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A new method has been developed to incorporate particles with internal struc-

ture into the framework of the Variance Reduction method [17] for solving the dis-

crete velocity Boltzmann Equation. Internal structure in the present context refers

to physical phenomena like rotation and vibration of molecules consisting of two or

more atoms. A gas in equilibrium has all modes of internal energy at the same tem-

perature as the translational temperature. If the gas is in a non-equilibrium state,

translational temperature and internal temperatures tend to proceed towards an equi-

librium state during equilibration, but they all do so at different relaxation rates. In

this thesis, rotational energy of a distribution of molecules is modeled as a single

value at a point in a discrete velocity space; this represents the average rotational

energy of molecules at that specific velocity. Inelastic collisions are the sole mecha-

nism of translational and rotational energy exchange, and are governed by a modified

Landau-Teller equation. The method is tested for heat bath simulations, or homo-

geneous relaxations, and one dimensional shock problems. Homogeneous relaxations
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demonstrate that the rotational and translational temperatures equilibrate to the cor-

rect final temperature, which can be predicted by conservation of energy. Moreover,

the rates of relaxation agree with the direct simulation Monte Carlo (DSMC) method

with internal energy for the same input parameters. Using a fourth order method

for convecting mass along with its corresponding internal energy, a one dimensional

Mach 1.71 normal shock is simulated. Once the translational and rotational tempera-

tures equilibrate downstream, the temperature, density and velocity, predicted by the

Rankine-Hugoniot conditions, are obtained to within an error of 0.5%. The result is

compared to a normal shock with the same upstream flow properties generated by the

DSMC method. Internal vibrational energy and a method to use Larsen Borgnakke

statistical sampling for inelastic collisions is formulated in this text and prepared in

the code, but remains to be tested.
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Chapter 1

Introduction

1.1 Boltzmann Equation Background

Fluid dynamics can be broken down into two regimes: the continuum regime,

where the Navier-Stokes equations govern the flow, and the rarefied regime, where

the Navier-Stokes equations fail. The Boltzmann equation is used to describe non-

equilibrium, rarefied gas flows. The rarefied gas regime is characterized by Knudsen

numbers greater than or equal to ∼ 1. The Knudsen number is defined as

Kn =
λ

L
, (1.1.1)

where L is the representative physical length scale and λ is the mean free path.

Physically, a Knudsen number approximately greater than 1 means that a molecule

travels roughly the problem’s characteristic physical length scale between collisions.

An example of the physical length scale could be the radius of a body immersed in

the fluid.

In the rarefied regime, the Boltzmann equation must be numerically solved to

simulate the flow. The direct numerical simulation of the governing Boltzmann equa-

tion is computationally expensive. In the most general case, there are three physical
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dimensions and three velocity dimensions. Some simple problems require fewer speci-

fied dimensions. For example, a one dimensional normal shock can be computed with

one spatial dimension and two velocity dimensions. However, as the problem gains

complexity, multiple other dimensions can be required to describe internal energy

states and species. Therefore, with this multitude of dimensions, the computational

cost is very high, and a realistic solver would demand a coarse discretization in veloc-

ity space. With coarser grids the accuracy may decrease, and therefore, a trade off

between accuracy and computational time exists. The most widely used statistical

method that has been shown to approach the Boltzmann equation in certain cir-

cumstances is the direct simulation Monte Carlo (DSMC) particle method [5]. This

method tracks a finite number of particles and ensemble averages multiple runs to

obtain smooth results for the properties at specified points.

For flows which span the continuum and rarefied regimes, a hybrid solver is

most efficient. A hybrid solver gains efficiency by using the computationally expensive

Boltzmann equation solver or DSMC to solve only the non-equilibrium part of the

flow and a less expensive continuum model to solve sections of the flow where it

can be employed with reasonable accuracy. For a successful hybrid solver, a low

noise interface between the two methods is best. As mentioned previously, DSMC

generally achieves smooth flow properties by ensemble averaging many runs. On

the other hand, a Boltzmann equation solver can deliver low-noise properties with

one run. Therefore if a hybrid solver is required, a direct numerical solver for the

Boltzmann equation can prove more efficient than DSMC when employed to achieve

a smooth interface between continuum and rarefied regimes.
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1.2 Discrete Boltzmann Equation Solvers

The velocities of molecules constituting a gas may be represented by a velocity

distribution function. This velocity distribution can be modeled as discrete values

which are representative of the velocities of all the particles in the (small) surrounding

volume of velocity space. A finer grid of discrete values translates into a more accurate

representation of the velocity distribution. The molecular velocities are limited to

the specific grid values, but the storage required for every possible velocity point

is reduced. The Boltzmann equation then represents the evolution of the mass of

particles at these discrete velocity points.

Discrete velocity methods have been used in schemes such as the Hicks-Yen-

Nordsieck (HYN) method [18][26] and similarly by Tcheremissine [22]. The HYN

method approximates the collision integral by calculating the average collision integral

by a Monte Carlo sampling of the integrand. This is only an approximation of the

collision integral, and therefore, to enforce conservation of mass, momentum and

energy, the HYN method utilizes a correction scheme. This correction scheme may

limit the accuracy of the solution. Alternatively, in the ∆-ε discrete velocity model

developed by Tan and Varghese [21], the collision integral is computed exactly by a

Monte Carlo-like selection of velocities for collisions. One shortcoming of this method

is that post collision velocities are restricted to lie on the grid, so isotropic scattering

is not an option. Furthermore, for high Mach number flows, the velocity space must

be very large to accommodate regions of flow with vastly different bulk velocities. An

adaptive grid in velocity space would be ideal for this situation.

The Bhatnagar, Gross and Krook (BGK) method [3] solves a linearized colli-
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sion integral instead of the full nonlinear collision integral in the Boltzmann equation.

The BGK model drives the non-equilibrium distribution towards an equilibrium dis-

tribution computed with the local kinetic temperature, velocity and mass. The BGK

model does not guarantee the correct rate of relaxation to equilibrium; instead it only

guarantees that the flow will relax to an equilibrium distribution.

Morris and Varghese developed the variance reduction method for solving the

discrete velocity Boltzmann equation [17]. This method reduces noise in the solu-

tion by subtracting the part of the velocity distribution function that has already

reached equilibrium and only preforming collisions for the remaining non-equilibrium

contributions to the collision integral. This reduces computation time significantly,

especially in near-equilibrium flows. The interpolation method, developed by Morris,

Varghese and Goldstein [15], allows for the remapping of “off grid” post-collision ve-

locities onto the discrete velocity grid while conserving mass, momentum and energy.

The interpolation method is not limited to uniform grids and can accommodate ve-

locity points that lie outside the domain of velocity space. Tcheremissine developed

a similar interpolation scheme, [20][23][24], to map “off grid” velocities back onto the

regularly spaced grid points. His scheme uses the two post-collision velocity points on

opposite poles of the collision sphere in conjunction and splits up each mass evenly

into two components to be mapped to two nearby velocity nodes. Momentum is au-

tomatically conserved by even splitting, and energy is conserved by the symmetric

mapping of the two post-collision velocity points. However, this process only works

for uniform velocity space grids.
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1.3 Internal Energy in Statistical Methods

The relaxation of internal energy with translational energy is an important

process in hypersonic flows and other non-equilibrium flows which contain polyatomic

molecules. Internal energy relaxation affects key thermodynamic properties of the

gas, like the ratio of specific heats. Vibrational modes are generally activated at

high temperatures which can be generated by high Mach number shocks. Rotational

modes, however, are typically fully excited at room temperature, and the rotational

relaxation rate is often on the same order as the translational relaxation rate.

In the framework of the Boltzmann equation, collisions between polyatomic

molecules can no longer be considered elastic; an energy exchange must take place

between the translational and internal energy modes during collisions. For near equi-

librium flows, the general exchange rate of energy was shown by Landau and Teller

to follow the Landau-Teller equation [12]. This equation is a finite rate equation

that does not specify how internal and kinetic energy are exchanged within inelastic

collisions. It simply states that the rate of exchange is proportional to the difference

between the translational and internal temperatures. Millikan and White expanded

on this equation by developing the relaxation time to include a dependence on tem-

perature for many species of gases [13], and Park added a high temperature correction

[19]. In the present work, we concentrate on the simple Landau-Teller expressions.

Unlike the discrete velocity methods discussed earlier, DSMC, which tracks

specific molecules, uses the inelastic collision method developed by Larsen and Borgnakke

[6]. This method statistically selects the post-collision internal energy values by use

of an acceptance-rejection scheme. This process in DSMC has been shown in [7] to be
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consistent with a Landau-Teller rate of relaxation. Here (in [7]), vibrational levels are

described using the simple harmonic oscillator model, which is a good approximation

for low vibrational energy levels. However, diatomic molecules behave according to

the anharmonic oscillator model for higher vibrational energy levels, and dissociation

can occur at or above a certain energy level.

In this thesis, internal energy level distributions are created for rotational

and vibrational energy within the framework of a discrete velocity Boltzmann equa-

tion solver. However, we will only actually implement rotational energy portion of

the model characterized by a single rotational temperature at each point in velocity

space, and we will develop an interpolation routine which parallels the velocity inter-

polation scheme discussed in [15], to remap post-collision internal energy values back

on to the grid. The inelastic collision method used is adapted from the Landau-Teller

equation, and a homogeneous relaxation example using this method will demonstrate

the Landau-Teller relaxation rate. Lastly, a normal shock generated by the discrete

velocity Boltzmann equation solver with rotational energy will be compared to a nor-

mal shock with rotational energy simulated with the simple DSMC code, DSMC1S.F

[5].
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Chapter 2

Research Background

2.1 The Boltzmann Equation

So far, we have discussed the Boltzmann equation in name only. This section

lays out the Boltzmann equation and its terms. Then the equation is scaled using the

characteristic thermal speed ηr and is discretized. At the conclusion of this section,

the Boltzmann equation is in a form that can be solved using numerical techniques.

2.1.1 The Equation

The Boltzmann equation describes how the velocity distribution function, ϕ,

evolves over time and space. The general assumptions for the Boltzmann equation

as written below are that the gas is infinite and composed of only a single species of

particles which interact through elastic binary collisions [11]. This equation can be

represented in dimensional form with isotropic scattering while neglecting the effect

of body forces [17].

∂ϕ(ηi)

∂t
+ ηi

∂ϕ(ηi)

∂xj
=

∫
ζ3

∫
ζ2

∫
ζ1

[ϕ(η
′

i)ϕ(ζ
′

i)− ϕ(ηi)ϕ(ζi)]ĝσT dVζi , (2.1.1)

where t is time, ϕ(ηi) is a single class of atoms or molecules with velocity

ηi, ϕ(ζi) is another class of molecules with velocity ζi, xj is the physical location
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of spatial cell j, g is the relative speed (|ζi − ηi|), σT is the collision cross section,

and dVζi is the differential volume element in velocity space equal to dζ1 dζ2 dζ3. For

compactness, the triple integral will be written as a single integral over ζi, and ϕ(ηi)

on the left-hand side will be written as just ϕ from now on.

The left hand side represents the total derivative of the (density weighted)

velocity distribution function while the right hand side represents the effects of all

molecular collisions on the velocity distribution function. The entire equation is with

respect to a single class of molecules with velocity ηi. In this representation, ηi and ζi

are the pre-collision speeds and η
′
i and ζ

′
i are the post-collision speeds. We arrive at

our definition of the Boltzmann equation from our derivation of the equation based

on Vincenti & Kruger [25].

2.1.2 Scaling the Boltzmann Equation

The characteristic thermal speed is the most probable speed for a gas in equi-

librium at a reference temperature, Tr, with a molecular mass, m. If we define the

characteristic thermal speed as

ηr =

√
2kbTr
m

. (2.1.2)

The Boltzmann equation can be scaled by ηr, a reference density nr, a reference

collision cross section σr, and a characteristic length L:

t̂ ≡ t
ηr
L
, x̂ ≡ x

L
, ϕ̂ ≡ ϕ

η3
r

nr
, σ̂T ≡

σ

σr
, (2.1.3)
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and

ĝ ≡ g

ηr
, η̂ ≡ η

ηr
, ζ̂ ≡ ζ

ηr
. (2.1.4)

When the scaling is applied to the Boltzmann equation, it becomes:

nr
η2
rL

(
∂ϕ̂

∂ t̂
+ η̂i

∂ϕ̂

∂x̂i

)
=
nr
η2
r

nrσr

∫
ζ̂i

[ϕ̂(η̂
′

i)ϕ̂(ζ̂
′

i)− ϕ̂(η̂i)ϕ̂(ζ̂i)]ĝ σ̂TdVζ̂i . (2.1.5)

If we define a collision characteristic length as a reference mean free path and

the Knudsen number as the reference mean free path divided by the characteristic

length we have:

Lc = λr =
1

nrσr
, Kn =

Lc
L

=
λr
L
. (2.1.6)

Therefore, the scaled Boltzmann equation is:

∂ϕ̂

∂ t̂
+ η̂i

∂ϕ̂

∂x̂i
=

1

Kn

∫
ζ̂i

[ϕ̂(η̂
′

i)ϕ̂(ζ̂
′

i)− ϕ̂(η̂i)ϕ̂(ζ̂i)]ĝ σ̂TdVζ̂i . (2.1.7)

2.2 Prior Related Developments in this Research

Previously, this research has focused on developing a direct numerical solver

for the Boltzmann equation on a discrete velocity grid. The most direct form of

this method centers around colliding each point in velocity space with every other
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point in velocity space. This method is referred to as the N2 method and is very

expensive computationally (If N is the number of points in velocity space, then O(N2)

operations are required for each time step). However, we often describe this method

as the “Gold Standard” since it produces the most accurate results for the specified

velocity grid [17].

Motivated by DSMC methods, the next step in the development of this solver

was to employ Monte Carlo selection of velocity grid points for a collision. Points

with more mass are chosen more frequently than points with little or no mass. The

partial Monte Carlo method was the first developed as a hybrid between the N2 and

and a full Monte Carlo technique. All points in the velocity distribution were collided

with a random sampling from a cumulative distribution function. This cumulative

distribution function is biased towards points which contained more mass. Therefore

a random sampling of velocity points from the cumulative distribution led to higher

density points being chosen for a collision more often. Full Monte Carlo is the scheme

where both collision partners are chosen from the cumulative distribution.

The cumulative distribution function, Ψ, is created by summing up all indi-

vidual densities of the points in the velocity distribution function, ϕ. By summing

the values in a specific way the three grid indices i, j, k (corresponding to velocity

directions x, y, z respectively) can be collapsed onto one index l. This function Ψ(l)

is a step function with larger steps representing larger values of mass at a velocity

grid point l. An example of Ψ(l) is shown in Figure 2.1 below.
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Figure 2.1: Sample plot of the cumulative distribution function Ψ

If i, j, k is summed over all velocity space, and the range of Ψ(l) = n[0, 1]

(n is the total number density), then each step represents the probability that that

grid point is going to be chosen. This is a more efficient way to implement a Monte

Carlo style acceptance rejection routine. Selecting a random number, Rf , from 0 to

1 will then choose the velocity grid point from the cumulative distribution. A set of

randomly selected partners can now be chosen that are biased towards areas of the

distribution function with larger values. The next part of the development of the

code involves two large advances. We will examine each in its own section.

2.2.1 Interpolation Scheme

Collisions are the bread and butter of all Boltzmann equation methods. To

understand the interpolation scheme, we must first briefly discuss the dynamics of a

collision in the discrete velocity realm. In every collision, two velocity points (ηi and

ζi) are selected. With these two points we can calculate their relative velocity (gi)

and their center of mass velocity. A certain amount of colliding mass is then depleted
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from these points and replenished to two new points that lie on opposite poles of a

sphere with a diameter defined by the relative speed. The sphere also contains the

original two points which lie on another set of poles. The center of the sphere is

defined by the center of velocity of the two points. Figure 2.2 below illustrates this

process in two dimensions.

Figure 2.2: Collision circle showing rotation of the relative velocity vector (g) to
points on the grid (g

′
) and points off the grid (g

′′
).

There are infinitely many points to choose from that lie off the grid (g′′), but

only a finite number of points that lie on the grid (g′). Prior to the development of

the interpolation scheme by Dr. Philip Varghese (and implemented by Aaron Morris

in his thesis [17]) post collision velocities (η′) and (ζ ′) were restricted to lie on the

grid. Larger relative velocities allowed for a greater number of “on the grid” pairs;

however, for small relative velocities, the there may only be one “on the grid” pair

(the original collision pair). To permit the post collision velocity pair selection to be

more representative of the actual physics of the collision (i.e. to let the rotation of the

relative velocity vector be truly random), velocities that lie off the grid (we’ll call them

ζ ′) must be permitted. This requires some sort of interpolation scheme to map that
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mass back on the grid while preserving mass, momentum and energy. Therefore, when

dealing with a replenishing point that lies off the grid, we have the configuration seen

in Figure 2.3. Velocity node points that lie on the grid are represented by a triangle

for interior points (points that surround ζ ′), a diamond for exterior points and an

origin which is always the node closest to ζ ′. (Note: the post-collision point must not

be near the edge or outside of the allocated velocity space.)

Figure 2.3: Stencil Showing 3 interior points, 3 exterior points, and an origin

The stencil in Figure 2.3 can be made about the post-collision velocity that

needs to be interpolated. The function of the interpolation scheme is to map the

replenishing mass (∆ϕ) at the off-grid post collision velocity on to the given velocity

grid points. Each point (o, ix, iy, iz, ex, ey, ez) will receive a fraction of ∆ϕ according

to the interpolation matrix seen in [17]. These fractions are seen below in Equation

2.2.1:
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fo = 1− a2 − b2 − c2 ≥ 0, −0.5 ≤ a,b,c ≥ 0.5 ,

fext = −(a+ b+ c− a2 − b2 − c2)/6 ≤ 0 ,

fix = (a+ fext) , (2.2.1)

fiy = (b+ fext) ,

fiz = (c+ fext) .

Also, a similar interpolation scheme is produced for post-collision velocities

that lie outside the allocated velocity space. Morris describes this method in [17].

The interpolation methods satisfy conservation of mass, momentum and energy; how-

ever, one major problem is that negative masses are produced at the exterior points

(ex, ey, ez) in order to counteract the increase in kinetic energy associated with split-

ting the mass over several points.

The mass at a velocity point can be made negative (−ϕ) if a negative mass

fraction (∆ϕ < 0) that is added to that point is greater than the mass already

there. By this means, the solution can develop negative masses at some points,

although experience shows they will be small, O(10−4), and limited to the wings of

the distribution, where there is not much mass in the first place. Previously, this was

only a problem for calculating entropy [17], which utilizes the natural logarithm, ln(ϕ)

(we know that the natural logarithm is undefined for ϕ < 0). However, as we will see

in Section 4, these negative masses will produce negative internal energy according

to our definition of the internal energy distribution function. This proves somewhat
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problematic for interpolation of internal energy, but we will develop a scheme that

preserves total energy (internal + translational) in Section 4.3.3.

2.2.2 Variance Reduction Method

Variance reduction is the latest, most advanced method we have developed for

solving the Boltzmann equation numerically. In the variance reduction method, the

distribution function is split into two components : ϕ̂ = ϕ̂MB + ϕ̂d, where ϕ̂MB is the

equilibrium distribution defined by the Maxwellian Boltzmann equilibrium equation

below, and ϕ̂d is the deviation from equilibrium.

ϕ̂MB =
n̂

(πT̂ )3/2
e−η̂

2/T̂ . (2.2.2)

With the split distribution function, the collision integral Ic on the right hand

side of the Boltzmann equation seen in Equation 2.1.7 becomes:

Ic =

∫
ζ̂i

2[ϕ̂d(ζ̂
′

i)ϕ̂
MB(η̂

′

i)− ϕ̂d(ζ̂i)ϕ̂MB(η̂i)]ĝσ̂Tdζ̂i

+

∫
ζ̂i

[ϕ̂d(ζ̂
′

i)ϕ̂
d(η̂

′

i)− ϕ̂d(ζ̂i)ϕ̂d(η̂i)]ĝσ̂Tdζ̂i

+

∫
ζ̂i

[ϕ̂MB(ζ̂
′

i)ϕ̂
MB(η̂

′

i)− ϕ̂MB(ζ̂i)ϕ̂
MB(η̂i)]ĝσ̂Tdζ̂i (2.2.3)

=Ic1 + Ic2 + 0 .

The third collision integral is identically zero because the net change over

time of an equilibrium distribution colliding with another equilibrium distribution at

the same temperature and density is zero. The derivation of the variance reduction
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algorithm is similar to the full Monte Carlo approach in form. However, the equations

derived and their implementation are different from the full Monte Carlo version, with

the primary benefit being that the algorithm reduces variance in the solution.

The first step of the variance reduction algorithm is to calculate the part of

ϕ that is non-equilibrium, ϕd, and its number density, nneq. The first integral in

equation 2.2.3 is solved by drawing a point from the equilibrium distribution function

and a point from the non-equilibrium distribution function. The amount depleted

from each of the pre-collision points is given by the collision mass, mcoll, below:

mcoll =
sign(ϕ̂d(ζ̂))n̂ n̂neq

Ncβ3
. (2.2.4)

This depletion mass (mcoll) is then subtracted from the depletion distribution

function, which will contain all the depleted mass for the time step. Performing more

collisions has the effect of smoothing the change in the distribution for that time step.

Nc, is the number of collisions calculated such that noise is reduced in the system to a

specified value (RMS). This equation stems from the requirement that the discretized

depletion integral be matched exactly by the statistical model. We calculate Nc using

Equation 2.2.5.

Nc = nint

(
∆t̂ n̂ n̂neq
RMS2

)
T̂ (2/3)

β3
, (2.2.5)

where, nint( ) represents the value enclosed in the parenthesis rounded to the

nearest integer. For the second integral in equation 2.2.3, two points from the non-
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equilibrium distribution function are similarly drawn, and the depletion equations

are:

mcoll =
sign(ϕ̂d(η̂))sign(ϕ̂d(ζ̂))n̂neq n̂neq

2Ncβ3
, (2.2.6)

and

Nc = nint

(
∆t̂ n̂neq n̂neq
2 (RMS)2

)
T̂ (2/3)

β3
. (2.2.7)

Collisions are then performed, mapped back on to the grid using the inter-

polation routine given in Section 2.2.1, and the collided mass fractions are added to

the replenishing distribution function. (Recall that the colliding mass is subtracted

from the depletion function.) At the end of the time step, ϕ̂ is updated according to

Equation 2.2.8. Note that mcoll was subtracted from ϕ̂depl and added to ϕ̂repl, so that

mass is conserved.

ϕ̂′ = ϕ̂+ ϕ̂repl + ϕ̂depl . (2.2.8)

Variance Reduction gains efficiency by not calculating Ic3 since we know the

net result of collisions in Ic3 is equivalent to zero. This is especially efficient in near-

equilibrium flows, where most of the distribution is in equilibrium. Furthermore, the

statistical noise around zero is removed from the calculation by the separation of

ϕ̂ into equilibrium and non-equilibrium parts. Therefore, only the small deviation

from equilibrium must be collided and relaxed. However, as we will see in Section
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4.3.2, when we include inelastic collisions, we will need to account for the number of

collisions in Ic3 so we can compute the correct internal energy relaxation rate.
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Chapter 3

Theory

3.1 Molecular Gas Characteristics

The primary focus of this thesis is to develop a method to incorporate inter-

nal energy into the Boltzmann equation. This section will provide the background

necessary to understand how internal energy fits in the framework of the particles in

our simulation.

3.1.1 Basic Concepts in Statistical Mechanics

Beginning with the Schrödinger wave equation for a particle in a box (see

Chapter 4.3 in Vincenti & Kruger [25]), we can solve the equation given the boundary

condition that the wave function, ψ, equals zero at the walls. The solution yields the

result that the particle energy exists in a discrete form called quantum energy states,

which are specified by quantum numbers. Therefore, at any given time, each of the

N identical particles in a system will occupy one of the permissible energy states

ε1, ε2, ..., εi, ... (where we consider the energy states in a general sense for now).

Typically there exists a difference between Bose-Einstein and Fermi-Dirac

statistics (whether or not more than one particle is allowed to be placed in a con-

tainer). However, in the Boltzmann limit, where temperatures are high enough and
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the density is low enough, the likelihood that a state will contain more than one parti-

cle is practically nil, even if it is permitted. Therefore, Bose-Einstein and Fermi-Dirac

statistics lead to identical results. We lastly define an energy level εl to contain all

the energy states that have identical values of the energy εi, and the degeneracy of a

level gl as the number of states in a given energy level εl. We now obtain the number

of particles in energy level εl to be:

N∗l = N
gle
−εl/kT

Q
, (3.1.1)

where Q is the partition function defined as:

Q =
∑
l

gle
−εl/kT . (3.1.2)

The number N∗l evaluated over all energy levels gives the actual distribution of

the particles in a system in equilibrium. This distribution is known as the Boltzmann

Distribution. From this we can glean an understanding of how to quantize different

energies in a system.

3.1.2 Translational Energy

The previous development of the code has focused on structureless molecules,

or molecules that have mass but no internal structure. A simple example of this

is any noble gas, whereas an example of a molecule with an internal structure is

molecular nitrogen, N2. We will examine molecules with an internal structure in the
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following section; this section examines translational energy from the standpoint of

structureless molecules.

Revisiting partition functions, the translational partition function is given by

Equation 3.1.3. For the derivation, see Chapter 4.9 Vincenti & Kruger [25].

Qtr = V

(
2πmkT

h2

)3/2

. (3.1.3)

Here, V is the volume of the container, m is the mass of the molecule, k is

Boltzmann’s constant, T is the temperature of the system and h is Planck’s constant.

If we seek the Boltzmann distribution for translational energy, we use Equation 3.1.1,

however we wish to find the number of energy states instead of levels, so we modify

the equation to be:

N∗j = N
Cje

−εj/kT

Q
, (3.1.4)

where, we know the number Cj of energy states in a group can be found

by differentiating Γ, the number of energy states with energy less than ε given in

Equation 3.1.5.

Γ =
4πV

3h3
(2mε)3/2 , (3.1.5)

Cj =
dΓ

dε
dε = 2π

V

h3
(2m)3/2ε1/2dε . (3.1.6)

We can substitute this in to Equation 3.1.4 and obtain:
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N∗j = 2πN
ε1/2e−εj/kT

(πkT )3/2
dε . (3.1.7)

If we make the substitution ε = 1
2
mC2, we find the distribution for molecular

speed χ(C)dC seen in Equation 3.1.8 below:

χ(C)dC = 4π
( m

2πkT

)3/2

C2e−mC
2/2kTdC . (3.1.8)

This is the same result for the molecular speed obtained from the Maxwellian

velocity distribution using equilibrium kinetic theory. Therefore, the Maxwellian dis-

tribution is a special case for translational energy of the more general Boltzmann dis-

tribution over translational energy states [25]. Looking ahead, we will see, therefore,

that all of our equilibrium distributions are a based on the Boltzmann distribution.

Lastly, we can solve for the translational energy Etr of the system and the

specific energy εtr, or the energy per unit mass per molecule:

Etr =
3

2
NkT , (3.1.9)

εtr =
3

2
RT , (3.1.10)

where R is the individual gas constant defined as R = k/m. The symbol used

for the specific energy and the energy states and levels are very similar. Our usage

of ε is limited to this section, whereas later in this thesis, we will only be concerned

about the specific energy.
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3.1.3 Internal Energy

When a molecule has an internal structure, for example a diatomic molecule

or monatomic molecule with orbiting electrons, then the other forms of molecular

energy cannot be ignored. If we suppose a molecule has a total energy ε composed of

several independent types of energy ε = ε′+ ε′′+ ε′′′+ ..., then keeping with quantum

theory, all of these energies must have states. So ε′ can have values ε′1, ε
′
2, ..., ε

′
m, ...,

and likewise ε′′ can have values ε′′1, ε
′′
2, ..., ε

′′
n, ...; etc. Since an energy state from one

type can be taken in conjunction with an energy from another type, we can substitute

this into the relation Q =
∑

i e
εi/kT and obtain the useful property:

Q = Q′Q′′Q′′′... (3.1.11)

Furthermore, we know the types of energy associated with internal structure.

For weakly interacting particles, we can separate ε into the translational energy εtr

and internal energy εint. εint can be further broken down into a term for electronic

excitation energy εel and a term for vibrational and rotational energy. A spinning

molecule has a centrifugal field that affects the vibration of the atom, so these two

energies are coupled for all but very low temperatures. This coupling between the

rotation and vibration of the molecule is very difficult to model, so a simple, but

somewhat inaccurate approximation to this problem is separating the rotation and

vibration terms. All together, we have the total energy of the molecule and the

molecular partition function seen in Equations 3.1.12 and 3.1.13 respectively:
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ε = εtr + εrot + εvib + εel , (3.1.12)

Q = QtrQrotQvibQel . (3.1.13)

Before examining each type of internal energy, we note that the specific internal

energy ε = E/mN behaves according to the following property:

ε = RT 2 ∂

∂T
ln Q ,

= RT 2 ∂

∂T
ln Qtr +

∑
int

RT 2 ∂

∂T
ln Qint ,

= εtr +
∑
int

εint . (3.1.14)

3.1.3.1 Electronic Excitation

As mentioned before, electronic excitation of a gas can occur for both monatomic

and polyatomic gases. For various reasons, the quantum energy levels of an atom or

molecule can often be ignored. However, sometimes the levels are degenerate and an

electron can pick equally between the states at one energy level. Other times the

energy levels can lie in the proximity of the ground (unexcited) level in which case

they can be excited easier than levels that lie further away. We begin with Equation

3.1.2. If we expand this out and replace εl/k = Θl, the characteristic temperature for

electronic excitation, we have:
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Qel = Q =
∑
l

gle
−εl/kT = g0e

−Θ0/T + g1e
−Θ1/T + g2e

−Θ2/T + ... (3.1.15)

We can obtain values for Θl from the tabulated data in Moore [14]. The

typical convention is to make ε0 equal to zero and base the other energy levels off

that “ground” level [25]. Since the values for Θ are typically large, only the first one

or two energy levels are significantly populated. Therefore, it is a fair approximation

that for relatively low temperatures, the partition function can reasonably be defined

with one excitation level as Qel = g0 + g1e
−Θ1/T . Using this definition, the specific

internal energy for electronic excitation εel is given below:

εel = RΘ1
(g1/g0)e−Θ1/T

1 + (g1/g0)e−Θ1/T
. (3.1.16)

3.1.3.2 Rotation

Rotation and vibration enter the picture when the molecules are polyatomic,

no longer monatomic. For this point in the development of this research, assuming

the gas consists of only diatomic molecules will suffice. This turns out to be a good

assumption, since the primary gases in the atmosphere are diatomic. This section

will deal with rotation and the next will deal with vibration.

We characterize the diatomic molecule as a dumbbell with a moment of inertia

I. Solving the Schrödinger equation, it is found that the degenerate energy levels are

given as
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εl =
h2

8π2I
l(l + 1) , where l = 0, 1, 2, ... (3.1.17)

Due to different axes of rotation, the degeneracy is then by gl = 2l + 1, and

the rotational partition function is

Qrot =
∞∑
l=0

(2l + 1) exp

[
−l(l + 1)h2

8π2IkT

]
, (3.1.18)

= 1 + 3e−2Θr/T + 5e−6Θr/T + ...

Θr is the characteristic temperature of rotation defined as

Θr ≡
h2

8π2Ik
, (3.1.19)

which has units of Kelvin. Numerical data for Θr can be found in Herzberg

[9]. Typical values of Θr are small; on the order of 100 to 101 Kelvin (i.e. for

nitrogen (N2), Θr = 2.9K), so that even at room temperature, many rotational energy

levels are excited. Therefore an accurate approximation for the partition function is

Qrot = T/σΘr. Here the symmetry factor σ has been introduced to account for the

type of diatomic molecule we are dealing with: σ = 1 for heteronuclear molecules and

σ = 2 for homonuclear molecules. Solving for the specific energy of rotation εrot, we

obtain:

εrot = RT . (3.1.20)
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If we recall the Boltzmann distribution in Equation 3.1.1, we can apply that

for each of the rotational energy levels and obtain the number density at each energy

level. This would be useful if we desired to have a distribution curve for the rotational

energy.

3.1.3.3 Vibration

We will consider vibration also in the framework of a diatomic molecule. For

this, we can reasonably assume that the molecule is a harmonic oscillator with fre-

quency ν. Therefore, we have energy levels defined as

εi = ihν , where i = 0, 1, 2, ... (3.1.21)

And our vibrational partition function follows as

Qvib =
∞∑
i=0

e−ihν/kT . (3.1.22)

Using the definition of the characteristic temperature of vibration Θν ≡ hν/k

and the geometric series for x = e−hν/kT we obtain:

Qvib =
1

1− e−Θν/T
. (3.1.23)

Solving for the the specific vibrational energy εvib we have the equation:

εvib =
RΘν

eΘν/T − 1
. (3.1.24)
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Recall that this specific vibrational energy was derived with the simple har-

monic oscillator assumption. This is not always the case, and for excitation to higher

vibrational levels, the molecule experiences anharmonic effects. These can be in-

corporated by computing the specific energy level transitions, as it has been shown

in Adamovich et al. [1]. When the vibrational energy levels become high enough,

they approach a dissociation energy, D. Above a certain energy level, the molecule

will dissociate, producing atoms of the molecule’s components. Currently the for-

mulation of the Boltzmann equation we have developed cannot handle dissociation,

chemistry or multiple species, so we choose to assume the simple harmonic oscillator

approximation.

We may desire to track the population of the different levels of the vibrational

energy, as vibrational energy typically plays a large role in the relaxation of high

temperature non-equilibrium problems, like a shock wave. For this we can utilize the

Boltzmann distribution in Equation 3.1.1 to find the number density of the vibrational

states during a relaxation. However, the Boltzmann distribution assumes the gas is

in equilibrium; therefore, if non-equilibrium effects are desired within the vibrational

energy distribution, then a more detailed model of non-equilibrium kinetics will be

necessary.

3.2 Collision Models

In order to understand how molecules exchange energy, we must examine the

dynamics of collisions. Within elastic collisions, kinetic (translational) energy is con-

served, whereas inelastic collisions conserve only the total energy of the collision. The
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total energy is the sum of translational, vibrational, rotational and electronic exci-

tation energy (εtot = εtr + εvib + εrot + εel). We will examine inelastic collisions in

Section 3.3. This section examines elastic collisions and the different models we can

utilize to best represent the collision.

There are several molecular models used to describe the intermolecular inter-

actions. Each of the models defines a the total collision cross-section, σT , which is

required for the Boltzmann Equation (see Equation 2.1.1) To find σT , first we define

the differential collision cross-section as:

σdΩ = b db dε , (3.2.1)

where b is the miss distance (impact parameter) and ε is the angle between

a reference plane and the collision plane. The scattering angle χ is the angle post

collision relative velocity vector, g′ makes with the relative velocity vector g. These

parameters can be seen in Figure 3.1 [5].
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Figure 3.1: The collision parameters b, ε and χ

Lastly we can find the total collision cross-section by integrating the differential

collision cross-section:

σT =

∫ 4π

0

σdΩ = 2π

∫ π

0

σsinχdχ . (3.2.2)

3.2.1 Inverse Power Law

We will start this discussion with the generic inverse power law for the inter-

molecular force F:

F =
κ

rη
. (3.2.3)
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Here κ is the inverse power law constant, r is the radius from the center of

the collision and η is the inverse power law exponent. The inverse power law is often,

although not exclusively called the point center of repulsion model, and we notice

that as the radius decreases, the repulsive force increases. We can also express this

force as a potential energy φ:

φ =
κ

(η − 1)rη−1
. (3.2.4)

It is useful to write the ratio of the potential energy to the asymptotic kinetic

energy to derive a second dimensionless impact parameter, W0 [5]. This is given in

[5] as:

φ
1
2
mrg2

=
2κmrg

2

(η − 1)rη−1
=

2

η − 1

(
W

W0

)η−1

, (3.2.5)

with W and W0 given by:

W =
b

r
(mrg

2)2/(η−1) W0 = b

(
mrg

2

κ

)1/(η−1)

. (3.2.6)

We can then write the scattering angle, χ, as:

χ = π − 2

∫ W1

0

[1−W 2 − [2/(η − 1)](W/W0)η−1]−1/2dW , (3.2.7)

and W1 is given by the positive root of

1−W 2 − [2/(η − 1)](W/W0)η−1 = 0 . (3.2.8)
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We see that χ is only a function of W0 and therefore we can substitute into

Equation 3.2.1 to obtain the collision cross-section for the inverse power law model

in Equation 3.2.9:

σdΩ = W0

(
κ

mrg2

)2/(η−1)

dW0dε . (3.2.9)

For finite values of η the force field extends to infinity and the integral in

Equation 3.2.2 for the total collision cross-section diverges. This means that the total

collision cross-section is infinite; however, for practical models there needs to be some

cutoff specified for either the distance of closest approach, b, or the scattering angle,

χ [5]. These adjustments to the model are the focus of later models which will be

described in the following sections.

3.2.2 Hard Sphere Model

The hard sphere model is simply explained by imagining two billiard balls

colliding. They exert no force on each other until the instant they are in contact

and then immediately after contact, they once again exert no force on each other.

Mathematically, the hard sphere model is given by the inverse power law when η =∞.

Therefore the force is then only effective when the molecules just touch at the distance

of closest approach, where r = 1/2(d1 + d2) = d12. By the geometry in Figure 3.2 the

miss distance, b, at the radius of closest approach, is given below [5].

b = d12cos(χ/2) = d12sin(θA) . (3.2.10)
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Figure 3.2: Collision geometry for hard sphere molecules

The apse angle, θA is defined by χ+ 2θA = π when the radius is d12. Plugging

into Equation 3.2.2, the total collision cross-section is πd2
12:

σT =

∫ 4π

0

1

4
d2

12dΩ = πd2
12 . (3.2.11)

The advantage to the Hard Sphere model is that the collision cross-section is

finite and the scattering angle is isotropic, meaning that all directions are equally

probable.

3.2.3 Variable Hard Sphere Model

The Variable Hard Sphere (VHS) model shares the important characteristics

of the Hard Sphere model, i.e. isotropic scattering and a finite cross-section. However,

the cross-section decreases as the relative speed, g, and therefore, kinetic energy, Etr,
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increases. To grasp this, realize faster moving particles have less time for their forces

to interact. The VHS model addresses this issue by making the hard sphere diameter

a function of the relative speed according to the following equation:

d = dref

(
gref
g

)ω
. (3.2.12)

The subscript ( )ref denotes reference values and ω is the coefficient of viscosity,

which depends on the type of gas. We can now obtain the total collision cross-section

for variable hard sphere particles as

σT = σref

(
g

gref

)−ω
. (3.2.13)

Since this follows a power law format with a real gas temperature exponent

of the coefficient of viscosity, Bird was able to define a mean free path (λ) and a

Knudsen number with this model [4]. Recall that both the Knudsen number and λ

are used in the Boltzmann equation (see Section 2.1.2).

The viscosity index, ω, is a constant for each type of gas. Real gas values for

ω range from 0.5 to ∼ 1 (ammonia has a viscosity index of 1.1), and can be found in

Appendix A, Table A1 of Bird [5]. If ω is set equal to 1.0, the VHS model reduces

to Maxwell molecules, and if ω = 0.5 we obtain pseudo-Maxwell molecules (Maxwell

molecules will be discussed in Section 3.2.5). Lastly, if ω is set equal to 0.0, the model

reduces to the hard sphere model.
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3.2.4 Variable Soft Sphere Model

The Variable Soft Sphere (VSS) model [10], uses the same adjustment to the

diameter as the VHS model; therefore, the total collision cross-section σT is πd2.

However, VSS corrects for the isotropic scattering deficiency; the scattering angle is

now given by:

χ = 2cos−1

[(
b

d

)1/α
]
. (3.2.14)

Since the scattering is no longer isotropic for VSS, we have to use a new

re-mapping scheme for the post collision relative velocity vector. The ‘re-mapping’

scheme orients the post-collision relative velocity vector, g ′ = ( gx
′ , gy

′ , gz
′) with

respect to the original relative velocity vector, g = ( gx , gy , gz). The equations to find

the new position of g ′ are given in Koura & Matsumoto [10] as:

gx
′ =

1

2

[
gx cos(χ) +

sin(χ) [g gy cos(ε)− gz gx sin(ε)]

(gx2 + gy2)1/2

]
,

gy
′ =

1

2

[
gy cos(χ)− sin(χ) [g gx cos(ε) + gz gy sin(ε)]

(gx2 + gy2)1/2

]
, (3.2.15)

gz
′ =

1

2

[
gz cos(χ) + sin(ε)sin(χ)(gx

2 + gy
2)1/2

]
.

Notice in Equation 3.2.15, the parameter (gx
2 + gy

2)1/2 in the denominator

of the gx
′ and gy

′ equations. For any random selection, i, of a colliding pair on a

structured velocity grid, the relative velocity gi may be aligned with the z direction

so that gx = gy = 0. Therefore, the denominator is identically zero and a numerical
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issue can arise. However, it can be shown that the limit exists as gx and gy go to

zero, so we use the limit when we would be forced to divide by zero. Figure 3.2.4 on

the next page shows that the limit exists as gx and gy go to zero.

Figure 3.3: MATLAB plot showing an example of a VSS re-mapping. The initial
relative velocity vector (0,0,4) is rotated by the angles χ = π/1.3 and ε = π/3.6. In
the legend, rgx, rgy and rgz represent gx

′ gy
′ and gz

′ respectively.

Typical values of α range from 1 to 2 (i.e. nitrogen has αN2 = 1.36, and

methane has αCH4 = 1.60). Lastly, if we set α equal to 1.0, we reduce the VSS model

to the Maxwell model which is discussed below.

3.2.5 Maxwell Model

The Maxwell model is the case for the inverse power law where η = 5. Plugging

in, we arrive at the result for the differential collision cross-section [5] given by:
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σdΩ =
W0

g

(
κ

mr

)1/2

dW0dε . (3.2.16)

The collision probability for a pair of molecules is proportional to the product

of the collision cross-section and the relative velocity. If we multiply Equation 3.2.16

by the relative velocity, g, we see that the collision probability is independent of the

relative velocity for Maxwell molecules.

The Maxwell model is also useful in solving the Boltzmann equation, since the

only known analytical solution for the Boltzmann equation far from equilibrium is

for a Bobylev Krook Wu (BKW) homogeneous relaxation using Maxwell, or pseudo-

Maxwell molecules [11]. Therefore, using Maxwell molecules in a simulation of the

BKW relaxation by our discrete velocity direct simulation Boltzmann solver will yield

a comparison to an analytical solution.

Lastly, the Maxwell model can be considered the limiting case for ’soft’ molec-

ular models. Similarly, the hard sphere model is the limiting case for ’hard’ molecular

models. The full range of previously discussed molecular models are available for use

in the DVM code by adjusting the VHS and VSS parameters as discussed in Sec-

tions 3.2.3 and 3.2.4. The previous research has focused on using pseudo-Maxwell

molecules for the discrete velocity Boltzmann equation solver; however, for the rest

of the paper, we prefer to keep the collision model general. A note will be made

wherever a specific collision model is relevant.
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3.3 Inelastic Collisions

We continue the discussion of collision dynamics by introducing internal en-

ergy. Collisions are now inelastic; translational energy can be exchanged with rota-

tional, vibrational and electronic excitation energy. In physical collisions all forms

of energy may be exchanged with one another. Different energy levels within one

energy mode can exchange energy as well. However, we will begin this discussion by

assuming that internal energy only exchanges with translational energy and only one

type of energy transfer happens per collision. For example, an inelastic collision will

exchange either translational and rotational, translational and vibrational or trans-

lational and electronic excitation energy. A certain fraction of the the collisions will

remain elastic. Mass, momentum and energy are still conserved within collisions, but

now the energy may be exchanged between translational and internal energy modes

too.

3.3.1 Relaxation Rates

We assume here that the exchange between translational energy, Etr and in-

ternal energy, Eint, can be modeled approximately by the difference between the

translational and internal temperatures and a relaxation time, τint. The relaxation

time is unique for each type of gas and different for the various internal energy modes.

It is typically a function of temperature and density. When the temperature is chang-

ing, numerical methods must be used to compute the relaxation time, but for a simple

heat bath where the gas is maintained at a specific temperature, τint is reasonably

assumed to be a constant. We can make the assumption that the relaxation time
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is constant, even in non-equilibrium problems. However, just how accurate this as-

sumption is depends on the type of internal energy being considered [25].

The primary focus in the development of relaxation time theory has been

in vibrational relaxation. Rotational relaxation and vibrational relaxation rates are

both dependent on the translational temperature. However, the rotational relaxation

time typically only changes by a small amount (1-10 collision times) over a range

of temperatures, while the vibrational relaxation time can go from 10,000 collision

times (τcoll) at low translational temperature, to 1 τcoll at very high translational

temperatures. Therefore, although approximating the rotational relaxation time by

a constant is not an accurate assumption, it is a better than approximating the

vibrational relaxation time by a constant. A more exact equation for the vibrational

relaxation time is required since the model will lose accuracy as large temperature

changes are introduced.

We will continue this discussion only for the vibrational relaxation time τv.

When the pressure and temperature are not constant in a non-equilibrium high tem-

perature problem, the relaxation time now becomes a local relaxation time and takes

the form τ = τ(p, T ). Landau and Teller [12] obtained an approximate expression for

the local relaxation time of the form:

τ =
K1T

5/6 e(K2/T )1/3

p(1− e−Θv/T )
, (3.3.1)

where K1 and K2 are positive constants depending on the type molecules in-

volved. These parameters can be estimated by experimentally measured relaxation
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times. Furthermore, using this relaxation time, we can calculate the approximate

number of collisions required to produce vibrational equilibrium. We know from Vin-

centi & Kruger [25], that a single molecule at p = 1 atm and To = 273K experiences

approximately 1010 collisions per second. If we assume pressure is constant and we

are using hard sphere molecules, the frequency of collisions, %, can be put in terms of

the temperature of the distribution. Therefore, we have:

%(T ) =

√
To
T
%(To) , (3.3.2)

and the number of collisions to reach equilibrium is Ncolleq = τv%(T ). If we take

oxygen, O2, at p = 1 atm and To = 273K, we expect approximately 18000 collisions

to achieve equilibrium conditions in vibration. (This is based on the data given

in [25].) This number is large compared to the number for rotational/translational

energy exchange, which is on the order of 10 collisions. Therefore, it is much more

important to accurately represent the vibrational relaxation time, than the rotational

relaxation time.

3.3.2 Inelastic Collision Model

Inelastic collisions can be viewed as occurring in either of two ways; either

a certain fraction (say 1
Z

) of the total collisions are inelastic, or all collisions are

inelastic except the energy transfer is now 1
Z

times what it was before, but happens

on every collision. While the former argument may be computationally less expensive,

the latter argument may yield more continuous or stable results. The fraction, 1
Z

,

discussed here takes the form of a number which is derived from experimental tests of
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translational, rotational and vibrational relaxation times (see the pertinent discussion

in Section 3.3.1). This number Z is either Zrot (rotational) or Zvib (vibrational). A

typical number for Nitrogen, N2, would be Zrot = 5. For now, we will assume that Z

is a constant, independent of temperature.

The model developed here for inelastic collisions contains two different types

of collisions: ones with translational and rotational energy transfer (T-R collisions),

and ones with translational and vibrational energy transfer (T-V collisions). For

simplicity, there are no collisions where we consider the exchange between rotational

and vibrational energy directly or an exchange between all three types. Therefore, if

we think in terms of an inelastic collision happening every Z collisions, we recognize

that a fraction ( 1
Ztr

) of collisions will be purely elastic. We also notice that the three

different Z values must obey the following property:

1

Ztr
+

1

Zrot
+

1

Zvib
= 1 . (3.3.3)

Therefore, for any given time step, three different types of collisions are going

to be occurring: elastic collisions where Etr is unchanged (T-T), collisions where Etr

is exchanged with Erot (T-R) and collisions where Etr is exchanged with Evib (T-V).

We now calculate the total number of collisions per time step, Nctot , for the

Variance Reduction Method by summing all the allotted collisions for the three col-

lision integrals:
∫
C

=
∫
MB−MB

+
∫
MB−δ +

∫
δ−δ (see Section 2.2.2 for a discussion of

the split collision integral). The total number of collisions is:
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Nctot = nint

(
δt̂

RMS2

[
n̂2

2
+ n̂n̂δ +

n̂2
δ

2

])
T̂ (2/3)

β3
, (3.3.4)

where the derivation for Equation 3.3.4 is derived from the equations in [17].

Note that the collisions for
∫
MB−δ and

∫
δ−δ will be performed using the method

outlined in Sections 4.2 and 4.3, while collisions in
∫
MB−MB

are not calculated so the

energy exchange must be dealt with differently. This is discussed in greater detail

in Section 4.3.2. Since we calculate the total number of collisions in Equation 3.3.4,

we can obtain the number of collisions performed for each type of exchange: NcT−T

for T-T collisions, NcT−R for T-R collisions and NcT−V for T-V collisions. Also note

that we will only need to specify two Z values, so we choose Ztr = Ztr(Zrot, Zvib), and

solve for it using Equation 3.3.3. Therefore, we have:

NcT−T =

(
1− 1

Zrot
− 1

Zvib

)
Nctot , (3.3.5)

NcT−R =
1

Zrot
Nctot , (3.3.6)

NcT−V =
1

Zvib
Nctot . (3.3.7)

Variance Reduction divides up Nctot so that different parts of the collision

integral are calculated separately. We can obtain NcT−T , NcT−R and NcT−V for each

piece of the collision integral using the equations above since we know the number of

collisions performed for each integral (see Section 2.2.2).
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3.3.3 Landau-Teller Equation

A homogeneous isotropic perturbed gas dynamic system will approach equi-

librium over time. Knowing the relaxation time, we can model the exchange rate

between translational and internal energy. The most simple approach is to use the

Landau-Teller equation [12], to describe this exchange.

dEint
dt

=
Eint(Ttr)− Eint(Tint)

τint
=
Eint(Ttr)− Eint(Trot)

Zintτcoll
, (3.3.8)

where τint = Zintτcoll is the relaxation time for that particular form of internal

energy, and Eint(Ttr) is the internal energy evaluated at the translational tempera-

ture. More simply, this energy exchange can be written to describe the temperature

equilibration:

dTint
dt

=
Ttr − Tint
Zintτcoll

. (3.3.9)

If Zint ≥ 1, we see that the internal energy equilibration with translational

energy is always slower than the translational energy equilibration. Therefore, even

after the velocity distribution has approached a quasi-equilibrium, we will see the

effects of internal energy on the translational temperature of the gas distribution

as energy is exchanged with internal energy levels at a slower rate. The internal

energy distribution will continue to change until the the internal temperature is in

equilibrium with the translational temperature, which is relaxing as well.
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Chapter 4

Method

This section will outline two methods for performing inelastic collisions in the

framework of the Boltzmann equation. The first is the Larsen Borgnakke method [6]

used commonly in DSMC and adapted here to be used in our discrete velocity direct

simulation Boltzmann solver. The second is what we call the “New Method” which

was developed by Dr. Varghese and myself as an adaptation of the Landau-Teller

equation to be more representative of known gas dynamics and to be amenable to the

variance reduction approach. Both methods center around describing what happens

within an inelastic collision. We will discuss both approaches, with a greater focus

on the New Method in Section 4.3. However, first we must describe how we represent

internal energy in the framework of the discrete velocity Boltzmann equation.

4.1 Internal Energy Distribution Function

We know from our discussion in Section 3.1.1 that molecules can occupy a

number of energy states, with the equilibrium population distribution of those states

governed by the Boltzmann distribution in Equation 3.1.1. Therefore within a small

volume of velocity space there is a given number density of particles. The density

normalized velocity distribution, ϕ, stores the percentage of molecules with a certain
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velocity ηi, at spatial node xi and time t.

ϕ = nf(xi, ηi, t) , (4.1.1)

where f(xi, ηi, t) is the probability that that a molecule has a velocity within

dVη of ηi. We normalize f by the following equation:

∫
Vη

f dVη = 1 . (4.1.2)

Knowing the number density of particles at a specified velocity, we can sort

those particles into a number of internal energy levels. If the gas is in equilibrium, the

internal energy distribution of the particles will follow the Boltzmann distribution for

the temperature of the gas. However, in non-equilibrium flows, the number density

of any of the levels will not necessarily be the Boltzmann number density for that

level. Therefore, it is desired to have a number, lr, of rotational energy levels and lv

vibrational energy levels to describe non-equilibrium situations.
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Figure 4.1: A cell in velocity space centered around its respective velocity node. The
node has a mass and two internal energy distributions: the rotational and vibrational
energy distribution. Each distribution has a set number of energy levels, l, which can
be occupied by particles at that velocity node. The population of the energy levels is
represented by the height of the spike.

In order to achieve generality, we will represent the internal energy distri-

butions in this section as having l energy levels. Now we define ϕε to include the

internal energy per unit mass distributions: εrot(lr, xi, ηi, t) for rotational energy and

εvib(lv, xi, ηi, t) for vibrational energy:

ϕεrot = nf(xi, ηi, t)εrot(lr, xi, ηi, t) , (4.1.3)

ϕεvib = nf(xi, ηi, t)εvib(lv, xi, ηi, t) . (4.1.4)

That is, ϕεrot and ϕεvib are the total internal energy distributions, where if

one point in velocity space is selected, ϕεrot(lr) and ϕεvib(lv) would represent the total

number density of all particles occupying internal energy level lr or lv at that velocity.

Since this is the first iteration of an internal energy method, we choose to describe
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all the particles at a single point in velocity space as occupying a single internal

energy level that has the average internal energy of all the particles at that velocity.

Therefore, our current case will have lr = lv = 1, and since ϕ = nf(xi, ηi, t) stores the

number density of particles at that velocity point, the average internal energy value

is stored in the ε(1, xi, ηi, t) distribution.

4.1.1 Scaling the Internal Energy Representation

We will begin by analyzing rotational energy and then extend the concept

to vibrational energy. Since for each internal energy mode, we are dealing with

the average internal energy of molecules at a specific discrete velocity, we represent

rotational energy at that discrete velocity as Erot = kT or the rotational energy per

molecule. Here we assume the gas is in equilibrium, so T is used. We can begin

scaling the equation using, T = Tref T̂ .

Erot = k Tref T̂ . (4.1.5)

If we divide both sides by the mass of the molecule and multiply the right side

of the equation by 2
2
, we obtain the internal energy per molecule per unit mass. This

is the specific rotational energy we found in Section 3.1.3.2.

εrot =
Erot
m

=
2k Tref
m

T̂

2
. (4.1.6)

Recognize that the quantity η2
r =

2k Tref
m

is the reference velocity squared. We

can divide both sides of the equation by η2
r to obtain the scaled rotational energy:
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ε̂rot =
εrot
η2
r

=
T̂

2
. (4.1.7)

We can use the same operations on the vibrational energy. Beginning with our

definition of the equilibrium vibrational energy per molecule assuming a harmonic

oscillator, we have:

Evib =
kΘv

eΘv/T − 1
. (4.1.8)

Scaling temperature again with T = Tref T̂ and multiplying the numerator by

Tref
Tref

, we obtain:

Evib =
k Tref

Θv
Tref

exp
[

Θv
Tref T̂

]
− 1

. (4.1.9)

We define the parameter Θ̂v = Θv
Tref

as the scaled characteristic temperature of

vibration. If we divide both sides of the equation by m and multiply the right side

by the factor 2
2

we obtain the vibrational energy per molecule per unit mass, or the

specific vibrational energy we saw in Section 3.1.3.3:

εvib =
Evib
m

=

2k Tref
m

Θ̂v

2 exp
[

Θ̂v
T̂

]
− 1

. (4.1.10)

Notice the factor ηr =
(

2k Tref
m

)1/2

in the numerator again, so dividing by η2
r

we obtain the scaled specific vibrational energy:
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ε̂vib =
εvib
η2
r

=
Θ̂v

2
[
exp(Θ̂v/T̂ )− 1

] . (4.1.11)

The definitions of scaled specific internal energy, ε̂rot and ε̂vib, in Equations

4.1.7 and 4.1.11 are the basis for the internal distribution functions.

4.2 Larsen Borgnakke Method for Inelastic Collisions

As mentioned before, we are only considering inelastic collisions that exchange

translational and either rotational or vibrational energy (there is no exchange between

all three at once; see Section 3.3). So to abbreviate this method, we will refer to either

rotational or vibrational energy simply as internal energy, ε̂int. Where necessary, we

will specify what type of energy it is, either ε̂introt = ε̂rot or ε̂intvib = ε̂vib. Note that we

are using scaled values of the internal energy here. The total energy of the collision

is therefore,

ε̂c = ε̂tr + ε̂introt + ε̂intvib , (4.2.1)

with the definitions in a given collision:

ε̂tr =
1

4
(βĝ)2 , (4.2.2)

ε̂introt = ε̂rot(ζ̂) + ε̂rot(η̂) , (4.2.3)

ε̂intvib = ε̂vib(ζ̂) + ε̂vib(η̂) . (4.2.4)
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We recall that ζ̂ and η̂ are the pre-collision velocity grid points. Also, we have

arrived at our definition for ε̂tr in much the same way as the procedure defined in

Section 4.1.1. The definition for the kinetic energy of a collision on a per molecule

basis is:

Etr =
1

2
m∗g2 . (4.2.5)

Since velocities ζ̂i = (u1, v1, w1) and η̂i = (u2, v2, w2) lie on the grid, they are

restricted to integer values for their velocity components. Therefore the definition of

g on the discrete grid, with indices i, j, k, is given by

g =
√

(u1 − u2)2 + (v1 − v2)2 + (w1 − w2)2 , (4.2.6)

g =
√

(∆η)2(i1 − i2)2 + (∆η)2(j1 − j2)2 + (∆η)2(k1 − k2)2 , (4.2.7)

where if ∆η is uniform, we can consolidate g into:

g = ∆η
√

(i1 − i2)2 + (j1 − j2)2 + (k1 − k2)2 . (4.2.8)

We nondimensionalize the equation using β = ∆η
ηr

to obtain:

ĝ =
g

ηr
= β

√
(i1 − i2)2 + (j1 − j2)2 + (k1 − k2)2 . (4.2.9)

For colliding molecules of the same species, we realize that the reduced mass

m∗ = m1m2

m1+m2
becomes m∗ = m/2. Our equation for translational energy per collision

is:
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Etr =
m

4
(ηrĝ)2 . (4.2.10)

However in our code, ĝ is defined without β as

ĝ =
√

(i1 − i2)2 + (j1 − j2)2 + (k1 − k2)2 . (4.2.11)

So our expression for translational energy must reflect this. Therefore, we have

the specific translational energy per collision:

εtr =
Etr
m

=
1

4
(ηrβĝ)2 . (4.2.12)

Dividing through by ηr
2, we arrive at the scaled specific translational energy

per collision seen in Equation 4.2.2. In the Larsen Borgnakke inelastic collision rou-

tine, we choose an arbitrary post collision translational energy (ε̂tr
′) from 0 to ε̂c and

then consequently the rest of the energy goes to ε̂int
′.

ε̂tr
′ = Rf ε̂c , (4.2.13)

ε̂int
′ = ε̂c − ε̂tr ′ . (4.2.14)

This value of ε̂tr
′ is accepted if the ratio of probabilities P (ε̂tr

′)/Pmax (Equa-

tion 4.2.15) is greater than a second random number, Rf . (We obtain this ratio of

probabilities from Bird [5] employing the Larsen Borgnakke method.) If not, we se-

lect a new ε̂tr
′ using Equation 4.2.13 and we test the probability ratio again. This
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acceptance rejection routine is repeated until we have a post collision ε̂tr that passes.

The probability ratio for this selection is:

P (ε̂tr
′)

Pmax
=

{
ξ + 1

2
− ω

3
2
− ω

(
ε̂tr
′

ε̂c

)}3/2−ω {
ξ + 1

2
− ω

ξ − 1

(
1− ε̂tr

′

ε̂c

)}ξ−1

. (4.2.15)

Here ξ is the number of internal degrees of freedom and ω is the viscosity

temperature coefficient we discussed in Section 3.2.3 for the VHS technique. Next we

assign new internal energies for post collision velocity points ζ̂ ′ and η̂′. We choose

one internal energy value to be arbitrary between 0 and ε̂int
′ and the other is the

remainder of ε̂int
′.

ε̂int(ζ̂
′) = Rf ε̂int

′ , (4.2.16)

ε̂int(η̂
′) = ε̂int

′ − ε̂int(ζ̂ ′) . (4.2.17)

Similar to the selection of ε̂tr
′, the selection of ε̂int(ζ̂

′) must also pass through

an acceptance rejection routine. The probability ratio, as defined by Bird [5], for this

selection is below, and must be greater than a second random number, Rf for ε̂int(ζ̂
′)

to be selected.

P (ε̂int(ζ̂
′))

Pmax
= 2ξ−2

(
ε̂int(ζ̂

′)

ε̂int ′

)ξ/2−1(
1− ε̂int(ζ̂

′)

ε̂int ′

)ξ/2−1

. (4.2.18)

Finally, we then shrink or grow the relative velocity vector according to the

following equation:
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ĝ′ =

√
4ε̂tr ′

β
. (4.2.19)

The new relative velocity vector g′ then replaces g and is used to find the two

replenishing points. Since the post collision velocities ζ̂ ′ and η̂′ can lie off the grid,

so too can their assigned internal energies. The internal energy interpolation routine

discussed in Section 4.3.3 follows the general procedure of the mass interpolation

scheme discussed in Section 2.2.1 and can remap the internal energy back on the

discrete velocity grid while conserving mass, momentum and energy.

4.3 New Method for Inelastic Collisions

The new method developed by Dr. Philip Varghese and myself for inelastic

collisions borrows several redeeming qualities from the Larsen Borgnakke method,

but offers improvements in representing the relationship between internal energy and

translational energy. This method employs the general Landau-Teller equation format

(see Section 3.3.3), but several adaptations are made. The last part of this section

contains two important considerations: a description of how this new method must

be adapted to work for the equilibrium collision integral in our variance reduction

method, and the internal energy interpolation scheme that is employed to conserve

energy and obtain the proper relaxation rate.

4.3.1 The Method

For this section, the discussion will assume rotational energy is the only form

of internal energy. If we look at the gas contained in a cell, we know the behavior of

53



the gas as a whole. Or more precisely, using the Landau-Teller equation, we know how

the rotational energy will change each sufficiently small time step with respect to a

difference between the total rotational temperature (T̂rot) and the total translational

temperature (T̂tr). We represent this relation as:

∆ε̂rot =
dε̂rot
dt

∆t =
ε̂rot(T̂tr)− ε̂rot(T̂rot)

Zrotτcoll
∆t . (4.3.1)

Recall that Zrot is derived from the rotational relaxation rate; it is the number

that determines fraction of collisions where an exchange of rotational energy occurs,

and τcoll is the collision time. Our representation for rotational energy is ε̂rot = T̂rot/2.

Therefore, using this definition and the definition of scaled collision time δt̂ = ∆t/τcoll,

we have the equation for the total exchange of rotational and translational energy per

time step:

∆ε̂rot = −∆ε̂tr =
T̂tr − T̂rot

2 Zrot
δt̂ . (4.3.2)

Recall that this is the the Landau-Teller equation we discussed in Section

3.3.3, but reduced to describe the change in rotational energy for one time step. If

we wanted to remove the collision aspect of internal energy exchange that is present

in the Larsen Borgnakke method, we could simply use this definition to model a bulk

energy exchange each time step. This would accurately describe the relaxation of the

independent energies as an equilibration of the total temperatures. (It is accurate to

the extent that our choice of Zrot is accurate and our scaled time step is small enough.)

However, this would diminish the usefulness of the code especially when convection of
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internal energy was required. For example, in a shock, only using the total rotational

temperature of the rotational energy distribution would remove any non-uniformity

in the internal energy that may be following any specific discrete velocity class as it

is being convected across physical cells.

Therefore, we wish to preserve the collision aspect, so this general method

for describing the energy exchange per time step must be projected on the collision

scale. There is no such thing as the translational temperature of individual particles

(translational temperature is a function of a velocity distribution), so we choose to use

the temperature of the entire distribution at the beginning of the time step (T̂tr1). The

collision partners (η and ζ) each have their own rotational temperatures. Therefore,

we use the average rotational temperature of the collision pair (
¯̂
Trot).

∆ε̂rot =
T̂tr1 −

¯̂
Trot

2 Zrot
δt̂ , (4.3.3)

where,

¯̂
Trot =

1

2

(
T̂rotη + T̂rotζ

)
. (4.3.4)

We could instead write Equation 4.3.3 in terms of the translational energy for

the collision. We begin by equating the translational energy per molecule and the

translational energy of a molecule in a collision.
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3

2
kTtr =

1

2
m∗(βg)2 , (4.3.5)

3

4
(2kTref )T̂tr =

1

4
m(βηrĝ)2 , (4.3.6)

3T̂tr

(
2kTref
m

)
= ηr

2(βĝ)2 . (4.3.7)

We make use of the reference velocity ηr =
(

2kTref
m

)1/2

and solve for T̂tr to

obtain:

T̂tr =
1

3
(βĝ)2 . (4.3.8)

Since we define the first term in the Landau-Teller equation to be ε̂rot(T̂tr) =

T̂tr/2, we obtain the following equation for an inelastic collision using the collision

energy:

∆ε̂rot = −∆ε̂tr =
1
3
(βĝ)2 − T̂rot

2 Zrot
δt̂ . (4.3.9)

We may use either Equation 4.3.9 or Equation 4.3.3 to describe the energy

exchange within inelastic collision; however, since we seek to keep the energy exchange

on a per collision basis, Equation 4.3.9 is preferred. We will examine the difference

between using the two options for translational temperature of the collision in Section

5.1.

One important thing to note here is that we have moved away from exchanging

internal energy every Zrot collisions. Instead, we now exchange internal and trans-

lational energy during every collision, except the amount exchanged is reduced by
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the factor 1
Zrot

. Therefore, the energy exchanged is less for each collision, but it is

exchanged every collision, perhaps making the distribution smoother.

This change in rotational energy is associated with an equal and opposite

change in translational energy, as seen in Equation 4.3.2. Given the original relative

velocity vector (g), next we calculate the new relative velocity vector according to

the change in internal energy. We begin with the definition of ∆ε̂tr:

∆ε̂tr =
1

4
(βĝ ′)2 − 1

4
(βĝ)2 . (4.3.10)

Reorganizing and using the definition ∆ε̂rot = −∆ε̂tr, we obtain the expression

for g ′:

ĝ ′ =

√
ĝ − 4∆ε̂rot

β2
. (4.3.11)

The last requirement of the collision is to update the rotational energy of

the particles. Let us deal with the pre-collision velocity points first. We know that

internal energy must have been removed (or added depending on the sign of mass

being depleted) from the pre-collision velocity ζ and/or η. Both pre-collision points

contribute δÊrot = ε̂rotmf to the collision. (This does not hold if multiple species

are allowed and an atom collides with a diatomic molecule.) Here ε̂rotζ is the scaled

specific rotational energy of pre-collision velocity ζ and mfζ is the mass depleted from

point ζ. We can now determine how much scaled specific internal energy is left at

pre-collision points ζ and η. (Note that we only have to look at one velocity point

since the change at the other pre-collision point will be the same.)
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Ê ′rotζ = Êrotζ − δÊrotζ ,

ε̂′rotζ(ϕ̂ζ −mfζ) = ε̂rotζ ϕ̂ζ − ε̂rotζmfζ ,

ε̂′rotζ(ϕ̂ζ −mfζ) = ε̂rotζ(ϕ̂ζ −mfζ) ,

ε̂′rotζ = ε̂rotζ . (4.3.12)

The total change in rotational energy (Êrot) is only due to the change in mass

at the two pre-collision points. Therefore, the rotational energy per unit mass (ε̂rot)

at the pre-collision velocity points does not change.

The post-collision velocity points are more interesting. These must also include

the change in rotational energy ∆ε̂rot from translational energy. We once again put

the scaled specific rotational energy, ε̂rotζ in terms of scaled rotational energy Êrotζ =

ε̂rotζ ϕ̂ζ . Here, as before, we only need to examine one post-collision velocity; therefore,

we choose velocity point ζ ′.

Êrotζ→ζ′ = Êrotζ +
1

2
∆Êrot , (4.3.13)

Ê ′rotζ′ = Êrotζ′ + Êrotζ→ζ′ . (4.3.14)

Here Êrotζ→ζ′ is the rotational energy taken from point ζ and given to point

ζ ′. However, it also contains the contribution from the inelastic collision, ∆Êrot. If

we expand out the equation for one point ζ ′, we can find ε̂′rotζ′ :
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ε̂′rotζ′ (ϕ̂ζ′ +mfζ) = ε̂rotζ′ ϕ̂ζ′ + ε̂rotζ→ζ′mfζ ,

ε̂′rotζ′ =
ε̂rotζ′ ϕ̂ζ′ + ε̂rotζ→ζ′mfζ

ϕ̂ζ′ +mfζ

. (4.3.15)

4.3.2 Special Accommodation for Variance Reduction

Section 2.2.2 discusses splitting the collision integral (
∫
C

) into separate parts:

a collision integral that calculates equilibrium to equilibrium collisions (
∫
MB−MB

), one

that calculates equilibrium to non-equilibrium collisions (
∫
MB−δ) and one that calcu-

lates non-equilibrium to non-equilibrium collisions (
∫
δ−δ). Here the equilibrium dis-

tribution is the Maxwellian Boltzmann (represented by MB) and the non-equilibrium

distribution is the deviation (represented by δ). We show this relationship below.

∫
C

=

∫
MB−MB

+

∫
MB−δ

+

∫
δ−δ

. (4.3.16)

In variance reduction without internal energy, the integral,
∫
MB−MB

, is identi-

cally zero since collisions between equilibrium distributions, or identical Maxwellian

distributions do not change the distribution function. However with the inclusion of

internal energy, these equilibrium collisions must be accounted for since we know that

all collisions are exchanging internal and translational energy for every time step. We

will continue this discussion only for rotational energy, but it should be noted that

vibration follows the same method.

Recall that we already derived the total energy exchange per time step in

Section 4.3.1, Equation 4.3.2. We also know the expression for the scaled rotational
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and translational energy per molecule per unit mass from Sections 3.1.3.2 and 3.1.2.

Using these definitions we can find the total change in temperature for
∫
MB−MB

.

∆T̂rot = 2∆ε̂rot
NMB−MB

Ntot

, (4.3.17)

(∆T̂tr)rot =
4

3
(∆ε̂tr)rot

NMB−MB

Ntot

. (4.3.18)

Here (∆T̂tr)rot is the change in translational temperature due to rotation and

Ntot is the number of total collisions for that time step. This is found by summing

the total number of collisions for all the integrals: Ntot = NMB−MB + NMB−δ +

Nδ−δ. NMB−δ and Nδ−δ are calculated by Equations 2.2.5 and 2.2.7 respectively, and

NMB−MB is the number of collisions for
∫
MB−MB

, defined as:

NMB−MB = nint

(
∆t̂n̂2

2 RMS2

)
T̂

(2/3)
t

β3
. (4.3.19)

To update the rotational energy distribution for this integral, we perform the

following operation:

ε̂
′

roti
= ε̂roti + ∆ε̂rot

NMB−MB

Ntot

. (4.3.20)

This holds because no net mass is being exchanged point-wise for
∫
MB−MB

,

so everywhere that has mass is gaining the fraction of rotational energy change for

that integral. Lastly, T̂tr1 is known from the beginning of the time step, so T̂tr2 can

be calculated by the following formula:
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T̂tr2 = T̂tr1 +
4

3
∆ε̂tr

NMB−MB

Ntot

. (4.3.21)

Recall that ∆ε̂tr = −∆ε̂rot so energy is conserved. With T̂tr2 , we can now

compute the change in the Maxwellian distribution ∆ϕMB. For consistency, the

replenishing and depleting functions are updated as follows:

∆ϕ̂repli = ∆ϕ̂repli + ϕ̂MBi(T̂tr2) , (4.3.22)

∆ϕ̂depli = ∆ϕ̂depli − ϕ̂MBi(T̂tr1) . (4.3.23)

Therefore, when the replenishing and depleting functions are added to ϕ̂ at the

end of the time step, the change in the Maxwellian ∆ϕ̂MB = ϕ̂MB(T̂tr2)− ϕ̂MB(T̂tr1)

is also added.

4.3.3 Internal Energy Interpolation Scheme

The interpolation scheme for the velocity distribution has five constraints, the

mass, momentum in the x, y and z directions and kinetic energy must be conserved.

The only constraint for an internal energy interpolation scheme is that the total

internal energy being remapped must be conserved, and internal energy must always

be positive. However since the total internal energy is a function of the mass at a

point, Êinti = ε̂intiϕ̂i, we cannot simply map all the internal energy to one point

and be done. In order to preserve energy through time steps, the amount of internal

energy Êint that gets mapped to a point in the internal energy distribution must

have the same mass that gets mapped to the same point in the velocity distribution.
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Since, the specific internal energy update for a point follows Equation 4.3.15, the

consequent value of ε̂′rotζ′ is dependent on the amount of mass moved to that point.

Therefore, when the mass in the velocity interpolation is split into several parts, the

true value of the specific internal energy at a point is dependent on the actual amount

of mass given to that point. Therefore, the internal energy must follow the all the

mass fractions generated by the mass interpolation scheme. The mass conservation

equation for all the mass fractions (mfo ,mfix ,mfex , ...) of the original replenishing

mass, mrepl, is given below:

mrepl = mfo +mfix +mfex +mfiy +mfey +mfiz +mfez (4.3.24)

Here a mass fraction mf is defined as the replenishing mass multiplied by a

fraction generated in Equation 2.2.1. These fractions can be negative, as is often the

case for the external points, which have negative mass to counteract the increase in

kinetic energy associated with splitting a positive replenishing mass among several

velocity points. Furthermore, the replenishing mass can also be negative depending on

whether or not the the mass is removed from a negative section of the non-equilibrium

distribution function, ϕ̂d, seen in Section 2.2.2. Lastly, the value of ϕ at the velocity

point we desire to map internal energy to can also be negative, since negatives in

the wings of the velocity distribution due to mass interpolation can accumulate over

several time steps. These are often not large (O(10−5) where the largest spikes are

O(10−1)) and will be returned to a positive value after more collisions over several

time steps map mass to the point. Note, that these negative values are not a concern
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for the mass interpolation we use for the velocity distribution, since the update to

a point is simply an addition or subtraction of a constant. The only reason these

negatives are a concern for internal energy is because we employ Equation 4.3.15 to

update the specific internal energy at a point.

Ideally, the interpolation to a point operates with all positive values for mass;

however, referencing our discussion in the previous paragraph, we know that at any

time, three numbers can be negative: mrepl, ϕ̂ζ′ , and fζ′ . To account for these nega-

tives, we take the sign of each: ςm, ςϕ and ςf , and replace the the three parameters of

concern with their absolute value. Modifying Equation 4.3.15 so that it now describes

the update for ε̂ of one of the interpolation points on the stencil (see Figure 2.3) we

have:

(ε̂rotζ′ )
′ =

ε̂rotζ′ |ϕ̂ζ′|+
(
ε̂rotζ + 1

2
ςmςϕςf∆ε̂rot

)
|mreplfζ′|

|ϕ̂ζ′ |+ |mreplfζ′|
(4.3.25)

The change in internal energy of a given post-collision mass is only be recorded

as a change in the specific internal energy. Therefore, the negative additions to the

equation are accounted for in the replenishing mass term. Figure 4.2 on the following

page helps to illustrate the several possible cases for interpolation to a post collision

velocity. The cases involving negative values for ϕ̂ζ′ are not shown.
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Figure 4.2: Shows four cases for positive and negative values of ∆ε̂ (the solid blue box)
and positive and negative values of the replenishing mass fraction, mf (the small red
box). Above node and node ′, the open blue boxes are values of the ε̂ζ′ distribution,
and the open red boxes represent the values of ϕ̂ζ′ . The open blue boxes above the
repl represent the value of ε̂ζ . Cases C & D have a negative mf and Cases B & D
have a negative ∆ε̂. The resulting value at point ζ ′ is seen above the node ′ label for
each case. A is the ideal case where all values are positive.

Other interpolation methods we considered that do not use absolute values,

must reject certain post-collision internal energies that display incorrect behavior

when the difference in the denominator or numerator becomes very small and nega-

tive. The post-collision internal energy of such an interpolation can either explode to

very large positive numbers or become negative, both of which are incorrect. Every

collision that is rejected using a method like this slows the overall relaxation rate.

Using the interpolation method in Equation 4.3.25 has the benefit that no collisions

are rejected and the total energy of the system is conserved. Therefore, the inter-

nal energy and translational energy converge at the correct relaxation rate and the

translational and rotational temperatures converge to the same equilibrium value.
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Chapter 5

Results

The new method discussed in Section 4.3 is tested in this section and the results

are discussed. We will begin with simple homogeneous relaxations of the rotational

and translational distributions. Next, a one dimensional shock is examined using

the same fourth order convection scheme discussed in [17], but modified to convect

internal energy. Lastly, the results are compared to existing data for shock profiles

with internal energy.

5.1 Homogeneous Relaxations

Physically, homogeneous relaxations are performed by heat bath simulations

of particles with equilibrium rotational and translational distributions. To achieve a

heat bath in experiments, a large quantity of inert gas like argon contains a small con-

centration of the diatomic species. Therefore, as the gas is held at a new temperature,

the translational temperature of the system will equilibrate to the new temperature

almost instantly, but the rotational temperature of the concentrated species will take

longer to relax to equilibrium. Knowing the concentration of diatomic species, the

relaxation rate can be calculated [25].

We simulate a related homogeneous relaxation by setting equilibrium transla-
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tional and rotational distributions to different temperatures, then through collisions

the distributions will exchange energy and arrive at an equilibrium temperature. For

our simulations, we choose to run a case where the scaled rotational temperature, T̂rot,

is set to 1 and the scaled translational temperature, T̂tr, set to 2. The scaled final

temperature can be computed using conservation of energy and our scaling method:

3

4
T̂tr +

1

2
T̂rot =

3

4
T̂tr
′ +

1

2
T̂rot

′ . (5.1.1)

If we take the final time to be when the two temperatures are in equilibrium,

then T̂final = T̂tr
′ = T̂rot

′, and we can solve for T̂final:

T̂final =
3

5
T̂tr +

1

5
T̂rot . (5.1.2)

Using this we expect a value of 1.6 given the set of initial temperatures we

chose above. We choose to use pseudo-Maxwell molecules with a rotational relaxation

collision constant, Zrot, of 5. Figure 5.1 illustrates the homogeneous relaxation of

rotational energy.
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Figure 5.1: Temperature and energy profile for a homogeneous relaxation of rotational
and translational energy for initial conditions of T̂rot = 1 and T̂tr = 2. The method of
using the cell translational temperature to define the exchange of energy within the
inelastic collision is used here (see Section 4.3.1).

The (GS) that denotes dashed lines stands for gold standard. The meaning

of this is different than defined by Morris in [17]. Here gold standard refers to using

the Landau-Teller equation to directly compute the total amount of energy transfer,

∆ε̂rot = −∆ε̂tr, per time step. Therefore, the translational and rotational energy

exchange that only happens during inelastic collisions is bundled into a total energy

exchange for that time step. To account for the total translational and rotational en-

ergy exchange, the rotational energy and velocity distributions are only updated once

per time step to have the new translational and rotational temperatures computed
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by the Landau-Teller equation. The elastic component of a collision is preserved, and

collisions still operate on the velocity distribution.

We observe in Figure 5.1 that the new method using the cell temperature

matches the gold standard almost exactly. This is expected since this method is

highly similar to the Landau-Teller equation that governs the gold standard. We now

run the same case, but instead of the cell temperature, we use the collision energy

(Equation 4.3.9).

Figure 5.2: The same case as in Figure 5.1, but the collision energy is used here to
define the translational temperature of the collision instead of the cell translational
temperature. The scaled final temperature of translation and rotation matches the
expected T̂final = 1.6 to within 0.5%.

In Figure 5.2, the new method using only the instantaneous collision energy
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does not match the gold standard as exactly as using the cell temperature. We expect

this since the collision energy is highly variable, and therefore the two options will

produce the same result only in the limit as the number of collisions goes to infinity.

We compare the error between the two methods in Figure 5.3.

Figure 5.3: Error between the two options for translational temperature in the in-
elastic collision. Subscript C represents the cell temperature option used in Figure
5.1, and subscript E represents the collision energy option used in Figure 5.2.

We see that for the case where the cell temperature is used, the error in

temperatures approaches zero as distributions reach the equilibrium temperature.

However, when using the collision energy, the error in the temperatures does not
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approach zero for the time-span shown. The method of using collision energy also

experiences significantly more error than the other method. The biggest concern,

however, is the monotonically increasing error in total energy. While the value is not

large for 200 time steps, one could extrapolate this error as the number of time steps

increases to the thousands. The cause of this error is currently under investigation.

Lastly, we desire to compare the homogeneous solution obtained in Figure 5.2 with

a DSMC homogeneous solution for a VHS parameter of ω = 0.75 and the same

rotational relaxation collision number, Zrot = 5. Using data provided in Figure 11.2

of Bird [5], we can overlay the two data sets and obtain direct comparison.

Figure 5.4: A comparison of the discrete velocity method (DVM) for solving the
Boltzmann equation with rotational energy, and the direct simulation Monte Carlo
(DSMC) method with rotational energy. Zrot = 5 and the x-axis represents the
number of equilibrium collisions described by the collision rate, f̂ , and the time, t.
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The data sets converge as expected at the same Landau-Teller relaxation rate.

To obtain the inelastic collision rate for the discrete velocity method in the same

terms as DSMC, one must use the following equation:

f̂ = n̂σ̂ĝΛ = n̂

(
σo

σrefDVM

)(
go
ηr

)(
1

Zrot

)(
σrefDVM
σrefDSMC

)
, (5.1.3)

where Λ is defined as the fraction of total collisions that are inelastic, go is

defined as ηr, so go
ηr

= 1, and
σrefDVM
σrefDSMC

= [2(2 − ω)]ω as derived in Appendix A of

Morris et al. [16]. Therefore, we obtain the collision rate to be:

f̂ =
n̂[2(2− ω)]ω

Zrot
. (5.1.4)

For different gases modeled by the variable hard sphere collision model (i.e.

the viscosity index, ω, is no longer 0.5 for pseudo-Maxwell molecules in DVM; 1.0 for

pseudo-Maxwell molecules in Bird’s homogeneous relaxation code, DSMC0R.F [5]),

the rates can differ by as much as 5%. This can be seen in Figure 11.2 of Bird [5].

5.2 1D Normal Shock with Internal Energy

This section will discuss a one dimensional normal shock with internal energy

as generated by the new method for incorporating internal energy in the framework of

the discrete velocity method for solving the Boltzmann equation. The right traveling

shock wave is formed by colliding left flowing gas into a specular wall. Knowing the

upstream conditions, we can calculate the downstream conditions using the Rankine-

Hugoniot relations. The assumptions for these relations are that the gas is calorically
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perfect, 1-D and inviscid. The density, temperature and pressure relations are given

below:

ρ̂2
ρ̂1

= (γ+1)M2

(γ−1)M2+2
, (5.2.1)

T̂2
T̂1

= [2 + (γ − 1)M2] 2γM2−(γ−1)
(γ+1)2M2+2

, (5.2.2)

p̂2
p̂1

= [2γM2 − (γ − 1)] 1
γ+1

. (5.2.3)

Here, M is the shock’s Mach number and γ is the ratio of specific heats defined

as γ = cp
cv

. The ratio of specific heats is also tied to the number of degrees of freedom,

f , for the gas species. The number of degrees of freedom is dependent on the structure

of the molecule and energy modes that are excited. This relation to degrees of freedom

is given as,

γ =
f + 2

f
. (5.2.4)

For species with no internal structure, the number of degrees of freedom is 3

(for the three translational directions) and the gas has γ = 5/3. If we introduce the

two rotational degrees of freedom, γ = 7/5. This is the γ we proceed with since the

only form of internal energy for these simulations is rotation.

The Rankine-Hugoniot relations in Equations 5.2.1 to 5.2.3 depend on the

Mach number. Since the free-stream is not stationary, we need to compute the shock

speed ûs. This is performed taking the positive root of the following equation:
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û2
s −

3− γ
2

û1ûs −
1

2

[
γ + (γ − 1)û2

1

]
= 0 , (5.2.5)

then, the Mach number can be computed by: M = (ûs − û1)
√

2/γ. For the

1-D right traveling shock simulations performed below, the domain is initialized with

a density: n̂1 = 1, temperature: T̂tr1 = T̂rot1 = 1, and an x velocity of û1 = −1. These

conditions produce a Mach 1.97 shock. For all the simulations, the velocity grid in

each cell is uniform with 13 grid points in each direction (i.e. imax = 6, imin = −6)

and a velocity grid spacing of β = 0.7.

Figure 5.5: Rotational and translational temperature profiles for Mach 1.97 normal
shock, performed with a physical spacing a = ∆x/λup = 1 and scaled time step
δt̂ = 0.05. λup is the upstream mean free path.
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We calculate the expected downstream temperature using Equation 5.2.2 to

be T̂2 = 1.645. We see that the simulated downstream temperature agrees with the

Rankine-Hugoniot temperature to within 0.5%. The Mach 1.97 nitrogen shock is

coarse due to the unrefined nature of the the physical spacing, a. If we refine in

physical space and normalize according the following relation,

T̂ ∗ =
T̂ − T̂up

T̂down − T̂up
, (5.2.6)

we arrive at the shock seen in Figure 5.6.

Figure 5.6: Comparison of Figure 5.5 with a spatially refined and normalized Mach
1.97 normal shock. This normal shock was performed with a physical spacing a =
∆x/λup = 0.5 and scaled time step δt̂ = 0.05. The rotational relaxation collision
constant is Zrot = 5.
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The hump that is visible in the translational temperature is produced by the

slow transfer of energy into the internal modes; here, the only internal modes available

are rotational. The height and breadth of the hump are dependent on the relaxation

rate for the internal modes. With such a shock, we can easily compare to 1-D shock

waves produced by other available rarefied gas dynamics solvers, particularly direct

simulation Monte Carlo or DSMC [5]. This will be the focus of the following section.

5.3 Comparison to DSMC

DSMC incorporates internal energy by use of the the Larsen Borgnakke method

of handling inelastic collisions discussed in Section 4.2. To allow a consistent com-

parison, we set the only form of internal energy to be rotation, and specify the same

relaxation rate in both DVM and DSMC by setting Zrot = 5 in both programs.

Furthermore, care must be taken to make sure the physical space is consistent.

The systematic approach to this is to scale both sets of data by the upstream mean

free path λup. Bird defines his mean free path in DSMC [5] to be:

λup =

(
T
Tref

)ω
(2− ω)ω Γ(2− ω)

√
2nσref

(5.3.1)

The DVM λup must match Bird’s in order to obtain meaningful results. There-

fore we choose to multiply the DSMC physical length, x/λup, by λDSMC/λDVM , where

it is implied that the mean free path is calculated for upstream conditions. This re-

scaling essentially uses the parameter
σrefDVM
σrefDSMC

as given in Section 5.2 and derived in

Appendix A of Morris et al. [16]. As a check, we show that the temperature profile
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for a monatomic gas is consistent (Figure 5.7 below).

Figure 5.7: Normalized DSMC and DVM temperature profiles for Mach 1.71
monatomic normal shocks. Performed using pseudo-Maxwell molecules for both meth-
ods, and for the DVM shock, a uniform velocity space of 133 and a scaled velocity
grid spacing of β = 0.7 is used. The physical spacing is a = 0.5 and the scaled time
step is δt̂ = 0.05. The DSMC shock was obtained using the code DSMC1S.F [5].

Now we can proceed to the diatomic case with rotational energy. We first use

pseudo-Maxwell molecules in both DSMC and DVM and compare the shock profiles.

Using the same velocity and physical parameters listed in the caption of Figure 5.7,

we compare the normalized DSMC temperature profiles with the normalized DVM

temperature profiles for a Mach 1.71 normal shock with rotational energy.
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Figure 5.8: Normalized DSMC and DVM temperature profiles for a Mach 1.71 normal
shock with rotational energy. The DSMC normal shock is simulated with a relaxation
rate corresponding to Zrot = 5, whereas for DVM, two cases—a relaxation rate Zrot =
5 and 1.25—are shown.

Here, DSMC and both DVM temperature profiles meet the Rankine-Hugoniot

conditions downstream for T̂final = 1.585 to within 0.5%. The primary difference

between the two plots for Zrot = 5 is that the DSMC rotational relaxation rate is

much faster than the DVM rate. Consequently, the translational temperature for

DSMC does not display the hump structure seen in the DVM translational temper-

ature. The DVM normal shock with Zrot = 1.25, however, illustrates the difference

in relaxation rates by demonstrating a faster rate with the DVM method. We see in

this plot that the DVM simulation for Zrot = 1.25 has a translational and rotational
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temperature profile that match the DSMC simulation for Zrot = 5 almost precisely.

The explanation for this factor of 1
4

of Zrot required to obtain a consistent rotational

relaxation rate is unknown, but is under investigation currently.

Furthermore, we wish to examine a normal shock using the VHS and VSS

parameters for nitrogen, ωN2 and αN2 respectively, in both programs. We demonstrate

this in the figure below.

Figure 5.9: Normalized DSMC and DVM temperature profiles for Mach 1.71 normal
shock using variable hard sphere and variable soft sphere parameters for nitrogen.
The same configuration of physical and velocity space parameters were used as in
Figure 5.7

Figure 5.9 shows both DVM translational temperature profiles agree well with

the DSMC profile for the upstream half of the shock profile, but the downstream shock
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thickness seems to expand before the DSMC shock. Furthermore, it is interesting

that the DVM downstream translational temperature profiles seem to start relaxing

before DSMC, yet still have a larger translational temperature hump. The variable

hard sphere model was also employed without VSS and there was negligible difference

for both of the DVM cases and the DSMC simulation.

Ultimately, we wish to know which method achieves the most accurate results.

The best way to do this is to compare to experimental results like those obtained by

Alsmeyer [2]. Another perhaps more revealing way to compare the two programs

would be to implement Larsen Borgnakke inelastic collision approach in the DVM

code and compare it to both DSMC and DVM using the new method for inelastic

collisions. This too remains under development.

5.4 Convection and Velocity Grid Refinement

This section investigates the effect of refining the discrete velocity grid and

using an alternative convection method on the normal shock profiles. We will begin

with refining the discrete velocity grid.

In the previous DVM cases, the velocity grid in each cell was uniform with 13

grid points in each direction (i.e. imax = 6, imin = −6) and had a velocity grid spacing

of β = 0.7. The same Mach 1.71 normal shock is now simulated using the discrete

velocity method on a uniform velocity grid with 25 grid points in each direction (i.e.

imax = 12, imin = −12) and a velocity grid spacing of β = 0.35. The other physical

parameters remain the same: the physical spacing, a = 0.5, and the scaled time step,

δt̂ = 0.05. Lastly, this was performed using VHS for nitrogen, ωN2 = 0.74, and a
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rotational relaxation collision number of Zrot = 5. The following plot is obtained.

Figure 5.10: Normalized DSMC and DVM temperature profiles for Mach 1.71 normal
shock using VHS for nitrogen. The refined grid is denoted by RG.

The results in Figure 5.10, show that the DVM normal shock with rotational

energy is un-converged in velocity space. Further investigation is needed to determine

why this is the case. Interestingly, the refined grid normal shock did not display any

wall effects that are present in the unrefined grid simulations.

For all the preceding DVM normal shock simulations, a fourth order Runge-

Kutta convection method has been used [17]. Here we desire to test the simple upwind

first order scheme also implemented by Morris [17]. The parameters a and δt̂ are

kept the same as those used to generate Figure 5.10; however, here pseudo-Maxwell
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molecules are used. Furthermore, this simulation is performed on the unrefined, 133,

uniform velocity grid with β = 0.7. The first order scheme for convection is compared

to the fourth order scheme below.

Figure 5.11: Normalized DSMC and DVM temperature profiles for Mach 1.71 normal
shock using two different methods for convection.

The first order convection method with a Zrot = 5 gives a faster relaxation

rate than the fourth order convection method. However, these methods should not

compute any difference in relaxation rate. This leads to the conclusion that errors in

the convection of internal energy could be contributing factors to the unknown factor

of 1
4

difference in rotational relaxation collision constants seen in Figure 5.8. Further

tests of the convection routine for internal energy are required.
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Chapter 6

Conclusions

The objective at outset of this thesis was to develop the capacity to handle

gases with internal energy within the framework of the existing discrete velocity Boltz-

mann equation solver, particularly in its most advanced form: the variance reduction

method. Through the course of this paper, an outline of how to handle multiple modes

of internal energy was presented, and rotational energy, represented by a single value

instead of a distribution at each velocity point, was implemented. A new method was

developed to represent the exchange of translational and internal energy. The method

employed the Landau-Teller equation for the bulk translational and internal energy

exchange to govern that energy exchange during inelastic collisions. An interpolation

scheme was also developed in addition to the existing velocity interpolation scheme

to handle post-collision internal energy re-distribution to the discrete velocity grid

while continuing to preserve mass, momentum and total energy.

Homogeneous relaxations showed that for the zero dimensional case of a gas

with an initial scaled translational temperature of 2 and an initial scaled rotational

temperature of 1 the expected final temperature was met to within 0.5% error, and the

correct relaxation rate according to the analytic Landau-Teller equation was shown.

A comparison to the direct simulation Monte Carlo (DSMC) method showed that
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the Discrete Velocity Method (DVM) homogeneous case relaxed at the same rate.

The internal energy exchange method was next examined via the simulation of a one

dimensional normal shock. For a Mach 1.97 normal shock, the new method was shown

to meet the Rankine-Hugoniot downstream temperature for both translational and

rotational temperature, again within 0.5% error. A Mach 1.71 normal shock with

rotational energy was generated by the DSMC method and was compared to the

shock profiles for a DVM normal shock of the same Mach number. The DSMC shock

unexpectedly showed a faster rotational relaxation rate than the shock generated by

the DVM.

In addition to the above primary developments, the Variable Hard Sphere and

Variable Soft Sphere collision models were added to the probability distribution in the

collision selection model. The Larsen Borgnakke Method for inelastic collisions was

outlined and developed for the DVM Boltzmann equation solver, but remains to be

tested. The method to incorporate vibrational energy was outlined and the framework

was developed to allow for its implementation. Furthermore, the framework exists

within the DVM Boltzmann equation solver to allow for the rotational and vibrational

energy to be represented as a distribution at every node in velocity space.

6.1 Future Work

First, a couple of outstanding issues must be resolved. For the homogeneous

case, the source of the monotonically increasing error need to be tracked down. This

may play a role in some of the wall effects seen in the normal shock simulations.

Another area of study is internal energy convection. Since the different convection
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methods produce different rotational relaxation rates, an error in the first or fourth

order convection routine may be the primary source of the difference in relaxation

rates between the DVM and DSMC method. Furthermore, the refined velocity grid

seems to be converging to the correct relaxation rate, but for unknown reason. More

refined discrete velocity grid tests must be performed to understand this behavior.

Lastly, the variable hard sphere and variable soft sphere collision models require

further testing to accurately understand Figure 5.9. When these tests are complete,

comparing both DSMC and the DVM to Alsmeyer’s experimental results [2] could

illuminate which method is a more accurate representation of rotational energy in a

normal shock.

One natural advancement of the internal energy method developed here for the

discrete velocity Boltzmann equation solver would be to represent the rotational and

vibrational energy as distributions at every velocity node. Particularly the vibrational

energy distribution would benefit, since molecules at low temperatures are generally

in the ground vibrational energy level. The rotational energy may ultimately be kept

to a single level representation since the rotational relaxation rate is typically faster

than vibrational.

An interesting opportunity exists within the DVM if molecular vibration is

to be modeled. The vibrational energy level transitions for an anharmonic oscilla-

tor model of a specific species of gas can be pre-calculated and used to accurately

describe an anharmonic vibrational model for inelastic collisions. Adamovich et al.

accurately described the vibrational relaxation rate by using the forced harmonic oscil-

lator model to find vibrational transition rate coefficients [1]. These rate coefficients
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are computed analytically through thermal averaging of collision based transition

probabilities. Boyd used these probabilities in DSMC to accurately characterize the

vibrational relaxation [8]. However, the probabilities discussed here require complex

calculation, so performing the calculation on the fly for a specific set of two velocities

in a DSMC collision is impractical. Therefore, probabilities for a set of relative veloc-

ity bins are pre-calculated and a finite number of energy level transitions are allowed.

In a discrete velocity approach, as in the Boltzmann equation solver discussed in this

thesis, all the relative velocity values are known, so a table for the total distribution

could be pre-computed and used without sorting relative velocities into bins. This

is unlike Boyd’s modification for DSMC in [8], which allows for all possible relative

velocities, and therefore, sorting an arbitrary collision’s relative velocity into a bin

sacrifices the exactness of the transition probabilities.

Finally, inelastic collisions should be able to exchange translational energy

and multiple forms of internal energy per collision. Electronic excitation can also

be incorporated, but this framework is not yet written and requires development.

Lastly, dissociation, ionization and the inclusion of multiple species complicates the

problem significantly, but a competitive rarefied gas solver should incorporate such

possibilities.
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