75. In Step 1, the

unassigned lotise Lo are sorted according to rate of benbii( I)/ ( "/ 1. ) in

nonincreasing order. In Step 2, the lots are assigo the machine in a greedy way until
there is no more lots can be assigned due tortreeliimit constraint.

An example of a CL is shown in Table 5.1. Thstftevo columns identify the
feasible machine-tooling combinationst] while the third column gives the benefit
ben(j, 4, Lo) associated with the knapsack solution. CL isesbin nonincreasing order of
the benefit.

Table 5.1 An example of CL

SIM,j | Tooling setupd | berj, 4, Lo)
2 100
90
80
70
60
50

P NDNPFP WDN
P NDWNWPE

Self-adjusted RCL

RCL is derived from CL by taking only the top elartge Since RCL guides the
construction process in phase |, its length, must strike a balance between solution
quality and diversity. Ifrcis large then it is likely to produce many inferioitial
solutions; if it is small, many good solutions ni@ymissed. Therefore, instead of setting
lrcL to a fixed value, it is restricted within the fmiNing rangelgrc €{2, 3,..., lzc )
wherelp.; is a (predetermined) maximum length. The valuga&fis adjusted during

the GRASP iterations according to the quality adeved solutions, as described by
Paris and Ribeiro (1999).
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Let A ={a1, az, ... am} be the set of considered values figg and letp; be the
corresponding probability of selectiagi =1,...m. Initially, p; is uniformly distributed;
that is,

pi=1m, i=1,...m
To see how these probabilities are adjustedy Ibe the best solution found in all
previous GRASP iterations and Rtbe the average value of solutions obtained<gr=
ai. Now, define
q :(ﬁ*jﬁ, i=1..m (143)
¢
to be the relative performance of the algorithmarag] whered is a shape parameter.

For higher values aof, g; will be lower sinced < 4. Normalizing gives

plquzryn:lq,i:L...m (14b)

Wheng; yields relatively high average solutiods it will have a high probabl
of being selected as the iterations progresshdnmplementation, we sét=50 andA =
{1,2,3,4,5,6,7,8,9, 10}.

Grading the (SIM, A) combinations

The quality of the phase | solutions strongly dejseon the associated machine-tooling
pairings selected. good (, 1) combination is one thaippears frequently in good
solutions. To identify such pairs we devised aisgplist (SL) to grade eacly, @)
combination that arises in phase I. Each elemfegt.@onsists of th&IM indexj, the

tooling setup index, and the scor§; of the corresponding,(#) combination. Let be

the objective function value in (4a) found at itemak of phase |, Ie;b;ﬂ be the best

solution found so far using, ¢), and lety¥ [forall i € SIM and/ € A(i)] be the

corresponding machine-tooling pairings. The s&res defined as a function of the
average objective function value and the best tikge€unction value over all phase |
iterations; that is,

' z ¢k|{yilj1 =1 ,
) = =4 'ES'MZ‘f’ TR (#,) +c,vj€SIM e AQ)
iz

1<k< nPhaseIiES"\A ( J)
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Phasel:

wheren is the total number of iterations in phase | §nfis an indicator function.
The numerator of the fraction calculates the tobgéctive value over all iterations when
combination |, 1) was present while the denominator counts thé notaber of times the

combination was applied. The grading scheme enimim@ and corresponds to our

intensification strategy. The constarns included to avoid setting, = 0 when somg (
A) combination is never selected. In the implem@sma = 1000.

Let ¢, 4, b) be the™ element in RCLi = 1, 2,...lrc.. To determine the
probability that this element will be selected vee the same procedure used to
determine the length of RCL. The relevant formalees

5

S..

G = % , Vi=1,2,.. lrcL (15a)
(¢)

R=0/Y"q,¥i=1,2. lac (15b)

wheredis again a shape parameter and is set to 50 thasize intensification.
According to Egs. (15a) — (15b), setups with higtares have a higher probability of
being part of a solution; larger valuesaahcrease the corresponding probabilities. To
avoid overemphasizing intensification, a lower tiofi £ is imposed on the probability of
pi; that is,

B =eVp<ei=12,.. lrcL (15c¢)

p=(-eX 1 {p <e

) R,
}) ericlLI {p, >¢}

Equation (15c) eliminates the situation where some elementslic&Mot be selected

4 Pi 2> ¢g, i = 1, 2""|IRC|_ (15d)

due to very lower probability while equation (15d) distributesrdmaining probability
proportionally to the original valyg. In the implementatiorg = 0.01 is used to allow

appropriate diversification.

Construct initial solutionsin phasel

Each phase | iteration produces a feasible solution to mb@ein conjunction with CL,
RCL, SL and the aforementioned heuristic solvers. Thadxode is given in Figure
A.77. Initialization is done in Step 1 followed by'**®iterations in Step 2. At the
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beginning of each outer iteration, we rdsgt L andL; < @, Vi € M. The benefit
functionben(l), for alll € L, is then calculated according to Eg. (12) based on whish lo
have already been assigned. At each inner iteration, Qliltsand then truncated
according to the probability distribution in Eq. (14b) to geLLRExactly one element of
RCL is selected with probability based on SL and Eq. (The machine corresponding
to the selected element is configured with the specified toa@dmgall sets, data
structures and functions are updated. An inner iteratibalied when there are no more
machines or tooling pieces available. At this pointthariables are fixed 3t and LLP

is solved to gex'. The solutionX,y) is appended to the s8t'***'and the next outer
iteration is performed.

Phasell: L P-based local neighborhood search

Local branching is a technique for embedding metaheucsticepts such as
neighborhood search, intensification and diversification, iodh and bound. The
objective is to achieve high quality solutions in reasonableuiitm®ut necessarily
verifying optimality. Given a feasible reference soluigriet Y ={(i,4) : y,,=1,i € M,
A € A(i)}. As proposed by Fischetti and Lodi (2003), we deérecal branch cut as

follows:

Ay, ¥)= Y. (-y,)<K (16)

(i,4)eY
Constraint(16) generates a neighborhood of radfuaround the current solutigh For

example, assume that there are 3 machines with solutrl, 1, = 3 andiz; = 2 or y;,=

1, V,= 1, ¥;,=1 and all othefy,, = 0. The branch cutis @ V,;) + (1— Y,) + (1- Va,)
<K.
Note that instead of including all the binary variables in theasuEischetti and Lodi do,
we only include the ULP variableg,

Now, at each phase Il outer iteration, model (10) is slchgean LP with
constraint (16) added. Lgt” = (y¥, i € M, 1 € A(i)) be the relaxed solution for the

A
machine setup variables in the extended model. In ligitQuf), they'; values can be

viewed as the probability of setting up machimégth tooling configuratior. These
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values are used at each phase Il inner iteration to peddionte Carlo simulation.
That is, for each machingea tooling configuratiori is drawn fromA(i) using

“probabilities” y”. Once the tooling is selected for the machines, the reglltip is

solved by the heuristic described in Section 5.1 to obtaing$iddit assignments.

The phase Il LP-based local branch (LPLB) neighbadhsearch can be
interpreted as a destruction-construction algorithm that warkbe upper level decision
variablesy. The pseudocode of the LPLB algorithm is provided imfgA.76. The
algorithm consists of a seriesrdf'-® Monte Carlo replications. In replicatisnthe
machine setups are simulated usjtigas probabilities to ggf and, if feasible to (10d),
the resultant LLP is solved to get a feasible integer solutipy®). The objective
function value, denoted gm_ob(x®, y°), is compared to the incumbent, and when an
improvement is identifiedx(, y) is updated. Wheyt is infeasible it is discarded and the
next replication performed. In the implementatibf® = 10.

5.2.3 Summary of GRASP

In phase |, good feasible solutions are constructed iaedgmway using a benefit
function for each lot and RCL. A subset of these solui®maproved by LPLB in phase
Il. The best feasible solution found at the end of pHaseolutput. A high level

pseudocode is given in Figure A.78.

5.3 Computational Results
The proposed GRASP was implemented in C++ and tested Ubdatu Linux on a Dell
Poweredge 2950 workstation with 2 dual core hyperthre&l#®GHz Xeon processors
and 8 GB physical memory. In the numerical experimergseist cases were randomly
generated from a dataset provided by Tl. Model (1qapk) was solved heuristically
with GRASP and directly with CPLEX 11.0. The following pagder settings were used
for GRASP,

° nPhaseI: 1000

e For RCL,lzc=11,6=50

e For the grading schemé=50,c = 1000, = 0.01

e InphasellK=1,n"*=10
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e COIN CLP was used as the LP soluett://www.coin-or.org/projects/Clp.xmhl

For CPLEX, a limit of 3600 sec was imposed on all runs.

5.3.1 Random test instances

The basic data set consisted of 84 machines divided istmiids, 2078 lots of which 80%
were either key or package devices, 106 tooling piecédedivnto 28 families, and 1
temperature.

CPLEX was able to solve this problem in negligible time dubdcexcess capacity
relative to the number of lots. In addition, many of the rodigsot require any tooling.
To create more difficult instances that better reflect theabip@al environment, a series
of representative cases are constructed using the folloamugpm case generator. The
pseudocode of the random cases generator is providegure A.79.

5.3.2 Comparison of GRASP with CPLEX
Two datasets were generated for testing purposes. $hhadil]™®| = 1000 lots 1**°{ =
80 machinesyy, = 10 machine groups'§*| = 30 tooling familiesnp = 100 devices with
nk = 40 key devices ant = 40 package devices, angn, = 3 operating temperatures.
The number of tooling piec¢§™was selected from the set {100, 300, 500}. Ten random
cases were generated and solved by CPLEX and GRA®Rd"™'value. Table 5.2
and Table 5.3 report the results 10f%] = 1000 and®*'= 100. In Table 5.2, the columns
denoted byf""™*, 4 andg'" are the best solutions found by CPLEX, GRASP phasé | an
GRASP phase I, respectively. The columns TW and@jiV& the total lot weights and
the total shortages of key and package devices for #iesblaitions. The gap~ *is the
optimality gap given by CPLEX, whila®RASP
and CPLEX solutions: §f™*— ¢'| / |#~PX|] x 100.

According to the results, none of the CPLEX runs convkevgéhin 3600 sec (the

is the percentage gap between the GRASP

average optimality gap was 17.35 %). GRASP requirechrtass time, averaging 536
sec, and producing solutions that were 3.41% on avesagedicated by®"**S" For
problem nos. 1, 2 and 7, the negative gap indicates thaSBRMtperformed CPLEX.
As seen in Table 5.3, no improvement was obtained iregha3his was due to the fact
that the tooling pieces are very limited so there are few iyany options within a

neighborhood.
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Table 5.3 also provides some individual performance mes$or CPLEX and
GRASP. Column 2 reports the size of the search treeduachn 3 indicates the node at
which the best solution was found. For all but problem 8pCPLEX uncovered the
best solution late in the search tree. Column 4 reports th&ateat which GRASP
found the best solution, which was similarly towards the éldeoprocess, except for
problem no. 4. The last two columns indicate the numiyenase | solutions that were
carried over to phase Il and the corresponding pergetmarovement. For smaller
instances than those investigated here, we generally fioyondvements averaging 5%,
but for the reasons previously mentioned, phase Il whsutcessful on instances with
1000 or more lots and compatible numbers of tooling pieces.

Table 5.4 reports the results for CPLEX and GRASP Witi&h = 1000 and®*'=
300. As the number of tooling pieces increase the prabEmome easier to solve by
CPLEX, which now exhibits gapa®"™, of less than 0.10%. In contrast, GRASP has a
harder time executing phase 1 because there are maayjnrcombinations to
explore. Runtimes for these instances averaged abous&80and the corresponding
solutions are with gaps less than 3% in all cases. Theall8s/obtained by GRASP are
identical to the values obtained by CPLEX except problemd)dsand 6. Once again,
however, phase Il provided no improvement since the wgiieces are still limited (see
Table 5.5).

Table 5.6 and Table 5.7 report the results for GRASFCRIEX whenl]'®| =
1000 and™s'=500. The TS values are identical in all cases andajheag measured by
AGRASP is well under 0.10%, although GRASP uncovered slidigtyer solutions for
problem nos. 1 and 7. No improvement was obtainedglphase 1. The average
computational time of CPLEX is 1234 sec, which is slightly ntbaa the average
computational time of GRASP 1078 sec.

The second set of experiments involved the same parasattiegs as the first
except thatl[*®] = 2000. Fot™*'= 100, the computational results are reported in Table
5.8 and Table 5.9 where CPLEX is seen to have a mocé difficulty time then
previously. The optimality gap“"* averaged 66.27%. A large gaf**>"around 20%
can be observed for problem nos. 3 and 4. Howévérpout of the remaining 8 cases,
GRASP obtained better solutions than CPLEX in less than ledfirtie.
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Table 5.10 and Table 5.11 report the resultsf&} | 2000 and®*'= 300. In 6
out of the 10 cases GRASP obtained better solutions than)CRItE a maximum gap
7.80%. GRASP obtained better solutions in the rest of thes especially for problem
no. 1 with a gap-32.89% Again, phase Il failed to provide better results tithmis
because the phase | solutions are almost optimal. Tabla&dlPable 5.13 report the
results forll'*%] = 2000 and®s'= 500. The gaps between the GRASP and CPLEX
solutions are well under 1% except that a 7.46% gap wsaes\aal in problem no. 3. The
remaining statistics and the phase Il results parallel thosmethia the other
experiments.

According to the reported results, the problem was hasdlte when the number
of tooling pieces were very limited. CPLEX always expemeha hard time to solve the

problem while the gaps®**s"

were big under this situation. As the number of tooling
pieces increased, the problem became easier to solvetbBoEX and GRASP and

the gapaA°***Pbecame much smaller.

5.4 Summary

This chapter presented a mathematical model to schedulecttreté operations in
semiconductor manufacturing. To solve the problem effity without reliance on
third-party software, a two-level heuristic was developed wihieactive GRASP
framework. The novelty in phase | of the GRASP cedterethe dynamic adjustment of
RCL in accordance with the solution quality and the usegodding scheme to guide the
machine setups. In phase Il, a neighborhood seas#dlon local branching and Monte
Carlo sampling was devised to improve phase | solutiortenBive testing showed that
comparable objective function values could be obtained watlGRASP, often in
significantly less time than required by CPLEX. Thesaltesonfirmed that public
domain software combined with intelligent heuristics can be ctitiveewith top
commercial products. Nevertheless, there is still room fprarement with respect to
the phase Il algorithm. A post-processor such asrphttking coupled with local
branching could be applied to the set of elite solutions to iserd intensity of the
neighborhood search.
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Table 5.2 Comparison of numerical results from CPLEX@RASP withL'**] = 1000 and®*'= 100

CPLEX GRASP
Best solution found Phase | solution Phase Il solution
Prob. PX Time | ACPX ' Time : Time | AGRASP
No. | (x10) | TW TS (sec) | (%) | (x10) TW TS (sec)| (x10) | TW TS (sec)| (%)
1 | -8.5697 | 71,900| 1,695,270 3600 | 19.68 -8.4714| 59,312 | 1,675,600 682 | —-8.4714 | 59,312| 1,675,600 54 | -1.15
2 -4.0430 | 59,456/ 1,450,580 3600 | 8.49| -3.9861| 64,884 | 1,430,390 475 | —-3.9861 | 64,884| 1,430,390 17 | -1.41
3 | -30.1709| 60,872| 1,494,290 3600 | 16.87 —30.8340| 60,087 | 1,527,120 399 | —-30.8340| 60,087| 1,527,120 51 2.20
4 -4.4618 | 58,955| 1,387,610 3600 | 20.76 —4.5520| 59,972 | 1,415,650 458 | —-4.5520 | 59,972| 1,415,650 34 2.02
5 | -3.7262 | 47,423| 1,483,700 3600 | 11.24 -3.9891 | 42,897 | 1,588,090 359 | —3.9891 | 42,897| 1,588,090 32 7.06
6 |-31.3312| 82,524/ 1,397,250 3600 | 18.20 —-33.4955| 69,081 | 1,493,690 959 | —33.4955| 69,081 1,493,690 52 6.91
7 | -3.3032|57,451| 1,236,520 3600 | 27.42 -3.2716 | 60,196 | 1,224,840 440 | -3.2716 | 60,196/ 1,224,840 23 | -0.96
8 —7.4827 | 56,883| 1,594,640 3600 | 17.95 -8.1717 | 43,477 | 1,741,090 393 | -8.1717 | 43,477| 1,741,090 39 9.21
9 |-26.1961| 43,562| 1,553,010 3600 | 16.24 —27.4550| 44,095| 1,627,630 287 | —27.4550| 44,095| 1,627,630 14 4.81
10 | —7.6735| 54,413| 1,439,770 3600 | 16.67 —8.08714| 54,248 | 1,517,320 552 | —8.08714| 54,248| 1,517,320 37 5.39
Table 5.3 Performance of CPLEX and GRASP [f57] = 1000 and®*'= 100
CPLEX GRASP
Problem| Tree | Node best| Iteration | No. phase || Improve

no. size | soln found| best found| improved (%)

1 3100 3014 956 0 0

2 3752 2719 931 0 0

3 3750 2590 965 0 0

4 5052 5047 554 0 0

5 8165 6715 780 0 0

6 2625 2604 988 0 0

7 3965 3664 925 0 0

8 15173 14585 650 0 0

9 18382 10224 698 0 0

10 7116 2506 978 0 0
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Table 5.4 Comparison of numerical results from CPLEX@RASP with [|'**] = 1000 and®*'= 300

CPLEX GRASP
Best solution found Phase | solution Phase Il solution

Prob. PX Time | A°PX ¢ Time ¢ Time | AGRASP
No. | (x10) | TW TS (sec)| (%) | (x10) TW TS (sec)| (x10) | TW TS (sec)| (%)

1 -5.4536 | 95,832| 1,079,830 2798 | 0.01| -5.4538 | 93,693 | 1,079,830 939 | -5.4538 | 93,693| 1,079,830 24 0.00
2 —-2.8628 | 95,897| 1,029,370 942 | 0.01| -2.8638 | 94,581 | 1,029,380 892 | —2.8638 | 94,581 1,029,380 32 0.03
3 | -28.1722| 93,791| 1,395,480 428 | 0.00| -28.1718| 97,532 | 1,395,480 695 | —28.1718| 97,532| 1,395,480 30 0.00
4 | -3.3378 | 98,460| 1,039,720 2046| 0.01| -3.3789 | 98,816 | 1,052,5001091| -3.3789 | 98,816| 1,052,500 24 1.23
5 -2.8879 | 89,933| 1,152,030 3600| 0.10| -2.8858 | 92,108 | 1,151,2801111| -2.8858 | 92,108| 1,151,280 39 | -0.07
6 |-21.0521| 98,248| 939,039 | 456| 0.00-21.5633| 96,662 | 961,824 972 -21.5633| 96,662| 961,824 | 38 2.43
7 -2.2370| 96,537| 839,557 | 360Q 0.01| -2.2368 | 98,120 | 839,557| 712 -2.2368 | 98,120, 839,557 | 25| -0.01
8 -4.5180 | 99,991| 964,227 | 2359 0.00| —4.5180 | 99,972 | 964,227| 1358 -4.5180 | 99,972| 964,227 | 38 0.00
9 |-15.4814| 79,913| 918,117 | 360Q 0.01|-15.4806| 87,262 | 918,117| 787 -15.4806| 87,262| 918,117 | 20| -0.01
10 | —4.1144 | 96,713| 773,243 | 360Q 0.01| —4.1145| 95,562 | 773,243 9271 —-4.1145|95,562| 773,243 45 0.00

Table 5.5 Performance of CPLEX and GRASP [f57] = 1000 and®*'= 300

CPLEX GRASP

Problem| Tree| Node best| Iteration | No. phase | Improve
So. size | soln found | best found| improved (%)
1 666 666 581 0 0.00
2 522 522 700 0 0.00
3 526 526 136 0 0.00
4 773 773 654 0 0.00
5 600 509 794 0 0.00
6 320 320 773 0 0.00
7 997 790 424 0 0.00
8 891 891 701 0 0.00
9 921 662 967 0 0.00
10 925 823 131 0 0.00
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Table 5.6 Comparison of numerical results from CPLEX@RASP with L] = 1000 and's'= 500

CPLEX GRASP
Best solution found Phase | solution Phase Il solution
Prob. PX Time | A°PX ¢ Time ¢ Time | AGRASP
No. | (x10) TW TS (sec) | (%) | (x10) TW TS (sec)| (x10) TW TS (sec)| (%)
1 -5.8021| 97,052 1,148,730439 | 0.01| -5.8017 | 101,127 1,148,730 1106| -5.8017 | 101,127 1,148,730 116 | -0.01
2 -2.3737 | 96,375 853,843 1510 0.0:2.3751| 82,153 853,843 71p-2.3751| 82,153 853,843 3( 0.06
3 |-16.1078| 93,266 | 798,081 431 0.00-16.1072] 99,410| 798,081 709 -16.1072| 99,410 | 798,081 23 0.00
4 -2.7629 | 100,102 861,206 | 2341 0.00 —2.7628 | 100,195 861,206 | 1045 -2.7628 | 100,19% 861,206 42 0.00
5 -2.4324 | 99,293 971,25( 312 0.0:2.4323| 100,183 971,250 | 1212 -2.4323| 100,183 971,250 91 0.00
6 |-15.6539 87,528 | 698,312| 2073 0.01-15.6538| 88,542 | 698,312 757 —15.6538| 88,542 | 698,312 40 0.00
7 -1.7049 | 97,360, 640,756 2704 0.011.7048| 98,745 640,756 1282-1.7048 | 98,745 640,756 46 -0.01
8 -5.0706 | 100,476 1,081,930 1066 | 0.00, -5.0705| 101,3311,081,930 1098| -5.0705| 101,3311,081,930 29 0.00
9 |-15.4451| 98,403 | 916,078 344 0.00-15.44500 99,634 | 916,078 1221-15.4450| 99,634 | 916,078 28 0.00
10 | -4.9188| 99,011 924,118 1123 0.06-4.9187| 100,863 924,118 | 1145 -4.9187 | 100,863 924,118 40 0.00

Table 5.7 Performance of CPLEX and GRASP Ift5f] = 1000 and®*'= 500

CPLEX GRASP

Problem| Tree| Node best| Iteration | No. phase | Improve
no. size | soln found| best found| improved (%)
1 280 280 717 0 0.00
2 1277 1277 345 0 0.00
3 529 529 793 0 0.00
4 811 811 477 0 0.00
5 488 488 982 0 0.00
6 848 848 979 0 0.00
7 592 592 214 0 0.00
8 502 502 58 0 0.00
9 500 500 807 0 0.00
10 499 499 44 0 0.00
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Table 5.8 Comparison of numerical results from CPLEX@GRASP withl]"®*] = 2000 and®*'= 100

CPLEX GRASP
Best solution found Phase | solution Phase Il solution
Prob.| ¢ Time | A®PX ¢ Time ¢ Time | AGRASP
No. | (x10) TW TS (sec)| (%) | (x10) TW TS (sec)| (x10) TW TS (sec)| (%)
1 -5.4864 | 84,540 | 930,132 3600 77.90-5.5560| 78,141 | 941,820] 375 -5.5560 | 78,141 | 941,820 69 1.27
2 -3.1812 | 105,652| 778,564 | 3600 49.06-2.8638 | 107,835 701,186 | 761| -2.8638 | 107,835/ 701,186 40 | -9.98
3 —27.0091| 94,542 | 861,342 3600 49.23-32.9753| 109,566| 1,051,590 539 | -32.9753 | 109,566| 1,051,590 38 22.09
4 -5.5085 | 125,678| 643,495 | 3600 93.1f/ -6.5228 | 108,740 761,519 | 907| -6.5228 | 108,740 761,519 93 18.41
5 -3.4350 | 126,273| 602,702 | 3600 77.25b-3.0824 | 121,097, 540,959 | 1494 -3.0824 | 121,097 540,959 69 | -10.26
6 |-22.9703| 108,139| 862,916 | 3600 61.30-22.3600y 107,964, 840,001 | 715| -22.3600| 107,964/ 840,001 | 117, -2.66
7 -4.2288 | 108,747 916,185 | 3600 57.10-3.7904 | 105,744 821,379 | 684| -3.7904 | 105,744| 821,379 76 | -10.37
8 -5.2215| 91,613 | 1,216,760 3600 | 75.01 -4.6449 | 90,406 | 1,072,270 603 | -4.6449 | 90,406 | 1,072,270 64 |-11.04
9 -33.9759| 90,762 | 1,523,710 3600 | 57.15 -32.0446| 99,247 | 1,437,1601112| -32.0446 | 99,247 | 1,437,160 80 | -5.68
10 | -4.4439| 88,925 | 566,490 3600 65.56-4.1040| 81,656 | 523,155 538§ -4.1040 | 81,656 | 523,155 71| -7.65

Table 5.9 Performance of CPLEX and GRASP Ift5f] = 2000 and®*'= 100

CPLEX GRASP

Problem| Tree| Node best| Iteration | No. phase I Improve
no. size | soln found| best found| improved (%)
1 1466 1427 985 0 0.00
2 1266 929 882 0 0.00
3 2457 2409 169 0 0.00
4 1295 1181 919 0 0.00
5 1160 1097 807 0 0.00
6 1483 1473 897 0 0.00
7 2370/ 2361 638 0 0.00
8 1421 895 787 0 0.00
9 2562 2551 196 0 0.00
10 1366 788 932 0 0.00
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Table 5.10 Comparison of numerical results from CPLEX@RASP withl]'**| = 2000 and®*'= 300

CPLEX GRASP
Best solution found Phase | solution Phase Il solution

Prob. PX Time | A°PX ¢ Time ¢ Time | AGRASP
No. | (x10) TW TS | (sec)| (%) | (x10) | TW TS | (sec)| (x10) | TW TS | (sec)| (%)

1 -0.3247 | 173,051 57,887 3600 42.7/70.2179 | 146,519| 39,372 | 1004 -0.2179 | 146,519 39,372 | 54 | -32.89
2 -2.4612 | 171,423 79,008 3600 0.04-2.6532 | 153,240| 85,071 | 853| -2.6532 | 153,240 85,071 | 39 7.80
3 -1.1027 | 169,721 130,5053600| 0.09|-1.1045| 151,884| 130,505| 1239 | -1.1045| 151,884 130,505| 72 0.16
4 -1.2748 | 193,849 226,2423600| 1.46|-1.2590| 177,348| 223,197| 1374 | -1.2590| 177,348 223,197| 71 | -1.24
5 -4.1694 | 166,446 157,1803600| 3.19| —-4.0393| 163,231| 152,283| 1678 | —4.0393| 163,231 152,283| 126 | -3.12
6 -0.4257 | 196,148 96,233 3600 0.110.4266| 187,223| 96,233 | 1892 -0.4266| 187,223 96,233 | 115| 0.21
7 -0.4784 | 178,110 114,3333600| 0.23|-0.4816| 146,824| 114,333| 1121 | -0.4816| 146,824 114,333| 75 0.67
8 -1.1708 | 185,760 151,3103600| 0.09|-1.1719| 174,780| 151,310| 2682 | -1.1719| 174,780 151,310, 119 | 0.09
9 -4.2825| 183,949 164,2673600| 0.03| —4.2835| 174,321| 164,267| 1533 | —4.2835| 174,321 164,267| 93 0.02
10 | -0.4556 | 176,590| 135,321 3600 | 7.20| —0.4469 | 154,138| 132,206| 910 | —0.4469 | 154,138| 132,206 81 | -1.91

Table 5.11 Performance of CPLEX and GRASPIL5?]|= 2000 and®*'= 300

CPLEX GRASP

Problem| Tree | Node best| Iteration | No. phase || Improve
no. size | soln found| best found| improved (%)
1 1179 1178 11 0 0.00
2 913 789 1 0 0.00
3 1082 805 960 0 0.00
4 811 711 736 0 0.00
5 1200 1131 393 0 0.00
6 1473 1471 952 0 0.00
7 900 892 920 0 0.00
8 1193 1111 632 0 0.00
9 1173 571 851 0 0.00
10 591 590 12 0 0.00
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Table 5.12 Comparison of numerical results from CPLEX@RASP withl]'**| = 2000 and®*'= 500

CPLEX GRASP
Best solution found Phase | solution Phase Il solution
Prob. PX Time | A°PX ¢ Time ¢ Time | AGRASP
No. | (x10) TW TS | (sec)| (%) | (x10) | TW TS | (sec)| (x10) | TW TS | (sec)| (%)
1 —0.3732 | 192,442 66,433 3600 0.320.3740 | 184,422| 66,433 2599-0.3740 | 184,422| 66,433 | 140| 0.21
2 —0.3094 | 199,924 80,34% 3600 0.16-0.3099| 194,460| 80,345 244[7—-0.3099| 194,460/ 80,345| 456| 0.16
3 —4.6566 | 185,417 149,0423600 | 0.03|-5.0040| 158,389| 160,030 1108 | —5.0040| 158,389| 160,030| 69 7.46
4 -1.0001| 191,310 118,7893600| 0.04|-1.0009| 182,550 118,789 1618| —1.0009| 182,550| 118,789| 222 | 0.08
5 -0.8423 | 197,065 150,6883600 | 0.10|-0.8447| 173,129| 150,688 2057 | —0.8447| 173,129| 150,688 287 | 0.28
6 —2.6890 | 193,261 101,6931561 | 0.01|-2.6888| 194.371| 101,69834169| —2.6888| 194.371| 101,693| 227 | —0.01
7 —0.9460 | 191,589 208,5673600 | 0.10|-0.9458| 193,178| 208,567 2436 | —0.9458| 193,178| 208,567| 138 | —0.02
8 -0.3732| 190,726 90,372 3600 0.130.3738| 183,961| 90,372 1530-0.3738| 183,961 90,372 | 97 0.16
9 -0.2374 | 193,224 32,657 3600 0.140.2371| 196,093| 32,657 2201-0.2371| 196,093| 32,657 | 169| —0.13
10 | —2.7069 | 169,208 104,0323600 | 0.04| —2.7083| 154,934| 104,032 1584 | —2.7083| 154,934| 104,032| 120 | 0.05

Table 5.13 Performance of CPLEX and GRASPIL5P]|= 2000 and®*'= 500

CPLEX GRASP

Problem| Tree| Node best| Iteration | No. phase || Improve
SO. size | soln found| best found| improved (%)
1 1237 1115 767 0 0.00
2 1656 1359 13 0 0.00
3 947 618 12 0 0.00
4 1529 1027 102 0 0.00
5 1921 1780 18 0 0.00
6 677 677 45 0 0.00
7 1803 1601 977 0 0.00
8 951 771 959 0 0.00
9 1782 1182 691 0 0.00
10 1405 1403 649 0 0.00
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Chapter 6

Assessment of Resear ch

The general idea underlying this research was to detetherextent to which
exact optimization methods could be combined with metaheuristsrsve practical
problems. The work is divided into three separate but repaitgects corresponding to
Chapters 3, 4 and 5, respectively. In this chapterssesament is presented for each part
of the research. The proposed algorithms are first surped and their numerical results
evaluated. Their weaknesses are then discussed arebsogg are made for possible
improvement. Some research experiences are alsa sradduture work on potential

enhancements is outlined.

6.1 Capacitated Clustering

The problem addressed in this research topic is a clasapatitated clustering problem
which has been well studied along with many variants. cohéibution of this research
mainly concerns the development of an efficient anctg¥e heuristic to solve the
problem in reasonable time compared to the commercial sefpeckage CPLEX. The
proposed methodology combines GRASP and PR, and istarendf various heuristic
ideas. Two approaches, HWE and CMC, are availablgtfase | while three options,
CNS, VND and RVND, are used to perform the phaseiliimorhood search. A PR
post-processing procedure with either CLS or PLS is alpteimented for potential
improvement over the GRASP elite solutions.

The algorithm has been tested extensively on differeasédts with various
parameter settings. According to the results, the perfoemaGRASP+PR is very
stable and always consumes much less time than CPLEX ia @bty high quality, if
not optimal, solutions. This allows application of GRASP+PR aatpral problems.
However, there are still some drawbacks to the algorithst lide any other heuristic, it
is very difficult or even impossible to guarantee that GRASR can generate good
solutions for large-scale problems. As the number of ntades clustered increases, the

CL, RCL as well as the size of the three neighborhoodease exponentially. Finding a

130



good solution becomes more and more difficult as the siteegiroblem increases. A
bounding technique may be necessary in order to assegsrtbrmance of the algorithm
for larger cases.

The proposed heuristic can be enhanced in several V@aysently, the GRASP
iterations are mutually independent, that is, each subseigration starts from scratch
after the previous iteration is finished. The effort spanpr@vious iterations is simply
ignored. In order to utilize the results from previous iterati@ memory based learning
technique can be introduced to the current algorithm. vidriant of GRASP is also
referred to as Greedy Randomized Adaptive Memory Pnogiag (GRAMP). The idea
is to synthesize the results from previous iterations to guaalgforithm at the current
iteration. As an example, the results can be used to theédmnstruction of CL. This
approach has actually been implemented in Chapter 5 ioriimeof SL to assign
probability to the CL elements. The scheme is promisingrdogg to the results. With
respect to phase Il improvement, an idea common in tdogls can also be applied to
the algorithm. By restricting repeated neighborhood mowésrieshould be possible to
overcome a local optimum.

In any case, the proposed GRASP demonstrates thedisunable advantage can
be achieved by combining different heuristic ideas to solveltistering problem
efficiently. The methodology can serve as a guidelinéutore algorithm development
for solving related optimization problems of practical size.

6.2 Midterm Planning in Semiconductor M anufacturing

The midterm planning problem in semiconductor manufacturimg tout to be a large-
scale LP which cannot be solved directly. The contribudfdhis research relates to the
development of a decomposition scheme to fully utilize exoeshine time. In the
proposed algorithm, the full problem is divided into weekipproblems. The final WIP
of the previous week is treated as the initial WIP of the nerkw For each subproblem,
the corresponding LP is solved in an attempt to minimize thevieighted deviations
from specified targets. In light of those results, an gitesithen made to utilize any
machine time remaining by solving a rescheduling problemvieltbby a heuristic WIP-
pushing algorithm. As reported in Chapter 4, great impneve: was realized for the 4-
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week problem when compared to the results obtained frauliag decomposition
approach. For the 13-week problem, the results indicasdllortages are unavoidable
due to the machine capacity constraints. However, it is atil to evaluate the solution
to the 13-week problem since the optimal solution is unknown.

Lagrangian relaxation and Benders decomposition wereralestigated but the
results were not promising. For Lagrangian relaxation, #axehme capacity constraints
(3d) were removed and appended to the objective fun@eras a penalty term using
Lagrangian multipliers as weights. This led to individual subprobl®r the device
families which solved quickly. A standard subgradient algaritves applied to update
the multipliers at each iteration. However, it turned out to aetkle multipliers never
converged due to numerical difficulties.

Benders decomposition instead breaks the full problem iae&kly subproblems.
At the beginning of Benders decomposition, the initial and fin? WAlues are specified
for each week. The subproblem duals are then solvetyyone for the given WIP
levels to generate extreme points and extreme rays, wie@@ppended to the master
problem. The master problem is then resolved to genezat@\AP profiles for each
week. The updated WIP values are again sent to eactobldip to generate new
cuts. The algorithm iterates in this way until a stopping crites@atisfied.

Unfortunately, convergence was never achieved at thrabliem
level. According to the algorithm, both the initial WIP and thalfivIP are fixed for
each subproblem, which is then solved to minimize the uhedarget output
deviations. However, given the initial WIP the subproblem wlirdeasible when it is
not possible to schedule production over the week to megh&h&VIP. In this case,
only feasibility cuts are generated by the subprobldaxperience showed that after
thousands of iterations, no optimality cuts were ever gemksatéhe algorithm never
converged.

One way to reduce or eliminate the infeasibility is to introdieeation variables
into the WIP conservation constraints (6b) in the last timegef each week. In the
objective function (6a), each WIP deviation variable woulthighly penalized to force a
solution that zeroed the mismatch whenever possible. In thenc@iormulation, there

appears to be insufficient incentive for the model to nathasvgap, although the full
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problem is feasible. The updated subproblem will always dlfle and generate
optimality cuts only, although there may still be a mismatch iR 1&vels at
termination. In that situation, a heuristic would be needechtm# the WIP while
trying to maintain the machine assignments that appear im#lesélution. This
enhancement is considered future work.

6.3 Back-End Operationsin Semiconductor Manufacturing

The third part of the research was aimed at determiningingtdoling combinations
and corresponding lot assignments to maximize throughpungdoack-end operations
while minimizing shortages of key and package devices.nTdteematical model of the
problem has the characteristics of a two-level assignmebligpno The contribution of
the research centered on the development of a GRASRdkahown to be comparable
in performance to CPLEX. Extensive numerical testing indigatebdlem instances
arising in two of Texas Instruments’ facilities could be solgekly and provided
measurably improvement over current practice. The GRA& been under tested for
implementation in the AT facilities in Asia recently.

In phase | of the GRASP, the parametes set to 50 when constructing both
RCL and SL. This was determined after running a seilittdl experiments which
indicated that it is best to emphasize intensification in building R@LSL in order to
achieve high quality machine-tooling combinations. The deaidge of this setting is
that many similar solutions are generated during the rusthier words, there could be a
danger for over intensification, although diversificationudtbnto the algorithm in the
design of the calculations in (15c) and (15d). One twagmedy this situation is to
adjusto according to the solution. If similar solutions keep appedheg the value of
should be reduced. Otherwise, after a few iterations, e \&hould be increased until it
reaches some specified upper bound, say, 50.

As discussed in Chapter 5, there was no improvementasephLBLP for the
randomly generated test cases. The primary reasopectbund in the limited number of
free tooling pieces that could be paired with the machine teahteavailable at the
given iteration; in other words, there was little room for nexghbod swaps. The value

of K in LBLP was varied in preliminary tests but the results werssistently poor. A
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second reason for the ineffective of phase Il relatestbFhrelaxation of the LB
problem. Because the solution was so fractionalyt@ariables could be fixed and
binary sampling from the corresponding probabilities duringsimeilation often left
machines idle. One way to improve phase Il would belieeghe resulting problem
directly as an IP rather than using LBLP but the resultdovbepend on the performance
of the IP solver from COIN-OR. Recall that the rationaledi®reloping the GRASP was
to use open source software.

Branch and price (B&P) is another way to try to solveARigroblem without
relying too heavily on a commercial IP code. A masteblem could be created from
model (10) so that each column represents a machine-taolmigination along with
compatible lot assignments. The objective function coefficesd@ated with a column
would be the benefit gained by processing the assigneditatisl columns could be
generated from the heuristic solution. In B&P, the mastalem is solved to provide
dual prices that are used to construct the subproblem olgjéatigtions. In this
approach, the subproblems are simply knapsack prolalethean be solved heuristically.
Columns that price out negatively are appended to theem@®blem which is then
resolved to yield new dual prices. The algorithm iteratesrdingly until no new
columns are generated or until some other stopping criterisatisfied. If the values of
the decision variables turn out to be integral then the algostbps and the solution
found is optimal. Otherwise, the current node is partitionedvilig the logic of branch
and bound and column generation is applied at each destematle. The procedure
terminates when all the nodes in the search tree are fathome

A preliminary B&P algorithm has been implemented for theptdblem and the
results are promising. The root node was solved aftendrd0 iterations. The
algorithmic remaining components, such as the design amehing strategy and the use
of stabilization, are left for future work.

In building model (10) for the back-end operations a remobassumptions were
made, the most critical being that all machines are idle at tiertaeg of the planning
horizon. It was further assumed that machines are tethgnce at time zero and that
the tooling allocations and temperature settings cannot be chdageg the planning

horizon. Moreover, fractional lot processing is not alloereein when a machine is idle.
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Finally, the problem is solved for a static WIP profile thativeiy at time zero so there is
no accounting for new arrivals or rework.

In reality, these assumptions may not hold. First, thebeuof lots available for
processing changes periodically as upstream operatien®@pleted and as downstream
operations produce reentrant flow. In the latter caseg $oisimay return to a particular
test area for additional testing after completing the preliminanyd.o Thus, the actual
WIP profile changes over time with some lots showing upatepy. Moreover, at the
beginning of the planning horizon most machines are éeduand it is often necessary
to alter their setup and operating temperature if throughpubis teaximized. Because
the planning horizon defines a somewhat arbitrary cutafitppractical considerations
dictate that machines not be left idle when there are no lotfttbatpletely within the
remaining time, but instead that setups be scheduled swatltizig lots can begin
processing.

The current algorithm needs to be enhanced to accoaimtite aforementioned
shortcomings. The first step is to develop an iterative seheroapture the updated
WIP. The initial machine status can be addressed bytadjuke available machine
time. If a machine is processing lots at time zero then isisyple matter to reduce the
available time on that machine to by the amount equal to theedquocessing time of
the remaining lots in queue. Factional lot processing carbaltzken care by post-
processing the solution produced by the AT algorithm. él@ it turns out to be
difficult to handle multiple machine setups without introducing nraoye binary
variables. Several heuristics are now being considerdatidbest way to modify the

algorithm is left to future research.
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Appendix 1: Input Files, Data Structure and Output Filesfor the DMOS6 T ool

To run the program the user must provide a set of inpstdéscribed below. Some of
these files need to be modified in accordance with the follomstguctions. This
appendix discusses the data objects, how to prepare thdiiepuhe ways to compute
processing rates, and the output files.

Required input files
(1) Routing.csv

This file includes the routes of the different devices. Haehcorresponds to a

step, which is defined as a combination &dgpointand aroperation Thus a

step is a logpoint-operation level definition. The file also inetudarious K

parameters” which are used to compute the processinfpratach step. The

fields in the table are shown in the Appendix 2.

Note:

(a) The “Facility” fields are always “DMOS6".

(b) The table should be sorted in ascending order accordthg feeld
“OrigRecNo” before processed by the program.

(c) When this file is read into the program the processing oateaich step is
computed. The procedures used to compute the proceasesgre also
included in this appendix. A data object named “Productionfdated when
this file is read.

(2) Stations.csv
The file contains information of the machines such as MisaiD ‘K
Parameters”. The fields in the table are shown in the Agipe. Some of theK
Parameters” are used to compute the processing ratibe feteps. A data object

named “Machine_Set” is created to store the informatiothBomachines.

(3) Consols.csv and Family.csv
The “Consols.csv” file contains the information on the devamily. The file is

not read by the program. However, the user needs tipuiate the file to
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generate another file named “Family.csv”, which will bedusg the program. It
is easy to generate the file “Family.csv” from the file “Gols.csv”. The user
only needs to choose the family he wants to processedadt the devices
belonging to this family. For instance, if the user is integkst the family
“C035,” then he can select all of the devices belonging @G85Cand copy-paste
to the file “Family.csv”. A portion of a “Family.csv” is etwn in Table A.1. Note
that the user needs to append some character like conth@last column. The
appended character is used to delimitate the fields when &ddsethe program.

Table A.1 Example of Family.csv

C035 c027 C021
B4JRD15060BPP| B5BJF761924B EZ/E771676D17
B4JRD15060B4P | EZ/E761536Z00 EZ/F771657A02
B4JRD15075BPP| EZ/E761536Z02 EZ/F771657A07
B4JRD751686J4P EZ/E761541A0&Z/F771657A08
B4JRF751613D4R EZ/E761560Z00 EZ/F771657A09
B4JRF751625PF | EZ/E761909A1&Z/F771657A10
B4JRF751625PP EZ/F761503B23 EZ/F771657A11
B4JRF7516254F EZ/F761504A0EZ/F771657A11L
B4JRF7516254P EZ/F761504B08 EZ/F771657A12
B4JRF751672D4R EZ/F761504B10 EZ/F771657A13
B4JRF751989B4F EZ/F761522A4¥Z/F771657A14
B4JSF751613HHT EZ/F761522A50 EZ/F771657711
B4JTD15060C EZ/F761522A51EZ/F771657Z212

The file “Family.csv” is read by the program to identify thevices
belonging to the same family. For instance, Table A.1 idestihree families
with their corresponding devices. For each family a desiselected to represent
the entire family. Such a device is called the “representdéviee” and includes
information on the number of daily input blank wafers, thgainnventory, and
the daily output. When the file “Family.csv” is read bg firogram a data object
named “Family” is created to store the information.
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(4) wip_data.txt
This file contains the information on the initial inventory orPA# the shop. The
fields of the file are given in the Appendix 2.
For each representative device, the initial WIP of the otix@ces in the same
family is aggregated to be the initial WIP of the representdtwice. The initial
WIP is computed as follows.
Init_inventory = Prime_inv + Rework_inv + Hold_inv

Note that there is no title line in the file.

(5) Lotstarts.csv
The file “Lotstarts.csv” describes the quantity of blank wsfe be input to the
shop every day as illustrated in Table A.2. The headirygigen in the
Appendix 2.
Note that an additional column name “day index” is append#tkettable to
describe the index for days. In the original file providgd bthere was no such
column. The date information is described in the column “SgaetD However,
the format of the cells in “StartDate” can’t be easily proegs¥he range of the
dates in this table starts from 9/1/2007 and ends at 12/0/1/288 column “day
index” treats 9/1/2007 as th& day and 12/01/2007 as the"aday consecutively.
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Table A.2 Example of Lotstarts3month.csv

Next Estimated Hot- | Hold- day
Facility Item logpoint | ShipDate| Quantity StartTimg StartDgté-lag | Flag | Logpoint| Lotnumbey index
12/30/1899( 9/1/2007
DMOS6 | P4HTF751992APW, 110 25 0:02:50 0:00 N N 110 7244220 1 end
12/30/1899| 9/1/2007
DMOS6 | P4ITW751980CWM 110 25 0:03:14 0:00 N N 110 7244221 1 end
12/30/1899| 9/1/2007
DMOS6 | P4ITW751980CWM 110 25 0:03:26 0:00 N N 110 7244222 1 end
12/30/1899( 9/1/2007
DMOS6 | P4JTF751543ZWM 110 25 0:03:49 0:00 N N 110 7244223 1 end
12/30/1899| 9/1/2007
DMOS6 | TEXX/PR18KSER 110 24 0:37:17 0:00 N N 110 7244227 1 end
12/30/1899( 9/1/2007
DMOS6 | TEXX/PR18KSER 110 24 0:37:36 0:00 N N 110 7244228 1 end
12/30/1899| 9/1/2007
DMOS6 TEXX/TELSIR 110 24 0:38:11 0:00 N N 110 7244229 1 end
12/30/1899( 9/1/2007
DMOS6 TT4B/CUSEEDA 110 24 0:38:39 0:00 N N 110 7244230 1

en1j

Note that an addition column is appended to the end oflites #l the

elements in this column are set to be string “end”. Thisesdleasier for the

program to read and manipulate the data.

(6) Input.txt
The file “Input.txt” describes the input parameters for rugrtire program and

contains nine lines. As an example,

3

C035,P4JTF751543ZWM,

/Inumber of families to run (also the number e¥ides to run)
//[Family code and the repritasiee device

C027,P5BJF761503BM,
C021,P6GBX2057R10,
/[Threshold value to reduce the number ofsstep
[ltime interval in minutes
/Inumber of wafers per lot
/Inumber of subproblems
/Inumber of days in each subproblem

1000
60
25

4

7

The first line of the file describes the number of familiesepresentative

devices to be scheduled. In the next three lines wethavamily code and the

name of the representative device. A threshold valueoisrsin the fifth line.
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This value is used to reduce the number of steps befickng the model. Its
units are wafer/minute. For a value of 1000, for eXengny steps with
processing rates higher than 1000 wafer/minute will be elietin@om the routes
and thus will not be included in the model. The next line divesime interval,

in minutes, that is being simulated by the program. The $iteanodel is
proportional to this value; e.g., reducing it by ¥2 doublesieea the model.
This parameter can be set to any number of minutesithég¢s evenly into 60,
such as 10 min, 15 min, or is a multiple of 60 such agriiB0The next line
shows the number of wafers per lot. The user cancaksage this value to reflect
the real situation. The next line shows the number of sblbgms for the run.
The last line shows he number of days included in a shlgmo In the above
case 4 subproblems are run with each for 7 dayss theuplanning for 28 days
can be obtained by this setting. The user can also nibeé$g two values to

obtain solution for other planning horizon.

Note: The sequence of the families should be the same ssghence in the
“Family.csv” file or else there will be a mismatch of data.

(7) NonConstrainMachOpnDesc.txt
This file contains a partial list of operations that appeaeutite column heading
K855 in the Stations.csv file. Machines wh&&855 parameter is included in this
file list are considered to be non-bottlenecks. In sontarioss, the computed
effective processing rate deviates from the actual procesdimgand hence may
become a bottleneck in the scheduling model. To avoidithatisn, the
processing rate of all machines that perform an operigied in this file is
multiplied by the constant “ Rate_Increase.” The defalliezis Rate_Increase =
20. The current list is shown in Appendix 3 and can beifieddy the user to
include any operation-machine combination that should noblbodtlaneck.

Note that there is no title line in the file.

Data Structure

The following data objects are created after readinmphe files.
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(1) Production
The “Production” data object contains the routing informatioraficof devices in
the fab. The routing information is also stored in the datacobgmed “Route,”
which will be described in Appendix 3.

(2) Step
A “Step” data object is defined to hold the information faleaice at the
logpoint-operation level. It also holds th& ‘Parameters,” which are required to
compute the processing rates. Each line in the “Routingtablé can be viewed as
a step. The machine list information is also stored in thep*Slata objects.

(3) Route
A “Route” data object is a combination of “Step” data objeé&sRoute” object
holds the information of a route for some device. Eadut® data object
corresponds to a block of information in the “Routing.c#e&’Wwhich belongs to the

same device.

(4) Machine_Set
The “Machine_Set” data object is used to hold the informdtiothe machines.

Such information involves “Misti ID” and the&K‘Parameters.”

(5) Family
The “Family” object is used to hold the information for taeflies. For each
family, the object contains the related devices, which aengivthe “Family.csv”

file.

Output Files

(1) Summary.csv
This file contains the information on finished products #eddeviations
(shortages) for each time period. The time period (inteivapecified by setting
the appropriate parameter in the Input.tex file. An examge/en in Table A.3,

which is divided into three sections.
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The first section shows the target daily output (demandhédevices.

The “day” column gives the day index while tH8 Z° and 4' columns list the

demand for the three devices. For instance, the demadédvize 2 on the first

day is 316 wafers. Note that at present the demand sathe each day for a

device. The second section of the table shows the nwhb&fers completed.

The columns are defined in the same way. The last secdties thhe deviation

from the target output for each day and each devicanlbe seen that the

current production schedule does not lead to any shoffagie week.

Table A.3 Example of Summary.csv

(o))

Target output No. devices completed Deviations
Day| C035 | C027| C021 Day C035 C02f CO02DDay C0B5 CQ27 C021
1 311 316 24 1 311 316 24 1 0 0 0
2 311 316 24 2 311 316 24 2 0 0 0
3 311 316 24 3 311 316 24 3 0 0 0
4 311 316 24 4 311 316 24 4 0 0 0
5 311 316 24 5 311 316 24 5 0 0 0
6 311 316 24 6 311 316 24 6 0 0 0
7 311 316 24 7 311 316 24 7 0 0 0
(2) Shop_production.csv
This file indicates the number of wafers to process at leggioint-operation
during each time period. An example of this file is showhable A.4; the
complete file is about 8 MB in size forweek problem.
Table A.4 Example of Shop_production.csv
Family Logpoint | Operation| Production| Production| Production| Production| Production
index Device name Step num num att=1 att=2 att=3 att=4 att=5
1 P4JTF751543ZWM 1 110 301 0.05 0.04 0.06 0.03 0.0
1 P4JTF751543ZWM 2 112 6930 0.00 0.00 0.00 0.0( 00.0
1 P4JTF751543ZWM 3 282 1600 0.00 0.00 0.00 0.0( 00.0
1 P4JTF751543ZWM 4 282 2000 2.21 2.21 2.21 2.23 122
1 P4JTF751543ZWM 5 282 6640 0.00 0.59 0.60 0.66 90.6
1 P4JTF751543ZWM 6 290 2500 0.00 0.00 1.19 0.0( 91.2
1 P4JTF751543ZWM 7 290 6500 0.00 0.00 0.00 0.31 203
1 P4JTF751543ZWM 8 300 3075 2.68 2.42 1.67 1.08 214
1 P4JTF751543ZWM 10 300 3600 0.78 0.86 0.83 0.75 54 0.
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1 P4JTF751543ZWWM 11 300 3740 0.00 0.00 0.00 0.00 00 0.
1 P4JTF751543ZWWM 12 300 3750 0.00 0.00 0.00 0.00 00 0.
1 P4JTF751543ZWNM 13 300 6750 2.42 3.77 13.52 412 6172

1 P4JTF751543ZWWM 14 300 3800 0.00 0.13 0.07 0.08 06 0.

The first column identifies the index of the device. Thesdcolumn

gives the device name. The third column lists the step nunilner fourth and

fifth columns show the logpoint number and operation nurobére step. Each

of the remaining columns gives the number of wafers tad o be processed

during the corresponding time interval -- 60 min in this casa. example, the
sixth column indicates that for device P4JTF751543ZWM, @Q&ers should
be produced at step 1 in the first hour, 0.042824 is¢lend hour, and so on.

All values are fractional since the problem is modeled with coatis variables.

A more informative value can be obtained by rolling up potidn to the logpoint
level. To obtain a daily plan, either those values woule b be rounded to the

nearest integer, or a second model would have to be dolvedch day or shift

that included more detail and insisted on integer productiortitjigan

Remark

Some steps are not included in the “Shop_productionfideujecause they were

eliminated from the model, as mentioned in Section 4.2. Téteps, however,

must still be performed.

(3) Machine_utilization.csv

This file gives the machine usage during production. Asmrgxte is shown in

Table A.5.
Table A.5 Example of Machine_utilization.csv

Machine| Machine| Machine| Machine| Machine| Machine| Machine
usage at usage at usage at usage at usage at usage at usage at

Machine| t=1 t=2 t=3 t=4 t=5 t=6 t=7

index (%) (%) (%) (%) (%) (%) (%)
19 0.14 0.00 0.07 0.00 0.05 0.00 0.04
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
21 0.00 0.00 0.00 0.00 0.00 0.00 0.00
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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23 1.00 0.94 0.52 0.31 0.51 0.77 0.81
24 0.66 0.25 0.31 0.00 0.00 0.00 0.07
25 0.34 0.08 0.20 0.00 0.00 0.00 0.07
26 0.49 0.05 0.15 0.00 0.00 0.00 0.07
27 0.49 0.04 0.15 0.00 0.25 0.00 0.00
28 0.49 0.00 0.24 0.51 0.00 0.00 0.00

The first column identifies the machine index, which is the sandex

listed in the “Stations.csv” file. The remaining columns, stamiitg the 2 give

the machine usage during successive time periods. All e&ibes in these cells

are continuous and should be interpreted as a percesfttgecorresponding

time period such as an hour. For example, machine RIBQA1) is used 94% of

the time in the %' time period. It can be seen that machine 23 is quite busy, a

least during the first seven periods.

(4) WIP_history(original steps).csv

The file maintains a record of the original WIP before steps are removed. An

example is shown in Table A.6.

Table A.6 Example of WIP_history(original steps).csv

Family | Step | WIP atthe | WIP at the| WIP atthe| WIP atthe| WIP atthe
index | Index | endoft=1|endoft=2|endoft=3| endoft=4| endoft=5
i=1 j=1 0 0 0 0 0
i=1 j=2 300.00 0 0 0 0
i=1 j=3 92.96 384.98 353.33 330.60 302.95
i=1 j=4 107.04 115.02 141.92 134.45 113.51

=1 j=5 0 0 4.75 7.70 3.60

=1 j=6 0 0 0 27.25 79.95
i=1 j=7 0 0 0 0 0
i=1 =8 300.00 300.00 273.70 260.24 174.95
i=1 =9 0 0 26.31 0.00 85.29
i=1 | j=10 113.91 109.60 101.15 137.25 127.24
i=1 | j=11 11.09 5.70 0 3.65 0
i=1 | j=12 0 9.69 14.16 0.00 13.66

The first two columns indicate the device index and processany

respectively. Each column in the remaining part of the tahtels for a WIP
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profile at the end of a time period. For example the thirdneolgives the number

of wafers at each step at the end of the first time perioel 4T column gives the

WIP at each step at the end of tfitine period, and so on.

(5) WIP_history_LogPoint.csv
The file keeps a record of the WIP history at the logpoirglleAn example is

shown in Table A.7. Note that in this file all of the wafershef representative

devices are aggregated.

Table A.7 Example of WIP_history_LogPoint.csv

WIPat| WIPat | WIPat| WIPat | WIP at | WIP at | WIP at
Logpoint| endof | endof | endof | endof | endof | end of | end of
number| t=1 t=2 t=3 t=4 t=5 t=6 =7
110 0 0 0 0 0 0 0
112 300.00 0 0 0 0 0 0
282 717.00 949.50 948.00 918.30 858/85 818.75 B80F.6
290 455.00| 47193 43411 463.82 523]26 563.36 533.5
300 1470.0Q0 1495.57| 1534.89| 1534.89| 1491.51| 1459.55| 1496.10
302 0 25.00 0 0 43.38 0 4.36
305 74.00 74.00 49.00 25.00 25.00 100j34  75(34
310 329.00| 277.00 275.00 247.00 195,00 143.00 016.
312 195.00| 247.00 299.00 351.00 269,07 301.84 851.9
318 0 0 0 0 133.93 3.16 1.87

The first column gives the logpoint number at each step wiglsebond
column gives the operation number. The remaining colunthsate the WIP
profile of the three representative devices at the end bfteae period. For
example, at logpoint 282 and operation 717, there are atd@4b.5 wafers in
gueue. This value was obtained by summing the WIP of the tiepresentative

devices.

(6) FinalWIP(reduced).csv
This file contains the final WIP at the end of each Ror.example, if the code is
run for a 1-week problem four times in a row time instdashoe for a 4 week
problem, the file will contain the WIP profiles at the endadteweek. The WIP
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profiles give the number of wafer at the reduced stegisad of the original steps.
An example is shown in Table A.8.

Table A.8 Example of FinalWIP(reduced).csv

Family | Step index| WIP
C035 1 0
C035 2 0
C035 3 0
C035 4 0
C035 5 0
C035 6 0
C035 7 0
C035 8 0
C035 9 0
C035 10 23.46
C035 11 21.59
C035 12 34.62

The first column indicates the index of the representative eleviibe
second column gives the index for the steps. The lagncolaports the number
of wafers of the device at the corresponding step. ¥ample, there are 23.4577
wafers of device 1 at step 10.

(7) Process_rate.csv
This file contains the effective processing rates that werguated for each
device at each step. Table A.9 contains an example.

Table A.9 Example of Process_rate.csv

Device | Step | Machine| Machine

index | index | index | MistilD | Processing ratg
i=22 | j=21 | m=29 | AP1001 lim = 0.45
i=22 | j=21 | m=29 | AP1002 rim = 0.45
i=22 | j=21 | m=29 | AP1003 lim = 0.45
i=22 | j=21 | m=29 | AP1004 rim = 0.45
i=22 | j=21 | m=29 | AP1005 lim = 0.45
i=22 | j=21 | m=29 | AP1006 rim = 0.45
i=22 | j=21 | m=29 | AP1007 rim = 0.45
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The first column gives the index of the original devices; thahésjndex
of the 76 devices in the Routing.csv file before aggregationrepresentative
families. The 22 device, for example, is the representative device for yamil
C035. The second column in the table gives the step ititeifird column
indicates the machine index, while the forth column lists thenmadVisti-ID.

The last column gives the processing ratein wafers/min.
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Appendix 2: Field Definitionsfor Input Files

1. Fields of the “Routing.csv” file.

Facility
Device
Logpoint
Operation
OpnDesc
MachineGrp
EquivOp
OrigRecNo
Par

875

840

824

821

820

819

816

815

810

809

Date

802

949

947

874

837

844

842

814

948
Allg37
873

950

803

908

883

889

933

934
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918

829

905

869

909

910

817

830

812

835

943

8620verflow

845

846

850

851

861

862

882

884

828

All817

All812

AllI835

AllIB36

8820verflow

836

867

955

956

All814

AllI875

All873

All874
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2. Fields of the “Stations.csv” file are shown as follows.

Facility
Misti-id
Machine Groups
Date
858
811
833
834
838
852
853
854
960
856
939
859
860
861
865
866
868
906
941
942
932
937
855
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3. One example of “Family.csv” file is shown as follows.

C035 coz27 C021
B4JRD15060BPP| B5BJF761924B EZ/E771676D]
B4JRD15060B4P | EZ/E761536Z00 EZ/F771657A(
B4JRD15075BPP| EZ/E761536Z02 EZ/F771657A(
B4JRD751686J4F EZ/E761541A0&Z/F771657A08
B4JRF751613D4R EZ/E761560Z00 EZ/F771657A(
B4JRF751625PF | EZ/E761909A1&Z/F771657A10
B4JRF751625PP EZ/F761503B23 EZ/F771657Al11
B4JRF7516254F EZ/F761504A0EZ/F771657A11L ,
B4JRF7516254P EZ/F761504B08 EZ/F771657A12
B4JRF751672D4R EZ/F761504B10 EZ/F771657A13
B4JRF751989B4R EZ/F761522A4%Z/F771657A14
B4JSF751613HHT EZ/F761522A50 EZ/F771657Z11
B4JTD15060C EZ/F761522A51EZ/F771657712

4. The fields of “wip_data.txt” file are shown as follows.

Date

Logpoint

Operation

Device

Device_type

Prime_Inv

Rewrok_Inv

Hold_Inv

Moves_qty

Num_lots

plan_ct

151




5. The fields of “Lotstarts.csv” are shown as follows.

Facility

Item

NextLogpoint

EstimatedShipDate

Quantity
StartTime
StartDate
Hot-Flag
Hold-Flag
Logpoint

Lotnumber

day index

152



6. NonConstrainMachOpnDesc.txt

(List of nonbottleneck operations)

ALIGNMENT
AUTO_VISUAL_INSP
CDSEM_AMATVERITY
CDSEM_HITACHI
CDSEM_KLA8300
CD_SEM_MEASURE
INLINE_PARAMETRIC
KLA_F5_CU
KLA_F5_SCD
KLA_F5_SPECTRA100
LASER_ANNEAL
LASER_MARK
LOT_INSPECT
METAPULSE_MEAS
OPTI_PH_QUAL
OPTIPROBE

PC_CU

PC_NON_MTL
POST_CU_CMP_INSPECT
POST_LOT_MEASURE_CU
RS_MEASURE
SRT_LOT_FORM_M
SRT_LOT_FORM_NM
SRT_METAL_CU
SRT_NON_MTL
STI_CD_MEASURE

WLR

YE_AIT_ADDER
YE_COMPASS_ADDER
YE_DEFECT_REVIEW
YE_ES20_INSPECTION
YE_SEMVISION_INSPECT
YE_SEMVISION_REVIEW
YE_STEALTH_ADDER
YE_EBEAM_INSPECTION
VIPER_INSPECT
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Appendix 3: Data Structure

1. Production

<DPradiirtinn ifams
N TUMULLIVIE |:| LGl -

A\
pls]
QO
<
S
[¢]

\4

i
NN

Figure Al Data structure of <Production> object

As it can be seen in the figure, the <Productioatadbject is an array
the <Production_item> data object. Each <Producttem>data object stanc
for one device. For each device, a <Route> obgeictaluded in the
<Production_item> object describing the route efdevice. A <Route> object
an array of <Step> objes. A <Step> object describes the process withirrdle,
which is a combination of log point number of openathmmber. More deta

information is shown in the <Step> object descoip.

2. Step
A step corresponds to a line in the “Routing.calflé which can be dexed by
the combination of Icpoint number and opation number. The following figur
shows the data structure of one <Step> ol
A <Step> object includes the necessary informdiomne step. First

stores all th&k parameters which are used to compute the processieg) The
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log point number and the operation number are includachasdle of a step. The
“Process Model” describes which mode the step is. Tiep “thdex” is the order
number of a step. The “MC_vector” includes the list of nrahwhich can be
used to process this step.

- Q Step
@ ATTE3T
i Ee0z
i@ EB1Z
i EB14
@ EB1S
i EB1R
i@ EB1T
i KRz
@ ER30
@ KR35
i ER3R
i ER3T
i ER4R
i KBS0
@ Eas1
i@ EBT3
i EBT4
@ KBTS
# logpoint
@ M _wector
# operation
@ ProcessModel
# step_index

Figure A.2 Data structure of <Step> object

3. Route
A route is a combination of steps. This can be seen irollosving figure.

- @ Boute

i step_wector
Figure A.3 Data structure of <Route> object

4. Machine_Set
The <Machine_Set> object stores the information of the statButh
information comes from the “Stations.csv” table. The followfiggre shows the
data structure of the <Machine_Set> object.

The “Misti ID” is the ID associated with the machine. Tlaegmeter
K852 is the capacity multiplier/loading factor which is included engtocessing
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rate computation. The parametK833 andK834 are related to the mean upti
percentage. However, currently these two paramatersot used to compute t
processing rate. Insteehe uptime percentage is taken into account by t
parameteK866.

||;||

Bl

Figure A4 Data structure of <Machine_Set> object

5. Family
The <Family>data object stores the family information of theides. It is ar
array of family structure. Each family contains thiermation of family code an
the names of the devices belong to this fan
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|
i

Figure A5 Data structure of <Family> object
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Appendix 4. Solution to the 4-week Problem with Basic Decomposition Scheme

Table A.10 Summary of solution to the 4-week problem Isychdecomposition

T OUTy Num. completed A Or Ay

d C: G GCs C C GCs C ) GCs

1 328 | 315 26 328 315 26 0 0 (

2 328 | 315 26 328 315 26 0 0 (

3 328 | 315 26 328 315 26 0 0 (

4 328 | 315 26 328 315 26 0 0 (

5 328 | 315 26 328 315 26 0 0 (

6 328 | 315 26 328 315 26 0 0 (

7 328 | 315 26 328 315 26 0 0 (

8 328 | 315 26 328 296.8b 26 0 18.15

9 328 | 315 26 32250 267.90 26 5.50 47.10

10 328 | 315 26 330.26 260.14 2pb —-2.26 54.86 0

11 328 | 315 26 291.30 299.10 2b 36.70 15.90

12 328 | 315 26 21050 379.90 2b 117.56-64.90 0

13 328 | 315 26 318.57 271.83 2b 9.43 43.17

14 328 | 315 26 328 262.40 26 0.00 52.60

15 328 | 315 26 275.40 315.00 2b 52.60 0.00

16 328 | 315 26 290.05 300.35 2b 37.95 14.65

17 328 | 315 26 260.7% 329.65 2b 67.25-14.65 0

18 328 | 315 26 307.50 282.90 2b 20.%0 32.10

19 328 | 315 26 322.20 268.20 2b 5.80 46.80

20 328 | 315 26 330.93 259.48 2p —2.92 55.52 0

21 328 | 315 26 325.08 265.33 2b 2.9P 49.68

22 328 | 315 26 275.91 314.49 2b 52.09 0.51

23 328 | 315 26 281.60 308.80 2b 46.40 6.20

24 328 | 315 26 324.76  265.64 2b 3.24 49.36

25 328 | 315 26 279.64 310.76 2b 48.36 4.24

26 328 | 315 26 293.99 296.42 2b 34.02 18.68

27 328 | 315 26 328.53 261.88 2p —-0.53 53.13 0

28 328 | 315 26 327.48 262.93 2b 0.58 52.07
Total | 9184 | 8820 728 8648.998284.95| 728 | 535.08| 535.07 0
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Figure A.15 WIP profile of gat the end of the 2nd week
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Figure A.16 WIP profile of gat the end of the 3rd week
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Appendix 5: Solution to the 4-week Problem with Decomposition Scheme

Table A.11 Summary of solution to the 4-week problem wislislreduling and heuristic

scheme
T OUTy Num. completed Ajg Or Ay
C: 0 (0% C 0 GCs C 0 (0%

328 | 315, 26 328 315 26
328 | 315| 26 328 315 26
328 | 315, 26 328 315 26
328 | 315| 26 328 315 26
328 | 315, 26 328 315 26
328 | 315| 26 328 315 26
328 | 315, 26 328 315 26
328 | 315| 26 328 315 26
328 | 315, 26 328 315 26
10 | 328 | 315| 26 328 315 26
11 | 328 | 315, 26 328 315 26
12 | 328 | 315| 26 328 315 26
13 | 328 | 315, 26 328 315 26
14 | 328 | 315| 26 328 315 26
15 | 328 | 315, 26 328 315 26
16 | 328 | 315| 26 328 315 26
17 | 328 | 315, 26 328 315 26
18 | 328 | 315| 26 328 315 26
19 | 328 | 315, 26 328 315 26
20 | 328 | 315| 26 328 315 26
21 | 328 | 315, 26 328 315 26
22 | 328 | 315| 26 328 315 26
23 | 328 | 315, 26 328 315 26
24 | 328 | 315| 26 328 315 26
25 | 328 | 315, 26 328 315 26
26 | 328 | 315| 26 328 315 26
27 | 328 | 315, 26 328 315 26
28 | 328 | 315| 26 328 315 26
Total| 9184 | 8820 728 9184 8820 728
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Figure A.19 WIP profile of €at the end of the 2nd week
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Figure A.20 WIP profile of €at the end of the 3rd week
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Figure A.21 WIP profile of €at the end of the 4th week
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Figure A.22 WIP profile of gat the end of the 1st week
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Figure A.23 WIP profile of gat the end of the 2nd week
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Figure A.24 WIP profile of gat the end of the 3rd week
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Figure A.25 WIP profile of g€at the end of the 4th week
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Figure A.26 WIP profile of gat the end of the 1st week

166



1200
1000
800
600

dIM

400
200

LE6
IT6
588
698
EE8
L08
184
E1e7A
6¢L
E0L
LL9
1S9
5¢9
66S
€4S
LvS
[XAS
S6v
69
4747
LTV
16€
59€
6ce
ETE
L8¢
19¢
g€¢
60¢
E8T
LST
IeT
S0T
61

€S

LC

Step in routing

Figure A.27 WIP profile of gat the end of the 2nd week
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Figure A.28 WIP profile of gat the end of the 3rd week
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Figure A.29 WIP profile of gat the end of the 4th week
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Appendix 6: Daily Input for the 13-week Problem

Rig(1 | Roa(1 | Rag(1 Rig(1 | Raa(1 | Rag(1 Rig(1 | Red(1 | Raa(1

d ) ) ) d ) ) ) ) )

1 300 300 24 32 300 325 12 63 375 250 T2
2 300 300 24 33 250 325 0 64 300 275 144
3 312 300 24 34 250 30( 24 65 400 200 12
4 300 299 24 35 250 348 24 66 400 448 0
5 275 450 0 36 275 325 0 67 399 300 D
6 299 349 72 37 275 312 12 68 400 300 0
7 375 249 48 38 275 324 48 69 400 250 0
8 325 287 48 39 300 30( 96 70 312 246 24
9 325 300 6 40 300 300 48 71 375 300 D
10 | 326 300 24 41 325 300 0 72 400 300 0
11| 325 425 24 47 300 311 772 73 400 2560 48
12 | 325 300 0 43 300 30( 6 14 424 325 24
13| 325 300 24 44 300 300 17 75 400 362 0
14 | 325 175 72 45 300 300 0 76 400 375 24
15| 325 300 24 46 350 300 36 77 374 325 48
16 | 325 275 6 47 325 312 96 78 308 350 51
17 | 325 300 0 48 350 30( 60 79 300 412 0
18 | 325 350 24 49 337 324 24 80 300 300 0
19| 325 300 24 50 300 300 0 81 300 362 24
20| 300 312 54 5] 300 300 0 82 400 300 24
21| 300 324 48 52 325 312 0 83 400 300 0
22 | 325 325 0 53 325 30( 24 84 400 350 48
23| 325 325 0 54 337 262 24 85 300 348 24
24 | 300 325 0 55 300 356 24 86 400 300 0
25| 300 300 24 56 300 349 54 87 400 300 24
26| 300 300 72 51 300 300 0 88 300 400 12
27 275 387 0 58 400 30( 0 89 300 425 D
28 275 375 42 59 300 348 0 90 400 274 24
29 275 325 0 60 300 30( 0 91 429 350 48
30 | 300 325 0 6] 400 275 24
31| 300 312 24 62 350 312 772
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Appendix 7: Solution to the 13-week Problem with Decomposition Scheme

Table A.12Summary of the solution to the 13-week problem with resdiregland
dispatching heuristic

T OUTy Num. completed Ajg Or Ay

d C: 0] GCs C ) GCs C G GCs

1 328 315 26 328 315 26 0 0 0
2 328 315 26 328 315 26 0 0 0
3 328 315 26 328 315 26 0 0 0
4 328 315 26 328 315 26 0 0 0
5 328 315 26 328 315 26 0 0 0
6 328 315 26 328 315 26 0 0 0
7 328 315 26 328 315 26 0 0 0
8 328 315 26 328 315 26 0 0 0
9 328 315 26 328 315 26 0 0 0
10 328 315 26 328 315 26 0 0 0
11 328 315 26 328 315 26 0 0 0
12 328 315 26 328 315 26 0 0 0
13 328 315 26 328 315 26 0 0 0
14 328 315 26 328 315 26 0 0 0
15 328 315 26 328 315 26 0 0 0
16 328 315 26 328 315 26 0 0 0
17 328 315 26 328 315 26 0 0 0
18 328 315 26 328 315 26 0 0 0
19 328 315 26 328 315 26 0 0 0
20 328 315 26 328 315 26 0 0 0
21 328 315 26 328 315 26 0 0 0
22 328 315 26 328 315 26 0 0 0
23 328 315 26 328 315 26 0 0 0
24 328 315 26 328 315 26 0 0 0
25 328 315 26 328 315 26 0 0 0
26 328 315 26 328 315 26 0 0 0
27 328 315 26 328 315 26 0 0 0
28 328 315 26 328 315 26 0 0 0
29 328 315 26 328 315 26 0 0 0
30 328 315 26 328 315 26 0 0 0
31 328 315 26 328 315 26 0 0 0
32 328 315 26 328 315 26 0 0 0
33 328 315 26 328 315 26 0 0 0
34 328 315 26 328 315 26 0 0 0
35 328 315 26 328 315 26 0 0 0
36 328 315 26 328 315 26 0 0 0
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37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328

315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315
315

26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26

328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
328
310.4
295.2
300.70
275.4
328
304.48
323.02
295.2
310.4
267.9
282.9
328
301.5
315.3%
295.8%
308.8¢
286.9¢
275.4
328
302.8
322.9%
291.97
308.7
282.08
275.4
328
300.62
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315
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264.8
280
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315
262.4
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267.3
295.7
280

322.%

307.9
262.4
288.9
275.0
294.5
281.5
303.4

315
262.4
287.6
267.4
298.4
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308.3

315
262.4
289.7

26
26
26
26
26
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80 328 315 26 316.8 273.6 0 112 414 26
81 328 315 26| 291.97 298.43 0 36.03 16|57 26
82 328 315 26 308.7 281.7 0 19.3 33.3 26
83 328 315 26| 284.21 306.19 0 43.79 8.81 26
84 328 315 26 281.6 308.8 0 46.4 6.2 26
85 328 315 26 328 262.4 0 0 526 26
86 328 315 26 300.7 289.7 0 273 253 26
87 328 315 26| 319.43 270.97 0 8.57 4403 26
88 328 315 26| 285.38 305.02 0 42.62  9.98 26
89 328 315 26| 307.29 283.11 0 20.r1 31i89 26
90 328 315 26 288.2 302.2 0 39.8 12,8 26
91 328 315 26 282.9 307.5% 0 45,1 7.5 26
Total | 29848 | 28665 2366 28797.27614.2| 1523.18| 1050.8 1050.8| 843
WIP profiles of thethree devices at the end of each week
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Figure A.30 WIP profile of €at the end of the 1st week
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Figure A.31 WIP profile of €at the end of the 2nd week
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Figure A.32 WIP profile of €at the end of the 3rd week
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Figure A.33 WIP profile of €at the end of the 4th week
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Figure A.34 WIP profile of €at the end of the 5th week
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Figure A.35 WIP profile of €at the end of the 6th week
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Figure A. 36 WIP profile of Cat the end of the 7th week
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Figure A. 37 WIP profile of €at the end of the 8th week
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Figure A.38 WIP profile of €at the end of the 9th week
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Figure A.39 WIP profile of €at the end of the 10th week
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Figure A.40 WIP profile of €at the end of the 11th week
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Figure A.41 WIP profile of €at the end of the 12th week
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Figure A.42 WIP profile of €at the end of the 13th week
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Figure A.43 WIP profile of gat the end of the 1st week
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Figure A.44 WIP profile of g€at the end of the 2nd week
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Figure A.45 WIP profile of gat the end of the 3rd week
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Figure A.46 WIP profile of g€at the end of the 4th week
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Figure A.47 WIP profile of g€at the end of the 5th week
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Figure A.48 WIP profile of g€at the end of the 6th week
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Figure A.49 WIP profile of gat the end of the 7th week
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Figure A.50 WIP profile of g€at the end of the 8th week
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Figure A.51 WIP profile of g€at the end of the 9th week
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Figure A.52 WIP profile of gat the end of the 10th week
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Figure A.53 WIP profile of gat the end of the 11th week
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Figure A.54 WIP profile of gat the end of the 12th week
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Figure A.56 WIP profile of gat the end of the 1st week
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Figure A.57 WIP profile of gat the end of the 2nd week
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Figure A.58 WIP profile of gat the end of the 3rd week

180



900
800
700
600
500
400
300
200
100 -

LEG
116
888
698
£E8
L08
184
86/
6¢L
€0L
LL9
1S9
8¢9
669G
ELS
LYS
X4
S6v
69Y
Evy
LTV
16€
S9¢
6EE
ETE
L8¢
19¢
g€¢
60¢
€8T
LST
IeT
S0T
6.

€S

LC

Step in routing

Figure A.59 WIP profile of gat the end of the 4th week

700
600
500

a 400

< 300
200
100

LEG
116
588
658
EE8
L08
184
86/
6¢L
£0L
LL9
199
8¢9
66S
ELS
LYS
1¢s
g6y
69V
Evy
LTV
16€
89¢
6EE
ETE
£8¢
19¢
174
60¢
E8T
LST
IeT
S0T
61

€S

LC

Step in routing

Figure A.60 WIP profile of gat the end of the 5th week
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Figure A.61 WIP profile of gat the end of the 6th week
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Figure A.62 WIP profile of gat the end of the 7th week

900
800
700
600

Q 500

= 400
300
200
100

LEG
176
588
658
£e8
L08
182
i<y
6¢.
€0L
L19
199
§¢9
66G
FAS
LYS
1¢s
S6v
69
EVy
LTV
16€
g9€
6€E
ETE
L8¢
19¢
ge¢
60¢
£8T
LST
ret
S0T
6.

€S

LC

Step in routing

Figure A.63 WIP profile of gat the end of the 8th week
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Figure A.64 WIP profile of gat the end of the 9th week
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Figure A.65 WIP profile of gat the end of the 10th week
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Figure A.66 WIP profile of gat the end of the 11th week
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Figure A.67 WIP profile of gat the end of the 12th week
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Figure A.68 WIP profile of gat the end of the 13th week
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Appendix 8: Benders Decomposition

Model (3) contains a series of block constraints with ovpitepvariables, where the
blocks correspond to different time periods and a subsbeofariables appears in the
adjacent blocks for periods- 1 and. In visual terms, the overlapping constraints form a
staircase. The general problem is calledudtistage linear progranand has the

following form:

w =Minimize A +cxt + A+ - - -+ XY (17a)
subjectto  B%® + Alx! = pt (17b)
—B' + A% = b? (17¢)
—Bx® + A% = p° (17d)

0
—BVHMT+ AN = pN (17e)
x°>0, x'>0,... x>0 (17f)

where all vectors and matrices are of appropriate dimeasioB* (k= 1,...N-1)

reflects the overlapping or staircase nature of the constrdintslecompose model (17),
we introduce a sequence of vectors?,...,z" with the same dimensions &@sx?, ..., x"
and write each constraint as

_ BRI 4 ARk = K

with the restriction thaB"x = B2, k = 1,...N. Now, if thez variables are treated the
same way that the integer variables are treated in Bendergtain for solving mixed-

integer linear programs, we get the followigprimal subproblems.

W(Z) = Minimize ¢ (18a)
subjectto  A*K = b* + B* 1t (18b)

B*xK = B (18c)

x>0 (18d)

For the moment, assume that all the variables that appead#i (48) are continuous.
Letting u* andy* be the dual variables associated with constraints (18bYL8a} (
respectively, the dual of (18) is

WP(Z) = Maximize  uk(b* + B<ZY) + y¥(B*Z)

subjectto  u*A¥ +yB* < ¢ (19)
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wherewP(Z) =wF (). Thus, model (3) is equivalent to
N
w=Minimize Y wP (z") (20)
k=1

To solve (20), we need to create a master problemE*lle the set of extreme points
associated with the feasible region in (19) antRfédte the set of extreme rays:

1,...N. Benders’ master problem can be written as

N

w = Minimize )" 7, (21a)
k=1

subject to 7, > u*(b* + B¥'ZY) + y*(B"Z), Ve e EX , k=1,...N (21b)

0> V(b + B2 + g“(B"Z), vr e R, k=1,...N (21c)

where the constraints in (21b) are called optimality cutdfamee in (21c) are called
feasibility cuts. The standard Benders algorithm can rewskd to solve (21), where at
each iteration, cuts are added by solving eitheNtHaal subproblems in (19) or thie
primal subproblems (18) and then computing the correspgmttial variables® andy*

or dual extreme ray& andg.
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Appendix 9: Pseudocodes for Neighbor hood Search in Capacitated Clustering

The following definitions, together with the aforementioned thmtain Chapter 3, are

used to describe the phase Il procedures.

Parameters
B a percentage serves as tolerance
TEWX) sum of edge weights in every cluster of solution
c(i, X) cluster to which nodeis assigned in solution
ben_i_s benefit obtained by shifting nodeo clusters
best ben_i_s best benefit fronben_i_s
benefit benefit obtained by moving node
best_ben best benefit found during the local search for all of tides
jPest node to be moved withest_ben
gest cluster to which®®*'is assigned in the best move
joest node to be moved fros?**'if w,., (% +w,,> C™
g cluster to which nod@®'is moved to
i temporary variables for the node to be shifted
s1,S, S temporary variables for the cluster to whjendj” are shifted
A percentage decrement for toleragice

Procedure Ny(x, w, ¢, 8, C™, C™ x)

Input current solutiorx, node weights vectav, edge weights matrig, capacity bounds
C™ andC™® and tolerancg.

Output local solutiorx with respect to neighborhodéi(x).

Stepl: Initialization

p *
TEWX) =), > ¢ ;best_berr—ow; X =Xx;
k=1 i,jeV, (x)

Step2: for every node perform a local search

for (i € V){
k=c(i, X); _
if (W(X) —w; > C™"){
best ben_ i s— «;
for (s=1,...p ands# Kk){
if (We(X) +w; < C™®Y
ben i s Z G — Z G
jv, (%) iV (O}
}else{//clusters will exceed the upper bound
("s)=argma{ > ¢- D> G+ G- G,
ist leVo (X)X } lev ) levg X leVs X
VieEVsj#i,si=1,..p,s51#5S C™" < WX) + W —
w; < C™ andw, (x) +w; < C™};
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beni_s= > ¢- > q,+ch,l—Zgi;

leV (N j} lev, (O V.0 levy 3

}

if (ben_i_s>best_ben_i )$ .
bes bent i sben_i s s =s; benefit=ben_i_s
if (W, (%) +w > C™)

i =its=s;

}
}
}lend_for_s
if (benefit>best_beh{
best_berr benefit i**'=i; $*'=g";

I (Wanoe (9 + W, = C)

JbeSt_J : %F)est_ a*
}
}
}
}
Step3: if (best_berr —  x t(X){
k = g(ibeSt, X),
Vi(X) € Vi) \ {i°s%;
Vsbest()(*) é Vsbest(x) U{ Ibes}’
if (IV e () | =C™)
Vs (X) € Vs NG Ve (X) € Ve (9 UL,
}
}
Figure A.69 Pseudocode for local search in neighborhiaod
Parameters .
ki,k2,51,52,S3,S temporary variables for cluster identification
ben e s temporary variable for benefit obtainéd; 1, 2, 3
ghest edgee of the move wittbest_ben
joest jbest the two endpoints @'
gest cluster to whicke”is assigned in the best move

Procedure N(x, w, ¢, 8, C™ C™ x)

Input current solutiorx, node weights vectav, edge weights matrig, capacity bounds
C™" andC™* and tolerancg.

Output optimal solution in neighborhodd(x), X

Stepl: initialization

TEV\(x):Zp: > ¢ ; best_berr—oo; X =X

k=11i,jeV, (x)
Step2: for every edge perform & local search
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for (e=(j) € E){
ki =c(i, X); k2 =c(j, X); _
if (ki =k =k andWi(x) —w; —w; = C™""){// e is within clusteik
g = argsmax{ Y E+e)- D (6+¢6),

1 eVg(x) leVi ()X, j}
v s€ {1,..p0{ k} and Wy(X) +w; +w; < C™};
benefit= ), (G +G)— >, (G+¢);
eV, (%) leVie (Y1 }
}else { _ :
if (W, (% —w>C™ andW, (%) —w;>C™){
if (We(x) +wi +wj < C™) {

s=argmax > (G +G)+G- 2 - 2 F.
s leVg(x) 1eVig (%) leVig (%)
V s#ky, S# ka};

ben_e s= D, (G+G)+§¢— D - D §;

levg () leViy (¥ leViy (%

}
it (W, (% + w, < C™) {

ben_e 5= > ¢, - > ¢ ; 2=k
Vi () leVig (X
)
if (W, (%) +w, <C™){

ben_e 5= > ¢ - D G s=ky

1V, () eV, (X)

}
benefit= max fpen_e_gben_e _gben_e _g;
s = s, whereben_e_s= benefitwith | = 1, 2, 3;
}
}
if (benefit>best_beh{

best_benrr benefit
ebest: e Sbest: S

}
}
Step3: if (best_berr — B x t,(X){

éﬁest= best :besi.

A% °%%);

ka = (i X%); k2 =c(°*°) %);
if (ky = ko) {

k=ki VX) = VIO \{i%%% %% Vi (X)) = Vi (%) ULEP%% 25,
} else {

if (Sbest: kl) {
Vi, (X) =V, (¥ u{jPesy; Vi, (X) = V,, (%) \{jPest:
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else if €°5'= k) {

V, (X) =V, (0 iV (X) =V, (%) u{i®V}
} else{

Vi (X) =V, (0% Vi, (X) =V, (0 (i,

Vbesl(X ) = Vbest(x) U{ |be5t bes};

}

Figure A.70 Pseudocode for local search in neidndoma N,

Parameters
(i**j**)  nodes to be swapped correspondingest_ben
Procedure Nx(x, w, ¢, 8, C™, C™ x)
Input current solutiorx, node weights vectav, edge weights matrig, capacity bounds
C™ andC™® and tolerancg.
Output local solutiorx with respect to neighborhodg(x).
Stepl: initialization
p
TEWX) =)' > ¢ ;best_berr—oo; X =x;

IJ’

k=1i,jeV, (x)
Step2: for every pair of nodes perform a local seandN3
for k=1,...p){

if (C™" < Wi(X) —w +wy < C™) {
for (s=k+1,...p)Y{
if (Cm'n < Ws(x) —w +w; < C™) {

( !J ) -

argmax{( >, G- > G)+( X G- > )
leVg(x) leVi()Y } levy( 3 levg 3\ }i
i € Vk(X) andj € V{(X)};

benefit=( >  c. - > ¢ )+( D c, ~ > c);
eV (%) levi (O} eV (%) lev M\ i}

if (benefit>best_beh{

best ben: beneflt
best -best

_IJJ _J)

}
}
Step3: if (best_berr — ﬁXtW(X)){
k=c(i®, %); 5= ¢(°*% X);

Vi(x) = (V9 \ {_fes}) U g%
Va(X') = (V) \ {j°*) U {i°*;
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Figure A.71 Pseudocode for local search in neiginomat N3

Appendix 10: Pseudocodes for Back-end Operations

Indices and sets

i index for machines;e M

index for devicesj € D

index for key devicess € K
index for lotsjl € L

index for package devicgse P
index for routess € S

index for tooling familiest € T

index for temperaturez €T

index for tooling setup} € A

index for temperature combinatiomsm € N

set of all devices, including regular devices, Beyices and package
devices

K set of key devicesK < D

L set of lots in WIP at current operation

L(i) set of lots that can be processed on madhine

L(i,j)  set of lots consisting of devigehat can be processed on machine
L(i,A) set of lots that can be processed on madhiith tooling setupl

US> ~0o —x——
3

M set of machines (each machine falls into a maaipioep)

M(I) set of machines that can procesd lot

N set of feasible temperature combinations for maehand tooling
N(n) set of temperature combinations that intersect aaaionn.

P set of package deviceB,c D

S set of routes

i) set of routes that use machine

Si,l)  set of routes that use machirte process lot
Si,1,2) set of routes that use machirte process lot with tooling setup
T set of tooling families

T set of operating temperatures

T(n)  setof operating temperatures that are elemenengferature combination
n

A set of tooling setups that used in the rcts

A(i) set of tooling setups that can be installed in rimech
A(it,r) set of tooling setups that can be installed in nmedhusing tooling familyt
under temperature
Parameters and data
bt number of tooling pieces from famityequired by tooling setup
n'°ne  number of tooling pieces from famifyavailable under temperature

tm
combinationm
n™**  number of chips in lat
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min_chips
ng -

ngwin_chips

&s

Hi

minimum number of chips associated with key dekioequired to be

processed over the planning period
minimum number of chips associated with packagécde required to be

processed over the planning period

processing rate of ldton machine using routes (chips per hour)

weight (benefit) associated with processing Idtinction of lot age and the
remaining planned cycle time)

weight (penalty) associated with shortage of pgekdevicek

weight (penalty) associated with shortage of keyickp

penalty for choosing route
normalizing constant associated with key and paekksyice shortages
(capacity) number of hours available on machioeer the planning period

Decision variables

Xils
Yia
Ay
A3

1if lotl is processed by machingiith routes, O otherwise
1 if machine is using tooling setup, O otherwise
shortage of key devide

shortage of package devipe

Figure A.72 Notation for setup and assignment model

Procedure Ny(xX", 4i, X)

Input Feasible IP solutior”, current machine setup, VieM
Output Local optimumx” in neighborhood;(x")
Stepd: //InitializeLo, L , t” andx according toc”

Lo @;Li<@;t"=0,VieM;

Xis =

L vieM,leL(i, ), se i, A);

for i € M, | € L(i, &), s€ Sil, 4)) {//for each index combination

}

if (xi- = 1){// lot | is processed by machinby routes
/lupdatel; andt”
Li - Li U {I}, tiIP =tiIP_'_r.]IChips/rEIS :

}

for (I € L) {//for each lot

}

if (I ¢ Lj, VieM){//assign lotl to the set of unassigned |dis
Lo “«— Lo V] {|},
}

Step2: Sort the lot$ € Ly in nonincreasing order den(l)
Step3: For ( € L) {//for each unassigned lot

for (i € M) {//for each machine
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if (1 € L(i,E-)){//test if lot | can be assigned to machingsing setup

Ai
//get the route associated to the highest prawgsaie using
tooling setupz-
s = argmaxfis, S€ (i, 4 )};
/ltest if there is enough time to assignl Itd machine
if (87 +n™"/r, < Hi){
/lassign lot to maching, update.;, Lo andt”
L Liu{lh 7 =t"+n""/r ;Lo Lo\ {I}; X, = 1;
/lupdate output and shortage given ngwandL,
out(d) = out(d) +n"*; sh(d)) = n(d)) —th(d));
/lupdate the lot benefit measuren(l), | € Lo
for (I' € Lo anddy =d)) {
ber(l) =w +(Wdl /C) -min{n"*, sh(d)}
Hisaro Naeromy
}
Re-sort the lots ihg given updatetben(l), | € Lo;
}
}

Figure A.73 Pseudocode fdi(x") local search

Procedure Nx(xX", 4i, X)

Input Feasible IP solutior”, current machine setup, Vi € M
Output Local optimumx’ in neighborhood\,(xX")

Stepd: //InitializeLo, L , t” andx according toc”

Lo @;Li< @;t"=0,VieM;
X.=X°, VieM,I|eLl,A), se il A);
for (i € M, | € L(i, &), s€ S(il, 4)) {/ffor each index combination
if (xi” = 1){// lot | is processed by machinby routes
/lupdatel; andt”
Li - Li U {I}, tiIP =tiIP_'_r.]IChips/rEIS :
}
}
for (I € L) {//for each lot

if (I ¢ Lj, Vi€ M) {//assign lotl to the set of unassigned ldig
Lo “«— Lo U {|},
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}
}
Step2: Sort the lot$ € Ly in nonincreasing order den(l)
Step3: for ( € Lo) {//for each unassigned lot
for (i € M) {//for each machine

if (1 € L(i,Z ){ /ltest if lot | can be assigned to machingsing setup
Ai
for (I' € Lj){//for each lot assigned to machine

/Iget the route associated to the highest praugsaie
using tooling setugi
s= argmaxfis, s € il, 4i)};
s = argmaxfis, s€ i, 1)}
/ltest if there is enough time to procégfsthe swap is
made

if (7 +n"/r_—n<"™/r.. < H; andber(l) > ber(I’)){
/Iswap lotd andl’, update setko, Li Vi € M, t”
andx’
Li<L\{lh L<Lu{l}y
Lo Lo\ {l}; Lo LoU{l'};
tilp = tilp + n|Chips/'}|s - nlc'hips/rn 5
X =15 X = 0;
/lupdate output and shortage given updaieahd
Lo
out(d)) = out(d) +n"*; sh(d)) = n(d)) —th(d));
/lupdate the lot benefitzer(l), | € Lo
for(l eL){
ber(l) =w +(de/C)-min{nfh‘ps,sh(ql)}

{sh(d)>0} " {d,e{KUP}} :

}
Re-sort the lots ih given newben(l), | € L;

Figure A.74 Pseudocode flis(x") local search

Procedure KP_heurf, 4, Lo, ben L")

Input SIMj, tooling setup., set of unassigned lots

Output Benefitbenfrom setting up the machines$iM; with tooling4; set of lotsl”
assigned toj(4) combination
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Stepl: Sort the lots iho according toben I)/( "/ ) in nonincreasing order,
Step2: Pick one machine€ SIM;;

t =0;ben=0;

for (| € L) {
s = argmax{is : s€ i, |, 1)}; //choose the route with the highest processing
rate

if (t +n™°/r_<H;) {//test if there is enough time to processllot
putt <t +n®"*/r_; bene ben+ben(l); L' « L U {I};
}
}
Figure A.75 Pseudocode to compute the benefit agsdowith machine-tooling
combination |, 1)

Procedure LPLB(X,V,K,X,y)
Input Current IP solutionX,y), neighborhood radius
Output Improved solutiony(, X )
Stepl: Construct the local branch @(wg(l— y,) < K;

Include the cut into model (1) and solve as LP ainigin solution/™";
Step2: for (ter =1, 2,...n""®) {
Simulate machine setups froff and denote ag’
Solve LLP to get LLP_hewY) andx’;
if (sim_ob{x’, y’) >sim_ob{X ¥)) {
X = X y* = yS;
}

Figure A.76 Pseudocode of LPLB

Procedure Phase_I(, M, T, A, S 259
Input  Set of lotd., set of machin®, set of tooling familied, and set of tooling setups
A
Output Set of initial solutions "'
Stepl: //initialization
ConstructSIM from M;
Initialize SL;
SDhasel(_ (Z);
Step2: for k=1, 2,...,n"""Y{
Putlo« L;Li< @, Vi€ M;
Computebenl), V| € L;
Sort the lots iy according tden(l) in nonincreasing order;
while (some machinee M is idle and sufficient toolinge T is
available){
/lconstruct CL
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for (all feasible j; ) combinations) {
KP_heur, 4, Lo, b, L);
Append the tripletj( 1, b) to CL
}
Sort CL according to benefit
Construct RCL;
Assign probability to the elements in RCL accogdioS; in SL;
Select one RCL element randomly; £, b'):;
/llperform the machine tooling setup
Find an available machines SIM-
Sety .=1yu=0,Vie€A®M)\{1};
KP_heuri(, 2", Lo, b, L);
Putli « L; Lo« Lo\L’;
Update SL;
Updateben(l), | € Lo;
Update machine and tooling usage;
}
//given the machine setups
Solve LLP to get LLP_heuwy() andx ;
PutSDhaSEI<— St’haselU {( X*, y*)};

Figure A.77 Pseudocode of GRASP phase |

Procedure GRASP(, M, T, A, X, Y )
Input  Set of lotd_, set of machinell, set of tooling familieF, and set of tooling
setupsA
Output Best solution found to model (1 (y')
Step 1: Phase U(M, T, A, S
Select a subset of top elementSiF*® denote as™®
Step 2: Denote thigh element o as , y);
/linitialize (X, y*)
X =xby =
for(=1,2,. $S "D {
LPLB(x‘ VoK X V)
if (sim_ ob(xJ y‘ ) >sim_ob{x, y)) {
- ' y yJ
}

Figure A.78 Pseudocode of GRASP

Procedure Random_Case_Generator()
Stepl: (Parameters) L&f*' = set of lotsM™®*'= set of machinesy, = number of

test _

machine groups'®*'= number of tooling piece3'*>'= set of tooling familiesyp
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= number of devicesyk = number of key devicesp = number of package
devicesemp= NUMber of operating temperaturss;' = set of routes, and"*' =
set of tooling setups.

Step2: (Lot generation) Generate the lot sizes unifgimthe ranger, ny], wheren; is
the minimum lot size ana, is the maximum lot size according to the original
dataset. Generate the lot weights uniformly inrdrege Wmin, Wmay. FOr each lot
| € L' randomly select one of timg devices to be the device contained in the lot.

Step3: (Machine generation) For each mactiigeM®, randomly select one of tima,
machine groups, select one or more operating teatpes from th@em,
operating temperatures.

Step4: (Tooling generation) For each tooling pi¢ee{1, 2,...,t*%}, randomly select

tes

one of theT"| tooling families, select one or more operatinggeratures from
the niemp Operating temperatures.

Step5: (Route generation) L&*'«< @. For a device, randomly select one or more
machine groups. For each device-machine group icatidn, a new routsis
generated an§®'« S*'u {s}. The corresponding processing rates are
uniformly generated from [15000, 150000] in thetsiif parts per hour (PPH).
Go to the next device.

Step6: (Tooling setup generation) Let= [S**}/|A"™*] which is approximately 0.5 in the
original dataset. SeAf*| =4+|S*|. For each setupe {1, 2,...,A**{}, randomly
select one of theemptemperatures and one or more tooling familiesh edth
probability (1/7%%}). Then draw at random the number of tooling Edoem {1,
2, 3, 4} for each family realized.

Step7: (Link S*'to A™%) For each routs € S*! pick one of theA™| setups at random.

Step8: (Device generation) Randomly selagtdevices to be key devices and another
devices to be package devices. For each key @agadevice, the minimum
output is randomly chosen frompfin, Nmay ,wherenni, is the minimum target

output andhnax is the maximum target output in the original datas

Figure A.79 Pseudocode of random cases generator
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