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Resonance Particles in Heavy-Ion Collisions

Masayuki Wada, Ph.D.

The University of Texas at Austin, 2013

Supervisor: Christina Markert

Heavy ions are collided at the Relativistic Heavy Ion Collider (RHIC) at

Brookhaven National Laboratory (BNL) in an effort to create a unique state of

nuclear matter, where quarks and gluons can freely move over volumes larger

than the typical size of a nucleon (typical scale of Quantum Chromodynamics,

QCD). In this state, called a Quark Gluon Plasma (QGP), it is proposed

Chiral symmetry is restored. The fact that Chiral symmetry is a symmetry

of the Standard model and is broken at low energy (current energy scale of

universe) makes the study of its possible very interesting.

The analysis in this dissertation searches for signatures of chiral symme-

try restoration at the phase transition between the QGP and the hadronic gas

phase by using resonance particles as probes. Resonances may decay inside of

hot dense matter due to their short lifetimes, and therefore their decay daugh-

ters carry away dynamical information such as the mass and decay width.

Mass shift and width broadening are predicted signatures of chiral symmetry

restoration. The φ(1020) resonances reconstructed from the dielectron decay
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channel are investigated in this dissertation. This decay channel does not

suffer scattering from the late hadronic medium due to the relatively small

interaction cross section of leptons with hadrons. The disadvantage of this

channel comes from the small branching ratio. Therefore, large statistics and

clean Particle IDentification (PID) are necessary for this analysis. Those re-

quirements were fulfilled with high luminosity beams at RHIC and the newly

developed and installed Time Of Flight (TOF) detectors, which provide clear

particle identification up to momentum of 2-3 GeV/c, as well as the large

acceptance of the Solenoidal Tracker At RHIC (STAR) detector.

In this dissertation, measurements of mass, width, transverse momen-

tum spectrum, and yields of φ → e+e− at mid-rapidity (|y| < 1) from the

STAR experiment in Au+Au collisions at
√
s
NN

= 200 GeV are presented and

compared to a previously measured φmeson result from a hadronic decay chan-

nel. The possibility of medium modification which implies Chiral symmetry

restoration is discussed.
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Chapter 1

Introduction

Currently there is a considerable amount of evidence that the universe

started as a fireball of extremely high temperature and high energy density,

known as the Big Bang. In the first few micro seconds after the Big Bang, the

temperature so high (T > 100 GeV) that all of the particles were extremely

relativistic[1]. Due to the asymptotic freedom [2][3] even strongly interacting

particles such as quarks and gluons would have interacted weakly. Thus the

early universe was a system of hot, weakly interacting color charged particles

also known as a Quark Gluon Plasma (QGP).

Relativistic heavy ion collision experiments [4] were promoted in order

to investigate such a phase by distributing high energy over a relatively large

volume compared to smaller systems like e+ e and p+ p collisions. The QGP

was expected to be a weakly coupled system, however, relativistic heavy ion

collision experiments show evidences of a strongly coupled system [5]. The

strongly coupled QGP is often called sQGP to be distinguished from the origi-

nal QGP. A schematic picture of the QCD phase diagram is presented in Figure

1.1. As you can see from the figure, the relativistic heavy ion collisions provide

us a unique environment to explore the QCD phase at high temperature and

1



low baryon chemical potential. There are two main possible phase transitions

that a system created in relativistic heavy ion collisions might experience as

it cools. They are color confinement and chiral symmetry breaking. Although

color confinement, which is a phenomenon that color charged particles can not

be found individually over the scale of strong interaction, is a popular and

interesting topic, the focus of this dissertation is on chiral symmetry.

LHC Experiments

Full-energy RHIC experiments

Figure 1.1: Schematic picture of QCD phase diagram [6]
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1.1 QCD and Chiral Symmetry

In this section we follow discussion in articles [7] [8].

1.1.1 Asymptotic Freedom

In the SLAC-MIT e−p deep inelastic scattering experiments, the result-

ing cross sections, which show Bjorken scaling [9], implied that the strong inter-

action has a phenomenon known as asymptotic freedom. A set of non-Abelian

gauge theories that have the asymptotic freedom behavior were discovered in

1973 by David Gross and Frank Wilczek [2], and by David Politzer [3]. In the

theories, asymptotic freedom appears as a consequence of running coupling

constants (αS for QCD), which depend on the renormalization scale (energy

scale Q) as shown in Figure 1.2.

The accepted theory of the strong interaction is Quantum Chromody-

namics (QCD), a non-Abelian gauge field theory with gauge group SU(3)color

with gauge bosons (gluons) coupled to fermions (quarks), which constitutes

one part of the SU(3) × SU(2) × U(1) standard model. If quark masses are

zero, QCD has a chiral symmetry (see Section 1.1.2). In reality, quarks have

small masses (smallest for u and d, mu,d ≈ 5 MeV) originating from the Higgs

field compared to the relevant scales of QCD (ΛQCD ≈ 200 MeV). Therefore

chiral symmetry is considered to be approximate (Section 1.1.3). However,

even this approximate symmetry is spontaneously broken at low temperature

due to qq̄ condensation in the vacuum and the symmetry breaking emerges as

mass differences of chiral partners (Section 1.1.4). At high temperature this

3



Figure 1.2: Various measurements on the strong coupling constant, αS , vs.
energy scale Q [10]. The degree of loop calculations in QCD perturbation theory
used in the extraction of αS are indicated in brackets.

condensation is evaporated and chiral symmetry is restored (Section 1.1.5).

This transition has to be confirmed in order for QCD to be a viable theory of

the strong interaction.

1.1.2 Chiral Symmetry

In QCD, a Lagrangian density is given by

LQCD = q̄ (iγµDµ −Mq) q −
1

4
Ga

µνG
µν
a , Dµ = ∂µ + igs

λa
2
Aa

µ, (1.1)

4



where q and Aa
µ denote quark and gluon fields, respectively. The gs is a strong

coupling constant and γµ and λa are Dirac and Gell-Mann matrices, respec-

tively. Mq = diag(mu,md, ...) is the current quark mass matrix. LQCD has

several global symmetries as well as the local SU(3) color gauge symmetry.

The relevant symmetry here is chirality, which can be manifested by rewrit-

ing LQCD in terms of left- and right-handed quark fields. The handed-ness is

defined as

qL ≡
(

1− γ5

2

)

q and qR ≡
(

1 + γ5

2

)

q, (1.2)

so that L and R correspond to helicity -1 and +1 in the limit of masses equal

to zero. Since γ5 anticommutes with γµ, (γµγ5 = −γ5γµ),

q̄L ≡ q†Lγ
0 = q̄

(

1 + γ5

2

)

and q̄R ≡ q̄

(

1− γ5

2

)

. (1.3)

Using those definitions and the fact that γ5 is Hermitian
(

γ5† = γ5 or (γ5)2 = 1
)

,

LQCD = q̄Liγ
µDµqL + q̄Riγ

µDµqR − (q̄LMqqR + q̄RMqqL)−
1

4
Ga

µνG
µν
a . (1.4)

For small quark masses compared to the QCD scale (ΛQCD ≈ 200 MeV), we

can ignore the mass terms and LQCD is invariant under the separate transfor-

mations

qL → e−i~αL·~τqL and qR → e−i~αR·~τqR, (1.5)

where τa = σa/2 are operators in (u− d) isospin space and ~αL,R are three real

angles. The currents associated with this symmetries are respectively

~jµL = q̄Lγ
µ~τqL and ~jµR = q̄Rγ

µ~τqR. (1.6)
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These symmetries are called chiral symmetries because they conserve quark

handedness (chirality). Under the symmetry left-handed and right-handed

fermions (Weyl fermions) are two different particles. In normal nuclear matter,

they are the same particle. In fact, the left and right handed components

together form a fermion (Dirac fermion).

1.1.3 Explicit Breaking of Chiral Symmetry

To reveal which symmetries are broken when mass terms are included,

we rewrite this symmetry in an alternative way. The sum of the left- and

right-handed currents gives the isospin current

~jµ = q̄γµ~τq. (1.7)

While the difference gives the axial vector current

~jµ 5 = ~jµR −~jµL = q̄γµγ5~τq. (1.8)

The corresponding transformations are respectively

q → e−i~αV·~τq and q → e−iγ5~αA·~τq. (1.9)

Consider each transformation with the assumption that ~αV is small so

that we can write the expression above as

ΛV : q → e−i~αV·~τq ≃ (1− i~αV · ~τ) q. (1.10)

6



Remembering q̄ = q†γ0, the kinetic term in LQCD transforms under ΛV as

q̄ (iγµDµ) q → q̄ (1 + i~αV · ~τ) (iγµDµ) (1− i~αV · ~τ) q

≃ q̄ (iγµDµ) q − i~αV · (q̄iγµDµ~τq − q̄iγµDµ~τq)

= q̄ (iγµDµ) q. (1.11)

The mass term in LQCD transforms under ΛV as

q̄Mqq → q̄ (1 + i~αV · ~τ)Mq (1− i~αV · ~τ) q

≃ q̄Mqq. (1.12)

On the other hand, under the axial vector transformation

ΛA : q → e−iγ5~αA·~τq ≃
(

1− iγ5~αA · ~τ
)

q, (1.13)

the kinetic term in LQCD transforms as

q̄ (iγµDµ) q → q†
(

1 + iγ5~αA · ~τ
)

γ0 (iγµDµ)
(

1− iγ5~αA · ~τ
)

q

≃ q̄ (iγµDµ) q − i~αA ·
(

q̄i{γ5, γµ}Dµ~τq
)

= q̄ (iγµDµ) q. (1.14)

However, the mass term transforma under ΛA as

q̄Mqq → q̄
(

1− iγ5~αA · ~τ
)

Mq

(

1− iγ5~αA · ~τ
)

q

≃ q̄Mqq − 2i~αA ·
(

q̄γ5~τq
)

. (1.15)

Thus, the mass term breaks chiral symmetry and the axial vector current

is no longer conserved. However, if the masses are small compared to the

relevant energy scale of QCD (≈ 200 MeV), the symmetry can be considered

approximate.
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1.1.4 Spontaneous Breaking of Chiral Symmetry (Hidden symme-
try)

Let us check how mesons transform under ΛV and ΛA. We can form

combinations of quark fields so that they carry the quantum numbers of mesons

as follows,

pion-like state sigma-like state rho-like state a1-like state
~π ≡ iq̄~τγ5q σ ≡ iq̄q ~ρµ ≡ q̄~τγµq ~a1µ ≡ q̄~τγµγ5q.

Under the vector transformations ΛV ,

πi : iq̄τiγ5q → iq̄ (1 + i~αV · ~τ) τiγ5 (1− i~αV · ~τ) q

≃ iq̄τiγ5q + αj
Vq̄γ5[τi, τj]q

= iq̄τiγ5q + iǫijkα
j
Vq̄γ5τkq (1.16)

where the commutation relation [τi, τj] = iǫijkτk is used in the last line. In

terms of our definition of pion-like fields, Equation 1.16 can be written as

~π → ~π + ~αV × ~π. (1.17)

The isospin direction of the pion is effectively rotated by αV. Replacing γ5

with γµ, we obtain a similar result for a ρ meson under the ΛV ,

~ρµ → ~ρµ + ~αV × ~ρµ. (1.18)

Therefore, we can consider the vector transformation ΛV as a rotation in

isospin space and the corresponding conserved vector current as an isospin

current, which is conserved in strong interactions.
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Under the axial vector transformations ΛA, the pion transforms as

πi : iq̄τiγ5q → iq̄
(

1− iγ5~αA · ~τ
)

τiγ5
(

1− iγ5~αA · ~τ
)

q

≃ iq̄τiγ5q + αj
Aq̄{τi, τj}q

= iq̄τiγ5q +
1

2
αAiq̄q, (1.19)

where the anti-commutation relation {τi, τj} = 1
2
δij and γ5γ5 = 1 are used. In

terms of the meson fields, Equation 1.19 reads

~π → ~π + ~αAσ. (1.20)

The transformation ΛA rotates the pion and sigma meson into each other.

Similarly the rho rotates into the a1,

~ρµ → ~ρµ + ~αA × ~a1µ, (1.21)

where again the commutation relation [τi, τj] = iǫijkτk and the anti-commutation

relation {γ5, γµ} = 0 are used. If ΛA is a symmetry of the QCD Lagrangian,

these relations (Equations 1.20 and 1.21) imply that those mesons rotated into

each other have to have the same eigenvalues, like masses. However this is not

the case, since mρ = 770 MeV and ma1 = 1260 MeV [11]. The chiral symme-

try is broken at our energy scale. In 1961 Nambu and Jona-Lasinio suggested

this is because of a nonzero vacuum expectation value (VEV) of qq̄ conden-

sation [12] Although they did not know that the condensed pair of fermions

were quarks.
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qq̄ condensation The idea of qq̄ condensation came from the analogy of a

superconductor [13][14]. In a super conductor, an attractive force between two

electrons via electron-phonon interaction (Cooper pair) lowers the energy of

system and causes instability in vacuum of the system. In this case, there is

an attractive color-singlet channel between q and q̄. The attraction between a

quark and antiquark causes an instability in the QCD vacuum. If the energy

required for qq̄ pair production is small, or more specifically, the quark mass

and kinematic energy are small compared to its binding energy, the vacuum

prefers to produce qq̄ pairs until the production energy becomes comparable

to the binding energy. As discussed below, the 〈qq̄〉 serves as a mass term

of quarks. This means as qq̄ density increases, more energy is necessary to

produce a qq̄ pair. The qq̄ has to have the vacuum quantum numbers, that is,

angular momentum and total momentum are zero like a Cooper pair [15]. The

pair has to be qq̄, instead of qq or q̄q̄ so that they can form the color singlet.

Such a pair, opposite momentum and spin, and particle-antiparticle pair, must

have chirality ±2 as shown in Figure 1.3. This nonzero VEV of chirality

spontaneously breaks the chiral symmetry in QCD vacuum. Spontaneouslys 

ons 

q
R

q
L

Color singlet Figure 1.3: Schematic picture of a quark anti-quark pair. Credit goes to Flip
Tanedo.
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broken symmetry means that while the Lagrangian of the system contains

some symmetry, the symmetry is not realized in the ground state1.

ity of 

. 

king! 

qq 

credit goes to Flip Tanedo 

q
R
q
L

LH LH RH 

q
L
q
R

qq

Figure 1.4: Schematic picture of QCD dynamical mass generation. Credit
goes to Flip Tanedo.

QCD dynamical mass generation Imagine a traveling qL, which is an

eigenstate of a chiral transformation, collides with a qRq̄L and annihilates the

q̄L in the pair, freeing qR which continues to propagate. The qR carries the same

momentum (so the line should be straight in practice) and quantum numbers as

the incoming quark except for chirality as pictured in Figure 1.4. This process

can be interpreted as 〈qRq̄L〉 mixing right and left chirality. This interaction

could be written in the Lagrangian as 〈q̄q〉q̄q in a mean field approximation

framework (many-body theory) and serves as a mass term for quarks. Since

this term does not explicitly break chiral symmetry if you take into account

chirality of those 〈qRq̄L〉, it is referred to as spontaneous symmetry breaking.

This is similar to the Higgs mechanism except the mass generating field is the

qq̄ field instead of the Higgs field.

1See Apendix C.1 for Spontaneous symmetry breaking.
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1.1.5 Restoration of Chiral Symmetry

According to thermal quantum field theory, the spontaneously broken

chiral symmetry can be restored at high temperature [16]. At high tempera-

tures, due to kinematical energy, the pair production energy increases. If it

exceeds the binding energy of qq̄ pairs, there is no more condensation. Roughly

speaking, qq̄ pairs evaporate and chiral symmetry is restored. In other words,

the qq̄ pairs can not feel the symmetry-breaking potential at the vacuum. All

they can feel is high order terms such as pair-pair interaction (density effects)

in the potential, which has unbroken symmetry. High density effects are also

considered in a similar manner. In this case, what prevents the condensation

is a chemical potential of the qq̄’s. As energy density becomes higher, due to

the pair-pair interaction, the chemical potential, the energy to produce a qq̄

in the system increases, and then the condensation of qq̄ disappear.

Since spontaneous chiral symmetry breaking is a natural outcome of

QCD, there has to be chiral symmetry restoration in a strongly interacting

system if QCD is the theory of the strong interaction. Therefore, an observa-

tion of chiral symmetry is a necessary check for QCD as a theory of the strong

interaction. Since vacuum can not be observed directly, its excitations (i.e.

resonances) are observed instead to search for this phase transition.
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1.2 Hadronic Resonances

Hadronic resonances are unstable particles which strongly decay into

stable particles shortly after they are produced. Due to their short lifetimes,

resonances are not directly observed. The properties of resonance particles

are obtained indirectly via reconstruction. Reconstruction is the process of

forming a resonance from the daughter particles after decay. The dynamical

information of the resonance decaying in the medium, such as their masses

and widths, is converted into kinematic information of the daughter parti-

cles. Therefore, the dynamical information of the resonance in medium can be

restored from the kinematic information of the daughters in vacuum, which

is measured in experiments. This makes resonance particles ideal probes to

study medium effects.

A resonance particle is usually characterized by the Breit-Wigner for-

mula, in which the mass is related to the real part of the self-energy of the

resonance (pole position of the propagator) and the width is related to the

imaginary part of the self-energy, or more concisely, attenuation of resonance

during propagating through medium. The propagator includes interactions

between resonance and medium, so called radiative corrections, and thus, the

medium effects the mass and width.

1.2.1 Breit-Wigner Formula

Near the resonance mass M0, the invariant mass distribution, which

is obtained from daughter particles’ momentum and energy, is given by the

13



Breit-Wigner formula,

f(E) ∝ 1

(E −M0)
2 + Γ2/4

, (1.22)

where Γ is the decay rate of the resonance, defined as

Γ ≡ Number of decays per unit time

Number of particles present
. (1.23)

The Breit-Wigner distribution is also known as the Cauchy distribution and is

a well-known statistical distribution. If the resonance is broad, Γ has some E

dependence, and the invariant mass distribution may deviate from the Breit-

Wigner distribution.

1.2.2 Mass, Width, and Medium Effects

By applying the optical theorem, which is related to the unitarity of

a S-matrix, the Breit-Wigner formula is derived from a resonance particle’s

propagator [17], which has a self-energy term, M2(p2), in its denominator,

1

p2 −m2
0 −M2(p2)

, (1.24)

where m0 is the bare mass of the resonance. The resonance mass is defined as

a pole position,

m2 ≡ m2
0 + ReM2(m2). (1.25)

The imaginary part of the self-energy, ImM2(p2), is connected to attenuation

(decay) of the resonance via the optical theorem. Because the self-energy

includes all interactions with the medium, the mass and width also include

medium effects. The restoration of chiral symmetry at high temperature pre-

dicts a mass shift and width broadening [18] [19].
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1.2.3 Hadronic Resonances in Heavy Ion Collisions

System evolution In a thermal statistical description of heavy ion colli-

sions the state of matter is expected to go through two characteristic stages,

chemical freeze-out and kinetic freeze-out. After two high energy ions collide,

nuclear matter with a high temperature and high density is created. As the

system expands, it cools and reaches a hadronization point, where partons

form hadrons. The produced hadrons still can change flavors via inelastic

collisions. Then, after a period of time the particles in the system do not

change particle species further, i.e., the diversity of particles is fixed. This

point is referred to as chemical freeze-out (vanishing inelastic collisions) from

the analogy of chemical reactions. After that point, as the system expands

further, particles interact increasingly less often because they are separated

more than their interaction range. At some point, the particles stop interact-

ing and the momenta are fixed, known as kinetic freeze-out (vanishing elastic

collisions). Since experimentally observed particles experience these stages af-

ter their hadronization, it is important to understand how and when these two

transitions happen.

Rescattering and Regeneration One way to study these two transitions

is by investigating rescattering and regeneration effects on resonance produc-

tions. The hadronic decay daughters from resonances which decay between

chemical and kinetic freeze-out rescatter with other hadrons, mostly pions.

This results in loss of reconstructable resonance signals. On the other hand, in
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the presence of an abundance of hadrons in heavy ion collisions, these hadrons

may form (regenerate) resonance states, and thus contribute to the final mea-

sured yield. The interaction cross sections between particles can determine

the time difference between the chemical and kinetic freeze-out [20].

1.2.4 Decay Channels

There are two main types of decay channels. A hadronic decay, where

daughter particles are hadrons or a leptonic (non-hadronic) decay, in which

daughter particles are leptons or γ’s.

Hadronic decays are the dominant decay channels. However, in hadronic

decay channels the daughter hadrons interact strongly with medium and the

resonance signals from the early stage of evolution might be washed out during

the later hadron gas phase. Conversely, it means these channels are sensitive

to the hadronic gas phase as explained above.

In leptonic decay channels, daughter leptons do not strongly interact

with the hadronic medium and the resonance signals can be extracted from

the entire stage of evolution without the rescattering effects. These channels

are often called clean probes. However, due to the smaller coupling constant

of the electromagnetic interaction, the branching ratios are about 10−4 − 10−5

times smaller than the branching ratios from hadronic decay channels, where

the strong interaction is relevant.

The hadronic resonances measured by the STAR experiment are listed

in Table 1.1 along with the specific decay channels. By comparing the two
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particle Mass (MeV/c
2
) Width (MeV/c

2
) Lifetime (fm/c) Decay channel

ρ0(770) 775.49 ± 0.34 149.1 ± 0.8 1.32 π + π
ω(782) 782.65 ± 0.12 8.49 ± 0.08 23.2 e+ + e−

K∗0(892) 895.94 ± 0.22 48.7 ± 0.8 4.05 K + π
φ(1020) 1019.46 ± 0.020 4.26 ± 0.04 46.3 K + K, e+ + e−

Σ∗+(1385) 1382.80 ± 0.35 36.0 ± 0.7 5.48 Λ(→ p+ π) + π+

Σ∗−(1385) 1387.2 ± 0.5 39.4 ± 2.1 5.01 Λ(→ p+ π) + π−

Λ∗(1520) 1519.5 ± 1.0 15.6 ± 1.0 12.6 K + p

Table 1.1: Hadronic resonances measured at STAR with their properties re-
ported in PDG [21].

decay modes it might be possible to investigate the early stage of the system

where we expect QGP formation and chiral symmetry restoration. Vector

mesons can decay through the hadronic decay channels and the leptonic decay

channels via a virtual photon state. The φ meson is one of the few reso-

nance particles in which measurements from both leptonic and hadronic decay

channels are possible.

However, due to the large number of tracks in heavy ion collisions,

resonances signals must be separated from a background. Particle identifica-

tion is crucial to suppressing the background and enhancing the signal over

background ratio of the measurement.

1.3 Outline

In this dissertation the possible signatures of chiral symmetry restora-

tion are investigated by measuring φ(1020) mesons from the di-electron chan-

nel. Chapter 2 describes the STAR experiment at the Relativistic Heavy Ion

Collider at Brookhaven National Laboratory on Long Island, New York. Chap-
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ter 3 is devoted to an overview of particle identification methods. In Chapter

4 the details of φ → e+e− analysis are described. In Chapter 5 the results of

φ → e+e− analysis are reported and compared to a theoretical model. This

dissertation is concluded in Chapter 6.
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Chapter 2

Experimental Set Up

2.1 Introduction

The data analyzed in this work was taken with the STAR detector

on the Relativistic Heavy Ion Collider at Brookhaven National Laboratory

(BNL), located on Long Island, New York. The RHIC project began in the

late 1980s followed by 10 years of development and construction. The first

Au+Au collisions at a center of momentum energy per nucleon
√
s
NN

= 130

GeV took place in the summer of 2000. The primary physics goals of RHIC are

to produce and investigate properties of the QGP with heavy ion collisions and

to investigate the spin structure of nucleons with polarized proton collisions.

In this chapter the RHIC experimental facility and the STAR detector are

described in detail.

2.2 Relativistic Heavy Ion Collider (RHIC)

The RHIC experimental facility consists of accelerators, transfer lines,

detectors, and computational facilities for data storage and analysis. The

main facility is the Relativistic Heavy Ion Collider. RHIC has the capability

to accelerate and collide a large variety of particle configurations such as d+Au,
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Cu+Cu, Au+Au, and U+U at energies from
√
s
NN

= 7 to 200 GeV for heavy-

ions and polarized and unpolarized p+p at
√
s
NN

=62.4 to 500 GeV. The

schematic diagram of the RHIC accelerator complex is shown in Figure 2.1a.

(a) The Relativistic Heavy Ion Collider [22] (b) Location of the ex-
periments c©BNL

Figure 2.1: The Relativistic Heavy Ion Collider complex

The collider has two concentric rings: a “Blue” ring for clock-wise ion

revolution and a “Yellow” ring for counter clock-wise ion revolution. As shown

in Figure 2.1b, the rings are not circular, but have six straight sections and

six arc sections, and total 3.8 km in circumference. There are six intersection

points at the center of each straight section and four of them are occupied by

the STAR, PHENX, BRAHMS, and PHOBOS experiments [23] as shown in

Figure 2.1b. As of 2013, The BRAHMS and PHOBOS had already completed

their physics programs, while STAR and PHENIX continue to take data.
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Figure 2.1b also shows the operational steps of accelerating the beams

and a brief description of the operations is as follows [22]. For Au ion beams,

negatively charged ions are produced from a pulsed sputter ion source at the

Tandem Van de Graaff, which accelerates the ions to an energy of 1MeV/nucleon(A)

and partially strips their electrons. After passing through another stripping

foil and charge selection magnets, the ions with a charge of +32 are delivered

to the Booster synchrotron where they are accelerated to the injection energy,

95MeV/A, of the Alternating Gradient Synchrotron (AGS). For proton beams,

polarized protons are sourced at the Linear Accelerator (LINAC) where they

are accelerated to the injection energy of AGS. At the entrance and exit of

AGS, the ions are fully stripped and reach a charge state of +79. The ions or

protons are bunched and accelerated to RHIC injection energy of 10.8 GeV/A

before being injected into RHIC via the AGS-to-RHIC Beam Transfer Line

(ATR). In RHIC, two counter revolving beams can be accelerated up to the

maximum design energy of 100 GeV/A for heavy ions and 250 GeV/A for

protons.

For more than 10 years after the first run, the RHIC collider experts

have been successfully improving not only luminosities but also the range of

the colliding energy and particle species as shown in Figure 2.2
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(a)

(b)

Figure 2.2: RHIC integrated luminosity (credit goes to W. Fischer)
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2.3 STAR Experiment

2.3.1 Overview

The Solenoidal Tracker at RHIC (STAR) is a detector which has been

developed for tracking thousands of particles produced in heavy-ion collisions

at RHIC. The STAR detector and its data acquisition (DAQ) system are

located at the 6 o’clock intersection position of RHIC. One of the main physics

goals of STAR is to investigate the behavior of strongly interacting matter at

a high energy density and high temperature. This is done via measurements

of out-coming particles with multiple observables such as high pT jets and

particle correlations. In particular, the large acceptance (−1 ≤ η ≤ 1 and full

azimuthal angle) and high efficiency of the STAR detector make it an ideal

detector to study non-perturbative aspects (low pT ) of the heavy ion collisions

as well as perturbative aspects (high pT ). Due to this ability to simultaneously

measure perturbative and non-perturbative observables, correlation studies,

like jet quenching, is possible [24].

The STAR detector (Figure 2.3) is a collection of many detectors, which

are categorized into two types. One type is the tracking and particle identifi-

cation detectors, which include the Time Projection Chamber (TPC), Electro-

Magnetic Calorimeters (EMC), and Time Of Flight (TOF). The other type is

the event triggering detectors: Zero Degree Calorimeter (ZDC), Beam-beam

Counters, and upgraded Primary Vertex Position Detector (upVPD). A nice

overview of the STAR detector can be found in Reference [24] but we will fo-

cus on the TPC and TOF, which are the detectors necessary for this analysis
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along with some of the trigger detectors.

Figure 2.3: The STAR detector (credit goes to A. Schmah)

2.3.2 Time Projection Chamber (TPC)

The TPC [25] is the main tracking detector of the STAR experiment

and it is designed to provide information on momentum and energy loss of

charged particles in heavy ion collisions over a large solid angle in high preci-

sion. This large acceptance is very important to study, for example, particle

correlations in an event-by-event basis and it also helps to increase statistics

for rare processes such as resonances with decay channels with small branching
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ratios. A schematic picture of the TPC is given in Figure 2.4.

η=-1
η=0

η=1

TPC

BEMC

Yellow

Blue

West

East

BBC

Figure 2.4: Cutaway view of the TPC (credit goes to T. Sakuma)

The description of the STAR TPC will be divided into four parts: ge-

ometry; gas, which is essential to produce ionization signals in the TPC;

electric field, in which electrons drift towards anode wires; and readout

system.

Geometry: The TPC sits in a large solenoidal magnet that produces

a maximum of ±0.5 T magnetic field and it is 4.2 m long and 4 m in diameter.
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It covers pseudo-rapidity |η| ≤ 1 and 2π in azimuthal angle. Gas: The TPC

is filled with a P10 gas mixture, that is a mixture of 90% Argon and 10%

Methane. Argon (a noble gas) is chosen because it requires low electric field

intensities for avalanche formation and has a fast drift velocity. Methane is

added to suppress high energy photons caused by excited Argon atoms. The

Argon atoms are excited, instead of being ionized, by particles passing by [26].

The pressure of the gas is 2 mbar higher than the atmospheric pressure to pre-

vent contamination by electronegative gas such as H2O and O2, which capture

the drifting electrons, reduce drift time, and reduce the efficiency of creating

avalanches at read out pads. Electric field: A well-defined, uniform, electric

field of 135 V/cm along beam axis is applied so that ionized gas particles (elec-

trons) drift into the readout channels on both sides of the TPC. The uniform

electric field is created by a thin conductive cathode membrane at the center,

concentric inner and outer field-cage cylinders (which are respectively 0.5 m

and 2 m from beam axis), and anode wires at the readout end cap. Read-

out system: The readout system is mounted on aluminum support wheels at

both end caps of the TPC. It consists of Multi-Wire Proportional Chambers

(MWPC) and readout pads (cathode plane in the Figure 2.5). The drifting

electrons avalanche in high electric fields between the shielding grid at ground

potential and anode wires. Positive ions created in the avalanche induce image

charges on the readout pads. The gating grid prevents the slow positive ions

from entering the drift region by closing the gates after electrons have drifted

through.
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Figure 2.5: The gating grid at the readout pads [27] section 28.10.
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Basic Mechanism

The most important function of the TPC is to reconstruct the paths of

particles. When a charged particle passes through the gas, it ionizes the gas

molecules and creates electrons and ions. Due to a sufficiently strong electric

field, the electrons separate from the ions and drift to the ends of the TPC.

The electrons drift with an average velocity of 5.45 cm/µs to the readout

channels (end caps). Different drift distances result in different readout times.

With this timing information and the 2D position on the read out pads, 3D

tracks can be reconstructed. For this reason, it is called the “Time Projection”

Chamber. Since magnetic fields curve a charged particle’s path according to

its momentum, the momentum can be calculated from the curvature of the

path according to following equation,

pT =
e

c
BR = 0.3BR, (2.1)

where B is the strength of a constant magnetic field and R is the radius of

curvature. Since particles continuously lose their energy and momentum as

they travel through the gas in the TPC, measured momenta are corrected

using expected energy loss values, which are functions of a particle’s velocity.

By default, a pion mass is assumed for all particles to estimate velocity. This

is a good approximation at high momentum for other species of particles.

However, at low momentum the pion mass assumption causes the momentum

away from the true value for other species of particles. Fortunately, after

particle identification this problem can be corrected using simulation.
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Track Reconstruction

During track reconstruction, ionization clusters are connected to forma

3D trajectory of a charged particle. The trajectory is fit with a 3D helix model,

including the energy loss as a second order effect. The resulting helix is called

a global track , which is used to reconstruct the primary collision vertex.

The vertex resolution increases as the number of tracks in the reconstruction

increases and can reach several hundreds of nm in Au+Au collisions. Global

tracks with a distance to the primary vertex, Distance of Closest Approach

(DCA), smaller than 3 cm are fitted again with the primary vertex as an

additional point. The number of clusters used in the fit is called Number of

Fit Points and used later in this analysis for track quality assurance. These

tracks with a DCA less than 3 cm are categorized as primary tracks .

dE/dx Measurement

The ionization energy loss per unit length dE/dx of charged particles

provide another important piece of information. The intensity of the readout

signal is related to the energy loss of the passing particle. Using the Bich-

sel function, an extension of the Bethe-Bloch formula, which shows expected

dE/dx as a function of velocity, the velocity of the particle is calculated. Fi-

nally, the mass of the particle is obtained from the velocity and the momentum.

Therefore, dE/dx is used for PID.
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Calibration

Several calibrations have to be done to achieve precise momentum mea-

surement. The main sources of error in the momentum measurement are from

changes in the drift velocity and electric and magnetic field distortions [28].

The drift velocity is calibrated using a narrow specific wavelength (λ = 266

nm) laser which can produce ionization in the TPC equivalent to relativistic

particles [29]. Laser events are taken for this purpose in every beam fill. The

potential sources of field distortions are field misalignment which arises from

slightly unparallel E and B fields, space charge distortion caused by a buildup

of positive charged ions in the TPC gas, and grid leak of ionic charge into the

main TPC volume from the high gain anode region. Calibrations can be done

for those distortions by applying a residual space charge model with parame-

ters. The parameters are determined by minimizing χ2 values of the helix fit

of good quality tracks.

2.3.3 Time Of Flight System (TOF)

Introduction

The TOF system was built to improve the PID capability of the STAR

experiment and was designed to provide a time resolution less than 100 pico

(10−9) seconds to achieve this goal. The heart of this detector is the Multi-

gap Resistive Plate Chamber (MRPC) which has been developed at CERN

for the ALICE detector at the LHC [30]. The MRPC is based on relatively

inexpensive technologies and materials, which enabled the building of the TOF
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system over a large area within a reasonable budget. After dedicated R&D

and remote construction of the TOF detectors [31], about 75% of trays were

installed in 2009. The full 120 trays have been installed and taking data since

2010. Since then almost all of the analyses in the STAR collaboration have

exploited TOF information and the TOF system has become an indispensable

part of the STAR experiment.

Figure 2.6: Schematics of the TOF system: Barrel TOF trays (60 trays on
each east and west side of the TPC) and upVPDs on the beam pipe on the east
and west sides

A TOF system measures the time span that particles spend to fly from

one point to another. In the STAR experiment the first point is assumed to

be the collision vertex. So the TOF information is calculated for only primary

tracks, not for global tracks, which might contain secondary tracks, like weakly

decaying daughter particles. The collision time (start time) is determined by

upgraded Vertex Position Detector (upVPD). The second time measurement
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is at the stop-side-detectors, barrel TOF trays, which measures the time at

which a particle reaches the detector. The TOF is not enough information to

provide PID, which will ultimately depend on the particle velocity. Therefore,

path length (flight distance) is also required. The path length is estimated by

extrapolating the track helix from the TPC onto a channel on the TOF trays,

that matched the TOF hit.

In the rest of this section, the start side and stop side detectors are

explained in detail as well as the software projects such as calibration and

track matching.

upVPD (start side detector)

The upVPD detector is designed to measure the collision time of an

event with a resolution of 10 to 20 ps. The upVPD consists of two identical

assemblies (Figure 2.7a) mounted on the west and east side of the beam pipe at

z±5.7 m covering 4.24 < |η| < 5.1 (see Figure 2.3 and 2.7b). Each assembly is

composed of 19 cylindrically shaped channels. Each channel has three layers:

a lead layer that enhances signals by showering, a scintillator that converts

the shower into light, and a photo multiplier tube (PMT) which collects the

light. They mostly detect spectators, nucleons not directly involved in the

collisions, moving forward at a velocity near the speed of light. In principle, if

given the collision location (the primary vertex position) from the TPC, the

collision time can be calculated from a single upVPD channel. However, to

improve the timing resolution, at least one lit channel on each side is required
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to calculate the start time. The coincident hits on both sides are also used as an

event trigger. Additionally, the upVPD provides independent measurements

of collision points along the beam axis. This detector has been developed at

Rice University.

(a) The upVPD assemblies (b) The installed upVPD

Figure 2.7: The upVPD (credit goes to W. Lope)

TOF trays (stop side detector)

All 120 TOF trays cover −1 ≤ η ≤ +1 and 2π in azimuth, located

just outside of the TPC [32][33]. Each tray has 32 Multi-gap Resistive Plate

Chambers (MRPC) each with 6 readout channels. Therefore one tray has 192

readout channels and the total TOF system has 23,040 channels. The trays

are filled with gas that is 90 to 95% Freon R-134a, and a smaller amount of

isobutane, which is a quencher to obtain less noise and stable performance.

The gas continuously flows during operation to suppress noise rates. Freon is
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used because it improves timing resolution and enables the MRPC to operate

at a high rate. A disadvantage of freon is that it increases power consump-

tion again due to the high electronegativity, because only a small fraction of

electrons produced in avalanche can contribute to the signal before being cap-

tured by the freon molecules. The trays also have a cooling system to prevent

overheating. All trays were constructed at the University of Texas at Austin.

Before installation at STAR they were checked carefully for gas leaks and also

tested for acceptable noise rates . During actual data taking at BNL, the

noise rate measurements are occasionally performed to check gas quality and

electronics.

(a) TOF tray with modules (b) Readout pads

Figure 2.8: TOF tray construction
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Multi-Gap Resistive Plate Chamber (MRPC)

The MRPC is the most essential part of the TOF system. The MRPC

is comprised of alternating layers of resistive plates (0.54 mm thick glass) and

ionization gas gaps (220µm) between two graphite layers on which high volt-

ages (±7 kV) are applied to generate an electric field across the gaps. Readout

electrodes attached on the outermost sides of the MRPC. In order to readout

signals via capacitive coupling, the readout electrodes are separated from the

high voltage coating by thin insulating sheets. The MRPC measures a signal

when a charged particle travels through and interacts with the gas molecules

and ionizes them. If the applied voltage is high enough, the positive ion and

electron are pulled apart before they can be combined together again. As the

electron is accelerated by the high electric field, it ionizes other molecules and

causes an avalanche. The gas gaps in an MRPC provide both sources of the

primary ionization and gas gain (amplification) through the avalanche process.

High  

voltage 

Readout Pads 

glass{ 

gas 

The Multigap Resistive Plate Chamber 

+7kV 

-7kV 

Figure 2.9: Ionization in the MRPC
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By changing the applied high voltage, an MRPC could be operated

in“streamer” (a spark discharge) mode or “avalanche” mode. When operating

in streamer mode, in general, the charge generated by a streamer discharge

is a factor of 10 to 20 times larger than that in an avalanche. It does not

require signal amplifiers and sophisticated readout electronics. The operation

in streamer mode, however, has many problems: low rate limits, time shift

with rate, etc.. In STAR, the MRPCs are operated in avalanche mode.

There are several features characterizing performance of an MRPC

[34][35][36]: operating rate, required high voltage, time resolution, and spatial

resolution. The first two characteristics are related to how low the average

avalanche charge is for a given threshold in the readout electronics. If the

average avalanche charge is big, the efficiency and rate decrease because the

surface of the resistive plates becomes charged and reduces the electric field

across the gas gaps until it is restored by charge flowing through the resistive

plates. The average avalanche charge is determined by the difference between

the minimum charge that the readout electronics can detect and the maximum

charge that can be created in the gas gaps. A low average avalanche charge is

achieved by using a heavy gas which has a short mean free path compared to

the size of a gas gap. In the heavy dense gas, most of the incoming particles

initiate an avalanche within a small distance in a gas gap which leaves enough

distance to develop enough charge (gas gain) to be readout. This short mean

free path also improves the timing resolution since the timing resolution at the

MRPC level is determined by variation of the primary ionization positions [34].
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Multi-gap RPCs are less noisy than mono-gap RPCs because, in MRPCs, the

avalanches in different layers are independent, so a noise can cause a small

avalanche in one layer only, while in a mono-gap RPC noise can cause a large

avalanche and negatively affect time resolution. Also, spacial resolution in

a multi-gap is better than that in a mono-gap because in smaller gaps, the

avalanche cannot grow in the transverse direction as much. This feature is

important to improve the matching efficiency of TOF hits to TPC tracks.

All MRPCs have been produced by the University of Science and Tech-

nology of China (USTC) and the Tsinghua University, China.

Calibration

To accomplish the desired high resolution timing measurement ≈ 100

ps, several calibrations [37] are applied to both the start and stop sides. These

calibrations include the Integral Nonlinearity (INL) correction, slewing cor-

rection, hit position correction, and T0 correction. The INL correction is

necessary to address the unequal time spans of time steps (25 ps) in clocks

generated in digitizing chips. This correction is unique but fixed for each digi-

tizer board. A slewing correction is applied to correct time shifts due to signal

size (time over threshold) difference. A hit position correction is used to ad-

just the difference in transition time from a hit position to a readout end in

a single channel. T0 correction is due to electronics delays such as different

cable length and signal transition times in different readout channels.
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Matching

Matching the signals in TOF trays with the tracks from the TPC is an

important step in the calculation of the velocity β of the tracks. If a track is

mis-matched, the track length would be incorrect and β = v/c = L/ct, where

L is the track length and t is the TOF value, would be wrong. In this section,

the matching procedure is reviewed and summarized in order to serve as a

reference for others who want a basic understanding of the procedure including

cuts or criteria without investigating the actual code (StBTofMatchMaker).

The matching is done on an event-by-event basis and starts with ana-

lyzing all TOF hits and global tracks in an event.

1. The global tracks are projected onto the STAR geometry, and extrapo-

lated to the location of the TOF modules and channels, and linked with

all possible cells (channels) that the tracks would pass through. To pro-

ceed to the next step the tracks are required to pass minimum track qual-

ity cuts, 0 < flag < 1000, nFitPoints ≥ 15, and nFitPoints/nHitsPoss ≥

0.52 where flag indicates the fit quality of the track, nFitPoints is the

number of points used in the track fit, and nHitsPoss is the number of

possible points in the TPC for the track.

2. TOF hits are then associated with the cells from the previous step, but

only if the TOF hit is in a cell that is ±1 away in the same module. One

TOF hit can be associated with multiple tracks, however, in the current

scheme those TOF hits are discarded and only TOF hits associated with
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a single track are kept. This method could be improved in the future.

The possible situation where one track is associated with multiple TOF

hits is described in the next section.

3. If one track is associated with only one TOF hit, the TOF informa-

tion is stored in StMuBTofPidTraits of the track with MatchingF lag =

1. If one track is associated with multiple TOF hits, the TOF hit

with the largest time over threshold (ToT) is selected and stored with

MatchingF lag = 2. If the two ToTs are the same value, the TOF

hit in the nearest cell from the track projection point is stored and set

MatchingF lag = 3.

This current matching procedure is relatively simple and the matching effi-

ciency (including acceptance) is about 60− 70% at p > 0.5 GeV/c. If a more

sophisticated method is necessary to reduce background and increase match-

ing efficiency, re-matching is recommended using PID information from other

measurements, for instance, dE/dx and momentum.

2.3.4 Trigger and Data Acquisition (DAQ)

Triggering systems are very important in high energy particle and nu-

clear physics experiments like the LHC and RHIC to efficiently find small cross

section signals from a huge number of events. The main STAR trigger detec-

tors for heavy ion collisions were the Zero Degree Calorimeters (ZDC) [38] and

the Central Trigger Barrel (CTB), which was removed in 2008 to yield space
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to the TOF trays. The two ZDCs are located at z = ±18.25 meters away from

the intersection point along the beam axis. Right before each ZDC, there are

dipole magnets which bend incoming and outgoing beams for collision. The

ZDCs measure the energy of spectator (dissociated) neutrons from collisions.

The CTB measured charged particle multiplicity within η = ±1 with full az-

imuthal coverage. It consisted of 240 scintillators coupled to PMTs and was

located at the same place the TOF trays occupy currently. Since 2009 the

upVPD was used to trigger the minimum-bias (MB) events that is defined as

a coincidence signal in the east and west upVPD detectors.

The data acquisition system (DAQ) has been upgraded to take data

at rates up to 1000 Hz since 2008. This is ten times faster than previous

rates. Owing to this upgrade and the impressive RHIC luminosity increase,

as presented in Figure 2.11, the STAR experiment successfully collected large

amounts of data that is necessary for statistically eager analysis like the reso-

nance analysis in this dissertaion.
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Figure 2.11: Recorded events at STAR
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Chapter 3

Particle Identification

3.1 Introduction

Particle Identification (PID) is a procedure through which observed

particle species are determined in high-energy physics experiments. PID pro-

vides important information, such as spin, mass, and quark contents. The

identification of stable particles is performed by exploiting differences of their

interactions with detectors or by determining their mass, or a combination of

both. In this chapter general PID concepts and methods are discussed. The

actual PID method implemented in this analysis is explained in Section 4.3 in

detail using concepts explained in this chapter.

3.1.1 PID by difference of interaction with detectors

Different types of particles feel different forces because of their charge

difference. For example, particles with an electric charge can interact via

electromagnetic force. Therefore the interaction difference can be used as a

particle identification method. Figure 3.1 shows typical layers of detectors in

high energy physics experiments and how particles interact differently depend-

ing mostly on their particle classification, i.e., photon, leptons, and hadrons.

As the distance increases from the collision point, the detectors usually be-
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Figure 3.1: Particle penetration power in detectors [39]

come larger and denser, except in the case of the muon system. In the STAR

experiment there is no hadronic calorimeter. Instead, the STAR magnet serves

as a separator for muons from other particles.

The difference in the interactions of the various particle types will be

explained next. The fact that electrons have electric charge makes them dif-

ferent from photons in the tracking detectors. Muons differ from the electrons

only by their mass, in which the muon is about 200 times larger. Since the

stopping power, which is related to the energy loss, depends on velocity, βγ

and not momentum, mβγ as shown in Figure 3.2, an electron and muon with

the same momentum can have velocities which are different by two ordersof

magnitude. Therefore the energy loss of an electron and muon are different:
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electrons lose their energy via radiative shower, while muons are in the min-

imum ionization region. This explains the signal difference of electrons and

muons in the electromagnetic calorimeter. While pions and muons have similar

masses, the absence of the strong interaction in muons makes their interaction

in the hadronic calorimeter different.

Figure 3.2: Muon stopping power in copper vs. velocity [10]

3.1.2 PID by determining mass

The three most abundant charged hadrons in relativistic heavy ion col-

lisions are pions, kaons, and protons (and their antiparticles). Since their

interactions with detectors are similar as shown in Figure 3.1 and they are

stable particles, they cannot be separated either based on the interaction dif-
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ference or by decay kinematics. However, their identification is crucial, for

example, in the resonance study of φ→ K++K− and Λ(1520) → p+K. Par-

ticle identified spectra of those particles can also reveal freeze-out parameters,

such as the kinematic and chemical freeze-out temperatures and the collective

flow velocity, of the hot and dense medium created in heavy ion collisions.

To identify stable particles, it is necessary to determine their charge

and mass. The charge sign can be measured from the direction the track

curves in a magnetic field and the charge number is obtained from energy

loss in the gas dE/dx. Because the mass cannot be directly measured, it

has to be extracted from other observables, namely momentum p, velocity β,

and energy E. Mass can be calculated via m2 = E2 − p2 where the energy is

measured in calorimeters in general. There is an Electromagnetic Calorimeter

(EMC) detector in STAR, and it is used in analyses that require PID at high

momentum, p > 3 GeV/c. In this dissertation, mass measurements are made

from p and β, which are related by p = γβm or m = p/γβ.

While the momentum can be (directly) determined only from the cur-

vature of tracks, the particle velocity is accessible by measuring one of the

following four observables: dE/dx, time of flight, Cherenkov radiation, and

transition radiation. In the STAR experiment, the first two measurements,

dE/dx and TOF, are available and each requires a dedicated detector.

dE/dx represents the amount of ionization energy loss of a moving par-

ticle per unit length in a gas. As a particle travels through a gas, it loses energy

due to collisions with the gas. Since the amount of energy loss depends only on
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the particle’s velocity (and charge number, z ) as shown in Figure 3.3, the en-

ergy loss value (dE/dx) provides velocity information. So, if two particles have

the same momentum but different masses, they have different velocities and,

therefore, different dE/dx values. For this reason, there are several bands in

the dE/dx vs. momentum plot corresponding to the each mass of the particle.

With the TOF measurement, on the other hand, velocity is directly measured
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Figure 3.3: dE/dx vs. exp(β) for all particle species [Run9 p+p data]: The red
dashed line shows expected dE/dx value (the Bischel Function) for the STAR
TPC. The black dashed line is β=1 limit.

and compared with momentum to obtain a particle’s mass. The fact that

dE/dx and TOF depend differently on β provides more separation between
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particle distributions when both measurements are used simultaneously. TOF

has significant separation power at low momentum. While, dE/dx has good

separation power at high momentum due to the relativistic rise.

The rest of this chapter discusses details associated with various PID

techniques. The actual PID method used in this dissertation is discussed in

Section 4.3 in the Analysis chapter below.

3.2 Choice of PID Methods

Choosing a method of PID is highly dependent on the purpose of the

identification. For example, track-wise identification is not necessary in the

spectra analysis of stable particles, for which yield information in each pT bin

is enough. In this case, even if the separation is not good enough to identify

single particles, the yields (amplitudes) can be extracted from the fit procedure

in satisfiable precisions. Conversely in resonance analyses, track-wise identi-

fication is necessary to reconstruct the parent’s invariant mass. This requires

many additional considerations such as a cut efficiency correction (see Section

3.6), which is necessary to obtain total yield of the particles. The method

to calculate the correction also needs to be considered. Additionally, a bal-

ance needs to be found between the purity and efficiency of the identification.

For example, in resonance analyses, a tighter cut (more purity) suppresses

background, but also decreases the reconstructed signal due to lower PID ef-

ficiency. If a simpler method provides sufficient separation for a particular

purpose, adding more observables and/or using more sophisticated methods is
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not advantageous because it can increase systematical uncertainties and not

increase the efficiency and purity significantly.

3.2.1 Separation Power

To quantify the PID capability of an observable, the separation power

can be used. It shows the amount of separation between two particle distri-

butions in terms of their standard deviations.

si,j ≡
separation

resolution
=

|µi − µj|
√

σ2
i + σ2

j

(3.1)

where µi is the mean value of a distribution for a particle species i in the

observable and σi is the standard deviation of the distribution. It is important

to note that the separation power only tells how separated two distributions

are and it does not indicate the level of contamination. For example, even if

pions and electrons are well separated, pions contaminate the electron sample

significantly due to the large pion abundance.

When more than one independent (orthogonal) detector measurement,

in our case dE/dx and TOF, is available, more separation power can be gained

by adding the additional dimensions (Figure 3.4a),

sTotal
i,j ≡

√

(sTPC
i,j )2 + (sTOF

i,j )2. (3.2)

In Figure 3.4b the separation powers between kaons and other particles (pions

and protons) are calculated from actual data. The dashed lines at the bottom

are the separation power from dE/dx only and show small separation powers
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(a) Schematic diagram of separation power
(credit goes to K. Kajimoto)

(b) Separation power in Kaon fit:
The points represent total separa-
tion power. The dashed line at
bottom represent dE/dx separa-
tion power.

Figure 3.4: 2D separation power

at this momentum range. Adding TOF measurements significantly improve

the separation as shown in the points which represent the total separation

powers in the figure. Since adding another measurement also adds another

source of inefficiency and systematical uncertainties, benefit of the separation

power gain should be compared to any down-side effects.

3.2.2 Separation Method

There are two main methods to separate particles track-wise. One is

to only consider the distribution of the particles that we want to select using

a nσ cut. The other one is to take into account other particle distributions
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using a probability cut. Either or both of them can be applied depending on

situations.

3.2.2.1 nσ Method

In general, due to a finite resolution of measurements, measured values

form a distribution around their expected (mean) value. The distance of a

measured value from the mean is related to a probability. Usually the distance

from the mean is normalized by the standard deviation σ called nσ. nσ of a

variable X for a particle species part is defined as

nσpart
X =

X − µpart
X

σpart
X

(3.3)

where µpart
X and σpart

X are the mean and standard deviation of X respectively.

If there are more than one particle species, since nσ can be defined for each

particle species and each particle’s distribution has different mean and σ, the

particle species has to be specified when nσ is defined. nσ does not require

information about other particle’s distributions.

For a Gaussian distribution, the probability that a measured value will

fall within ±δ of the expected value is

P (δ) =
1√
2πσ

∫ µ+δ

µ−δ

e−(X−µ)2/2σ2

dX = erf

(

δ√
2σ

)

. (3.4)

If the distributions of particles are well separated or the analysis is not very

sensitive to contaminations from other particles, a selection based on nσ values

is good enough to separate particles. Then, the PID cut efficiency can be
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analytically calculated from Equation 3.4 without computational methods,

like the Monte Carlo method.

3.2.2.2 Probability Method

However, if all of the information (amplitude, mean and sigma) about

the distributions of other particle species is available, the probability of being

each particle species can be obtained. The probability is defined below

P part(X) ≡ Npart × PDF part(X;µpart, σpart)
∑

iN
i × PDF i(X;µi, σi)

(3.5)

where i runs over all relevant particle species including the particle we want

to select. N i is the fraction of yield of the particle i (
∑

iN
i = 1). The

PDF i(X;µi, σi) is the probability density function of X for the particle i,

which is characterized by parameters, µi and σi. Once a cut (selection) range

of the variable X is defined by requiring the probability to be bigger than some

value, the cut efficiency (see Section 3.6) can be calculated by integrating the

PDF part over the cut range. It is usually difficult to calculate this integration

analytically due to a complicated shape of the cut range, so the Monte Carlo

method is used. The details are discussed with real data in Section 4.3 in the

Analysis chapter. This probability method is very useful to separate particles

while controlling contaminations when the particle distributions are close to

each other.
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3.3 Choice of Distributions

To apply both nσ and probability methods, it is convenient to describe

particle distributions in terms of analytical functions, like the Gaussian and

Student’s T distributions. The particle distribution can also be described by,

so called, an expected distribution, which is derived from data and, therefore,

reflects all detector resolutions and inefficiencies. The expected distribution

is favorable when a suitable analytical distribution is not found to describe

the particle distribution. Before choosing a distribution, a (test) statistic, a

form of observable (such as m2 and 1/β), has to be chosen because it affects

the shape of particle distributions. For example, if a distribution of m is

the Gaussian shape, a distribution of m2 would not be the Gaussian shape.

This choice of statistic affects only shape of distributions but not affects the

separation power of the observable. The separation power of one observable

would not be changed by changing the form of the observable. Since the choice

of distributions depends on each statistic of the measurement, the dE/dx and

TOF distributions are discussed separately.

3.3.1 PID with dE/dx

In the STAR experiment, while the expected (mean) dE/dx value of

tracks can be obtained by the Bichsel function [40] which is a function of β,

the actual dE/dx value of a track is measured from energy deposits along the

track. Since the values of the energy deposits follow a Landau distribution

with a long tail to the high energy side, the most probable dE/dx value of the
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track is approximated by the truncated mean from only the lowest 70% energy

deposits in order to reduce the influence of the high energy deposits in the

tail. Those truncated means also have statistical track-wise fluctuations and

the distribution is quite well approximated by the log-normal distribution. For

this reason, if log(dE/dx) is used as a statistic, the result distribution follows

the Gaussian distribution. It is convenient to define the normalized version of

this statistic as follows,

nσpart
dE/dx =

log(dE/dx)− log(dE/dxexp)
part

σlog(dE/dx)

, (3.6)

where log(dE/dxexp)
part is the log of the expected value from the Bichsel func-

tion with particle mass assumption. Log(dE/dx) is calculated from data and

the resolution (σlog(dE/dx)) depends on the number of fit points used in the

helix fit. If the calibration of the dE/dx value is ideal, this statistic for the

particle has a Gaussian distribution with mean 0 and sigma 1. For this reason

the Gaussian distribution is used to fit and describe the particle distributions

for nσpart
dE/dx.

As you can see from Figure 3.5, dE/dx can be used for PID at low

momentum (p < 1GeV/c), while it can not be used at intermediate momentum

since the lines start merge. This is the region where TOF improves the PID

capability by a great amount as shown in Figure 3.6.
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Figure 3.5: Energy Loss in gas per unit length vs. momentum

3.3.2 PID with TOF

The expected value of the particle velocity is calculated with a given

momentum and mass assumption as

βpart =
1

√

1 +m2
part/p

2
. (3.7)

The velocity measurement is done from TOF and track length,

β =
v

c
=
L

ct
(3.8)

where t is from the TOF system, i.e., t ≡ tstop − tstart and L is from tracking

in the TPC.
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Figure 3.6: 1/β v.s. momentum

3.3.2.1 Statistic (form of observable)

There are several choices of statistic for TOF each with their own pros

and cons depending on the situation. Three statistics, m2, ∆β−1/β−1, and

∆β−2, are shown. We choose ∆β−1/β−1 for this analysis based on its behavior

at high momentum.

m2 The most intuitive choice of statistic would be m2, which is calculated

from p, t, and L as follows,

m2 =
p2

γ2β2
= p2

(

c2t2

L2
− 1

)

(3.9)

The reason that m2 is used instead of m is because m2 could be a negative

value due to the resolution of the measurements as shown in Figure 3.7a. In

that case m =
√
m2 is an imaginary number and can not be defined. To avoid
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this undefined value of statistic, a statistic must have continuity at β = 1 as

shown in Table 3.1. For example, since γ2 has discontinuity at β = 1, it is not

used as a statistic.

β 0 1− 1+ ∞
γ2 1 +∞ -∞ 0
1/γ2β2 ∞ 0+ 0− -1
1/β ∞ 1− 1+ 0

Table 3.1: Continuity of statistic

The resolution of m2 is obtained by error propagation as

(

δm2

m2

)2

= 4

[

(

δp−1

p−1

)2

+ γ4

{

(

δt

t

)2

+

(

δL

L

)2
}]

. (3.10)

Due to the γ factor in front of the time and length terms, the resolution

considerably increases as momentum becomes higher while the expectation

value (mass) is constant. The actual distributions of m2 in p+p collisions at

√
s
NN

= 200 GeV in Run 8 are presented in Figure 3.7a. Figure 3.7b shows an

example of a fit with Gaussian functions, which fail to describe the tails of the

particle distributions. The advantage of using m2 as a statistic in PID is that

the expectation values are constant without any mass assumption, thus it is

possible to fit all particles, e, µ, π,K, and p, together over the wide momentum

range. This m2 is also convenient when one wants to study pT distribution of

the stable particles directly from the fit, although the resulting distribution in

each pT bin becomes more non-Gaussian due to the fact that the resolution

depends on p, not pT .
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(a) m2 vs. p with error bar representing
1-σ ranges

(b) m2 distribution with Gauss
functions

Figure 3.7: m2 distributions (p+p 200 GeV Run8)

∆β−1/β−1 This statistic is found to have constant resolution at high mo-

mentum and a more Gaussian like distribution than m2 (see Figure 3.8b). It

is defined as

∆β−1
part

β−1
=
β−1
TOF − β−1

TPC

β−1
TOF

= 1− L

ct

√

1− m2
part

p2
(3.11)

where m2
part is the mass of the particle we want to select. The expectation

value for the particle, part, is 0 by definition. The resolution dependency is

δ

(

∆β−1

β−1

)2

= γ−4

(

δp−1

p−1

)2

+

(

δt

t

)2

+

(

δL

L

)2

. (3.12)

The actual distribution with a pion mass assumption is presented in

Figure 3.8a. Because of the γ−1 factor in the resolution, this ∆β−1/β−1 has

nearly constant resolution at high momentum. In the high momentum region,

due to low multiplicity of particles, the particles need to be integrated over

a wide momentum range in order to perform a well constrained fit. This
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(a) ∆β−1/β−1 vs. p (b) ∆β−1/β−1 distribution with Gauss
functions

Figure 3.8: ∆β−1/β−1 distributions (p+p 200 GeV Run 8)

constant resolution of ∆β−1/β−1 helps to extract the distribution’s width with

smaller errors and bin size effects compared to the m2 statistic. This is the

reason that ∆β−1/β−1 is chosen in this study. This constant resolution at high

momentum is also important when extrapolated parameters are employed at

a higher momentum range, p > 3 GeV/c, where clear separation is usually

difficult and hence obtaining the parameters by fitting is also difficult. The

disadvantage of ∆β−1/β−1 statistic is that each particle distribution has to be

fitted separately since mass assumption is necessary.

∆β−2 This statistic is constructed to have its expectation (mean) value to

be a linear function of p−2. So, it is possible to estimate the amount of width

broadening due to mean variation within a momentum bin. By subtracting

the contribution of the mean variation from the fit width, we could obtain the

width including only detector resolutions. Since narrower width means more
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separation power, a more efficient PID is possible. This statistic is calculated

by

∆β−2
part = β−2

TOF − β−2
TPC =

(

ct

L

)2

+
m2

part

p2
− 1 (3.13)

and its resolution dependency is

δ
(

∆β−2
)2

= 4β−2

[

γ−2

(

δp−1

p−1

)2

+

(

δt

t

)2

+

(

δL

L

)2
]

. (3.14)
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Figure 3.9: ∆β−2 distributions (p+p 200 GeV Run9)

The actual distributions of ∆β−2 with a pion mass assumption in p+p

collision at
√
s
NN

= 200 GeV in Run 9 are presented in Figure 3.9a. Since

the track momentum resolution depends on p−1
T , the width of this distribution

might be parametrized as a function of p−1
T and it could be extended to high

momentum (small p−2). Additionally, high momentum tracks are all in a

small region at low p−2 so there is enough entries to fit the distributions. The

disadvantage of this statistic is using p−2. Usually, observables (like particle’s
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yields) are plotted as functions of p or pT . The obtained observables from the

fit need to be converted to the functions of p or pT to be compared to other

results.

3.3.2.2 Fit Function (Distribution)

Since the accuracy of PID depends on how well a distribution of the

chosen statistic is described, it is important to find an appropriate function

form (PDF) for the statistic. Usually, the Gaussian function is used because

of its well defined mean and sigma, and the fact that the Gaussian function is

implemented in many software programs. While the ∆β−1/β−1 statistic can be

described with the Gaussian function in p+p collisions, in Au+Au collisions

there is long tail due to fluctuations in the number of start side detectors

(upVPDs). The tail cannot be fit by a Gaussian function as shown in the plot

in the left panel of Figure 3.10. It is found that a student’s T function can

better describe ∆β−1/β−1 as shown in the right panel of Figure 3.10. The

student’s T function is defined as

p(x;µ, λ, ν) ≡ B−1

(

1

2
,
ν

2

)

√

λ

ν

(

1 +
λ(x− µ)2

ν

)− ν+1

2

(3.15)

For the details of the Student’s T distribution, see Appendix A.1.

Expected function Another way to describe the particle distributions is

by using so called expected functions which are derived directly from data in

a momentum range with good particle separation. Assuming the shape of

the distributions are independent of momentum, one can use this expected
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Figure 3.10: Gauss and Student’s T distributions. The “Pull” is defined as
(Data-Func.)/Bin error.

function to fit particle distributions beyond the well separated momentum

range. As an example, the expected function of m2 is discussed below.

The procedures for obtaining the expected m2 distribution are as fol-

lows. First, to take into account the TOF detector resolution, the distributions
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(a) Expected m2 distribution (b) Fit with Expected m2 distribution

Figure 3.11: Expected m2 distribution at 1.0> p >1.5 GeV/c

of the time difference ∆t between the measured and true (expected) times are

obtained for each particle species. The ∆t distribution is extracted at a well

separated momentum range by applying PID selection on dE/dx for each par-

ticle species and calculating

∆t = tTOF − tpartTPC = tTOF − L

c

√

1 +m2
part/p

2. (3.16)

Because the ∆t distributions are expected to be independent of momentum,

the ∆t distributions can be used to generate m2 distributions at any momen-

tum bin by smearing t (according to the ∆t distributions) in Equation 3.9,

where L is taken from actual tracks within the momentum bin. In Figure

3.11a, one example of the generated m2 distributions for pions, kaons, and

protons is presented. Using those distributions as fit functions, we fit the

m2 spectrum from the real data as in Figure 3.11b by varying positions and

amplitudes of the expected functions as fit parameters.
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3.4 Combined PID

A simple way to apply PID cuts is based on applying dE/dx and TOF

separately [41]. However, using dE/dx and TOF simultaneously maximizes

the PID capabilities. This is done by selecting an area in the shape of an

ellipse as in Figure 3.12a, or an even more complex shape as in Figure 3.12b.

This simultaneously applying two PID cuts can reduce background compared

to the PID by applying dE/dx and TOF separately where the selected area

is rectangular in shape and it includes more contaminations at corners from

other particle distributions.
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Figure 3.12: Electron identification in 2D at p=1-1.1 GeV/c
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3.5 Obtain Distributions by Fit

Usually precise descriptions of particle distributions are obtained via

fitting. At low momentum where both dE/dx and TOF have good separation

powers, the target particle distribution is fit with a 1-particle function, that

describes only one particle species. In the overlap region, 2-particle or 3-

particle fit functions are used to achieve better results. A 2D fit is used in this

work because more information, i.e. fit points, are available to constrain the

fit parameters compared to other procedures, where one cuts on one statistic,

usually TOF, and fits the other shape, dE/dx, in 1D. One example of 3-

particle fitting in 2D is shown in Figure 3.13. An issue with 2D fitting is in

its difficulty to control the 2D fit functions because of larger number of fit

parameters. Careful constraints have to be made on the fit parameters.

At high momentum it is difficult to fit distributions due to loss of

separation power even in 2D. There are several ways to improve fit results

by constraining parameters.

3.5.1 Constraint with pure samples

One way is by selecting a clean region, where the contaminations from

other particles are small, in one variable and fitting the sampled distribution

in the other variable (1D Fit). Another way is by obtaining decay daughters

from unstable particles by topological cuts and an invariant mass cut, and then

fit the daughters’ distribution in 2D. This method is possible only if there are

enough statistics to reconstruct decay particles. This method is discussed in
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Figure 3.13: Pion fit example. The Gauss and Student’s T function are used
for dE/dx and ∆β−1/β−1, respectively.

details in Section 4.3.2 in the Analysis chapter.

3.5.2 Constraint by parameter behavior

In some cases, a parameter can be fixed to another parameter by physi-

cal reasons. For example, merged pions are two pion tracks close to each other

(mostly decayed daughters from γ) which are mistakenly reconstructed as one

pion track due to lack of spacial resolution in the TPC. Since those merged
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pion tracks are pions, merged pions are expected to have the same mean value

of ∆β−1/β−1 as the mean value of pion distribution, but the σ of ∆β−1/β−1

might be different from a regular pion distribution. Also, the mean dE/dx of

merged pions is expected to be twice that of the regular pion distribution.

3.6 Efficiency Correction

Often the main interest is in the particle yields and then one needs

to know how many particles are lost due to applying PID cuts in order to

correct yields. For the nσ cut, thanks to the Gaussian distribution, it is easy

to calculate the probability for a given nσ via Eq. 3.4. For instance, 68% of

particles are within 1-sigma distance from the mean. For the probability cut,

the situation is more complicated due to the complexity of the selected area. In

this case the cut efficiency is calculable using the Monte Carlo method. Tracks

are generated according to the particle distributions and then the probability

cut is applied to the generated tracks. Then, the efficiency is given by a ratio

of the number of tracks which satisfy the cut to the number of the generated

tracks. The detailed procedure is elaborated with actual data in Section 4.5.2

in the Analysis chapter.

When choosing a PID method, one has to consider how to calculate

its PID efficiency too because it affects the final results. The calculation is

sometimes time consuming if a complicated PID method is chosen.
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3.7 TOF Resolution

If the parameters of the particle distributions can be parametrized as

functions of momentum, tighter constraints are possible and it enable particle

identification at even higher momentum.

For example, the dependency of the ∆β−1/β−1 on measured values, the

resolution (σ) of ∆β−1/β−1 can be written as a function of p with parameters

of measurement’s resolutions as follows

δ

(

∆β−1

β−1

)2

≡ δ

(

β−1
TOF − β−1

exp

β−1
TOF

)2

=

(

δt

t

)2

+





DT

lT

[

1−
(

0.3BDT

2pT

)2
]−1/2

− 1 + γ−2
exp





2
(

δp−1
T

p−1
T

)2

+
(

1 + γ−2
exp

)2
(tanhη δη)2

where
(

δp−1
T

p−1
T

)2

= (C2
SPp

2
T + C2

MSβ
−2). The detailed derivation is given in Ap-

pendix B. The variable t is the time of flight (≈10 ns) and δt is its resolution

(≈120 ps). This resolution includes start side and stop side resolutions. The

second term of the equation above is the contributions from the transverse

length lT and transverse momentum pT measurements. Because both trans-

verse length and momentum are calculated from the curvature of a track, their

resolutions are included in the same term. The B is the magnetic field strength

(0.5 Tesla) and the DT is the transverse distance from the collision vertex to

the TOF tray (≈214 cm). The CSP and CMS are coefficients of special resolu-

tion and multi-scattering resolution in the TPC respectively. The third term
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is the contribution from the resolution in pseudo-rapidity η. This is a function

of pT and η with given particle mass and the fit parameters: δt, δη, CSP , and

CMS.

In Figure 3.14, one example of the parametrization fit is presented

with its components. The contribution from the momentum resolution (the

orange line) is dominant at low momentum (small γ), and decreases at high

momentum due to the γ−2 factor. On the other hand, the contribution of

the time resolution becomes dominant at high momentum and approaches

a constant, which is the same for the all particles. The simultaneous fit to
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resolutions of three particles is shown in Figure 3.15. The resolutions for

kaons and protons are shifted for presentation purpose. Those functions share

the same parameter values and the only difference is particle masses in the

equation. This might imply the parameterization is valid.
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p /β−1 resolution for π, K,and p with the same parameters

in p+p collisions

In the current formalism the δt contains the time resolution of the start

and stop side detectors. Since the start side time resolution depends on the

number of lit upVPDs, the δt might be decomposed further in terms of the

number of lit upVPDs. This is left for future study.

3.8 nσdE/dx Resolution

For the nσdE/dx measurement, it is difficult to parameterize its reso-

lution as a function of momentum because it is already normalized by the

resolution of log(dE/dx), which depends on the number of measured dE/dx

points in a track. Although the nσdE/dx resolution vs. momentum in Fig-

ure 3.16a does not exhibit any trend, the nσdE/dx resolution vs. γβ manifests
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Figure 3.16: nσdE/dx resolution for all particles (Au+Au 200 GeV Run10)
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some trend. When compared to Figure 3.3, it seems that the higher the dE/dx

value, the smaller the resolution. This makes sense because the high dE/dx

value means more ionization and a higher number of reconstructable clusters

in the TPC, which makes dE/dx measurements more accurate. This is only a

hypothesis and needs to be studied.
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Chapter 4

φ→ e+ + e− Analysis

In this chapter, a detailed explanation of the φ → e+ + e− analysis

is presented. This chapter is organized as follows: In Section 4.1 and 4.2,

the data set and the basic event and track selections are presented, while

Section 4.3 describes the electron (and positron) identification in detail, which

includes the method to obtain the electron distribution from a pure electron

sample, and the separation methods in 2D, nσdE/dx and ∆β−1/β−1. Then,

the techniques for reconstruction and extraction of the φ → e+ + e− signals

are discussed in Section 4.4. This chapter ends with the efficiency correction

(Section 4.5) and systematical uncertainty study (Section 4.6) to obtain the

final results.

4.1 Data Set

The data presented here was taken in the year 2010 from Au+Au col-

lisions at
√
s
NN

= 200 GeV with the minimum bias trigger in the STAR

experiment at RHIC.

• Trigger: VPD minimum bias trigger, which requires a coincidence on the

east and west side upVPDs (trigger ID = 2600[0123]1)
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• Production: P10ik (library: SL10k)

• FileCatalog Command: production=P10ik,filetype=daq_reco_MuDst,

trgsetupname=AuAu200_production,filename~st_physics,

storage!=HPSS,tpx=1

• Number of Events: 350M events (before event cuts), 250M events (after

event cuts)

4.1.1 Event Distributions

To characterize events, several event distributions plotted as functions

of various variables are checked for quality assurance and shown below. The

weighted reference multiplicity (refMult) distributions with two different cuts

on the vertex positions along the beam axis VZ are presented in Figure 4.1a.

The refMult is the number of charged primary tracks in a mid rapidity re-

gion (|η| ≤ 0.5) in an event and the weighting factors are calculated by the

Monte Carlo simulation to take into account the trigger inefficiency. Since

different cuts on the difference of VZ measured by the TPC and upVPD

|VZ(TPC) − VZ(V PD)| were used in the main analysis and the pure elec-

tron sample analysis (explained later in Section 4.3.2), differences are checked.

Most of the differences are less than 10% and are in peripheral events, where

contributions to the φ signals are limited. The difference in the number of

events is 1.26% as shown in Figure 4.2b. Figure 4.1b shows the number of lit

upVPD used in the start time calculation. There is some structure due to a

truncation method to improve the timing resolution by reducing outliers.
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Figure 4.1: Reference multiplicity and upVPD

The position of the primary vertices along the beam axis (VZ) are shown

in Figure 4.2a. The filled area shows the events used in this analysis. The

dashed line is the Gaussian function fitted to the data and the fit results are

plotted in the middle of the figure. The difference of VZ from the TPC and

upVPD are plotted in Figure 4.2b. The distribution is not Gaussian. This

might be a result of the upVPD resolution rather than the TPC resolution

since the VZ value from the TPC is calculated from a larger number of tracks

compared to the number of hits in the upVPD (at most 2 × 19 PMTs). If

both resolutions are Gaussian, it would be a Gaussian distribution because the

difference (or sum) of normally distributed random variables also has a normal

(Gaussian) distribution. The primary vertex positions in 2D are plotted in

75



Figure 4.3.
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Figure 4.2: Primary vertex position on z axis

4.2 Event & Track Selection

4.2.1 Event Cut

The events are selected with a VZ within ± 30 cm from the geometric

center of the TPC to take full advantage of the symmetric, large acceptance

and to minimize geometric bias due to asymmetric acceptances at the edge

of the detectors. The deviation of primary vertices from the center (beam

center) in the x-y plane, Vr, are required to be less than 2 cm to avoid events

at the beam pipe. Since the TOF detector was used, we also required that

the difference between the VZ reconstructed from TPC and upVPD is within
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(a) VX vs. VY with |VZ | < 30 cm before
all event cuts except Vr cut

(b) VX vs. VY with |VZ | < 30 cm after
all event cuts except Vr cut

(c) VX vs. VZ distribution (d) VY vs. VZ distribution

Figure 4.3: Primary vertex position

± 3 cm to ensure the TOF start times are calculated from the same vertices

as primary vertices in the events. This cut also serves as an efficient rejection

of pile-up events, where two or more separated collisions are reconstructed as
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one event. Hits are required in the upVPDs on both the east and west sides

to calculate collision times. Since this cut is included in the basic cuts in the

TOF reconstruction chain, it might not be needed again at this level. After

an additional 0-80% centrality selection based on the refMult value [42], about

250M events are analyzed in this study.

4.2.2 Track Cut

Primary tracks, which have a distance of closest approach (DCA) within

1.1 cm and have at least 22 fit points (nHitsFit) in the TPC, are selected. The

DCA cut reduces contaminations from daughter tracks of weak decayed reso-

nances, which typically have decay lengths of several cm, as well as e± tracks

from γ conversion at the beam pipe. The requirement on the fit points ensures

the tracks have good momentum measurements. Tracks are also required to

have the ratio of the nHitsFit to the number of possible points in the TPC

(nHitsPoss), which is at most 45 points, be greater than 0.52. With this re-

quirement we can avoid split tracks, one track reconstructed into two tracks.

Both track momentum p and transverse momentum pT have to be bigger than

0.18 GeV/c to reach TOF trays and there is a maximum momentum limit

p = 2 GeV/c due to inefficiency in electron PID. Above this momentum limit,

pion contamination is severe. Since TOF is used, track pseudo-rapidity is

required to be less than ±1.
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TOF related track cut The TOF Match Flag selects tracks which are cor-

rectly matched with TOF hits. See the subsection “Matching” in Section 2.3.3

about the TOF Match Flag. To diminish miss-matched tracks β is required

to be greater than 0.05, which removes slow hits, and the TOF of tracks (≈7

ns for regular tracks) must be grater than 1 ns.

4.2.3 Pair Cut

The opening angles between a pair of e+ and e− tracks are required to

be bigger than 30◦ in order to reduce combinatorial backgrounds. The opening

angle distribution from simulation is given in Figure 4.4 with the mean and

sigma obtained by fit. Because an optimized opening angle cut does not change
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Figure 4.4: e± opening angle from φ from simulation with its mean (top) and
σ (bottom)
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results, the fixed value, 30◦, is adopted in this analysis for ease.

The summary of event and track cuts are listed in Table 4.1.

Event Cuts
Centrality 0-80%

Vertex z-position |VZ | < 30 cm

Vertex x,y-position
√

V 2
X + V 2

Y < 2 cm
VPD VZ |VZ(TPC)− VZ(V PD)| < 3 cm

# of VPD Hits number of V PDEast,West ≥1

Track Cuts
nHitsFit nHitsF it ≥ 22

nHitsFit / nHitsPoss nHitsFit / nHitsPoss > 0.52
global DCA gDCA < 1.1 cm

p 0.18 < p < 2 GeV/c
pT 0.18 < pT GeV/c

pseudo-rapidity |η| ≤1
TOF Match Flag 6= 0

β > 0.05
Time of flight > 1 ns

Pair Cut
Opening angle θ > 30◦

Table 4.1: Event and track tuts

4.3 Electron Identification

With the TOF detector it is possible to separate electrons from other

particles at low momentum, p ≤ 0.4 GeV/c. Combined with the electron

separation power from the relativistic rise of dE/dx at high momentum, the

TOF information enables us to identify electrons up to p = 2 GeV/c in this
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analysis. An example of the electron distribution in 2D space is presented

in Figure 4.5. To identify particles we need to know their distributions in
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Figure 4.5: Combined electron identification (p=0.24-0.25 GeV/c, |η|=0-0.2)

measurements, in this case nσe
dE/dx and ∆β−1/β−1, which are defined in Section

3.3 as

nσe
dE/dx = (X −Xexp) /σ(X) (4.1)

∆β−1/β−1 =
(

β−1
TOF − β−1

exp

)

/β−1
TOF , (4.2)

where X ≡ log(dE/dx) and β−1
exp =

E
p
=
√

1 +m2
e/p

2. As discussed in Section

3.3, there are main methods to describe particle distributions. One is using

expected distribution, which is obtained from real data at well separated kine-

matic regions. The other is using well known analytical distributions, such

as Gaussian and student’s T distributions. In the former method, the actual

data can be fit with the expected distribution functions in a not well separated
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kinematic region by shifting and scaling them. In the latter method, there is

more flexibility. For example, for the Gaussian distributions the sigma param-

eter can be treated as a fitting parameter as well as the amplitude (scaling)

and mean (shifting). In this study, we use the latter method with a Gaussian

distribution for both nσe
dE/dx and ∆β−1/β−1 for all particles except the pion

distribution, for which student’s T distribution is used to describe the tails

of ∆β−1/β−1 distribution better. First, the parameters of distributions are

obtained from pure electron samples, and then, using those distributions we

can separate electrons from other particles.

4.3.1 Contaminations

Even with TOF, electrons are well separated only up to p ≈ 0.4 GeV/c

at STAR, before other particles contaminate the electron distribution. The

main contamination comes from pions. Even though the pion distribution is

well separated from electrons, because of its large yield, the tail of the pion

distribution overlaps the electron distribution. The next largest contamina-

tions are from miss matched kaons and protons, which are regular kaon and

proton tracks but matched with the wrong TOF hits mostly caused by gamma

conversion, mostly at the TOF trays. Another contamination source is merged

pions, which are two pion tracks close to each other that are reconstructed as

one track. This distribution is characterized by the same beta value as that

of pions and a dE/dx value twice as larger as pion value, since it is the energy

loss of two pion tracks. See Figure 4.6 for those contaminations.
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Due to these contaminations, it is hard to obtain the correct parame-

ters of the electron distribution. However, by selecting pure electron samples

from gamma conversion pairs near collision vertices, it is possible to obtain

parameters with a reasonable precision.

Figure 4.6: Particle distributions around electrons

4.3.2 Pure Electron Sample

There are two purposes for using a pure electron sample.
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• Obtain parameters of the electron distribution in nσe
dE/dx vs ∆β−1/β−1.

• Calculate the TOF matching efficiency for electrons.

Selection Procedure

The same event cuts are used as in the main analysis except the |VZ(TPC)−

VZ(V PD)| < 6 cm cut. The e−e+ pairs from gamma conversions are selected

by applying geometric cuts.

1. Identify all possible global tracks with |nσelectron| < 2 cut as well as min-

imum track quality cuts, nHitsFit > 15 points and the ratio of nHitsFit

to nHitsPoss to be bigger than 0.52.

2. Select tracks among those global tracks by requiring global DCA less

than 2 cm and 0.2 < pT ≤ 2 GeV/c as primary track candidates, since

we want the primary track electron distribution.

3. For selecting e−e+ pairs from gamma conversions (unlike-sign pairs),

calculate the pair values from all possible pairs of a primary candidate

(electron or positron) and an opposite charged global track candidate.

4. Apply a geometrical cut such that the pair has a DCA between two tracks

dcaAB of less than 1 cm, which reflects the fact that real gamma con-

version pairs have DCA=0 at conversion points. Since parent gammas

come from primary vertices, the following two pair cuts reduce back-

ground. The first pair cut is that the reconstructed gamma momentum
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has to point in the same direction as that from the primary vertex to

the conversion point, which is at the middle point between two tracks

at their DCA, i.e., pγ · L > 0. The other requirement is that the DCA

of the parent (γ) to the primary vertex dcaParent has to be less than 3

cm. The last and most important cut is requiring invariant mass of the

pair mee to be less than 0.005 GeV/c2 since mγ = 0.

5. If the pair satisfies those pair cuts, store the primary track as a pure

electron (positron).

6. Repeat the procedures for unlike-sign pairs to estimate combinatorial

background.

The schematic picture of those pair values is presented in Figure 4.7 and the

pair cuts are listed in Table 4.2.

QA

About 199M events (after the event cuts) are analyzed for the pure

electron sample. Figure 4.8 shows distributions of the conversion points. The

beam pipe in the center, some support structures for the inner tracker at y=20

cm, and the TPC inner field cage at r ≈ 50 cm are evident. Since gamma

conversions are expected to happen at those structures, the distribution of the

conversion points seem reasonable.

The invariant mass distributions of like-sign (LS) and unlike-sign (ULS)

pairs are presented in Figure 4.9a. There is a peak from gamma conversion
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conversion pair

All Global Tracks (e− and e+)
|nσglobal

e | ≤ 2
nHitsF it ≥ 15

nHitsFit / nHitsPoss > 0.52

Primary Tracks
Primary Tracks
gDCA ≤ 2 cm

0.18 < pT < 2 GeV/c

Pair Cuts
dcaAB < 1 cm
pγ · L > 0

dcaParent < 3 cm
mee < 0.005GeV/c2

Table 4.2: Track cuts for pure elec-
tron sample
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Figure 4.9: QA histograms for the pure electron sample

pairs around invariant mass equal to 0 in unlike-sign pairs. The normalized

like-sign distribution (blue filled area) represents background and agrees with

unlike-sign distribution at large invariant mass. Inside the invariant mass

cut region (less than the red dashed line) most of them are from unlike-sign

pairs (gamma conversion pairs). Figure 4.9b shows nσelectron distributions. All

accepted primary tracks without the pair cuts are plotted with a short dashed

line, which is labeled as “All” in the legend. The unlike-sign distributions

and like-sign distributions are after the invariant mass cut. The red filled

histogram shows the unlike-sign distribution minus the like-sign distribution

(background), which represents electron tracks without background. It should

look like a Gaussian distribution with µ = 0 and σ = 1 by definition of nσ. By

integration, the backgrounds in the unlike-sign samples are estimated to be
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≈17% at −2 ≤ nσel ≤ 2 and ≈11% at −0.5 ≤ nσel ≤ 2. The −0.5 ≤ nσel ≤ 2

cut is used in the calculation of the TOF matching efficiency in Section 4.5.1.

To save time like-sign pairs are calculated with only 43M events (Figure 4.9).

The unlike-sign pairs look similar in the final sample of 199M events.

2D Fit for Electrons

The parameters of electron distribution are obtained by fitting the pure

electron sample up to p = 2 GeV/c. After this step, all electron distribution

parameters except its yield (or relative heights) are determined. The yield

parameter is necessary for the probability cut and the yield is determined by

fitting all of the data used in the main analysis with the other relevant particle

distributions. The fit procedures are as follows:

1. Fill 2D (∆β−1/β−1, nσe
dE/dx) histograms at each momentum bin and η

bin with the pure electron sample with additional track cut, gDCA <

1.5 cm. Those bin sizes are ∆p = 20 MeV/c and ∆η = 0.2. The distri-

bution is divided into five η bins to reflect the resolution dependencies

on momentum and η because the momentum resolution is a function

of pT while the β resolution is a function of p, where p and pT have a

relationship p = pT coshη.

2. In each momentum and η bin, fit with a 2D Gaussian function in an

area defined by (nσX/a)2 + (nσY /b)2 ≤ 1, where X ≡ ∆β−1/β−1, Y ≡

nσe
dE/dx, and nσ

X ≡ (X − Xexp)/σ
X
exp (same for Y). By definition Xexp
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and Yexp = 0. In this study, we set σX
exp = 0.013, σY

exp = 1, a = 3, and

b = 2. With this criteria, we can cut out the 2D histogram in an ellipse.

3. After 2-dimensional fit, project the cut-out data and fit function onto

both ∆β−1/β−1 and nσe
dE/dx axes for a quality check of the fit.

e

π

K

p

Figure 4.10: 2D fit of the pure electron sample at p = 0.3 − 0.32 [GeV/c],
|η| = 0.2− 0.4

Figure 4.10 shows an example of a 2D fit at p = 0.7 GeV/c and |η| = 0.7.

In this pure electron sample fit, only one particle distribution is used. Because

nσe
dE/dx values from global and primary tracks are different, there are some

tracks of other particles outside of |nσe
dE/dx| < 2 even after the pure electron

selection cut on nσe
dE/dx. When the TOF matching efficiency is calculated

from the pure electron sample, additional cuts on nσe
dE/dx are applied to reduce

those contamination from other particles. Figure 4.11 shows the obtained fit

parameters for the electron distribution (2D Gaussian distribution).
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Figure 4.11: Summary of the 2D fit parameters in the pure electron sample
fit

4.3.3 Fit with All Relevant Particles

The relative amplitudes between particles are required for applying the

probability cut. For acquiring the amplitude of the electron distribution as

well as the other relevant particle distributions, those distributions have to be

fitted together. The multi-particle fitting is difficult and careful fit procedures

are necessary as described below:

1. Fill 2D (∆β−1/β−1, nσe
dE/dx) histograms at each momentum bin and η
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bin with the event and track cuts explained in Section 4.2.

2. Fix mean and sigma of the electron’s ∆β−1/β−1 and nσe
dE/dx to the values

extracted from the pure electron sample. Then, fit π, K, p distributions

along with the electron distributions.

3. Fit the miss matched kaons and protons at well separated momentum re-

gions (p < 0.5 GeV/c for the miss matched kaons and p < 0.9 GeV/c for

the miss matched protons) to obtain NmissK/NK and Nmissp/Np ratios.

4. Fix the NmissK/NK and Nmissp/Np ratios at all momentum bins.

5. Fit all particles, electron, pion, merged pion, and miss matched kaon and

proton, to obtain their yields. Only the amplitude is a free fit parameter

for the electron distribution. In each momentum and η bin, the fit is

performed with 2D Gaussian functions in the same areas defined in the

previous pure electron sample fit. This criterion cuts out the ellipse

shapes as shown in the bottom middle panel in Figure 4.12.

6. Project the data in the ellipse and the fit function onto both ∆β−1/β−1

and nσe
dE/dx axes for a fit quality check.

Student’s T distribution In the fit procedure explained above, we em-

ployed the student’s T distribution to describe the long tails of pion distribu-

tion in ∆β−1/β−1. It is important to estimate the pion tails correctly so that
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Figure 4.12: 2D fit example at p = 0.48− 0.5 GeV/c, |η| = 0− 0.2

the yield of the electron distribution located on the tails is extracted. The

applicability of the student’s distribution can be interpreted as follows.

Due to the central limit theorem, we expect that the deviation of the

measured start-time, which is an average time of all lit upVPDs, from the true

start time would distribute as a Gaussian (normal) distribution for a fixed

number of lit upVPDs. The distributions of the start-time deviation with

different numbers of lit upVPDs have different resolutions. The combined dis-

tribution is no longer a Gaussian distribution, but a student’s T distribution.
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A student’s T distribution can be obtained by convolving a Gaussian and a

Gamma function, which represents a distribution of resolutions in this case.

See Appendix A.1 for details about the student’s T distribution.

Separation Power The separation power measures the extent to which each

particle’s distribution is separated. The separation powers between electrons

and the other particles in the fit are plotted in Figure 4.13.
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Figure 4.13: Separation power between electrons and other particles
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Figure 4.14: Distribution of real and MC data after the 2D nσ and probability
cuts. The real data after the PID is presented as blue lines and the MC data is
given as filled histograms in the bottom panels.

4.3.4 2D nσ and Probability cuts

Although the obtained ∆β−1/β−1 and nσe
dE/dx distributions can be used

separately in PID, using them in combination provides more separation power.

The nσ and probability cuts defined in Section 3.2.2 are extended to two
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variable versions. The 2D nσ cut is defined as

(nσX
a

)2

+
(nσY

b

)2

< 1, (4.3)

where X ≡ ∆β−1/β−1 and Y ≡ nσdE/dx. The above inequality selects out an

ellipse on the nσX and nσY axes with radii of a and b, and a = b = 3 in this

analysis. This method of applying dE/dx and β cuts simultaneously has an

advantage over other methods in which the two cuts are applied separately

because, in the later case, a rectangle in the 2D histogram is cut while in our

method an ellipse with higher purity is cut. The 2D probability cut is defined

as

P e(X, Y ) ≡ N e × Pdf(X;θe
X)× Pdf(Y ;θe

Y )
∑

i

N i × Pdf(X;θi
X)× Pdf(Y ;θi

Y )
, (4.4)

where Pdf is a probability density function and θ
i
X and θ

i
Y are parameter

sets for particle i. The summation in the denominator includes only electron

and pion for simplification. All Pdfs are Gaussian functions except the pion

∆β−1/β−1 distribution, for which the student’s T function is used. In this

analysis, a probability bigger than 60% is required to be identified as an elec-

tron or positron. Figure 4.14 shows the selected track distributions compared

to MC tracks. The MC tracks are generated according to the particle distri-

butions to check the PID method (both of them are normalized for the sake

of comparison).
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4.4 Signal Extraction (reconstruction)

In this section, the method of reconstructing φ signals from the identi-

fied e± pairs in the previous section is introduced.

4.4.1 Invariant Mass Reconstruction

The φ invariant mass is reconstructed from all e+ and e− pairs in the

same event (unlike-sign distribution). Since these pairs include uncorrelated

pairs as well, the mixed-event technique is adopted to estimate the uncor-

related combinatorial background [43] [44]. Invariant mass can be calculated

as

M2
e+e− = (Ee+ + Ee−)

2 − (~pe+ + ~pe−)
2 , (4.5)

where the mass of the electron is used to calculate Ee± . It is worth mention-

ing that since the electron mass is used to calculate the invariant mass of a

resonance, even if a kaon pair from a φ meson is misidentified as an electron-

positron pair, the invariant mass values from those kaon pairs have a smaller

invariant mass due to the large mass difference of an electron and kaon. Thus,

small kaon contaminations do not affect our φ analysis.

4.4.2 Mixed-event Technique (background subtraction)

The mixed-event background is reconstructed with electron and positron

pairs from different events, where no real correlations from resonances are pos-

sible. However, in the same event, even e+ and e− pair not from a φ can have

some correlations originating from experimental artifacts in the TPC. In order
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to include those event-wise geometrical correlations in the mixed-event tech-

nique, e+ and e− pairs are selected only from the same event class. We defined

the event classes with 10 bins in both VZ position and reaction plane angle of

the events [45], and 8 centrality bins so that the geometrical correlations are

taken into account in the mixed-event background as well. One event is mixed

with 20 other events in the same event class.

Like-sign pairs Another technique to reproduce the combinatorial back-

ground is the like-sign technique. In this technique, instead of paring e+ and

e−, the same charge sign electrons or positrons in the same event are paired to

calculate invariant mass. The resulting invariant mass distribution does not

contain any resonance signals but includes the geometrical correlations as well

as the combinatorial background. The disadvantage of this method is that the

background errors are larger compared to that of the mixed-event background.

In the mixed-event technique, the number of mixed events can be chosen to

reduce the errors, in this analysis a factor of 1/
√
20 ≈ 0.22 smaller than the

errors in the like-sign technique. Due to this disadvantage, the like-sign tech-

nique is not used in this analysis.

4.4.3 Signal Counting and Breit-Wigner Function Fit

After normalizing the mixed-events background to the unlike-sign in-

variant mass distribution and subtracting it from the unlike-sign invariant

mass distribution, we can extract φ signals as in Figure 4.15b. The statistical
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Figure 4.15: e+e− invariant mass distribution at pT = 0.1− 2.5 GeV/c

errors of the invariant mass histogram are calculated as following. Let N i
S be

the i-th bin entry after the background subtraction and N i
S = N i

R − αN i
BG

where N i
R and N i

BG are i-th bin entries of the invariant mass histogram from

the same-event and mixed-event, respectively, and α is the normalization fac-

tor of the background, typically ≈ 0.05 = 1/20. Then the statistical error of

N i
S is given by

(

∆N i
S

)2
= N i

R + α2N i
BG +N i

BG
2 α
∑

j

N j
BG

(1 + α) , (4.6)

where we assume the statistical errors of bin entries are Poisson, i.e., ∆N i
R,BG =

√

N i
R,BG. The first and second terms correspond to the errors from the same-

event and mixed-event invariant mass histograms, respectively. The third term

is from the normalization factor itself and the summation in the denominator

98



is over bins in the normalization ranges.

To obtain the resonance signal shape, we fit the invariant mass distri-

bution with the Breit-Wigner function plus slope, which represents residual

background. The Breit-Wigner function is defined as

fBW ≡ dN

dMee

=
NΓ/2π

(Mee −M0)
2 + Γ2/4

, (4.7)

where N is the area under the Breit-Wigner function, M0 is the resonance

mass position, and Γ is a decay width. The Γ/2π is a normalization factor.

From this fit function, the mass and width of the resonance are extracted.

The yield at each pT bin is estimated by counting the invariant mass bin

entries above the residual background function in the signal range at Mee =

Mφ±30 MeV/c2 (typically, the bin counting consists about 85% of total yield),

and by integration of the fit function outside of the signal range as expressed

in Eq. 4.8,

d2N

dydpT
=
∑

i

dN

dydpT

∣

∣

∣

∣

M i
ee

− fBG(M
i
ee) +

M low
ee
∫

min

+

max
∫

Mhi
ee

dMeefBW (Mee) (4.8)

where M i
ee implies i-th bin in the Mee axis and fBG is the residual background

function. The M low ,hi
ee are low and hi edges of the signal counting range. The

min and max are Mee = 0.9 and 1.15 GeV/c, and those limits are far enough

from the signal shape to include all signals. The dy is equal to 2 in this analysis

since we consider φ resonances in |y| < 1. The statistical error of d2N/dydpT

is estimated from errors in the bins and the residual background function. The
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latter errors are calculated from the covariant matrix, σij, of the fit parameters

and gradients of the function at bin center with respect to the fit parameters,

df(Mee)
2 =

∑

i,j

∂f(Mee)

∂pi
σij
∂f(Mee)

∂pj
. (4.9)

To measure the φ transverse momentum spectrum, we repeat the same

procedure in each transverse momentum bin. The pT bin widths are deter-

mined so that all bins have similar significances.

4.4.4 dN/dy and Mean Transverse Momentum Estimation

After applying all corrections explained in Section 4.5, we obtain the

corrected pT spectrum of φ and fit it with the Maxwell-Boltzmann (mT ex-

ponential) distribution using an “integral” fit option in the ROOT software.

The Maxwell-Boltzmann distribution is given as

1

2πpT

d2N

dydpT
=

dN/dy

2πT (m0 + T )
e−(mT−m0)/T , (4.10)

where mT =
√

m2
0 + p2T . The total yield, dN/dy, is calculated by bin counting

at pT =0.1-2.5 GeV/c and integration of the fit function at pT =0-0.1 & 2.5-10

GeV/c. The mean pT is also calculated in a similar fashion to that expressed in

Equation 4.11. The extrapolation or integration of the fit function contributes

3.7% for dN/dy and 8.3% for 〈pT 〉.
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dN

dy
=
∑

i

dN

dydpT

∣

∣

∣

∣

pi
T

∆piT +

plow
T
∫

0

+

10
∫

phi
T

dpTfMB and (4.11)

〈pT 〉 =







∑

i

dN

dydpT

∣

∣

∣

∣

pi
T

pT∆p
i
T +

plow
T
∫

0

+

10
∫

phi
T

dpTpTfMB







/

dN/dy, (4.12)

where piT is an i-th pT bin center and ∆piT is a bin width at the bin, and fMB

is the Maxwell-Boltzmann distribution function.

4.5 Efficiency Correction

Due to the inefficiencies in detectors and the PID method, some amount

of e± which contribute to the φ signal are not reconstructed. To obtain the

corrected total yield, we need to estimate those inefficiencies, which consist of

TPC acceptance and track efficiency, TOF matching efficiency (TOF accep-

tance plus matching efficiency), and PID method efficiency. We assume each

efficiency is independent from each other, i.e., total efficiency is calculated by

multiplying all efficiencies.

4.5.1 TOF Matching Efficiency

The TOF matching efficiency and acceptance of the TOF detectors are

calculated from data by comparing all reconstructed tracks with tracks that

have associated TOF hits. We need to match TPC tracks with TOF hits

since to calculate velocity β the track length is also necessary. Due to the
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smaller coverage (|η| < 0.9) of the TOF system, tracks do not always have

corresponding TOF hits. Currently, there is no reliable simulation of the TOF

system available to estimate the efficiency. Instead the real data is used to

estimate it. Because there is some particle dependency in the efficiency, we

use the pure electron sample in this study. The TOF matching efficiency is

defined as

EffTOF ≡ N(TOF |TPC)/N
selected
TPC , (4.13)

where N selected
TPC is number of tracks in the TPC after the track quality cuts and

N(TOF |TPC) is the number of those tracks which have a matched TOF hit.

As shown in Figure 4.10, even the pure electron sample has contami-

nations from other particles. Several cuts on the nσe
dE/dx are applied to min-

imize them. The contaminations are also obvious in Figure 4.16b, where the

contamination bands intersect the electron distribution. The estimated TOF

matching efficiencies are presented in Figure 4.16a. The black line shows the

efficiency without any additional cuts to the pure electron sample. The pink

and purple points represent different cut ranges in nσe
dE/dx. Those differences

are included in the systematical uncertainties. The efficiencies in φ and η in

the TPC are plotted for QA purposes in Figure 4.17a and 4.17b.

4.5.2 PID Cut Efficiency (acceptance)

The PID cut efficiency is calculated directly from the two-dimensional

Gaussian distributions for the electron obtained in Section 4.3.2. All of the

necessary information to calculate PID efficiency is contained in the fraction of
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accepted electrons compared to the total electron distribution. In other words,

once the PID cut region is determined by the probability cut, the efficiency
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only depends on the electron distribution. The other particle distributions do

not affect the accuracy of the PID efficiency. The PID efficiency is estimated

in the following way:

1. Generate electrons according to the fit distribution.

2. Apply the PID cuts (2D nσ and probability cuts) to each generated

track.

3. Calculate the efficiency as EffPID ≡ NRC/NMC .

As evident in the last line, the efficiency does not depend on the amplitude of

the distribution because it is a ratio. The systematical uncertainty of the PID

efficiency depends only on the means and sigmas in the electron distribution.

This is why obtaining electron distribution with as little contamination as

possible is important.

Purity

For quality assurance, the purity of the identified electrons and positrons

is estimated in a similar manner. For this estimation, the other particle dis-

tributions are also necessary as described below:

1. Generate ∆β−1/β−1
E vs. nσE distributions for the other particles accord-

ing to the fit parameters using Monte Carlo method as in the bottom

left plot in Figure 4.18. → N i
MC .

2. Select tracks with the PID cuts. → N i
Sel.
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Figure 4.18: PID efficiency and purity calculation

3. Calculate the purity as PuriPIDCut
i ≡ N i

Sel/
∑

j N
j
Sel, where j includes

all relevant particles.

The PID efficiency, purity, and contaminations are plotted in Figure 4.19a. By

integrating over the momentum range p = 0.1 − 2 GeV/c, the total electron

purity is estimated to be 94.8%. The accepted yields are also given in Figure

4.19b to show the amount of other tracks included in the selected electrons

and positrons.
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Figure 4.19: PID efficiency and contamination yields

4.5.3 TPC Acceptance & Track Quality Cut Efficiency

The track Reconstruction (Rc) efficiency and TPC acceptance have

been obtained by embedding Monte-Carlo (MC) φ → e+e− tracks into real

events at the detector’s response level with GEANT and reconstructing them

via the STAR production chain along with real tracks. In this way, the ef-

ficiency includes the TPC geometry acceptance and the track reconstruction

efficiency.

While the desired final result is dN/dy in |y| ≤ 1, in the real measure-

ment dN/dy||y|≤1 might or might not include the φ signals from outside of the

y range due to the detector resolution and the limited detector acceptance,

|η| ≤ 1. To correct for these effects, the MC parent particles, φ, are generated

for not only |y| ≤ 1 but also beyond the |y| = 1 limits. Because the detector
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resolution in η or y is only a few percent, generating the MC parents within

|y| ≤ 1.2 was sufficient.

We also estimate the track quality cuts efficiency by applying the track

quality cut used in our analysis to the reconstructed tracks. At this point,

the TOF matching efficiency and PID efficiency are applied to each daughter

track. If both daughters, e+e−, are reconstructed after all of the efficiencies

are applied, the parent φ is counted as reconstructed. The final pair efficiency

is calculated as

Eff total ≡ Nφ→e+e−

Rc /Nφ→e+e−

MC . (4.14)

In order to obtain correct efficiency for dN/dy||y|≤1, the MC φs are counted

only within |y| ≤ 1 and the Rc φs are counted within |y| ≤ 1 regardless if the

input (MC) φ originates at a |y| larger than 1 to simulate real measurements.

The errors on the efficiency are calculated with the Bayesian approach [46], as

follows,

Err ≡
√

NRc + 1

NMC + 2

(

NRc + 2

NMC + 3
− NRc + 1

NMC + 2

)

. (4.15)

Figure 4.20 shows the changes of φ reconstruction efficiency as each

efficiency is applied. The total φ reconstruction efficiency is presented in purple

at the bottom of the figure.

4.6 Systematic Error Estimation

In this study, we consider systematical errors from the simulation, PID

parameters, TOF matching efficiency, and fit conditions. The systematic un-
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Figure 4.20: φ reconstruction efficiency

certainties of the φ→ e+e− yield were estimated by varying the track selection

cuts such as global DCA, NHitsFit points, and the PID probability cut value.

The default values and variations are listed in Table 4.3. We also varied the

normalization ranges for the mixed-events, the signal fit range, fit function

form for the residual background, and histogram binning.

The procedures are as follows:

1. Vary fit conditions:
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Category Default Variation

Simulation
NHitsFit NHitsFit ≤ 22 points 20, 21, 23, 24
global DCA gDCA ≤ 1.1cm 0.9, 1.0, 1.2 (cm)
Opening Angle 30◦ 40, 50, 60 (◦)

Particle identification PID Purity ≥ 60% 50, 55, 65, 70 (%)
TOF Matching Efficiency -0.5 < nσpr

e ≤ 2 -2 < nσpr
e ≤ 2, no nσpr

e cut

Table 4.3: Condition changes in systematic error study

Repeatedly fit the φ invarint mass signal with different fit conditions,

such as normalization ranges, fit ranges, and fit functions for the residual

background (the first and second degree polynomials). Then, calculate

weighted mean and (biased) variance for dN/dydpT , mass, and width as,

µX(pT ) ≡
∑

i

wiXi(pT )/
∑

j

wj and (4.16)

σ2
X(pT ) ≡

∑

i

wi(Xi(pT ) − µ(pT ))
2/
∑

j

wj, (4.17)

where X are dN/dydpT , mass, or width. The weights, wi, are 1/(err.

of Xi(pT ))
2. The summations are over all of the fit conditions. Take the

square root of the variance, σX , as a systematic uncertainty from this fit

procedure.

2. Vary cut conditions:

Change one quality cut value and repeat step 1. To separate systematical

errors from statistical, the weighted means from the step 1 are used.

Repeat this for all values around the default cut value. Take the square

root of the variance from the default value, X ′
0, as systematic errors from

109



these cut conditions,

σ′2
X(pT ) ≡

∑

i

w′
i(X

′
i(pT ) −X ′

0(pT ))
2/
∑

j

w′
j (4.18)

where X ′
i(pT ) = µ and w′

i = 1/σ2 from the previous step.

3. Total systematic errors:

Total systematic errors are calculated by adding each systematical error

in quadrature without considering correlations between them.

The summary of systematic errors is presented in Table 4.4. The values are

given in percentages of the measured values. The errors in each pT bin are

shown in Figure 4.21 for d2N/dydpT , 4.22a for the fit mass, and 4.22b for the

fit width.

Category d2N/dydpT (%) mass (%) width (%)

Simulation
NHitsFit 6.3 0.066 7.6
global DCA 6.4 0.048 6.4
Opening Angle 2.3 0.013 2.6

Particle identification 4.6 0.043 5.9
TOF Matching Efficiency 8.3 0.0 0.0

Fit condition 3.8 0.007 3.4

Table 4.4: Systematic errors averaged over pT bins in percentage
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Chapter 5

Results

In this chapter, various results of this analysis are presented. The

extracted φ signals in each pT bin as well as the pT integrated signal are

discussed in Section 5.1. To investigate the possible mass shift and width

broadening, the φ signals are compared to the simulation results in Section

5.2. The pT spectrum of φ → e+e− is presented in Section 5.3. The total

yield, dN/dy, and mean transverse momentum, 〈pT 〉, of φ are obtained from

the spectrum. In Section 5.4 the φ → e+e− pT spectrum is compared to the

spectrum from the hadronic decay channel, φ→ K+K− [47].

5.1 Signals

Figure 5.1a shows the invariant mass distribution of the e+e− pairs in

the same event (black line) with the normalized mixed-event background (red

line) in the transverse momentum range of 0.1 to 2.5 GeV/c. The orange areas

show the normalization areas for the mixed-event background. The φ→ e+e−

signal after the mixed-event background subtraction in the same pT range is

presented in Figure 5.1b. The red line is the non-relativistic Breit-Wigner

function representing the φ → e+e− signal and the orange line shows the
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(a) Invariant mass distribution of the e+e− pairs in the same event
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Figure 5.1: e+e− invariant mass distribution in Au+Au collisions at
√
s
NN

=
200 GeV/c at pT = 0.1− 2.5 GeV/c 114



residual background. The gray regions show the signal counting regions in

both figures. We can extract the signals with significance of 15.93.

The pT integrated signal is divided into seven pT bins as shown in Fig-

ures 5.2, 5.3, and 5.4, and the same procedures of the background subtraction

and fitting are conducted. The pT bin sizes are determined so that each ex-

tracted signal has a significance of at least 6.
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Figure 5.2: e+e− invariant mass distributions and φ → e+e− signals
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Figure 5.3: e+e− invariant mass distributions and φ → e+e− signals
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Figure 5.4: e+e− invariant mass distributions and φ → e+e− signals

5.2 Mass and Width

In order to examine if there are mass shifts and/or width broaden-

ing, the resulting invariant mass distributions are compared to the simulated

φ → e+e− distributions. Simulations are done by embedding φ resonances

into the real Au+Au collision data at the detector response level and recon-

structed by the STAR reconstruction chains along the real tracks so that the

simulation data can include the detector resolutions and inefficiencies. Two
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sets of simulations are considered here. One is the default simulation data and

the other is the simulation with additional 0.5% momentum smearing, which

comes from studying the invariant mass line shape of J/ψ. The smearing is

calculated as σpT = 5.1× 10−3 pT .

In Figure 5.5a, the pT integrated φ invariant mass distribution is plot-

ted with the two simulations. The black points are the real data and the

red solid points and open circles are the default and additional momentum

smearing simulations, respectively. Both simulations are added to the back-

ground function and normalized to the real data at the highest bin. To fit the

invariant mass distributions, the Voigt function is used so that the detector

resolutions are incorporated. The Voigt function is a convolution of the Breit-

Wigner function with the Gaussian function, which represents the detector

resolutions and smears the Breit-Wigner shape. The black solid line is the

Voigt fit function for the real data and the red long dashed and short dashed

lines are the Voigt fit functions to the default and the additional smearing

simulations, respectively. First, in order to determine the detector resolution,

the simulations are fitted with the Voigt function with a fixed Breit-Wigner

width set to the value of the vacuum φ width. Next, the real invariant mass

shape is fitted by the Voigt function with a fixed Gaussian resolution set to

the detector resolution value from the previous fit to the simulatoin. For the

detector resolution, the value from the simulation with additional momentum

smearing is used because it is more realistic. This allows the width of the

resonance signal to be separated from the detector resolution and it can be
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compared directly with the vacuum width of φ. The fit contours are presented

in Figure 5.5b. The fit contours include the statistical and systematical errors

added in quadrature. The fit results are Mφ = 1017.7 ± 0.77 ± 0.88 MeV/c2

(1.48σ away from the PDG value) and Γφ = 7.98±2.52±2.28 MeV/c2 (1.05σ

away from the PDG value). From this invariant mass shape, we set an upper

limit of 15.3 MeV/c2 on the width and a lower limit of 1015.3 MeV/c2 on the

mass with a 95% confidence level.

Figures 5.6 show the fit results of the mass and width of the φ(1020)

meson in each pT bin with blue star points. The bars and filled boxes are

statistical and systematic errors, respectively. The simulation results with

additional smearing and the particle data group (PDG) values [21] are plotted

with red points and a dashed line, respectively. Here, the same fit process as

in the fit to the pT integrated signal are repeated in each pT bin. The mass

deviations from simulation results are 1.40σ and 1.56 σ at pT = 1.6 − 2 and

2 − 2.5 GeV/c, respectively. The width deviations are 1.58σ and 2.11σ at

pT = 0.4− 0.7 and 1.6− 2 GeV/c, respectively. Those deviations are less than

2 σ in the mass and width, but the fit values are systematically lower in the

mass and higher in the width.

5.3 Corrected φ(1520) Transverse Momentum Spectrum

The corrected φ → e+e− yields at the rapidity |y| < 1 for the 0-80%

centrality events from Au + Au collisions at
√
s
NN

= 200 GeV are presented

in Figure 5.7. The φ(1020) yield per unit rapidity (dN/dy) is calculated by
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counting signals within the transverse momentum range and integrating the

exponential fit function for the rest as explained in Section 4.4.4. The mean

transverse momentum (〈pT 〉) is obtained in a similar way. The contributions

from the extrapolation to unmeasured pT regions are 3.7% and 8.3% for dN/dy

and 〈pT 〉, respectively. We obtain dN/dy = 2.91 ± 0.16 (stat.) ± 0.17 (sys.)
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and 〈pT 〉 = 1.03 ± 0.06 (stat.) ± 0.06 (sys.) GeV/c. The points are shifted to

the mean pT in each bin estimated from the fit function. The dN/dy deviation

from the hadronic channel result [47] (dN/dy = 2.68 ± 0.15) is 0.83σ. The

〈pT 〉 deviation from the hadronic channel result (〈pT 〉 = 0.962± 0.0145 GeV/c)

is 0.79σ.

pT (GeV/c) 〈pT 〉 (GeV/c) dN/dydpT (GeV/c)−1 stat. err. sys. err.

0.1-0.4 0.276 1.316 0.241 0.247
0.4-0.7 0.555 2.146 0.305 0.320
0.7-0.9 0.799 2.025 0.342 0.316
0.9-1.2 1.043 1.772 0.226 0.262
1.2-1.6 1.382 0.932 0.129 0.116
1.6-2.0 1.778 0.761 0.083 0.083
2.0-2.5 2.211 0.292 0.042 0.038

Table 5.1: φ → e+e− corrected yield

5.4 Comparison to Hadronic Decay Channel

Figure 5.8 shows the φ → e+e− invariant yields in blue and the red

points represent STAR published φ→ K+K− results [47] in the same central-

ity range (0-80%). The error notations are the same as in the Figure 5.7. The

red filled boxes on the hadronic result show 10% systematical errors mentioned

in Reference [47]. In the bottom panel, the relative differences between those

two results, i.e., (Nee − NKK)/NKK , are plotted. The NKK are calculated

by integrating the fit function to the hadronic decay channel result (dashed

line) in each pT bin. The φ measurements in the di-leptonic decay channel

deviates from the STAR published hadronic decay results at most 1.4σ (at
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Figure 5.8: The φ → e+e− and φ → K+K− yields within rapidity |y| < 1
for the 0-80% centrality events from Au + Au collisions at

√
s
NN

= 200 GeV.
The vertical bars are statistical errors and the boxes are the systematic errors.
The dashed and solid lines are the exponential fit functions to the hadronic and
leptonic decay channel results and the gray band represents errors of the fit
function to the leptonic result. The histograms are plotted with mean pT in
each pT bin estimated from the fit functions.

pT = 1.6− 2 GeV/c) if we take into account the 10% systematical uncertainty

of the published result.

5.5 Model Comparison

To better understand this result, we compare it with a model calcu-

lation (from Ralf Rapp in personal communication), which is based on an
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effective chiral hadronic Lagrangian with coupling constants determined from

the hadronic vacuum properties. This model includes an in-medium φ spectral

function with expanding thermal fireball model [48], and subsequent improve-

ments are applied [49]. There are two components. One is a “cocktail” contri-

bution, which comes from the final state decays after the hadronic interaction

stops (kinetic freeze-out). Most of the φs decay in vacuum since the lifetime

of φ(44 fm/c) is longer than the lifetime of hadronic medium (5 − 10 fm/c).

Also, φ’s decouple from the hadronic medium earlier (Tφ
kin ≈ 160 MeV) [50]

than regular non-multi-strangeness hadrons do. The other component in the

model is an “in-medium” contribution, which is from thermal (detailed bal-

anced) dilepton radiation from the hadronic medium with medium modified φ

spectral function. Due to the detailed balance of φ↔ e+e− and/orK+K−, the

number of φs is constant at a given T. So, the number of decaying φ in medium

is determined by the lifetime of the fireball and predicted by the model. The

schematic picture of this model is presented in Figure 5.9.
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Figure 5.10: Components fit of the model calculation to the real φ → e+e−

data
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To make a fair comparison the detector resolutions and inefficiencies

have to be taken into account. We let φ decay into e+e− according to the

invariant mass shapes and pT spectra described by the blast wave model [51].

The parameters for the blast wave model are chosen as T = 161 MeV and

βsurface=0.65 for the cocktail, and T = 140 MeV and βsurface= 0.7 for the

in-medium radiation to match the theoretical model. The velocity profile is

set so that βavg = 2/3 βsurface. Then, all of the detector effects such as the

detector resolutions, energy loss effect, and reconstruction inefficiencies, are

applied on the daughters e+e−. Using the resulting invariant mass shapes, we

perform a component fit to the real data. The fit results are shown in Figure

5.10. Since the ratio between the two components are part of the theoretical

prediction, we fix the integrated yields ratio at 0.11 in the fit in Figure 5.10a,

i.e. only the total amplitude is a free parameter. In Figure 5.10b, the ratio is

also treated as a free parameter and a better χ2 value is obtained with a 3.62

times larger in-medium contribution. There is the possibility to have more

medium modification.
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Chapter 6

Conclusion

The φ meson production from the e+e− channel in Au+Au collisions

at
√
s
NN

= 200 GeV is measured. This analysis requires a good electron and

positron identification and it is only possible with the newly installed TOF

detector at the STAR experiment. The pT integrated (pT = 0.1− 2.5 GeV/c)

φ → e+e− signal with significance of 15.93 is obtained in this analysis. From

this invariant mass shape we set an upper limit of 15.3 MeV/c2 on the width

and a lower limit of 1053.2 MeV/c2 on the mass with 95% confidence level.

We also obtain the φ signals in seven pT bins and measure the rapidity density

of dN/dy = 2.91±0.16(stat.)±0.17(sys.) and the mean transverse momentum

of 〈pT 〉 = 1.03± 0.06(stat.)± 0.06(sys.) GeV/c. The pT spectrum is compared

to the previously measured φ spectrum from the hadronic decay channel, φ→

K+K− [47]. Two results are consistent within 1σ in total yield and there is

no indication of medium modification. The pT integrated invariant signal is

compared to the theoretical model which includes the hadronic medium effects.

The contribution from the in-medium modification in the hadronic medium is

small due to the long lifetime of φ meson. This indicates that the remaining

small discrepancy between the measured and vacuum invariant mass shapes

might be a sign of modification in the QGP, which is not included in the
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current theoretical model.

Future Direction

This measurement can be improved by the higher statistics we have

already taken in the year 2011. It is also interesting to study the system size

effects by measuring φ signals in different centralities, in which the hadronic

medium lifetime would be different. Since the model calculation shows the

medium modified φ invariant mass shape with a large mass shift (≈ 50 MeV)

and width broadening (≈ 35 MeV), yet small contribution, more dedicated

study on the momentum resolution and detector effects are necessary to mea-

sure the signature of the chiral symmetry restoration.

Also, this analysis can be improved with the Muon Telescope Detector,

which was recently assembled by the University of Texas at Austin group.

With this detector subsystem, the di-muon channel is available and provides

much cleaner signals and better momentum resolutions, which are both huge

advantages in the chiral symmetry restoration search via resonance particles.
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Appendix A

Students’ T Distribution

A.1 Physical meaning of Students’ T Distribution

The Students’ T distribution can be obtained via the convolution of

a Gaussian distribution with a Gamma distribution, which describes the dis-

tribution of the resolution parameter in the Gaussian. This convolution is

written as

∫ ∞

0

Ae−
1

2
τx2 τ k−1e−τ/θ

θkΓ(k)
dτ =

A

θkΓ(k)

∫ ∞

0

τ k−1e
−
(

x2

2
+ 1

θ

)

τ
dτ, τ ≡ 1

σ2
,

(A.1)

where θ and k are the scale and shape parameters of the Gamma distribution,

and τ and σ are resolution and standard deviation of the Gaussian distribution,

respectively. With the definition z ≡
(

x2

2
+ 1

θ

)

τ and dτ =
(

x2

2
+ 1

θ

)−1

dz,

(Eq. A.1) =
A

θkΓ(k)

∫ ∞

0

zk−1

(

x2

2
+ 1

θ

)k✟✟−1
e−z

✟✟✟✟✟✟✟(

x2

2
+

1

θ

)−1

dz

=
A

θkΓ(k)

(

x2

2
+

1

θ

)−k ∫ ∞

0

zk−1e−z dz
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

= A

(

x2θ

2
+ 1

)−k

, (A.2)
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where the wavy underline indicates an equivalence to the Gamma function

Γ(k). This is the Students’ T distribution with 1/θ = ν
2λ

and k = ν+1
2
. The ν

and λ are the number of degrees of freedom and scale parameter, respectively.

The mean of the Gamma distribution is kθ = ν+1
2

2λ
ν
= λν+1

ν
. The variance is

kθ2 = ν+1
2

(2λ)2

ν
= 2λ2 ν+1

ν2
. The mean of the Students’ T distribution is µ for

ν > 1 and its variance is 1
λ

ν
ν−2

for ν > 2.

The Students’ T distribution describes random variables sampled from

many parent Gauss distributions with different resolutions, whose distribution

is described by the Beta function. This is applicable to the TOF resolution in

Au+Au collisions, in which the TOF start side detectors (upVPD) have many

hits and the measured time have different resolution depending on the number

of hits. To confirm this hypothesis, the Beta distribution from fits to real data

has to be compared to the resolution distribution estimated from the number

of lit upVPDs. This is left for future studies.

A.2 Integration of Students’ T Distribution

The Students’ T distribution is defined without a normalization factor

as follow
(

1 +
λ(x− µ)2

ν

)− ν+1

2

. (A.3)
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Let us define y ≡
√
λ(x− µ), dy =

√
λdx. Then the integral is

∫ ∞

−∞

(

1 +
λ(x− µ)2

ν

)− ν+1

2

dx =
1√
λ

∫ ∞

−∞

(

1 +
y2

ν

)− ν+1

2

dy

=
2√
λ

∫ ∞

0

(

1 +
y2

ν

)− ν+1

2

dy. (A.4)

In the last line the symmetry of the distribution in ±y is used. Again, let us

define t ≡ ν
ν+y2

, then y2 = ν(1/t− 1) and 2ydy = −νt−2dt. The integral range

becomes y = ∞ → t = 0 and y = 0 → t = 1.

(Eq. A.4) =
2√
λ

∫ 0

1

t+
ν+1

2

(

−1

2

√

νt

1− t
t−2

)

dt

=

√

ν

λ

∫ 1

0

t
ν−2

2 (1− t)−1/2 dt

=

√

ν

λ
B

(

1

2
,
ν

2

)

(A.5)

or =

√

ν

λ

Γ(ν
2
)Γ(1

2
)

Γ(ν+1
2
)

=

√

νπ

λ

Γ(ν
2
)

Γ(ν+1
2
)
, (A.6)

where B
(

1
2
, ν

2

)

is the Beta function and Γ(ν
2
) is the Gamma function. There-

fore its PDF (normalized to 1) should be

P (x;µ, λ, ν) = B

(

1

2
,
ν

2

)−1
√

λ

ν

(

1 +
λ(x− µ)2

ν

)− ν+1

2

. (A.7)

A.2.1 Integration from 0 to a

Let us start from Eq. A.4 but with the integral range from 0 to a and

repeat the same replacements of variables, that is, y = a → t = ν
ν+a2

and

133



y = 0 → t = 1.

2√
λ

∫ a

0

(

1 +
y2

ν

)− ν+1

2

dy

=

√

ν

λ

∫ 1

ν

ν+a2

t
ν
2
−1 (1− t)−1/2 dt

=

√

ν

λ

∫ 1

0

t
ν
2
−1 (1− t)−1/2 dt−

√

ν

λ

∫ ν

ν+a2

0

t
ν
2
−1 (1− t)−1/2 dt

=

√

ν

λ
B

(

1

2
,
ν

2

)

−
√

ν

λ
B

(

ν

ν + a2
;
1

2
,
ν

2

)

, (A.8)

where B
(

ν
ν+a2

; 1
2
, ν

2

)

is the incomplete Beta function. This is also written as

=

√

ν

λ
B

(

1

2
,
ν

2

)[

1− I

(

ν

ν + a2
;
1

2
,
ν

2

)]

, (A.9)

where I
(

ν
ν+a2

; 1
2
, ν

2

)

is the so called regularized Beta function. These functions

are implemented in many statistical software and are very convenient when we

calculate the efficiency or probability.

Integration from a to b

The integration of the PDF from a to b is

B

(

1

2
,
ν

2

)−1
√

λ

ν

∫ b

a

(

1 +
λ(x− µ)2

ν

)− ν+1

2

dx

= B

(

1

2
,
ν

2

)−1
√

λ

ν

1√
ν

∫ b′

a′

(

1 +
y2

ν

)− ν+1

2

dy, (A.10)

where a′ ≡
√
λ(a− µ) and b′ ≡

√
λ(b− µ)
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= B

(

1

2
,
ν

2

)−1
1√
ν

[

∫ 0

a′

(

1 +
y2

ν

)− ν+1

2

dy +

∫ b′

0

(

1 +
y2

ν

)− ν+1

2

dy

]

=
1

2

(

− a′

|a′|

)[

1− I

(

ν

ν + a′2
;
1

2
,
ν

2

)]

+
1

2

(

b′

|b′|

)[

1− I

(

ν

ν + b′2
;
1

2
,
ν

2

)]

(A.11)

In order to reach the last line the previous result Eq. A.9 is used.
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Appendix B

TOF Resolution

B.1 Relation Between LT and pT

There is a relation between pT and the radius of the helix curvature R

pT = 0.3BR (B.1)

where B is the strength of a constant magnetic field. In STAR, B ≈ 0.5 Tesla.

Figure B.1: Relation between pT and LT in the TPC

From Figure B.1 LT can be written as a function of pT ,

LT = 2R sin−1

(

DT

2R

)

=
2pT

0.3B
sin−1

(

0.3BDT

2pT

)

, (B.2)
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where DT ≃ 214 cm, pT = 0.3BR, and B ≃ 0.5 Tesla]. The resolution of

LT depends on pT as follows,

dLT

dp−1
T

=

[

−(p−1
T )−2Asin−1 DT

ApT
+ ApT

DT

A

d

d
(

DT

A
p−1
T

)

(

sin−1

(

DT

A
p−1
T

))

]

(B.3)

where A ≡ 2
0.3B

.

Now we need to define d
dX

(

sin−1X
)

. Let us define ρ as ρ ≡ sin−1, soX = sin ρ.

Then,

dX

dρ
= cos ρ and

dρ

dX
= cos−1 ρ. (B.4)

Thus

d

dX

(

sin−1X
)

= cos−1 ρ = ±
(

1− sin2 ρ
)− 1

2 = ±
(

1−X2
)− 1

2 . (B.5)

In our case, 2ρ = 2 sin−1
(

DT

2R

)

. This is the angle shown in Figure B.1 and it

can take values between 0 to π (above this value, we redefine ρ as an angle for

opposite charged particle). So cosρ is always positive. Therefore the Equation

B.5 becomes

d

dX

(

sin−1X
)

=
(

1−X2
)− 1

2 . (B.6)

This result leads us

dLT

dp−1
T

= −pTLT + pTDT

[

1−
(

DT

A
p−1
T

)2
]− 1

2

(B.7)
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or

p−1

T

LT

dLT

dp−1

T

=
DT

LT

[

1−
(

0.3BDT

2pT

)2
]−1

2

− 1. (B.8)

B.2 Resolution of ∆β−1

β−1

Let us calculate δ
(

∆β−1

β−1

)

. The “δ” symbol indicates the standard

deviation of a distribution of a variable considered. So δ
(

∆β−1

β−1

)

is standard

deviation of the random variable ∆β−1

β−1 .

Recalling

∆β−1

β−1
≡ β−1

TOF − β−1
TPC

β−1
TOF

= 1− L

ct

(

1 +
m2

p2

)
1

2

≡ X, (B.9)

we want to decompose the esolution of ∆β−1

β−1 , ie. δ
(

∆β−1

β−1

)

, into several reso-

lutions of measured variables, such as t, L, and p. For the time of flight t, it

might be further decomposed into t = TSTOP −TSTART , but, for now, only t is

considered. The path length L of a track from a collision vertex to the TOF

tray is calculated from the curvature of the track, which depends on pT and

the dip angle or η. Therefore, the resolution of L is correlated with resolution

of pT and η. The momentum resolution should be separated into two parts:

pT resolution and dip angle resolution (η resolution).

NOTE: The dip angle is defined as

cos θ ≡ pZ
|p| (B.10)
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and relation with η is

cos θ ≡ pZ
|p| =

sinh η

cosh η
. (B.11)

The resolution of ∆β−1

β−1 is written below according to the error propagation

rule with assumption that the errors of those variables are independent of

each other,

δ

(

∆β−1

β−1

)2

=

(

∂X

∂t

)2

(δt)2 +

(

∂X

∂p−1
T

)2

(δp−1
T )2 +

(

∂X

∂ cosh η

)2

(δ cosh η)2.

(B.12)

Here p−1
T is used instead of pT because the resolution of transverse momentum

scale with its inverse p−1
T . The correct η dependency of the track length L is

L =
√

L2
T (pT ) + L2

z =
√

L2
T (pT ) +D2

T sinh2 η, (B.13)

and Lz and DT are related by

Lz = DT sinh η and D = DT cosh η. (B.14)

The first derivatives of L are

∂L

∂LT

=
∂

∂LT

√

L2
T + L2

z =
1

2
2LT

(

L2
T + L2

z

)− 1

2

=
LT

L
(B.15)

and

∂L

∂ cosh η
=
D2

T

2L

∂ sinh2 η

∂ cosh η
=
D2

T

2L

∂(cosh2 η − 1)

∂ cosh η

=
D2

T

L
cosh η. (B.16)
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Each term in Equation B.12 is calculated next.

∂X

∂p−1
T

=
−1

ct

√

1 +
m2

p2
∂L

∂LT

∂LT

∂p−1
T

− L

ct

∂
(

1 +m2p−2
T cosh−2 η

)
1

2

∂p−1
T

=
−L
ct

√

1 +
m2

p2
LT

L2

∂LT

∂p−1
T

− L

ct

1

2

2p−1
T m2 cosh−2 η
√

1 +m2p−2

= (X − 1)
L2
T

L2

p−1
T

LT

∂LT

∂p−1
T

pT + (X − 1)
m2p−2

1 +m2p−2
pT

= (X − 1)
1

p−1
T

[

L2
T

L2

p−1
T

LT

∂LT

∂p−1
T

+ γ−2
TPC

]

. (B.17)

Using eq. B.16

∂X

∂ cosh η
=

−1

ct

√

1 +
m2

p2
∂L

∂ cosh η
− L

ct

∂
(

1 +m2p−2
T cosh−2 η

)
1

2

∂ cosh η

= (X − 1)
D2

L2
cosh−1 η − L

ct

1

2

−2m2p−2
T cosh−3 η

√

1 +m2p−2

= (X − 1)
D2

L2
cosh−1 η − (X − 1)

m2p−2

1 +m2p−2
cosh−1 η

= (X − 1)
1

cosh η

[

D2

L2
− γ−2

TPC

]

. (B.18)
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Lastly,

∂X

∂t
=

L

ct2

√

1 +
m2

p2
= −(X − 1)

1

t
. (B.19)

From eqs. B.8, B.17, B.18, and B.19, the total resolution is

δ

(

∆β−1

β−1

)2

=

(

δt

t

)2

+





L2
T

L2







DT

LT

[

1−
(

0.3BDT

2pT

)2
]− 1

2

− 1







+ γ−2
TPC





2
(

δp−1
T

p−1
T

)2

+

(

D2

L2
− γ−2

TPC

)2(
δ cosh η

cosh η

)2

. (B.20)

In the Equation B.19 X is set to 0. This is true for the particle distribution of

the mass assumption, but not true for other particle distributions. For exam-

ple, for pion we assume pion mass to fill the ∆β−1

β−1 histogram. The resolution

of pion distribution (band) can be described by B.20, however, for kaon or

proton distribution, we need to include the (X − 1) factor in Equation B.19.
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Appendix C

Spontaneous Symmetry Breaking

C.1 Spontaneous Symmetry Breaking

Spontaneous symmetry breaking describes the situation in which the

Hamiltonian remains its symmetry, however the ground states don not. If the

symmetry is a continuous symmetry, the ground states are infinitely degener-

ated and condensation occurs. This is due to the fact that one ground state

transforms to another ground state that has the same energy due to the sym-

metry in the Hamiltonian. In order to see this, suppose the Hamiltonian H of

a system is invariant under a unitary transformation operator U , and |Ψ0〉 is

a ground state with corresponding ground state energy E0. Hence,

H|Ψ0〉 = E0|Ψ0〉. (C.1)

The invariance of H under U operation can be written as

U †HU = H. (C.2)

Substituting this equation into Equation C.1 and acting another U operator

yields

H (U |Ψ0〉) = E0 (U |Ψ0〉) . (C.3)
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This shows us that if U |Ψ0〉 is distinct from |Ψ0〉 due to symmetry breaking in

the ground state, then the ground state of a system is degenerate. Generalizing

to the case of continuous symmetries implies that the ground state must be

infinitely degenerate.
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